

Logical Analysis of Hybrid Systems

André Platzer

Logical Analysis of Hybrid
Systems

Proving Theorems for Complex Dynamics

123

ISBN 978-3-642-14508-7 e-ISBN 978-3-642-14509-4
DOI 10.1007/978-3-642-14509-4
Springer Heidelberg Dordrecht London New York

ACM Computing Classification (1998): F.4.1, F.3, D.2.4, I.2.3, G.1.7, I.2.8

c© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Library of Congress Control Number: 2010934645

Dr. André Platzer
Carnegie Mellon University
School of Computer Science
5000 Forbes Ave.
Pittsburgh PA 15213
USA
aplatzer@cs.cmu.edu

Foreword

Hybrid Systems are notoriously hard to analyze and verify. So far, techniques based
on either explicit or implicit state reachability have failed to scale with the size of
such systems. Statistical Model Checking may prove useful, but sacrifices absolute
certainty about the correctness of the answer obtained. In both cases, numerical er-
ror may change the truth-value of the result from False to True or vice versa. An
alternative is to use a combination of decision procedures for real arithmetic and
interactive theorem proving. Andre Platzer’s Ph.D. thesis explores this alternative
approach in great depth. He proposes a logic called Differential Dynamic Logic for
specifying properties of Hybrid Systems, investigates the meta-theory of the logic,
and gives inference rules for it. He has developed an extremely impressive graph-
ical interface for the resulting tool KeYmaera, which is based on the KeY Prover
for verifying Java programs, developed at the University of Karlsruhe, Chalmers,
and Koblenz. Particularly noteworthy are the use of Differential Invariants for reas-
oning about complex Hybrid Systems and the examples that he is able to do: “The

craft collision avoidance. Both examples are beyond the scope of current Hybrid
System Model Checking tools. I believe that his verification tool is unique – there
is no other one like it. I heartily recommend his book and theorem prover for those
who need to verify complex cyber-physical systems.

Pittsburgh, February 2010 Edmund M. Clarke

v

European Train Control System” and a curved flight roundabout maneuver for air-

Preface

The design of complex systems is essential to much of engineering and science.
Equally essential is the effort to fully understand these systems and to develop tools
and techniques that can steer us away from unsafe or incorrect designs. In civil
engineering, for example, well-understood principles like statics can be used to ana-
lyse buildings before they are built, and refined architectural models can be used
to predict whether a building will be safe or whether it might collapse during an
earthquake. Similarly, in auto body design, wind tunnels and corresponding com-
puter models based on computational fluid dynamics help engineers to gain an un-
derstanding of aerodynamic forces and wind resistance for energy efficiency before
constructing the actual car and its chassis. Models and their analysis also play an im-
portant role in chip design and are used extensively in the semiconductor industry
to prevent expensive bugs in hardware. Modelling and model analysis is thus an in-
tegral part of science and engineering and is used very effectively in many areas to
ensure high-quality system designs, saving replacement cost and preventing danger-
ous side effects of malfunctioning designs.

Hybrid systems is an emergent area of growing importance, emphasising a sys-
tematic understanding of systems that combine discrete (e.g., digital) and continu-
ous (e.g., analog or physical) effects. In fact, it is foreseeable that hybrid systems and
the closely related notion of cyber-physical systems will soon play a ubiquitous role
in engineering. Combinations of computation and control can lead to very power-
ful system designs, and computational aspects are being integrated into classical
physical, mechanical, and chemical process controls on a routine basis today. The
number of systems where both computational and physical aspects are important
for really understanding them grows exponentially with modern technological ad-
vances. Hybrid systems occur frequently in automotive industries, aviation, railway
applications, factory automation, process control, medical devices, mobile robotics,
and mixed analog–digital chip design.

Despite the growing relevance in complex system designs, hybrid systems is an
area where analytic approaches are still in their infancy. Hybrid systems occur ubi-
quitously and their analysis faces inherent complexity challenges. Hence, there is
probably no other area where the gap is more noticeable between the tremendous

vii

viii Preface

complexity of the systems we can build and the modest size of systems that we can
analyse. Mankind can build systems that are significantly more complicated than
people can understand analytically. This book presents an approach with logical
analysis techniques that are intended to help overcome these difficulties and bridge
the gap between design demand and analysis power.

In light of this growing interest in the field, the purpose of this book is to provide
an introduction to hybrid systems analysis and, in particular, to present a coherent
logical analysis approach for hybrid systems. One of the highly successful tech-
niques used for analysing finite-state models in chip designs today is model check-
ing, which was pioneered in 1981 by the 2007 ACM Turing Award Laureates Ed-
mund M. Clarke, Allen Emerson, and Joseph Sifakis. Nowadays, model checking is
used routinely in the semiconductor industry. Model checking is one of the inspira-
tions for this work. Another area that is strongly related is interactive and automated
theorem proving, which is also used in advanced industrial settings. Model checking
and automated theorem proving complement each other to tackle various aspects of
formal system verification. While both areas are ultimately rooted in logic, the basic
operating principles are somewhat different. Model checking is based on systemat-
ically exploring the state space of a system in a clever way. Model checking searches
for counterexamples, i.e., traces of a system that lead to a bug and that serve as a
falsification of a correctness property. Impressive results have been demonstrated
for finite-state systems where model checking is decidable. In theorem proving, in
contrast, the notion of a proof is fundamental and represents a verification of a cor-
rectness property. In particular, a proof is a reason and explanation for why a system
works. Automated theorem proving techniques that construct proofs automatically
are another deep source of inspiration for the work presented here. In fact, several
of the proof procedures presented in this book are inspired by theorem proving prin-
ciples that have been used successfully for conventional object-oriented programs.

One important new aspect in hybrid systems is the cardinality and structure of the
state space. In (sufficiently small) finite state spaces, for instance, exhaustive state
exploration is still feasible, but becomes inherently impossible for the uncountable
continuous state spaces of hybrid systems, especially with respect to their complic-
ated interacting discrete and continuous dynamics. Most notably, the continuous
dynamics of hybrid systems that is commonly described by differential equations
poses significant new challenges compared to classical settings. Thus, verification
techniques for differential equations are one very important part of hybrid systems
analysis.

Outline

This book is intended as an introduction to hybrid systems and advanced analysis
techniques for their dynamics. It covers basic and advanced notions of hybrid sys-
tems, specification languages for hybrid systems, verification approaches for hybrid
systems, and application scenarios for hybrid systems verification. Starting from
a basic background in mathematics and computer science, this book develops all

Preface ix

notions required for understanding and analysing hybrid systems. It also provides
background material about logic and differential equations in the appendix.

This book presents a coherent logical foundation for hybrid systems analysis that
will help the reader understand how behavioural properties of hybrid systems can be
analysed successfully. The foundation developed here serves as a basis for advanced
hybrid system analysis techniques. The hybrid systems analysis approach has also
been implemented in the verification tool KeYmaera for hybrid systems, which is
available for download at the book’s Web page.

Part I describes specification and verification logics for hybrid systems that are
the basis of hybrid systems analysis. It also covers constructive proof calculi that
can be used to analyse and verify hybrid systems, including approaches for hand-
ling real arithmetic and differential equations. The chapters in Part I show a series of
logical systems that are each presented in terms of their syntax, semantics, axiomat-
ics, proof theory, and pragmatics. The syntax defines what can be said about hybrid
system behaviour. The semantics gives meaning to the symbolic formulas and shows
what we are ultimately interested in: truth, or, more precisely, what is true about the
behaviour of the particular dynamics of a hybrid system. In the axiomatic parts, this
book develops formal proof techniques that can be used by a human or machine to
establish truth by proof. After all, truth that we do not know about is less helpful
than truth that we can justify by giving a proof. The development of proof theory
connects the semantic notion of truth in the real world with the syntactic device
of formal proofs and shows that, in a sense of relative completeness, we can prove
all true facts about hybrid systems from elementary properties of differential equa-
tions. Finally, this book shows the pragmatics of using verification procedures for
analysing hybrid system scenarios. This includes both practical, algorithmic con-
siderations of developing system analysis tools and various examples, application
scenarios, and case studies that can be proven with the logics developed in Part I.

Part II focuses on the practical and algorithmic questions of how to turn the theor-
etical foundation from Part I into automated theorem proving procedures. This part
also shows techniques for generating invariants and differential invariants of hybrid
systems that are crucial for proving correctness, and shows how to overcome com-
plexity challenges in real arithmetic verification. Part III shows how safety-critical
properties of more advanced applications of hybrid systems in railway and aircraft
control can be proven with the approach presented in Parts I and II. This part in-
cludes a study of collision avoidance in the European Train Control System (ETCS)
and roundabout collision avoidance manoeuvres in air traffic control. Numerous ex-
amples, illustrations, and proofs throughout the text will also help the reader develop
an intuition about hybrid systems behaviour and master the intricacies of the more
subtle aspects in hybrid systems analysis.

How to Read This Book

The basic suggested reading sequence is linear (with additional consultation of the
appendices for background information as needed). Except for the foundation of this

x Preface

work that is laid out in Part I, however, the chapters are mostly kept self-contained so
that they can also be studied independently. The following figure shows the reading
order dependencies among the chapters (solid lines) and the partial dependencies of
suggested reading sequences that hold for the advanced material of the respective
chapters (dashed lines).

Part I

Part II

Part III

Chap. 1

Chap. 2

Chap. 3 Chap. 4

Chap. 8 Chap. 7

Chap. 6 Chap. 5

App. A App. B

App. C App. D

For background on classical first-order logic, we recommend you review App. A
as needed. Depending on your interest, field of study, and preference, we recom-
mend you either study the background information in App. A on first-order logic
before reading Part I or use the material in App. A as a background reference book
on demand while reading the main part of this book. Similarly, we recommend you
review the background on ordinary differential equations in App. B either before or
during the study of the main part. An intuitive approach to understanding differential
equations and formal definitions of their semantics will be given throughout the text.
Logic itself is also explained and illustrated intuitively during the main chapters, but
some readers may also find it helpful to refresh, update, or learn about the basics of
first-order logic from App. A before proceeding to the main part.

While there is a lot of flexibility in the reading sequence of the chapters, we
strongly recommend you study the logical foundations of hybrid systems analysis
in Chap. 2 of Part I before reading any other chapter of Parts I–III. Some more ad-
vanced sections in the applications in Part III also depend on the theory of differen-
tial invariants that is developed together with other extensions in Chap. 3.

Preface xi

Appendix C shows a formal relation of hybrid automata with hybrid programs.
Appendix D gives more detail on the implementation of the approach put forth in
this book in the verification tool KeYmaera. It also presents a survey of computa-
tional techniques for handling real arithmetic. Both App. C and D can be read as
needed, after studying the introductory material and notions in Chap. 2. The most
important formation rules for the logic and proof rules for the calculi are summar-
ised at the end of the book.

Online Material for This Book

The Web page for this book provides online material, including the verification tool
KeYmaera that implements our logical analysis approach for hybrid systems. We
also provide slide material for parts of this book, an online tutorial for KeYmaera,
and several KeYmaera problem files for examples from this book, including train
and air traffic control studies. The book Web page is at the following URL:

http://symbolaris.com/lahs/

Acknowledgements

This book is based on my Ph.D. thesis and would not have been possible without
the support of the PIs and collaborators on the projects that I have been working
on. My sincere thanks go to Prof. Ernst-Rüdiger Olderog for his excellent advice
and support, and for giving me the opportunity to work in one of the most fascin-
ating areas of science in a group with a friendly and productive atmosphere. My
advisor, Prof. Olderog, and the Director of AVACS, Prof. Werner Damm, both de-
serve my highest gratitude, not only for their continuous support and for their faith,
but also for allowing me the freedom to pursue my own research ambitions in the
stimulating context of the AVACS project (“Automatic Verification and Analysis of
Complex Systems”). Ultimately, this made it possible for me to develop the logic
and verification approach presented in this book.

I want to thank the external referees of my Ph.D. thesis, Prof. Tobias Nipkow
from the Technical University of Munich and Prof. George J. Pappas from the Uni-
versity of Pennsylvania. It is an honour for me that they were willing to invest their
valuable time and effort in the careful reviewing of my thesis. In fact, I am thank-
ful to all members of my Ph.D. committee, Werner Damm, Ernst-Rüdiger Olderog,
George J. Pappas, Tobias Nipkow, and Hardi Hungar for fruitful discussions and for
the highest support they offered for my work.

I am especially grateful to Prof. Edmund M. Clarke, who invited me to Carnegie
Mellon University several times, for his support, interest, and collaboration, and for
sharing with me parts of his huge knowledge in all areas of formal methods. I further
want to acknowledge the help by Prof. Peter H. Schmitt from the University of

xii Preface

Karlsruhe (TH), Profs. Bernhard Beckert and Ulrich Furbach from the University of
Koblenz-Landau, Prof. Reiner Hähnle from the Chalmers University of Technology,
Gothenburg, Sweden, Profs. Edmund M. Clarke and Frank Pfenning from Carnegie
Mellon University, and Prof. Rajeev Goré from the Australian National University,
Canberra, at various stages of my career.

I want to thank the program committee of the TABLEAUX 2007 conference for
selecting my first paper on differential dynamic logic for the Best Paper Award,
the first award at any TABLEAUX conference. This recognition has encouraged
me to continue pursuing my research direction, which ultimately led to the results
described in this book. I also thank the program committee of the FM 2009 confer-
ence for selecting my paper on formal verification of curved flight collision avoid-
ance maneuvers for the Best Paper Award. I am very grateful to the ACM Doctoral
Dissertation Award committee for honoring my Ph.D. thesis with the 2009 ACM
Doctoral Dissertation Honorable Mention Award.

I am truly thankful to my colleagues at Carnegie Mellon University for their
encouraging feedback about my work and for the friendly and constructive atmo-
sphere at CMU. For many fruitful discussions I thank my colleagues and friends
from Oldenburg, Ingo Brückner, Henning Dierks, Johannes Faber, Sibylle Fröschle,
Jochen Hoenicke, Stephanie Kemper, Roland Meyer, Michael Möller, Jan-David
Quesel, Tim Strazny, and especially my office mate Andreas Schäfer. Ernst-Rüdi-
ger Olderog, Johannes Faber, Ingo Brückner, Roland Meyer, Henning Dierks, Silke
Wagner, Nicole Betz, Alex Donzé, and especially Andreas Schäfer also deserve
credit for proofreading some of my earlier papers, which formed the basis for this
book. I also acknowledge Andreas Schäfer’s helpful feedback from proofreading
parts of this book. I appreciate the feedback of my students on this book.

Furthermore, I thank Jan-David Quesel for writing a Master’s thesis under my
supervision and for his invaluable support with the implementation of the verific-
ation tool KeYmaera based on the techniques that I present in this book and in
prior publications. I also thank him for help with the experiments and ETCS. I am
also thankful for indispensable and reliable help from Richard Bubel and Philipp
Rümmer with the implementation internals of the KeY basis. I thank the whole KeY
team for providing the impressive Java verification tool KeY as a basis for our im-
plementation of KeYmaera.

For help with the book process, I thank Ronan Nugent from Springer.
Especially, I thank my parents, Rudolf and Brigitte Platzer, and my sister, Julia,

for their continuous support and encouragement, and I thank my wife, Nicole, for
her true faith in me. She also deserves credit for her invaluable help with some of
the illustrations in this book.

Funding

This research was partly supported by the German Research Council (DFG) under
grant SFB/TR 14 AVACS (“Automatic Verification and Analysis of Complex Sys-
tems”, see http://www.avacs.org); a Transregional Collaborative Research

Preface xiii

Center of the Max Planck Institute and the Universities of Oldenburg, Saarbrücken,
and Freiburg in Germany, with associated cooperations with the University of
Pennsylvania, ETH Zürich, and the Academy of Sciences of the Czech Republic.
It was further supported partly by a research fellowship of the German Academic
Exchange Service (DAAD) and by a research award of the Floyd und Lili Biava
Stiftung. Some part of this work was also supported by the National Science Found-
ation under grant nos. CNS-0931985 and CNS-0926181, including the NSF Exped-
ition on Computational Modeling and Analysis of Complex Systems (CMACS); see
http://cmacs.cs.cmu.edu for more information.

The views and conclusions contained in this book are those of the author and
should not be interpreted as representing the official policies, either expressed or
implied, of any sponsoring institution or government.

Further Sources

This book is based on several sources, most notably the author’s Ph.D. thesis [236].
Chapter 2 is an extended version of an article in the Journal of Automated Reason-
ing [235] and also covers some material from previous work at TABLEAUX [231]
and HSCC [232]. Chapter 3 is an extended version of an article in the Journal of Lo-
gic and Computation [237], to which we now add a relative completeness argument
and prove that DAL is a conservative extension of the sublogic dL . We further com-
bine the solution-based techniques from Chap. 2 with differential induction-based
techniques from Chap. 3 by introducing the new extension of differential monoton-
icity relaxations. Chapter 4 is a substantially extended version of a previous paper
at LFCS [233], to which we now add a complete and more elegant calculus and
provide a modular relative completeness proof.

In Chap. 5, we extend a previous paper at VERIFY [230] with more details on it-
erative background closure strategies, including experimental evaluation, and com-
plement this proof technique with a new iterative inflation strategy. Chapter 6 is
based on joint work with Edmund M. Clarke at CAV [239] and in Formal Methods
in System Design [240].

Chapter 7 is a substantially revised and improved version of joint work with Jan-
David Quesel at HSCC [243] with extensions from follow-up work [244]. Chapter 8
is a significantly improved and detailed case study developed on the basis of joint
work with Edmund M. Clarke at HSCC [238] and CAV [239] with subsequent ex-
tensions at FM [241].

Appendix B summarises classical results from the theory of differential equations
from the literature [297]. Finally, App. D uses a few excerpts from joint work with
Jan-David Quesel at IJCAR [242], adding an overall discussion of the KeYmaera
verification tool that implements the approach presented in this book. Appendix D
also adds a thorough description of computational back-ends for real arithmetic,
with extensions from joint work with Philipp Rümmer and Jan-David Quesel [246].

Pittsburgh, February 2010 André Platzer

Contents

1 Introduction 1
1.1 Technical Context . 4

1.1.1 Hybrid Systems . 4
1.1.2 Model Checking . 12
1.1.3 Deductive Verification . 14
1.1.4 Compositional Verification 16
1.1.5 Lifting Quantifier Elimination 19
1.1.6 Differential Induction and Differential Strengthening 20

1.2 Related Work . 21
1.3 Contributions . 25
1.4 Structure of This Book . 25

Part I Logics and Proof Calculi for Hybrid Systems 31

2 Differential Dynamic Logic dL 33
2.1 Introduction . 34

2.1.1 Structure of This Chapter 35
2.2 Syntax . 35

2.2.1 Terms . 37
2.2.2 Hybrid Programs . 41
2.2.3 Formulas . 47

2.3 Semantics . 49
2.3.1 Valuation of Terms . 50
2.3.2 Valuation of Formulas . 51
2.3.3 Transition Semantics of Hybrid Programs 54

2.4 Collision Avoidance in Train Control 61
2.5 Proof Calculus . 64

2.5.1 Substitution . 65
2.5.2 Proof Rules . 76

xv

xvi Contents

2.5.3 Deduction Modulo with Invertible Quantifiers and Real Quan-
tifier Elimination . 88
2.5.3.1 Lifting Quantifier Elimination by Invertible Quan-

tifier Rules . 88
2.5.3.2 Admissibility in Invertible Quantifier Rules 91
2.5.3.3 Quantifier Elimination and Modalities 93
2.5.3.4 Global Invertible Quantifier Rules 93

2.5.4 Verification Example . 94
2.6 Soundness . 97
2.7 Completeness . 101

2.7.1 Incompleteness . 102
2.7.2 Relative Completeness . 103
2.7.3 Characterising Real Gödel Encodings 105
2.7.4 Expressibility and Rendition of Hybrid Program Semantics . 106
2.7.5 Relative Completeness of First-Order Assertions 109
2.7.6 Relative Completeness of the Differential Logic Calculus . . 113

2.8 Relatively Semidecidable Fragments 114
2.9 Train Control Verification . 118

2.9.1 Finding Inductive Candidates 118
2.9.2 Inductive Verification . 119
2.9.3 Parameter Constraint Discovery 120

2.10 Summary . 122

3 Differential-Algebraic Dynamic Logic DAL 123
3.1 Introduction . 124

3.1.1 Related Work . 128
3.1.2 Structure of This Chapter 130

3.2 Syntax . 130
3.2.1 Terms . 132
3.2.2 Differential-Algebraic Programs 132
3.2.3 Formulas . 139

3.3 Semantics . 141
3.3.1 Transition Semantics of Differential-Algebraic Programs . . 141
3.3.2 Valuation of Formulas . 145
3.3.3 Time Anomalies . 145
3.3.4 Conservative Extension . 147

3.4 Collision Avoidance in Air Traffic Control 148
3.4.1 Flight Dynamics . 148
3.4.2 Differential Axiomatisation 149
3.4.3 Aircraft Collision Avoidance Manoeuvres 150
3.4.4 Tangential Roundabout Manoeuvre 151

3.5 Proof Calculus . 152
3.5.1 Motivation . 153
3.5.2 Derivations and Differentiation 154
3.5.3 Differential Reduction and Differential Elimination 160

Contents xvii

3.5.4 Proof Rules . 162
3.5.5 Deduction Modulo by Side Deduction 168
3.5.6 Differential Induction with Differential Invariants 170
3.5.7 Differential Induction with Differential Variants 181

3.6 Soundness . 185
3.7 Restricting Differential Invariants 188
3.8 Differential Monotonicity Relaxations 189
3.9 Relative Completeness . 193
3.10 Deductive Strength of Differential Induction 194
3.11 Air Traffic Control Verification . 197

3.11.1 Characterisation of Safe Roundabout Dynamics 197
3.11.2 Tangential Entry Procedures 200
3.11.3 Discussion . 201

3.12 Summary . 201

4 Differential Temporal Dynamic Logic dTL 203
4.1 Introduction . 204

4.1.1 Related Work . 205
4.1.2 Structure of This Chapter 206

4.2 Syntax . 206
4.2.1 Hybrid Programs . 207
4.2.2 State and Trace Formulas 207

4.3 Semantics . 210
4.3.1 Trace Semantics of Hybrid Programs 210
4.3.2 Valuation of State and Trace Formulas 213
4.3.3 Conservative Temporal Extension 215

4.4 Safety Invariants in Train Control 216
4.5 Proof Calculus . 217

4.5.1 Proof Rules . 218
4.5.2 Verification Example . 221

4.6 Soundness . 221
4.7 Completeness . 223

4.7.1 Incompleteness . 223
4.7.2 Relative Completeness . 224
4.7.3 Expressibility and Rendition of Hybrid Trace Semantics . . 225
4.7.4 Modular Relative Completeness Proof 226

4.8 Verification of Train Control Safety Invariants 227
4.9 Liveness by Quantifier Alternation 228
4.10 Summary . 230

Part II Automated Theorem Proving for Hybrid Systems 231

5 Deduction Modulo Real Algebra and Computer Algebra 233
5.1 Introduction . 234

xviii Contents

5.1.1 Related Work . 234
5.1.2 Structure of This Chapter 235

5.2 Tableau Procedures Modulo . 235
5.3 Nondeterminisms in Tableau Modulo 238

5.3.1 Nondeterminisms in Branch Selection 238
5.3.2 Nondeterminisms in Formula Selection 239
5.3.3 Nondeterminisms in Mode Selection 240

5.4 Iterative Background Closure . 243
5.5 Iterative Inflation . 246
5.6 Experimental Results . 248
5.7 Summary . 251

6 Computing Differential Invariants as Fixed Points 253
6.1 Introduction . 254

6.1.1 Related Work . 255
6.1.2 Structure of This Chapter 256

6.2 Inductive Verification by Combining Local Fixed Points 256
6.2.1 Verification by Symbolic Decomposition 257
6.2.2 Discrete and Differential Induction, Differential Invariants . 258
6.2.3 Flight Dynamics in Air Traffic Control 260
6.2.4 Local Fixed-Point Computation for Differential Invariants . 262
6.2.5 Dependency-Directed Induction Candidates 263
6.2.6 Global Fixed-Point Computation for Loop Invariants 265
6.2.7 Interplay of Local and Global Fixed-Point Loops 268

6.3 Soundness . 269
6.4 Optimisations . 271

6.4.1 Sound Interleaving with Numerical Simulation 271
6.4.2 Optimisations for the Verification Algorithm 272

6.5 Experimental Results . 272
6.6 Summary . 273

Part III Case Studies and Applications in Hybrid Systems
Verification 275

7 European Train Control System 277
7.1 Introduction . 278

7.1.1 Related Work . 280
7.1.2 Structure of This Chapter 281

7.2 Parametric European Train Control System 281
7.2.1 Overview of the ETCS Cooperation Protocol 281
7.2.2 Formal Model of Fully Parametric ETCS 284

7.3 Parametric Verification of Train Control 286
7.3.1 Controllability Discovery 287
7.3.2 Iterative Control Refinement 288

Contents xix

7.3.3 Safety Verification . 291
7.3.4 Liveness Verification . 293
7.3.5 Full Correctness of ETCS 294

7.4 Disturbance and the European Train Control System 295
7.4.1 Controllability Discovery 296
7.4.2 Iterative Control Refinement 298
7.4.3 Safety Verification . 298

7.5 Experimental Results . 299
7.6 Summary . 301

8 Air Traffic Collision Avoidance 303
8.1 Introduction . 304

8.1.1 Related Work . 307
8.1.2 Structure of This Chapter 308

8.2 Curved Flight in Roundabout Manoeuvres 309
8.2.1 Flight Dynamics . 309
8.2.2 Roundabout Manoeuvre Overview 310
8.2.3 Compositional Verification Plan 311
8.2.4 Tangential Roundabout Manoeuvre Cycles 312
8.2.5 Bounded Control Choices 315
8.2.6 Flyable Entry Procedures 315
8.2.7 Bounded Entry Duration 318
8.2.8 Safe Entry Separation . 319

8.3 Synchronisation of Roundabout Manoeuvres 322
8.3.1 Successful Negotiation . 322
8.3.2 Safe Exit Separation . 326

8.4 Compositional Verification . 328
8.5 Flyable Tangential Roundabout Manoeuvre 329
8.6 Experimental Results . 331
8.7 Summary . 333

9 Conclusion 335

Part IV Appendix 339

A First-Order Logic and Theorem Proving 341
A.1 Overview . 341
A.2 Syntax . 346

A.2.1 Terms . 346
A.2.2 Formulas . 347

A.3 Semantics . 348
A.3.1 Valuation of Terms . 349
A.3.2 Valuation of Formulas . 349

A.4 Proof Calculus . 350
A.4.1 Proof Rules . 351

xx Contents

A.4.2 Proof Example: Ground Proving Versus Free-Variable Proving354
A.5 Soundness . 356
A.6 Completeness . 356
A.7 Computability Theory and Decidability 357

B Differential Equations 359
B.1 Ordinary Differential Equations 359
B.2 Existence Theorems . 363
B.3 Existence and Uniqueness Theorems 364
B.4 Linear Differential Equations with Constant Coefficients 365

C Hybrid Automata 369
C.1 Syntax and Traces of Hybrid Automata 369
C.2 Embedding Hybrid Automata into Hybrid Programs 371

D KeYmaera Implementation 377
D.1 KeYmaera: A Hybrid Theorem Prover for Hybrid Systems 377

D.1.1 Structure of This Appendix 379
D.2 Computational Back-ends for Real Arithmetic 380

D.2.1 Real-Closed Fields . 381
D.2.2 Semialgebraic Geometry and Cylindrical Algebraic Decom-

position . 383
D.2.3 Nullstellensatz and Gröbner Bases 386
D.2.4 Real Nullstellensatz . 392
D.2.5 Positivstellensatz and Semidefinite Programming 394

D.3 Discussion . 396
D.4 Performance Measurements . 399

References 401

Index 415

Operators and Proof Rules 423

List of Figures

1.1 European Train Control System 2
1.2 ETCS: discrete evolution of acceleration a, continuous evolution of

velocity v and of position z over time t 3
1.3 Collision avoidance manoeuvres in air traffic control 3
1.4 Hybrid automaton for an (overly) simplified train control system . 5
1.5 Hybrid automaton and hybrid program of a simple bouncing ball . 7
1.6 Switching between two damped oscillators 8
1.7 Hybrid automaton for switching damped oscillators 9
1.8 Stable trajectory switching between two damped oscillators 9
1.9 Instable trajectory switching between two damped oscillators . . . 10
1.10 Simple water tank system . 11
1.11 Successive state space exploration in finite-state model checking . 12
1.12 Failed hybrid automaton decomposition attempt 17
1.13 Successful hybrid program decomposition 18
1.14 Dependencies and suggested reading sequence of chapters and ap-

pendices . 28

2.1 Hybrid program rendition of hybrid automaton for (overly) simpli-
fied train control . 36

2.2 Parametric bouncing ball . 45
2.3 Parametric bouncing ball (with abbreviations resolved) 46
2.4 Transition semantics of modalities in dL formulas 52
2.5 Transition semantics and example dynamics of hybrid programs 56
2.6 Continuous flow along differential equation x′ = θ over time 57
2.7 Transition structure and transition example in (overly) simple train

control . 59
2.8 ETCS train coordination protocol using dynamic movement author-

ities . 61
2.9 ETCS transition structure and various choices of speed regulation

for train speed control . 63
2.10 Application of simultaneous substitutions 65

xxi

xxii List of Figures

2.11 Rule schemata of the free-variable calculus for differential dy-
namic logic . 79

2.12 Correspondence of dynamic proof rules and transition semantics 83
2.13 Simple propositional example proof 87
2.14 Deduction modulo for analysis of MA violation in braking mode . 89
2.15 Controllable region of ETCS dynamics 90
2.16 Deduction modulo for analysis of MA-safety in braking mode . . . 90
2.17a Wrong rearrangement with deduction modulo by invertible quanti-

fiers . 91
2.17b Correct reintroduction order with deduction modulo by invertible

quantifiers . 91
2.18 Bouncing ball proof (no evolution domain) 95
2.19a Unsound attempt of induction without universal closure ∀α 95
2.19b Correct use of induction with universal closure ∀α , i.e., ∀x 95
2.20 Bouncing ball proof (with evolution domain) 97
2.21 Characterisation of N as zeros of solutions of differential equations 103
2.22 Fractional encoding principle of R-Gödel encoding by bit interleav-

ing . 105
2.23 FOD definition characterising Gödel encoding of R-sequences in

one real number . 106
2.24 Explicit rendition of hybrid program transition semantics in FOD . 107
2.25 Evolution domain checks along backwards flow over time 108

3.1 Controllability violated in the presence of disturbance 138
3.2 Differential state flow . 143
3.3 Zeno system run . 146
3.4 Aircraft dynamics . 148
3.5 Reparametrise for differential axiomatisation 149
3.6 Flight manoeuvres for collision avoidance in air traffic control . . . 151
3.7 Flight control with tangential roundabout collision avoidance man-

oeuvres . 152
3.8 Vector field and a solution of a differential equation 153
3.9 Rule schemata of the proof calculus for differential-algebraic

dynamic logic . 164
3.10 Side deduction for quantifier elimination rules 164
3.11 Nested side deductions and differential variants for progress property169
3.12 Differential invariants . 171
3.13a Cubic dynamics proof . 172
3.13b Cubic dynamics . 172
3.14 Unsound restriction of differential invariance 173
3.15a Restricting differential invariance 174
3.15b Linear dynamics . 174
3.16 Proof of MA-safety in braking mode with disturbance 176
3.17 Trajectory and evolution of a damped oscillator 177
3.18 Trajectory switching between two damped oscillators 178

List of Figures xxiii

3.19 Parametric switched damped oscillator system 178
3.20 Instable trajectory switching between two damped oscillators . . . 179
3.21 Parametric switched damped oscillator proof 180
3.22 Differential variants . 182
3.23a Monotonically decreasing convergent counterexample 184
3.23b Convergent descent dynamics . 184
3.23c Non-inductive property in convergent descent 184
3.24a Counterexample of unbounded dynamics without Lipschitz con-

tinuity . 184
3.24b Explosive dynamics with limited duration of solutions 184
3.25 Differential induction splitting over disjunctions for negative equa-

tions . 189
3.26a Counterexample for disjunctive monotonicity 193
3.26b Interrupted dynamics . 193
3.27 Quadrant sign selection regions of differential invariant 196
3.28 Circular dependencies for differential strengthening 196
3.29 Tangential construction for characteristics of roundabout dynamics 198

4.1 Trace semantics of dTL formulas 214
4.2 ETCS train coordination protocol phases 216
4.3 Rule schemata of the proof calculus for temporal differential

dynamic logic . 218
4.4 Correspondence of temporal proof rules and trace semantics . 219
4.5 Explicit rendition of hybrid program trace semantics in FOD 225
4.6 Transformation rules for alternating temporal path and trace quan-

tifiers . 229

5.1 Deductive, real algebraic, computer algebraic prover combination . 236
5.2 Tableau procedure for differential dynamic logics 237
5.3 Nondeterminisms in the tableau procedure for differential dynamic

logics . 237
5.4 Computational distraction in quantifier elimination 240
5.5 Eager and lazy quantifier elimination in proof search space 241
5.6 A large subgoal of first-order real arithmetic during ETCS verification242
5.7a Proof strategy priorities . 244
5.7b Iterative background closure (IBC) proof strategy 244
5.8 Iterative background closure (IBC) algorithm schema 245
5.9 General and/or-branching in proof strategies for differential dy-

namic logics . 245
5.10 Iterative inflation order (IIO) algorithm schema 247

6.1 dL -based verification by symbolic decomposition 257
6.2 Aircraft dynamics . 261
6.3 Fixed-point algorithm for differential invariants (Differential Satur-

ation) . 262

xxiv List of Figures

6.4 Differential dependencies and variable clusters of flight dynamics . 264
6.5 Fixed-point algorithm for discrete loop invariants (loop saturation) 266
6.6 Hybrid program rendition of hybrid automaton for simple water tank267
6.7 Interplay of local and global fixed-point verification loops during

symbolic decomposition . 268
6.8 Robustness in counterexamples 271
6.9 Flyable aircraft roundabout . 272

7.1 ETCS train cooperation protocol phases and dynamic movement
authorities . 282

7.2 ETCS track profile . 283
7.3 Formal model of parametric ETCS cooperation protocol (skeleton) 284
7.4 Transition structure of ETCS skeleton 286
7.5 Controllable region of ETCS . 288
7.6 ETCS cooperation protocol refined with parameter constraints . . . 291
7.7 Proof sketch for ETCS safety . 292
7.8 Controllability region changes in the presence of disturbance . . . 295
7.9 Proof of ETCS controllability despite disturbance 297
7.10 Parametric ETCS cooperation protocol with disturbances 299
7.11 Parametric ETCS cooperation protocol with disturbances (full in-

stantiation) . 300

8.1 Evolution of collision avoidance manoeuvres in air traffic control . 304
8.2 Non-flyable straight-line manoeuvre with instant turns 305
8.3 Flyable aircraft roundabout . 309
8.4 Flight dynamics . 309
8.5 Protocol cycle and construction of flyable roundabout manoeuvre . 310
8.6 Non-flyable tangential roundabout collision avoidance manoeuvre

NTRM . 312
8.7 Tangential configuration T . 313
8.8 Flyable aircraft roundabout (multiple aircraft) 314
8.9 Tangential roundabout collision avoidance manoeuvre (four aircraft) 314
8.10 Flyable entry characteristics . 316
8.11 Entry separation by bounded nondeterministic overapproximation . 320
8.12 Some mutually agreeable negotiation choices for aircraft 323
8.13 Far separation for mutually agreeable negotiation choices 325
8.14a Exit ray separation . 327
8.14b Incompatible exit rays . 327
8.15 Flight control with flyable tangential roundabout collision avoidance 329
8.16 Verification loop for flyable tangential roundabout manoeuvres . . 330
8.17 Flight control with FTRM (synchronous instantiation) 332

9.1 Topics contributing to the logical analysis of hybrid systems 336

A.1 Rule schemata of the sequent calculus for first-order logic . . . 352
A.2a Ground proof example . 354

List of Figures xxv

A.2b Free-variable proof example . 354
A.3 Wrong proof attempt in first-order logic 355

B.1 Vector field and a solution of a differential equation 360

C.1 Hybrid automaton and corresponding hybrid program 370
C.2a Hybrid automaton for water tank 373
C.2b Hybrid program for water tank 373
C.3 Parametric bouncing ball . 374

D.1 Architecture and plug-in structure of the KeYmaera prover 378
D.2 Screenshot of the KeYmaera user interface 379
D.3 KeYmaera proof strategy options 380
D.4 Projection of semialgebraic sets and quantifier elimination 384
D.5 Rule schemata of Gröbner calculus rules 389
D.6 Some algebraic varieties generated by one polynomial equation in

two variables . 391
D.7 Example proof using the real Nullstellensatz 393
D.8 Rule schema of Positivstellensatz calculus rule 395
D.9 Example proof using the Positivstellensatz 395

List of Tables

2.1 Statements and effects of hybrid programs (HPs) 42
2.2 Statements and control structures definable with hybrid programs . . 44
2.3 Operators and meaning in differential dynamic logic (dL) . . . 47

3.1 Comparison of DAL with DA-programs versus dL with hybrid pro-
grams . 127

3.2 Statements and effects of differential-algebraic programs 137
3.3 Classification of differential-algebraic programs and correspond-

ence to dynamical systems . 139
3.4 Operators and meaning in differential-algebraic dynamic logic

(DAL) . 140
3.5 Embedding hybrid programs as DA-programs 147

4.1 Operators and meaning in differential temporal dynamic logic
(dTL) . 208

5.1 Experimental results for proof strategies (with standalone QE) I . . 249
5.2 Experimental results for proof strategies (with standalone QE) II . . 249
5.3 Experimental results for proof strategies (no standalone QE) I . . . 250
5.4 Experimental results for proof strategies (no standalone QE) II . . . 250

6.1 Experimental results for differential invariants as fixed points 273

7.1 Experimental results for the European Train Control System 300

8.1 Verification loop properties for flyable tangential roundabout man-
oeuvres . 330

8.2 Experimental results for air traffic control (initial timeout = 10s) . . 331
8.3 Experimental results for air traffic control (initial timeout = 4s) . . . 333

A.1 Intuitive meaning of logical operators in first-order logic 343

xxvii

List of Theorems

L 2.1 Uniqueness . 57
L 2.2 Substitution Lemma . 70
L 2.3 Substitution property . 75
L 2.4 Substitutions preserve validity . 76
L 2.5 Quantifier elimination lifting . 92
L 2.6 Coincidence lemma . 93
T 2.1 Soundness of dL . 98
T 2.2 Incompleteness of dL . 102
T 2.3 Relative completeness of dL . 104
L 2.7 R-Gödel encoding . 105
L 2.8 Hybrid program rendition . 106
L 2.9 dL Expressibility . 108
L 2.10 Derivability of sequents . 109
L 2.11 Generalisation . 110
P 2.1 Relative completeness of first-order safety 111
P 2.2 Relative completeness of first-order liveness 112
T 2.4 Relatively semidecidable fragment 114
L 2.12 Uniform Skolem symbols . 115
P 3.1 Conservative extension . 147
L 3.1 Derivation lemma . 156
L 3.2 Differential substitution property 158
L 3.3 Differential transformation principle 158
L 3.4 Differential inequality elimination 161
L 3.5 Differential equation normalisation 161
L 3.6 Differential weakening . 175
L 3.7 Closure properties of differential invariants 181
T 3.1 Soundness of DAL . 185
P 3.2 Open differential induction . 188
P 3.3 Differential monotonicity . 191
T 3.2 Relative completeness of DAL . 193
P 3.4 Equational deductive power . 194

xxix

xxx

T 3.3 Deductive power . 194
T 3.4 Safety of tangential roundabout manoeuvre 199
P 3.5 External separation of roundabout manoeuvres 200
P 4.1 Conservative temporal extension 215
L 4.1 Trace relation . 215
T 4.1 Soundness of dTL . 221
T 4.2 Incompleteness of dTL . 223
T 4.3 Relative completeness of dTL . 224
L 4.2 Hybrid program trace rendition . 225
L 4.3 dTL Expressibility . 225
P 4.2 Local soundness for temporal quantifier alternation 229
P 6.1 Principle of differential induction 260
P 6.2 Differential saturation . 262
P 6.3 Loop saturation . 265
T 6.1 Soundness of fixed-point verification algorithm 269
L 7.1 Principle of separation by movement authorities 282
P 7.1 Controllability . 288
P 7.2 RBC preserves train controllability 289
P 7.3 Reactivity of ETCS . 290
P 7.4 Reactivity constraint . 290
P 7.5 Safety of ETCS . 291
P 7.6 Liveness of ETCS . 293
T 7.1 Correctness of ETCS cooperation protocol 294
P 7.7 Controllability despite disturbance 296
P 7.8 Reactivity constraint despite disturbance 298
P 7.9 Safety despite disturbance . 298
T 8.1 Safety property of flyable tangential roundabouts 331
T A.1 Soundness of FOL . 356
T A.2 Completeness of FOL . 356
T B.1 Existence theorem of Peano . 363
T B.2 Uniqueness theorem of Picard-Lindelöf 364
P B.1 Continuation of solutions . 365
P B.2 Linear systems with constant coefficients 365
P C.1 Hybrid automata embedding . 371
T D.1 Tarski-Seidenberg principle . 383
T D.2 Semialgebraic sets . 383
T D.3 Hilbert’s basis theorem . 388
P D.1 Soundness of Gröbner basis rules 390
T D.4 Hilbert’s Nullstellensatz . 391
T D.5 Real Nullstellensatz for real-closed fields 392
T D.6 Positivstellensatz for real-closed fields 394

List of Theorems

Chapter 1
Introduction

Time is defined so that motion looks simple [209, p. 23]

Ensuring correct functioning of complex physical systems is among the most chal-
lenging and most important problems in computer science, mathematics, and en-
gineering. In addition to nontrivial underlying physical system dynamics, the beha-
viour of complex systems is determined increasingly by computerised control and
automatic analog or digital decision-making, e.g., in aviation, railway, and auto-
motive applications. At the same time, correct decisions and control of these sys-
tems are becoming increasingly important, because more and more safety-critical
processes are regulated using automatic or semiautomatic controllers, including
the European Train Control System [117], collision avoidance manoeuvres in air
traffic control [293, 196, 104, 238, 129, 171], car platooning technology for high-
ways following the California PATH project [166], recent driverless vehicle techno-
logy [64], and biomedical applications like automatic glucose regulation for diabetes
patients [223]. As a more general phenomenon of complex physical systems that are
exemplified in these scenarios, correct system behaviour depends on correct func-
tioning of the interaction of control with physical system dynamics and is not just
an isolated property of only the control logic or only the physical system dynamics.
These interactions of computation and control are more difficult to understand and
get right than isolated systems. Even if the control software does not crash, the sys-
tem may still malfunction, because the control software could issue unsafe control
actions to the physical process. And even if the pure physics of the process is well
understood, an attempt to control the process may still become unsafe, e.g., when
the controller reacts to situation changes too slowly because computations take too
long, or when sensor values are already outdated once the control actions finally
take effect. It is the interaction of computation and control that must be taken into
account. Systems with such an interaction of discrete dynamics and continuous dy-
namics are called hybrid dynamical systems, or just hybrid systems for short.

To illustrate typical aspects and effects in application areas, we take a look at
two examples in more detail, which will serve as running examples and case stud-
ies throughout this book. In high-speed trains like the ICE (InterCityExpress), TGV
(train à grande vitesse), Shinkansen, and the upcoming California High-Speed Rail,
whose high mass (1,000–3,000 tons) and high speed (320km/h) cause them to re-

1A. Platzer, Logical Analysis of Hybrid Systems,
DOI 10.1007/978-3-642-14509-4_1, © Springer-Verlag Berlin Heidelberg 2010

2 1 Introduction

quire fairly long braking distances (more than 3.8 km), safe driving is impossible
just based on sight without automatic technical means that enforce a safe minimum
distance between trains. The European Train Control System (ETCS), which is cur-
rently being developed and installed in Europe [117], regulates and protects train
movement according to movement authorities (MAs). A movement authority rep-
resents permission for the train to move up to a certain point on the track (the end of
the movement authority) and is negotiated dynamically in rapid succession by wire-
less communication with decentralised radio block controllers (RBCs); see Fig. 1.1.

Fig. 1.1 European Train Control System

With the next generation development of ETCS, Level 3, all classical fixed track-
side signalling and fixed track segment partitioning with physical separation of the
train segments will become obsolete, thereby advancing to a fully autonomous op-
eration of ETCS in order to achieve its performance goals of maximum speed and
density on the track. Yet, a safe operation of ETCS requires that—while achieving
these performance goals—the train controllers still always respect their local move-
ment authorities and that the radio block controllers only grant compatible move-
ment authorities to each of the trains. Even in emergency situations, the overall train
control system must always ensure that the trains cannot crash into one another. To
determine correct functioning of these controllers it has to be shown that the train
positions, which evolve dynamically over time, are always safely separated. For this,
however, we need to be able to analyse the interaction of the train control logic and
the wireless ETCS cooperation protocol with a model of the actual physical train
dynamics, because collision freedom is not an isolated property of only the discrete
cooperation-layer control protocol, only the local train control decision process, or
only the continuous train dynamics, but a joint property of their superposition or
combination.

Train dynamics is a typical example of what is known as a hybrid system: it com-
bines instantaneous discrete jump dynamics with continuous evolution. See Fig. 1.2
for a typical evolution of the acceleration a, which changes instantaneously by dis-
crete control decisions at some points in time, and of the train velocity v and position
z, which evolve continuously over time. The continuous dynamics can be described
by a differential equation system like z′ = v,v′ = a, saying that the time derivat-

1 Introduction 3

Fig. 1.2 ETCS: discrete evolution of acceleration a, continuous evolution of velocity v and of
position z over time t

ive z′ of the position equals the velocity v and the time derivative v′ of the velocity
equals the chosen acceleration a. The discrete dynamics can be described by an as-
signment such as a :=−2 together with the conditions of when and under which
circumstances this discrete jump will be executed. For example, the discrete dy-
namics can be described by the operations of the switching control logic, possibly
as a small control program that describes under which circumstances the accelera-
tion a switches to braking (negative acceleration), and under which circumstances
it switches to positive acceleration. By combining the continuous differential equa-
tions and discrete control logic appropriately, we obtain a description of the inter-
acting hybrid dynamics of the hybrid (dynamical) system. Yet the effects of such a
combination also need to be well-defined, including a faithful model defining unam-
biguously how discrete and continuous dynamics work together. Finally, note that
full formal verification and proof that the system operates correctly is indeed quite
important and of particular practical relevance for safety-critical complex physical
systems like ETCS. Despite careful development and testing, safety violations have
recently been reported in ETCS [143] even at its moderate currently deployed level.

In air traffic control, collision avoidance manoeuvres [293, 196, 104, 238, 129,
171] are used to help pilots resolve conflicting flight paths that arise during arbitrary
free flight of the aircraft. See Fig. 1.3 for an overview of different collision avoid-
ance approaches. These manoeuvres are last-resort means for resolving air traffic

a.

Q

Q

b.





c.

x

y

c





d.

c

Qx
entry

ex
it

Q

y

Fig. 1.3 Collision avoidance manoeuvres in air traffic control

conflicts that could otherwise lead to collisions and have not been detected before
by the pilots during free flight or by the flight directors of the Air Route Traffic
Control Centres. Consequently, complicated online trajectory prediction, trajectory

1 2 3 4
t

�2

�1

1

2
a

1 2 3 4
t

0.5

1.0

1.5

2.0

2.5

3.0
v

1 2 3 4
t

1

2

3

4

5

6
z

4 1 Introduction

evaluation, or lengthy manoeuvre negotiation may no longer be feasible in the short
time that remains for resolving the conflict. For example, in the tragic mid-flight
collision in Überlingen [43] in July 2002, only less than one minute of manoeuvring
time remained to try to prevent the collision after the on-board traffic alert and col-
lision avoidance system TCAS [196] signalled a traffic alert. Thus, for safe aircraft
control we need particularly reliable instant reactions with manoeuvres whose cor-
rectness has been established previously by a thorough offline analysis. To ensure
correct functioning of aircraft collision avoidance manoeuvres under all circum-
stances, the temporal evolution of the aircraft in space must be analysed carefully
together with the effects that manoeuvring control decisions have on their dynam-
ics, giving again a superposition or combination of physical system dynamics with
control, and thus a hybrid system.

The continuous dynamics in air traffic control can again be described by differ-
ential equations for the flight dynamics. The relevant system variables for which
differential equations need to be found include the two- or three-dimensional
position in space and orientation in space for each of the aircraft at positions
x = (x1,x2,x3) ∈ R3 and y = (y1,y2,y3) ∈ R3, for instance. Because rails are essen-
tially a one-dimensional space (except for the track topology) but airspace is three-
dimensional, the resulting differential equations for flight are more involved than for
trains. The discrete dynamics in air traffic control comes, e.g., from the decisions of
when and how to initiate a collision avoidance manoeuvre, and from the discrete
change in direction or the angular velocity of the aircraft.

These examples are prototypical and similar phenomena occur in many other
application scenarios of hybrid systems. The continuous dynamics often comes from
physical movement or physical processes. Discrete dynamics often (but not always)
comes from control decisions or digital control implementations.

1.1 Technical Context

In this section we survey the technical context of this book, briefly summarise some
important technical concepts in the domain, and preview some technical highlights
of this book informally. We also give a short overview of related work.

1.1.1 Hybrid Systems

As a common mathematical model for complex physical systems, hybrid dynamical
systems, or just hybrid systems for short [289, 9, 218, 8, 56, 156, 11, 58, 189, 97,
228, 90, 194], are dynamical systems [227, 177, 279] where the system state evolves
over time according to interacting laws of discrete and continuous dynamics, the
idea being to capture the superposition or combination of physical system dynamics
with control at a natural modelling level. For discrete transitions, the hybrid sys-

1.1 Technical Context 5

tem changes state instantaneously and possibly discontinuously. During continuous
transitions, the system state is a continuous function of continuous time and varies
according to a differential equation, which is possibly subject to domain restric-
tions or algebraic relations resulting from physical circumstances or the interaction
of continuous dynamics with discrete control. Continuous dynamics results, for ex-
ample, from the continuous movement of a train along the track (train position z
evolves with velocity v along the differential equation z′ = v where z′ is the time
derivative of z) or from the continuous variation of its velocity over time (v′ = a
with acceleration a); see evolutions in Fig. 1.2. Other behaviour can be modelled
more naturally by discrete dynamics, for example, the instantaneous change of con-
trol variables like the acceleration (e.g., the changing of a by setting a :=−b with
braking force b > 0) or the change of status information in discrete controllers;
see Fig. 1.2 again. Both kinds of dynamics interact, e.g., when measurements of the
continuous state affect decisions of discrete controllers (the train switches to braking
mode when v is too high). Likewise, they interact when the resulting control choices
take effect by changing the control variables of the continuous dynamics (e.g., chan-
ging control variable a in z′′ = a). The superposition of continuous dynamics with
analog or discrete control causes complex system behaviour, which can be analysed
neither by purely continuous reasoning (because of the discontinuities caused by
discrete transitions) nor by considering discrete change in isolation (because safety
depends on continuous states).

Among several other models for hybrid systems [69, 100, 58, 270, 272, 40, 183],
the model of hybrid automata [156, 8] is one of the more widely used notations.
Hybrid automata specify discrete and continuous dynamics in a graph. Even though
hybrid automata are a fairly common notation for hybrid systems, there are nu-
merous slightly different notions of hybrid automata or automata-based models for
hybrid systems [289, 9, 218, 8, 56, 156, 11, 58, 189, 97, 228, 90]. We consider a
number of examples to introduce hybrid automata and illustrate simple hybrid sys-
tems informally.

Example 1.1 (Simplistic train control). See Fig. 1.4 for a (much too) simple train
control example written as a hybrid automaton. The nodes of the hybrid automaton

Fig. 1.4 Hybrid automaton
for an (overly) simplified train
control system

specify the continuous dynamics of the system and the edges specify the discrete
switching behaviour between the various modes of continuous dynamics.

Each node of the graph structure corresponds to a continuous dynamical system
and is annotated with its differential equations and an evolution domain specifying
the maximum domain of evolution. The basic differential equation in both nodes

accel
z′ = v
v′ = a

brake
z′ = v
v′ = a
v≥ 0

z≥ s

a :=−b

v≤ 1

a :=a+5

6 1 Introduction

of the train automaton here is z′ = v,v′ = a, because the time derivative of the posi-
tion z is the velocity v, and the time derivative of the velocity v is the acceleration a.
Yet both nodes have different choices for the acceleration a. By specifying a max-
imum domain of evolution in addition to the differential equations in a node, we
restrict the circumstances under which the system is allowed to stay in a node, and
enforce when it has to transition to another node instead. The system cannot stay
in a node outside this maximum domain of evolution, and is then forced to switch
to another node. The system is not required to stay as long as possible in a node
until it reaches the border of its maximum domain of evolution, however. Instead,
the system is allowed to leave a node earlier if one of the outgoing edges can be
used at any time. For example, in the node brake of Fig. 1.4, the differential equa-
tions z′ = v,v′ = a only apply within the evolution domain v≥ 0 (because the train
does not move backwards when braking). Thus, the system is allowed to stay in
node brake arbitrarily long, but it has to leave before the evolution domain v≥ 0
is violated. Edges specify the discrete switching behaviour between the respective
modes of continuous evolution. They can be annotated with conditions (guards) that
need to hold for the state when the system follows the edge, and with discrete state
transformations (jumps) that take instantaneous effect and transform the continuous
state when the system follows the edge. For example, the automaton in Fig. 1.4 can
take an edge to leave node accel when train position z passes point s (i.e., when
the current state satisfies z≥ s), which sets the acceleration to braking by changing
the state variables according to a :=−b, and then enter node brake. The edge from
node brake to node accel can be taken only when the guard v≤ 1 is true for the cur-
rent continuous state; the transition will then increase the value of the acceleration
by a :=a+5 and the system will enter node accel. The short edge pointing to accel
from nowhere in the top-left corner indicates that the system will initially start in the
accel node. In addition, we also need to know what values the continuous variables
(z,v,a,b,s) can have in the initial state.

To identify in which state a hybrid automaton is at some point in time, we need
to know real number values for all the continuous state variables (z,v,a and the
parameters b and s) and we need to know in which node the automaton currently
is (either accel or brake). Over time, the state evolves according to the discrete or
continuous dynamics. The state either evolves continuously according to the differ-
ential equation (if the state stays inside the evolution domain restriction), or follows
one of the discrete transitions of an edge (when the guard is satisfied, thereby trans-
forming the state according to the jump relation). For reference, we formally define
hybrid automata and their state transitions in App. C.

Note that an edge of a hybrid automaton can only be taken if the guard holds
true and, after updating the state according to the jump, the state is in the evolution
domain of the target node. For instance, the automaton starts in accel, and may stay
some time in accel while following the differential equations z′ = v,v′ = a. Then the
system could switch to brake at some point where the guard z≥ s is satisfied for the
current state, thereby setting the acceleration to a :=−b. Next the system can stay
in node brake, following the differential equation z′ = v,v′ = a (now with a differ-
ent value for a than before), but only while staying inside the permitted evolution

1.1 Technical Context 7

domain v≥ 0. In particular, the system has to leave node brake and switch back to
accel before the velocity is negative. Because the only outgoing edge from brake
has a guard v≤ 1, the system can switch back to accel if and only if the current
velocity satisfies 0≤ v≤ 1. The system can switch at any point in time where this is
satisfied. Suppose the system waits in brake until the speed is, say, 0.5. Then the cur-
rent speed satisfies v≤ 1 and the automaton can switch to accel again by updating
a :=a+5.

Note, however, that the resulting acceleration does not have to be positive! If
b > 5, then the increase a :=a+5 for switching to accel is less than the braking
reset a :=−b; hence, the value of a after switching from accel to brake and back to
accel again will still be negative. Suppose the position still satisfies the guard z≥ s
of the outgoing edge back to brake. Then, the system might not be allowed to follow
this edge, even though z≥ s holds, because the maximum evolution domain of brake
requires v≥ 0 to be true all the time, including when entering the state. That is, in
such a run, where the resulting velocity is negative, the automaton is stuck and can
never do any other transitions again. In summary, we can see that the operational
effect of an edge in an automaton depends not only on the guard and jump of the
edge, but also on the evolution domain restrictions in the nodes.

How can we find out if the train model always stays within the safe region on
the track? How do we find out for which choices of the parameters s and b the
model works as expected? How can we determine if the train is always able to make
progress and is never stuck? We will revisit these questions in Chaps. 2 and 7. �

Example 1.2 (Bouncing ball). Another very intuitive example of a hybrid system is
the bouncing ball [110]; see Fig. 1.5. The bouncing ball is let loose in the air and is

(
h′ = v,v′ =−g&h≥ 0;
if (h = 0) then

v :=−cv
fi
)∗

Fig. 1.5 Hybrid automaton and hybrid program of a simple bouncing ball

falling towards the ground. When it hits the ground, the ball bounces back up and
climbs until gravity wins and it starts to fall again. The bouncing ball follows the
continuous dynamics of physical movement by gravity. It can be understood natur-
ally as a hybrid system, because its continuous movement switches from falling to
climbing by reversing its velocity whenever the ball hits the ground and bounces
back. Let us denote the height of the ball by h and the current velocity of the ball
by v. The bouncing ball is affected by gravity of force g > 0, so its height follows the
differential equation h′′ =−g, i.e., the second time derivative of height equals the
negative gravity force. The ball bounces back from the ground (which is at height
h = 0) after an elastic deformation. At every bounce, the ball loses energy according

h′= v
v′=−g
h ≥ 0v :=−cv

h = 0

8 1 Introduction

to a damping factor 0≤ c < 1. Figure 1.5 depicts a hybrid automaton, an illustra-
tion of the system dynamics, and a representation of the same system in a program
notation for hybrid systems. The hybrid automaton has only one node: falling along
the differential equation system h′ = v,v′ =−g (which is equivalent to h′′ =−g) re-
stricted to the evolution domain h≥ 0, above the floor. In particular, the bouncing
ball can never fall through the floor. The hybrid automaton also has only one jump
edge: on the ground (when h = 0), it can reset the velocity v to −cv and continue in
the same node. This jump will change the direction from falling (the velocity v was
negative before) to climbing (the velocity −cv is nonnegative again) after dampen-
ing the velocity v by c.

The program on the right of Fig. 1.5 represents the same bouncing ball system
textually (we will call these textual representations hybrid programs and examine
them in detail in Chap. 2). The first line of the program describes the continuous
dynamics along the differential equation h′ = v,v′ =−g restricted to (written &) the
maximum evolution domain region h≥ 0. After the sequential composition (;), an
if-then statement is executed, which resets velocity v to−cv by assignment v :=−cv
if h = 0 holds at the current state. Finally, the sequence of continuous and discrete
statements can be repeated arbitrarily often, as indicated by the regular-expression-
style repetition operator (∗) at the end.

Note one strange phenomenon in the bouncing ball automaton and program. It
seems like the bouncing ball will bounce over and over again, switching its direction
in shorter and shorter periods of time as indicated in Fig. 1.5 (unless c = 0, which
means that the ball will just lie flat right away). Even worse, the ball will end up
switching directions infinitely often in a short amount of time. This controversial
phenomenon is called Zeno behaviour, which we discuss in more detail in later
parts of this book.

How can we see that the bouncing ball never bounces higher than its initial
height? How can we ensure that the bouncing ball fits closer to the physical reality
that it stops after some time, instead of bouncing infinitely often in finite time? �

Example 1.3 (Switching damped oscillators). Another typical example of a hybrid
system is a switching damped oscillator with continuous variables x,y; see Fig. 1.6.
This system consists of two continuous modes of damped oscillators with different

Fig. 1.6 Switching between
two damped oscillators

y

x

1.1 Technical Context 9

settings. The solid spiral in Fig. 1.6 illustrates the one continuous mode, and the
dashed spiral the other continuous mode. The overall system is a hybrid system
that switches between those two modes at the switching surfaces depicted by the
diagonal lines in Fig. 1.6. Also see a hybrid automaton model of this system in
Fig. 1.7.

Fig. 1.7 Hybrid automaton
for switching damped oscil-
lators

The system starts with the solid dynamics in the node on the left. When passing
the dashed secondary diagonal (x=−y), it switches to following the dashed continu-
ous mode (right node in Fig. 1.7). When passing the solid main diagonal (x = y), the
hybrid system switches to the solid continuous dynamics (left node). An example of

1

1
y

x

Fig. 1.8 Stable trajectory switching between two damped oscillators

an evolution of this hybrid system that switches between both continuous modes ac-
cording to these switching conditions is shown in Fig. 1.8. The differential equations
for the damped oscillators are of the form

x′ = y,y′ =−ω
2x−2dωy

with the parameters ω (for the undamped angular frequency) and d (for the damping
ratio). These parameters will be adjusted whenever the hybrid system follows an

x′ = y
y′ =−ω2x
−2dωy

x′ = y
y′ =−ω2x
−2dωy

x =−y

ω :=2ω
d :=d/2

x = y

ω :=ω/2
d :=2d

10 1 Introduction

edge in the automaton to a different continuous evolution mode. The solid parts of
the curves in Fig. 1.8 correspond to the parts where the system is in the left node
of the automaton in Fig. 1.7, and thus follow the solid spiral in Fig. 1.6 The dashed
parts of the curves in Fig. 1.8 correspond to the parts where the system has switched
to the right node of the automaton in Fig. 1.7, and thus follow the dashed spiral in
Fig. 1.6. The switching happens at the diagonals.

The evolution in Fig. 1.8 is stable, i.e., it converges to the origin x = 0,y = 0.
Yet if we tilt the switching axes only slightly and switch a little later —for instance
use switching condition x =−0.5y instead of x =−y on the edge from the left to the
right node in Fig. 1.7— then the situation is quite different; see Fig. 1.9. Under these

1

1
y

x

Fig. 1.9 Instable trajectory switching between two damped oscillators

circumstances, the evolution from the same initial point x = 1, y = 0 is suddenly
instable, i.e., it does not converge to the origin x = 0, y = 0. Instead, the evolution
diverges and x, y grow infinitely large. This is quite a remarkable difference caused
by a seemingly minor variation in the switching conditions of the hybrid systems.
In fact, this instability is caused only by the hybrid system switching, because the
continuous dynamics alone is stable in both evolution modes (i.e., if both spirals
in Fig. 1.6 are considered separately). How do we find out which parameters for
the switching surfaces make the system stable, and which parameter choices render
it instable? How can we establish whether safety and/or stability depend on the
parameters ω and d?

Finally note that the evolutions in Figs. 1.8 and 1.9 both switch nodes in the
automaton eagerly, i.e., as soon as the guards of outgoing transitions are true. This
is certainly one choice, but hybrid systems do not restrict the evolution to follow
permitted transitions as early as possible. Instead, the hybrid automaton in Fig. 1.7
would allow the system to skip a switching possibility and wait for the next one to
come along. Nondeterminism like this occurs quite frequently when modelling nat-

1.1 Technical Context 11

ural phenomena in complex physical systems, especially in the presence of external
control decisions or input. How does this flexibility in switching affect the beha-
viour of the system? How do we establish for which choices of switching diagonals
the overall system behaviour is well behaved. We will come back to these questions
about switching damped oscillators in Sect. 3.5.6. �

Example 1.4 (Simple water tank). As a further illustration of a hybrid system, con-
sider a simple water tank model, where a controller tries to keep the water level x
in a tank between a lower bound of 1 and an upper bound of 10; see Fig. 1.10. The

Fig. 1.10 Simple water tank
system

water tank can be filled with a pump (node on), or the pump can be turned off (node
off). For a twist, let us assume that, before activating the pump again, the valve
has to be opened completely, so that water pours out quickly (node open) until the
pump is turned on again. While the pump is on, water enters the tank, increasing
the water level continuously by the differential equation x′ = 1. The tank has a wa-
ter level sensor that shuts off the pump before the water level exceeds 9; hence, the
continuous evolution in mode on is restricted to the maximum evolution domain
x≤ 9. When the water level is x≥ 7, the controller is allowed to shut the pump off
by taking the edge from node on to node off, but during the shutdown of the valve,
more water pours in. That is, the water level increases from x to x+1 by the discrete
change x :=x+1 on the edge. Since the evolution in node on is restricted to the
evolution domain x≤ 9, but the transition from node on to node off requires guard
x≥ 7, the controller can switch from on to off no earlier than when x≥ 7, but no
later than when the water level still is x≤ 9. Any point between the water levels 7
and 9 (including 7 and 9) is a permitted switching point.

In node off, the pump is off and the valve closed, but, nevertheless, water leaks
slowly by the continuous dynamics x′ =−0.1. The controller knows about this wa-
ter leakage, so it stays in off at most as long as x≥ 3. Whenever x < 5, the controller
can switch along the edge from off to open for opening the valve. Again, because
of the evolution domain restriction x≥ 3 in off and the guard condition x < 5 on
the edge, the switch may happen at any water level between 3 (inclusive) and 5 (ex-
clusive). In node open, where the valve is open, water drains quickly following the
differential equation x′ =−2, but restricted to the evolution domain x≥ 0, because
water stops pouring out when there is no water left. Finally, when the water level

on
x′ = 1
x≤ 9

off
x′ =−0.1

x≥ 3

open
x′ =−2

x≥ 0

x≥ 7

x :=x+1

x < 5x≤ 2

12 1 Introduction

satisfies guard x≤ 2, the system can take the edge from node open back to node on.
It is easy to see that the controller in Fig. 1.10 does not guarantee keeping the water
level within the target range of 1 to 10 always, because it can stay in node open too
long until x = 0.

How can we detect this problem and how can we find more subtle problems as
automatically as possible? If we found problems, how can we find suggestions for
fixes? And, once there are no more bugs, how do we prove that the system always
works as intended under all circumstances? �

1.1.2 Model Checking

As a standard verification technique, model checking [75, 114, 78] has been used
successfully for verifying temporal logic properties [247, 114, 115, 6, 7, 284] of
finite-state abstractions of automata transition structures by exhaustive state space
exploration [8, 159, 156, 217]. Model checking was pioneered [76] in 1981 by
Clarke and Emerson [75] and independently by Queille and Sifakis [255]. It was
originally invented for finite-state systems and has since been extended to handle
finite-state abstractions of infinite-state systems. The working principle of model
checking is to successively explore all state transitions of a transition system from
the set of initial states until an unsafe state is found; see Fig. 1.11 for an illustra-
tion. One of the biggest advantages of model checking is this search for concrete

Fig. 1.11 Successive state
space exploration in finite-
state model checking

counterexamples, because such a sequence of transitions to an unsafe state can be
very informative for debugging the system. If no unsafe state can be found this way,
however, then model checkers can stop only if they have made sure that they have
explored all possibilities. In finite-state systems, this exploration terminates trivi-
ally, because the search space is finite. Still, numerous successful optimisations and
refinements have been developed to ensure faster termination and avoid exhaustive

unsafe states

initial state

state transition

1.1 Technical Context 13

memory usage, including symbolic model checking with BDDs [66, 65], bounded
model checking with propositional SAT solvers [47, 74], and model checking based
on Craig interpolants [173, 174]. See the 2007 ACM Turing Award lecture by Ed-
mund M. Clarke, Allen Emerson, and Joseph Sifakis [76] for a detailed survey of
model checking, its successes, and its history.

For infinite-state systems the situation is more difficult than for finite automata
because no model checker can actually explore an infinite set of states, so various
abstractions have been developed that group sets of states into equivalence classes.
If a model checker finds an unsafe reachable state in an infinite-state system, this
counterexample is still extremely useful. Yet in case it does not find a counter-
example after finitely many state explorations, it becomes more difficult to make
an argument why no unsafe state could ever be reached by further exploration of
the—still infinite—remaining state space. After all, finite exploration of an infinite
state space still leaves infinitely many possibilities to consider. For example, timed
automata (finite automata with clocks that measure the progress of time) can be ab-
stracted with only finitely many equivalence classes that need to be considered, so
that model checking is still guaranteed to terminate by considering one representat-
ive of each of these finitely many equivalent behaviours [6, 7]. These timed automata
[10, 5, 86] can be understood as hybrid automata in which all differential equations
are of the form x′ = 1, all guards are of a form such as x≤ c or x− y≤ c for num-
bers c ∈Q, and all jumps (if any) are of the form x :=0. But even seemingly small
extensions like stopwatch automata, which are timed automata with clocks that can
be stopped (differential equation x′ = 0) and resumed (x′ = 1), have no equivalent
finite-state abstractions anymore, so that model checking becomes undecidable [67].

The more general continuous state spaces of hybrid automata are inherently infin-
ite, and do not admit equivalent finite-state abstractions either [156]. Because of this,
model checkers for hybrid automata use various approximations [159, 8, 156, 70,
125, 15, 77, 21, 291, 217] and are still more successful in falsification than in verific-
ation. Furthermore, for hybrid systems with symbolic parameters in the dynamics,
correctness crucially depends on the free parameters (e.g., b and s in Fig. 1.4). It is,
however, quite difficult to determine corresponding symbolic parameter constraints
from concrete values of a counterexample trace produced by a model checker, espe-
cially if they rely on nonstructural state splitting [70, 77, 21, 126]. Finally, in hybrid
systems with nontrivial interaction of discrete and continuous dynamics, parameters
also have a nontrivial impact on the system behaviour, leading to nonlinear para-
meter constraints and nonlinearities in the discrete and continuous dynamics. For
instance, nonlinear constraints of the form s≥ v2

2b + . . . will turn out to be import-
ant for the safety of train systems such as the one in Fig. 1.4. Thus, the standard
model checking approaches [156, 8, 158, 70, 126, 127] cannot be used, because
they require linear dynamics in the discrete transitions and various forms of linear
approximations in the continuous dynamics. Even in simpler timed automata, in
which clocks are the only source of continuous dynamics, parameters immediately
make the model checking problem undecidable [13, 61]. Still, parameters occur fre-
quently in practical applications.

14 1 Introduction

1.1.3 Deductive Verification

Deductive approaches [35, 37, 170, 149, 148, 306, 95, 97] have been used for veri-
fying systems by proofs instead of by state space exploration and, thus, do not re-
quire finite-state abstractions. Deduction and theorem proving have already been
used very successfully for program verification [35, 23, 170], in which proofs are
used to show that a conventional program such as a Java program operates as spe-
cified. Davoren and Nerode [97] have also argued that deductive methods support
formulas with free parameters better than, e.g., the standard model checking prob-
lem does. First-order logic, for instance, has widely proven its power and flexibility
in handling symbolic parameters as free or quantified logical variables. However,
first-order logic has no built-in means for referring to state transitions, which are
crucial for verifying dynamical systems where states change over time.

In temporal logics [247, 114, 115, 6, 284], state transitions can be referred to
using modal operators. For instance, the temporal formula �φ would hold for a
system if formula φ is true always in all runs of the system. A temporal formula�φ

that holds for all systems would be called valid. In deductive approaches, temporal
logics have been used to prove the validity of formulas in calculi [97, 306]. Valid
formulas of temporal logic, however, only express generic facts that are true for all
systems, regardless of their actual behaviour. But these are not exactly the formulas
we are interested in. We want to know the special properties of the actual system at
hand, not those generic properties shared by all possible systems at once (including
the broken implementations).

Hence, the behaviour of a specific hybrid system would need to be characterised
declaratively with temporal formulas to obtain meaningful results. It is quite diffi-
cult, however, (and generally impossible for reasons of lack of expressive power),
to characterise the behaviour of a hybrid system just with a set of temporal formulas
such as �x≥ 0, because there are often myriads of systems satisfying the same for-
mulas. Most temporal logics are not expressive enough to characterise the dynamics
of a single system this way. Furthermore, the equivalence of declarative temporal
representations and actual system operations would still need to be proven separ-
ately using other techniques. Finally even for finite-state systems, direct temporal
characterisations can become computationally infeasible. In discrete finite-state sys-
tems, for example, direct temporal characterisations of the operational behaviour
transform the linear-time model checking problem of the temporal logic CTL [75]
into an EXPTIME-complete satisfiability problem [113].

Dynamic logic (DL) [253, 148, 149] is a successful approach for verifying
infinite-state discrete systems deductively [35, 37, 170, 149, 148]. Like model
checking, DL does not need declarative characterisations of system behaviour but
can express and analyse the transition behaviour of actual operational system models
directly. Yet, operational models are fully internalised within DL-formulas, and DL
is closed under logical operators. That is, correctness statements about systems can
be combined into bigger formulas with arbitrary propositional operators or quanti-
fiers, and even into nestings of formulas. Within a single specification and verifica-
tion language, DL combines operational system models with means to talk about the

1.1 Technical Context 15

states that are reachable by system transitions. DL provides parametrised modal op-
erators [α] and 〈α〉 that refer to the states reachable by system α and can be placed
in front of any formula. The formula [α]φ expresses that all states reachable by
system α satisfy formula φ . Likewise, 〈α〉φ expresses that there is at least one state
reachable by α for which φ holds. These modalities can be used to express necessary
or possible properties of the transition behaviour of α in a natural way. They can be
nested or combined propositionally. In first-order dynamic logic [253], where also
quantifiers are allowed, ∃p [α]〈β 〉φ says that there is a choice of parameter p (ex-
pressed by ∃p) such that for all possible behaviours of system α (expressed by [α])
there is a reaction of system β (i.e., 〈β 〉) that ensures φ . Likewise, ∃p([α]φ ∧ [β]ψ)
says that there is a choice of parameter p that makes both [α]φ and [β]ψ true, sim-
ultaneously, i.e., that makes the conjunction [α]φ ∧ [β]ψ true, saying that formula φ

holds for all states reachable by α executions and, independently, ψ holds after all
β executions. The logical operator ∧ is for conjunction (“and”).

On the basis of first-order logic over the reals [288], which we use to describe
safe regions of hybrid systems and to quantify over parameter choices, we introduce
a first-order dynamic logic over the reals with modalities that directly quantify over
the possible transition behaviour of hybrid systems. Since hybrid systems are subject
to both continuous evolution and discrete state change, we generalise dynamic logic
so that operational models α of hybrid systems can be used in modal formulas such
as [α]φ .

With our extension of dynamic logic we can specify desirable properties of hy-
brid systems. Suppose train denotes the hybrid system in Fig. 1.4; then the for-
mula [train](z≤ s+10) expresses that the train always ([train]) stays in the region
z≤ s+10, i.e., it never passes the position s+10. This formula cannot be true for
fast trains, however, because the model in Fig. 1.4 starts braking at position z = s at
the earliest, but there may not be sufficient braking distance to s+10 for high velo-
cities v. For some other values of the variables and parameters, instead, the formula
may be true, but how can we find out if it is? And how do we determine corres-
ponding parameter constraints that characterise under which circumstances such a
formula is true? If we knew these parameter constraints, we may be able to choose s
wisely in practise, so that the train model always works as intended.

As a further example, let ball be the hybrid system for the bouncing ball from
Fig. 1.5. Then the formula [ball](0≤ h≤ H) expresses that the bouncing ball always
([ball]) stays between the ground at height 0 and maximum height H. The answer
to the question about whether this formula is true or not depends on the value of H
and on the initial height and velocity of the ball (the initial values of h,v) as well
as the value of the gravity constant g. For H =−5, the formula is certainly false,
because the ball can never be lower than the ground (h < 0). But for h = v = 0 and
H > 1 it is definitely true, because the ball lies still without moving then. The most
interesting cases, however, are those that are neither trivially true nor trivially false,
but those where the ball actually bounces for a certain period of time and only the
dynamics and relations of parameters and state variables determine the truth of the
formula [ball](0≤ h≤ H).

16 1 Introduction

Finally, suppose wctrl is the hybrid system for water control from Fig. 1.10. Then
the formula [wctrl](1≤ x≤ 10) expresses that the water level always ([wctrl]) stays
between 1 and 10. This formula may be true or false. In fact, it is not true under
all circumstances for the model in Fig. 1.10, because the system could still stay in
node open too long so that 1≤ x no longer holds true. Instead, the dual formula
〈wctrl〉x < 1 is true, because there is a run of the water tank model (〈wctrl〉) that
reaches a state where the water level is less than 1 (x < 1), which, in fact, holds for
any initial water level.

1.1.4 Compositional Verification

As a verification technology for our dynamic logic for hybrid systems, we devise a
compositional proof calculus for verifying properties of a hybrid system by proving
properties of its parts. Compositional verification is a very powerful proof tech-
nique with interesting scalability properties compared to monolithic approaches. It
is, in essence, a divide-and-conquer technique for verification. Compositional proof
calculi prove properties of a complex system by reducing them to subproperties
of its subsystems recursively. Compositional approaches can have the advantage
that properties for subsystems are often easier to prove, because they are simpler.
For that purpose, our calculus recursively decomposes formula [α]φ symbolically
into an equivalent formula, for instance, [α1]φ1∧ [α2]φ2 about subsystems αi of α

and subproperties φi of φ . With this, formula [α]φ can simply be verified by prov-
ing the formulas [αi]φi separately—using the same symbolic decomposition prin-
ciples recursively—and combining the results conjunctively. In particular, synthes-
ised parameter constraints that are required for the desired property to hold carry
over from the latter formula to the former formula just by conjunction. Indeed, our
compositional reasoning techniques turn out to be be quite successful in reducing
the complexity of more complicated hybrid systems by decomposing them into their
submodules.

Unfortunately, hybrid automata are not suitably compositional for this purpose.
Their graph structures cannot be decomposed into subgraphs αi such that the for-
mula [α1]φ1∧ [α2]φ2 is equivalent to [α]φ , because of the dangling edges between
the subgraphs αi. For instance, the automaton in Fig. 1.4 cannot simply be verified
by proving [accel]φ ∧ [brake]φ , because the effects of edges between the nodes need
to be taken into account. Figure 1.12 shows an unsuccessful decomposition attempt
of the hybrid automaton for train control from Fig. 1.4. Suppose we had a logic
for hybrid automata1 in which we could formulate logical formulas like [α](v≤ 8),
where α is the hybrid automaton from Fig. 1.4. This graphical “formula” is depic-
ted at the bottom of Fig. 1.12. The problem is that this formula at the bottom cannot

1 The syntax and semantics of such a dynamic logic for hybrid automata can actually be derived
from the presentation in Part I quite easily. It is the development of a compositional proof calculus
for such a logic for hybrid automata that is technically more involved than the constructions for the
logic we present in this book.

1.1 Technical Context 17

Fig. 1.12 Failed hybrid automaton decomposition attempt

just be proven by decomposing it into a proof of [accel](v≤ 8)∧ [brake](v≤ 8), be-
cause the discrete transition edges are important for the behaviour of the automaton
and cannot be ignored. For several reasons, the formula at the bottom of Fig. 1.12
cannot be proven by decomposing it into the conjunction of the two graphical for-
mulas at the top of Fig. 1.12 (the top-left formula results from the bottom formula
by isolating node brake into the top-right formula, indicated by the grey colour).

One reason why this decomposition fails is that the automaton in the top left
formula, which results from the automaton in the bottom by splitting off the brake
phase, is no longer a hybrid automaton: it now has dangling edges pointing into
nowhere. But what is the meaning and behaviour of such a broken, incomplete
automaton fragment supposed to be? Remember that node brake is not present in
the top-left formula, because we wanted to decompose the system in the first place.
What should the dynamics look like when the automaton makes a transition into the
undefined void? Another part that is missing in the failed decomposition attempt
in Fig. 1.12 is the missing (dashed) link from the transitions leaving the automaton
in the left formula to the automaton in the right formula and a link that says “if the
operations of the automaton in the right formula stop, then the system jumps back to
the automaton in the left formula, resuming action with a transition to accel.” This
missing link is pretty strange. It would be a link between the operational behaviour
of parts of multiple different formulas. What is the meaning of the left formula sup-
posed to be then if we want to consider it and reason about it alone, without the
context of the right formula?

In other words, these decomposition attempts of hybrid automata do not lead to
a compositional approach where we can reason separately about the fragments of
the system and give a compositional and denotational [277] meaning to all formulas
and system models, i.e., a semantics of the whole, solely defined in terms of the

accel
z′ = v
v′ = a

brake
z′ = v
v′ = a
v≥ 0

z≥ s

a :=−b

v≤ 1

a :=a+5

(v≤ 8) ∧
brake
z′ = v
v′ = a
v≥ 0

(v≤ 8)

missing link in decomposition

accel
z′ = v
v′ = a

brake
z′ = v
v′ = a
v≥ 0

z≥ s

a :=−b

v≤ 1

a :=a+5

(v≤ 8)

18 1 Introduction

semantics of its parts, and not in terms of exterior formulas. The semantics of hybrid
automata is just not sufficiently compositional for our purposes. It is not impossible
to follow such a graphical approach, but it is technically quite involved and makes
decompositions of the hybrid system unnecessarily hard, which is an obstacle to
scalable verification, traceability, and tangibility.

For these reasons, we do not impose an automaton structure on the system. In-
stead, we introduce hybrid programs as a textual program notation for hybrid sys-
tems by extending conventional discrete program notations [253, 148, 182, 149].
The program on the right of Fig. 1.5 on p. 7, for instance, would be a hybrid pro-
gram notation for the hybrid automaton on the left of Fig. 1.5. Hybrid programs
allow for flexible programmatic combinations of elementary discrete or continuous
transitions by structured control programs with a perfectly compositional semantics:
The semantics of a compound hybrid program is a simple function of the semantics
of its parts and does not further depend on any automata graph structures.

This compositional semantics of hybrid programs and a logic for hybrid pro-
grams has significant advantages. Figure 1.13, for instance, shows how the ana-

Fig. 1.13 Successful hybrid
program decomposition [accel](v≤ 8)∧ [brake](v≤ 8)

[accel∪brake](v≤ 8)

lysis of a property of the hybrid program accel∪brake that can choose between
the operations of accel and of brake by a nondeterministic choice (∪) can be de-
composed directly into the formula [accel](v≤ 8)∧ [brake](v≤ 8) on the top. By
decomposing the property at the bottom about a more complicated hybrid program
into independent conjunctions—[accel](v≤ 8) and [brake](v≤ 8)—of properties of
simpler hybrid programs, we can recursively make the hybrid program simpler by
decomposing it until we can prove the remaining properties of subprograms. As a
special case, these decompositions also include cases that define switching condi-
tions between acceleration and braking, but no special non-compositional handling
of these is required.

In this book we study systematic analysis principles that can be used to de-
compose properties of complicated hybrid programs into simpler properties as in
Fig. 1.13 and that handle the remaining discrete dynamics (discrete assignments),
continuous dynamics (differential equations), and their hybrid interactions. We in-
troduce a first-order dynamic logic for hybrid programs that makes these informal
ideas rigorous. The resulting logic, which we call differential dynamic logic (dL),
constitutes a natural specification and verification logic for hybrid systems. With the
goal of developing a solid theoretical, practical, and applicable foundation for de-
ductive verification of hybrid systems by automated theorem proving, the focus of
this book is a thorough analysis of the logic dL , its calculus, extensions, verification
procedures, and applications.

1.1 Technical Context 19

1.1.5 Lifting Quantifier Elimination

When proving formulas of differential dynamic logic (dL), interacting hybrid dy-
namics cause interactions of arithmetic quantifiers and dynamic modalities, which
both affect the values of symbols. For continuous evolutions, we have to prove for-
mulas like ∀t [α]x≥0, expressing that, for all durations t of some continuous evolu-
tion in α , the property x≥ 0 holds after all runs ([α]) of system α . The standard tech-
niques for handling quantifiers in first-order logic [122, 147, 123] are incomplete for
handling these situations, because they are based on instantiation or unification (see
App. A), which is already insufficient for proving the tautology ∀z(z2 ≥ 0) of real
arithmetic. Unfortunately, decision procedures for real arithmetic, such as real quan-
tifier elimination [288, 81], cannot handle the real quantifier ∀t in ∀t [α]x≥0 either,
because of the modality [α]. The dynamics of the hybrid program α may depend
on the value of t, but, at the same time, the constraints on t depend on the effect
of α . Quantifier elimination in real-closed fields [288, 81], however, is only defined
for first-order logic, not for first-order differential dynamic logic with modalities for
hybrid programs. Indeed, the actual algebraic constraints on the quantified real vari-
able t still depend on how the system variables evolve along the dynamics of α . This
effect inherently results from the interacting dynamics of hybrid systems, where the
duration t of a continuous evolution determines the resulting state and, hence, af-
fects all subsequent discrete or continuous evolutions in α . Thus, the effect of α

first needs to be analysed with respect to the arithmetical constraints it imposes on t
for x≥ 0 to hold, before the quantifier ∀t can be handled.

In this book, we present a calculus that is suitable for automation and combines
deductive and arithmetical quantifier reasoning within a single compositional proof
calculus. It introduces real-valued free variables and real Skolem terms to post-
pone quantifier elimination and continue reasoning beyond the occurrence of a real
quantifier in front of a modality. Quite unlike classical proof techniques, however,
our calculus later reintroduces a corresponding quantifier into the proof when its
algebraic constraints have been discovered completely. For ∀t [α]x≥ 0, our calcu-
lus will, for instance, continue with the unquantified kernel [α]x ≥ 0 after repla-
cing variable t with a Skolem term s(x). Once all arithmetical constraints on s(x)
are known, a quantifier for s(x) will be reintroduced and handled by real quanti-
fier elimination [288, 81]. The Skolem term s(x) can be thought of as a new name
for the universally quantified variable t. In a similar manner, our calculus combines
quantifier elimination with deduction for handling existential real quantifiers using
real-valued free variables.

In Chap. 2, we introduce a calculus that makes this intuition formally precise.
Crucially, we exploit the relationship of Skolem terms and free variables in order to
keep track of the lost quantifier nesting to prohibit unsound rearrangements of quan-
tifiers when they are reintroduced. After all, it would be disastrous if we could start
out proving a property ∃x∀y [α]φ , turn the quantifiers for x and y into free variables
and Skolem terms, and accidentally reintroduce quantifiers in a swapped order to
prove the weaker statement ∀y∃x . . . only. Clearly, it would not be sufficient to find
a different x for each value of y, if, what we started looking for in the first place is

20 1 Introduction

one common x for all the y such that [α]φ holds. The corresponding calculus rules
that we introduce, which comply with all soundness requirements, are perfectly nat-
ural and coincide nicely with the prerequisites for quantifier elimination over the
reals. Further, the dL semantics and calculus are fully compositional so that prop-
erties of a hybrid program can be proven by the reduction to properties of its parts
following a structural symbolic decomposition within the compositional dL proof
calculus.

1.1.6 Differential Induction and Differential Strengthening

In Chap. 3, we extend our logic dL to the differential-algebraic dynamic logic
DAL, which is the logic of general hybrid change. DAL provides differential-
algebraic programs (DA-programs) as general models for hybrid systems by al-
lowing for propositional operators and quantifiers in discrete and continuous trans-
itions. DA-programs have a very natural semantics of simultaneous change using
just conjunctions (∧) as logical operators. For instance, the conjunctive differential-
algebraic constraint x′ = y∧ y′ =−x, in which each conjunct needs to hold during
continuous evolutions, gives a natural semantics to differential equation systems
x′ = y,y′ =−x, such that x′ = y,y′ =−x is a notational variant of x′ = y∧ y′ =−x.
Disjunctions, in contrast, are a natural way to express switching conditions and finite
nondeterminism in the dynamics. The disjunctive differential-algebraic constraint
x′ = y∨ x′ =−y, for instance, allows x to evolve with velocity y or with velocity−y
and even switch between both cases, because only one of the two disjuncts needs to
hold at any time. Quantifiers in the dynamics of DA-programs are a very expressive
extension with which differential-algebraic equations and differential inequalities
can be represented directly, and with which quantified disturbance in the dynam-
ics can be characterised in an elegant and uniform way. The quantified differential-
algebraic constraint ∃y(x′ = y∧ y2 < 5), for example, allows all evolutions of x with
some velocity y (i.e., ∃y) whose square is less than 5. This quantified nondetermin-
ism makes DA-programs quite expressive for characterising more involved system
dynamics.

The standard approach to dealing with continuous dynamics for hybrid systems
is to use symbolic or numerical solutions of their respective differential equations.
Unfortunately, the range of systems that is amenable to these techniques is fairly
limited, because even solutions of simple linear differential equations quickly fall
into undecidable classes of arithmetic. For instance, the solutions of the linear differ-
ential equation system s′ = c,c′ =−s are trigonometric functions like sin and cos.
But first-order arithmetic with trigonometric functions is undecidable by a simple
corollary to Gödel’s famous incompleteness theorem [137]. As a means for verify-
ing hybrid systems with challenging continuous dynamics without having to solve
their differential equations, we complement discrete induction for loops and repeti-
tions with a new form of differential induction for differential equations. Differential
induction is a natural induction technique for differential equations. It is based on the

1.2 Related Work 21

local dynamics of the (right-hand side of the) differential equations themselves and
does not need closed-form solutions for the differential equations. Because differen-
tial equations are simpler than their solutions (which is part of the representational
power of differential equations), differential induction techniques working with the
differential equations themselves are more scalable than techniques that need solu-
tions of differential equations. Our differential induction techniques even generalise
to differential-algebraic constraints with differential inequalities or quantifiers in the
dynamics.

To further increase the verification power, we add differential strengthening or
differential cuts as a powerful proof technique for refining the system dynamics
with auxiliary invariants that can simplify the proof of the original property signi-
ficantly. The basic insight is that auxiliary properties that are provable invariants of
the dynamics can help prove the original property even if it was not provable before.
This phenomenon is unique to differential equations and does not happen in clas-
sical discrete systems. Overall, our combination of compositional proof calculi with
differential induction and differential strengthening turns out to be very powerful for
the analysis of advanced hybrid systems, including air traffic control applications.

1.2 Related Work

In this section, we briefly discuss related approaches to verification.

Model Checking of Hybrid Automata

Model checking approaches work by state space exploration and—due to their un-
decidable reachability problem—require [156] various abstractions or approxima-
tions [159, 8, 156, 125, 15, 77, 291, 217] for hybrid automata, including numerical
approximations [70, 21].

Beyond standard approaches [8, 156, 126] for linear automata with constant dy-
namics, the seminal work of Lafferriere et al. [189, 188, 190] presented a decision
procedure for o-minimal hybrid automata and classes of linear dynamics with a ho-
mogeneous eigenstructure. They have analysed the discrete and continuous dynam-
ics independently, which requires completely decoupled dynamics with forgetful
jumps, i.e., where the outcome of a jump is completely independent of the continu-
ous state. Unfortunately, actual systems rarely forget about states completely. For
modelling train dynamics accurately, for example, it is important that the train po-
sition z and velocity v stays the same when switching from acceleration to braking
mode in Fig. 1.4, and these variables do not just change arbitrarily and independ-
ently of their prior values.

Chutinan and Krogh [70] presented polyhedral approximations of hybrid auto-
mata with polyhedral discrete dynamics, invariants, and initial state sets. The relev-
ant discrete dynamics, initial state regions, and invariants for our train and aircraft

22 1 Introduction

applications are nonlinear and thus cannot be described accurately by polyhedra.
Fränzle [125] showed that reachability is decidable for specific classes of robust
polynomial hybrid automata, where the safe and unsafe states are sufficiently separ-
ate and the safe region is bounded. Asarin et al. [21] used piecewise linear numerical
approximations in an approximate reachability algorithm for continuous systems
with known Lipschitz bounds. Mysore et al. [217] showed decidability of bounded-
time and bounded switching reachability prefixes of semialgebraic hybrid automata.
Because there seldom is a known bound on the number of transitions that a system
can make, nor a (small) bound on the lifetime of a system, we are mostly interested
in unbounded horizon properties, which cannot be obtained with bounded model
checking.

Model checking tools like HyTech [157], PHAVer [126, 127], d/dt [22], and
CheckMate [70] are already quite successful. Still these or other approaches [156,
125, 228] cannot handle our train and aircraft applications with nonlinear switch-
ing, nonlinear discrete and continuous dynamics, and high-dimensional state spaces
(more than 30 dimensions).

Because hybrid systems do not admit equivalent finite-state abstractions [156]
and due to general limits of numerical approximation [238], model checkers are still
more successful in falsification than in verification. To obtain a sound verification
approach and for improved handling of free parameters [97], we follow a symbolic
logic-based approach and support dL as a significantly more expressive specifica-
tion language. Finally, we introduce hybrid programs as a more uniform model for
hybrid systems that is amenable to compositional symbolic verification.

Logics for Real-time Systems

Logics for real-time systems [159, 275] are not expressive enough to capture the
dynamics of hybrid systems, particularly their differential equations, which are the
main focus of this book. For instance, Schobbens et al. [275] give complete axio-
matisations of two decidable dense time propositional linear temporal logics. Un-
fortunately, in these propositional logics one cannot express that relevant separa-
tion properties hold always during the flight of aircraft guided by specific flight
controllers. A crucial property, for instance, is that the system never leaves re-
gion (x1− y1)

2 +(x2− y2)
2 ≥ p2, which expresses that the distance of the aircraft

at (x1,x2) and the aircraft at (y1,y2) is at least the protected zone p.
Successful model checking approaches for timed automata, which are a real-

time restriction of hybrid automata, have been developed before, including the tools
KRONOS [98] and UPPAAL [193]. Unlike for hybrid systems, model checking for
timed automata is decidable [10, 5, 86]. But the expressive power of timed automata
is fairly limited. The only continuous variables are clocks t following the differential
equation t ′ = 1. Positions or velocities evolving according to other laws of continu-
ous dynamics are not allowed. In fact, even very minor extensions of timed automata
make the verification problem undecidable, including stopwatches [67], which are
clocks that can be stopped (dynamics t ′ = 0) and resumed (dynamics t ′ = 0). For a

1.2 Related Work 23

general survey of real-time verification approaches, we refer the reader to the book
by Olderog and Dierks [221].

Logics for Hybrid Systems

Zhou et al. [306] extended the duration calculus [305] with mathematical expres-
sions in derivatives of state variables. They use a multitude of calculus rules and
a non-constructive oracle that requires external mathematical reasoning about the
notions of derivatives and continuity. This undirected reasoning about mathematics,
especially derivatives and continuity, is not suitable for automatic verification.

Davoren and Nerode [95, 97] presented a semantics of modal µ-calculus [181]
in hybrid systems and examined topological aspects. They provided Hilbert-style
calculi to prove formulas that are valid for all hybrid systems simultaneously. With
this, however, only limited information can be obtained about a particular system:
In propositional modal logics, system behaviour needs to be axiomatised declarat-
ively in terms of abstract actions a,b,c of unknown effect. With unknown effects,
however, we cannot characterise, say, a train control system or the flight dynamics
for air traffic control, and not even the dynamics of a bouncing ball.

The strength of our logic primarily is that it is an expressive first-order dynamic
logic: It handles actual operational models of hybrid systems such as z′′ = a instead
of abstract propositional actions of unknown effect. The advantage of our calculus
in comparison to others [306, 95, 97] is that it provides a constructive modular
combination of arithmetic reasoning with reasoning about hybrid transitions and
works by structural symbolic decomposition. With this, our calculus can be used
easily for verifying actual operational hybrid system models, including railway and
air traffic control systems, which are of considerable practical interest [156, 58,
70, 77, 217, 90, 238, 91]. Our proof calculus supports free parameters and first-
order definable flows, which are well suited for verifying the coordination of train
dynamics. First-order approximations of more general flows can be used according
to [15, 238, 227]. More general dynamics can also be verified with the technique of
differential induction that we introduce in Chap. 3.

Specification Languages for Hybrid Systems

Inspired by a proposal by He [175], Zhou et al. [69] presented a hybrid variant of
CSP [162] as a language for describing hybrid systems. They gave a semantics in the
extended duration calculus [306]. Zhou et al. did not yet give an actual verification
approach for hybrid CSP.

Rönkkö et al. [270] extended guarded command programs with differential rela-
tions and gave a weakest-precondition semantics in higher-order logic with built-in
derivatives. Without providing a means for verification of this higher-order logic,
this approach is limited to providing a notational variant of standard mathematics.

24 1 Introduction

Rounds and Song [272] have developed a hybrid version of the π-calculus [208]
as a modelling language for embedded systems. Later, Rounds [271] gave a se-
mantics in a rich set theory for an abstract spatial logic for the hybrid π-calculus,
which is also called Φ-calculus. In the hybrid π-calculus, processes interact with
a continuously changing environment, but cannot themselves evolve continuously,
which would be crucial to capture the physical movement of traffic agents. From
the semantics alone, however, no verification is possible in these approaches, except
perhaps by manual semantic reasoning.

Other process-algebraic approaches, such as χ [40], have been developed for
modelling and simulation purposes [39]. At present, verification is still limited to
small fragments that can be translated directly to other verification tools such as
PHAVer [127, 126] when converted to hybrid automata or to UPPAAL [193] when
converted to timed automata.

Modelling languages for hybrid systems further include SHIFT [100] for net-
works of hybrid automata, and R-Charon for reconfigurable systems [183]. These
approaches focus more on simulation and compilation [100] or the development of
a semantics [183], so no verification or formal analysis is possible yet.

Uses of Deduction for Hybrid Systems

Manna et al. [201, 178] and Ábrahám et al. [1] used theorem provers for check-
ing invariants of hybrid automata in STeP [201] and PVS [1], respectively. Their
working principle is, however, quite different from ours. Given a hybrid automaton
and a global system invariant, they compile, in a single step, a verification condition
expressing that the invariant is preserved under all transitions of the hybrid auto-
maton. Hence, hybrid aspects and transition structure vanish completely before the
proof starts. All that remains is a flat quantified mathematical formula. Which hy-
brid systems can be verified with this approach in practise strongly depends on the
general mathematical proving capabilities of STeP and PVS, which, because of their
general-purpose focus, typically requires user interaction.

In contrast, we follow a fully symbolic approach using a genuine specification
and verification logic for hybrid systems. Our dynamic logic for hybrid systems
works deductively by symbolic decomposition and preserves the transition structure
during the proof, which simplifies the traceability of results considerably. Further,
the structure in this symbolic decomposition can be exploited for deriving invari-
ants or parametric constraints. Consequently, invariants do not necessarily need to
be given beforehand in our approach. Moreover, in practise, guiding quantifier elim-
ination procedures along natural splitting possibilities of the structural decompos-
ition performed by the our proof calculus turns out to be important for successful
automatic proof strategies (Chaps. 5 and 6).

1.4 Structure of This Book 25

1.3 Contributions

Our main conceptual contribution is a series of differential dynamic logics for hy-
brid systems (these logics are called dL , DAL, and dTL), which capture the logical
quintessence of the dynamics of hybrid systems succinctly. Our logics provide a
uniform semantics and concise language for specifying and verifying correctness
properties of general hybrid systems with sophisticated dynamics. Our main prac-
tical contribution is a concise free-variable calculus that axiomatises the transition
behaviour of hybrid systems relative to differential equation solving. With our gen-
eralisation of free-variable calculi to dynamic logic over the reals, the calculus is
suitable for automated theorem proving and for verifying hybrid superpositions of
interacting discrete and continuous dynamics compositionally.

Our main theoretical contribution is that we prove our calculi to be sound and
complete relative to the handling of differential equations. To the best of our know-
ledge, this is the first relative completeness proof for a logic of hybrid systems, and
even the first formal notion of hybrid completeness. Our results fully align hybrid
and continuous reasoning proof-theoretically and show that hybrid systems with
interacting repetitive discrete and continuous evolutions can be verified whenever
differential equations can.

We further contribute a verification calculus that includes uniform proof rules
for differential induction along differential equations or more general differential-
algebraic constraints, using a combination of differential invariants, differential vari-
ants, and differential strengthening for verifying hybrid systems without having to
solve their differential constraints. Based on these calculi, we develop a fixed-point
verification algorithm that computes the required invariants and differential invari-
ants for a formula and refines the underlying system dynamics as needed during the
proof.

As applied contributions, we demonstrate the capabilities of our logics, calculi,
and algorithms by verifying collision avoidance in realistic train control applica-
tions and challenging air traffic control manoeuvres. Overall, our logical analysis
approach for hybrid systems can successfully verify realistic applications that were
out of the scope of other approaches, for both theoretical and scalability reasons.

1.4 Structure of This Book

This book consists of three parts that basically correspond to the theory, practise,
and applications, respectively, of the logical analysis of hybrid systems. You are
now reading the introduction.

26 1 Introduction

Logics and Calculi

In Part I, which is the core of this book, we introduce novel logics and proof calculi
that form the new conceptual, formal, and technical basis for the logical analysis
of hybrid systems. In Chap. 2, we introduce the differential dynamic logic dL as
a variant of dynamic logic that is suitable for specifying and verifying properties
of hybrid systems. It generalises dynamic logic to dynamic logic over the reals in
the presence of hybrid dynamics with discrete state transitions and with continuous
state evolutions along differential equations. As a verification technique, we present
a new compositional sequent calculus for dL that is suitable for automation and
integrates handling of real quantifiers by generalising Skolemisation and free vari-
ables to the reals. In Chap. 2, we also prove completeness relative to differential
equations as the most fundamental theoretical result in this book.

In Chap. 3, we introduce the differential-algebraic logic DAL that extends the
class of hybrid system models by allowing more general differential-algebraic equa-
tions, differential inequalities, and quantified nondeterminism. Further, we present a
uniform theory of differential induction, differential invariants, differential variants,
and differential strengthening as central symbolic verification techniques for hand-
ling challenging continuous dynamics in hybrid systems without having to solve
their differential equations.

In Chap. 4, we address the handling of temporal properties and introduce the
differential temporal dynamic logic dTL along with a calculus that reduces temporal
properties to dL properties. The extensions of dL that we present in Chaps. 3 and 4
are complementary and compatible. Their direct modular combination immediately
defines the differential-algebraic temporal dynamic logic DATL.

Automated Theorem Proving

In Part II, we focus on the practical aspects of implementing the verification calculi
from Part I. The calculi in Part I have already been designed for the practical needs
of automated theorem proving, most notably for the free-variable and Skolemisation
techniques from Chap. 2 and the compositional proof calculi from Part I. Immedi-
ate implementations of the proof calculi from Part I in automated theorem provers
can prove examples of medium complexity directly. Yet, more complex case studies
require additional algorithmic techniques for achieving high degree automation and
good scalability properties. In Chap. 5, we refine the calculi from Part I to tableau
procedures that are suitable for automated theorem proving (ATP) and present proof
strategies that navigate through their nondeterminisms to help overcome the com-
plexity issues of integrating real quantifier elimination as a decision procedure for
real arithmetic.

In Chap. 6, which is based on joint work with Edmund M. Clarke [239], we
introduce the “differential invariants as fixed points” (DIFP) paradigm. We refine
the differential induction techniques from Chap. 3 to a fully automatic verification

1.4 Structure of This Book 27

algorithm for computing the required discrete and differential invariants of a hybrid
system locally in a logic-based fixed-point loop.

Applications

In Part III, we shift our attention to application scenarios for our logical analysis
approach for hybrid systems. Extending smaller hybrid systems which have served
as running examples throughout this book, we show full verification case studies of
the European Train Control System (ETCS) in Chap. 7, which is based on joint work
with Jan-David Quesel [243]. We also extend and show verification case studies
for aircraft collision avoidance manoeuvres in air traffic control (ATC) in Chap. 8,
which is based on joint work with Edmund M. Clarke [238, 239].

Finally, Chap. 9 concludes this work with a discussion of the results and per-
spectives for future research.

Appendices

In Part IV, we provide the background in logic and differential equations that
we need for the course of this book. In App. A, we give an introduction to ba-
sic first-order logic (FOL), its syntax, semantics, and proof techniques. For refer-
ence, App. B summarises some classical results about ordinary differential equa-
tions (ODEs) that we need as background for this book. In App. C, we formally
investigate the relationship between hybrid automata [156] and hybrid programs
by embedding hybrid automata into hybrid programs. In App. D, we briefly char-
acterise the verification tool KeYmaera that implements the logics and automated
theorem proving techniques presented in this book and that has been implemented
in joint work with Jan-David Quesel [242]. We also survey various techniques that
can be used to verify real arithmetic.

Online Material

At the Website for this book, we provide the KeYmaera verification tool for down-
load and webstart. KeYmaera has been developed in joint work with Jan-David
Quesel [242] and implements the logical analysis approach presented in this book.
Slide material, an online tutorial, and KeYmaera problem files for several examples,
including the case studies of train and air traffic control, can also be found on the
Web.

The Web page for this book is at the following URL:

http://symbolaris.com/lahs/

28 1 Introduction

Suggested Reading Sequence

The basic suggested reading sequence in this book is linear (with additional con-
sultation of the appendices for background). Except for the foundation of this work
that is laid out in Part I, however, the chapters in this book are mostly self-contained
so that they can also be studied independently. Figure 1.14 shows the reading or-
der dependencies among the chapters (solid lines) and the partial dependencies of
suggested reading sequences that holds for the advanced material of the respective
chapters (dashed lines).

Part I

Part II

Part III

1. Intro

2. dL

3. DAL 4. dTL

8. ATC 7. ETCS

6. DIFP 5. ATP

A. FOL B. ODE

Fig. 1.14 Dependencies and suggested reading sequence of chapters and appendices

For a background in classical first-order logic (FOL), we recommend you review
App. A. Depending on the interest, field of study, and preference of the reader, we re-
commend he either study the background information in App. A on first-order logic
before proceeding to Part I or use the material in App. A as a background reference
book while reading the main part of this book. Similarly, we recommend he review
the background on ordinary differential equations (ODEs) in App. B either before
or during the study of this book. An intuitive approach to understanding differential
equations and formal definitions of their semantics will be given in the main parts
of this book. Logic itself is also explained and illustrated intuitively during the main
part of this book, but some readers may also find it helpful to refresh or learn about
the basics of first-order logic from App. A before proceeding to the main part.

While there is a lot of flexibility in the reading sequence of the chapters, we
strongly recommend you study the logical foundations of hybrid systems analysis
and differential dynamic logic (dL) in Chap. 2 of Part I before reading any other
chapter of Parts I–III. Chapter 2 develops the logical foundations, the system model

1.4 Structure of This Book 29

of hybrid programs, the differential dynamic logic (dL) for expressing correctness
properties, and the proof calculus for verifying these properties that will be needed
in the remainder of this book.

Some more advanced sections in the applications in Part III also depend on the
theory of differential invariants and the differential algebraic dynamic logic (DAL)
that is developed together with other extensions in Chap. 3. We recommend you read
Chap. 3 on DAL before studying the air traffic control (ATC) verification in Chap. 8.
While most of Chap. 7 on the European Train Control System (ETCS) verification
can be read with the foundation in dL from Chap. 2, some advanced parts also
use results from Chap. 3 on DAL. We also recommend you study the theoretical
foundations on DAL in Chap. 3 before reading the automation approach “differential
invariants as fixed points” (DIFP) in Chap. 6. Still, some level of understanding of
the DIFP automation approach in Chap. 6 can also be gained without your having
read the full theoretical background on DAL in Chap. 3.

Part I
Logics and Proof Calculi for Hybrid

Systems

Overview In this part, which is the core part of this book, we introduce novel logics
and proof calculi that form the new conceptual, formal, and technical basis for the
logical analysis of hybrid systems. In Chap. 2, we introduce the differential dynamic
logic dL as a variant of dynamic logic that is suitable for specifying and verifying
properties of hybrid systems. It generalises classical dynamic logic to dynamic lo-
gic over the reals in the presence of hybrid dynamics with interacting discrete state
transitions and continuous state evolutions along differential equations. As a veri-
fication technique, we present a new compositional proof calculus for dL that is
suitable for automation and integrates handling of real quantifiers by generalising
Skolemisation and free variables to the reals. In Chap. 2, we also prove complete-
ness relative to differential equations as the most fundamental theoretical result in
this book.

In Chap. 3, we introduce the differential-algebraic logic DAL that extends the
class of hybrid system models by allowing more general differential-algebraic equa-
tions, differential inequalities, and quantified nondeterminism. Further, we present a
uniform theory of differential induction, differential invariants, differential variants,
and differential strengthening as central symbolic verification techniques for hand-
ling challenging continuous dynamics in hybrid systems without having to solve
their differential equations.

In Chap. 4, we address the handling of temporal properties and introduce the dif-
ferential temporal dynamic logic dTL along with a calculus that reduces temporal
properties to dL properties. The extensions of dL that we present in Chap. 3 and
Chap. 4 are complementary and compatible. Their direct modular combination im-
mediately defines the differential-algebraic temporal dynamic logic DATL.

The logics and proof techniques developed in this part will form the basis for
the automation techniques developed in Part II. They also form the foundation for
the formal verification tool KeYmaera. We will also use the differential dynamic
logics to formalise safety-critical properties of the train and aircraft control studies
in Part III and prove them with the proof techniques we develop in Part I.

Chapter 2
Differential Dynamic Logic dL

Contents
2.1 Introduction . 34

2.1.1 Structure of This Chapter 35
2.2 Syntax . 35

2.2.1 Terms . 37
2.2.2 Hybrid Programs . 41
2.2.3 Formulas . 47

2.3 Semantics . 49
2.3.1 Valuation of Terms . 50
2.3.2 Valuation of Formulas 51
2.3.3 Transition Semantics of Hybrid Programs 54

2.4 Collision Avoidance in Train Control 61
2.5 Proof Calculus . 64

2.5.1 Substitution . 65
2.5.2 Proof Rules . 76
2.5.3 Deduction Modulo with Invertible Quantifiers and Real

Quantifier Elimination 88
2.5.4 Verification Example 94

2.6 Soundness . 97
2.7 Completeness . 101

2.7.1 Incompleteness . 102
2.7.2 Relative Completeness 103
2.7.3 Characterising Real Gödel Encodings 105
2.7.4 Expressibility and Rendition of Hybrid Program Semantics106
2.7.5 Relative Completeness of First-Order Assertions 109
2.7.6 Relative Completeness of the Differential Logic Calculus 113

2.8 Relatively Semidecidable Fragments 114
2.9 Train Control Verification . 118

2.9.1 Finding Inductive Candidates 118
2.9.2 Inductive Verification 119
2.9.3 Parameter Constraint Discovery 120

2.10 Summary . 122

33A. Platzer, Logical Analysis of Hybrid Systems,
DOI 10.1007/978-3-642-14509-4_2, © Springer-Verlag Berlin Heidelberg 2010

34 2 Differential Dynamic Logic dL

Synopsis Hybrid systems are models for complex physical systems and are defined
as dynamical systems with interacting discrete transitions and continuous evolutions
along differential equations. With the goal of developing a theoretical and practical
foundation for deductive verification of hybrid systems, we introduce a dynamic lo-
gic for hybrid programs, which is a program notation for hybrid systems. As a veri-
fication technique that is suitable for automation, we introduce a free-variable proof
calculus with a novel combination of real-valued free variables and Skolemisation
for lifting quantifier elimination for real arithmetic to dynamic logic. The calculus
is compositional, i.e., it reduces properties of hybrid programs to properties of their
parts. Our main result proves that this calculus axiomatises the transition behaviour
of hybrid systems completely relative to differential equations. In a study with co-
operating traffic agents of the European Train Control System, we further show that
our calculus is well suited for verifying realistic hybrid systems with parametric
system dynamics.

2.1 Introduction

In this chapter, we introduce the differential dynamic logic dL , its syntax, se-
mantics, and proof calculus. It forms the core of this book and is the basis for the
extensions, algorithmic refinements, and applications in subsequent chapters of this
book.

Contributions

Our main conceptual contribution in this chapter is the differential dynamic logic
dL for hybrid programs, which captures the logical quintessence of the dynamics of
hybrid systems succinctly. Our main practical contribution is a concise free-variable
calculus for dL that axiomatises the transition behaviour of hybrid systems relative
to differential equation solving. It is suitable for automated theorem proving and
for verifying hybrid interacting discrete and continuous dynamics compositionally.
Our main theoretical contribution is that we prove the dL calculus to be sound and
complete relative to the handling of differential equations. To the best of our know-
ledge, this is the first relative completeness proof for a logic of hybrid systems, and
even the first formal notion of hybrid completeness. Our results fully align hybrid
and continuous reasoning proof-theoretically and show that hybrid systems with
interacting repetitive discrete and continuous evolutions can be verified whenever
differential equations can. As an applied contribution, we further demonstrate that
our logic and calculus can be used successfully for verifying collision avoidance in
realistic train control applications.

2.2 Syntax 35

2.1.1 Structure of This Chapter

After introducing syntax and semantics of the differential dynamic logic dL in
Sects. 2.2 and 2.3, we introduce a free-variable sequent calculus for dL in Sect. 2.5
and prove soundness and relative completeness in Sects. 2.6 and 2.7, respectively.
We present relatively semidecidable fragments of dL in Sect. 2.8. In Sect. 2.9, we
use our calculus to prove an inductive safety property of the train control system that
we present in Sect. 2.4. We draw conclusions and discuss future work in Sect. 2.10.

2.2 Syntax of Differential Dynamic Logic

In this section, we introduce the differential dynamic logic dL in which operational
models of hybrid systems are internalised as first-class citizens, so that correctness
statements about the transition behaviour of hybrid systems can be expressed as for-
mulas. As a basis, dL includes (nonlinear) real arithmetic for describing concepts
like safe regions of the state space. Further, dL supports real-valued quantifiers for
quantifying over the possible values of system parameters or durations of continu-
ous evolutions. For talking about the transition behaviour of hybrid systems, dL
provides modal operators such as [α] or 〈α〉 that refer to the states reachable by
following the transitions of hybrid system α .

The logic dL is a first-order dynamic logic over the reals for hybrid programs,
which is a compositional program notation for hybrid systems. Hybrid programs
provide the following constructs.

Discrete jump sets. Discrete transitions are represented as instantaneous assign-
ments of values to state variables, which are, essentially, difference equations.
They can express resets like a :=−b or adjustments of control variables like
a :=a+5, as occurring in the discrete transformations attached to edges in hy-
brid automata; see Fig. 2.1. Likewise, implicit discrete state changes such as the
changing of evolution modes from one node of an automaton to the other can
be expressed uniformly as, e.g., q :=brake, where variable q remembers the cur-
rent node. To handle simultaneous changes of multiple variables, discrete jumps
can be combined to sets of jumps with simultaneous effect following corres-
ponding techniques in the discrete case [37]. For instance, the discrete jump
set a :=a+5,A :=2a2 expresses that a is increased by 5 and, simultaneously,
variable A is set to 2a2, which is evaluated before a receives its new value a+5.

Differential equation systems. Continuous variation in system dynamics is rep-
resented using differential equation systems as evolution constraints. For ex-
ample the (second-order) differential equation z′′ =−b describes deceleration
with braking force b and z′ = v,v′ =−b&v≥ 0 expresses that the evolution only
applies as long as the speed is v≥ 0, which represents mode brake of Fig. 2.1.
This is an evolution along the differential equation system z′ = v,v′ =−b that is
restricted (written &) to remain within the evolution domain region v≥ 0, i.e., to

36 2 Differential Dynamic Logic dL

stop braking before v < 0. Such an evolution can stop at any time within v≥ 0, it
could even continue with transient grazing along the border v = 0, but it is never
allowed to enter v < 0. The second-order differential equation z′′ =−b itself is
equivalent to the first-order differential equation system z′ = v,v′ =−b , in which
the velocity v is explicit. In this chapter, we separate the respective differential
equations in a differential equation system by a comma (,) and separate the evolu-
tion domain region (if any) from the differential equations by an ampersand (&).
We choose this notation for this chapter to make it easier to identify the evolution
domain region. In Chap. 3, we will see that both (,) and (&) can be understood
more uniformly as conjunctions.

Control structure. Discrete and continuous transitions—represented as differ-
ence or differential equations, respectively—can be combined to form a hy-
brid program with interacting hybrid dynamics using regular expression op-
erators (∪,∗, ;) of regular programs [149] as control structure. For example,
the hybrid program q :=accel∪ z′′ =−b describes a train controller that can
choose to either switch to acceleration mode (q :=accel) or brake by the dif-
ferential equation z′′ =−b, by a nondeterministic choice (∪). The nondetermin-
istic choice q :=accel∪ z′′ =−b expresses that either q :=accel or z′′ =−b hap-
pens. The sequential composition q :=accel ; z′′ =−b, instead, expresses that
first q :=accel, and then z′′ =−b happens. In conjunction with other regular
combinations, control constraints can be expressed using tests like ?z≥ s as
guards for the system state. This test will succeed if, indeed, the current state of
the system satisfies z≥ s; otherwise the test will fail and execution cannot pro-
ceed. In that respect, a test is like an assert statement in conventional programs
and cuts the system run if the test is not successful.

Example 2.1 (Embedding hybrid automata). With these operations, hybrid systems
can be represented naturally as hybrid programs. For example, the right of Fig. 2.1
depicts a hybrid program rendition of the hybrid automaton on the left, which re-
peats the automaton from Fig. 1.4 on p. 5. Line 1 represents that, in the beginning,

q := accel; /* initial mode is node accel */(
(?q = accel; z′ = v,v′ = a)

∪ (?q = accel∧ z≥ s; a :=−b; q := brake; ?v≥ 0)
∪ (?q = brake; z′ = v,v′ = a&v≥ 0)
∪ (?q = brake∧ v≤ 1; a := a+5; q := accel)

)∗
Fig. 2.1 Hybrid program rendition of hybrid automaton for (overly) simplified train control

the current node q of the system is the initial node accel. We represent each discrete
and continuous transition of the automaton as a sequence of statements with a non-
deterministic choice (∪) between these transitions. Line 4 represents a continuous
transition of the automaton. It tests if the current node q is brake, and then (i.e., if the
test was successful) follows the differential equation system z′ = v,v′ = a restricted

accel
z′ = v
v′ = a

brake
z′ = v
v′ = a
v≥ 0

z≥ s

a :=−b

v≤ 1

a :=a+5

2.2 Syntax 37

to the evolution domain v≥ 0. Line 3 characterises a discrete transition of the auto-
maton. It tests the guard z≥ s when in node accel, and, if successful, resets a :=−b
and then switches q to node brake. By the semantics of hybrid automata [8, 156],
an automaton in node accel is only allowed to make a transition to node brake if
the evolution domain restriction of brake is true when entering the node, which is
expressed by the additional test ?v≥ 0 at the end of line 3. Observe that this test
of the evolution domain region generally needs to be checked as the last operation
after the guard and reset, because a reset like v :=v−1 could affect the outcome
of the evolution domain region test. In order to obtain a fully compositional model,
hybrid programs make all these implicit side conditions explicit. Line 2 represents
the continuous transition when staying in node accel and following the differential
equation system z′ = v,v′ = a. Line 5 represents the discrete transition from node
brake of the automaton to node accel.

Lines 2–5 cannot be executed unless their tests succeed. In particular, at any
state, the nondeterministic choice (∪) among lines 2–5 reduces de facto to a non-
deterministic choice between either lines 2–3 or between lines 4–5. At any state, q
can have value either accel or brake (assuming these are different constants), not
both. Consequently, when q = brake, a nondeterministic choice of lines 2–3 would
immediately fail the tests in the beginning and not execute any further. The only
remaining choices that have a chance to succeed are lines 4–5 then. In fact, only the
single successful choice of line 4 would remain if the second conjunct v≤ 1 of the
test in line 5 does not hold for the current state. Note that, still, all four choices in
lines 2–5 are available, but at least two of these nondeterministic choices will always
be unsuccessful. Finally, the repetition operator (∗) at the end of Fig. 2.1 expresses
that the transitions of a hybrid automaton, as represented by lines 2–5, can repeat
indefinitely, possibly taking different nondeterministic choices between lines 2–5 at
every repetition. �

2.2.1 Terms

The construction of the logic dL starts with a set V of logical variables and a sig-
nature Σ , which is the set of names (called symbols) of all entities nameable in a
certain context. The signature Σ and set V form the vocabulary or alphabet of signs
from which well-formed formulas can be built. For dL we assume all variables
in V are interpreted over the reals and that Σ is a (finite) set of real-valued function
and predicate symbols, with the usual function and predicate symbols for real arith-
metic, such as 0,1,+,−, ·,/,=,≤,<,≥,>, where + is addition, · is multiplication,
/ is division and so on. For each function and predicate symbol, we are given the
number of arguments that it expects, which is called arity, and is a natural number.
The arity can be zero, in which case the function or predicate symbol does not have
any arguments. The function symbols for the numbers 0,1 have arity zero, because
they do not need arguments. The binary arithmetic operators +,−, ·,/ have arity

38 2 Differential Dynamic Logic dL

2, because they expect two arguments. The binary predicate symbols =,≤,<,≥,>
also have arity 2, because they need two arguments to compare.

The difference between function and predicate symbols is that function symbols
stand for functions that take the values of arguments and give back a function value.
Predicate symbols, on the other hand, are interpreted either as true for a vector of
arguments or as false. That is, they take the values of arguments and give either the
truth-value “true” or the truth-value “false”. No other result is permitted for pre-
dicate symbols. For instance, the predicate symbol ≥ will be understood such that
≥(x,y) is true if and only if the value of x is greater than or equal to the value of y.
For real arithmetic, we use standard notation and standard semantics. In particular,
we write x≥ y instead of ≥(x,y). We fix the semantics of · to be multiplication, i.e.,
the value of ·(x,y) is always meant to be the product of the value of x and the value
of y. Again, we use the standard notation x · y, or just xy if no confusion arises, in-
stead of ·(x,y). The denotation of a function symbol could also be, e.g., the function
that takes an argument and gives back its cube. A predicate, in contrast, cannot give
back any value other than “true” or “false”, but could hold, say, for all real numbers
larger than 5. Or it could be the relation that holds for all pairs where the second
element of the pair is larger than the square of the first element of the pair. Function
symbols are often written as f ,g,h,a,b,c and predicate symbols are often written as
p,q,r.

State variables of hybrid systems, such as positions, velocities, and accelerations,
are represented as real-valued function symbols of Σ of arity 0. Unlike fixed symbols
like the number 1, state variables are flexible, i.e., their interpretation can change
from state to state during the execution of a hybrid program. Flexibility of symbols
will be used to represent the progression of system values along states over time
during a hybrid evolution. Symbols like 1, on the other hand, are rigid, i.e., they
have the same value at all states. The symbols of real arithmetic like 1 and +, ·
are rigid, because we do not want them to change their meaning at any time. State
variables like velocity v, in contrast, are flexible, because they can change their value
depending on the state. While the velocity v may have been 0 in the beginning,
the train could increase its velocity to 10 and then decrease it again later when
approaching another train.

Note that there is no need to distinguish between discrete and continuous vari-
ables in dL . The distinction between logical variables in V , which can be quantified
universally or existentially, and state variables in Σ , which can change their value
by discrete jumps and differential equations of hybrid programs in modalities, is not
strictly required either. For instance, universal and existential quantification of state
variables is definable using auxiliary logical variables. The distinction makes the se-
mantics and soundness proof less subtle, though. Our calculus assumes that V con-
tains sufficiently many variables and Σ contains additional Skolem function sym-
bols, which are reserved for use by the calculus.

2.2 Syntax 39

Terms

Well-formed arguments to function symbols and predicate symbols are called terms.
Logical variables are well-formed terms, and functions applied to the appropriate
number of terms as arguments are well-formed terms. The set Trm(Σ ,V) of terms
is defined as in classical first-order logic, yielding polynomial (or rational) expres-
sions over V and over additional Skolem terms s(t1, . . . , tn) with terms ti. Our cal-
culus actually only uses Skolem terms s(X1, . . . ,Xn) with logical variables Xi ∈V as
arguments.

Definition 2.1 (Terms). Trm(Σ ,V) is the set of all terms, which is the smallest set
such that:

• If x ∈V , then x ∈ Trm(Σ ,V).
• If f ∈ Σ is a function symbol of arity n≥ 0 and, for 1≤ i≤ n, θi ∈ Trm(Σ ,V),

then f (θ1, . . . ,θn) ∈ Trm(Σ ,V). The case n = 0 is permitted (e.g., for state vari-
ables).

More succinctly, we also say that the terms of dL are defined by the following
grammar (where θ1, . . . ,θn are terms, f a function symbol of arity n, and x ∈V is a
logical variable):

θ ::= x | f (θ1, . . . ,θn).

Example 2.2. (Well-formed) terms of dL include:

• Logical variables X ∈V
• State variables x ∈ Σ that may change their value during system evolution
• Expressions of nonlinear polynomial real arithmetic like x+5y · (x−3y+ za),

which we consider as a short notation for x+5 · y · (x−3 · y+ z ·a). Here we
assume that x,y,z,a ∈ Σ are state variables. In principle, we also have to men-
tion that the number symbols 5,3 ∈ Σ are (rigid) function symbols without ar-
guments. Yet these number symbols are what we assume as given throughout
this book. Note that we could just as well have assumed that x,y ∈ Σ are state
variables, a ∈ Σ is a rigid function symbol of arity 0, and z ∈V is a logical vari-
able. Then x+5y · (x−3y+ za) is still a term for this different signature and
variables set. For terms, all ways of declaring symbols as state variables, rigid
function symbols of arity 0, or logical variables are essentially equivalent. There
are many ways to say the same thing. The differences only play a role later for
quantification and state change.

• Expressions with Skolem function terms like x+5s(X1,X2) · (x−3y+ z · t(X2)).
Here we assume that x,y ∈ Σ are state variables, that s, t ∈ Σ are rigid function
symbols of arity 2 and 1, respectively, and that X1,X2 ∈V are logical variables.

• Real arithmetic expressions with integer powers like 8x2 +2x3(y−a2bc) that can
easily be rewritten as 8 · x · x+2 · x · x · x · (y−a ·a ·b · c). Again, we assume that
x,y,a,b,c are symbols in Σ or V .

The following, however, are no terms with respect to Σ and V :

40 2 Differential Dynamic Logic dL

• 1+ xy, because the exponential function xy cannot be rewritten as a finite product,
quite unlike x3 = x · x · x or x4 = x · x · x · x. In fact, the logical properties of the
exponential function are a very exciting and a challenging object of study in
recent model theory [107, 206, 44, 108, 45, 2].

• y2−π , unless the transcendental number π = 3.1415926 . . . is explicitly added to
Σ , because unlike rational numbers, the transcendental number cannot be charac-
terised exactly with a finite combination of sums, products, and 0, 1. Arbitrarily
precise approximations of π , instead, can be defined; see Example 2.3. �

First-Order Formulas

Meaningful propositions that are either true or false in a context are called (well-
formed) formulas. The well-formed formulas of a logic form a formal language over
the alphabet Σ ∪V of symbols. The formulas consist of all words that can be built
by recursively combining symbols of the signature with logical operator symbols
appropriately. We first define only the fragment of first-order logic, then the syntax
of hybrid programs, and define the actual formulas of differential dynamic logic
afterwards.

The set of formulas of first-order logic is defined as usual (cf. App. A), giving
first-order real arithmetic [288] augmented with Skolem terms. We will show the
precise relationship to standard first-order real arithmetic without Skolem terms in
Lemma 2.5 of Sect. 2.5.3.2.

Definition 2.2 (First-order formulas). The set FmlFOL(Σ ,V) of formulas of first-
order logic is the smallest set with:

• If p ∈ Σ is a predicate symbol of arity n≥ 0 and θi ∈ Trm(Σ ,V) for 1≤ i≤ n,
then p(θ1, . . . ,θn) ∈ FmlFOL(Σ ,V).

• If φ ,ψ ∈ FmlFOL(Σ ,V), then ¬φ ,(φ ∧ψ),(φ ∨ψ),(φ → ψ) ∈ FmlFOL(Σ ,V).
• If φ ∈ FmlFOL(Σ ,V) and x ∈V , then (∀xφ),(∃xφ) ∈ FmlFOL(Σ ,V).

More succinctly, we also say that first-order formulas are defined by the following
grammar (where φ ,ψ are first-order formulas, θi are terms, p is a predicate symbol
of arity n, and x ∈V is a logical variable):

φ ,ψ ::= p(θ1, . . . ,θn) | ¬φ | φ ∧ψ | φ ∨ψ | φ → ψ | ∀xφ | ∃xφ .

Example 2.3. (Well-formed) first-order formulas in our context include:

• v · v≤ 2b · (m− z). Again we assume that v,b,m,z are symbols in the vocabu-
lary Σ or V . For instance, we could assume that z,v ∈ Σ are (flexible) state vari-
ables and b,m ∈ Σ are rigid function symbols of arity 0. The rationale for this
classification would be that z and v are meant to represent the position and ve-
locity of a train, which of course can change over time (flexible). The symbols
b and m are meant to represent the braking force and movement authority of a

2.2 Syntax 41

train, which we assume not to change in this formula (rigid). We could just as
well assume that z,v,b,m ∈ Σ are (flexible) state variables.

• v > 0→ v · v≤ 2b · (m− z)∨b = 0
• ∀x∀y(x > y↔ x− y > 0). Here we assume x,y ∈V are logical variables; other-

wise the syntax would not allow us to quantify over x,y.
• x > 0∧∀y∃z(x > z2 + y · z−5). Here we assume y,z ∈V are logical variables

and we could either assume x ∈ Σ to be a state variable, or a rigid function symbol
of arity zero, or a logical variable x ∈V . All those choices are reasonable for this
formula, and, in fact, it does not make a real difference here, because they will
essentially have the same meaning. These distinctions become somewhat more
important for dL formulas later.

• Formulas with divisions like b < x/y, which can easily be defined in terms of
multiplication (b · y < x∧ y > 0)∨ (b · y > x∧ y < 0).

• Formulas with rational constants like a > 2
3 x2 +3.1415x · y4, which can easily be

defined in terms of successive addition and inverses, say,

a > (1+1)/(1+1+1) · x2 +31415/10000 · x · y4.

• Arithmetic expressions with roots like x4− y
√

2z > 0, which can easily be defined
in terms of their characteristic polynomials as ∃r (r2 = 2z∧ r ≥ 0∧ x4− y · r > 0).

�

2.2.2 Hybrid Programs

As uniform compositional models for hybrid systems, hybrid programs can combine
discrete and continuous transitions to structured control programs using the regular-
expression-style operators of Kleene algebras [182].

Definition 2.3 (Hybrid programs). The set HP(Σ ,V) of hybrid programs, with
typical elements α,β , is defined inductively as the smallest set such that

1. If xi ∈ Σ is a state variable and θi ∈ Trm(Σ ,V) for 1≤ i≤ n, then the discrete
jump set (x1 :=θ1, . . . ,xn :=θn) ∈ HP(Σ ,V) is a hybrid program. We assume
that the x1, . . . ,xn are pairwise different state variables.

2. If xi ∈ Σ is a state variable and θi ∈ Trm(Σ ,V) for 1≤ i≤ n, then x′i = θi is a
differential equation in which x′i represents the time derivative of variable xi.
If χ is a first-order formula, then (x′1 = θ1, . . . ,x′n = θn & χ) ∈ HP(Σ ,V). We
assume that the x1, . . . ,xn are pairwise different state variables.

3. If χ is a first-order formula, then (?χ) ∈ HP(Σ ,V).
4. If α,β ∈ HP(Σ ,V), then (α ∪β) ∈ HP(Σ ,V).
5. If α,β ∈ HP(Σ ,V), then (α;β) ∈ HP(Σ ,V).
6. If α ∈ HP(Σ ,V), then (α∗) ∈ HP(Σ ,V).

Table 2.1 summarises the statements and (informal) effects of hybrid programs.
More succinctly, hybrid programs are defined by the following grammar (α,β are

42 2 Differential Dynamic Logic dL

Table 2.1 Statements and (informal) effects of hybrid programs (HPs)

HP Notation Operation Effect
x1 :=θ1, . . . ,xn :=θn discrete jump set simultaneously assigns terms θi to variables xi
x′1 = θ1, . . . ,x′n = θn & χ continuous evolution differential equations for xi with terms θi with-

in first-order constraint χ (evolution domain)
?χ state test / check test first-order formula χ at current state
α; β seq. composition HP β starts after HP α finishes
α ∪β nondet. choice choice between alternatives HP α or HP β

α∗ nondet. repetition repeats HP α n-times for any n ∈ N

hybrid programs, θi are terms, xi ∈ Σ are state variables, and χ is a formula of
first-order logic):

α,β ::= x1 :=θ1, . . . ,xn :=θn | x′1 = θ1, . . . ,x′n = θn & χ | ?χ | α ∪β | α;β | α∗.

The effect of the discrete jump set x1 :=θ1, . . . ,xn :=θn is to simultaneously
change the interpretations of the xi to the respective θi by performing a discrete jump
in the state space. In particular, the new values θi are evaluated before changing the
value of any variable x j. The effect of x′1 = θ1, . . . ,x′n = θn & χ is an ongoing con-
tinuous evolution respecting the differential equation system x′1 = θ1, . . . ,x′n = θn
that is restricted to remain within the evolution domain region χ . The evolution is
allowed to stop at any point in χ . It is, however, required to stop before it leaves χ .
For unconstrained evolutions, we write x′ = θ in place of x′ = θ & true. For struc-
tural reasons, we expect both difference equations (discrete jump sets) and differ-
ential equations to be given in explicit form, i.e., with the affected variable on the
left (we allow more general implicit forms in Chap. 3). The dL semantics allows
arbitrary differential equations. To retain feasible arithmetic, some of our calculus
rules in this chapter assume that, as in [8, 125, 217, 156], the differential equa-
tions have first-order definable flows or approximations. We assume that stand-
ard techniques are used to determine corresponding solutions or approximations,
e.g., [15, 189, 238, 227, 297]. We consider verification techniques for more ad-
vanced differential equations in Chap. 3.

The test action or state check ?χ is used to define conditions. Its semantics is that
of a no-op if the formula χ is true in the current state; otherwise, like abort, it allows
no transitions. That is, if the test succeeds because formula χ holds in the current
state, then the state does not change, and the system execution continues normally.
If the test fails because formula χ does not hold in the current state, then the system
execution cannot even continue. Thus, the effect of a test action is similar to an as-
sert statement in Java. Note that, according to Definition 2.3, we have only allowed
first-order formulas as tests. Instead, we could actually allow rich tests, i.e., arbitrary
dL formulas χ with nested modalities as tests ?χ inside hybrid programs (and even
in evolution domains χ of differential equations). The calculus and our meta-results,
including soundness and relative completeness, directly carry over to this rich test
version of dL . To simplify the presentation, however, we refrain from allowing

2.2 Syntax 43

arbitrary dL formulas as tests, because that requires simultaneous inductive hand-
ling of hybrid programs and dL formulas in syntax, semantics, and completeness
proofs, because dL formulas would then be allowed to occur in hybrid programs,
and vice versa.

The nondeterministic choice α ∪β , sequential composition α;β , and nondeter-
ministic repetition α∗ of programs are as in regular expressions but generalised to
a semantics in hybrid systems. Choices α ∪β are used to express behavioural al-
ternatives between the transitions of α and β . That is, the hybrid program α ∪β

can choose nondeterministically to follow the transitions of the hybrid program α ,
or, instead, to follow the transitions of the hybrid program β . The sequential com-
position α;β says that the hybrid program β starts executing after α has finished
(β never starts if α does not terminate). In α;β , the transitions of α take effect
first, until α terminates (if it does), and then β continues. Observe that, like repe-
titions, continuous evolutions within α can take more or less time, which causes
uncountable nondeterminism. This nondeterminism is inherent in hybrid systems,
because they can operate in so many different ways, and as such reflected in hy-
brid programs. Repetition α∗ is used to express that the hybrid process α repeats
any number of times, including zero times. When following α∗, the transitions of
hybrid program α can be repeated over and over again, any nondeterministic num-
ber of times (≥0). Hybrid programs form a regular-expression-style Kleene algebra
with tests [182].

Example 2.4 (Simplistic train). The differential equation z′ = v,v′ = a expresses
continuous movement of position z with velocity v and acceleration a. A very simple
(in fact much too simplistic) train controller could be the following hybrid program:

((a :=−b)∪ (?v < 8;a :=A)); z′ = v,v′ = a.

By a nondeterministic choice (∪), the system either chooses to set the acceleration
a to the braking force −b by executing a :=−b, or the system tries to pass the test
?v < 8 instead. If the system tries the second choice and the latter test succeeds, i.e.,
the current velocity is indeed less than 8, then the system sets the acceleration a to
A. Otherwise, if it tries the second choice but the test fails, then nothing happens
as this execution is blocked and cannot continue. Afterwards (after executing the
first part of the sequential composition, which is the nondeterministic choice), the
system follows the second part of the sequential composition, which is the differen-
tial equation z′ = v,v′ = a with the previously chosen acceleration. The system then
follows this differential equation for a certain (unspecified) period of time.

This controller leaves open too many aspects to be useful, but already illustrates a
very simple hybrid program. One of the problems is that the controller can only take
a control action for choosing the acceleration a once, at the beginning of the system
evolution, and then follows the differential equation for an arbitrarily long time. But
the above controller can never react to situation changes and change its mind with
a different choice of a when necessary. To improve this issue, the following hybrid
program allows repetitive choices by the repetition operator ∗:

44 2 Differential Dynamic Logic dL(
((a :=−b)∪ (?v < 8;a :=A)); z′ = v,v′ = a

)∗
. (2.1)

Unlike the previous hybrid program, the hybrid program in (2.1) contains a repe-
tition, which can change the acceleration repeatedly over and over again after fol-
lowing the continuous evolution for a certain period of time. While already an im-
provement over the last controller, this hybrid program has shortcomings. For one
thing, the differential equation does not say when it stops. It has no evolution do-
main restriction and would thus be allowed to evolve as long or as short as it pleases.
This may be unsafe if the differential equation would continue indefinitely without
giving the controller for the acceleration a chance to react to situation changes.
Furthermore, a velocity of 8 may not be a safe choice for the switching condition
between acceleration and braking. We will see in Sect. 2.4 how a reasonable train
controller can be designed as a hybrid program from first principles and elaborate
on train control further in Chap. 7 in full detail. �

Definable Operations

The control flow operations of choice, sequential composition, and repetition in hy-
brid programs can be combined with ?χ to form all other control structures [149].
All classical discrete control structures can be defined in terms of the basic hybrid
program operators (it is easy to see that hybrid programs are Turing-complete). See
Table 2.2 for a selection of control structures and statements that are definable as
a hybrid program. For instance, (?χ;α)∗; ?¬χ corresponds to a while loop that re-

Table 2.2 Statements and control structures definable with hybrid programs

HP Notation Operation Effect
x :=∗ nondet. assignment assigns any real value to x

equivalently definable, see Chap. 3
if χ then α else β if-then-else executes HP α if χ holds, otherwise HP β

equivalent to (?χ;α)∪ (?¬χ;β)
if χ then α if-then executes HP α if χ holds, otherwise no effect

equivalent to (?χ;α)∪ (?¬χ)
while χ do α while loop repeats α if χ holds, only stops if ¬χ holds at end

equivalent to (?χ;α)∗; ?¬χ

repeat α until χ repeat until repeats HP α until χ holds at end (at least once)
equivalent to α;(?¬χ;α)∗; ?χ

skip do nothing has no effect and does not change the state space
equivalent to ?true

abort aborts execution blocks current execution and allows no transition
equivalent to ?false

peats α while χ holds and only stops when χ ceases to hold after α . Because the
∗-operator can repeat arbitrarily often, the subprogram (?χ;α)∗ can repeat α any
number of times, but a repetition can only be successful if the test ?χ succeeds.
Hence the repetitions have to stop, at the latest, when the test ?χ fails. Now the

2.2 Syntax 45

subprogram (?χ;α)∗ can repeat any number of times and is allowed to stop even if
the test ?χ is successful and the loop could be repeated again. But the subsequent
sequential composition with the test ?¬χ makes sure that (?χ;α)∗ can only stop re-
peating when χ actually ceases to hold. Overall, the hybrid program (?χ;α)∗; ?¬χ

executes α if χ holds and repeats α again exactly as often as χ still holds after
executing α .

If-then-else can be defined with nondeterministic choices and tests. The corres-
ponding hybrid program (?χ;α)∪ (?¬χ;β) in Table 2.2 makes a nondeterministic
choice between ?χ;α and ?¬χ;β . While this choice is nondeterministic, at any state
only one of the subsequent tests in the two cases can succeed, because they are com-
plementary. Consequently, hybrid program α will be executed if and only if the test
?χ succeeds because χ is true at the current state. Likewise, hybrid program β will
be executed if and only if the dual test ?¬χ succeeds because ¬χ is true, i.e., χ

is false at the current state. The nondeterministic assignment x :=∗ that assigns an
arbitrary real number to state variable x is definable also. While it is possible define
nondeterministic assignments in hybrid programs already, we will come back to this
in Chap. 3, where the definition is easier to see.

Example 2.5 (Parametric bouncing ball). As a classical example from the hybrid
systems literature [110], consider the bouncing ball. We will describe the boun-
cing ball as a hybrid program, using the definable hybrid program operations from
Table 2.2. Figure 2.2 depicts a hybrid automaton, an illustration of the bouncing ball
dynamics, and a representation of the system as a hybrid program.

ball ≡
(

h′ = v,v′ =−g, t ′ = 1&h≥ 0;
if (h = 0 ∧ t > 0) then

c := ∗; ?(0≤ c < 1); // extra
v :=−cv; t := 0

fi
)∗

Fig. 2.2 Parametric bouncing ball

The bouncing ball is let loose and falls from height h, but bounces back from
the ground (which corresponds to height h = 0) after an elastic deformation. The
current speed of the ball is denoted by v, and t is a clock measuring the falling
time. The bouncing ball follows the continuous dynamics of physical movement
by gravity. The ball is affected by gravity of force g, so its height follows the dif-
ferential equation h′′ =−g. This second-order differential equation is equivalent to
the first-order differential equation system h′ = v,v′ =−g, with an explicit velo-
city v. Simultaneously, clock t evolves according to the differential equation t ′ = 1.
Finally, the ball always stays above the ground and cannot fall through, thus its evol-
ution domain is restricted to h≥ 0. Altogether, this gives the continuous evolution
h′ = v,v′ =−g, t ′ = 1&h≥ 0 in the beginning of the hybrid program in Fig. 2.2.

At the ground (which is at height h = 0), the ball bounces back after losing energy
in an elastic deformation according to a damping factor 0≤ c < 1. That is, if the ball

h′= v
v′=−g
t ′= 1
h≥ 0v:=−cv

t := 0

h = 0∧ t > 0

46 2 Differential Dynamic Logic dL

is on the ground (h = 0) and it actually fell (so time has passed, t > 0), then the ball
changes its direction and bounces back into the air by reflecting its current velocity v
by a discrete jump v :=−cv and resetting the falling time by t :=0.

Now for illustration purposes we have added an extra twist to the hybrid program
in Fig. 2.2 that is not in the hybrid automaton. The automaton still enforces infinite
bouncing so that the ball can never stop (unless c = 0, where it stops immediately).
In reality, the ball bounces a couple of times and can then come to a standstill when
its remaining kinetic energy is insufficient. To model this phenomenon without the
need to have a precise physical model for all physical forces and frictions, we allow
for the damping factor c to change at each bounce. Line 4 of the hybrid program
in Fig. 2.2 represents a corresponding uncountably infinite nondeterministic choice
for c as a nondeterministic assignment. The subsequent test ?(0≤ c < 1) restricts
the arbitrary choices for c to choices in the half-open interval [0,1) and discards all
other choices.

For comparison, Fig. 2.3 shows an equivalent hybrid program for the same boun-
cing, now with all abbreviations for extended statements resolved according to
Table 2.2. Note that it is fairly easy to see that height h and clock t always stay
nonnegative if they start nonnegative. For that reason, the last test ?(h 6= 0∨ t ≤ 0)
in Fig. 2.3 could even be replaced equivalently by ?(h > 0∨ t = 0). �

Fig. 2.3 Parametric bouncing
ball (with abbreviations re-
solved)

ball ≡
(

h′ = v,v′ =−g, t ′ = 1&h≥ 0;(
?(h = 0 ∧ t > 0);

(c′ = 1∪ c′ =−1);
?(0≤ c < 1);
v :=−cv; t := 0)

∪ ?(h 6= 0 ∨ t ≤ 0))∗

Classification of Hybrid Programs

Hybrid programs are designed as a minimal extension of conventional discrete pro-
grams. They characterise hybrid systems succinctly by adding continuous evolution
along differential equations as the only additional primitive operation to a regular
basis of conventional discrete programs. To yield hybrid systems, their operations
are interpreted over the domain of real numbers. This gives rise to an elegant syn-
tactic hierarchy of discrete, continuous, and hybrid systems. Hybrid automata [156]
can be represented as hybrid programs using a straightforward generalisation of
standard program encodings of automata; see App. C for formal details. The frag-
ment of hybrid programs without differential equations corresponds to conventional
discrete programs generalised over the reals or to discrete-time dynamical sys-
tems [56]. The fragment without discrete jumps corresponds to switched continuous
systems [56, 58], whereas the fragment of differential equations gives purely con-

2.2 Syntax 47

Table 2.3 Operators and (informal) meaning in differential dynamic logic (dL)

dL Notation Operator Meaning
p(θ1, . . . ,θn) atomic formula true iff predicate p holds for (θ1, . . . ,θn)
¬φ negation / not true if φ is false
φ ∧ψ conjunction / and true if both φ and ψ are true
φ ∨ψ disjunction / or true if φ is true or if ψ is true
φ → ψ implication / implies true if φ is false or ψ is true
φ ↔ ψ bi-implication / equivalent true if φ and ψ are both true or both false
∀xφ universal quantifier / for all true if φ is true for all values of variable x
∃xφ existential quantifier / exists true if φ is true for some values of variable x
[α]φ [·] modality / box true if φ is true after all runs of HP α

〈α〉φ 〈·〉 modality / diamond true if φ is true after at least one run of HP α

tinuous dynamical systems [279]. Only the composition of mixed discrete jumps
and continuous evolutions gives rise to truly hybrid behaviour.

2.2.3 Formulas of Differential Dynamic Logic

The formulas of the differential dynamic logic dL are defined as in first-order dy-
namic logic [253, 148, 149] but with real arithmetic as a semantic domain and with
hybrid programs as system models. That is, they are built using propositional con-
nectives ¬,∧,∨,→,↔ and quantifiers ∀,∃ over the reals (first-order part). In addi-
tion, if φ is a dL formula and α a hybrid program, then [α]φ ,〈α〉φ are formulas
(dynamic part).

Definition 2.4 (dL formulas). The set Fml(Σ ,V) of formulas of dL , with typical
elements φ ,ψ , is the smallest set such that

1. If p is a predicate symbol of arity n≥ 0 and θi ∈ Trm(Σ ,V) for 1≤ i≤ n, then
p(θ1, . . . ,θn) ∈ Fml(Σ ,V).

2. If φ ,ψ ∈ Fml(Σ ,V), then ¬φ ,(φ ∧ψ),(φ ∨ψ),(φ → ψ) ∈ Fml(Σ ,V).
3. If φ ∈ Fml(Σ ,V) and x ∈V , then ∀xφ ,∃xφ ∈ Fml(Σ ,V).
4. If φ ∈ Fml(Σ ,V) and α ∈ HP(Σ ,V), then [α]φ ,〈α〉φ ∈ Fml(Σ ,V).

For reference, the logical operators of differential dynamic logic are summarised
in Table 2.3. More succinctly, we also say that the formulas of dL are defined by
the following grammar (where φ ,ψ are dL formulas, θi are terms, p a predicate
symbol of arity n, x ∈V is a logical variable, and α is a hybrid program):

φ ,ψ ::= p(θ1, . . . ,θn) | ¬φ | φ ∧ψ | φ ∨ψ | φ → ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ .

We consider the bi-implication or equivalence φ ↔ ψ as an abbreviation for
(φ → ψ)∧ (ψ → φ) to simplify the calculus. We often leave out superfluous brack-
ets and use binding priorities instead in order to improve readability. Quantifiers

48 2 Differential Dynamic Logic dL

and modalities bind strongly, i.e., their scope only extends to the formula immedi-
ately after. Unary operators (negation ¬), quantifiers (∀,∃), and modalities ([α],〈α〉)
bind stronger than binary operators. Further, conjunction ∧ and disjunction ∨ bind
stronger than implication→ and bi-implication↔. Thus

φ0∧〈α〉φ1∧∀xφ2∧φ3→¬φ4∨ [α]φ5∨φ6

is taken to mean(
φ0∧ (〈α〉φ1)∧ (∀xφ2)∧φ3

)
→
(
(¬φ4)∨ ([α]φ5)∨φ6

)
and does not mean

φ0∧
(
〈α〉
(
φ1∧∀x(φ2∧φ3)

)
→¬

(
φ4∨ [α](φ5∨φ6)

))
.

Example 2.6 (Train control). When train denotes the hybrid program in Fig. 2.1 or
the hybrid program in Example 2.4, or, in fact, any other hybrid program model for a
train system, then the following dL formula expresses that this train is able (〈train〉)
to enter region z≥ m, thereby leaving region z < m when it starts in region z < m
with nonnegative initial velocity v≥ 0:

v≥ 0∧ z < m→ 〈train〉z≥ m. (2.2)

Dually, the following dL formula expresses that the train will always ([train]) stay
inside the region z < m when it starts inside it with an initial nonnegative velocity
less than 5:

v≥ 0∧ v < 5∧ z < m→ [train]z < m.

For most train models train, the latter safety property will only be true for additional
constraints on the initial state and on the internal parameter choices, including, e.g.,
braking forces, reaction times, and start braking points. �

Example 2.7 (Parametric bouncing ball). Let ball denote the hybrid program for
the bouncing ball from Example 2.5. The ball loses energy at every bounce, thus
the ball never bounces higher than the initial height. This can be expressed by the
property 0≤ h≤ H, where H denotes the initial energy level (which corresponds to
the initial height if v = 0 initially). Then, for instance, the following dL formula
expresses that (under a list of assumptions on the free variables h,v, t and H,g,c) the
ball always stays in the region 0≤ h≤ H:

(v2 ≤ 2g(H−h)∧h≥ 0∧g > 0∧H ≥ 0∧1 > c≥ 0)→ [ball](0≤ h≤ H). (2.3)

This dL formula follows the pattern of Hoare triples [161]. It expresses that the
bouncing ball, when started in an initial state satisfying the precondition on the left
of the implication (→), always respects the postcondition 0≤ h≤ H of the dynamic
modality [ball], i.e., all runs of the bouncing ball stay in the region 0≤ h≤ H. �

2.3 Semantics 49

A dL formulas of the form ψ → [α]φ corresponds to Hoare triples [161], gen-
eralised for hybrid systems. They occur quite frequently, because they specify that
system α , when starting in a state satisfying the precondition ψ , always respects the
postcondition φ . That is, when started in a state satisfying ψ , all states reachable
by α satisfy φ . There are several other relevant shapes of dL formulas in practical
systems verification; see Part III.

Note that, according to Definition 2.4, hybrid programs are not additional ex-
ternal objects but fully internalised [48] as first-class citizens within the logic dL
itself, and the logic is closed. That is, modalities can be combined propositionally,
by quantifiers, or nested. For instance, [α]〈β 〉x≤ c says that, whatever hybrid pro-
gram α is doing, hybrid program β can react in some way to reach a controlled
state where x is less than some critical value c. That is, for all α actions, there is a
β (re)action such that x≤ c holds. Dually, 〈β 〉[α]x≤ c expresses that hybrid pro-
gram β can stabilise x≤ c, i.e., behave in such a way that x≤ c remains true no
matter how hybrid program α reacts. That is, there is a β action such that all α

actions maintain x≤ c. Accordingly, ∃p [α]x≤ c says that there is a choice of para-
meter p such that α remains in x≤ c. Nesting modalities and quantifiers in this way
can be quite useful for describing interactions of a hybrid program α with an en-
vironment β , or for describing the impact of parameter choices on properties of the
system behaviour.

During our analysis, we assume differential equations and discrete transitions
to be well-defined. In particular, we assume that all divisions p/q are guarded by
conditions that ensure q 6= 0 as, otherwise, the system behaviour is not well-defined
due to an undefined value at a singularity. It is simple but tedious to augment the
semantics and the calculus with corresponding side conditions to show that this is
respected. For instance, we assume that x := p/q is guarded by ?q 6= 0 and that con-
tinuous evolutions are restricted such that the differential equations are well-defined
as x′ = p/q&q 6= 0. Also see our joint work with Beckert [37] for techniques of
how such exceptional behaviour can be handled by program transformation while
avoiding partial valuations of undefinedness in the semantics. In logical formulas,
partiality can be avoided altogether by writing p = c ·q∧q 6= 0 rather than p/q = c,
and writing (p > c ·q∧q > 0)∨ (p < c ·q∧q < 0) rather than p/q > c.

2.3 Semantics of Differential Dynamic Logic

We define the semantics of dL as a possible world Kripke semantics [185] with
worlds representing the possible system states and with reachability along the hy-
brid transitions of the system representing accessibility relations between worlds.
The interpretations of dL consist of states (worlds) that are essentially first-order
structures over the reals. In particular, real values are assigned to state variables,
possibly different values in each state. A potential behaviour of a hybrid system
corresponds to a succession of states that contain the observable values of system
variables during its hybrid evolution.

50 2 Differential Dynamic Logic dL

2.3.1 Valuation of Terms

Symbols in the logic dL come from three different syntactic categories that we
decided to distinguish in Sect. 2.2.1:

1. rigid symbols in Σ that cannot change their value, e.g., 0,1,+, ·;
2. flexible symbols in Σ , which are the state variables, whose value can change

depending on the current state of the system;
3. logical variables in V that cannot change their value over time by running hybrid

programs, but which can be quantified over universally or existentially.

All of those symbols need to be interpreted to give meaning to terms in which they
occur. We associate values with rigid symbols by what we call an interpretation I,
associate values with flexible symbols by a state ν , and associate values with lo-
gical variables by an assignment η . Recall that there is some leeway in declaring
symbols as either rigid or flexible symbols or as logical variables. The semantics is
unambiguous for each choice, though.

An interpretation I assigns functions and relations over the reals to the respect-
ive rigid symbols in Σ . The function and predicate symbols of real arithmetic are
interpreted as usual by I. Especially, the interpretation I(+) is addition and I(·) is
multiplication of real numbers. A state is a map ν :Σfl→ R; the set of all states is
denoted by Sta(Σ). Here, Σfl denotes the set of (flexible) state variables in Σ (they
have arity 0, thus take no arguments). Finally, an assignment for logical variables is
a map η :V → R. It contains the values for logical variables, which are not subject
to change by modalities but only by quantification. Observe that flexible symbols
(which represent state variables) are allowed to assume different interpretations in
different states. Logical variable symbols, however, are rigid in the sense that their
value is determined by η alone and does not depend on the state ν .

The valuation valI,η(ν , ·) of terms is defined as usual [123, 149] with an extra
distinction of rigid and flexible functions [37]. It is defined inductively by recursion
on the structure of the term, based on the interpretation that assignment η assigns
to logical variables, that interpretation I assigns to rigid function symbols, and that
state ν assigns to flexible state variables. The semantics of terms is compositional
and denotational [277], that is, the semantics of a complex term is defined as a
combination of the semantics of its subterms.

Definition 2.5 (Valuation of terms). The valuation of terms with respect to inter-
pretation I, assignment η , and state ν is defined by

1. valI,η(ν ,x) = η(x) if x ∈V is a logical variable.
2. valI,η(ν ,a) = ν(a) if a ∈ Σ is a state variable (flexible function symbol of ar-

ity 0).
3. valI,η(ν , f (θ1, . . . ,θn)) = I(f)

(
valI,η(ν ,θ1), . . . ,valI,η(ν ,θn)

)
when f ∈ Σ is a

rigid function symbol of arity n≥ 0.

Example 2.8. Let interpretation I interpret the constant function symbol b ∈ Σ as
I(b) = 2.14, and interpret the unary function symbol c ∈ Σ as the cubic function

2.3 Semantics 51

d 7→ d3, i.e.,
(
I(c)

)
(d) = d3. Let the assignment η interpret the logical variable

X ∈V as η(X) = 4.2. Finally let the state ν interpret the state variables x,y,z ∈ Σ

as ν(x) = 3, ν(y) =−5.01, ν(z) = 0. Throughout this book we assume that the in-
terpretation of 0,1,+,−, · always is as usual in real arithmetic, that is:

I(0) = 0
I(1) = 1(

I(+)
)
(d,e) = d + e (addition)(

I(−)
)
(d,e) = d− e (subtraction)(

I(·)
)
(d,e) = d · e (multiplication)

With this we can valuate terms recursively with respect to I,η ,ν as follows:

valI,η(ν ,x+ y) = valI,η(ν ,x)+ valI,η(ν ,y) = ν(x)+ν(y)

= 3+(−5.01) =−2.01,
valI,η(ν ,y+2 ·X) = valI,η(ν ,y)+ valI,η(ν ,2) · valI,η(ν ,X)

= ν(y)+ I(2) ·η(X) =−5.01+2∗4.2 = 3.39,
valI,η(ν ,X +b · (x+ y ·X)) = η(X)+ I(b) · (ν(x)+ν(z) ·η(X))

= 4.2+2.14 · (3+0 ·4.2) = 10.62,
valI,η(ν ,c(x+X)− x) = valI,η(ν ,c(x+X))− valI,η(ν ,x)

= I(c)
(
valI,η(ν ,x+X)

)
−ν(x)

= I(c)
(
ν(x)+η(X)

)
− ν(x)

= (3+4.2)3−3 = 370.248.

Note here, that the decision about which symbols we consider as rigid function
symbols, which ones we consider as flexible function symbols (state variables), and
which ones we consider as logical variables is somewhat arbitrary in this example.
This decision only becomes relevant when we add quantifiers (for only logical vari-
ables can be quantified over) or hybrid programs (for only state variables can be
assigned to in hybrid programs). Overall, the syntactic category of symbols is not
crucial, as there are often many equivalent ways to assign symbols to syntactic cat-
egories. But if we fix a choice of symbols, the semantics becomes less subtle, so we
assume a choice has been made for every formula. �

2.3.2 Valuation of Formulas

The valuation valI,η(ν , ·) of formulas is defined as usual for first-order modal logic
[123, 149] with a distinction of rigid and flexible functions [37]. Modalities para-
metrised by a hybrid program α follow the accessibility relation spanned by the

52 2 Differential Dynamic Logic dL

respective hybrid state transition relation ρI,η(α), which is simultaneously induct-
ively defined in Definition 2.7.

The valuation of formulas is defined inductively by recursion on the structure
of formulas, based on the interpretation of the terms occurring in it. The semantics
of formulas is compositional and denotational, that is, the semantics of a complex
formula is defined as a simple function of the semantics of its subformulas. We
will use η [x 7→ d] to denote the modification of an assignment η that agrees with η

except for the interpretation of the logical variable x ∈V , which is assigned d ∈ R
in η [x 7→ d].

Definition 2.6 (Valuation of dL formulas). The valuation valI,η(ν , ·) of formulas
with respect to interpretation I, assignment η , and state ν is defined as

1. valI,η(ν , p(θ1, . . . ,θn)) = I(p)
(
valI,η(ν ,θ1), . . . ,valI,η(ν ,θn)

)
.

2. valI,η(ν ,φ ∧ψ) = true iff valI,η(ν ,φ) = true and valI,η(ν ,ψ) = true.
3. valI,η(ν ,φ ∨ψ) = true iff valI,η(ν ,φ) = true or valI,η(ν ,ψ) = true.
4. valI,η(ν ,¬φ) = true iff valI,η(ν ,φ) 6= true.
5. valI,η(ν ,φ → ψ) = true iff valI,η(ν ,φ) 6= true or valI,η(ν ,ψ) = true.
6. valI,η(ν ,∀xφ) = true iff valI,η [x 7→d](ν ,φ) = true for all d ∈ R.
7. valI,η(ν ,∃xφ) = true iff valI,η [x 7→d](ν ,φ) = true for some d ∈ R.
8. valI,η(ν , [α]φ) = true iff valI,η(ω,φ) = true for all states ω for which the trans-

ition relation satisfies (ν ,ω) ∈ ρI,η(α).
9. valI,η(ν ,〈α〉φ) = true iff valI,η(ω,φ) = true for some state ω for which the

transition relation satisfies (ν ,ω) ∈ ρI,η(α).

Following the usual notation, we also write I,η ,ν |= φ iff valI,η(ν ,φ) = true. We
then say that φ is satisfied in I,η ,ν or holds in I,η ,ν . We also say that I,η ,ν is a
model of φ . Dually, we write I,η ,ν 6|= φ iff valI,η(ν ,φ) 6= true. If φ is satisfied for
at least one I,η ,ν , then φ is called satisfiable. Occasionally, we write just � φ iff
I,η ,ν |= φ holds for all I,η ,ν . Formula φ is then called valid, i.e., true in all I,η ,ν .

The semantics of modal formulas [α]φ and 〈α〉φ in dL is illustrated in Fig. 2.4,
showing how the truth of φ at (all or some) states ωi reachable by α relates to the
truth of [α]φ or 〈α〉φ at state ν .

Fig. 2.4 Transition semantics of modalities in dL formulas

ν

ω1

ω2

ωn

[α]φ

φ

ρI,η (α)
φ

φ

ν

ω1

ω2

ωn

〈α〉φ
ρI,η (α)

φ

2.3 Semantics 53

Example 2.9. Consider the following formula that we want to evaluate:

v > 0→ v · v≤ 2b · (m− z)∨b = 0. (2.4)

First we have to declare which syntactic category the symbols are meant to come
from. Suppose z,v ∈ Σ are state variables (flexible function symbols of arity 0),
because they represent position and velocity of the train, which are intended to be
able to change over time from state to state. Further suppose that m,b ∈ Σ are rigid
function symbols, because, for the moment, movement authority and braking force
are not allowed to change over time. Note that we could just as well have chosen all
symbols z,v,m,b to be flexible state variables. The only notable difference is that if b
is a flexible symbol, we would have to prove that a particular hybrid program never
changes the value of b to know that it denotes the same value in every part of the
program. Otherwise, if b is a rigid symbol, we already know that it cannot possibly
change its value by running a hybrid program, because b then is a constant, and
only flexible symbols are syntactically allowed to be assigned to or have differential
equations in Definition 2.3. While it is certainly not crucial to make this distinction,
it can make some things easier to see syntactically.

Now let interpretation I interpret rigid symbol m ∈ Σ as I(m) = 20 and inter-
pret b ∈ Σ as I(b) = 2.2. Let state ω interpret state variables v,z ∈ Σ as ω(v) = 10,
ω(z) = 0. In formula (2.4), suppose we do not have any free logical variables, so
that the assignment η of logical variables does not matter. Then we can evaluate
formula (2.4) with respect to I,η ,ω:

valI,η(ω,v > 0→ v · v≤ 2b · (m− z)∨b = 0) = true iff
valI,η(ω,v > 0) 6= true, or
valI,η(ω,v · v≤ 2b · (m− z)) = true, or
valI,η(ω,b = 0) = true.

Let us evaluate the terms to determine if the subformulas are true or not:

valI,η(ω,v > 0) = (valI,η(ω,v)
?
> valI,η(ω,0)) = (ω(v)

?
> I(0))

= (10
?
> 0) = true,

valI,η(ω,v · v≤ 2b · (m− z))(valI,η(ω,v · v)
?
≤ valI,η(ω,2b · (m− z)))

=
(
ω(v) ·ω(v)

?
≤ 2I(b) · (I(m)−ω(z))

)
=
(
10 ·10

?
≤ 2 ·2.2 · (20−0)

)
= (100

?
≤ 88) = false,

valI,η(ω,b = 0) = (I(b) ?
= 0) = (2.2 ?

= 0) = false.

Consequently the formula (2.4) evaluates to false. For a different state ν with slower
speed ν(v) = 8 and the same position ν(z) = 0, we instead evaluate (2.4) to true:

54 2 Differential Dynamic Logic dL

valI,η(ν ,v > 0→ v · v≤ 2b · (m− z)∨b = 0) = true.

Also for a different interpretation J with J(m) = 20 and another braking force
J(b) = 4, but the same original state ω , we evaluate (2.4) to true:

valJ,η(ω,v > 0→ v · v≤ 2b · (m− z)∨b = 0) = true.

So we see that the truth-value of formula (2.4) depends on I,η ,ω . For some choices
of I,η ,ω , it evaluates to true, for others it evaluates to false. Thus, formula (2.4) is
not valid, because

I,η ,ω |= v > 0→ v · v≤ 2b · (m− z)∨b = 0

does not hold for all I,η ,ω . Still, the formula (2.4) is at least satisfiable, because it
holds for some I,η ,ω . �

Example 2.10. Consider the assignment η with η(Z) =−2 and the state ν with
ν(x) =−4. Then we can evaluate

valI,η(ν ,x >−5∧∀y(y2 +Z > x)) = true

because ν(x)>−5 and all squares are greater than or equal zero, so that for all
d ∈ R:

valI,η [y7→d](ν ,y
2 +Z > x) =

(
(η [y 7→ d](y))2 +η [y 7→ d](Z)

?
> ν(x)

=
(
d2 +(−2)

?
>−4

)
= true.

�

Note, that we have not yet explained how to evaluate formulas with modalities like
x > 0→ [ctrl ;drive∗]z≤ m in any I,η ,ν , because we first have to define the trans-
ition semantics ρI,η(α) of hybrid programs, which we will do next.

2.3.3 Transition Semantics of Hybrid Programs

Now we define the transition semantics, ρI,η(α), of hybrid program α . The se-
mantics of a hybrid program is captured by its hybrid state transition relation. For
discrete jumps this transition relation holds for pairs of states that respect the dis-
crete jump set. For continuous evolutions, the transition relation holds for pairs of
states that can be interconnected by a continuous flow respecting the differential
equations and evolution domain restriction throughout the evolution.

The transition semantics of hybrid programs is defined by induction based on
the structure of the programs. The semantics of hybrid programs is compositional,
that is, the semantics of a complex program is defined as a simple function of the

2.3 Semantics 55

transition semantics of its parts. We will use ν [x 7→ d] to denote the modification of
a state ν that agrees with ν except for the interpretation of the symbol x ∈ Σfl, which
is changed to d ∈ R in ν [x 7→ d].

Definition 2.7 (Transition semantics of hybrid programs). The valuation of a hy-
brid program α , denoted by ρI,η(α), is a transition relation on states. It specifies
which state ω is reachable from a state ν by operations of the hybrid program α and
is defined as follows

1. (ν ,ω) ∈ ρI,η(x1 :=θ1, . . . ,xn :=θn) iff the state ω equals the state obtained by
semantic modification of state ν as ν [x1 7→ valI,η(ν ,θ1)] . . . [xn 7→ valI,η(ν ,θn)].
Particularly, the values of other variables z 6∈ {x1, . . . ,xn} remain constant, i.e.,
valI,η(ω,z) = valI,η(ν ,z), and the xi receive their new values simultaneously,
i.e., valI,η(ω,xi) = valI,η(ν ,θi).

2. (ν ,ω) ∈ ρI,η(x′1 = θ1, . . . ,x′n = θn & χ) iff there is a flow f of some duration
r ≥ 0 from state ν to state ω along x′1 = θ1, . . . ,x′n = θn & χ , i.e., a function
f : [0,r]→ Sta(Σ) such that:

• f (0) = ν , f (r) = ω;
• f respects the differential equations: For each variable xi, the valuation

valI,η(f (ζ),xi) = f (ζ)(xi) of xi at state f (ζ) is continuous in ζ on [0,r]
and has a derivative of value valI,η(f (ζ),θi) at each time ζ ∈ (0,r);

• the value of other variables z 6∈ {x1, . . . ,xn} remains constant, that is, we have
valI,η(f (ζ),z) = valI,η(ν ,z) for all ζ ∈ [0,r];

• and f respects the invariant: valI,η(f (ζ),χ) = true for each ζ ∈ [0,r].

3. ρI,η(?χ) = {(ν ,ν) : valI,η(ν ,χ) = true}
4. ρI,η(α ∪β) = ρI,η(α)∪ρI,η(β)
5. ρI,η(α;β) = {(ν ,ω) : (ν ,µ) ∈ ρI,η(α),(µ,ω) ∈ ρI,η(β) for a state µ}
6. (ν ,ω) ∈ ρI,η(α

∗) iff there is an n ∈ N and states ν = ν0, . . . ,νn = ω such that
(νi,νi+1) ∈ ρI,η(α) for all 0≤ i < n.

For graphical illustrations of the transition semantics of hybrid programs and ex-
ample dynamics, see Fig. 2.5. On the left of Fig. 2.5, we illustrate the generic shape
of the transition structure ρI,η(α) for transitions along various cases of hybrid pro-
grams α from state ν to state ω . On the right of Fig. 2.5, we show examples of how
the value of a variable x may evolve over time t when following the dynamics of
the respective hybrid program α . The shape of the transition structure of a discrete
jump x :=θ (row 1) and of a differential equation x′ = θ & χ (row 2) is an element-
ary one-step transition from ν to ω . For discrete jumps, however, the transition is
an instant jump in the state space (row 1 on the right), while the transition for a
differential equation is a continuous evolution in the state space (row 2 on the right).
Note that the modifications of a discrete jump set x1 :=θ1, . . ,xn :=θn are executed
simultaneously in Definition 2.7 in the sense that all terms θi are evaluated in the
initial state ν . For simplicity, we assume the xi to be different, and refer to previous
work [37] for a compatible semantics and calculus handling concurrent modifica-
tions of the same xi.

56 2 Differential Dynamic Logic dL

Fig. 2.5 Transition semantics (left) and example dynamics (right) of hybrid programs

For test ?χ (row 3), the only possible transitions in the transition structure are
self-loops that do not change the state ν , but even those transitions are only pos-
sible if the test succeeds, i.e., I,η ,ν |= χ; see Fig. 2.5. The transition structure for
choice α ∪β (row 4) is a choice between any transition of α and any transition of β .
Thus, in the example on the right of row 4, the system can choose between either
an evolution like the hybrid evolution (consisting, in this example, of 3 continuous
flows and 2 intermediate jumps) leading to ω1 or the squiggly evolution from ν

to ω2. The transition structure for sequential composition α;β (row 5) is that of any
α transition to an intermediate state µ , followed by any β transition to ω . In the

ν ω
x :=θ

t

x

0

ν

ω if ω(x) = valI,η (ν ,θ)
and ω(z) = ν(z) for z �= x

ν ω
x′ = θ & χ

t

x

χ
ω

ν

f (t)

0 r
x′ = θ & χ

ν

?χ

t

x

0

ν no change if I,η ,ν |= χ
otherwise no transition

ν

ω1

ω2

α

β

α ∪β

t

x
ν ω1

ω2

ν μ ω

α;β

α β t

x

μ

ν ω

ν ν1 ν2 ω

α∗

α α α t

x
ν ω

2.3 Semantics 57

example evolution on the right of row 5, the system first follows a continuous evol-
ution (which would come from α in this example) and then a discrete jump (which
would come from β). The transition structure of a repetition α∗ (row 6) repeats any
number of α transitions to go from ν to ω via some number of intermediate states
νi. In the example on the right, the system follows a sequence of various continuous
evolutions and discrete jumps, giving truly hybrid behaviour.

For differential equations like x′ = θ , Definition 2.7 characterises transitions
along a continuous evolution respecting the differential equation; see Fig. 2.6a. A
continuous transition along x′ = θ is possible from state ν to state ω whenever there
is a continuous flow f of some duration r ≥ 0 connecting state ν with ω such that f
gives a solution of the differential equation x′ = θ . That is, its value is continu-
ous on the closed interval [0,r] and differentiable with the value of θ as derivative
on the open interval (0,r). Further, only variables subject to a differential equation
change during such a continuous transition. Similarly, the continuous transitions
of x′ = θ & χ with evolution domain χ are those where f always resides within χ

during the whole evolution; see Fig. 2.6b. The evolutions of x′ = θ & χ may still
stop at any point in time, but they are no longer allowed to leave χ and have to stop
at an arbitrary point in time before that happens; see Fig. 2.6c.

a.

t

x

ω

ν

f (t)

0 r
x′ = θ

b.

t

x

χ

ω

ν

f (t)

0 r
x′ = θ & χ

c.

t

x

χ
ω

ν

f (t)

0 r
x′ = θ & χ

Fig. 2.6 Continuous flow along differential equation x′ = θ over time t

For the semantics of differential equations, derivatives are well defined on the
open interval (0,r), because the set Sta(Σ) of states is isomorphic to some finite-
dimensional metric real vector space spanned by the variables of the differential
equations (derivatives are not defined on the closed interval [0,r] if r = 0). For the
purpose of a differential equation system, states are fully determined by an assign-
ment of a real value to each occurring variable, which are finitely many. Further-
more, the terms of dL are continuously differentiable on the open domain where
divisors are nonzero, because the zero set of divisors is closed. Hence, solutions in
dL are unique:

Lemma 2.1 (Uniqueness). Differential equations of dL have unique solutions,
i.e., for each differential equation system, each state ν , and each duration r ≥ 0,
there is at most one flow f : [0,r]→ Sta(Σ) satisfying the conditions of Case 2 of
Definition 2.7.

Proof. Let x′1 = θ1, . . . ,x′n = θn & χ be a differential equation system with evolution
domain χ . Using simple computations in the field of rational fractions, we can as-

58 2 Differential Dynamic Logic dL

sume the right-hand sides θi of the differential equations to be of the form pi/qi
for polynomials pi,qi. The set of points in real space where qi = 0 holds is closed.
As a finite union of closed sets, the set where q1 = 0∨·· ·∨qn = 0 holds is closed.
Hence, the valuations of the θi are continuously differentiable on the complement
of the latter set, which is open. Thus, as a consequence of Picard-Lindelöf’s the-
orem, a.k.a. the Cauchy-Lipschitz theorem (Theorem B.2), the solutions are unique
on each connected component of this open domain. Consequently, solutions are
unique when restricted to χ , which, by assumption, entails q1 6= 0∧·· ·∧qn 6= 0.

ut

Example 2.11 (Evaluation of formula and transition semantics). Recall the follow-
ing hybrid program from Example 2.4 that models an (overly) simplistic train con-
troller:

train ≡
(
((a :=−b)∪ (?v < 8;a :=A)); z′ = v,v′ = a

)∗ (2.1∗)

Recall the dL formula (2.2) from p. 48 that claims that this simplistic train model
can leave the movement authority region m:

v≥ 0∧ z < m→ 〈train〉z≥ m (2.2∗)

Let us evaluate this dL formula. Consider the interpretation I that interprets ri-
gid symbol m ∈ Σ as I(m) = 20 and interprets b ∈ Σ as I(b) = 2 and I(A) = 1. Let
state ν interpret state variables v,z ∈ Σ as ν(v) = 9, ν(z) = 0. Then the assump-
tions v≥ 0∧ z < m from the left-hand side of the implication of (2.2) are satis-
fied, so for formula (2.2) to be evaluated to true, the right-hand side of the im-
plication needs to evaluate to valI,η(ν ,〈train〉z≥ m) = true. To find out if this is
the case, the semantics of 〈train〉 in Definition 2.6 requires us to find a transition
(ν ,ω) ∈ ρI,η(train) of the hybrid program train from ν to some state ω , according
to Definition 2.7, after which valI,η(ω,z≥ m) holds true. Let us try to find such a
state ω by following the transition structure ρI,η(train) depicted in Fig. 2.7a. Es-
sentially, we obtain the transition structure in Fig. 2.7a by gluing the elementary
transition patterns from Fig. 2.5 together according to the structure of hybrid pro-
gram (2.1). We will find a path in the transition structure Fig. 2.7a from ν to ω along
the transitions illustrated in Fig. 2.7b, as we explain in the following.

The top-level statement in train is a repetition (corresponding to the outer loop in
Fig. 2.7a). We are allowed to execute the repetition twice as illustrated in the double
unrolling in Fig. 2.7b (we could also repeat it any other number of times, but two
times is sufficient). Thus, we hope to find an intermediate state σ2 such that both

(ν ,σ2) ∈ ρI,η(((a :=−b)∪ (?v < 8;a :=A)); z′ = v,v′ = a) (2.5)

and
(σ2,ω) ∈ ρI,η(((a :=−b)∪ (?v < 8;a :=A)); z′ = v,v′ = a) (2.6)

In the first transition (2.5), the top-level statement is a sequential composition (;)
with a nondeterministic choice (∪) as its first action. This nondeterministic choice
can choose either side, indicated as upper and lower choices on the left of Fig. 2.7b.

2.3 Semantics 59

Fig. 2.7 Transition structure and transition example in (overly) simple train control

If it chooses to try to run the second (lower) choice (?v < 8;a :=A), however, the hy-
brid program cannot run successfully, because the test ?v < 8 will fail and abort the
transition as a dead end, since this test evaluates to valI,η(ν ,v < 8) = false at state ν .
Hence, the hybrid program can only choose the first (upper) option (a :=−b) to a
state σ1 whose only difference with ν is that σ1(a) =−2 = valI,η(ν ,−b). For this
state, we have (ν ,σ1) ∈ ρI,η(a :=−b). Next, the differential equation will run from
σ1 as the second part of the sequential composition. Because σ1(a)< 0, it will brake
and the velocity v will decrease over time. If we just follow this differential equa-
tion long enough, say for one second, then the velocity at the end of it will be less
than 8. Indeed, after staying in the differential equation for one second, we reach a
state σ2 with (σ1,σ2) ∈ ρI,η(z′ = v,v′ = a) and σ2(v) = 7 and σ2(z) = 8, because
z(t) := −2

2 t2 +9t +0 and v(t) :=−2t +9 is the solution of the differential equation
when starting in state σ1 with the interpretation I and staying for t time units. Thus,
by the semantics of sequential composition and nondeterministic choice, Defini-
tion 2.7, we have that relation (2.5) holds for this state σ2, and all we need to do is
make sure that relation (2.6) holds as well.

For the transition (2.6), we can choose the second (lower) part of the non-
deterministic choice, because, unlike before, the test ?v < 8 succeeds in the new
state now: valI,η(σ2,v < 8) = true. Hence, we follow ?v < 8;a :=A to the state σ3
that is like σ2 except that we now have σ3(a) = I(A) = 1. From state σ3, we can
stay with and follow the subsequent differential equation as long as we want to,
because there is no evolution domain restriction on it. From this particular ini-
tial state σ3, the solution of the differential equation is z(t) := 1

2 t2 +7t +8 and
v(t) := 1t +7 when staying for t time units. If now we just follow the continu-
ous evolution along this differential equation for long enough, we will eventually
reach a state ω with (σ3,ω) ∈ ρI,η(z′ = v,v′ = a) such that valI,η(ω,z≥ m) = true.
In fact, the minimum time for this to happen is 1.544 time units, after which z has

a.

ν ∪

a :=−b

?v < 8 a :=
A

ω
z′′ = a

b.

ν

v = 9
z = 0 ν

∪
σ1

v = 9
z = 0
a =−2

a :=−b

?v < 8
fails and
cut off

σ1

a :=
A

σ2

v = 7
z = 8
a =−2

z′′ = a

stay 1s σ2

v = 7
z = 8
a =−2

∪
σ2

a :=−b

?v < 8

σ3

v = 7
z = 8
a = 1

a :=A

ω

v = 9
z = 24
a = 1

z′′ = a

stay 2s

60 2 Differential Dynamic Logic dL

a value greater or equal I(m) = 20. But any longer period of time will do too. For
instance, after 2 time units, we would have ω(z) = 24≥ 20 and ω(v) = 9. Thus we
have shown I,η ,ω |= z≥ m and

(ν ,ω) ∈ ρI,η(
(
((a :=−b)∪ (?v < 8;a :=A)); z′ = v,v′ = a

)∗
) ,

which implies that formula (2.2) holds for I,η ,ν .
So far, we have shown by semantic reasoning that formula (2.2) is true for I,η ,ν .

Yet formula (2.2) does not evaluate to true under all interpretations and states. For
a different interpretation J with J(m) = 1,000, braking force J(b) = 4, and (now
negative) acceleration J(A) =−2, but the same original state ν , we evaluate (2.4) to
false. The reason is that, no matter which choice the hybrid program uses, the train
always brakes, either with braking acceleration −J(b) =−4 or with negative accel-
eration J(A) =−2. Either way, the initial velocity ν(v) = 9 is not high enough to
reach I(m) = 1,000 from the initial position ν(z) = 0. Eventually, the train velocity
will be 0 and it cannot move forward anymore.

Another trivial example to show that formula (2.2) can evaluate to false for some
J,η ,ω is the interpretation J with J(m) = 20, J(b) = 2, and I(A) = 0 along with
the state ω that interprets ω(v) = 0, ω(z) = 0. Then, the train stands still in the
beginning and cannot move forward to I(m) = 20 at all. In particular, formula (2.2)
is not valid, because it does not evaluate to true for all I,η ,ν . �

What we notice in this example is that it is quite difficult and cumbersome to
reason about dL formulas and the dynamics of hybrid systems on the level of se-
mantics. Especially, we have only analysed particular behaviours starting at specific
initial values for all the variables. For validity, we are interested in analysing all
possible initial values, all numbers of repetitions, and arbitrary durations of staying
in the continuous evolution modes. To do this in an elegant and coherent way, we
introduce a proof calculus for dL in Sect. 2.5. After all, the semantics gives mean-
ing to formulas and captures the intended meaning and behaviour in real systems.
The semantics is intended to be intuitive to relate to the real world, not necessar-
ily for being easy to use in meta-reasoning. Supporting simple analysis and proofs
is the task of the proof calculus for dL that we develop in Sect. 2.5. Still, a good
semantics like the one we chose is compositional, which makes the proof calculus
simpler.

Further note that, for control-feedback loops α with a discrete controller reg-
ulating a continuous plant, transition structures involve all safety-critical states;
hence, ψ → [α]φ is a natural rendition of the safety property that φ holds at all
states reachable by α from initial states that satisfy ψ . Otherwise, dL can be aug-
mented with temporal operators to refer to intermediate states or nonterminating
traces. The corresponding calculus is compatible and reduces temporal properties to
nontemporal properties at intermediate states of the hybrid program, as we illustrate
in Chap. 4.

2.4 Collision Avoidance in Train Control 61

2.4 Collision Avoidance in Train Control

As a case study to illustrate how dL can be used for specifying and verifying hybrid
systems, we examine a scenario of cooperating traffic agents in the European Train
Control System (ETCS) [91]. The purpose of ETCS is to ensure that trains cannot
crash into other trains or pass open gates. Its secondary objective is to maximise
throughput and velocity without endangering safety. To achieve these objectives,
ETCS discards the static partitioning of the track into fixed segments of mutually
exclusive and physically separated access by trains, which has been used tradition-
ally. Instead, permission to move is granted dynamically by decentralised Radio
Block Controllers (RBCs) depending on the current track situation and movement
of other traffic agents within the region of responsibility of the RBC; see Fig. 2.8.

Fig. 2.8 ETCS train coordination protocol using dynamic movement authorities

Movement Authorities

This moving block principle is achieved by dynamically giving a movement author-
ity (MA) to each traffic agent, within which it is obliged to remain. Before a train
moves into a part of the track for which it does not have MA, it asks the RBC for an
MA extension (during the negotiation phase indicated neg in Fig. 2.8). Depending
on the MA that the RBC has currently given to other traffic agents or gates, the RBC
will grant this extension and the train can move on. If the requested MA extension
is still in the possession of another train that could possibly occupy the same part
of the track, or if the MA is still consumed by an open gate, the RBC will deny the
MA extension such that the requesting train needs to reduce speed or start braking in
order to safely remain within its old MA. This is the correction phase cor in Fig. 2.8,
which has to happen at the point SB (for start braking) at the latest. As the nego-
tiation process with the RBC can take time because of possibly unreliable wireless
communication and negotiation of the RBC with other agents, the train initiates ne-
gotiation well before reaching the end of its MA. This negotiation phase neg starts
at the start talking point ST at the latest. Only if the train has a very large distance

62 2 Differential Dynamic Logic dL

to the end of its MA (phase far in Fig. 2.8) is it safe to drive freely and not yet ne-
cessary to request MA extensions. When the rear end of a train has safely left a part
of a track, the train can give that part of its MA back to RBC control such that it can
be used by other traffic agents, including trains or gates.

In addition to increased flexibility and throughput of this moving block principle,
the underlying technical concept of movement authorities can be exploited for veri-
fying ETCS. It can be shown that a system of arbitrarily many trains, gates, and
RBCs, which communicate in the aforementioned manner, safely avoids collisions
if each traffic agent always resides within its MA under all circumstances, provided
that the RBCs grant MAs mutually exclusively so that the MAs dynamically par-
tition the track (Chap. 7). This way, verification of a system of unboundedly many
traffic agents can be reduced to an analysis of individual agents with respect to their
specific MA.

Train Control Model

In trains, speed supervision and automatic train protection are responsible for loc-
ally controlling the movement of a train such that it always respects its MA [90].
Depending on the current driving situation, the train controller determines a point
SB (for start braking) up to which driving is safe, and adjusts its acceleration a
in accordance with SB. Before SB, speed can be regulated freely (to keep the de-
sired speed and throughput of a track profile). Beyond SB (correcting phase cor in
Fig. 2.8), the train starts braking in order to make sure it remains within its MA if
the RBC does not grant an extension in time.

We assume that an MA has been granted up to some track position, which we
call m, and the train is located at position z, heading with current speed v towards m.
We represent the point SB as the safety distance s relative to the end m of the MA
(i.e., m− s = SB). In this situation, dL can analyse the following crucial safety
property of ETCS, which we state as a dL formula:

ψ → [(ctrl ;drive)∗]z≤ m (2.7)
where ctrl ≡ (?m− z≤ s;a :=−b)∪ (?m− z≥ s;a :=A),

drive ≡ τ :=0;(z′ = v,v′ = a,τ ′ = 1&v≥ 0∧ τ ≤ ε).

It expresses that a train always ([(ctrl ;drive)∗]) remains within its MA (z≤ m), as-
suming some constraint ψ for its parameters. The operational system model is a
control-feedback loop of the digital controller ctrl and the plant drive. In ctrl, the
train controller corrects its acceleration or brakes on the basis of the remaining dis-
tance (m− z). As a fail-safe recovery manoeuvre [90], it applies brakes with force b
if the remaining MA is less than or equal to s. Otherwise, speed is regulated freely.
The controller ctrl has a nondeterministic choice (∪) where the left option starts
with test ?m− z≤ s and the right option starts with test ?m− z≥ s. The controller
can try both options, but the left test will only succeed if m− z≤ s holds for the
current state, and the right test will only succeed if m− z≥ s holds. In particular, if

2.4 Collision Avoidance in Train Control 63

m− z < s holds the controller can only choose the left option, leading to braking by
the assignment a :=−b. If m− z > s holds the controller can only choose the right
option, leading to acceleration by the assignment a :=A. If both tests could succeed,
i.e., m− z = s, then either choice can be taken, nondeterministically. For simplicity,
we assume the train uses a fixed acceleration A before passing s and does not choose
any other accelerations than full braking b and full acceleration A (bang-bang con-
trol). The verification is quite similar when the controller can dynamically choose
any acceleration a≤ A instead, as we illustrate in Chap. 7.

After acceleration a has been set in ctrl, the second half of the sequential com-
position ctrl ;drive executes, and the train continues moving in drive. There, the pos-
ition z of the train evolves according to the differential equation system z′ = v,v′ = a
(i.e., z′′ = a). The evolution in drive stops when the speed v drops below zero (or
earlier), because the train would not drive backwards just by braking. Thus, v≥ 0 is
in the maximum evolution domain of drive. Simultaneously, clock τ measures the
duration of the current drive phase before the controllers react to situation changes
again. Clock τ is reset to zero by τ :=0 when entering drive, constantly evolves
along τ ′ = 1 together with the differential equations z′ = v,v′ = a, and is restricted
by the evolution domain τ ≤ ε . Hence, the system can only follow drive for up to ε

time units and at most as long as v≥ 0. The effect is that a drive phase is interrupted
for reassessing the driving situation after at most ε seconds, and the ctrl ;drive feed-
back loop repeats by the repetition operator (∗). In particular, the continuous evolu-
tion cannot just be followed indefinitely without giving the controller ctrl a chance to
react to situation changes. The corresponding transition structure ρI,η((ctrl ;drive)∗)
is depicted in Fig. 2.9a. Essentially, we obtain the transition structure in Fig. 2.9a by
gluing the elementary transition patterns from Fig. 2.5 together according to the
structure of the hybrid program in (2.7).

Fig. 2.9 ETCS transition structure and various choices of speed regulation for train speed control

Figure 2.9b shows possible runs of the train where speed regulation successively
decreases velocity v because its MA has not been extended in time. Figure 2.9b
shows three different runs (three upper position curves and three lower, partially
overlapping velocity curves) which correspond to different choices of parameter s,
where only the lowest velocity choice is safe. Finally, observe that the evolution
domain v≥ 0∧ τ ≤ ε needs to be true at all times during continuous evolutions of
drive; otherwise there is no corresponding transition in ρI,η(drive). This not only
restricts the maximum duration of drive, but also imposes a constraint on permitted

a.

∪

?m−z≤s

?m−z≥s

a :=−b

a :=
A

τ :=0 z′′ = a

τ ′ = 1
&τ≤ε

b.

MA
z

v

MA
z

v
t

64 2 Differential Dynamic Logic dL

initial states: The arithmetic constraint v≥ 0 expresses that the differential equation
only applies for nonnegative speed. Hence, as in a test ?v≥ 0, program drive allows
no transitions at all when v is initially less than 0. In that case, ρI,η((ctrl ;drive)∗)
collapses to the trivial identity transition where only zero repetitions are possible.

Discussion

Here, we explicitly take into account possibly delayed controller reactions to bridge
the gap of continuous-time models and discrete-time control design. To get mean-
ingful results, we need to assume a maximum reaction delay ε , because safety can-
not otherwise be guaranteed (the system would not be safe if the controllers can
never execute). Polling cycles of sensors and digital controllers as well as latencies
of actuators such as brakes contribute to ε . Instead of using specific estimates for ε

for a particular train, we accept ε as a fully symbolic parameter. Further, instead
of manually choosing specific values for the free parameters of (2.7) as in model
checking approaches [91], we will use our calculus to synthesise constraints on the
relationship of parameters that are required for safe operation of train control. We do
not model weather conditions, slope of track, wheel friction, or train mass, because
these are less relevant for the cooperation layer of train control [90].

Because of its nonlinear behaviour and nontrivial reset relations, system (2.7)
is beyond the modelling capabilities of linear hybrid automata [8, 156, 126] and
beyond o-minimal automata [189]. Previous approaches need linear flows [8, 156],
do not support the coupled dynamics caused by nontrivial resets [189], require
polyhedral initial sets and discrete dynamics [70], only handle robust systems with
bounded regions [125] although parametric systems are not robust uniformly for all
parameter choices, or handle only bounded-time safety for systems with bounded
switching [217]. Finally, in addition to general numerical limits [238], numerical
approaches [70, 21] quickly become intractable due to the exponential impact of the
number of variables (curse of dimensionality).

2.5 Free-Variable Proof Calculus for Differential Dynamic Logic

In this section, we introduce a sequent calculus for formally verifying hybrid sys-
tems by proving validity of corresponding dL formulas. The basic idea is to sym-
bolically compute the effects of hybrid programs and successively transform them
into logical formulas describing these effects by structural symbolic decomposition.
The calculus consists of standard propositional rules, rules for dynamic modalities
that are generalised to hybrid programs, and novel quantifier rules that integrate real
quantifier elimination (or, in fact, any other quantifier elimination procedure) into
the modal calculus using free variables and Skolemisation.

2.5 Proof Calculus 65

2.5.1 Substitution

The dL calculus uses substitutions that take effect within formulas and programs.
The result of applying to a dL formula φ the substitution that simultaneously re-
places variable yi by term θi (for 1≤ i≤ m) is defined as usual. Figure 2.10 shows

σ(yi) = θi for 1≤ i≤ n
σ(z) = y if z 6∈ {y1, . . . ,ym} is a variable

σ(f (θ1, . . . ,θn)) = f (σ(θ1), . . . ,σ(θn)) if f is a function symbol

σ(p(θ1, . . . ,θn)) = p(σ(θ1), . . . ,σ(θn)) if p is a predicate symbol
σ(¬φ) = ¬σ(φ)

σ(φ ∧ψ) = σ(φ)∧σ(ψ)
σ(φ ∨ψ) = σ(φ)∨σ(ψ)

σ(φ → ψ) = σ(φ)→ σ(ψ)
σ(∀xφ) = ∀xσ(φ) if admissible
σ(∃xφ) = ∃xσ(φ) if admissible
σ([α]φ) = [σ(α)]σ(φ) if admissible
σ(〈α〉φ) = 〈σ(α)〉σ(φ) if admissible

σ(x1 :=θ1, . . ,xn :=θn) = x1 :=σ(θ1), . . ,xn :=σ(θn) if admissible
σ(x′1 = θ1, . . ,x′n = θn & χ) = x′1 = σ(θ1), . . ,x′n = σ(θn)&σ(χ) if admissible

σ(?χ) = ?σ(χ)
σ(α;β) = σ(α);σ(β)

σ(α ∪β) = σ(α)∪σ(β)
σ(α∗) = (σ(α))∗

Fig. 2.10 Application of substitution σ that simultaneously replaces variable yi by term θi
(for 1≤ i≤ m)

how the substitution σ that replaces variable yi by term θi (for each 1≤ i≤ m) can
be applied to a term, dL formula, or hybrid program, respectively. The first line in
Fig. 2.10 represents that the substitution σ matches on the replaced (logical or state)
variables yi and replaces them by θi, respectively. The second line represents that no
logical or state variable z other than y1, . . . ,yn are affected by σ . The third line maps
the substitution σ homomorphically over function applications by applying σ re-
cursively to all argument terms. Similarly, the next block of cases in Fig. 2.10 maps
substitutions homomorphically over all subformulas. Yet for quantifiers (∀,∃) and
modalities ([α],〈α〉), the substitution is only applicable if admissible (as defined
below) so that the bound variable x of the quantifier does not interfere with the
substitution. We assume bound variable renaming (also known as α conversion)
for renaming as needed: bound variables can be renamed to resolve conflicts, e.g.,
∀xφ(x)≡ ∀zφ(z). Likewise, for applying the substitution homomorphically to hy-
brid programs (last block in Fig. 2.10) admissibility of the substitution is crucial in
all cases. Admissibility implies, for instance, that the variables yi replaced by the

66 2 Differential Dynamic Logic dL

substitution are different from the changed variables x j on the left-hand sides of the
assignments or differential equations of the hybrid program.

Definition 2.8 (Admissible substitution). An application of a substitution σ is
admissible if no variable x that σ replaces by σ(x) occurs in the scope of a quantifier
or modality binding x or a (logical or state) variable of the replacement σ(x). A
modality binds a state variable x iff it contains a discrete jump set assigning to x
(such as x :=θ) or a differential equation containing x′ (such as x′ = θ).

In this book, only admissible substitutions are applicable, which is crucial for sound-
ness. Admissible substitutions are denotation-preserving: They ensure that symbols
still denote the same values after a substitution when they did so before.

Example 2.12 (Non-admissible substitution). It is important that only admissible
substitutions are applicable. For the following formula, φ ,

x = z → 〈z := z+1〉(z≥ x+1),

the substitution σ that replaces all occurrences of x by z is not admissible. This is
due to the fact that for when we try to apply σ to φ forming

z = z → 〈z := z+1〉(z≥ z+1),

the substitution replaces x in postcondition z≥ x+1 by z, which is bound by modal-
ity 〈z := z+1〉. Hence, within the scope of the modality, symbol z denotes a different
value than outside the modality, thereby destroying the property of the occurrences
of x—or, after the substitution, those of z—to share the same value throughout the
formula. Instead, a substitution σ2 of x by y+1 in φ to form σ2(φ) is admissible for
other symbols y, giving the formula σ2(φ):

y+1 = z → 〈z := z+1〉(z≥ y+1+1).

�

More succinctly, we abbreviate the result of applying to φ the substitution σ that
replaces variable yi with term θi (for 1≤ i≤ m) by φ

θ1
y1 . . .

θm
ym . Thus φ

θ1
y1 . . .

θm
ym is an

abbreviation for σ(φ) defined according to Fig. 2.10. When no confusion arises,
we also use implicit notation for substitutions to improve readability. Let φ(z) be a
formula with a free variable z. Then for any term θ , we use φ(θ) as an abbreviation
for the formula φ(z)θ

z that results from φ(z) by substituting θ for z.

Example 2.13 (Admissible versus non-admissible substitutions). Consider the (valid)
dL formula φ defined as

φ ≡ x > 0∧ y > 1∧ z≥ x → [z := z+ xy]z > x.

Now the substitution that replaces x by 5a+ x2− y is admissible for φ , giving the
result φ

5a+x2−y
x :

2.5 Proof Calculus 67

5a+x2−y > 0∧y > 1∧ z≥ 5a+x2−y → [z := z+(5a+ x2− y)y]z > 5a+x2−y.

This formula φ
5a+x2−y
x , which results by an admissible substitution from φ , is valid,

just like φ .
However, the substitution that replaces x with the term az is not admissible for φ ,

because variable z occurs in the replacement az but is bound in φ , and could thus
have a different value at its various occurrences. So we cannot apply this substitution
to φ . Yet if we choose a fresh variable u and use bound variable renaming to rename
all occurrences of bound variable z to u, we obtain the formula

φ̃ ≡ x > 0∧ y > 1∧ z≥ x → [u := z+ xy]u > x.

This variant φ̃ is equivalent to φ , because only bound variables have been renamed.
After this bound variable renaming, the substitution replacing x by az becomes ad-
missible and we obtain

φ̃
az
x ≡ az > 0∧ y > 1∧ z≥ az → [u := z+(az)y]u > az.

This formula is valid (just like φ and φ̃). But it is quite different from the formula
we would obtain if we had just naı̈vely replaced every occurrence of x (admissible
or not) by az, instead of using more careful admissible substitutions:

az > 0∧ y > 1∧ z≥ az → [z := z+(az)y]z > az.

The latter formula is clearly false for all I,η ,ν with valI,η(ν ,a) = 1, because z
cannot possibly be greater than az then. Contrast this with the validity of the original
formula φ and its (admissible) substitution instance φ̃ az

x .
Similarly, the substitution that replaces z with ax is not admissible for φ , because

the replaced variable z is bound in φ , and could thus have a different value at its
various occurrences. So we cannot apply this substitution. Yet if we again choose
a fresh variable u and use bound variable renaming to rename all occurrences of
bound variable z to u, we obtain the formula φ̃ above. After this bound variable
renaming, the substitution replacing z with ax becomes admissible and we obtain

φ̃
ax
z ≡ x > 0∧ y > 1∧ax≥ x → [u :=ax+ xy]u > x.

Again, this formula is valid and quite different from the formula we would obtain if
we had just naı̈vely replaced every occurrence of z (admissible or not) by ax:

x > 0∧ y > 1∧ax≥ x → [z :=ax+ xy]ax > x.

The latter formula is again false for all I,η ,ν with valI,η(ν ,a) = 1, because x can-
not possibly be greater than ax then. Contrast this with the validity of the original
formula φ and the admissible substitution instance φ̃ ax

x .
Thus, there is a close connection between the formula φ and its various substitu-

tion instances (if admissible!), which we will identify in the next lemma. As part of
that, we will show that, since φ is valid, all of its (admissible) substitution instances

68 2 Differential Dynamic Logic dL

are valid. This close connection (and every other similarity) breaks when we naı̈vely
replace terms in φ instead of obeying the requirements of admissible substitutions.

�

Example 2.14 (Non-admissibility in repetitions). The last example is prototypical
for several dL formulas and works similarly for all dL formulas without repetitions
or differential equations. Yet repetitions and differential equations themselves are
more involved. Consider a (valid) dL formula with a repetition:

ψ ≡ x > 0∧ y > 1∧ z > x → [(z := z+ xy)∗]z > x. (2.8)

As with the formula φ from the last example, the substitution that replaces x by the
term 5a+ x2− y is admissible for ψ , giving the result ψ

5a+x2−y
x :

5a+x2−y> 0∧y> 1∧z> 5a+x2−y → [(z := z+(5a+ x2− y)y)
∗
]z> 5a+x2−y

This formula ψ
5a+x2−y
x , which results by an admissible substitution from ψ is valid,

just like ψ .
Again, the substitution that replaces x by the term az is not admissible for ψ ,

because variable z occurs in the replacement az but is bound in ψ , and could have
different values at its occurrences. Hence, we cannot apply this substitution. How-
ever, for repetitions, it is not so easy to do bound variable renaming to get around
this! We cannot simply replace all bound occurrences of z by one fresh variable u,
which would give

x > 0∧ y > 1∧ z > x → [(u := ǔ+ xy)∗]u > x.

But here the connection of u with the input z has been lost and the formula is no
longer valid. The reason is that the occurrence of z on the right-hand side z+ xy of
the jump (which corresponds to the occurrence of u we marked ˇ in the last formula)
is neither just free nor just bound. During the first iteration of the repetition, it would
be free (because it receives its value from outside); during subsequent iterations,
however, it would be bound (because it receives its value from the last assignment).
The formula we would obtain if we had just naı̈vely replaced every occurrence of x
(admissible or not) by az is also quite different and not valid:

x > 0∧ y > 1∧ z > x → [(z := z+(až)y)∗]z > az.

The reason is that the occurrence marked with ˇ is neither just free nor just bound,
because it depends on the number of iterations of the loop.

Likewise, the substitution that replaces z by ax is not admissible for ψ and cannot
be applied, because the replaced variable z is bound in ψ . We thus cannot apply this
substitution. Once more, it is not so easy to do bound variable renaming to get
around this and we cannot just rename z to a fresh variable u to resolve this issue.
The formula we would obtain if we had just naı̈vely replaced every occurrence of x
(admissible or not) by az is also quite different and not valid:

2.5 Proof Calculus 69

x > 0∧ y > 1∧ax > x → [(z := ǎx+ xy)∗]ax > x.

The reason is again that the occurrence of z (prior to replacing) at the position
marked ˇ is neither just free nor just bound. While it would be perfectly alright to
replace the first dynamic occurrence of z (in the sequential execution order) by ax,
subsequent occurrences (including those in repetitions) have a different operational
value and cannot be replaced.

In these two cases, the substitutions are just not admissible for ψ and cannot be
applied, because the modalities of ψ bind relevant replaced variables or variables in
the replacements. Our proof calculus in Sect. 2.5.2 will use other ways that do not
need substitution to prove formulas with repetitions like these. �

Example 2.15 (Non-admissibility in differential equations). The situation with dif-
ferential equations is quite similar. In the dL formula

ψ ≡ x > 0∧ y > 1∧ z > x → [z′ = z+ xy]z > x (2.9)

the occurrences of z in the differential equation are neither just free nor just bound:
The value z affects the initial value z of the differential equation, but the value of z
also evolves over time when following the differential equation to a new value.
Thus, z is both a free initial value and bounded or updated during the evolution.
The substitution that replaces x with 5a2 + x2− y is still admissible for ψ , giving
ψ

5a2+x2−y
x :

5a2+x2−y> 0∧y> 1∧z> 5a2+x2−y→ [z′ = z+(5a2 + x2− y)y]z> 5a2+x2−y

But we cannot substitute x with az, because the substitution is not admissible for ψ

as bound variable z occurs in the replacement az. Nor can we substitute z with ax,
because this substitution is not admissible for ψ either, as the replaced variable z
is bound in ψ . The formula we would obtain if we had just naı̈vely replaced every
occurrence of x (admissible or not) with az, is different and not valid:

az > 0∧ y > 1∧ z > x → [z′ = z+(ǎz)y]z > az.

The formula we would obtain, instead, if we had just naı̈vely replaced every occur-
rence of z (admissible or not) by ax, is also different and not valid:

x > 0∧ y > 1∧ax > x → [z′ = ǎx+ xy]ax > x.

In both cases, we marked the positions where the occurrences have been neither free
nor bound with ˇ once again.

In these two cases, the substitutions are not admissible for ψ and cannot be ap-
plied, because the modalities of ψ bind relevant replaced variables or variables in
the replacements. Our proof calculus in Sect. 2.5.2 will prove such properties of dif-
ferential equations differently. �

Example 2.16 (Bound variable renaming for repetitions and differential equations).
On a side note, it would not be impossible to define bound variable renaming for

70 2 Differential Dynamic Logic dL

repetitions and differential equations. We decide not to use these extensions in our
approach, because they are technically more involved and not necessary for our
proof calculus. The purpose of this example is to show how bound variable renam-
ing could be extended appropriately, nevertheless. When we add an extra discrete
jump, we could define the following extended bound variable renaming variant of
formula (2.8):

x > 0∧ y > 1∧ z > x → [u := z; (u :=u+ xy)∗]u > x.

This formula separates the initial value assignment from the loop. Similarly when
we add an extra discrete jump, we could define the following extended bound vari-
able renaming variant of formula (2.9):

x > 0∧ y > 1∧ z > x → [u := z; u′ = u+ xy]u > x.

Again, this formula separates the initial value assignment from the differential equa-
tion. For both variants, the substitution replacing x with az is admissible, and so is
the substitution replacing z with ax. Essentially, the above two variants retain the ini-
tial value z explicitly before the repetition or differential equation. We have chosen
not to use these extended bound variable renamings in this book and, instead, follow
our choice that non-admissible substitutions are not applicable at all. �

There is a direct connection between a formula φ and its substitution instance
σ(φ), provided that the substitution σ is admissible for φ . In fact, the valuation of φ

and σ(φ) coincide if only we change the interpretation of the replaced symbols ap-
propriately when evaluating φ . That is, semantically evaluating φ (after modifying
the interpretation of the symbols replaced by σ in I,η ,ν) is the same as semantic-
ally evaluating φ in the original I,η ,ν after applying the substitution (resulting in
σ(φ)). Stated differently, we can show that, for admissible substitutions, syntactic
substitution in the formula and semantic modification of I,η ,ν have the same effect:

Lemma 2.2 (Substitution Lemma). Let σ be an admissible substitution for the
(term or) formula φ and let σ replace only logical variables; then

for each I,η ,ν : valI,η(ν ,σ(φ)) = valI,σ∗(η)(ν ,φ),

where the semantic modification σ∗(η) of assignment η is adjoint to σ , i.e.,
σ∗(η) is identical to η , except that σ∗(η)(x) = valI,η(ν ,σ(x)) for all logical vari-
ables x ∈V .

Proof. In essence, the proof of this lemma is a simple corollary to the fact that
both substitution and valuation are homomorphisms defined inductively on formu-
las from their effect on atomic symbols. The application of an admissible substi-
tution σ is a homomorphic continuation of its effect on atomic symbols to all dL
formulas by way of Fig. 2.10. That is, the effect of an admissible(!) substitution on
a compound formula is just defined by applying the substitution recursively to all

2.5 Proof Calculus 71

subformulas. Likewise, the valuation is a homomorphic continuation of the inter-
pretation I, state ν , and assignment η on atomic symbols to all dL formulas by
way of Definition 2.6. That is, the valuation of a compound formula is just defined
by using the valuation on all subformulas.

First we prove the substitution lemma applied to terms θ :

for each I,η ,ν : valI,η(ν ,σ(θ)) = valI,σ∗(η)(ν ,θ).

The proof is by induction on the structure of the term θ .

1. If θ is a logical variable x ∈V , then, by definition of σ∗(η):

valI,η(ν ,σ(x)) = σ
∗(η)(x) = valI,σ∗(η)(ν ,x).

2. If θ is a state variable x ∈ Σ , then it is different from replaced logical vari-
ables u ∈V and σ(x) = x. Hence

valI,η(ν ,σ(x)) = valI,η(ν ,x) = ν(x) = valI,σ∗(η)(ν ,x).

3. If θ is of the form f (θ1, . . . ,θn) for a function symbol f of arity n≥ 1, then

valI,η(ν ,σ(f (θ1, . . . ,θn)))

= valI,η(ν , f (σ(θ1), . . . ,σ(θn)))

= I(f)
(
valI,η(ν ,σ(θ1)), . . . ,valI,η(ν ,σ(θn))

)
= I(f)

(
valI,σ∗(η)(ν ,θ1), . . . ,valI,σ∗(η)(ν ,θn)

)
= valI,σ∗(η)(ν , f (θ1, . . . ,θn))

because the θi are simpler than f (θ1, . . . ,θn) so that, by induction hypothesis,
we have for each i:

valI,η(ν ,σ(θi)) = valI,σ∗(η)(ν ,θi).

Next we prove the substitution lemma applied to dL formulas φ :

for each I,η ,ν : valI,η(ν ,σ(φ)) = valI,σ∗(η)(ν ,φ).

The proof is by induction on the structure of the formula φ .

1. If φ is of the form p(θ1, . . . ,θn) for a predicate symbol p of arity n≥ 1, then the
proof is almost identical to that for function symbols above.

2. If φ is of the form φ1∨φ2, then we use the induction hypothesis on φ1 and φ2 to
conclude

valI,η(ν ,σ(φ1∨φ2))

= valI,η(ν ,σ(φ1)∨σ(φ2)) = true

iff valI,η(ν ,σ(φ1)) = true or valI,η(ν ,σ(φ2)) = true

72 2 Differential Dynamic Logic dL

iff valI,σ∗(η)(ν ,φ1) = true or valI,σ∗(η)(ν ,φ2) = true

iff valI,σ∗(η)(ν ,φ1∨φ2) = true

If φ is of the form φ1∧φ2 or of the form φ1→ φ2 or ¬φ1, then the proof is
similar.

3. If φ is of the form ∃xψ , then we use that σ was assumed to be admissible
for φ . In particular (by bound variable renaming), x is not one of the replaced
variables u and x does not occur in any of the replacements σ(u). We use the
induction hypothesis on ψ to conclude

valI,η(ν ,σ(∃xψ)) = valI,η(ν ,∃xσ(ψ)) = true

iff there is a d such that valI,η [x 7→d](ν ,σ(ψ)) = true

iff there is a d such that valI,σ∗(η [x 7→d])(ν ,ψ) = true

iff there is a d such that valI,σ∗(η)[x 7→d](ν ,ψ) = true

iff valI,σ∗(η)(ν ,∃xψ) = true.

Note that σ∗(η [x 7→ d]) = σ∗(η)[x 7→ d], because x is not affected by the sub-
stitution σ (since admissible); hence x is not affected by adjoint assignments. If
φ is of the form ∀xψ , the proof is similar.

4. If φ is of the form [α]ψ , then we use that the substitution σ is admissible by
assumption. Hence, α does not bind any of the replaced variables nor any of
the variables that occur in any of the replacements σ(u). We use the induction
hypothesis on ψ to conclude

valI,η(ν ,σ([α]ψ)) = valI,η(ν , [σ(α)]σ(ψ)) = true

iff for all ω with (ν ,ω) ∈ ρI,η(σ(α)) : valI,η(ω,σ(ψ)) = true

iff for all ω with (ν ,ω) ∈ ρI,η(σ(α)) : valI,σ∗(η)(ω,ψ) = true

iff? for all ω with (ν ,ω) ∈ ρI,σ∗(η)(α) : valI,σ∗(η)(ω,ψ) = true

iff valI,σ∗(η)(ν , [α]ψ) = true.

For the middle step marked with ?, we still have to prove the substitution lemma
for hybrid programs:

ρI,η(σ(α)) = ρI,σ∗(η)(α). (2.10)

If α is of the form 〈α〉ψ then the proof is similar.

Finally we prove the substitution lemma for hybrid programs α as formulated
in (2.10). The proof is by induction on the structure of hybrid program α .

1. If α is of the form x1 :=θ1, . . .xn :=θn, then we use the substitution lemma on
the terms θi to show

2.5 Proof Calculus 73

(ν ,ω) ∈ ρI,η(σ(x1 :=θ1, . . .xn :=θn)) = ρI,η(x1 :=σ(θ1), . . .xn :=σ(θn))

iff ν [x1 7→ valI,η(ν ,σ(θ1))] . . . [xn 7→ valI,η(ν ,σ(θn))] = ω

iff ν [x1 7→ valI,σ∗(η)(ν ,θ1)] . . . [xn 7→ valI,σ∗(η)(ν ,θn)] = ω

iff (ν ,ω) ∈ ρI,σ∗(η)(x1 :=θ1, . . .xn :=θn).

2. If α is of the form ?χ for a (first-order) dL formula χ , then we use the substi-
tution lemma on the (simpler and even first-order) dL formula χ:

(ν ,ω) ∈ ρI,η(σ(?χ)) = ρI,η(?σ(χ))

iff ν = ω and valI,η(ν ,σ(χ)) = true

iff ν = ω and valI,σ∗(η)(ν ,χ) = true

iff (ν ,ω) ∈ ρI,σ∗(η)(?χ).

3. If α is of the form x′1 = θ1, . . .x′n = θn & χ , then we use the substitution lemma
on terms and on the (first-order) dL formula χ to conclude:

(ν ,ω) ∈ ρI,η(σ(x′1 = θ1, . . .x′n = θn & χ))

= ρI,η(x′1 = σ(θ1), . . .x′n = σ(θn)&σ(χ)),

which holds if and only if there is a continuous flow function f : [0,r]→ Sta(Σ)
with f (0) = ν , f (r) = ω and valI,η(f (ζ),z) = valI,η(ν ,z) for all ζ ∈ [0,r] and
all z 6∈ {x1, . . . ,xn} such that:

• for each xi, valI,η(f (ζ),xi) = f (ζ)(xi) is continuous in ζ on [0,r] and has a
derivative of value valI,η(f (ζ),σ(θi)) at each time ζ ∈ (0,r),

• and valI,η(f (ζ),σ(χ)) = true for each ζ ∈ [0,r].

By the substitution lemma for terms and formulas, respectively, these conditions
are equivalent to

• for each xi, valI,σ∗(η)(f (ζ),xi) = f (ζ)(xi) is continuous in ζ on [0,r] and
has a derivative of value valI,σ∗(η)(f (ζ),θi) at each time ζ ∈ (0,r),

• and valI,σ∗(η)(f (ζ),χ) = true for each ζ ∈ [0,r],

which hold if and only if

(ν ,ω) ∈ ρI,σ∗(η)(x
′
1 = θ1, . . .x′n = θn & χ).

4. If α is of the form β ∪ γ , then we can use the induction hypothesis on β and γ

to conclude

ρI,η(σ(β ∪ γ)) = ρI,η(σ(β)∪σ(γ)) = ρI,η(σ(β))∪ρI,η(σ(γ))

= ρI,σ∗(η)(β)∪ρI,σ∗(η)(γ) = ρI,σ∗(η)(β ∪ γ).

5. If α is of the form β ;γ , then we use the induction hypothesis on β and on γ to
conclude

74 2 Differential Dynamic Logic dL

(ν ,ω) ∈ ρI,η(σ(β ;γ)) = ρI,η(σ(β);σ(γ))

iff there is a µ with (ν ,µ) ∈ ρI,η(σ(β)) and (µ,ω) ∈ ρI,η(σ(γ))

iff there is a µ with (ν ,µ) ∈ ρI,σ∗(η)(β) and (µ,ω) ∈ ρI,σ∗(η)(γ)

iff (ν ,ω) ∈ ρI,σ∗(η)(β ;γ).

6. The case where α is of the form β ∗ is similar, again using admissibility:

(ν ,ω) ∈ ρI,η(σ(β ∗)) = ρI,η(σ(β)∗)

iff there are n ∈ N,µ0 = ν ,µ1, . . . ,µn = ω : (µi,µi+1) ∈ ρI,η(σ(β))

iff there are n ∈ N,µ0 = ν ,µ1, . . . ,µn = ω : (µi,µi+1) ∈ ρI,σ∗(η)(β)

iff (ν ,ω) ∈ ρI,σ∗(η)(β
∗).

ut

The substitution lemma implies a simple corollary for substituting program vari-
ables instead of (or in addition to) logical variables. The proof is an immediate
consequence of a double application of the substitution lemma, so that, in the re-
mainder of this book, we do not distinguish between Lemma 2.2 and the following
corollary.

Corollary 2.1. Let σ be an admissible substitution for the (term or) formula φ ; then

for each I,η ,ν : valI,η(ν ,σ(φ)) = valI,σ∗(η)(σ
∗(ν),φ),

where the semantic modification σ∗(ν) of state ν is adjoint to σ . The adjoint σ∗(ν)
is identical to ν , except that σ∗(ν)(x) = valI,η(ν ,σ(x)) for all state variables x ∈ Σ .
The adjoint σ∗(η) is defined as in Lemma 2.2.

Proof. The proof is a simple corollary to Lemma 2.2, using fresh logical variables zi
to relate σ(φ) with φ for gluing two uses of Lemma 2.2 together. To simplify nota-
tion, assume that σ only replaces a single state variable x by θ and let us denote
the result of applying this substitution to φ by φ θ

x . Let z be a fresh logical vari-
able. Since the substitution σ is admissible for φ , the replaced variable x and all
variables in its replacement θ are not bound in φ . Thus, φ is of the form ψx

z for
the formula ψ , which is like φ except that it has z in place of x everywhere. Now
abbreviate valI,η(ν ,θ) as e, and abbreviate valI,η(ν [x 7→ e],x) as d. Then, we use
Lemma 2.2 at the positions indicated ? to conclude:

valI,η(ν ,φ θ
x) = valI,η(ν ,ψx

z
θ

x) = valI,η(ν ,ψθ
z)

?
= valI,η [z7→e](ν ,ψ)

= valI,η [z7→d](ν [x 7→ e],ψ)
?
= valI,η(ν [x 7→ e],ψx

z) = valI,η(ν [x 7→ e],φ).

Note that the two lines are equal because the value of state variable x in the state does
not matter for ψ , where x does not occur, and because d = valI,η(ν [x 7→ e],x) = e.

ut

2.5 Proof Calculus 75

Example 2.17. Again consider the formula φ , and an instance φ 5a2+b
x under an ad-

missible substitution:

φ ≡ x = z → 〈z := z+1〉(z≥ x+1),

φ
5a2+b
x ≡ 5a2 +b = z → 〈z := z+1〉(z≥ 5a2 +b+1).

Using the substitution lemma, we can conclude that with respect to any I,η ,ν , the
formula φ and its instance φ 5a2+b

x evaluate to the same truth-value when adapting
the value of x appropriately. That is, let σ be the substitution that replaces x with
5a2 +b, i.e., σ(φ)≡ φ 5a2+b

x ; then (the corollary to) Lemma 2.2 implies:

valI,η(ν ,φ 5a2+b
x) = valI,σ∗(η)(σ

∗(ν),φ).

Let us abbreviate the value valI,η(ν ,5a2 +b) of the replacement 5a2 +b of x by e.
Then if x ∈V is a logical variable, then σ∗(ν) = ν and σ∗(η) = η [x 7→ e]; hence

valI,η(ν ,φ 5a2+b
x) = valI,η [x 7→e](ν ,φ).

If, instead, x ∈ Σ is a state variable, then σ∗(η) = η and σ∗(ν) = ν [x 7→ e]; hence

valI,η(ν ,φ 5a2+b
x) = valI,η(ν [x 7→ e],φ).

In either case (either x ∈V or x ∈ Σ), if the value of x and its replacement 5a2 +b
agree in the original I,η ,ν already, i.e., if valI,η(ν ,x) = valI,η(ν ,5a2 +b), then
their valuations agree according to the substitution lemma:

valI,η(ν ,φ 5a2+b
x) = valI,η(ν ,φ).

�

The substitution lemma is a very powerful tool, because, among other things, we
can use it to replace equals for equals without changing the valuation (substitution
property). If we know that x and θ have the same value in I,η ,ν , then we can
substitute θ for x in a formula φ (if admissible) without changing the truth-value
of φ , that is:

Lemma 2.3 (Substitution property). If I,η ,ν |= x = θ , then I,η ,ν |= φ ↔ φ θ
x

for any formula φ for which the substitution replacing x with θ is admissible.

Proof. Consider any I,η ,ν with I,η ,ν |= x = θ . First, note that this assumption
is equivalent to valI,η(ν ,x) = valI,η(ν ,θ). We have to show I,η ,ν |= φ ↔ φ θ

x ,
or, equivalently, valI,η(ν ,φ) = valI,η(ν ,φ θ

x). This follows from the Substitution
Lemma 2.2 when we choose σ to be the substitution that replaces x by θ since

valI,η(ν ,φ θ
x) = valI,σ∗(η)(σ

∗(ν),φ) = valI,η(ν ,φ).

76 2 Differential Dynamic Logic dL

The last step follows from the fact that I,η ,ν equals I,σ∗(η),σ∗(ν), respectively,
because the substitution σ only replaces x by θ , which already have the same value
to begin with, as we assumed valI,η(ν ,x) = valI,η(ν ,θ). ut
In addition, whenever a formula φ is valid (φ is true in all I,η ,ν), the substitution
lemma implies that all of its (admissible) substitution instances σ(φ) are valid too
for any substitution σ that is admissible for φ .

Lemma 2.4 (Substitutions preserve validity). If � φ , i.e., φ is valid, then � σ(φ)
for any substitution σ that is admissible for φ .

Proof. Let φ be valid, i.e., I,η ,ν |= φ for all I,η ,ν . Consider any I,η ,ν and any
substitution σ that is admissible for φ . Now the Substitution Lemma 2.2 implies

valI,η(ν ,σ(φ)) = valI,σ∗(η)(σ
∗(ν),φ) = true.

The last step holds because φ is valid and, in particular, holds for I,σ∗(η),σ∗(ν).
ut

Observe that, for soundness, the notion of bound variables in Definition 2.8 could
in fact be any overapproximation of the set of variables that possibly change their
value during a hybrid program. In vacuous identity changes like x :=x or x′ = 0,
variable x will not really change its value, but we still consider x as a bound variable
for simplicity. For a hybrid program α , we denote by ∀α φ the universal closure of
formula φ with respect to all state variables bound in α . Quantification over state
variable x is definable as ∀X [x :=X]Φ using an auxiliary logical variable X .

2.5.2 Rules of the Calculus for Differential Dynamic Logic

We present a proof calculus for dL as a Gentzen-style sequent calculus [133].
Sequents are essentially a standard form for logical formulas that is convenient
for proving. A sequent is of the form Γ ` ∆ , where the antecedent Γ and suc-
cedent ∆ are finite sets of formulas. The semantics of Γ ` ∆ is that of the for-
mula

∧
φ∈Γ φ → ∨

ψ∈∆ ψ . For quantifier elimination rules, we make use of this fact
by considering sequent Γ ` ∆ as an abbreviation for the latter formula. The ante-
cedent Γ can be thought of as the formulas we assume to be true, whereas the
succedent ∆ can be understood as formulas for which we want to show that at least
one of them is true assuming all formulas of Γ are true. So for proving a sequent
Γ ` ∆ , we assume all Γ and want to show that one of the ∆ is true. For some simple
sequents like Γ ,φ ` φ ,∆ , we directly know that they are valid, because we can cer-
tainly show φ if we assume φ (in fact, we will use this as an axiom). For other
sequents, it is more difficult to see whether they are valid (true under all circum-
stances) and it is the purpose of a proof calculus to provide a means to find out.

For handling quantifiers in the dL calculus, we cannot use the standard proof
rules [147, 122, 123], because these are for uninterpreted first-order logic and (ul-
timately) work by instantiating quantifiers, either eagerly as in ground tableaux or

2.5 Proof Calculus 77

lazily by unification as in free-variable tableaux [147, 122, 123]. Also, see App. A
for an exposition of proving in uninterpreted first-order logic. The basis of dL ,
in contrast, is first-order logic interpreted over the reals or in the theory of real-
closed fields [287, 288]. A formula like ∃a∀x(x2 +a > 0) cannot be proven by
instantiation-based quantifier rules but is valid in the theory of real-closed fields.
Unfortunately, quantifier elimination (QE) over the reals [81, 288], which is the
standard decision procedure for real arithmetic, cannot be applied to formulas with
modalities either. Hence, we introduce new quantifier rules that integrate quantifier
elimination in a way that is compatible with dynamic modalities (as we illustrate in
Sect. 2.5.3).

Definition 2.9 (Quantifier elimination). A first-order theory admits quantifier elim-
ination if, with each formula φ , a quantifier-free formula QE(φ) can be associated
effectively that is equivalent (i.e., φ ↔ QE(φ) is valid) and has no additional free
variables or function symbols. The operation QE is further assumed to evaluate
ground formulas (i.e., without variables), yielding a decision procedure for closed
formulas of this theory (i.e., formulas without free variables).

Example 2.18. Quantifier elimination uses the special structure of real arithmetic to
express quantified arithmetic formulas equivalently without quantifiers and without
using more free variables. For instance, QE yields the following equivalence:

QE(∃x(ax2 +bx+ c = 0)) ≡ (a 6= 0∧b2−4ac≥ 0)∨ (a = 0∧ (b = 0→ c = 0)).

In this particular case, the equivalence can be found by using the generic condition
for solvability of quadratic equations over the reals plus special cases when coef-
ficients are zero. For details on quantifier elimination in real-closed fields and an
overview of decision procedures for real arithmetic, also see App. D.2. �

As usual in sequent calculus rules—although the direction of entailment in the
proof rules is from premises (above rule bar) to conclusion (below)—the order of
reasoning is goal-directed: Rules are applied backwards, i.e., starting from the de-
sired conclusion at the bottom (goal) to the resulting premises (subgoals). To high-
light the logical essence of the dL calculus, Fig. 2.11 provides rule schemata with
which the following definition associates the calculus rules that are applicable in dL
proofs. The calculus consists of propositional rules (¬r–cut), first-order quantifier
rules (∀r–i∃), rules for dynamic modalities (〈;〉–[′]), and global rules ([]gen–con).
All substitutions in the rules in Fig. 2.11 need to be admissible for the rules to be
applicable, including the substitution that inserts s(X1, . . ,Xn) into φ(s(X1, . . ,Xn)).
Proof schemata come in three kinds with which the following definition associates
proof rules: 1) sequent proof schemata that mention the sequent symbol ` , 2) sym-
metric proof schemata that do not mention the sequent symbol ` and can be applied
on either side of the sequent, 3) the special proof schema i∃ that merges multiple
branches.

Definition 2.10 (Rules). The rule schemata in Fig. 2.11—in which all substitutions
need to be admissible for the rules to be applicable, including the substitution that
inserts s(X1, . . ,Xn) into φ(s(X1, . . ,Xn))—induce calculus rules by:

78 2 Differential Dynamic Logic dL

1. If
Φ1 `Ψ1 . . . Φn `Ψn

Φ0 `Ψ0
(2.11)

is an instance of a rule schema in Fig. 2.11 (rules ∀r–∀l, i∀, and the propositional
and global rule schemata have this form), then

Γ ,〈J 〉Φ1 ` 〈J 〉Ψ1,∆ . . . Γ ,〈J 〉Φn ` 〈J 〉Ψn,∆

Γ ,〈J 〉Φ0 ` 〈J 〉Ψ0,∆

can be applied as a proof rule of the dL calculus, where Γ ,∆ are arbitrary
finite sets of additional context formulas (including empty sets) and J is a
discrete jump set (including the empty set). Hence, the rule context Γ ,∆ and
prefix 〈J 〉 remain unchanged during rule applications; only the formulas men-
tioned in (2.11) are affected.

2. Symmetric schemata can be applied on either side of the sequent: If

φ1

φ0

is an instance of one of the symmetric rule schemata (the dynamic rules) in
Fig. 2.11, then

Γ ` 〈J 〉φ1,∆

Γ ` 〈J 〉φ0,∆
and

Γ ,〈J 〉φ1 ` ∆

Γ ,〈J 〉φ0 ` ∆

can both be applied as proof rules of the dL calculus, where Γ ,∆ are arbitrary
finite sets of context formulas (including the empty set) and J is a discrete
jump set (including empty sets). In particular, symmetric schemata yield equi-
valence transformations, because the same rule applies in the antecedent as in
the succedent.

3. Schema i∃ applies to all goals containing X at once: If Φ1 `Ψ1, . . ,Φn `Ψn
is the list of all open goals of the proof that contain free variable X , then an
instance

` QE(∃X ∧i(Φi `Ψi))

Φ1 `Ψ1 . . . Φn `Ψn

of rule schema i∃ can be applied as a proof rule of the dL calculus.

Propositional Rules

For propositional logic, standard propositional rules ¬r–cut with the cut rule are
listed in the first block of Fig. 2.11. They decompose the propositional structure of
formulas. Rules ¬r and ¬l use simple dualities caused by the implicative semantics
of sequents. Essentially, instead of showing ¬φ in the succedent, we assume the
contrary φ in the antecedent with rule ¬r. In rule ¬l, instead of assuming ¬φ in

2.5 Proof Calculus 79

(¬r)
φ `
` ¬φ

(¬l)
` φ

¬φ `

(∨r)
` φ ,ψ

` φ ∨ψ

(∨l)
φ ` ψ `

φ ∨ψ `

(∧r)
` φ ` ψ

` φ ∧ψ

(∧l)
φ ,ψ `

φ ∧ψ `

(→r)
φ ` ψ

` φ → ψ

(→l)
` φ ψ `
φ → ψ `

(ax)
φ ` φ

(cut)
` φ φ `
`

(〈;〉) 〈α〉〈β 〉φ〈α;β 〉φ

([;])
[α][β]φ

[α;β]φ

(〈∪〉) 〈α〉φ ∨〈β 〉φ〈α ∪β 〉φ

([∪]) [α]φ ∧ [β]φ
[α ∪β]φ

(〈∗n〉) φ ∨〈α〉〈α∗〉φ
〈α∗〉φ

([∗n])
φ ∧ [α][α∗]φ

[α∗]φ

(〈?〉) χ ∧ψ

〈?χ〉ψ

([?])
χ → ψ

[?χ]ψ

(〈:=〉) φ
θ1
x1 . . .

θn
xn

〈x1 :=θ1, . . ,xn :=θn〉φ

([:=])
〈x1 :=θ1, . . ,xn :=θn〉φ
[x1 :=θ1, . . ,xn :=θn]φ

(〈′〉) ∃t≥0
(
(∀0≤t̃≤t 〈St̃〉χ)∧〈St〉φ

)
〈x′1 = θ1, . . ,x′n = θn & χ〉φ

1

([′])
∀t≥0

(
(∀0≤t̃≤t 〈St̃〉χ)→ 〈St〉φ

)
[x′1 = θ1, . . ,x′n = θn & χ]φ

1

(∀r) ` φ(s(X1, . . ,Xn))

` ∀xφ(x)
2

(∃l) φ(s(X1, . . ,Xn)) `
∃xφ(x) `

2

(i∀) ` QE(∀X (Φ(X) `Ψ(X)))

Φ(s(X1, . . ,Xn)) `Ψ(s(X1, . . ,Xn))
3

(∃r) ` φ(X)

` ∃xφ(x)
4

(∀l) φ(X) `
∀xφ(x) `

4

(i∃) ` QE(∃X ∧i(Φi `Ψi))

Φ1 `Ψ1 . . . Φn `Ψn

5

([]gen)
` ∀α (φ → ψ)

[α]φ ` [α]ψ

(ind)
` ∀α (φ → [α]φ)

φ ` [α∗]φ

(〈〉gen)
` ∀α (φ → ψ)

〈α〉φ ` 〈α〉ψ

(con)
` ∀α∀v>0(ϕ(v)→ 〈α〉ϕ(v−1))
∃vϕ(v) ` 〈α∗〉∃v≤0ϕ(v)

6

1 t and t̃ are fresh logical variables and 〈St〉 is the jump set 〈x1 :=y1(t), . . ,xn :=yn(t)〉 with sim-
ultaneous solutions y1, . . ,yn of the respective differential equations with constant symbols xi as
symbolic initial values.
2 s is a new (Skolem) function symbol and X1, . . ,Xn are all free logical variables of ∀xφ(x).
3 X is a new logical variable. Further, QE needs to be defined for the formula in the premise.
4 X is a new logical variable.
5 Among all open branches, free logical variable X only occurs in the branches Φi `Ψi. Further,
QE needs to be defined for the formula in the premise, especially, no Skolem dependencies on X
can occur.
6 Logical variable v does not occur in α .

Fig. 2.11 Rule schemata of the free-variable proof calculus for differential dynamic logic

the antecedent, we show the contrary φ in the succedent. Rule ∨r uses the fact that
formulas are combined disjunctively in succedents, rule ∧l that they are conjunctive
in antecedents. The comma between formulas in an antecedent has the same effect as
a conjunction, and the comma between formulas in the succedent has the same effect
as a disjunction. Rules ∨l and ∧r split the proof into two cases, because conjuncts in
the succedent can be proven separately (∧r) and, dually, disjuncts of the antecedent
can be assumed separately (∨l). For ∧r we want to show conjunction φ ∧ψ , so in
the left branch we proceed to show Γ ` φ ,∆ and, in addition, in the right branch we

80 2 Differential Dynamic Logic dL

show Γ ` ψ,∆ , which, together, entail Γ ` φ ∧ψ,∆ . If, as in rule ∨l, we assume
disjunction φ ∨ψ as part of the antecedent, then we do not know if we can assume
φ to hold or if we can assume ψ to hold in the antecedent, but know only that one of
them holds. Hence, as in a case distinction, ∨l considers both cases, the case where
we assume φ in the antecedent, and the case where we assume ψ . If both subgoals
can be proven, this entails Γ ,φ ∨ψ ` ∆ . Rules→r and→l can be derived from the
equivalence of φ → ψ and ¬φ ∨ψ . Rule→r uses the fact that implication→ has the
same meaning as the sequent arrow ` of a sequent. Intuitively, to show implication
φ → ψ , rule→r assumes φ (in the antecedent) and shows ψ (in the succedent). Rule
→l assumes an implication φ → ψ to hold in the antecedent, but we do not know
if this implication holds because φ is false, or because ψ is true, so →l splits into
those two branches.

The axiom rule ax closes a goal (there are no further subgoals, which we some-
times mark ∗ explicitly), because assumption φ in the antecedent trivially entails φ

in the succedent (sequent Γ ,φ ` φ ,∆ is a simple syntactic tautology). Rule cut is
the cut rule that can be used for case distinctions: The right subgoal assumes any
additional formula φ in the antecedent that the left subgoal shows in the succedent.
Dually: regardless of whether φ is actually true or false, both cases are covered by
proof branches. We only use cuts in an orderly fashion to derive simple rule dualities
and to simplify meta-proofs. In practical applications, cuts are not usually needed
and we conjecture that this is no coincidence.

According to the definition in Definition 2.10, all propositional rules can be ap-
plied with an additional context Γ ,∆ . In particular, rules ax and cut can also be
applied as:

ax
Γ ,φ ` φ ,∆

and cut
Γ ` φ ,∆ Γ ,φ ` ∆

Γ ` ∆

First-Order Quantifier Rules

The quantifier rules ∀r,∃l,∃r,∀l,i∀,i∃ constitute a purely modular interface to arith-
metic mathematical reasoning. They can use any theory that admits quantifier elim-
ination and has a decidable ground theory (formulas without quantifiers or vari-
ables), including the theory of real arithmetic or real-closed fields [288, 81]. Rules
∀r,∃l,∃r,∀l handle quantifiers and replace quantified variables by Skolem function
terms (∀r,∃l) or free logical variables (∃r,∀l), respectively. Later in the proof, rules
i∀,i∃ can reintroduce quantifiers for these previously quantified symbols and apply
quantifier elimination in real-closed fields once the remaining formulas are first-
order in the relevant symbols.

Rule ∃l, with which we want to show ∃xφ(x) in the succedent, introduces a new
free logical variable X for an existentially quantified variable x. Essentially, free
variable X can be thought of as a variable for which an appropriate value still needs
to be found for the proof to close. This makes sense, because at the time of applying
proof rule ∃l, it is mostly impossible to know which particular instance to choose
for X that will help. But once we find such an X that proves the subgoal Γ ` φ(X),∆

2.5 Proof Calculus 81

later, we have also proven the goal Γ ` ∃xφ(x),∆ , because X will be a witness for
the existence. We have also proven the goal if, later during the proof, we prove the
existence of an X satisfying the constraints indirectly, without directly instantiating
a witness. This is what rule i∃ is for.

The dual rule ∀l, which assumes ∀xφ(x) in the antecedent, introduces a new free
logical variable X for the universally quantified variable x in the antecedent. If, later,
we have found an instance of X that proves subgoal Γ ,φ(X) ` ∆ , then we have also
proven goal Γ ,∀xφ(x) ` ∆ , because if we can prove the subgoal just from assuming
the particular φ(X) in the antecedent, then the goal also holds where we even assume
φ(x) holds for all x. While this reasoning is perfectly good if it works, it is somewhat
surprising why this should always work for all cases. Why should one instance be
enough? Why should it not be necessary to assume two different instances φ(X) and
φ(Y) during the proof? The fact that this is not necessary comes from proof rule i∃,
which can reintroduce quantifiers and eliminate them equivalently.

Rule ∀r, with which we want to show ∀xφ(x) in the succedent, introduces a new
(Skolem) function symbol s for the previously quantified variable x and replaces x
by a (Skolem) term s(X1, . . . ,Xn) where X1, . . . ,Xn are all the free logical variables
of the original formula ∀xφ(x). This works like a proof in mathematics, where we
want so show ∀xφ(x) in the succedent and do so by choosing a fresh symbol s for
which we prove that φ(s(X1, . . . ,Xn)) holds. Because s was arbitrary and we did
not assume anything special about the value of s, this implies that ∀xφ(x) holds.
The free variables X1, . . . ,Xn of the Skolem terms keep track of the dependencies of
the symbols for nested quantifiers. Having all free logical variables X1, . . . ,Xn in the
Skolem term is important for soundness in order to prevent unsound rearrangements
of quantifiers, as we elaborate in Sect. 2.5.3.

The dual rule ∃l is similar. When we assume ∃xφ(x) in the antecedent, then
we only know that such an x exists, not what value it has. Hence, ∃l introduces
a new name for this object in the form of a new (Skolem) function symbol s and
replaces x by a (Skolem) term s(X1, . . . ,Xn) where X1, . . . ,Xn are all the free logical
variables of the original formula ∃xφ(x). If we can prove the subgoal, the subgoal
entails the goal, because we did not assume anything special about s. Having all
free logical variables X1, . . . ,Xn in the Skolem term to track the dependencies of
the symbols is again important for soundness to prevent unsound rearrangements
of quantifiers. Intuitively, for a formula like ∀x∃yφ(x,y) in the antecedent—which
will yield ∃yφ(X ,y) after applying ∀l—we need to track the dependency of y on X ,
which yields φ(s(X),X) when applying ∃l. We need to remember that the choice
for s may depend on X , because the choice of y may depend on x.

With the rule i∀, we can reintroduce a universal quantifier for a Skolem term
s(X1, . . . ,Xn), which corresponds to a previously universally quantified variable in
the succedent or a previously existentially quantified variable in the antecedent. The
point of reintroducing the quantifier is that this makes sense when the remaining
formulas are first-order in the quantified variable so that they can be handled equi-
valently by quantifier elimination in real-closed fields. When we have proven the
subgoal (with for all X) then this entails the goal for the particular s(X1, . . . ,n). In
particular, when we remove a quantifier with ∀r,∃l to obtain a Skolem term, we can

82 2 Differential Dynamic Logic dL

continue with other proof rules to handle the dynamic modalities and then reintro-
duce the quantifier for the Skolem term with i∀ once quantifier elimination for real
arithmetic becomes applicable.

The dual rule i∃ can reintroduce an existential quantifier for a free logical vari-
able that was previously existentially quantified in the succedent or previously uni-
versally quantified in the antecedent. Again, this makes sense when the resulting
formula in the premise is first-order in the quantified variable X so that quantifier
elimination can eliminate the quantifier equivalently. When we remove a quantifier
with ∃r,∀l to obtain a free logical variable, we can continue using other proof rules
to handle the dynamic modalities and then reintroduce the quantifier for the free
logical variable with i∃ once quantifier elimination is applicable.

The quantifier rules ∀r and ∃l correspond to the liberalised δ+-rule of Hähnle and
Schmitt [147]. Rules ∃r and ∀l resemble the usual γ-rule but, unlike in [122, 123,
147, 134], they cannot be applied twice because the original formula is removed
(∃xφ(x) in ∃r). The calculus still has a complete handling of quantifiers due to i∀
and i∃, which can reconstruct and eliminate quantifiers once QE is applicable as
the remaining constraints are first-order in the respective variables. In the premise
of i∀ and i∃, we again consider sequents Φ `Ψ as abbreviations for formulas. For
closed formulas, we do not need other arithmetic rules. We defer illustrations and
further discussion of quantifier rules to Sect. 2.5.3. For comparison, App. A gives a
summary of the standard γ-rules and δ+-rules that are used for handling quantifiers
in uninterpreted first-order logic. In Sect. 3.5.5, we show an alternative way of hand-
ling real arithmetic in a modular way using deduction modulo by side deductions.

Dynamic Rules

The dynamic modality rules transform a hybrid program into structurally simpler
logical formulas by symbolic decomposition. Rules 〈;〉,[;],〈∪〉,[∪],〈∗n〉,[∗n],〈?〉,[?]
are as in discrete dynamic logic [149, 37]. Also, see Fig. 2.12 for an illustration of
the correspondence of a representative set of proof rules for dynamic modalities to
the transition semantics of hybrid programs (from Definition 2.7).

Nondeterministic choices split into their alternatives (〈∪〉,[∪]). For rule [∪]: If all
α transitions lead to states satisfying φ (i.e., [α]φ holds) and all β transitions lead
to states satisfying φ (i.e., [β]φ holds), then, all transitions of program α ∪β that
choose between following α and following β also lead to states satisfying φ (i.e.,
[α ∪β]φ holds). Dually for rule 〈∪〉, if there is an α transition to a φ state (〈α〉φ) or
a β -transition to a φ state (〈β 〉φ), then, in either case, there is a transition of α ∪β to
φ (〈α ∪β 〉φ holds), because α ∪β can choose which of those transitions to follow.
A general principle behind the dL proof rules that is most noticeable in 〈∪〉,[∪] is
that these proof rules symbolically decompose the reasoning into two separate parts
and analyse the fragments α and β separately, which is good for scalability. For
these symbolic structural decompositions, it is very helpful that dL is a full logic
that is closed under all logical operators, including disjunction and conjunction, for
then the premises in [∪],〈∪〉 are dL formulas again (unlike in Hoare logic [161]).

2.5 Proof Calculus 83

Fig. 2.12 Correspondence of dynamic proof rules and transition semantics

Sequential compositions are proven using nested modalities (〈;〉,[;]). For rule [;]:
If after all α-transitions, all β -transitions lead to states satisfying φ (i.e., [α][β]φ
holds), then also all transitions of the sequential composition α;β lead to states sat-
isfying φ (i.e., [α;β]φ holds). See, again, Fig. 2.12 for a graphical illustration of this
proof principle. The dual rule 〈;〉 uses the fact that if there is an α-transition, after
which there is a β -transition leading to φ (i.e., 〈α〉〈β 〉φ), then there is a transition
of α;β leading to φ (that is, 〈α;β 〉φ), because the transitions of α;β are just those
that first do any α-transition, followed by any β -transition (Definition 2.7).

([:=])
φ θ

x

[x :=θ]φ ν ω

φ θ
x

x :=θ
φ

(〈′〉) ∃t≥0〈x := yx(t)〉φ
〈x′ = θ〉φ

ν ω
x′ = θ

φ
x := yx(t)

(〈′〉)
∃t≥0(χ̂ ∧〈x := yx(t)〉φ)

〈x′ = θ & χ〉φ
χ̂ ≡ ∀0≤s≤t 〈x := yx(s)〉χ

ν ω
x′ = θ & χ

φ

x := yx(t)
x := yx (s)

χ

([∪]) [α]φ ∧ [β]φ
[α ∪β]φ

ν

ω1

ω2

α
φ

β φ

α ∪β

([;])
[α][β]φ
[α;β]φ ν μ ω

α;β

[α][β]φ
α

[β]φ
β φ

(ind)
� ∀α (φ → [α]φ)

φ � [α∗]φ
ν ω

α∗

φ

α

φ → [α]φ

α α

φ

(con)
� ∀α∀v>0(ϕ(v)→ 〈α〉ϕ(v−1))

∃vϕ(v) � 〈α∗〉∃v≤0ϕ(v)
ν ω

α∗

∃vϕ(v)

α

∀v>0(ϕ(v)→ 〈α〉ϕ(v−1))

α α

∃v≤0ϕ(v)

84 2 Differential Dynamic Logic dL

Rules 〈∗n〉,[∗n] are the usual iteration rules, which partially unwind loops. Rule
〈∗n〉 uses the fact that φ holds after repeating α (i.e., 〈α∗〉φ), if φ holds at the begin-
ning (for φ holds after zero repetitions then), or if, after one execution of α , φ holds
after any number of repetitions of α , including zero repetitions (i.e., 〈α〉〈α∗〉φ). So
rule 〈∗n〉 expresses that for 〈α∗〉φ to hold, φ must hold either immediately or after
one or more repetitions of α . Rule [∗n] is the dual rule expressing that φ must hold
after all of those combinations for [α∗]φ to hold.

Tests are proven by showing (with a conjunction in rule 〈?〉) or assuming (with an
implication in rule [?]) that the test succeeds, because test ?χ can only make a trans-
ition when condition χ actually holds true (Definition 2.7). Thus, for dL formula
〈?χ〉φ rule 〈?〉 is used to prove that χ holds true (otherwise there is no transition
and thus the reachability property is false) and that φ holds after the resulting no-op.
Rule [?] for dL formula [?χ]φ , in contrast, assumes that χ holds true (otherwise
there is no transition and thus nothing to show) and that φ holds after the resulting
no-op.

Rule 〈:=〉 uses simultaneous substitutions from Fig. 2.10 for handling discrete
jump sets. To show that φ is true after a discrete jump, 〈:=〉 shows that φ has been
true before, when replacing the affected variables xi with their new values θi in φ by
an admissible substitution (Definition 2.8). Alternatively, the discrete jump set can
also remain an unchanged prefix (J in Definition 2.10) for other dL rules applied
to φ , until the substitution for rule 〈:=〉 becomes admissible. This is what our proof
calculus uses instead of what we have shown in Example 2.16. Rule [:=] uses the
fact that discrete jump sets characterise a unique deterministic transition. Hence,
its premise and conclusion are actually equivalent, because there is exactly one ter-
minating transition for each discrete jump set. Assuming the presence of vacuous
identity jumps a :=a for variables a that do not otherwise change (vacuous identity
jumps can be added as they do not change state), we can further use rule 〈:=〉 to
merge subsequent discrete jumps into a single discrete jump set (see previous res-
ults [37] for a compatible calculus detailing jump set merging, which works without
the need to add vacuous identity jumps a :=a):

` 〈z :=− b
2 t2 +Vt,v :=V +1,a :=−b〉[β]φ

〈:=〉 ` 〈a :=−b,v :=V 〉〈z := a
2 t2 + vt,v :=v+1,a :=a〉[β]φ

[:=] ` 〈a :=−b,v :=V 〉[z := a
2 t2 + vt,v :=v+1,a :=a][β]φ

[;] ` 〈a :=−b,v :=V 〉[z := a
2 t2 + vt,v :=v+1,a :=a;β]φ

More generally, 〈x1 :=θ1, . . . ,xn :=θn〉〈x1 :=ϑ1, . . . ,xn :=ϑn〉φ can be merged by
〈:=〉 to 〈x1 :=ϑ1

θ1
x1
. . .θn

xn , . . . ,xn :=ϑn
θ1
x1
. . .θn

xn 〉φ . Also see previous work [37] for more
advanced and optimised merging techniques for state changes.

Given first-order definable flows for their differential equations, proof rules 〈′〉,[′]
handle continuous evolutions (see [15, 189, 238] and App. B for flow approxima-
tion and solution techniques). These flows are combined in the discrete jump set St .
Given a solution St for the differential equation system with symbolic initial val-
ues x1, . . . ,xn, continuous evolution along differential equations can be replaced by
a discrete jump 〈St〉with an additional quantifier for the evolution time t. The effect

2.5 Proof Calculus 85

of the constraint on χ is to restrict the continuous evolution such that its solution St̃
remains in the evolution domain χ at all intermediate times t̃ ≤ t. This constraint
simplifies to true if the evolution domain restriction χ is true, which makes sense,
because there are no special constraints on the evolution (other than the differential
equations) if the evolution domain region is described by true, hence the full space
Rn. A notable special case of rules [′] and 〈′〉 is when the evolution domain χ is true:

∀t≥0〈St〉φ
[x′1 = θ1, . . ,x′n = θn]φ

∃t≥0〈St〉φ
〈x′1 = θ1, . . ,x′n = θn〉φ

(2.12)

Similar simplifications can be made for convex invariant conditions (Sects. 2.9
and 3.8).

Global Rules

The last block of rules []gen,〈〉gen,ind,con are global rules. They depend on the truth
of their premises in all states reachable by hybrid program α , which is ensured by
the universal closure ∀α with respect to all bound state variables (Definition 2.8) of
the respective hybrid program α . This universal closure overapproximates all pos-
sible change caused by α , because it comprises all bound variables. This universal
closure is required for soundness in the presence of contexts Γ ,∆ (Definition 2.10)
or free variables. The global rules are given in a form that best displays their under-
lying logical principles. The general pattern for applying global rules to prove that
the succedent of their conclusion holds is to prove that both their premise and the
antecedent of their conclusion hold. In particular, the antecedent can be thought of
as holding in the current state, whereas the premise can be thought of as holding in
all reachable states because of the universal closure.

Rules []gen,〈〉gen are generalisation rules and can be used to strengthen postcon-
ditions: antecedent [α]φ is sufficient for proving succedent [α]ψ when postcondi-
tion φ entails ψ in all relevant states reachable by α , which are overapproximated
by the universal closure ∀α with respect to the bound variables of α . Clearly, for
rule []gen, if all states reachable by α satisfy φ ([α]φ) and φ implies ψ in all these
states (∀α φ → ψ), then ψ also holds in all states reachable by α ([α]ψ). Similarly,
for rule 〈〉gen, if some state reachable by α satisfies φ (〈α〉φ) and φ implies ψ in all
reachable states (∀α φ → ψ), then ψ also holds in some state reachable by α (〈α〉ψ).

Rule ind is an induction schema with inductive invariant φ . Similarly, con is a
generalisation of Harel’s convergence rule [149] to the hybrid case with decreasing
variant ϕ . Both rules are given in a form that best displays their underlying logical
principles and similarity. Rule ind says that φ holds after any number of repetitions
of α if it holds initially (antecedent) and, for all reachable states (as overapproxim-
ated by ∀α), invariant φ remains true after one iteration of α (premise). If φ is true
after executing α whenever φ has been true before, then, if φ holds in the begin-
ning, φ will continue to hold, no matter how often we repeat α in [α∗]φ ; again, see
Fig. 2.12 for an illustration. Rule con expresses that the variant ϕ(v) holds for some
real number v≤ 0 after repeating α sufficiently often if ϕ(v) holds for some real

86 2 Differential Dynamic Logic dL

number at all in the beginning (antecedent) and, by premise, ϕ(v) decreases after
every execution of α by 1 (or another positive real constant). This rule can be used
to show positive progress (by 1) with respect to ϕ(v) by executing α .

For practical verification, rules ind or con can be combined with generalisation
([]gen,〈〉gen) to prove a postcondition ψ of a loop α∗ by showing that (a) the ante-
cedents of the respective goals of ind and con, which represent the induction start,
holds initially (b) their subgoals, which represent the induction step, hold and (c) the
postcondition of the succedentd in their goals entails ψ . The corresponding variants
of ind and con are derived rules. That is, these rules are non-essential, because they
can be derived easily by chaining the proof rules from Fig. 2.11 together in an ap-
propriate way.

(ind′)
` φ ` ∀α(φ → [α]φ) ` ∀α(φ → ψ)

` [α∗]ψ

(con′)
` ∃vϕ(v) ` ∀α∀v>0(ϕ(v)→ 〈α〉ϕ(v−1)) ` ∀α(∃v≤0ϕ(v)→ ψ)

` 〈α∗〉ψ
For example, using a cut with φ → [α∗]φ , rule ind′ can be derived from ind and
[]gen as follows:

` ∀α(φ → [α]φ)
ind

φ ` [α∗]φ
→r ` φ → [α∗]φ

` φ

` ∀α(φ → ψ)
[]gen[α∗]φ ` [α∗]ψ

→l
φ → [α∗]φ ` [α∗]ψ

cut ` [α∗]ψ

These derived rules are not necessary in theory, but still useful in practise.

Derivability and Proofs

We call any formula φ provable or derivable (in the dL calculus) if we can find
a dL proof for it that starts with axioms (rule ax) at the leaves and ends with a
sequent ` φ at the bottom. While constructing proofs, however, we would start with
the desired goal ` φ at the bottom and work our way backwards to the subgoals
until they can be proven to be valid as axioms (ax). Once all subgoals have been
proven to be valid axioms, they entail their consequences, which, recursively, entail
the original goal ` φ . This property of preserving truth or preserving entailment,
which we prove in Sect. 2.6, is called soundness. Thus, while constructing proofs,
we work bottom-up from the goal. When we have found a proof, we justify formulas
from the axioms top-down to the original goal.

The notions of derivations and proofs for the dL calculus are standard, except
that i∃ produces multiple conclusions. Hence, we define derivations as finite acyclic
graphs instead of trees. We want proofs to be acyclic and not accept a formula that
is used to prove itself.

Definition 2.11 (Provability). A derivation is a finite acyclic graph labelled with
sequents such that, for every node, the (set of) labels of its children must be the (set

2.5 Proof Calculus 87

of) premises of an instance of one of the calculus rules (Definition 2.10) and the (set
of) labels of the parents of these children must be the (set of) conclusions of that rule
instance. A formula ψ is provable from a set Φ of formulas, denoted by Φ `dL ψ ,
iff there is a finite subset Φ0 ⊆Φ for which the sequent Φ0 ` ψ is derivable, i.e.,
there is a derivation with a single root (i.e., node without parents) labelled Φ0 ` ψ .

Example 2.19. A very simple (in fact essentially propositional) proof of the formula

v2 ≤ 10∧b > 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10) (2.13)

is shown in Fig. 2.13. The proof starts with the proof goal as a sequent at the bottom:

` v2 ≤ 10∧b > 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10).

∗
ax v2 ≤ 10,b > 0 ` b > 0
∧lv2 ≤ 10∧b > 0 ` b > 0

∗
ax v2 ≤ 10,b > 0 ` ¬(v≥ 0),v2 ≤ 10
∧lv2 ≤ 10∧b > 0 ` ¬(v≥ 0),v2 ≤ 10
∨rv2 ≤ 10∧b > 0 ` ¬(v≥ 0)∨ v2 ≤ 10

∧r v2 ≤ 10∧b > 0 ` b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10)
→r ` v2 ≤ 10∧b > 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10)

Fig. 2.13 Simple propositional example proof

The first (i.e., bottom most) proof step applies proof rule→r to turn the implic-
ation (→) to the sequent level by moving the assumption into the antecedent. The
next proof step applies rule ∧r to split the proof into the left branch for showing that
conjunct b > 0 follows from the assumptions in the antecedent and into the right
branch for showing that conjunct ¬(v≥ 0)∨ v2 ≤ 10 follows from the antecedent
also. On the left branch, the proof closes with an axiom ax after splitting the con-
junction ∧ on the antecedent with rule ∧l. We mark closed proof goals with ∗. The
right branch closes with an axiom ax after splitting the disjunction (∨) in the suc-
cedent with rule ∨r and then splitting the conjunction (∧) in the antecedent with rule
∧l. Now that all branches of the proof have closed (with ax), we know that all leaves
at the top are valid, and, hence, since the premises are valid, each application of a
proof rule ensures that their respective conclusions are valid also. By recursively
following this derivation from the leaves at the top to the original root at the bottom,
we see that the original goal is valid and formula (2.13) is, indeed, true under all
circumstances (valid).

While this proof does not show anything particularly exciting, because it only
uses propositional rules, it shows how a proof can be build systematically in the dL
calculus and gives an intuition about how validity is inherited from the premises to
the conclusions. �

88 2 Differential Dynamic Logic dL

2.5.3 Deduction Modulo with Invertible Quantifiers and Real
Quantifier Elimination

The first-order quantifier rules in Fig. 2.11 lift quantifier elimination to dL by
following a generalised deduction modulo approach. They integrate decision pro-
cedures, e.g., for real quantifier elimination as a background prover [32], into the
deductive proof system. Yet, unlike in the approaches of Dowek et al. [103] and
Tinelli [290], the information given to the background prover is not restricted to
ground formulas [290] or atomic formulas [103]. Further, real quantifier elimina-
tion is different from uninterpreted logic [147, 122, 134] in that the resulting formu-
las are not obtained by instantiation but by intricate arithmetic recombination. The
quantifier rules can use any theory that admits quantifier elimination (see Defini-
tion 2.9) and has a decidable ground theory, for instance, the first-order theory of
real arithmetic (which is equivalent to the theory of real-closed fields [288, 81]). A
formula of real arithmetic is a first-order formula with +,−, ·,/,=,≤,<,≥,> as
the only function or predicate symbols besides constant symbols of Σ and logical
variables of V . Also see App. D.2.

Integrating quantifier elimination to deal with statements about real quantities
is quite challenging in the presence of modalities that influence the values of flex-
ible symbols. In principle, quantifier elimination can be used to handle quantified
constraints such as those arising for continuous evolutions. In dL , however, real
quantifiers interact with modalities containing further discrete or continuous trans-
itions, which is an effect nherent in the interacting nature of hybrid systems. A hy-
brid formula like ∃z〈z′′ =−b; ?m− z≥ s;z′′ = 0〉m− z < s is not first-order; hence
quantifier elimination cannot be applied. Even more so, the effect of a modality de-
pends on the solutions of the differential equations contained therein. The dynamics
of a hybrid program depends on the values of its parameters (z,b,m,s in the above
case), but, at the same time, the constraints on a quantified variable like z depend on
the effect of the hybrid program. For instance, it is hard to know in advance, which
first-order constraints need to be solved by QE for the above formula. To find out
how z evolves from quantifier ∃z to postcondition m−z < s, the system dynamics in
the modality needs to be taken into account (as for repetitions). Hence, our calculus
first unwraps the first-order structure before applying QE to the resulting arithmetic
formulas.

2.5.3.1 Lifting Quantifier Elimination by Invertible Quantifier Rules

The purpose of the quantifier rules in Fig. 2.11 is to postpone QE until the actual
arithmetic constraints become apparent. The idea is that ∀r,∃l,∃r, and ∀l temporar-
ily remove quantifiers by introducing new auxiliary symbols for quantified variables
such that the proof can be continued beyond the occurrence of the quantifier to fur-
ther analyse the modalities contained therein. Later, when the actual first-order con-
straints for the auxiliary symbol have been discovered, the corresponding quantifier

2.5 Proof Calculus 89

v≥ 0,z < m ` v2 > 2b(m− z)
→r,∧l ` v≥ 0∧ z < m→ v2 > 2b(m− z)

i∃ v≥ 0,z < m ` T ≥ 0

v≥ 0,z < m ` − b
2 T 2 + vT + z > m

〈:=〉v≥ 0,z < m ` 〈z :=− b
2 T 2 + vT + z〉z > m

∧r v≥ 0,z < m ` T ≥ 0∧〈z :=− b
2 T 2 + vT + z〉z > m

∃r v≥ 0,z < m ` ∃t≥0〈z :=− b
2 t2 + vt + z〉z > m

〈′〉 v≥ 0,z < m ` 〈z′ = v,v′ =−b〉z > m
→r,∧l ` v≥ 0∧ z < m→ 〈z′ = v,v′ =−b〉z > m

Fig. 2.14 Deduction modulo for analysis of MA violation in braking mode

can be reintroduced (i∀, i∃) and quantifier elimination QE is applied to reduce the
sequents equivalently to a simpler formula with less (distinct) symbols. In ∃r,∀l,i∃,
the respective auxiliary symbols are free logical variables. In ∀r,∃l,i∀, Skolem func-
tion terms are used instead for reasons that are crucial for soundness and will be
illustrated in the remainder of this section. In this context, we think of free logical
variables as being introduced by γ-rules (∃r and ∀l), and hence implicitly existen-
tially quantified.

To illustrate how quantifier and dynamic rules of dL interact to combine arith-
metic with dynamic reasoning in hybrid systems, we analyse the braking behaviour
in train control. The proof in Fig. 2.14 can be used to analyse whether a train can
violate its MA although it is braking. That is, if the train position z can leave m
(z > m) although it starts inside (z < m) and is braking will full braking force all the
time:

v≥ 0∧ z < m→ 〈z′ = v,v′ =−b〉z > m.

As the proof reveals, the answer depends on the initial velocity v. The proof starts
with the conjecture at the bottom and applies propositional transformation rules
→r,∧l to obtain a decomposed sequent form. Then it uses rule 〈′〉 to replace the dif-
ferential equation with a quantified formula about its solution. For notational con-
venience, we use the simplified 〈′〉 rule from (2.12), as the differential equation is
not restricted to an evolution domain. Now we have a quantified modal formula,
∃t≥0〈z :=− b

2 t2 + vt + z〉z > m, which, unfortunately, cannot be handled by quan-
tifier elimination in real-closed fields, because it is not first-order. Using rule ∃r,
however, the proof can continue by introducing a new free variable T for the quan-
tified variable t and postpone QE. After introducing T , the proof can continue by
splitting a conjunction in the succedent into two branches (rule ∧r) and applying
the assignment with a substitution on the right branch (rule 〈:=〉). Finally, the previ-
ously quantified free variable T only occurs in first-order formulas on all open goals.
Then rule i∃ can be applied in Fig. 2.14 to merge all open proof goals mentioning T ,
reintroduce the quantifier for T , and apply quantifier elimination. The conjunction
of the two goals can be handled by QE and simplification, yielding the resulting
subgoal:

90 2 Differential Dynamic Logic dL

QE
(
∃T ((v≥ 0∧ z < m→ T ≥ 0)∧ (v≥ 0∧ z < m→−b

2
T 2 + vT + z > m))

)
≡ v≥ 0∧ z < m → v2 > 2b(m− z).

After applying rules →r,∧l for structural reasons again, the open branch with this
formula reveals the speed limit and can be used to synthesise a corresponding para-
meter constraint. When v2 > 2b(m− z) holds initially, m can eventually be violated
even in braking mode, as the velocity exceeds the braking force.

Similarly, the dual constraint v2 ≤ 2b(m− z) guarantees that m can be respected
by appropriate braking. The constraint so discovered thus forms a controllability
constraint of ETCS, i.e., a constraint that characterises from which states control
choices exist that guarantee safety. It is essentially equivalent to [z′′ =−b]z≤ m
and ∃a(−b≤ a≤ A∧ [z′′ = a]z≤ m). The resulting controllable region of the state
space of ETCS is illustrated in Fig. 2.15.

Fig. 2.15 Controllable region
of ETCS dynamics

z

v

m

v2 ≤ 2b(m− z)

For comparison, the dual formula v≥ 0∧ z < m→ [z′ = v,v′ =−b]z≤ m can be
analysed as shown in Fig. 2.16 to study under which circumstances the MA is always
respected ([z′′ =−b]z≤ m) rather than under which it can fail (〈z′′ =−b〉z > m).
The outcome again discovers the controllability constraint. The difference of the

v≥ 0,z < m ` v2 ≤ 2b(m− z)
→r,∧l ` v≥ 0∧ z < m→ v2 ≤ 2b(m− z)

i∀ v≥ 0,z < m,s≥ 0 ` − b
2 s2 + vs+ z≤ m

〈:=〉 v≥ 0,z < m,s≥ 0 ` 〈z :=− b
2 s2 + vs+ z〉z≤ m

[:=] v≥ 0,z < m,s≥ 0 ` [z :=− b
2 s2 + vs+ z]z≤ m

→r v≥ 0,z < m ` s≥ 0→ [z :=− b
2 s2 + vs+ z]z≤ m

∀r v≥ 0,z < m ` ∀t≥0 [z :=− b
2 t2 + vt + z]z≤ m

[′] v≥ 0,z < m ` [z′ = v,v′ =−b]z≤ m
→r,∧l ` v≥ 0∧ z < m→ [z′ = v,v′ =−b]z≤ m

Fig. 2.16 Deduction modulo for analysis of MA-safety in braking mode

deduction in Fig. 2.16 compared to that in Fig. 2.14 is that we now use rule [′], which
gives a universal quantifier for time t. With rule ∀r, the quantifier can be turned into
a Skolem constant term s, which does not have any arguments, because no free
logical variables occur. After applying the solution of the differential equation with

2.5 Proof Calculus 91

[:=],〈:=〉, the resulting formula is first-order in the Skolem term s. Then rule i∀ can
be used to reintroduce a universal quantifier for the previously quantified variable,
and to apply quantifier elimination:

QE
(
∀s(v≥ 0∧ z < m∧ s≥ 0→−b

2
s2 + vs+ z≤ m)

)
≡ v≥ 0∧ z < m → v2 ≤ 2b(m− z).

2.5.3.2 Admissibility in Invertible Quantifier Rules

The requirement that substitutions in i∀ are admissible implies that no occurrence
of s(X1, . . . ,Xn) is within the scope of a quantifier for any of these Xi. Admissibil-
ity makes sense, because variables in s(X1, . . . ,Xn) would otherwise be captured by
quantifiers when substituting. The admissibility condition prevents i∀ from rearran-
ging the order of quantifiers from ∃Xi∀s to the weaker ∀s∃Xi . Such a rearrangement
would be unsound, because it is not sufficient to show the weak subgoal ∀s∃Xi
(each s has an Xi) in order to prove the strong statement ∃Xi∀s saying that the
same Xi works for all s. Because this is an important part of soundness, we illustrate
in detail why unsound rearrangements are prevented.

i∀ is not applicable
` QE(∃X (2X +1 < s(X)))

i∃ ` 2X +1 < s(X)
〈:=〉 ` 〈x :=2X +1〉(x < s(X))
∀r ` ∀y〈x :=2X +1〉(x < y)
∃r ` ∃x∀y〈x :=2x+1〉(x < y)

`
false︷ ︸︸ ︷

QE (∃X QE(∀s(2X +1 < s)))
i∃ ` QE(∀s(2X +1 < s))
i∀ ` 2X +1 < s(X)
〈:=〉 ` 〈x :=2X +1〉(x < s(X))
∀r ` ∀y〈x :=2X +1〉(x < y)
∃r ` ∃x∀y〈x :=2x+1〉(x < y)

Fig. 2.17a Wrong rearrangement with de-
duction modulo by invertible quantifiers

Fig. 2.17b Correct reintroduction order with
deduction modulo by invertible quantifiers

For the moment, suppose the rules did not contain QE. The requirement for ad-
missible substitutions (Definition 2.8) ensures that the proof attempt of an invalid
formula in Fig. 2.17a cannot close in the dL calculus. At the indicated position at
the top, i∀, which would unsoundly invert the quantifier order to ∀S∃X , cannot be
applied: In i∀, the substitution inserting s(X) gives ∃Y (2Y +1 < s(X)) by bound
variable renaming instead of ∃X (2X +1 < s(X)), because the substitution would
not otherwise be admissible. Thus, i∀ is not applicable, because the quantified for-
mula is not of the form Ψ(s(X)).

Now, we consider what happens in the presence of QE. The purpose of QE is
to (equivalently) remove quantifiers like ∃X . Thus it is no longer obvious that the
admissibility argument applies, because the blocking variable X would have disap-
peared after successful quantifier elimination. However, quantifier elimination over
the reals is defined in the first-order theory of real arithmetic [288, 81]. Yet, when

92 2 Differential Dynamic Logic dL

eliminating X in Fig. 2.17a, the Skolem term s(X) is no term of real arithmetic, as,
unlike that of +, the interpretation of the Skolem function s is arbitrary. The truth-
value of ∃X (2X +1 < s(X)) depends on the interpretation of s. If I(s) happens to be
a constant function, the formula is true, if I(s)(a) = 2a, however, it is false. In gen-
eral, such cases cannot be distinguished without quantifiers, because two functions
cannot be shown to be identical by evaluating them at finitely many points. Thus,
in the presence of uninterpreted function terms, real arithmetic does not generally
admit quantifier elimination. Consequently, i∃ and i∀ are only applicable if QE is
defined. Yet, we show that QE can be lifted to formulas with Skolem functions,
nevertheless, when these are instances of real arithmetic formulas:

Lemma 2.5 (Quantifier elimination lifting). Quantifier elimination can be lifted
to instances of formulas of first-order theories that admit quantifier elimination, i.e.,
to formulas that result from the base theory by substitution.

Proof. Let formula φ be an instance of ψ , with ψ being a formula of the base
theory, i.e., φ is ψ

θ1
z1 . . .

θn
zn for some variables zi and arbitrary terms θi. As QE is

defined for the base theory, let QE(ψ) be the quantifier-free formula belonging to ψ

according to Definition 2.9. Then QE (ψ)θ1
z1
. . .θn

zn satisfies the requirements of Defin-

ition 2.9 for φ , because � ψ
θ1
z1 . . .

θn
zn ↔ QE (ψ)θ1

z1
. . .θn

zn : For F defined as ψ ↔ QE(ψ),

we have that � F implies � Fθ1
z1 . . .θn

zn by a standard consequence of the Substitution
Lemma 2.2. And ψ ↔ QE(ψ) is indeed valid, by the properties of QE; see Defini-
tion 2.9. ut

With this, consider again the example in Fig. 2.17a. By Lemma 2.5, QE is defined
in the presence of Skolem terms that do not depend on quantified variables, e.g.,
for ∃X (2X +1 < t(Y,Z)), which is an instance of the form (∃X (2X +1 < z))t(Y,Z)

z .
However, QE is not defined in the premise of i∃ when Skolem dependencies on X
occur. In Fig. 2.17a, ∃X (2X +1 < s(X)) is no instance of first-order real arithmetic,
because, by bound variable renaming (∃X (2X +1 < z))s(X)

z yields a different for-
mula ∃Y (2Y +1 < s(X)). An occurrence of s(X), which corresponds to a quantifier
nesting of ∃X ∀s , thus requires s(X) to be eliminated by i∀ before i∃ can elimin-
ate X ; see Fig. 2.17b. Hence, inner universal quantifiers are enforced to be handled
first and unsound quantifier rearrangements are prevented even in the presence of
QE.

Finally, observe that i∀ and i∃ do not require quantifiers to be eliminated in the
exact same order in which they occurred in the original formula. The elimination
order within homogeneous quantifier blocks like ∀x1∀x2 is not restricted as there
are no Skolem dependencies among the corresponding auxiliary Skolem terms. Yet,
eliminating such a quantifier block is sound in any order (accordingly for ∃x1∃x2).
Similarly, i∃ and i∀ could interchange the order of ∀x∃y to the stronger ∃y∀x, be-
cause the resulting Skolem term s for x in the former formula does not depend
on y. In this direction, however, the interchange is sound, as it amounts to proving a
stronger statement. This quantifier rearrangement is not necessarily wise, because it
requires proving a stronger formula, but it is at least sound.

2.5 Proof Calculus 93

2.5.3.3 Quantifier Elimination and Modalities

Quantifier elimination over the first-order theory of reals cannot handle modal for-
mulas. Hence, the dL calculus first reduces modalities to first-order constraints
before applying QE. Yet, this is not necessary for all modalities. The modal sub-
formula in the following example does not impose any constraints on X , but its
truth-value only determines which first-order constraints are imposed on X :

QE(∃X
(
X < 0∧

(
(〈y :=2y+1〉y > 0)→ X > y

))
) ≡ (〈y :=2y+1〉y > 0)→ y < 0.

Modal formulas not containing elimination variable X can be handled by propos-
itional abstraction in QE and remain unchanged. Syntactically, the reason for this
is that dL rule applications on modal formulas that do not contain X will never
produce formulas which do. The semantical reason for the same fact is a general-
isation of the coincidence lemma to dL , which says that values of variables that
do not occur will neither affect the transition structure of a hybrid program nor the
truth-value of formulas.

Lemma 2.6 (Coincidence lemma). If the interpretations (and assignments and
states, respectively) I,η ,ν and J,ε,ω agree on all symbols that occur freely in the
formula φ , then valI,η(ν ,φ) = valJ,ε(ω,φ).

Proof. The proof is by a simple structural induction using the definitions of valu-
ation valI,η(ν , ·) and ρI,η(·) in Definitions 2.5–2.7. ut

2.5.3.4 Global Invertible Quantifier Rules

Rules i∀ and i∃ display an asymmetry. While i∀ works locally on a branch, i∃ needs
to inspect all branches that contain X . The reason for this is that branches are im-
plicitly combined conjunctively in sequent calculus, as all branches have to close
simultaneously for a proof to succeed (Definition 2.11). Universal quantifiers can be
handled separately for conjunctions by ∀x(φ ∧ψ)≡ ∀xφ ∧∀xψ . Existential quan-
tifiers, however, can only be dealt with separately for disjunctions but not for con-
junctions: ∃x(φ ∨ψ)≡ ∃xφ ∨∃xψ . In calculi with a disjunctive proof structure, the
roles of i∀ and i∃ would be interchanged but the phenomenon remains.

Rule i∃ can be applied to the full proof (i.e., all open goals) as a global closing
substitution in the free-variable tableau calculus [122]; cf. App. A. By Lemma 2.6,
however, rule i∃ only needs to consider the set of all open goals Φi ` Ψi that ac-
tually contain X . Rule i∃ resembles global closing substitutions in uninterpreted
free-variable tableaux [134]. Both avoid the backtracking over closing substitutions
that local closing substitutions require. Unlike closing substitutions, however, rule
i∃ uses the fixed semantics of function and predicate symbols of real arithmetic such
that variables can be eliminated equivalently by QE before the proof completes. Ap-
plying i∀ or i∃ early does not necessarily close the proof. Instead, equivalent con-
straints on the remaining variables will be revealed, which can simplify the proof or
help in deriving parametric constraints or invariants.

94 2 Differential Dynamic Logic dL

2.5.4 Verification Example

As a simple example to prove, recall the bouncing ball system (ball) from Ex-
ample 2.5 on p. 45 and its dL specification from Example 2.7 on p. 48. Consider the
intuitive property that the bouncing ball never bounces higher than initial height H
when the precondition of property (2.3) holds initially:

(v2 ≤ 2g(H−h)∧h≥ 0∧g > 0∧H ≥ 0∧1 > c≥ 0)→ [ball](0≤ h≤H). (2.3∗)

The bouncing ball is very simple, but shows some interesting aspects of proofs. In
order to simplify the proof notation, let us discard clock variable τ . Clock τ is not
necessary for the property, and only used to ensure natural switching during the
bounce to prevent the ball from bouncing multiple times while still on the ground
(which would be superdense switching with multiple discrete switches at the exact
same point in time).

For the proof, we define some abbreviations. Let ψ denote the general assump-
tions in the precondition about parameters that do not change during bouncing ball
runs, and let φ denote the state-dependent part of the precondition, that is:

ψ ≡ g > 0∧H ≥ 0∧1 > c≥ 0,

φ ≡ v2 ≤ 2g(H−h)∧h≥ 0.

The dL proof for the bouncing ball property (2.3) is shown in Fig. 2.18.
The proof starts with the property (2.3) at the bottom (goal). After normalising

to sequent form with rules →r,∧l, the proof follows an induction (using the rule
ind′ from p. 86) with invariant φ . Rule ind′ produces two other proof subgoals that
are not shown in Fig. 2.18: the proof goal that the precondition ψ ∧φ implies the
invariant φ (i.e., ψ,φ ` φ) and the proof goal that the invariant φ implies the post-
condition, which gives ψ,φ ` ∀h∀v(φ → 0≤h≤H). Both goals are trivial to prove
by ax and ∀r,i∀, respectively. The quantifiers ∀h∀v in the latter goal result from the
universal closure ∀α in rule ind′. Universal closures are not strictly necessary in
this particular proof, because the premise only contains invariant φ and formula ψ

about symbols that do not change during the hybrid program runs. Thus, the uni-
versal closure immediately disappears after applying ∀r. In general, however, uni-
versal closures in ind and the other global proof rules are critical for soundness; see
Fig. 2.19a versus Fig. 2.19b.

After splitting the sequential composition by dL rule [;], the proof uses rule [′]
with the solution 〈h :=h+ vt− g

2 t2,v :=v−gt〉 of the differential equation system
h′ = v,v′ =−g. We abbreviate this solution by 〈St〉. Again, we use the simplified
[′] rule from (2.12). QE cannot be applied to the result quantifier ∀t≥0〈St〉 . . . , be-
cause the quantified variable t occurs in modalities to which QE is not applicable.
Thus the proof uses ∀r to introduce a Skolem function s for the previously quan-
tified variable t. But unlike for the proof in Fig. 2.14, we do not directly apply the
resulting solution 〈Ss〉 by rule 〈:=〉. The reason is the different system structure
of the bouncing ball. In the bouncing ball program, the differential equation comes

2.5 Proof Calculus 95

∗
i∀

ψ,φ ,s≥0,h+ vs− g
2 s2 = 0 ` (−c(v−gs))2 ≤ 2g(H− (h+ vs− g

2 s2))∧h+ vs− g
2 s2 ≥ 0

〈:=〉
ψ,φ ,s≥0,〈Ss〉h = 0 ` 〈Ss〉〈v :=−cv〉φ

[:=]
ψ,φ ,s≥0,〈Ss〉h = 0 ` 〈Ss〉[v :=−cv]φ

→r
ψ,φ ,s≥0 ` 〈Ss〉(h = 0→ [v :=−cv]φ)

[?]
ψ,φ ,s≥0 ` 〈Ss〉[?h = 0][v :=−cv]φ

[;]
ψ,φ ,s≥0 ` 〈Ss〉[?h = 0;v :=−cv]φ

∗
i∀

ψ,φ ,s≥0,h+ vs− g
2 s2 > 0 ` (v−gs)2 ≤ 2g(H− (h+ vs− g

2 s2))∧h+ vs− g
2 s2 ≥ 0

〈:=〉
ψ,φ ,s≥0,〈Ss〉h > 0 ` 〈Ss〉φ

→r
ψ,φ ,s≥0 ` 〈Ss〉(h > 0→ φ)

[?]
ψ,φ ,s≥0 ` 〈Ss〉[?h > 0]φ

. . .

ψ,φ ,s≥0 ` 〈Ss〉[?h > 0]φ

. . .

ψ,φ ,s≥0 ` 〈Ss〉[?h = 0;v :=−cv]φ
∧r

ψ,φ ,s≥0 ` 〈Ss〉([?h > 0]φ ∧ [?h = 0;v :=−cv]φ)
[∪]

ψ,φ ,s≥0 ` 〈Ss〉[?h > 0∪ (?h = 0;v :=−cv)]φ
→r

ψ,φ ` s≥0→ 〈Ss〉[?h > 0∪ (?h = 0;v :=−cv)]φ
∀r

ψ,φ ` ∀t≥0〈St〉[?h > 0∪ (?h = 0;v :=−cv)]φ
[′]

ψ,φ ` [h′′ =−g][?h > 0∪ (?h = 0;v :=−cv)]φ
[;]

ψ,φ ` [h′′ =−g;(?h > 0∪ (?h = 0;v :=−cv))]φ
ind′

ψ,φ ` [(h′′ =−g;(?h > 0∪ (?h = 0;v :=−cv)))∗](0≤h≤H)
→r,∧l ` ψ∧φ → [(h′′ =−g;(?h > 0∪ (?h = 0;v :=−cv)))∗](0≤h≤H)

Fig. 2.18 Bouncing ball proof (no evolution domain)

unsound
x≤ 0,x≤ 1 ` x+1≤ 1
x≤ 0,x≤ 1 ` [x :=x+1]x≤ 1

x≤ 0 ` x≤ 1→ [x :=x+1]x≤ 1
x≤ 0 ` [(x :=x+1)∗]x≤ 1

not provable
x≤ 0,y≤ 1 ` y+1≤ 1

[:=],〈:=〉x≤ 0,y≤ 1 ` [y :=y+1]y≤ 1
→r x≤ 0 ` y≤ 1→ [y :=y+1]y≤ 1
∀r x≤ 0 ` ∀x(x≤ 1→ [x :=x+1]x≤ 1)
ind x≤ 0 ` [(x :=x+1)∗]x≤ 1

Fig. 2.19a Unsound attempt of induction
without universal closure ∀α

Fig. 2.19b Correct use of induction with uni-
versal closure ∀α , i.e., ∀x

96 2 Differential Dynamic Logic dL

first, and the discrete control equations are executed after that. Thus we keep the
discrete jump set for the solution 〈Ss〉 as an unmodified discrete jump prefix (〈J 〉
in Definition 2.10) for the following rule applications and only apply the assignment
with rule 〈:=〉 to first-order formulas at the end of the proof.

On a side note: we could, in fact, just as well have used rule 〈:=〉 here right away
and substituted v,h inside the hybrid programs immediately, because there are no
remaining loops or differential equations. That would clutter the notation, though,
and we want to illustrate how discrete jump sets can be used as unmodified proof
rule prefixes in Fig. 2.18.

Leaving prefix 〈Ss〉 unchanged, the proof in Fig. 2.18 continues by splitting the
choice between h > 0 and h = 0 with rule [∪] into two conjuncts, which split into
two branches by rule ∧r. On both branches, which are continued as indicated by the
arrows, the test statements are turned into implications by rule [?] and, ultimately,
the accumulated discrete jump sets are applied (with rules [:=],〈:=〉) when the re-
maining formulas are simple. The last step of the proof is to reintroduce quantifiers
for Skolem term s by rule i∀ and apply quantifier elimination to the resulting first-
order formulas on the left and right branches respectively:

QE
(
∀s
(
ψ ∧φ ∧ s≥0∧h+ vs− g

2
s2 > 0

→ (v−gs)2 ≤ 2g(H− (h+ vs− g
2

s2))∧h+ vs− g
2

s2 ≥ 0
))
≡ true;

QE
(
∀s
(
ψ ∧φ ∧ s≥0∧h+ vs− g

2
s2 = 0

→ (−c(v−gs))2 ≤ 2g(H− (h+ vs− g
2

s2))∧h+ vs− g
2

s2 ≥ 0
))
≡ true.

In the proof of Fig. 2.18, we have used a bouncing ball without an evolution do-
main restriction. The bouncing ball property can also be proven with its evolution
domain restricted to h≥ 0 on the differential equation system as in Fig. 2.2; see
Fig. 2.20 for a proof. The proof is slightly more involved compared to Fig. 2.18,
because of the extra constraints from the non-simplified rule [′]. This time, for
a change, we simply choose the full precondition as invariant, although the part
marked in grey is still unaffected by the dynamics:

φ ≡ v2 ≤ 2g(H−h)∧h≥ 0∧g > 0∧H ≥ 0∧1 > c≥ 0.

Note, in particular, that there are many invariants that can be used to prove the same
property. We just need to find one invariant that works.

2.6 Soundness 97

∗
i∀

φ ,s≥0, ,h+ vs− g
2 s2 = 0 ` (−c(v−gs))2 ≤ 2g(H− (h+ vs− g

2 s2))∧h+ vs− g
2 s2 ≥ 0

〈:=〉
φ ,s≥0, ,〈Ss〉h = 0 ` 〈Ss〉〈v :=−cv〉φ

[:=]
φ ,s≥0, ,〈Ss〉h = 0 ` 〈Ss〉[v :=−cv]φ

→r
φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉(h = 0→ [v :=−cv]φ)

[?]
φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉[?h = 0][v :=−cv]φ

[;]
φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉[?h = 0;v :=−cv]φ

∗
i∀

φ ,s≥0, ,h+ vs− g
2 s2 > 0 ` (v−gs)2 ≤ 2g(H− (h+ vs− g

2 s2))∧h+ vs− g
2 s2 ≥ 0

〈:=〉
φ ,s≥0, ,〈Ss〉h > 0 ` 〈Ss〉φ

→r
φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉(h > 0→ φ)

[?]
φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉[?h > 0]φ

. . .

. . . ` 〈Ss〉[?h > 0]φ

. . .

φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉[?h = 0;v :=−cv]φ
∧r

φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉([?h > 0]φ ∧ [?h = 0;v :=−cv]φ)
[∪]

φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉[?h > 0∪ (?h = 0;v :=−cv)]φ
→r

φ ,s≥0 ` 〈Ss〉h≥ 0→ 〈Ss〉[?h > 0∪ (?h = 0;v :=−cv)]φ
→r

φ ` s≥0→ (〈Ss〉h≥ 0→ 〈Ss〉[?h > 0∪ (?h = 0;v :=−cv)]φ)
∀r

φ ` ∀t≥0(〈St〉h≥ 0→ 〈St〉[?h > 0∪ (?h = 0;v :=−cv)]φ)
[′]

φ ` [h′′ =−g&h≥ 0][?h > 0∪ (?h = 0;v :=−cv)]φ
[;]

φ ` [h′′ =−g&h≥ 0;(?h > 0∪ (?h = 0;v :=−cv))]φ
ind′

φ ` [(h′′ =−g&h≥ 0;(?h > 0∪ (?h = 0;v :=−cv)))∗](0≤h≤H)
→r ` φ → [(h′′ =−g&h≥ 0;(?h > 0∪ (?h = 0;v :=−cv)))∗](0≤h≤H)

Fig. 2.20 Bouncing ball proof (with evolution domain)

2.6 Soundness

In this section, we prove that the dL calculus is a sound axiomatisation of the
transition behaviour of hybrid systems. Whatever we can prove in the dL calculus
is actually true.

The proof calculus for dL in Fig. 2.11 needs to fit to the semantics of differential
dynamic logic from Sect. 2.3; otherwise, the proof rules would not be meaningful.
Fortunately, every differential dynamic logic formula that can be derived in the dL
calculus from Fig. 2.11 really is a valid formula! This property of the calculus is
called soundness and is crucial, because it would be disastrous if a formula would
be called “proven” when it is actually not valid, since we could not trust our proofs
then. A calculus is sound iff every formula that can be derived in the calculus is also
valid according to the semantics.

98 2 Differential Dynamic Logic dL

We prove that a successful deduction in the dL calculus always produces correct
verification results about hybrid systems: The dL calculus is sound, i.e., all prov-
able (closed) formulas are valid in all states of all interpretations. We can restrict
our attention to closed formulas, i.e., formulas without free variables to begin with,
because we can start with the universal closure of the formula for validity just as
well. To reflect the interaction of free variables and Skolem terms, we adapt the no-
tion of soundness for the liberalised δ+-rule in free-variable tableau calculi [147] to
sequent calculus.

A formula φ has a model [147] if there is an interpretation I and a state ν such
that for all variable assignments η we have I,η ,ν |= φ . Closed tableaux prove the
unsatisfiability of the negated goal [147]. Sequent calculi work dually and show
validity of the original proof goal. Consequently, we use the dual notion and say
that formula ψ is a consequence of φ iff, for every I,ν there is an assignment η

such that I,η ,ν |= ψ provided that, for every I,ν , there is an assignment η such
that I,η ,ν |= φ . A proof rule that concludes Ψ from the premises Φ is sound if Ψ

is, indeed, a consequence of Φ in the sense just defined. As usual, multiple branches
in Ψ or Φ are combined conjunctively.

In this context, we think of free logical variables as being introduced by γ-rules,
i.e., ∃r and ∀l (hence the implicit existential quantification of free logical variables
by η). For closed formulas (without free logical variables), validity corresponds to
being a consequence from an empty set of open goals. Hence, closed formulas that
are provable with a sound deduction are valid (true in all states of all interpretations).

Theorem 2.1 (Soundness of dL). The dL calculus is sound.

Proof. The calculus is sound if each rule instance is sound. All rules of the dL cal-
culus except ∀r,∃l and i∃ are also locally sound, i.e., their conclusion is true at I,η ,ν
if all its premises are true in I,η ,ν , which implies soundness. It is also easy to show
that locally sound rules remain sound when adding contexts Γ ,∆ ,〈J 〉 as in Defin-
ition 2.10, since a discrete jump set 〈J 〉 characterises a unique state transition.
Local soundness proofs of 〈;〉,[;],〈∪〉,[∪],〈∗n〉,[∗n],〈?〉,[?] and propositional rules are
as usual. Note that, for symmetric rules, local soundness implies that the premise
and conclusion are equivalent, i.e., true in the same states. For an illustration of the
dynamics behind the dynamic proof rules, we recall Fig. 2.12 from p. 83.

〈:=〉 The rule 〈:=〉 is locally sound. Assume that the premise holds in I,η ,ν , i.e.,
I,η ,ν |= φ

θ1
x1 . . .

θn
xn . We have to show that I,η ,ν |= 〈x1 :=θ1, . . ,xn :=θn〉φ ,

i.e., I,η ,ω |= φ for a state ω with (ν ,ω) ∈ ρI,η(x1 :=θ1, . . ,xn :=θn). This
follows directly from the Substitution Lemma 2.2 for admissible substi-
tutions (Definition 2.8). The proof for rule [:=] uses the fact that discrete
jumps are deterministic.

〈;〉 Rule 〈;〉 is locally sound. Assume that the premise holds in I,η ,ν , i.e.,
I,η ,ν |= 〈α〉〈β 〉φ . We have to show that the conclusion holds in I,η ,ν ,
i.e., I,η ,ν |= 〈α;β 〉φ . By premise, I,η ,ν |= 〈α〉〈β 〉φ , we know that there
is a state µ such that (ν ,µ) ∈ ρI,η(α) and I,η ,µ |= 〈β 〉φ . Hence, there is a
state ω such that (µ,ω) ∈ ρI,η(β) and I,η ,ω |= φ . Now, by the semantics

2.6 Soundness 99

of α;β (Definition 2.7), there is a transition from ν to ω (via intermediate
state µ) along α;β . Thus, (ν ,ω) ∈ ρI,η(α;β) and I,η ,ω |= φ , which im-
plies I,η ,ν |= 〈α;β 〉φ . The converse direction can be proven similarly to
show equivalence and the local soundness of the dual rule [;].

〈∪〉 Rule 〈∪〉 is locally sound. Assume that the premise holds in I,η ,ν , i.e.,
I,η ,ν |= 〈α〉φ ∨〈β 〉φ . We have to show that the conclusion holds in I,η ,ν ,
i.e., I,η ,ν |= 〈α ∪β 〉φ . If the disjunction in the premise is true, then one of
its disjuncts must hold in I,η ,ν . Consider the case where I,η ,ν |= 〈α〉φ .
Then there is a state ω such that (ν ,ω) ∈ ρI,η(α) and I,η ,ω |= φ . By
the semantics of α ∪β in Definition 2.7, every transition of α is a trans-
ition of α ∪β . Hence (ν ,ω) ∈ ρI,η(α ∪β) and I,η ,ω |= φ , which imply
I,η ,ν |= 〈α ∪β 〉φ . If, instead, the second disjunct I,η ,ν |= 〈β 〉φ holds,
then the proof is similar. Either way, we have I,η ,ν |= 〈α ∪β 〉φ . The con-
verse direction can be proven accordingly to show equivalence and the local
soundness of the dual rule [∪].

〈∗n〉 Rule 〈∗n〉 is locally sound. Assume that the premise holds in I,η ,ν , i.e.,
assume I,η ,ν |= φ ∨〈α〉〈α∗〉φ . We have to show that the conclusion holds
in I,η ,ν , i.e., I,η ,ν |= 〈α∗〉φ . The disjunction in the premise holds; hence,
one of the disjuncts holds. Consider the case where I,η ,ν |= φ ; then
I,η ,ν |= 〈α∗〉φ already holds with zero repetitions α∗ for φ is true in the
beginning. Consider the case where I,η ,ν |= 〈α〉〈α∗〉φ . Thus, there is an
α-transition to a state µ such that (ν ,µ) ∈ ρI,η(α) with I,η ,µ |= 〈α∗〉φ .
Consequently, there is an α∗-transition to a state ω with (µ,ω) ∈ ρI,η(α

∗)
and I,η ,ω |= φ . Obviously, every α-transition also is an α∗-transition, be-
cause repetitions may choose to repeat only once. In particular, by chain-
ing the α-transition (ν ,µ) ∈ ρI,η(α)⊂ ρI,η(α

∗) with the α∗-transition
(µ,ω) ∈ ρI,η(α

∗), we obtain a longer α∗-transition (ν ,ω) ∈ ρI,η(α
∗) by

the transition semantics in Definition 2.7. Hence, in either case, we con-
clude I,η ,ν |= 〈α∗〉φ . The converse direction can be proven accordingly
to show equivalence and the local soundness of the dual rule [∗n].

〈?〉 Rule 〈?〉 is locally sound. Assume that the premise holds in I,η ,ν , i.e.,
I,η ,ν |= χ ∧φ . We have to show that the conclusion holds in I,η ,ν , i.e.,
I,η ,ν |= 〈?χ〉φ . We have to show that there is a transition along ?χ to a
state where φ holds. By the semantics in Definition 2.7, there is only a trans-
ition along hybrid program ?χ if I,η ,ν |= χ and the state is not changed
by ?χ transitions. Now the premise implies I,η ,ν |= χ and I,η ,ν |= φ ,
which, together, imply I,η ,ν |= 〈?χ〉φ . Since this is the only case where
?χ can make a transition to a state satisfying φ , it shows equivalence. Local
soundness of the dual rule [?] follows from this.

〈′〉 The rule 〈′〉 is locally sound. Let y1, . . . ,yn be a solution for the dif-
ferential equation system x′1 = θ1, . . . ,x′n = θn with symbolic initial val-
ues x1, . . . ,xn. Let further 〈St〉 be the jump set 〈x1 :=y1(t), . . . ,xn :=yn(t)〉.
Assume I,η ,ν are such that the premise is true: I,η ,ν |= ∃t≥0(χ̄ ∧〈St〉φ)
with ∀0≤t̃≤t 〈St̃〉χ abbreviated as χ̄ . For any ζ ∈ R, we denote by ηζ the
assignment that agrees with η except that it assigns ζ to t. Then, by as-

100 2 Differential Dynamic Logic dL

sumption, there is a real value r≥ 0 such that I,ηr,ν |= χ̄ ∧〈St〉φ . Abbre-
viate x′1 = θ1, . . ,x′n = θn & χ by D . We have to show that I,η ,ν |= 〈D〉φ .
Equivalently, by Lemma 2.6, we show I,ηr,ν |= 〈D〉φ , because t is a fresh
variable that does not occur in D or φ . Let function f : [0,r]→ Sta(Σ) be
defined such that (ν , f (ζ)) ∈ ρI,ηζ (St) for all ζ ∈ [0,r]. By premise, f (0)
is identical to ν and φ holds at f (r). Thus it only remains to be shown
that f respects the constraints of Definition 2.7 for D . In fact, f obeys the
continuity and differentiability properties of Definition 2.7 by the corres-
ponding properties of the yi. Moreover, valI,ηr(f (ζ),xi) = valI,ηr(ν ,yi(t))
has a derivative of value valI,ηr(f (ζ),θi), because yi is a solution of the
differential equation x′i = θi with corresponding initial value ν(xi). Fur-
ther, it can be shown that the evolution domain χ is respected along f
as follows: By premise, I,ηr,ν |= χ̄ holds for the initial state ν ; thus
valI,ηr(f (ζ),χ) = true for all ζ ∈ [0,r]. Combining these results, we can
conclude that f is a witness for I,η ,ν |= 〈D〉φ . The converse direction can
be shown accordingly to prove the dual rule [′] using Lemma 2.1.

∀r The proof is a sequent calculus adaptation of that in [147]. By contra-
position, assume that there are I,ν such that for all η it is the case
that I,η ,ν 6|= ∀xφ(x); hence I,η ,ν |= ∃x¬φ(x). We construct an inter-
pretation I′ that agrees with I except for the new function symbol s.
Let b1, . . . ,bn ∈ R be arbitrary elements and let ηb assign bi to the re-
spective Xi for 1≤ i≤ n. As I,η ,ν |= ∃x¬φ(x) holds for all η , we pick
a witness d for I,ηb,ν |= ∃x¬φ(x) and choose I′(s)(b1, . . . ,bn) = d. For
this interpretation I′ and state ν we have I′,η ,ν 6|= φ(s(X1, . . . ,Xn)) for all
assignments η by Lemma 2.6, as X1, . . ,Xn are all free variables determ-
ining the truth-value of φ(s(X1, . . . ,Xn)). To see that the contexts Γ ,∆ of
Definition 2.10 can be added to instantiate this rule, consider the follow-
ing. Since s is new and does not occur in the context Γ ,∆ , the latter do not
change their truth-value by passing from I to I′. Likewise, s is rigid so that
it does not change its value by adding jump prefix 〈J 〉 which concludes
the proof. The proof of ∃l is dual.

i∀ i∀ is locally sound. Assume that I,η ,ν |= QE(∀X (Φ(X) `Ψ(X))). Since
QE yields an equivalence, we can conclude I,η ,ν |= ∀X (Φ(X) `Ψ(X)).
Then if the antecedent of the conclusion is true, I,η ,ν |= Φ(s(X1, . . . ,Xn)),
we conclude I,η ,ν |= Ψ(s(X1, . . . ,Xn)) by choosing valI,η(ν ,s(X1, . . . ,Xn))
for X in the premise. By admissibility of substitutions, variables X1, . . . ,Xn
are free at all occurrences of s(X1, . . . ,Xn), and hence their value is the same
in all occurrences.

∃r ∃r is locally sound by a simplified version of the proof in [147]. For
any I,η ,ν with I,η ,ν |= φ(X) we can conclude I,η ,ν |= ∃xφ(x) accord-
ing to the witness η(X). The proof of ∀l is dual.

i∃ For any I,ν let η be such that I,η ,ν |= QE(∃X ∧i(Φi `Ψi)). Again,
this implies I,η ,ν |= ∃X ∧i(Φi `Ψi), because quantifier elimination yields
an equivalence. We pick a witness d ∈ R for this existential quantifier.
As X does not occur anywhere else in the proof, it disappears from all

2.7 Completeness 101

open premises of the proof by applying i∃. Hence, by the Coincidence
Lemma 2.6, the value of X does not change the truth-value of the premise
of i∃. Consequently, η can be extended to η ′ by changing the interpreta-
tion of X to the witness d such that I,η ′,ν |= ∧

i(Φi `Ψi). Thus, η ′ ex-
tends I,η ,ν to a simultaneous model of all conclusions.

〈〉gen Rules []gen–con are locally sound by a variation of the usual proofs [149]
using universal closures for local soundness. []gen,〈〉gen are simple refine-
ments of Lemma 2.6 using the fact that the universal closure ∀α comprises
all variables that change in α . Let I,η ,ν |= 〈α〉φ , i.e., let (ν ,ν ′) ∈ ρI,η(α)
with I,η ,ν ′ |= φ . As α can only change its bound variables, which are
quantified universally in the universal closure ∀α , the premise implies
I,η ,ν ′ |= φ → ψ; thus I,η ,ν ′ |= ψ and I,η ,ν |= 〈α〉ψ . The proof of []gen
is similar.

ind For any I,η ,ν with I,η ,ν |= ∀α(φ → [α]φ), we know I,η ,ν ′ |= φ → [α]φ
for all ν ′ with (ν ,ν ′) ∈ ρI,η(α). As these share the same η , we can fur-
ther conclude I,η ,ν |= φ → [α∗]φ by induction along the series of states ν ′

reached from ν by repeating α . The universal closure is necessary as, oth-
erwise, the premise may yield different η in different states ν ′.

con Assume that the antecedent and premise hold in I,η ,ν . By premise, we
have I,η [v 7→ d],ν ′ |= v > 0∧ϕ(v)→ 〈α〉ϕ(v−1) for all d ∈ R and all
states ν ′ that are reachable by α∗ from ν , because ∀α comprises all vari-
ables that are bound by α , which are the same as those bound by α∗.
By antecedent, there is a d ∈ R such that I,η [v 7→ d],ν |= ϕ(v). Now,
the proof is a well-founded induction on d. If d ≤ 0, we directly have
I,η ,ν |= 〈α∗〉∃v≤0ϕ(v) for zero repetitions. Otherwise, if d > 0, we have,
by premise, that

I,η [v 7→ d],ν |= v > 0∧ϕ(v)→ 〈α〉ϕ(v−1).

As v > 0∧ϕ(v) holds true at I,η [v 7→ d],ν , we have for some ν ′ with
(ν ,ν ′) ∈ ρI,η [v7→d](α) that I,η [v 7→ d],ν ′ |= ϕ(v−1). In particular, we can
conclude that I,η [v 7→ d−1],ν ′ |= ϕ(v) satisfies the induction hypothesis
for a smaller d and a reachable ν ′, because (ν ,ν ′) ∈ ρI,η(α) as v does not
occur in α . The induction is well-founded, because d decreases by 1 up to
the base case d ≤ 0. ut

With this soundness theorem, we now know that everything we prove in the dL
calculus accurately reflects reality, because the syntactic proofs built with Fig. 2.11
fit to the semantics defined in Sect. 2.3.

2.7 Completeness

In this section, we prove that the dL calculus is a sound and complete axiomatisa-
tion of the transition behaviour of hybrid systems relative to differential equations.

102 2 Differential Dynamic Logic dL

With Soundness Theorem 2.1, we have shown that all provable formulas are
valid. So we know that will never prove something that does not even hold (is not
valid). The converse question is whether all valid formulas are also provable, i.e.,
whether we will always be able to prove all formulas that are “true” (valid). Have
we just been lucky with the successful proofs that we managed to show so far? Or
is there a deeper reason for which we can know that, in principle, we could also find
proofs for all other valid formulas?

2.7.1 Incompleteness

Theorem 2.1 shows that all provable closed dL formulas are valid. The converse
question is whether the dL calculus is complete, i.e., all valid dL formulas are
provable. Combining completeness for first-order logic [147] and decidability of
real arithmetic [81], it is easy to see that our calculus is complete for closed for-
mulas of first-order real arithmetic by chaining the quantifier rules ∀r,∃l,∃r,∀l with
the respective inverse rules i∀,i∃, using propositional rules as needed to unfold the
propositional structure. In the presence of modalities, however, dL is not axiomat-
isable and, unlike its basis of first-order real arithmetic, dL is undecidable. Both
unbounded repetition in the discrete fragment and unbounded evolution in the con-
tinuous fragment cause incompleteness. Beyond hybrid dynamics, where reachab-
ility is known to be undecidable [156], we show that even the purely discrete and
purely continuous parts of dL are not effectively axiomatisable. Hence, valid dL
formulas are not always provable.

Theorem 2.2 (Incompleteness of dL). Both the discrete fragment and the con-
tinuous fragment of dL are not effectively axiomatisable, i.e., they have no sound
and complete effective calculus, because natural numbers are definable in both frag-
ments.

Proof. We prove that natural numbers are definable among the real numbers of dL
interpretations in both fragments. Then these fragments extend first-order integer
arithmetic such that the incompleteness theorem of Gödel [137] applies. Gödel’s
incompleteness theorem shows that no logic extending first-order integer arithmetic
can have a sound and complete effective calculus. Natural numbers are definable in
the discrete fragment without continuous evolutions using repetitive additions:

nat(n) ↔ 〈x :=0;(x :=x+1)∗〉 x = n.

In the continuous fragment, an isomorphic copy of the natural numbers is definable
using linear differential equations:

nat(n) ↔ ∃s∃c∃τ (s = 0∧c = 1∧τ = 0∧〈s′ = c,c′ =−s,τ ′ = 1〉(s = 0∧τ = n)).

These differential equations characterise sin and cos as unique solutions for s and c,

2.7 Completeness 103

τ

s

π 3π 5π2π 4π

Fig. 2.21 Characterisation of N as zeros of solutions of differential equations

respectively. Their zeros, as detected by τ , correspond to an isomorphic copy of
natural numbers, scaled by π , i.e., nat(n) holds iff n is of the form kπ for a k ∈ N;
see Fig. 2.21. The initial values for s and c prevent the trivial solution identical to 0.

ut

In this context, note that hybrid programs contain a computationally complete
sublanguage and that reachability of hybrid systems is undecidable [156].

2.7.2 Relative Completeness

The standard approach for showing adequacy of a calculus when its logic is not
effectively axiomatisable is to analyse the deductive power of the calculus relative
to a base logic or to an ineffective oracle rule for the base logic [87, 148, 149].
In calculi for discrete programs, completeness is proven relative to the handling
of data [87, 148, 149]. For hybrid systems, this is inadequate: By Theorem 2.2,
no sound calculus for dL can be complete relative to its data (the reals), because
its basis, first-order real arithmetic, is a perfectly decidable and axiomatisable the-
ory [288]. If the dL calculus itself would be complete relative to the data of first-
order real arithmetic, then, since this is a decidable logic, the dL calculus would be
complete altogether, which would contradict Theorem 2.2. Thus, we need a different
basis for a relative completeness argument. Unlike in classical discrete programs,
the data is not where the complexity comes from. In hybrid dynamical systems, the
complexity truly originates from the actual dynamics.

According to Theorem 2.2, both continuous evolutions and repetitive discrete
transitions, as well as their interaction, cause non-axiomatisability of dL . Discrete
transitions and repetition do not supersede the complexity of continuous transitions.
Even relative to an oracle for handling properties of discrete jumps and repetition,
the dL calculus is not complete, simply because not all differential equations have
solutions that are definable in first-order arithmetic so that rule [′] can be used.
For instance, the solutions of s′ = c,c′ =−s are trigonometric functions (like sin
and cos), which are not first-order definable. The question is whether the converse
is true, i.e., whether hybrid programs can be verified given that all required differ-
ential equations can be handled.

104 2 Differential Dynamic Logic dL

To calibrate the deductive power of the dL calculus in light of its inherent in-
completeness, we analyse the quotient of reasoning about hybrid systems modulo
differential equation handling. Using generalisations of the usual notions of relative
completeness for discrete systems [87, 148, 149] to the hybrid case, we show that
the dL calculus completely axiomatises dL relative to one single additional axiom
about valid first-order properties of differential equations. Essentially, we drop the
effectiveness requirement for one oracle axiom and show that the resulting dL cal-
culus is sound and complete. We thus show that the dL calculus would be complete
if only we had a complete replacement for [′],〈′〉. Although repetitions and inter-
actions of hybrid programs are more involved than purely continuous systems, this
results emphasises the importance of studying approximations of this continuous
oracle for the analysis of hybrid systems, as we do in Chap. 3.

As a basis, we define FOD as the first-order logic of differential equations, i.e.,
first-order real arithmetic augmented with formulas expressing properties of differ-
ential equations, that is, dL formulas of the form [x′1 = θ1, . . . ,x′n = θn]F with a
first-order formula F . Dually, the diamond formula 〈x′1 = θ1, . . . ,x′n = θn〉F is ex-
pressible as ¬[x′1 = θ1, . . . ,x′n = θn]¬F .

Theorem 2.3 (Relative completeness of dL). The dL calculus is complete rel-
ative to FOD, i.e., every valid dL formula can be derived from FOD tautologies.

Proof (Outline). The (constructive) proof, which, in full, is contained in the re-
mainder of this section, adapts the techniques of Cook [87] and Harel [148, 149] to
the hybrid case. The decisive step is to show that every valid property of a repeti-
tion α∗ can be proven by rules ind or con, respectively, with a sufficiently strong
invariant or variant that is expressible in dL . For this, we show that dL formulas
can be expressed equivalently in FOD, and that valid dL formulas can be derived
from corresponding FOD axioms in the dL calculus. In turn, the crucial step is to
construct a finite FOD formula that characterises the effect of unboundedly many
repetitive hybrid transitions and just uses finitely many real variables. ut

This main result completely aligns hybrid and continuous verification proof-the-
oretically. It gives a formal justification that reasoning about hybrid systems is pos-
sible to exactly the same extent to which it is possible to show properties of solutions
of differential equations. Theorem 2.3 shows that superpositions or combinations of
discrete jumps, continuous evolutions, and repetitions of hybrid processes can be
verified whenever corresponding (intermediate) properties of differential equations
are provable. Moreover, in a proof-theoretical sense, our calculus completely lifts
all verification techniques for dynamical systems to hybrid systems perfectly. Sum-
marising Theorems 2.1 and 2.3:

The dL calculus axiomatises the transition behaviour of hybrid systems com-
pletely relative to the handling of differential equations!

In the following subsections, we present a fully constructive proof of The-
orem 2.3, which generalises the techniques of Harel [148, 149] and Cook [87] to

2.7 Completeness 105

the hybrid case. It shows that for every valid dL formula, there is a finite set of
valid FOD formulas from which it can be derived in the dL calculus. Recall the
proof outline of Theorem 2.3 for a road map of the proof.

Natural numbers are definable in FOD by Theorem 2.2. In this section, we ab-
breviate quantifiers over natural numbers, e.g., ∀x(nat(x)→ φ) by ∀x :N φ and
∃x(nat(x)∧φ) by ∃x :N φ . Likewise, we abbreviate quantifiers over integers, e.g.,
∀x((nat(x)∨nat(−x))→ φ) by ∀x :Z φ .

2.7.3 Characterising Real Gödel Encodings

As the central device for constructing a FOD formula that captures the effect of un-
boundedly many repetitive hybrid transitions and just uses finitely many real vari-
ables, we prove that a real version of Gödel encoding is definable in FOD. That is,
we give a FOD formula that reversibly packs finite sequences of real values into a
single real number.

Observe that a single differential equation system is not sufficient for defin-
ing these pairing functions as their solutions are differentiable, and yet, as a con-
sequence of Morayne’s theorem [213], there is no differentiable surjection R→R2,
nor to any part of R2 of positive measure. We show that real sequences can be
encoded nevertheless by chaining the effects of solutions of multiple differential
equations and quantifiers.

Lemma 2.7 (R-Gödel encoding). The formula at(Z,n, j,z), which holds iff Z is a
real number that represents a Gödel encoding of a sequence of n real numbers with
real value z at position j (for 1≤ j ≤ m), is definable in FOD. For a formula φ(z)
we abbreviate ∃z(at(Z,n, j,z)∧φ(z)) by φ(Z(n)

j).

∞

∑
i=0

ai

2i = a0.a1a2 . . .

∞

∑
i=0

bi

2i = b0.b1b2 . . .

∞

∑
i=0

(
ai

22i−1 +
bi

22i

)
= a0b0.a1b1a2b2 . . .

Fig. 2.22 Fractional encoding principle of R-Gödel encoding by bit interleaving

Proof. The basic idea of the R-Gödel encoding is to interleave the bits of real num-
bers as depicted in Fig. 2.22 (for a pairing of n = 2 numbers a and b). For de-
fining at(Z,n, j,z), we use several auxiliary functions to improve readability; see
Fig. 2.23. Note that these definitions need no recursion. Hence, as in the nota-
tion φ(Z(n)

j), we can consider occurrences of the function symbols as syntactic ab-
breviations for quantified variables satisfying the respective definitions.

106 2 Differential Dynamic Logic dL

at(Z,n, j,z) ↔∀i :Z digit(z, i) = digit(Z,n(i−1)+ j)∧nat(n)∧nat(j)∧n > 0
digit(a, i) = intpart(2frac(2i−1a))
intpart(a) = a− frac(a)

frac(a) = z↔ ∃i :Z z = a− i∧−1 < z∧ z < 1∧az≥ 0
2i = z↔ i≥ 0∧∃x∃t (x = 1∧ t = 0∧〈x′ = x ln2, t ′ = 1〉(t = i∧ x = z))

∨ i < 0∧∃x∃t (x = 1∧ t = 0∧〈x′ =−x ln2, t ′ =−1〉(t = i∧ x = z))
ln2 = z↔ ∃x∃t (x = 1∧ t = 0∧〈x′ = x, t ′ = 1〉(x = 2∧ t = z))

Fig. 2.23 FOD definition characterising Gödel encoding of R-sequences in one real number

The function symbol digit(a, i) gives the ith bit of a ∈ R when represented with
basis 2. For i > 0, digit(a, i) yields fractional bits, and, for i≤ 0, it yields bits of the
integer part. For instance, digit(a,1) yields the first fractional bit, digit(a,0) is the
least-significant bit of the integer part of a. The function intpart(a) represents the
integer part of a ∈ R. The function frac(a) represents the fractional part of a ∈ R,
which drops all integer bits. The last constraint in its definition implies that frac(a)
keeps the sign of a (or 0). Consequently, intpart(a) and digit(a, i) also keep the
sign of a (or 0). Exponentiation 2i is definable using differential equations, using
an auxiliary characterisation of the natural logarithm ln2. The definition of 2i splits
into the case of exponential growth when i≥ 0 and a symmetric case of exponential
decay when i < 0. ut

2.7.4 Expressibility and Rendition of Hybrid Program Semantics

In order to show that dL is sufficiently expressive to state the invariants and vari-
ants that are needed for proving valid statements about loops with rules ind and
con, we prove an expressibility result. We give a constructive proof that the state
transition relation of hybrid programs is definable in FOD, i.e., there is a FOD for-
mula Sα(~x,~v) characterising the state transitions of hybrid program α from the state
characterised by the vector~x of variables to the state characterised by vector~v.

For this, we need to characterise hybrid processes equivalently by differential
equations in FOD. Observe that the existence of such characterisations does not fol-
low from results embedding Turing machines into differential equations [57, 140],
because, unlike Turing machines, hybrid processes are not restricted to discrete val-
ues on a grid (such as Nk) but work with continuous real values. Furthermore, Tur-
ing machines only have repetitions of discrete transitions on discrete data (e.g., N).
For hybrid programs, in contrast, we have to characterise repetitive interactions of
discrete and continuous transitions in continuous space (some Rk).

Lemma 2.8 (Hybrid program rendition). For every hybrid program α with vari-
ables among~x = x1, . . . ,xk, there is a FOD formula Sα(~x,~v) with variables among
the 2k distinct variables~x = x1, . . . ,xk and~v = v1, . . . ,vk such that

� Sα(~x,~v)↔ 〈α〉~x =~v

2.7 Completeness 107

or, equivalently, for every I,η ,ν ,

I,η ,ν |= Sα(~x,~v) iff (ν ,ν [~x 7→ valI,η(ν ,~v)]) ∈ ρI,η(α).

Sx1:=θ1,..,xk:=θk (~x,~v)≡
k∧

i=1

(vi = θi)

Sx′1=θ1,..,x′k=θk
(~x,~v)≡ 〈x′1 = θ1, . . ,x′k = θk〉~v =~x

Sx′1=θ1,..,x′k=θk & χ (~x,~v)≡ ∃t
(
t = 0∧〈x′1 = θ1, . . ,x′k = θk, t ′ = 1〉

(
~v =~x

∧ [x′1 =−θ1, . . ,x′k =−θk, t ′ =−1](t ≥ 0→ χ)
))

S?χ (~x,~v)≡~v =~x∧χ

Sβ∪γ (~x,~v)≡Sβ (~x,~v)∨Sγ (~x,~v)

Sβ ;γ (~x,~v)≡ ∃~z(Sβ (~x,~z)∧Sγ (~z,~v))

Sβ ∗ (~x,~v)≡ ∃Z∃n :N
(
Z(n)

1 =~x∧Z(n)
n =~v

∧∀i :N (1≤ i < n→Sβ (Z
(n)
i ,Z(n)

i+1))
)

Fig. 2.24 Explicit rendition of hybrid program transition semantics in FOD

Proof. By Lemma 2.6, interpretations of the vectors ~x and ~v characterise the input
and output states, respectively, as far as α is concerned. These vectors are finite
because α is finite. Vectorial equalities like~x =~v or quantifiers ∃~v are to be under-
stood componentwise. The program rendition is defined inductively in Fig. 2.24. To
simplify the notation, we assume that all variables x1, . . . ,xk are affected in discrete
jumps and differential equations by adding vacuous xi :=xi, or x′i = 0 if xi does not
change in the respective statement.

Differential equations give FOD formulas; no further reduction is needed. Evol-
ution along differential equations with evolution domain restrictions is definable by
following the unique flow (Lemma 2.1) backwards. Continuous evolution is revers-
ible, i.e., the transitions of x′i =−θ are inverse to those of x′i = θ . Consequently,
with an auxiliary variable t, all evolutions of [x′1 =−θ1, . . ,x′k =−θk, t ′ =−1] fol-
low the same flow as 〈x′1 = θ1, . . ,x′k = θk, t ′ = 1〉, but backwards. By also reversing
clock t, we ensure that, along the reverse flow, χ has been true at all times (because
of the box modality) until starting time t = 0; see Fig. 2.25.

To show reversibility, let (ν ,ω) ∈ ρI,η(x′1 = θ1, . . ,x′k = θk), that is, let f : [0,r]→
Sta(Σ) be a solution of x′1 = θ1, . . ,x′k = θk starting in state ν and ending in ω . Then
g : [0,r]→ Sta(Σ), defined as g(ζ) = f (r−ζ), starts in ω and ends in ν . Thus, it
only remains to show that g is a solution of x′1 =−θ1, . . ,x′k =−θk, which can be
seen for 1≤ i≤ k as follows:

108 2 Differential Dynamic Logic dL

Fig. 2.25 Evolution domain
checks along backwards flow
over time t

t

~x

χ

~v reverse flow and time;
check χ backwards

x′ = θ

0 r

x′ =−θ

dg(t)(xi)

dt
(ζ) =

d f (r−t)(xi)

dt
(ζ) =

d f (u)(xi)

du
d(r−t)

dt
(ζ) =−d f (u)(xi)

du
(ζ)

=− valI,η(f (ζ),θi) = valI,η(f (ζ),−θi).

Unlike all other cases, case Sx′1=θ1,..,x′k=θk & χ(~x,~v) in Fig. 2.24 uses nested FOD
modalities. Nested modalities can be avoided in Sα(~x,~v) using an equivalent FOD
formula without them; see Fig. 2.25:

∃t ∃r
(
t = 0∧〈x′1 = θ1, . . ,x′k = θk, t ′ = 1〉(~v =~x∧ r = t)∧
∀~x∀t (~x =~v∧ t = r→ [x′1 =−θ1, . . ,x′k =−θk, t ′ =−1](t ≥ 0→ χ))

)
.

With a finite formula, the characterisation of repetition Sβ ∗(~x,~v) in FOD needs to
capture arbitrarily long sequences of intermediate real-valued states and the correct
transition between successive states of such a sequence. To achieve this with first-
order quantifiers, we use the real Gödel encoding from Lemma 2.7 in Fig. 2.24 to
map unbounded sequences of real-valued states reversibly to a single real number Z,
which can be quantified over in first-order logic. ut

Using the program rendition from Lemma 2.8 to characterise modalities, we
prove that every dL formula can be expressed equivalently in FOD by structural
induction.

Lemma 2.9 (dL Expressibility). Logic dL is expressible in FOD: for all dL for-
mulas φ ∈ Fml(Σ ,V) there is a FOD formula φ # ∈ FmlFOD(Σ ,V) that is equivalent,
i.e., � φ ↔ φ #. The converse holds trivially.

Proof. The proof follows an induction on the structure of formula φ for which it
is imperative to find an equivalent φ # in FOD. Observe that the construction of φ #

from φ is effective.

0. If φ is a first-order formula, then φ # := φ already is a FOD formula such that
nothing has to be shown.

1. If φ is of the form ϕ ∨ψ , then by the induction hypothesis there are FOD for-
mulas ϕ#,ψ# such that � ϕ ↔ ϕ# and � ψ ↔ ψ#, from which we can con-
clude by congruence that � (ϕ ∨ψ)↔ (ϕ#∨ψ#), giving � φ ↔ φ # by choos-
ing ϕ#∨ψ# for φ #. Similar reasoning addresses the other propositional con-
nectives or quantifiers.

2. The case where φ is of the form 〈α〉ψ is a consequence of the characterisation of
the semantics of hybrid programs in FOD. The expressibility conjecture holds

2.7 Completeness 109

by the induction hypothesis using the equivalence of explicit hybrid program
renditions from Lemma 2.8:

� 〈α〉ψ ↔∃~v(Sα(~x,~v)∧ψ
#~v
~x).

3. The case where φ is [α]ψ is again a consequence of Lemma 2.8:

� [α]ψ ↔∀~v(Sα(~x,~v)→ ψ
#~v
~x)

ut

The above proofs directly carry over to rich test dL , i.e., the logic where dL
formulas are allowed in tests ?χ of hybrid programs and evolution domain restric-
tions χ of differential equations, when using χ# in place of χ in Fig. 2.24. Accord-
ingly, nested modalities can be avoided in FOD by using the following formula for
Sx′1=θ1,..,x′k=θk & χ(~x,~v):

∃t ∃r
(
t = 0∧〈x′1 = θ1, . . ,x′k = θk, t ′ = 1〉(~v =~x∧ r = t)∧
∀~z
(
∃~x∃t (~x =~v∧ t = r∧〈x′1 =−θ1, . . ,x′k =−θk, t ′ =−1〉(t ≥ 0∧~z =~x))

→ χ
#~z
~x
))
.

2.7.5 Relative Completeness of First-Order Assertions

As special cases of Theorem 2.3, we first prove relative completeness for first-order
assertions about hybrid programs. These first-order cases constitute the basis for the
general completeness proof for arbitrary formulas of differential dynamic logic.

In the following relative completeness proofs, we use the notation `D φ to indic-
ate that a dL formula φ is derivable (Definition 2.11) from a set of FOD tautologies,
which is equivalent to saying that φ is derivable in the dL calculus augmented with
a single oracle axiom D that gives all valid FOD instances. Likewise, we use the
notation Γ `D ∆ to indicate that the sequent Γ ` ∆ is derivable from D .

For the completeness proof, we use several simplifications. For uniform proofs,
we assume formulas to use a simplified vocabulary. A formula φ is valid iff it is true
in all I,η ,ν . In particular, we can assume valid φ to use Skolem constants (or state
variables) instead of free logical variables. Existential quantifiers can be represented
as modalities: ∃xφ ≡ 〈x′ = 1〉φ ∨〈x′ =−1〉φ . For simplicity, we use cut (cut) and
weakening to glue together subproofs propositionally. Weakening (i.e., from φ ` ψ

infer φ1,φ ` ψ,ψ1) can be emulated using contexts Γ ,∆ from Definition 2.10, and
we use it implicitly together with rule cut in the following. Derivability of sequents
and derivability of corresponding formulas are equivalent by the following lemma.

Lemma 2.10 (Derivability of sequents). `D φ → ψ iff φ `D ψ .

110 2 Differential Dynamic Logic dL

Proof. When we consider sequents as abbreviations for formulas, both sides are
identical. Otherwise, let `D φ → ψ be derivable from D . Using cut (and weakening)
with φ → ψ , this derivation can be extended to one of φ `D ψ:

∗
φ ` φ → ψ,ψ

∗
ax

φ ` φ ,ψ
∗

ax
ψ,φ ` ψ

→l
φ ,φ → ψ ` ψ

cut
φ ` ψ

The converse direction is by an application of→r. ut
Lemma 2.11 (Generalisation). If `D φ is provable without free logical variables,
then so are `D ∀xφ and `D 〈x1 :=θ1, . . .xn :=θn〉φ .

Proof. For the second conjecture, let 〈A 〉 abbreviate 〈x1 :=θ1, . . .xn :=θn〉. We
prefix each formula in the proof of φ with 〈A 〉 and show that this gives a proof
of 〈A 〉φ . i∃ is not needed in the proof due to the absence of free logical variables. As
an intermediate step, we first show that prefixing with 〈A 〉 gives an (extended) proof
with rule applications generalised to allow for nested jump prefixes 〈A 〉〈J 〉: By
the argument in Theorem 4.1, it is easy to see for discrete jump sets 〈A 〉 and 〈J 〉
that the dL rules remain sound with nested jump prefix 〈A 〉〈J 〉 in place of only
a single prefix 〈J 〉 from Definition 2.10. Applicability conditions of rules do not
depend on jump prefixes, as Definition 2.10 allows adding any jump prefix. Thus,
we obtain a sound (extended) proof of 〈A 〉φ when replacing—with arbitrary un-
changed context Γ ,∆ ,〈J 〉—every rule application of the form

Γ ,〈J 〉Φ1 ` 〈J 〉Ψ1,∆ . . . Γ ,〈J 〉Φn ` 〈J 〉Ψn,∆

Γ ,〈J 〉Φ0 ` 〈J 〉Ψ0,∆

in the proof of φ by a rule application with the additional unchanged prefix 〈A 〉 for
corresponding Γ ,∆ ,〈J 〉:

Γ ,〈A 〉〈J 〉Φ1 ` 〈A 〉〈J 〉Ψ1,∆ . . . Γ ,〈A 〉〈J 〉Φn ` 〈A 〉〈J 〉Ψn,∆

Γ ,〈A 〉〈J 〉Φ0 ` 〈A 〉〈J 〉Ψ0,∆
(2.14)

Next, we show that these nested jump prefixes can be reduced to a single jump
prefix as Definition 2.10 allows: Let 〈A J 〉 denote the discrete jump set obtained by
merging 〈A 〉 and 〈J 〉 using 〈:=〉 as in Sect. 2.5.2. We replace each rule application
(with nested prefixes) of the form (2.14) by the following derivation with only a
single prefix (assuming n = 1 for notational convenience):

. . .
Γ ,〈A 〉〈J 〉Φ1 ` 〈A J 〉Ψ1,∆

∗
ax

Γ ,〈A J 〉Φ1 ` 〈A J 〉Φ1,∆
〈:=〉

Γ ,〈A J 〉Φ1 ` 〈A 〉〈J 〉Φ1,∆
cut

Γ ,〈A J 〉Φ1 ` 〈A J 〉Ψ1,∆
Γ ,〈A J 〉Φ0 ` 〈A J 〉Ψ0,∆

〈:=〉,〈:=〉
Γ ,〈A 〉〈J 〉Φ0 ` 〈A 〉〈J 〉Ψ0,∆

2.7 Completeness 111

The bottom most 〈:=〉 applications merge 〈A 〉 into 〈J 〉 in the antecedent and suc-
cedent, respectively. The unmarked rule applies the same rule that has been used
in (2.14), which is applicable on Φ0 `Ψ0 for any context by Definition 2.10, in-
cluding Γ ,∆ ,〈A J 〉. The subsequent cut with 〈A 〉〈J 〉Φ1 restores the form of
the premise in (2.14). The left branch continues using a dual argument to turn suc-
cedent 〈A J 〉Ψ1 into 〈A 〉〈J 〉Ψ1, thereby yielding a set of non-extended rule ap-
plications with the same conclusions and premises as the extended rule applica-
tion (2.14):

Γ ,〈A 〉〈J 〉Φ1 ` 〈A 〉〈J 〉Ψ1,∆

∗
ax

Γ ,〈A J 〉Ψ1 ` 〈A J 〉Ψ1,∆
〈:=〉

Γ ,〈A 〉〈J 〉Ψ1 ` 〈A J 〉Ψ1,∆
cut

Γ ,〈A 〉〈J 〉Φ1 ` 〈A J 〉Ψ1,∆

For reducing the first conjecture of this lemma to the second, let s be a Skolem
constant for state variable x. By the above proof, we derive `D 〈x := s〉φ . Using ∀r,
we continue this derivation to a proof of ∀X 〈x :=X〉φ , which we abbreviate as ∀xφ

(see the text below Definition 2.8). Rule ∀r is applicable for Skolem constant s as no
free logical variables occur in the proof. ut

Now we prove two special cases of Theorem 2.3 for formulas of a special form.

Proposition 2.1 (Relative completeness of first-order safety). For every hybrid
program α ∈ HP(Σ ,V) and all FOD formulas F,G ∈ FmlFOD(Σ ,V)

� F → [α]G implies `D F → [α]G (and F `D [α]G by Lemma 2.10).

Proof. We generalise the relative completeness proof by Cook [87] to dL and fol-
low an induction on the structure of program α . In the following, IH is short for the
induction hypothesis.

1. The cases where α is of the form x1 :=θ1, . . . ,xn :=θn, ?χ , β ∪ γ , or β ;γ

are consequences of the soundness of the symmetric rules [;],[∪],[?],〈:=〉,[:=].
Since these rules are symmetric, they perform equivalent transformations. Con-
sequently, whenever their conclusion is valid, their premise is valid and of smal-
ler complexity (the programs get simpler), and hence derivable by IH. Thus, we
can derive F → [α]G by applying the respective rule. We explicitly show the
proof for β ;γ as it contains an extra twist.

2. � F → [β ;γ]G, which implies � F → [β][γ]G. By Lemma 2.9, there is a FOD
formula G# such that � G#↔ [γ]G. From the validity of � F → [β]G#, we can
conclude by IH that F `D [β]G# is derivable. Similarly, due to � G#→ [γ]G,
we conclude `D G#→ [γ]G by IH. Using Lemma 2.11, we conclude that also
`D ∀β (G#→ [γ]G). With an application of []gen, the latter derivation can be
extended to a derivation of [β]G# `D [β][γ]G. Combining the above derivations
propositionally by a cut with [β]G#, we can derive F `D [β][γ]G, from which [;]
yields F `D [β ;γ]G as desired (and Lemma 2.10 or→r yield `D F → [β ;γ]G).

112 2 Differential Dynamic Logic dL

3. � F → [x′1 = θ1, . . . ,x′n = θn]G is a FOD formula and hence derivable as a D
axiom. Continuous evolution x′1 = θ1, . . . ,x′n = θn & χ with evolution domain
restrictions is definable in FOD by Lemma 2.8, which we consider as an abbre-
viation in this proof.

4. � F → [β ∗]G can be derived by induction. For this, we define the invariant as
a FOD encoding of the statement that all potential post-states of β ∗ satisfy G
according to Lemma 2.9:

φ ≡ ([β ∗]G)# ≡ ∀~v(Sβ ∗(~x,~v)→ G~v
~x).

Since F → φ and φ → G are valid FOD formulas, they are derivable by D ; so is
F `D φ derivable by Lemma 2.10. By Lemma 2.11 and []gen, [β ∗]φ `D [β ∗]G is
derivable. Likewise, φ → [β]φ is valid according to the semantics of repetition,
and thus derivable by IH, since β is less complex. Using Lemma 2.11, we can
derive `D ∀β (φ → [β]φ), from which ind yields φ `D [β ∗]φ . Combining the
above derivations propositionally by a cut with [β ∗]φ and φ yields F `D [β ∗]G.

ut

Proposition 2.2 (Relative completeness of first-order liveness). For each hybrid
program α ∈ HP(Σ ,V) and all FOD formulas F,G ∈ FmlFOD(Σ ,V)

� F → 〈α〉G implies `D F → 〈α〉G (and F `D 〈α〉G by Lemma 2.10).

Proof. We generalise the arithmetic completeness proof by Harel [148] to the hybrid
case. Most cases of the proof are simple adaptations of the corresponding cases in
Proposition 2.1. What remains to be shown is the case of repetitions. Assume that
� F → 〈β ∗〉G. To derive this formula by con, we use a FOD formula ϕ(n) as a
variant expressing that, after n iterations, β can lead to a state satisfying G. This
formula is obtained from Lemmas 2.8 and 2.9 as (〈β ∗〉G)# ≡ ∃~v(Sβ ∗(~x,~v)∧G~v

~x),
except that the quantifier on the repetition count n is removed such that n becomes
a free variable (plus index shifting to count repetitions):

ϕ(n−1) ≡ ∃~v∃Z
(
Z(n)

1 =~x∧Z(n)
n =~v∧∀i :N (1≤ i < n→Sβ (Z

(n)
i ,Z(n)

i+1))∧G~v
~x
)
.

By Lemma 2.7, ϕ(n) can only hold true if n is a natural number.
According to the loop semantics, � n > 0∧ϕ(n)→ 〈β 〉ϕ(n−1) is valid by con-

struction: If n > 0 is a natural number then so is n−1, and if β reaches G after n
repetitions, then, after executing β once, n−1 repetitions of β reach G. By IH, this
formula is derivable, since β contains less loops. By Lemma 2.11, we extend this
derivation to `D ∀β∀n>0(ϕ(n)→ 〈β 〉ϕ(n−1)). Thus ∃vϕ(v) `D 〈β ∗〉∃v≤0ϕ(v)
by con. It only remains to show that the antecedent is derivable from F and 〈β ∗〉G is
derivable from the succedent. From our assumption, we conclude that the following
are valid FOD formulas, hence D axioms:

• � F →∃vϕ(v), because � F → 〈β ∗〉G, and

2.7 Completeness 113

• � (∃v≤0ϕ(v))→ G, because v≤ 0, and the fact, that by Lemma 2.7, ϕ(v) only
holds true for natural numbers, imply ϕ(0). Further, ϕ(0) entails G, because zero
repetitions of β have no effect.

From the latter we derive `D ∀β (∃v≤0ϕ(v)→ G) by Lemma 2.11 and extend the
derivation to 〈β ∗〉∃v≤0ϕ(v) `D 〈β ∗〉G by 〈〉gen. From `D F →∃vϕ(v) we con-
clude F `D ∃vϕ(v) by Lemma 2.10. Now, the above derivations can be combined
propositionally by a cut with 〈β ∗〉∃v≤0ϕ(v) and with ∃vϕ(v) to yield F `D 〈β ∗〉G.

ut

2.7.6 Relative Completeness of the Differential Logic Calculus

Having succeeded with the proofs of the above statements we can finish the proof
of Theorem 2.3, which is the central theoretical result of this chapter.

Proof (of Theorem 2.3). The proof follows a basic structure analogous to that of
Harel’s proof for the discrete case [148, Theorem 3.1]. We have to show that every
valid dL formula φ can be proven from FOD axioms within the dL calculus: from
� φ we have to prove `D φ . The proof proceeds as follows: By propositional re-
combination, we inductively identify fragments of φ that correspond to φ1→ [α]φ2
or φ1→ 〈α〉φ2 logically. Next, we express subformulas φi equivalently in FOD by
Lemma 2.9, and use Propositions 2.1 and 2.2 to resolve these first-order safety or
liveness assertions. Finally, we prove that the original dL formula can be re-derived
from the subproofs.

We can assume φ to be given in conjunctive normal form by appropriate pro-
positional reasoning. In particular, we assume that negations are pushed inside
over modalities using the dualities ¬[α]φ ≡ 〈α〉¬φ and ¬〈α〉φ ≡ [α]¬φ . The re-
mainder of the proof follows an induction on a measure |φ | defined as the num-
ber of modalities in φ . For a simple and uniform proof, we assume quantifi-
ers to be abbreviations for modal formulas: ∃xφ ≡ 〈x′ = 1〉φ ∨〈x′ =−1〉φ and
∀xφ ≡ [x′ = 1]φ ∧ [x′ =−1]φ .

0. |φ |= 0; then φ is a first-order formula; hence derivable by D .
1. φ is of the form ¬φ1; then φ1 is first-order, as we assumed negations to be

pushed inside. Hence, |φ |= 0 and Case 0 applies.
2. φ is of the form φ1∧φ2, then individually deduce the simpler proofs for `D φ1

and `D φ2 by IH, which can be combined by rule ∧r.
3. φ is a disjunction and—without loss of generality—has one of the following

forms (otherwise use associativity and commutativity to select a different order
for the disjunction):

φ1 ∨ [α]φ2

φ1 ∨ 〈α〉φ2

114 2 Differential Dynamic Logic dL

As a unified notation for those cases we use φ1∨〈[α]〉φ2. Then, |φ2|< |φ |,
since φ2 has less modalities. Likewise, |φ1|< |φ | because 〈[α]〉φ2 contributes
one modality to |φ | that is not part of φ1.
According to Lemma 2.9 there are FOD formulas φ #

1 ,φ
#
2 with � φi↔ φ #

i for
i = 1,2. By congruence, the validity � φ yields � φ #

1 ∨〈[α]〉φ #
2 , which directly

implies � ¬φ #
1 → 〈[α]〉φ #

2 . Then by Propositions 2.1 or 2.2, respectively, we can
derive

¬φ
#
1 `D 〈[α]〉φ #

2 . (2.15)

Further � φ1↔ φ #
1 implies � ¬φ1→¬φ #

1 , which is derivable by IH, because
|φ1|< |φ |. By Lemma 2.10, we obtain ¬φ1 `D ¬φ #

1 , which we combine with
(2.15) by a cut with ¬φ #

1 to

¬φ1 `D 〈[α]〉φ #
2 . (2.16)

Likewise � φ2↔ φ #
2 implies � φ #

2 → φ2, which is derivable by IH, as |φ2|< |φ |.
We can extend the derivation of `D φ #

2 → φ2 to one of `D ∀α(φ #
2 → φ2) by

Lemma 2.11 and conclude 〈[α]〉φ #
2 `D 〈[α]〉φ2 by []gen–〈〉gen. Finally we com-

bine the latter derivation propositionally with (2.16) by a cut with 〈[α]〉φ #
2 to

derive ¬φ1 `D 〈[α]〉φ2, from which `D φ1∨〈[α]〉φ2 can be obtained, again using
cut, to complete the proof. ut

This concludes the main theoretical proof of relative completeness of the dL
calculus, i.e., of Theorem 2.3.

2.8 Relatively Semidecidable Fragments

To strengthen the completeness result from Theorem 2.3, we consider fragments of
dL where the required FOD tautologies are sufficiently simple as differential equa-
tions have first-order definable flows and the required loop invariants (or variants)
are expressible in first-order logic over the reals. In these fragments, the only dif-
ficulty is to find the required invariants and variants for the proof. Relative to an
(ineffective) oracle that provides first-order invariants and variants for repetitions,
the dL calculus can be used as a semidecision procedure. That is, when we assume
the oracle to provide suitable (in)variants, validity of formulas can be proven in the
dL calculus. If an imperfect oracle chooses inadequate (in)variants, applying the
dL calculus rules results in goals that are not valid, which is again decidable by
quantifier elimination in the dL calculus.

Theorem 2.4 (Relatively semidecidable fragment). Relative to an oracle gener-
ating first-order invariants and variants, the dL calculus gives a backtracking-free
semidecision procedure for (closed) dL formulas with differential equations having
first-order definable flows.

2.8 Relatively Semidecidable Fragments 115

Proof (Outline). The (constructive) proof, which, in full, can be found in the re-
mainder of this section, shows that there are always applicable dL rules that trans-
form the formulas equivalently and that formulas in this dL proof descend along
a well-founded order. For loops, we assume that suitable (in)variants are obtained
from the oracle and we can guarantee termination when these (in)variants are first-
order (or contain fewer loops). ut

As a consequence, enumerating first-order invariants or variants gives a semide-
cision procedure for the fragment of Theorem 2.4. As a corollary to Theorems 2.2
and 2.4, there are valid dL formulas that need proper dL (or FOD) invariants to be
provable and cannot be proven just using (in)variants of first-order real arithmetic.
Similarly, the fragment with first-order definable flows and bounded loops is decid-
able: When loops α∗ are annotated with natural numbers indicating the maximum
number of repetitions of α , an effective oracle for Theorem 2.4 can be obtained by
unrolling, e.g., by rule 〈∗n〉.

As an auxiliary result for proving Theorem 2.4, we show that, in dL proofs,
Skolem symbols occur in a uniform way, i.e., a Skolem symbol s always occurs
with the same list of arguments.

Lemma 2.12 (Uniform Skolem symbols). Let φ be a dL formula without Skolem
symbols. In any derivation of φ , Skolem symbols only occur with a unique list of free
logical variables as arguments, provided that the formulas in cuts (rule cut) obey
this restriction.

Proof. The proof is by induction on the structure of proofs in the dL calculus. For
derivations of length zero, the conjecture holds, because φ does not contain Skolem
symbols. We show that the conjectured Skolem occurrence property is preserved in
all subgoals when applying a rule to a goal that satisfies the conjecture.

∀r The symbols s(X1, . . . ,Xn) introduced by rules ∀r,∃l are of the required
form as the Xi are precisely the free logical variables. In addition, the sym-
bol s(X1, . . . ,Xn) does not occur nested in other Skolem terms, because, by the
induction hypothesis, the bound variable x does not occur in Skolem terms of
the goal.

i∀ Rules i∀ and i∃ are only applicable to instances of first-order real arithmetic
(Lemma 2.5), for which the equivalence transformations of quantifier elimin-
ation preserve the Skolem occurrence property, because they never introduce
quantifiers to bind free variables.

〈′〉 Rule 〈′〉 preserves the property, as it only substitutes state variables xi ∈ Σ ,
not logical variables Xi ∈V .

cut Cuts preserve the Skolem occurrence property, as we assumed the formulas
that cut introduces to adhere to the Skolem occurrence property.

– The other rules of the dL calculus preserve the property as they never replace
arguments of Skolem function symbols (which are free variables by induction
hypothesis). ut

Proof (of Theorem 2.4). The proof is by well-founded induction. We prove that there
is a well-founded strict partial order ≺ such that:

116 2 Differential Dynamic Logic dL

IH: For all non-atomic formulas occurring in the sequents during a proof, there
is an applicable series of dL rules such that all resulting subgoals are sim-
pler with respect to ≺ and have no additional free variables or function sym-
bols, and their conjunction is equivalent to the conclusion (for suitable oracle
choices).

By applying these dL rules exhaustively, we obtain a decision procedure relative
to the oracle, because the subgoals descend along the well-founded order ≺, which
has no infinite descending chain. Finally, validity of the remaining sequents with
atomic formulas is decidable by evaluating ground instances (Definition 2.9), be-
cause, by IH, the resulting formulas have no free variables when the initial formula
is closed (open formulas, in contrast, yield equivalent parameter constraints as res-
ults). We use the derived rules ind′ and con′ from p. 86 in place of ind and con;
see Sect. 2.5.2. To obtain a backtracking-free procedure, we remove rules 〈∗n〉,[∗n],
[]gen,〈〉gen,ind,con and cut from the calculus: If a calculus with less rules gives a
decision procedure, then so does the full calculus.

We define the order ≺ as the lexicographical order of, respectively, the num-
ber of: loops, differential equations, sequential compositions, choices, modalities,
quantifiers, number of different variables and Skolem function symbols, and the
number of logical connectives. As a lexicographical order of natural numbers, ≺ is
well-founded [99]. It lifts to sequents in rule applications (Definition 2.10) when all
subgoals of all rule schemata are simpler than their goals with respect to ≺, which
can be shown to retain well-foundedness as a multiset ordering [99].

Now the proof of IH is by induction along ≺. Let φ be a non-atomic formula of
a sequent in an open branch of the proof. We assume φ to occur in the succedent;
the respective proofs for the antecedent are dual. Hence, we consider the sequent to
be of the form Γ ` φ ,∆ .

1. If φ is of the form ψ1∧ψ2, then rule ∧r is applicable, yielding smaller sequents
(with less logical connectives) that are equivalent. Other logical connectives are
handled likewise using rules ¬r,∨r,∧r,→r, respectively.

2. If φ is of the form [α]ψ or 〈α〉ψ and α is of the form ?χ , β ;γ or β ∪ γ , the
corresponding rule 〈;〉,[;],〈∪〉,[∪] or 〈?〉,[?] is applicable, yielding a simpler yet
equivalent formula.

3. If φ is of the form [x′1 = θ1, . . . ,x′n = θn & χ]ψ , then rule [′] is applicable, as
we assumed differential equations to have first-order definable flows. The res-
ulting formula is equivalent and simpler, because it contains fewer differen-
tial equations. It involves additional bound variables but not free variables.
Case 〈x′1 = θ1, . . . ,x′n = θn & χ〉ψ is similar, by rule 〈′〉.

4. If φ is of the form [α∗]ψ , then rule ind′ is applicable with a first-order invari-
ant F obtained from the oracle. The resulting subgoals are simpler according
to ≺, because they contain less loops (F does not contain loops). The resulting
subgoals do not have additional free variables as all bound variables of α∗ re-
main bound by the universal closure ∀α in the respective premises. Finally, we
assume the oracle to give an invariant such that the conjunction of the result-
ing subgoals is equivalent to the goal (otherwise we have nothing to show for

2.8 Relatively Semidecidable Fragments 117

inadequate choices by the oracle). The case 〈α∗〉ψ is similar, using rule con′

instead.
5. If φ is of the form 〈x1 :=θ1, . . . ,xn :=θn〉ψ , there are two cases. If rule 〈:=〉 is

applicable, it yields equivalent simpler sequents. Otherwise, we have

ψ ≺ 〈x1 :=θ1, . . . ,xn :=θn〉ψ.

Thus, by IH, there is a finite sequence of rule applications on ψ yielding
equivalent sequents with atomic formulas. Prefixing the resulting proof with
〈x1 :=θ1, . . . ,xn :=θn〉 yields a corresponding proof for deriving Γ ` φ ,∆ by
Lemma 2.11. The formulas of the open branches of this proof resulting from φ

are of the form 〈x1 :=θ1, . . . ,xn :=θn〉G for atomic formulas G, where, at the
latest, rule 〈:=〉 is applicable, as substitutions are admissible on atomic formu-
las. Case [x1 :=θ1, . . . ,xn :=θn]ψ is similar, using rule [:=] first.

6. If φ is of the form ∀xψ(x), we can apply rule ∀r giving ψ(s(X1, . . . ,Xn)). Now,
we have ψ(s(X1, . . . ,Xn))≺ ∀xψ(x); hence, by IH, ψ(s(X1, . . . ,Xn)) can be
transformed equivalently to a set of sequents of the form

Φi(s(X1, . . . ,Xn)) `Ψi(s(X1, . . . ,Xn))

with atomic formulas (without loss of generality, we can assume s(X1, . . . ,Xn)
to occur in all branches). Hence, QE is defined for these atomic formulas and
rule i∀ can be applied on each branch, yielding QE(∀s(Φi(s) `Ψi(s))). Con-
sequently, the original sequent Γ ` ∀xψ(x),∆ is equivalent to∧

i

QE(∀s(Φi(s) `Ψi(s)))

for the following reason: Γ ` ψ(s(X1, . . . ,Xn)),∆ is equivalent to∧
i

(Φi(s(X1, . . . ,Xn)) `Ψi(s(X1, . . . ,Xn)))

by IH, using the equivalence QE(∀s(F ∧G))≡ QE(∀sF)∧QE(∀sG) and the
fact that s does not occur in Γ ,∆ . After applying rule i∀, the result has no
additional free symbols, although intermediate formulas do.

7. If φ is of the form ∃xψ(x), then rule ∃r is applicable giving ψ(X) for a fresh lo-
gical variable X . Then ψ(X)≺ ∃xψ(x); hence, by IH, ψ(X) can be transformed
equivalently to a set of sequents Φi `Ψi with atomic formulas. If no Skolem
dependency on X occurs in Φi `Ψi, then QE is defined and rule i∃ applicable,
giving QE(∃X ∧i(Φi `Ψi)), which is equivalent to ∃X ∧i(Φi `Ψi). By IH, this
is equivalent to Γ ` ∃X ψ(X),∆ , because X does not occur in Γ ,∆ . Other-
wise, if a Skolem term s(X1, . . . ,X , . . . ,Xn) occurs in a Φi `Ψi, then, by IH, the
Skolem function s already occurred in ψ(X). By Lemma 2.12, the Skolem term
s(X1, . . . ,X , . . . ,Xn) itself must already have occurred in ψ(X), which contra-
dicts the fact that X is fresh and that bound variable x does not occur in Skolem

118 2 Differential Dynamic Logic dL

terms of ∃xψ(x), again by Lemma 2.12. After applying rule i∃ the additional
free variable X disappears. ut

This completes the proof of Theorem 2.4, showing that the dL calculus can be
used as a semidecision procedure for a particular set of (in)variants provided by an
oracle. Consequently, these results show that, in a certain sense, finding (in)variants
is the only challenge in hybrid systems’ verification, because the dL calculus takes
care of everything else. In Chap. 3 we revisit and strengthen this result, because we
show that properties of differential equations can be proven by appropriate general-
isations of (in)variants that we call differential invariants. Furthermore, we turn to
the challenge of finding these (differential) invariants in Chap. 6.

2.9 Train Control Verification

In this section, we verify collision avoidance of the train control system presented
in Sect. 2.4. Especially, we identify the constraints required for the free parameters
of the system and discover the preconditions for safe driving.

2.9.1 Finding Inductive Candidates

Recall the dL formula from Sect. 2.4 that expresses that the simplified ETCS train
control system ensures that trains always stay inside their movement authority m to
ensure collision-freedom:

ψ → [(ctrl ;drive)∗]z≤ m (2.7∗)

We want to prove safety statement (2.7) of the simplified version of the European
Train Control System. Note that this is a significantly simplified version showing
only the true essentials of ETCS. We consider the ETCS cooperation protocol in
more detail in Chap. 7.

Using parametric extraction techniques, we identify both the requirement ψ for
safe driving and the induction hypothesis φ that is required for the proof. Similar to
the proof in Fig. 2.16, which is dual to the proof in Fig. 2.14, an unwinding of the
loop in (2.7) by rule [∗n] can be used to extract a candidate for a parametric inductive
hypothesis. It expresses that there is sufficient braking distance at current speed v,
which basically corresponds to the controllability constraint for ETCS (as illustrated
in Fig. 2.15 on p. 90):

φ ≡ v2 ≤ 2b(m− z)∧b > 0∧A≥ 0 . (2.17)

2.9 Train Control Verification 119

2.9.2 Inductive Verification

Using proof rule ind to prove dL formula (2.7) by induction, we show that (a) in-
variant φ holds initially, i.e., ψ ` φ (implying the antecedent of the conclusion of
ind), (b) the invariant is sustained after each execution of ctrl ;drive, and (c) invari-
ant φ implies postcondition z≤ m. Case (c) holds by QE, as 0≤ v2 ≤ 2b(m− z)
and b > 0. The induction start (a) will be examined after the full proof, since we
want to identify the prerequisite ψ for safe driving by proof analysis. In the proof
of the induction step φ → [ctrl ;drive]φ , we omit condition m− z≤ s from ctrl, be-
cause it is not used in the proof (braking remains safe with respect to z≤ m). The
induction is provable in dL as follows (for notational convenience, we assume rule
∀r calls the Skolem constant for m again m, and so on, as there are no free logical
variables):

. . .
φ ` 〈a :=−b〉[drive]φ

. . .
φ ,m− z≥ s ` 〈a :=A〉[drive]φ

[?],→r
φ ` [?m− z≥ s;a :=A][drive]φ

[∪],∧r
φ ` [ctrl][drive]φ

[;]
φ ` [ctrl ;drive]φ

→r ` φ → [ctrl ;drive]φ
∀r ` ∀α(φ → [ctrl ;drive]φ)
ind

φ ` [(ctrl ;drive)∗]φ

The differential equation system in drive is linear with a constant coefficient mat-
rix M. Its solution can be obtained by symbolically computing the exponential
series eMtη with symbolic initial value η = (z,v) and similar symbolic integration
of the inhomogeneous part [297, §18.VI]; also see App. B.4. We abbreviate the solu-
tion 〈z :=− b

2 t2 + vt + z,v :=−bt + v〉 thus obtained by 〈St〉. See Example B.3 in
App. B for an explanation of why this is a solution of the differential equations.
In this example, the evolution domain restrictions are convex; hence the constraint
∀0≤t̃≤t 〈St̃〉χ of rule [′] can be simplified to 〈St〉χ as in (2.12) to save space. Fur-
ther, we leave out conditions which are unnecessary for closing the above proof.
In the left branch, the constrained evolution of clock τ is irrelevant and will be left
out to save space (braking is the safest operation and can be continued indefinitely
without extra risk). The left branch closes (marked ∗):

∗
〈:=〉,i∀

φ , t ≥ 0,−bt + v≥ 0 ` 〈St〉φ
〈:=〉

φ , t ≥ 0,〈v :=−bt + v〉v≥ 0 ` 〈St〉φ
→r,→r

φ ` t ≥ 0→ (〈v :=−bt + v〉v≥ 0→ 〈St〉φ)
∀r

φ ` ∀t≥0(〈v :=−bt + v〉v≥ 0→ 〈St〉φ)
[′]

φ ` [z′ = v,v′ =−b&v≥ 0]φ
〈:=〉

φ ` 〈a :=−b〉[drive]φ
[:=]

φ ` [a :=−b][drive]φ

120 2 Differential Dynamic Logic dL

The right branch does not need the evolution domain constraint v ≥ 0, because v
does not decrease when accelerating. We again use 〈St〉 as an abbreviation for the
solution 〈z := A

2 t2 + vt + z,v :=At + v〉.

. . .

φ ,m− z≥ s ` s≥ v2

2b +
(A

b +1
)(A

2 ε2 + εv
)

〈:=〉,i∀
φ ,m− z≥ s,0≤ t ≤ ε ` 〈St〉φ

→r,〈:=〉
φ ,m− z≥ s ` t ≥ 0→ (〈τ := t〉τ ≤ ε → 〈St〉φ)

∀r
φ ,m− z≥ s ` ∀t≥0(〈τ := t〉τ ≤ ε → 〈St〉φ)

〈:=〉
φ ,m− z≥ s ` 〈τ :=0〉∀t≥0(〈τ := t + τ〉τ ≤ ε → 〈St〉φ)

[′]
φ ,m− z≥ s ` 〈τ :=0〉[z′ = v,v′ = A,τ ′ = 1&τ ≤ ε]φ

[:=]
φ ,m− z≥ s ` [τ :=0][z′ = v,v′ = A,τ ′ = 1&τ ≤ ε]φ

〈:=〉
φ ,m− z≥ s ` 〈a :=A〉[τ :=0][z′ = v,v′ = a,τ ′ = 1&τ ≤ ε]φ

[;]
φ ,m− z≥ s ` 〈a :=A〉[drive]φ

[:=]
φ ,m− z≥ s ` [a :=A][drive]φ

2.9.3 Parameter Constraint Discovery

The right branch only closes when the succedent of its open goal is guaranteed.
That formula expresses that there will still be sufficient braking distance even after
accelerating by ≤ A for up to ε seconds:

s≥ v2

2b
+

(
A
b
+1
)(

A
2

ε
2 + εv

)
. (2.18)

This constraint can be discovered automatically in the above proof by the indic-
ated application of rule i∀ using quantifier elimination with some simplifications.
Constraint (2.18) is required to make sure invariant (2.17) still holds after acceler-
ating. In fact, augmenting the case study with (2.18) makes the argument inductive,
and the whole proof of the safety statement (2.7) closes when ψ is chosen identical
to φ . Here, the conditions of ψ cannot be removed without leaving the proof open
due to a counterexample, as the invariant (2.17) is a controllability constraint; see
Sect. 2.5.3.1.

Quite unlike in the acceleration-free case [231], constraint (2.18) needs to be
enforced dynamically as the affected variables change over time. That is, at the
beginning of each ctrl cycle, s needs to be updated in accordance with (2.18), which
admits complex behaviour as in Fig. 2.9b on p. 63. Further, this constraint can be
used to find out how densely a track can be packed with trains in order to maximise
ETCS throughput without compromising safety. The resulting provably safe train
control system can be summarised as follows:

v2 ≤ 2b(m− z)∧b > 0∧A≥ 0 → [(ctrl ;drive)∗]z≤ m (2.19)

2.9 Train Control Verification 121

where ctrl ≡ s :=
v2

2b
+

(
A
b
+1
)(

A
2

ε
2 + εv

)
;

(?m− z≤ s;a :=−b)∪ (?m− z≥ s;a :=A)

drive ≡ τ :=0;(z′ = v,v′ = a,τ ′ = 1&v≥ 0∧ τ ≤ ε).

Using the dL calculus, similar constraints can be derived (Sect. 4.8) to find out how
early a train needs to start negotiation in order to minimise the risk of having to
reduce speed when the MA is not extensible in time, which is the ST parameter of
Fig. 2.8.

For the resulting ETCS system, liveness can be proven in the dL calculus by
showing that the train can pass every point p by an appropriate choice of m by the
RBC:

z = z0∧ v = v0 > 0∧ ε > 0∧b > 0∧A≥ 0→∀p∃m〈(ctrl ;drive)∗〉z≥ p. (2.20)

For A = 0, the proof of property (2.20) uses the variant ϕ(n)≡ z+nεv0 ≥ p∧ v = v0
for rule con, which expresses that the speed does not decrease (until n < 0) and that
the remaining distance from z to target p can be covered after at most n iteration
cycles. This directly proves the property even when A = 0 for appropriate accelera-
tion choices. For general A≥ 0, the following variant proves property (2.20) by con:

ϕ(n)≡ ((z+nεv0≥ p∧z0≤ z∧v2≤ v2
0+2A(z−z0)∧v≥ v0∧z≤ p)∨z≥ p)∧v≥ 0.

(2.21)
It expresses that, when z≤ p, the remaining distance can be covered after at most n
iterations while the train position and velocity increase, yet the velocity is bounded
depending on the initial velocity v0, acceleration A, and distance z− z0. The appro-
priate choice of m to prove property (2.20) with this variant is

m≥ p+
v2

o +2A(p− z0)

2b
+

(
A
b
+1
)(

A
2

ε
2
)
+ ε

√
v2

0 +2A(p− z0),

which can be obtained by overapproximating braking condition (2.18) with the
speed limit v2 ≤ v2

0 +2A(z− zo) from the variant. We will analyse ETCS in more
detail in Chap. 7.

In this example, we can see the effect of the dL calculus. It takes a specific-
ation of a hybrid system and successively identifies constraints on the parameters
which are needed for correctness. These constraints can then be handled in a purely
modular way by rules i∀ and i∃. As a typical characteristic of hybrid systems, fur-
ther observe that intermediate formulas are significantly more complex than the
original proof obligation, which can be expressed succinctly in the expressive lan-
guage of dL . This reflects the fact that the actual complexity of hybrid systems ori-
ginates from hybrid interaction, not from a single transition. Still, using appropriate
proof strategies (Chap. 5) for the dL calculus, the safety statement (2.7) with invari-
ant (2.17) can be verified automatically in a theorem prover that invokes Mathem-

122 2 Differential Dynamic Logic dL

atica for rules 〈′〉,[′], i∀, and i∃. In fact, using the invariant computation techniques
that we introduce in Chap. 6, the overall safety property (2.7) can be verified fully
automatically even without providing an invariant manually.

2.10 Summary

We have introduced a first-order dynamic logic for hybrid programs, which are uni-
form operational models for hybrid systems with interacting discrete jumps and
continuous evolutions along differential equations. For this differential dynamic lo-
gic, dL , we have presented a concise generalised free-variable proof calculus over
the reals.

Our sequent calculus for dL is a generalisation of classical calculi for discrete
dynamic logic [35, 37, 149, 148] to the hybrid case. It is a compositional verifica-
tion calculus for verifying properties of hybrid programs by decomposing them into
properties of their parts. In order to handle interacting hybrid dynamics, we lift real
quantifier elimination to the deductive calculus in a new modular way that is suit-
able for automation, using real-valued free variables, Skolem terms, and invertible
quantifier rules over the reals.

As a fundamental result aligning hybrid and continuous reasoning proof-theoret-
ically, we have proven our calculus to axiomatise the transition behaviour of hybrid
systems completely relative to the handling of differential equations. To the best
of our knowledge, this is the first relative completeness result for hybrid systems’
verification. Moreover, we have demonstrated that our calculus is well suited for
practical automatic verification in a realistic case study of a fully parametric version
of the European Train Control System.

Dynamic logic can be augmented [37] to support reasoning about dynamically
reconfiguring system structures, which we want to extend to hybrid systems in future
work. While the dL calculus is complete relative to the continuous fragment, it is a
subtle open problem whether a converse calculus can exist that is complete relative
to various discrete fragments.

Chapter 3
Differential-Algebraic Dynamic Logic DAL

Contents
3.1 Introduction . 124

3.1.1 Related Work . 128
3.1.2 Structure of This Chapter 130

3.2 Syntax . 130
3.2.1 Terms . 132
3.2.2 Differential-Algebraic Programs 132
3.2.3 Formulas . 139

3.3 Semantics . 141
3.3.1 Transition Semantics of Differential-Algebraic Programs 141
3.3.2 Valuation of Formulas 145
3.3.3 Time Anomalies . 145
3.3.4 Conservative Extension 147

3.4 Collision Avoidance in Air Traffic Control 148
3.4.1 Flight Dynamics . 148
3.4.2 Differential Axiomatisation 149
3.4.3 Aircraft Collision Avoidance Manoeuvres 150
3.4.4 Tangential Roundabout Manoeuvre 151

3.5 Proof Calculus . 152
3.5.1 Motivation . 153
3.5.2 Derivations and Differentiation 154
3.5.3 Differential Reduction and Differential Elimination . . . 160
3.5.4 Proof Rules . 162
3.5.5 Deduction Modulo by Side Deduction 168
3.5.6 Differential Induction with Differential Invariants 170
3.5.7 Differential Induction with Differential Variants 181

3.6 Soundness . 185
3.7 Restricting Differential Invariants 188
3.8 Differential Monotonicity Relaxations 189
3.9 Relative Completeness . 193
3.10 Deductive Strength of Differential Induction 194
3.11 Air Traffic Control Verification 197

3.11.1 Characterisation of Safe Roundabout Dynamics 197
3.11.2 Tangential Entry Procedures 200
3.11.3 Discussion . 201

3.12 Summary . 201

123A. Platzer, Logical Analysis of Hybrid Systems,
DOI 10.1007/978-3-642-14509-4_3, © Springer-Verlag Berlin Heidelberg 2010

124 3 Differential-Algebraic Dynamic Logic DAL

Synopsis We generalise dynamic logic to a logic for differential-algebraic pro-
grams, i.e., discrete programs augmented with first-order differential-algebraic for-
mulas as continuous evolution constraints in addition to first-order discrete jump
formulas. These programs characterise interacting discrete and continuous dynam-
ics of hybrid systems elegantly and uniformly, including systems with disturbance
and differential-algebraic equations. For our logic, we introduce a calculus over
real arithmetic with discrete induction and a new differential induction with which
differential-algebraic programs can be verified by exploiting their differential con-
straints algebraically without having to solve them. We develop the theory of differ-
ential induction and differential refinement and analyse their deductive power. As
an example, we present parametric tangential roundabout manoeuvres in air traffic
control and prove collision avoidance in our calculus.

3.1 Introduction

In Chap. 2, we have shown a verification logic for hybrid programs and proof rules
for differential equations that are solvable in polynomial arithmetic. While the veri-
fication approach is, of course, more general, the primary application that we have
seen so far is train control. The same proof techniques also work for many other
systems, including car control where the continuous dynamics can be solved. Now
we consider air traffic control scenarios as a motivating example for hybrid systems
where differential equations can no longer be solved in decidable arithmetic, so that
more advanced verification techniques for differential equations are needed.

Verification of Hybrid Systems

Flight manoeuvres in air traffic control [293, 196, 203, 104, 92, 238, 129, 171] give
rise to hybrid systems with challenging dynamics. There the continuous dynamics
results from continuous movement of aircraft in space, and the discrete dynamics is
caused by the instantaneous switching of manoeuvring modes or by discrete aircraft
controllers that decide when and how to initiate flight manoeuvres. Proper function-
ing of these systems is highly safety-critical for the spatial separation of aircraft
during all flight manoeuvres, especially collision avoidance manoeuvres. Their ana-
lysis, however, is challenging due to the superposition of involved continuous flight
dynamics with nontrivial discrete control, causing hybrid systems like these to be
amenable neither to mere continuous reasoning nor to verification techniques for
purely discrete systems. Since, especially in the presence of parameters, hybrid sys-
tems cannot be verified numerically [238, 85], we present a purely symbolic ap-
proach using combined deductive and algebraic verification techniques.

In practise, correctness of hybrid systems further depends on the choice of para-
meters that arise naturally from the degrees of freedom of how a part of the system

3.1 Introduction 125

can be instantiated or how a controller can respond to input [293, 97, 91, 238, 171].
For instance, correct angular velocities, proper timing, and compatible manoeuvre
points are equally required for safe air traffic control [293, 238]. Additionally, rel-
evant correctness properties for hybrid systems include safety, liveness, and mixed
properties like reactivity (see Chap. 7), all of which can possibly involve (alternat-
ing) quantifiers or free variables for parameters. As a uniform approach for specify-
ing and verifying these heterogeneous properties of hybrid systems with symbolic
parameters, we introduce an extension of our first-order logic and dynamic logic for
handling correctness statements about hybrid systems.

Logic for Hybrid Systems

The aim of this chapter is to present logical analysis techniques with which gen-
eral hybrid systems with interacting discrete and continuous dynamics can be spe-
cified and verified in a coherent logical framework. To this end, we introduce
the differential-algebraic dynamic logic (DA-logic or DAL for short) as the logic
of general hybrid change. As an elegant and uniform operational model for hy-
brid systems in DAL, we introduce differential-algebraic programs (DA-programs).
These programs combine first-order discrete jump constraints (DJ-constraints) to
characterise discrete transitions with support for first-order differential-algebraic
constraints (DA-constraints) to characterise continuous transitions. DA-constraints
provide a convenient way for expressing continuous system evolution constraints
and give a uniform semantics to differential evolutions, systems of differential equa-
tions [297], switched systems [55], invariant constraints [156, 97], triggers [55],
differential-algebraic equations [132, 187], and differential inequalities [153, 297].
In DJ-constraints and DA-constraints, first-order quantifiers further give a natural
and semantically well-founded way of expressing unbounded discrete or continuous
nondeterminism in the dynamics, including nondeterminism resulting from internal
choices or external disturbances. In interaction with appropriate control structure,
DJ-constraints and DA-constraints can be combined to form DA-programs as uni-
form operational models for hybrid systems. With this, DA-programs are a general-
ised program notation for hybrid systems.

As a specification and verification logic for hybrid systems that are given as DA-
programs, we design the first-order dynamic logic DAL as an extension of dL . In
particular, we generalise discrete dynamic logic [149] to hybrid control and support
DA-programs as actions of a first-order multi-modal logic [123], such that its mod-
alities can be used to specify and verify correctness properties of more advanced
hybrid systems. As in Chap. 2, the DAL formula [α]φ expresses that all runs of
DA-program α lead to states satisfying the DAL formula φ . Likewise, 〈α〉φ says
that there is at least one state reachable by DA-program α which satisfies φ . Simil-
arly, ∃p [α]〈β 〉φ says that there is a choice of parameter p such that for all possible
behaviour of DA-program α there is a reaction of DA-program β that ensures φ .

126 3 Differential-Algebraic Dynamic Logic DAL

Deductive Verification and Differential Induction

As a means for verifying hybrid systems by proving corresponding DAL formulas,
we introduce a sequent calculus. It uses side deductions as a simple and concise, yet
constructive, modular technique to integrate real quantifier elimination with calcu-
lus rules for modalities. For handling discrete transitions, we present a first-order
generalisation of standard proof rules [149, 37]. Interacting continuous transitions
are more involved. Formulas with very simple differential equations can be verified
by using their solutions as in Chap. 2: Linear differential equations with nilpotent
constant coefficients (i.e., x′ = Ax for a matrix A with An = 0 for some n) have poly-
nomial solutions so that arithmetic formulas about these solutions can be verified by
quantifier elimination [81]; see Apps. B and D.2 for details. This approach, however,
does not scale to hybrid systems with more sophisticated differential constraints be-
cause their solutions do not support quantifier elimination (e.g., when they involve
transcendental functions), cannot be given in closed form [297], are not comput-
able [250], or do not even exist [297, 179]. As part of the descriptive power of dif-
ferential equations, solutions of differential equations are much more complicated
than the original equations and can become transcendental even for simple linear
differential equations like x′ =−y,y′ = x, where the solutions will be trigonometric
functions.

Instead, as a logical analysis technique for verifying DA-programs with more
general differential-algebraic constraints, we introduce first-order differential in-
duction as a fully algebraic form of proving logical statements about DA-constraints
using their differential-algebraic constraints in a differential induction step instead
of using their solutions in a reachability computation. Unlike in discrete induction,
the invariant is a differential invariant, i.e., a property that is closed under total
differentiation with respect to the differential constraints. There, the basic idea for
showing invariance of a property F is to show that F holds initially and its total
derivative F ′ holds always along the dynamics (with generalisations of total dif-
ferentials to logical formulas and corresponding generalisations for quantified DA-
constraints). This analysis considers all non-Zeno executions, i.e., where the system
cannot switch its mode infinitely often in finite time. In addition, we introduce dif-
ferential strengthening or differential cuts as a technique for refining the system dy-
namics by differential invariants until the property becomes provable for the refined
dynamics, which we show to be crucial in practical applications.

Comparison

In Chap. 2 we have introduced a logic and calculus for verifying hybrid programs,
which is the quantifier-free subclass of DA-programs without propositional con-
nectives (see Table 3.1 for examples). Further, we have proven this calculus to be
complete relative to the handling of differential equations (Theorem 2.3). Comple-
mentarily, in this chapter, we address the question how sophisticated differential
constraints themselves can be specified and verified in a way that lifts to hybrid sys-

3.1 Introduction 127

Table 3.1 Comparison of DAL with DA-programs versus dL with hybrid programs

dL /hybrid programs DAL/DA-programs

expressive
power

single assignments propositional/quantified DJ-constraints
x :=1 x > 0→∃a(a < 5∧ x :=a2 +1)

differential equations propositional/quantified DA-constraints
x′1 = d1,x′2 = d2 ∃ω≤1(d′1 =−ωd2∧d′2 = ωd1)∨d′1 ≤ d′2 ≤ 2d1

verification
technology

substitutions quantifier elimination and substitutions
polynomial solutions first-order differential induction

quantifier
integration

real-valued free variables,
Skolemisation side deductions

scope of ap-
plications

nilpotent dynamics, e.g.,
trains in R1

algebraic dynamics and polynomial differential
constraints, e.g., curved aircraft flight

tems, and how these techniques can be integrated seamlessly into a logic. In this
chapter, we thus show how properties of systems with more complicated dynamics
can be expressed and proven.

To this end, we design differential-algebraic programs as the first-order com-
pletion of hybrid programs, and we augment both the logic and the calculus with
means for handling DA-constraints. In particular, we extend our logic dL to the
logic DAL with general first-order differential constraints plus first-order jump for-
mulas and introduce differential induction for verifying differential-algebraic pro-
grams. Specifically, the continuous evolutions which can be handled by differential
induction are strictly more expressive than those that previous calculi [306, 270, 97]
or the dL calculus are able to handle. DAL even supports differential-algebraic
equations [132, 187]. Consequently, the DAL calculus can verify much more gen-
eral scenarios, including the dynamics of aircraft manoeuvres or the dynamics of
systems with disturbances, which were out of scope for approaches that require
polynomial solutions [125, 228]. Table 3.1 summarises the differences in syntactic
expressiveness, discrete and continuous verification technology, arithmetic quanti-
fier integration approach, and overall scope of applicability. The DAL extensions
presented in this chapter are both complementary to and compatible with our dL
calculus extensions for integrating arithmetic as presented in Chap. 2.

Contributions

The first contribution of this chapter is the generalised differential-algebraic dy-
namic logic DAL for differential-algebraic programs as the first-order completion
of hybrid programs. DAL provides a uniform semantics and a concise language
for specifying and verifying correctness properties of general hybrid systems with
sophisticated (possibly quantified) first-order dynamics. The main contribution is a
verification calculus for DAL including uniform proof rules for differential induc-
tion along first-order differential-algebraic constraints with differential invariants,
differential variants, and differential strengthening. Our main theoretical contribu-
tion is our analysis of the deductive power of differential induction for classes of

128 3 Differential-Algebraic Dynamic Logic DAL

differential invariants. As an applied contribution, we introduce a generalised tan-
gential roundabout manoeuvre in air traffic control and demonstrate the capabilities
of our approach by verifying collision avoidance in the DAL calculus. To the best
of our knowledge, this is the first formal proof for safety of the hybrid dynamics of
an aircraft manoeuvre with curved flight dynamics and the first sound verification
result for collision avoidance with curved aircraft dynamics.

3.1.1 Related Work

Most verification approaches for hybrid systems follow the paradigm of model
checking for hybrid automata and use approximations or abstraction refinement,
e.g., [156, 77, 21], because reachability is undecidable for hybrid automata [156].
We have shown in previous work [238] that even reachability problems for fairly
restricted classes of single continuous transitions are not decidable using numerical
computations. Thus, we follow a purely symbolic approach in this book.

Invariants of Hybrid Systems

Several authors [274, 269, 251, 252] argue that invariant techniques scale to more
general dynamics than explicit reach-set computations or techniques that require
solutions of the differential equations [125, 228, 231, 233]. Among them, there are
model checking approaches [274, 269] that use equational polynomial invariants
based on Gröbner basis computations. Still, the approach of Rodrı́guez-Carbonell
and Tiwari [269] requires closed-form solutions and is restricted to linear dynam-
ics. The major limitation of these approaches [274, 269], however, is that they only
work for equational invariants of fully equation-definable hybrid systems, including
equational initial sets and switching surfaces. Yet, this assumes highly regular sys-
tems without tolerances and only works for null sets. In practise, the set of initial
states usually does not have measure zero, though. A thorough analysis of collision
avoidance manoeuvres, for instance, should consider all initial flight paths in free
flight instead of just a single restricted position corridor. In train control, the relevant
constraints and initial regions are non-equational.

Prajna et al. [251, 252] have generalised Lyapunov functions to barrier certific-
ates, i.e., a function B decreasing along the dynamics whose zero set separates ini-
tial from unsafe states. Further, they focus on stochastic extensions. DAL provides
barrier certificates as a special case using B≤ 0 as a differential invariant. In a sim-
ilar vein, criticality functions [91] generalise Lyapunov-functions from stability to
safety, which DAL provides as a special case of differential invariants.

We generalise purely equational invariants [274, 269] and single polynomial
expressions [274, 251, 252, 91] to general differential induction with real arith-
metic formulas. In practise, such more general differential invariants are needed
for verifying sophisticated hybrid systems, including aircraft manoeuvres. Further,

3.1 Introduction 129

unlike other approaches [274, 269, 251, 252], DAL leverages the full deductive
power of logic, combining differential induction with discrete induction to lift these
proof techniques uniformly to hybrid systems. In addition, dynamic logic can be
used to prove sophisticated statements involving quantifier and modality alterna-
tions for parametric verification [231]. Finally, the DAL calculus supports combin-
ations with differential variants for liveness properties and combinations with dif-
ferential strengthening, which we show to be crucial in verifying realistic aircraft
manoeuvres.

Air Traffic Control Verification

In air traffic control, Tomlin et al. [293] analyse competitive aircraft manoeuvres
game-theoretically using Hamilton-Jacobi-Isaacs partial differential equations. They
derive saddle solutions for purely angular or purely linear control actions. They pro-
pose roundabout manoeuvres and give bounded-time verification results for trap-
ezoidal straight-line approximations. Our symbolic techniques avoid exponential
state space discretisations that are required for complicated PDEs and are thus more
scalable for automation. Further, we handle fully parametric cases, even for more
complicated curved flight dynamics.

Hwang et al. [171] have presented a straight-line aircraft conflict avoidance man-
oeuvre that involves optimisation over complicated trigonometric computations, and
validate it on random numerical simulation. They show examples where the de-
cisions of the manoeuvre change only slightly for small perturbations. Hwang et al.
do not, however, prove that their proposed manoeuvre is safe with respect to actual
hybrid flight dynamics.

Dowek et al. [104] and Galdino et al. [129] consider straight-line manoeuvres and
formalise geometrical proofs in PVS. As in the work of Hwang et al. [171], they do
not, however, consider curved flight paths nor verify actual hybrid dynamics but
work with geometrical meta-level reasoning instead.

In all these approaches [104, 129, 171], it remains to be proven separately that
the geometrical meta-level considerations actually fit the hybrid dynamics and flight
equations. In contrast, our approach directly works for the hybrid flight dynamics
and we verify roundabout manoeuvres with curves instead of straight-line man-
oeuvres with non-flyable instant turns only. A few approaches [92, 203] have been
undertaken to model check discretisations of roundabout manoeuvres, which indic-
ate avoidance of orthogonal collisions. However, the counterexamples found by our
model checker in previous work [238] show for these manoeuvres that collision
avoidance does not extend to other initial flight paths.

130 3 Differential-Algebraic Dynamic Logic DAL

3.1.2 Structure of This Chapter

In Sects. 3.2 and 3.3, we introduce syntax and semantics of the differential-algebraic
logic DAL. In Sect. 3.4, we introduce tangential roundabout manoeuvres in air
traffic control as a case study and running example. Further, we introduce a se-
quent calculus with differential induction for DAL in Sect. 3.5 and prove soundness
in Sect. 3.6. We show extensions of differential induction techniques in Sect. 3.7.
We exploit differential induction techniques for differential monotonicity relaxa-
tions in Sect. 3.8. We prove relative completeness of the DAL calculus in Sect. 3.9
and compare the deductive strength of differential invariants in Sect. 3.10. Using
the DAL calculus, we prove, in Sect. 3.11, safety of the tangential roundabout man-
oeuvre in air traffic control. Finally, we draw conclusions and discuss future work
in Sect. 3.12.

3.2 Syntax of Differential-Algebraic Logic

In this section, we introduce the differential-algebraic logic (DAL) as a specifica-
tion and verification logic for differential-algebraic programs (DA-programs). DA-
programs constitute an elegant and uniform model for hybrid systems with express-
ive dynamics, including differential-algebraic equations, differential inequalities,
and disturbance in the dynamics. We start with an informal introduction that mo-
tivates the definitions to come. DA-programs have three basic characteristics, as
follows.

Discrete jump constraints. Discrete transitions, which can possibly lead to dis-
continuous change, are represented as discrete jump constraints (DJ-constraints),
i.e., first-order formulas with instantaneous assignments of values to state vari-
ables as additional atomic formulas. DJ-constraints specify what new values the
respective state variables assume by an instant change. For instance, d1 :=−d2
specifies that the value of variable d1 is changed to the value of −d2. Multiple
discrete changes can be combined conjunctively (∧) with simultaneous effect, for
instance, d1 :=−d2∧d2 :=d1, which assigns the previous value of−d2 to d1 and,
simultaneously, the previous value of d1 to d2. This operation instantly rotates the
vector d = (d1,d2) by π/2 to the left. Using d :=d⊥ as a short vectorial notation
for this jump, the DJ-constraint (d1 > 0→ d :=d⊥)∧ (d1 ≤ 0→ d :=−d⊥) spe-
cifies that the direction of the rotation depends on the initial value of d1. Finally,
the DJ-constraint ∃a(ω :=a2∧a < 5) assigns the square of some number a less
than 5 to ω .

Differential-algebraic constraints. Continuous dynamics is represented with dif-
ferential-algebraic constraints (DA-constraints) as evolution constraints, i.e., first-
order formulas with differential symbols x′, e.g., in differential equations or in-
equalities. DA-constraints specify how state variables change continuously over
time. For instance, x′1 = d1∧ x′2 = d2 says that the system evolves continuously

3.2 Syntax 131

by moving the vector x = (x1,x2) in direction d = (d1,d2) along the differential
equation system (x′1 = d1,x′2 = d2). Likewise, d′1 =−ωd2∧d′2 = ωd1∧d1 ≥ 0
specifies that the vector d is rotating continuously with angular velocity ω , so that
(in conjunction with x′1 = d1∧ x′2 = d2), the direction in which point x is heading
changes over time. By adding d1 ≥ 0 conjunctively to the DA-constraint, we ex-
press that the curving will only be able to continue while d1 ≥ 0. This evolution
will have to stop before d1 < 0. The evolution is impossible altogether if d1 ≥ 0
already fails to hold initially. DA-constraints are first-order and can have quan-
tifiers.The quantified DA-constraint ∃ω (d′1 =−ωd2∧d′2 = ωd1∧−1≤ ω ≤ 1)
characterises rotation with some angular velocity −1≤ ω ≤ 1, which may even
change over time, in contrast to d′1 =−ωd2∧d′2 = ωd1∧−1≤ ω ≤ 1∧ω ′ = 0
or constraint d′1 =−ωd2∧d′2 = ω , where ω is not allowed to change.

Differential-algebraic programs. As an operational model for hybrid systems,
DJ-constraints and DA-constraints, which represent general discrete and continu-
ous transitions, respectively, can be combined to form a DA-program using regu-
lar expression operators (∪,∗, ;) of regular discrete dynamic logic [149] as control
structure. For example, ω :=1∪ω :=−1 describes a controller that can choose
to set angular velocity ω either to a left or to a right curve by a nondeterministic
choice (∪). Similarly, sequential composition ω :=ω +1;d′1 =−ωd2∧d′2 = ωd1
says that the system first increases its angular velocity ω by a discrete transition
and then switches to a mode in which it follows a continuous rotation with this
angular velocity.

Discussion

Not all constraints involving x :=θ or x′ qualify as reasonable ways of characterising
elementary system transitions. Unlike positive occurrences, negative occurrences of
assignments such as in ¬(x :=5) are somewhat pointless, because they impose no
meaningful transition constraints on what new value x actually assumes (but only
on what value is not assigned to x). Likewise, negative occurrences of differential
constraints as in ¬(x′ = 5) would be pointless as they do not constrain the overall
evolution but allow arbitrary transitions.

Further, we disallow duplicate constraints that constrain the same variable in
incompatible ways at the same time as, e.g., in x :=2∧ x :=3 or x′ = 2∧ x′ = 3. At
any state during a system evolution, variable x can only assume one value at a time,
not both 2 and 3 at once. Similarly, variables cannot evolve with contradictory slopes
at the same time for any positive duration.

Finally, ∀a(x :=a) would be equivalent to false, because it is impossible to as-
sign all possible choices for a (hence all reals) simultaneously to x, which can only
assume one value at a time. Likewise, no interesting evolutions are possible along
∀a(x′ = a), because x′ can only equal one real value at a time. Dually, ∃a(a :=θ)
is equivalent to true, because the DJ-constraint imposes no constraints, nor has any
visible effects (the scope of the quantified a ends with the DJ-constraint). The situ-
ation with ∃a(a′ = θ) is similar.

132 3 Differential-Algebraic Dynamic Logic DAL

Even though semantics and proof rules for all these cases could still be defined,
the respective transitions are degenerate and their technical handling is not very
illuminating. Hence, we define DJ-constraints and DA-constraints to avoid these
insignificant cases altogether. Note that the syntactical restrictions are non-essential
but simplify the presentation by allowing us to focus on the interesting cases instead.

3.2.1 Terms

To simplify the presentation, we use side deduction rules for quantifiers in this
chapter. The free-variable calculus rules from Chap. 2 are compatible with the find-
ings in this chapter, but we refrain from using them formally in this chapter to keep
things simple. Consequently, we do not need to distinguish between free logical
variables from V and free state variables from Σ . Thus, we do not distinguish Σ

and V here at all.
The formulas of DAL are built over a signature Σ of real-valued function and pre-

dicate symbols. The signature Σ contains the usual function and predicate symbols
for real arithmetic, +,−, ·,/,=,≤,<,≥,>, and number symbols such as 0,1. State
variables are represented as real-valued function symbols of arity zero (constants)
in Σ . These state variables are flexible [37], i.e., their interpretation can change from
state to state while following the transitions of a DA-program. Observe that there is
no need to distinguish between discrete and continuous variables in DAL. The set
Term(Σ) of terms is defined as in classical first-order logic, yielding rational ex-
pressions over the reals. The set of formulas of first-order logic is defined as usual
(Definition 2.2 and App. A), giving first-order real arithmetic.

Although we are primarily interested in polynomial cases, our techniques gen-
eralise to the presence of division. Yet to avoid partiality in the semantics, we only
allow use of p/q when q 6= 0 is present or ensured. Essentially, we assume con-
straints φ containing a term of the form p/q to mean an appropriate constraint
like φ ∧¬(q = 0). Note that, in a certain sense, divisions cause less difficulties for
the calculus than for the semantics. Particularly, our calculus uses indirect means of
differential induction to conclude properties of solutions of DA-constraints, thereby
avoiding the need to handle singularities in these solutions explicitly, as caused by
divisions by zero.

3.2.2 Differential-Algebraic Programs

We build DA-programs with first-order discrete jumps and first-order differential-
algebraic constraints as primitive operations, which interact using regular control
structure by regular-expression-style operators (; ∪ ,∗). Reflecting the discussion be-
fore Sect. 3.2.1, we characterise reasonable occurrences for changes like x :=θ or x′

3.2 Syntax 133

in these constraints as follows. We call a formula G an affirmative subformula of a
first-order formula F iff:

1. G is a positive subformula of F , i.e., it occurs with an even number of negations,
and

2. no variable y that occurs in G is in the scope of a universal quantifier ∀y of a
positive subformula of F (or in the scope of an existential quantifier ∃y of a
negative subformula of F).

Discrete Jump Constraints

Definition 3.1 (Discrete jump constraint). A discrete jump constraint (or DJ-
constraint) is a formula J of first-order real arithmetic over Σ with additional
atomic formulas of the form x :=θ where x ∈ Σ , θ ∈ Term(Σ). The latter are called
assignments and are only allowed in affirmative subformulas of DJ-constraints that
are not in the scope of a quantifier for x of J . A DJ-constraint without assignments
is called jump-free. A variable x is (possibly) changed in J iff an assignment of
the form x :=θ occurs in J .

The effect of (x1 :=θ1∧ . .∧ xn :=θn∧ x1 > 0)∨ (x1 :=ϑ1∧ . .∧ xn :=ϑn∧ x1 < 0)
is to simultaneously change the interpretations of the variables xi to the respect-
ive θi if x1 > 0, and to change the xi to ϑi if x1 < 0. If neither case applies (x1 = 0),
the DJ-constraint evaluates to false as no disjunct applies, so no jump is possible
at all, which will prevent the system from continuing any further. In particular, a
jump-free DJ-constraint such as x ≥ y corresponds to a test. It completes without
changing the state if, in fact, x ≥ y holds true in the current state, and it aborts
system evolution otherwise (deadlock). Especially, unlike the assignment x :=θ ,
which changes the value of x to that of θ , the test x = θ fails by aborting the sys-
tem evolution if x does not already happen to have the value θ . If cases overlap,
as in (x :=x−1∧ x≥ 0)∨ x :=0, either disjunct can be chosen to take effect by a
nondeterministic choice.

Quantifiers within DJ-constraints express unbounded discrete nondeterministic
choices. For instance, the following quantified DJ-constraint assigns some vector
u ∈ R2 to e such that the rays spanned by d = (d1,d2) and u = (u1,u2) intersect:

∃u1∃u2 (e1 :=u1∧ e2 :=u2∧∃λ>0∃µ>0(λd1 = µu1∧λd2 = µu2)).

We informally use vectorial notation when no confusion arises. Using vectorial
quantifiers, equations, arithmetic, and assignments, the latter DJ-constraint simpli-
fies to:

∃u(e :=u∧∃λ>0∃µ>0λd = µu).

Example 3.1 (DJ-constraints). Examples of DJ-constraints include:

• d1 :=−d2

134 3 Differential-Algebraic Dynamic Logic DAL

• d1 :=−d2∧d2 :=d1 — simultaneous effect is an instant left rotation by π

2
• (d1 > 0→ d1 :=−d2 ∧ d2 := d1)∧ (d1 ≤ 0→ d1 := d2 ∧ d2 :=−d1) — effect

depends on the sign of d1
• ∃a(ω :=a2∧a < 5) — quantified nondeterministic effect
• d1 > 0→ ∃a(a < 5∧d1 :=a2 +1) — but this DJ-constraint is inhomogeneous,

it does not specify what happens if d1 ≤ 0.

The following cases are not allowed as DJ-constraints:

• d1 :=−d2∧d1 :=0 — incompatible jump, because d1 cannot assume both values
at once

• ¬(d1 :=5) — does not specify what really is assigned to d1, only what is not
• ∀a(ω :=a2) — ω cannot assume all those values a2 at once for all a
• ∃a(a := d1) — is just equivalent to true, because it has no visible effects or

constraints (the scope of the quantified a ends with the DJ-constraint)

It is not impossible to give a reasonable semantics to these disallowed cases and
handle them in proof rules. Yet it would complicate the technical treatment unne-
cessarily and would distract from the important aspects. �

Differential-Algebraic Constraints

Definition 3.2 (Differential-algebraic constraints). A differential-algebraic con-
straint (DA-constraint) is a formula D of first-order real arithmetic over Σ ∪Σ ′ in
which symbols of Σ ′ only occur in affirmative subformulas that are not in the scope
of a quantifier of D for that symbol. Here, Σ ′ is the set of all differential symbols x(n)

with n ∈ N for state variables x ∈ Σ . A DA-constraint without differential symbols
x(n) for n≥ 1 is called non-differential. A variable x is (possibly) changed in D
iff x(n) occurs in D for an n≥ 1.

Syntactically, x(n) is like an ordinary function symbol of arity 0, but only allowed to
occur within DA-constraints, and not in any other formula. The intended semantics
of a differential symbol x(n) is to denote the nth time derivative of x, which is used to
form differential equations (or differential inequalities). We write x′ for x(1) and x′′

for x(2) and, sometimes, x(0) for the non-differential symbol x. The (partial) or-
der ordx D of a DA-constraint D in x is the highest order n ∈ N of a differential
symbol x(n) occurring in D , or is not defined if no such x(n) occurs. The notion of
order is accordingly for terms.

The effect of a DA-constraint D is an ongoing continuous evolution respecting
the differential and non-differential constraints of D during the whole evolution.
For instance, the effect of (x′ = θ ∧ x > 0)∨ (x′ =−x2∧ x < 0) is that the system
evolves along x′ = θ while x > 0, yet evolves along x′ =−x2 when x < 0. This
evolution can stop at any time but is never allowed to enter the region where neither
case applies anymore (x = 0). There also is no transition at all if x = 0 holds in the
beginning, because no disjunct applies in the initial state then.

3.2 Syntax 135

More generally, the differential constraints of D describe how the valuations of
the respective state variables change continuously over time while following D .
The non-differential constraints of D can be understood to express evolution do-
main restrictions or invariant regions of these evolutions for which the differential
equations apply or within which the evolution resides. For instance, in the DA-
constraint d′1 =−ωd2∧d′2 = ωd1∧d1 ≥ 0, differential equations d′1 =−ωd2 and
d′2 = ωd1 describe the change and d1 ≥ 0 describes the invariance region or max-
imal domain of evolution. Overlapping cases are resolved as in DJ-constraints, i.e.,
by nondeterministic choice. Likewise, a DA-constraint where no case applies aborts
the system evolution as it does not satisfy the DA-constraint. Hence, non-differential
DA-constraints and jump-free DJ-constraints are both equivalent to pure tests (?χ

from Chap. 2). Except for such tests, we need to distinguish DA-constraints from
DJ-constraints: Only DA-constraints can have evolutions of nonzero duration and
only DJ-constraints can lead to discontinuous changes.

Quantifiers within DA-constraints express continuous nondeterministic choices.
For example, constraint ∃u(d′1 =−(ω +u)d2∧d′2 = (ω +u)d1∧−0.1≤ u≤ 0.1)
expresses that the system follows a continuous evolution in which, at each time, the
differential equations are respected for some choice of u in −0.1≤ u≤ 0.1. In par-
ticular, the choice of u can be different at each time so that u amounts to a bounded
nondeterministic disturbance during the rotation in the above DA-constraint.

Example 3.2 (DA-constraints). Examples of DA-constraints include:

• x′1 = d1∧ x′2 = d2
• x′1 = d1∧ x′2 = d2∧d′1 =−ωd2∧d′2 = ωd1
• d′1 =−ωd2∧d′2 = ωd1∧d1 ≥ 0
• (d1 > 0→ d′1 =−d2∧d′2 = d1)∧ (d1 ≤ 0→ d′1 = d2∧d′2 =−d1)
• x′1 ≤ d1∧ x′2 ≤ d2
• x′1 = d1∧ x′2 ≤ d2∧d′1 < 2∧d′2 ≥ 0
• ∃ω (d′1 =−ωd2∧d′2 = ωd1∧−1≤ ω ≤ 1)
• ∃ω (d′1 =−ωd2∧d′2 = ωd1∧−1≤ ω ≤ 1)∨ (d′1 ≤ d′2 ≤ 2d1)
• d1 > 0→ x′1 = d1 ∧ x′2 = d2 ∧ d′1 = −ωd2 — but this DA-constraint is inhomo-

geneous, it does not specify what happens if d1 ≤ 0

The following cases are not allowed as DA-constraints:

• d′1 = −d2 ∧ d′1 = 1 — incompatible slope, because d1 cannot evolve with two
different slopes at once

• ¬(d′1 = 5) — does not specify what the slope of d1 really is, only what it is not
• ∀ω (d′1 =−ωd2∧d′2 = ωd1) — d1 cannot have all those slopes at once
• ∃a(a′ = d1) — is just equivalent to true, because it has no visible effects or

constraints (the scope of the quantified a ends with the DA-constraint)

It is not impossible to give a reasonable semantics to these disallowed cases and
handle them in proof rules. But it would complicate the technical treatment unne-
cessarily. �

136 3 Differential-Algebraic Dynamic Logic DAL

When using constraint formulas to characterise system transitions, we face the
usual frame problem: Typically, one does not expect variables to change their values
unless the respective constraint explicitly specifies how. In this chapter, we indicate
constant variables explicitly so that no confusion arises. In practical applications,
however, it can be quite cumbersome to have to specify z := z or z′ = 0 explicitly for
all variables z that are not supposed to change in a DJ-constraint or DA-constraint,
respectively. To account for that, we will define the DAL semantics so that variables
that are not changed by a DJ-constraint or DA-constraint keep their value. Since free
nondeterministic change of variable y is expressible using ∃a(y :=a) or ∃a(y′ = a),
respectively, we expect the changes of all changed variables to be specified explicitly
in all cases of the constraints to improve readability:

Definition 3.3 (Homogeneous constraints). A DA-constraint or DJ-constraint C is
called homogeneous iff, in each of the disjuncts of a disjunctive normal form of C ,
every changed variable of C is changed exactly once.

Note that Lemma 3.3 from Sect. 3.5.2 will show that DA-constraints are equival-
ent to their disjunctive normal forms and, hence, the notion of homogeneity is
well-defined. Throughout the chapter, we assume that all DA-constraints and DJ-
constraints are homogeneous, thereby ensuring that all changed variables receive a
new value in all cases of the respective constraint (or stay constant because they are
changed nowhere in the constraint) and that no change conflicts occur.

Hence, variable y does not change during the DA-constraint x′ =−x∧ x≥ y but
works as a constant lower bound for the evolution of x, because no differential
symbol y(n) with n≥ 1 occurs so that y′ = 0 is assumed implicitly. If y is inten-
ded to vary, but its variation is not specified by a differential equation, because y
varies according to some algebraic relation with x, then quantified DA-constraints
can be used to represent such differential-algebraic equations [132]. For instance,
the differential-algebraic equation x′ =−x,y2 = x, in which y2 = x is an algebraic
variational constraint specifying how y changes over time, is expressible as the
DA-constraint x′ =−x∧∃u(y′ = u∧ y2 = x). There, the quantified differential con-
straint on y essentially says that y can change arbitrarily (with arbitrary disturbance u
as slope), but only so that it always respects the relation y2 = x.

Differential-Algebraic Programs

Now we can define DA-programs as regular combinations of DJ-constraints and
DA-constraints.

Definition 3.4 (Differential-algebraic programs). The set DA-program(Σ) of dif-
ferential-algebraic programs, with typical elements α,β , is inductively defined as
the smallest set such that:

• If J is a DJ-constraint over Σ , then J ∈ DA-program(Σ).
• If D is a DA-constraint over Σ ∪Σ ′, then D ∈ DA-program(Σ).
• If α,β ∈ DA-program(Σ) then (α ∪β) ∈ DA-program(Σ).

3.2 Syntax 137

Table 3.2 Statements and (informal) effects of differential-algebraic programs

DA-program Operation Effect
J discrete jump jump constraint with assignments holds for discrete jump
D diff.-alg. flow differential-algebraic constraint holds during continuous flow
α; β seq. composition DA-program β starts after DA-program α finishes
α ∪β nondet. choice choice between alternative DA-programs α or β

α∗ nondet. repetition repeats DA-program α n-times for any n ∈ N

• If α,β ∈ DA-program(Σ) then (α;β) ∈ DA-program(Σ).
• If α ∈ DA-program(Σ) then (α∗) ∈ DA-program(Σ).

Choices α ∪β are used to express behavioural alternatives between α and β , i.e.,
the system follows either α or β . In particular, the difference between the DA-
constraint D ∨E and the DA-program D ∪E is that the system has to commit to one
choice of either D or E in D ∪E , but it can switch back and forth multiple times
between disjunct D and E in D ∨E . The sequential composition α;β says that
DA-program β starts executing after α has finished (β never starts if α does not ter-
minate, e.g., due to a failed test in α). Observe that, as with repetitions, continuous
evolutions within α can take more or less time. This nondeterminism is inherent in
hybrid systems and as such reflected in DA-programs. Additional restrictions on the
permitted duration of evolutions can simply be specified using auxiliary clocks, i.e.,
variables of derivative τ ′= 1. For instance, τ :=0; x′ =−x2∧ τ ′ = 1∧ τ ≤ 5; ?τ ≥ 2
specifies that the system only follows those evolutions along x′ =−x2 that take at
most five (conjunct τ ≤ 5) but at least two time units (subsequent test ?τ ≥ 2). Re-
petition α∗ is used to express that the hybrid process α repeats any number of times,
including zero.

Table 3.2 summarises the statements and (informal) effects of DA-programs. DA-
programs still form a Kleene algebra [182] like hybrid programs from Chap. 2, but
the primitive programs are more powerful. Further tests ?χ are not necessary, be-
cause they can be defined by a jump-free DJ-constraint χ or by a non-differential
DA-constraint χ .

Example 3.3 (Train control with disturbance). Recall the hybrid program for a train
control system from dL formula (2.7) in Sect. 2.4:

ψ → [(ctrl ;drive)∗]z≤ m (2.7∗)
where ctrl ≡ (?m− z≤ s;a :=−b)∪ (?m− z≥ s;a :=A),

drive ≡ τ :=0;(z′ = v,v′ = a,τ ′ = 1&v≥ 0∧ τ ≤ ε).

With a minor notational variation, this hybrid program is a DA-program:

ψ → [(ctrl ;drive)∗]z≤ m

where ctrl ≡ (m− z≤ s∧a :=−b)∪ (m− z≥ s∧a :=A),

drive ≡ τ :=0;(z′ = v∧ v′ = a∧ τ
′ = 1∧ v≥ 0∧ τ ≤ ε).

138 3 Differential-Algebraic Dynamic Logic DAL

Note also that we have decided to merge the test ?m− z≤ s with the subsequent
assignment a :=−b here to form the DJ-constraint m− z≤ s∧a :=−b. This simpli-
fication is non-essential and just used to show the expressiveness of DA-programs.
In fact, we could also replace ctrl by a single DJ-constraint with the same semantics:

(m− z≤ s∧a :=−b)∨ (m− z≥ s∧a :=A).

The simple program assumes ideal-world dynamics with perfect control of the
acceleration a, which takes effect exactly by the differential equation z′ = v,v′ = a.
Yet this is not quite realistic. In reality, there are more aspects to train control that
have an important impact on the dynamics, including wind, track conditions, slope
of the track, mass, etc. In order to take these effects into account without having
to build a full physical model of all parts, we replace the differential equation by
a differential inequality, which allows for minor discrepancies. We thus replace the
differential equation DA-constraint z′ = v∧ v′ = a∧ v≥ 0 with the differential in-
equality DA-constraint

z′ = v∧a− l ≤ v′ ≤ a+u∧ v≥ 0 (3.1)

for bounds l > 0 and u≥ 0 on how much the actual acceleration may deviate from
the set acceleration a. See Fig. 3.1 for an illustration of how the dynamics can devi-
ate from the ideal-world dynamics in the presence of a disturbance that can change
over time. With this generalisation the program can only be represented as a DA-

Fig. 3.1 Controllability vi-
olated in the presence of
disturbance

z

v

m

program, and no longer as a hybrid program. Now, the formula from (2.7) will no
longer be a dL formula, because DA-programs are not allowed in dL . Instead, we
will see that it is a well-formed DAL formula in Sect. 3.2.3.

Let us continue this line and replace the original differential equation by a quan-
tified DA-constraint with a quantified disturbance as input to the dynamics:

z′ = v∧∃d (v′ = d∧a− l ≤ d∧d ≤ a+u)∧ v≥ 0. (3.2)

This DA-constraint expresses that, at every point in time, there is a disturbance d
affecting the actual dynamics. Yet this disturbance is bounded at any point by a− l
and a+u. Again, we obtain a DA-program instead of a hybrid program and again
the resulting formula is no longer a dL formula. One question is what the relation
is of those two different ways of generalising the ideal-world dynamics. It will turn
out in Sect. 3.5.3 that the DA-constraints (3.1) and (3.2) are, in fact, equivalent, and
so are the resulting DA-programs. �

3.2 Syntax 139

Classification of Differential-Algebraic Programs

DA-programs give rise to an elegant syntactic hierarchy of discrete, continuous, and
hybrid systems; see Table 3.3. Purely conjunctive DA-constraints correspond to con-
tinuous dynamical systems [279]. DA-constraints with disjunctions correspond to
switched continuous dynamical systems [55]. DA-programs without DA-constraints
correspond to discrete dynamical systems or, when restricted to domain N (which
is definable in DAL), to discrete while programs [149]. Regular combinations of
DJ-constraints form a complete basis of discrete programs [149]. Finally, general
DA-programs correspond to (first-order generalisations of) hybrid dynamical sys-
tems [55, 156, 97].

Table 3.3 Classification of differential-algebraic programs and correspondence to dynamical sys-
tems

DA-program class Dynamical systems class
conjunctive DA-constraints continuous dynamical systems
DA-constraints switched continuous dynamical systems
no DA-constraints discrete dynamical systems
no DA-constraints, over N discrete while programs
general DA-programs hybrid dynamical systems

+ (generalised to first-order dynamics)

3.2.3 Formulas of Differential-Algebraic Logic

The set of formulas of DAL is defined as common in first-order dynamic logic [149].
They are built using propositional connectives and, in addition, if α is a DA-program
and φ is a DAL formula, then [α]φ ,〈α〉φ are DAL formulas. The intuitive reading
of [α]φ is that every run of DA-program α leads to states satisfying φ . Dually, 〈α〉φ
expresses that there is at least one run of DA-program α leading to such a state.

Definition 3.5 (DAL formulas). The set Fml(Σ) of DAL formulas, with typical
elements φ ,ψ , is inductively defined as the smallest set with:

• If θ1,θ2 ∈ Term(Σ) are terms, then (θ1 ≥ θ2) ∈ Fml(Σ). The definition is ac-
cordingly for =,≤,<,>.

• If φ ,ψ ∈ Fml(Σ), then ¬φ ,(φ ∧ψ),(φ ∨ψ),(φ → ψ) ∈ Fml(Σ).
• If φ ∈ Fml(Σ) and α ∈ DA-program(Σ), then [α]φ ,〈α〉φ ∈ Fml(Σ).

Quantifiers in DAL formulas are definable in terms of DA-constraints or quantified
DJ-constraints. We consider quantifiers as abbreviations:

∀xφ ≡ [∃ax :=a]φ ≡ [x′ = 1∨ x′ =−1]φ
∃xφ , ≡ 〈∃ax :=a〉φ≡〈x′ = 1∨ x′ =−1〉φ .

140 3 Differential-Algebraic Dynamic Logic DAL

Table 3.4 Operators and meaning in differential-algebraic dynamic logic (DAL)

DAL Operator Meaning
θ1 ≥ θ2 comparison true iff denotation of θ1 is greater or equal that of θ2
¬φ negation / not true if φ is false
φ ∧ψ conjunction / and true if both φ and ψ are true
φ ∨ψ disjunction / or true if φ is true or if ψ is true
φ → ψ implication / implies true if φ is false or ψ is true
φ ↔ ψ bi-implication / equivalent true if φ and ψ are both true or both false
∀xφ universal quantifier / for all true if φ is true for all values of variable x
∃xφ existential quantifier / exists true if φ is true for some values of variable x
[α]φ [·] modality / box true if φ is true after all runs of DA-program α

〈α〉φ 〈·〉 modality / diamond true if φ is true after at least one run of DA-program α

The DAL formula [∃ax :=a]φ considers all possibilities of assigning some value a
to x, which amounts to universal quantification. Likewise, 〈∃ax :=a〉φ considers
some such choice, which is existential quantification. Similarly, the indeterminate
continuous evolution x′ = 1∨ x′ =−1 reaches all values, which amounts to the re-
spective quantifier when combined with the appropriate modality. Note here that we
can define quantifiers in terms of both DJ-constraints and DA-constraints although
the former are discrete and the latter are continuous. The reason for this is that the
time that passed during the continuous evolution is not observable in the system as
no clock variable is included in the DA-constraint that could measure the progress
of time.

With these abbreviations, we summarise the operators of differential-algebraic
dynamic logic in Table 3.4. The structure of the logic DAL is mostly identical to the
structure of dL except for the significantly more expressive DA-programs inside
modalities.

Example 3.4 (Train control with disturbance). In Example 3.3 we have replaced the
differential equation of the train example by more general DA-constraints: the dif-
ferential inequality (3.1) and the quantified DA-constraint (3.2), respectively. The
generalised counterpart of the dL formula (2.7) for its hybrid program is the fol-
lowing DAL formula for its DA-program:

ψ → [(ctrld ;drived)
∗]z≤ m (3.3)

with ctrld ≡ (?m− z≤ s;a :=−b)∪ (?m− z≥ s;a :=A)

drived ≡ τ :=0;
(z′ = v∧∃d (v′ = d∧a− l ≤ d∧d ≤ a+u)∧ τ

′ = 1∧ v≥ 0∧ τ ≤ ε).

DAL formula (3.3) is more general than dL formula (2.7), because it makes a safety
claim about a more general dynamics, with nondeterministic quantified input d as
disturbance. If we prove DAL formula (3.3) then this implies validity of dL for-
mula (2.7), because all behaviour of the hybrid program is a special case of the
behaviour of the DA-program (with constant disturbance d = 0). Yet, how do we
prove the more general DAL formula to be valid? Certainly, we can no longer solve

3.3 Semantics 141

its differential equations, because the DA-constraints now depend on quantified in-
put or differential inequalities. �

One common pattern for representing safety statements about hybrid control
loops is to use DAL formulas of the form φ → [(controller ; plant)∗]ψ for specifying
that the system satisfies property ψ whenever the initial state satisfies φ . There, the
system repeats a controller plant feedback loop, with a DA-constraint plant describ-
ing the continuous plant dynamics and a discrete DA-program controller describing
the control decisions. The controller plant interaction repeats as indicated by the re-
petition star. Still, more general forms of systems and properties can be formulated
and verified in DAL as well.

3.3 Semantics of Differential-Algebraic Logic

The semantics of DAL is a Kripke semantics with possible states of a hybrid system
as possible worlds, where the accessibility relation between worlds is generated by
the discrete or continuous transitions of DA-programs. A potential behaviour of
a hybrid system corresponds to a succession of states that contain the observable
values of system variables during its hybrid evolution.

3.3.1 Transition Semantics of Differential-Algebraic Programs

Since in this chapter we do not distinguish between free logical variables and con-
stants, the semantics does not need to distinguish states and variable assignments.

A state is a map ν : Σ → R; the set of all states is denoted by State(Σ). The
function and predicate symbols of real arithmetic are interpreted as usual.

Definition 3.6 (Valuation of terms). The valuation val(ν , ·) of terms with respect
to state ν is defined by

1. val(ν ,x) = ν(x) if x ∈ Σ is a variable.
2. val(ν ,θ1 +θ2) = val(ν ,θ1)+ val(ν ,θ2).
3. val(ν ,θ1−θ2) = val(ν ,θ1)− val(ν ,θ2).
4. val(ν ,θ1 ·θ2) = val(ν ,θ1) · val(ν ,θ2).
5. val(ν ,θ1/θ2) = val(ν ,θ1)/val(ν ,θ2) if val(ν ,θ2) 6= 0.

Note that we do not need the semantics of θ1/θ2 for val(ν ,θ2) = 0, because we
have assumed the presence of constraints ensuring ¬(θ2 = 0) for divisions.

Discrete Jump Constraints

The interpretation of discrete jump constraints is defined as in first-order real arith-
metic, with the addition of an interpretation for assignment formulas.

142 3 Differential-Algebraic Dynamic Logic DAL

Definition 3.7 (Interpretation of discrete jump constraints). The interpretation
(ν ,ω) |= J of DJ-constraint J for the pair of states (ν ,ω) is defined as follows,
where ω(z) = val(ω,z) = val(ν ,z) = ν(z) for all variables z that are not changed
in J :

1. (ν ,ω) |= x :=θ iff val(ω,x) = val(ν ,θ).
2. (ν ,ω) |= θ1 ≥ θ2 iff val(ν ,θ1)≥ val(ν ,θ2), and accordingly for =,≤,<,>.
3. (ν ,ω) |= φ ∧ψ iff (ν ,ω) |= φ and (ν ,ω) |= ψ . Accordingly for ¬,∨,→.
4. (ν ,ω) |= φ ∨ψ iff (ν ,ω) |= φ or (ν ,ω) |= ψ .
5. (ν ,ω) |= ¬φ iff it is not the case that (ν ,ω) |= φ .
6. (ν ,ω) |= φ → ψ iff it is not the case that (ν ,ω) |= φ or it is the case that

(ν ,ω) |= ψ .
7. (ν ,ω) |= ∀xφ iff (νx,ω) |= φ for all states νx that agree with ν except for the

value of x.
8. (ν ,ω) |= ∃xφ iff (νx,ω) |= φ for some state νx that agrees with ν except for

the value of x.

Differential-Algebraic Constraints

To give a semantics to DA-constraints, differential symbols x′ ∈ Σ ′ must get a mean-
ing. However, a DA-constraint like d′1 =−ωd2∧d′2 = ωd1 cannot be interpreted in
a single state ν , because derivatives are not defined in isolated points. Instead, DA-
constraints are constraints that have to hold for an evolution of states over time.
Along such a flow function ϕ : [0,r]→ State(Σ), DA-constraints can again be in-
terpreted locally by assigning to the formal differential symbol d′1 the analytic time
derivative of the value of d1 along ϕ at the respective points in time. As we as-
sumed DA-constraints to avoid zero divisions, analytic derivatives are well-defined
for r > 0 as State(Σ) is isomorphic to a finite-dimensional real space with respect
to the finitely many differential symbols occurring in the DA-constraint. We give
a uniform definition for all durations r ≥ 0 and defer the discussion of the under-
standing for r = 0 until the DA-constraint semantics has been presented in full. The
philosophy behind hybrid systems is to isolate discontinuities in discrete transitions.
Thus we assume that state variables (and their differential symbols, if present) al-
ways vary continuously along continuous evolutions over time.

Definition 3.8 (Differential state flow). A function ϕ : [0,r]→ State(Σ) is called
state flow of duration r ≥ 0 if ϕ is componentwise continuous on [0,r], i.e., for
all x ∈ Σ , ϕ(ζ)(x) is continuous in ζ . Then, the differentially augmented state ϕ̄(ζ)
of ϕ at ζ ∈ [0,r] agrees with ϕ(ζ) except that it further assigns values to some of the
differential symbols x(n) ∈ Σ ′: If ϕ(t)(x) is n times continuously differentiable in t
at ζ , then ϕ̄(ζ) assigns the nth time derivative dnϕ(t)(x)

dtn (ζ) of x at ζ to differential
symbol x(n) ∈ Σ ′; otherwise the value of x(n) ∈ Σ ′ is not defined in ϕ̄(ζ).

For a DA-constraint D , a state flow ϕ of duration r is called state flow of the order
of D iff the value of each differential symbol occurring in D is defined on [0,r],
i.e., ϕ(ζ)(x) is n times continuously differentiable in ζ on [0,r] for n = ordx D .

3.3 Semantics 143

Example 3.5 (Differential state flow). We want to give a semantics to the DA-
constraint x′ = x3, for which we have to specify where the dynamics of this DA-
constraint evolves to when evolution starts in a state ν . Clearly, we can say what
the semantics of the right-hand side of the differential equation is, and how the term
x3 evaluates in any state ν . But what should x′ evaluate to? And how do we define
when the terms x′ and x3 are equal. Remember: we also have to define when one
term is less than the other for giving a semantics to differential inequalities like
x′ < x3 or x′ ≤ x3. At a single state ν , which is just an isolated point, derivatives are
not defined, so that we cannot really give a meaning to the DA-constraints x′ = x3

or x′ ≤ x3 when looking only at a single point.
Yet along a continuous state flow ϕ , we can make sense of x′. At any time ζ

during the continuous state flow ϕ , we have values for all the variables, and can
thus evaluate val(ϕ̄(ζ),x3) based on the value of variable ϕ̄(ζ)(x) and of any other
variables that occur. At time ζ along the flow, however, we can also give a value
to x′ as the value of the derivative of the value val(ϕ̄(t),x) of x by time t at the point
in time ζ ; see illustration in Fig. 3.2. We assign this value of the derivative at ζ to

Fig. 3.2 Differential state
flow

0 t

x

x0 ϕ̄(ζ
)(x
′)x′ = x3

ζ

ϕ̄(ζ)(x)

ϕ̄(ζ)(x′) in the differentially augmented state ϕ̄ at time ζ . Intuitively, ϕ̄(ζ)(x′) is
determined by considering how the value val(ϕ̄(ζ),x) of x changes along the flow ϕ

when we change time ζ “only a little bit”. With this definition of the differentially
augmented states ϕ̄ , we can easily evaluate DA-constraints like x′ = x3 or x′ ≤ x3 at
every point in time ζ by checking if ϕ̄(ζ) |= x′ = x3 or ϕ̄(ζ) |= x′ ≤ x3, respectively,
hold in the standard valuation of first-order logic, which is the same as checking
if val(ϕ̄(ζ),x′) = val(ϕ̄(ζ),x3) or val(ϕ̄(ζ),x′)≤ val(ϕ̄(ζ),x3), respectively. The
same principle can be used to give a semantics to more complicated DA-constraints,
just by evaluating the first-order logic (including quantifiers) locally at every point
in time along the differentially augmented state flow ϕ̄(ζ). �

Definition 3.9 (Interpretation of differential-algebraic constraints). The inter-
pretation of DA-constraint D with respect to a state flow ϕ of the order of D and
duration r ≥ 0 is defined by: ϕ |= D iff, for all ζ ∈ [0,r],

1. ϕ̄(ζ) |=R D using the standard semantics |=R of first-order real arithmetic
(App. A), and

2. val(ϕ̄(ζ),z) = val(ϕ̄(0),z) for all variables z that are not changed by D .

Observe that, along the state flows for a DA-constraint D , only those variables
whose differential symbols occur in D have to be continuously differentiable to the

144 3 Differential-Algebraic Dynamic Logic DAL

appropriate order. Quantified variables can change more arbitrarily (even discon-
tinuously) during the evolution. The reason is that the semantics does not directly
relate the value of a quantified variable like u in ∃ux′ = u2 at time ζ with the val-
ues that u assumes at later times. In particular, the value chosen for the quantified
variable u can be different at every point in time, thereby giving a semantics of
disturbance. Quantified variables may be constrained indirectly by their relations,
though: In ∃ux′ = u2, the value of u2 (but not that of u) also varies continuously
over time, because x′ varies continuously.

As a consequence of Picard-Lindelöf’s theorem, a.k.a. the Cauchy-Lipschitz
theorem (Theorem B.2), and using the fact that DAL terms are continuously dif-
ferentiable on the open domain where divisors are nonzero, the flows of explicit
quantifier-free, conjunctive DA-constraints of the form x′1 = θ1∧·· ·∧ x′n = θn∧χ

with non-differential constraint χ are unique (as long as they exist): For each dura-
tion and initial value, there is at most one state flow ϕ respecting the DA-constraint
(see Lemma 2.1). Yet, this is not the case for disjunctive DA-constraints, differen-
tial inequalities, quantified DA-constraints, or DA-constraints in implicit form such
as x′2−1 = 0, which has solutions x(t) = x(0)+ t and x(t) = x(0)− t. Finally, a
non-differential constraint χ imposes no change but only tests whether χ holds.
Hence, without differential constraints, a non-differential DA-constraint χ itself
only has constant flows (if any), i.e., ϕ(ζ) = ϕ(0) for all ζ .

Restrictions of differential state flows to a prefix are again state flows. In partic-
ular, for all differential equations, the restriction to the point interval [0,0] yields a
trivial flow of no effect. For such point duration r = 0, however, derivatives and dif-
ferentiability are not defined. To admit trivial flows nevertheless, the understanding
of a DA-constraint is that its differential terms take no effect for flows of zero dura-
tion. That is, for trivial flows, atomic formulas with differential symbols are defined
to evaluate to true as they occur only positively in DA-constraints. Thus, only the
non-differential constraints of D impose constraints for trivial flows. A state flow
of duration zero satisfying D and starting in some state ν exists iff ν satisfies the
non-differential part of D , which acts as a test condition.

Differential-Algebraic Programs

Based on the semantics of DJ-constraints and DA-constraints that we have defined
above, we can now define the transition semantics of DA-programs. We define the
transition semantics, ρ(α), of a DA-program α , compositionally and denotationally
in terms of the semantics of its parts. The semantics of a DA-program is captured
by the discrete or continuous transitions that are possible by following this DA-
program. For DJ-constraints this transition relation holds for pairs of states that
satisfy the jump constraints. For DA-constraints, the transition relation holds for
pairs of states that can be interconnected by a differential state flow respecting the
DA-constraint.

Definition 3.10 (Transition semantics of differential-algebraic programs). The
valuation, ρ(α) of a DA-program α is a transition relation on states. It specifies

3.3 Semantics 145

which state ω is reachable from a state ν by operations of the hybrid system α and
is defined as:

1. (ν ,ω) ∈ ρ(J) iff (ν ,ω) |= J according to Definition 3.7 when J is a DJ-
constraint.

2. ρ(D) = {(ϕ(0),ϕ(r)) : ϕ is a differential state flow of the order of D and some
duration r≥ 0 such that ϕ |= D}when D is a DA-constraint; see Definition 3.9.

3. ρ(α ∪β) = ρ(α)∪ρ(β).
4. ρ(α;β) = {(ν ,ω) : (ν ,µ) ∈ ρ(α),(µ,ω) ∈ ρ(β) for some state µ}.
5. (ν ,ω) ∈ ρ(α∗) iff there is n ∈ N and there are ν = ν0, . . . ,νn = ω such that

(νi,νi+1) ∈ ρ(α) for all 0≤ i < n.

3.3.2 Valuation of Formulas

Now, the interpretation of DAL formulas is defined as usual for first-order modal lo-
gic [123, 149], with the transition semantics, ρ(α), of DA-programs for modalities.
The semantics of formulas is compositional and denotational, that is, the semantics
of a complex formula is defined as a simple function of the semantics of its subfor-
mulas. The definition is, in fact, an equivalent reformulation of the definition of the
semantics of dL in Sect. 2.3, yet using the semantics of DA-programs instead of
that of hybrid programs.

Definition 3.11 (Interpretation of DAL formulas). The interpretation |= of DAL
formulas with respect to state ν is defined as

1. ν |= θ1 ≥ θ2 iff val(ν ,θ1)≥ val(ν ,θ2), and accordingly for =,≤,<,>.
2. ν |= φ ∧ψ iff ν |= φ and ν |= ψ .
3. ν |= φ ∨ψ iff ν |= φ or ν |= ψ .
4. ν |= ¬φ iff it is not the case that ν |= φ .
5. ν |= φ → ψ iff it is not the case that ν |= φ or it is the case that ν |= ψ .
6. ν |= [α]φ iff ω |= φ for all states ω with (ν ,ω) ∈ ρ(α).
7. ν |= 〈α〉φ iff ω |= φ for some state ω with (ν ,ω) ∈ ρ(α).

The semantics of quantifiers is defined, because we considered them as abbrevi-
ations. In particular:

5. ν |= ∀xφ iff ω |= φ for all states ω that agree with ν except for the value of x.
6. ν |= ∃xφ iff ω |= φ for some ω that agrees with ν except for the value of x.

3.3.3 Time Anomalies

Hybrid systems evolve along piecewise continuous trajectories, which consist of
a sequence of continuous flows interrupted by (possibly discontinuous) discrete
jumps. A common phenomenon in hybrid system models is that their semantics

146 3 Differential-Algebraic Dynamic Logic DAL

and analysis are more controversial when discrete and continuous behaviour are al-
lowed to interact without certain regularity assumptions [176, 270, 97, 156]. Zeno-
anomalies occur when the hybrid system is allowed to take infinitely many discrete
transitions in finite time.

Consider the DA-program (a′ =−1∧d ≤ a; d :=d/2)∗ starting in a state where
a > d > 0 and a and d progress towards goal 0. The (inverse) clock variable a
decreases continuously, yet d bounds the maximum duration of each continuous
evolution phase. At the latest when a = d, variable d decreases by a discrete trans-
ition. This Zeno system generates infinitely many transitions in finite time and it
is impossible for clock a to finally reach 0, because a≥ d > 0 will always re-
main true; see the dynamics in Fig. 3.3. Yet this behaviour is, in a certain sense,

Fig. 3.3 Zeno system run

0 t

a

d

counterfactual, because it fails to obey divergence of time: Real time diverges,
whereas clock a converges to 0. Further, systems with Zeno-anomalies cannot be
realised [176, 270, 97, 156] so that corresponding regularity assumptions can be
justified for practical purposes.

Another example for a Zeno system is the bouncing ball from Fig. 2.2 on p. 45.
The bouncing ball will bounce infinitely often in finite time unless the damping
coefficient c decreases to 0 at some point.

To avoid pitfalls of time anomalies, we define the DAL semantics so that it
only refers to well-defined system behaviour with finitely many transitions in fi-
nite time: We restrict the semantics of DA-constraints and disallow infinite numbers
of switches between differential equations in bounded time. With DA-constraint D
defined as, say, (x≥ 0→ x′′ =−1)∧ (x < 0→ x′′ = 1)∧ y′ = 1, the DAL formula

∃e〈D〉[D](y > e→ x≤ d)

expresses that, after some time, the system can stabilise such that it always remains
within the region x ≤ d when y > e for some choice of e. For such a stability prop-
erty, we do not analyse what happens after there have been infinitely many switches
from x′′ = 1 to x′′ = −1 within the first second. Instead, our semantics is such that
our calculus reveals what happens for any finite number of switches. Accordingly,
we restrict the semantics of DA-constraints to only accept non-Zeno evolutions:

Definition 3.12. A differential state flow ϕ for a DA-constraint D is called non-
Zeno if there only is a finite number of points in time where some variable
needs to obey another differential constraint of D than those before the respect-
ive point in time: Let D1∨·· ·∨Dn be a disjunctive normal form of D ; then flow

3.3 Semantics 147

ϕ : [0,r]→ State(Σ) is non-Zeno iff there are m∈N and 0 = ζ0 < ζ1 < · · ·< ζm = r
and indices i1, . . . , im ∈ {1, . . . ,n} such that ϕ respects Dik on the interval [ζk−1,ζk],
i.e., ϕ|[ζk−1,ζk]

|= Dik for all k ∈ {1, . . . ,m}.
The semantics of DA-programs entails that runs with non-Zeno state flows are non-
Zeno, because α∗ does not accept infinitely many switches.

3.3.4 Conservative Extension

The following result shows that dL formulas with hybrid programs can be em-
bedded syntactically into the extension of DAL by DA-programs without changing
the meaning of the dL formulas. That is, the semantics of DAL formulas given
in Definition 3.11 and 3.10 is equivalent to the semantics given in Definitions 2.6
and 2.7 for the sublogic dL of dTL using the syntactic embedding of hybrid pro-
grams into DA-programs from Table 3.5.

Table 3.5 Embedding hybrid programs as DA-programs

Hybrid program DA-program
assignment / discrete jump set DA-constraint

x1 :=θ1, . . . ,xn :=θn x1 :=θ1∧·· ·∧ xn :=θn
differential equation system DA-constraint

x′1 = θ1, . . . ,x′n = θn & χ x′1 = θ1∧·· ·∧ x′n = θn∧χ

test DJ-constraint / DA-constraint
?χ χ

Proposition 3.1 (Conservative extension). The logic DAL is a conservative exten-
sion of dL , i.e., the set of valid dL formulas is the same with respect to the trans-
ition semantics of hybrid programs (Definition 2.7) as with respect to the transition
semantics of DA-programs (Definition 3.10).

Proof. The valuation of formulas of dL and DAL is directly compatible (Defini-
tion 3.11 and 2.6, respectively). By comparing Definition 2.7 with Definition 3.10, it
is easy to see that we only need to show that differential equations generate the same
transitions. Using vectorial notation, let x′ = θ & χ be a differential equation with
evolution domain restriction χ . Let (ν ,ω) ∈ ρ(x′ = θ & χ) according to a flow ϕ of
duration r as a witness due to Definition 2.7. Then ϕ is a differential state flow of
the order of x′ = θ and ϕ(0) = ν ,ϕ(r) = ω and ϕ |= χ and the value of variables z
other than x remains constant. Assume r > 0 as there is nothing else to show oth-
erwise. By Definition 2.7, we know that ϕ |= x′ = θ holds on the interval (0,r) and
have to show that there is a continuation of ϕ so that ϕ |= x′ = θ holds on [0,r].

The right-hand side θ of the differential equation assumes values that are defined
along ϕ , because ϕ |= χ and χ guards against zeros of denominators. Hence, the im-
age of ϕ remains in the domain of definition of θ . Further, ϕ is continuous on [0,r];

148 3 Differential-Algebraic Dynamic Logic DAL

hence, as a compact image of a continuous map, its image is compact. Thus, by the
continuation theorem for solutions of differential equations (Proposition B.1), ϕ can
be continued to a solution of x′ = θ on [0,r].

Conversely, it is easy to see that (ν ,ω) ∈ ρ(x′ = θ ∧χ) according to Defini-
tion 3.10 directly implies (ν ,ω) ∈ ρ(x′ = θ & χ) according to Definition 2.7. ut

Clearly, the DAL calculus will not be a conservative extension of the dL calculus,
because it contains more powerful proof rules for verifying properties of differential
equations. We will see that there are dL formulas that can be proven in the DAL
calculus but not in the dL calculus. With our differential induction techniques in
Sects. 3.5.6 and 3.5.7, the DAL calculus has better handling of differential equations
than the solution-based proof rules presented in Chap. 2.

3.4 Collision Avoidance in Air Traffic Control

As a case study, which will serve as a running example, we show how succinctly
collision avoidance manoeuvres in air traffic control can be described in DAL. In
Sect. 3.11, we will verify such manoeuvres in the DAL calculus.

3.4.1 Flight Dynamics

Assuming, for simplicity, aircraft remain at the same altitude, an aircraft is described
by its planar position x = (x1,x2) ∈ R2 and angular orientation ϑ . The dynamics of
an aircraft is determined by its linear velocity v ∈ R and angular velocity ω; see
Fig. 3.4 (depicted with ϑ = 0 in the illustration). When neglecting wind, gravitation,

Fig. 3.4 Aircraft dynamics

x1

x2

y1

y2

d

ω e

ϑ̄

̟

and so on, which is appropriate for analysing cooperation in air traffic control [293,
196, 203, 92, 238], the in-flight dynamics of an aircraft at x can be described by the
following differential equation system; see [293] for details:

x′1 = vcosϑ x′2 = vsinϑ ϑ
′ = ω. (3.4)

3.4 Collision Avoidance in Air Traffic Control 149

That is, the linear velocity v of the aircraft changes both positions x1 and x2 in the
(planar) direction corresponding to the orientation ϑ the aircraft is currently heading
toward. Further, the angular velocity ω of the aircraft changes the orientation ϑ of
the aircraft.

3.4.2 Differential Axiomatisation

Unlike for straight-line flight (ω = 0), the nonlinear dynamics in (3.4) is difficult
to analyse [293, 196, 203, 92, 238] for curved flight (ω 6= 0), especially due to the
trigonometric expressions which are generally undecidable. Solving (3.4) requires
the Floquet theory of differential equations with periodic coefficients [297, The-
orem 18.X] and yields mixed polynomial expressions with multiple trigonometric
functions. A true challenge, however, is the need to verify properties of the states
that the aircraft reach by following these solutions, which requires proving that com-
plicated formulas with mixed polynomial arithmetic and trigonometric functions
hold true for all values of state variables and all possible evolution durations. How-
ever, quantified arithmetic with trigonometric functions is undecidable: By Gödel’s
incompleteness theorem [137], the resulting first-order real arithmetic with trigo-
nometric functions is not semidecidable, because the roots of sin characterise an
isomorphic copy of natural numbers (Theorem 2.2).

To obtain polynomial dynamics, we axiomatise the trigonometric functions in
the dynamics differentially and reparametrise the state correspondingly. Instead of
angular orientation ϑ and linear velocity v, we use the linear speed vector

d = (d1,d2) := (vcosϑ ,vsinϑ) ∈ R2

which describes both the linear speed ‖d‖ :=
√

d2
1 +d2

2 = v and the orientation of
the aircraft in space; see Figs. 3.4 and 3.5. Substituting this coordinate change into

Fig. 3.5 Reparametrise for
differential axiomatisation

x1

x2

vsinϑ = d2

d1 = vcosϑ

d

differential equations (3.4), we immediately have x′1 = d1 and x′2 = d2. With the co-
ordinate change, we further obtain differential equations for d1,d2 from differential
equation system (3.4) by simple symbolic differentiation:

d′1= (vcosϑ)′ = v′ cosϑ + v(−sinϑ)ϑ ′ =−(vsinϑ)ω =−ωd2,

150 3 Differential-Algebraic Dynamic Logic DAL

d′2 = (vsinϑ)′ = v′ sinϑ + v(cosϑ)ϑ ′ = (vcosϑ)ω = ωd1.

The middle equality holds for constant linear velocity (v′ = 0), which we assume,
because only limited variations in linear speed are possible and cost-effective during
the flight [293, 196] so that angular velocity ω is the primary control parameter
in air traffic control. Hence, equations (3.4) can be restated as the following DA-
constraint F (ω):

x′1 = d1∧x′2 = d2∧d′1 =−ωd2∧d′2 = ωd1 (F (ω))
y′1 = e1 ∧y′2 = e2 ∧e′1 =−ϖe2 ∧e′2 = ϖe1 (G (ϖ))

DA-constraint F (ω) expresses that position x = (x1,x2) changes according to the
linear speed vector d = (d1,d2), which in turn rotates according to ω . Simultaneous
movement together with a second aircraft at y∈R2 having linear speed e∈R2 (also
indicated with angle ϑ̄ in Fig. 3.4) and angular velocity ϖ corresponds to the DA-
constraint F (ω)∧G (ϖ). DA-constraints capture simultaneous dynamics of mul-
tiple traffic agents succinctly using conjunction.

By this differential axiomatisation, we thus obtain polynomial differential equa-
tions. Note, however, that their solutions still involve the same complicated non-
linear trigonometric expressions so that solutions still give undecidable arithmetic
(see Example B.4 in App. B). Our proof calculus in this chapter works with the
differential equations themselves and not with their solutions, so that differential
axiomatisation helps. Since the solutions involve trigonometric functions, previous
approaches [306, 156, 125, 270, 97, 228] were not able to handle such dynamics.

3.4.3 Aircraft Collision Avoidance Manoeuvres

Due to possible turbulence or collisions, a flight configuration is unsafe if another
aircraft is within a protected zone of radius p, i.e., ‖x− y‖2 < p2. Guiding aircraft
by collision avoidance manoeuvres to automatically resolve conflicting flight paths
that would lead to possible loss of separation, is a major challenge for both air traffic
control and verification [293, 196, 203, 104, 92, 238, 129, 171]. Several different
classes of collision avoidance manoeuvres for air traffic control have been sugges-
ted [293, 196, 203, 104, 129, 171]. The classical traffic alert and collision avoidance
system (TCAS) [196] directs one aircraft on climbing routes and the other on des-
cending routes to resolve conflicts at different altitudes but keeps otherwise unmod-
ified straight-line flight paths. While the simplistic TCAS manoeuvre has several
benefits, it does not scale up easily to multiple aircraft or dense traffic situations
near airports. As a more scalable alternative, Tomlin et al. [293] suggested round-
about manoeuvres on circular paths (see Fig. 3.6a), where, even at the same altitude,
several aircraft can participate in collision avoidance manoeuvres. Because the con-
tinuous dynamics of curved flights with ω 6= 0 is quite intricate, Tomlin et al. [293]
and Massink and De Francesco [203] have analysed trapezoidal straight-line (ω = 0)

3.4 Collision Avoidance in Air Traffic Control 151

a.





b.

Q

Q

c.



d.

x

y

c




Fig. 3.6 Flight manoeuvres for collision avoidance in air traffic control

approximations of roundabouts instead, which consist only of a series of two to five
straight line segments connected by several instant turns (Fig. 3.6b). Unfortunately,
the discontinuities in instant turns are not flyable by aircraft.

As a more realistic model, we investigate curved roundabout manoeuvres pro-
posed by Tomlin et al. [293]. Roundabouts have proper flight curves with nonzero
angular velocities ω (Fig. 3.6a). We have shown previously [238] that classical
roundabout manoeuvres with fixed turns [293, 196, 203, 92] are unsafe for non-
orthogonal initial flight paths (see Fig. 3.6c for a counterexample that our model
checker found), and we have proposed a tangential roundabout manoeuvre [238]
with position-dependent evasive actions to overcome these deficiencies. However,
because of general limits of numerical approximation techniques [238, 85], we
could not actually verify the tangential roundabout manoeuvre numerically.

In this chapter, we introduce a generalised class of tangential roundabout man-
oeuvres with curved flight paths (Fig. 3.6d) and formally verify separation proper-
ties of this manoeuvre in the purely symbolic DAL calculus. Our main motivation
for studying roundabouts are their curved flight paths, which constitute a substan-
tial challenge for verification of hybrid systems with nontrivial dynamics and an
important part of realistic flight manoeuvres.

3.4.4 Tangential Roundabout Manoeuvre

In the tangential roundabout manoeuvre, sketched in Fig. 3.6d, the idea is that the
aircraft agree on some common angular velocity ω and common centre c around
which both can circle safely without coming closer to each other (their linear velocit-
ies can differ, though, to compensate for different cruise speeds). Note that neither c
nor ω needs to be discovered by complicated online trajectory predictions. Instead,
we present a simple characterisation of safe choices for the parameters of the tan-
gential roundabout manoeuvre in Sect. 3.11 and determine safety of the resulting
flight paths using formal proofs in the DAL calculus.

In Fig. 3.7, we introduce the DAL model for the tangential roundabout man-
oeuvre, which is a simplified and more uniform generalisation of our previous
work [238]. Observe how concisely complicated aircraft manoeuvres can be spe-
cified in DAL. There, safety property ψ for aircraft manoeuvres expresses that pro-

152 3 Differential-Algebraic Dynamic Logic DAL

ψ ≡ φ → [trm∗]φ

φ ≡ ‖x− y‖2 ≥ p2 ≡ (x1− y1)
2 +(x2− y2)

2 ≥ p2

trm ≡ free; tang; F (ω)∧G (ω)

free ≡ ∃ω F (ω)∧∃ϖ G (ϖ)∧φ

tang ≡ will be derived in Sect. 3.11

Fig. 3.7 Flight control with tangential roundabout collision avoidance manoeuvres

tected zones are respected during the flight (specified by the separation property φ).
The flight controller (trm∗) performs collision avoidance manoeuvres by tangen-
tial roundabouts and repeats these manoeuvres any number of times, as needed,
as indicated by the ∗ repetition operator. During each trm phase, the aircraft first
perform arbitrary free flight (free) by (repeatedly) independently adjusting their
angular velocities ω and ϖ (by ∃ω and ∃ϖ) while the aircraft are safely separ-
ated. This is expressed by conjunct φ of the DA-constraint. Observe that, unlike
in ∃u(ω :=u); F (ω), angular velocities can be (re)adjusted continuously during
free flight in ∃ω F (ω), rather than just once. In particular, free includes piece-
wise constant choices as in

(
∃u(ω :=u)∧∃u(ϖ :=u); F (ω)∧G (ϖ)

)∗. Due to
evolution domain φ of free, the tangential roundabout manoeuvre must be initi-
ated (by a tangential initiation controller tang) before the flight paths become un-
safe. Then, the tangential roundabout manoeuvre itself is carried out by the DA-
constraint F (ω)∧G (ω) according to some common angular velocity ω determ-
ined by tang. Finally, the collision avoidance roundabouts can be left again by re-
peating the loop trm∗ and entering arbitrary free flight at any time. When further
conflicts occur during free flight, the controller in Fig. 3.7 again enters roundabout
conflict resolution manoeuvres.

In summary, property ψ of Fig. 3.7 expresses that the aircraft remain safe during
the flight, especially during evasive roundabout manoeuvres. In Sect. 3.11, we will
determine a constraint on the parameter adjustment by tang such that the roundabout
manoeuvre is safe, and we give a simple choice for tang respecting this parameter
constraint.

3.5 Proof Calculus for Differential-Algebraic Logic

In this section, we introduce a sequent calculus for proving DAL formulas. The basic
idea is to symbolically compute the effects of DA-programs and successively trans-
form them into simpler logical formulas describing their effects by symbolic decom-
position. The calculus consists of standard propositional rules, dedicated rules for
handling DA-program modalities, including differential induction rules for sophist-
icated differential constraints, and side deduction rules for integrating real quantifier
elimination.

3.5 Proof Calculus 153

For our calculus, recall the definition of substitutions: The result of applying to φ

the substitution that replaces x by θ is defined as usual (Sect. 2.5.1); it is denoted
by φ θ

x . Likewise, in a simultaneous substitution φ
θ1
x1 . . .

θn
xn the xi are replaced simul-

taneously by the respective θi.

3.5.1 Motivation

DA-constraints are a very expressive formalism and can represent rich forms of con-
tinuous dynamics, including differential equations, differential-algebraic equations,
differential inequalities, and differential equations with quantified nondeterminism
and disturbance input. Even for quite simple differential equations, formal verific-
ation of properties of their behaviour is challenging and, in general, undecidable
(Theorem 2.2). Even the linear differential equations x′ = a1x+a2y∧ y′ = a3x+a4y
have trigonometric solutions that fall outside decidable classes of arithmetic for ap-
propriate coefficients ai ∈ R.

Working with solutions of differential equations as in dL rules 〈′〉,[′] of Chap. 2
is, thus, not a very promising verification approach. Instead, we are looking for
a verification principle that works implicitly based on the local dynamics and the
differential equation itself, not on its solution. Solutions of differential equations are
usually much more complicated than the differential equations themselves, which
makes differential equations representationally powerful—and even more so for the
more expressive DA-constraints.

Intuitively, the global solution of a differential equation, while helpful, is not
really required for deciding a property. Consider Fig. 3.8, which shows the vector
fields of a differential equation system (intuitively, at each point it shows the vec-
tor of the right-hand side, i.e., the direction into which the differential equations
dynamics points locally). Geometrically, a solution is obtained by following the

Fig. 3.8 Vector field and
a solution of a differential
equation

154 3 Differential-Algebraic Dynamic Logic DAL

direction of the dynamics “at every point” along the vector field. The solid curve
shows one global solution starting at a particular point as initial value. Suppose the
two shaded transparent regions represent the set of unsafe states for a system. In
principle, verification could proceed by considering each global solution starting at
any initial point (typically uncountably many) and show that no such solution enters
the unsafe region at any time (uncountably many points in time). Of course, liter-
ally following this enumeration of solutions and enumerating all points in time will
not work because there are uncountably many initial states and points in time. This
principle is what proof rules 〈′〉,[′] from the dL calculus in Fig. 2.11 on p. 79 make
formally rigorous and sound using symbolic polynomial solutions and quantifier
elimination in real-closed fields. It is generally not very scalable and it can be quite
difficult to ensure soundness for more general dynamics.

The point is, however, that proving does not need to use solutions of differential
equations! In Fig. 3.8 the question about whether the system can ever enter an unsafe
state (in the two transparent shaded regions) can be answered by inspection of the
local dynamics of the vector field alone. If the vector field never points from a safe
state into the unsafe region, then, intuitively, the system can never end unsafe if it
starts safe and always follows the local dynamics of the vector field. Similarly, for
a reachability property, we do not necessarily need a solution for the differential
equations to decide if the system is able to reach a target region. Intuitively, it can
also be answered in the positive if the dynamics is always making good progress
towards the target region locally.

The challenge is how to turn this geometrical intuition into a sound proof prin-
ciple. In fact, it turns out throughout the course of this chapter that this is a sur-
prisingly subtle matter and easy to get wrong. In this section, we develop a sound
reasoning framework and a proof calculus for DAL that follows these principles of
proving by local dynamics without leading astray into the unsound. We first develop
appropriate notions from differential algebra that will be invaluable for our formal
development of sound proof rules.

3.5.2 Derivations and Differentiation

As a purely algebraic device for proving properties about continuous evolutions in
our calculus, we define syntactic derivations of terms and show that their valuation
coincides with analytic differentiation (the total differential). With this, we can build
proof rules for verifying DA-programs fully algebraically by a differential form of
induction without the need to carry out analytic reasoning about analytic limits or
similar concepts that would require higher-order logic. The advantage of our syn-
tactic notions that are inspired from differential algebra is that syntactic algebraic
reasoning can be carried out with a calculus that is still suitable for automatic the-
orem proving.

3.5 Proof Calculus 155

Derivations

We define a syntactic total derivation and prove that its valuation along differential
flows coincides with analytic differentiation.

Definition 3.13 (Derivation). The operator D : Term(Σ∪Σ ′)→ Term(Σ∪Σ ′) that
is defined as follows is called syntactic (total) derivation:

D(r) = 0 if r ∈Q is a rational number (3.5a)

D(x(n)) = x(n+1) if x ∈ Σ is a state variable,n≥ 0 (3.5b)
D(a+b) = D(a)+D(b) (3.5c)
D(a−b) = D(a)−D(b) (3.5d)
D(a ·b) = D(a) ·b+a ·D(b) (3.5e)

D(a/b) = (D(a) ·b−a ·D(b))/b2 (3.5f)

For a first-order formula F , we define the following abbreviations:

D(F) ≡
m∧

i=1

D(Fi) where {F1, . . . ,Fm} is the set of all literals of F ;

D(a≥ b) ≡ D(a)≥ D(b) and accordingly for <,>,≤,= or negative literals.

Recall that a literal is a logical formula with no logical operators other than ¬. A
literal is negative if it has an odd number of ¬ operators, and is positive if it has an
even number. More than one ¬ is not needed because ¬¬Fi ≡ Fi.

To illustrate the naturalness of this definition, we briefly align it in terms of the al-
gebraic structures from differential algebra [179]. Case (3.5a) defines number sym-
bols as differential constants, which do not change during continuous evolution.
Their total derivative is zero. Equation (3.5c) and the Leibniz or product rule (3.5e)
are defining conditions for derivation operators on rings. The derivative of a sum
is the sum of the derivatives (additivity or a homomorphic property with respect
to addition) according to equation (3.5c). Furthermore, the derivative of a product
is the derivative of one factor times the other factor plus the one factor times the
derivative of the other factor as in (3.5e). Equation (3.5d) is a derived rule for sub-
traction according to a−b = a+(−1) ·b and again expresses a homomorphic prop-
erty, now with respect to subtraction. In addition, equation (3.5b) uniquely defines
operator D on the differential polynomial algebra spanned by the differential inde-
terminates x ∈ Σ . It says that we understand the higher-order differential symbol
x(n+1) as the derivative of the symbol x(n) for all state variables x ∈ Σ and orders
n≥ 0. Equation (3.5f) canonically extends D to the differential field of quotients by
the usual quotient rule. As the base field R has no zero divisors, the right-hand side
of (3.5f) is defined whenever the original division a/b can be carried out, which,
as we assumed, is guarded by b 6= 0. The resulting structure Term(Σ∪Σ ′), together
with the derivation D, corresponds to the differential field of rational fractions with

156 3 Differential-Algebraic Dynamic Logic DAL

state variables as differential indeterminates over R and with rational numbers as
differential constants.

The conjunctive definition of the formula D(F) in Definition 3.13 corresponds to
the joint total derivative of all atomic subformulas of F and will be an important
tool for differential induction rules of our calculus.

Example 3.6 (Total differential of aircraft separation). Consider the separation prop-
erty φ for aircraft manoeuvres from Fig. 3.7 on p. 152, which expresses that two air-
craft at positions x = (x1,x2) and y = (y1,y2), respectively, have at least distance p:

F ≡ (x1− y1)
2 +(x2− y2)

2 ≥ p2.

The total differential of formula F is formed by applying the syntactic total deriva-
tion D(·) on the terms of each literal, which gives:

D(F)≡ D((x1− y1)
2)+D((x2− y2)

2)≥ D(p2)

≡ 2(x1− y1)D(x1− y1)+2(x2− y2)D(x2− y2)≥ 2pD(p)

≡ 2(x1− y1)(D(x1)−D(y1))+2(x2− y2)(D(x2)−D(y2))≥ 2pD(p)

≡ 2(x1− y1)(x′1− y′1)+2(x2− y2)(x′2− y′2)≥ 2pp′.

An interesting question that we will answer in the following is, what can we con-
clude about the truth-value of F along the evolution of the system by evaluating its
total derivative D(F)? �

The following central lemma, which is the differential counterpart of the sub-
stitution lemma, establishes the connection between syntactic derivation of terms
and semantic differentiation as an analytic operation to obtain analytic derivatives
of valuations along differential state flows. It will allow us to draw analytic con-
clusions about the behaviour of a system along differential equations from the truth
of purely algebraic formulas obtained by syntactic derivation. In a nutshell, the fol-
lowing lemma shows that, along a flow, analytic derivatives of valuations coincide
with valuations of syntactic derivations. For comparison, the classical substitution
lemma (Lemma 2.2) shows that the valuation val(σ∗ν ,φ) in the semantically mod-
ified state σ∗ν equals valuation of the syntactic substitution val(ν ,φ θ

x), where σ∗ν
is like ν except that x is interpreted as val(ν ,θ). The derivation lemma has the same
form, using derivation instead of substitution.

Lemma 3.1 (Derivation lemma). The valuation of DAL terms is a differential
homomorphism: Let θ ∈ Term(Σ) and let ϕ : [0,r]→ State(Σ) be any state flow of
the order of D(θ) and of duration r > 0 along which the value of θ is defined (as no
divisions by zero occur). Then we have for all ζ ∈ [0,r] that

dval(ϕ(t),θ)
dt

(ζ) = val(ϕ̄(ζ),D(θ)).

In particular, val(ϕ(t),θ) is continuously differentiable (where θ is defined) and its
derivative exists on [0,r].

3.5 Proof Calculus 157

Proof. The proof is an inductive consequence of the correspondence of the se-
mantics of differential symbols and analytic derivatives in state flows (Defini-
tion 3.8). It uses the assumption that the flow ϕ remains within the domain of defin-
ition of θ and is continuously differentiable in all variables of θ . In particular, all
denominators are nonzero during ϕ .

• If θ is a variable x, the conjecture holds immediately by Definition 3.8:

dval(ϕ(t),x)
dt

(ζ) =
dϕ(t)(x)

dt
(ζ) = ϕ̄(ζ)(x′) = val(ϕ̄(ζ),D(x)).

There, the derivative exists because the state flow is of order 1 in x and, thus,
(continuously) differentiable for x.

• If θ is of the form a+b, the desired result can be obtained by using the properties
of derivatives, derivations (Definition 3.13), and valuations (Definition 3.6):

d
dt
(val(ϕ(t),a+b))(ζ)

=
d
dt
(val(ϕ(t),a)+ val(ϕ(t),b))(ζ) val(ν , ·) homomorphic for +

=
d
dt
(val(ϕ(t),a))(ζ)+

d
dt
(val(ϕ(t),b))(ζ)

d
dt

is a (linear) derivation

= val(ϕ̄(ζ),D(a))+ val(ϕ̄(ζ),D(b)) by induction hypothesis
= val(ϕ̄(ζ),D(a)+D(b)) val(ν , ·) homomorphic for +
= val(ϕ̄(ζ),D(a+b)) D(·) is a syntactic derivation

• The case where θ is of the form a ·b or a−b is similar, using Leibniz product
rule (3.5e) or subtractivity (3.5d) of Definition 3.13, respectively.

• The case where θ is of the form a/b uses (3.5f) of Definition 3.13 and further
depends on the assumption that b 6= 0 along ϕ . This holds as the value of θ is
assumed to be defined all along state flow ϕ .

• The values of numbers r ∈Q do not change during a state flow (in fact, they are
not affected by the state at all); hence their derivative is D(r) = 0. ut

Differential Transformations

The substitution property Lemma 2.3 can be lifted to differential equations, i.e., dif-
ferential equations can be used for equivalent substitutions along differential state
flows respecting the corresponding differential constraints. In a nutshell, the follow-
ing lemma can be used to substitute right-hand sides of differential equations for the
left-hand side derivatives for flows along which these differential equations hold.
For comparison, the classical substitution property says that equals can be substi-
tuted for equals, i.e., left-hand sides of equations can be substituted by right-hand
sides of equations within formulas in which the equations hold.

158 3 Differential-Algebraic Dynamic Logic DAL

Lemma 3.2 (Differential substitution property). If ϕ is a state flow satisfying
ϕ |= x′1 = θ1∧·· ·∧ x′n = θn∧χ , then ϕ |= D ↔ (χ →Dθ1

x′1
. . .θn

x′n
) holds for all DA-

constraints D .

Proof. The proof is by using the Substitution Lemma 2.2 for first-order logic on the
basis of val(ϕ̄(ζ),x′i) = val(ϕ̄(ζ),θi) and ϕ̄(ζ) |= χ at each time ζ in the domain
of ϕ . ut

Example 3.7 (Differential substitution for aircraft dynamics). Continuing the air-
craft scenario from Example 3.6, recall the differential equations (F (ω)) for flight:

x′1 = d1∧x′2 = d2∧d′1 =−ωd2∧d′2 = ωd1 (F (ω)∗)

While the aircraft follow this differential equation, all corresponding differential
state flows ϕ satisfy

ϕ |= x′1 = d1 ∧ x′2 = d2 ∧ d′1 =−ωd2 ∧ d′2 = ωd1

Consequently, by Lemma 3.2, along ϕ we can substitute in the right-hand sides of
these differential equations for the left-hand sides. When we perform this substitu-
tion for D(F) from Example 3.6, we get

D(F)d1
x′1

d2
x′2
−ωd2
d′1

ωd1
d′2
≡ 2(x1− y1)(d1− y′1)+2(x2− y2)(d2− y′2)≥ 2pp′.

If we also substitute in the differential equations (G (ϖ)) for the second aircraft and
assume p′ = 0, we obtain

D(F)d1
x′1

d2
x′2
−ωd2
d′1

ωd1
d′2

e1
y′1

e2
y′2
−ϖe2
y′1

ϖe1
e′2

0
p′ ≡ 2(x1− y1)(d1− e1)+2(x2− y2)(d2− e2)≥ 0.

Expressions like these will play a very important role in our proof calculus, because
we will use them to show (in)variance of properties without the need for knowing
solutions of differential equations. From the truth of such a differential substitution
of a total derivative, we will be able to conclude invariance of F by the derivation
lemma. �

The following lemma captures that the semantics of DA-constraints is not sens-
itive to how the DA-constraint is presented. It also plays its part in the soundness
proof of our calculus, because it immediately makes all implicational and equival-
ence transformations of real arithmetic available for DA-constraints.

Lemma 3.3 (Differential transformation principle). Let D and E be two DA-
constraints (with the same changed variables). If D → E is a tautology of (non-
differential) first-order real arithmetic (that is, when considering x(n) as a new vari-
able independent of x), then ρ(D)⊆ ρ(E).

Proof. Let the first-order formulas φ and ψ be obtained from D and E , respect-
ively, by replacing all x′ with new variable symbols X (accordingly for higher-order

3.5 Proof Calculus 159

differential symbols x(n)). Using vectorial notation, we write φ x′
X for the formula ob-

tained from φ by substituting all variables X by x′. Thus, φ x′
X is D and ψx′

X is E .
Let φ → ψ be valid in (non-differential) real arithmetic. Let (ν ,ω) ∈ ρ(D) accord-
ing to a state flow ϕ . Then ϕ also is a state flow for E that justifies (ν ,ω) ∈ ρ(E):
For any ζ ∈ [0,r], we have ϕ̄(ζ) |= D . Hence ϕ̄(ζ) |= E , because ϕ̄(ζ) |= φ x′

X im-
mediately implies ϕ̄(ζ) |= ψx′

X by validity of φ → ψ . The assumption of D and E
having the same set of changed variables is only required for compatibility with
condition 2 of Definition 3.9, which enforces that unchanged variables z remain
constant. It can be established easily by adding constraints of the form z′ = 0 as
required. ut
DA-constraints D and E are equivalent iff ρ(D) = ρ(E). In particular, the se-
mantics of DA-programs is preserved when replacing a DA-constraint by another
DA-constraint that is equivalent in non-differential first-order real arithmetic (sim-
ilarly for DJ-constraints).

Example 3.8. Lemma 3.3 is a very powerful tool for analysing DA-constraints, be-
cause it lifts equivalence or implication-preserving transformations from first-order
real arithmetic to DA-constraints. In general, it may be difficult to determine the
relationship of the reachability relations of differential equations or DA-constraints.
With Lemma 3.3, however, we can use the first-order arithmetic structure to find
out. For example, the dynamics of DA-constraint x′ = 5x∧ y′ = 1− x∧ x > 0 can be
overapproximated safely by the dynamics of x′ = 5x∧ y′ ≤ 1∧ x > 0, because the
following implication is valid in first-order logic, where we consider x(1) and y(1) as
new variables independent of x and y:

x(1) = 5x∧ y(1) = 1− x∧ x > 0 → x(1) = 5x∧ y(1) ≤ 1∧ x > 0.

�

Example 3.9 (Disturbance in the train dynamics). Similarly, we have a formally pre-
cise way to prove why the transition relation ρ(·) of train dynamics z′ = v∧ v′ = a
from Chap. 2 is contained in the transition relation of the differential inequality
z′ = v∧ v′ ≥ a− l∧ v′ ≤ a+u for bounds l > 0 and u≥ 0, which, in turn, is con-
tained in the transition relation of z′ = v∧ v′ ≥ a− l. The first differential equation
characterises ideal-world dynamics, where the chosen acceleration a takes effect
exactly. The second differential inequality characterises dynamics with a bounded
disturbance on the actual acceleration a. By the nature of the differential inequal-
ity, the actual disturbance may vary quite arbitrarily over time, but only inside the
bounds −l and u. The last differential inequality is a variant that is only bounded in
one direction.

The proof of inclusion of the above three DA-constraints only amounts to check-
ing the validity of the following formulas in first-order real arithmetic, again con-
sidering z(1) and v(1) as new variables:

z(1) = v∧ v(1) = a → z(1) = v∧ v(1) ≥ a− l∧ v(1) ≤ a+u,

160 3 Differential-Algebraic Dynamic Logic DAL

z(1) = v∧ v(1) ≥ a− l∧ v(1) ≤ a+u → z(1) = v∧ v(1) ≥ a− l.

Similarly, we prove that the differential inequality z′ = v∧ v′ ≥ a− l∧ v′ ≤ a+u
and the following quantified DA-constraint have equivalent reachability relations:

z′ = v∧∃d (v′ = d∧a− l ≤ d∧d ≤ a+u)∧ v≥ 0. (3.2∗)

By Lemma 3.3, we only need to check equivalence of the corresponding formulas
in first-order real arithmetic, considering z(1) and v(1) as new variables:

(z(1) = v∧ v(1) ≥ a− l∧ v(1) ≤ a+u)

↔ (z(1) = v∧∃d (v(1) = d∧a− l ≤ d∧d ≤ a+u)∧ v≥ 0).

�

Counterexample 3.10 (Same changed variables). For correctness of Lemma 3.3, we
have to assume that D is not allowed to have more differential variables than E , be-
cause of our implicit assumption that variables without differential constraints are
constant. At first sight, it may look like the transition relation z′ = v∧ v′ = a∧ t ′ = 1
may be overapproximated by z′ = v∧ t ′ = 1, because the following arithmetic for-
mula is valid:

z(1) = v∧ v(1) = a∧ t(1) = 1 → z(1) = v∧ t(1) = 1.

But this does not work, because of our convention that assumes variables do not
change if they are not mentioned in a differential equation. Thus in z′ = v∧ t ′ = 1,
we silently assume v′ = 0, because no differential constraint for v is mentioned.
Then the transition relations are very different, however, because v may change in
the former but will stay constant in the latter. If, instead, we make the implicit as-
sumption v′ = 0 explicit in the DA-constraint, so that both DA-constraints have the
same changed variables, then this subtlety does not happen, because the following
formula is not valid (unless a = 0, in which case both DA-constraints are, indeed,
equivalent):

z(1) = v∧ v(1) = a∧ t(1) = 1 → z(1) = v∧ t(1) = 1∧ v(1) = 0.

�

3.5.3 Differential Reduction and Differential Elimination

Using the expressive power of DA-constraints, several reductions can be performed
to simplify the syntactic form of DA-constraints. With quantified DA-constraints,
we can reduce differential inequalities to quantified differential equations equival-
ently:

3.5 Proof Calculus 161

Lemma 3.4 (Differential inequality elimination). DA-constraints admit differ-
ential inequality elimination, i.e., with each DA-constraint D , an equivalent DA-
constraint without differential inequalities can be effectively associated that has no
other free variables.

Proof. Let E be obtained from D by replacing all differential inequalities θ1 ≤ θ2
by a quantified differential equation ∃u(θ1 = θ2−u∧u≥ 0) with a new variable u
for the quantified disturbance (accordingly for ≥,>,<). By Lemma 3.3, the equi-
valence of D and E is a simple consequence of the corresponding equivalences in
first-order real arithmetic. ut

Example 3.11. Lemma 3.4 can turn differential inequalities to DA-constraints with
quantifiers and equations in place of the differential inequalities. Let l > 0. We
can transform the differential inequality z′ = v∧ v′ ≥ a− l∧ v≥ 0 to an equivalent
quantified DA-constraint

∃d (z′ = v∧ v′ = a−d∧d ≤ l∧ v≥ 0).

Both DA-constraints are equivalent. The latter DA-constraint has a structural ad-
vantage: we only have differential equations and quantifiers, while the inequalities
are isolated in the non-differential evolution domain constraints d ≤ l∧ v≥ 0. Thus
we can handle differential inequalities if we can handle quantified disturbance. In
fact, we could even go on and replace all inequalities (differential or not) by equi-
valent equations and quantifiers with Lemma 3.4:

∃d (z′ = v∧ v′ = a−d∧∃u1 d = l−u2
1∧∃u2 v = u2

2).

But, unlike differential inequalities, those inequalities that only occur in the non-
differential part d ≤ l∧ v≥ 0 are not complicated for proofs, because they can be
handled easily by quantifier elimination in real-closed fields [288, 81]; also see
App. D. �

In this book, we assume this transformation has been applied such that we can
focus on DA-constraints with differential equations, i.e., where differential sym-
bols only occur in differential equations, and where inequalities do not contain
differential symbols. Yet, the DA-constraint resulting from Lemma 3.4 could be-
come inhomogeneous when multiple differential equations are produced for the
same variable from multiple differential inequalities. For instance, θ1 ≤ x′ ≤ θ2 pro-
duces ∃u∃v(x′ = θ1 +u∧ x′ = θ2− v∧u≥ 0∧ v≥ 0), which has two differential
equations for x. To homogenise this DA-constraint again, we use the following:

Lemma 3.5 (Differential equation normalisation). DA-constraints admit differ-
ential equation normalisation, i.e., with each DA-constraint D , an equivalent DA-
constraint with at most one differential equation for each differential symbol can be
effectively associated that has no other free variables. Furthermore, this differential
equation is explicit, i.e., of the form x(n) = θ where ordx θ < n.

162 3 Differential-Algebraic Dynamic Logic DAL

Proof. For each differential symbol x(n) ∈ Σ ′ occurring in D , we introduce a new
non-differential variable Xn ∈ Σ . Let DXn

x(n)
denote the result of substituting Xn

for x(n) in D . By Lemma 3.3, the equivalence of D and ∃Xn (x(n) = Xn∧DXn
x(n)

) is
a simple consequence of the corresponding equivalence in first-order logic. Pro-
ceeding inductively for all such x(n) ∈ Σ ′ in D gives the desired result. ut
Example 3.12. Directly using the construction in Lemma 3.4 on θ1 ≤ x′ ≤ θ2 we
obtain an equivalent DA-constraint ∃u∃v(x′ = θ1 +u∧ x′ = θ2− v∧u≥ 0∧ v≥ 0)
without differential inequalities but with inhomogeneous parts (two separate differ-
ential equations for x). After normalisation with Lemma 3.5, we obtain the equival-
ent DA-constraint ∃X1∃u∃v(x′ = X1∧X1 = θ1 +u∧X1 = θ2− v∧u≥ 0∧ v≥ 0).

�

Similarly, higher-order differential constraints reduce to first-order constraints
by introducing new non-differential auxiliary variables Xn for each of the higher-
order differential symbols x(n). For 1≤ ordx θ < n, we can replace a higher-order
differential equation x(n) = θ with:

x′ = X1∧X ′1 = X2∧ . . .∧X ′n−2 = Xn−1∧X ′n−1 = θ
X1
x′ . . .

Xn−1
x(n−1)

X ′n−1
x(n)

.

3.5.4 Rules of the Calculus for Differential-Algebraic Logic

Sequents and substitutions are defined as in Sect. 2.5.2. We again assume bound
variable renaming as needed. In the DAL calculus, only admissible substitutions are
applicable, which is crucial for soundness.

Definition 3.14 (Admissible substitution). An application of a substitution σ is
admissible if no replaced variable x occurs in the scope of a quantifier or modality
binding x or a variable of the replacement σ(x). A modality binds x if its DA-
program (possibly) changes x, i.e., if it contains a DJ-constraint containing x :=θ or
a DA-constraint containing x(n) ∈ Σ ′ for an n≥ 1.

As usual in sequent calculus—although the direction of entailment is from premises
(above rule bar) to conclusion (below)—the order of reasoning and reading is goal-
directed in practise: Rules are applied backwards, that is, starting from the desired
conclusion at the bottom (goal) to the resulting premises (subgoals). To highlight
the logical essence of the DAL calculus, Fig. 3.9 provides rule schemata with which
the following definition associates the calculus rules that are applicable during a
DAL proof. The calculus inherits the propositional rules from Fig. 2.11 on p. 79
and further consists of first-order quantifier rules (r∀,l∀,r∃,l∃), rules for dynamic
modalities (〈;〉–DS), and global rules ([]gen,〈〉gen,ind,con,DI,DV). The DAL rules
that have the same name as corresponding dL rules are actually identical, except
for minor syntactic variations and generalisations. Rule 〈;〉, for instance, is identical
in the dL calculus in Fig. 2.11 and the DAL calculus in Fig. 3.9. We just repeat it
here for convenience to have a comprehensive representation of the DAL calculus.

3.5 Proof Calculus 163

The definition of rules is a simplified version of that in Definition 2.10, with side
deductions in place of the free-variable quantifier rules from Chap. 2. Further, we
can simplify the presentation by avoiding update prefixes (which would also be
sound here when allowing conjunctive DA-constraints as prefixes). Note that this
choice generally requires more complicated invariants and variants than in the dL
calculus of Chap. 2, where discrete jump set prefixes are allowed for rule applica-
tions so that more information about the pre-state is retained automatically.

Definition 3.15 (Rules). The rule schemata in Fig. 3.9—in which all substitutions
need to be admissible—induce calculus rules by:

1. If
Φ1 `Ψ1 . . . Φn `Ψn

Φ0 `Ψ0

is an instance of one of the rule schemata in Fig. 3.9, then

Γ ,Φ1 `Ψ1,∆ . . . Γ ,Φn `Ψn,∆

Γ ,Φ0 `Ψ0,∆

can be applied as a proof rule of the DAL calculus, where Γ ,∆ are arbitrary
finite sets of context formulas (including empty sets).

2. Symmetric schemata can be applied on either side of the sequent. If

φ1

φ0

is an instance of one of the symmetric rule schemata (dynamic rules 〈;〉–[D]) in
Fig. 3.9, then

Γ ` φ1,∆

Γ ` φ0,∆
and

Γ ,φ1 ` ∆

Γ ,φ0 ` ∆

can both be applied as proof rules of the DAL calculus, where Γ ,∆ are arbitrary
finite sets of context formulas (including empty sets).

Propositional Rules

For propositional logic, we reuse the standard propositional rules ¬r–cut from the
dL calculus in Fig. 2.11.

First-Order Quantifier Rules

Unlike in uninterpreted first-order logic [122, 123], quantifier rules have to respect
the specific semantics of real arithmetic. Thus, our rules handle real quantifiers

164 3 Differential-Algebraic Dynamic Logic DAL

(r∀) QE(∀x ∧i(Γi ` ∆i))

Γ ` ∆ ,∀xφ

1

(l∀) QE(∃x ∧i(Γi ` ∆i))

Γ ,∀xφ ` ∆

1

(r∃) QE(∃x ∧i(Γi ` ∆i))

Γ ` ∆ ,∃xφ

1

(l∃) QE(∀x ∧i(Γi ` ∆i))

Γ ,∃xφ ` ∆

1

(〈;〉) 〈α〉〈β 〉φ〈α;β 〉φ

([;])
[α][β]φ

[α;β]φ

(〈∪〉) 〈α〉φ ∨〈β 〉φ〈α ∪β 〉φ

([∪]) [α]φ ∧ [β]φ
[α ∪β]φ

(〈∃〉) ∃x〈J 〉φ〈∃xJ 〉φ

([∃]) ∀x [J]φ

[∃xJ]φ

(〈J〉) 〈J1∪ . . .∪Jn〉φ
〈J 〉φ

2

([J])
[J1∪ . . .∪Jn]φ

[J]φ
2

(〈:=〉) χ ∧φ
θ1
x1 . . .

θn
xn

〈x1 :=θ1∧ . .∧ xn :=θn∧χ〉φ
3

([:=])
χ → φ

θ1
x1 . . .

θn
xn

[x1 :=θ1∧ . .∧ xn :=θn∧χ]φ
3

(〈D〉) 〈(D1∪ . . .∪Dn)
∗〉φ

〈D〉φ
4

([D])
[(D1∪ . . .∪Dn)

∗]φ
[D]φ

4

([DR])
` [E]φ

` [D]φ
5 (〈DR〉) ` 〈D〉φ` 〈E 〉φ

5 (DS)
` [D]χ ` [D ∧χ]φ

` [D]φ

([]gen)
` ∀α (φ → ψ)

[α]φ ` [α]ψ

(ind)
` ∀α (φ → [α]φ)

φ ` [α∗]φ

(〈〉gen)
` ∀α (φ → ψ)

〈α〉φ ` 〈α〉ψ

(con)
` ∀α∀v>0(ϕ(v)→ 〈α〉ϕ(v−1))
∃vϕ(v) ` 〈α∗〉∃v≤0ϕ(v)

6

(DI)
` ∀α∀y1 . .∀yk (χ → F ′θ1

x′1
. . .θn

x′n
)

[∃y1 . .∃yk χ]F ` [∃y1 . .∃yk (x′1 = θ1∧ . .∧ x′n = θn∧χ)]F
7

(DV)
` ∃ε>0∀α∀y1 . .yk (¬F ∧χ → (F ′ ≥ ε)θ1

x′1
. . .θn

x′n
)

[∃y1 . .yk (x′1 = θ1∧ . .∧ x′n = θn∧∼F)]χ ` 〈∃y1 . .yk (x′1 = θ1∧ . .∧ x′n = θn∧χ)〉F
8

1 Γi ` ∆i are obtained from the subgoals of side deduction (?) in Fig. 3.10, in which x is assumed
to occur in first-order formulas only, as QE is then applicable. The side deduction starts from goal
Γ ` ∆ ,φ at the bottom (or Γ ,φ ` ∆ for l∀ and l∃), where x does not occur in Γ ,∆ using renaming.
2 J1∨·· ·∨Jn is a disjunctive normal form of the DJ-constraint J .
3 Rule applicable for any reordering of the conjuncts of the DJ-constraint where χ is jump-free.
4 D1∨·· ·∨Dn is a disjunctive normal form of the DA-constraint D .
5 D implies E , i.e., satisfies the assumptions of Lemma 3.3.
6 Logical variable v does not occur in α .
7 Applicable for any reordering of the conjuncts where χ is non-differential. F is first-order without
negative equalities, and F ′ abbreviates D(F), with z′ replaced with 0 for unchanged variables.
8 Like DI, but F contains no equalities and the differential equations are Lipschitz continuous.

Fig. 3.9 Rule schemata of the proof calculus for differential-algebraic dynamic logic

r∃
QE(∃x ∧i(Γi ` ∆i))

Γ ` ∆ ,∃xφ

Γ1 ` ∆1
. . . `

Γn ` ∆n
. . . ` . . .

Γ ` ∆ ,φ

 (?)

start side

QE

Fig. 3.10 Side deduction for quantifier elimination rules

3.5 Proof Calculus 165

using quantifier elimination (QE) over the reals [81]. Unfortunately, QE is only
defined in first-order real arithmetic and cannot handle DAL modalities, where vari-
ables evolve along hybrid trajectories over time. We establish compatibility with
dynamic modalities using (cut-like) side deductions for the quantifier rules, as illus-
trated in Sect. 3.5.5. Alternatively, the quantifier rules in Fig. 3.9 can be replaced by
the quantifier rules of Chap. 2, which generalise free variables, Skolemisation, and
Deskolemisation to real arithmetic for integrating quantifier elimination with modal
rules. Instead, here, we use side deductions that we have introduced in previous
work [231] as a very intuitive and simple approach for handling real quantifiers.

Dynamic Rules

The dynamic rules transform a DA-program into simpler logical formulas. Rules
〈;〉,[;],〈∪〉,[∪] are as in discrete dynamic logic [149, 37] and in the dL calculus in
Fig. 2.11. The new rules 〈J〉 and [J] normalise DJ-constraints to their disjunctive
normal form such that the jump alternatives can be read off easily. They also turn
the disjuncts of the disjunctive normal form into nondeterministic choices so that
〈∪〉,[∪] will reason separately for each case. Rules 〈∃〉 and [∃] lift quantified choices
in DJ-constraints to DAL quantifiers, which are, in turn, handled by quantifier rules.
They use the fact that all choices of assigning some value to x correspond to the
universal quantifier (rule [∃]), whereas some choice of assigning some value to x
corresponds to the existential quantifier (rule 〈∃〉).

Rules 〈:=〉 and [:=] use generalised simultaneous substitutions for handling dis-
crete change by substituting the respective new values θi for all the affected vari-
ables xi at once (for all i = 1, . . . ,n) and checking the jump-free constraint χ . In fact,
this check or assumption of the jump-free constraint χ is the only essential differ-
ence in rules 〈:=〉,[:=] in Fig. 3.9 compared to those in Fig. 2.11. Notice however,
that as in rules 〈?〉,[?] from Fig. 2.11, the presence of χ already makes [x :=θ ∧χ]φ
and 〈x :=θ ∧χ〉φ non-equivalent. Thus, for 〈x :=θ ∧χ〉φ rule 〈:=〉 is used to prove
that χ holds true (otherwise there is no transition and thus the reachability prop-
erty is false) and that φ holds after replacing x with its new value θ . Rule [:=] for
[x :=θ ∧χ]φ instead assumes that χ holds true (otherwise there is no transition and
thus nothing to show) and that φ holds after replacing x with its new value θ .

Similarly to rules 〈J〉,[J], rules 〈D〉,[D] normalise DA-constraints to a form where
their differential evolution alternatives are readily identifiable. They turn a DA-
constraints into its disjunctive normal form and split disjuncts into nondeterministic
choices. Unlike for 〈J〉,[J], however, continuous evolutions take time so that the
system can switch back and forth (repeatedly) between the various cases of the DA-
constraint during one continuous evolution, and hence the repetition. Observe that
finitely many repetitions are sufficient for non-Zeno flows (Definition 3.12), which
can only switch finitely often in finite time.

Rules [DR],〈DR〉, and DS are differential weakening, differential refinement,
and differential strengthening rules for DA-constraints, respectively. In rules [DR]
and 〈DR〉, DA-constraint D implies E in real arithmetic according to Lemma 3.3,

166 3 Differential-Algebraic Dynamic Logic DAL

which is easy to decide by QE in practise. Note that [DR] and 〈DR〉 are sound
for any such combination of D and E . Their primary practical purpose is to use
[DR] for overapproximating individual variable evolutions by a weaker version (dif-
ferential weakening) and 〈DR〉 for refining nondeterministic variable evolutions
to specific differential equations (differential refinement). For instance, rule [DR]
can weaken [x′ = 5x∧ y′ = 1− x∧ x > 0]φ to [x′ = 5x∧ y′ ≤ 1∧ x > 0]φ , because
the former DA-constraint implies the latter DA-constraint according to Lemma 3.3.
Such overapproximations have the advantage of decoupling differential equations.
In particular, we use [DR] onto project conjunctive differential constraints D to their
non-differential constraints. As we illustrate in Sect. 3.11, this gives a powerful
verification technique in combination with differential strengthening (DS), which
can refine the system dynamics by auxiliary constraints. Rule 〈DR〉 can refine non-
deterministic variable evolutions into specific cases, e.g., 〈z′ = v∧ v′ ≥−b〉φ to the
borderline case 〈z′ = v∧ v′ =−b〉φ . The latter refines the former, because it is a
special case (the latter DA-constraint implies the former DA-constraint in the sense
of Lemma 3.3).

While rule [DR] can be used to remove information from a DA-constraint, the
differential strengthening rule DS does the opposite and can be used to add inform-
ation. But, of course, DS can only add constraints χ (to the right premise) that have
been proven to be invariant (in the left premise); otherwise it would alter the reach-
able set incorrectly. With the left premise proven, rule DS changes the dynamics of
the DA-program and restricts the DA-constraint D to remain within evolution do-
main χ . But this restriction is a pseudo restriction, because the left premise shows
that χ actually is an invariant of the previous dynamics D . In fact, assuming the left
premise [D]χ to be valid, the right premise ` [D ∧χ]φ and conclusion ` [D]φ are
actually equivalent (as we will show in Proposition 6.2). The differential strengthen-
ing rule DS is essentially a differential cut. We address the problem of automatically
determining the respective strengthenings χ that actually help the proof in Chap. 6,
where we derive automatic verification algorithms from the results presented in this
chapter. Furthermore, [DR] and 〈DR〉 make all equivalence transformations on DA-
constraints from Sect. 3.5.3 available as proof rules, including index reduction tech-
niques for differential-algebraic equations [132].

Note that DAL does not need rules for handling negation in DA-constraints or DJ-
constraints, as—possibly after applying 〈J〉,[J] or 〈D〉,[D], respectively—negations
only occur in jump-free or non-differential parts, because assignments and differ-
ential symbols only occur positively by Definitions 3.1 and 3.2. Similarly, no rules
for universal quantifiers within DA-constraints or DJ-constraints are needed. Like
other propositional operators or quantifiers, negation and universal quantifiers are
allowed without restriction in non-differential or jump-free χ and are then handled
by 〈:=〉,[:=] or DI,DV .

3.5 Proof Calculus 167

Global Rules

The global rules []gen,〈〉gen,ind,con,DI,DV depend on the truth of their premises
in all states, which is ensured by the universal closure with respect to all bound
variables of the respective DA-program α (see Definition 3.14). In particular, the
rules []gen,〈〉gen,ind,con are as in the dL calculus of Fig. 2.11. The differential
induction rules DI and DV are new.

Rule DI is a rule for differential induction, which is a continuous form of induc-
tion along differential constraints. The induction rules ind and DI (or con and DV
respectively) differ in the way the invariant is sustained (or in the way the variant
makes progress). Rule ind uses the inductive nature of repetition and, ultimately, fol-
lows an induction on the number of repetitions. Rule DI, in contrast, uses continuity
of evolution and the differential equation for a continuous induction step with the
differential invariant F : If F holds initially (antecedent of conclusion) and its total
differential F ′ satisfies the same relations when taking into account the differential
constraints (premise), then F itself is sustained differentially (succedent of conclu-
sion). Formula F ′ abbreviates D(F) (see Definition 3.13) with z′ replaced with 0
for all variables z that are unchanged by the DA-constraint, i.e., that are distinct
from {x1, . . . ,xn}, because these are assumed constant in the semantics. By bound
variable renaming, the yi do not occur in F . Thus, an important difference between
the operating principles of rules ind and DI is that ind uses induction over natural
numbers for repetitions of a loop, whereas DI uses induction in the continuous do-
main along the vector fields of differential equations, and is based on differential
algebra (Sects. 3.5.2 and 3.5.3). A notable special instance of rule DI is the follow-
ing case for quantifier-free DA-constraints:

` ∀α(χ → F ′θ1
x′1
. . .θn

x′n
)

[χ]F ` [x′1 = θ1∧ . .∧ x′n = θn∧χ]F

Rule DV is a differential variant rule where the variant F is finally reached dif-
ferentially (with some minimal progress ε), rather than sustained as in DI. Differ-
ential induction, the requirement of the differential equations for DV to be Lipschitz
continuous, and the notations F ′ ≥ ε and ∼F will be illustrated in more detail in
Sects. 3.5.6 and 3.5.7 after side deductions for quantifiers have been explained in
Sect. 3.5.5. Finally, global rules can be combined with generalisation ([]gen,〈〉gen)
to strengthen postconditions as needed, similarly to rules ind′ and con′ from p. 86.
A notable special instance of rule DV is the following case for quantifier-free DA-
constraints:

` ∃ε>0∀α(¬F ∧χ → (F ′ ≥ ε)θ1
x′1
. . .θn

x′n
)

[x′1 = θ1∧ . .∧ x′n = θn∧∼F]χ ` 〈x′1 = θ1∧ . .∧ x′n = θn∧χ〉F

168 3 Differential-Algebraic Dynamic Logic DAL

Derivability and Proofs

Provability can be defined as a simplified version of Definition 2.11, because all
DAL rules have only one conclusion; so a proof will be inductively defined as a tree,
not as an acyclic graph (as was necessary for the quantifier rules from Chap. 2).

Definition 3.16 (Provability). A formula ψ is provable from a set Φ of formulas,
denoted by Φ `DAL ψ , iff there is a finite set Φ0 ⊆Φ for which the sequent Φ0 ` ψ

is derivable. Derivability is inductively defined so that a sequent Φ `Ψ is derivable
iff there is a proof rule of the DAL calculus (Definition 3.15) with conclusion Φ `Ψ

such that all premises of the rule are derivable.

3.5.5 Deduction Modulo by Side Deduction

The quantifier rules constitute a purely modular interface to mathematical reason-
ing. They can use any theory that admits quantifier elimination and has a decidable
ground theory, e.g., the theory of first-order real arithmetic, which is equivalent
to the theory of real-closed fields [81]. Unlike in deduction modulo approaches of
Dowek et al. [103] and Tinelli [290], the information given to the background prover
is not restricted to ground formulas [290] or atomic formulas [103], and the effect
of modalities has to be taken into account.

Integrating quantifier elimination to deal with statements about real quantities is
quite challenging in the presence of modalities that influence the values of variables
and terms. Real quantifier elimination cannot be applied to formulas with mixed
quantifiers and modalities such as ∃x [x′ =−x;x := 2x]x≤ 5. To find out which first-
order constraints are actually imposed on x by this DAL formula, we have to take
into account how x evolves from ∃x to x ≤ 5 along the hybrid system dynamics.
Hence, our calculus first unveils the first-order constraints on x before applying QE.
To achieve this in a concise and simple way, we use side deductions that we have
introduced in previous work [231].

The effect of a side deduction is as follows. First, the DAL calculus discov-
ers all relevant first-order constraints from modal formulas using a side deduction.
Secondly, these constraints are re-imported into the main proof and equivalently re-
duced using QE, and then the main proof continues. For instance, an application of
r∃ to a sequent Γ ` ∆ ,∃xφ starts a side deduction (marked (?) in Fig. 3.10) with
the unquantified kernel Γ ` ∆ ,φ as a goal at the bottom. This side deduction is car-
ried out in the DAL calculus until x no longer occurs within modal formulas of the
remaining open branches Γi ` ∆i of (?). Once all occurrences of x are in first-order
formulas, the resulting subgoals Γi ` ∆i of (?) are copied back to the main proof and
QE is applied to eliminate x altogether (which determines the resulting subgoal of
rule r∃ on the upper left side of Fig. 3.10). The remaining modal formulas not con-
taining x can be considered as atoms for this purpose, as they do not impose con-
straints on x. Formally, this can be proven using the coincidence lemma 2.6. When

3.5 Proof Calculus 169

` b > 0

` QE(∃d ((‖d‖2 ≤ b2)∧ (d1 > 0∧d2 > 0)))

` ‖d‖2 ≤ b2

` d1 > 0∧d2 > 0
r∃ ` ∃ε>0∀x1,x2 (x1 < p1∨ x2 < p2→ d1 ≥ ε ∧d2 ≥ ε)
DV ` 〈F (0)〉(x1 ≥ p1∧ x2 ≥ p2)

∧r ` ‖d‖2 ≤ b2∧〈F (0)〉(x1 ≥ p1∧ x2 ≥ p2)
r∃` ∃d (‖d‖2 ≤ b2∧〈F (0)〉(x1 ≥ p1∧ x2 ≥ p2))

r∀` ∀p∃d (‖d‖2 ≤ b2∧〈F (0)〉(x1 ≥ p1∧ x2 ≥ p2))

sid
e

sid
e

QE

QE
QE

QE

Fig. 3.11 Nested side deductions and differential variants for progress property

several quantifiers are nested, side deductions will be nested in a cascade, as they
can again spawn further side deductions. According to the applicability conditions
of quantifier rules, inner nested side deductions need to be completed by QE before
outer deductions continue. For instance, further side deductions started within (?)
of Fig. 3.10 will be completed before (?) continues and the quantifier elimination
result of (?) is returned to the main r∃ application.

Example 3.13 (Aircraft progress). To illustrate how our calculus combines arith-
metic with dynamic reasoning using side deductions, we look at an aircraft example.
Using the notation from Sect. 3.4 where F (ω) denotes the flight equation with an-
gular velocity ω , the following DAL formula expresses a simple progress property
about aircraft: The aircraft at x can finally fly beyond any point p ∈ R2 by adjust-
ing its speed vector d appropriately, using only speed vectors d ∈ R2 of bounded
speed ‖d‖ ≤ b, i.e., ‖d‖2 ≤ b2 ≡ d2

1 +d2
2 ≤ b2:

∀p∃d (‖d‖2 ≤ b2∧〈F (0)〉(x1 ≥ p1∧ x2 ≥ p2)). (3.6)

There, point p is constant during the evolution, i.e., p′1 = p′2 = 0 and b′ = 0. The
DAL proof in Fig. 3.11 proves this property using nested side deductions for nested
quantifiers and differential variant induction DV . Applying r∀ in the main branch
yields a side deduction for quantifier ∀p , which, in turn, yields another side deduc-
tion by applying r∃ for the nested quantifier ∃d . �

These nested side deductions in Fig. 3.11 are inlined and indicated by indenting the
side deductions, with arrows marked “side” pointing to the start of the respective
inner side deduction and arrows marked “QE” pointing back to the continuation
of the outer deduction (as in Fig. 3.10). The two branches for the side deduction
for r∃ recombine conjunctively and, after quantifiers are re-added, quantifier elim-
ination yields b > 0, which reveals the parameter constraint on the speed bound b.
Consequently, property (3.6) holds true and the proof closes for all positive speed
bounds b > 0. The right branch of the inner r∃ side deduction uses differential vari-
ant induction DV , as will be illustrated in Sect. 3.5.7. There, the quantifiers for x1,x2
result from the universal closure ∀α in DV . The subsequent innermost r∃ side de-
duction can be abbreviated by directly applying QE, because the affected formula

170 3 Differential-Algebraic Dynamic Logic DAL

already is first-order. That is, the side deduction for ∃ε is the identity proof with
zero rule applications.

As with the other aircraft examples in this chapter, formula (3.6) is provable
in our theorem prover KeYmaera within a few seconds, despite the complicated
underlying aircraft dynamics.

3.5.6 Differential Induction with Differential Invariants

The purpose of DI and DV is to prove properties about continuous evolutions by
differential induction using differential invariants or differential variants, respect-
ively. They work with the differential constraints directly instead of with the com-
plicated (possibly undecidable) arithmetic of their solutions. Unlike approaches us-
ing solutions [125, 228, 231, 233, 235], differential induction can even be used
to verify systems with nondeterministic quantified input, which would otherwise
cause quantified higher-order functions for the time-dependent input of the solu-
tions. Solutions of differential equations lead to a quantifier over time (see dL rules
[′],〈′〉 in Fig. 2.11). In addition to their dependency on time, solutions of quantified
differential equations or differential equations with input disturbance depend on a
function u : [0,∞)→ R that specifies how this input u(t) changes over time t. When
generalising solution-based proof rules for these situations, quantification over dis-
turbances would thus lead to quantifiers over functions in higher-order logic, as in
∀u : R→ R∀t≥0〈x :=yu(t)〉φ , where yu(t) is the solution at time t depending on
the input disturbance function u. With the theory of differential induction, we avoid
these higher-order quantifiers in the proof calculus. Further, unlike in discrete induc-
tion, differential induction proof rules exploit continuity of evolution and knowledge
of the differential constraints for a continuous induction step. We demonstrate the
capabilities and the necessity of the requirements of differential induction rules in a
series of examples and counterexamples.

Differential Invariants

Rule DI uses differential induction to prove that F is a differential invariant, i.e., F
is closed under total differentiation (Definition 3.13) relative to the differential con-
straints. For this, the premise of DI shows that the total differential F ′—i.e., D(F)
with z′ replaced by 0 for unchanged variables z— holds within evolution domain χ

when substituting the differential equations into F ′. Now, if F holds initially (ante-
cedent of conclusion), then F itself is sustained (succedent of conclusion). Intuit-
ively, the premise expresses that, within χ , the total derivative F ′ along the differen-
tial constraints is pointing inwards or transversally to F but never outwards to ¬F ;
see Fig. 3.12. Intuitively, if we start in F and, as indicated by F ′, the local dynam-
ics never points outside F , then the system always stays in F when following the
dynamics. At this point, it is important to note that, even though meta-proofs about

3.5 Proof Calculus 171

Fig. 3.12 Differential invari-
ants

DAL involve analytic reasoning, proofs within the DAL calculus are fully alge-
braic, including the handling of differential constraints by DI. Further observe that
the premise of DI is a well-formed DAL formula, because all differential symbols
are replaced by non-differential terms when forming F ′θ1

x′1
. . .θn

x′n
.

Example 3.14 (Quartic dynamics). As a first simple example, consider the differen-
tial equation x′ = x4. It is not so easy to see the solution of this differential equation.
Still, with implicit means of differential induction, we can establish easily that the
solution always stays above 1

4 whenever the dynamics initially starts above 1
4 :

∗
r∀ ` ∀x(x4 ≥ 0)
DIx≥ 1

4 ` [x′ = x4]x≥ 1
4

This deduction proves the invariance of x≥ 1
4 along the differential equation x′ = x4

by differential induction and without having to solve the differential equation. To ap-
ply the differential induction rule DI, we form the total derivative of the differential
invariant F ≡ x≥ 1

4 and obtain the differential expression F ′ ≡ D(x≥ 1
4)≡ x′ ≥ 0.

Now, the differential induction rule DI takes into account that the derivative of state
variable x along the dynamics is known (the trick, of course, is to show why this
intuitive reasoning is sound, which we will prove in Sect. 3.6). Substituting the dif-
ferential equation x′ = x4 into the inequality above yields F ′x

4

x′ ≡ x4 ≥ 0, which is a
valid formula and closes by quantifier elimination with r∀. Observe how elegantly
differential induction establishes the desired result indirectly by working with the
differential equation itself in an algebraic way instead of requiring its solution.

Even more so, for the differential equations x′ = x2 + x4 or x′ = x2−4x+6, solu-
tions are hard to obtain both symbolically and numerically. With differential induc-
tion, however, we directly establish the following result about their dynamics:

∗
r∀ ` ∀x(3(x2 + x4)≥ 0)
DI3x≥ 1

4 ` [x′ = x2 + x4]3x≥ 1
4

∗
r∀ ` ∀x(3(x2−4x+6)≥ 0)
DI3x≥ 1

4 ` [x′ = x2−4x+6]3x≥ 1
4

¬

¬F
F F

172 3 Differential-Algebraic Dynamic Logic DAL

For the latter proof, note that 3(x2−4x+6) = 3((x−2)2 +2)≥ 0. �

Example 3.15 (Cubic dynamics). Similarly, differential induction can easily prove
that 1

3 ≤ 5x2 is an invariant of the cubic dynamics x′ = x3; see the proof in Fig. 3.13a
for the dynamics in Fig. 3.13b. To apply the differential induction rule DI, we again

∗
r∀ ` ∀x(0≤ 5 ·2x(x3))
DI 1

3 ≤ 5x2 ` [x′ = x3] 1
3 ≤ 5x2 0 t

x

x0
x′ = x3

Fig. 3.13a Cubic dynamics proof Fig. 3.13b Cubic dynamics

form the total derivative of the differential invariant F ≡ 1
3 ≤ 5x2, which gives the

differential expression F ′ ≡ D(1
3 ≤ 5x2)≡ 0≤ 5 ·2xx′. Now, the differential induc-

tion rule DI takes into account that the derivative of state variable x along the dy-
namics is known. Substituting the differential equation x′ = x3 into the inequality
yields F ′x

3

x′ ≡ 0≤ 5 ·2xx3, which is a valid formula and closes by quantifier elimin-
ation with r∀. �

Example 3.16 (Linear versus angular speed). Consider the following simple proof,
which shows that the speed v of the aircraft with position x is maintained even when
it changes its angular velocity ω nondeterministically during the flight (as in mode
free of Fig. 3.7). Again, recall the flight equation with angular velocity ω:

x′1 = d1∧x′2 = d2∧d′1 =−ωd2∧d′2 = ωd1 (F (ω)∗)

∗
` QE(∀x1,x2∀d1,d2∀ω (2d1(−ωd2)+2d2ωd1 = 0))

r∀ ` ∀x1,x2∀d1,d2∀ω (2d1(−ωd2)+2d2ωd1 = 0)
DI d2

1 +d2
2 = v2 ` [∃ω F (ω)]d2

1 +d2
2 = v2

→r ` d2
1 +d2

2 = v2→ [∃ω F (ω)]d2
1 +d2

2 = v2

r∀ ` ∀v(d2
1 +d2

2 = v2→ [∃ω F (ω)]d2
1 +d2

2 = v2)
sid

e

QE
QE

The total derivative of the property F ≡ d2
1 +d2

2 = v2 for differential induction with
DI is F ′ ≡ D(d2

1 +d2
2 = v2)≡ 2d1d′1 +2d2d′2 = 2vv′. Substituting the differential

equations F (ω) of flight yields F ′−ωd2
d′1

ωd1
d′2

0
v′ ≡ 2d1(−ωd2)+2d2ωd1 = 0, which is

valid and closes by quantifier elimination. This example shows the difference of dif-
ferential continuous evolution (of d1,d2) and nondeterministic continuous evolution
(of ω). The DA-constraint specifies how the di evolve along differential equations;

3.5 Proof Calculus 173

hence d′i is substituted in F ′. For ω , in contrast, the DA-constraint is nondetermin-
istic (∃ω) and does not specify how ω changes precisely. In particular, there is no
equation for ω ′ that could be used for substitution. Yet such an equation is not even
needed for forming the premise of DI, because, after bound variable renaming, ω

cannot occur in F , since the scope of ∃ω ends with the DA-constraint and does not
extend to postcondition F . In the proof, the quantifiers for xi and di result from the
universal closure ∀α in DI. The quantifier for ω is introduced by DV and ensures
that all possible evolutions of ω are taken into account as there is no specific equa-
tion for ω ′. After all, ω is a quantified input and we cannot know a specific value
for its slope, but have to expect any (∀ω) choice. Finally, note that in such cases
without existential variables, side deductions can be inlined; see Chap. 2 for formal
details on proof rules with Skolem function terms. �

Requirements of Differential Invariants

Next, we illustrate why the requirements formulated for the proof rule DI are neces-
sary in general.

Counterexample 3.17. For soundness of differential induction, it is crucial that
Definition 3.13 defines the total derivative D(F ∨G) of a disjunction conjunctively
as D(F)∧D(G) instead of as D(F)∨D(G). From an initial state ν which satis-
fies ν |= F , and hence ν |= F ∨G, the formula F ∨G only is sustained differentially
if F itself is a differential invariant, not if G is. For instance, x1 ≥ 0∨d2

1 +d2
2 = v2 is

no differential invariant of ∃ω F (ω), because x1 ≥ 0 can be invalidated by appro-
priate curved flights along F (ω); see formula (3.6). In practise, splitting differential
induction proofs over disjunctions can be useful.

Note, however, that D(F ∨G)≡ D(F)∧D(G) is not the only definition that
works. We could just as well define D(F ∨G)≡ (F ∧D(F)) ∨ (G∧D(G)) instead.
It is a simple exercise to show soundness of this modification. �

Counterexample 3.18 (Restricting differential invariance). It may be tempting to
suspect that in DI the differential invariant F only needs to be differentially in-
ductive at the states where F actually holds true. After all, the rule is used to prove
that F stays true all the time, and in discrete loop induction (ind), the invariant φ can
also be assumed to hold when showing the induction step in the premise. So why
did we not assume F when proving F ′ in the premise of rule DI? See Fig. 3.14 for a
tempting attempt of what a proof rule could be. But the differential induction needs

Fig. 3.14 Unsound restriction
of differential invariance

` ∀α (F ∧χ → F ′θ1
x′1
. . .θn

x′n
)

[χ]F ` [x′1 = θ1∧ . .∧ x′n = θn∧χ]F

to hold in a neighbourhood, such that adding F (or even just the border of F) to the

174 3 Differential-Algebraic Dynamic Logic DAL

assumptions in the premise of DI would be unsound! Consider the counterexample
in Fig. 3.15a, where the differential invariance restricted to F would seem to indic-
ate the region x2 ≤ 0 was never left when following the dynamics x′ = 1. This is,
of course, completely counterfactual as the dynamics in Fig. 3.15b shows, where
region x2 ≤ 0 is actually left immediately when following the dynamics x′ = 1.

∗ (unsound)
` ∀x(x2 ≤ 0→ 2x≤ 0)

x2 ≤ 0 ` [x′ = 1]x2 ≤ 0 0 t

x

x′ =
1

x0 + t

Fig. 3.15a Restricting differential invariance Fig. 3.15b Linear dynamics

Thus, although restricting the domain where proof rules require differential in-
variance appears to be a tempting idea, we have to be very careful to ensure the
proof rules are sound in this subtle domain. In fact, the same counterexample in
Fig. 3.15a also demonstrates unsoundness of other approaches that have been pro-
posed to handle nontrivial differential equations [251, 145]. With a minor variation
(replacing assumption x2 ≤ 0 in the premise by x2 = 0), Fig. 3.15a also shows that
it is not sufficient to restrict the differential to the border of F . The problem causing
this unsoundness is circular reasoning and the fact that derivatives are only defined
in domains with non-empty interior. Strictly speaking, in the beginning we only
know invariant F to hold at a single point (antecedent of conclusion of DI). Now if
we assume F to hold in some domain for the induction step (premise of DI), then,
initially, we only know that F holds in a region with an empty interior. This is not
sufficient to conclude anything based on following derivatives, because these are not
defined on regions with an empty interior. Thus, the reasoning in Fig. 3.15a assumes
more than it has proven already, which explains the unsoundness, and the unsound-
ness of the rule in Fig. 3.14. �

This counterexample illustrates that differential invariance is a powerful but also
subtle matter and that we have to prove soundness of the proof rules very carefully.
We prove soundness of the DAL calculus and its differential induction principles in
Sect. 3.6. In particular, we cannot generally use differential invariants for proving
their continuous induction step. If, however, F describes an open set (e.g., F only
involves strict inequalities), then DI is sound even when adding F to the assumptions
of the premise as in Fig. 3.14. Likewise, F can be added to the assumptions of the
premise when strengthening F ′ to strict inequalities. We will prove both refinements
in Sect. 3.7. Furthermore, differential strengthening (DS) can be an extraordinarily
successful proof technique for successively enriching evolution domain restrictions
by derived invariants until F itself becomes differentially inductive, as we illustrate
in Sects. 3.10 and 3.11. Also if polynomial solutions exist, they can be used as
differential invariants.

3.5 Proof Calculus 175

Counterexample 3.19 (Negative equations). It is crucial for soundness of differen-
tial induction that F be not allowed to contain negative equations. In the following
counterexample, variable x can reach x = 0 without its derivative ever being 0; again,
see Fig. 3.15b for the dynamics.

∗ (unsound)
` ∀x(1 6= 0)

x 6= 0 ` [x′ = 1]x 6= 0

If, instead, both inequalities x < 0 and x > 0 are differential invariants of a system
(e.g., of the differential equation x′ = x), then x 6= 0 can be proven indirectly by
representing it equivalently as x < 0∨ x > 0. We pursue this further in Example 3.29
in Sect. 3.7. �

Differential Weakening

A useful special case of the differential refinement rule [DR] is the following derived
weakening rule, with which we can assume the evolution domain constraint χ to
hold for all reachable states.

Lemma 3.6 (Differential weakening). The following is a derived proof rule:

([DR′])
` ∀α∀y1 . .∀yk (χ → φ)

` [∃y1 . .∃yk (x′1 = θ1∧·· ·∧ x′n = θn∧χ)]φ

Proof. Rule [DR′] is sound, because χ is true along all state flows of the DA-
constraint and φ is a consequence of χ in all reachable states (as overapproximated
by ∀α) by premise. Rule [DR′] can be derived as follows:

` QE(∀y1 . .∀yk ∀d1 . .∀dn (χ
d1
x1 . . .

dn
xn → φ

d1
x1 . . .

dn
xn))

` χ
d1
x1 . . .

dn
xn → φ

d1
x1 . . .

dn
xn

[:=] ` [x1 :=d1∧·· ·∧ xn :=dn∧χ
d1
x1 . . .

dn
xn]φ

r∀ ` ∀y1 . .∀yk ∀d1 . .∀dn ([x1 :=d1∧·· ·∧ xn :=dn∧χ
d1
x1 . . .

dn
xn]φ)

[∃] ` [∃y1 . .∃yk ∃d1 . .∃dn (x1 :=d1∧·· ·∧ xn :=dn∧χ
d1
x1 . . .

dn
xn)]φ

[DR] ` [∃y1 . .∃yk ∃d1 . .∃dn (x′1 = d1∧·· ·∧ x′n = dn∧χ)]φ
[DR] ` [∃y1 . .∃yk (x′1 = θ1∧·· ·∧ x′n = θn∧χ)]φ

sid
e

QE

The second application of [DR] uses the fact that fully nondeterministic continuous
state change is equivalent to fully nondeterministic discrete state change, as they
generate the same transitions. Finally, χ → φ can be obtained by bound variable
renaming. ut

176 3 Differential-Algebraic Dynamic Logic DAL

Differential Invariants for Disturbance

So far, we have used differential induction rule DI for various differential equations.
Yet proof rule DI and the technique of differential induction is more general than
that. The rule also works for DA-constraints with quantifiers, differential inequalit-
ies, or systems with disturbance in the dynamics.

Example 3.20 (Disturbance in the train dynamics). Differential induction can be
used to handle differential inequalities and disturbance in differential equations.
Continuing Example 3.9 from p. 159, let us abbreviate the differential inequality

z′ = v∧a− l ≤ v′ ≤ a+u∧ v≥ 0 (3.1∗)

succinctly by z′′≈a. This differential inequality characterises that the train at posi-
tion z with velocity v follows approximately the chosen acceleration a, with a devi-
ation from a that is bounded by lower bound −l ≤ 0 and upper bound u≥ 0. Now,
for the choice of a :=−b for braking, we can prove that the train that we considered
in Sect. 2.5.3 always stays inside its movement authority m, despite the differential
inequality disturbance in the dynamics, when starting in an initial state that satisfies:

φ ≡ v2 ≤ 2(b−u)(m− z)∧b > u≥ 0∧ l ≥ 0.

See Fig. 3.16 for a proof. The proof uses differential strengthening rule DS to aug-

∗
r∀

φ ` ∀α∀d (−l ≤ d ≤ u∧ v≥0→ 2v(d−b)≤−2v(b−u))
DI

φ ` [∃d (−l ≤ d ≤ u∧ z′′ =−b+d∧ v≥ 0)]φ
[DR]

φ ` [z′′≈−b∧ v≥ 0]φ

∗
r∀ ` ∀α (v≥0∧φ → z≤ m)

[DR′] ` [z′′≈−b∧ v≥0∧φ]z≤m
DS

φ ` [z′′≈−b∧ v≥ 0]z≤ m
→r ` φ → [z′′≈−b∧ v≥ 0]z≤ m

Fig. 3.16 Proof of MA-safety in braking mode with disturbance

ment the differential inequality z′′≈−b with φ as an auxiliary invariant. The result-
ing right branch where DS added φ to the DA-constraint can then be proven easily
using differential weakening [DR′] to show that the newly augmented evolution do-
main region v≥ 0∧φ implies the postcondition z≤ m. In the left branch, we use
differential induction rule DI to prove that the auxiliary invariant φ that we assumed
in the right branch is actually an invariant of the dynamics and can thus be added
soundly to the evolution domain restriction in the right branch, because φ is a pseudo
restriction. Before the differential induction DI on the left branch, we use differen-
tial refinement [DR] for an equivalence transformation that replaces the differential
inequality z′′≈−b from (3.1) with a quantified DA-constraint with a quantifier for
the disturbance d that is restricted to the domain −l ≤ d ≤ u:

∃d (−l ≤ d ≤ u∧ z′ = v∧ v′ =−b+d∧ v≥ 0). (3.7)

3.5 Proof Calculus 177

The equivalence of the quantified DA-constraint (3.7) with disturbance and the dif-
ferential inequality (3.1) that is required for applying [DR] can be established easily
using Lemma 3.3. More detailed examples for properties of dynamics with disturb-
ance, even equivalence properties, can be found in Sect. 7.4. �

Differential Invariants and Oscillation

Differential invariants are an interesting proof technique also for proving properties
of dynamical systems with oscillation. In these systems, solutions of the differential
equations cannot (really) be used for verification, because the solutions of oscillating
processes involve trigonometric functions of undecidable classes of arithmetic.

Example 3.21 (Damped oscillator). Recall the damped oscillator from Example 1.3
on p. 8, which corresponds to the DA-constraint

x′ = y∧ y′ =−ω
2x−2dωy (3.8)

with parameters ω ≥ 0 (for the undamped angular frequency) and d ≥ 0 (for the
damping ratio). See Fig. 3.17 for one example of an evolution along this continuous
dynamics. Figure 3.17 shows a trajectory in the x,y space on the left, and an evolu-

y

x

t

x

Fig. 3.17 Trajectory and evolution of a damped oscillator

tion of x over time t on the right. For the damped oscillator dynamics, we can easily
prove the following invariance property:

∗
r∀

ω ≥ 0,d ≥ 0 ` ∀x∀y(2ω2xy−2ω2xy−4dωy2 ≤ 0)
DI

ω ≥ 0,d ≥ 0,ω2x2 + y2 ≤ c2 ` [x′ = y∧ y′ =−ω2x−2dωy]ω2x2 + y2 ≤ c2

The total derivative of the property F ≡ ω2x2 + y2 ≤ c2 for differential induc-
tion with DI is F ′ ≡ D(ω2x2 + y2 ≤ c2)≡ 2ω2xx′+2ωω ′x2 +2yy′ ≤ 0. Substitut-

ing with the differential equations (3.8) gives F ′yx′
−ω2x−2dωy
y′

0
ω ′

0
d′

0
c′ , which is equi-

valent to:

178 3 Differential-Algebraic Dynamic Logic DAL

2ω
2xy+2y(−ω

2x−2dωy)≤ 0 ≡ 2ω
2xy−2ω

2xy−4dωy2 ≤ 0 ≡ −4dωy2 ≤ 0.

This formula is valid and closes by quantifier elimination (r∀), because dω ≥ 0. �

Example 3.22 (Switched damped oscillators). Recall the switched damped oscillator
from Example 1.3, which switches between two different damped oscillators of the
form (3.8) for different choices of ω and d. The switched damped oscillator switches
from one damped oscillator to the other at the diagonals of the state space. See
Fig. 3.18 for an illustration of one possible evolution of the system. The hybrid sys-

Fig. 3.18 Trajectory switch-
ing between two damped
oscillators

Ω

2
2Ω

x
�

by

x
�

ay

1

1
y

x

tem switches between two different damped oscillators at the switching surfaces
depicted by the diagonal lines in Fig. 1.6 on p. 8 from one mode (shown in solid
curves, with smaller ω) to the other mode (shown in dashed curves, with greater ω)
and back again. At the solid diagonal, the system switches to the dynamics shown by
a solid curve (with a smaller ω value), and at the dashed diagonal, it switches to the
dynamics shown by a dashed curve (with greater ω value). We model a generalised
parametric version of a corresponding switched damped oscillator in the first line
of Fig. 3.19, with subsequent abbreviations. More generally, we assume the system

φ → [
(
D ; (?T ∪ (?x = ay;ω :=2ω . .)∪ (?x = by;ω :=

ω

2
. .))
)∗
]φ

where φ ≡ ω ≥ 0∧d ≥ 0∧ω
2x2 + y2 ≤ c

D ≡ x′ = y∧ y′ =−ω
2x−2dωy

?T ≡ ?true

(?x = ay;ω :=2ω . .)≡ ?x = ay;ω :=2ω; d :=
d
2

;c :=c
(2ω)2 +12

ω2 +12

(?x = by;ω :=
ω

2
. .)≡ ?x = by;ω :=

ω

2
; d :=2d;c :=c

ω2 +12

(2ω)2 +12

Fig. 3.19 Parametric switched damped oscillator system

switches on a diagonal of the form x = ay (dashed diagonal) to the faster angular fre-

3.5 Proof Calculus 179

quency (ω :=2ω), and switches to the slower angular frequency(ω := ω

2) at a diag-
onal of the form x = by (solid diagonal). When the undamped angular frequency ω

changes, the damping factor d is changed conversely and the range coefficient c
adapts to the current ω .

Note that the system in Fig. 3.19 does not force the system to switch modes
eagerly (there is no evolution domain restriction on the differential equations). Yet,
while the system does not force switching, it only allows switching at the respect-
ive diagonals, when the tests ?x = ay or ?x = by are successful, which is all that
we need. The intuition why we do not need to enforce switching to obtain a safe
model is that the previous example, Example 3.21, showed that the continuous DA-
constraint is safe and only switching could make it unsafe. But comparing the safe
(and stable) evolution in Fig. 3.18 with the unsafe (and even divergent) evolution in
Fig. 3.20, we find that the choice of a and b for the switching surfaces is crucial,

Fig. 3.20 Instable traject-
ory switching between two
damped oscillators

1

1
y

x

which is the only difference between both evolutions. How do we find out which
choices of parameters a and b are safe?

With differential induction (and differential strengthening and differential weak-
ening, respectively), we can analyse the safety property in Fig. 3.19 of the switched
damped oscillators, which conjectures that the system always stays within the re-
gion ω2x2 + y2 ≤ c. We analyse this property in the DAL proof in Fig. 3.21, using
the abbreviations from Fig. 3.19.

The proof follows an induction by proof rule ind with invariant φ and then uses
differential strengthening DS to show that φ is an auxiliary invariant of the DA-
constraint D , which can be proven by differential induction DI in the left branch
immediately. Consequently, differential strengthening rule DS adds the auxiliary in-
variant φ . This rule adds auxiliary invariant φ into the evolution domain restrictions
on the right branch after it has been proven ∈ on the left branch to be invariant
under the dynamics by DI. The addition of φ on the right branch then is a pseudo
restriction of the dynamics, because φ is an invariant. The right branch now uses
the (derived) differential weakening rule [DR′] to overapproximate the dynamics to
the new evolution domain restriction φ . From φ , the remaining switching dynamics
of the DA-program can be proven by splitting it into the three cases resulting from

180 3 Differential-Algebraic Dynamic Logic DAL

∗
DI

φ ` [D]φ

∗
ax

φ ` φ

[?]
φ ` [?T]φ

φ ` −2≤ a≤ 2 φ ` b2 ≥ 1
3

φ ` [(?x = ay;ω :=2ω . .)]φ ∧ [(?x = by;ω := ω

2 . .)]φ
∧r

φ ` [?T]φ ∧ [(?x = ay;ω :=2ω . .)]φ ∧ [(?x = by;ω := ω

2 . .)]φ
[∪]

φ ` [(?T ∪ (?x = ay;ω :=2ω . .)∪ (?x = by;ω := ω

2 . .))]φ
→r

φ ` φ → [(?T ∪ (?x = ay;ω :=2ω . .)∪ (?x = by;ω := ω

2 . .))]φ
∀r

φ ` ∀α (φ → [(?T ∪ (?x = ay;ω :=2ω . .)∪ (?x = by;ω := ω

2 . .))]φ)
[DR′]

φ ` [D ∧φ][(?T ∪ (?x = ay;ω :=2ω . .)∪ (?x = by;ω := ω

2 . .))]φ
DS

φ ` [D][(?T ∪ (?x = ay;ω :=2ω . .)∪ (?x = by;ω := ω

2 . .))]φ
[;]

φ ` [D ; (?T ∪ (?x = ay;ω :=2ω . .)∪ (?x = by;ω := ω

2 . .))]φ
ind

φ ` [
(
D ; (?T ∪ (?x = ay;ω :=2ω . .)∪ (?x = by;ω := ω

2 . .))
)∗
]φ

→r ` φ → [
(
D ; (?T ∪ (?x = ay;ω :=2ω . .)∪ (?x = by;ω := ω

2 . .))
)∗
]φ

Fig. 3.21 Parametric switched damped oscillator proof

the three cases of the nondeterministic choice by rules [∪],∧r. The leftmost of those
branches is provable by the axiom rule ax directly, the rightmost two cases need a
few more rule applications, including quantifier elimination, and then lead to the
two branches indicated on the top right:

φ ` −2≤ a≤ 2 and φ ` b2 ≥ 1
3

The left case corresponds to the choice (?x = ay;ω :=2ω . .), and the right case to
the choice (?x = by;ω := ω

2 . .). From this proof, we can thus identify the constraints
on the switching regions a and b that we need for the safety property to hold —
quite similarly to our approach in Sect. 2.9 and, later, in Sect. 3.11. The resulting
constraints we identify by combining the missing requirements are:

−2≤ a≤ 2∧b2 ≥ 1
3
. (3.9)

In particular, when we add these assumptions to φ , the proof in Fig. 3.21 closes
successfully, showing that the switched damped oscillator does not diverge but stays
inside its region under these constraints.

Observe that, even though the system switches between two safe and stable con-
tinuous modes (damped oscillators), it is not at all evident that the switched damped
oscillator is safe. In fact, the counterexample in Fig. 3.20 shows that surprisingly
small variations of a and/or b make the switched system unsafe and instable, even
make it diverge to infinity. The discovered constraints (3.9) characterise the different
situations. For the evolution in Fig. 3.18, we have chosen the switching conditions
a =−1,b = 1, and for Fig. 3.20 we have chosen a =−1,b = 0.5. �

3.5 Proof Calculus 181

Structural Properties of Differential Invariants

Differential invariants enjoy structural closure properties. They are closed under
conjunction (because of the conjunctive definition in Definition 3.13) and the next
lemma shows that they are closed under differentiation, which we summarise as:

F,G differential invariants then F ∧G differential invariant (of same system)
F differential invariant then D(F) differential invariant (of same system)

Lemma 3.7 (Closure properties of differential invariants). Differential invari-
ants are closed under differentiation: The total derivative of a differential invariant
is an invariant of the same DA-constraint.

Proof. Let F be a differential invariant, i.e., satisfy DI for some DA-constraint of
the form ∃y(x′ = θ ∧χ), using vectorial notation for x and y. Hence, the premise of
DI is provable: ∀x∀y(χ → F ′θx′) where the quantifier for x results from the universal
closure ∀α . We have to show that the derivative F ′θx′ is invariant and extend the proof
to a proof of [∃y(x′ = θ ∧χ)]F ′θx′ by weakening (Lemma 3.6):

∗
r∀ ` QE(∀x∀y(χ → F ′θx′))

[DR′] ` [∃y(x′ = θ ∧χ)]F ′θx′

ut

3.5.7 Differential Induction with Differential Variants

The differential induction techniques with differential invariants (rule DI) can prove
invariance properties. There is a dual proof technique of differential induction with
differential variants (rule DV) to prove reachability or attractor properties.

Differential Variants

Unlike the differential induction rule DI for differential invariants, rule DV uses
differential induction to prove that F is a differential variant, which is reached dif-
ferentially as an attractor region rather than sustained differentially as in DI. The
essential difference between DV and DI thus is the progress condition F ′ ≥ ε in
the premise, saying that the total differential of F along the DA-constraint is pos-
itive and at least some ε > 0. There, F ′ ≥ ε is a mnemonic notation for replacing
all occurrences of inequalities a≥ b in F ′ with a≥ b+ ε and a > b by a > b+ ε

(accordingly for ≤,>,<). Intuitively, the premise expresses that, wherever χ holds
but F does not yet hold, the total derivative is pointing towards F ; see Fig. 3.22.

182 3 Differential-Algebraic Dynamic Logic DAL

Fig. 3.22 Differential variants

Especially, F ′ ≥ ε guarantees a minimum progress rate of ε towards F along the dy-
namics. To further ensure that the continuous evolution towards F remains within χ ,
the antecedent of the conclusion shows that χ holds until F is attained, which can
again be proven using DI. Overall, the premise of rule DV shows that the dynamics
makes progress (at least ε) toward F , and the antecedent shows that the dynamics
does not leave evolution domain restriction χ on the way to F . In this context, ∼F
is a shorthand notation for weak negation, i.e., the operation that behaves like ¬,
except that ∼(a≥ b)≡ b≥ a and ∼(a > b)≡ a≤ b. Unlike negation, weak neg-
ation retains the border of F , which is required in DV as χ needs to continue to
hold (including the border of F) until F is reached. Especially, for rule DV , in-
variant χ is not required to hold after F has been reached successfully. The opera-
tions F ′ ≥ ε and ∼F are defined accordingly for other inequalities (in rule DV , we
do not permit F to contain equalities; see Counterexample 3.25 below). Again, we
demonstrate differential induction and the necessity of its prerequisites in a series
of examples.

Example 3.23. As a very simple example for using differential induction with dif-
ferential variants, consider the property where we want to prove that 〈x′ = a〉x≥ b,
i.e., we can finally reach region x≥ b, when we follow the dynamics x′ = a long
enough. We analyse this DAL formula in the following DAL proof:

` a > 0
r∃ ` ∃ε>0∀x(x≤ b→ a≥ ε)
DV ` 〈x′ = a〉x≥ b

As the proof reveals, the property is valid if only a > 0, which makes sense, because
the system dynamics is then evolving towards x≥ b; otherwise it is evolving away
from x≥ b (if a < 0) or is constant (a = 0). For the above proof, we do not need
to solve the differential equations. Solving the differential equation would be trivial
here for a constant a, but is more involved when a is an arbitrary term. Thus, instead,
we just form the total differential of F ≡ x≥ b, which gives F ′ = x′ ≥ b′. When
we substitute in the differential equations x′ = a and assume that a′ = 0,b′ = 0, we
obtain F ′ax′

0
a′

0
b′ ≡ a≥ 0. Consequently, (F ′ ≥ ε)a

x′
0
a′

0
b′ gives a≥ ε . If we can prove

a≥ ε holds for one common minimum progress ε > 0, then the system makes some
minimum progress towards the goal and will reach it in finite time. This even holds
if we restrict the progress condition to all x that have not yet reached x≥ b or are on
the border of x≥ b, which is the assumption x≤ b in the premise. �

χ

F

3.5 Proof Calculus 183

Example 3.24 (Aircraft progress). Recall the aircraft progress property that we
proved in Fig. 3.11 on p. 169. In the rightmost side deduction, DV is used to
prove that F ≡ x1 ≥ p1∧ x2 ≥ p2 is finally reached. There, the total derivative
is F ′ ≡ x′1 ≥ 0∧ x′2 ≥ 0, which yields d1 ≥ 0∧d2 ≥ 0 when substituting the flight
equations F (ω), because x′1 = d1,x′2 = d2, p′1 = p′2 = 0. Consequently, for ω = 0,
(F ′ ≥ ε)d1

x′1
d2
x′2
−ωd2
d′1

ωd1
d′2

0
p′1

0
p′2

is identical to (F ′ ≥ ε)d1
x′1

d2
x′2

0
p′1

0
p′2

, giving d1 ≥ ε ∧d2 ≥ ε .
Similarly, the proof for formula (3.6) can be generalised to differential inequalities,
again assuming d′1 = d′2 = p′1 = p′2 = 0 and b′ = 0:

∀p∃d (‖d‖2 ≤ b2∧〈x′1 ≥ d1∧ x′2 ≥ d2〉(x1 ≥ p1∧ x2 ≥ p2)).

Using differential refinement rule 〈DR〉 and Lemma 3.4, the differential inequalities,
which express lower bounds on the evolution of x1 and x2, can be reduced equival-
ently to differential equations with quantified disturbance u ∈ R2:

∀p∃d . .〈∃u(x′1 = d1 +u1∧ x′2 = d2 +u2∧u1 ≥ 0∧u2 ≥ 0)〉(x1 ≥ p1∧ x2 ≥ p2).

The proof for this DAL formula is identical to that in Fig. 3.11, except that DV now
yields ∀x∀u((x1 < p1∨ x2 < p2)∧u1 ≥ 0∧u2 ≥ 0 → d1 +u1 ≥ ε ∧d2 +u2 ≥ ε).

�

Requirements of Differential Variants

Like the proof rule DI for differential invariants, the proof rule DV for differen-
tial variants has requirements on the formulas. We illustrate why the requirements
formulated for the proof rule DV are necessary in general.

Counterexample 3.25 (Equational differential variants). Rule DV is not applicable
for equations like x = y. Even though x = y can be encoded as F ≡ x≤ y∧ x≥ y,
the corresponding F ′ ≥ ε ≡ x′+ ε ≤ y′∧ x′ ≥ y′+ ε is equivalent to false for ε > 0.
Indeed, assuming a′ = b′ = 0, the validity of a formula like 〈x′ = a∧ y′ = b〉x = y
depends on a more involved relationship of the initial values of x and y and the
constants a and b: It is true, iff (x− y)(a−b)< 0∨ x = y holds initially.

More generally, differential variants cannot (directly) verify conjunctive equa-
tions as in 〈x′ = a∧ y′ = b〉(x = 0∧ y = 0) because differential variants guarantee
that a target region F will be reached, but not when precisely. In particular, differen-
tial variants cannot guarantee that x = 0 and y = 0 would be reached simultaneously.
In fact, for a,b 6= 0, the above reachability property is only valid iff bx = ay∧ax < 0
initially. �

Counterexample 3.26 (Minimal progress requirement). Unlike in discrete domains,
strictly monotonic sequences can converge in R. Thus, the premise F ′ ≥ ε for
an ε > 0 of DV cannot be weakened to F ′ > 0. To see why, consider the counter-
example in Fig. 3.23a, in which x converges monotonically to 0 along the dynamics
shown in Fig. 3.23b. This counterexample illustrates that differential variance is a

184 3 Differential-Algebraic Dynamic Logic DAL

∗ (unsound)
` ∀x(x > 0→−x < 0)
` 〈x′ =−x〉x≤ 0 0 t

x
x0

x0e−t

x ′=−x

Fig. 3.23a Monotonically decreasing con-
vergent counterexample

Fig. 3.23b Convergent descent dynamics

false
r∀ ` ∀x(−x≥ 0)
DIx≥ 0 ` [x′ =−x]x≥ 0

Fig. 3.23c Non-inductive property in conver-
gent descent

matter that is no less subtle than differential invariance, and we have to prove sound-
ness of the proof rules very carefully. Moreover, this example demonstrates that, in
the presence of convergent dynamics, a property like x ≥ 0 can be invariant even
though it is not differentially invariant; see Fig. 3.23c. �

Counterexample 3.27 (Lipschitz continuity requirement). As the counterexample in
Fig. 3.24a shows, Lipschitz continuity (or at least the existence of a solution of suf-
ficient duration) is, in fact, a necessary prerequisite for DV . For x = y = 0 initially,
the solution of the differential equations in Fig. 3.24a is x(t) = t and y(t) = tan t. In
explosive examples like the corresponding dynamics in Fig. 3.24b, where solution y
grows unbounded in finite time, the duration of existence of solutions is limited so
that the target region x≥ 6 is physically unreachable. More precisely, the dynamics

∗ (unsound)
` ∃ε>0∀x∀y(x < 6→ 1≥ ε)

` 〈x′ = 1∧ y′ = 1+ y2〉x≥ 6

y

x

���

Π

2 Π ������

3 Π

2 2 Π

t

-6

-4

-2

0

2

4

Fig. 3.24a Counterexample of unbounded
dynamics without Lipschitz continuity

Fig. 3.24b Explosive dynamics with limited
duration of solutions

is not well-posed beyond the explosive point of unbounded growth at the singular-
ity π

2 and is non-physical beyond that singularity. The reason this can happen is
that the differential equation is not (globally) Lipschitz continuous but only locally
Lipschitz continuous and disobeys divergence of time (Sect. 3.3). The condition of
(global) Lipschitz continuity is directly expressible as a formula for DV :

3.6 Soundness 185

∃L∀y1 . .∀yk∀x1 . .∀xn∀ỹ1 . .∀ỹk∀x̃1 . .∀x̃n

(θ1− θ̃1)
2 + · · ·+(θn− θ̃n)

2 ≤ L2((x1− x̃1)
2 + · · ·+(xn− x̃n)

2)

where θ̃i denotes the result of substituting all x j in θi with the corresponding x̃ j, and
the y j with ỹ j. Observe that, besides Lipschitz continuity, any other condition can be
used for rule DV that ensures the existence of a solution of sufficient duration. �

3.6 Soundness

In this section we prove that verification with the DAL calculus always produces
correct results about DA-programs, i.e., the DAL calculus is sound. In light of the
various subtleties and sources of unsoundness we have pointed out in the previous
sections, we will devote our attention to a very careful soundness proof.

Theorem 3.1 (Soundness of DAL). The DAL calculus is sound, i.e., every DAL
formula that can be derived in the DAL calculus is valid (true in all states).

Proof. The calculus is sound if each rule instance is sound. The rules of the DAL
calculus are even locally sound, i.e., their conclusion is true in state ν if all its
premises are true in ν . Local soundness implies soundness. The local soundness
proofs of 〈;〉,[;],〈∪〉,[∪] and the propositional rules are as in Theorem 2.1. Similarly,
rules ind and con are local versions of induction schemes, and the proof is as in
Theorem 2.1; likewise for rules []gen,〈〉gen. The local soundness of 〈:=〉,[:=] is a
generalisation of the proofs for update rules [37] to first-order DJ-constraints. The
proofs for 〈∃〉,[∃],〈J〉,[J] are simple. Finally, our results from Theorem 2.1 can be
lifted to show that locally sound rules are closed under addition of the Γ ,∆ context
in Definition 3.16. Soundness would even be closed under the addition of conjunct-
ive DJ-constraints as rule prefixes as in Definition 2.11. For soundness, however,
conjunctive DJ-constraints are crucial here [37, 235] as these are deterministic.

r∃ Rule r∃ is locally sound: Let ν be a state in which the premise is true, i.e.,

ν |= QE(∃x
∧

i

(Γi ` ∆i)).

We have to show that the conclusion is true in this state. Using the fact that
quantifier elimination (QE) yields an equivalence, we see that state ν also
satisfies ∃x ∧i(Γi ` ∆i) prior to the quantifier elimination. Hence, for some
state νx that agrees with ν except for the value of x, we obtain:

νx |=
∧

i

(Γi ` ∆i).

As the side deduction (?) in Fig. 3.10 is inductively shown to be locally
sound, we can conclude that νx |= (Γ ` ∆ ,φ). Hence, ν |= ∃x(Γ ` ∆ ,φ).

186 3 Differential-Algebraic Dynamic Logic DAL

Now the conjecture can be obtained using standard reasoning with quan-
tifiers and the absence of x in Γ ,∆ by rewriting the conclusion with local
equivalences:

∃x(Γ ` ∆ ,φ)≡ ∃x(¬Γ ∨∆ ∨φ)≡ ¬Γ ∨∆ ∨∃xφ ≡ Γ ` ∆ ,∃xφ .
(3.10)

The soundness proof for r∀ is similar since (3.10) holds for any quantifier,
as x does not occur in Γ ,∆ . The proofs of l∃ and l∀ can be derived using
duality of quantifiers.

[D] By Lemma 3.3, there is an equivalent disjunctive normal form D1∨·· ·∨Dn
of D . Thus, it only remains to show that ρ(D)⊆ ρ((D1∪ . . .∪Dn)

∗) as the
converse inclusion is obvious. Let ϕ be a differential state flow for a trans-
ition (ν ,ω) ∈ ρ(D). We assume that ϕ is non-Zeno according to Defini-
tion 3.12. Thus, there is a finite number, m, of switches between the dis-
juncts Di, say Di1 ,Di2 , . . . ,Dim . Then, the transition (ν ,ω) belonging to ϕ

can be simulated piecewise by m repetitions of D1∪ . . .∪Dn, where each
piece selects the respective part Di j . The proof for 〈D〉 is similar.

[DR] Local soundness of the rules [DR] and 〈DR〉 is an immediate consequence
of Lemma 3.3 and the respective semantics of modalities.

DS Rule DS can be proven locally sound using the fact that the left premise im-
plies that every flow ϕ that satisfies D also satisfies χ all along the flow.
Thus, ϕ |= D implies ϕ |= D ∧χ so that the right premise entails the con-
clusion.

DI Let ν satisfy the premise and the antecedent of the conclusion as, other-
wise, there is nothing to show. Because D(F) is defined in terms of the
literals of F , we can assume F to be in disjunctive normal form (also see
Lemma 3.3). Consider any disjunct G of F that is true at ν . In order to
show that F is sustained during the continuous evolution, it is sufficient
to show that each conjunct of G is. We can assume these conjuncts to be
of the form c ≥ 0 (or c > 0 where the proof is similar). Finally, using vec-
torial notation, we write x′ = θ for the differential equation system and ∃y
for the chain of quantifiers. Now let ϕ : [0,r]→ State(Σ) be any state flow
with ϕ |= ∃y(x′ = θ ∧χ) beginning in ϕ(0) = ν . In particular, ϕ |= ∃y χ ,
which, by antecedent, implies ν |= F , i.e., c≥ 0 holds at ν . We assume dur-
ation r > 0, because the other case is immediate (ν |= c≥ 0 already holds).
We show that c≥ 0 holds all along the flow ϕ , i.e., ϕ |= c≥ 0.
Suppose there was a ζ ∈ [0,r] where ϕ(ζ) |= c < 0; this will lead to a contra-
diction. Then the function h : [0,r]→ R defined as h(t) = val(ϕ(t),c) satis-
fies h(0)≥ 0 > h(ζ), because ν |= c≥ 0 by antecedent. Clearly, ϕ is of the
order of D(c), because: ϕ is of order 1 for all variables in vector x, and trivi-
ally of order ∞ for variables that do not change during the DA-constraint.
Further, by bound variable renaming, D(c) cannot contain the quantified
variables y; hence, ϕ is not required to be of any order in y. The value
of c is defined all along ϕ , because we have assumed χ to guard against
zeros of denominators. Thus, by Lemma 3.1, h is continuous on [0,r] and

3.6 Soundness 187

differentiable at every ξ ∈ (0,r). The mean value theorem implies that there
is a ξ ∈ (0,ζ) such that dh(t)

dt (ξ) · (ζ −0) = h(ζ)−h(0)< 0. In particular,
since ζ ≥ 0, we can conclude that dh(t)

dt (ξ)< 0. Now Lemma 3.1 implies
that dh(t)

dt (ξ) = val(ϕ̄(ξ),D(c))< 0. The latter equals1 val(ϕ̄(ξ)u
y ,D(c)θ

x′)

by Lemma 3.2, because ϕ |= ∃y(x′ = θ ∧χ) so that ϕ̄(ξ)u
y |= x′ = θ ∧χ for

some u∈R and because y′ does not occur and y 6∈ c. This, however, is a con-
tradiction, because the premise implies that ϕ |= ∀y(χ → D(c)θ

x′ ≥ 0) as ∀α

comprises all variables that change during the flow ϕ along x′ = θ , i.e., the
vector x. In particular, as ϕ̄(ξ)u

y |= χ holds, we have ϕ̄(ξ)u
y |= D(c)θ

x′ ≥ 0.
DV First, we consider the quantifier free case, again using vectorial notation.

Let ν be any state satisfying the premise and the antecedent of the conclu-
sion. Since ν satisfies the premise and, after bound variable renaming, ε is
a fresh variable, we can assume ν to satisfy ν |= ∀α(¬F ∧χ → (F ′ ≥ ε)θ

x′).
For DV , we required x′ = θ to be Lipschitz continuous so that the global
Picard-Lindelöf theorem (Theorem B.2 or its corollary Corollary B.1) en-
sures the existence of a global solution of arbitrary duration r ≥ 0, which is
all we need here. Let ϕ be a state flow corresponding to a solution of the
differential equation x′ = θ starting in ν of some duration r ≥ 0. If there is
a point in time ζ at which ϕ(ζ) |= F , then by antecedent, until (and includ-
ing, because ∼F contains the closure of ¬F) the first such point, χ holds
true during ϕ . Hence, the restriction of ϕ to [0,ζ] is a state flow witness-
ing ν |= 〈x′ = θ ∧χ〉F . If, otherwise, there is no such point, then we show
that extending ϕ by choosing a larger r will inevitably make F true. We
thus have ϕ |= ¬F ∧χ and, by premise, ϕ |= F ′θx′ ≥ ε , because ∀α com-
prises the variables x that change during ϕ . By Definition 3.13, F ′θx′ ≥ ε is
a conjunction. Consider one of its conjuncts, say c′θx′ ≥ ε belonging to a lit-
eral c≥ 0 of F (the other cases are similar). Again, ϕ is of the order of D(c)
and the value of c is defined along ϕ , because ϕ |= χ and χ is assumed to
guard against zeros. Hence, by the mean value theorem, Lemma 3.1, and
Lemma 3.2, we conclude for each ζ ∈ [0,r] that

val(ϕ(ζ),c)− val(ϕ(0),c) = val(ϕ̄(ξ),c′θx′)(ζ −0)≥ ζ val(ϕ(0),ε)

for some ξ ∈ (0,ζ). Now as val(ϕ(0),ε)> 0 we have for all ζ >− val(ϕ(0),c)
val(ϕ(0),ε)

that ϕ(ζ) |= c≥ 0 and ϕ(r) |= c≥ 0, and even ϕ(r) |= c > 0. By enlar-
ging r sufficiently, we have that all literals c≥ 0 of one conjunct of F are
true, which concludes the proof, because, until F finally holds, ϕ |= χ is
implied by the antecedent as shown earlier.
In the presence of quantifiers (∃y with vectorial notation), rule DV im-
plies a slightly stronger statement, because y is quantified universally in the
premise (and antecedent): F can be reached for all choices of y that respect χ

1 For u ∈R let ϕ̄(ξ)u
y denote the (augmented) state that agrees with ϕ̄(ξ) except that the value of y

is u.

188 3 Differential-Algebraic Dynamic Logic DAL

(rather than just for one). By antecedent, there is a u ∈ R such that νu
y |= χ .

Hence, νu
y satisfies the assumptions of the above quantifier-free case. Thus,

νu
y |= 〈x′ = θ ∧χ〉F , which entails that ν |= 〈∃y(x′ = θ ∧χ)〉F using u con-

stantly as the value for the quantified variable y during the evolution. ut
Consequently, we know that all formulas provable in the DAL calculus are valid and
hence reflect true properties.

3.7 Restricting Differential Invariants

Example 3.18 on p. 173 shows that differential invariant F cannot generally be as-
sumed to hold in the premise of DI without losing soundness. Nevertheless, we
present two corresponding refinements of DI that are indeed sound, even though
they assume the differential invariant F to hold in the induction step.

Proposition 3.2 (Open differential induction). Using the notation of the proof
rulesDI,DV , the following variations of differential induction rule DI are sound (in
DI′, F describes an open set):

(DI′)
` ∀α∀y1 . . . ∀yk (F ∧χ → F ′θ1

x′1
. . .θn

x′n
)

[∃y1 . . . ∃yk χ]F ` [∃y1 . . . ∃yk (x′1 = θ1∧·· ·∧ x′n = θn∧χ)]F

(DI′′)
` ∀α∀y1 . . . ∀yk (F ∧χ → (F ′ > 0)θ1

x′1
. . .θn

x′n
)

[∃y1 . . . ∃yk χ]F ` [∃y1 . . . ∃yk (x′1 = θ1∧·· ·∧ x′n = θn∧χ)]F

Proof. The proof that rule DI′ is sound is similar to the soundness proof for DI in
Theorem 3.1, except that assuming ϕ(ζ) |= ¬F only yields h(0)≥ 0≥ h(ζ), which
does not lead to a contradiction. However, by using the fact that F is open, the
distance to the border of F is positive in the initial state ϕ(0), which yields the
inequality h(0)> 0≥ h(ζ), and the contradiction arises accordingly.

The soundness of rule DI′′ needs more adaptation. Repeating the argument for
DI, we can assume F to be of the form c≥ 0. Suppose there was a ι ∈ [0,r]
where ϕ(ι) |= c < 0, which will lead to a contradiction. Let ζ ∈ [0,r] be the infimum
of these ι ; hence, ϕ(ζ) |= c = 0 by continuity. Then the function h : [0,r]→ R
defined as h(t) = val(ϕ(t),c) satisfies h(0)≥ 0≥ h(ζ), because ν |= c≥ 0 by ante-
cedent. By repeating the argument with Lemma 3.1 as in the proof for DI, h
is continuous on [0,r] and differentiable at every ξ ∈ (0,r) with a derivative of
dh(t)

dt (ξ) = val(ϕ̄(ξ),D(c)), which in turn equals val(ϕ̄(ξ),D(c)θ

x′), as ϕ |= x′ = θ .
Now, the mean value theorem implies that there is a ξ ∈ (0,ζ) such that

dh(t)
dt

(ξ) · (ζ −0) = h(ζ)−h(0)≤ 0.

In particular, as ζ ≥ 0, we can conclude that dh(t)
dt (ξ) = val(ϕ̄(ξ),D(c)θ

x′)≤ 0.
This, however, contradicts the fact that the premise implies ϕ̄(ξ) |= D(c)θ

x′ > 0, as

3.8 Differential Monotonicity Relaxations 189

the flow satisfies ϕ |= χ and ϕ(ξ) |= c≥ 0, because ζ > ξ is the infimum of the
counterexamples ι with ϕ(ι) |= c < 0. ut

Example 3.28. Consider the differential equation x′ = x3. With either rule DI′ or rule
DI′′, we can establish easily that the system stays above 1

4 whenever the dynamics
starts above 1

4 (refer to Fig. 3.13b on p. 172 for the dynamics):

∗
r∀ ` ∀x(x > 1

4 → x3 > 0)
DI′x > 1

4 ` [x′ = x3]x > 1
4

Observe that this property is not provable with rule DI directly, because x3 > 0 does
not hold for all x, but only for those where the invariant x > 1

4 is true already. �

Example 3.29 (Negative equations splitting). As an example with a negative equal-
ity consider the DAL formula x 6= 0→ [x′ = x]x 6= 0 with the negative equality
x 6= 0. In examples like these, differential induction does not work directly; see
Counterexample 3.19. Yet when we replace x 6= 0 by the equivalent x < 0∨ x > 0,
we can prove invariance of this formula along the dynamics x′ = x separately by
reasoning by cases; see Fig. 3.25. In the left branch, we strengthen the differential

∗
r∀ ` ∀x(x < 0→ x < 0)

DI′x < 0 ` [x′ = x]x < 0

∗
r∀ ` ∀x(x < 0→ x 6= 0)

[DR′]x < 0 ` [x′ = x∧ x < 0]x 6= 0
DS x < 0 ` [x′ = x]x 6= 0

∗ similarly
DSx > 0 ` [x′ = x]x 6= 0

∨l x < 0∨ x > 0 ` [x′ = x]x 6= 0

Fig. 3.25 Differential induction splitting over disjunctions for negative equations

equations with x < 0 by DS and prove that x < 0 is a differential invariant (by rule
DI′ or DI′′). In the middle branch, we show that the auxiliary evolution domain
x < 0 implies the postcondition x 6= 0 by differential weakening [DR′]. On the right
branch, there is a corresponding proof for strengthening with x > 0 by DS and prov-
ing differential invariance by rule DI′ and differential weakening by [DR′] to show
that x > 0 also implies x 6= 0. Note in particular that two different ways to use differ-
ential strengthening are required on both branches here when splitting differential
induction over disjunctions. �

3.8 Differential Monotonicity Relaxations

Evolution domain constraints of DA-constraints are helpful for differential induction
rule DI, because they provide stronger assumptions for the premise. In fact, the

190 3 Differential-Algebraic Dynamic Logic DAL

whole purpose of the differential strengthening rule DS is to enrich evolution domain
constraints of DA-constraints in order to weaken the subgoals of DI.

In contrast, evolution domain constraints are more demanding for differential
variant induction rule DV , because the antecedent of its goal requires that evolu-
tion domain region χ be shown to remain true throughout the evolution (after all,
evolution domains χ of DA-constraints D are restrictions that can be used as as-
sumptions for [D ∧χ]φ but have to be shown to hold true for 〈D ∧χ〉φ). Similarly,
for evolution rules that are based on solutions of differential equations—rules 〈′〉,[′]
from the dL calculus in Fig. 2.11 on p. 79—evolution domain regions make the
subgoal formulas much more complex (even though they lead to weaker subgoals
for rule [′]). In particular, evolution domain regions increase the number of quanti-
fier alternations in 〈′〉,[′], which have the predominant influence on the complexity
of quantifier elimination [94].

For simplifying non-differential evolution domain region χ from [D ∧χ]φ with a
DA-constraint D , we can simply use the differential weakening rule [DR] to drop χ:

[DR]
` [D]φ

` [D ∧χ]φ

Less conservatively, we can approximate the assumption ∀0≤t̃≤t 〈St̃〉χ on the solu-
tion St in the subgoal of rule [′] from Fig. 2.11 by 〈St〉χ (or by χ ∧〈St〉χ) in a
sound yet incomplete way. If every evolution of the solution St satisfying χ at the
end satisfies φ , then every evolution along D satisfying χ all the time must satisfy φ

even more so. Thus, the following variant of [′] is sound (but less complete) where
St is the solution of the differential equation as for rule [′]:

([′]′)
∀t≥0

(
χ → 〈St〉(χ → φ)

)
[x′1 = θ1∧ . .∧ x′n = θn∧χ]φ

For simplifying non-differential evolution domain region χ from 〈D ∧χ〉φ , we
can use the dual of the differential strengthening rule DS and show that χ remains
true throughout the evolution along D (left subgoal, which can be handled using
DI) so that only some evolution along D remains to be found that actually reaches φ

(right subgoal):

DS
` [D]χ ` 〈D〉φ
` 〈D ∧χ〉φ

When using DI to prove the left subgoal [D]χ by showing validity of a formula of
the form ∀D χ ′θx′ , we actually show invariance of χ along D .

More generally, we can use differential-algebraic techniques similar to differen-
tial induction to prove the weaker property of monotonicity instead of invariance
of χ .

Definition 3.17 (Monotonicity derivation). Let α be a DA-program. For a first-
order formula F , the following formula is called monotonicity derivation of F ,
where the syntactic derivative D(a) is defined according to Definition 3.13:

3.8 Differential Monotonicity Relaxations 191

Mα(F) ≡
m∧

i=1

Mα(Fi) where {F1, . . . ,Fm} is the set of all literals of F ;

Mα(a∼ b) ≡ ∀α(D(a)≥ D(b))∨∀α(D(a)≤ D(b)) where ∼ ∈ {≤,≥,<,>,=}.

Proposition 3.3 (Differential monotonicity). Let 〈St〉 be the DJ-constraint for the
solution at time t of the symbolic initial value problem for the differential equation D
defined as x′1 = θ1∧·· ·∧ x′n = θn as in rule 〈′〉 of Fig. 2.11. Let the non-differential
constraint χ be a conjunction of atomic formulas without negative equalities; then
the following is a sound proof rule:

(〈′〉′)
` ∃t≥0(χ ∧〈St〉(χ ∧φ)) ` MD (χ)

θ1
x′1
. . .θn

x′n
` 〈x′1 = θ1∧·· ·∧ x′n = θn∧χ〉φ

Proof. Local soundness is a simple consequence of the well-known fact that, for a
differentiable function f , monotonic increasing of f on an interval [c,d] is equival-
ent to f ′(z)≥ 0 on (c,d). With this, the right subgoal implies that, for any conjunct
a≥ b of χ (likewise for ≤,<,>,=), the value of a−b is either monotonically in-
creasing or monotonically decreasing along the flow. Either way, if χ holds in the
beginning and the end of a flow of some duration t (as implied by the left subgoal),
monotonicity implies that χ holds all along the flow, so that the subgoals imply the
conclusion as in case 〈′〉 of the proof of Theorem 2.1.

Formally, let ϕ be a state flow of an appropriate duration r following solu-
tion St according to the left subgoal as in Theorem 2.1. By the left subgoal we
have ϕ(r) |= φ (when r is the witness for ∃t≥0) and we only need to show that
ϕ |= χ . Consider a conjunct a≥ b of χ and consider the case where the right
subgoal implies ϕ(0) |= ∀D (D(a)≤ D(b))θ

x′ , using vectorial notation for x and θ .
Then ϕ |= (a′ ≤ b′)θ

x′ , because the universal closure ∀D comprises all variables
that change during the flow ϕ along D . Thus ϕ |= a′ ≤ b′ by Lemma 3.2. Let
h : [0,r]→ R be the function defined as h(t) = val(ϕ(t),a−b). Again, ϕ is of the
order of a′−b′ (ϕ is of the order 1 in each xi and of arbitrary order for other vari-
ables) and the value of a−b is defined all along ϕ , because χ guards against zeros
in χ . Thus, Lemma 3.1 is applicable and h is differentiable at every ξ ∈ (0,r). For
any ζ ∈ [0,r], we have to show that ϕ(ζ) |= χ . By the mean value theorem, there is
a ξ ∈ (ζ ,r) such that, when using Lemma 3.1, we have

h(r)−h(ζ) = h′(ξ) · (r−ζ) = val(ϕ̄(ξ),a′−b′) · (r−ζ)≤ 0

because ϕ̄(ξ) |= a′ ≤ b′. Thus, we have h(ζ)≥ h(r)≥ 0, since ϕ(r) |= χ , which
implies that ϕ(r) |= a−b≥ 0 and ϕ(r) |= a≥ b.

The other case where the right subgoal implies ϕ(0) |= ∀α(a′ ≥ b′) is simpler
using the fact that ϕ(0) |= χ and is, in fact, a direct consequence of the proof of DI
in Theorem 3.1. The other conjuncts of the form a≤ b,a < b,a > b, and a = b are
almost identical, because the monotonicity argument for a−b carries over easily, as
the respective conjunct holds before and after the continuous evolution. ut

192 3 Differential-Algebraic Dynamic Logic DAL

Example 3.30 (Monotonic invariants in train control). Consider the differential con-
straints for train control (equation (2.7) on p. 62 in Sect. 2.4). For the DA-constraint
z′ = v∧ v′ = a∧ τ ′ = 1∧ v≥ 0∧ τ ≤ ε , evolution domain region v≥ 0∧ τ ≤ ε can
be shown to be monotonic or convex with respect to the dynamics. That is, if it holds
in the beginning and at the end of an evolution, the invariant also holds in between.
Monotonicity is easy to prove with the above proof rule using the following sym-
bolic computations for the right subgoal (where ∀α is ∀z∀v∀τ):(

(∀α(v′ ≥ 0)∨∀α(v′ ≤ 0)) ∧ (∀α(τ ′ ≥ ε
′)∨∀α(τ ′ ≤ ε

′))
)v

z′
a
v′

1
τ ′

0
ε ′

≡ (∀α(a≥ 0)∨∀α(a≤ 0)) ∧ (∀α(1≥ 0)∨∀α(1≤ 0))
≡ true.

Observe that the invariant domain will not be a differential invariant, here, because
v≥ 0 is only an invariant of z′ = v∧ v′ = a for a ≥ 0. For any a, however, v≥ 0
will be either a monotonically increasing (if a≥ 0 constantly) or a monotonically
decreasing (if a≤ 0 constantly) property, one of which is true for every constant a.
Thus, if v≥ 0 has been true before and after an evolution along z′ = v∧ v′ = a, it
must have been true throughout this evolution. Likewise, τ ≤ ε never is a differential
invariant of τ ′ = 1, because the passing of time along τ ′ = 1 will inevitably violate
τ ≤ ε sooner or later. Still, it is a monotonically decreasing property. Consequently,
the monotonicity relaxation of Proposition 3.3 applies for the train control example,
thereby simplifying proofs with evolution domain regions considerably, because the
invariant only needs to be checked before and after rather than throughout the evol-
ution. For instance, this simplifies the proof of property (2.20) on p. 121. �

Similarly, the right subgoal of rule 〈′〉′ is a sufficient condition to ensure that rule [′]′

is a complete replacement for rule [′].

Counterexample 3.31 (Disjunctive monotonicity). For soundness of the differential
monotonicity relaxations, it is crucial that rule 〈′〉′ only accept conjunctive evol-
ution domain regions. As the counterexample in Fig. 3.26a with the dynamics in
Fig. 3.26b shows, differential monotonicity relaxations do not hold for disjunctive
evolution domain regions, because the same disjunct has to hold before and after the
evolution for monotonicity arguments to be sound. Let χ abbreviate the disjunctive
evolution domain region x≤ 1∨ x≥ 2. Then the differential monotonicity criterion
∀x(1≤ 0)∨∀x(1≥ 0) would be fulfilled, but a different disjunct holds at the initial
state x = 0 than at the target x≥ 3 so that monotonicity implies neither that x≤ 1
nor that x≥ 2 holds in between. �

Counterexample 3.32 (Negative equalities). A similar counterexample shows why
rule 〈′〉′ does not allow negative equalities. Along the dynamics x′ = 1∧ x 6= 2 we
cannot conclude from the truth of x 6= 2 before and after the evolution that, on the
basis of a condition on the derivative x′ 6= 0, x 6= 2 held true throughout the evolu-
tion. A continuous evolution from x = 0 to x = 3 still leaves x 6= 2 in between. �

3.9 Relative Completeness 193

∗ (unsound)
` ∃t≥0

(
χ ∧〈x :=x+ t〉(χ ∧ x≥ 3)

)
x = 0 ` 〈x′ = 1∧ (x≤ 1∨ x≥ 2)〉x≥ 3

0 t
1

1

2

2

3

3

χ

¬χ
χ x≥ 3

Fig. 3.26a Counterexample for disjunctive
monotonicity

Fig. 3.26b Interrupted dynamics

3.9 Relative Completeness

As a consequence of the Incompleteness Theorem 2.2 for dL and the fact that
DAL is a conservative extension of dL (Proposition 3.1), the DAL calculus is not
effectively axiomatisable (yet even just reachability is undecidable for hybrid sys-
tems [156]).

It is easy to see that the relative completeness proof for dL (Theorem 2.3) gen-
eralises to DAL with only minor modifications when using the first-order logic of
DA-constraints as a basis in place of FOD (again, nested modalities can be avoided
when using quantifiers). The first-order logic of DA-constraints results from FOD
by allowing DA-constraints in place of differential equations inside modalities.

Theorem 3.2 (Relative completeness of DAL). The DAL calculus is complete
relative to DA-constraints, i.e., every valid DAL formula can be derived from tauto-
logies of the first-order logic of DA-constraints.

Proof. The proof is a simple adaptation of the proof of Theorem 2.3 for dL in
Sect. 2.7.2: In the proof of the program rendition Lemma 2.8, we replace all cases
for continuous evolutions along differential equations or for discrete jumps by the
following cases for DA-constraints D or DJ-constraints J , respectively:

SD (~x,~v)≡ 〈D〉~v =~x,

SJ (~x,~v)≡J vi=θi
xi:=θi

.

The first-order formula J vi=θi
xi:=θi

results from J by replacing all assignments of
any form xi :=θi with equations vi = θi. The rest of the relative completeness proof
generalises immediately using the fact that the respective rules (〈∃〉,[:=]) for DJ-
constraints are symmetric, and hence equivalent, and their premises are of smaller
complexity. ut

Note that, for generalising the relative completeness proof in the most simple way,
we formally need to allow update prefixes in DAL proofs as in Definition 2.10,
which is easily seen to be sound for deterministic DJ-constraints.

194 3 Differential-Algebraic Dynamic Logic DAL

3.10 Deductive Strength of Differential Induction

We analyse the deductive power of differential induction with respect to classes of
formulas that are allowed as differential invariants. For purely equational differential
invariants, the deductive power is not affected by allowing or disallowing proposi-
tional operators in differential invariants:

Proposition 3.4 (Equational deductive power). The deductive power of differen-
tial induction with atomic equations is identical to the deductive power of differen-
tial induction with propositional combinations of polynomial equations: Formulas
are provable with propositional combinations of equations as differential invariants
iff they are provable with only atomic equations as differential invariants.

Proof. We show that every differential invariant that is a propositional combina-
tion φ of polynomial equations is expressible as a single atomic polynomial equa-
tion (the converse inclusion is obvious). We assume φ to be in negation normal form
and reduce φ inductively using the following transformations:

• If φ is of the form p1 = p2∨q1 = q2, then φ is equivalent to the single equation
(p1− p2)(q1−q2) = 0. Further, φ ′ ≡ p′1 = p′2∧q′1 = q′2 directly implies

((p1− p2)(q1−q2))
′ = 0≡ (p′1− p′2)(q1−q2)+(p1− p2)(q′1−q′2) = 0.

• If φ is of the form p1 = p2∧q1 = q2, then φ is equivalent to the single equation
(p1− p2)

2 +(q1−q2)
2 = 0. Further, φ ′ ≡ p′1 = p′2∧q′1 = q′2 implies(

(p1− p2)
2 +(q1−q2)

2)′=0≡ 2(p1− p2)(p′1− p′2)+2(q1−q2)(q′1−q′2) = 0.

• If φ is of the form ¬(p1 = p2), then φ does not qualify as a differential invariant,
because it contains a negative equality, which is disallowed for DI according to
the conditions in Fig. 3.9. ut

Observe, however, that the required polynomial degree of atomic equations is larger
than for propositional combinations, which can have computational disadvantages
for quantifier elimination.

For general differential invariants, where inequalities are allowed, the situation
is different: We show that, in general, the deductive power of differential induction
depends on which class of formulas is allowed as differential invariants! Some DAL
formulas cannot by proven by a differential induction step with only atomic formu-
las but no propositional operators as differential invariants, while they are provable
immediately using unrestricted differential invariants.

Theorem 3.3 (Deductive power). The deductive power of differential induction
with arbitrary formulas exceeds the deductive power of differential induction with
atomic formulas: All DAL formulas that are provable using atomic differential in-
variants are provable using general differential invariants, but not vice versa!

3.10 Deductive Strength of Differential Induction 195

Proof. The inclusion is obvious. Conversely, we have to show that there are DAL
formulas that are provable with general differential invariants but not with atomic
differential invariants. Consider the following example, which is provable using rule
DI′, i.e., the variant of DI for open sets (Sect. 3.7), with the non-atomic formula
x > 0∧ y > 0 as differential invariant:

∗
r∀ ` ∀x∀y(x > 0∧ y > 0→ xy > 0∧ xy > 0)
DI′x > 0∧ y > 0 ` [x′ = xy∧ y′ = xy](x > 0∧ y > 0)

First, we show that this formula is not provable by a differential induction step
with only atomic formulas as differential invariants. Suppose there was a single
polynomial p(x,y) in variables x,y such that p(x,y)> 0 is a differential invariant
proving the above formula, which will lead to a contradiction. The conditions for
differential invariants (DI or DI′) imply that the following formulas have to be valid:

1. x > 0∧ y > 0→ p(x,y)> 0, as differential invariants have to hold in the pre-
state according to the antecedent of DI (or DI′).

2. p(x,y)> 0→ x > 0∧ y > 0, as the differential invariant has to imply the post-
condition (when using []gen to show that the differential invariant implies the
postcondition).

In particular, x > 0∧ y > 0↔ p(x,y)> 0 is valid, and p is not the zero polynomial.
Thus, p enjoys the property:

p(x,y)≥ 0 for x≥ 0,y≥ 0, and, otherwise, p(x,y)≤ 0. (3.11)

Assume p has minimal total degree with property (3.11). Now, p(x,0) is a univari-
ate polynomial in x with zeros at all x > 0; thus p(x,0) = 0 is the zero polynomial,
hence y divides p(x,y). Similarly, p(0,y) = 0 for all y, and hence x divides p(x,y).
Thus, xy divides p. But by comparing the signs (cf. Fig. 3.27), we see that the poly-
nomial −p(−x,−y)

xy also satisfies property (3.11) with a smaller total degree than p,
which is a contradiction. In detail: p(x,y) satisfies the sign conditions (3.11) indic-
ated in the outer part of Fig. 3.27. It is divisible by xy, but p(x,y)

xy satisfies different
sign conditions (indicated in the middle part of Fig. 3.27). Yet, by flipping the signs,
−p(−x,−y)

xy again satisfies the same sign conditions (3.11) as p(x,y) but with a smaller
total degree (indicated in the inner part of Fig. 3.27), which is a contradiction.

Similarly, there is no polynomial p such that x > 0∧ y > 0↔ p(x,y) = 0, be-
cause only the zero polynomial is zero on the full quadrant (0,∞)2. Finally, prop-
erty x > 0∧ y > 0↔ p(x,y)≥ 0 is impossible for continuity reasons, which imply
that p(0,0) = 0, which is a contradiction. More generally, the same argument holds
for any other sign condition that is supposed to characterise one quadrant of R2

uniquely.
Observe that, so far, the argument does not depend on the actual dynamics and

is, thus, still valid in the presence of arbitrary differential weakening ([DR]).

196 3 Differential-Algebraic Dynamic Logic DAL

x p(x,0) = 0

y
p(0,y) = 0

p(x,y)≥ 0

p(x,y)≤ 0p(x,y)≤ 0

p(x,y)≤ 0

p(x,y)
xy ≥ 0

p(x,y)
xy ≥ 0p(x,y)

xy ≤ 0

p(x,y)
xy ≥ 0

−p(−x,−y)
xy ≥ 0

−p(−x,−y)
xy ≤ 0−p(−x,−y)

xy ≤ 0

−p(−x,−y)
xy ≤ 0

Fig. 3.27 Quadrant sign selection regions of differential invariant

Next, to see that the above example cannot be proven indirectly after dif-
ferential strengthening (DS), we use the fact that, inductively, the strengthen-
ing χ itself needs to be a differential invariant: Ultimately, the left subgoal of
DS can only be shown using differential induction. The above example, how-
ever, is built such that, as x′ = xy is the differential equation, xy > 0 is required
for x > 0 to be a differential invariant (which thus also requires y > 0). Con-
versely, due to y′ = xy, formula xy > 0 is a prerequisite for the differential in-
variance of y > 0 (which thus also needs x > 0). Yet, for differential invariance
of xy > 0, we have to prove xy > 0→ (y+ x)xy > 0 for DI′, because (xy)′xy

x′
xy
y′ gives

(x′y+ yx′)xy
x′

xy
y′ , i.e., xyy+ yxy. But the property xy > 0→ (y+ x)xy > 0 is, again,

equivalent to x≥ 0∨ y≥ 0, and thus equivalent to ¬(−x > 0∧−y > 0), which can-
not be proven by atomic differential induction (or differential weakening) according
to the first part of this proof. Thus, the required atomic differential invariants have

Fig. 3.28 Circular dependen-
cies for differential strength-
ening

xy > 0

x > 0 y > 0

x′ = xy > 0 y′ = xy > 0

circular dependencies for differential strengthening by x > 0, y > 0, and xy > 0, re-
spectively; see Fig. 3.28. These cannot be resolved in any proof tree without simul-

3.11 Air Traffic Control Verification 197

taneous differential induction using non-atomic differential invariants, because dif-
ferential strengthenings have to be ordered totally along each proof branch. ut

As a special case, this result implies that differential induction in DAL is deduct-
ively stronger than approaches using barrier certificates [251, 252], criticality func-
tions [91], or polynomial invariant equations [274, 269]. On top of that, the DAL
calculus adds differential strengthening and weakening techniques, which add fur-
ther deductive power. The roundabout manoeuvre that we verify in the next section
is a practical example where differential induction with mixed non-atomic formulas
and successive differential strengthening turns out to be decisive.

3.11 Air Traffic Control Verification

In this section we verify that the tangential roundabout manoeuvre for collision
avoidance in air traffic control that we presented in Sect. 3.4 is collision-free. That
is, the manoeuvre directs aircraft on flight paths with global minimal distance p > 0.
We determine a corresponding parameter constraint on the tang procedure from
the roundabout manoeuvre in Fig. 3.7. Using differential induction and differential
strengthening, we can verify the flight manoeuvre despite the complicated hybrid
flight dynamics of aircraft whose solutions fall into undecidable classes of arith-
metic. Recall the differential flight equations from Sect. 3.4.2:

x′1 = d1∧x′2 = d2∧d′1 =−ωd2∧d′2 = ωd1 (F (ω)∗)
y′1 = e1 ∧y′2 = e2 ∧e′1 =−ϖe2 ∧e′2 = ϖe1 (G (ϖ)∗)

3.11.1 Characterisation of Safe Roundabout Dynamics

Property φ in Fig. 3.7 defines safe states as those with separation ‖x− y‖ ≥ p. This
does not, however, characterise the states with safe dynamics: Several states that sat-
isfy φ will not remain safe when following curved roundabout flight manoeuvres;
see Fig. 3.6c on p. 151 for a counterexample violating φ after some time. In par-
ticular, the angular velocity ω and initial speed vectors d and e must fit to the re-
lative positioning of the aircraft x and y. Otherwise the aircraft dynamics will not
remain safe from safely separated initial states. In order to discover the required
parametric constraints for safety of the roundabout manoeuvre, we analyse the DAL
formula φ → [trm∗]φ in the DAL calculus and identify a corresponding parameter
constraint T . For notational convenience, we inline side deductions and slightly
simplify the universal closure notation ∀α by taking free variables as universally
quantified here, as with Skolem terms in Chap. 2, because the following DAL proof
needs no existential variables.

198 3 Differential-Algebraic Dynamic Logic DAL

∗
r∀

φ ` ∀x,y,d,e(φ → φ)
[DR′]

φ ` [free]φ

. . .
φ ` [tang](φ ∧T)

. . .
φ ∧T ` [F (ω)∧G (ω)]φ

[]gen
φ ` [tang;F (ω)∧G (ω)]φ

[]gen
φ ` [free][tang;F (ω)∧G (ω)]φ

[;]
φ ` [trm]φ

r∀,→r ` ∀α(φ → [trm]φ)
ind

φ ` [trm∗]φ
→r ` φ → [trm∗]φ

The left branch closes, because postcondition φ is the evolution domain restriction
in free flight such that its DA-constraint can be weakened by Lemma 3.6. In the other
branches, T is the parameter constraint that tang needs to establish in addition to φ

(middle branch) for the roundabout dynamics to be safe (right branch). Hence condi-
tion T mediates between the middle and right branches. Using successive quantifier
elimination on the right branch, we derive the following constraint T as a prerequis-
ite for φ to be differentially inductive. It is the decisive constraint that characterises
configurations with safely controllable dynamics in curved roundabout manoeuvres
(using vectorial notation and orthogonal complements d⊥ from Sect. 3.2):

T ≡ d− e = ω(x− y)⊥
(
or, equivalently (d− e)⊥ =−ω(x− y)

)
(3.12)

≡ d1− e1 =−ω(x2− y2)∧d2− e2 = ω(x1− y1).

This formula expresses that the relative speed vector d−e is orthogonal to the relat-
ive position x−y and compatible with the angular velocity ω and tangential orienta-
tion of d and e. Figure 3.29a illustrates the symmetric case of T with identical linear
speed ‖d‖ = ‖e‖. Figures 3.29b and 3.29c show asymmetric cases with distinct lin-
ear speeds ‖d‖ 6= ‖e‖, which is possible as well. Condition T gives the decisive

a.

c

x y

d

e

x− y
e

d−
e

b.

c

x y

d

e
x− y

e

d
−
e

c.

c

x y
d

e
x− y

e

d
−
e

Fig. 3.29 Tangential construction for characteristics T of roundabout dynamics

handle for an inductive characterisation of safe tangential roundabout configura-
tions: For the right branch of the above proof, we need to show that the tangential
configuration T is sufficient for φ to be sustained during curved evasive actions.
In the following, we prove that the relative speed vector configuration T is itself
differentially inductive (rule DI in left branch). We use differential strengthening
with DS as a differential cut to augment the dynamics with T as a derived invariant

3.11 Air Traffic Control Verification 199

for proving that the actual safety property φ is sustained (right branch), again by
differential induction rule DI:

∗
r∀ ` ∀α(T ′

F (ω)∧G (ω))
DI

φ ,T ` [F (ω)∧G (ω)]T

∗
r∀ ` ∀α(T → φ ′F (ω)∧G (ω))
DI

φ ` [F (ω)∧G (ω)∧T]φ
DS

φ ,T ` [F (ω)∧G (ω)]φ
∧l

φ ∧T ` [F (ω)∧G (ω)]φ

Observe that differential strengthening by rule DS is crucial for the proof, because
neither φ nor T ∧φ is differentially inductive for F (ω)∧G (ω)! Instead, the tan-
gential configuration T itself is differentially inductive relative to F (ω)∧G (ω)
(left branch) and strong enough to make φ differentially inductive relative to the aug-
mented DA-constraint F (ω)∧G (ω)∧T (right branch). For readability, we use a
slightly weaker rule for differential induction, with φ rather than [T]φ in the ante-
cedent of the conclusion. This variant can be derived easily using a cut and will
again be called DI. The differential induction DI on the left and right branch close
using quantifier elimination in r∀. The arithmetic is also provable by the following
algebraic equational reasoning (T ′

F (ω)∧G (ω) is a short notation for substituting the
differential equations from F (ω)∧G (ω) into D(T); see Lemma 3.2):

T ′
F (ω)∧G (ω) ≡ ((d1− e1)

′ =−ω(x2− y2)
′∧ (d2− e2)

′ = ω(x1− y1)
′)F (ω)∧G (ω)

≡ (d′1− e′1 =−ω(x′2− y′2)∧d′2− e′2 = ω(x′1− y′1))F (ω)∧G (ω)

≡ −ωd2 +ωe2 =−ω(d2− e2)∧ωd1−ωe1 = ω(d1− e1) ≡ true

φ
′
F (ω)∧G (ω) ≡ (2(x1− y1)(x1− y1)

′+2(x2− y2)(x2− y2)
′ ≥ 0)F (ω)∧G (ω)

≡ (2(x1− y1)(x′1− y′1)+2(x2− y2)(x′2− y′2)≥ 0)F (ω)∧G (ω)

≡ 2(x1− y1)(d1− e1)+2(x2− y2)(d2− e2)≥ 0
(using T) ≡ 2(x1− y1)(−ω(x2− y2))+2(x2− y2)ω(x1− y1) = 0≥ 0 ≡ true.

Altogether, we have shown that every tangential roundabout evasion manoeuvre
respecting T is safe. Further, the middle branch of the above proof reveals the
parameter constraint imposed on tang for safe roundabouts, which concludes the
proof of the following result.

Theorem 3.4 (Safety of tangential roundabout manoeuvre). For every choice
of the tangential entry procedure that satisfies φ → [tang](φ ∧T), the tangential
roundabout flight manoeuvre in Fig. 3.7 safely avoids collisions, i.e., it directs air-
craft on flight paths with minimal horizontal aircraft separation at least p > 0.

This result can be proven in our theorem prover [242] in two seconds including
user interactions for rules ind and DS. Its proof does not need rule []gen, which we
only used here to shorten the proof presentation. Theorem 3.4 expresses unbounded-
time safety for fully parametric tangential roundabouts with arbitrary choices for the
free parameters. The proof of Theorem 3.4 generalises to roundabouts entered by
more than two participants when φ and T are augmented similarly. For instance,

200 3 Differential-Algebraic Dynamic Logic DAL

using our automatic proof procedure from Chap. 6, our theorem prover can prove
mutual collision avoidance for five aircraft fully automatically; see Chaps. 6 and 8.
Likewise, rules DI and DS can be used to prove that external separation to all other
sufficiently far points is maintained during the roundabout manoeuvre. In particular,
the manoeuvre only needs bounded space:

Proposition 3.5 (External separation of roundabout manoeuvres). Separation
of aircraft x to all external points u ∈ R2 of distance beyond the roundabout dia-
meter 2r is maintained, because the following DAL formula is provable:

r ≥ 0∧ (rω)2 = ‖d‖2→∀u(‖x−u‖2 > (2r+ p)2→ [F (ω)](‖x−u‖2 > p2)).

3.11.2 Tangential Entry Procedures

As a simple choice for the tangential initiation procedure tang satisfying prop-
erty T , consider the following operation which chooses an arbitrary angular ve-
locity ω and an arbitrary centre c∈R2 for the roundabout manoeuvre, and adjusts d
and e tangentially:

tang ≡ ∃uω :=u; ∃c(d :=ω(x− c)⊥∧ e :=ω(y− c)⊥). (3.13)

This formula expresses that the speed vectors d and e of both aircraft at x and y,
respectively, are tangential and of the same angular velocity ω relative to the in-
tended centre c of the roundabout, with the same orientation (Fig. 3.29). For this
choice, the assumption of Theorem 3.4 can be proven after rule [:=] substitutes the
corresponding terms for d and e in T , using rule r∀ (or linearity of d⊥):

∗
ax

φ ` φ

∗
φ ` ω(x− c)⊥−ω(y− c)⊥ = ω(x− y)⊥

∧r
φ ` φ ∧ω(x− c)⊥−ω(y− c)⊥ = ω(x− y)⊥

[:=]
φ ` [d :=ω(x− c)⊥∧ e :=ω(y− c)⊥](φ ∧T)

r∀,r∀
φ ` ∀ω ∀c [d :=ω(x− c)⊥∧ e :=ω(y− c)⊥](φ ∧T)

[;],[∃],[∃]
φ ` [tang](φ ∧T)

It can also be shown that ∃c(d = ω(x− c)⊥∧ e = ω(y− c)⊥) is equivalent to T for
nonzero ω . With choice (3.13), the tangential roundabout manoeuvre in Fig. 3.7 is
safe and has been significantly simplified and generalised in comparison to our prior
work [238].

3.12 Summary 201

3.11.3 Discussion

Our tangential roundabout manoeuvre leaves open the questions of how and when
precisely the collision avoidance manoeuvre is initiated or left. For instance, (3.13)
does not restrict c and ω but accepts any choice including choices optimising sec-
ondary objectives such as fuel consumption. Furthermore, as specified in Fig. 3.7
and proven in this section, the roundabout manoeuvre can be left safely with arbit-
rary free flight by repeating the loop at any time: The roundabout manoeuvre will
simply be initiated again during free flight when necessary. As a special case, this
open policy includes free flight, enabling the aircraft to leave the roundabout in their
original direction. While the simple choice (3.13) is possibly discontinuous in d
and e, it is comparably easy to see that there are fully curved entry and exit proced-
ures that remain safe when the entry procedure is initiated with sufficient distance
by using the separation limit of Proposition 3.5. We refine the roundabout collision
avoidance manoeuvre and develop a corresponding entry procedure in Chap. 8. Our
proof shows that the tangential roundabout manoeuvre is safe for every such entry
procedure. In particular, the control parameters c and ω of (3.13) can also be chosen
such that the resulting speed vectors d and e are in a bounded range meeting external
speed requirements of the aircraft, which can be proven in the DAL calculus easily:

∀v(φ → 〈tang〉(φ ∧T ∧‖d‖2 = ‖e‖2 = v2)). (3.14)

3.12 Summary

We have introduced a first-order dynamic logic for differential-algebraic programs
with interacting first-order discrete jump constraints and first-order differential-al-
gebraic constraints. For this differential-algebraic logic, DAL, we have presented a
calculus for verifying hybrid systems given as differential-algebraic programs.

In differential-algebraic programs, both internal choices and disturbances during
continuous evolutions and nondeterminism in discrete operations can be described
uniformly by quantifiers. Most importantly, we have introduced first-order differen-
tial induction with differential invariants and differential variants for proving cor-
rectness statements with first-order differential-algebraic constraints purely algeb-
raically, using the differential constraints themselves instead of their solutions. In
combination with successive differential strengthening or differential cuts for refin-
ing the system dynamics by auxiliary differential invariants, we obtain a powerful
verification calculus for systems with challenging dynamics. We have compared
the deductive strength for classes of differential invariants and have shown that the
deductive power of general differential induction exceeds the deductive power of
atomic differential invariants.

We have demonstrated that our calculus can be used successfully for verifying
fully parametric roundabout manoeuvres in air traffic control. To the best of our

202 3 Differential-Algebraic Dynamic Logic DAL

knowledge, this is the first formal proof for unbounded safety of hybrid aircraft dy-
namics in curved collision avoidance manoeuvres for air traffic control. Moreover,
we argue that our fully formal proof about aircraft gives more confidence in flight
manoeuvres than informal approaches that do not consider the actual hybrid flight
dynamics [171, 104, 129] or results that only prevent orthogonal collisions in dis-
cretisations of the system [92, 203]. Our logic DAL is also more convenient, because
hybrid systems like the tangential roundabout manoeuvre can be specified and veri-
fied uniformly within a single logic. Despite challenging flight dynamics, the DAL
formulas about aircraft and roundabout manoeuvres that we presented in this chapter
can be proven in our theorem prover KeYmaera within a few seconds.

While this work answers the open issues (1), (3), and (4) raised in the work of
Piazza et al. [228], we are interested in extending differential-algebraic methods
to address further questions about hybrid systems. In Chap. 6, we investigate al-
gorithms for constructing differential invariants automatically on the basis of our
DAL calculus presented here. Interesting future work for the aircraft case study is to
find a fully curved manoeuvre that achieves collision avoidance by joint horizontal
and vertical evasive actions.

Chapter 4
Differential Temporal Dynamic Logic dTL

Contents
4.1 Introduction . 204

4.1.1 Related Work . 205
4.1.2 Structure of This Chapter 206

4.2 Syntax . 206
4.2.1 Hybrid Programs . 207
4.2.2 State and Trace Formulas 207

4.3 Semantics . 210
4.3.1 Trace Semantics of Hybrid Programs 210
4.3.2 Valuation of State and Trace Formulas 213
4.3.3 Conservative Temporal Extension 215

4.4 Safety Invariants in Train Control 216
4.5 Proof Calculus . 217

4.5.1 Proof Rules . 218
4.5.2 Verification Example 221

4.6 Soundness . 221
4.7 Completeness . 223

4.7.1 Incompleteness . 223
4.7.2 Relative Completeness 224
4.7.3 Expressibility and Rendition of Hybrid Trace Semantics . 225
4.7.4 Modular Relative Completeness Proof 226

4.8 Verification of Train Control Safety Invariants 227
4.9 Liveness by Quantifier Alternation 228
4.10 Summary . 230

203A. Platzer, Logical Analysis of Hybrid Systems,
DOI 10.1007/978-3-642-14509-4_4, © Springer-Verlag Berlin Heidelberg 2010

204 4 Differential Temporal Dynamic Logic dTL

Synopsis We combine first-order dynamic logic for reasoning about the possible
behaviour of hybrid systems with temporal logic for reasoning about the temporal
behaviour during their operation. Our logic supports verification of hybrid programs
with first-order definable flows and provides a uniform treatment of discrete and
continuous evolution. For our combined logic, we generalise the semantics of dy-
namic modalities to refer to hybrid traces instead of final states. Further, we prove
that this gives a conservative extension of our dynamic logic for hybrid systems.
On this basis, we provide a modular verification calculus that reduces correctness
of temporal behaviour of hybrid systems to nontemporal reasoning, and prove that
we obtain a complete axiomatisation relative to the nontemporal base logic. Using
this calculus, we analyse safety invariants in a train control system and symbolically
synthesise parametric safety constraints.

4.1 Introduction

Correctness of real-time and hybrid systems depends on a safe operation through-
out all states of all possible trajectories, and the behaviour at intermediate states is
highly relevant [90].

Temporal logics (TLs) use temporal operators to talk about intermediate states
[247, 114, 115, 6, 284]. In addition to having successful uses in model checking
[78, 6, 159, 156, 217], temporal logics have been used in deductive approaches
to prove validity of formulas in calculi [97, 96]. Among other shortcomings and
difficulties discussed in Chap. 1, the major drawback of TL calculi for our purpose
is that TL formulas cannot generally characterise the operations of a specific hybrid
system.

Like model checking, dynamic logic (DL) [149] can directly analyse the beha-
viour of actual system models. However, DL only considers the behaviour at the
final states, which is insufficient for verifying safety invariants that have to hold all
the time, throughout the execution of the system.

We close this gap of expressivity by combining first-order dynamic logic [149]
with temporal logic [247, 114, 115]. We use the generalisation of operational sys-
tem models and semantics to hybrid systems from Chap. 2. In this chapter, we intro-
duce a temporal dynamic logic dTL, which provides modalities for quantifying over
traces of hybrid systems based on differential dynamic logic. We equip dTL with
temporal operators to state what is true all along a trace or at some point during a
trace. In this chapter, we modify the semantics of the dynamic modality [α] to refer
to all traces of α instead of all final states reachable with α (similarly for 〈α〉). For
instance, the formula [α]�φ expresses that φ is true at each state during all traces of
the hybrid system α . With this, dTL can also be used to verify temporal statements
about the behaviour of α at intermediate states during system runs. As in our non-
temporal dynamic logic dL , we use hybrid programs as an operational model for
hybrid systems, since they admit a uniform compositional treatment of interacting
discrete and continuous evolution in logic.

4.1 Introduction 205

As a semantical foundation for combined temporal dynamic formulas, we intro-
duce a hybrid trace semantics for dTL. We prove that dTL is a conservative exten-
sion of dL , that is, for nontemporal specifications, trace semantics is equivalent to
the nontemporal transition semantics of dL from Chap. 2.

As a means for verification, we introduce a sequent calculus for dTL that success-
ively reduces temporal statements about traces of hybrid programs to nontemporal
dL formulas. In this way, we make the intuition formally precise that temporal
safety invariants can be checked by augmenting proofs with appropriate assertions
about intermediate states. As in Chap. 2, our calculus works compositionally: It de-
composes correctness statements about hybrid programs structurally into corres-
ponding statements about its parts by symbolic transformation. Observe that this is
somewhat challenging for hybrid systems, because even a single elementary system
operation of continuous evolution exhibits temporal behaviour as it assumes several
different states as time passes.

Contributions

Our approach combines the advantages of dynamic logic in reasoning about the
behaviour of (multiple and parametric) operational system models with those of
temporal logic to verify temporal statements about traces. Our first contribution is
the logic dTL, which provides a coherent foundation for reasoning about the tem-
poral behaviour of operational models of hybrid systems with symbolic parameters.
The main contribution in this chapter is our calculus for deductively verifying tem-
poral statements about hybrid systems, which is a complete axiomatisation relative
to nontemporal dL .

4.1.1 Related Work

Based on [254], Beckert and Schlager [38] added separate trace modalities to dy-
namic logic and presented a relatively complete calculus for discrete while pro-
grams. Their approach only handles discrete state spaces. In contrast, dTL works for
hybrid programs with continuous state spaces. There, a particular challenge is that
invariants may change their truth-value multiple times during a single continuous
evolution; hence relevant temporal behaviour even occurs during single transitions.

Davoren and Nerode [97] extended the propositional modal µ-calculus with a
semantics in hybrid systems and examine topological aspects. In [96], Davoren et
al. gave a semantics in general flow systems for a generalisation of CTL∗ [115].
In both cases, the authors of [97] and [96] provided Hilbert-style calculi to prove
formulas that are valid for all systems simultaneously using abstract actions.

As discussed in Sect. 1.2, the strength of our logic primarily is that it is a first-
order dynamic logic and handles actual hybrid programs like x := x+1;x′ = 2y
rather than only abstract actions of unknown effect.

206 4 Differential Temporal Dynamic Logic dTL

4.1.2 Structure of This Chapter

After introducing syntax and semantics of the differential temporal dynamic lo-
gic dTL in Sects. 4.2 and 4.3, we introduce a modular sequent calculus for dTL
in Sect. 4.5 that extends our previous calculi with temporal proof rules in a com-
pletely modular way. We prove soundness and relative completeness in Sects. 4.6
and 4.7, respectively. In Sect. 4.8, we use our calculus to analyse safety invariants in
the train control system from Sect. 4.4. We further present extensions for quantifier
alternation and liveness in Sect. 4.9. We draw conclusions and discuss future work
in Sect. 4.10.

4.2 Syntax of Temporal Dynamic Logic for Hybrid Systems

The temporal differential dynamic logic dTL extends dynamic logic [149] with three
concepts for verifying temporal specifications of hybrid systems:

Hybrid programs. The behaviour of hybrid systems can be described by hy-
brid programs (Sect. 2.2.2), which generalise real-time programs [159] to hy-
brid change. The distinguishing feature of hybrid programs in this context is that
they provide uniform discrete jumps and continuous evolutions along differential
equations, which can be combined by regular control operations. While hybrid
automata [156] can be embedded, program structures are more amenable to com-
positional symbolic processing by calculus rules.

Modal operators. Modalities of dynamic logic express statements about all pos-
sible behaviour ([α]π) of a system α , or about the existence of a trace (〈α〉π),
satisfying condition π . Unlike in standard dynamic logic, α is a modal of a hy-
brid system. We use hybrid programs to describe α as in Chap. 2. Yet, unlike in
standard dynamic logic [149] or dL , π is a trace formula in dTL, and π can refer
to all states that occur during a trace using temporal operators.

Temporal operators. For dTL, the temporal trace formula �φ expresses that the
formula φ holds all along a trace selected by [α] or 〈α〉. For instance, the state
formula 〈α〉�φ says that the state formula φ holds at every state along at least
one trace of α . Dually, the trace formula ♦φ expresses that φ holds at some
point during such a trace. It can occur in a state formula 〈α〉♦φ to express that
there is such a state in some trace of α , or as [α]♦φ to say that along each trace
there is a state satisfying φ . In this chapter, the primary focus of attention is on
homogeneous combinations of path and trace quantifiers like [α]�φ or 〈α〉♦φ .

4.2 Syntax 207

4.2.1 Hybrid Programs

The formulas of dTL are built from a non-empty set Σ of real-valued variables and
function and predicate symbols. Signature Σ is assumed to contain the usual func-
tion and predicate symbols for real arithmetic: 0,1,+, ·,=,≤,<,≥,>. For simpli-
city, we do not distinguish between logical variables in V and state variables from Σ .
The set Trm(Σ) of terms is defined as in classical first-order logic.

The hybrid programs allowed in dynamic modalities of dTL are the same as those
of dL ; see Definition 2.3 in Sect. 2.2.2. They are built from elementary discrete
jumps and continuous evolutions using a regular control structure. The set HP(Σ)
of hybrid programs with variables in Σ is defined in Definition 2.3. Similarly,
differential-algebraic programs from Chap. 3 can be allowed when using DAL as
a basis instead of dL , giving differential-algebraic temporal dynamic logic DATL.

4.2.2 State and Trace Formulas

The formulas of dTL are defined similarly to first-order dynamic logic [149]. How-
ever, the modalities [α] and 〈α〉 accept trace formulas that refer to the temporal
behaviour of all states along a trace. Inspired by CTL and CTL∗ [114, 115], we
distinguish between state formulas, which are true or false in states, and trace for-
mulas, which are true or false for system traces. The sets Fml(Σ) of state formulas
and FmlT (Σ) of trace formulas with variables in Σ are simultaneously inductively
defined in Definition 4.1.

Definition 4.1 (dTL formulas). The set Fml(Σ) of (state) formulas is simultan-
eously inductively defined as the smallest set such that:

1. If p ∈ Σ is a predicate of arity n≥ 0 and if θ1, . . . ,θn ∈ Trm(Σ) are terms, then
p(θ1, . . . ,θn) ∈ Fml(Σ).

2. If φ ,ψ ∈ Fml(Σ), then ¬φ ,(φ ∧ψ),(φ ∨ψ),(φ → ψ) ∈ Fml(Σ).
3. If φ ∈ Fml(Σ) and x ∈ Σ , then ∀xφ ,∃xφ ∈ Fml(Σ).
4. If π ∈ FmlT (Σ) and α ∈ HP(Σ), then [α]π,〈α〉π ∈ Fml(Σ).

The set FmlT (Σ) of trace formulas is the smallest set with:

1. If φ ∈ Fml(Σ), then φ ∈ FmlT (Σ).
2. If φ ∈ Fml(Σ), then �φ ,♦φ ∈ FmlT (Σ).

Formulas without � and ♦, i.e., without Case 2 of the trace formulas, are nontem-
poral dL formulas (Chap. 2). Unlike in CTL, state formulas are true on a trace
(Case 1) if they hold for the last state of a trace, not for the first. Thus, [α]φ ex-
presses that φ is true at the end of each trace of α . In contrast, [α]�φ expresses
that φ is true all along all states of every trace of α . This combination gives a
smooth embedding of nontemporal dL into dTL and makes it possible to define

208 4 Differential Temporal Dynamic Logic dTL

Table 4.1 Operators and meaning in differential temporal dynamic logic (dTL)

dTL Notation Operator Meaning
p(θ1, . . ,θn) atomic predicate true iff predicate p holds for (θ1, . . . ,θn)
¬φ negation / not true if φ is false
φ ∧ψ conjunction / and true if both φ and ψ are true
φ ∨ψ disjunction / or true if φ is true or if ψ is true
φ → ψ implication / implies true if φ is false or ψ is true
φ ↔ ψ bi-implication / equivalent true if φ and ψ are both true or both false
∀xφ universal quantifier / for all φ is true for all values of variable x
∃xφ existential quantifier / exists φ is true for some values of variable x
[α]φ [·] modality / box φ is true after all runs of HP α

〈α〉φ 〈·〉 modality / diamond φ is true after at least one run of HP α

[α]�φ [·]� modality nesting φ is true always during all traces of HP α

〈α〉♦φ 〈·〉♦ modality nesting φ is true sometimes during some trace of HP α

[α]♦φ [·]♦ modality nesting φ is true sometimes during all traces of HP α

〈α〉�φ 〈·〉� modality nesting φ is true always during some trace of HP α

a compositional calculus. Like CTL, dTL allows nesting with a branching time se-
mantics [114], e.g., [α]�(x≥ 2→ 〈β 〉♦x≤ 0).

For reference, the operators of differential temporal dynamic logic and typical
operator nestings are summarised in Table 4.1.

Example 4.1 (Train control). Recall the simplified ETCS train control system from
Sect. 2.4 with the refinements from Sect. 2.9. In Sect. 2.9, we have proven the fol-
lowing dL formula that expresses that the train control system ensures that trains
stay inside their movement authority m, no matter how long the controller runs:

v2 ≤ 2b(m− z)∧b > 0∧A≥ 0 → [(ctrl ;drive)∗]z≤ m. (2.19∗)

But this dL formula only refers to the safety of the train position at all final states
of the hybrid program (ctrl ;drive)∗, which corresponds to the rightmost state in the
transition structure from Fig. 2.9a on p. 63. Formula (2.19) does not say whether
z≤ m is actually also ensured in all intermediate states of the transition structure in
Fig. 2.9a. For hybrid system verification, it is often insufficient to prove the safety
property z≤ m only at the final states, because the passengers will not like to crash
into another train at an intermediate state either.

Now because the dTL modality [α] does not need to be followed by a temporal
modality � or ♦, the dL formula (2.7) also is a dTL formula. In fact, all dL
formulas are dTL formulas (those without temporal modalities). But in dTL, we
can do better. We can express that the movement authority m is respected always
throughout the system run, not just at the final states:

v2 ≤ 2b(m− z)∧b > 0∧A≥ 0 → [(ctrl ;drive)∗]� z≤ m. (4.1)

Unlike the dL formula (2.19), the dTL formula (4.1) also refers to safety at all in-
termediate states of the transition structure in Fig. 2.9a. In fact, for this particular
system model, both formulas are equivalent, because the variables in the postcon-

4.2 Syntax 209

dition z≤ m only change in the last step drive of the hybrid program . Also z≤ m
must have been true at all intermediate states if it holds at the final state, because z
increases monotonically (the train is not allowed to drive backwards). In that sense,
the final states of the hybrid program (ctrl ;drive)∗ included all safety-critical states,
because the hybrid program was written as an appropriate controller plant loop.

For other systems, where the variables of the postcondition change in multiple
parts of the hybrid program, this is no longer the case, and the temporal modality �
is, in fact, crucial to express safety properly. As a simple (though somewhat con-
trived) example, consider the following modification, in which we allow drive to
also drive backwards by removing the evolution domain restriction v≥ 0 from it:

v2 ≤ 2b(m− z)∧b > 0∧A≥ 0 → [(a :=0;drive ;ctrl ;drive)∗]� z≤ m. (4.2)

In the hybrid program of this dTL formula, the position z changes at two places: the
two occurrences of drive. In the first occurrence, the train always keeps its speed for
some time by choosing the acceleration a :=0, because the sensor information is not
yet available. Only in the second occurrence of drive do the controller actions ctrl
actually take effect. For specifying safety adequately in (4.2), we need the temporal
modality�, because we want the movement authority to be respected at all states of
the system, including intermediate states. Especially we would not want the move-
ment authority to be violated at some point during the first drive even if the system
recovers during the second drive, e.g., by driving backwards.

Surprisingly, the temporal modality� is still redundant in (4.2), because all pos-
sibilities of running its hybrid program especially include the case where the first
drive is run for an arbitrary time s≤ ε and the second drive is run for zero seconds.
Thus all relevant safety-critical states are covered by final states and� is not needed.
But as soon as we modify drive to the hybrid program

τ :=0; (z′ = v,v′ = a,τ ′ = 1&τ ≤ ε); ?(τ = ε),

the temporal modality � becomes truly necessary. The reason is that this modific-
ation restricts the continuous evolution to take exactly ε time units (the evolution
domain region restricts the evolution to τ ≤ ε and the subsequent test to ?τ = ε)
and no intermediate state is visible as a final state anymore. �

This example shows that the question about whether all relevant intermediate
safety-critical states are covered by a dL modality can be surprisingly subtle. In
larger systems, in fact, it can become quite difficult to analyse this manually. Instead,
temporal dTL modality combinations like [α]�φ can be used to ensure that all
states are covered and the hybrid system α satisfies φ all the time for all possible
executions.

Inspired by CTL∗ [115], syntactic and semantic extensions from dTL to dTL∗

are straightforward and amount to allowing propositional combinations of trace for-
mulas. Finding appropriate proof calculi, however, is much more difficult, even for
CTL∗ [248, 261].

210 4 Differential Temporal Dynamic Logic dTL

4.3 Semantics of Temporal Dynamic Logic for Hybrid Systems

In standard dynamic logic [149], the logic dL from Chap. 2, and the logic DAL
from Chap. 3, modalities only refer to the final states of system runs and the se-
mantics is a reachability relation on states: State ω is reachable from state ν using
system α if there is a run of α which terminates in ω when started in ν . For dTL,
however, formulas can refer to intermediate states of runs as well. To capture this,
we change the semantics of a hybrid system α to be the set of its possible traces,
i.e., successions of states that occur during the evolution of α . The relation between
the initial and the final state alone is not sufficient.

4.3.1 Trace Semantics of Hybrid Programs

States contain values of system variables during a hybrid evolution. A state is a
map ν : Σ → R. In addition, we distinguish a separate state Λ to denote the failure of
a system run when it is aborted due to a test ?χ that yields false. In particular, Λ can
only occur at the end of an aborted system run and marks that no further extension
is possible because of a failed test. The set of all states is denoted by Sta(Σ).

Hybrid systems evolve along piecewise continuous traces in multi-dimensional
space as time passes. Continuous phases are governed by differential equations,
whereas discontinuities are caused by discrete jumps in state space. Unlike in dis-
crete cases [254, 38], traces are not just sequences of states, since hybrid systems
pass through uncountably many states even in bounded time. Beyond that, continu-
ous changes are more involved than in pure real time [6, 159], because all variables
can evolve along differential equations with different slopes. Generalising the real-
time traces of [159], the following definition captures hybrid behaviour by splitting
the uncountable succession of states into periods σi that are regulated by the same
control law. For discrete jumps, some of those periods are point flows of duration 0.

The (trace) semantics of hybrid programs is compositional, that is, the semantics
of a complex program is defined as a simple function of the trace semantics of its
parts.

Definition 4.2 (Hybrid trace). A trace is a (nonempty) finite or infinite sequence
σ = (σ0,σ1,σ2, . . .) of functions σi : [0,ri]→ Sta(Σ) with their respective dura-
tions ri ∈ R (for i ∈ N). A position of σ is a pair (i,ζ) with i ∈ N and ζ in the
interval [0,ri]; the state of σ at (i,ζ) is σi(ζ). Positions of σ are ordered lex-
icographically by (i,ζ)≺ (j,ξ) iff either i < j, or i = j and ζ < ξ . Further, for a
state ν ∈ Sta(Σ), ν̂ :0 7→ ν is the point flow at ν with duration 0. A trace termin-
ates if it is a finite sequence (σ0,σ1, . . . ,σn) and σn(rn) 6= Λ. In that case, the last
state σn(rn) is denoted by lastσ . The first state σ0(0) is denoted by firstσ .

Unlike in [6, 159], the definition of traces also admits finite traces of bounded dura-
tion, which is necessary for compositionality of traces in α;β . The semantics of hy-
brid programs α as the set τ(α) of its possible traces depends on valuations val(ν , ·)

4.3 Semantics 211

of formulas and terms at intermediate states ν . The valuation of terms and interpret-
ations of function and predicate symbols are as for real arithmetic (Chap. 2). The
valuation of formulas will be defined in Definition 4.4. Again, we use ν [x 7→ d] to
denote the modification that agrees with state ν on all variables except for the sym-
bol x, which is changed to d ∈ R.

Definition 4.3 (Trace semantics of hybrid programs). The trace semantics, τ(α),
of a hybrid program α , is the set of all its possible hybrid traces and is defined
inductively as follows:

1. τ(x1 :=θ1, . . ,xn :=θn) = {(ν̂ , ω̂) : ω = ν [x1 7→ val(ν ,θ1)] . . [xn 7→ val(ν ,θn)]
for ν ∈ Sta(Σ)}

2. τ(x′1 = θ1, . . . ,x′n = θn & χ) = {(ϕ) : ϕ is a state flow of order 1 and some dur-
ation r ≥ 0 such that ϕ |= x′1 = θ1∧·· ·∧ x′n = θn∧χ; see Definition 3.9}

3. τ(?χ) = {(ν̂) : val(ν ,χ) = true}∪{(ν̂ , Λ̂) : val(ν ,χ) = false}
4. τ(α ∪β) = τ(α)∪ τ(β)
5. τ(α;β) = {σ ◦ ς : σ ∈ τ(α) , ς ∈ τ(β) when σ ◦ ς is defined};

the composition of σ = (σ0,σ1,σ2, . . .) and ς = (ς0,ς1,ς2, . . .) is

σ ◦ ς :=


(σ0, . . . ,σn,ς0,ς1, . . .) if σ terminates at σn and lastσ = firstς

σ if σ does not terminate
not defined otherwise

6. τ(α∗) =
⋃

n∈N τ(αn), where αn+1 := (αn;α) for n≥ 1, as well as α1 := α and
α0 := (?true).

Time passes differently during discrete and continuous change. During continuous
evolution, the discrete step index i of positions (i,ζ) remains constant, whereas the
continuous duration ζ remains 0 during discrete point flows. This permits multiple
discrete state changes to happen at the same (super-dense) continuous time, unlike
in other approaches [6].

Example 4.2. For comparing the transition semantics of hybrid programs for dL
from Definition 2.7 and the trace semantics of hybrid programs for dTL from Defin-
ition 4.3, consider the following simple hybrid program α:

a :=−2a; a :=a2.

The transition semantics is just the relation between initial and final states:

ρ(α)≡ {(ν ,ω) : ω is like ν except that ω(a) = 4ν(a)2}.

In particular, the dL formula [α]a≥ 0 is valid, because all final states have a square
as the value of a. In contrast, the trace semantics of α retains all intermediate states:

τ(α)≡ {(ν̂ , ŝ, ω̂) : s is like ν except s(a) =−2ν(a)

and ω is like s except ω(a) = s(a)2 = 4ν(a)2}.

212 4 Differential Temporal Dynamic Logic dTL

During these traces, a ≥ 0 does not hold at all states. If the trace starts with a pos-
itive value (ν |= a > 0), then it will become negative at the point flow s (where
s |= a < 0), yet recover to a positive value (ω |= a > 0) at the end. �

Example 4.3. The previous example only had discrete jumps, and, thus, the traces
only involved point flows. Now consider the hybrid program β from the train con-
text:

a :=−b; z′ = v,v′ = a; ?v≥ 0; a :=A; z′ = v,v′ = a.

The transition semantics of this program only considers successful runs to comple-
tion. In particular, if A > 0, the velocity v will always be nonnegative at the end
(otherwise the test ?v≥ 0 in the middle fails and the program aborts), because the
last differential equation will accelerate and increase the velocity again. Thus, the
position z at the end of the program run will never be smaller than at the beginning.

If, instead, we consider the trace semantics of β , all intermediate states are in the
set of traces:

τ(β) ≡ {(µ̂0, µ̂1,ϕ1, µ̂2, µ̂3,ϕ2) : µ1 = µ0[a 7→ −µ0(b)] and
ϕ1 is a state flow of some duration r1 ≥ 0 with ϕ1 |= z′ = v∧ v′ = a

starting in ϕ1(0) = µ1 and ending in a state with ϕ1(r1)(v)≥ 0
and µ2 = ϕ1(r1),µ3 = ϕ1(r1)[a 7→ ϕ1(r1)(A)] and
ϕ2 is a state flow of some duration r2 ≥ 0 with ϕ2 |= z′ = v∧ v′ = a

starting in ϕ2(0) = µ3 and ending in state ϕ2(r2)}
∪ {(µ̂0, µ̂1,ϕ1, µ̂2, Λ̂) : µ1 = µ0[a 7→ −µ0(b)] and

ϕ1 is a state flow of some duration r ≥ 0 with ϕ1 |= z′ = v∧ v′ = a

starting in ϕ1(0) = µ1 and ending in a state with ϕ1(r)(v)< 0
further µ2 = ϕ1(r)}.

The first set is the set of traces where the test ?v≥ 0 in the middle succeeds and the
system continues. The second set (after the union) is the set of traces that are aborted
with Λ̂ during their execution, because the middle test fails. Note that the traces in
the first set have two continuous flows ϕ1,ϕ2 and four point flows µ̂0, µ̂1, µ̂2, µ̂3
in each trace. The traces in the second set have only one continuous flow ϕ1 and
three point flows µ̂0, µ̂1, µ̂2, because the subsequent aborting point flow Λ̂ does not
terminate and aborts all further execution. In the trace semantics, v < 0 is possible
in the middle of some traces, which is a fact that the transition semantics does not
notice. Combining traces for α ∪β , that is, for

(a :=−2a; a :=a2)∪ (a :=−b; z′ = v,v′ = a; ?v≥ 0; a :=A; z′ = v,v′ = a)

is just the union τ(α)∪ τ(β) of the traces τ(α) and τ(β) from Examples 4.2 and 4.3.
Note that a ≤ 0 will hold at least once during every trace of α ∪ β , either in the
beginning, or after setting a :=−2a or a :=−b, respectively, when we assume b > 0.

�

4.3 Semantics 213

4.3.2 Valuation of State and Trace Formulas

In the semantics of dTL formulas, the dynamic modalities determine the set of
traces according to the trace semantics of hybrid programs, and, independently, the
temporal modalities determine at which points in time the respective postcondition
needs to hold. The semantics of formulas is compositional and denotational, that is,
the semantics of a complex formula is defined as a simple function of the semantics
of its subformulas.

Definition 4.4 (Valuation of dTL formulas). For state formulas, the valuation
val(ν , ·) with respect to state ν is defined inductively as follows:

1. val(ν , p(θ1, . . . ,θn)) = p`
(
val(ν ,θ1), . . . ,val(ν ,θn)

)
, where p` is the relation

associated with p by the fixed semantics of real arithmetic.
2. val(ν ,φ ∧ψ) = true iff val(ν ,φ) = true and val(ν ,ψ) = true
3. val(ν ,φ ∨ψ) = true iff val(ν ,φ) = true or val(ν ,ψ) = true
4. val(ν ,¬φ) = true iff val(ν ,φ) 6= true
5. val(ν ,φ → ψ) = true iff val(ν ,φ) 6= true or val(ν ,ψ) = true
6. val(ν ,∀xφ) = true iff val(ν [x 7→ d],φ) = true for all d ∈ R
7. val(ν ,∃xφ) = true iff val(ν [x 7→ d],φ) = true for some d ∈ R
8. val(ν , [α]π) = true iff for each trace σ ∈ τ(α) that starts in firstσ = ν , if

val(σ ,π) is defined, then val(σ ,π) = true.
9. val(ν ,〈α〉π) = true iff there is a trace σ ∈ τ(α) starting in firstσ = ν such that

val(σ ,π) is defined and val(σ ,π) = true.

For trace formulas, the valuation val(σ , ·) with respect to trace σ is defined induct-
ively as:

1. If φ is a state formula, then val(σ ,φ) = val(lastσ ,φ) if σ terminates, whereas
val(σ ,φ) is not defined if σ does not terminate.

2. val(σ ,�φ) = true iff val(σi(ζ),φ) = true holds for all positions (i,ζ) of σ

with σi(ζ) 6= Λ.
3. val(σ ,♦φ) = true iff val(σi(ζ),φ) = true holds for some position (i,ζ) of σ

with σi(ζ) 6= Λ.

As usual, a (state) formula is valid if it is true in all states. Further for (state)
formula φ and state ν we write ν |= φ iff val(ν ,φ) = true. We write ν 6|= φ iff
val(ν ,φ) = false. Likewise, for trace formula π and trace σ we write σ |= π

iff val(σ ,π) = true and σ 6|= π iff val(σ ,π) = false. In particular, we only write
σ |= π or σ 6|= π if val(σ ,π) is defined, which it is not the case if π is a state for-
mula and σ does not terminate. The points where a dTL property φ has to hold
for the various combinations of temporal and dynamic modalities are illustrated in
Fig. 4.1.

Example 4.4. Recall the hybrid programs α and β from Examples 4.2 and 4.3. For
these, we see the following difference between the dL transition semantics and the
dTL trace semantics, which gives the same difference between the dTL semantics
for nontemporal formulas (which are dL formulas) and the dTL trace semantics

214 4 Differential Temporal Dynamic Logic dTL

Fig. 4.1 Trace semantics of dTL formulas

for formulas with temporal modalities. The dL formula [α]a≥ 0 is valid (the dTL
formula [α]a≥ 0 is also valid), because a ≥ 0 holds at the end of all runs of α .
The dTL formula [α]�a≥ 0, on the other hand, is not valid, because a may be
negative after the first step. Likewise, the dL formula [β]v≥ 0 is valid (the dTL
formula [β]v≥ 0 is also valid), because v ≥ 0 holds at the end of all runs of β .
The dTL formula [β]�v≥ 0, instead, is not valid, because v may be negative at an
intermediate state (those that later fail the middle test ?v≥ 0 and get aborted). If we
add an evolution domain restriction v≥ 0 to the differential equation, however, the
formula v≥ 0→ [β]�v≥ 0 is valid.

For the combined hybrid program α ∪ β from both examples, we find that the
dTL formula [α ∪β]♦a≤ 0 is valid, because a is nonpositive at least once during
each of the traces. �

ν
[α]�φ

�φ

φ
φ

φ

�φ
φ φ φ

�φ

φ
φ

φ

ν
〈α〉♦φ

♦φ
φ

ν
[α]♦φ

♦φ

φ

♦φ
φ

♦φφ

ν
〈α〉�φ

�φ
φ φ φ

ν

ω1

ωn

ω2

[α]φ

φ

φ

φ

ν ω
〈α〉φ φ

4.3 Semantics 215

4.3.3 Conservative Temporal Extension

The following result shows that the extension of dTL by temporal operators does
not change the meaning of nontemporal formulas. The trace semantics given in
Definition 4.4 is equivalent to the final state reachability relation semantics given
in Definition 2.6 for the sublogic dL of dTL.

Proposition 4.1 (Conservative temporal extension). The logic dTL is a conser-
vative extension of nontemporal dL , i.e., the set of valid dL formulas is the same
with respect to transition reachability semantics of dL (Definition 2.6) as with re-
spect to the trace semantics of dTL (Definition 4.4).

The proof of Proposition 4.1 uses the following relationship of reachability and
trace semantics of dTL programs, which agree on initial and final states.

Lemma 4.1 (Trace relation). For hybrid programs α ∈ HP(Σ), we have

ρ(α) = {(firstσ , lastσ) : σ ∈ τ(α) terminates}.

Proof. The proof follows an induction on the structure of α .

• The cases x :=θ , x′ = θ , and α ∪β are simple comparisons of Definitions 4.3
and 2.7.

• For ?χ , the reasoning splits into two directions.

“⊇” For inclusion “⊇”, assume σ ∈ τ(?χ). We distinguish between two cases.
If val(firstσ ,χ) = true, then σ = (v̂) has length one, lastσ = firstσ , and
(firstσ ,firstσ) ∈ ρ(α). If, however, val(firstσ ,χ) = false, then σ = (v̂, Λ̂)
does not terminate; hence, there is nothing to show.

“⊆” Conversely, for inclusion “⊆”, assume (v,v) ∈ ρ(?χ); then val(ν ,χ) = true
and (v̂) ∈ τ(α) satisfies the conditions on σ .

• For α;β , the reasoning again splits into the two directions.

“⊇” For inclusion “⊇”, assume that σ ◦ ς ∈ τ(α;β) terminates with σ ∈ τ(α),
ς ∈ τ(β), and lastσ = firstς . Then, by induction hypothesis, we can assume
that (firstσ , lastσ) ∈ ρ(α) and (firstς , lastς) ∈ ρ(β). By the semantics of se-
quential composition, we have (first(σ ◦ ς), last(σ ◦ ς)) ∈ ρ(α;β).

“⊆” Conversely, for inclusion “⊆”, assume that (ν ,w) ∈ ρ(α;β). That is, let
(ν ,z) ∈ ρ(α) and (z,w) ∈ ρ(β). By induction hypothesis, there is a termin-
ating trace σ ∈ τ(α) with firstσ = ν and lastσ = z. Further, by the induc-
tion hypothesis, there is a terminating ς ∈ τ(β) with firstς = z and lastς = w.
Hence, σ ◦ ς ∈ τ(α;β) terminates with first(σ ◦ ς) = ν and first(σ ◦ ς) = w.

• The case α∗ is an inductive consequence of the sequential composition case. ut

Proof (of Proposition 4.1). The formulas of dL are a subset of the dTL formulas.
In the course of this proof, we use the notation valdL (ν , ·) to indicate that the dL

216 4 Differential Temporal Dynamic Logic dTL

valuation from Definition 4.4 in Sect. 2.3 is used. For dL formulas ψ , we show that
the valuations with respect to Definitions 4.4 and 2.6 are the same for all states ν :

val(ν ,ψ) = valdL (ν ,ψ) for all ν .

We prove this by induction on the structure of ψ . The cases 1–3 of the definition of
state formulas in Definition 4.1 are obvious. The other cases are proven as follows.

• If ψ has the form [α]φ , assume that val(ν , [α]φ) = false. Then there is some
terminating trace σ ∈ τ(α) with firstσ = ν such that val(lastσ ,φ) = false. By
the induction hypothesis, this implies that valdL (lastσ ,φ) = false. According
to Lemma 4.1, (ν , lastσ) ∈ ρ(α) holds, which implies valdL (ν , [α]φ) = false.
For the converse direction, assume that valdL (ν , [α]φ) = false. Then there is
a (ν ,w) ∈ ρ(α) with valdL (w,φ) = false. By Lemma 4.1, there is a terminat-
ing trace σ ∈ τ(α) with firstσ = ν and lastσ = w. By induction hypothesis,
val(lastσ ,φ) = false. Thus, we can conclude that both val(σ ,φ) = false and
val(ν , [α]φ) = false.

• The case ψ = 〈α〉φ is proven similarly. ut

4.4 Safety Invariants in Train Control

In the European Train Control System (ETCS), trains are coordinated by decentral-
ised Radio Block Centres (RBCs), which grant or deny movement authorities (MAs)
dynamically to the individual trains by wireless communication. In emergencies,
trains always have to stop within the MA issued by the RBC; see Fig. 4.2. Following

Fig. 4.2 ETCS train coordination protocol phases

the reasoning pattern for traffic agents in [89], each train negotiates with the RBC
to extend its MA when approaching the end of its current MA. Since wireless com-
munication takes time, this negotiation is initiated in due time before reaching m.
To simplify the presentation, we adopt the assumption of Damm et al. [89] here that
trains keep their desired speed (or at least their maximum speed limit) during ne-
gotiation. Before entering negotiation at some point ST (for start talking), the train

far

neg

cor

recfsa

4.5 Proof Calculus 217

still has sufficient distance to MA (it is in far mode) and can regulate its speed freely
within the track limits. After the point SB (for start braking), the train has to start
applying the brakes as identified in Sect. 2.9.

As a model for train movements, we use the ideal-world model from Sect. 2.4.
For a safe operation of multiple traffic agents, it is crucial that the MA be respected
at every point in time during this protocol, not only at its end. Hence, we need to
consider temporal safety invariants. For instance, when the train has entered the
negotiation phase at its current position z, dTL can analyse the following safety
invariant of a part of the protocol cycle of the train controller:

ψ → [neg;cor;drive]�(`≤ L→ z < m) (4.3)
where neg ≡ z′ = v, `′ = 1

cor ≡ (?m− z < s;a :=−b)∪ (?m− z≥ s;a := . . .)

drive ≡ z′ = v,v′ = a.

It expresses that—under a sanity condition ψ for parameters—a train will always
remain within its MA m as long as the accumulated RBC negotiation latency ` is
at most L. We refer to the work of Faber and Meyer [119] for details on what kind
of message passing contributes to `. Like in [89], we model the train to first negoti-
ate while keeping a constant speed (z′ = v) in neg. The differential equation `′ = 1
defines ` as a clock that is never reset, but accumulates the time spent in negoti-
ation. Thereafter, in cor, the train corrects its acceleration or brakes with force b
(as a fail-safe recovery manoeuvre) on the basis of the remaining distance (m− z).
That is, if the distance of the movement authority and position is less than s (the test
?m− z < s succeeds), the acceleration is set to braking by a :=−b. If, instead, the
other test ?m− z≥ s succeeds, then acceleration is set to another value (not shown
in cor). Finally, the train continues moving according to the differential equation
system drive or, equivalently, z′′ = a. Instead of manually choosing specific values
for the free parameters of (4.3) as in [89, 119], we will use the techniques developed
in this book to automatically synthesise constraints on the relationship of parameters
that are required for a safe operation of cooperative train control.

4.5 Proof Calculus for Temporal Invariants

In this section, we introduce a sequent calculus for verifying temporal specifica-
tions of hybrid systems in differential temporal dynamic logic dTL. With the basic
idea being to perform a symbolic decomposition, the calculus transforms hybrid
programs successively into simpler logical formulas describing their effects. State-
ments about the temporal behaviour of a hybrid program are successively reduced
to corresponding nontemporal statements about the intermediate states.

218 4 Differential Temporal Dynamic Logic dTL

([∪]�)
[α]π ∧ [β]π
[α ∪β]π

1

([;]�)
[α]�φ ∧ [α][β]�φ

[α;β]�φ

([?]�)
φ

[?χ]�φ

([:=]�)
φ ∧ [x :=θ]φ

[x :=θ]�φ

([′]�)
[x′ = θ]φ

[x′ = θ]�φ

([∗n]�)
[α;α∗]�φ

[α∗]�φ

([∗]�)
[α∗][α]�φ

[α∗]�φ

(〈∪〉♦) 〈α〉π ∨〈β 〉π〈α ∪β 〉π
1

(〈;〉♦) 〈α〉♦φ ∨〈α〉〈β 〉♦φ

〈α;β 〉♦φ

(〈?〉♦) φ

〈?χ〉♦φ

(〈:=〉♦) φ ∨〈x :=θ〉φ
〈x :=θ〉♦φ

(〈′〉♦) 〈x
′ = θ〉φ

〈x′ = θ〉♦φ

(〈∗n〉♦) 〈α;α∗〉♦φ

〈α∗〉♦φ

(〈∗〉♦) 〈α
∗〉〈α〉♦φ

〈α∗〉♦φ

1 π is a trace formula and—unlike the state formulas φ and ψ—may thus begin with a temporal
modality � or ♦.

Fig. 4.3 Rule schemata of the proof calculus for temporal differential dynamic logic

4.5.1 Proof Rules

We introduce a proof calculus for differential temporal dynamic logic dTL that in-
herits the proof rules of dL from Chap. 2 and adds new proof rules for temporal
modalities. We can, in fact, get a corresponding proof calculus when we add the
same proof rules for temporal modalities to the DAL proof rules from Chap. 3. In
the latter case, the resulting logic is called differential-algebraic temporal dynamic
logic DATL.

Inherited Nontemporal Rules

The dTL calculus is presented in Fig. 4.3 and inherits the (nontemporal) dL proof
rules, i.e., the propositional, first-order, dynamic, and global rules from dL . That
is, it includes the propositional rules from Fig. 2.11 on p. 79 and either the free-
variable quantifier rules from Fig. 2.11 or the simpler quantifier rules from Fig. 3.9
on p. 164 that are based on side deductions. The dynamic rules (〈;〉–[′]) and global
rules ([]gen,〈〉gen,ind,con) for handling nontemporal dynamic modalities are also
inherited directly from Fig. 2.11. The only possible exception is that [∪],〈∪〉 can be
generalised to apply to formulas of the form [α ∪β]π where π is an arbitrary trace
formula, and not just a state formula as in dL . Thus, π may begin with � or ♦,
which is why the rules are repeated in this generalised form as [∪]� and 〈∪〉♦ in
Fig. 4.3.

4.5 Proof Calculus 219

Fig. 4.4 Correspondence of temporal proof rules and trace semantics

Temporal Rules

The new temporal rules in Fig. 4.3 for the dTL calculus successively transform
temporal specifications of hybrid programs into nontemporal dL formulas. The
idea underlying this transformation is to decompose hybrid programs and recurs-
ively augment intermediate state transitions with appropriate specifications. Also
see Fig. 4.4 for an illustration of the correspondence of a representative set of proof
rules for temporal modalities to the trace semantics of hybrid programs (Defini-
tion 4.3).

Rule [;]� decomposes invariants of α;β (i.e., [α;β]�φ holds) into an invariant
of α (i.e., [α]�φ) and an invariant of β that holds when β is started in any final state
of α (i.e., [α]([β]�φ)). Its difference with the dL rule [;] thus is that the dTL rule
[;]� also checks safety invariant φ at the symbolic states in between the execution

([:=]�)
φ ∧ [x :=θ]φ
[x :=θ]�φ

ν ω

φ

[x :=θ]φ

x :=θ
φ

([′]�)
[x′ = θ]φ
[x′ = θ]�φ ν ω

x′ = θ
ωωμ

φ

x′ = θ �φ

([;]�)
[α]�φ ∧ [α][β]�φ

[α;β]�φ

ν μ ω

α;β �φ
α

�φ
[β]�φ

β

�φ

α;β ≡ α (if non-terminating)�φ

([∪]�)
[α]�φ ∧ [β]�φ

[α ∪β]�φ
ν

ω1

ω2

α
�φ

β
�φ

α ∪β

([∗]�)
[α∗][α]�φ
[α∗]�φ ν ω

α∗
�φ

α∗

α α

[α]�φ

α

�φ

220 4 Differential Temporal Dynamic Logic dTL

of α and β , and recursively so because of the temporal modality �. Again, see
Fig. 4.4 for an illustration of this proof principle.

Rule [:=]� expresses that invariants of assignments need to hold before and after
the discrete change (similarly for [?]�, except that tests do not lead to a state change,
so φ holding before the test is all there is to it). Rule [′]� can directly reduce invari-
ants of continuous evolutions to nontemporal formulas as restrictions of solutions of
differential equations are themselves solutions of different duration and thus already
included in the evolutions of x′ = θ . In particular, observe that the handling of dif-
ferential equations within hybrid systems is fully encapsulated within the fragment
of dynamic rules from Fig. 2.11. The rules [′]�, 〈′〉♦, [:=]�, and 〈:=〉♦ directly gen-
eralise to discrete jump sets and systems of differential equations or even to DA-
constraints from Chap. 3.

The (optional) iteration rule [∗n]� can partially unwind loops. It relies on rule [;]�
and is simpler than dL rule [∗n], because the other rules will inductively produce a
premise that φ holds in the current state, because of the temporal modality �φ . The
dual rules 〈∪〉♦,〈;〉♦,〈?〉♦,〈:=〉♦,〈′〉♦,〈∗n〉♦ work similarly.

In Chaps. 2 and 3, the primary means for handling loops are the invariant induc-
tion (ind) and variant convergence (con) rules. Here, we take a different, completely
modular approach for verifying temporal properties of loops based on the dL cap-
abilities for verifying nontemporal properties of loops. Rules [∗]� and 〈∗〉♦ actually
define temporal properties of loops inductively. Rule [∗]� expresses that φ holds
at all times during repetitions of α (i.e., [α∗]�φ) iff, after repeating α any num-
ber of times, φ holds at all times during one execution of α (i.e., [α∗]([α]�φ)).
See Fig. 4.4 for an illustration. Dually, 〈∗〉♦ expresses that α holds at some time
during repetitions of α (i.e., 〈α∗〉♦φ) iff, after some number of repetitions of α ,
formula φ holds at some point during one execution of α (i.e., 〈α∗〉(〈α〉♦φ)). In
this context, the nontemporal modality 〈α∗〉 can be thought of as skipping over to
the iteration of α during which φ actually occurs, as expressed by the nested dTL
formula 〈α〉♦φ . The inductive definition rules [∗]� and 〈∗〉♦ completely reduce tem-
poral properties of loops to dTL properties of standard nontemporal dL -modalities
such that standard induction (ind) or convergence rules (con) can be used for the
outer nontemporal modality of the loop. Hence, after applying the inductive loop
definition rules [∗]� and 〈∗〉♦, the standard dL loop invariant and variant rules can
be used for verifying temporal properties of loops without change, except that the
postcondition contains temporal modalities.

Rules for handling [α]♦φ and 〈α〉�φ are discussed in Sect. 4.9. Finally, provab-
ility in the dTL calculus is denoted by Φ `dTL ψ , and defined according to Defin-
ition 2.11 or Definition 3.16. The notion of a dTL proof directly follows from the
previous definitions in Chaps. 2 and 3.

4.6 Soundness 221

4.5.2 Verification Example

Consider the bouncing ball example from Sect. 2.5.4. The proof in Fig. 2.20 can be
generalised easily to a proof of the temporal property

v2 ≤ 2g(H−h)∧h≥ 0∧g > 0∧H ≥ 0∧1 > c≥ 0

→ [(h′′ =−g&h≥ 0;(?h > 0∪ (?h = 0;v :=−cv)))∗]�(0≤ h≤ H). (4.4)

The only aspect of the proof that changes is that the temporal proof rules in Fig. 4.3
are used instead of the dynamic proof rules from Fig. 2.11, and that the resulting
extra proof goals for the invariance property at intermediate steps have to be proven.

In contrast, the proof in Fig. 2.18 for the simplified dynamics without evolution
domain restriction h≥ 0 cannot be generalised to a proof of the temporal property

v2 ≤ 2g(H−h)∧h≥ 0∧g > 0∧H ≥ 0∧1 > c≥ 0

→ [(h′′ =−g;(?h > 0∪ (?h = 0;v :=−cv)))∗]�(0≤ h≤ H). (4.5)

This difference in provability is for good reasons. The property in (4.4) is valid,
but the property in (4.5) is not! While there was no noticeable semantical differ-
ence between the nontemporal properties proven in Figs. 2.18 and 2.20, there is a
decisive difference between the corresponding temporal properties (4.5) and (4.4).
Because there is no evolution domain restriction in (4.5), its hybrid program does
not prevent continuous evolution to a negative height under the floor (h < 0), for
which 0≤ h≤ H does not hold.

The reason for this discrepancy of the temporal version compared to the nontem-
poral versions thus is that the nontemporal modalities do not “see” the temporary
violation of 0≤ h≤ H. Such a temporary violation of 0≤ h during the continu-
ous evolution does not produce a successful run of the hybrid program, because it
is blocked by the subsequent tests ?h = 0 and ?h > 0. A state with negative height
fails both tests. While this behaviour does not give a successful program transition
of (ν ,ω) ∈ ρ(ball) by Definition 2.7 so that the proof in Fig. 2.18 is correct, the
behaviour still gives a valid trace σ ∈ τ(ball) by Definition 4.3. This trace σ is a
partial trace, because it ends in a failure state Λ, but it is still one of the traces
that [ball]�(0≤ h≤ H) quantifies over (quite unlike [ball](0≤ h≤ H), which only
considers final states of successful traces).

4.6 Soundness

The following result shows that verification with the dTL calculus always produces
correct results about the safety of hybrid systems, i.e., the dTL calculus is sound.

Theorem 4.1 (Soundness of dTL). The dTL calculus is sound, i.e., derivable
(state) formulas are valid.

222 4 Differential Temporal Dynamic Logic dTL

Proof. We show that all rules of the dTL calculus are locally sound, i.e., for all
states ν , the conclusion of a rule is true in state ν when all premises are true in ν .
Let ν be any state. For each rule we have to show that the conclusion is true in ν

assuming the premises are true in ν . The propositional rules are locally sound by
Theorem 2.1. Inductively, the soundness of the dynamic rules follows from Propos-
ition 4.1 and local soundness of the corresponding rules in dL . The proof for the
generalisation in [∪] and 〈∪〉 to path formulas π is a straightforward extension. The
quantifier rules are sound by Theorems 2.1 and 3.1, respectively.

[;]� Assume ν |= [α]�φ and ν |= [α][β]�φ . Let σ ∈ τ(α;β), i.e., σ = ρ ◦ ς

with firstσ = ν , ρ ∈ τ(α), and ς ∈ τ(β). If ρ does not terminate, then
σ = ρ ∈ τ(α) and σ |= �φ by premise. If, instead, ρ terminates with
lastρ = firstς , then ρ |= �φ by premise. Further, we know ν |= [α][β]�φ .
In particular for trace ρ ∈ τ(α), we have lastρ |= [β]�φ . Thus, ς |= �φ

because ς ∈ τ(β) starts at firstς = lastρ . By composition, ρ ◦ ς |= �φ .
As σ = ρ ◦ ς was arbitrary, we can conclude ν |= [α;β]�φ . The converse
direction holds, as all traces of α are prefixes of traces of α;β . Hence, the
assumption ν |= [α;β]�φ directly implies ν |= [α]�φ . Further, all traces
of β that begin at a state reachable from ν by α are suffixes of traces of α;β

starting in ν . Hence, ν |= [α][β]�φ is implied as well.
[?]� Soundness of [?]� is obvious, since, by premise, we can assume ν |= φ ,

and there is nothing to show for Λ states according to Definition 4.4. Con-
versely, ν̂ is a prefix of all traces in τ(?χ) that start in ν .

[:=]� Assuming ν |= φ and ν |= [x :=θ]φ , we have to show that ν |= [x :=θ]�φ .
Let σ ∈ τ(x :=θ) be any trace with firstσ = ν , i.e., σ = (ν̂ , ω̂) by Defin-
ition 4.3. Hence, the only two states we need to consider are σ0(0) = ν

and σ1(0) = ω . By premise, σ0(0) = ν yields σ0(0) |= φ . Similarly, for
the state σ1(0) = lastσ = ω , the premise gives σ1(0) |= φ . The converse
direction is similar.

[′]� We prove that [′]� is locally sound by contraposition. For this, assume
that ν 6|= [x′ = θ]�φ ; then there is a trace σ = (ϕ) ∈ τ(x′ = θ) starting
in firstσ = ν and σ 6|= �φ . Hence, there is a position (0,ζ) of σ with
σ0(ζ) 6|= φ . Now ϕ restricted to the interval [0,ζ] also solves differential
equation x′ = θ . Thus, (ϕ|[0,ζ]) 6|= φ as ϕ(ζ) 6|= φ , since the last state is
ϕ(ζ). By consequence, this gives ν 6|= [x′ = θ]φ . The converse direction is
obvious as lastσ always is a state occurring during σ . Hence ν 6|= [x′ = θ]φ
immediately implies ν 6|= [x′ = θ]�φ .

[∗n]� By contraposition, assume that ν 6|= [α∗]�φ . Then there is an n ∈ N and a
trace σ ∈ τ(αn) with firstσ = ν such that σ 6|= �φ . There are two cases.
If n > 0 then σ ∈ τ(α;α∗), and thus ν 6|= [α;α∗]�φ . If, however, n = 0,
then σ = (v̂) and ν 6|= φ . Hence, all traces ς ∈ τ(α;α∗) with firstς = ν

satisfy ς 6|= �φ . Finally, it is easy to see that all programs have at least
one such trace ς (when V is nonempty) that witnesses ν 6|= [α;α∗]�φ . The
converse direction is easy as all behaviour of α;α∗ is subsumed by α∗, i.e.,
τ(α;α∗)⊆ τ(α∗).

4.7 Completeness 223

[∗]� Clearly, using the fact that τ(α∗)⊇ τ(α∗;α), the set of states along the
traces of α∗ at which φ needs to be true for the premise is a subset of
the corresponding set for the conclusion. Hence, the conclusion entails the
premise. Conversely, all states during traces of α∗ are also reachable by
iterating α sufficiently often to completion and then following a single
trace of α . In detail: If ν 6|= [α∗]�φ , then there is a trace σ ∈ τ(α∗) on
which¬φ holds true at some state, say, at σi(ζ) 6= Λ. Let n≥ 0 be the (max-
imum) number of complete repetitions of α along σ before discrete step
index i. That is, there is some discrete step index in < i such that the pre-
fix ρ = (σ0, . . . ,σin) ∈ τ(αn) of σ consists of n complete repetitions of α

and the suffix ς = (σin+1,σin+2, . . .) ∈ τ(α∗) starts with a trace of α during
which ¬φ occurs at point σi(ζ), namely at relative position (i− (in +1),ζ).
Let ς́ ∈ τ(α) be this prefix of ς . Consequently, ς́ |= 〈α〉♦¬φ and the trace
ρ ◦ ς́ is a witness for ν |= 〈α∗〉〈α〉♦¬φ .

The proofs for 〈;〉♦–〈∗〉♦ are dual, since 〈α〉♦φ is equivalent to¬[α]�¬φ by duality.
ut

4.7 Completeness

In this section, we show that the strictly modular dTL calculus enables us to lift the
Relative Completeness Theorem 2.3 for dL to dTL.

4.7.1 Incompleteness

The Incompleteness Theorem 2.2 directly generalises to temporal and nontemporal
properties of dTL.

Theorem 4.2 (Incompleteness of dTL). The discrete and continuous fragments
of dTL are non-axiomatisable for temporal safety ([α]�φ) and nontemporal ([α]φ)
fragments of dTL. Hence, valid dTL formulas are not always derivable.

Proof. We show that the discrete and continuous fragments of the following purely
temporal and nontemporal fragments of dTL are non-axiomatisable:

1. the fragment that only contains modalities of the form [α]�φ and 〈α〉♦φ

2. the fragment that only contains [α]φ and 〈α〉φ (dL fragment).

Case 2 is a consequence of the corresponding incompleteness result (Theorem 2.2)
for fragments of the sublogic dL , which carries over to the extension dTL by Pro-
position 4.1.

For Case 1, we prove that natural numbers are definable amongst the real number
domain in both fragments, quite similarly to the proof of Theorem 2.2. Then these

224 4 Differential Temporal Dynamic Logic dTL

fragments extend first-order integer arithmetic such that the incompleteness theorem
of Gödel applies.

• Natural numbers are definable in the discrete fragment without continuous evol-
utions x′ = θ using repetitive additions:

nat(n) ↔ 〈x := 0;(x := x+1)∗〉♦x = n.

• In the continuous fragment, natural numbers are definable as:

nat(n) ↔ ∃s∃c(s = 0∧ c = 1∧〈s′ = c,c′ =−s,τ ′ = 1〉♦(s = 0∧ τ = n)).

These ODEs have sin and cos as unique solutions for s and c, respectively. Their
zeros characterise an isomorphic copy of natural numbers, scaled by π . ut

4.7.2 Relative Completeness

Due to the modular construction of the dTL calculus, we can lift the major relative
completeness result Theorem 2.3 from dL to dTL. By proving dTL completeness
relative to Theorem 2.3, we essentially show that dTL is complete relative to dL ,
which directly implies that dTL is even complete relative to FOD using Theorem 2.3
by a standard argument. Again, we restrict our attention to homogeneous combina-
tions of path and trace quantifiers like [α]�φ or 〈α〉♦φ .

Theorem 4.3 (Relative completeness of dTL). The dTL calculus is complete
relative to FOD, i.e., every valid dTL formula can be derived from FOD tautologies.

Proof (Outline). The proof is a simple extension of the proof of Theorem 2.3, be-
cause the dTL calculus successively reduces temporal properties to nontemporal
properties and, in particular, handles loops by inductive definition rules in terms of
dL modalities. The temporal rules in Fig. 4.3 transform temporal formulas to sim-
pler formulas, i.e., to where the temporal modalities occur after simpler programs
([∪]�, [∗]�, 〈∪〉♦, 〈∗〉♦) or disappear completely ([?]�,[:=]�,[′]� and 〈?〉♦,〈:=〉♦,〈′〉♦).
Hence, the inductive relative completeness proof in Sect. 2.7.2 directly generalises
to dTL with the following addition: After applying [∗]� or 〈∗〉♦, loops are ultimately
handled by the standard dL rules ind and con. To show that sufficiently strong
invariants and variants exist for the temporal postconditions [α]�φ and 〈α〉♦φ ,
we only have to show that such temporal formulas are expressible in FOD, i.e.,
Lemma 2.9 generalises to dTL. ut

This result, which we prove formally in the remainder of Sect. 4.7.2, gives a formal
justification that the dTL calculus reduces temporal properties to nontemporal dL
properties.

4.7 Completeness 225

4.7.3 Expressibility and Rendition of Hybrid Trace Semantics

The central step for lifting the dL completeness proof to dTL is the following: To
show that, after applying rule [∗]� or 〈∗〉♦, sufficiently strong invariants and variants
for dTL postconditions can be expressed in dL for ind or con to be able to prove
the result, we show that the trace semantics of hybrid programs can be characterised
in FOD.

Lemma 4.2 (Hybrid program trace rendition). For every hybrid program α

with variables~x = x1, . . . ,xk there is a FOD formula Tα(~x,~v) with variables among
the 2k distinct variables~x = x1, . . . ,xk and~v = v1, . . . ,vk such that

� Tα(~x,~v)↔ 〈α〉♦~x =~v

or, equivalently, for every ν , we have that ν |= Tα(~x,~v) iff

σi(ζ) = ν [~x 7→ val(ν ,~v)] for a position (i,ζ) of some trace σ ∈ τ(α) starting in ν .

Tx1:=θ1,..,xk:=θk (~x,~v)≡~x =~v∨Sx1:=θ1,..,xk:=θk (~x,~v)

Tx′1=θ1,..,x′k=θk & χ (~x,~v)≡Sx′1=θ1,..,x′k=θk & χ (~x,~v)

T?χ (~x,~v)≡S?χ (~x,~v)

Tβ∪γ (~x,~v)≡Tβ (~x,~v)∨Tγ (~x,~v)

Tβ ;γ (~x,~v)≡Tβ (~x,~v)∨∃~z(Sβ (~x,~z)∧Tγ (~z,~v))

Tβ ∗ (~x,~v)≡ ∃~z(Sβ ∗ (~x,~z)∧Tβ (~z,~v))

Fig. 4.5 Explicit rendition of hybrid program trace semantics in FOD

Proof. The proof is similar to that of Lemma 2.8, yet using the definition in Fig. 4.5.
We resort to corresponding characterisations from Lemma 2.8, which simplifies the
characterisation of Tα(~x,~v), because we only have to augment Sα(~x,~v) by with
disjunctions for intermediate states, which can again be defined in terms of Sα(~x,~v),
recursively.

For instance, Tβ ∗(~x,~v) characterises the states reachable during traces of β ∗ as
the states reachable during traces of β that start after running β ∗ to completion for
some number of iterations. ut
Using this program rendition to characterise temporal trace modalities, Lemma 2.9
generalises immediately to dTL as follows:

Lemma 4.3 (dTL Expressibility). Logic dTL is expressible in FOD: for all dTL
formulas φ ∈ Fml(Σ) there is a FOD formula φ # ∈ FmlFOD(Σ) that is equivalent,
i.e., � φ ↔ φ #. The converse holds trivially.

226 4 Differential Temporal Dynamic Logic dTL

Proof. The proof is by a structural induction identical to that in the proof of
Lemma 2.9 with the following additions:

1. The case where φ is of the form 〈α〉♦ψ is a consequence of Lemma 4.2:

� 〈α〉♦ψ ↔∃~v(Tα(~x,~v)∧ψ
#~v
~x).

2. The case where φ is [α]�ψ is again a consequence of Lemma 4.2:

� [α]�ψ ↔∀~v(Tα(~x,~v)→ ψ
#~v
~x).

ut

4.7.4 Modular Relative Completeness Proof for the Differential
Temporal Dynamic Logic Calculus

Now we assemble the proof of Theorem 4.3 from the previous results following a
simplified form of the proof of Theorem 2.3, since we can apply Theorem 2.3 for
dL formulas.

Proof (of Theorem 4.3). The proof is a simple extension of the Relative Complete-
ness Theorem 2.3 for dL . Unlike for the rules of the dL calculus, all new tem-
poral rules are symmetric, hence perform equivalent transformations. Consequently,
whenever their conclusion is valid, their premise is valid and of smaller complexity
(temporal modalities occur after simpler programs), and hence derivable by induc-
tion hypothesis.

For instance, analogously to the induction step for loops in Proposition 2.1,
let � F → [β ∗]�G; then � F → [β ∗][β]�G. By Lemma 4.3, there is a dL for-
mula or even FOD formula ([β]�G)# that characterises the temporal postcondi-
tion equivalently, i.e., such that � ([β]�G)#↔ [β]�G. By induction hypothesis,
we can derive the simpler formula `D ([β]�G)#→ [β]�G. Using Lemma 2.11, we
conclude `D ∀β (([β]�G)#→ [β]�G), thus [β ∗]([β]�G)# `D [β ∗][β]�G is deriv-
able by []gen. Furthermore, � F → [β ∗]([β]�G)# is a valid dL formula and, thus,
F `D [β ∗]([β]�G)# is derivable by Theorem 2.3. Combining these derivations by a
cut with [β ∗]([β]�G)#, we derive F `D [β ∗]�G. Since the temporal rules perform
a modular reduction to nontemporal dynamic rules, the case � F → 〈β ∗〉♦G is al-
most identical here, because the differences between variant rule con and invariant
rule ind have already been captured in the proof of Theorem 2.3. ut

4.8 Verification of Train Control Safety Invariants 227

4.8 Verification of Train Control Safety Invariants

Continuing the ETCS study from Sect. 4.4, we consider a slightly simplified version
of equation (4.3) that gives a more concise proof. By a safe abstraction (provable
in dTL), we simplify cor to permit braking even when m− z≥ s, since braking
remains safe with respect to z < m. Recall (4.3) with additional abbreviations and a
simplified cor:

ψ → [neg;cor;drive]�(`≤ L→ z < m) (4.3∗)
where ψ ≡ z < m∧ v > 0∧ `= 0∧L≥ 0

φ ≡ `≤ L→ z < m

neg ≡ z′ = v, `′ = 1
cor ≡ a :=−b∪ (?m− z≥ s;a := . . .)

drive ≡ z′ = v,v′ = a.

Within the following proof, 〈[·]〉 brackets are used instead of modalities to visually
identify the discrete jump set prefix (Definition 2.11). That is, we use 〈[z := `v+ z]〉φ
to mean 〈z := `v+ z〉φ , just to have more readable bracket grouping. The dTL proof
of the safety invariant in (4.3) splits into two cases that correspond to the respective
protocol phases:

. . .
ψ ` [neg]�φ

. . .
ψ ` [neg][cor;drive]�φ

[;]�
ψ ` [neg;cor;drive]�φ

→r ` ψ → [neg;cor;drive]�φ

There, the left branch proves that φ holds while negotiating and is as follows:

ψ ` Lv+ z < m
∀r,i∀

ψ ` ∀l≥0(l ≤ L→ lv+ z < m)
[:=],〈:=〉

ψ ` ∀l≥0〈[z := lv+ z, ` := l]〉φ
[′]

ψ ` [neg]φ
[′]�

ψ ` [neg]�φ

The right branch shows that φ continues to hold after negotiation has completed
when continuing with an adjusted acceleration a in cor; drive:

228 4 Differential Temporal Dynamic Logic dTL

ψ, `≥0 ` v2 < 2b(m−Lv− z)∧Lv+ z < m
i∀

ψ, `≥0 ` 〈[z := `v+z,a :=−b]〉∀t≥0(`≤L→ a
2 t2+vt+z<m)

[:=],〈:=〉
ψ, `≥0 ` 〈[z := `v+z,a :=−b]〉∀t≥0〈[z := a

2 t2+vt+z]〉φ
[′]�,[′]

ψ, `≥0 ` 〈[z := `v+z,a :=−b]〉[drive]�φ .
[∪]

ψ, `≥0 ` 〈[z := `v+z]〉[cor][drive]�φ .
[;]�

ψ, `≥0 ` 〈[z := `v+z]〉[cor;drive]�φ
→r

ψ ` `≥0→ 〈[z := `v+z]〉[cor;drive]�φ
∀r

ψ ` ∀`≥0〈[z := `v+z]〉[cor;drive]�φ

[′]
ψ ` [neg][cor;drive]�φ

The application of rule [;]� in this latter case spawns a third case (marked with .) to
show that φ holds during cor. However, the reasoning in this third case is subsumed
by the cases above, since the changes on a in cor do not interfere with condition φ .
Generally, this optimisation of [;]� is applicable whenever the modified vocabulary
is disjoint from φ . Here, proof rules [′] and i∀ are implemented in Mathematica to
handle evolutions.

The leaves of the proof branches above can even be used to automatically
synthesise parameter constraints that are necessary to avoid MA violation. The
parametric safety constraint obtained by combining the open conditions conjunct-
ively is Lv+ z < m∧ v2 < 2b(m−Lv− z). It simplifies to v2 < 2b(m−Lv− z) be-
cause b > 0. This yields bounds for the speed limit and negotiation latency in or-
der to guarantee safe driving and closing of the proof. Similarly, rule [∪] leads to a
branch (marked with .) for the case [?m− z≥ s;a := . . .], from which corresponding
conditions about the safety envelope s can be derived depending on the particular
speed controller, similar to what we have shown in Sect. 2.9.

4.9 Liveness by Quantifier Alternation

Liveness specifications of the form [α]♦φ or 〈α〉�φ are sophisticated (Σ 1
1 -hard

because they can express infinite occurrence in Turing machines). Beckert and Sch-
lager [38], for instance, note that they failed to find sound rules for a discrete case
that corresponds to [α;β]♦φ .

For finitary liveness semantics, we can still find proof rules. In this section, we
modify the meaning of [α]♦φ to refer to all terminating traces of α . Then, the
straightforward generalisation [;]♦ in Fig. 4.6 is sound, even in the hybrid case.
But [;]♦ still leads to an incomplete axiomatisation as it does not cover the case
where, in some traces, φ becomes true at some point during α , and in other traces, φ

only becomes true during β . To overcome this limitation, we use a program trans-
formation approach. We instrument the hybrid program to monitor the occurrence
of φ during all changes: In [α]♦, α̌ results from replacing all occurrences of x :=θ

with x :=θ ; ?(φ → t = 1) and x′ = θ with x′ = θ &(φ → t = 1). The latter is a con-
tinuous evolution restricted to the region of the state space that satisfies φ → t = 1.

4.9 Liveness by Quantifier Alternation 229

The effect is that t detects whether φ has occurred during any change in α . In par-
ticular, t is guaranteed to be 1 after all runs if φ occurs at least once along all traces
of α . This trick directly works for first-order conditions φ . Using the combination
presented in [234], nominals can be used as state labels to address the same issue
for general φ .

([;]♦)
` [α]♦φ , [α][β]♦φ

` [α;β]♦φ
([α]♦)

φ ∨∀t [α̌]t = 1
[α]♦φ

Fig. 4.6 Transformation rules for alternating temporal path and trace quantifiers

Proposition 4.2 (Local soundness for temporal quantifier alternation). The
rules in Fig. 4.6 are locally sound for finitary liveness semantics.

Proof. Let ν be any state.

[;]♦ Assuming that the premise is true, we need to consider two cases corres-
ponding to the two formulas of its succedent. If ν |= [α]♦φ , then obviously
ν |= [α;β]♦φ , as every trace of α;β has a trace of α as prefix, during
which φ holds at least once. If, however, ν |= [α][β]♦φ , then φ occurs at
least once during all traces that start in a state reachable from ν by α . Let
ρ ◦ ς ∈ τ(α;β) with firstρ = ν , ρ ∈ τ(α) and ς ∈ τ(β). In finitary liveness
semantics, ρ ◦ ς can be assumed to terminate (otherwise there is nothing
to show). Then, lastρ is a state reachable from ν by α; hence ς |= ♦φ . In
particular, ρ ◦ ς |= ♦φ .

[α]♦ For the soundness of [α]♦, first observe that the truth of val(ν ,φ) of φ de-
pends on the state ν ; hence it can only be affected during state changes. Fur-
ther, the only actual changes of valuations happen during discrete jumps x :=
θ or continuous evolutions x′ = θ . All other system actions only cause con-
trol flow effects but no elementary state changes. Assume the premise is true
in a state ν . If ν |= φ , the conjecture is obvious. Assume ν |= ∀t [α̌]t = 1.
Suppose ν 6|= [α]φ ; then there is a trace σ ∈ τ(α) with σ 6|= ♦φ . Then, this
trace directly corresponds to a trace σ̌ of α̌ in which all φ → t = 1 con-
ditions are trivially satisfied as φ never holds. As there are no changes of
the fresh variable t during α̌ , the value of t remains constant during σ̌ . But
then we can conclude that there is a trace, which is essentially the same
as σ̌ except for the constant valuation of the fresh variable t on which no
conditions are imposed; hence t = 0 is possible. As these traces terminate
in finitary liveness semantics, we can conclude ν 6|= ∀t [α̌]t = 1, which is
a contradiction. Conversely for equivalence of premise and conclusion, as-
sume ν 6|= φ ∨∀t [α̌]t = 1. Then, the initial state ν does not satisfy φ and it is
possible for α̌ to execute along a terminating trace σ that permits t to be 6= 1.
Suppose there was a position (i,ζ) of σ at which σi(ζ) |= φ . Without loss
of generality, we can assume (i,ζ) to be the first such position. Then, the

230 4 Differential Temporal Dynamic Logic dTL

hybrid action which regulates σi is accompanied by the immediate condition
that φ → t = 1; hence t = 1 holds if σ terminates. Since the fresh variable t
is rigid (is never changed during α̌) and σ terminates in finitary liveness se-
mantics, we conclude val(lastσ , t) = 1, which is a contradiction. ut

4.10 Summary

For reasoning about hybrid systems, we have introduced a temporal dynamic logic,
dTL, with modal path quantifiers over traces and temporal quantifiers along the
traces. It combines the capabilities of dynamic logic [149] to reason about possible
system behaviour with the power of temporal logic [247, 114, 115] in reasoning
about the behaviour along traces. Furthermore, we have presented a proof calculus
for verifying temporal safety specifications of hybrid programs in dTL.

Our sequent calculus for dTL is a completely modular combination of temporal
and nontemporal reasoning. Temporal formulas are handled using rules that aug-
ment intermediate state transitions with corresponding sub-specifications. Purely
nontemporal dL rules handle the effects of discrete and continuous evolution. The
modular nature of the dTL calculus further enables us to lift the relative complete-
ness result from dL to dTL. This theoretical result shows that the dTL calculus is
a sound and complete axiomatisation of the temporal behaviour of hybrid systems
relative to differential equations.

As an example, we demonstrate that our logic is suitable for reasoning about
safety invariants in the European Train Control System. Further, we have success-
fully applied our calculus to automatically synthesise (nonlinear) parametric safety
constraints for this system.

Future work includes extending dTL with CTL∗-like [115] formulas of the form
[α](ψ ∧�φ) to avoid splitting of the proof into two very similar subproofs for tem-
poral parts [α]�φ and nontemporal parts [α]ψ arising in rule [;]�. Our combination
of temporal logic with dynamic logic is more suitable for this purpose than pre-
vious approaches for discrete systems [38], since dTL has uniform modalities and
uniform semantics for temporal and nontemporal specifications. This extension will
also simplify the treatment of alternating liveness quantifiers conceptually.

Part II
Automated Theorem Proving for Hybrid

Systems

Overview After having developed formal specification logics and proof calculi
for specifying and verifying safety-critical properties of hybrid systems in Part I,
we now turn to practical and algorithmic implementation questions. In this part, we
focus on the practical aspects of implementing the proof calculi from Part I. The cal-
culi in Part I have already been designed for the needs of automated theorem prov-
ing, most notably with the free-variable and Skolemisation techniques from Chap. 2
and the compositional proof calculi from Part I. Immediate implementations of the
proof calculi from Part I in automated theorem provers can prove examples of me-
dium complexity directly. Yet, more complex case studies still require additional
algorithmic techniques for achieving high-degree automation and good scalability
properties. In Chap. 5, we refine the calculi from Part I to tableau procedures and
present proof strategies that navigate among their nondeterminisms to help over-
come the complexity issues of integrating real quantifier elimination as a decision
procedure for real arithmetic.

In Chap. 6 we introduce the “differential invariants as fixed points” paradigm.
We refine the differential induction techniques from Chap. 3 to a fully automatic
verification algorithm for computing the required discrete and differential invariants
of a hybrid system locally in a logic-based fixed-point loop.

The algorithmic refinement techniques developed in this part of the book add
better automation to the proof approach from Part I. These algorithms are crucial
for automating the formal verification of properties of complex hybrid systems like
the ones we consider in Part III.

Chapter 5
Deduction Modulo Real Algebra and Computer
Algebra

Contents
5.1 Introduction . 234

5.1.1 Related Work . 234
5.1.2 Structure of This Chapter 235

5.2 Tableau Procedures Modulo . 235
5.3 Nondeterminisms in Tableau Modulo 238

5.3.1 Nondeterminisms in Branch Selection 238
5.3.2 Nondeterminisms in Formula Selection 239
5.3.3 Nondeterminisms in Mode Selection 240

5.4 Iterative Background Closure . 243
5.5 Iterative Inflation . 246
5.6 Experimental Results . 248
5.7 Summary . 251

Synopsis We show how deductive, real algebraic, and computer algebraic meth-
ods can be combined for verifying hybrid systems in an automated theorem prov-
ing approach. In particular, we highlight the interaction of deductive and algebraic
reasoning that is used for handling the joint discrete and continuous behaviour of
hybrid systems. Systematically, we derive a canonical tableau procedure modulo
from the calculus of differential dynamic logic. We delineate the nondeterminisms
in the tableau procedure carefully and analyse their practical impact in the pres-
ence of computationally expensive handling of real algebraic constraints. Based on
experience with larger case studies, we analyse proof strategies for dealing with
the practical challenges for integrated algebraic and deductive verification of hybrid
systems. To overcome the complexity pitfalls of integrating real arithmetic, we pro-
pose the iterative background closure and iterative inflation order strategies, with
which we achieve substantial computational improvements.

233A. Platzer, Logical Analysis of Hybrid Systems,
DOI 10.1007/978-3-642-14509-4_5, © Springer-Verlag Berlin Heidelberg 2010

234 5 Deduction Modulo Real Algebra and Computer Algebra

5.1 Introduction

While the theoretical background and formal details of our logical analysis approach
for hybrid systems can be found in Part I, here we discuss the practical aspects of
combining deductive, real algebraic, and computer algebraic prover technologies. In
particular, we highlight the principles of how these techniques interact for verifying
hybrid systems. We analyse the degrees of freedom in implementing our calculus
in terms of the nondeterminisms of its canonical proof procedure. We illustrate the
impact that various choices of proof strategies have on the overall performance. For
hybrid system verification, we observe that the nondeterminisms in the interaction
between deductive and real algebraic reasoning have considerable impact on the
practical feasibility. While straightforward combinations are sufficient for verifying
examples like those presented in Part I, larger case studies like those that we present
in Part III are beyond the capabilities of state-of-the-art decision procedures for real
arithmetic. In this chapter, we analyse and explain the causes and consequences
of this effect and introduce automatic proof strategies that avoid these complexity
pitfalls and work well in practise.

Here we study the modular combination in the dL calculus (our findings gen-
eralise directly to the extensions of the DAL and dTL calculi, so we use dL in-
terchangeably with DAL and dTL in this chapter). Our observations are of more
general interest, though, and we conjecture that similar results hold for other prover
combinations of logics with interpreted function symbols that are handled using
background decision procedures for computationally expensive theories including
real arithmetic, approximations of natural arithmetic, and arrays.

5.1.1 Related Work

As we have pointed out in Sect. 1.2, there are only a few other practical ap-
proaches [201, 1] that use deduction for verifying hybrid systems and actually in-
tegrate arithmetic reasoning in STeP [201] or PVS [1], respectively. They do not
work with a genuine verification logic, however, but only generate flat mathemat-
ical verification conditions for hybrid automata with a given invariant. In contrast,
the symbolic decompositions in our verification logic preserve the natural problem
structure, which enables us to achieve good performance in practise. See Sect. 1.2
for a detailed comparison.

Several other approaches intend to combine deductive and arithmetic reason-
ing, e.g. [63, 28, 3]. Their focus, however, is on general mathematical reasoning in
classes of higher-order logic and is not tailored to verify hybrid systems. Our work,
instead, is intended to make practical verification of hybrid systems possible and we
aim at automating the verification process.

5.2 Tableau Procedures Modulo 235

5.1.2 Structure of This Chapter

In Sect. 5.2, we analyse our calculi for differential dynamic logics from a qualitat-
ive perspective and present a corresponding tableau procedure modulo background
solvers for handling real algebraic and computer algebraic constraints. We delineate
their nondeterminisms carefully in Sect. 5.3 and analyse their practical impact. We
present proof procedures for automated theorem proving in differential dynamic lo-
gics that navigate through the complexity pitfalls of integrating decision procedures
for real arithmetic in Sects. 5.4 and 5.5. In Sect. 5.6, we evaluate their performance
in larger case studies.

5.2 Tableau Procedures Modulo

In this section, we derive a canonical tableau procedure modulo background provers
from the dL calculus and analyse the remaining nondeterminisms in the remainder
of this chapter.

For the purpose of this chapter, the full details of how the respective quantifier
rules of Chaps. 2 and 3 lift quantifier elimination to dynamic logic are not import-
ant. What is important to note, however, is that quantifier rules and rules for handling
modalities need to interact because the actual constraints on quantified symbols de-
pend on the effect of the hybrid programs within modalities (Sect. 2.5.3). Thus, at
some point, after a number of rule applications that handle the dynamic part, quan-
tifier rules will be used to discharge (or at least simplify) proof obligations over
real algebraic or semialgebraic constraints by quantifier elimination [80, 81, 288].
The remaining subgoals will be analysed further again using dynamic rules. The
quantifier rules constitute the modular interface that combines deduction for hand-
ling dynamic reasoning with algebraic constraint techniques for handling continu-
ous reasoning about the reals. Here, we discuss the consequences and principles of
this combination and analyse proof strategies.

The principle behind how the dL calculus in Fig. 2.11 combines deduction tech-
nology with methods for handling real algebraic constraints complies with the gen-
eral background reasoning principles [32, 290, 103]. From an abstract perspective,
the dL calculus selects a set Φ of (quantified) formulas from an open branch (Φ is
called the key) and hands it over to the quantifier elimination procedure. The result-
ing formula obtained by applying quantifier elimination (QE) to Φ is then returned
to the main sequent prover as a result, and the main proof continues; see Fig. 5.1.
Similarly, the dL calculus triggers symbolic, computer algebraic computations for
the rules for differential equations using their solutions (rules 〈′〉,[′] from Fig. 2.11)
or total differentials of differential invariants (rule DI) or differential variants (rule
DV) from the DAL calculus in Fig. 3.9.

In this context, the propositional rules, dynamic rules, and global rules of the dL
calculus in Fig. 2.11 or the DAL calculus in Fig. 3.9 constitute the foreground rules
in the main prover (middle box of Fig. 5.1), except for evolution rules 〈′〉,[′] and

236 5 Deduction Modulo Real Algebra and Computer Algebra

ψ ` [α]φ

Deductive
Prover

QE(Φ)

Φ

alg(Φ)

Φ

R-Algebraic
Elimination

Computer
Algebra

key

QE(key)

key

alg(key)

Fig. 5.1 Deductive, real algebraic, and computer algebraic prover combination

differential (in)variant rules DI,DV that represent the computer algebraic rules in-
voking a computer algebra system as a background solver (left box). The arithmetic
quantifier rules (in particular i∀ and i∃ from Fig. 2.11 and r∀,l∀,r∃,l∃ from Fig. 3.9)
form the set of rules that invoke the background prover (right box) for quantifier
elimination. Since the primary challenges caused by the proof nondeterminisms in
the dL calculus originate from the interaction of deductive and real algebraic rules,
we simplify the presentation in the following and only distinguish between back-
ground real arithmetic rules and foreground rules, where computer algebraic rules
will simply be considered as foreground rules.

The canonical tableau procedure belonging to the dL calculus is presented in
Fig. 5.2. Observe that the tableau procedure for our dL calculus has a nonstandard
set of nondeterministic steps (indicated by B, M , and F , respectively in Fig. 5.3):

B: selectBranch, i.e., select which open branch to choose for further rule applica-
tions.

M : selectMode, i.e., select whether to apply foreground dL rules (propositional
rules, dynamic rules, and global rules) or background arithmetic rules (i∀, i∃
from Fig. 2.11 or r∀,l∀,r∃,l∃ from Fig. 3.9).

F : selectFormula, i.e., which formula(s) to select for rule applications from the
current branch in the current mode.

Within the rule applications, there is an additional choice of whether to handle dif-
ferential equations using their solution (dL rules 〈′〉,[′] from Fig. 2.11) or by differ-
ential induction (DAL rules DI,DV from Fig. 3.9). We do not follow up on this non-
determinism here but simply choose to use solutions, whenever they are first-order
expressible, and fall back to differential induction (Sect. 3.5.6) when no such solu-
tion can be found. The computational cost of differential induction is generally less
than when working with solutions, but the corresponding differential (in)variants
have to be found first, which we handle in Chap. 6. There is a further minor non-
determinism of whether to expand loops using rules 〈∗n〉,[∗n] or to go for an in-
duction by rules ind and con. Yet, as unrolling (〈∗n〉,[∗n]) only handles fixed-length
reachability prefixes or bounded loops, our proof strategies prefer induction (ind
and con) instead. The other dL rules do not produce any conflicts once a formula
has been selected as they apply to formulas of distinct syntactic structures: The top-
level operators uniquely determine which calculus rule to use once a formula has
been selected.

5.2 Tableau Procedures Modulo 237

whi le t a b l e a u T has open b r a n c h e s do
B := s e l e c t B r a n c h (T) (∗ B n o n d e t e r m i n i s m ∗)
M := s e l e c t M o d e (B) (∗ M n o n d e t e r m i n i s m ∗)
F := s e l e c t F o r m u l a s (B ,M) (∗ F n o n d e t e r m i n i s m ∗)
i f M = f o r e g r o u n d then

R := r e s u l t o f a p p l y i n g a p r o p o s i t i o n a l o r
dynamic o r g l o b a l r u l e t o F i n B

r e p l a c e b r an ch B by R i n t a b l e a u T
e l s e

send key F t o background d e c i s i o n p r o c e d u r e QE
r e c e i v e r e s u l t R from QE
a p p l y a q u a n t i f i e r r u l e t o T wi th QE− r e s u l t R

end i f
end whi l e

Fig. 5.2 Tableau procedure for differential dynamic logics

Fig. 5.3 Nondeterminisms in the tableau procedure for differential dynamic logics

At this point, notice that, unlike in the classical tableau procedure [122], we have
three rather than four points of nondeterminism, since dL does not need closing
substitutions. The reason for this is that dL has an interpreted domain. Rather than
having to try out instantiations that have been determined by unification or heurist-
ics as in uninterpreted first-order logic [122], we can make use of the structure in
the interpreted case of first-order logic over the reals. In particular, arithmetic for-
mulas can be reduced equivalently by QE to simpler formulas in the sense that the
quantified symbols no longer occur. As this transformation is an equivalence, there
is no loss of information and we do not need to backtrack [122] or simultaneously
keep track of multiple local closing instantiations [134].

Despite this seemingly simpler situation, the influence of nondeterminism on the
practical prover performance is quite remarkable. Even though the first-order the-
ory of real arithmetic is decidable by quantifier elimination [81], its complexity is
doubly exponential in the number of quantifier alternations [94]. While more effi-
cient algorithms exist for some linear fragments [198], the practical performance is
an issue in nonlinear cases. Hence, the computational cost of individual rule applic-
ations is quite different from the linear complexity of applying closing substitutions
in uninterpreted tableaux.

ψ � [α]φ

F

M

B

Deductive Prover

QE(Φ)

Φ

R-Algebraic
Elimination

M

238 5 Deduction Modulo Real Algebra and Computer Algebra

5.3 Nondeterminisms in Tableau Modulo

In principle, exhaustive fair application of background rules by the nondeterminisms
M and F remains complete for appropriate fragments of dL . In practise, however,
the complexity of real arithmetic quickly makes this naı̈ve approach infeasible for
larger case studies. In the remainder of this chapter, we discuss the consequences
of the nondeterminisms and develop proof strategies to tackle the combination and
integration challenges.

5.3.1 Nondeterminisms in Branch Selection

In classical uninterpreted tableaux, branch selection has no impact on completeness,
and can only have impact on the proving duration, because closing substitutions can
sometimes be found much earlier on one branch than on the others. In the interpreted
case of dL , branch selection is even less important. As dL has no closing substitu-
tions, there is no direct interference among multiple branches. Branches with (expli-
citly or implicitly) universally quantified variables have to be closed independently.
Hence the branch order is not important. For instance, when x is a universally quan-
tified variable and we denote the corresponding Skolem symbol by s, the branches
in the following proof can be handled separately (branches are implicitly combined
by conjunction and universal quantifiers distribute over conjunctions):

QE(∀x(. . .bx2 ≥ 0))
i∀

Γ ,b > 0 ` bs2 ≥ 0
QE(∀x(. . .bx4 + x2 ≥ 0))

i∀
Γ ,b > 0 ` bs4 + s2 ≥ 0

∧r
Γ ,b > 0 ` bs2 ≥ 0∧bs4 + s2 ≥ 0

∀r
Γ ,b > 0 ` ∀x(bx2 ≥ 0∧bx4 + x2 ≥ 0)

For existentially quantified variables, the situation is a bit more subtle as multiple
branches interfere indirectly in the sense that a simultaneous solution needs to be
found for all branches at once. In ∃v(v > 0∧ v < 0), for instance, the two branches
resulting from the cases v > 0 and v < 0 cannot be handled separately, as the exist-
ential quantifier claims the existence of a simultaneous solution for v > 0 and v < 0,
not two different solutions. Thus, when v is an existentially quantified variable and V
its corresponding free existential variable, the branches in the following proof need
to synchronise before quantifier elimination is applied:

QE(∃v
(
(b > 2→ b(V −1)> 0)∧ (b > 2→ (V +1)2 +bε(V +1)> 0)

)
)

i∀
b > 2 ` b(V −1)> 0
b > 2 ` [v :=V −1]bv > 0

b > 2 ` (V +1)2 +bε(V +1)> 0
b > 2 ` [v :=V +1]v2 +bεv > 0

∧r b > 2 ` [v :=V −1]bv > 0∧ [v :=V +1]v2 +bεv > 0
∀r b > 2 ` ∃v([v :=v−1]bv > 0∧ [v :=v+1]v2 +bεv > 0)

5.3 Nondeterminisms in Tableau Modulo 239

The order in which the intermediate steps at the two branches are handled, how-
ever, has no impact on the proof. Branches like these synchronise on an existential
free variable V in the sense that all occurrences of V need to be first-order on all
branches for quantifier elimination to be applicable. Consequently, the only fairness
assumption for B is that whenever a formula of a branch is selected that is waiting
for synchronisation with another branch to become first-order, then it transfers its
branch choice to the other branch instead. In the above case the left branch synchron-
ises with the right branch on V . Hence, rule i∃ can only be applied to b(V −1)> 0
on the left branch after rule 〈:=〉 has been applied on the right branch to produce
first-order occurrences of V .

Thus, the primary remaining impact of the branch nondeterminism is that clos-
ing branches by universally quantified variable reasoning simplifies all subsequent
existential variable handling, because fewer branches remain that need to be con-
sidered simultaneously. Even for existential variables, universal quantification is
sound and can be very helpful; it is just not complete.

5.3.2 Nondeterminisms in Formula Selection

In background proving mode, it turns out that nondeterminism F is important for
practical performance. In practise, when a branch closes or, at least, can be simpli-
fied significantly by a quantifier elimination call, then the running time of a single
decision procedure call depends strongly on the number of irrelevant formulas that
are selected in addition to the relevant ones by F .

Clearly, when Φ is a set of formulas from a sequent that yields a tautology such
that applying QE closes a branch, then selecting any superset Ψ ⊇Φ from a branch
yields the same answer in the end (a sequent forms a disjunction of its formulas;
hence it can be closed to true when any subset closes). However, the running time
until this result will be found in the larger Ψ can be disturbed strongly by the pres-
ence of complicated additional but irrelevant formulas. From our experience with
Mathematica [303], decision procedures for full real arithmetic seem to be distrac-
ted considerably by such irrelevant additional information.

Example 5.1 (Computational distraction in quantifier elimination). One sequent
from the proof of the ETCS kernel in Sects. 2.4 and 2.9 is depicted in Fig. 5.4. It res-
ults from the right branch of the proof in Sect. 2.9 by exhaustive splitting. Quantifier
elimination, as performed by function Reduce in Mathematica, runs more than 24
hours without producing a result on the formula in Fig. 5.4, which has nine symbolic
variables and polynomial degree 2.

The marked constraint in Fig. 5.4 corresponds to the initial state of the system,
because it refers to the initial train position z and not to the current train position z2
in the current induction step. In fact, the induction step does not depend on this part
of the initial state information (it does depend on the initial b > 0, though). When
we remove the superfluous constraint on the initial state, the formula in Fig. 5.4 sud-
denly becomes provable in less than one second, compared to more than a day! The

240 5 Deduction Modulo Real Algebra and Computer Algebra

Fig. 5.4 Computational dis-
traction in quantifier elimina-
tion t2 > 0, ε ≥ t2, v2 ≥ 0, A+1/t2 · v2 ≥ 0, t2 ≥ 0,

m− z2 ≥ v2
2/(2b)+(A/b+1)(A/2ε

2 + εv2),

2b(m− z2)≥ v2
2

2b(m− z)≥ v2, /* initial state */

b > 0, A≥ 0

` (At2 + v2)
2 ≤ 2b(m−1/2(At2

2 +2t2v2 +2z2))

dL calculus presented in Chap. 2 avoids this problem, because of the additional
focusing quantifiers introduced by the universal closure ∀α in global rules and be-
cause, later, rule i∀ applies quantifier elimination after reintroducing the quantifier
structure. �

Yet, such additional information accumulates in tableaux procedures quite nat-
urally, because the purpose of a proof branch in dL is to keep track of all that is
known about a particular (symbolic) case of the system behaviour. Generally, not all
of this knowledge finally turns out to be relevant for that case and only plays a role
in other branches. Nevertheless, discarding part of this knowledge arbitrarily would,
of course, endanger completeness.

For instance, the train safety statement (2.7) from p. 62 in Sect. 2.4 depends on
a constraint on the safety envelope s that regulates braking versus acceleration by
the condition m− z≥ s in ctrl. A maximal acceleration of A is permitted in case
m− z≥ s, when adaptively choosing s depending on the current speed v, maximum
braking force b, and maximum controller response time ε in accordance with con-
straint (2.18) as discovered in Sect. 2.9. This constraint is necessary for some but
not all cases of the symbolic safety analysis, though. In the case where the brak-
ing behaviour of ETCS is analysed, for instance, the constraint on s is irrelevant,
because braking is the safest operation that a train can do to avoid crashing into
preceding trains. The unnecessary presence of several quite complicated constraints
such as (2.18), however, can distract quantifier elimination procedures considerably.

5.3.3 Nondeterminisms in Mode Selection

In its own right, nondeterminism M has less impact on the prover performance
than F . Every part of a branch could be responsible for closing it. The foreground
closing rule ax of the main prover can only close branches for comparably trivial
reasons like b > 0,ε > 0 ` ε > 0. Hence, mode selection has to give a chance to the
background procedure every once in a while, following some fair selection strategy.
From the observation that some decision procedure calls can run for hours without
terminating, however, we can see that realisations of nondeterminism M need to be
devised with considerable care.

5.3 Nondeterminisms in Tableau Modulo 241

As the reason for closing a branch can be hidden in any part of the sequent, some
expensive decision procedure calls are superfluous if the branch can be closed by
continuing dL reasoning on the other parts. For instance, if A is some complicated
algebraic constraint, decision procedure calls triggered by nondeterminism M can
lead to nontermination within any feasible time for

. . . ,ε > 0,m− z≥ s ` A, [drive]ε > 0, . . .

If M chooses foreground rules, then an analysis of [drive]ε > 0 by dL rules will
quickly discover that the maximum reaction-time ε remains constant while driving.
Then, this part of a proof closes without the need to consider constraint A at all. For
this reason, proof strategies that eagerly check for closing branches by background
procedure calls as soon as the formulas are first-order are not successful in practise;
see Fig. 5.5. Similarly, for verifying the ETCS case study that we detail in Chap. 7

Fig. 5.5 Eager and lazy quan-
tifier elimination in proof
search space

we need to prove fairly large subgoals of first-order real arithmetic, which cannot
be proven by current quantifier elimination procedures within any feasible amount
of time; see Fig. 5.6 for a typical example.

Unfortunately, converse strategies with lazy checks that strongly favour fore-
ground dL rule applications in M are not appropriate either; see Fig. 5.5. The lazy
proof strategy only uses background solvers if no more foreground proof rules can
be used. There, splitting rules like ∧r and ∨l can eagerly split the problems into mul-
tiple branches without necessarily making them any easier to solve. If this happens,
slightly different but similar arithmetic problems of about the same complexity need
to be solved repeatedly on multiple branches rather than just one branch, resulting
in runtime blowup. The reason this can happen is a substantial syntactic redundancy
in the sequent encoding of formulas. For instance, the sets of sequents before and
after the following rule application are equivalent:

∧r,∧r
ψ ` v2 ≤ 2b(m− z) ψ ` ε > 0 ψ ` (z≥ 0→ v≤ 0)

ψ ` v2 ≤ 2b(m− z)∧ ε > 0∧ (z≥ 0→ v≤ 0)

Yet, closing the three sequents above the bar by quantifier elimination is not ne-
cessarily easier than closing the single sequent below (neither conversely), because

eager: infeasible

lazy: waste

242 5 Deduction Modulo Real Algebra and Computer Algebra

state = 0,
2 * b * (m - z) >= v ˆ 2 - d ˆ 2,
v >= 0, d >= 0, v >= 0, ep > 0, b > 0, A > 0, d >= 0

==>
v <= vdes

-> \forall R a_3;
(a_3 >= 0 & a_3 <= A
-> (m - z

<= (A / b + 1) * ep * v
+ (v ˆ 2 - d ˆ 2) / (2 * b)
+ (A / b + 1) * A * ep ˆ 2 / 2

-> \forall R t0;
(t0 >= 0
-> \forall R ts0;

(0 <= ts0 & ts0 <= t0
-> -b * ts0 + v >= 0 & ts0 + 0 <= ep)

-> 2 * b * (m - 1 / 2 *
(-b * t0 ˆ 2 + 2 * t0 * v + 2 * z))

>= (-b * t0 + v) ˆ 2
- d ˆ 2

& -b * t0 + v >= 0
& d >= 0))

& (m - z
> (A / b + 1) * ep * v
+ (v ˆ 2 - d ˆ 2) / (2 * b)
+ (A / b + 1) * A * ep ˆ 2 / 2

-> \forall R t2;
(t2 >= 0
-> \forall R ts2;

(0 <= ts2 & ts2 <= t2
-> a_3 * ts2 + v >= 0 & ts2 + 0 <= ep)

-> 2 * b * (m - 1 / 2 *
(a_3 * t2 ˆ 2 + 2 * t2 * v + 2 * z))

>= (a_3 * t2 + v) ˆ 2
- d ˆ 2

& a_3 * t2 + v >= 0
& d >= 0)))

Fig. 5.6 A large subgoal of first-order real arithmetic during ETCS verification

the working principle of arithmetic decision procedures is algebraic and not deduct-
ive. Even worse, if the sequents close by applying proof rules to ψ , then similar
reasoning has to be repeated for three branches. This threefold reasoning may not
even be detected as identical when ψ is again split differently on the three resulting
branches.

Further, the representational equivalence in sequents is purely syntactic, i.e., up
to permutation, the representations share the same disjunctive normal form. In the
uninterpreted case of first-order logic, this syntactic redundancy is exploited by
the propositional rules in order to transform sequents into a canonical form with
atomic formulas, where partial closing situations are more readily identifiable. In

5.4 Iterative Background Closure 243

the presence of a background decision procedure, however, reduction to sequents
with atomic formulas is no longer necessary as it will be undone when handing the
formulas over to the background decision procedure.

Moreover, the logical splitting along the propositional structure does not always
help quantifier elimination procedures, because their working principle is not a de-
ductive case analysis but (partial) cylindrical algebraic decomposition [80, 81, 83]
based on cell decompositions of polynomials. See App. D.2 for explanations of the
basic principle behind quantifier elimination in the background prover, which is
quite different from that of symbolic logical case distinctions in the foreground
prover. In Sect. 5.4, we will see that the combination of deductive analysis with
algebraic arithmetic proving is an extremely important factor for accelerating quan-
tifier elimination, but both have to be applied with care.

Finally, algebraic constraint handling techniques as in the Mathematica func-
tion Reduce can come up with a result that is only a restated version of the in-
put if a selected (open) formula cannot be simplified or closed. For instance, the
sequent z < m ` v2 ≤ 2b(m− z) “reduces” to ` b≥ v2/(2m−2z)∨m≤ z without
any progress. Such arithmetical reformulation cannot even be detected by simple
syntactical means and easily leads to infinite proof loops without progress when the
outcome is split by ∨r and again handled by the background procedures.

5.4 Iterative Background Closure

In this and the following section, we propose strategies to solve the previously ad-
dressed computational issues caused by the nondeterminisms of the dL tableau
procedure and its integration with computationally expensive background provers.

Priority-Based Strategies

We propose the priorities for rule applications in Fig. 5.7a (with rules at the top
taking precedence over rules at the bottom). In this strategy, algebraic constraints
are generally left intact as opposed to being split among multiple branches, because
arithmetic rules have a higher priority than propositional splitting rules on first-order
constraints. Further, we only accept the result of the background procedure when the
number of different variable symbols has decreased to avoid infinite proof loops. We
use arithmetic background rules either with priority 2 or with priority 5.

The effect of using priority 2 is that branches are checked eagerly for closing con-
ditions or variable reductions; see Fig. 5.5. If reasoning about algebraic constraints
does not yield any progress (no variables can be eliminated), then dL rules further
analyse the system. For this choice, it is important to work with timeouts to prevent
lengthy background decision procedure calls from blocking dL proof progress.

This problem is reduced significantly when using priority 5 for arithmetic rules
instead. The effect of priority 5 is that formulas containing modalities are analysed

244 5 Deduction Modulo Real Algebra and Computer Algebra

1. non-splitting propositional rules ¬r–∨r, ∧l–→r,
ax

2. arithmetic rules if variable eliminated
3. dynamic rules 〈?〉–[:=]
4. splitting rules ∧r, ∨l,→l on modalities
5. arithmetic rules if variable eliminated
6. (in)variant global rules ind, con, DI, and DV
7. splitting rules ∧r, ∨l,→l on first-order formulas

1

2 2

4 4

8 8

16
16

16

∗

∗

16

8

4

2

1

Fig. 5.7a Proof strategy priorities Fig. 5.7b Iterative background closure (IBC)
proof strategy

and decomposed as much as possible before arithmetic reasoning is applied to al-
gebraic constraint formulas. Then, however, the prover might consume too much
time analysing the effects of programs on branches which would easily close due to
simple arithmetic facts like in ε > 0,ε < 0 ` [α]φ .

A simple compromise is to use a combination of background rules with prior-
ity 2 for quick linear arithmetic [198] and expensive quantifier elimination calls for
nonlinear arithmetic with priority 5. Another option is to normalise arithmetic for-
mulas in sequents and use polynomial arithmetic to detect simple reasons for closing
branches early [273], which has also been implemented in KeYmaera.

Iterative Background Closure

As a more sophisticated control strategy on top of the static priorities in Fig. 5.7a,
we have introduced iterative background closure (IBC) [230]. There, the idea is to
periodically apply arithmetic rules with a timeout T that increases by a factor of 2
after the background decision procedure runs have timed out; see Fig. 5.7b. Thus,
background rules interleave with other rule applications (triangles in Fig. 5.7b), and
the timeout for the subgoals increases as indicated, until the background procedure
successfully eliminates variables on a branch (marked by ∗). The effect is that the
prover avoids splitting in the average case but is still able to split cases when com-
bined handling turns out to be prohibitively expensive. As an optimisation, timed-
out QE will only be invoked again after the branch has been split (or after a modal
formula has disappeared from the sequent) so that QE will work on a different input.

Figure 5.8 shows a proof procedure that implements IBC. Unless the QE call ter-
minated successfully within the current timeout (line 3), IBC applies foreground
rules (line 7) until the proof has split. Then, the timeout increases (line 10) and
IBC handles the resulting branches recursively (line 11). Our experimental results
in Sect. 5.6 show that IBC is surprisingly relevant for handling larger case studies.

5.4 Iterative Background Closure 245

1 /∗ prove v a l i d i t y o f t h e s e q u e n t Φ `Ψ ∗ /
2 f u n c t i o n IBC (Φ `Ψ , t i m e o u t) :
3 i f QE(Φ `Ψ) s u c c e e d s wi th in t i m e o u t then
4 re turn QE(Φ `Ψ)
5 e l s e
6 whi le f o r e g r o u n d r u l e a p p l i c a b l e and p r o o f not s p l i t do
7 a p p l y f o r e g r o u n d r u l e t o c u r r e n t s e q u e n t
8 end whi l e
9 l e t Φ1 `Ψ1, . . . ,Φn `Ψn be t h e r e s u l t i n g b r a n c h e s

10 t i m e o u t := 2∗ t i m e o u t
11 re turn IBC (Φ1 `Ψ1 , t i m e o u t) and . . . and IBC (Φn `Ψn , t i m e o u t)

Fig. 5.8 Iterative background closure (IBC) algorithm schema

And/Or Branching

More generally, the dL calculus gives rise to theorem proving structures with
combined and/or-branching. While the branches resulting from one rule applica-
tion are and-branches (all of them have to close for the proof to succeed), the rule
alternatives—especially as caused by the tableau procedure nondeterminisms—are
or-branches (only one of the proof search alternatives has to be successful for the
proof); see Fig. 5.9. Most notably, induction rules give rise to or-branches, as there

and

or

and

or or

and

or or

or

and

or or

and

or or

Fig. 5.9 General and/or-branching in proof strategies for differential dynamic logics

are several possible formulas (infinitely many) that could be used as (differential)
(in)variants for rules ind,con,DI,DV , but one single successful (in)variant is enough
for closing the proof. For these or-branch alternatives, any fair parallel explora-
tion scheme or any fair sequential exploration scheme with time interleaving can be

246 5 Deduction Modulo Real Algebra and Computer Algebra

used. Iterative background closure is one possible sequential interleaving choice
that works well in practise. On parallel computers, distributed clusters, or even
multi-core processors, truly parallel exploration schemes would be faster, as they
exploit the natural proving parallelism in our calculi from Part I. We will make use
of and/or-branching exploration based on iterative background closure in Chap. 6.

5.5 Iterative Inflation

The iterative background closure strategy already has a decisive impact on the feas-
ibility of verifying larger case studies. Yet, there are still cases where the F non-
determinism has a significant computational impact that limits scalability. These
difficulties are primarily caused by superfluous constraints on previous or initial
states that accumulate in the sequent; see, e.g., Example 5.1.

A general possible solution for this issue is to iteratively consider more formu-
las of the sequent and attempt decision procedure calls with fair time interleaving
until the respective branch closes. Then, only those additional formulas need to be
considered that share variables with any of the other selected formulas. Further,
timeouts can be used to discontinue lengthy decision procedure calls and continue
along other choices of the nondeterminisms in Fig. 5.2. For complicated cases with
a prohibitive complexity, this heuristic process worked well on our examples.

Inflation Order

As a general pattern for building iterative inflation optimisations, we propose an al-
gorithm that selects additional formulas of a sequent successively while a counter-
example can be found in bounded time (e.g., using the Mathematica function Find-
Instance) and terminates when a quantifier elimination call yields “true” within the
current time bound (increasing timeouts as in IBC).

The iterative inflation algorithm schema in Fig. 5.10 proves validity of a dis-
junction of formulas of first-order real arithmetic that is given as a set S of disjuncts.
Validity of a sequent Φ `Ψ can be proven by IIO({¬φ : φ ∈Φ}∪{ψ : ψ ∈Ψ}).
Following the general scheme in Fig. 5.9, the IIO algorithm explores subset candid-
ates of S in parallel by fair time interleaving. Starting from the empty subset of
formulas (line 5), the algorithm will try to prove (line 8) or disprove (line 11) each
candidate subset φ of S. The first successful QE call yielding true within the current
timeout shows validity of S (line 9), because a disjunction is valid if any subset is.
When a counterexample is found (line 11) or quantifier elimination produced an-
other result than “true” within the time bounds (line 10), candidate φ is dropped and
any remaining formulas of S are added to φ to form new candidates. If no candidate
could be proven (line 8) or disproven (lines 10–11) within the current time bounds,
the timeout increases (line 14). The algorithm returns that S is not valid if all can-

5.5 Iterative Inflation 247

1 /∗ prove v a l i d i t y o f t h e d i s j u n c t i v e s e t S ∗ /
2 /∗ o f f o r m u l a s o f f i r s t −o r d e r r e a l a r i t h m e t i c ∗ /
3 f u n c t i o n I IO (S) :
4 t i m e o u t := 1
5 C := { f a l s e }
6 whi le C 6= /0 do
7 f o r φ ∈ C do
8 i f (QE(φ) = t rue) wi th i n t i m e o u t then
9 re turn v a l i d

10 e l s e i f (QE(φ) 6= t rue) wi th in t i m e o u t
11 or F i n d I n s t a n c e (¬φ) wi th in t i m e o u t then
12 C := (C ∪{φ ∨A : A ∈ S,A 6∈ φ})\{φ}
13 end f o r
14 t i m e o u t := 2∗ t i m e o u t
15 end whi l e
16 re turn not v a l i d

Fig. 5.10 Iterative inflation order (IIO) algorithm schema

didates have counterexamples (or QE yields results other than “true”) and no new
formulas of S can be added to produce new candidates (line 12).

The IIO algorithm is a schematic algorithm. It allows for several refinements,
optimisations, and caching improvements. Most importantly, line 12 can be refined
to limit the number of candidates explored in parallel by adding only candidates
with computationally promising properties. In general, a reinclusion ordering can
be used to determine in what order new candidates are added and explored.

Canonical Reinclusion Order

One simple canonical reinclusion ordering is to order formulas by precomputing the
overall resulting theoretical complexity based on various complexity results for real
quantifier elimination [94, 141, 142, 263, 299, 60, 258, 259, 260], which depend on
the number of variables and either the number of quantifiers (practical algorithms)
or the number of quantifier alternations (theoretical complexity results). While this
has a certain theoretically precise appeal, the disadvantage is that the theoretical
complexity measures are rather coarse-grained and do not take into account the
structure of the formula but only its asymptotic worst-case elements.

Structural Reinclusion Order

Among all possible orders for reincluding formulas, total orders share the advantage
that they prevent the need for parallel exploration of multiple different possibilities
of adding mutually incomparable formulas. Yet this can also turn into a disadvantage
once the order starts adding computationally problematic high-degree constraints.

248 5 Deduction Modulo Real Algebra and Computer Algebra

As a compromise of the canonical reinclusion order with structural information,
we propose ordering formulas for reinclusion according to the lexicographical or-
der of, respectively, relative variable recency, total polynomial degree, number of
new variables, and maximum term depth. Favouring more recent variables follows
the rationale that formulas that mention variables that have been introduced only
recently into the proof are more likely to carry relevant information about the cur-
rent state than those that only refer to variables from the initial proof obligation, for
which more recent state variables have already been introduced during the proof.
For instance, in Fig. 5.4, the train position z from the initial state may be less rel-
evant than the current train position z2 for the induction step. The braking force, b,
however, may be as relevant as the recent z2, because there is no updated copy of
the symbolic constant b. The number of new variables that are added to the current
candidate φ ∈ C from Fig. 5.10 also has an impact on the complexity. Favouring
small polynomial degrees is self-explanatory and follows the observation that the
polynomial degree has a substantial impact on overall performance, as we will also
see in Chap. 8. The term depth is used as an indicator for the complexity of the for-
mula. To obtain a linear—yet arbitrary—order, this order can be extended easily by
breaking ties by lexicographical comparison.

Combining this structural order with more sophisticated combinations of poly-
nomial degree and the number of newly added variables according to the canonical
orders may also be a viable alternative to improve on pure lexicographic orders.

5.6 Experimental Results

Tables 5.1–5.4 summarise verification results for our proof strategies for various
case studies. Experimental results are from a 2.6 GHz AMD Opteron with 4 GB
memory. The timeout for computations was 18000s = 5h and is indicated as ∞.
Memory consumption of quantifier elimination is shown, excluding the front end.
The dimension of the state space (column Dim) and the number of required proof
steps (Steps) are indicated. To isolate effects resulting from our automatic invari-
ant discovery that we describe in Chap. 6, we conduct experiments both with (an-
notated) user interactions for (differential) invariants and in automatic mode (the
number of non-automatic interactions or annotations is indicated in column Int).
The respective case studies are based on the examples shown in Part I, the larger
case studies in Part III, and some standard examples from Part IV. For the tangen-
tial roundabout manoeuvre from Sect. 3.4, the number of participating aircraft is as
indicated.

Observe that the performance of the extreme strategies of eager and lazy quanti-
fier elimination depends on the example. For ETCS and larger aircraft roundabout
manoeuvres (Tables 5.1 and 5.3), the lazy strategy performs faster, while the eager
strategy is faster for the bouncing ball and water tank examples (Tables 5.2 and 5.4),
where the lazy approach splits heavily (the number of required proof steps is much
higher). As an intermediate strategy, IBC generally shows intermediate perform-

5.6 Experimental Results 249

Table 5.1 Experimental results for proof strategies (with standalone QE) I

Case study Int Strategy Time(s) Memory(MB) Steps Dim
ETCS kernel 1 eager 11.1 15.1 44 9

1 IBC 15.6 14.3 54
1 lazy 3.8 14.2 88
0 IBC 40.2 25.6 53
0 lazy 12.9 24.3 85

ETCS binary safety 1 eager 9.6 11.4 144 14
1 IBC 10.7 12.1 148
1 lazy 13.4 16.0 413
0 IBC 57.3 25.5 148
0 lazy 46.7 32.6 293

ETCS safety 1 eager ∞ ∞ ∞ 14
1 IBC 26.8 17.6 168
1 lazy 25.8 29.1 423
0 IBC 2089.2 206.1 171
0 lazy 2046.5 203.3 304

ETCS reactivity 0 eager ∞ ∞ ∞ 14
0 IBC 1084.1 6.1 34
0 lazy ∞ ∞ ∞

tangential roundabout 3 eager 1.7 6.8 94 13
3 IBC 1.5 6.8 93
3 lazy 1.6 6.7 139
0 IBC 10.3 6.9 114
0 lazy 10.2 6.8 197

tangential roundabout 3 3 eager ∞ ∞ ∞ 18
3 IBC 75.0 24.7 165
3 lazy 52.3 14.9 244
0 IBC 1065.5 27.6 186
0 lazy 620.2 15.0 342

tangential roundabout 4 3 eager 4208.2 E E 23
3 IBC 513.4 184.4 229
3 lazy 57.6 31.4 355
0 IBC 10998.1 184.3 256
0 lazy 901.7 31.4 520

tangential roundabout 5 3 eager 7714.1 E E 28
3 IBC 2457.9 479.3 317
3 lazy 108.9 43.6 502
0 IBC ∞ ∞ ∞

0 lazy 3417.5 48.5 735

Table 5.2 Experimental results for proof strategies (with standalone QE) II

Case study Int Strategy Time(s) Memory(MB) Steps Dim
bouncing ball 1 eager 7.7 13.6 85 7

1 IBC 8.0 13.6 85
1 lazy ∞ ∞ ∞

0 IBC 66.4 19.0 43
0 lazy ∞ ∞ ∞

water tank 1 eager 3.8 9.1 378 3
1 IBC 3.9 9.1 375
1 lazy 9.2 9.5 1604

250 5 Deduction Modulo Real Algebra and Computer Algebra

Table 5.3 Experimental results for proof strategies (no standalone QE) I

Case study Int Strategy Time(s) Memory(MB) Steps Dim
ETCS kernel 1 eager 11.3 15.0 42 9

1 IBC 6.9 14.3 47
1 lazy 2.8 14.2 61
0 IBC 47.8 25.4 46
0 lazy 10.5 24.2 58

ETCS binary safety 1 eager 9.8 11.3 142 14
1 IBC 10.4 12.2 148
1 lazy 7.2 15.8 235
0 IBC 41.0 17.4 144
0 lazy 18.6 12.4 204

ETCS safety 1 eager ∞ ∞ ∞ 14
1 IBC 26.5 23.1 168
1 lazy 18.9 24.2 247
0 IBC 2051.3 204.1 163
0 lazy 2031.6 203.1 216

ETCS reactivity 0 eager ∞ ∞ ∞ 14
0 IBC 104.1 61.7 49
0 lazy ∞ ∞ ∞

tangential roundabout 3 eager 1.7 6.8 94 13
3 IBC 1.7 6.8 93
3 lazy 1.9 6.7 139
0 IBC 10.9 6.9 114
0 lazy 9.9 6.8 197

tangential roundabout 3 3 eager ∞ ∞ ∞ 18
3 IBC 75.3 24.7 165
3 lazy 52.3 15.0 244
0 IBC 965.8 32.8 186
0 lazy 636.2 15.1 342

tangential roundabout 4 3 eager 4340.6 E E 23
3 IBC 513 185.7 229
3 lazy 57 31.4 355
0 IBC 3323.5 44.0 247
0 lazy 884.9 31.4 520

tangential roundabout 5 3 eager 7702.3 E E 28
3 IBC 2439.7 533.8 317
3 lazy 108.9 43.6 503
0 IBC 16303.7 827 320
0 lazy 3552.6 46.9 735

Table 5.4 Experimental results for proof strategies (no standalone QE) II

Case study Int Strategy Time(s) Memory(MB) Steps Dim
bouncing ball 1 eager 7.8 13.6 85 7

1 IBC 7.8 13.6 85
1 lazy 20.1 13.7 166
0 IBC 65.0 16.9 43
0 lazy 78.2 26.0 92

water tank 1 eager 3.6 9.1 387 3
1 IBC 3.8 9.1 375
1 lazy 6.6 9.3 914

5.7 Summary 251

ance. In our case studies, the eager strategy fails to come up with a result within
the timeout fairly often. Furthermore, IBC is the only strategy that is able to prove
all case studies. For the reactivity property of the ETCS case study, both lazy and
eager proof strategies fail at the same time and only IBC succeeds. A result of “E”
indicates that no data is available, because of out of memory errors or other limits
in the KeYmaera implementation at the time of performing these experiments. For
consistent performance measurements, we have used the same version of KeYmaera
for all experiments.

The experiments in Tables 5.1 and 5.2 use standalone quantifier eliminations,
while those in Tables 5.3 and 5.4 do not. Standalone quantifier elimination reduces
quantifiers of first-order formulas immediately, instead of waiting for the whole se-
quent to be passed to quantifier elimination at once. By comparing Tables 5.1 and 5.2
with Tables 5.3 and 5.4, we see that the performance is generally better when we do
not allow these partial reductions of standalone quantified subformulas of a sequent.
The reason for this is that the result of standalone QE-reductions on subformulas
(Tables 5.1 and 5.2) can produce several disjunctions which split into further sub-
branches, so that the redundancy effects described in Sect. 5.3 and those illustrated
in Fig. 5.5 have more impact.

Finally note that, without our range of proof strategies that result from a care-
ful analysis of the nondeterminisms in the tableau procedures for differential dy-
namic logics, the practical prover performance is significantly worse than all those
presented in Tables 5.1–5.4. The small ETCS kernel from Chap. 2 is already prov-
able directly when implementing the dL calculus naı̈vely. Without our range of
proof-strategic improvements, however, the full ETCS system that we present in
Chap. 7 requires as much as 56 user interactions to be provable [256], while our
proof strategies and the algorithms that we present in Part II can, in fact, prove ETCS
and other complicated systems completely automatically with zero user interaction.

5.7 Summary

From the experience of using our dL calculus for verifying parametric hybrid sys-
tems in traffic applications, we have investigated combinations of deductive, com-
puter algebraic, and real algebraic reasoning from a practical perspective. We have
analysed the principles of this prover combination, identified the nondeterminisms
that remain in the canonical dL tableau procedure, and analysed their impact.

We have proposed proof strategies that navigate through these nondeterminisms,
including iterative background closure and iterative inflation order strategies. Simil-
arly to the huge importance of subsumption in resolution, background-style tableau
proving requires quick techniques to rule out branches closing for simple arithmetic
reasons. In our experiments with verifying cooperating traffic agents, the combina-
tions of our proof strategies reduce the number of interactions and the overall run-
ning time significantly. In extreme cases, differences can be such that one proof

252 5 Deduction Modulo Real Algebra and Computer Algebra

strategy produces no result in a day compared to another that proves immediately,
in less than a second.

Chapter 6
Computing Differential Invariants as Fixed
Points

Contents
6.1 Introduction . 254

6.1.1 Related Work . 255
6.1.2 Structure of This Chapter 256

6.2 Inductive Verification by Combining Local Fixed Points 256
6.2.1 Verification by Symbolic Decomposition 257
6.2.2 Discrete and Differential Induction, Differential Invariants 258
6.2.3 Flight Dynamics in Air Traffic Control 260
6.2.4 Local Fixed-Point Computation for Differential Invariants 262
6.2.5 Dependency-Directed Induction Candidates 263
6.2.6 Global Fixed-Point Computation for Loop Invariants . . 265
6.2.7 Interplay of Local and Global Fixed-Point Loops 268

6.3 Soundness . 269
6.4 Optimisations . 271

6.4.1 Sound Interleaving with Numerical Simulation 271
6.4.2 Optimisations for the Verification Algorithm 272

6.5 Experimental Results . 272
6.6 Summary . 273

Synopsis We introduce a fixed-point algorithm for verifying safety properties of
hybrid systems with differential equations whose right-hand sides are polynomials
in the state variables. In order to verify nontrivial systems without solving their dif-
ferential equations and without numerical errors, we use differential induction as a
continuous generalisation of induction, for which our algorithm computes the re-
quired differential invariants. As a means for combining local differential invariants
into global system invariants in a sound way, our fixed-point algorithm works with
differential dynamic logic as a compositional verification logic for hybrid systems.
To improve the verification power, we further introduce a saturation procedure that
refines the system dynamics successively by differential cuts with differential in-
variants until the property becomes provable. By complementing our symbolic veri-
fication algorithm with a robust version of numerical falsification, we obtain a fast
and sound verification procedure. We verify roundabout manoeuvres in air traffic
control and collision avoidance in train control.

253A. Platzer, Logical Analysis of Hybrid Systems,
DOI 10.1007/978-3-642-14509-4_6, © Springer-Verlag Berlin Heidelberg 2010

254 6 Computing Differential Invariants as Fixed Points

6.1 Introduction

Reachability questions for systems with complex continuous dynamics are among
the most challenging problems in verifying embedded systems, in particular for hy-
brid systems, which are models for these systems with interacting discrete and con-
tinuous transitions along differential equations. For simple systems whose differen-
tial equations have solutions that are polynomials in the state variables, quantifier
elimination [81] can be used for verification as detailed in Chap. 2. Unfortunately,
this symbolic approach does not scale to systems with complicated differential equa-
tions whose solutions do not support quantifier elimination (e.g., when they are tran-
scendental functions) or cannot be given in closed form.

Numerical or approximation approaches [21, 238, 102] can deal with more gen-
eral dynamics. However, numerical or approximation errors need to be handled care-
fully as they easily cause unsoundness, even for principal reasons [238]. More spe-
cifically, we have shown previously that even single image computations of fairly re-
stricted classes of hybrid systems are undecidable by numerical computation [238].
Thus, numerical approaches are helpful for falsification but not (ultimately) for veri-
fication.

In this chapter, we present a verification algorithm that combines the soundness
of symbolic approaches [125, 15, 231, 235] with support for nontrivial dynamics
that is classically more dominant in numerical approaches [21, 238, 102]. Dur-
ing continuous transitions, the hybrid system follows a solution of its differential
equation. But for nontrivial dynamics, these solutions are much more complicated
than the original equations. Solutions quickly become transcendental even if the
differential equations are linear. To overcome this, we handle continuous transitions
based on their vector fields, which are described by their differential equations. We
use differential induction (Sect. 3.5.6), a continuous generalisation of induction that
works with the differential equations themselves instead of their solutions. For the
induction step, we use a condition that can be checked easily based on differential
invariants (from Sect. 3.5.6), i.e., properties whose derivative holds true in the dir-
ection of the vector field of the differential equation. The derivative is a directional
derivative in the direction of (the vector field generated by) the differential equation,
with derivatives generalised from functions to formulas according to the findings in
Chap. 3. For this to work in practise, the most crucial steps are to find sufficiently
strong local differential invariants for differential equations and compatible global
invariants for the hybrid switching dynamics.

To this end, we introduce a sound verification algorithm for hybrid systems that
computes the differential invariants and system invariants in a fixed-point loop.
Based on the invariants as fixed points paradigm [73], we present the “differential
invariants as fixed points” paradigm using dL as a verification logic that is gen-
eralised to hybrid systems accordingly. For combining multiple local differential
invariants into a global invariant in a sound way, we exploit the closure properties of
the underlying verification logic dL by forming appropriate logical combinations
of multiple safety statements. In addition, we introduce a differential saturation pro-
cess that refines the hybrid dynamics successively by differential cuts with auxiliary

6.1 Introduction 255

differential invariants until the safety statement becomes an invariant of the refined
system. Finally, each fixed-point iteration of our algorithm can be combined with
numerical falsification to accelerate the overall symbolic verification in a sound way.
We validate our algorithm by verifying aircraft roundabout manoeuvres [293, 238]
and train control applications automatically, continuing the examples in Part I to the
full case studies in Part III.

Contributions

The major contribution in this chapter is that we introduce the “differential invari-
ants as fixed points” paradigm and a fixed-point algorithm for computing differen-
tial invariants coupled with a differential saturation process. We turn the theoretical
and conceptual proof approach from Part I into a practical verification algorithm.
We show that this algorithm can verify realistic applications that were out of scope
for related invariant approaches [274, 269, 252] or standard model checking ap-
proaches [156, 125, 228] based on state-space exploration, for both theoretical and
scalability reasons (see discussions in Sects. 2.4 and 3.1.1).

6.1.1 Related Work

Based on successes in discrete programs [268, 267, 266], other authors [251, 274,
269, 252] argued that invariant techniques scale to more general dynamics than ex-
plicit reach-set computations or techniques that require solutions for differential
equations [125, 228]. However, their techniques are focused on purely equational
systems and cannot handle hybrid systems with inequalities in initial sets or switch-
ing surfaces [274, 269]. Due to tolerances, inequalities occur in most real applica-
tions. Barrier certificates [251, 252] only work for single inequalities, but invariants
of roundabout manoeuvres require mixed equations and inequalities [237]. Prajna
et al. [252] search for barrier certificates of a fixed degree by global optimisation
over the set of all possible certificate combinations for the whole system at once,
which is infeasible: Even with degree bound 2, this would require solving a 5,848-
dimensional optimisation problem for ETCS (Chap. 7) and a 10,005-dimensional
problem for roundabouts with 5 aircraft (Chap. 8).

Finally, important distinctions of our work compared to others [251, 274, 269,
252] are: (i) we allow arbitrary formulas as differential invariants, which provably
improves verification power; (ii) we increase the verification power further by nest-
ing differential invariants using differential saturation to refine the system dynamics;
and (iii) our compositional verification logic allows local generation of differential
invariants and natural local existential quantification of formal parameters for local
verification subtasks.

Tomlin et al. [293] derive saddle solutions for aircraft manoeuvre games using
Hamilton-Jacobi-Isaacs partial differential equations and propose roundabout man-

256 6 Computing Differential Invariants as Fixed Points

oeuvres. Their exponential state space discretisations for PDEs, however, do not
scale to larger dimensions (they consider dimension 3) and can be numerically un-
sound [238]. Differential invariants, in contrast, work for 28-dimensional systems
and are sound.

Straight-line aircraft manoeuvres have been analysed by geometrical meta-level
reasoning [104, 171]. We directly verify the actual hybrid flight dynamics, including
curved roundabout manoeuvres instead of straight-line manoeuvres with non-flyable
instant turns. A few approaches [203, 92] have been undertaken to model check if
there are orthogonal collisions in discretisations of roundabout manoeuvres. How-
ever, the counterexamples (see Fig. 3.6c on p. 151) found by our model checker
show that non-orthogonal collisions can still happen in these classical manoeuvres,
which is a problem that we have fixed in Chap. 3.

6.1.2 Structure of This Chapter

In Sect. 6.2, we introduce the “differential invariants as fixed points” paradigm and
present an automatic verification algorithm for hybrid systems that is based on the
DAL calculus and computes the differential invariants and invariants as fixed points
that are required for verification. In Sect. 6.3, we show how soundness of the DAL
calculus inherits in a simple and elegant way to soundness of our logic-based verific-
ation procedure. We present optimisations of the algorithm in Sect. 6.4. In Sect. 6.5,
we present experimental results for the running example of roundabout manoeuvres
in air traffic control and conclude in Sect. 6.6.

6.2 Inductive Verification by Combining Local Fixed Points

For verifying safety properties of hybrid systems without having to solve their dif-
ferential equations, we use differential induction as a continuous form of induction
based on our techniques from Chap. 3. In the induction step, we use a condition on
directional derivatives in the direction of the vector field generated by the differential
equation. The resulting properties are invariants of the differential equation (called
differential invariants in Chap. 3). The crucial step for verifying discrete systems by
induction is to find sufficiently strong invariants (e.g., for loops α∗). Similarly, the
crucial step for verifying dynamical systems (which correspond to a single continu-
ous mode of a hybrid system) by induction is to find sufficiently strong invariant
properties of the differential equation. Consequently, for verifying hybrid systems
inductively, local invariants need to be found for each differential equation and a
global system invariant needs to be found that is compatible with all local invari-
ants.

To compute the required invariants and differential invariants, we combine the
invariants as in the fixed-points approach from [73] with the lifting of verification

6.2 Inductive Verification by Combining Local Fixed Points 257

logics to hybrid systems from Chaps. 2 and 3. We introduce a verification algorithm
that computes invariants of a system as fixed points of safety constraints on sub-
systems. In order to obtain a local algorithm that works by decomposing global
properties of hybrid programs into local properties of subsystems, we exploit the
fact that hybrid programs can be decomposed into subsystems and that dL can
combine safety statements about multiple subsystems simultaneously. Note that the
algorithms developed in this chapter apply for the logics dL , DAL, and dTL from
Part I, respectively, even if we mostly refer to dL in this chapter.

A simple safety statement corresponds to a dL formula ψ → [α]φ with a hy-
brid program α , a safety property φ about its reachable states, and an arithmetic
formula ψ that characterises the set of initial states symbolically. Validity of for-
mula ψ → [α]φ (i.e., truth in all states) corresponds to φ being true in all states
reachable by hybrid program α from initial states that satisfy ψ . We describe
a verification algorithm that defines the function prove(ψ → [α]φ) for verifying
this safety statement recursively by refining the dL and DAL calculi to an auto-
matic verification algorithm. The discrete base cases are discussed in Sect. 6.2.1. In
Sect. 6.2.2, we contrast discrete and differential induction. Section 6.2.4 shows the
fixed-point algorithm for computing differential invariants for differential equations,
and Sect. 6.2.6 for computing loop invariants. In Sect. 6.2.7, we explain the interplay
of local and global fixed-point loops of our verification algorithm.

6.2.1 Verification by Symbolic Decomposition

The cases of the verification procedure prove where dL can verify a property of
a hybrid program directly by decomposing it into a property of its parts are shown
in Fig. 6.1. They correspond to the cases where the dynamic rules of Fig. 3.9 can

1 f u n c t i o n prove (ψ → [x :=θ]φ) :
2 re turn prove (ψ ∧ x̂ = θ → φ x̂

x)
3 where x̂ i s a new a u x i l i a r y v a r i a b l e
4 f u n c t i o n prove (ψ → [?χ]φ) :
5 re turn prove (ψ ∧χ → φ)
6 f u n c t i o n prove (ψ → [α ∪β]φ) :
7 re turn prove (ψ → [α]φ) and prove (ψ → [β]φ) /∗ i . e . ψ → [α]φ ∧ [β]φ ∗ /
8 f u n c t i o n prove (ψ → [α;β]φ) :
9 re turn prove (ψ → [α][β]φ)

10 f u n c t i o n prove (ψ → [x :=∗]φ) :
11 re turn prove (ψ →∀xφ)
12 f u n c t i o n prove (ψ → φ) where i s F i r s t O r d e r (φ) :
13 re turn QE (ψ → φ)
14 f u n c t i o n prove (ψ → Qxφ) where Qx i s ∀x or ∃x :
15 re turn QE (ψ → Qxprove(φ))

Fig. 6.1 dL -based verification by symbolic decomposition

258 6 Computing Differential Invariants as Fixed Points

be applied without any nondeterminism, and just depending on the top-level pro-
gram operator. For a concise presentation, the case in line 1 introduces an aux-
iliary variable x̂ to handle discrete assignments by substituting x̂ for x in φ x̂

x :
E.g., x≥ 2→ [x :=x−1]x≥ 0 is shown by proving x≥ 2∧ x̂ = x−1→ x̂≥ 0. Our
implementation in our theorem prover KeYmaera [242] uses proof rule 〈:=〉 and
discrete jump sets to avoid auxiliary variables according to Chap. 2. State checks ?χ

are shown by assuming the test succeeds, i.e., χ holds true (line 4), nondetermin-
istic choices split into their alternatives (line 6), sequential compositions are proven
using nested modalities (line 8), and random assignments are shown by universal
quantification (line 10), which is an optimisation of the handling in Chap. 3. Ran-
dom assignments [x :=∗]φ that nondeterministically assign an arbitrary real value
to x are definable by [x′ = 1∪ x′−1]φ and are equivalent to quantifiers ∀xφ .

The base case in line 12, where φ is a formula of first-order real arithmetic, can
be proven by quantifier elimination (QE) in real-closed fields [81]. Despite its com-
plexity, this can remain feasible, because the formulas resulting from our algorithm
do not depend on the solutions of differential equations but only on their right-hand
sides. Further, the decompositions in our verification algorithm generally lead to
local properties with lower complexities. We present here only a simplified treat-
ment of quantifiers in dL formulas like ∀xφ that contain modal subformulas: The
prove function is applied recursively to the unquantified kernel φ first and the res-
ulting formula is handled by quantifier elimination (line 14), which resembles the
quantifier handling by side deduction in Chap. 3. More generally, quantifier elimin-
ation can be lifted to quantifiers in dL formulas like ∀xφ using the respective Sko-
lemisation and free-variable rules from Chap. 2 . After introducing a fresh Skolem
term s for variable x in φ , the analysis continues with the unquantified kernel φ s

x .
Later on when the formulas resulting from recursive application of prove contain
no more modalities, the quantifier for s can be reintroduced (Deskolemisation) and
eliminated equivalently using quantifier elimination in real-closed fields. Handling
∃xφ for modal formulas φ is similar. The crucial part is that Skolem term depend-
encies can be exploited to prevent unsound quantifier rearrangements; see Chap. 2.

Overall, the algorithm in Fig. 6.1 recursively reduces the safety of hybrid pro-
grams to separate properties of continuous evolutions or of repetitions, which we
verify in the next sections.

6.2.2 Discrete and Differential Induction, Differential Invariants

In this section, we present algorithms for verifying loops by discrete induction
(which corresponds to rule ind from the dL /DAL calculi) and continuous evolu-
tions by differential induction, which is a continuous form of induction and cor-
responds to rule DI from the DAL calculus in Fig. 3.9. In either case, we prove
that an invariant F holds initially (in the states characterised symbolically by ψ;
thus ψ → F is valid) and finally entails the postcondition φ (i.e., F → φ). The cases
differ in their induction step.

6.2 Inductive Verification by Combining Local Fixed Points 259

Definition 6.1 (Discrete induction). The formula F is a (discrete) invariant of
ψ → [α∗]φ iff the following formulas are valid:

1. ψ → F (induction start), and
2. F → [α]F (induction step).

An invariant is sufficiently strong if F → φ is valid.

Definition 6.2 (Continuous invariants). Let D be a differential equation and χ is
a first-order formula. Formula F is a continuous invariant of ψ → [D ∧χ]φ iff the
following formulas are valid:

1. ψ ∧χ → F (induction start), and
2. F → [D ∧χ]F (induction step).

Again, a continuous invariant is sufficiently strong if F → φ is valid.

To prove that F is a continuous invariant, it is sufficient by Theorem 3.1 and proof
rule DI from Fig. 3.9 to check a condition on the directional derivatives of all terms
of the formula, which expresses that no atomic subformula of F changes its truth-
value along the dynamics of the differential equation. This condition is easier to
check than a reachability property (F → [D ∧χ]F) of a differential equation.

Applications like aircraft manoeuvres need invariants with mixed equations and
inequalities. Thus, we use the generalisation of directional derivatives from func-
tions to logical formulas according to the total derivation D(·) from Definition 3.13
on p. 155.

Definition 6.3 (Differential induction). Let the differential equation system D be
x′1 = θ1, . . . ,x′n = θn and χ be a first-order formula. A quantifier-free first-order for-
mula F is a differential invariant of ψ → [D ∧χ]φ iff the following formulas are
valid:

1. ψ ∧χ → F (induction start), and
2. χ → F ′D (induction step),

where F ′D is the result of substituting the differential equation D into the total deriv-
ation D(F) of F , which corresponds to the conjunction of all directional derivatives
of atomic formulas in F in the direction of the vector field of D (the partial derivat-
ive of b by xi is ∂b

∂xi
):

F ′D ≡
∧

(b∼c)∈F

((
n

∑
i=1

∂b
∂xi

θi

)
∼
(

n

∑
i=1

∂c
∂xi

θi

))
for ∼ ∈ {=,≥,>,≤,<}.

These partial derivatives of terms are well-defined in the Euclidean space spanned
by the variables and can be computed symbolically (Sect. 3.5.2).

The central property of differential invariants for verification purposes is that
they can be used to replace infeasible or even impossible reachability analysis with
feasible symbolic computation.

260 6 Computing Differential Invariants as Fixed Points

Proposition 6.1 (Principle of differential induction). All differential invariants
are continuous invariants.

Proof. This proposition is a corollary to Theorem 3.1, which shows that the differ-
ential induction rule DI from the DAL calculus in Fig. 3.9 is sound. ut

Example 6.1. Consider the dynamics x′ = x2,y′ =−3. Differential invariants can
show that 3x≥ 4y is an invariant for this dynamics without using any state-based
reachability verification. We just compute symbolically:

(3x≥ 4y)′x′=x2,y′=−3 ≡
∂3x
∂x

x2 +
∂3x
∂y

(−3)≥ ∂4y
∂x

x2 +
∂4y
∂y

(−3) ≡ 3x2 ≥−12.

Since the latter formula is easily found to be valid, 3x≥ 4y is proven to be a dif-
ferential invariant and thus remains true whenever it holds true initially (case 1 of
Definition 6.3). �

We have introduced this proof principle of differential induction in Chap. 3. The
above notions form the basis for our development of a systematic algorithm com-
puting the required invariants and differential invariants based on our proof rules
from Chap. 3. In Sects. 6.2.4–6.2.6, we present algorithms for finding differential
invariants for differential equations, and for finding global invariants for repetitions.

6.2.3 Flight Dynamics in Air Traffic Control

Aircraft collision avoidance manoeuvres resolve conflicting flight paths, e.g., by
roundabout manoeuvres [293]; see Fig. 3.6 on p. 151. Their nontrivial dynamics
makes safe separation of aircraft difficult to analyse, in particular as good timing and
coordination of movement in space are crucial [293, 203, 104, 92, 238, 171]. Cor-
rect functioning of these manoeuvres under all circumstances is difficult to guaran-
tee without formal verification, especially in light of the counterexample (Fig. 3.6c)
that our model checker discovered [238] for the classical roundabout manoeuvre.
Thus, verification is important for aircraft manoeuvres, and, at the same time, air-
craft dynamics is a challenge for hybrid systems verification.

For simplicity, we consider planar movement of aircraft (if the aircraft are
collision-free in a planar projection, they are collision-free in space). The paramet-
ers of two aircraft at (planar) position x = (x1,x2) ∈ R2 and y = (y1,y2) with angular
orientation ϑ and ς are illustrated in Fig. 6.2 (with ϑ = 0). Following the work of
Tomlin et al. [293], aircraft dynamics is determined by their linear speeds v,u ∈ R
and angular speeds ω,ρ ∈ R, respectively:

x′1 = vcosϑ x′2 = vsinϑ ϑ
′ = ω y′1 = ucosς y′2 = usinς ς

′ = ρ

(6.1)

6.2 Inductive Verification by Combining Local Fixed Points 261

Fig. 6.2 Aircraft dynamics

x1

x2

y1

y2

d

ω e

ς

̺

That is, position x moves with speed v into the direction with angular orientation ϑ ,
which rotates with angular velocity ω (likewise for a second aircraft at position y
with speed u, angular orientation ς , and angular velocity ρ).

In safe flight configurations, aircraft are separated by at least distance p:

(x1− y1)
2 +(x2− y2)

2 ≥ p2. (6.2)

To handle the transcendental functions in (6.1) without facing the undecidability
problems in the arithmetic of trigonometric functions, we axiomatise sin and cos
by differential equations and reparametrise the system using a linear velocity vec-
tor d = (d1,d2) := (vcosϑ ,vsinϑ) ∈ R2 according to Sect. 3.4.2:[

x′1 = d1 x′2 = d2 d′1 =−ωd2 d′2 = ωd1 t ′ = 1
y′1 = e1 y′2 = e2 e′1 =−ρe2 e′2 = ρe1 s′ = 1

]
(F)

Using symbolic derivations, it is easy to see that equations (F) and (6.1) are equi-
valent up to reparametrisation. Here, we add clock variables t,s (with t ′ = 1 and
s′ = 1) that we need for synchronising collision avoidance manoeuvres in Chap. 8.

By a simple computation, d2
1 +d2

2 ≥ a2 is a differential invariant of (F), thereby
showing that the linear speed of aircraft does not drop below some stalling speed a
during manoeuvres:

(d2
1 +d2

2 ≥ a2)′F ≡ (d2
1 +d2

2 ≥ a2)′(d′1=−ωd2,d′2=ωd1)

≡ ∂ (d2
1 +d2

2)

∂d1
(−ωd2)+

∂ (d2
1 +d2

2)

∂d2
ωd1 ≥

∂a2

∂d1
(−ωd2)+

∂a2

∂d2
ωd1

≡ 2d1(−ωd2)+2d2ωd1 ≥ 0.

As a stronger statement, the equation d2
1 +d2

2 = a2 for constant linear speed is a
provable differential invariant. Similarly, conjunction d2

1 +d2
2 = a2∧ e2

1 + e2
2 ≥ a2

can be shown to be a differential invariant of F . The theory of differential invariants
shows that this is a general phenomenon: Conjunctions of differential invariants are
differential invariants but not conversely so (Sect. 3.5.6). There are examples where
only the propositional combination itself is a differential invariant but none of its
parts is (Sect. 3.10). Thus, allowing conjunctions in differential invariants is cru-
cial and the verification power of differential invariants is higher than that of other
approaches [251, 274, 269, 252], which do not support logical operators.

262 6 Computing Differential Invariants as Fixed Points

6.2.4 Local Fixed-Point Computation for Differential Invariants

As with verification with invariants, the central practical question for verification
with differential invariants is how to find them. Figure 6.3 depicts our fixed-point al-
gorithm for constructing differential invariants for each continuous evolution D ∧χ

with a differential equation system D and evolution domain χ . The algorithm in

1 f u n c t i o n prove (ψ → [D ∧χ]φ) :
2 i f prove (∀D (χ → φ)) then return true /∗ p r o p e r t y proven ∗ /
3 f o r each F ∈C a n d i d a t e s (ψ → [D ∧χ]φ , χ) do
4 i f prove (ψ ∧χ → F) and prove (∀D (χ → F ′D)) then
5 χ := χ ∧F /∗ r e f i n e by d i f f e r e n t i a l i n v a r i a n t ∗ /
6 goto 2 ; /∗ r e p e a t f i x e d−p o i n t l oop ∗ /
7 end f o r
8 re turn not p r o v a b l e u s i n g c a n d i d a t e s

Fig. 6.3 Fixed-point algorithm for differential invariants (Differential Saturation)

Fig. 6.3 (called Differential Saturation) successively refines the evolution domain re-
striction χ by differential invariants until saturation, i.e., until χ accumulates enough
information to become a strong invariant that implies postcondition φ (line 2). If
evolution domain χ already entails φ , then ψ → [D ∧χ]φ is proven (line 2). Oth-
erwise, the algorithm considers candidates F for augmenting χ (line 3). If F is a
differential invariant (line 4), then χ can soundly be refined to χ ∧F (line 5) without
affecting the states reachable by D ∧ χ (Proposition 6.2 below). Then, the fixed-
point loop repeats (line 6). At each iteration of this fixed-point loop, the previous
invariant χ can be used to prove the next level of refinement χ ∧F (line 4). Hence,
each differential invariant provides more information to simplify subsequent itera-
tions. The refinement of the dynamics at line 5 is correct by the following proposi-
tion, using the fact that the conditions in line 4 imply that F is a differential invariant
and, thus, a continuous invariant by Proposition 6.1.

Proposition 6.2 (Differential saturation). If F is a continuous invariant of the
formula ψ → [D ∧χ]φ , then ψ → [D ∧χ]φ and ψ → [D ∧χ ∧F]φ are equivalent.

Proof. The proof is a stronger version of the soundness of the differential cut
rule DS by Theorem 3.1: Let F be a continuous invariant, which implies that
ψ → [D ∧χ]F is valid. Let ν be a state satisfying ψ (otherwise there is noth-
ing to show). Then, ν |= [D ∧χ]F . Since this means that F is true all along all
flows ϕ of D ∧χ that start in ν (Definition 3.10), the latter and D ∧χ ∧F have the
same dynamics and the same reachable states from ν , i.e., (ν ,ω) ∈ ρ(D ∧χ) holds
if and only if (ν ,ω) ∈ ρ(D ∧χ ∧F) (Definition 2.7). Thus, we can conclude that
ψ → [D ∧χ]φ and ψ → [D ∧χ ∧F]φ are equivalent, because their semantics uses
the same transition relation. ut

6.2 Inductive Verification by Combining Local Fixed Points 263

This progressive differential saturation turns out to be crucial in practise. For in-
stance, the aircraft separation property (6.2) cannot be proven until (F) has been
refined by invariants for d and e, because these determine x′ and y′. This makes
sense intuitively: Unless we have discovered some invariant about the directions d
and e in which the aircraft are flying, we cannot conclude good invariants about their
positions x and y, because the evolution of the positions over time depends on the
directions.

Function Candidates determines candidates for induction (line 3) depending on
transitive differential dependencies, as we will explain in Sect. 6.2.5. When these
are insufficient for proving ψ → [D ∧χ]φ , the algorithm fails (line 8, with improve-
ments in subsequent sections). Again, ∀α φ denotes the universal closure of φ . It
is required in lines 2 and 4, because the respective formulas need to hold in all
states (that satisfy χ). Clearly, this set of states is overapproximated conservatively
by the universal closure with respect to all variables for which there are differential
equations in D . We will reduce the number of quantifiers in Sect. 6.4.

6.2.5 Dependency-Directed Induction Candidates

In this section, we construct likely candidates for differential induction (function
Candidates in Fig. 6.3). Later, we use the same procedure for finding global loop
invariants. We construct two kinds of candidates in an order induced by differen-
tial dependencies. By following the effect of hybrid systems symbolically along
their decompositions, our verification algorithm enriches precondition ψ success-
ively with more precise information about the symbolic pre-state as obtained by the
symbolic decompositions and proof steps in Figs. 6.1 and 6.3. To exploit this, we
first look for invariant symbolic state information that accumulated in the respective
precondition ψ and postcondition φ during the iterative symbolic decomposition by
selecting subformulas that are not yet contained in χ . In practise, this gives par-
ticularly good candidates for highly parametric hybrid systems. Even if candidates
from ψ and φ do not yet work in the first iteration, repetitions of outer fixed-point
loops (Sect. 6.2.6) may enrich ψ and φ so that they become useful in later iterations.

Secondly, we generate parametric invariants. Let V = {x1, . . . ,xn} be a set of rel-
evant variables. We choose fresh names a(l)i1,...,in

for formal parameters of the invari-
ant candidates and build polynomials p1, . . . , pk of degree d with variables V using
formal parameters as symbolic coefficients:

pl := ∑
i1+···+in≤d

a(l)i1,...,in
xi1

1 . . .xin
n for 1≤ l ≤ k.

We define the set of parametric candidates (operator ∨ is used similarly):

ParaForm(k,d,V) :=

{
i∧

l=1

pl ≥ 0∧
k∧

l=i+1

pl = 0 : 0≤ i≤ k

}
.

264 6 Computing Differential Invariants as Fixed Points

̺

e1

y1

e2

y2

s ω

d1

x1

d2

x2

t

m
o
re

d
ep

en
d
en

ci
es

cluster {x2, d2, d1, ω}
cluster {x1, d1, d2, ω}
cluster {d2, d1, ω}

cluster {t}

Fig. 6.4 Differential dependencies (arrows) and (triangular) variable clusters of (F)

For instance, the parametric candidate a0,0 +a1,0d1 +a0,1x2 = 0 yields a differential
invariant of (F) for the choice a0,0 = 0, a1,0 = 1, a0,1 = ω . By simple combinat-
orics, ParaForm contains k+ 1 candidates with k

(n+d
d

)
formal parameters a(l)i1,...,in

,
which are existentially quantified. Existence of a common satisfying instantiation
for these parameters can be expressed by prefixing the resulting dL formula that
uses the parametric candidate with ∃a(l)i1,...,in

for each of the formal parameters

a(l)i1,...,in
. For this to be feasible, the number of parameters is crucial, which we min-

imise by respecting (differential) dependencies. We will illustrate the placement
of existential quantifiers in Example 6.2 of Sect. 6.2.6 after we have presented the
global fixed-point algorithm.

To accelerate the differential saturation process from Sect. 6.2.4, it is crucial to
explore candidates in a promising order from simple to complex, because the al-
gorithm in Fig. 6.3 uses successful differential invariants to refine the dynamics,
thereby simplifying subsequent proofs: E.g., separation property (6.2) is only prov-
able after the dynamics has been refined with invariants for d and e, because x′

and y′ depend on the direction d and e. In fact, the safety of roundabouts crucially
depends on compatible directions of the aircraft, as the counterexample in Fig. 3.6c
shows. We construct candidates in a natural order based on variable occurrence that
is consistent with the differential dependencies of the differential equations. For a
differential equation D , variable x depends on variable y according to the differen-
tial equation system D if y occurs on the right-hand side for x′ (or transitively so).
The resulting set depend(D) of dependencies is the transitive closure of

{(x,y) : (x′ = θ) ∈D and y occurs in θ}.

From the differential equation system (F), we determine the differential dependen-
cies indicated as arrows (pointing to the dependent variables x) in Fig. 6.4.

From these dependencies we determine an order on candidates. The idea is that,
as the value of x1 in (F) depends on that of d1, it makes sense to look for invariant
expressions of d1 first, because refinements with these help differential saturation
in proving invariant expressions involving also x1. Thus, we order variables by dif-
ferential dependencies, which resembles the back substitution order in Gaussian
elimination (if, in triangular form, x1 depends on d1, then equations for d1 must
be solved first, except that, in the differential case, variables may remain mutually
dependent, e.g., d1 and d2). Now we call a set V of variables a cluster of the differ-

6.2 Inductive Verification by Combining Local Fixed Points 265

ential equation D iff V is closed with respect to depend(D), i.e., variables of V only
depend on variables in V :

x ∈V and (x,y) ∈ depend(D) then y ∈V.

The resulting variable clusters for system (F) are marked as triangular shapes
in Fig. 6.4. Finally, we choose candidates from ψ and ParaForm(k,d,V) starting
with candidates whose variables lie in small clusters V and cover larger fractions
of that cluster. Thus, the differential invariant d2

1 +d2
2 ≥ a2 of Sect. 6.2.3 within

cluster {d2,d1,ω} can be discovered before invariants such as d1 =−ωx2 that in-
volve x2, because x2 depends on d2. Similarly, d1 =−ω(x2− c2) will be discovered
before ‖x− y‖2 ≥ p2, as the latter lies in a larger cluster with worse coverage per-
centage of that cluster. The successive differential saturation process along these
dependencies further helps to keep the degrees in ParaForm small.

6.2.6 Global Fixed-Point Computation for Loop Invariants

With the uniform setup of dL , we can adapt the algorithm in Fig. 6.3 easily to ob-
tain a fixed-point algorithm for loops (ψ → [α∗]φ) in place of continuous evolutions
(ψ → [D ∧χ]φ): In line 4 of Fig. 6.3, we replace the induction step from Defini-
tion 6.3 with the step for loops (Definition 6.1). As an optimisation, we can transfer
the reuse of partial differential invariants according to Proposition 6.2 to discrete in-
variants for loops. Invariants χ of previous iterations can be exploited as refinements
of the hybrid system dynamics, similarly to previous differential invariants that can
be used in future iterations by refining the dynamics using differential saturation:

Proposition 6.3 (Loop saturation). If χ is a discrete invariant of ψ → [α∗]φ , then
χ ∧F is a discrete invariant iff ψ → F and χ ∧F → [α](χ → F) are valid.

Proof. Let χ be a discrete invariant of ψ → [α∗]φ . Let, further, χ ∧F be a dis-
crete invariant of ψ → [α∗]φ . Then ψ → χ ∧F and χ ∧F → [α](χ ∧F) are valid
by Definition 6.1. Hence, trivially, χ ∧F → [α](χ → F) is valid, because all states
that satisfy χ ∧F also satisfy the weaker property χ → F . Finally, the validity of
ψ → χ ∧F clearly entails ψ → F .

Conversely, let χ be a discrete invariant. Let, further, χ ∧F → [α](χ → F) and
ψ → F be valid. For χ ∧F to be a discrete invariant, we have to show that F
satisfies the induction step of Definition 6.1 (the induction start ψ → χ ∧F is
an immediate combination of the validity of ψ → χ and ψ → F). Since χ is a
discrete invariant, χ → [α]χ is valid, which entails χ ∧F → [α]χ as a special
case. Since χ ∧F → [α](χ → F) is valid and χ ∧F → [α]χ is valid, we conclude
that χ ∧F → [α](χ ∧F) is valid for the following reason. Let ν be a state satisfy-
ing the initial constraints χ ∧F . Then ν |= [α]χ and ν |= [α](χ → F). Hence, all
states ω reachable from ν by α satisfy ω |= χ and ω |= χ → F . Thus, they sat-
isfy ω |= χ ∧F , essentially by modus ponens. Consequently, we have shown that

266 6 Computing Differential Invariants as Fixed Points

χ ∧F → [α](χ ∧F) is valid. and, hence, χ ∧F is a discrete invariant of ψ → [α∗]φ .
ut

The induction step from Proposition 6.3 can generally be proven faster, because
it is a weaker property than that of Definition 6.1.

To adapt our approach from Sect. 6.2.5 to loops, we use discrete data-flow and
control-flow dependencies of α . Dependencies can be determined immediately from
the syntax of hybrid programs. There is a direct data-flow dependency with the value
of x depending on y, if x :=θ or x′ = θ occurs in α with a term θ that contains y.
Similarly, there is a direct control-flow dependency with the value of x depending
on y if, for any term θ , x :=θ or x′ = θ occurs in α after a test ?χ or evolution
domain restriction ∧χ containing y. The respective data-flow and control-flow de-
pendencies are the transitive closures of these relations.

1 f u n c t i o n prove (ψ → [α∗]φ) :
2 χ := true /∗ c u r r e n t l y known i n v a r i a n t o f ψ → [α∗]φ ∗ /
3 i f prove (∀α (χ → φ)) then return true /∗ p r o p e r t y proven ∗ /
4 f o r each F ∈ I n d C a n d i d a t e s (ψ → [α∗]φ , χ) do
5 i f prove (ψ ∧χ → F) and prove (∀α (χ ∧F → [α](χ → F))) then
6 χ := χ ∧F /∗ r e f i n e by d i s c r e t e i n v a r i a n t ∗ /
7 goto 3 ; /∗ r e p e a t f i x e d−p o i n t l oop ∗ /
8 end f o r
9 re turn not p r o v a b l e u s i n g c a n d i d a t e s

Fig. 6.5 Fixed-point algorithm for discrete loop invariants (loop saturation)

The resulting algorithm in Fig. 6.5 verifies loops. It is a direct adaption of that
in Fig. 6.3, except that it uses Proposition 6.3 as an induction step for loops. The
algorithm in Fig. 6.5 performs a fixed-point computation for loops and recursively
combines the local differential invariants obtained by differential saturation to form
a global invariant. It recursively uses prove for verifying its subtasks, which handle
the discrete switching behaviour according to Fig. 6.1 and infer local differential in-
variants according to differential saturation by the fixed-point algorithm in Fig. 6.3.

Example 6.2 (Existential parameter quantification). Note that the ability of formu-
las in differential dynamic logic to have quantifiers in front of reachability modalit-
ies is crucial here. To illustrate, consider the simple water tank system from Fig. 6.6,
where x denotes the current water level.

The second line in the hybrid program of Fig. 6.6 represents a continuous trans-
ition. It tests by ?q = on whether the current location q is on, and then fills the tank
by following the differential equation x′ = 1 restricted to the evolution domain x≤ 9
(i.e., the conjunction x′ = 1∧ x≤ 9). The third line tests the guard x ≥ 5 when in
state on, then resets x by a discrete assignment (x :=x−1), and then changes loc-
ation q to off. The additional test ?x≤ 9 in the fourth line is needed, because the
hybrid automaton is only allowed to enter mode on when its evolution domain re-

6.2 Inductive Verification by Combining Local Fixed Points 267

q :=on; /* initial location is on */(
(?q = on; x′ = 1∧ x≤ 9)

∪ (?q = on∧ x≥ 5; x :=x−1; q :=off)
∪ (?q = off; x′ =−1)
∪ (?q = off∧ x≤ 2; q :=on; ?x≤ 9)

)∗
Fig. 6.6 Hybrid program rendition of hybrid automaton for simple water tank

gion x≤ 9 is satisfied. The ∗ at the end of the hybrid program indicates that the
transitions of a hybrid automaton repeat indefinitely.

Let wctrl abbreviate the body of the loop of the hybrid program for the water
controller from Fig. 6.6 such that q :=on;(wctrl)∗ corresponds to the full hybrid
program from Fig. 6.6. Then the following dL formula states that the water level is
always below 10 when it starts at level x≤ 3:

x≤ 3→ [q :=on;(wctrl)∗]x < 10. (6.3)

During the verification run for property (6.3), we need to show a property of the
following form for the loop wctrl∗:

x≤ 3∧q = on→ [(wctrl)∗]x < 10.

For a parametric candidate F of the form a1x+a0 ≥ 0, line 5 of the algorithm in
Fig. 6.5 produces subtasks for discrete induction (Definition 6.1), which will be
handled recursively by the prove function:

prove(x≤ 3∧q = on∧χ → a1x+a0 ≥ 0)
and prove

(
∀α
(
a1x+a0 ≥ 0∧χ → [wctrl](χ → a1x+a0 ≥ 0)

))
In the first iteration (where χ is still true), the combination of these subtasks by
conjunction corresponds to proving the following overall dL formula:

∃a0∃a1
(
(x≤ 3∧q= on→ a1x+a0≥ 0)∧∀x(a1x+a0≥ 0→ [wctrl]a1x+a0≥ 0)

)
.

(6.4)
The universal quantifier ∀x in (6.4) results from the universal closure ∀α with re-
spect to all variables changed in wctrl, i.e., x. The existential quantifiers for a0 and a1
are for formal parameters in the parametric candidate (Sect. 6.2.5). Observe that the
outer placement of existential quantifiers is required for the resulting instance of
a1x+a0 ≥ 0 to be a common solution implied by the precondition (left conjunct)
and inductive for wctrl (right conjunct). In particular, the right conjunct requires
finding parameter choices for which a1x+a0 ≥ 0 holds true after executing one it-
eration wctrl of the loop from any initial state if it was true before.

Note that this inherently requires quantifiers around reachability properties! Yet
these nestings are naturally expressible in the first-order verification logic dL . The
left conjunct expresses the fact that the parameter choices need to make a1x+a0 ≥ 0
true in the beginning. The conjunction and outer placement of ∃a0∃a1 ensures that

on
x′ = 1
x≤ 9

off
x′ =−1

x≥ 5

x :=x−1

x≤ 2

268 6 Computing Differential Invariants as Fixed Points

the required parameter choices fit together. Equation (6.4) also illustrates the need
for the universal closure, because we need the same choice for the formal paramet-
ers a0,a1 to be able to conclude the induction step (case 2 of Definition 6.1) for all
states x (∀x). Different incompatible choices for a0,a1 at each state would not yield
an inductive argument. To prove the example in Fig. 6.6, our algorithm will discover
the parameter combination a1 =−1 and a0 = 9.5, for instance. �

For verification with parametric candidates to be feasible, we exploit the fact
that we can keep existential quantifiers as local as possible in dL , which we ensure
by the symbolic decompositions in our logic. For instance, quantifiers for the formal
parameters of a differential invariant will remain local to the formulas resulting from
the algorithm in Fig. 6.3. Contrast this to a computationally more complicated global
use of quantifiers around the whole verification problem at once. Minimising the
number of parameters according to Sect. 6.2.5 further improves the computational
tractability.

6.2.7 Interplay of Local and Global Fixed-Point Loops

Together, our local and global fixed-point algorithms jointly verify correctness prop-
erties of hybrid programs. Their interplay needs to be coordinated with fairness,
though. If the local fixed-point algorithm in Fig. 6.3 does not converge, stronger in-
variants may need to be found by the global fixed-point algorithm which iteratively
result in stronger preconditions ψi for the local fixed-point algorithm; see Fig. 6.7.

Fig. 6.7 Interplay of local (diffsat) and global (loopsat) fixed-points verification loops during sym-
bolic decomposition

Thus, for fairness reasons, the local fixed-point algorithm should stop when it
cannot prove its postcondition, either because of a counterexample or because it runs
out of candidates for differential invariants. As in the work of Prajna et al. [252], the

ψ → [α]φ

ψ1 → [α1]φ1 ψ2 → [α2]φ2

ψ3 → [α3]φ3 ψ4 → [α4]φ4

diffsat

diffsat

loopsat

6.3 Soundness 269

degrees of parametric invariants, therefore, need to be bounded and increased it-
eratively. As in [252], there is no natural measure for how these degrees should be
increased. Instead, here, we exploit the fact that the candidates produced by function
Candidates are independent and we explore them in parallel with fair time interleav-
ing. The interleaving by iterative timeout increase is similar to iterative background
closures from Sect. 5.4, except that it works for full subproofs instead of for just one
local quantifier elimination call.

During fixed-point computations, wrong choices of candidates are time con-
suming. Thus, in practise, it is important to discover futile attempts quickly. For
this, non-exhaustive sampling with numerical simulations can be used to look for
counterexamples. Note that this numerical counterexample search can be performed
separately for each local subtask in the decomposition. For instance, a counter-
example for a candidate F for node ψ4 → [α4]φ4 in Fig. 6.7 will only abort the
attempt to prove this particular candidate F , not attempts with other candidates. A
counterexample found by local numerical simulation for the reachability property
ψ4→ [α4]φ4 itself, on the other hand, will terminate all proof search for that subtask
by propagating the need for a stronger precondition ψ4 up the decomposition tree in
Fig. 6.7. Likewise, a counterexample found for the original property ψ→ [α]φ will
abort the whole proof search. We discuss the implications of including numerical
procedures in Sect. 6.4.

In well-designed control loop systems, global fixed points are easier to find than
local fixed points of differential invariants, because the global invariant often coin-
cides with the controllability region of the system. In these systems, the minimal
control objective is to keep the system in the controllable state region. That is, if
the system is in a controllable state, i.e., there is a control choice such that the sys-
tem can remain safe, suitable controllers will pick one such control option such that
the system again ends up in a controllable state. Inductively, this controllability re-
gion directly corresponds to a global system invariant. We make this intuition more
precise in the context of Chap. 7.

6.3 Soundness

Even though the interplay of the fixed-point verification algorithms in this chapter
is already quite complicated, we can exploit the fact that the algorithms are always
working with formula transformations in the verification logic dL to ensure sound-
ness quite easily. Since all formula transformations in the algorithm are justified by
sound proof rules, soundness is fully captured in the logic and the algorithm can
only be incomplete but not unsound:

Theorem 6.1 (Soundness of fixed-point verification algorithm). The verification
algorithm in Sect. 6.2 is sound, i.e., whenever prove(ψ → [α]φ) returns “true”,
the dL formula ψ → [α]φ is true in all states, i.e., all states reachable by α from
states satisfying ψ satisfy φ .

270 6 Computing Differential Invariants as Fixed Points

Proof. Soundness is a direct consequence of Theorem 3.1, as every statement that
returns true is justified by a sound proof rule of DAL. To show this in full detail,
we prove by induction on the structure of the algorithm that, for any dL formula φ ,
φ is true in every state ν where (the formula returned by) prove(φ) is true. That is,
ν |= prove(φ) implies ν |= φ . In particular, if the algorithm returns “true”, the input
formula is true in all states.

• In the base case (line 12 of Fig. 6.1), prove returns the result of quantifier elimin-
ation, which is a sound decision procedure [81]. The result of quantifier elimin-
ation is equivalent to its input. Hence one formula is true if and only if the other
is.

• If α is of the form x :=θ , the algorithm in line 1 of Fig. 6.1 is responsible. Con-
sider any state ν where the formula returned by prove(ψ → [x :=θ]φ) is true.
That is, prove(ψ ∧ x̂ = θ → φ x̂

x) is true at ν . Hence, by the induction hypothesis,
ψ ∧ x̂ = θ → φ x̂

x is true at ν . Now, because x̂ was a fresh variable, the Substitu-
tion Lemma 2.2 can be used to show that ψ → φ θ

x and ψ → [x :=θ]φ are true
at ν .

• If α is of the form x :=∗, the algorithm in line 10 of Fig. 6.1 is responsible.
The proof is a direct consequence of the fact that φ being true after all ran-
dom assignments to x is equivalent to φ being true for all real values of x. Hence,
ψ → [x :=∗]φ is true in a state ν if and only if ψ →∀xφ is.

• For formulas of the form ψ → Qxφ where Q is a quantifier, line 14 of Fig. 6.1 is
responsible. If the formula returned by prove(ψ → Qxφ) is true in state ν , then
QE(ψ → Qxprove(φ)) is true in ν . As quantifier elimination yields an equivalent
formula, this implies that ψ → Qxprove(φ) itself is true at ν . Assume that ψ

holds at ν as there is nothing to show otherwise. Then Qxprove(φ) is true at
ν . Thus for all (or some if Q is ∃) states ω that agree with ν except for the
value of x, we know that the formula returned by prove(φ) is true at ω . The
formula φ is structurally simpler. Hence, by induction hypothesis, φ is true at ω .
Consequently, both Qxφ and ψ → Qxφ are true at ν , as ω was arbitrary.

• The other cases of Fig. 6.1 are similar consequences of the soundness of the DAL
rules in Fig. 3.9 by Theorem 3.1.

• If α is of the form D ∧χ for a differential equation system D , the algorithm in
Fig. 6.3 is responsible. If it returns “true” in line 2 in the first place, then the calls
to prove in line 2 must have resulted in “true”. Hence, by induction hypothesis, χ

entails φ . Thus, soundness of rule [DR] justifies soundness as follows. Postcon-
dition φ is true in a subregion of the evolution domain χ . Thus ψ → [D ∧χ]φ is
valid, trivially, because all evolutions along D ∧χ always satisfy χ and, hence, φ .
If, however, χ was changed in line 5 during the fixed-point computation, then the
calls to prove for the properties in line 4 must have returned “true”. Thus, by the
induction hypothesis, the dL formulas ψ ∧χ → F and ∀D (χ → F ′D) are valid.
Hence DS justifies soundness as follows. Formula F is a differential invariant
of ψ → [D ∧χ]φ by Definition 6.3. Consequently, by Proposition 6.1, F also is
a continuous invariant (Definition 6.2). Thus, by Proposition 6.2, the dL formu-
las ψ → [D ∧χ]φ and ψ → [D ∧χ ∧F]φ are equivalent, and we can (soundly)
verify the former by proving the latter. Consequently, the modification of the

6.4 Optimisations 271

evolution domain χ to χ ∧F in line 5 is sound, because the algorithm will con-
tinue proving a refined but equivalent formula for a refined but equivalent system.

• If α is a loop of the form β ∗, the proof is similar to the case for differential
equations, except that it uses Proposition 6.3 instead of Proposition 6.1. ut

Since reachability of hybrid systems is undecidable, our algorithm must be incom-
plete. It can fail to converge when the required invariants are not expressible in
first-order logic (yet, the required invariants are always expressible in dL by The-
orem 2.3). Consequently, a fixed point in dL always exists but our algorithm may
fail to find appropriate (differential) invariants in first-order logic.

6.4 Optimisations

In this section, we consider some optimisations of the fixed-point verification al-
gorithm.

6.4.1 Sound Interleaving with Numerical Simulation

During fixed-point computations, wrong choices of candidates are time consum-
ing. Thus, it is important to discover futile proof attempts quickly. For this, we
use non-exhaustive numerical simulation to look for a counterexample for each
candidate. To prevent rejecting good candidates due to numerical errors, we dis-
card fragile counterexamples. We consider counterexamples with distance <ε to
safe states as fragile, because small numerical perturbations could make it safe (the
right x in Fig. 6.8 marks fragile examples or counterexamples). The left mark in

Fig. 6.8 Robustness in
counterexamples

safe

robust unsafe

fragile unsafe

x
xx

+e

Fig. 6.8, instead, is a robust counterexample, i.e., only large (≥ ε) perturbations
could make it safe. Robust counterexamples can be ensured by replacing, e.g., a≥ b
with a≥ b+ ε in the formulas for numerical reachability simulation for some estim-
ate ε ≥ 0 of the numerical error. Unlike in other approaches [21, 192, 228, 252, 238],
numerical errors are not critical for soundness here, because safety is exclusively es-
tablished by sound symbolic verification. Numerical computations are only used to
stop futile proof attempts.

We can further exploit the symbolic decomposition performed by our algorithm
in Sect. 6.2 and prefix recursive calls to prove(ψ → [α]φ) with a partial simulation

272 6 Computing Differential Invariants as Fixed Points

of α . Using approximate cylindrical algebraic decomposition [81] in the FindIn-
stance function of Mathematica, we often find good samples of states satisfying ψ

to start the simulation of α .

6.4.2 Optimisations for the Verification Algorithm

Formulas with variables that do not change in a fragment of a hybrid program are
trivial invariants, as their truth-value is unaffected. For instance, ω = ρ is a trivial
invariant of system (F). Hence, it can be used as an invariant without proof. A
formula like ω2(d2

1 +d2
2)> r2 in ψ , in contrast, is not trivially invariant, because di

changes during (F). Still, it has invariant consequences such as ω 6= 0. To make
use of these direct and indirect trivial invariants from ψ , we (soundly) weaken all
universal closures of the form ∀α φ in lines 2 and 4 of Fig. 6.3 by ψ →∀α φ , which
directly reflects the rule context instantiations from Definition 2.10.

6.5 Experimental Results

We analyse aircraft roundabout manoeuvres [293] as a system with nontrivial dy-
namics. Curved flight as in roundabouts is challenging for verification, because of
its transcendental solutions. The manoeuvre from [293] in Fig. 3.6a on p. 151 and
the manoeuvre in Fig. 3.6d from [238, 237] are not flyable, because they still in-
volve a few instant turns. A flyable roundabout manoeuvre without instant turns is
depicted in Fig. 6.9. We verify safety properties for several (but not yet all) phases

Fig. 6.9 Flyable aircraft
roundabout

c

x
entry

ex
it

y

of Fig. 6.9 fully automatically and provide verification results in Table 6.1. Details
on the case studies are presented in Part III. Finally, note that the required invariants
found by our approach for the roundabout manoeuvre cannot even be found from
Differential Gröbner Bases [202].

Verification results for roundabout aircraft manoeuvres [293, 92, 238, 237] and
the European Train Control System (ETCS) are in Table 6.1. Results are from a 2.6
GHz AMD Opteron with 4 GB memory. Memory consumption of quantifier elim-
ination is shown in Table 6.1, excluding the front end. The results are only slightly

6.6 Summary 273

Table 6.1 Experimental results for differential invariants as fixed points

Case study Time(s) Memory(MB) Proof steps Dim
tangential roundabout (2 aircraft) 14 8 117 13
tangential roundabout (3 aircraft) 387 42 182 18
tangential roundabout (4 aircraft) 730 39 234 23
tangential roundabout (5 aircraft) 1964 88 317 28
ETCS kernel safety 41 28 53 9
ETCS binary safety 56 27 147 14
ETCS safety 183 87 169 14

worse on a 1.7 GHz Pentium M laptop with 1 GB memory. The dimension of the
continuous state space is indicated (column Dim). Notice that we handle all the
variables symbolically leading to state spaces up to R28. The experimental results
are encouraging, in particular as the memory consumption is fairly moderate. High
memory consumption would limit scalability much more than time consumption.
For instance, numerical techniques on a rather coarse numerical mesh with only 10
samples per variable would need to consider reachability analysis from 1028 initial
states for this case. The results in Table 6.1 indicate that scalability of our approach
is substantially less limited by the number of variables than in other approaches. In-
stead, the complexity of the constraints and dependencies among the variables have
more impact. In parallel systems, there is usually a smaller fraction of dependencies
among continuous variables. Multiple aircraft, e.g., are not coupled physically (see
Fig. 6.4) but interact only by discrete dynamics originating from sporadic commu-
nication.

6.6 Summary

We have introduced the “differential invariants as fixed points” paradigm and we
have presented a sound algorithm for verifying hybrid systems with nontrivial dy-
namics. It handles differential equations using differential invariants instead of re-
quiring solutions of the differential equations, because the latter quickly yield un-
decidable arithmetic. We compute differential invariants as fixed points using dL ,
DAL, or dTL as verification logics for hybrid systems. In the logics we can decom-
pose the system for computing local invariants and we obtain sound recombinations
into global invariants. Moreover, we introduce a differential saturation procedure
that verifies more complicated properties by refining the system dynamics success-
ively in a sound way. We validate our algorithm on challenging roundabout collision
avoidance manoeuvres for aircraft and on collision avoidance protocols for trains.
We give verification results with a sound algorithm for challenging dynamics of
curved flight in up to 28-dimensional continuous state spaces.

Our algorithm works particularly well for highly parametric hybrid systems, be-
cause their parameter constraints can often be combined faster to find invariants,
than for systems with a single initial state, where simulation is more appropriate.

274 6 Computing Differential Invariants as Fixed Points

Our decompositional approach exploits locality in system designs. In well-designed
systems, subsystems do not generally depend on all other parts of the system but
are built according to modularity and locality principles in engineering. In these
cases, the dL calculus achieves good decompositions and the required invariants
for one part of the system only need very little information about other parts of
the systems, so the fixed-point algorithm terminates faster. Our algorithm probably
performs worse for systems that violate locality principles.

Scalability to applications from other domains like chemical process control or
biomedical devices remains an interesting topic for future research. An independ-
ent question for future research, underlying virtually all hybrid systems’ verification
approaches, is how to scale real arithmetic handling. Semidefinite programming re-
laxations [224] may be an interesting direction for future research (see App. D). Dif-
ferential induction and the logic dL generalise to liveness properties and to systems
with disturbances (Chap. 3). In future work, we want to generalise the synthesis of
corresponding differential (in)variants for these cases.

Part III
Case Studies and Applications in Hybrid

Systems Verification

Overview In Part I we have developed differential dynamic logics as specification
and verification languages for both hybrid programs and DA-programs as opera-
tional system models for hybrid systems. We have also developed proof calculi as
formal verification techniques for hybrid systems in differential dynamic logic. In
Part II, we have studied algorithmic refinements, automation techniques, and invari-
ant generation procedures for the respective proof calculi.

In this part of the book, we now shift our attention to application scenarios for
our logical analysis approach for hybrid systems. Extending smaller hybrid systems
which have served as running examples throughout this book, we show full case
studies of the European Train Control System in Chap. 7 and for aircraft collision
avoidance manoeuvres in Chap. 8. We show how complex physical systems can be
modeled as hybrid programs (or DA-programs) and how safety-critical properties
can be formalised in differential dynamic logics and proven in their proof calculi.

Chapter 7
European Train Control System

Contents
7.1 Introduction . 278

7.1.1 Related Work . 280
7.1.2 Structure of This Chapter 281

7.2 Parametric European Train Control System 281
7.2.1 Overview of the ETCS Cooperation Protocol 281
7.2.2 Formal Model of Fully Parametric ETCS 284

7.3 Parametric Verification of Train Control 286
7.3.1 Controllability Discovery 287
7.3.2 Iterative Control Refinement 288
7.3.3 Safety Verification . 291
7.3.4 Liveness Verification 293
7.3.5 Full Correctness of ETCS 294

7.4 Disturbance and the European Train Control System 295
7.4.1 Controllability Discovery 296
7.4.2 Iterative Control Refinement 298
7.4.3 Safety Verification . 298

7.5 Experimental Results . 299
7.6 Summary . 301

Synopsis Complex physical systems have several degrees of freedom. They only
work correctly when their control parameters obey corresponding constraints. Based
on the informal specification of the European Train Control System (ETCS), we
design a controller for its cooperation protocol. For the free parameters of the sys-
tem, we successively identify constraints that are required to ensure collision free-
dom. We formally prove the parameter constraints to be sharp by characterising
them equivalently in terms of reachability properties of the hybrid system dynamics.
We use the calculus of our differential dynamic logic for hybrid systems and form-
ally verify controllability, safety, liveness, and reactivity properties of the ETCS
protocol that entail collision freedom. We prove that the ETCS protocol remains
correct even in the presence of perturbation by disturbances in the dynamics.

277A. Platzer, Logical Analysis of Hybrid Systems,
DOI 10.1007/978-3-642-14509-4_7, © Springer-Verlag Berlin Heidelberg 2010

278 7 European Train Control System

7.1 Introduction

Complex physical control systems often contain many degrees of freedom, includ-
ing how specific parameters are instantiated or adjusted [205, 91, 27]. Yet, virtually
all of these systems are hybrid systems and only work correctly under certain con-
straints on these parameters. The European Train Control System (ETCS) [117]
has a wide range of different possible configurations of trains, track layouts, and
different driving circumstances. It is only safe for certain conditions on external
parameters, e.g., as long as each train is able to avoid collisions by braking with
its specific braking force on the remaining distance to the rear end of the next
train. Similarly, internal control design parameters for supervisory speed control
and automatic braking triggers need to be adjusted in accordance with the under-
lying train dynamics. Moreover, parameters must be constrained such that the sys-
tem remains correct when passing from continuous models with instant reactions to
sampled-data discrete-time controllers of hardware implementations. Finally, para-
meter choices must preserve correctness robustly in the presence of disturbances
caused by unforeseen external forces (wind, friction, etc.) or internal modelling in-
accuracies of ideal-world dynamics, e.g., when passing from ideal-world dynam-
ics to proportional-integral (PI) controller implementations.1 Yet, determining the
range of external parameters and the choice of internal design parameters for which
complex control systems like ETCS are safe, is not possible just by looking at the
model, and even less so in the presence of disturbance.

Likewise, it is difficult to read off the parameter constraints that are required for
correctness from a failed verification attempt of model checkers [156, 217, 126],
since concrete numeric values of a counterexample trace cannot simply be trans-
lated into a generic constraint on the free parameters of the system, which would
have prevented this kind of error. While approaches like counterexample-guided
abstraction refinement [72, 126] are highly efficient in undoing automatic abstrac-
tions of an abstract hybrid system from spurious counterexamples, they stop when
true counterexamples remain in the concrete system. For discovering constraints on
free parameters, though, even concrete models will have counterexamples until all
required parameter constraints have been identified. Even worse, concrete numeric
values of a counterexample trace as produced by a model checker with state splitting
cannot simply be translated into a uniform global constraint on the free parameters
of the system, which would prevent this kind of error.

Instead, we use our techniques based on symbolic decompositions from Part I
to systematically explore the design space of a hybrid system and for discovering
correctness constraints on free parameters. We have already shown how some such
constraints can be identified for a very simple train control model in the examples
from Chap. 2. For a complex physical system, we now show step by step how a
control system can be developed that meets its control design goals and desired
correctness properties. Starting from a coarse skeleton of the ETCS cooperation

1 PI is a standard control technique and also used for controlling trains [91]. We refer to joint work
with Jan-David Quesel [244] for verification results of ETCS in the presence of PI control.

7.1 Introduction 279

protocol obtained from its official specification [117], we systematically develop
a safe controller and identify the parameter constraints that are required for colli-
sion freedom. Although these parameter constraints are safety-critical, they are not
stated in the official specification [117]. They only originate quite indirectly from
the system dynamics and the overall control objectives of ETCS. For all practical
implementations, however, these constraints need to be made explicit in order to find
safe parameter range choices. These constraints are also nontrivial, especially those
needed to ensure a safe interplay of physics and sampled control implementations.
Using the parametric constraints so discovered, we prove correctness properties of
the ETCS cooperation protocol that entail collision freedom.

During the course of this case study, we prove rich properties, including safety,
controllability, reactivity, and liveness, which are not uniformly expressible and
verifiable in other analysis approaches. Moreover, we prove those correctness prop-
erties of the parametric ETCS case study almost fully automatically in our verifica-
tion tool KeYmaera.

Contributions

We show how realistic fully parametric hybrid systems for traffic protocols can be
designed and verified using our logical analysis approach. For ETCS, we identify all
relevant safety constraints on free parameters, including external system parameters
and internal design parameters of controllers. Safe control choices will be important
for more than two million passengers in Europe per day. Similar constraints hold
for other upcoming train control systems. Our first contribution is that we character-
ise safe parameter choices equivalently in terms of properties of the train dynamics
and that we prove controllability, reactivity, safety, and liveness properties of ETCS.
Other issues often arise from verification results for ideal-world dynamics that cease
to hold for real-world dynamics. Our second contribution is showing how to extend
formal ETCS verification to the presence of disturbances in the dynamics, which ac-
count for friction and other discrepancies of the real-world dynamics and simplistic
control models. Most notably, the full ETCS model with its rich set of properties is
out of scope for other approaches. Nevertheless, we have formally verified all pro-
positions in this chapter with our verification tool KeYmaera [242]. Furthermore,
we have proven ETCS to work correctly when using a proportional-integral (PI)
controller for speed supervision. In contrast to their routine use in control, giving
formal proofs for the correct functioning of PIs has been an essentially unsolved
problem. We refer to joint work with Jan-David Quesel [245] for details on the PI
verification.

ETCS further illustrates a more general phenomenon in hybrid systems: safely
combining dynamics with control requires parameter constraints that are much more
complicated than the original dynamics. Safe control of hybrid dynamics requires
more than just an understanding of the physics underlying a system and a separate
understanding of the computing processes in the system. Rather, safe choices of

280 7 European Train Control System

hybrid systems control usually depend on a joint understanding of how physics and
computation interact.

7.1.1 Related Work

Model checkers for hybrid systems, for example HYTECH [11] and PHAVer [126],
verify by exploring the state space of the system as exhaustively as possible. In con-
trast to our approach they need concrete numbers for most parameters and cannot
verify liveness, such as whether the train controller is guaranteed to make progress,
or existential properties, e.g., whether and how a control parameter can be instanti-
ated so that the system is always safe.

Batt et al. [27] give heuristics for splitting regions by linear constraints that can be
used to determine parameter constraints. Frehse et al. [128] synthesise parameters
for linear hybrid automata. However, realistic systems like ETCS require nonlinear
parameter constraints, often have a nonlinear system dynamics, and are out of scope
for these approaches.

Tomlin et al. [294] show a game-theoretic semidecision algorithm for hybrid con-
troller synthesis. For systems like ETCS, which are more general than linear [127]
or o-minimal hybrid automata [188], they suggest numerical approximations. We
give exact results for fully parametric ETCS using symbolic techniques. We also
focus on verification and parameter synthesis of parameter constraints for a given
controller template, rather than for full controller synthesis. While full controller
synthesis is a very interesting and tempting idea, it is less scalable than verification
[75, 249]. In addition to theoretical complexity results that separate verification and
synthesis in the discrete case, verification and even parameter synthesis are more
modular than full synthesis. In verification, several properties can be proven separ-
ately for the same model, but in synthesis all properties need to be considered at
once. A synthesised controller satisfying a safety property may not be live, e.g., it
may be safe, just because it disallows movement altogether, which is perfectly use-
less. Another synthesised controller satisfying a liveness property, however, may be
unsafe. So in synthesis all relevant properties need to be considered at once for the
resulting system to make sense. In verification and also in proof-based parameter
synthesis, properties can be considered one at a time, thereby gaining scalability
advantages.

In independent work, Cimatti et al. [71] have recently analysed consistency of in-
formal requirements of ETCS expressed as temporal properties, including the con-
tinuous system dynamics, using an approach based on the combination of temporal
logic with regular expressions. Our work is complementary, as we focus on devel-
oping and formally verifying an actual hybrid systems controller that can be imple-
mented later on, and not on showing the consistency of the requirement specification
properties. The fact that we are able to construct a controller satisfying ETCS re-
quirements also entails consistency of these requirements. Our goal, however, is to

7.2 Parametric European Train Control System 281

develop a verified controller to show how the system can be controlled safely, and
not whether the requirements are incompatible.

7.1.2 Structure of This Chapter

We introduce a formal model for parametric ETCS in Sect. 7.2. Using our sym-
bolic logical decomposition approach from Part I, we systematically derive para-
metric correctness constraints for ETCS and verify several correctness properties
of parametric ETCS using these constraints in Sect. 7.3. In Sect. 7.4, we generalise
the physical transmission model to the presence of disturbances and verify ETCS
despite disturbances. We present experimental results for our verification approach
in Sect. 7.5. For details on the experiment and formal KeYmaera proofs of the pro-
positions, we refer the reader to [245].

7.2 Parametric European Train Control System

The European Train Control System (ETCS) [117, 205] is a standard to ensure safe
and collision-free operation as well as high throughput of trains that currently run
at speeds up to 320 km/h. Correct functioning of ETCS is highly safety-critical,
because the upcoming installation of ETCS Level 3 will replace all previous track-
side safety measures in order to achieve its high throughput objectives. In this sec-
tion, we present a system skeleton, which corresponds to a simple representation
of the train dynamics and controller reflecting the informal ETCS cooperation pro-
tocol [117]. The system obtained from the informal specification turns out to be
unsafe. In Sect. 7.3, we will systematically refine this skeleton with the parameter
constraints that are required for safety but not stated in the informal ETCS specific-
ation [117], and only indirectly result from the effects of the system dynamics on
the safety requirements.

7.2.1 Overview of the ETCS Cooperation Protocol

ETCS Level 3 follows the moving block principle, i.e., neither are movement per-
missions known beforehand nor is the size of movement blocks fixed statically.
Rather, permission to move is determined based on the current track situation by a
Radio Block Controller (RBC). Trains are only allowed to move within their current
movement authority (MA), which can be updated dynamically by the RBC using
wireless communication. Hence the train controller needs to regulate the movement
of a train locally such that it always remains within its MA, because there could be

282 7 European Train Control System

Fig. 7.1 ETCS train cooperation protocol phases and dynamic movement authorities

open gates, other trains, or speed restrictions due to tunnels beyond the end of the
MA.

The automatic train protection unit (atp) dynamically determines a safety envel-
ope around a train τ , within which it considers driving safe, and adjusts the train
acceleration accordingly. Figure 7.1 illustrates the dynamic assignment of MA. The
ETCS controller switches according to the protocol pattern in Fig. 7.1, which cor-
responds to a simplified version of Damm et al. [91]. When approaching the end
of its MA the train switches from far mode (where speed can be regulated freely)
to negotiation (neg), which, at the latest, happens at the point indicated by ST (for
start talking). During negotiation the RBC grants or denies MA extensions. If the
extension is not granted in time, the train starts braking in the correcting mode (cor)
and returns to far after the situation has cleared. Emergency messages announced
by the RBC can also put the controller into cor mode. If so, the train may switch to a
fail-safe state (fsa) after the train has come to a full stop and await manual clearance
by the train operator.

Lemma 7.1 (Principle of separation by movement authorities). If each train
stays within its MA and, at any time, MAs issued by the RBC form a disjoint parti-
tioning of the track, then trains can never collide.

Proof. To simplify notation, we assume trains are points (the proof is a simple ex-
tension when each train has some maximal length l). Consider any point in time ζ .
For some n ∈ N, let z1, . . . ,zn be the positions of all the trains 1 to n at ζ . Let Mi be
the MA range, i.e., the set of positions on the track for which train i has currently
been issued MA. Suppose there was a collision at time ζ . Then zi = z j at ζ for
some i, j ∈N. However, by assumption, zi ∈Mi and z j ∈M j at ζ , thus Mi∩M j 6= /0;
which contradicts the assumption of disjoint MAs. ut
Lemma 7.1 effectively reduces the verification of an unbounded number of traffic
agents to a finite number. We exploit MAs to decouple reasoning about global colli-
sion freedom and reduce it to local cooperation of every traffic agent with its RBC.
In particular, we verify correct coordination for a train without having to consider
gates or railway switches, because these only communicate via RBC mediation and
can be considered as special reasons for denial of MA extensions. We only need to
prove that the RBC handles all interaction between the trains by assigning or revok-
ing MA correctly and that the trains actually respect their MA always. Yet, in order

far neg

cor fsa

7.2 Parametric European Train Control System 283

to enable the RBC to guarantee disjoint partitioning of the track, ETCS has to rely
on properties like appropriate safe rear end computation of the train. Additionally,
safe operation of the train plant in conjunction with its environment depends on
proper functioning of the gates. As these properties have a more static nature, they
are much easier to show once the actual hybrid train dynamics and movements have
been proven to be controlled correctly and once the relevant safety constraints have
been identified.

As trains are not allowed to drive backwards without manual clearance by track
supervision personnel, the relevant part of the safety envelope is the closest distance
to the end of its current MA. The point SB, for start braking, is the latest point
where the train needs to start correcting its acceleration (in mode cor) to make sure
it always stays within the bounds of its MA. In Sect. 7.3, we derive a necessary and
sufficient constraint on parameter SB that guarantees safe driving.

We generalise the concept of MA to a vector m = (d,e,r), meaning that, bey-
ond end point m.e, the train is not permitted to have a velocity greater than the
desired speed m.d. Additionally, the train should try not to outspeed the recommen-
ded speed m.r for the current track segment, but short periods of slightly higher
speed are not considered safety-critical. Figure 7.2 shows an example of possible
train behaviour in conjunction with the current value of m that changes over time
due to RBC communication.

Fig. 7.2 ETCS track profile τ.v

τ.p
m1.r

m1.e
m1.d

m2.r

m2.e
m2.d

m3.r = m4.r

m3.e

m3.d

For a train τ = (p,v,a) at position τ.p with current velocity τ.v and accelera-
tion τ.a, we want to determine sufficient conditions that ensure safety and formally
verify that τ.v is always safe with respect to its current MA, satisfying:

τ.p≥m.e → τ.v≤m.d. (S)

Formula (S) expresses that the train velocity τ.v does not exceed the strict speed
limit m.d after passing the point m.e (i.e., τ.p≥m.e). Generalised MAs are a uni-
form composition of two safety-critical features. They are crucial aspects for ensur-
ing collision-free operation in ETCS (Lemma 7.1) and can take into account safety-
critical velocity limits due to bridges, tunnels, or passing trains. For example high-
speed trains need to reduce their velocity while passing non-airtight or freight trains
with a pressure-sensitive load within a tunnel. Our model captures this by reducing
the speed component m.d of MA m appropriately.

284 7 European Train Control System

ETCSskel ≡ (train∪ rbc)∗

train ≡ spd; atp; drive
spd ≡

(
?(τ.v≤m.r); τ.a :=∗; ?(−b≤ τ.a≤ A)

)
∪
(
?(τ.v≥m.r); τ.a :=∗; ?(−b≤ τ.a≤ 0)

)
atp ≡ if (m.e− τ.p≤ SB∨ rbc.message = emergency) then τ.a :=−b fi
drive ≡ t := 0; (τ.p′ = τ.v∧ τ.v′ = τ.a∧ t ′ = 1∧ τ.v≥ 0∧ t ≤ ε)
rbc ≡

(
rbc.message := emergency) ∪ (m :=∗; ?(m.r > 0)

)
Fig. 7.3 Formal model of parametric ETCS cooperation protocol (skeleton)

7.2.2 Formal Model of Fully Parametric ETCS

For analysing the proper functioning of ETCS, we have developed a formal model
of ETCS as a hybrid program (see Fig. 7.3) that is based on the informal ETCS spe-
cification [117]. The RBC and the train are independently distributed components
running in parallel. They cooperate by message passing over wireless communica-
tion. Since the RBC is a purely digital track-side controller and has no dependent
continuous dynamics, we can express parallel composition equivalently by inter-
leaving using nondeterministic choice (∪) and repetition (∗): the decisions of the
train controller only depend on the point in time when RBC messages arrive at the
train, not on the communication latency. Thus, the nondeterministic interleaving in
ETCS where either the train or (∪) the RBC chooses to take action faithfully mod-
els every possible arrival time without the need for an explicit (delayed) channel
model. The ∗ at the end of ETCSskel indicates that the interleaving of train and RBC
repeats arbitrarily often. Successive actions in each component are modelled using
sequential composition (;). The train checks for the difference between the current
speed and the recommended speed (in speed supervision spd) before checking if
emergency braking is necessary (in automatic train protection atp).

Train Controller

It is quite difficult to use highly detailed models for the train and its mechan-
ical transmission [91] directly in the verification and parameter discovery process.
Hence, we first approximate it by a controller with a ranged choice for the effect-
ive acceleration τ.a between its lower bound (−b < 0) and upper bound (A > 0); we
will refine the dynamics in Sect. 7.4. This nondeterministic range controller provides
a model that we can use both to derive parameter constraints and to overapproxim-
ate the actual choices made by the physical train controller [91] conservatively. For
Sects. 7.2 and 7.3, we model the continuous train dynamics by the differential equa-
tion system

τ.p′ = τ.v∧ τ.v′ = τ.a∧ t ′ = 1∧ τ.v≥ 0∧ t ≤ ε. (I)

It formalises the ideal-world physical laws for movement, restricted to the evolution
domain τ.v≥ 0∧ t ≤ ε in drive. Recall from Part I that primed variables stand for
the first time derivative of the respective unprimed variable. Therefore, τ.p′ gives the

7.2 Parametric European Train Control System 285

rate with which the position τ.p of the train τ changes, i.e., the velocity (τ.p′ = τ.v).
The velocity τ.v itself changes continuously according to the acceleration τ.a, i.e.,
τ.v′ = τ.a. The train speeds up when τ.a > 0 and brakes when τ.a < 0. In particular,
for τ.a < 0, the velocity would eventually become negative, which would mean the
train is driving backwards. But that is prohibited without manual clearance, so we
restrict the evolution domain to nonnegative speed (τ.v≥ 0). Time can be measured
by clocks, i.e. variables changing with constant slope 1 (along differential equa-
tion t ′ = 1). To further account conservatively for delayed effects of actuators like
brakes or for delays caused by cycle times of periodic sensor polling and sampled-
data discrete-time controllers, we permit the continuous movement of the train to
continue for up to ε > 0 time units until control decisions finally take effect. This
is expressed using the evolution domain restriction t ≤ ε on the clock t that is reset
by the discrete assignment t := 0 before the continuous evolution starts. It is used to
keep track of the progress of time advancing with constant slope 1. When the sys-
tem executes the system of differential equations in drive, it can follow a continuous
evolution respecting the constraints of (I) all the time.

The speed supervision spd has two choices (∪). The first option in Fig. 7.3 can
be taken if the test ?(τ.v≤m.r) succeeds, the second one if the test ?(τ.v≥m.r) is
successful. If both tests can succeed, either choice is possible by a nondeterministic
choice (∪). The speed supervision spd chooses the acceleration τ.a to keep the re-
commended speed m.r by a random assignment τ.a :=∗, which assigns an arbitrary
value to τ.a. By the subsequent test ?(−b≤ τ.a≤ 0) an acceleration is chosen from
the interval [−b,0] if the current speed τ.v exceeds recommended speed m.r (oth-
erwise the full range [−b,A] is available.) Our nondeterministic controller includes
controllers optimising speed and energy consumption as secondary objectives.

As a supervisory controller, the automatic train protection (atp in Fig. 7.3) checks
whether the train has passed point SB (m.e− τ.p≤ SB, that is, the remaining dis-
tance of τ.p to m.e is less than or equal SB) or whether a message from the RBC
was received notifying of a track-side emergency situation. Both events cause imme-
diate braking with full deceleration −b. Thus, atp decisions take precedence over
the recommended spd speed advisory. In the case where m.e− τ.p > SB and no
emergency message arrived, the decisions made by spd take effect. We will identify
safety-critical constraints on parameter SB in Sect. 7.3.2.

Radio Block Controller

We model the RBC as a controller with two possible choices (∪). It may choose
to either demand immediate corrective action by sending emergency messages
(rbc.message :=emergency) or the RBC may update the MA by assigning arbitrary
new values to its three components (m :=∗). These nondeterministic changes to m
reflect different real-world effects like extending m.e and m.d if the heading train
has advanced significantly or notify of a new recommended speed m.r for a track
segment. We will identify safety-critical constraints on MA updates in Sect. 7.3.2.

286 7 European Train Control System

Figure 7.4 illustrates the transition structure ρ(ETCSskel), as defined in Defini-
tion 2.7, that corresponds to the hybrid program of the ETCS skeleton in Fig. 7.3.

Fig. 7.4 Transition structure of ETCS skeleton

7.3 Parametric Verification of Train Control

The model in Fig. 7.3 that was read off from the informal ETCS specification [117]
is unsafe, i.e., it does not always prevent collisions. To correct this we identify con-
straints on the free parameters of ETCS by analysing increasingly more complex
correctness properties of ETCS. Using these constraints we refine the train control
model iteratively into a safe model with constraints on design parameter choices and
physical prerequisites on external parameters resulting from the safety requirements
on ETCS and the behaviour of the train dynamics.

Iterative Refinement Process

For discovering parametric constraints required for system correctness, we follow
an iterative refinement process that is of more general interest. It can be used to syn-
thesise parameters with the dL calculus, i.e., successively identify safety-critical
parameter constraints for a template controller.

?τ.v≤m.r

?τ.v≥m.r

τ.a := ∗

τ.a := ∗

?−b≤ τ.a≤ A

?0 > τ.a≥−b

?(m.e− τ.p≤ SB∨
rbc.message = emergency)

?m.e− τ.p≥ SB∧
rbc.message �= emergency)

τ.a :=−b

t := 0

τ.p′ = τ.v∧
τ.v′ = τ.a∧ t ′ = 1
τ.v≥ 0∧ t ≤ ε

m0 := m m := ∗

rbc.message := emergency

7.3 Parametric Verification of Train Control 287

1. Controllability discovery: Start with uncontrolled system dynamics. Use struc-
tural symbolic decomposition in dL until a first-order formula is obtained re-
vealing the controllable state region, which specifies for which parameter com-
binations the system dynamics can actually be controlled safely by any control
law.

2. Control refinement: Successively add partial control laws to the system while
leaving its decision parameters (such as SB or m) free. Use structural symbolic
decomposition to discover parametric constraints which preserve controllability
under these control laws.

3. Safety convergence: Repeat step 2 until the resulting system is proven safe.
4. Liveness check: Prove that the discovered parametric constraints do not over-

constrain the system inconsistently by showing that it remains live.

In practise, variants of the controllable domain as discovered by step 1 constitute
good candidates for inductive invariants, and the parameter constraints discovered
by step 2 ensure that the actual control choices taken by the controller never leave the
controllable domain. For step 4, liveness can be verified again by structural symbolic
decomposition in dL and no need for separate verification techniques or different
system models arises.

7.3.1 Controllability Discovery in Parametric ETCS

By analysing the uncontrolled train dynamics, we obtain a controllability constraint
on the external train parameters, i.e., a formula characterising the parameter com-
binations for which the train dynamics can be controlled safely by any control law
at all. For our analysis we choose the global assumptions

τ.v≥ 0∧m.d ≥ 0∧b > 0∧A≥ 0 (A)

stating that the velocity is nonnegative (τ.v≥ 0), the movement authority issued
by the RBC does not force the train to drive backwards (m.d ≥ 0), and the train
has some positive braking force b > 0 and some nonnegative maximum accelera-
tion A≥ 0. The controllability constraint is now obtained by applying the dL proof
calculus from Chap. 2 to the following dL (or DAL) formula:

(A ∧ τ.p≤m.e)→ [τ.p′ = τ.v∧ τ.v′ =−b∧ τ.v≥ 0]S .

This formula expresses that—starting in some state where assumptions (A) hold
and the train has not yet passed m.e (i.e., τ.p≤m.e)—every possible evolution of
the train system that applies full brakes (τ.v′ =−b) is safe, i.e. does not violate (S).
By a proof similar to that in Fig. 2.14 on p. 89, we can discover that this dL for-
mula only holds if τ.v2−m.d2 ≤ 2b(m.e− τ.p) is satisfied in the initial state. We
prove that the so-discovered constraint, illustrated in Fig. 7.5, characterises the set of

288 7 European Train Control System

states where the train dynamics can still respect MA by appropriate control choices
(expressed by the left-hand side dL formula).

Fig. 7.5 Controllable region
of ETCS

τ.p

τ.v

m.d

m.e

τ.v2−m.d2

≤ 2b(m.e− τ.p)

Proposition 7.1 (Controllability). The constraint τ.v2−m.d2 ≤ 2b(m.e− τ.p) is
a controllability constraint for the train τ with respect to property (S) on page 283,
i.e., this constraint retains the ability of the train dynamics to respect the safety
property. Formally, with A ∧ τ.p≤m.e as regularity assumptions, the following
equivalence is a provable dL formula:[

τ.p′ = τ.v∧ τ.v′ =−b∧ τ.v≥ 0
](

τ.p≥m.e→ τ.v≤m.d
)

≡τ.v2−m.d2 ≤ 2b(m.e− τ.p).

This formula expresses that every run of a train in braking mode always satis-
fies (S) if and only if condition τ.v2−m.d2 ≤ 2b(m.e− τ.p) holds initially. Ob-
serve how the above equivalence reduces a dynamic dL formula about future con-
trollable train dynamics to a single static constraint on the current state. We use this
key reduction step from dynamically safe train dynamics to controllably safe state
constraints by analysing whether each part of the ETCS controller preserves train
controllability.

Definition 7.1 (Controllable state). A train τ is in a controllable state, if the train is
always able to stay within its movement authority m by appropriate control actions,
which, by Proposition 7.1, is equivalent to

τ.v2−m.d2 ≤ 2b(m.e− τ.p)∧A . (C)

ETCS cannot be safe unless trains start and stay in controllable states. Hence we
pick (C) as a minimal candidate for an inductive invariant. This invariant will be
used to prove safety of the system by induction.

7.3.2 Iterative Control Refinement of ETCS Parameters

Starting from the constraints for controllable trains, we identify constraints for their
various control decisions and refine the ETCS model correspondingly, so that the
train stays controllable for every control choice.

7.3 Parametric Verification of Train Control 289

RBC Control Constraints

For safe functioning of the ETCS it is important that trains always respect their
current MA. Consequently, RBCs are not allowed to issue MAs that are physically
impossible for the train to obey, such as instantaneous full stops. Rather, RBCs are
only allowed to send new MAs that remain within the controllable range of the train
dynamics. For technical reasons the RBC does not reliably know the train positions
and velocities in its domain of responsibility to a sufficient precision, because the
communication with the trains has to be performed wirelessly with possibly high
communication delay and message loss. Thus, we give a fail-safe constraint for MA
updates which is reliably safe even for loss of position recording communication.

Proposition 7.2 (RBC preserves train controllability). The constraint

m0.d2−m.d2 ≤ 2b(m.e−m0.e)∧m0.d ≥ 0∧m.d ≥ 0 (M)

ensures that the RBC preserves train controllability (C) when changing the MA
from m0 to m. That is, the following dL formula is provable:

∀τ
(
C → [m0 :=m; rbc]

(
M → C

))
. (7.1)

Moreover, RBC controllability is characterised by the following provable dL for-
mula:

m.d ≥ 0∧b > 0 → [m0 :=m; rbc]
(
M ↔ ∀τ

(
(〈m :=m0〉C)→ C

))
. (7.2)

Constraint (M) characterises that an extension is safe if it is possible to reduce
the speed by braking with deceleration b from the old target speed m0.d to the new
target speed m.d within the extension range m.e−m0.e, regardless of the current
speed of train τ . It imposes constraints on feasible track profiles. Formula (7.1)
expresses that, for all trains (∀τ , i.e., ∀τ.v∀τ.p) in a controllable state (C), every
RBC change ([rbc]) of MA from m0 to m that complies with (M) ensures that
the train is still in a controllable state (C). Constraint (M) is characterised by the
equivalence (7.2), expressing that for every decision of rbc, (M) holds for the RBC
change from m0 to m if and only if all trains (∀τ) that were controllable (C) for the
previous MA (set using 〈m :=m0〉) still remain controllable for the new MA m.

Train Control Constraints

Now that we have found constraints characterising when the cooperation of train
and RBC is controllable, we need to find out under which circumstances the actual
control choices by spd and atp retain controllability. In particular, the design para-
meter SB (start braking point relative to the end of the movement authority) needs
to be chosen appropriately to preserve (C). First we show that there is a safe choice
of SB:

290 7 European Train Control System

Proposition 7.3 (Reactivity of ETCS). For all feasible RBC choices and all
choices of speed control, there is a choice for SB that makes the train always stay
within its MA, i.e., for controllable states, the following dL formula is provable:

C → [m0 := m; rbc]
(
M → [spd]〈SB :=∗〉[atp; drive]S

)
.

The formula expresses that, starting in a controllable region C , if the RBC up-
dates the MA from m0 to any m respecting (M), then after arbitrary spd choices,
the train controller is still able to find some choice for SB (〈SB :=∗〉) such that it
always respects the fresh MA when following atp and drive. Since Proposition 7.3
is provable in KeYmaera we know that there is a safe solution for ETCS. On the
formula level the assumptions are expressed using implications such that the for-
mula does not make any proposition if either (C) is not initially satisfied or the
RBC updates do not respect (M). The train controller in this property is split up
into the proposition that for all executions of the speed supervision ([spd]) there is a
choice for SB (〈SB :=∗〉) such that the automatic train protection unit (atp) always
preserves safety during the train movement in the drive phase. For atp and drive we
again make a statement over all possible executions of the components ([atp ;drive]).
Only the choice of SB is existentially quantified by an 〈SB :=∗〉 modality. We see
that alternation of dL modalities is quite expressive and can capture interaction of
system components.

To find a particular constraint on the choice of SB, we need to take the max-
imum reaction latency ε of the train controllers into account. With ε > 0, the point
where the train needs to apply brakes to comply with m is not determined by the
physical constraints (C) alone, but needs additional safety margins to compensate
for reaction delays in the controller. Therefore, we search for a constraint that char-
acterises that for every possible end of the movement authority (∀m.e) and every
train position (∀τ.v), train movement with an acceleration of A preserves (C) if
it started in a state where (C) holds and the point SB has not been passed yet
(m.e− τ.p≥ SB∧C).

Proposition 7.4 (Reactivity constraint). If the train is in a controllable state, the
supervisory ETCS controller reacts appropriately in order to maintain controllabil-
ity iff SB is chosen according to the following provable equivalence:(

∀m.e∀τ.p
(
m.e− τ.p≥ SB∧C → [τ.a :=A; drive]C

))
≡ SB≥ τ.v2−m.d2

2b
+

(
A
b
+1
)(

A
2

ε
2 + ε τ.v

)
. (B)

Reactivity constraint (B) on SB can be derived using a projection of the train beha-
viour to the worst-case acceleration A in a state where SB has not been passed yet,
similarly to the approach from Sect. 2.9. We choose this projection because the train
controller needs to ensure that it can drive safely with maximum acceleration A for ε

time units even right before passing SB in order for an acceleration choice of A to be
safe. Constraint (B) is not at all obvious from the original system model in Fig. 7.3.

7.3 Parametric Verification of Train Control 291

ETCSr ≡ (trainr∪ rbcr)
∗

trainr ≡ spd; atpr; drive
spd ≡

(
?(τ.v≤m.r); τ.a :=∗; ?(−b≤ τ.a≤ A)

)
∪
(
?(τ.v≥m.r); τ.a :=∗; ?(−b≤ τ.a≤ 0)

)
atpr ≡ SB := τ.v2−m.d2

2b +
(A

b +1
)(A

2 ε2 + ε τ.v
)

; atp
atp ≡ if (m.e− τ.p≤ SB∨ rbc.message = emergency) then τ.a :=−b fi
drive ≡ t := 0; (τ.p′ = τ.v∧ τ.v′ = τ.a∧ t ′ = 1∧ τ.v≥ 0∧ t ≤ ε)
rbcr ≡ (rbc.message := emergency)

∪
(
m0 := m; m :=∗;
?(m.r ≥ 0∧m.d ≥ 0∧m0.d2−m.d2 ≤ 2b(m.e−m0.e))

)
Fig. 7.6 ETCS cooperation protocol refined with parameter constraints

After discovering constraint (B), however, it can be explained in retrospect: It char-
acterises the relative braking distance required to reduce speed from τ.v to target
speed m.d with braking deceleration b, which corresponds to controllability and is
expressed by the term τ.v2−m.d2

2b . In addition, the constraint involves the distance
travelled during one reaction cycle of at most ε time units with acceleration A, in-
cluding the additional distance needed to reduce the speed down to τ.v again after
accelerating at A for ε time units, as expressed by

(A
b +1

)(A
2 ε2 + ε τ.v

)
. This ex-

tra distance results from speed changes and depends on the relation A
b of maximum

acceleration A and maximum braking force b.
Propositions 7.1–7.4 prove dL equivalences. Hence, counterexamples exist that

demonstrate unsafety of the ETCS skeleton in Fig. 7.3 whenever the respective para-
meter constraints are not met. Consequently, these constraints must be obeyed for
correctness of any model of ETCS controllers, including all technical implement-
ation refinements. It is, thus, important to identify these safety constraints early in
the overall design and verification process of ETCS. Similar parameter constraints
hold for other upcoming train control systems.

7.3.3 Safety Verification of Refined ETCS

By refining the system from Fig. 7.3 with the parametric constraints obtained from
Propositions 7.1–7.4, we synthesise a safe system model completing the ETCS pro-
tocol skeleton. In Fig. 7.6, we present the refined model, which bugfixes the model
in Fig. 7.3 taken from the informal specification. Parts spd, drive, and the subpro-
gram atp of atpr stay as in Fig. 7.3. The constraints in atpr and rbcr are new, as is
the precondition C on the initial states.

Proposition 7.5 (Safety of ETCS). Assuming the train starts in a controllable
state, the following global and unbounded horizon dL safety formula about the
refined ETCS system in Fig. 7.6 is provable:

C → [ETCSr](τ.p≥m.e→ τ.v≤m.d). (7.3)

292 7 European Train Control System

This provable dL formula states that, starting in a controllable region (C), the re-
fined ETCS model is safe, i.e., trains always respect their movement authority even
when movement authorities change dynamically based on wireless communication
with the RBC.

Fig. 7.7 Proof sketch for
ETCS safety (Proposition 7.5)

C → [ETCSr]S

C → C

C → [trainr∪ rbcr]C

C → [rbcr]C

m :=∗;?M rec

C → [trainr]C

τ.v≥m.r

m.e− τ.p≥ SB

τ.v≤m.r

m.e− τ.p≤ SB

m.e− τ.p≥ SB

C →S

As an example to illustrate the proof structure for the verification of Proposi-
tion 7.5, consider the sketch in Fig. 7.7. The proof starts with the conjecture at the
bottom and proceeds by decomposition in the dL calculus to the leafs. Figure 7.7
does not give a full formal proof in the dL calculus but still shows a sketch of the
overall proof structure for Proposition 7.5. We need to prove that the assumption
that the train is in a controllable state expressed by (C) implies [ETCSr]S . As the
system consists of a global loop (trainr∪ rbcr)

∗, we prove that (C) is an invariant
of this loop and strong enough to imply (S) by dL rule ind′ from p. 86, which
splits into the three lower branches indicated in Fig. 7.7. Using KeYmaera it can be
shown easily that the invariant is initially valid (left branch) and implies the postcon-
dition (right branch). As usual, proving that the invariant is preserved by the loop
body is the most challenging part of the proof (middle branch), which splits into
two cases by applying dL rule [∪], and rule ∧r from Fig. 2.11 subsequently. For the
left case, we have to show that the RBC preserves the invariant, which follows from
Proposition 7.2 and splits into the case where the RBC changes the MA accord-
ing to constraint (M) (in the left branch m :=∗) and the case where an emergency
message requests immediate recovery by emergency braking (denoted by rec in the
right branch). For the right choice, we show that the train controller preserves the
invariant. The proof splits again by rule [∪] due to the choice in the spd component
depending on the relation of the current speed τ.v to the recommended speed m.r.
The next split with rule [∪] on both of these branches depends on the value of SB
according to atp. If the train has passed point SB (the shared middle case), we can
close this goal using Proposition 7.1, because the invariant describes a controllable
state and the spd controller applies safety brakes. The outer branches, where the
train has not yet passed SB, can be closed using Proposition 7.4, because the con-

7.3 Parametric Verification of Train Control 293

trollers will react to situation changes after at most ε time units (induction). Overall,
the dL formula in Proposition 7.5 can be proven automatically by our approach.

7.3.4 Liveness Verification of Refined ETCS

In order to show that the discovered parameter constraints do not over-constrain the
system inconsistently, we show liveness, i.e., that an ETCS train is able to reach
every track position with appropriate RBC permissions.

Proposition 7.6 (Liveness of ETCS). The refined ETCS system is live. That is,
assuming the RBC can safely grant the required MAs because preceding trains are
moving on, trains are able to reach any track position P by appropriate RBC choices,
which is expressed in the following provable dL formula:

τ.v≥ 0∧A > 0∧ ε > 0 → ∀P〈ETCSr〉τ.p≥ P. (7.4)

This dL formula expresses that, starting in a state where the velocity is non-
negative and where maximum acceleration and maximum evolution time limit are
positive, every point P (that is, ∀P) can be reached (τ.p≥ P) by some execution of
the ETCS model (〈ETCSr〉). Here the diamond modality is used to say that not all,
but some appropriate execution reaches a state where the postcondition (τ.p≥ P)
holds. The validity of formula (7.4) means that the train model is always able to
reach the postcondition for all corresponding values of the variables. Mere satis-
fiability of (7.4) would correspond to a weaker property saying that the train can
move only under some circumstance for appropriate positions (e.g., when τ.p≥ P
trivially holds in the beginning), and not under all circumstances for all values of
the free variables, as Proposition 7.6 shows.

Further note that, for proving that the ETCS model is live, a more liberal initial
state is possible with regard to the controllability of the train. The only important
restrictions on the initial region are those ensuring that the system of differential
equations used for modelling the train movement can actually be followed for some
positive amount of time ε > 0. As usual, the velocity of the train must be nonneg-
ative (τ.v ≥ 0). If either of these assumptions is violated, the train may be unable
to move, because the evolution domain (τ.v≥ 0∧ t ≤ ε) of the differential equa-
tion system (I) is violated immediately and thus no continuous movement of the
model would be allowed at all. Finally, the maximum acceleration A must be posit-
ive (A > 0) or at least the initial velocity must be τ.v > 0; otherwise the train would
be locked to its current position without any effective control choices.

The proof of Proposition 7.6 uses unwinding (dL rule 〈∗n〉) and generalisation
(rule 〈〉gen) to split the proof into one part to show that positive speed τ.v > 0 is
always reachable, and another part to show that positive speed can be maintained
during sufficiently many control cycles with a non-Zeno progress towards the goal
position P. The latter part of the proof can be shown using the convergence rule
con with variant ϕ(n)≡ τ.p+nε v0 ≥ P∧ τ.v≥ v0, which expresses that goal P is

294 7 European Train Control System

within reach of at most n cycles of duration ε at minimum speed v0 and that the
speed τ.v does not decrease below the speed v0 reached after the first unwinding
cycle.

Contrast this simple variant with the complex variant (2.21) needed for prov-
ing the liveness property of the simple train control subsystem considered in prop-
erty (2.20) on p. 121 for nonnegative acceleration A≥ 0. At first sight, this com-
plexity difference sounds somewhat surprising. After all, the system considered in
Chap. 2 is a lot simpler than the full ETCS protocol considered here, so the variant
and proof in Chap. 2 should be simpler too. While this was perfectly true for safety
properties, the situation is slightly different for liveness. In terms of liveness, the
system considered in (2.20) had significantly less flexibility compared to the full
ETCS system in Fig. 7.6. For safety, flexibility is harder, because we have to prove
more cases and combinations to stay safe. For liveness, flexibility is good, because
we have more options to choose from for satisfying the goal. The simple train con-
troller in Chap. 2, for instance, allowed only one choice of a movement authority
which then remains constant forever. Consequently, our liveness proof had to estab-
lish the existence of an appropriate MA with only one single control shot. For the
ETCS system in Fig. 7.6, multiple adjustments of the MA are permitted, with which
it is a lot easier to prove liveness, because inappropriate prior MAs can simply be
readjusted again by RBC communication. Essentially, the liveness proof in Chap. 2
had to plan ahead and prove without any intermediate adaptation, whereas our live-
ness proof for Proposition 7.6 is able to use dynamic feedback to adapt to the actual
movement (dynamically during the proof).

7.3.5 Full Correctness of ETCS

By collecting Propositions 7.1–7.6 together, we obtain the following main result of
this chapter, which demonstrates the feasibility of dL -based parametric discovery
and formal verification. It gives important insights into the fully parametric ETCS
case study and yields conclusive and fully verified choices for the free parameters in
ETCS. By virtue of the parametric formulation, this result applies to all concrete in-
stantiations of the ETCS cooperation protocol (Sect. 7.2), including controllers that
further optimise speed or model refinements in hardware implementations. These
constraints also apply to related train control systems.

Theorem 7.1 (Correctness of ETCS cooperation protocol). The refined ETCS
system with constraints (B) and (M) is correct as given in Fig. 7.6. Starting in any
controllable state respecting (C), trains remain in the controllable region at any
time. They safely respect movement authorities issued by the RBC so that ETCS is
collision-free. Further, trains can always react safely to all RBC decisions respect-
ing (M). ETCS is live: when tracks become free, trains are able to reach any track
position by appropriate RBC actions. Furthermore, the refinements (C) and (B) are
necessary and sharp: Every configuration violating (C) or (B), respectively, gives
rise to a concrete counterexample violating safety property (S). Finally, every RBC

7.4 Disturbance and the European Train Control System 295

choice violating (M) gives rise to a counterexample in the presence of lossy wireless
communication channels.

7.4 Disturbance and the European Train Control System

In Sects. 7.2 and 7.3, we assumed there was direct control of acceleration in ideal-
world physics. In reality, actual acceleration is caused by the physical transmission
of corresponding forces that depend on the electrical current in the engine and are
regulated by PID controllers [91]. Yet even a full model of the physical transmis-
sion system is still somewhat incomplete, because wind and friction, slippery rail
conditions, and turbulence may have some small impact on the dynamics.2 As a
conservative overapproximation of all these effects, we instead generalise the ETCS
model to a model with differential inequalities, where we also take into account
disturbances in the physical transmission of forces:

τ.p′ = τ.v∧ τ.a− l ≤ τ.v′ ≤ τ.a+u∧ t ′ = 1∧ τ.v≥ 0∧ t ≤ ε. (Id)

This differential inequality tolerates a disturbance within the interval [−l,u]. That
is, the acceleration τ.a chosen by the train controller may take effect with an error
bounded by −l and u. Especially, the derivative τ.v′ of the velocity will not need to
equal τ.a exactly in (Id), but τ.v′ can vary arbitrarily between τ.a− l and τ.a+ u
over time. We thus generalise the differential equation (I) in component train from
Figs. 7.3 and 7.6 by replacing it with the differential inequality (Id) and denote the
result by traind . For the precise semantics of hybrid systems with differential in-
equalities, we refer to the semantics of DA-programs with DA-constraints for con-
tinuous evolution given in Chap. 3; see Examples 3.3 and 3.20 on pp. 137 and 176,
respectively. Especially, because of the differential inequalities, the resulting pro-
grams are DA-programs and the resulting formulas are, strictly speaking, DAL for-
mulas. See Fig. 7.8 for an illustration of how the original controllability region can
be violated, because the disturbed dynamics can deviate from the ideal-world dy-
namics with a time-dependent, bounded disturbance.

Fig. 7.8 Controllability re-
gion changes in the presence
of disturbance

z

v

m

2 Obtaining a fully complete model is thus de facto impossible, probably not even when resolving
to the Schrödinger equation of quantum mechanics [276].

296 7 European Train Control System

Notice that, unlike with the differential equation (I), we cannot simply solve
differential inequality (Id), because its actual solution depends on the precise value
of the disturbance, which is a quantity that changes over time. Thus, solutions will
only be relative to this disturbance function and a reachability analysis would have
to consider all choices of this function, which would require higher-order logic.
Instead, we use differential invariants from Chap. 3 as a first-order characterisation
for the proofs behind the following propositions.

7.4.1 Controllability in ETCS with Disturbances

The controllability characterisation from Proposition 7.1 carries over to train control
with disturbance when taking into account the effect that a maximum disturbance u
can have on the maximum braking force b and limits the effective braking force to
(b−u):

Proposition 7.7 (Controllability despite disturbance). The constraint

τ.v2−m.d2 ≤ 2(b−u)(m.e− τ.p)∧m.d ≥ 0∧b > u≥ 0∧ l ≥ 0 (Cd)

is a controllability constraint with respect to property (S) for the train τ with dis-
turbance (Id), i.e., it retains the ability of the train dynamics to respect the safety
property despite disturbance. Formally, with A ∧ τ.p≤m.e∧b > u≥ 0∧ l ≥ 0 as
regularity assumptions, the following equivalence is provable in the DAL calculus:[

τ.p′ = τ.v∧−b− l ≤ τ.v′ ≤−b+u∧ t ′ = 1∧ τ.v≥ 0∧ t ≤ ε
]
S

≡τ.v2−m.d2 ≤ 2(b−u)(m.e− τ.p).

Here (Cd) results from (C) by replacing b with (b−u). In worst-case disturbance,
the train cannot brake with its chosen deceleration−b but might be off by a disturb-
ance up to u. In order to guarantee that the train is still always able to stay within
its MA despite the disturbance, the controller has to assume worst-case guaranteed
deceleration −(b−u) when making control decisions.

Since the proof of Proposition 7.7 follows interesting principles, we present a
formal DAL proof for Proposition 7.7 in Fig. 7.9, using the DAL calculus from
Fig. 3.9. The proof uses the following abbreviations:

X≈−b≡−b− l ≤ X ∧X ≤−b+u

ψ ≡A ∧ τ.p≤m.e∧b > u≥ 0∧ l ≥ 0

φ ≡ τ.v2−m.d2 ≤ 2(b−u)(m.e− τ.p)

〈St〉 ≡ 〈τ.p :=
−b+u

2
t2 + τ.v t + τ.p∧ τ.v :=(−b+u)t + τ.v〉.

7.4 Disturbance and the European Train Control System 297

∗
r∀

ψ,φ ` ∀α∀d (d≈−b∧ τ.v≥0→ 2τ.vd ≤−2τ.v(b−u))
DI

ψ,φ ` [τ.p′′≈−b∧ τ.v≥ 0]φ

∗
r∀

ψ ` ∀α (τ.v≥0∧φ →S)
[DR′]

ψ ` [τ.p′′≈−b∧ τ.v≥0∧φ]S
DS

ψ,φ ` [τ.p′′≈−b∧ τ.v≥ 0]S
∗

r∀,〈:=〉
ψ,∀t≥0(〈St〉τ.v≥ 0→ 〈St〉S) ` φ

[′]
ψ, [τ.p′′ =−b+u∧ τ.v≥ 0]S ` φ

〈DR〉
ψ, [τ.p′′≈−b∧ τ.v≥ 0]S ` φ

→r

∧r

→r

. . .

ψ, [τ.p′′≈−b∧ τ.v≥ 0]S ` φ

ψ ` [τ.p′′≈−b∧ τ.v≥ 0]S → φ
→r

. . .

ψ,φ ` [τ.p′′≈−b∧ τ.v≥ 0]S
ψ ` φ → [τ.p′′≈−b∧ τ.v≥ 0]S

ψ ` ([τ.p′′≈−b∧ τ.v≥ 0]S → φ)∧ (φ → [τ.p′′≈−b∧ τ.v≥ 0]S)

ψ ` ([τ.p′′≈−b∧ τ.v≥ 0]S ↔ φ)

` ψ → ([τ.p′′≈−b∧ τ.v≥ 0]S ↔ φ)

Fig. 7.9 Proof of ETCS controllability despite disturbance (Proposition 7.7)

The bottommost proof block in Fig. 7.9 splits the proof into branches for proving
the two directions of the equivalence: the direction for proving necessity (middle
proof block) and the direction for proving sufficiency (top proof block).

In the top block, sufficiency can be proven by differential strengthening (DAL
rule DS from Fig. 3.9), with the controllability constraint Cd (or its relevant part φ)
as an auxiliary invariant. On the left branch of the top block, validity of the dif-
ferential strengthening step can be proven by differential induction rule DI from
Fig. 3.9 to show that φ is actually an invariant, using the differential inequality re-
duction techniques from Sect. 3.5.3. On the right branch of the top block, differential
weakening rule [DR′] from p. 175 can be used to conclude S from the auxiliary in-
variant φ and the evolution domain restriction τ.v≥ 0. Also see Example 3.20 on
p. 176 for details on this kind of reasoning.

In the middle block, necessity can be proven by differential refinement (DAL
rule 〈DR〉 from Fig. 3.9). We use differential refinement to replace the differential
inequality (Id)—which we abbreviate as τ.p′′≈−b in Fig. 7.9—with the differ-
ential equation τ.p′′ =−b+u. This differential equation represents the worst case
with constant maximum disturbance u in the differential inequality (Id). Intuitively,
this replacement is possible, because the differential equation describes one possible
special case of the differential inequality and we only need to find one permitted
evolution that implies φ for proving necessity. Formally, the differential refinement
is justified by proof rule 〈DR〉 and the fact that

τ.p′ = τ.v∧ τ.v′ =−b+u∧ τ.v≥ 0

entails the following differential inequality (in the sense of Lemma 3.3 from p. 158):

τ.p′ = τ.v∧−b− l ≤ τ.v′ ≤−b+u∧ τ.v≥ 0.

298 7 European Train Control System

Note that DAL rule 〈DR〉 can be applied to the []-formulas in the antecedent, because
these are equivalent to 〈〉-formulas in the succedent.

7.4.2 Iterative Control Refinement of Parameters with
Disturbances

When taking into account worst-case effects of disturbance on control, reactivity
constraint (B) carries over to the presence of disturbance in the train dynamics.

Proposition 7.8 (Reactivity constraint despite disturbance). For trains in con-
trollable state, the supervisory ETCS controller reacts appropriately despite disturb-
ance in order to maintain controllability iff SB is chosen according to the following
provable equivalence:(

∀m.e∀τ.p
(
(m.e− τ.p≥ SB∧ τ.v2−m.d2 ≤ 2(b−u)(m.e− τ.p))→

[τ.a :=A; drived](τ.v2−m.d2 ≤ 2(b−u)(m.e− τ.p)
))

≡ SB≥ τ.v2−m.d2

2(b−u)
+

(
A+u
b−u

+1
)(

A+u
2

ε
2 + ετ.v

)
. (Bd)

For reactivity constraint (Bd), not only the maximum deceleration but also the
maximum acceleration matters—both could be affected by disturbances. Therefore,
we need to substitute not only every b with (b−u) but also every A with (A+u), the
maximum acceleration under disturbance, to get a (provable) reactivity constraint
for the disturbed system.

Accordingly, we adapt the RBC constraint (M) to account for the maximum
effect of disturbance by again replacing every b with (b−u):

m0.d2−m.d2 ≤ 2b(m.e−m0.e)∧m0.d ≥ 0∧m.d ≥ 0. (Md)

Constraint (Md) is fairly easy to obtain from (M), because the RBC itself is not
subject to disturbance, and only the train is.

7.4.3 Safety Verification of ETCS with Disturbances

When we refine the ETCS model with the constraints (Bd) and (Md), ETCS is
safe even in the presence of disturbance in the dynamics when starting in a state
respecting (Cd).

Proposition 7.9 (Safety despite disturbance). Assuming the train starts in a con-
trollable state satisfying (Cd), the following global and unbounded horizon safety

7.5 Experimental Results 299

formula about the ETCS system from Fig. 7.10 with disturbance in the dynamics is
provable:

Cd → [ETCSd](τ.p≥m.e→ τ.v≤m.d).

ETCSd ≡ (traind ∪ rbcd)
∗

traind ≡ spd; atpd ; drived
spd ≡

(
?(τ.v≤m.r); τ.a :=∗; ?(−b≤ τ.a≤ A)

)
∪
(
?(τ.v≥m.r); τ.a :=∗; ?(0 > τ.a≥−b)

)
atpd ≡ SB := τ.v2−m.d2

2(b−u) +
(A+u

b−u +1
)(A+u

2 ε2 + ετ.v
)
;

if (m.e− τ.p≤ SB∨ rbc.message = emergency) then τ.a :=−b fi
drived ≡ t := 0; (τ.p′ = τ.v∧ τ.a− l ≤ τ.v′ ≤ τ.a+u∧ t ′ = 1∧ τ.v≥ 0∧ t ≤ ε)
rbcd ≡ (rbc.message := emergency)

∪
(
m0 := m;m :=∗;

?(m.r ≥ 0∧m.d ≥ 0∧m0.d2−m.d2 ≤ 2(b−u)(m.e−m0.e))
)

Fig. 7.10 Parametric ETCS cooperation protocol with disturbances

The proof sketched in Fig. 7.7 for undisturbed ETCS generalises to ETCS with
disturbance when using differential induction (DAL proof rule DI from Fig. 3.9) and
differential strengthening (DS) with a time-dependent version of (Bd) as a differen-
tial invariant for the acceleration case:

m.e− τ.p≥ τ.v2−m.d2

2(b−u)
+

(
A+u
b−u

+1
)(

A+u
2

(ε− t)2 +(ε− t)τ.v
)
. (7.5)

We also use differential strengthening by this differential invariant in the proof of
Proposition 7.8. The full ETCS system with disturbance, where all abbreviations are
resolved, is depicted in Fig. 7.11.

7.5 Experimental Results

Experimental results for verifying ETCS in our dL - and DAL-based verification
tool KeYmaera are presented in Table 7.1. Experimental results are from a 2.6 GHz
AMD Opteron with 4 GB memory. All those correctness properties and parameter
constraints of ETCS can be verified with 94% to 100% degree automation. In the
universal fragment of dL , user interactions are only needed for supplying invari-
ants (or differential invariants), which, in turn, can be discovered using our iterat-
ive refinement process and our differential invariants as fixed-points algorithm from
Chap. 6. For liveness properties or substantial quantifier alternations beyond the cap-
abilities of currently available decision procedures for real arithmetic, KeYmaera
still needs more user guidance. Yet, those properties can nevertheless be verified
formally with KeYmaera! Further, we see that the symbolic state dimension (Dim)
has more impact on the computational complexity than the number of proof steps in
dL decompositions (Steps). Table 7.1 gives the number of user interactions in the

300 7 European Train Control System

ψ ≡ τ.v2−m.d2 ≤ 2(b−u)(m.e− τ.p)∧m.d ≥ 0∧b > u≥ 0∧ l ≥ 0
→ [ETCSd](τ.p≥m.e→ τ.v≤m.d)

ETCSd ≡


spd:
 (

(?(τ.v≤m.r); τ.a :=∗; ?(−b≤ τ.a≤ A))

∪
(
?(τ.v≥m.r); τ.a :=∗; ?(0 > τ.a≥−b)

))
;

atpd : SB := τ.v2−m.d2

2(b−u) +
(A+u

b−u +1
)(A+u

2 ε2 + ετ.v
)
;

if (m.e− τ.p≤ SB∨ rbc.message = emergency) then τ.a :=−b fi;
drived : t := 0; (τ.p′ = τ.v∧ τ.a− l ≤ τ.v′ ≤ τ.a+u∧ t ′ = 1∧ τ.v≥ 0∧ t ≤ ε)

⋃
rbc:

 (rbc.message := emergency)

∪
(
m0.d := m.d; m0.e := m.e; m0.r := m.r;

m.d :=∗; m.e :=∗; m.r :=∗;

?(m.r ≥ 0∧m.d ≥ 0∧m0.d2−m.d2 ≤ 2(b−u)(m.e−m0.e))
)∗

Fig. 7.11 Parametric ETCS cooperation protocol with disturbances (full instantiation)

column Int, and, for comparison, the total number of applied proof rules in column
Steps. The interactions in Propositions 7.8 and 7.9 are for the time-dependent ver-
sion (7.5) of the constraint on SB.

The experimental results in Table 7.1 for Proposition 7.3 can be improved signi-
ficantly. Most of the user interactions are only required to overcome the current lim-
itations of the preliminary implementation of iterative inflation order proof strategies
from Sect. 5.5 in KeYmaera. Finally, contrast our overall experimental results with
earlier implementations [256] that required as much as 56 user interactions even
for property Proposition 7.5 to be provable, which KeYmaera can prove completely
automatically using our new automated theorem proving techniques for differential
dynamic logics and our logic-based verification algorithms from Part II.

Table 7.1 Experimental results for the European Train Control System

Case study Int Time(s) Memory(MB) Steps Dim
Controllability Proposition 7.1 0 0.6 6.9 14 5
RBC Control Proposition 7.2 property (7.1) 0 0.5 6.4 42 12
RBC Control Proposition 7.2 property (7.2) 0 0.9 6.5 82 12
Reactivity Proposition 7.3 13 279.1 98.3 265 14
Reactivity Proposition 7.4 0 103.9 61.7 47 14
Safety Proposition 7.5 0 2052.4 204.3 153 14
Liveness Proposition 7.6 kernel 4 35.2 92.2 62 10
Liveness Proposition 7.6 simplified 6 9.6 23.5 134 13
Controllability Proposition 7.7 disturbance 0 2.8 8.3 26 7
Reactivity Proposition 7.8 disturbance 1 23.7 47.6 76 15
Safety Proposition 7.9 disturbance 1 5805.2 34 218 16

7.6 Summary 301

7.6 Summary

As a case study for parametric verification of hybrid systems, we have verified con-
trollability, reactivity, safety, and liveness of the fully parametric cooperation pro-
tocol of the European Train Control System. We have demonstrated the feasibility
of dL - and DAL-based verification of parametric hybrid systems and identified
parametric constraints that are both sufficient and necessary for a safe collision-free
operation of ETCS. We have characterised these constraints on the free parameters
of ETCS equivalently in terms of corresponding reachability properties of the un-
derlying train dynamics. We have proven that the system remains correct even when
the train dynamics is subject to disturbances caused, e.g., by the physical trans-
mission, friction, or wind. We have also verified a corresponding fully parametric
proportional-integral (PI) controller for ETCS [245] using KeYmaera.

We have shown how the properties of train control can be expressed in dL . We
have proven all propositions formally in our logic-based verification tool KeYmaera.
Our experimental results with KeYmaera show a scalable approach by combining
the power of completely automatic verification procedures with the intuition behind
user guidance to tackle even highly parametric hybrid systems and properties with
substantial quantifier alternation (reactivity or liveness) or disturbance; also see our
report [245] for details on the experiments and KeYmaera proofs.

For future work, we want to generalise ETCS using probabilistic information
about sensor and communication accuracy and availability.

Chapter 8
Air Traffic Collision Avoidance

Contents
8.1 Introduction . 304

8.1.1 Related Work . 307
8.1.2 Structure of This Chapter 308

8.2 Curved Flight in Roundabout Manoeuvres 309
8.2.1 Flight Dynamics . 309
8.2.2 Roundabout Manoeuvre Overview 310
8.2.3 Compositional Verification Plan 311
8.2.4 Tangential Roundabout Manoeuvre Cycles 312
8.2.5 Bounded Control Choices 315
8.2.6 Flyable Entry Procedures 315
8.2.7 Bounded Entry Duration 318
8.2.8 Safe Entry Separation 319

8.3 Synchronisation of Roundabout Manoeuvres 322
8.3.1 Successful Negotiation 322
8.3.2 Safe Exit Separation . 326

8.4 Compositional Verification . 328
8.5 Flyable Tangential Roundabout Manoeuvre 329
8.6 Experimental Results . 331
8.7 Summary . 333

Synopsis Aircraft collision avoidance manoeuvres are important and complex ap-
plications. Curved flight exhibits nontrivial continuous behaviour. In combination
with the control choices during air traffic manoeuvres, this results in hybrid systems
with challenging interactions of discrete and continuous dynamics. As a case study
for demonstrating the scalability of logical analysis for hybrid systems with chal-
lenging dynamics, we analyse collision freedom of roundabout manoeuvres in air
traffic control, where appropriate curved flight, good timing, and compatible man-
oeuvring are crucial for guaranteeing safe spatial separation of aircraft throughout
their flight. We show that our DAL-based proof techniques can scale to curved flight
manoeuvres required in aircraft control applications. Our logical analysis approach
can be used successfully to verify collision avoidance of the tangential roundabout
manoeuvre automatically, even for five aircraft. Moreover, we introduce a fully fly-
able variant of the roundabout collision avoidance manoeuvre and verify safety
properties by compositional verification in our calculus.

303A. Platzer, Logical Analysis of Hybrid Systems,
DOI 10.1007/978-3-642-14509-4_8, © Springer-Verlag Berlin Heidelberg 2010

304 8 Air Traffic Collision Avoidance

8.1 Introduction

In air traffic control, collision avoidance manoeuvres [293, 104, 129, 171] are used
to resolve conflicting flight paths that arise during free flight. See Fig. 8.1 for a
series of increasingly more realistic—yet also more complicated—aircraft colli-
sion avoidance manoeuvres. Figures 8.1a and b show successful collision avoid-

a.

Q

Q

b.





c.



d.





Fig. 8.1 Evolution of collision avoidance manoeuvres in air traffic control

ance manoeuvres. Figure 8.1c shows a malfunctioning collision avoidance attempt,
and Fig. 8.1d shows an improved manoeuvre. Collision avoidance manoeuvres are
a “last resort” for resolving air traffic conflicts that could lead to collisions. They
become important whenever flight route conflicts have not been detected by the
pilots during free flight or by the flight directors of the Air Route Traffic Control
Centres. Consequently, complicated online trajectory prediction, manoeuvre plan-
ning, or negotiation may no longer be feasible in the short time that remains for
resolving the conflict. In the tragic 2002 mid-flight collision in Überlingen [43], the
aircraft collided tens of seconds after the on-board traffic alert and collision avoid-
ance system TCAS [196] signalled a traffic alert. Thus, for safe aircraft control we
need particularly reliable reactions with manoeuvres whose correctness has been es-
tablished previously by a thorough offline analysis. To ensure correct functioning of
aircraft collision avoidance manoeuvres under all circumstances, the temporal evol-
ution of the aircraft in space must be analysed carefully together with the effects that
manoeuvring control decisions have on their dynamics. This results in complicated
superpositions of physical system dynamics with control, which can be modelled
naturally as hybrid systems.

Several numerical [293, 180, 46, 168, 171] or optimisation-based [180, 46, 167,
171] approaches have been proposed for air traffic control. It is difficult to give
sound formal verification results for these approaches due to errors in numerical
computations or the implicit definition of manoeuvres in terms of complicated op-
timisation processes. Formal verification is important to avoid collisions and prevent
malfunctioning collision avoidance attempts like that in Fig. 8.1c. Formal verifica-
tion results have been given by geometrical reasoning [104, 129, 295, 296] in PVS.
Yet, it still remains to be proven by other techniques that the hybrid dynamics of a
flight controller actually follows the geometrical shapes. In contrast, here we verify
the hybrid system dynamics directly using a formally sound approach (assuming

8.1 Introduction 305

sound elementary decision procedures), consider curved flight, and achieve better
automation.

Control Challenges

Because of the complicated spatio-temporal movement of aircraft, their manoeuvres
are challenging for verification. Unlike in ground transportation, braking and wait-
ing is not an option to resolve conflicts, because, in contrast to quadrotors [164],
fixed-wing aircraft drop out of the sky if they do not move fast enough for sufficient
lift. Consequently, aircraft manoeuvres have to be coordinated such that the aircraft
always respect minimal and maximal lateral and angular speed constraints yet al-
ways remain safely separated. Further, angular velocity for curving is the primary
means of control, because changes in thrust and linear speed are less efficient for
aircraft.

Technical Challenges

Complexities in analysing aircraft manoeuvres manifest most prominently in diffi-
culties with analysing hybrid systems for flight equations. General solutions of flight
equations involve trigonometric functions that depend on the angular velocity ω

and the orientation of the aircraft in space. For straight-line flight (angular velocity
ω = 0), the movement in space is just linear, so classical analysis techniques can be
used [156]. These include pure straight-line manoeuvres [293, 203, 104, 129, 171];
see, e.g., Fig. 8.1a. They have to assume instant turns for heading changes of the
aircraft between multiple straight line segments; see, e.g., Fig. 8.2. Instant turns,
however, are impossible in mid-flight, because they are not flyable: Aircraft can-
not suddenly change their flight direction from 0 to 45 degrees discontinuously.
They need to follow a smooth curve instead, in which they slowly steer towards the
desired direction by adjusting the angular velocity ω appropriately. Moreover, the

Fig. 8.2 Non-flyable straight-
line manoeuvre with instant
turns





non-flyable instant turn

306 8 Air Traffic Collision Avoidance

area of the airspace required by manoeuvres for which instant turns could possibly
be understood as adequately close approximations of properly curved flight is pro-
hibitively large. Curved flight is thus an inherent part of real aircraft control. All the
manoeuvres in Fig. 8.1 still include some instant turns and are, thus, not practical.

During curved flight, the angular velocity ω is nonzero. For ω 6= 0, however,
flight equations have transcendental solutions, which generally fall into undecid-
able classes of arithmetic. Consequently, manoeuvres with curves, as in Figs. 8.1b
and d, are more realistic but also substantially more complicated for verification than
straight-line manoeuvres such as that in Fig. 8.1a. In Chap. 6 we have developed a
sound verification algorithm that works with differential invariants from Chap. 3 in-
stead of with solutions of differential equations to address this arithmetic. Now we
show how a fully curved manoeuvre can be verified, i.e., a flyable manoeuvre that
only consists of curves and straight lines but no instant turns.

In this chapter, we introduce and verify the fully flyable tangential round-
about manoeuvre (FTRM). It refines the non-flyable tangential roundabout man-
oeuvre (NTRM) from Fig. 8.1d, which still has discontinuities at the entry and exit
points of roundabouts, to a fully flyable curved manoeuvre. Unlike most previously
proposed manoeuvres [293, 46, 203, 104, 92, 129, 171], FTRM does not have any
non-flyable instant turns. It is flyable and smoothly curved. Unlike the authors of
other approaches emphasising the importance of flyability [180], we give formal
verification results.

As a case study, we show how safety properties of collision avoidance man-
oeuvres in air traffic management can be verified with the DAL proof calculus from
Chap. 3 using our verification algorithm from Chap. 6.

Contribution

Our main contribution is to show that reality in model design and coverage in formal
verification are no longer incompatible desires even for applications as complex as
aircraft manoeuvres. As a case study illustrating the use of the differential dynamic
logics for hybrid systems from Part I of this book, we demonstrate how tricky and
nonlinear dynamics can be verified with our verification algorithm from Chap. 6. We
introduce a fully curved flight manoeuvre and verify its hybrid dynamics formally.
In contrast to previous approaches, we handle curved flight and hybrid dynamics,
and produce formal proofs with almost complete automation. Manual effort is still
needed to simplify arithmetical complexity and modularise the proof appropriately.
We further illustrate the resulting verification conditions for the respective parts of
the manoeuvre. Finally, we identify the most difficult steps during the verification
and present new transformations to handle the enormous computational complexity.
To reduce complexity, we still use some of the simplifications assumed in related
work, e.g., synchronous manoeuvring (i.e., aircraft make simultaneous, symmetric
manoeuvre choices).

8.1 Introduction 307

8.1.1 Related Work

Lafferriere et al. [189] gave important decidability results for hybrid systems with
some classes of linear continuous dynamics but only random discrete resets. These
results do not apply to air traffic manoeuvres, because they have non-trivial re-
sets: the aircraft’s position does not just jump randomly when switching modes but,
rather, systematically according to the manoeuvre.

Tomlin et al. [293] analyse competitive aircraft manoeuvres game-theoretically
using numerical approximations of partial differential equations. As a solution, they
propose roundabout manoeuvres (Fig. 8.1b) and give bounded-time verification res-
ults for straight-line approximations (Fig. 8.1a). We verify actual curved roundabout
manoeuvres with up to 28 variables and use a sound symbolic approach that avoids
numerical approximation errors. Our symbolic techniques avoid state space discret-
isations that are exponential in the number of variables as required for partial differ-
ential equations. This enables our logical analysis techniques to scale better and to
handle more complicated curved flight dynamics.

Flyability has been identified as one of the major challenges in Košecká et al.
[180], where planning based on superposition of potential fields has been used to
resolve air traffic conflicts. This planning does not guarantee flyability but, rather,
defaults to classical vertical altitude changes whenever a non-flyable path is detec-
ted. The resulting manoeuvre has not yet been verified. The planning approach has
been pursued further by Bicchi and Pallottino [46] with numerical simulations in
two scenarios.

Numerical simulation algorithms approximating discrete-time Markov chain ap-
proximations of aircraft behaviour have been proposed by Hu et al. [168]. They
approximate bounded-time probabilistic reachable sets for one initial state. We con-
sider hybrid systems combining discrete control choices and continuous dynamics
instead of uncontrolled, probabilistic continuous dynamics.

Hwang et al. [171] have presented a straight-line aircraft conflict avoidance man-
oeuvre that involves optimisation over complicated trigonometric computations, and
have validated it using random numerical simulation and informal arguments. They
also show examples where the decisions of the manoeuvre change only slightly for
small perturbations.

The works of Dowek et al. [104] and Galdino et al. [129] are probably closest to
ours. They consider straight-line manoeuvres and formalise geometrical proofs in
PVS. As in the work of Hwang et al. [171], they do not, however, consider curved
flight paths nor verify actual hybrid dynamics but work with geometrical meta-level
reasoning instead.

A few attempts [203, 92] have been undertaken to model check discretisa-
tions of roundabout manoeuvres, which indicate avoidance of orthogonal collisions
(Fig. 8.1b). However, counterexamples found by our model checker in previous
work show that collision avoidance does not extend to other initial flight paths of
the classical roundabout; see Fig. 8.1c.

Pallottino et al. [222] have presented a spatially distributed pattern for mul-
tiple roundabout circles at different positions. They reason manually about desirable

308 8 Air Traffic Collision Avoidance

properties of the system and estimate probabilistic results in [168]. Pallottino et al.
thus take a view that is complementary to ours: they determine the global compatib-
ility of multiple roundabouts while assuming correct functioning within each local
roundabout. We verify that the actual hybrid dynamics of each local roundabout is
collision-free. Generalising our approach to a spatial pattern of verified local round-
abouts would be interesting future work.

Similarly, the work by Umeno and Lynch [296, 295] is complementary to ours.
They consider real-time properties of airport protocols using Timed I/O Automata.
We are interested in proving properties of the actual hybrid system dynamics.

Our approach has a very different focus than other complementary work:

• Our manoeuvre directly involves curved flight, unlike [293, 168, 104, 129, 171,
296, 295]. This makes our manoeuvre more realistic but also much more difficult
to analyse.

• Unlike [180, 168, 171], we do not give results for a finite (sometimes small)
number of initial flight positions in bounded-time horizons (simulation). In-
stead, we verify correct functioning for uncountably many initial states and give
unbounded-time horizon verification results.

• Unlike [293, 180, 46, 168, 167, 171], we use symbolic instead of numerical com-
putation so that numerical and floating-point errors cannot cause soundness prob-
lems.

• Unlike [46, 203, 168, 104, 129, 171, 296, 295], we directly analyse the hybrid
system dynamics and do not use discrete or geometrical approximations that can
be difficult to relate to the actual dynamics.

• Unlike [180, 293, 46, 168, 171, 203, 222] we produce formal, deductive proofs.
Further unlike the formal proofs in [104, 129, 296, 295], our verification is much
more automatic but also covers a different level of models.

• In [104, 129, 171, 296, 295], it remains to be proven that the hybrid dynamics and
flight equations really follow geometrical intuition. Yet geometrical intuition can
sometimes be quite misleading for more complicated cases such as the classical
roundabout manoeuvre in Fig. 8.1b that looks promising, but fails for the situ-
ation in Fig. 8.1c. In contrast, our approach directly works for the hybrid flight
dynamics. We illustrate verification results graphically to help understand them,
but the figures do not prove anything.

• Unlike [216], we consider collision avoidance manoeuvres, and not just detec-
tion.

• Unlike [46, 167], we do not guarantee optimality of the resulting manoeuvre.
Instead, we verify safety properties.

8.1.2 Structure of This Chapter

We verify safety-critical properties of curved flight in roundabout manoeuvres in
Sect. 8.2. We analyse synchronisation properties of roundabout manoeuvres for mul-
tiple aircraft in Sect. 8.3. In Sect. 8.5, we combine the previous results to a safety

8.2 Curved Flight in Roundabout Manoeuvres 309

theorem for fully flyable tangential roundabout manoeuvres following a composi-
tional verification approach in our proof calculi according to Sect. 8.4. We present
experimental results in Sect. 8.6 and conclude in Sect. 8.7.

8.2 Curved Flight in Roundabout Manoeuvres

In this section, we introduce and verify the fully flyable roundabout manoeuvre
that is depicted in Fig. 8.3. It refines the tangential roundabout manoeuvre from
Fig. 8.1d (which we considered in Chap. 3, but which still has discontinuities at the
entry and exit points of roundabouts) to a fully flyable curved manoeuvre. Unlike
the manoeuvres in Fig. 8.1, the resulting manoeuvre does not contain any instant
turns. All of its curves are sufficiently smooth to be flyable.

Fig. 8.3 Flyable aircraft
roundabout

c

x
entry

ex
it

y

8.2.1 Flight Dynamics

The parameters of two aircraft at (planar) position x = (x1,x2) and y = (y1,y2) in
R2 flying in directions d = (d1,d2) ∈ R2 and e = (e1,e2) are illustrated in Fig. 8.4.
Their dynamics is determined by their angular speeds ω,ϖ ∈ R and linear velocity

Fig. 8.4 Flight dynamics

x1

x2

y1

y2

d

ω e

ς

ϖ

vectors d and e, which describe both the linear velocity ‖d‖ :=
√

d2
1 +d2

2 and the
orientation of the aircraft in space. Roundabout manoeuvres are horizontal collision

310 8 Air Traffic Collision Avoidance

avoidance manoeuvres, so as in [293, 203, 167, 92, 222, 129, 171], we simplify
them to planar positions. We denote the flight equations for aircraft at x with angular
velocity ω by F (ω) and the flight equations for aircraft at y with angular velocity ϖ

by G (ϖ):

[x′ = d d′ = ωd⊥] (F (ω))

[y′ = e e′ = ϖe⊥] (G (ϖ))

This differential equation system is equivalent to the system (F (ω)) from p. 150
that has been derived from the literature [293]. Its difference with the differential
equations from Chap. 3 is that we use vectorial notation in this chapter. The vector
d⊥ := (−d2,d1) is the orthogonal complement of vector d. Differential equations
F (ω) express that position x is moving in direction d, which is rotating with angular
velocity ω , i.e., evolves orthogonal to d. Equations G (ϖ) are similar for y,e and
ϖ of the second aircraft. The complexity of differential equations F (ω) comes
from the fact that, for curved flight with ω 6= 0, their solutions involve trigonometric
functions that fall into undecidable classes of arithmetic. See Example B.4 on p. 362
in App. B for an explanation of the solutions of these differential equations.

In safe flight configurations, aircraft respect protected zone p. That is, they are
separated by at least distance p≥ 0, i.e., the state satisfies formula S (p):

S (p) ≡ ‖x− y‖2 ≥ p2 ≡ (x1− y1)
2 +(x2− y2)

2 ≥ p2 for p ∈ R (8.1)

We treat p, like all other parameters, purely symbolically, without assuming a spe-
cific value. In practise, horizontal separation should be ≥5 mi, and vertical separa-
tion ≥1000 ft.

8.2.2 Roundabout Manoeuvre Overview

The flyable tangential roundabout manoeuvre (FTRM) consists of the phases in
the protocol cycle in Fig. 8.5a, which correspond to the marked flight phases in
Fig. 8.5b. During free flight, the aircraft move without restriction by repeatedly

Fig. 8.5 Protocol cycle and construction of flyable roundabout manoeuvre

a.

free

ω :=∗
ϖ :=∗ agree

entry

circ
exit

b.

c

entr
y

r

r

h

x r
ω < 0

ex
it

ω > 0

circ y

8.2 Curved Flight in Roundabout Manoeuvres 311

choosing arbitrary new angular velocities ω and ϖ respectively (as indicated by
the self-loop at free in Fig. 8.5a). As in Chap. 3, continuous nondeterministic vari-
ation of ω and ϖ could be permitted instead of the self-loop by adding ∃ω ∃ϖ to
the DA-constraints in free. The subsequent proofs carry over to this generalisation
immediately.

When the aircraft come too close to one another, they agree on a roundabout
manoeuvre by negotiating a compatible roundabout centre c = (c1,c2) in coordin-
ation phase agree by communication. Next, the aircraft approach the roundabout
circle in a right curve with ω < 0 (entry mode) according to Fig. 8.5b, and reach
a tangential position around centre c. During the circ mode, the aircraft follow the
circular roundabout manoeuvre around the agreed centre c with a left curve of com-
mon angular velocity ω > 0. Finally, the aircraft leave the roundabout in cruise
mode (ω = 0) in their original direction (exit) and enter free flight again (free) when
they have reached sufficient distance (the protocol cycle repeats as necessary). The
collision avoidance manoeuvre is symmetric when exchanging left and right curves,
which corresponds to exchaing a value ω < 0 for ω > 0.

8.2.3 Compositional Verification Plan

For verifying safety properties and collision avoidance of FTRM, we decompose
the verification problem and pursue the following overall verification plan:

AC1 Tangential roundabout manoeuvre cycle: We prove that the protected zones of
aircraft are safely separated at all times during the whole manoeuvre (includ-
ing repetitive collision avoidance manoeuvre initiation and multiple aircraft)
with a simplified but not yet flyable entry operation entryn. Subsequently, we
refine this verification result to a flyable manoeuvre by verifying that we can
replace entryn with its flyable variant entry.

AC2 Bounded control choices for aircraft velocities: We show that linear speeds
remain unchanged during the whole manoeuvre (the aircraft do not stall).

AC3 Flyable entry: We prove that the simplified entryn procedure can be replaced
with a flyable curve entry reaching the same configuration around the inner
roundabout circle as entryn.

AC4 Bounded entry duration: We show why the flyable entry procedure succeeds
in bounded time, i.e., aircraft reach the roundabout circle in some bounded
time ≤ T .

AC5 Safe entry separation: Most importantly, we prove that the protected zones of
aircraft are still respected during the flyable entry procedure entry.

AC6 Successful negotiation: We prove that the negotiation phase (agree) satisfies
the respective requirements of multiple aircraft simultaneously and identify
which constraints are needed for negotiation to succeed.

AC7 Safe exit separation: We show that, for its bounded duration, the exit proced-
ure cannot produce collisions and that the initial far separation for free flight
is reached again, so the FTRM cycle repeats safely.

312 8 Air Traffic Collision Avoidance

This plan modularises the proof and allows us to identify the respective safety con-
straints imposed by the various manoeuvre phases successively. We present details
on these verification tasks in this chapter and summarise the respective verification
results in a joint safety property of FTRM in Sect. 8.5.

Finally note that to simplify notation we use square roots, vectorial notation,
and norms within formulas in this chapter, because those are easily definable. For
instance, for vectors x = (x1,x2) and y = (y1,y2), the formula ‖x− y‖ ≥ p is defin-
able by (x1− y1)

2 +(x2− y2)
2 ≥ p2 for p≥ 0. Likewise, ‖x− y‖ =

√
3r is defin-

able by ‖x− y‖2 = 3r2 for r ≥ 0.

8.2.4 Tangential Roundabout Manoeuvre Cycles (AC1)

First, we analyse roundabouts with a simplified instant entry procedure and without
an exit procedure (property AC1 from Sect. 8.2.3). This corresponds to the non-
flyable NTRM depicted in Fig. 8.1d on p. 304. We refine this manoeuvre and its
verification to the flyable FTRM afterwards.

Modular Correctness of Tangential Roundabout Cycles

For AC1, we have proven in Sect. 3.11 that, for arbitrary choices of the entry man-
oeuvre that satisfy the prerequisites of Theorem 3.4 from p. 199, the tangential
roundabout manoeuvre safely avoids collisions, i.e., the aircraft always maintain
a safe distance ≥ p during the curved flight in the roundabout circle. In addition,
these results show that arbitrary repetitions of the protocol cycle are safe at all times
for a simplified choice of the entry manoeuvre. The model and specification for
this tangential roundabout, as constructed in Sects. 3.4 and 3.11, are summarised in
Fig. 8.6, recalling the separation property S (p) from equation (8.1).

ψ ≡S (p)→ [NTRM]S (p)

S (p) ≡ ‖x− y‖2 ≥ p2 ≡ (x1− y1)
2 +(x2− y2)

2 ≥ p2

NTRM ≡ (free; agree; entryn; circ)∗

free ≡ (ω :=∗; ϖ :=∗; F (ω)∧G (ϖ)∧S (p))∗

agree ≡ ω :=∗; c :=∗
entryn ≡ d :=ω(x− c)⊥; e :=ω(y− c)⊥

circ ≡F (ω)∧G (ω)

Fig. 8.6 Non-flyable tangential roundabout collision avoidance manoeuvre NTRM

8.2 Curved Flight in Roundabout Manoeuvres 313

The simplified flight controller in Fig. 8.6 performs collision avoidance man-
oeuvres by tangential roundabouts and repeats these manoeuvres any number of
times as needed. During each cycle of the loop of NTRM, the aircraft first perform
arbitrary free flight (free) by choosing arbitrary new angular velocities ω and ϖ

(repeatedly as indicated by the loop in free). Aircraft only fly freely while they are
safely separated, which is expressed by the conjunctive constraint S (p) in the dif-
ferential equation for free, which amounts to an evolution domain restriction. Then
the aircraft agree on an arbitrary roundabout centre c and angular velocity ω (agree).
We model this communication by nondeterministic assignments to the shared vari-
ables ω,c. Refinements include all negotiation processes that reach an agreement
on common ω,c choices in bounded time. Next, the aircraft perform the simplified
non-flyable entry procedure (entryn) with instant turns (according to Fig. 8.1d). This
operation identifies the goal state that entry procedures need to reach:

T ≡ d = ω(x− c)⊥∧ e = ω(y− c)⊥. (8.2)

As identified in equation (3.12) on p. 198, the constraint T expresses that, at the
positions x and y, respectively, the directions d and e of the aircraft are tangential
to the roundabout circle with centre c and angular velocity ω; see Fig. 8.7. Finally,

Fig. 8.7 Tangential configur-
ation T

c

x

y

d

e

the roundabout manoeuvre itself is carried out in circ with the common angular ve-
locity ω that was agreed upon in agree. The collision avoidance roundabouts can
be left again by repeating the loop and entering arbitrary free flight at any time.
When further conflicts occur during free flight, the overall process repeats and the
controller in Fig. 8.6 again enters roundabout conflict resolution manoeuvres. The
dL formula ψ in Fig. 8.6 expresses the fact that aircraft following the NTRM pro-
tocol always stay safely separated by at least the protected zone p if they start safely
separated. This formula can be proven similarly to the proof in Sect. 3.11.

Multiple Aircraft

We prove a corresponding collision avoidance property for up to five aircraft, which
jointly participate in the roundabout manoeuvre. There, the safety property is mu-
tual collision avoidance, i.e., each of the aircraft has a safe distance ≥ p from all
the other aircraft, which yields a quadratic number of constraints. This quadratic
increase in the property that actually needs to be proven for a safe roundabout of n
aircraft and the increased dimension of the underlying continuous state space causes

314 8 Air Traffic Collision Avoidance

increased verification times for more aircraft in our experiments (Sect. 8.6). For in-
stance, Fig. 8.8 illustrates the (flyable) roundabout manoeuvre with multiple air-

c
c c

Fig. 8.8 Flyable aircraft roundabout (multiple aircraft)

craft and Fig. 8.9 contains the system and separation property specification for the
four aircraft tangential roundabout manoeuvre (still with simplified entry proced-
ure). There, dL formula ψ expresses that the four aircraft at positions x,y,z,u ∈ R2,
respectively, keep mutual distance ≥ p each.

ψ ≡ φ → [NTRM]φ

φ ≡ (x1− y1)
2 +(x2− y2)

2 ≥ p2∧ (y1− z1)
2 +(y2− z2)

2 ≥ p2

∧ (x1− z1)
2 +(x2− z2)

2 ≥ p2∧ (x1−u1)
2 +(x2−u2)

2 ≥ p2

∧ (y1−u1)
2 +(y2−u2)

2 ≥ p2∧ (z1−u1)
2 +(z2−u2)

2 ≥ p2

NTRM ≡ (free; agree; entryn; circ)∗

free ≡ (ωx :=∗; ωy :=∗; ωz :=∗; ωu :=∗;
x′1 = d1∧ x′2 = d2∧d′1 =−ωxd2∧d′2 = ωxd1

∧ y′1 = e1∧ y′2 = e2∧ e′1 =−ωye2∧ e′2 = ωye1

∧ z′1 = f1∧ z′2 = f2∧ f ′1 =−ωz f2∧ f ′2 = ωz f1

∧u′1 = g1∧u′2 = g2∧g′1 =−ωug2∧g′2 = ωug1∧φ)∗

agree ≡ ω :=∗; c :=∗
entryn ≡ d1 :=−ω(x2− c2); d2 :=ω(x1− c1);

e1 :=−ω(y1− c1); e2 :=ω(y2− c2);

f1 :=−ω(z1− c1); f2 :=ω(z2− c2);

g1 :=−ω(u1− c1); g2 :=ω(u2− c2)

circ ≡ x′1 = d1∧ x′2 = d2∧d′1 =−ωxd2∧d′2 = ωxd1

∧ y′1 = e1∧ y′2 = e2∧ e′1 =−ωye2∧ e′2 = ωye1

∧ z′1 = f1∧ z′2 = f2∧ f ′1 =−ωz f2∧ f ′2 = ωz f1

∧u′1 = g1∧u′2 = g2∧g′1 =−ωug2∧g′2 = ωug1

Fig. 8.9 Tangential roundabout collision avoidance manoeuvre (four aircraft)

8.2 Curved Flight in Roundabout Manoeuvres 315

8.2.5 Bounded Control Choices (AC2)

For property AC2 from Sect. 8.2.3, we show that bounded speed is sufficient for
the choices required for the entry procedure and that the bounded speed is always
maintained safely throughout the manoeuvre (no stalling).

Bounded Entry Choices

The NTRM in Fig. 8.6 maintains collision avoidance for all its choices of centre c
and angular velocity ω in agree. Next, we show that there always is a choice re-
specting external requirements on linear speed (aircraft are safe neither at too high
speeds nor when they are travailing too slowly, as they would stall), which corres-
ponds to property AC2. The fact that all external speed requirements can be met is a
consequence of the proof of property (3.14) on p. 201. Consequently, the constraints
on the entry procedure are feasible with parameter choices respecting any bounds
for velocities that are imposed by the aircraft.

Bounded Manoeuvre Speed

As a simple consequence of the proof in Example 3.16 on p. 172, it is easy to see
that external requirements on the linear speed of aircraft are maintained through-
out the whole roundabout manoeuvre. Example 3.16 shows that the linear speed is
maintained for arbitrary repeated choices of the angular velocity ω , which, as a spe-
cial case, includes the respective control choices during the roundabout manoeuvre.
Thus, the aircraft do not stall.

8.2.6 Flyable Entry Procedures (AC3)

For property AC3 from Sect. 8.2.3, we generalise the verification results about
NTRM with simplified entry procedures (cf. Fig. 8.1d) to FTRM (Fig. 8.5b) by re-
placing the non-flyable entryn procedure with flyable curves. The resulting flyable
entry procedure is called entry. This turns the non-flyable NTRM into the flyable
FTRM manoeuvre.

Flyable Entry Properties

We construct a flyable entry manoeuvre that follows the smooth entry curve from
Fig. 8.5b using the anchor point h indicated in Fig. 8.10. Anchor h is positioned
relative to the roundabout centre c and the x position at the start of the entry curve
(i.e., with x at the right angle indicated in Fig. 8.10). This anchor h has a distance

316 8 Air Traffic Collision Avoidance

Fig. 8.10 Flyable entry char-
acteristics

c

r

r

h

x
ω < 0 ω > 0

y

of r to x, and distance 2r to c, and x−h is orthogonal to the aircraft direction d while
taking into account the relative orientation of the roundabout as implied by angular
velocity ω in the corresponding specification of the flyable entry procedure depicted
in Fig. 8.10. The following property specifies that the tangential configuration of the
simple choice for agree in Fig. 8.6 is reached by a flyable curve while waiting until
aircraft x and centre c have distance r:

(rω)2 = ‖d‖2∧‖x− c‖ =
√

3r∧∃λ≥0(x+λd = c)

∧ ‖h− c‖ = 2r ∧ d =−ω(x−h)⊥

→
[
F (−ω)&‖x− c‖ ≥ r

](
‖x− c‖ ≤ r→ d = ω(x− c)⊥

)
(8.3)

The assumptions in line 1 of dL formula (8.3) express that r is the radius corres-
ponding to speed ‖d‖ and angular velocity ω (which corresponds to (rω)2 = ‖d‖2)
and that entry starts when agree has finished with distance

√
3r to c and is heading

towards c (i.e., ∃λ≥0(x+λd = c)). For the construction of the manoeuvre and po-
sitioning in space, we use the auxiliary anchor point h ∈ R2 identified in Fig. 8.10
and line 2 of (8.3). Anchor h is positioned relative to the roundabout centre c and
the x position at the start of the entry curve (i.e., with x at the right angle indicated
in Fig. 8.10). The entry curve around h is similar to the roundabout curve around
c. It only goes the other way. Formally, h is characterised by distance r to x, and
distance 2r to c (i.e., ‖h− c‖ = 2r) and, further, vector x−h is orthogonal to d and
obeys the relative orientation of the curve belonging to the right curve with angular
velocity −ω (hence d =−ω(x−h)⊥). The formula in (8.3) specifies that the tan-
gential goal configuration (8.2) around c is reached by a flyable curve when waiting
until aircraft x and centre c have distance r, because the domain restriction of the
dynamics is ‖x− c‖ ≥ r (line 3) and the postcondition assumes ‖x− c‖ ≤ r, which,
together, imply ‖x− c‖ = r.

The feasibility of choosing anchor point h can be shown by proving the dual
existence formula: For AC3, we thus also prove that the anchor point h can always
be chosen as illustrated in Fig. 8.10. That is, we show feasibility of the assumptions
on h from property (8.3) by the following existence property:

8.2 Curved Flight in Roundabout Manoeuvres 317

(rω)2 = ‖d‖2∧‖x− c‖ =
√

3r∧∃λ≥0(x+λd = c)

→∃h(d =−ω(x−h)⊥∧‖h− c‖ = 2r)
(8.4)

Spatial Symmetry Reduction

The formulas (8.3) and (8.4) can be proven in a simplified version. We use a (new)
spatial symmetry reduction to simplify these properties computationally. We exploit
symmetries to reduce the spatial dimension by fixing variables and conclude safety
for states that result from the fixed class of states by symmetry transformations.
Without loss of generality, we can recentre the coordinate system to have centre c at
position 0 (the manoeuvre is invariant under translation in space). Further, we can
assume aircraft x to come from the left by changing the orientation of the coordinate
system (the manoeuvre is invariant under planar rotation in space). Finally, we can
assume, without loss of generality, the linear speed to be 1 (by rescaling units appro-
priately). Observe, however, that we cannot fix a value for both the linear speed and
the angular velocity, because their units are strictly interdependent. In other words, if
we fix the linear speed, we need to consider all angular velocities to verify the man-
oeuvre for all possible curve radii r for the roundabout manoeuvre. The x position
resulting from these symmetry reductions can be determined by the Pythagoras the-
orem (i.e., (2r)2 = r2 + x2

1 for the triangle enclosed by h,x,c in Fig. 8.10) or simple
trigonometry, as follows:

x = (2r cos
π

6
,0) = (

√
(2r)2− r2,0) = (

√
3r,0) . (8.5)

To express the square root function using polynomial terms, we can easily use a ran-
dom assignment for x1 with a test condition ?(x2

1 = (
√

3r)2 = 3r2). Consequently,
we simplify formulas (8.3) and (8.4) by specialising them to the following situation:

d1 :=1; d2 :=0; c1 :=0; c2 :=0;
x2 :=0;
r :=∗; ?(r > 0); ω :=1/r;

x1 :=∗; ?(x2
1 = 3r2∧ x1 ≤ 0);

Verification results for the resulting entry procedure after symmetry reduction, and
a proof of existence of a corresponding anchor point h will be shown in Sect. 8.6.

For proving the feasibility property in (8.4) within reasonable time, it is, in fact,
sufficient to specialise the state by symmetry reduction to c1 :=0∧ c2 :=0∧ω :=1.
Interestingly, this example shows another surprise of quantifier elimination com-
plexity and the power of symmetry reduction quite impressively: Without the reduc-
tion to ω :=1, QE of Mathematica runs for more than 20 days without producing a
result on an Intel Xeon X5365 with 3 GHz and 16 GB memory (of which only 3 GB
are used), even when adding the state space reduction r :=1.

318 8 Air Traffic Collision Avoidance

8.2.7 Bounded Entry Duration (AC4)

As the first step for showing that the entry procedure finally succeeds at goal (8.2)
and maintains a safe distance all the time, we show that entry succeeds in bounded
time and cannot take arbitrarily long to succeed (property AC4 from Sect. 8.2.3).

Qualitative Analysis

By a simple consequence of the proof for formula (8.3), the entry procedure follows
a circular motion around the anchor point h, which is chosen according to (8.3); see
Fig. 8.10. That is, when r is the radius belonging to angular velocity ω and linear
speed ‖d‖, the property ‖x−h‖ = r is a differential invariant (Sect. 3.5.6) of entry:
For AC4, we prove constant distance to anchor point h, i.e., that, indeed, ‖x−h‖ = r
is an invariant of entry:

(rω)2 = ‖d‖2∧‖x− c‖ =
√

3r∧∃λ≥0(x+λd = c)

∧d =−ω(x−h)⊥∧‖h− c‖ = 2r

→
[
F (−ω)&‖x− c‖ ≥ r

](
‖x−h‖ = r

)
(8.6)

Indeed, the corresponding formula in (8.6) is provable easily. For the remainder
of AC4, we use informal arguments. By AC2, the speed ‖d‖ is constant dur-
ing the entry procedure. Thus, the aircraft proceeds with nonzero minimum pro-
gress rate ‖d‖ around the circle with radius r. Consequently, the entry manoeuvre
ends in bounded time, because the arc length of the circle of radius r around h is
bounded (2πr for radius r) and every bounded curve will be traversed in bounded
time with constant linear speed and orientation.

Quantitative Analysis

To obtain a quantitative bound on the duration of the entry manoeuvre, consider the
following. The flight duration for a full circle of radius r around h at constant linear
speed ‖d‖ is 2πr

‖d‖ , because its arc length is 2πr. From the trigonometric identities
underlying equation (8.5), we can read off that the aircraft do not even have to
complete the full circle but only a π

3 = 60◦ arc; see Fig. 8.10. Consequently, the
maximum duration T of the entry procedure can be determined as:

T :=
1
6
· 2πr
‖d‖ =

πr
3‖d‖ . (8.7)

Using the standard relation |ω|= v
r between the angular velocity ω , the correspond-

ing radius r of the circle (of evasive actions), and the linear velocity v = ‖d‖ of the
aircraft, maximum duration T can also be expressed as:

8.2 Curved Flight in Roundabout Manoeuvres 319

T =
1
6
· 2π

|ω| .

Note that the constant π in the expression (8.7) for T is not definable in the theory
of real-closed fields (the transcendental number π is not even contained in the real-
closed field of algebraic numbers, and thus it cannot be definable; see App. D.2).
Yet, the maximum duration T only has to be some upper bound on the maximum
duration of the entry procedure. Consequently, any overapproximation of the max-
imum duration computed using a rational P ≥ π will do, for instance, 3.15r

3‖d‖ when
using the approximation 3.15 of π = 3.1415926 . . . in (8.7).

8.2.8 Safe Entry Separation (AC5)

In Sect. 8.2.6, we have shown that the simplified entryn procedure from NTRM can
be replaced by a flyable entry manoeuvre that meets the requirements of approach-
ing tangentially (according to Theorem 3.4) for each aircraft. Unlike in instant turns
(entryn), we have to show in addition that the flyable entry manoeuvres of multiple
aircraft do not produce mutually conflicting flight paths, i.e., spatial separation of
all aircraft is maintained during the entry of multiple aircraft (property AC5 from
Sect. 8.2.3). See Fig. 8.8 on p. 314 for multiple aircraft FTRM where entry separa-
tion is important.

Bounded Overapproximation

We show that entry separation is a consequence of the bounded speed (AC2) and
bounded duration (AC4) of the flyable entry procedure when initiating the negoti-
ation phase agree with sufficient distance. We prove that, when following bounded
speed for a bounded duration, aircraft only come closer by a bounded distance. This
gives a fairly generic proof that generalises to other entry choices.

Let b denote the overall speed bound during FTRM according to AC2 and let T
be the time bound for the duration of the entry procedure due to AC4. We overap-
proximate the actual behaviour during the entry phase by arbitrary curved flight (see
Fig. 8.11 where angular velocities ω,ϖ are free inputs). As an overapproximation of
the actual behaviour during the entry phase, the following strong DAL formula ex-
presses that, when the entry procedure is initiated with sufficient distance p+2bT ,
the protected zone will still be respected after the two aircraft follow any curved
flight (including the actual choices during entry and subsequent circ) with speed≤ b
up to T time units (see Fig. 8.11):

‖d‖2 ≤ ‖e‖2 ≤ b2∧‖x− y‖2 ≥ (p+2bT)2∧ p≥ 0∧b≥ 0∧T ≥ 0

→
[
τ :=0;∃ω F (ω)∧∃ϖ G (ϖ)∧ τ

′ = 1∧ τ ≤ T
]
(‖x− y‖2 ≥ p2) (8.8)

320 8 Air Traffic Collision Avoidance

Fig. 8.11 Entry separation
by bounded nondeterministic
overapproximation

x

d ω

ye

≥p

This formula is a consequence of the fact that—regardless of the actual angular ve-
locity choices—aircraft only make limited progress in bounded time when starting
from some initial point z with bounded speeds, even when changing angular velocity
ω arbitrarily as a nondeterministic quantified input (∃ω as in Chap. 3):

‖d‖2 ≤ b2∧b≥ 0∧ x = z→ [τ :=0; ∃ω F (ω)∧ τ
′ = 1]‖x− z‖∞ ≤ τb (8.9)

The maximum distance ‖x− z‖∞ from initial position z depends on clock τ and
speed bound b. To reduce the polynomial degree and the computational verification
complexity in the proof, we overapproximate distances from quadratic Euclidean
norm ‖ · ‖ in terms of linearly definable supremum norm ‖ · ‖∞, which is definable
as:

‖x‖∞ ≤ c≡−c≤ x1 ≤ c∧−c≤ x2 ≤ c;
‖x‖∞ ≥ c≡ (x1 ≤−c∨ c≤ x1)∨ (x2 ≤−c∨ c≤ x2).

The limited progress property (8.9) is provable immediately by differential induc-
tion for the postcondition (the antecedent of DI is provable as x = z ` ‖x− z‖∞ = 0):

∗
∀r ‖d‖2 ≤ b2∧b≥ 0 ` ∀x,y,τ ∀ω (−b≤ d1 ≤ b∧−b≤ d2 ≤ b)
DI ‖d‖2 ≤ b2∧b≥ 0∧ x = z ` 〈τ :=0〉[∃ω F (ω)∧ τ ′ = 1]‖x− z‖∞ ≤ τb

[;],[:=]‖d‖2 ≤ b2∧b≥ 0∧ x = z ` [τ :=0; ∃ω F (ω)∧ τ ′ = 1]‖x− z‖∞ ≤ τb

Cartesian Degree Reduction

Due to the complexity of QE, the proof of the original property (8.8) does not ter-
minate quickly enough. To overcome this issue, we simplify property (8.8) and
use the (linearly definable) supremum norm ‖ · ‖∞ in place of the (quadratically
definable) Euclidean 2-norm ‖ · ‖2, thereby yielding the following provable variant
of (8.8):

8.2 Curved Flight in Roundabout Manoeuvres 321

‖d‖2 ≤ ‖e‖2 ≤ b2∧‖x− y‖∞ ≥ (p+2bT)∧ p≥ 0∧b≥ 0∧T ≥ 0

→
[
τ :=0;∃ω F (ω)∧∃ϖ G (ϖ)∧ τ

′ = 1∧ τ ≤ T
]
(‖x− y‖∞ ≥ p) (8.10)

It can be shown (and is provable even by QE) that the supremum norm ‖ ·‖∞ and
the standard Euclidean norm ‖ · ‖2 are equivalent, i.e., their values are identical up
to constant factors:

∀x(‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞) (8.11)

∀x(1√
n
‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2) (8.12)

where n is the dimension of the vector space, here 2. From this equivalence of norms,
we can conclude that the following variant of (8.10) with 2-norms is valid:

‖d‖2 ≤ ‖e‖2 ≤ b2∧‖x− y‖2 ≥
√

2(p+2bT)∧ p≥ 0∧b≥ 0∧T ≥ 0

→
[
τ :=0;∃ω F (ω)∧∃ϖ G (ϖ)∧ τ

′ = 1∧ τ ≤ T
]
(‖x− y‖2 ≥ p) (8.13)

The extra factor of
√

2 in the separation requirement results from the relaxation
of the 2-norm to the ∞-norm. In the preconditions of formula (8.13), we assume
‖x− y‖2 ≥

√
2(p+2bT), which implies the assumption ‖x− y‖∞ ≥ (p+2bT) in

the precondition of (8.10) using (8.12). The postcondition ‖x− y‖∞ ≥ p of (8.10) in
turn implies postcondition ‖x− y‖2 ≥ p of (8.13) using (8.11).

Now, with the bounded duration property AC4 of the entry manoeuvre, it is easy
to see that entry is a special case of the hybrid program with quantified nondetermin-
istic angular velocities in (8.13). Thus we conclude that the following property is
valid:

‖x− y‖ ≥
√

2(p+2bT)∧ p≥ 0∧‖d‖2 ≤ ‖e‖2 ≤ b2∧b≥ 0∧T ≥ 0
→ [entry] (‖x− y‖ ≥ p) (8.14)

Far Separation

By combining the estimation of the entry duration (8.7) at speed ‖d‖ = b with the
entry separation property (8.14), we determine the following magnitude as the far
separation f , i.e., the initial distance guaranteeing that the FTRM protocol can be
repeated safely in case new collision avoidance is needed:

f :=
√

2(p+2bT) =
√

2
(

p+
2
3

πr
)
. (8.15)

Using f as an abbreviation for that term, we can abbreviate property (8.14) as fol-
lows:

‖d‖2 ≤‖e‖2 ≤ b2∧‖x−y‖2 ≥ f ∧ p≥ 0∧b≥ 0→ [entry](‖x−y‖2 ≥ p) (8.16)

322 8 Air Traffic Collision Avoidance

8.3 Synchronisation of Roundabout Manoeuvres

In the previous sections, we have analysed collision freedom and separation proper-
ties of the various curved flight phases of FTRM. According to our verification plan
in Sect. 8.2.3, we also need to show that the various actions of the respective aircraft
are synchronised appropriately to ensure safety of the manoeuvre. We analyse the
negotiation phase and compatible exit procedures next.

8.3.1 Successful Negotiation (AC6)

For the negotiation phase to succeed, we have to show that there is a common choice
of the roundabout centre c and angular velocity ω (or radius r) so that all particip-
ating aircraft can satisfy the requirements of their respective entry procedures sim-
ultaneously. That is, we show that the assumptions of formula (8.3) can be satisfied
simultaneously for all aircraft at once. We thus have to show property AC6 from
Sect. 8.2.3.

Separate Success

First of all, we show that there is always a choice of centre c, radius r, and common
angular velocity ω during the agree mode such that the antecedent of the formula
(8.3) is satisfied, i.e., the agree mode is feasible:〈

c :=∗; r :=∗; ?‖x− c‖ =
√

3r∧ r ≥ 0;ω :=∗; ?(rω)2 = d2
1 +d2

2
〉(

‖x− c‖ =
√

3r∧∃λ≥0(x+λd = c)
)

(8.17)

The nondeterministic assignments choose any c,r,ω and the subsequent tests ensure
that the agree mode succeeds in a state with appropriate distance

√
3r to the centre c

as identified in (8.3). The test ?(rω)2 = d2
1 +d2

2 ensures that ω is an angular velocity
that fits to the linear speed ‖d‖ and roundabout radius r.

The dual property shows that, in fact, all choices of agree that also satisfy the
(hence, feasible) constraint ∃λ≥0(x+λd = c) already satisfy the entry require-
ments:[

c :=∗; r :=∗; ?‖x− c‖ =
√

3r∧ r ≥ 0; ?∃λ≥0(x+λd = c);

ω :=∗; ?(rω)2 = d2
1 +d2

2
](

‖x− c‖ =
√

3r∧∃λ≥0(x+λd = c)
)

(8.18)

8.3 Synchronisation of Roundabout Manoeuvres 323

With constraint ∃λ≥0(x+λd = c) we chose to have the centre c on the straight
line from x in its current direction d. This is one option but not the only choice for
an entry construction.

Joint Negotiation Success

In addition to the entry requirements working out separately for each aircraft, we
prove that all corresponding choices of agree satisfy the mutual requirements of
multiple aircraft simultaneously. There are many possibilities for simultaneous solu-
tions of negotiation. To simplify the computational complexity, we only consider
symmetric situations with identical speed and common distance to the point of po-
tential collision, which we can then choose as the roundabout centre c; see Fig. 8.12.
This is a restriction but simplifies the computational proof complexity considerably.

Fig. 8.12 Some mutually
agreeable negotiation choices
for aircraft c

x

d

y

e

A very simple choice is to use the simultaneous intersection (provided there is an
intersection x+λd = y+λe after time λ) of the flight paths of the aircraft at x and y
as the roundabout centre c. Then the choices for c,r,ω are compatible for multiple
aircraft:

λ > 0∧ x+λd = y+λe∧‖d‖ = ‖e‖ →[
c :=x+λd; r :=∗; ?‖x− c‖ =

√
3r; ?‖y− c‖ =

√
3r; ω :=∗; ?(rω)2 = ‖d‖2](

‖x− c‖ =
√

3r∧λ ≥ 0∧ x+λd = c∧‖y− c‖ =
√

3r∧ y+λe = c
)

(8.19)

The tests in the dynamics again ensure that the entry curve starts when x, y, and c
have appropriate distance

√
3r (as identified in Sect. 8.2) and that r is defined to be

the radius belonging to angular velocity ω and linear speed ‖d‖.
Secondly, these choices are feasible, i.e., there always is a mutually agreeable

choice, according to the following diamond formula:

‖d‖ = ‖e‖ ∧λ > 0∧ x+λd = y+λe→〈
c :=x+λd; r :=∗; ?‖x− c‖ =

√
3r; ?‖y− c‖ =

√
3r; ω :=∗; ?(rω)2 = d2

1 +d2
2
〉

324 8 Air Traffic Collision Avoidance(
‖x− c‖ =

√
3r∧λ ≥ 0∧ x+λd = c∧‖y− c‖ =

√
3r∧λ ≥ 0∧ y+λe = c

)
(8.20)

This property follows from the following provable simplified variant, obtained from
formula (8.20) by gluing the equations ‖x− c‖ =

√
3r and ‖y− c‖ =

√
3r together:

‖d‖ = ‖e‖ ∧λ > 0∧ x+λd = y+λe→〈
c :=x+λd; r :=∗; ?‖x− c‖ = ‖y− c‖ =

√
3r
〉
true (8.21)

The fact that ‖x− c‖ can be written in the form
√

3r for some r is easy to see just
by division; similarly for the choice of ω .

Far Separation

The entry procedure has to be initiated while the aircraft are still sufficiently far apart
for safety reasons. Otherwise, there would not be enough airspace for manoeuvring
and approaching the roundabout circle safely. Correspondingly, the agree procedure
will negotiate a roundabout choice while the aircraft have far distance. Thus, the
agree procedure will have to maintain far separation, i.e., satisfy the property

‖x− y‖ ≥
√

2
(

p+
2
3

πr
)
→ [agree]

(
‖x− y‖ ≥

√
2
(

p+
2
3

πr
))

(8.22)

This appears to be a trivial property, because agree models the successful comple-
tion of the negotiation, so no time elapses during agree; hence the positions x and y
do not even change. Observe, however, that the far separation distance according
to equation (8.15) depends on the protected zone p and the radius r of evasive ac-
tions. Unlike p, radius r may change during agree, which allows for the flexibility
of changing the flight radius r adaptively when repeating the roundabout manoeuvre
loop at different positions. Consequently, the far separation distance

√
2(p+ 2

3 πr)
is affected when changing r.

To ensure that the new radius r is chosen such that far separation is still main-
tained, i.e., formula (8.22) is respected, we add a corresponding constraint to agree.
Thus, changes of r are only accepted as long as they do not compromise far separ-
ation. We show that, when adding a corresponding constraint to property (8.19), all
choices by agree maintain far separation of the aircraft at x and y according to (8.15):

‖d‖ = ‖e‖ ∧λ > 0∧ x+λd = y+λe→[
c :=x+λd; r :=∗; ?‖x−c‖ =

√
3r; ?‖y−c‖ =

√
3r; ?‖x−y‖ ≥

√
2
(

p+
2
3

πr
)

;

ω :=∗; ?(rω)2 = d2
1 +d2

2
](

‖x− c‖ =
√

3r∧λ ≥ 0∧ x+λd = c∧‖y− c‖ =
√

3r∧λ ≥ 0∧ y+λe = c

8.3 Synchronisation of Roundabout Manoeuvres 325

∧‖x− y‖ ≥
√

2
(

p+
2
3

πr
))

(8.23)

Finally, we analyse when such choices of agree are feasible with a diamond formula:

‖d‖ = ‖e‖ ∧λ > 0∧ x+λd = y+λe→〈
c :=x+λd; r :=∗; ?‖x− c‖ = ‖y− c‖ =

√
3r
〉(
‖x− y‖ ≥

√
2
(

p+
2
3

πr
))
(8.24)

The corresponding distance constraints on x,y and c for agree, respectively, are
depicted in Fig. 8.13. Using standard trigonometric relations for each half of the tri-

Fig. 8.13 Far separation for
mutually agreeable negoti-
ation choices

√
3r

c

√
3r

γ

≥
√

2(p+ 2
3 πr)

x
d

y
e

angle, we compute the resulting distance between x and y as ‖x− y‖ = 2
√

3r sin γ

2 .
With quantifier elimination and simple evaluation for the remaining trigonometric
expressions, we can determine under which circumstances dL formula (8.24) holds
true, i.e., for all protected zones p there is a radius r satisfying the distance require-
ments:

QE
(
∀p∃r≥0

(
2
√

3r sin
γ

2
≥
√

2(p+
2
3

πr)
))
≡sin

γ

2
>

1
3

√
2
3

π ≡ γ > 117.527◦

Consequently, corresponding choices are feasible for identical speeds and all pro-
tected zones with flight paths that do not intersect with narrow collision angles.
The constraint on the flight path intersection angle would relax to γ > 74.4◦ when
removing the extra factor of

√
2 from (8.15), which only results from our compu-

tational simplification of Cartesian degree reduction from Sect. 8.2.8. Likewise, the
constraints can be relaxed by allowing different angular velocities for entry and circ,
which would be an interesting extension for future work.

Despite the presence of trigonometric expressions, the above formula is a substi-
tution instance of first-order real arithmetic and can thus be handled by QE using

326 8 Air Traffic Collision Avoidance

Lemma 2.5. Note that the primary difference compared to trigonometric expressions
occurring in the solutions of flight equations for curved flight—which do not sup-
port quantifier elimination—is that the argument γ

2 of sin is not quantified over. Con-
sequently, we can consider sin γ

2 as a variable, apply QE, and then use (quantifier-
free) ground evaluation.

8.3.2 Safe Exit Separation (AC7)

NTRM (from Fig. 8.1d) does not need an exit procedure for safety, because the man-
oeuvre can repeat immediately in case further air traffic conflicts arise. For FTRM,
on the other hand, we need to show that the exit procedure produces safe flight paths
until the aircraft are sufficiently separated: When repeating the FTRM manoeuvre,
the entry procedure needs far separation (8.15) for manoeuvring, and not just safety
distance p; see Fig. 8.5b.

Safe Separation

In order to establish the safe separation of aircraft during their exit procedures, we
show that, for its bounded duration, the exit procedure does not conflict with other
flight curves such that the initial far separation is again maintained as needed by
the flyable entry procedure when re-initiating collision avoidance manoeuvres re-
peatedly. For showing property AC7 of Sect. 8.2.3, we have to show the following
dL formula:

T ∧‖x− y‖2 ≥ p2→
[
x′ = d∧ y′ = e∧ e′ = e⊥; x′ = d∧ y′ = e

]
(‖x− y‖2 ≥ p2)

(8.25)
This formula expresses that, when x already exits on a straight line while y keeps fol-
lowing the roundabout for a while until (after the sequential composition) both air-
craft exit on straight lines, then the protected zones are respected at any point. Since,
in Sect. 8.3.1, we have assumed simultaneous entry and identical speed, the aircraft
can also exit simultaneously. With that simplification, property (8.25) simplifies to
the following property, saying that aircraft that exit simultaneously (from tangential
positions T of the roundabout circle) always respect their protected zones:

T ∧‖x− y‖2 ≥ p2 → [x′ = d∧ y′ = e](‖x− y‖2 ≥ p2) (8.26)

This property expresses that safely separated aircraft that exit simultaneously along
straight lines from tangential positions of a roundabout always remain safely sep-
arated. To reduce the arithmetical complexity, we overapproximate this property by
showing that even the whole exit rays never cross when the aircraft exit the same
roundabout tangentially (see Fig. 8.14a; the counterexample in Fig. 8.14b shows that
the assumption on identical radii is required for this relaxation):

8.3 Synchronisation of Roundabout Manoeuvres 327

c c

Fig. 8.14a Exit ray separation Fig. 8.14b Incompatible exit rays

T ∧‖x− c‖2 = ‖y− c‖2∧ x 6= y → [x′ = d;y′ = e]x 6= y (8.27)

The difference with (8.26) is that, here, the aircraft exit independently by a sequen-
tial composition of two separate differential equation systems, rather than by a single
differential equation system. Again the computational complexity of proving this
property can be simplified substantially by adding c1 :=0∧ c2 :=0 by spatial sym-
metry reduction (the manoeuvre is invariant under translation in space). From this
property, the original separation property follows using the geometric fact that, for
linearity reasons, rays that never cross cannot come closer than the original dis-
tance p, which can be expressed elegantly in dL as:

‖x− y‖2 ≥ p2∧ [x′ = d∧ y′ = e]x 6= y → [x′ = d∧ y′ = e](‖x− y‖2 ≥ p2) (8.28)

Thus, by combining (8.27) with (8.28) propositionally, and by using the simple fact
that the sequential independent ray evolution x′ = d; y′ = e is an overapproximation
of the synchronous evolution x′ = d∧ y′ = e, we conclude that property (8.26) is
valid. The rationale behind this overapproximation is that, if all combinations of two
aircraft exiting independently (with a sequential composition) are safely separate,
then, in particular, simultaneous exit of the aircraft along one common differential
equation system is safely separate.

Far Separation

Aircraft finally reach arbitrary far separation when following the exit procedure long
enough. Using the ray overapproximation principle from Fig. 8.14a, we prove that,
due to different exit directions d 6= e, i.e., ‖d− e‖ > 0, the exit procedure will finally
separate the aircraft arbitrarily far (starting from tangential configuration T of the
roundabout):

T ∧d 6= e → [F (ω)∧G (ω)](‖d− e‖ > 0) (8.29)

328 8 Air Traffic Collision Avoidance

Aircraft in a simultaneous roundabout manoeuvre can, indeed, never enter in the
same direction: Either they would already have collided (when they are entering
in the same direction at the same position) or would crash later (when entering
in the same direction with opposing orientations at different positions of the round-
about circle), but we have already shown that the roundabout manoeuvre is collision-
free (Theorem 3.4). Thus by formula (8.29), they maintain their different directions
while following the roundabout. Again, we can combine (8.29) with the geometric
fact that rays into different directions which never cross will be arbitrarily far apart
after sufficient time (see Fig. 8.14a):

d 6= e∧ [x′ = d∧ y′ = e]x 6= y → ∀a〈x′ = d∧ y′ = e〉(‖x− y‖2 > a2)

By combining this geometric fact with (8.29), we obtain the final separation property
saying that, due to their different directions, the exit procedure will finally separate
the aircraft arbitrarily far:

T ∧d 6= e → ∀a〈x′ = d∧ y′ = e〉(‖x− y‖2 > a2) (8.30)

8.4 Compositional Verification

Subsequently, we want to combine the previous results into a full model of the fly-
able tangential roundabout manoeuvre. To begin with, we show how verification
results for large systems can be obtained compositionally in our proof calculi (Part I
of this book) from verification lemmas about small subsystems whenever the large
system has been constructed by composition from the corresponding small subsys-
tems.

Assume we have subsystems αi with lemmas guaranteeing ψi→ [αi]φi, as is the
case for the respective phases agree, entry, and circ of FTRM. Then, in order to
obtain a verification result for their sequential composition α1; α2; . . . ;αn, we have
to show that postcondition φi−1 of αi−1 implies precondition ψi of αi for i≤ n. In
fact, this is a derived proof rule of the compositional dL calculus from Fig. 2.11 or
the DAL calculus from Fig. 3.9 and can be obtained directly from the generalisation
rule []gen (with the usual cut rule application cut to shift the antecedent of a goal to
the succedent of a new subgoal, as for rule ind′ in Sect. 2.5.2):

` ∀α(φi→ φ)

ψ ` [αi−1]ψi ` ∀α(ψi→ [αi]φi)
[]gen

ψ ` [αi−1][αi]φi
[;]

ψ ` [αi−1; αi]φi
[]gen

ψ ` [αi−1; αi]φ

8.5 Flyable Tangential Roundabout Manoeuvre 329

8.5 Flyable Tangential Roundabout Manoeuvre

In this section, we combine the results of this chapter about the individual phases
of flyable roundabouts into a full model of the flyable tangential roundabout man-
oeuvre that inherits safety in a modular way by joining the individual safety proper-
ties of the respective phases together. Essentially, we collect the various manoeuvre
parts together according to the protocol cycle of Fig. 8.5 and take care to ensure
that all safety prerequisites are met that we have identified for the respective flight
phases previously. Formally, safety properties about the individual phases will be
glued together using the generalisation rule []gen and the compositional technique
from Sect. 8.4.

One possible instance of FTRM is the hybrid program in Fig. 8.15, which is com-
posed of previously illustrated parts of the manoeuvre. The technical construction

ψ ≡ ‖d‖ = ‖e‖ ∧ r > 0∧S (f)→ [FTRM]S (p)

C ≡ ‖x− c‖ =
√

3r∧∃λ≥0(x+λd = c)∧‖y− c‖ =
√

3r∧∃λ≥0(y+λe = c)

FTRM ≡
(
free∗; agree; Π(entry; circ; exit)

)∗
free ≡ ω :=∗; ϖ :=∗; F (ω)∧G (ϖ)∧S (f)

agree ≡ c :=∗; r :=∗; ?(C ∧ r > 0); ?S (f);

ω :=∗; ?(rω)2 = ‖d‖2; x0 :=x;d0 :=d;y0 :=y;e0 :=e

entry ≡F (−ω) until ‖x− c‖2 = r2

circ ≡F (ω) until ∃λ≥0∃µ>0(x+λd = x0 +µd0)

exit ≡F (0); ?S (f)

Fig. 8.15 Flight control with flyable tangential roundabout collision avoidance

and protocol cycle of the entry procedure have already been illustrated in Fig. 8.5.
The operation F (ω) until G expresses that the system follows differential equa-
tion F (ω) until condition G is true. It is defined in terms of evolution domain
restrictions and tests to make sure the system leaves mode F (ω) neither later nor
earlier than G specifies. We define F (ω) until G as F (ω)∧∼G; ?G, using the
weak negation ∼G from Sect. 3.5.7 to retain the border of G in the evolution do-
main restriction. For instance, F (ω) until x1 ≥ 0 is F (ω)∧ x1 ≤ 0;?x1 ≥ 0.

Finally, in FTRM, Π denotes the parallel product operator. As in the work
of Hwang et al. [171], the FTRM manoeuvre is assumed to operate synchron-
ously, i.e., all aircraft make simultaneous mode changes. Consequently, the parallel
product Π(entry;circ;exit) simplifies to the conjunction of the respective differen-
tial equations in the various modes and can be defined easily as follows (with cor-
responding simplifications to resolve simultaneous tests):

(entryx∧ entryy); (circx∧ circy); (exitx∧ exity)

330 8 Air Traffic Collision Avoidance

where entryx is the entry procedure of the aircraft at position x etc.
To verify this manoeuvre, we split the proof into the modular properties that we

have shown previously following the verification plan from Sect. 8.2.3. Formally, we
use the generalisation rule ([]gen) to split the system at its sequential compositions.
The corresponding subproperties are depicted in Fig. 8.16 with the mapping to pre-
vious results according to Table 8.1. Formula T is the characterisation of tangential
configurations due to equation (8.2), and the separation formula S (p) is from (8.1).

Fig. 8.16 Verification loop for flyable tangential roundabout manoeuvres

Table 8.1 Verification loop properties for flyable tangential roundabout manoeuvres

Property Consequence of
S (f)→ [free]S (f) Fig. 8.6
S (f)→ [agree](S (f)∧C) (8.19), (8.23)

C ∧S (f)→ [entry]S (p) (8.14)
C ∧S (f)→ [entry]T (8.3)
T ∧S (p)→ [circ](S (p)∧T) Fig. 8.6
T ∧S (p)→ [exit]S (p) (8.26)
T ∧S (p)→ [exit]S (f) (8.26), (8.30)

By combining the results about the FTRM flight phases as summarised in
Fig. 8.16, we conclude that FTRM avoids collisions safely. Note that the modu-
lar proof structure in Fig. 8.16 still holds when replacing any part of the manoeuvre
with a different choice that still satisfies the same specification, e.g., for different
entry procedures that still succeed in tangential configuration T within bounded
time. This includes roundabouts with asymmetric positions, i.e., where the initial
distance to c can be different, and with near conflicts, where the flight paths do not
intersect in one point but in a larger critical region [171]. Most notably, the separa-
tion proof in Sect. 8.2.8 is by overapproximation and tolerates asymmetric distances
to c (Fig. 8.11).

free

ω :=∗
ϖ :=∗

agree

entry

circ

exit

S (f)
S
(f)∧

C

S
(p
)∧

T
S (p)∧T

S
(

f)

8.6 Experimental Results 331

Theorem 8.1 (Safety property of flyable tangential roundabouts). FTRM is
collision-free, i.e., the collision avoidance property ψ in Fig. 8.15 is valid. Further-
more, any variation of FTRM with a modified entry procedure that safely reaches
tangential configuration T in some bounded time T is safe. That is, if the following
formula holds, saying that, until time T the aircraft have safe distance p and will
have reached configuration T at time T , where τ is a clock:

S (f) → [τ :=0; entry∧ τ
′ = 1]

(
(τ ≤ T →S (p))∧ (τ = T →T)

)
.

For reference, a possible instantiation of Fig. 8.15 with abbreviations resolved is
shown in Fig. 8.17.

8.6 Experimental Results

Table 8.2 summarises experimental results for the air traffic control case study of
flyable tangential roundabout manoeuvres. The rows marked with ∗ indicate a prop-
erty where simplifications like symmetry reduction have been used to reduce the
computational complexity of quantifier elimination. The results in Table 8.2 show
that even aircraft manoeuvres with challenging dynamics can be verified with our
logical analysis approach for hybrid systems.

Table 8.2 Experimental results for air traffic control (initial timeout = 10s)

Case study Time(s) Memory(MB) Steps Dim
tangential roundabout (2 aircraft) 10.5 6.8 197 13
tangential roundabout (3 aircraft) 636.1 15.1 342 18
tangential roundabout (4 aircraft) 918.4 31.4 520 23
tangential roundabout (5 aircraft) 3552.6 46.9 735 28
bounded speed control (3.14) 19.6 34.4 28 12
bounded manoeuvre speed Example 3.16 0.3 6.3 14 4
flyable roundabout entry∗ (8.3) 10.2 9.6 132 8
flyable entry feasible∗ (8.4) 104.4 87.9 16 10
flyable entry circular (8.6) 2.9 7.6 81 5
limited progress (8.9) 2 6.5 60 8
entry separation (8.10), 29 int. 140.1 20.1 512 16
negotiation feasible (8.17) 4.5 8.4 27 8
negotiation successful (8.18) 2.7 21.8 34 8
mutual negotiation successful (8.19) 0.9 6.4 60 12
mutual negotiation feasible (8.21) 7.5 23.8 21 11
mutual far negotiation (8.23) 2.4 8.1 67 14
simultaneous exit separation∗ (8.27) 4.7 12.9 44 9
different exit directions (8.29) 3 11.1 42 11

Experimental results are from a 2.6 GHz AMD Opteron with 4 GB memory.
Memory consumption of quantifier elimination is shown in Table 8.2, excluding the
front end. The dimension of the continuous state space and number of proof steps

332 8 Air Traffic Collision Avoidance

ψ ≡ d2
1 +d2

2 = e2
1 + e2

2∧ r > 0∧ (x1− y1)
2 +(x2− y2)

2 ≥ 2
(

p+
2
3

πr
)2

→ [FTRM∗]φ(p)

FTRM ≡
ω :=∗;ϖ :=∗;

free: x′1 = d1∧ x′2 = d2∧d′1 =−ωd2∧d′2 = ωd1

∧ y′1 = e1∧ y′2 = e2∧ e′1 =−ϖe2∧ e′2 = ϖe1

∧ (x1− y1)
2 +(x2− y2)

2 ≥ 2
(

p+
2
3

πr
)2∗;

agree: c :=∗; r :=∗; ?(x1− c1)
2 +(x2− c2)

2 = 3r2;

?∃λ≥0(x1 +λd1 = c1∧ x2 +λd2 = c2);

?(y1− c1)
2 +(y2− c2)

2 = 3r2;

?∃λ≥0(y1 +λe1 = c1∧ y2 +λe2 = c2);

?(x1− y1)
2 +(x2− y2)

2 ≥ 2
(

p+
2
3

πr
)2

;

ω :=∗; ?(rω)2 = d2
1 +d2

2

x0
1 :=x1; x0

2 :=x2; d0
1 :=d1; d0

2 :=d2;

y0
1 :=y1; y0

2 :=y2; e0
1 :=e1; e0

2 :=e2;

entryx∧ entryy: x′1 = d1∧ x′2 = d2∧d′1 =−(−ω)d2∧d′2 =−ωd1

∧ y′1 = e1∧ y′2 = e2∧ e′1 =−(−ω)e2∧ e′2 =−ωe1

∧∼
(
(x1− c1)

2 +(x2− c2)
2 = r2);

?(x1− c1)
2 +(x2− c2)

2 = r2;

circx∧ circy: x′1 = d1∧ x′2 = d2∧d′1 =−ωd2∧d′2 = ωd1

∧ y′1 = e1∧ y′2 = e2∧ e′1 =−ωe2∧ e′2 = ωe1

∧∼
(
∃λ≥0∃µ>0(x1 +λd1 = x0

1 +µd0
1 ∧ x2 +λd2 = x0

2 +µd0
2)

∧∃λ≥0∃µ>0(y1 +λe1 = y0
1 +µe0

1∧ y2 +λe2 = y0
2 +µe0

2)
)
;

?
(
∃λ≥0∃µ>0(x1 +λd1 = x0

1 +µd0
1 ∧ x2 +λd2 = x0

2 +µd0
2)

∧∃λ≥0∃µ>0(y1 +λe1 = y0
1 +µe0

1∧ y2 +λe2 = y0
2 +µe0

2)
)
;

exitx∧ exity: x′1 = d1∧ x′2 = d2∧ y′1 = e1∧ y′2 = e2;

?(x1− y1)
2 +(x2− y2)

2 ≥ 2
(

p+
2
3

πr
)2


Fig. 8.17 Flight control with FTRM (synchronous instantiation)

8.7 Summary 333

are indicated as well. For comparison, the results reported in Table 8.2 use settings
that are closer to those that we had used in Table 5.3. Using different settings for
initial timeouts for differential saturation results in faster performance for larger
dimensions, particularly for multiple aircraft; see Table 8.3.

Table 8.3 Experimental results for air traffic control (initial timeout = 4s)

Case study Time(s) Memory(MB) Steps Dim
tangential roundabout (2 aircraft) 10.4 6.8 197 13
tangential roundabout (3 aircraft) 253.6 7.2 342 18
tangential roundabout (4 aircraft) 382.9 10.2 520 23
tangential roundabout (5 aircraft) 1882.9 39.1 735 28
bounded speed control (3.14) 19.5 34.4 28 12
bounded manoeuvre speed Example 3.16 0.5 6.3 14 4
flyable roundabout entry∗ (8.3) 10.1 9.6 132 8
flyable entry feasible∗ (8.4) 104.5 87.9 16 10
flyable entry circular (8.6) 3.2 7.6 81 5
limited progress (8.9) 1.9 6.5 60 8
entry separation (8.10), 29 int. 140.1 20.1 512 16
negotiation feasible (8.17) 4.8 8.4 27 8
negotiation successful (8.18) 2.6 13.1 34 8
mutual negotiation successful (8.19) 0.8 6.4 60 12
mutual negotiation feasible (8.21) 7.5 23.8 21 11
mutual far negotiation (8.23) 2.4 8.1 67 14
simultaneous exit separation∗ (8.27) 4.3 12.9 44 9
different exit directions (8.29) 3.1 11.1 42 11

The experimental results in Tables 8.2 and 8.3 for property (8.10) can be im-
proved. Currently, they still need as much as 29 simple user interactions to over-
come preliminary simplifications in the implementation of our proof strategies in the
KeYmaera tool. An improved implementation of iterative inflation order (Sect. 5.5)
will reduce the number of required interactions to at most one interaction that spe-
cifies the postcondition of the limited progress property (8.9) as an invariant.

8.7 Summary

We have analysed complex air traffic control applications. Real aircraft can only
follow sufficiently smooth flyable curves. Hence, mathematical manoeuvres that re-
quire instant turns give physically impossible conflict resolution advice. We have
developed a new collision avoidance manoeuvre with smooth, fully flyable curves.
Despite its complicated dynamics and manoeuvring, we have verified collision
avoidance in this flyable tangential roundabout manoeuvre formally using our veri-
fication algorithm for a logic of hybrid systems. Because of the intricate spatio-
temporal movement of aircraft in curved roundabouts, some of the properties require
intricate arithmetic, which we handled by symmetry reduction and degree-based

334 8 Air Traffic Collision Avoidance

reductions. The proof is automatic except for the modularisation and arithmetical
simplifications that are still needed to overcome the computational complexity.

While the flyable roundabout manoeuvre is a highly nontrivial and challenging
study, we still use some modelling assumptions from the literature that should be re-
laxed in future work, e.g., synchronous, symmetric conflict resolution. Further gen-
eralisations include asymmetric entry procedures, different varying cruise speeds,
disturbances, or new aircraft. The proof structure behind Theorem 8.1 is already
sufficiently general, but the computational complexity is quite high. It would be in-
teresting future work to see if the informal robustness studies of Hwang et al. [171]
can be carried over to a formal verification result.

Chapter 9
Conclusion

Hybrid systems are an equally important and challenging class of systems, whose
numerous occurrences in safety-critical complex physical systems call for formal
verification techniques to establish their correct functioning by rigorous mathemat-
ical analysis. The characteristic feature of the modelling idea behind hybrid systems
is that they admit interacting discrete and continuous dynamics to capture the su-
perposition of physical system dynamics with control at a natural modelling level.
With these superpositions, hybrid systems can model challenging system dynamics
fairly easily but also require sophisticated analysis techniques.

Correct functioning of hybrid systems plays an important role in many practical
applications. This includes small embedded controllers in automotive industries that
regulate isolated processes like air bag inflation, and complex physical traffic sys-
tems for train or air traffic control. Similar effects occur in small biomedical devices
like glucose regulators following, e.g., model-predictive control, and large-scale
physical or chemical process control like injection control in combustion engines
or full nuclear reactors. In other domains, hybrid effects also become increasingly
important, including in robotic applications, where mobile robots have to work re-
liably in safety-critical environments, e.g., in driverless vehicle technology. Circuit
designs also often exhibit relevant hybrid effects, where increasing clock rates lead
to mixed analog and digital effects, because larger parts of the chip remain analog.
That happens, for instance, when reducing the number of extra latches that stabilise
values computed by analog circuits.

Logic for Hybrid Systems

As a general analysis technique for hybrid systems, we have described a systematic
logical analysis approach in this book that is based on symbolic and mathematical
logic, automated theorem proving, differential algebra, computer algebra, semial-
gebraic geometry, analysis, and results from the theory of differential equations and
dynamical systems; see Fig. 9.1.

335A. Platzer, Logical Analysis of Hybrid Systems,
DOI 10.1007/978-3-642-14509-4_9, © Springer-Verlag Berlin Heidelberg 2010

336 9 Conclusion

Logical Analysis
of

Hybrid Systems

Logic

Model
Checking

Theorem
Proving

Proof
Calculus

Algebra

Computer
Algebra Algebraic

Geometry

Differential
Algebra

Analysis

Differential
Equations

Dynamical
Systems

Differen-
tiation

Algorithms

Decision
Procedures

Proof
Strategies

Fixedpoint
Loops

Fig. 9.1 Topics contributing to the logical analysis of hybrid systems

We introduced a series of differential dynamic logics (dL , DAL, dTL) as con-
cise languages for specifying correctness properties of hybrid systems along with
concise practical proof calculi for verifying hybrid systems. The logic dL is a first-
order dynamic logic for hybrid programs, which extend classical discrete programs
to uniform operational models for hybrid systems with interacting discrete jumps
and continuous evolutions along differential equations. Its first-order completion,
DAL, is a first-order dynamic logic for more general differential-algebraic pro-
grams that can combine general first-order discrete jump constraints and first-order
differential-algebraic constraints. In a further independent dimension, we augment
dL and DAL to a temporal dynamic logic, dTL, with independent modal path quan-
tifiers over traces and temporal quantifiers along traces, thereby combining the cap-
abilities of dynamic logic to reason about possible system behaviour with the power
of temporal logic in reasoning about the temporal behaviour along traces.

9 Conclusion 337

Proof Calculi

Our concise proof calculi for differential dynamic logics work compositionally by
decomposing properties of hybrid systems symbolically into properties of their
parts, which improves both traceability and scalability of results. In order to handle
interacting hybrid dynamics, we lift real quantifier elimination to the deductive cal-
culi in a new modular way that is suitable for automation, using a combination of
real-valued free variables, Skolem terms, and invertible quantifier rules over the
reals.

As a fundamental result aligning hybrid and continuous reasoning proof-theoret-
ically, we have proven our calculi to axiomatise the transition behaviour of hybrid
systems sound and complete relative to the handling of differential equations. This
result is based on an entirely new notion of hybrid completeness and shows that the
calculi are adequate for verification purposes. This is the first relative completeness
result for hybrid systems and, in fact, the first notion of hybrid completeness.

Furthermore, we have complemented discrete induction with a new first-order
differential induction that uses differential invariants and differential variants for
proving correctness statements about first-order differential-algebraic constraints
and differential inequalities purely algebraically based on the differential constraints
themselves instead of their solutions. This is particularly relevant for formal veri-
fication, because solutions of differential equations quickly yield undecidable arith-
metic or may not even be expressible in closed form. In combination with successive
differential refinement and differential cuts for refining the system dynamics with
auxiliary differential invariants, we obtain a powerful verification calculus for hy-
brid systems with challenging dynamics.

Finally, our sequent calculus for the temporal extension dTL of differential dy-
namic logic is a completely modular combination of temporal and nontemporal reas-
oning, where temporal formulas are handled using rules that augment intermediate
state transitions with corresponding sub-specifications recursively. We have shown
that this gives a sound and complete axiomatisation for temporal properties relative
to the nontemporal base logic.

Logic-Based Verification Algorithms

To address practical scalability challenges for larger case studies, we have intro-
duced proof strategies that navigate through the nondeterminisms in the proof cal-
culi for differential dynamic logics, including iterative background closure and iter-
ative inflation order strategies. Further, we have introduced a verification algorithm
that computes invariants and differential invariants as fixed points in a proof loop for
differential dynamic logic, thereby using the compositional properties of our calculi
to exploit locality in system designs for formal verification. Our compositional proof
calculi result in a compositional verification approach that is, essentially, a divide-
and-conquer approach for hybrid systems verification.

338 9 Conclusion

Applications

In a series of examples and case studies from practical application domains, we
have demonstrated that our techniques can be used successfully for verifying safety,
controllability, and liveness properties in realistic train control applications and chal-
lenging case studies for fully curved roundabout manoeuvres in air traffic control.

In a nutshell, we have introduced and developed the theory, practise, and applica-
tions of differential dynamic logics, leading to a concise yet complete novel logical
analysis approach for hybrid systems with which we can verify applications that
were out of scope for other approaches.

Part IV
Appendix

Overview In the appendices, we summarise the background in logic and differen-
tial equations that we need in the main parts of this book. In App. A, we give an
introduction to basic first-order logic, its syntax, semantics, and proof techniques.
For reference, App. B summarises some classical results about differential equa-
tions. In App. C, we formally investigate the relationship of hybrid automata and
hybrid programs by embedding hybrid automata into hybrid programs. In App. D,
we briefly characterise the verification tool KeYmaera that implements the logics
and automated theorem proving techniques presented in this book. We also survey
various techniques that can be used to prove formulas of real arithmetic.

Appendix A
First-Order Logic and Theorem Proving

Contents
A.1 Overview . 341
A.2 Syntax . 346

A.2.1 Terms . 346
A.2.2 Formulas . 347

A.3 Semantics . 348
A.3.1 Valuation of Terms . 349
A.3.2 Valuation of Formulas 349

A.4 Proof Calculus . 350
A.4.1 Proof Rules . 351
A.4.2 Proof Example: Ground Proving Versus Free-Variable

Proving . 354
A.5 Soundness . 356
A.6 Completeness . 356
A.7 Computability Theory and Decidability 357

Synopsis In this chapter, we briefly review basic elements of first-order logic, which
is the basis for the logics developed in this book. We define the formal syntax of first-
order logic, i.e., the language, in which sentences and formulas of this logic can be
written. We further define the semantics of first-order logic, which gives meaning
to the syntactic expressions. Depending on the interpretation of their elementary
symbols, some formulas then express true facts about the world while others do not.
Most informative are those formulas that are valid, i.e., true under all interpretations.
Finally we review sequent calculi as systematic proof procedures for proving that a
formula is valid in first-order logic.

A.1 Overview

In this chapter, we review first-order logic to a level of detail that is used in this
book. A comprehensive treatment of first-order logic and details about automatic
proof procedures can be found in the book by Fitting [122]. Gentzen-style sequent

341A. Platzer, Logical Analysis of Hybrid Systems,
DOI 10.1007/978-3-642-14509-4, © Springer-Verlag Berlin Heidelberg 2010

342 A First-Order Logic and Theorem Proving

calculi can be found in the book by Gallier [130]. As a reference for the specifics
of dynamic logic for conventional discrete programs, we recommend the book by
Harel et al. [149] and the earlier work by Harel [148]. For further background on
first-order logic we refer the reader to the literature [282, 42, 169, 17].

Classical logic studies how truth is preserved in reasoning and investigates valid
reasoning schemes of formal proofs. In the context of hybrid systems, logic becomes
useful on multiple levels: on the system level to describe the local system operations
and on the reasoning level to analyse the global system behaviour. What we are
most interested in for hybrid systems is what facts are true about a particular hybrid
system at hand. We start with an informal introduction to first-order logic and then
review its syntax, its semantics, and a proof calculus.

Logical System Modelling

On the system level, logic is very useful for describing the control logic of the
system itself, for instance, for describing the conditions under which the system
controller switches to a new mode. In a train control system, for instance, typical
conditions in the controller are:

If the train runs faster than the recommended speed, then the controller switches to braking
mode.
If the train runs slower than the recommended speed and the distance to the next train is
large enough, then the controller switches to acceleration mode, unless the train received
an emergency message.
If the train received an emergency message, then the controller follows emergency proced-
ures.
If the controller follows emergency procedures and the emergency situation has not been
cleared, then the controller switches to braking mode.

These switching conditions seem to imply the following consequences:

If the train received an emergency message and the emergency situation has not been
cleared, or if the train is running faster than the recommended speed, then the control-
ler switches to braking mode.
If the train received no emergency message and the distance to the next train is large
enough, then the controller does not switch to braking mode or the train runs faster than
the recommended speed.

Among many other uses of logic, logical reasoning can be used as a systematic way
to analyse whether these conditions are really consequences of the above conditions.
In order to find out if they are indeed consequences, we try to formalise the above
conditions as logical formulas in first-order logic:

faster(v,r)→ brake(v)

slower(v,r)∧ far(z)∧¬EM→ accel(v)

EM→ EP

EP∧¬EC→ brake(v)

(A.1)

A.1 Overview 343

The first formula directly represents the first condition above using a logical implic-
ation. If the train with speed v runs faster than the recommend speed r (which we
write as faster(v,r)), then (expressed by the implication arrow→) the train brakes.
By v we mean the train’s velocity, by r the recommended speed. The predicate
faster(v,r) is meant to hold of v and r if v is more than r. By brake(v) we mean that
the train brakes when it has velocity v, by accel(v) that it accelerates. Formula EM is
meant to be true if an emergency message has been received, EP if the train follows
emergency procedures. By EC we mean the condition that is true if the emergency
situation has been cleared. Note that the meaning we associate with these symbols
is quite arbitrary and subject to our interpretation. The logical formulas themselves
are not limited to this particular interpretation of the symbols. The truth of logical
formulas depends on the interpretation of symbols, which can be arbitrary. What is
fixed, however, is the meaning of the logical operators as indicated in Table A.1.

Table A.1 Intuitive meaning of logical operators in first-order logic

Formula Read Informal meaning
¬φ “not φ” negation, holds if φ is false

φ ∧ψ “φ and ψ” conjunction, holds if both φ and ψ are true
φ ∨ψ “φ or ψ” disjunction, holds if φ is true or ψ is true

φ → ψ “φ implies ψ” implication, holds if φ is false or ψ is true
φ ↔ ψ “φ equivalent to ψ” equivalence, holds if φ and ψ are either both true or both false
∀xφ “for all x: φ” universal quantifier, holds if φ is true for all values of x
∃xφ “for some x: φ” existential quantifier, holds if φ is true for some value of x
(φ) brackets, only used for grouping logical formulas

Next, we can phrase the switching conditions that we suspected to be con-
sequences as logical formulas using the same symbols:

(EM∧¬EC)∨ faster(v,r)→ brake(v) (A.2)
¬EM∧ far(z)→¬brake(v)∨ faster(v,r) (A.3)

Logical Consequences

Now, it makes sense to ask if the original switching conditions (A.1) actually imply
the suspected consequences (A.2) and (A.3). Thus we ask if the following first-order
formula, which has the conjunction of the formulas in (A.1) on the left hand side of
an implication (→ in the last line) and formula (A.2) on the right hand side, is true
under all circumstances:((

faster(v,r)→ brake(v)
)
∧
(
slower(v,r)∧ far(z)∧¬EM→ accel(v)

)
∧(

EM→ EP
)
∧
(
EP∧¬EC→ brake(v)

))
→
(
(EM∧¬EC)∨ faster(v,r)→ brake(v)

)
(A.4)

344 A First-Order Logic and Theorem Proving

Using a simple proof in first-order logic, this formula turns out to be valid, i.e., true
under all interpretations of the symbols. Because it is true under all interpretations,
it is also true under the specific train interpretation we had in mind when we started
the formalisation.

Let us try to conduct an informal proof of property (A.4). Assume all as-
sumptions are true, because an implication does not say anything unless the as-
sumption on the left of the implication operator (→) holds. Thus we assume
(EM∧¬EC)∨ faster(v,r) to be true. If this disjunction is true, then the left subfor-
mula or the right subformula needs to be true. Now if the disjunction is true because
the right subformula faster(v,r) is true, then we are done because, together with
the first condition faster(v,r)→ brake(v), this implies that brake(v) must be true (if
faster(v,r) and faster(v,r)→ brake(v) are true then brake(v) is too). If, instead, the
first subformula EM∧¬EC is true, then both EM and ¬EC must be true, hence EC
false. Thus, the combination with condition EM→ EP implies that EP must be true.
Since EP is true but EC is not, condition EP∧¬EC→ brake(v) can be used to con-
clude that brake(v) must be true. Hence we have found out by logical analysis that
condition (A.2) is indeed a consequence of conditions (A.1). While successful, this
manual reasoning is not very scalable to large systems. Automated theorem proving
studies the question how proving can be automated such that formulas such as (A.4)
can be proven by a machine. In fact, formula (A.4) can be proven very easily by a
computer.

Formula (A.3), however, turns out not to be a consequence of formulas (A.1). The
reason is that—with our specific train intuition in mind—we had originally associ-
ated a special meaning with the symbols faster,slower,accel and brake that is not
reflected in the formalisation. First-order logic in its own right, allows an arbitrary
interpretation of these symbols, including one where faster(v,r) and slower(v,r)
would be true for the same arguments v,r, or where accel(v) and brake(v) would
both be true for all v. What we may have had in mind from the names—which are
arbitrary though—is that faster and slower should be opposite notions and that ac-
cel and brake should not hold simultaneously. In order to explain these additional
constraints in first-order logic, let us assume that by faster(v,r) we mean exactly
the opposite of slower(v,r), that is faster(v,r) is true if and only if slower(v,r) is
false. Let us further assume that an accelerating train cannot brake at the same time,
and that a braking train cannot accelerate at the same time, while the train could
still neither brake nor accelerate when it keeps moving with constant speed. This
background knowledge corresponds to the following formulas in first-order logic:

slower(v,r)↔¬faster(v,r)

accel(v)→¬brake(v)

brake(v)→¬accel(v)
(A.5)

Observe that logic can be used to show that the last two conditions are actually
equivalent! The middle condition says: If the train accelerates, then it does not brake.
The last condition says: If the train brakes, then it does not accelerate. But that
is already entailed: if the train brakes, then it cannot accelerate for otherwise the

A.1 Overview 345

middle condition would imply that it does not brake, contradicting the assumption
that it indeed brakes. We defer logical reasoning like this and continue to work with
all background assumptions, even though some of them turn out to be redundant or
superfluous.

Now, with this background knowledge, (A.3) is a consequence of the conjunction
of (A.1) and (A.5).((

faster(v,r)→ brake(v)
)
∧
(
slower(v,r)∧ far(z)∧¬EM→ accel(v)

)
∧(

EM→ EP
)
∧
(
EP∧¬EC→ brake(v)

)
∧(

slower(v,r)↔¬faster(v,r)
)
∧
(
accel(v)→¬brake(v)

)
∧
(
brake(v)→¬accel(v)

))
→
(
¬EM∧ far(z)→¬brake(v)∨ faster(v,r)

)
(A.6)

The interpretation of faster and slower is still arbitrary, but now only those inter-
pretations that respect assumption slower(v,r)↔¬faster(v,r) matter, because the
assumptions on the left side of the implication (upper three lines) are not met such
that formula (A.6) is true trivially. With assumptions (A.5), we have not character-
ised the interpretations of faster and slower uniquely. In fact, there are still many
interpretations of what faster means, which, indeed, is a somewhat subjective no-
tion. At least, (A.5) characterise just enough background knowledge for our analysis
above.

Limitations of First-Order Logic

Our reasoning about the switching conditions of a train in first-order logic has been
successful so far. But first-order logic has its limitations that make it difficult and,
in general, even impossible to prove all properties of hybrid systems in first-order
logic. In reality, variables like velocity v of a train are not restricted to some arbit-
rary but fixed value (as first-order logic assumes), but, instead, may change its value
over time as the train accelerates or brakes. Likewise, the emergency may not have
been cleared yet (EC is still false), but may get cleared a minute later (EC suddenly
becomes true). These changes in interpretation over time are not well reflected in
first-order logic. In particular, plain first-order logic itself does not support reason-
ing about the differential equations and real arithmetic domains underlying hybrid
systems.

Still, first-order logic is a very successful basis for hybrid systems analysis. The
differential dynamic logics presented in Part I of this book are extensions of first-
order logic and the proof procedures for differential dynamic logic extend first-order
logic theorem proving. In this appendix, we thus review first-order logic.

346 A First-Order Logic and Theorem Proving

A.2 Syntax of First-Order Logic

In this section, we introduce the syntax of logical formulas in first-order logic
(FOL). First-order logic is the logic of function symbols, predicate symbols, pro-
positional logical operators, and quantifiers over objects of the domain of discourse.

The language of first-order logic, in which sentences can be written, is defined
by a formal syntax. This section presents the syntactic structure of the language of
first-order logic. Given a vocabulary of symbols the language of the logic will be
inductively defined by combining them using logical operators.

A.2.1 Terms

The construction of a logic starts with a signature Σ , which is the set of names
(called symbols) of all entities nameable in a certain context. A signature is the
vocabulary or alphabet of symbols or signs from which well-formed formulas can
be built. Formulas of first-order logic are built over a set V of logical variable sym-
bols and a signature Σ of function and predicate symbols. The difference between
function and predicate symbols is that function symbols stand for functions that
take the values of arguments and give back a function value. Predicate symbols,
in contrast, are either true or false of their arguments. That is, they take the values
of arguments and give either the truth-value “true” or the truth-value “false”. No
other result is permitted for predicate symbols. Function symbols are often written
as f ,g,h,a,b,c and predicate symbols are often written as p,q,r.

In addition to declaring which function and predicate symbols are allowed, the
signature Σ further declares the arity of each function and predicate symbol, i.e.,
the number of arguments it expects. Formally, arity can be understood as a mapping
Σ → N. Arity 0 means that the function or predicate symbol does not expect (nor
admit) any arguments. A common short notation to specify the arities of function
and predicate symbols is

Σ = {a/0,c/0, f/1,g/2; p/1,r/2}. (A.7)

This notation would say that a and c are function symbols without arguments (0), f
is a function symbol that expects one argument, and g a function symbol that expects
two arguments. Further p would be a predicate symbol with one argument and r
a predicate symbol with two arguments. In the above notation in (A.7), predicate
symbols are separated from function symbols by a semicolon (;). In addition to
function and predicate symbols from the signature Σ , we also allow logical variables
from a set V that stand for objects. Logical variables are often written as x,y,z.

Well-formed arguments to function symbols and predicate symbols are called
terms. Variables are well-formed terms, and functions applied to the appropriate
number of terms as arguments are well-formed terms.

A.2 Syntax 347

Definition A.1 (Terms). Trm(Σ) is the set of all terms, which is the smallest set
such that:

• If x ∈V is a logical variable, then x ∈ Trm(Σ).
• If f ∈ Σ is a function symbol of arity n≥ 0 and, for 1≤ i≤ n, θi ∈ Trm(Σ),

then f (θ1, . . . ,θn) ∈ Trm(Σ). The case n = 0 is permitted.

More succinctly, we also say that the terms of first-order logic are defined by the
following grammar (where θ1, . . . ,θn are terms, f a function symbol of arity n, and
x ∈V is a logical variable):

θ ::= x | f (θ1, . . . ,θn).

Example A.1. When we assume the signature from (A.7) and the set of variables
V = {x,y,z}, then the following are well-formed terms:

• f (a)
• f (f (g(a, f (x))))
• g(f (a), f (c))
• f (g(g(a, f (a)),g(c, f (c))))
• f (x,g(g(y,a),x))

The following, however, are no terms with respect to the chosen Σ and V :

• f (a,c) — wrong number of arguments for f ; exactly one argument is expected
• g(c, f) — f is not a term but a function symbol that expects two arguments, not

zero
• g(g(f (a) — incomplete term
• f (g(a,b)) — b is not in V or in Σ according to (A.7). The expression is a term if

we add b to V or use Σ ∪{b/0} instead of Σ . �

A.2.2 First-Order Formulas

The well-formed formulas of a logic form a formal language over the alphabet
Σ ∪V . The formulas consist of all words that can be built by recursively combin-
ing symbols of the signature with logical operator symbols. Formulas are defined as
follows.

Definition A.2 (First-order formulas). The set FmlFOL(Σ) of formulas of first-
order logic is the smallest set with:

• If p ∈ Σ is a predicate symbol of arity n≥ 0 and θi ∈ Trm(Σ) for 1≤ i≤ n, then
p(θ1, . . . ,θn) ∈ FmlFOL(Σ).

• If φ ,ψ ∈ FmlFOL(Σ), then ¬φ ,(φ ∧ψ),(φ ∨ψ),(φ → ψ) ∈ FmlFOL(Σ).
• If φ ∈ FmlFOL(Σ) and x ∈V , then (∀xφ),(∃xφ) ∈ FmlFOL(Σ).

348 A First-Order Logic and Theorem Proving

See Table A.1 on p. 343 for an overview of operators in logical formulas. More suc-
cinctly, we also say that first-order formulas are defined by the following grammar
(where φ ,ψ are first-order formulas, θi are terms, p a predicate symbol of arity n,
and x ∈V is a logical variable):

φ ,ψ ::= p(θ1, . . . ,θn) | ¬φ | φ ∧ψ | φ ∨ψ | φ → ψ | ∀xφ | ∃xφ .

Example A.2. When we again use the signature from (A.7) and the set of variables
V = {x,y,z}, then the following are well-formed formulas:

• p(a)→ r(a, f (c))
• p(x)→ (r(x, f (c))∨¬p(c))
• ∀x(p(x)→ r(f (x), f (c)))
•
(

p(a)∨¬(r(a,a)∧ r(f (a), f (a)))
)
↔ (¬p(c)∧ r(c,c))

• ∀x
(

p(f (x))→∃yr(y, f (x))
)

• r(a,y)↔¬∀x∃y∀z
(
r(x,y)∧ r(y,g(x,z))

)
The following, however, are not formulas with respect to the chosen Σ and V :

• p(a)→ r(g(a)) — second argument of r missing; second argument of g missing
• r(x,y)∧→ p(y) — formula missing between operators ∧ and→
• p(a)→∀x — formula missing after quantifier
• p(a)→ ∀r r(a, f (a)) — r is not a variable symbol in V but a predicate symbol

in Σ ; thus r cannot be quantified over (in first-order logic). Predicate symbol r
stands for a predicate, not for an individual object. The logic where quantification
over functions and predicates is allowed is called higher-order logic. �

Example A.3 (Trains). The examples in App. A.1 are formulas with respect to
V = {v,z} and the following signature, where r is the only function symbol:

Σ = {r/0; EM/0,EP/0,EC/0,slower/2, faster/2,accel/1,brake/1, far/1}.

�

A.3 Semantics of First-Order Logic

The semantics of formulas of first-order logic depends on the interpretation of its
symbols. Given such an interpretation of each of the symbols, the truth-value of the
full formula is defined from the meaning of its logical operators.

A.3 Semantics 349

A.3.1 Valuation of Terms

An interpretation I chooses some non-empty set DI as the universe of objects and
it assigns functions and relations over DI to the respective function and predicate
symbols in Σ . In particular, if f is a function symbol of arity n, then I(f) is a
function I(f) : Dn

I → DI with n arguments. Here Dn
I := {(d1, . . . ,dn) : di ∈ DI} is

the nth crossproduct of DI , i.e., the set of n-tuples of DI . Thus I(f)(d1, . . . ,dn) ∈ DI
is the value of the function associated with f by I at position (d1, . . . ,dn) ∈ Dn

I .
Further, if p is a predicate symbol of arity n, then I(p) would be a relation, i.e.,
a subset I(p)⊆ Dn

I . Thus (d1, . . . ,dn) ∈ I(p) if and only if the predicate associated
with p holds true at position (d1, . . . ,dn) ∈ Dn

I . Interchangeably, we use a slightly
different notation and consider the interpretation I(p) of a predicate symbol to be the
characteristic function I(p) : Dn

I →{true, false} of the predicate. Then p holds true
at position (d1, . . . ,dn) ∈ Dn

I if and only if I(p)(d1, . . . ,dn) = true. The difference
between function symbols and predicate symbols then is that the former have values
in DI and the latter have values in {true, false}.

The meaning of a formula further depends on the interpretation of its variable
symbols from V . An assignment for logical variables is a map η :V → DI that as-
signs an object of the universe of I to each variable.

Given an interpretation I of function (and predicate symbols) and an assignment
η of logical variables, we can evaluate terms inductively.

Definition A.3 (Valuation of terms). The valuation valI,η(·) of terms with respect
to interpretation I and assignment η is defined by

1. valI,η(x) = η(x) if x ∈V is a logical variable.
2. valI,η(f (θ1, . . . ,θn)) = I(f)

(
valI,η(θ1), . . . ,valI,η(θn)

)
when f ∈ Σ is a func-

tion symbol of arity n≥ 0.

A.3.2 Valuation of First-Order Formulas

Given an interpretation I of function and predicate symbols and an assignment η

of logical variables, we can evaluate first-order formulas. We will use η [x 7→ d]
to denote the assignment that agrees with assignment η except on variable x ∈V ,
which is assigned d ∈ DI instead.

Definition A.4 (Valuation of first-order formulas). The valuation, valI,η(·), of
first-order formulas with respect to interpretation I and assignment η is defined
as

1. valI,η(p(θ1, . . . ,θn)) = I(p)
(
valI,η(θ1), . . . ,valI,η(θn)

)
2. valI,η(φ ∧ψ) = true iff valI,η(φ) = true and valI,η(ψ) = true
3. valI,η(φ ∨ψ) = true iff valI,η(φ) = true or valI,η(ψ) = true
4. valI,η(¬φ) = true iff valI,η(φ) 6= true
5. valI,η(φ → ψ) = true iff valI,η(φ) 6= true or valI,η(ψ) = true

350 A First-Order Logic and Theorem Proving

6. valI,η(∀xφ) = true iff valI,η [x 7→d](φ) = true for all d ∈ R
7. valI,η(∃xφ) = true iff valI,η [x 7→d](φ) = true for some d ∈ R

We also write I,η |= φ iff valI,η(φ) = true and say that I,ηφ satisfies φ . Dually, we
write I,η 6|= φ iff valI,η(φ) 6= true. We write just � φ iff I,η |= φ holds for all I,η .
We say that φ is valid if � φ i.e., φ is true in all interpretations and under all as-
signments. The study of valid formulas is an important part of logic, in particular of
systematic ways to establish validity by proofs.

Example A.4 (Trains). Continuing Example A.3, consider one particular interpret-
ation I0 with the universe DI0 := {0,1,2,3, . . . ,100} of natural numbers up to 100
and the following interpretations:

I0(r) = 90,
I0(EM) = false,

I0(EP) = false,

I0(EC) = true,

I0(slower) = {(d,e) ∈ {0,1,2, . . . ,100} : d < e−10},
I0(faster) = {(d,e) ∈ {0,1,2, . . . ,100} : d > e},
I0(accel) = {d ∈ {0,1,2, . . . ,100} : d > 0,d < 50},
I0(brake) = {d ∈ {0,1,2, . . . ,100} : d > 80},

I0(far) = {d ∈ {0,1,2, . . . ,100} : d < 20}.

Further, consider the particular assignment η0 with η0(v) = 85 and η0(z) = 10. In-
terpretation I0 and assignment η0 correspond to one particular situation or system
snapshot in train control. In this interpretation, formula (A.4) evaluates to true, as it
does in all other interpretations, i.e., (A.4) is valid. In I0,η0, however, formula (A.3)
evaluates to false, although all formulas in (A.1) evaluate to true. Since we argued
that the similar formula (A.6) is valid under all interpretations, but the right-hand
side (A.3) of its implication is false, this means that one of the assumptions from
A.5 must be false in I0,η0. Indeed, I0,η0 6|= slower(v,r)↔¬faster(v,r), because
valI0,η0(slower(v,r)) = false but valI0,η0(¬faster(v,r)) = true, which, in turn, holds
because valI0,η0(faster(v,r)) = false. �

A.4 A Sequent Proof Calculus for First-Order Logic

After having defined syntax and semantics of first-order logic, we know how well-
formed formulas look and how the truth-value of a formula is defined for an in-
terpretation of its symbols. The most interesting formulas for us are those that are
valid, i.e., true in all interpretations and assignments, because they will hold under
all circumstances including any particular interpretation that we could have in mind.

A.4 Proof Calculus 351

The question is, how can these valid formulas be identified? Given a formula, how
can we find out if it is actually valid?

If a formula is not valid, then it has an interpretation (and assignment) where it
is false. Such an interpretation (and assignment) then is a witness for the fact that
the formula is not valid. This witness is also known as a counterexample to the
claim that the formula is valid. It can be difficult to find such a counterexample,
but once we have it, it is often fairly easy to check. But if a formula is valid, how
could we show that? Certainly, enumerating all interpretations and checking if the
formula is true in each of these is a hopeless enterprise, because there is an infin-
ite number of interpretations. Nevertheless, clever refinements of enumeration can
give a proof procedure following the famous Herbrand theorem [160] and recent
techniques based mostly on instantiation [30, 229, 29, 131].

A witness for a formula that is not valid is a counterexample, while a witness for
a formula that is valid is a formal proof. In our setting, a formal proof is a derivation
of the formula using a set of valid proof rules from axioms or formulas that are
obviously valid for simple structural reasons, such as φ → φ . Finding a proof can
again be a difficult task, but once we have found it, the proof can be checked easily
for compliance with the proof rules to establish validity. In fact, in a goal-directed
sequent calculus like the one we show, the proof rules are written in a way that helps
finding proofs by working in a systematic way to analyse the original formula. A
full treatment of how the proving process can be automated for first-order logic is
beyond the scope of this book. We refer the reader to the book by Fitting [122] for
more details on automated theorem proving in first-order logic.

A.4.1 Proof Rules for First-Order Logic

Sequents are essentially a standard form for logical formulas that are convenient for
proving. A sequent is of the form Γ ` ∆ , where the antecedent Γ and succedent ∆

are finite sets of formulas. The semantics of sequent Γ ` ∆ is that of the formula∧
φ∈Γ φ → ∨

ψ∈∆ ψ . The antecedent Γ can be thought of as the formulas we assume
to be true, whereas the succedent ∆ can be understood as formulas for which we
want to show that at least one of them is true assuming all formulas of Γ are true.
So for proving a sequent Γ ` ∆ , we assume all Γ and want to show that one of the
∆ is true.

Standard propositional rules are listed in Fig. A.1. They decompose the propos-
itional structure of formulas. Rules ¬r and ¬l use simple dualities caused by the
implicative semantics of sequents. Essentially, instead of showing ¬φ , we assume
the contrary φ in rule ¬r. In rule ¬l, instead of assuming ¬φ , we show the contrary
φ . Rule ∨r uses the fact that formulas are combined disjunctively in succedents.
Rule ∧l uses the fact that they are conjunctive in antecedents. The comma between
formulas in an antecedent has the same effect as a conjunction, and the comma
between formulas in the succedent has the same effect as a disjunction. Rules ∨l
and ∧r split the proof into two cases, because conjuncts in the succedent can be

352 A First-Order Logic and Theorem Proving

(¬r)
Γ ,φ ` ∆

Γ ` ¬φ ,∆

(¬l)
Γ ` φ ,∆

Γ ,¬φ ` ∆

(∨r)
Γ ` φ ,ψ,∆

Γ ` φ ∨ψ,∆

(∨l)
Γ ,φ ` ∆ Γ ,ψ ` ∆

Γ ,φ ∨ψ ` ∆

(∧r)
Γ ` φ ,∆ Γ ` ψ,∆

Γ ` φ ∧ψ,∆

(∧l)
Γ ,φ ,ψ ` ∆

Γ ,φ ∧ψ ` ∆

(→r)
Γ ,φ ` ψ,∆

Γ ` (φ → ψ),∆

(→l)
Γ ` φ ,∆ Γ ,ψ ` ∆

Γ ,(φ → ψ) ` ∆

(ax)
Γ ,φ ` φ ,∆

(cut)
Γ ` φ ,∆ Γ ,φ ` ∆

Γ ` ∆

(∃r)Γ ` φ(θ),∃xφ(x),∆
Γ ` ∃xφ(x),∆

1

(∀l)Γ ,φ(θ),∀xφ(x) ` ∆

Γ ,∀xφ(x) ` ∆

1

(∀r)Γ ` φ(s(X1, . . ,Xn)),∆

Γ ` ∀xφ(x),∆
2

(∃l)Γ ,φ(s(X1, . . ,Xn)) ` ∆

Γ ,∃xφ(x) ` ∆

2

1 θ is an arbitrary term, usually a new logical variable X .
2 s is a new (Skolem) function and X1, . . ,Xn are all free logical variables of ∀xφ(x).

Fig. A.1 Rule schemata of the sequent calculus for first-order logic

proven separately (∧r) and, dually, disjuncts of the antecedent can be assumed sep-
arately (∨l). For rule ∧r we want to show conjunction φ ∧ψ , so in the left branch
we proceed to show Γ ` φ ,∆ , and in the right branch we show Γ ` ψ,∆ . If, as
in rule ∨l, we assume disjunction φ ∨ψ as part of the antecedent, then we do not
know whether we can assume φ to hold or whether we can assume ψ to hold, but
can only assume that one of them holds. Hence, as in a case distinction, rule ∨l
considers both cases, the case where we assume φ in the antecedent, and the case
where we assume ψ . If we have proven both subgoals, the subgoal assuming φ and
the subgoal assuming ψ , then we have also justified the goal assuming only their
disjunction φ ∨ψ . Rules→r and→l can be derived from the equivalence of φ → ψ

and ¬φ ∨ψ . Rule→r uses that implication→ has the same meaning as the turnstile
arrow ` of a sequent. Intuitively, to show implication φ → ψ , rule →r assumes φ

(in the antecedent) and shows ψ (in the succedent). Rule →l assumes an implica-
tion φ → ψ to hold in the antecedent, but we do not know if this implication holds
because φ is false or because ψ is true, so rule→l splits into those two branches.

The axiom rule ax closes a goal (there are no further subgoals), because assump-
tion φ in the antecedent trivially entails φ in the succedent (sequent Γ ,φ ` φ ,∆ is a
simple syntactic tautology). The cut rule can be used for case distinctions: The right
subgoal assumes any additional formula φ in the antecedent that the left subgoal
shows in the succedent. Dually: regardless of whether φ is actually true or false,
both cases are covered by proof branches.

Rules ∃r,∀l,∀r,∃l are standard proof rules for first-order logic. For explaining
these quantifier proof rules, let us first assume for a moment there are no free vari-
ables X1, . . . ,Xn (i.e. n = 0) and use what is known as the ground calculus.

The quantifier proof rules work much as in mathematics. Consider ∀r, where
we want to show a universally quantified property. When a mathematician wants

A.4 Proof Calculus 353

to show a universally quantified property ∀xφ(x) to hold, he could choose a fresh
symbol s (called Skolem function symbol) and prove that φ(s) holds (for s). Then
the mathematician would remember that s was arbitrary and his proof did not assume
anything special about the value of s. So he would conclude that φ(s) must indeed
hold for all s, and that hence ∀xφ(x) holds true. For example, to show that the square
of all numbers is nonnegative, a mathematician could start out by saying “let s be
an arbitrary number”, prove s2 ≥ 0 for s, and then conclude ∀x(x2 ≥ 0), since s was
arbitrary. Proof rule ∀r essentially makes this reasoning formal. It chooses a new
(function) symbol s and replaces the universally quantified formula in the succedent
by a formula for s (with all free logical variables X1, . . . ,Xn added as arguments, as
we explain below). Notice, of course, that it is important to choose a new symbol s
that has not been used (in the sequent) before. Otherwise, we would assume special
properties about s that may not be justified.

Consider ∃r, where we want to show an existentially quantified property. When
a mathematician proves ∃xφ(x), he could directly produce any witness θ for this
existential property and prove that, indeed, φ(θ), for then he would have shown
∃xφ(x) with this witness. For example, to show that there is a number whose cube
is less than its square, a mathematician could start by saying “let me choose 0.5 and
show the property for 0.5”. Then he could prove 0.53 < 0.52, because 0.125 < 0.25,
and conclude that there, thus, is such a number, i.e., ∃x(x3 < x2). Proof rule ∃r does
that. It allows the choice of any term θ for x and accepts a proof of φ(θ) as a proof of
∃xφ(x). However note that the claim “θ is a witness” may turn out to be wrong, for
example, the choice 2 for x would be a bad start for attempting to show ∃x(x3 < x2).
Consequently, proof rule ∃r keeps both options φ(θ) and ∃xφ(x) in the succedent.
If the proof with θ is successful, the sequent is valid and the part of the proof can be
closed successfully. If the proof with θ later turns out to be unsuccessful, another
attempt can be used to prove ∃xφ(x), e.g., by applying ∃r again with another attempt
for a different witness θ2.

Rules ∀l,∃l are dual to ∃r,∀l. Consider ∀l, where we have a universally quantified
formula in the assumptions (antecedent) that we can use, and not in the succedent,
which we want to show. In mathematics, when we know a universal fact, we can use
this knowledge for any particular instance. If we know that all positive numbers have
a square root, then we can also use the fact that 5 has a square, because 5 is a positive
number. Hence from assumption ∀x(x > 0→ hasSqrt(x)) in the antecedent, we can
also assume instance 5 > 0→ hasSqrt(5)). Rule ∀l can produce an instance φ(θ)
for arbitrary terms θ of the assumption ∀xφ(x). Since we may need the universal
fact ∀xφ(x) for multiple instantiations with θ1,θ2,θ3 during the proof, rule ∀l keeps
the assumption ∀xφ(x) in the antecedent so that it can be used repeatedly.

Consider rule ∃l in which we can use an existentially quantified formula from the
antecedent. In mathematics, if we know an existential fact, then we can give a name
to the object that we then know does exist. If we know that there is a smallest integer
less than 10 that is a square, we can call it s, but we cannot denote it by a different
term like 5, because 5 may be (and in fact is) the wrong answer. Rule ∃l gives a
fresh name s (with all logical variables X1, . . . ,Xn as arguments) to the object that

354 A First-Order Logic and Theorem Proving

exists. Since it does not make sense to give a different name for the same existing
object later, ∃xφ(x) is removed from the antecedent when adding φ(s(X1, . . . ,Xn)).

There are two ways of using the proof rules in Fig. A.1. One way is to avoid free
variables Xi altogether and only choose ground terms without variables for instan-
tiations θ in ∃r,∀l. Then the Skolem functions used in ∀r,∃l have n = 0 free logical
variables X1, . . . ,Xn as arguments. This case is called a ground calculus, because free
variables are never used and all term instantiations are ground (no free variables).

The other way is to work with free variables and always use some fresh logical
variable X for instantiation of θ every time ∃r,∀l are used. This is a free-variable
calculus [147, 122, 123] where ∃r,∀l are called γ-rules and ∀r,∃l are called δ+-rules
[147], which is an improvement of what is known as the δ -rule [122, 123]. This case
is called a free-variable calculus, because instantiations are with free variables. At
the end of the proof, these free variables can be instantiated by a global substitution
on the full proof to close all branches. The free variables X1, . . . ,Xn in the Skolem
terms keep track of the dependencies of symbols and prevent instantiations where
we instantiate X1 by a term such as s(X1, . . . ,Xn) depending on X1. The ground
calculus and free-variable calculus uses of Fig. A.1 can also be mixed.

A.4.2 Proof Example: Ground Proving Versus Free-Variable
Proving

Figure A.2a shows a proof in the FOL calculus from Fig. A.1 in the ground calculus
version (without using free logical variables) of formula ∃y∀xc(x,y)→∀x∃yc(x,y).
This property says that if there is one common y for all x such that c(x,y), then for
each of those x there also is a y such that c(x,y). Proofs are constructed bottom-up
starting with the conjecture ∃y∀xc(x,y)→∀x∃yc(x,y) at the bottom, and working
backwards to the top by using proof rules from Fig. A.1.

∗
ax∀xc(x,r),c(s,r) ` ∃yc(s,y),c(s, t),c(s,r)
∃r∀xc(x,r),c(s,r) ` ∃yc(s,y),c(s, t)
∀l ∀xc(x,r) ` ∃yc(s,y),c(s, t)
∃l ∃y∀xc(x,y) ` ∃yc(s,y),c(s, t)
∃r ∃y∀xc(x,y) ` ∃yc(s,y)
∀r ∃y∀xc(x,y) ` ∀x∃yc(x,y)

∗[X 7→ s][Y 7→ t]
ax∀xc(x, t),c(X , t) ` ∃yc(s,y),c(s,Y)
∀l ∀xc(x, t) ` ∃yc(s,y),c(s,Y)
∃l ∃y∀xc(x,y) ` ∃yc(s,y),c(s,Y)
∃r ∃y∀xc(x,y) ` ∃yc(s,y)
∀r ∃y∀xc(x,y) ` ∀x∃yc(x,y)

Fig. A.2a Ground proof example Fig. A.2b Free-variable proof example

One of the practical difficulties with rules ∃r,∀l is how to choose the right instan-
tiation θ that will help close the proof. This is also visible in Fig. A.2a, where the
first choice for the instantiation of ∃r with t is not successful for the proof, because
the Skolem function symbol for the subsequent ∃l application must be new; hence
it is called r. But Γ ,c(s,r) ` c(s, t),∆ is not an instance of axiom ax, so the proof

A.4 Proof Calculus 355

cannot yet be closed unless ∃r is used again to instantiate with r. After this, the proof
closes successfully by axiom rule ax (the notation ∗ marks the successful end of a
proof).

Thus, the primary difficulty when using ground calculi is the need to find smart
instantiations that will only turn out to work or fail much later in the proof. For
automated theorem provers, it is hard to predict which instantiations are likely to
work or fail, although very powerful heuristics and even successful methods based
entirely on instantiation [30, 229, 29, 131] have been developed already.

Figure A.2b shows a proof of the same first-order formula in the free-variable
calculus version of Fig. A.1. In particular, ∃r,∀l instantiate the formulas just with
new free variables X and Y , respectively, and the actual instantiations for X and Y are
chosen only at the end of the proof, once it becomes obvious which choices prove the
formula. The proof closes with the choice s for free variable X and the choice t for Y ,
which can be detected easily because this instance of Γ ,c(X , t) ` c(s,Y),∆ can be
closed by ax. We mark this substitution for closing successfully by ∗[X 7→ s][Y 7→ t]
at the end of the proof. Notice also that the free-variable calculus proof Fig. A.2b
here uses only one application of ∃r, not two applications as in Fig. A.2a, because
the smart instantiation choice can easily be deferred until the end of the proof.

In contrast, the failed proof attempt in Fig. A.3 does not close, because we would

not closed
c(X , t(X)),∀x∃yc(x,y) ` c(s(Y),Y),∃y∀xc(x,y)

∃l ∃yc(X ,y),∀x∃yc(x,y) ` c(s(Y),Y),∃y∀xc(x,y)
∀r ∃yc(X ,y),∀x∃yc(x,y) ` ∀xc(x,Y),∃y∀xc(x,y)
∀l ∀x∃yc(x,y) ` ∀xc(x,Y),∃y∀xc(x,y)
∃r ∀x∃yc(x,y) ` ∃y∀xc(x,y)
→r ` ∀x∃yc(x,y)→∃y∀xc(x,y)

Fig. A.3 Wrong proof attempt in first-order logic

need to make c(X , t(X)) and c(s(Y),Y) identical by substituting terms for X and
Y . But if we try to substitute s(Y) for X , then we have to apply this substitution
everywhere. In particular, we have to substitute t(X) for Y , which after applying the
X substitution corresponds to replacing Y with t(s(Y)). This, however, is recursive,
as Y occurs inside its own replacement (also known as occurs check). If we try to
replace Y by t(s(Y)), then we have to apply this replacement everywhere. Thus, we
no longer have to substitute s(Y) for X , but now we have to substitute s(t(s(Y)))
for X . But then Y needs to be identical to t(X); thus we need to replace Y with
t(s(t(s(Y)))). This process never terminates! Formally, we say that c(X , t(X)) and
s(Y),Y) cannot be unified [265].

Yet the fact that we cannot prove the property in Fig. A.3 is actually good news!
The formula ∀x∃yc(x,y)→∃y∀xc(x,y) that we were trying to prove in the first
place is not valid, so we should never be able to prove it at all. This formula ex-
presses the false statement that, if every x has a y for which c(x,y) holds, then there
also is a single y such that for all x the property c(x,y) holds. But being able to

356 A First-Order Logic and Theorem Proving

choose the same common y for all x is a much stronger property than just being able
to choose some (possibly different) y for every x separately. Note that the attempt
in Fig. A.3 also shows that it is necessary to keep the dependency on all free vari-
ables as arguments in the Skolem terms s(X) and t(Y). If the proof rules ∀r and ∃l
would not add the free variables X and Y as arguments, then nothing would have
prevented us from closing the proof in Fig. A.3 by substituting s for X and t for Y .
Consequently, the Skolem dependencies, which correspond to the dependencies and
orders between the quantifiers, are necessary to make ∀r and ∃l sound, i.e., ensure
that they only prove valid formulas.

A.5 Soundness

The proof calculus for first-order logic in App. A.4 needs to fit the semantics of
first-order logic from App. A.3. Fortunately, every first-order logic formula that can
be derived in the FOL calculus from Fig. A.1 is a valid formula. This property of
the calculus is called soundness and is crucial, because it would be disastrous if
some formula would be called “proven” when it is actually not valid. For instance,
being able to prove the invalid formula in Fig. A.3 would be disastrous. We certainly
would not want to rely on safety-critical embedded systems that were built based on
any wrong reasoning principles.

A calculus is sound iff every formula that can be derived in the calculus is also
valid according to the semantics.

Theorem A.1 (Soundness of FOL). The calculus for first-order logic is sound.

The proof is a version of a classical soundness proof for first-order logic [147,
122, 130] and shows that every instance of the proof rules is sound, because valid
premises imply that the conclusion is valid. The soundness proof for the ∀r,∃l can
be found in the article by Hähnle and Schmitt [147].

A.6 Completeness

Soundness shows that all provable formulas are valid. So we know that we will
never prove something that does not even hold (is not valid). The converse question
is about whether all valid formulas are also provable, i.e., whether we will always
be able to prove all formulas that are true (or, more precisely, valid).

Theorem A.2 (Completeness of FOL). The first-order logic calculus is complete,
i.e., every valid first-order logic formula can be derived in the first-order calculus.

Completeness of a first-order logic proof calculus was first proven by Kurt Gödel
[135, 136]. The proof technique was simplified considerably by Leon Henkin [155],
and such Henkin completeness proofs are used very successfully today. Complete-

A.7 Computability Theory and Decidability 357

ness proofs for modern first-order calculi that are such as the one in Fig. A.1 can be
found in the literature [147, 122, 130].

As a corollary to the soundness and completeness results, a proof calculus for
first-order logic such as that in Fig. A.1 is “perfect” in the sense that it can success-
fully prove exactly the valid formulas. Still, numerous improvements and refine-
ments are needed to make first-order logic proving successful in practise.

A.7 Computability Theory and Decidability

In this section, we provide a brief, informal introduction to decidability, semidecid-
ability, and undecidability in the context of logic. We refer the reader to the literat-
ure [280] for a formal introduction to computability theory and related notions.

First-order logic has a sound and complete calculus that we have shown in
App. A.4. In particular, given any formula of first-order logic, we can use the proof
calculus to check whether the formula is valid by systematically generating proofs.
The primary challenge for proving formulas is to find appropriate instantiations for
quantifiers, but the completeness theorem A.2 shows that appropriate instantiations
exist for all valid formulas. Hence, given a first-order formula φ , systematically gen-
erating proofs will eventually be successful if φ is valid, but may go on forever if φ

is not valid. This makes validity of first-order logic semidecidable, because there
is an algorithm that always terminates and answers correctly for valid formulas but
may fail to terminate for formulas that are not valid. In fact, it turns out that there
is no algorithm for first-order logic that always terminates with the correct answer
also for formulas that are not valid.

In general, a decision problem is the task to decide for each instance of the prob-
lem between “yes” and “no”. For instance, in the decision problem of validity in
first-order logic, the task is for each formula of first-order logic to decide between
“yes, valid” and “no, not valid”. A decision problem is called decidable iff there is
an algorithm that always terminates and produces the correct answer for the decision
problem. The problem is called undecidable otherwise, i.e., no algorithm exists that
is guaranteed to terminate with the correct answer in all cases. A decision problem
is called semidecidable iff there is an algorithm that always produces the correct
answer for the decision problem and always terminates for “yes” instances of the
problem, but does not need to terminate for “no” instances.

Validity in first-order logic is semidecidable, but not decidable. Validity in equa-
tional first-order logic, i.e., with equality as the only predicate symbol and no func-
tion symbols, is decidable, as has been shown by Skolem [281], based on prior work
by Löwenheim [199]. Tarski [288] showed that validity in first-order real arithmetic,
i.e., first-order logic interpreted over real-closed fields is decidable by quantifier
elimination.

Appendix B
Differential Equations

Contents
B.1 Ordinary Differential Equations 359
B.2 Existence Theorems . 363
B.3 Existence and Uniqueness Theorems 364
B.4 Linear Differential Equations with Constant Coefficients 365

Synopsis In this chapter, we give an intuition for and examples of differential
equations and briefly summarise some classical results about differential equations.
We state Peano’s existence theorem for solutions of differential equations and the
Picard-Lindelöf or Cauchy-Lipschitz existence and uniqueness theorem.

B.1 Ordinary Differential Equations

In this chapter, we briefly introduce differential equations, show examples, and sum-
marise classical results. We refer to the book by Walter [297] for details and proofs
about differential equations. For further background on differential equations, we
refer you to the literature [153, 257, 116, 172]. For a presentation of differential
equations that is closer to the needs in dynamical systems, we refer you to the book
by Perko [227]. Differential-algebraic equations are also covered in the literature in
more detail [132, 187].

In this chapter, Ck(D,Rn) denotes the space of k times continuously differentiable
functions from domain D to Rn.

An ordinary differential equation in explicit form is an equation y′(t) = f (t,y)
where y′(t) is meant to be the derivative of y with respect to t. A solution is a differ-
entiable function Y which satisfies this equation when substituted in the differential
equation, i.e., when substituting Y (t) for y and the derivative Y ′(t) of Y at t for y′(t).

Definition B.1 (Ordinary differential equation). Let f : D→ Rn be a function on
a domain D ⊆ R×Rn. The function Y : I→ Rn is a solution on the interval I ⊆ R

359

360 B Differential Equations

of the initial value problem [
y′(t) = f (t,y)
y(t0) = y0

]
(B.1)

with ordinary differential equation (ODE) y′ = f (t,y), if, for all t ∈ I

1. (t,Y (t)) ∈ D,
2. Y ′(t) exists and Y ′(t) = f (t,Y (t)),
3. Y (t0) = y0.

If f : D→ Rn is continuous, then it is easy to see that Y : I → Rn is continuously
differentiable. The definition is accordingly for higher-order differential equations,
i.e., differential equations involving higher-order derivatives y(n)(t) for n > 1.

Let us consider the intuition for this definition. A differential equation (system)
can be thought of as a vector field such as the one in Fig. B.1, where, at each point,
the vector shows in which direction the solution evolves. At every point, the vector
would correspond to the right-hand side of the differential equation. A solution of
a differential equation adheres to this vector field at every point, i.e., the solution
(e.g., the solid line in Fig. B.1) locally follows the direction indicated by the vector
of the right-hand side of the differential equation. There are many solutions of the
differential equation corresponding to the vector field illustrated in Fig. B.1. For the
particular initial value problem, however, a solution also has to start at the position
y0 at time t0 and then follow the differential equations or vector field from this point.
In general, there could still be multiple solutions for the same initial value problem.

Fig. B.1 Vector field and
a solution of a differential
equation

Example B.1. Some differential equations are easy to solve. For instance, the initial
value problem [

x′(t) = 5
x(0) = 2

]

B.1 Ordinary Differential Equations 361

has a solution x(t) = 5t +2. This can be checked easily by inserting the solution
into the differential equation and initial value equation:[

(x(t))′ = (5t +2)′ = 5
x(0) = 5 ·0+2 = 2

]
�

Example B.2. Consider the initial value problem[
x′(t) = −2x
x(1) = 3

]
which has a solution x(t) = 3e−2(t−1). The test, again, is to insert the solution into
the (differential) equations of the initial value problems and check:[

(3e−2(t−1))′ = −6e−2(t−1) =−2x(t)
x(1) = 3e−2(1−1) = 3

]
�

Example B.3 (Trains). For the train control examples in this book (especially in
Chaps. 2 and 7), consider the differential equation system z′ = v,v′ = a from (2.7)
on p. 62 and the initial value problem

z′(t) = v(t)
v′(t) = a
z(0) = z0
v(0) = v0


Note that this initial value problem is a symbolic initial value problem with sym-
bols z0,v0 as initial values (not specific numbers like 5 and 2.3). Moreover, the
differential equation has a constant symbol a, and not a specific number like 0.6,
in the differential equation. In vectorial notation, the initial value problem with
this differential equation system corresponds to a vectorial system when we denote
y(t) := (z(t),v(t)), i.e., with dimension n = 2 in Definition B.1: y′(t) =

(
z
v

)′
(t) =

(
v(t)

a

)
y(0) =

(
z
v

)
(0) =

(
z0
v0

)


The solution of this initial value problem is

z(t) =
a
2

t2 + v0t + z0

v(t) = at + v0

362 B Differential Equations

We can show that this is the solution by inserting the solution into the (differential)
equations of the initial value problems and checking:

(a
2 t2 + v0t + z0)

′ = 2 a
2 t + v0 = v(t)

(at + v0)
′ = a

z(0) = a
2 02 + v00+ z0 = z0

v(0) = a0+ v0 = v0


�

Example B.4 (Aircraft). For the aircraft control examples in this book (especially in
Chaps. 3 and 8), consider the differential equation system (F (ω)) from p. 150 and
the corresponding initial value problem:

x′1(t) = d1(t)
x′2(t) = d2(t)
d′1(t) = −ωd2(t)
d′2(t) = ωd1(t)
x1(0) = x1,0
x2(0) = x2,0
d1(0) = d1,0
d2(0) = d2,0


This initial value problem is again a symbolic initial value problem with variable
symbols x1,0,x2,0,d1,0,d2,0 as initial values instead of specific numbers. The differ-
ential equations are also symbolic with a variable symbol ω instead of a specific
number like 2.3. When we assume the particular number ω = 0, which corresponds
to straight-line flight (see Fig. 1.3a on p. 3), the solution is a simple linear function:

x1(t) = x1,0 +d1,0t

x2(t) = x2,0 +d2,0t

d1(t) = d1,0

d2(t) = d2,0

For the general case with ω 6= 0, which corresponds to curved flight (Fig. 1.3b–d),
the solution of this initial value problem is much more complicated:

x1(t) = x1,0 +
1
ω

(
d2,0 cos(ωt)+d1,0 sin(ωt)−d2,0

)
x2(t) = x2,0−

1
ω

(
d1,0 cos(ωt)−d2,0 sin(ωt)−d1,0

)
d1(t) = d1,0 cos(ωt)−d2,0 sin(ωt)

d2(t) = d2,0 cos(ωt)+d1,0 sin(ωt)

We can show that this is the solution by inserting the solution into the (differential)
equations of the initial value problems and checking:

B.2 Existence Theorems 363

x′1(t) =
1
ω
(−ωd2,0 sin(ωt)+ωd1,0 cos(ωt)) = d1(t)

x′2(t) = − 1
ω
(−ωd1,0 sin(ωt)−ωd2,0 cos(ωt)) = d2(t)

d′1(t) = −ωd1,0 sin(ωt)−ωd2,0 cos(ωt) =−ωd2(t)
d′2(t) = −ωd2,0 sin(ωt)+ωd1,0 sin(ωt) = ωd1(t)
x1(0) = x1,0 +

1
ω
(d2,0 cos(0)+d1,0 sin(0)−d2,0) = x1,0

x2(0) = x2,0− 1
ω
(d1,0 cos(0)−d2,0 sin(0)−d1,0) = x2,0

d1(0) = d1,0 cos(0)−d2,0 sin(0) = d1,0
d2(0) = d2,0 cos(0)+d1,0 sin(0) = d2,0


�

As a general phenomenon, observe that solutions of differential equations can be
much more involved than the differential equations themselves, which is part of the
representational and descriptive power of differential equations.

Often, differential equations are more difficult to solve than the above ex-
amples. In a certain sense, “most” differential equations are impossible to solve
in that they have no explicit closed-form solution with elementary functions, for in-
stance, x′′(t) = et2

; see [304]. Likewise, differential equations like y′(t) = 2
t3 y can

have non-analytic smooth solutions like:

y(t) = e−
1
t2 .

B.2 Existence Theorems

There are several classical theorems that guarantee existence and/or uniqueness of
solutions if differential equations (not necessarily closed-form solutions with ele-
mentary functions, though). The existence theorem is due to Peano [225]. A proof
can be found in [297, Theorem 10.IX].

Theorem B.1 (Existence theorem of Peano). Let f : D→ Rn be a continuous
function on an open, connected domain D ⊆ R×Rn. Then, the initial value prob-
lem (B.1) with (t0,y0) ∈ D has a solution. Further, every solution of (B.1) can be
continued arbitrarily close to the border of D.

Peano’s theorem only proves that a solution exists, not for what duration it exists.
Still, it shows that every solution can be continued arbitrarily close to the border
of the domain D. That is, the closure of the graph of solution ϕ , when restricted to
[0,0]×Rn, is not a compact subset of D. Especially, there is then a global solution
on the interval [0,∞) if D = Rn+1.

Peano’s theorem shows the existence of solutions of continuous differential equa-
tions on open, connected domains, but there can still be multiple solutions.

Example B.5. The initial value problem with the following continuous differential
equation [

y′ = 3
√
|y|

y(0) = 0

]

364 B Differential Equations

has multiple solutions:

y(t) = 0

y(t) =
(

2
3

t
) 3

2

y(t) =

{
0 for t ≤ s(2

3 (t− s)
) 3

2 for t > s

where s≥ 0 is any nonnegative real number. �

B.3 Existence and Uniqueness Theorems

If we know that the differential equation (its right-hand side) is continuously dif-
ferentiable on an open, connected domain, then the Picard-Lindelöf theorem gives a
stronger result than Peano’s theorem. It shows that there is a unique solution (except,
of course, that the restriction of any solution to a sub-interval is again a solution).
For this, recall that a function f : D→ Rn with D ⊆ R×Rn is called Lipschitz
continuous with respect to y iff there is an L ∈ R such that for all (t,y),(t, ȳ) ∈ D,

‖ f (t,y)− f (t, ȳ)‖ ≤ L‖y− ȳ‖.

If, for instance, ∂ f (t,y)
∂y exists and is bounded on D, then f is Lipschitz continuous

with max(t,y)∈D ‖ ∂ f (t,y)
∂y ‖ by mean value theorem. Similarly, f is locally Lipschitz

continuous iff for each (t,y) ∈ D, there is a neighbourhood in which f is Lipschitz
continuous. In particular, if f is continuously differentiable, i.e., f ∈ C1(D,Rn),
then f is locally Lipschitz continuous.

Most importantly, Picard-Lindelöf’s theorem [195], which is also known as the
Cauchy-Lipschitz theorem, guarantees existence and uniqueness of solutions. As
restrictions of solutions are always solutions, we understand uniqueness up to re-
strictions. A proof can be found in [297, Theorem 10.VI]

Theorem B.2 (Uniqueness theorem of Picard-Lindelöf). In addition to the as-
sumptions of Theorem B.1, let f be locally Lipschitz continuous with respect to y
(for instance, f ∈ C1(D,Rn) is sufficient). Then, there is a unique solution of the
initial value problem (B.1).

Picard-Lindelöf’s theorem does not show the duration of the solution, but shows
only that the solution is unique. Under the assumptions of Picard-Lindelöf’s the-
orem, every solution can be extended arbitrarily close to the border of D by Peano’s
theorem, however. The solution is unique, except that all restrictions of the solution
to a sub-interval are also solutions.

The following global uniqueness theorem shows a stronger property when the
domain is [0,a]×Rn. It is a corollary to Theorems B.1 and B.2, but used promin-

B.4 Linear Differential Equations with Constant Coefficients 365

ently in the proof of Theorem B.2, and is of independent interest. A direct proof of
the following global version of the Picard-Lindelöf theorem can be found in [297,
Proposition 10.VII].

Corollary B.1 (Global uniqueness theorem of Picard-Lindelöf). Let f : [0,a]×
Rn → Rn be a continuous function that is Lipschitz continuous with respect to y.
Then, there is a unique solution of the initial value problem (B.1) on [0,a].

The following result is a componentwise generalisation of [297, Proposition 6.VI]
to vectorial differential equations and can be used to extend solutions.

Proposition B.1 (Continuation of solutions). Let f : D → Rn be a continuous
function on the open, connected domain D⊆R×Rn. If ϕ is a solution of differential
equation y′ = f (t,y) on [0,b) whose image ϕ([0,b)) lies within a compact set A⊆D,
then ϕ can be continued to a solution on [0,b]. Furthermore, if ϕ1 is a solution of
differential equation y′ = f (t,y) on [0,b] and ϕ2 is a solution of y′ = f (t,y) on [b,c]
with ϕ1(b) = ϕ2(b), then their concatenation

ϕ(t) :=

{
ϕ1(t) for 0≤ t ≤ b
ϕ2(t) for b < t ≤ c

is a solution on [0,c].

B.4 Linear Differential Equations with Constant Coefficients

For linear differential equation systems with constant coefficients there is a well-
established constructive theory for obtaining closed-form solutions of initial value
problems using classical techniques from linear algebra. A proof and more details
can be found in [297, §18.VI].

Proposition B.2 (Linear systems with constant coefficients). For a constant mat-
rix A ∈ Rn×n, the initial value problem[

y′(t) = Ay(t)+b(t)
y(τ) = η

]
(B.2)

has the solution
y(t) = eA(t−τ)

η +
∫ t

τ

eA(t−s)b(s) ds

where exponentiation of matrices is defined by the usual power series (generalized
to matrices):

eAt =
∞

∑
n=0

1
n!

Antn.

In particular, if the matrix A is nilpotent, i.e., An = 0 for some n ∈ N, and the
terms b(t) are polynomials in t, then the solution of the initial value problem is

366 B Differential Equations

a polynomial function, because the exponential series stops at An and is a finite
polynomial in t then:

eAt =
∞

∑
k=0

1
k!

Aktk =
n−1

∑
k=0

1
k!

Aktk.

In particular, as products and sums of polynomials are polynomials (polynomials
form an algebra) and polynomials in t are closed under integration, the solution
identified in Proposition B.2 is a polynomial. Furthermore, this solution is unique
by Theorem B.2.

Example B.6 (Trains). In the initial value problem from Example B.3, we guessed
the solution of the differential equation system and then checked that it is the right
solution by inserting it into the differential equations. But how do we compute the
solution constructively in the first place without having to guess? The train differen-
tial equations z′ = v,v′ = a from (2.7) on p. 62 are linear with constant coefficients.
When we denote y(t) := (z(t),v(t)), we can rewrite (2.7) in the form of (B.2) as
follows:  y′(t) =

(
z′(t)
v′(t)

)
=

(
0 1
0 0

)(
z(t)
v(t)

)
+

(
0
a

)
=: Ay(t)+b(t)

y(0) =
(

z(0)
v(0)

)
=

(
z0
v0

)
= η


This system, as a linear differential equation system with a constant coefficient mat-
rix, has the form required in Proposition B.2. First, we compute the exponential
series for the matrix A, which terminates quickly because A2 = 0:

eAt =
∞

∑
n=0

1
n!

Antn = A0 +At +
1
2!

A2︸︷︷︸
0

t2 + A2︸︷︷︸
0

∞

∑
n=3

1
n!

An−2tn

=

(
1 0
0 1

)
+

(
0 1
0 0

)
t =
(

1 t
0 1

)
Now we can use Proposition B.2 to compute a solution of this differential equation:

y(t) = eAt
η +

∫ t

0
eA(t−s)b(s) ds

=

(
1 t
0 1

)(
z0
v0

)
+
∫ t

0

(
1 t− s
0 1

)(
0
a

)
ds

=

(
z0 + v0t

v0

)
+
∫ t

0

(
at−as

a

)
ds

=

(
z0 + v0t

v0

)
+

(∫ t
0(at−as) ds∫ t

0 a ds

)
=

(
z0 + v0t

v0

)
+

(
ats− a

2 s2

as

)∣∣∣∣s=t

s=0

B.4 Linear Differential Equations with Constant Coefficients 367

=

(
z0 + v0t

v0

)
+

(
at2− a

2 t2

at

)
−
(

a02− a
2 02

a0

)
=

(
z0 + v0t + a

2 t2

v0 +at

)
The last equation is exactly the solution we had guessed and checked in Ex-
ample B.3. Now we have computed it constructively. �

Appendix C
Hybrid Automata

Contents
C.1 Syntax and Traces of Hybrid Automata 369
C.2 Embedding Hybrid Automata into Hybrid Programs 371

Synopsis To formally relate the notions of hybrid programs and hybrid automata,
we show that hybrid automata can be embedded canonically into hybrid programs.
We further prove that reachability in hybrid automata directly corresponds to sat-
isfying models of associated formulas in differential dynamic logic. Finally, safety
corresponds to validity of those formulas in differential dynamic logic. Differential
dynamic logics can express more general properties about hybrid systems than plain
safety though.

C.1 Syntax and Traces of Hybrid Automata

Among several other models for hybrid systems [69, 100, 58, 270, 272, 40, 183], the
model of hybrid automata [156, 8] is one of the more widely used notations. Even
though hybrid automata are a fairly common notation for hybrid systems, there are
several slightly different notions of hybrid automata or automata-based models for
hybrid systems [289, 9, 218, 8, 56, 156, 11, 58, 189, 97, 228, 90]. An early mention
of a formalism that is related to what has later been called hybrid automata is the
work of Tavernini [289]. Even earlier inspirations for hybrid systems can be found
in the work by Witsenhausen [302]. We follow the notion of hybrid automata from
Henzinger [156] most closely, with corresponding care for actual definability of the
relations as in other approaches [125, 189, 228, 238] and with invariants that are
required to hold at all times following [8, 90, 238].

Hybrid automata are graph models with two kinds of transitions: discrete jumps
in the state space caused by mode switches (edges in the graph), and continuous
evolution along continuous flows within a mode (vertices in the graph).

369

370 C Hybrid Automata

Definition C.1 (Hybrid automata). A hybrid automaton A consists of

• a continuous state space Rn;
• a finite directed graph (control graph) with vertices Q (as modes) and edges E

(as control switches);
• flow conditions flowq ⊆ Rn×Rn that determine the relationship of the continu-

ous state x ∈ Rn and its time derivative x′ ∈ Rn during continuous evolution in
mode q ∈ Q;

• invariant conditions invq ⊆ Rn or evolution domain restrictions that have to be
true while in mode q ∈ Q;

• jump relations jumpe ⊆ Rn×Rn that determine the new value of the continuous
state x ∈ Rn depending on its old value when following edge e ∈ E;

We assume at least that the relations jumpe and invq are definable in first-order real
arithmetic [288], but several additional restrictions apply for flowq depending on the
class of hybrid automata.

Typically, the jump relation jumpe is given as a conjunction of transition guards
guarde ⊆ Rn, which determine from which states an edge can be taken, and variable
resets resete ⊆ Rn×Rn, which adjust the state value to its new value. In most cases,
the reset relation is specified by a list of assignments x1 :=θ1, . . .xn :=θn, which
correspond to a discrete jump set of differential dynamic logic (Definition 2.3).
Further, flow conditions are usually just specified by a set of differential equa-
tions x′1 = θ1, . . . ,x′n = θn. See the left part of Fig. C.1 for an example of a hybrid
automaton and the right part of Fig. C.1 for a description of the same hybrid sys-
tem as a hybrid program. We refer you to Sect. 1.1.1 for more examples of hybrid
automata.

q := accel; /* initial mode is node accel */(
(?q = accel; z′ = v,v′ = a)

∪ (?q = accel∧ z≥ s; a :=−b; q := brake; ?v≥ 0)
∪ (?q = brake; z′ = v,v′ = a&v≥ 0)
∪ (?q = brake∧ v≤ 1; a := a+5; q := accel)

)∗
Fig. C.1 Hybrid automaton and corresponding hybrid program

Although often neglected in the literature, definability of the constituent rela-
tions of hybrid automata, e.g., in first-order real arithmetic, is a crucial prerequisite
for dealing with any state reachability question. If the parts of a hybrid automaton
are not reasonably computational or constructive, then no (interesting) computable
analysis can be built on top of it. For instance, if the switching conditions in the
jumpe relation are undecidable, then analysis procedures have no way of knowing
if the system can jump along an edge. Likewise, in a hybrid automaton that uses an
undecidable set like the Mandelbrot set as invariant, it would already be undecidable
whether a state x ∈ Rn satisfies the invariant of the current mode. These difficulties
even arise in the strong computational model of real Turing machines by Blum et
al. [49].

accel
z′ = v
v′ = a

brake
z′ = v
v′ = a
v≥ 0

z≥ s

a :=−b

v≤ 1

a :=a+5

C.2 Embedding Hybrid Automata into Hybrid Programs 371

Definition C.2 (Transition semantics of hybrid automata). The transition system
of a hybrid automaton A is a transition relation y defined as follows

• the state space is defined as S := {(q,x) ∈ Q×Rn : x ∈ invq};
• the transition relation y ⊆ S× S is defined as the union

⋃
e∈E

ey ∪ ⋃q∈Q
q
y

where

1. (q,x)
ey (q̃, x̃) iff e ∈ E is an edge from q ∈ Q to q̃ ∈ Q in the hybrid auto-

maton and (x, x̃) ∈ jumpe (discrete transition).
2. (q,x)

q
y (q, x̃) iff q ∈ Q and there is a function f : [0,r]→ Rn that has a

time derivative f ′ : (0,r)→ Rn such that f (0) = x, f (r) = x̃ and that re-
spects (f (ζ), f ′(ζ)) ∈ flowq at each ζ ∈ (0,r). Further, f (ζ) ∈ invq for each
ζ ∈ [0,r] (continuous transition).

State σ ∈ S is reachable from state σ0 ∈ S, denoted by σ0 y∗ σ , iff, for some n ∈ N,
there is a sequence of states σ1,σ2, . . . ,σn = σ ∈ S such that σi−1 y σi for 1≤ i≤ n.

Most often, the semantics of hybrid automata is further restricted to non-Zeno traces
with only finitely many transitions in finite time [156, 90, 97].

C.2 Embedding Hybrid Automata into Hybrid Programs

A hybrid automaton as on the left of Fig. C.1 can be represented faithfully as the
hybrid program on the right of Fig. C.1. More generally, we show that it is always
possible to represent hybrid automata as hybrid programs, thus showing that hybrid
automata can be embedded faithfully into differential dynamic logic.

Proposition C.1 (Hybrid automata embedding). There is an effective mapping ι

from hybrid automata to hybrid programs and DA-programs such that the following
diagram commutes:

HA HP(Σ)

S2 Sta(Σ)2

ι

y∗ ρ�

That is, the transition semantics ρ(ι(A)) of the hybrid program ι(A) corresponding
to a hybrid automaton A is identical to the reachability relation y∗ corresponding
to hybrid automaton A when identifying states of hybrid programs in Sta(Σ)2 with
states of hybrid automata in S by a canonical bijection.

372 C Hybrid Automata

Proof. Let Σ = {q,x1, . . . ,xn,x1
+, . . . ,xn

+} be the signature. We use vectorial nota-
tion x for the vector (x1, . . . ,xn) and x+ for (x1

+, . . . ,xn
+). We define ι as the func-

tion that maps hybrid automaton A to the following HP:(
?q = qi; flowqi

(x,x′)& invq1

∪ ?q = qi; (x+ :=∗; ?jumpe(x,x
+); x := x+); ?invq j ; q := q j

∪ . . .)∗
The respective lines in this HP are subject to a choice for each mode qi or each
edge e from some state qi to some state q j. Let α∗ denote this program ι(A).

States of the hybrid automaton A and states of its HP ι(A) immediately corres-
pond to each other using the bijection Φ : S→ Sta(Σ) that maps (q̃, x̃) ∈ S to the
state ν that is defined as ν(q) = q̃ and ν(xi) = x̃i for 1≤ i≤ n. Observe that Φ is
a bijection up to forgetful projections of internal variables x+. In the following, we
use the state identification Φ implicitly to simplify the notation. We have to show
that the diagram commutes, that is, y∗= ρ ◦ ι (up to identification of states by Φ ,
i.e., Φ ◦y∗ = ρ ◦ ι).

“⊆” Let σ0 y∗ σ . Hence, n ∈ N and σ1,σ2, . . . ,σn = σ ∈ S such that σi−1 y σi
for all 1≤ i≤ n. The proof is by induction on n.

IA If n = 0 then (σ0,σ) ∈ ρ(α∗) using zero repetitions.
IS By induction hypothesis, we can assume that (σ0,σn−1) ∈ ρ(α∗). We

have to show (σn−1,σn) ∈ ρ(α), thereby implying (σ0,σn) ∈ ρ(α∗).
Consider the case where the last transition σn−1 y σn is a continu-
ous transition in mode qi of some duration r ≥ 0. Then, up to iden-
tification by Φ , there is a state flow ϕ : [0,r]→ Sta(Σ) with ϕ(0) =
σn−1,ϕ(r) = σn and ϕ |= flowqi

∧ invqi . Thus, α can copy the transition
as (σn−1,σn) ∈ ρ(α) using the choice ?q = qi; flowqi

(x,x′)& invqi . The
test succeeds, because Φ(σn−1)(q) = qi.
Consider the case where the last transition σn−1 y σn is a discrete trans-
ition from mode qi to q j along edge e. Then (σn−1,σ) ∈ jumpe. Thus, by
choosing the values of σn for x+, we have that (σn−1,σn) ∈ ρ(α) by the
choice ?q = qi; (x+ :=∗; ?jumpe(x,x

+); x := x+); ?invq j ; q := q j.

“⊇” Let (σ0,σn) ∈ ρ(α∗) following n repetitions of α: Let σ1, . . . ,σn−1 ∈ Sta(Σ)
such that (σi−1,σi) ∈ ρ(α) for all 1≤ i≤ n. The proof is by induction on n.

IA For n = 0, there is nothing to show.
IS By induction hypothesis, we can assume that σi−1 y σi for all 1≤ i < n.

We have to show that σn−1 y σn, thereby showing that σ0 y∗ σn. If
qi := σn−1(q) = σn(q), then it is easy to see from the structure of α that
(σn−1,σn) ∈ ρ(?q = qi; flowqi

(x,x′)& invqi). Thus, σn−1
qiy σn by a con-

tinuous transition.
If, however, qi := σn−1(q), q j = σn(q), then it is easy to see that

C.2 Embedding Hybrid Automata into Hybrid Programs 373

(σn−1,σn)∈ ρ(?q = qi; (x+ :=∗; ?jumpe(x,x
+);x := x+); ?invq j ;q := q j)

according to a line of α that originates from some edge e from qi to q j.
Thus, (σn−1,σn) ∈ jumpe and σn |= invq j ; hence, σn−1

ey σn by a dis-
crete transition. ut

Corollary C.1. There is an effective mapping from safety properties of hybrid auto-
mata to dL / DAL formulas such that the hybrid automaton A, starting in initial
mode q0, safely remains in the region F ∈ FmlFOL(Σ) if and only if the correspond-
ing dL / DAL formula is valid.

Proof. Let α∗ be the HP ι(A) belonging to A according to Proposition C.1. Then,
when starting A in initial mode q0, it safely remains in the region F iff the following
formula is valid:

q = q0∧ invq0 → [α∗]F.

ut

Example C.1 (Water tank). Consider the classical simple water tank example, which
regulates water level y between 1 and 12 by filling or emptying the water tank. The
control in the hybrid automaton of Fig. C.2a further uses a clock variable x to model
delayed reactions of pumps or valves. In node fill, the pump is activated and the wa-

q = fill→ [(

(?q = fill; x′ = 1,y′ = 1&y≤ 10)

∪ (?q = fill∧ y = 10; x := 0; q := stop)

∪ (?q = stop; x′ = 1,y′ = 1&x≤ 2)

∪ (?q = stop∧ x = 2; q := drain)

∪ (?q = drain; x′ = 1,y′ =−2&y≥ 5)

∪ (?q = drain∧ y = 5;x := 0;q := start)

∪ (?q = start; x′ = 1,y′ =−2&x≤ 2)

∪ (?q = start∧ x = 2; q := fill)

)∗] (1≤ y∧ y≤ 12)

Fig. C.2a Hybrid automaton for water tank Fig. C.2b Hybrid program for water tank

ter tank is filling slowly with y′ = 1, while staying in the region y≤ 10 all the time.
At level y = 10, it switches to the stop mode, which deactivates the pump. Full deac-
tivation of the pump takes two time units, though, such that the water is still pumped
into the tank with y′ = 1 in stop. When in node drain, water pours out with speed
y′ =−2. Again, to start the pump, the water switches to start first. In start node, the
water continues to pour out with speed y′ =−2, until, after two seconds exactly, the
system switches into the fill node. The timing of those transitions is being taken care
of deterministically by the clock variable x which has differential equation x′ = 1 in

fill
x′ = 1
y′ = 1
y≤ 10

stop
x′ = 1
y′ = 1
x≤ 2

drain
x′ = 1

y′ =−2
y≥ 5

start
x′ = 1

y′ =−2
x≤ 2

y = 10

x :=0

x = 2

y = 5

x :=0

x = 2

374 C Hybrid Automata

all nodes. The fact that the evolution domain restrictions or invariant regions in the
start and stop nodes are x≤ 2 and the outgoing edges have a guard x = 2 ensures
that the system can only leave these nodes after two seconds exactly. The automaton
cannot switch at any other time than after two seconds when x = 2, but it cannot re-
main in the start or stop nodes any longer, because the invariant region x≤ 2 would
cease to hold then. Similarly, the switching from fill to stop is triggered by water
level y = 10 precisely, because of the invariant region y≤ 10 in fill and the guard
y = 10 at the outgoing edge. Finally, the switching from drain to start is at y = 5
precisely, for the same reasons. Consequently, the hybrid automaton in Fig. C.2b is
deterministic and, thus, very easy for simulation.

Figure C.2b shows a corresponding representation of the hybrid automaton in
Fig. C.2a as a hybrid program. Each line of the hybrid program corresponds to a
discrete or continuous transition of the water tank hybrid automaton. The constants
fill,stop,drain,andstart are pairwise different. The water tank is provable with the
following state-dependent invariant:

1≤ y≤ 12∧ (q = start→ y≥ 5−2x)∧ (q = stop→ y≤ 10+ x).

�

The transformation in Proposition C.1 is a canonical embedding but hybrid pro-
grams allow for more flexible programming structures with which more natural
characterisations of the system behaviour can be obtained.

Example C.2 (Parametric bouncing ball). Consider the well-known bouncing ball
example [110]. A ball falls from height h and bounces back from the ground (which
corresponds to h = 0) after an elastic deformation. The current speed of the ball
is denoted by v, and t is a clock measuring the falling time. We assume an arbit-
rary positive gravity force g and that the ball loses energy according to a damping
factor 0≤ c < 1. Figure C.3 depicts the hybrid automaton, an illustration of the sys-
tem dynamics, and a representation of the system as a hybrid program.

ball ≡
(

h′ = v,v′ =−g, t ′ = 1&h≥ 0;
if (h = 0 ∧ t > 0) then

v :=−cv; t := 0
fi
)∗

Fig. C.3 Parametric bouncing ball

The ball loses energy at every bounce. Thus the ball never bounces higher than
the initial height. This can be expressed by the safety property 0≤ h≤ H, where H
denotes the initial energy level, i.e., the initial height if v = 0. For instance, we can
prove the following property:

(v2 ≤ 2g(H−h)∧h≥ 0∧g > 0∧H ≥ 0∧1 > c≥ 0)→ [ball](0≤ h≤ H).

h′= v
v′=−g
t ′= 1
h≥ 0v:=−cv

t := 0

h = 0∧ t > 0

C.2 Embedding Hybrid Automata into Hybrid Programs 375

This specification follows the pattern of Hoare triples. It expresses that the bouncing
ball, when started in an initial state satisfying the precondition, always respects the
postcondition 0≤ h≤ H. �

Appendix D
KeYmaera Implementation

Contents
D.1 KeYmaera: A Hybrid Theorem Prover for Hybrid Systems 377

D.1.1 Structure of This Appendix 379
D.2 Computational Back-ends for Real Arithmetic 380

D.2.1 Real-Closed Fields . 381
D.2.2 Semialgebraic Geometry and Cylindrical Algebraic De-

composition . 383
D.2.3 Nullstellensatz and Gröbner Bases 386
D.2.4 Real Nullstellensatz . 392
D.2.5 Positivstellensatz and Semidefinite Programming 394

D.3 Discussion . 396
D.4 Performance Measurements . 399

Synopsis KeYmaera is a hybrid verification tool for hybrid systems that combines
deductive, real algebraic, and computer algebraic prover technologies. It is an auto-
mated and interactive theorem prover for specification and verification logics for hy-
brid systems. KeYmaera supports differential dynamic logic, which is a real-valued
first-order dynamic logic for hybrid systems. For automating the verification pro-
cess, KeYmaera implements our generalised free-variable sequent proof calculi and
automatic proof strategies that decompose the hybrid system specification symbol-
ically. To overcome the complexity of real arithmetic, we integrate real quantifier
elimination following our iterative background closure strategy. Our formal verific-
ation tool is particularly suitable for verifying parametric hybrid systems and has
been used successfully for verifying collision avoidance in case studies from train
and air traffic control.

D.1 KeYmaera: A Hybrid Theorem Prover for Hybrid Systems

In the interest of a comprehensive presentation, we briefly characterise the imple-
mentation of our logical analysis and verification approach from Parts I and II in our

377

378 D KeYmaera Implementation

new verification tool KeYmaera [242].1 KeYmaera [242] is a hybrid theorem prover
for hybrid systems that combines the deductive, real algebraic, and computer alge-
braic prover technologies developed in this book. It is an automated and interactive
theorem prover for differential dynamic logics for hybrid systems. KeYmaera im-
plements the proof calculi for differential dynamic logic dL , differential-algebraic
dynamic logic DAL, and differential temporal dynamic logic dTL that we intro-
duced in Part I.

KeYmaera has been implemented as a combination of the deductive theorem
prover KeY [4, 34, 35] with computer algebraic and real algebraic techniques. The
general architecture of KeYmaera is depicted in Fig. D.1. KeYmaera has built-in

Strategy

Rule Engine Proof

Input File

Rule
base

QEPCAD

Redlog

Mathematica

Orbital

KeYmaera Prover

Solvers

Fig. D.1 Architecture and plug-in structure of the KeYmaera prover

techniques for handling differential equations and real arithmetic, but it can also
interface with other tools handling real arithmetic and/or computer algebra for im-
proved performance. KeYmaera can interface with the computer algebra system
Mathematica by Wolfram Research [303] for quantifier elimination, differential
equation handling, and symbolic computation. Alternatively, it can interface with
Redlog [101] or QEPCAD B [59] as quantifier elimination tools for real arithmetic.
KeYmaera can also interface with computer algebraic tools and differential equation
handling from the Orbital library developed by the author. KeYmaera has been de-
veloped on the basis of KeY [4, 34, 35], which is a semi-interactive theorem prover
with a user-friendly graphical interface for proving correctness properties of Java
programs. KeY has been developed in the group of Peter Schmitt at the Univer-
sity of Karlsruhe, Germany, the group of Reiner Hähnle at Chalmers University
in Gothenburg, Sweden, and the group of Bernhard Beckert at the University of
Koblenz-Landau, Germany. We have generalised KeY from discrete Java programs
to hybrid systems by adding support for the differential dynamic logic dL (and
DAL and dTL, respectively). Figure D.2 shows a screenshot of the graphical user
interface of KeYmaera.

In the conventional KeY prover for Java programs, rule applications are compar-
ably fast, but in KeYmaera, proof rules that use decision procedures for real arith-
metic can require a substantial amount of time to produce a result. To overcome
this, KeYmaera has new automatic proof strategies for the hybrid case that navig-
ate through computationally expensive rule applications, following the strategies we

1 KeYmaera is available from the web at http://symbolaris.com/

D.1 KeYmaera: A Hybrid Theorem Prover for Hybrid Systems 379

Fig. D.2 Screenshot of the KeYmaera user interface

developed in Chap. 5. KeYmaera also implements the (differential) invariant gener-
ation techniques we have developed in Chap. 6.

KeYmaera follows a plug-in architecture for integrating multiple implementa-
tions of decision procedures for real arithmetic handling, differential equation solv-
ing, and computer algebra. KeYmaera can integrate with a range of tools, some
of which are shown in Fig. D.1. It does not need all of these tools to run, but can
interface with any of these background solvers. KeYmaera can also run as a stan-
dalone tool based on the built-in techniques without any background solvers. Yet,
the performance of KeYmaera generally improves by interfacing with additional
background solvers, e.g., with Mathematica.

To overcome the complexity pitfalls of quantifier elimination and to scale to real-
world application scenarios, KeYmaera implements the iterative background closure
strategy from Sect. 5.4 that interleaves background solver calls with deductive dL
rules. For performance reasons, the KeYmaera implementation further optimises the
order of quantifiers in universal closures ∀α φ according to the modification order
in the hybrid program α that produced ∀α φ (see variable dependency orders from
Sects. 6.2.5 and 6.2.6). KeYmaera provides several options for adjusting the prover
strategy; see Fig. D.3.

D.1.1 Structure of This Appendix

In App. D.2, we summarise techniques that can be used as back-ends for handling
real arithmetic in theorem provers for differential dynamic logics. These alternatives
for real arithmetic are available in KeYmaera. We discuss the consequences of the
KeYmaera architecture and implementation in Sect. D.3, concerning how soundness
of proof calculi is related to soundness of actual implementations. In Sect. D.4, we

380 D KeYmaera Implementation

Fig. D.3 KeYmaera proof strategy options

explain the setup for our experimental evaluations and performance measurements
in this book.

D.2 Computational Back-ends for Real Arithmetic

In this section, we briefly summarise a range of techniques that we use as com-
putational back-ends for handling real arithmetic in background provers for the
foreground prover KeYmaera. These techniques are various alternatives for imple-
menting the QE quantifier elimination procedure for the quantifier rules of Fig. 2.11
or Fig. 3.9, respectively. We also refer to recent work [246], where we have intro-
duced a new decision procedure for real arithmetic based on Gröbner bases [62],
semidefinite programming [224, 151], and Stengle’s real Nullstellensatz [283] that
combines the techniques we present in this section.

D.2 Computational Back-ends for Real Arithmetic 381

D.2.1 Real-Closed Fields

Generalising classical techniques for finding the number of real roots for univari-
ate polynomials due to Sturm [286], Tarski showed that validity of closed formu-
las in the first-order theory of real arithmetic is equivalent to the theory of real-
closed fields and is decidable by quantifier elimination [287, 288]; also see Defini-
tion 2.9 on p. 77. Due to its importance, there are numerous refinements of this res-
ult that turn it into a more practical decision procedure [278, 264, 197, 79, 184,
93, 80, 19, 20, 81, 82, 84, 83, 94, 142, 299, 68, 198, 24, 285, 292, 26, 60]. A
historical overview of results in this area can be found in an article by van den
Dries [105]. The complexity of quantifier elimination in real-closed fields is doubly
exponential in the number of quantifier alternations and has been analysed care-
fully [94, 141, 142, 263, 299, 60, 258, 259, 260, 259, 260, 25, 24]. Technical detail
about real algebraic geometry can also be found in the book by Bochnak and Coste
and Roy [50]. Algorithmic details can be found in the book by Basu, Pollack, and
Roy [26].

Real numbers and real variables are omniscient in hybrid systems, because of
their connection with the real physical world. Positions, velocities, accelerations,
and the like are real quantities. They need to be understood properly for faithful
hybrid system models. Like all other infinite structures, the reals, however, cannot
be characterised uniquely up to isomorphisms in first-order logic, which is a simple
corollary to the Skolem-Löwenheim theorem. Real-closed fields try to capture the
properties and axioms of reals as closely as possible. Real-closed fields are an ax-
iomatic generalisation of the field R of reals and share the same first-order axioms
with the actual model of reals.

First we briefly recapitulate some basic notions from algebra [191, 52, 53, 112,
211]. A ring R is an algebraic structure that is an Abelian group with respect to
addition and a (commutative) semigroup with respect to multiplication where mul-
tiplication distributes over addition, i.e., for all a,b,c ∈ R:

a(b+ c) = ab+ac,

(a+b)c = ac+bc.

Here R has an Abelian group structure with respect to addition iff, for all a,b,c ∈ R:

a+b ∈ R,

(a+b)+ c = a+(b+ c),

a+0 = 0+a = a,

a+(−a) = (−a)+a = 0,
a+b = b+a.

Further, R has an commutative semigroup structure with respect to multiplication
iff, for all a,b,c ∈ R:

382 D KeYmaera Implementation

a ·b ∈ R,

(a ·b) · c = a · (b · c),
a ·1 = 1 ·a = a,

a ·b = b ·a.

A field K is a ring such that 1 6= 0 and all elements x ∈ K \{0} have a multiplicative
inverse, i.e., a y ∈ K such that xy = 1.

Now we can define formally real fields, and real-closed fields subsequently.

Definition D.1 (Formally real field). A field R is a (formally) real field iff any of
the following (equivalent) conditions holds (see [26, Theorem 2.7]):

1. −1 is not a sum of squares in R.
2. For every x1, . . . ,xn ∈ R we have that ∑

n
i=1 x2

i = 0 implies x1 = · · ·= xn = 0.
3. R admits an ordering that makes R an ordered field, i.e., a total order ≤∈ R×R

on R that is compatible with the field structure:

a. x≤ y implies x+ z≤ y+ z for all x,y,z ∈ R;
b. 0≤ x and 0≤ y imply 0≤ xy for all x,y ∈ R.

Recall that the order ≤ is a total order iff the following conditions hold:

a. Transitive: x≤ y and y≤ z imply x≤ z for all x,y,z ∈ R;
b. Antisymmetric: x≤ y and y≤ x imply x = y for all x,y ∈ R;
c. Total: for all x,y ∈ R: x≤ y or y≤ x.

There are several equivalent characterisations of real-closed fields [26]:

Definition D.2 (Real-closed field). A field R is a real-closed field iff any of the
following (equivalent) conditions holds (see [26, Theorem 2.11]):

1. R is an ordered field where every positive element is a square and every poly-
nomial in R[X] of odd degree has a root in R (then this order is, in fact, unique).

2. R is not algebraically closed but its field extension R[
√
−1] = R[i]/(i2 +1) is

algebraically closed.
3. R is not algebraically closed but its algebraic closure is a finite extension, i.e.,

finitely generated over R.
4. R has the intermediate value property, i.e., R is an ordered field such that for

any polynomial p ∈ R[X] with a,b ∈ R,a < b and p(a)p(b)< 0, there is a ζ

with a < ζ < b such that p(ζ) = 0.
5. R is a real field such that no proper algebraic extension is a formally real field.

Example D.1 (Quadratic formula). The following sets are real-closed fields:

• Real numbers R, as the prototypical but not the only example.
• Real algebraic numbers Q̄∩R, that is, real numbers in the algebraic closure of Q,

i.e., real numbers that are roots of a nonzero polynomial with rational or integer
coefficients.

• Computable numbers [298], i.e., those real numbers that can be approximated by
a computable function up to any desired precision.

D.2 Computational Back-ends for Real Arithmetic 383

• Definable numbers, i.e., those real numbers a ∈ R for which there is a first-order
formula ϕ in the language of set theory with one free variable such that a is the
unique real number for which ϕ holds true. �

According to the important Tarski-Seidenberg Principle [288, 278] or the transfer
principle for real-closed fields, the first-order theory of real arithmetic is equivalent
to the first-order theory of real-closed fields; see [26, Theorems 2.80 and 2.81].

Theorem D.1 (Tarski-Seidenberg principle). The first-order theory of reals is
identical to the first-order theory of real-closed fields, i.e., the set of closed first-
order formulas over the signature +, ·,=,<,0,1 that are valid over the reals R is
the same as the corresponding set of formulas that are valid in any real-closed field.

Consequently, the notion of real-closed fields captures exactly the first-order lo-
gic point of view of real arithmetic. The technical device exploiting this result for
deciding formulas of real arithmetic is quantifier elimination via cylindrical alge-
braic decomposition, which we examine next.

D.2.2 Semialgebraic Geometry and Cylindrical Algebraic
Decomposition

From an algebraic or model-theoretic perspective, a quantifier-free formula of real
arithmetic directly corresponds to the set of its satisfying assignments in Rn. Form-
ally, a semialgebraic set is a subset of Rn that is defined by a finite conjunction of
polynomial equations and inequalities or any finite union of such sets, which, up
to normalisation, is a quantifier-free formula of real arithmetic. From an algebraic
or geometrical perspective, a purely equational quantifier-free formula of real arith-
metic also corresponds directly to an algebraic variety, which is the basic object of
study in algebraic geometry [150, 154, 215].

The most important part about projections in the following central theorem about
semialgebraic sets is due to Tarski [288, 278, 163, 50, 106].

Theorem D.2 (Semialgebraic sets). Semialgebraic sets are closed under finite
union, finite intersection, complement, and projection (to linear subspaces).

It is easy to see that projection of a semialgebraic set in Rn to a linear sub-
space (e.g., Rn−1) corresponds to elimination of existential quantifiers. The pro-
jection of the set of points in Rn where a formula φ(x1, . . . ,xn) holds true corres-
ponds directly to the subspace Rn−1 spanned by the variables x1, . . . ,xn−1where
the formula φ̄(x1, . . . ,xn−1)≡ ∃xn φ(x1, . . . ,xn) holds true. See Fig. D.4 for an il-
lustration of how the quantifier elimination of a quantified real arithmetic formula
(∃y(y≥ 0∧1− x−1.83x2 +1.66x3 > y)) corresponds to projection (to the thick re-
gion on the x axis that satisfies 0.75 < x∧ x < 0.68∨ x > 1.17).

Simply speaking, the basic insight of Tarski [288] with subsequent simplific-
ations by Seidenberg [278], Robinson [264], Łojasiewicz [197], Cohen [79], and

384 D KeYmaera Implementation

y

∃y(y≥ 0∧1− x−1.83x2 +1.66x3 > y)

0.75 < x∧ x < 0.68∨ x > 1.17

Fig. D.4 Projection of semialgebraic sets and quantifier elimination

Kreisel and Krivine [184], which led to the development of cylindrical algebraic de-
composition (CAD) [80] and partial cylindrical algebraic decomposition [81] as de-
cision procedures for real-closed fields, is that the conjunction of a set of polynomial
equations and inequalities partitions the real space Rn into finitely many equivalence
classes based on their sign combinations. The basic observation is that each polyno-
mial p ∈ K[X1, . . . ,Xn] partitions the space into three equivalence classes based on
its sign:

1. +̂ := {x ∈ Rn : p(x)> 0},
2. 0̂ := {x ∈ Rn : p(x) = 0},
3. −̂ := {x ∈ Rn : p(x)< 0}.

These classes can have multiple (but only finitely many) connected components.
Further, Tarski showed that a set of polynomials partitions the real space into fi-
nitely many equivalence classes that essentially correspond to the coarsest joint re-
finement of all these sign relations (and possibly the relations of these polynomials
on various connected components). That is, a (natural) algebraic decomposition
of Rn is a partitioning of Rn into maximal connected regions where each of the rel-
evant polynomials has invariant sign, which is used more systematically in the cell
construction behind CAD [80]. Now, a satisfying assignment for a quantifier-free
arithmetic formula exists if and only if the formula is true in one of those equi-
valence classes. Consequently, working from inside out, existential quantifiers can
be replaced equivalently by a big disjunction, replacing the existentially quantified
variable x with any representative point inside each of these finitely many equival-
ence classes. Let S be a (finite) representative system of the equivalence classes for
all polynomials in the quantifier-free formula F ; then

D.2 Computational Back-ends for Real Arithmetic 385

QE(∃xF)≡
∨
x∈S

F.

The computationally expensive part in the quantifier elimination algorithms is the
construction of the representative system S needed for a given formula ∃xF .

Example D.2 (Quantifier elimination by interior points and basic virtual substitu-
tion). In the following simple example, quantifier elimination can simply insert a
range of representative cases into the formula and evaluate the remaining arithmetic:

QE(∃x(x > 2∧ x <
17
3
))

≡ (2 > 2∧2 <
17
3
) border case “x = 2”

∨ (
17
3

> 2∧ 17
3

<
17
3
) border case “x =

17
3

”

∨ (
2+ 17

3
2

> 2∧ 2+ 17
3

2
<

17
3
) intermediate case “x =

2+ 17
3

2
”

∨ (−∞ > 2∧−∞ <
17
3
) extremal case “x =−∞”

∨ (∞ > 2∧∞ <
17
3
) extremal case “x = ∞”

≡ true.

The basic idea behind this is illustrated in the following real line:

x
0 2 17

3
2+ 17

3
2

−∞ ∞

The intuition is to substitute in all the special points mentioned in the formula (2 and
17
3) and to find some representative of the open interval between these points, say

the middle 2+17/3
2 . Any other point in the open interval would be an equally good

representative. The other two special cases are representatives for infinitely large
(∞) or infinitely small (−∞) points. Considering one disjunct above at a time, the
remaining ground formulas (i.e., no variables) can be evaluated based on the num-
bers to obtain true or false. Here, only the intermediate case 2+17/3

2 evaluates to true.
All other disjuncts evaluate to false. A systematic account of quantifier elimination
by a more general technique called virtual substitution can be found in the work of
Weispfenning [301, 300]. �

Example D.3. A quadratic example is the following equivalence constructed by
quantifier elimination:

QE(∃x(ax2 +bx+ c = 0)) ≡ a 6= 0∧b2−4ac≥ 0∨a = 0∧ (b = 0→ c = 0).

386 D KeYmaera Implementation

It basically follows the standard determinant condition b2 ≥ 4ac. Note however, that
for this to be a true equivalence, the special cases of what happens if a = 0 or if b = 0
also need to be considered by quantifier elimination procedures. �

Universal quantifiers can be handled by duality from the handling of existential
quantifiers:

QE(∀xF)≡ ¬QE(∃x¬F).

For multiple quantifiers, this procedure can be used recursively by applying quanti-
fier elimination from inside out, i.e., starting from inner quantifiers. The final result
for a closed formula gives a propositional formula without variables, which is de-
cidable by evaluating the remaining arithmetic expressions with concrete numbers.
Practical quantifier elimination procedures for real arithmetic improve on this the-
oretical decision procedure, e.g., by minimising the number of required equivalence
classes. Practical decision procedures for quantifier elimination include cylindrical
algebraic decomposition [80], partial cylindrical algebraic decomposition [81], and
virtual substitution [301, 300].

KeYmaera integrates Mathematica by Wolfram Research [303], Redlog [101],
and QEPCAD B [59] as alternative implementations of quantifier elimination pro-
cedures. KeYmaera also includes a built-in implementation of an adaptation of John
Harrison’s version [152] of the Cohen-Hörmander procedure [165] that was de-
veloped by David Renshaw. Finally, KeYmaera can also interface directly with Har-
rison’s implementation [152] or a proof-producing quantifier elimination procedure
by Sean McLaughlin and John Harrison [204].

D.2.3 Nullstellensatz and Gröbner Bases

Gröbner bases [62, 31, 211, 88] can be used as a sound but incomplete procedure
for proving validity of formulas in the universal fragment of equational first-order
real arithmetic. This approach is, in fact, not specific to real arithmetic but also ap-
plies for other fields. Gröbner bases have been introduced by Bruno Buchberger [62]
as a systematic theory and algorithm for symbolic computations in factor rings of
multivariate polynomial rings. Gröbner basis algorithms can be considered as a mul-
tivariate joint generalisation of the Euclidean algorithm for computing greatest com-
mon divisors in univariate polynomial rings and of Gaussian elimination for solving
linear equation systems. An analogous concept for local rings, called standard bases,
was developed independently by Heisuke Hironaka in 1964.

Preliminaries

First we briefly recapitulate some basic notions from algebra [191, 52, 53, 112, 211].
We do not always give the most general definition of these notions but restrict our
attention to what we actually need in our context.

D.2 Computational Back-ends for Real Arithmetic 387

For a field K, the set K[X1, . . . ,Xn] of multivariate polynomials over K forms a
ring and is defined as the free commutative and associative algebra over the inde-
terminates X1, . . . ,Xn. Products X i1

1 , . . . ,X in
n of the indeterminates are called monomi-

als. The polynomials over K are sums of monomials with coefficients in K, of the
form

∑
i1,...,in∈N

ai1,...,inX i1
1 , . . . ,X in

n ,

for which only finitely many coefficients ai1,...,in ∈ K are nonzero. A subset I ⊆ R is
an ideal of a ring R, denoted as I E R, iff I is a subgroup of the additive group of R
(that is x+ y ∈ I for all x,y ∈ I) and

rx ∈ I for all x ∈ I,r ∈ R.

This ideal property is a “magnetic property”. The elements of I are magnetic in the
sense that they again land in I when multiplied with any element of the full ring R
(not just when multiplied with elements in I itself).

The ideal generated by a set G⊆ R is the smallest ideal I E R containing G. In
that case, G is called a generating system of I. In particular, if G⊆ K[X1, . . . ,Xn] is
a set of polynomials that is zero at a particular point (x1, . . . ,xn) ∈ Kn, then every
element of the ideal (G) is zero at that point, because sums of zero stay zero, and
products of zero with any element stay zero.

To start the development of Gröbner bases, we will need to define polyno-
mial reductions. The notions of Gröbner bases and polynomial reductions are re-
lative to an admissible monomial order, which also determines the leading term
(largest monomial) in multivariate polynomials. An admissible monomial order ≺
is a strict well-order (well-founded total order; in particular, every non-empty set
has a least element) on monomials such that uw≺ vw for all monomials u,v,w
with u≺ v. Admissible orders extend canonically to polynomials K[X1, . . . ,Xn] as a
multiset order [62, 99]. The monomial order determines the leading term in mul-
tivariate polynomials, i.e., the maximal monomial with respect to ≺. Here, we
simply assume some fixed admissible order and refer to the literature on Gröbner
bases [31, 211, 88, 62] for details on monomial orders, their admissibility condi-
tions, and their properties.

As a multivariate generalisation of the Euclidean algorithm we need multivariate
polynomial division:

Definition D.3 (Reduction). Let f ,g ∈ K[X1, . . . ,Xn] be polynomials. We say that
f reduces to g with respect to a set G⊂ K[X1, . . . ,Xn] of polynomials iff for some
m ∈ N there are f0, f1, . . . , fm in K[X1, . . . ,Xn] with f0 = f , fm = g such that, for all
i,

fi+1 = fi−higi

for some hi ∈ K[X1, . . . ,Xn], gi ∈ G, and fi+1 ≺ fi. We write g = redG f if, in addi-
tion, g cannot be reduced further, i.e., there is no hm+1 ∈ K[X1, . . . ,Xn] and gm+1 ∈ G
with g−hm+1 gm+1 ≺ q. Then polynomial redG f is called reduction (or remainder)

388 D KeYmaera Implementation

of f by G. Furthermore, polynomial f is called reduced with respect to G iff
f = redG f .

The most common approach to reducing a polynomial is by following a series of
elementary reductions. These elementary reductions are a special case of the above
definition. Let f ,g ∈ K[X1, . . . ,Xn] be polynomials and let l be the leading term of g.
If ai1,...,inX i1

1 · · ·X in
n is some (e.g., the largest) term of f which is divisible by l, then

the following polynomial is called an elementary reduction of f by g:

f − ai1,...,inX i1
1 · · ·X in

n

l
g

The theory of Gröbner bases characterises exactly under which circumstances
reduction produces unique remainders, which is not generally so in multivariate
polynomial rings.

Definition D.4 (Gröbner basis). A finite subset G of I E K[X1, . . . ,Xn], i.e., an
ideal I of a polynomial ring, is called a Gröbner basis iff the ideal generated by
G is I and any of the following (equivalent) conditions holds:

1. Reduction with respect to G gives 0 for any p ∈ I.
2. redG p = 0 iff p ∈ I.
3. Reduction with respect to G gives a unique remainder.
4. The polynomials that are reduced with respect to G form representatives of the

factor ring K[X1, . . . ,Xn]/I.
5. The leading ideal of I, i.e., the ideal generated by leading terms of polynomials

of I, is generated by the leading terms of G.

A Gröbner basis G is reduced if all g ∈ G are reduced with respect to G\{g}.
Because ideals are closed under multiplication by nonzero constants, we can assume
Gröbner basis G to contain normalised polynomials only, i.e., where the leading
coefficient of their leading terms is 1.

The most important result about Gröbner bases is that every ideal of a polynomial
ring K[X1, . . . ,Xn] over a field K in finitely many variables has a unique reduced
Gröbner basis (with leading coefficient 1) that can be computed effectively by the
Buchberger algorithm [62] or its subsequent improvements [31, 211, 88, 120, 121].
Thus, Gröbner bases give an effective version of Hilbert’s basis theorem:

Theorem D.3 (Hilbert’s basis theorem). Every ideal in the ring K[X1, . . . ,Xn] of
multivariate polynomials over a field K is finitely generated. That is, every ideal
I E K[X1, . . . ,Xn] has a finite generating system G, i.e., the ideal generated by G
is I.

Using Gröbner Basis Eliminations

Gröbner basis reductions can be used for handling fragments of equational universal
arithmetic. Assume we have a sequent of the following form (when rewriting to

D.2 Computational Back-ends for Real Arithmetic 389

(A1)
(f −g)z = 1 `
` f = g

1

(A2)
f −g = z2 `

f ≥ g `
1

(A3)
(f −g)z2 = 1 `

f > g `
1

(A4)
∗

g1 = g̃1, . . . ,gn = g̃n `
2

(A5)
∗

g1 = g̃1, . . . ,gn = g̃n ` f = h
3

(A6)
` 1+ s2

1 + · · ·+ s2
n = 0

`
4

1 z is a fresh variable.
2 Applicable if redG 1 = 0 where G is the Gröbner basis of the ideal (g1− g̃1, . . . ,gn− g̃n).
3 Applicable if redG f = h where G is the Gröbner basis of the ideal (g1− g̃1, . . . ,gn− g̃n).
4 Polynomials s1, . . . ,sn can be chosen arbitrarily

Fig. D.5 Rule schemata of Gröbner calculus rules

normalise equations, disequations, and inequalities as necessary):

Γ ,g1 = g̃1, . . . ,gn = g̃n ` f1 = h1, . . . , fe = he,∆ . (D.1)

Let G be a Gröbner basis of the ideal generated by the gi− g̃i, i.e., of the ideal

(g1− g̃1, . . . ,gn− g̃n). (D.2)

If the reduction with respect to G of some fi equals the reduction of the correspond-
ing hi with respect to G, i.e., redG fi = redG hi, then the sequent (D.1) is valid and
can be closed. This most naı̈ve use of Gröbner bases for real arithmetic is summar-
ised in the proof rules A4 and A5 of Fig. D.5. The rule A4 closes a goal (marked
by ∗) if the ideal G generated by equations in the antecedent contains 1. At every
point where all equations of G are zero, all equations of the ideal generated by G
are also zero. If the ideal generated by G contains 1, then 1 = 0 holds on the points
where all polynomials of G are zero. Hence, these polynomials do not have a com-
mon zero (they are contradictory). Similarly, rule A5 closes a goal if the sides f ,h of
an equation in the succedent have the same remainder modulo the Gröbner basis G
of the equations of the antecedent, which means f −h ∈ (G). Thus, whenever the
elements of G are zero, f −h is zero. So far, rules A4 and A5 can prove some but
not all properties.

The scope of the rules can be extended further by testing for radical membership
instead of ideal membership, which can prove problems like x2 = 0 ` x = 0 that rule
A5 cannot prove. The radical of an ideal I is the set

√
I =

∞⋃
i=1

{g ∈Q[X1, . . . ,Xn] : gi ∈ I} ⊇ I

Because the inclusion I ⊆
√

I can be strict (e.g.,
√

(x2) = (x)), testing for radical
membership is more liberal than testing for ideal membership, while still being
sound.

390 D KeYmaera Implementation

In practise, the rule A1, which is known as Rabinowitch’s trick, represents a
simple way of testing for radical membership. It is based on the observation that
g ∈
√

I if and only if 1 ∈ (I∪{gz−1}) (where z is a fresh variable). The latter
property can be tested by first applying rule A1 and then rule A4.

Finally, inequalities can be translated to equations using proof rules A2 and A3,
which exploit the fact that a real number is positive iff it is a square (rule A3 is an
optimised version including Rabinowitch’s trick). Rules A2, A3, and A5 are sim-
ilar for inequalities in the succedent. Combined with the rules A4 and A5, this
encoding of inequalities is rather weak, and not able to derive simple facts like
a≤ b∧b≤ c→ a≤ c. It is, however, an important basis for extensions to full de-
cision procedures [246], in particular, in combination with proof rule A6, which we
discuss in Sect. D.2.4.

Proposition D.1 (Soundness of Gröbner basis rules). The rules in Fig. D.5 are
sound.

Proof. The rules are locally sound. For rules A1, A2, and A3, we show satisfiability-
equivalence of premise and conclusion, which implies soundness.

A1 Satisfiability-equivalence of A1 is a consequence of the Rabinowitch trick
equivalence x 6= 0↔∃z(xz = 1), using f −g for x. More generally, this holds
in fields where nonzero elements are exactly the elements that have some
inverse z. By introducing a free new variable z, we obtain that the premise is
satisfiable if and only if the conclusion is satisfiable.

A2 Satisfiability-equivalence follows from equivalence f ≥ g↔∃z(f −g = z2)
in the domain of reals. More generally, this holds in real-closed fields where
squares are exactly the positive numbers. By introducing a free new variable z
in the rule, we see that the premise and conclusion are satisfiability-equivalent,
i.e., the premise is satisfiable if and only if the conclusion is satisfiable. Using
the equivalence and the soundness of ∃l from Theorem 2.1, soundness can
also be obtained easily from the following derivation when using the state
variable z, which is implicitly quantified universally in the sequent, in place
of the Skolem symbol s:

f −g = s2 `
∃l∃z f −g = z2 `

f ≥ g `
A3 Satisfiability-equivalence follows from the equivalence x > 0↔∃z(xz2 = 1)

in the reals, using f −g for x.
A4 The soundness of A4 is a special case of the soundness of A5 when assuming

the false formula 1 = 0 for the succedent f = h.
A5 Suppose the conclusion was false in ν : ν |= g1 = g̃1∧·· ·∧gn = g̃n∧ f 6= h.

Thus, ν |= g = 0 for all g ∈ G (using the notions of algebraic geometry, this
would correspond to ν being in the algebraic variety of G). Consequently,
ν |= g = 0 for all polynomials g in the ideal (G) of G. As a consequence of the
applicability condition, we have redG(f −h) = 0, which, by Definition D.4,

D.2 Computational Back-ends for Real Arithmetic 391

implies that f −h is in the ideal of G. In combination, we have ν |= f −h = 0,
and hence ν |= f = h, which is a contradiction.

A6 Since a sum of squares is nonnegative over R, the value of 1+ s2
1 + · · ·+ s2

n
is strictly positive and 1+ s2

1 + · · ·+ s2
n = 0 is a contradiction over the reals.

Consequently, if the premise is valid, then so is the conclusion. ut
While rules A1, A2, A3, A4, and A5 alone without A6 are incomplete for real

arithmetic, the situation is different over the complex numbers. Hilbert’s Nullstel-
lensatz shows that rules A4 and A1 yield a decision procedure for universal equa-
tional problems in C. For this, we need the following notions. The algebraic variety
V (I) of a set of polynomials F E K[X1, . . . ,Xn] is defined as the set of points where
all polynomials of F are zero:

V (F) := {x ∈ Kn : p(x) = 0 for all p ∈ F}.

See Fig. D.6 for examples of algebraic varieties V (p) generated by a single poly-
nomial p in two variables x and y (thus, algebraic curves in the Euclidean plain).
Conversely, the vanishing ideal I(V) of any set V ⊆ Kn is defined as the set of poly-

x

y

x3 = y
x

y

x2 + y2 = 1

x

y

y2 = x2(x+1)

Fig. D.6 Some algebraic varieties generated by one polynomial equation in two variables

nomials that are zero at all points of V :

I(V) := {p ∈ K[X1, . . . ,Xn] : p(x) = 0 for all x ∈V}.

The set I(V) is, indeed, an ideal. With those notions from algebraic geometry, Hil-
bert’s Nullstellensatz [191] can be formulated in an elegant way.

Theorem D.4 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field
and I E K[X1, . . . ,Xn] an ideal. Then

I(V (I)) =
√

I

In particular, V (I) = /0 iff
√

I = K[X1, . . . ,Xn].
As a corollary, the sequent g1 = g̃1, . . . ,gn = g̃n ` is valid iff g1 = g̃1∧·· ·∧gn = g̃n

is unsatisfiable over R. Over C, according to Theorem D.4, the sequent is valid, i.e.,

392 D KeYmaera Implementation

the equations in the antecedent are unsatisfiable over C iff 1 is in the radical ideal
of (D.2). With Rabinowitch’s trick in rule A1, Gröbner bases with rule A4 can be
used for this radical ideal membership check, giving a complete procedure for com-
plex arithmetic.

The situation with the field of reals is more difficult. For reals, the Gröbner basis
approach with rules A1, A2, A3, A4, and A5 alone gives a sound but incomplete
overapproximation. To see why Gröbner bases are incomplete for real arithmetic,
consider the following. Gröbner bases are a general approach for polynomial rings
over fields (or even rings). They do not take into account the special properties of
the reals. For instance, the sequent x2 =−1 ` is valid, i.e., the formula x2 =−1 is
unsatisfiable over R, but the Gröbner basis of x2 +1 is {x2 +1} and, in fact, x2 =−1
is satisfiable over C but not over R.

KeYmaera integrates with Mathematica by Wolfram Research [303] and the
Orbital library developed by the author as implementations of Gröbner basis al-
gorithms.

D.2.4 Real Nullstellensatz

Gröbner bases and the Nullstellensatz alone are complete for universal properties
of complex arithmetic, but incomplete for the domain of real arithmetic. A corres-
ponding completeness result for real-closed fields is Stengle’s real Nullstellensatz
[283], which extends previous real Nullstellensätze [186, 109, 262]:

Theorem D.5 (Real Nullstellensatz for real-closed fields). Let R be a real-closed
field (e.g., R = R) and let F ⊂ R[X1, . . . ,Xn] be a finite subset. Then

V (F) = /0

if and only if there are polynomials s1, . . . ,sm ∈ R[X1, . . . ,Xn] such that

1+ s2
1 + · · ·+ s2

m ∈ (F).

If, moreover, F ⊆Q[X1, . . . ,Xn], then also the polynomials s1, . . . ,sm can be chosen
among the elements of Q[X1, . . . ,Xn].

This theorem leads to an extremely simple, complete proof method for the uni-
versal fragment of real arithmetic: in addition to the rules A1, A2, A3, A4, and A5,
we add rule A6 in Fig. D.5 for injecting the equation 1+ s2

1 + · · ·+ s2
m = 0 into a

proof goal. The proof rule A6 expresses that an equality 1+ s2
1 + · · ·+ s2

n = 0 can
always be added to the succedent at any time, because a sum of squares is nonneg-
ative, and, if we add 1, is nonzero. Consequently, 1+ s2

1 + · · ·+ s2
n = 0 is obviously

equivalent to false. Such an equation can be very powerful when using Gröbner
basis computations on equations.

Any valid formula in the universal fragment of real-closed field can then be
proven as follows:

D.2 Computational Back-ends for Real Arithmetic 393

1. turn inequalities and equations in the succedent, or disequations and inequalities
in the antecedent, into equations in the antecedent with rules A1, A2, and A3.

2. add the witness 1+ s2
1 + · · ·+ s2

m due to the real Nullstellensatz to the succedent
with rule A6; and

3. prove the resulting sequent with Gröbner Basis computations by rule A5.

Corollary D.1 (Completeness). Along with propositional rules from Fig. 2.11, the
rules in Fig. D.5 are complete for the universal fragment of real arithmetic and in
real-closed fields.

Proof. Completeness follows from Theorem D.5 using the satisfiability-equivalence
properties for the transformation by A1, A2, and A3 according to Proposition D.1.

ut
The main difficulty with this calculus is obvious: it does not provide any guidance

for choosing the witness 1+ s2
1 + · · ·+ s2

m = 0. One technique to tackle the required
search is semidefinite programming, following the work based on Stengle’s Posit-
ivstellensatz (Sect. D.2.5) in [224, 151]. See joint work with Quesel and Rümmer
[246] for details.

Example D.4. In Fig. D.7, we show a proof for the following implication (leaving
out propositional reasoning):

x≥ y∧ z≥ 0→ xz≥ yz. (D.3)

First, we turn the inequalities x≥ y and z≥ 0 into equations using rule A2. Prov-

∗
A5 x− y = a2,z = b2,(yz− xz)c2 = 1 ` 1+(abc)2 = 0
A6 x− y = a2,z = b2,(yz− xz)c2 = 1 `

A2,A3 x≥ y,z≥ 0,yz > xz `
cut x≥ y,z≥ 0 ` xz≥ yz
∧l x≥ y∧ z≥ 0 ` xz≥ yz
→r ` x≥ y∧ z≥ 0→ xz≥ yz

Fig. D.7 Example proof using the real Nullstellensatz

ing by contradiction (or using propositional rules and the cut rule), the conclusion
xz≥ yz is considered as an assumption yz > xz and subsequently eliminated with
rule A3. Once this is done, we rely on an oracle to tell us the witness 1+(abc)2,
which is introduced using rule A6. Finally, we close the proof by A5: the set
{a2− x+ y, b2− z, xzc2− yzc2 +1} is a Gröbner basis representing the equations in
the antecedent. This Gröbner basis reduces the term 1+(abc)2 to 0 by subtracting
multiples of the basis polynomials as indicated:

1+a2b2c2 b2−z
 1+a2zc2 a2−x+y

 1+ xzc2− yzc2 0.

394 D KeYmaera Implementation

Consequently, at every point where all equations in the antecedent are zero, all ele-
ments of the above Gröbner basis are zero (they are in the same ideal), and, thus,
1+(abc)2 is zero at the same point, because the Gröbner basis reduces this to zero.
Hence, if the equations in the antecedent hold, the equation in the succedent holds
too, thereby proving the property. �

D.2.5 Positivstellensatz and Semidefinite Programming

The Positivstellensatz for real-closed fields [283, 50], which has been introduced
by Stengle along with the real Nullstellensatz for real-closed fields [283], can be
used as a sound procedure for proving formulas in the universal fragment of first-
order real arithmetic. The Positivstellensatz has recently been exploited in combina-
tion with relaxations from semidefinite programming [224, 151]. In joint work with
Quesel and Rümmer, the author has recently introduced a combination of Stengle’s
real Nullstellensatz with Gröbner bases and semidefinite programming as a decision
procedure for the universal fragment of real arithmetic [246].

A property of the ideal (G) generated by G⊆ R[X1, . . . ,Xn] is that products of
an element that is zero with any element are zero and that sums of zero elements
are zero. In particular, if every polynomial of G is zero at a point x1, . . . ,xn, then
every polynomial of (H) is zero at that point. The multiplicative monoid mon(H)
generated by H ⊆ R[X1, . . . ,Xn] is the set of finite products of elements of H (in-
cluding the empty product 1). The intuition behind this monoid construction is that
a product of nonzero elements remains nonzero. So if we know that all elements
of H are nonzero at a point x1, . . . ,xn, then any product in mon(H) is also nonzero at
that point. The cone con(F) generated by a set F ⊆ R[X1, . . . ,Xn] is the subsemiring
of R[X1, . . . ,Xn] generated by F and arbitrary squares, i.e., the smallest set con-
taining F and squares s2 of arbitrary polynomials s ∈ R[X1, . . . ,Xn] that is closed
under addition and multiplication. The idea behind the cone construction is that
sums and products of nonnegative elements remain nonnegative and that nonnegat-
ive elements remain nonnegative if we add arbitrary squares s2. In particular, if we
assume all elements in F to be nonnegative at a point x1, . . . ,xn,, then all elements
of con(F) are nonnegative at that point as well. For more computational represent-
ations of cones and ideals, we refer you to the literature [224, 50].

With these constructions we can present Stengle’s Positivstellensatz [283], which
relates the feasibility of a set of equations, disequations, and inequalities to a poly-
nomial formed from the ideal of equations, the monoid of disequations, and the cone
of inequalities.

Theorem D.6 (Positivstellensatz for real-closed fields). Let R be a real-closed
field (e.g., R = R) and F,G,H finite subsets of R[X1, . . . ,Xn]. Then

{x ∈ Rn : f (x)≥ 0 for all f ∈ F, g(x) = 0 for all g ∈ G, h(x) 6= 0 for all h ∈ H}

is empty iff

D.2 Computational Back-ends for Real Arithmetic 395

(A7)
∗

f1 ≥ f̃1, . . . , fm ≥ f̃m,g1 = g̃1, . . . ,gn = g̃n,h1 6= h̃1, . . . ,hl 6= h̃l `
1

1 Applicable iff s+g+m2 = 0 for some polynomial s ∈ con({ f1− f̃1, . . . , fm− f̃m}), some poly-
nomial g ∈ (g1− g̃1, . . . ,gn− g̃n), and some polynomial m ∈mon({h1− h̃1, . . . ,hl − h̃l})

Fig. D.8 Rule schema of Positivstellensatz calculus rule

there are s ∈ con(F),g ∈ (G),m ∈mon(H) such that s+g+m2 = 0.

If, moreover, F,G,H ⊆Q[X1, . . . ,Xn], then also the polynomials s,g,m can be chosen
among the elements of Q[X1, . . . ,Xn].

The polynomials s,g,m are polynomial infeasibility witnesses. For bounded de-
gree, witnesses s,g,m can be searched for using numerical semidefinite program-
ming [224] by parametrising the resulting polynomials. As (theoretical) degree
bounds exist for the certificate polynomials s,g,m, the Positivstellensatz yields a
theoretical decision procedure. These bounds are, however, at least triply exponen-
tial [224]. Thus, the approach advocated by Parrilo [224] is to increase the bound
successively and solve the existence of bounded degree witnesses due to the Posit-
ivstellensatz by semidefinite programming [54].

As a simple corollary to Theorem D.6 we have that rule A7 in Fig. D.8 is sound.

Corollary D.2. The rule in Fig. D.8 is sound.

Example D.5. A proof for the implication (D.3) from p. 393 that uses the Positivs-
tellensatz can be found in Fig. D.9. In contrast to the proof in Fig. D.7, it is now

∗
A7x≥ y,z≥ 0,(yz− xz)c2 = 1 `
A3 x≥ y,z≥ 0,yz > xz `
cut x≥ y,z≥ 0 ` xz≥ yz
∧l x≥ y∧ z≥ 0 ` xz≥ yz
→r ` x≥ y∧ z≥ 0→ xz≥ yz

Fig. D.9 Example proof using the Positivstellensatz

unnecessary to eliminate the inequalities x≥ y and z≥ 0 while we still use the proof
rule A3 for xz≥ yz (corresponding to yz > xz in the antecedent). A witness for the
problem is:

c2 · (x− y) · z︸ ︷︷ ︸
s

+ (yz− xz)c2−1︸ ︷︷ ︸
g

+ 1︸︷︷︸
m2

= 0.

The terms x− y and z in s result from the inequalities in the sequent, while the term
g is derived from the equation. �

396 D KeYmaera Implementation

KeYmaera supports an integration with CSDP [51] as an implementation of semi-
definite programming algorithms and can interface with Harrison’s implementa-
tion [151] of semidefinite programming for the Positivstellensatz in HOL Light.

D.3 Discussion

As usual, it is a nontrivial task to ensure that the soundness that has been proven for
a calculus inherits to soundness of a tool implementing this calculus. Despite our
simple and concise calculi from Part I, the tool KeYmaera qualifies as a nontrivial
piece of code, because of its numerous features, totalling to around 33,000 SLOC2

on top of the KeY base system with 170,000 SLOC (not all parts of the base system
are used in the context of hybrid systems, though). KeYmaera can also use external
background solvers as faster decision procedures. In this section, we discuss the
relationship of the soundness of our calculi and the soundness of KeYmaera. We
refer to [36] for a general discussion of verification for verification systems.

Deductive Kernels

One advantage of deductive verification approaches is that they can have a com-
parably small trusted deductive kernel. The basic rationale underlying tools like
LCF [207], HOL [138], or Isabelle/HOL [220] is that programming bugs in imple-
mentations that affect completeness are less fatal than bugs that would make the tool
unsound and “prove” properties that are counterfactual. Essentially, when a verific-
ation tool like KeYmaera can only prove formulas by applying proof rules to them,
it is sufficient for soundness purposes to ensure the correct implementation of these
calculus rules and the proof rule application mechanism. In particular, this removes
all sophisticated implementations of proof strategies from the trusted computing
base. See, for instance, higher-order logic proof systems like Isabelle/HOL [220]
for tools that follow this approach.

In KeYmaera, however, there are some additional pitfalls. Most of the rules
of the calculi for our logics from Part I can be written as schematic rules, called
taclets [33] in the KeY system, so that the careful soundness proofs carry over from
the dL /DAL/dTL calculi from Part I to the implementation KeYmaera. Yet even
this requires the (long-tested) rule application mechanism of KeY [34, 35] to be cor-
rect. Other rules like i∀ and i∃ from Fig. 2.11, however, cannot be written as a KeY
taclet but have to be implemented in Java directly. Taclet notations for some of the
rules also require meta-operators that are implemented in Java, e.g., for obtaining
the solution of differential equations in rules 〈′〉,[′]. To improve the quality of these
Java implementations, in addition to software engineering techniques like code re-
views and testing, we work with runtime assertions to try to ensure that the results

2 Source lines of code, not counting comments, estimated with SLOCCount from www.
dwheeler.com/sloccount/

D.3 Discussion 397

KeYmaera produces during the current verification run are correct. For instance, the
Java rules for proof rules i∀ and i∃ can assert at runtime that their goal (conclusion)
is actually a substitution instance of the subgoals (premises) that they constructed,
thereby ensuring in retrospect that their formula transformation was justified by the
quantifier elimination lifting lemma, Lemma 2.5, from p. 92; see further explana-
tions in Sect. 2.5.3.2. Such runtime checks can eliminate most of the corresponding
rule implementations in KeYmaera from the trusted basis, leaving essentially only
the implementation of substitutions and quantifier rearrangements in the trusted de-
ductive kernel.

External Black Box Procedures

The practical soundness problem is deeper, though, because, for performance reas-
ons, the KeYmaera tool calls external decision procedures following the cooperation
scheme in Chap. 5, which use the techniques described in App. D.2. Thus, soundness
of KeYmaera generally requires the external decision procedures to be implemented
correctly. We discuss the respective external procedures and means for removing
them from the required trusted computing base in this appendix.

Differential Equation Handling

For the implementation of differential equation handling rules like 〈′〉,[′] from the
dL calculus in Fig. 2.11, it is easy to check at runtime by simple symbolic differen-
tiation and symbolic computations in polynomial rings whether a solution produced
by a (complicated) procedure for solving differential equations actually is a solu-
tion. These checks can eliminate the differential equation solver (Mathematica by
Wolfram Research and the Orbital library by the author) from the trusted computing
base completely. Similar observations hold for differential induction rules DI,DV
from the DAL calculus in Fig. 3.9, which only require symbolic differentiation and
symbolic polynomial computations.

Positivstellensatz and Semidefinite Programming

A pleasant property of the Positivstellensatz Theorem D.6 and the approach in
Sect. D.2.5 is that it produces a witness (the polynomials f ,g,h) for the validity
of a formula (which corresponds to the closing of the branch by rule A7). Once
the witness has been found, it is checkable by simple computations in the poly-
nomial ring to determine whether s+g+m2 = 0 by comparing the coefficients.
Thus, complicated numerical semidefinite programming tools [54] do not need to
be part of the trusted computing base concerning soundness. Similarly, the approach
in Sect. D.2.4 based on the real Nullstellensatz Theorem D.5 gives checkable proof
witnesses based on simple polynomial computations.

398 D KeYmaera Implementation

Semialgebraic Geometry and Cylindrical Algebraic Decomposition

Most quantifier elimination procedures follow a combination of cylindrical alge-
braic decomposition [80], partial cylindrical algebraic decomposition [81], or vir-
tual substitution [301], which are efficient but quite intricate procedures. Unlike ap-
proaches using the Positivstellensatz, general quantifier elimination, unfortunately,
does not produce simple checkable certificates.

In order to remove the implementations of quantifier elimination procedures in
Mathematica and other background solvers from the trusted computing base, di-
versification (i.e., cross-validating results by multiple background solvers) only is
a partial answer, because the solvers might still agree on the same wrong result.
Further, cross-validation limits the overall performance to the worst-of-breed rather
than best-of-breed running times. As a more fundamental approach, we can use
verified implementations, e.g., the verified quantifier elimination procedure for lin-
ear real arithmetic by Nipkow [219] in an executable fragment of Isabelle/HOL.
Another approach is to use a non-verified but proof-producing implementation of
general quantifier elimination by McLaughlin and Harrison [204], which can be
used in KeYmaera.

Unfortunately, the practical performance achieved by those prototype imple-
mentations is not yet sufficient for larger case studies. A good compromise is to use
the paradigm of re-verification: The proof search procedures IBC and IIO generate
several calls to the quantifier elimination procedure to find a proof, but only those in
the final proof are soundness-critical; see Chap. 5 for details. Thus, for soundness,
it is sufficient to use a fast and possibly untrusted implementation of QE during
the proof search and to re-verify the final proof in a proof checker with a verified
or proof-producing QE implementation [204, 219]. For this purpose, the iterative
background closure strategy from Chap. 5 is especially useful, because it iteratively
identifies the sweet spot for using quantifier elimination during the proof search.

Nullstellensatz and Gröbner Bases

While Gröbner basis approaches do not have as simple witnesses as Positivstel-
lensatz approaches, their working principle is strictly based on appropriate symbolic
computations in the ring of polynomials. Consequently, these polynomial reduc-
tions can be carried out from a small set of rewrite rules within a logic. Based on an
implementation for integer arithmetic by Philipp Rümmer in KeY [273], KeYmaera
provides a built-in real arithmetic version [246] of Gröbner bases for nonlinear equa-
tions and Fourier-Motzkin elimination for linear inequalities [214, 124]. These give
fully internalised KeYmaera proofs for the arithmetic.

D.4 Performance Measurements 399

Simplification

As an optional procedure, KeYmaera can call simplification procedures that sim-
plify mathematical expressions to improve readability. Yet, an external simplifica-
tion procedure that simplifies x/x to 1 would be unsound for the compactified do-
main R∪{−∞,+∞}, because ∞/∞ is undefined and not identical to 1. Likewise, this
simplification could be unsound depending on whether x is allowed to assume 0.
In our case, the above simplification is in fact sound for the domain of reals (R)
when adopting our convention from Sects. 2.2.3 and 3.2.1 that any formula con-
taining x/x is understood to imply that x 6= 0 holds. Generally, however, arbitrary
mathematical simplification algorithms might perform non-equivalent transforma-
tions and are thus disabled in KeYmaera by default.

Summary

The level of formal assurance of the correct functioning of the implementation of
KeYmaera is, unfortunately, not quite comparable to that of systems like LCF [207],
HOL [138], or Isabelle/HOL [220]. The built-in proof rule language in KeY allows
us to state most proof rules of the dL , DAL, and dTL proof calculi primarily as
schematic proof rules in the taclet language [33]. Ensuring a correct implementa-
tion of the remaining code is non-trivial. The challenge is simplified substantially
by using a deductive kernel with a smaller trusted basis and by using runtime asser-
tions that check for coherence of the current proof rule application with its formal
prerequisites. Fortunately, the simplicity of the proof rules of our calculi makes it
possible to come up with a correct implementation.

The most tricky part, however, is that, for performance reasons, KeYmaera relies
on tuned external decision procedures to ensure scalability to our larger case studies.
These procedures can be eliminated from the trusted verification base by checking
witnesses when working with solutions of differential equations, the Positivstel-
lensatz, the real Nullstellensatz, and Göbner basis rules. For full quantifier elimin-
ation over real-closed fields, verified or proof-generating implementations can be
helpful.

D.4 Performance Measurements

Unless otherwise indicated, the measurements in this book have been performed on
a Dual-Core AMD OpteronTM 1218 Processor (F2 stepping) running at 2.6 GHz
clock speed with 64 kB instruction cache, 64 kB first level data cache, and 1 MB
second-level cache per core, sharing 4 GB of DDR2-667 main memory with CAS
latency 5. In these measurements, KeYmaera was used on a JavaTM SE Virtual Ma-
chine, build 1.6.0 06-b02, with a HotSpotTM engine in mixed mode on a Gentoo

400 D KeYmaera Implementation

Linux with a 2.6.25-g SMP kernel for x86/64 bit. The measurements are further
based on the Mathematica 6.0.2 kernel.

Due to several effects including Java dynamic class loading and caching ef-
fects, the timing measurements are not necessarily always statistically significant.
Rather, the timing information is intended to give a feeling for differences in mag-
nitude. The measurements have been repeated to ensure reproducibility of results
to increase confidence. While the Java Virtual Machine itself already contributes
to nondeterministic effects that result from dynamic class loading, garbage collec-
tion, and caching, the implementation of the KeYmaera system itself is subject to
nondeterminism as well, including the proof strategies, timing effects of iterative
background closures, nondeterminstic term orderings based on memory references,
and so on. Finally, computational back-ends allow for variations in overall perform-
ance.

Still, qualitative performance differences can be read off from the measurements.
For instance, it makes quite a remarkably dramatic practical difference whether a
strategy is able to prove a case study within only 100 seconds or cannot even come
up with an answer after five hours, which happened a lot when comparing our proof
strategies developed in Part II to simpler procedures.

References

1. Ábrahám-Mumm, E., Steffen, M., Hannemann, U.: Verification of hybrid systems: Formaliz-
ation and proof rules in PVS. In: Andler and Offutt [16], pp. 48–57. DOI 10.1109/ICECCS.
2001.930163

2. Achatz, M., McCallum, S., Weispfenning, V.: Deciding polynomial-exponential problems.
In: J.R. Sendra, L. González-Vega (eds.) ISSAC, pp. 215–222. ACM (2008). DOI 10.1145/
1390768.1390799

3. Adams, A., Dunstan, M., Gottliebsen, H., Kelsey, T., Martin, U., Owre, S.: Computer al-
gebra meets automated theorem proving: Integrating Maple and PVS. In: R.J. Boulton,
P.B. Jackson (eds.) TPHOLs, LNCS, vol. 2152, pp. 27–42. Springer (2001). DOI 10.1007/
3-540-44755-5 4

4. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W., Mostowski,
W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Software and System Modeling 4,
32–54 (2005). DOI 10.1007/s10270-004-0058-x

5. Alur, R.: Timed automata. In: N. Halbwachs, D. Peled (eds.) CAV, LNCS, vol. 1633, pp.
8–22. Springer (1999). DOI 10.1007/3-540-48683-6 3

6. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In: Mitchell
[210], pp. 414–425

7. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Comput.
104(1), 2–34 (1993). DOI 10.1006/inco.1993.1024

8. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero,
A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138(1), 3–34 (1995). DOI 10.1016/0304-3975(94)00202-T

9. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algorithmic ap-
proach to the specification and verification of hybrid systems. In: Grossman et al. [144], pp.
209–229

10. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235
(1994). DOI 10.1016/0304-3975(94)90010-8

11. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic symbolic verification of embedded systems.
IEEE T. Software Eng. 22(3), 181–201 (1996)

12. Alur, R., Henzinger, T.A., Sontag, E.D. (eds.): Hybrid Systems III: Verification and Control,
Proceedings of the DIMACS/SYCON Workshop, October 22–25, 1995, Rutgers University,
New Brunswick, NJ, USA, LNCS, vol. 1066. Springer (1996)

13. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592–
601 (1993). DOI 10.1145/167088.167242

14. Alur, R., Pappas, G.J. (eds.): Hybrid Systems: Computation and Control, 7th International
Workshop, HSCC 2004, Philadelphia, PA, USA, March 25–27, 2004, Proceedings, LNCS,
vol. 2993. Springer (2004). DOI 10.1007/b96398

401

402 References

15. Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In:
M.D.D. Benedetto, A.L. Sangiovanni-Vincentelli (eds.) HSCC, LNCS, vol. 2034, pp. 63–76.
Springer (2001). DOI 10.1007/3-540-45351-2 9

16. Andler, S.F., Offutt, J. (eds.): 7th International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2001), 11–13 June 2001, Skövde, Sweden. IEEE Computer Society,
Los Alamitos (2001)

17. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof, 2 edn. Kluwer (2002)

18. Armando, A., Baumgartner, P., Dowek, G. (eds.): Automated Reasoning, Third International
Joint Conference, IJCAR 2008, Sydney, Australia, Proceedings, LNCS, vol. 5195. Springer
(2008)

19. Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I: The basic
algorithm. SIAM J. Comput. 13(4), 865–877 (1984)

20. Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition II: An adja-
cency algorithm for the plane. SIAM J. Comput. 13(4), 878–889 (1984)

21. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservat-
ive approximation. In: Maler and Pnueli [200], pp. 20–35. DOI 10.1007/3-540-36580-X 5

22. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In:
E. Brinksma, K.G. Larsen (eds.) CAV, LNCS, vol. 2404, pp. 365–370. Springer (2002). DOI
10.1007/3-540-45657-0 30

23. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular re-
usable verifier for object-oriented programs. In: F.S. de Boer, M.M. Bonsangue, S. Graf,
W.P. de Roever (eds.) FMCO, LNCS, vol. 4111, pp. 364–387. Springer (2005). DOI
10.1007/11804192 17

24. Basu, S.: New results on quantifier elimination over real closed fields and applications to
constraint databases. J. ACM 46(4), 537–555 (1999). DOI 10.1145/320211.320240

25. Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity of quantifier
elimination. J. ACM 43(6), 1002–1045 (1996). DOI 10.1145/235809.235813

26. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry, 2 edn. Springer
(2006)

27. Batt, G., Belta, C., Weiss, R.: Model checking genetic regulatory networks with parameter
uncertainty. In: Bemporad et al. [41], pp. 61–75. DOI 10.1007/978-3-540-71493-4 8

28. Bauer, A., Clarke, E.M., Zhao, X.: Analytica — an experiment in combining theorem proving
and symbolic computation. J. Autom. Reasoning 21(3), 295–325 (1998). DOI 10.1023/A:
1006079212546

29. Baumgartner, P.: FDPLL — a first order Davis-Putnam-Longeman-Loveland procedure. In:
D.A. McAllester (ed.) CADE, LNCS, vol. 1831, pp. 200–219. Springer (2000). DOI 10.
1007/10721959 16

30. Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL method.
Artif. Intell. 172(4-5), 591–632 (2008). DOI 10.1016/j.artint.2007.09.005

31. Becker, T., Weispfenning, V.: Gröbner Bases, Springer Graduate Texts in Mathematics, vol.
141. Springer (1998)

32. Beckert, B.: Equality and other theories. In: M. D’Agostino, D. Gabbay, R. Hähnle, J. Pose-
gga (eds.) Handbook of Tableau Methods. Kluwer (1999)

33. Beckert, B., Giese, M., Habermalz, E., Hähnle, R., Roth, A., Rümmer, P., Schlager, S.:
Taclets: A new paradigm for constructing interactive theorem provers. Revista de la Real
Academia de Ciencias Exactas, Fı́sicas y Naturales, Serie A: Matemáticas (RACSAM) 98(1)
(2004)

34. Beckert, B., Giese, M., Hähnle, R., Klebanov, V., Rümmer, P., Schlager, S., Schmitt, P.H.:
The KeY System 1.0 (deduction component). In: F. Pfenning (ed.) Proceedings, International
Conference on Automated Deduction, Bremen, Germany, LNCS. Springer (2007)

35. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software: The
KeY Approach, LNCS, vol. 4334. Springer (2007). DOI 10.1007/978-3-540-69061-0

36. Beckert, B., Klebanov, V.: Must program verification systems and calculi be verified? In: 3rd
International Verification Workshop VERIFY’06, at FLoC, Seattle, USA, pp. 34–41 (2006)

References 403

37. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: A basis for object-oriented
program verification. In: U. Furbach, N. Shankar (eds.) IJCAR, LNCS, vol. 4130, pp. 266–
280. Springer (2006). DOI 10.1007/11814771 23

38. Beckert, B., Schlager, S.: A sequent calculus for first-order dynamic logic with trace modal-
ities. In: Goré et al. [139], pp. 626–641. DOI 10.1007/3-540-45744-5 51

39. van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Deriving sim-
ulators for hybrid Chi models. Intelligent Control, 2006. IEEE International Symposium on
pp. 42–49 (2006). DOI 10.1109/CACSD-CCA-ISIC.2006.4776622

40. van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax and
consistent equation semantics of hybrid Chi. J. Log. Algebr. Program. 68(1-2), 129–210
(2006). DOI 10.1016/j.jlap.2005.10.005

41. Bemporad, A., Bicchi, A., Buttazzo, G. (eds.): Hybrid Systems: Computation and Con-
trol, 10th International Conference, HSCC 2007, Pisa, Italy, Proceedings, LNCS, vol. 4416.
Springer (2007)

42. Ben-Ari, M.: Mathematical Logic for Computer Science, 2 edn. Springer (2003)
43. BFU: Investigation report. Tech. Rep. AX001-1-2/02, German Federal Bureau of Aircraft

Accidents Investigation (2004)
44. Bianconi, R.: Nondefinability results for expansions of the field of real numbers by the ex-

ponential function and by the restricted sine functions. J. Symb. Log. 62(4), 1173–1178
(1997)

45. Bianconi, R.: Undefinability results in o-minimal expansions of the real numbers. Ann. Pure
Appl. Logic 134(1), 43–51 (2005). DOI 10.1016/j.apal.2004.06.010

46. Bicchi, A., Pallottino, L.: On optimal cooperative conflict resolution for air traffic manage-
ment systems. IEEE Trans. Intelligent Transportation Systems 1(4), 221–231 (2000)

47. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In:
R. Cleaveland (ed.) TACAS, LNCS, vol. 1579, pp. 193–207. Springer (1999). DOI 10.1007/
3-540-49059-0 14

48. Blackburn, P.: Internalizing labelled deduction. J. Log. Comput. 10(1), 137–168 (2000)
49. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer,

Secaucus, NJ, USA (1998)
50. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry, Ergebnisse der Mathematik

und ihrer Grenzgebiete, vol. 36. Springer (1998)
51. Borchers, B.: CSDP, a C library for semidefinite programming. Optimization Methods and

Software 11(1-4), 613–623 (1999). DOI 10.1080/10556789908805765
52. Bourbaki, N.: Algebra I: Chapters 1–3. Elements of mathematics. Springer (1989)
53. Bourbaki, N.: Commutative Algebra. Elements of mathematics. Hermann, Paris (1989).

Translated from the French
54. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)
55. Branicky, M.S.: General hybrid dynamical systems: Modeling, analysis, and control. In: Alur

et al. [12], pp. 186–200. DOI 10.1007/BFb0020945
56. Branicky, M.S.: Studies in hybrid systems: Modeling, analysis, and control. Ph.D. thesis,

Dept. Elec. Eng. and Computer Sci., Massachusetts Inst. Technol., Cambridge, MA (1995)
57. Branicky, M.S.: Universal computation and other capabilities of hybrid and continuous dy-

namical systems. Theor. Comput. Sci. 138(1), 67–100 (1995). DOI 10.1016/0304-3975(94)
00147-B

58. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: Model
and optimal control theory. IEEE T. Automat. Contr. 43(1), 31–45 (1998). DOI 10.1109/9.
654885

59. Brown, C.W.: QEPCAD B: A program for computing with semi-algebraic sets using CADs.
SIGSAM Bull. 37(4), 97–108 (2003). DOI 10.1145/968708.968710

60. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylindrical
algebraic decomposition. In: D. Wang (ed.) ISSAC, pp. 54–60. ACM (2007). DOI
10.1145/1277548.1277557

61. Bruyère, V., Raskin, J.F.: Real-time model-checking: Parameters everywhere. Logical Meth-
ods in Computer Science 3(1) (2007). DOI 10.2168/LMCS-3(1:7)2007. Online journal

404 References

62. Buchberger, B.: An algorithm for finding the basis elements of the residue class ring of a
zero dimensional polynomial ideal. Ph.D. thesis, University of Innsbruck (1965)

63. Buchberger, B., Jebelean, T., Kriftner, F., Marin, M., Tomuta, E., Vasaru, D.: A survey of the
Theorema project. In: ISSAC, pp. 384–391 (1997)

64. Buehler, M.: Summary of DGC 2005 results. Journal of Field Robotics 23, 465–466 (2008).
DOI 10.1002/rob.20145

65. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. In: Mitchell [210], pp. 428–439

66. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992). DOI 10.1016/
0890-5401(92)90017-A

67. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: CONCUR, pp. 138–152
(2000). DOI 10.1007/3-540-44618-4 12

68. Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic De-
composition, Texts and Monographs in Symbolic Computation. Springer (1998)

69. Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In: Alur et al. [12],
pp. 511–530

70. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE
T. Automat. Contr. 48(1), 64–75 (2003). DOI 10.1109/TAC.2002.806655

71. Cimatti, A., Roveri, M., Tonetta, S.: Requirements validation for hybrid systems. In:
A. Bouajjani, O. Maler (eds.) CAV, LNCS, vol. 5643. Springer (2009). DOI 10.1007/
978-3-642-02658-4 17

72. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstrac-
tion refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003). DOI
10.1145/876638.876643

73. Clarke, E.M.: Program invariants as fixedpoints. Computing 21(4), 273–294 (1979). DOI
10.1007/BF02248730

74. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability
solving. Formal Methods in System Design 19(1), 7–34 (2001)

75. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: D. Kozen (ed.) Logic of Programs, LNCS, vol. 131, pp.
52–71. Springer (1981)

76. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and de-
bugging. Commun. ACM 52(11), 74–84 (2009). DOI 10.1145/1592761.1592781

77. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.:
Abstraction and counterexample-guided refinement in model checking of hybrid systems.
Int. J. Found. Comput. Sci. 14(4), 583–604 (2003). DOI 10.1142/S012905410300190X

78. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge, MA,
USA (1999)

79. Cohen, P.J.: Decision procedures for real and p-adic fields. Communications in Pure and
Applied Mathematics 22, 131–151 (1969)

80. Collins, G.E.: Hauptvortrag: Quantifier elimination for real closed fields by cylindrical alge-
braic decomposition. In: H. Barkhage (ed.) Automata Theory and Formal Languages, LNCS,
vol. 33, pp. 134–183. Springer (1975). DOI 10.1007/3-540-07407-4 17

81. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimina-
tion. J. Symb. Comput. 12(3), 299–328 (1991). DOI 10.1016/S0747-7171(08)80152-6

82. Collins, G.E., Johnson, J.R.: Quantifier elimination and the sign variation method for real
root isolation. In: ISSAC, pp. 264–271 (1989). DOI 10.1145/74540.74574

83. Collins, G.E., Johnson, J.R., Krandick, W.: Interval arithmetic in cylindrical algebraic de-
composition. J. Symb. Comput. 34(2), 145–157 (2002). DOI 10.1006/jsco.2002.0547

84. Collins, G.E., Johnson, J.R., Küchlin, W.: Parallel real root isolation using the coefficient
sign variation method. In: R. Zippel (ed.) CAP, LNCS, vol. 584, pp. 71–87. Springer (1990)

85. Collins, P., Lygeros, J.: Computability of finite-time reachable sets for hybrid systems. In:
CDC-ECC’05, pp. 4688– 4693. IEEE (2005)

References 405

86. Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: J.C.M. Baeten,
S. Mauw (eds.) CONCUR, LNCS, vol. 1664, pp. 242–257. Springer (1999). DOI 10.1007/
3-540-48320-9 18

87. Cook, S.A.: Soundness and completeness of an axiom system for program verification. SIAM
J. Comput. 7(1), 70–90 (1978). DOI 10.1137/0207005

88. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms: An Introduction to Com-
putational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathem-
atics. Springer, New York (1992)

89. Damm, W., Hungar, H., Olderog, E.R.: On the verification of cooperating traffic agents. In:
F.S. de Boer, M.M. Bonsangue, S. Graf, W.P. de Roever (eds.) FMCO, LNCS, vol. 3188, pp.
77–110. Springer (2003). DOI 10.1007/b100112

90. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents. Interna-
tional Journal of Control 79(5), 395–421 (2006). DOI 10.1080/00207170600587531

91. Damm, W., Mikschl, A., Oehlerking, J., Olderog, E.R., Pang, J., Platzer, A., Segelken, M.,
Wirtz, B.: Automating verification of cooperation, control, and design in traffic applications.
In: C.B. Jones, Z. Liu, J. Woodcock (eds.) Formal Methods and Hybrid Real-Time Systems,
LNCS, vol. 4700, pp. 115–169. Springer (2007). DOI 10.1007/978-3-540-75221-9 6

92. Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of LTL proper-
ties of non-linear robust discrete time hybrid systems. In: Peled and Tsay [226], pp. 99–113.
DOI 10.1007/11562948 10

93. Dantzig, G.B., Eaves, B.C.: Fourier-Motzkin elimination and its dual. J. Comb. Theory, Ser.
A 14(3), 288–297 (1973)

94. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Com-
put. 5(1/2), 29–35 (1988). DOI 10.1016/S0747-7171(88)80004-X

95. Davoren, J.M.: On hybrid systems and the modal µ-calculus. In: P.J. Antsaklis, W. Kohn,
M.D. Lemmon, A. Nerode, S. Sastry (eds.) Hybrid Systems, LNCS, vol. 1567, pp. 38–69.
Springer (1997). DOI 10.1007/3-540-49163-5 3

96. Davoren, J.M., Coulthard, V., Markey, N., Moor, T.: Non-deterministic temporal logics for
general flow systems. In: Alur and Pappas [14], pp. 280–295. DOI 10.1007/b96398

97. Davoren, J.M., Nerode, A.: Logics for hybrid systems. IEEE 88(7), 985–1010 (2000). DOI
10.1109/5.871305

98. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In: Hybrid Systems III,
LNCS, vol. 1066, pp. 208–219 (1996)

99. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM
22(8), 465–476 (1979). DOI 10.1145/359138.359142

100. Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: A formalism and a programming lan-
guage for dynamic networks of hybrid automata. In: P.J. Antsaklis, W. Kohn, A. Nerode,
S. Sastry (eds.) Hybrid Systems, LNCS, vol. 1273, pp. 113–133. Springer (1996). DOI
10.1007/BFb0031558

101. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM
Bull. 31, 2–9 (1997). DOI 10.1145/261320.261324

102. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bemporad et al.
[41], pp. 174–189. DOI 10.1007/978-3-540-71493-4 16

103. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reasoning 31(1),
33–72 (2003). DOI 10.1023/A:1027357912519

104. Dowek, G., Muñoz, C., Carreño, V.A.: Provably safe coordinated strategy for distributed con-
flict resolution. In: Proceedings of the AIAA Guidance Navigation, and Control Conference
and Exhibit 2005, AIAA-2005-6047 (2005)

105. van den Dries, L.: Alfred Tarski’s elimination theory for real closed fields. J. Symb. Log.
53(1), 7–19 (1988)

106. van den Dries, L.: Tame Topology and O-minimal Structures. Cambridge University Press
(1998)

107. van den Dries, L., Miller, C.: On the real exponential field with restricted analytic functions.
Israel J. Math. 85(1-3), 19–56 (1994). DOI 10.1007/BF02758635

406 References

108. van den Dries, L., Speissegger, P.: The real field with convergent generalized power series.
Trans. Amer. Math. Soc. 350, 4377–4421 (1998). DOI 10.1090/S0002-9947-98-02105-9

109. Dubois, D.W.: A Nullstellensatz for ordered fields. Ark. Mat. 8(2), 111–114 (1970). DOI
10.1007/BF02589551

110. Egerstedt, M., Johansson, K.H., Sastry, S., Lygeros, J.: On the regularization of Zeno hybrid
automata. Systems and Control Letters 38, 141–150 (1999)

111. Egerstedt, M., Mishra, B. (eds.): Hybrid Systems: Computation and Control, 11th Inter-
national Conference, HSCC 2008, St. Louis, MO, USA, Proceedings, LNCS, vol. 4981.
Springer (2008)

112. Eisenbud, D.: Commutative algebra with a view toward algebraic geometry, Graduate Texts
in Mathematics, vol. 150, 3 edn. Springer, New York (1999)

113. Emerson, A.: Temporal and modal logic. In: J. van Leeuwen (ed.) Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), pp. 995–1072. MIT Press
(1990)

114. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchron-
ization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)

115. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” revisited: on branching versus
linear time temporal logic. J. ACM 33(1), 151–178 (1986). DOI 10.1145/4904.4999

116. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations. Cam-
bridge University Press (1996)

117. ERTMS User Group: ERTMS/ETCS System requirements specification. http://www.
era.europa.eu (2002)

118. Etessami, K., Rajamani, S.K. (eds.): Computer Aided Verification, 17th International Confer-
ence, CAV 2005, Edinburgh, Scotland, UK, July 6–10, 2005, Proceedings, LNCS, vol. 3576.
Springer (2005)

119. Faber, J., Meyer, R.: Model checking data-dependent real-time properties of the European
Train Control System. In: FMCAD, pp. 76–77. IEEE Computer Society Press (2006). DOI
10.1109/FMCAD.2006.21

120. Faugére, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure
and Applied Algebra 139(1-3), 61–88 (1999). DOI 10.1016/S0022-4049(99)00005-5

121. Faugére, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5). In: ISAAC. ACM Press (2002). DOI 10.1145/780506.780516

122. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2 edn. Springer, New York
(1996)

123. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer, Norwell, MA, USA (1999)
124. Fourier, J.B.J.: Solution d’une question particulière du calcul des inégalités. Nouveau Bul-

letin des Sciences par la Société Philomatique de Paris pp. 99–100 (1823)
125. Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infinity of states.

In: J. Flum, M. Rodrı́guez-Artalejo (eds.) CSL, LNCS, vol. 1683, pp. 126–140. Springer
(1999)

126. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari and
Thiele [212], pp. 258–273. DOI 10.1007/b106766

127. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. STTT 10(3),
263–279 (2008). DOI 10.1007/s10009-007-0062-x

128. Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to parameter syn-
thesis for linear hybrid automata. In: Egerstedt and Mishra [111], pp. 187–200. DOI
10.1007/978-3-540-78929-1 14

129. Galdino, A.L., Muñoz, C., Ayala-Rincón, M.: Formal verification of an optimal air traffic
conflict resolution and recovery algorithm. In: D. Leivant, R. de Queiroz (eds.) WoLLIC,
LNCS, vol. 4576, pp. 177–188. Springer (2007)

130. Gallier, J.H.: Logic for Computer Science. Longman Higher Education (1986)
131. Ganzinger, H., Korovin, K.: Theory instantiation. In: M. Hermann, A. Voronkov (eds.)

LPAR, LNCS, vol. 4246, pp. 497–511. Springer (2006). DOI 10.1007/11916277 34
132. Gear, C.W.: Differential-algebraic equations index transformations. SIAM J. Sci. Stat. Com-

put. 9(1), 39–47 (1988). DOI 10.1137/0909004

References 407

133. Gentzen, G.: Untersuchungen über das logische Schließen. Math. Zeit. 39, 405–431 (1935).
DOI 10.1007/BF01201363

134. Giese, M.: Incremental closure of free variable tableaux. In: Goré et al. [139], pp. 545–560.
DOI 10.1007/3-540-45744-5 46

135. Gödel, K.: Über die Vollständigkeit des Logikkalküls. Ph.D. thesis, Universität Wien (1929)
136. Gödel, K.: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Mon. hefte

Math. Phys. 37, 349–360 (1930). DOI 10.1007/BF01696781
137. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme I. Mon. hefte Math. Phys. 38, 173–198 (1931). DOI 10.1007/BF01700692
138. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem-Proving Environment for

Higher-Order Logic. Cambridge Univ. Press (1993)
139. Goré, R., Leitsch, A., Nipkow, T. (eds.): Automated Reasoning, First International Joint Con-

ference, IJCAR 2001, Siena, Italy, June 18–23, 2001, Proceedings, LNCS, vol. 2083. Springer
(2001)

140. Graça, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial differential
equations. Advances in Applied Mathematics (2007)

141. Grigoriev, D.: Complexity of deciding Tarski algebra. J. Symb. Comput. 5(1/2), 65–108
(1988). DOI 10.1016/S0747-7171(88)80006-3

142. Grigoriev, D., Vorobjov, N.: Solving systems of polynomial inequalities in subexponential
time. J. Symb. Comput. 5(1/2), 37–64 (1988). DOI 10.1016/S0747-7171(88)80005-1

143. Gross, J.: Schlussbericht über die Entgleisung von Güterzug 43647 der BLS AG auf der
Weiche 34 (Einfahrt Lötschberg-Basisstrecke). Tech. Rep. 07101601, Unfalluntersuchungss-
telle Bahnen und Schiffe (2007)

144. Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.): Hybrid Systems, LNCS, vol. 736.
Springer (1993)

145. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta
and Malik [146], pp. 190–203. DOI 10.1007/978-3-540-70545-1

146. Gupta, A., Malik, S. (eds.): Computer Aided Verification, CAV 2008, Princeton, NJ, USA,
Proceedings, LNCS, vol. 5123. Springer (2008)

147. Hähnle, R., Schmitt, P.H.: The liberalized δ -rule in free variable semantic tableaux. J. Autom.
Reasoning 13(2), 211–221 (1994). DOI 10.1007/BF00881956

148. Harel, D.: First-Order Dynamic Logic. Springer, New York (1979)
149. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)
150. Harris, J.: Algebraic Geometry: A First Course. Graduate Texts in Mathematics. Springer

(1995)
151. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: K. Schneider,

J. Brandt (eds.) TPHOLs, LNCS, vol. 4732, pp. 102–118. Springer (2007). DOI 10.1007/
978-3-540-74591-4 9

152. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge Univ. Press
(2009)

153. Hartman, P.: Ordinary Differential Equations. John Wiley (1964)
154. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer

(1977)
155. Henkin, L.: The completeness of the first-order functional calculus. J. Symb. Log. 14(3),

159–166 (1949)
156. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer

Society, Los Alamitos (1996)
157. Henzinger, T.A., Ho, P.H.: HYTECH: The Cornell HYbrid TECHnology tools. In: P.J. Ant-

saklis, W. Kohn, A. Nerode, S. Sastry (eds.) Hybrid Systems, LNCS, vol. 999, pp. 265–293.
Springer (1994)

158. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: A model checker for hybrid systems. In:
O. Grumberg (ed.) CAV, LNCS, vol. 1254, pp. 460–463. Springer (1997)

159. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time
systems. In: LICS, pp. 394–406. IEEE Computer Society (1992). DOI 10.1006/inco.1994.
1045

408 References

160. Herbrand, J.: Recherches sur la théorie de la démonstration. Travaux de la Société des Sci-
ences et des Lettres de Varsovie, Class III, Sciences Mathématiques et Physiques 33, 33–160
(1930)

161. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969). DOI 10.1145/363235.363259

162. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International (1985)
163. Hodges, W.: Model Theory. Cambridge University Press (1993)
164. Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Quadrotor helicopter flight dy-

namics and control: Theory and experiment. In: Proceedings of the AIAA Guidance, Navig-
ation, and Control Conference. Hilton Head, SC (2007). AIAA Paper Number 2007-6461

165. Hörmander, L.: The Analysis of Linear Partial Differential Operators II, Grundlehren der
mathematischen Wissenschaften, vol. 257. Springer (1983)

166. Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: Design of platoon maneuver protocols for IVHS.
PATH Research Report UCB-ITS-PRR-91-6, Institute of Transportation Studies, University
of California, Berkeley (1991)

167. Hu, J., Prandini, M., Sastry, S.: Optimal coordinated motions of multiple agents moving on
a plane. SIAM Journal on Control and Optimization 42, 637–668 (2003)

168. Hu, J., Prandini, M., Sastry, S.: Probabilistic safety analysis in three-dimensional aircraft
flight. In: CDC, vol. 5, pp. 5335 – 5340 (2003). DOI 10.1109/CDC.2003.1272485

169. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems,
2 edn. Cambridge Univ. Press (2004)

170. Hutter, D., Langenstein, B., Sengler, C., Siekmann, J.H., Stephan, W., Wolpers, A.: Deduc-
tion in the verification support environment (VSE). In: M.C. Gaudel, J. Woodcock (eds.)
FME, LNCS, vol. 1051, pp. 268–286. Springer (1996)

171. Hwang, I., Kim, J., Tomlin, C.: Protocol-based conflict resolution for air traffic control. Air
Traffic Control Quarterly 15(1), 1–34 (2007)

172. Ilyashenko, Y., Yakovenko, S.: Lectures on Analytic Differential Equations, Graduate Stud-
ies in Mathematics, vol. 86. AMS (2008)

173. Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. In: Etessami
and Rajamani [118], pp. 39–51. DOI 10.1007/11513988 6

174. Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. Logical
Methods in Computer Science 3(4) (2007). DOI 10.2168/LMCS-3(4:1)2007

175. Jifeng, H.: From CSP to hybrid systems. In: A.W. Roscoe (ed.) A classical mind: essays in
honour of C. A. R. Hoare, pp. 171–189. Prentice Hall, Hertfordshire, UK (1994)

176. Johansson, K.H., Sastry, S., Zhang, J., Lygeros, J.: Zeno hybrid systems. Int. J. Robust and
Nonlinear Control 11, 435–451 (2001). DOI 10.1002/rnc.592

177. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cam-
bridge University Press, New York, NY (1996)

178. Kesten, Y., Manna, Z., Pnueli, A.: Verification of clocked and hybrid systems. Acta Inf.
36(11), 837–912 (2000). DOI 10.1007/s002360050177

179. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York
(1972)

180. Košecká, J., Tomlin, C., Pappas, G., Sastry, S.: 2-1/2D conflict resolution maneuvers for
ATMS. In: CDC, vol. 3, pp. 2650–2655. Tampa, FL, USA (1998). DOI 10.1109/CDC.1998.
757853

181. Kozen, D.: Results on the propositional µ-calculus. Theor. Comput. Sci. 27, 333–354 (1983).
DOI 10.1016/0304-3975(82)90125-6

182. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3), 427–443
(1997). DOI 10.1145/256167.256195

183. Kratz, F., Sokolsky, O., Pappas, G.J., Lee, I.: R-Charon, a modeling language for reconfig-
urable hybrid systems. In: J.P. Hespanha, A. Tiwari (eds.) HSCC, LNCS, vol. 3927, pp.
392–406. Springer (2006). DOI 10.1007/11730637 30

184. Kreisel, G., Krivine, J.L.: Elements of mathematical logic: Model Theory, 2 edn. North-
Holland (1971)

References 409

185. Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica 16, 83–
94 (1963)

186. Krivine, J.L.: Anneaux préordonnés. Journal d’analyse mathématique 12, 307–326 (1964)
187. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations: Analysis and Numerical Solu-

tion. European Mathematical Society (2006)
188. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Mathematics of Control,

Signals, and Systems 13(1), 1–21 (2000). DOI 10.1007/PL00009858
189. Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In:

F.W. Vaandrager, J.H. van Schuppen (eds.) HSCC, LNCS, vol. 1569, pp. 137–151. Springer
(1999). DOI 10.1007/3-540-48983-5 15

190. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for families of
linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001). DOI 10.1006/jsco.2001.0472

191. Lang, S.: Algebra. Addison-Wesley Publishing Company (1978)
192. Lanotte, R., Tini, S.: Taylor approximation for hybrid systems. In: Morari and Thiele [212],

pp. 402–416. DOI 10.1007/b106766
193. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134–152 (1997)
194. Liberzon, D.: Switching in Systems and Control. Systems and Control: Foundations and

Applications. Birkhäuser, Boston, MA (2003)
195. Lindelöf, M.E.: Sur l’application de la méthode des approximations successives aux

équations différentielles ordinaires du premier ordre. Comptes rendus hebdomadaires des
séances de l’Académie des sciences 114, 454–457 (1894)

196. Livadas, C., Lygeros, J., Lynch, N.A.: High-level modeling and analysis of TCAS. Proc.
IEEE – Special Issue on Hybrid Systems: Theory & Applications 88(7), 926–947 (2000)

197. Łojasiewicz, S.: Triangulations of semi-analytic sets. Annali della Scuola Normale Superiore
di Pisa 18, 449–474 (1964)

198. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36(5), 450–
462 (1993). DOI 10.1093/comjnl/36.5.450

199. Löwenheim, L.: Über Möglichkeiten im Relativkalkül. Mathematische Annalen 76, 447–470
(1915). DOI 10.1007/BF01458217

200. Maler, O., Pnueli, A. (eds.): Hybrid Systems: Computation and Control, 6th International
Workshop, HSCC 2003 Prague, Czech Republic, April 3–5, 2003, Proceedings, LNCS, vol.
2623. Springer (2003)

201. Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In: T.A. Hen-
zinger, S. Sastry (eds.) HSCC, LNCS, vol. 1386, pp. 305–318. Springer (1998). DOI
10.1007/3-540-64358-3 47

202. Mansfield, E.L.: Differential Gröbner bases. Ph.D. thesis, University of Sydney (1991)
203. Massink, M., Francesco, N.D.: Modelling free flight with collision avoidance. In: Andler

and Offutt [16], pp. 270–280. DOI 10.1109/ICECCS.2001.930186
204. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In:

R. Nieuwenhuis (ed.) CADE, LNCS, vol. 3632, pp. 295–314. Springer (2005). DOI 10.1007/
11532231 22

205. Meyer, R., Faber, J., Hoenicke, J., Rybalchenko, A.: Model checking duration calculus:
A practical approach. Formal Aspects of Computing pp. 1–25 (2008). DOI 10.1007/
s00165-008-0082-7

206. Miller, C.L.: Expansions of the real field with power functions. Ann. Pure Appl. Logic 68(1),
79–94 (1994)

207. Milner, R.: Logic for computable functions: description of a machine implementation. Tech.
rep., Stanford University, Stanford, CA, USA (1972)

208. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Univ. Press
(1999)

209. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, New York (1973)
210. Mitchell, J. (ed.): Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Sci-

ence, 4–7 June 1990, Philadelphia, Pennsylvania, USA. IEEE Computer Society (1990)
211. Mora, T.: Solving Polynomial Equation Systems II: Macaulay’s Paradigm and Gröbner Tech-

nology. Cambridge University Press (2005)

410 References

212. Morari, M., Thiele, L. (eds.): Hybrid Systems: Computation and Control, 8th International
Workshop, HSCC 2005, Zurich, Switzerland, March 9–11, 2005, Proceedings, LNCS, vol.
3414. Springer (2005)

213. Morayne, M.: On differentiability of Peano type functions. Colloquium Mathematicum LIII,
129–132 (1987)

214. Motzkin, T.S.: Beiträge zur Theorie der Linearen Ungleichungen. Ph.D. thesis, Basel, Jeru-
salem (1936)

215. Mumford, D.: Algebraic Geometry I: Complex Projective Varieties. Classics in Mathematics.
Springer (1995)

216. Muñoz, C., Carreño, V., Dowek, G., Butler, R.W.: Formal verification of conflict detection
algorithms. STTT 4(3), 371–380 (2003). DOI 10.1007/s10009-002-0084-3

217. Mysore, V., Piazza, C., Mishra, B.: Algorithmic algebraic model checking II: Decidability of
semi-algebraic model checking and its applications to systems biology. In: Peled and Tsay
[226], pp. 217–233. DOI 10.1007/11562948 18

218. Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An approach to the description and analysis
of hybrid systems. In: Grossman et al. [144], pp. 149–178

219. Nipkow, T.: Linear quantifier elimination. In: Armando et al. [18]
220. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order

Logic, LNCS, vol. 2283. Springer (2002)
221. Olderog, E.R., Dierks, H.: Real-Time Systems: Formal Specification and Automatic Verific-

ation. Cambridge Univ. Press (2008)
222. Pallottino, L., Scordio, V.G., Frazzoli, E., Bicchi, A.: Decentralized cooperative policy for

conflict resolution in multi-vehicle systems. IEEE Trans. on Robotics 23(6), 1170–1183
(2007)

223. Parker, R.S., Doyle, F.J., Peppas, N.A.: The intravenous route to blood glucose control. IEEE
Engineering in Medicine and Biology 20(1), 65–73 (2001). DOI 10.1109/51.897829

224. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Pro-
gram. 96(2), 293–320 (2003). DOI 10.1007/s10107-003-0387-5

225. Peano, G.: Demonstration de l’intégrabilité des équations différentielles ordinaires. Math-
ematische Annalen 37(2), 182–228 (1890). DOI 10.1007/BF01200235

226. Peled, D., Tsay, Y.K. (eds.): Automated Technology for Verification and Analysis, Third
International Symposium, ATVA 2005, Taipei, Taiwan, October 4–7, 2005, Proceedings,
LNCS, vol. 3707. Springer (2005)

227. Perko, L.: Differential equations and dynamical systems, 3 edn. Springer, New York, NY,
USA (2006)

228. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic
algebraic model checking I: Challenges from systems biology. In: Etessami and Rajamani
[118], pp. 5–19. DOI 10.1007/11513988 3

229. Plaisted, D.A., Zhu, Y.: Ordered semantic hyper-linking. J. Autom. Reasoning 25(3), 167–
217 (2000)

230. Platzer, A.: Combining deduction and algebraic constraints for hybrid system analysis. In:
B. Beckert (ed.) VERIFY’07 at CADE, Bremen, Germany, CEUR Workshop Proceedings,
vol. 259, pp. 164–178. CEUR-WS.org (2007)

231. Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems. In: N. Oliv-
etti (ed.) TABLEAUX, LNCS, vol. 4548, pp. 216–232. Springer (2007). DOI 10.1007/
978-3-540-73099-6 17

232. Platzer, A.: Differential logic for reasoning about hybrid systems. In: Bemporad et al. [41],
pp. 746–749. DOI 10.1007/978-3-540-71493-4 75

233. Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In: S.N.
Artëmov, A. Nerode (eds.) LFCS, LNCS, vol. 4514, pp. 457–471. Springer (2007). DOI
10.1007/978-3-540-72734-7 32

234. Platzer, A.: Towards a hybrid dynamic logic for hybrid dynamic systems. In: P. Blackburn,
T. Bolander, T. Braüner, V. de Paiva, J. Villadsen (eds.) LICS International Workshop on
Hybrid Logic, HyLo’06, Seattle, USA, Proceedings, ENTCS, vol. 174, pp. 63–77 (2007).
DOI 10.1016/j.entcs.2006.11.026

References 411

235. Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated Reasoning
41(2), 143–189 (2008). DOI 10.1007/s10817-008-9103-8

236. Platzer, A.: Differential dynamic logics: Automated theorem proving for hybrid systems.
Ph.D. thesis, Department of Computing Science, University of Oldenburg (2008)

237. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. Journal
of Logic and Computation 20(1), 309–352 (2010). DOI 10.1093/logcom/exn070. Advance
Access published on November 18, 2008

238. Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model check-
ing. In: Bemporad et al. [41], pp. 473–486. DOI 10.1007/978-3-540-71493-4 37

239. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints.
In: Gupta and Malik [146], pp. 176–189. DOI 10.1007/978-3-540-70545-1 17

240. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints.
Formal Methods in System Design 35(1), 98–120 (2009). DOI 10.1007/s10703-009-0079-8

241. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneuvers:
A case study. In: A. Cavalcanti, D. Dams (eds.) FM, LNCS, vol. 5850, pp. 547–562. Springer
(2009). DOI 10.1007/978-3-642-05089-3 35

242. Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems. In: Ar-
mando et al. [18], pp. 171–178. DOI 10.1007/978-3-540-71070-7 15

243. Platzer, A., Quesel, J.D.: Logical verification and systematic parametric analysis in train
control. In: Egerstedt and Mishra [111], pp. 646–649. DOI 10.1007/978-3-540-78929-1 55

244. Platzer, A., Quesel, J.D.: European Train Control System: A case study in formal verifica-
tion. In: K. Breitman, A. Cavalcanti (eds.) ICFEM, LNCS, vol. 5885, pp. 246–265. Springer
(2009). DOI 10.1007/978-3-642-10373-5 13

245. Platzer, A., Quesel, J.D.: European Train Control System: A case study in formal veri-
fication. Tech. Rep. 54, Reports of SFB/TR 14 AVACS (2009). ISSN: 1860-9821,
http://www.avacs.org.

246. Platzer, A., Quesel, J.D., Rümmer, P.: Real world verification. In: R.A. Schmidt (ed.) CADE,
LNCS, vol. 5663, pp. 485–501. Springer (2009). DOI 10.1007/978-3-642-02959-2 35

247. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)
248. Pnueli, A., Kesten, Y.: A deductive proof system for CTL*. In: L. Brim, P. Jancar,

M. Kretı́nský, A. Kucera (eds.) CONCUR, LNCS, vol. 2421, pp. 24–40. Springer (2002).
DOI 10.1007/3-540-45694-5 2

249. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190 (1989).
DOI 10.1145/75277.75293

250. Pour-El, M.B., Richards, I.: A computable ordinary differential equation which possesses
no computable solution. Annals of Mathematical Logic 17, 61–90 (1979). DOI 10.1016/
0003-4843(79)90021-4

251. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In:
Alur and Pappas [14], pp. 477–492. DOI 10.1007/b96398

252. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety
verification using barrier certificates. IEEE T. Automat. Contr. 52(8), 1415–1429 (2007).
DOI 10.1109/TAC.2007.902736

253. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: FOCS, pp. 109–121. IEEE
(1976)

254. Pratt, V.R.: Process logic. In: POPL, pp. 93–100 (1979). DOI 10.1145/567752.567761
255. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In:

M. Dezani-Ciancaglini, U. Montanari (eds.) Symposium on Programming, LNCS, vol. 137,
pp. 337–351. Springer (1982). DOI 10.1007/3-540-11494-7 22

256. Quesel, J.D.: A theorem prover for differential dynamic logic. Master’s thesis, University of
Oldenburg, Department of Computing Science. Correct System Design Group (2007)

257. Reid, W.T.: Ordinary Differential Equations. John Wiley (1971)
258. Renegar, J.: On the computational complexity and geometry of the first-order theory of the

reals, part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision
problem for the existential theory of the reals. J. Symb. Comput. 13(3), 255–300 (1992)

412 References

259. Renegar, J.: On the computational complexity and geometry of the first-order theory of the
reals, part II: The general decision problem. Preliminaries for quantifier elimination. J. Symb.
Comput. 13(3), 301–328 (1992)

260. Renegar, J.: On the computational complexity and geometry of the first-order theory of the
reals, part III: Quantifier elimination. J. Symb. Comput. 13(3), 329–352 (1992)

261. Reynolds, M.: An axiomatization of PCTL*. Inf. Comput. 201(1), 72–119 (2005). DOI
10.1016/j.ic.2005.03.005

262. Risler, J.J.: Une caractérisation des idéaux des variétés algébraiques réelles. C.R.A.S. Paris
série A 271, 1171–1173 (1970)

263. Risler, J.J.: Some aspects of complexity in real algebraic geometry. J. Symb. Comput. 5(1/2),
109–119 (1988). DOI 10.1016/S0747-7171(88)80007-5

264. Robinson, A.: Complete Theories. North-Holland (1956)
265. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. Assoc. Com-

put. Mach. 12, 23–41 (1965). DOI 10.1145/321250.321253
266. Rodrı́guez-Carbonell, E., Kapur, D.: An abstract interpretation approach for automatic gen-

eration of polynomial invariants. In: R. Giacobazzi (ed.) SAS, Lecture Notes in Computer
Science, vol. 3148, pp. 280–295. Springer (2004). DOI 10.1007/b99688

267. Rodrı́guez-Carbonell, E., Kapur, D.: Automatic generation of polynomial invariants of
bounded degree using abstract interpretation. Sci. Comput. Program. 64(1), 54–75 (2007).
DOI 10.1016/j.scico.2006.03.003

268. Rodrı́guez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple loops. J.
Symb. Comput. 42(4), 443–476 (2007). DOI 10.1016/j.jsc.2007.01.002

269. Rodrı́guez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid systems.
In: Morari and Thiele [212], pp. 590–605. DOI 10.1007/b106766

270. Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theor. Comput. Sci. 290(1), 937–
973 (2003)

271. Rounds, W.C.: A spatial logic for the hybrid π-calculus. In: Alur and Pappas [14], pp. 508–
522. DOI 10.1007/b96398

272. Rounds, W.C., Song, H.: The φ -calculus: A language for distributed control of recon-
figurable embedded systems. In: HSCC, LNCS, vol. 2623, pp. 435–449 (2003). DOI
10.1007/3-540-36580-X 32

273. Rümmer, P.: A sequent calculus for integer arithmetic with counterexample generation. In:
B. Beckert (ed.) VERIFY’07 at CADE, Bremen, Germany, CEUR Workshop Proceedings,
vol. 259, pp. 179–194. CEUR-WS.org (2007)

274. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid systems. In:
Alur and Pappas [14], pp. 539–554. DOI 10.1007/b96398

275. Schobbens, P.Y., Raskin, J.F., Henzinger, T.A.: Axioms for real-time logics. Theor. Comput.
Sci. 274(1-2), 151–182 (2002). DOI 10.1016/S0304-3975(00)00308-X

276. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev.
28, 1049–1070 (1926). DOI 10.1103/PhysRev.28.1049

277. Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages? Tech.
Rep. PRG-6, Oxford Programming Research Group (1971)

278. Seidenberg, A.: A new decision method for elementary algebra. Annals of Mathematics 60,
365–374 (1954)

279. Sibirsky, K.S.: Introduction to Topological Dynamics. Noordhoff, Leyden (1975)
280. Sipser, M.: Introduction to the Theory of Computation, 2 edn. Course Technology (2005)
281. Skolem, T.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweis-

barkeit mathematischer Sätze nebst einem Theorem über dichte Mengen. Videnskapsselska-
pet Skrifter, I. Matematisk-naturvidenskabelig Klasse 6, 1–36 (1920)

282. Smullyan, R.M.: First-Order Logic. Dover (1995)
283. Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math.

Ann. 207(2), 87–97 (1973). DOI 10.1007/BF01362149
284. Stirling, C.: Modal and temporal logics. In: Handbook of Logic in Computer Science (vol.

2): Background: Computational Structures, pp. 477–563. Oxford University Press, Inc., New
York, NY, USA (1992)

References 413

285. Strzebonski, A.W.: Cylindrical algebraic decomposition using validated numerics. J. Symb.
Comput. 41(9), 1021–1038 (2006). DOI 10.1016/j.jsc.2006.06.004

286. Sturm, C.F.: Mémoire sur la résolution des équations numériques. Mémoires des Savants
Etrangers 6, 271–318 (1835)

287. Tarski, A.: Sur les ensembles définissables de nombres réels I. Fundam. Math. 17, 210–239
(1931)

288. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2 edn. University of
California Press, Berkeley (1951)

289. Tavernini, L.: Differential automata and their discrete simulators. Non-Linear Anal. 11(6),
665–683 (1987). DOI 10.1016/0362-546X(87)90034-4

290. Tinelli, C.: Cooperation of background reasoners in theory reasoning by residue sharing. J.
Autom. Reasoning 30(1), 1–31 (2003). DOI 10.1023/A:1022587501759

291. Tiwari, A.: Approximate reachability for linear systems. In: Maler and Pnueli [200], pp.
514–525. DOI 10.1007/3-540-36580-X 37

292. Tiwari, A.: An algebraic approach for the unsatisfiability of nonlinear constraints. In: C.H.L.
Ong (ed.) CSL, LNCS, vol. 3634, pp. 248–262. Springer (2005). DOI 10.1007/11538363 18

293. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study
in multi-agent hybrid systems. IEEE T. Automat. Contr. 43(4), 509–521 (1998). DOI
10.1109/9.664154

294. Tomlin, C.J., Lygeros, J., Sastry, S.: A game theoretic approach to controller design for hybrid
systems. Proc. IEEE 88(7), 949–970 (2000). DOI 10.1109/5.871303

295. Umeno, S., Lynch, N.A.: Proving safety properties of an aircraft landing protocol using I/O
automata and the PVS theorem prover: A case study. In: J. Misra, T. Nipkow, E. Sekerinski
(eds.) FM, LNCS, vol. 4085, pp. 64–80. Springer (2006). DOI 10.1007/11813040 5

296. Umeno, S., Lynch, N.A.: Safety verification of an aircraft landing protocol: A refinement
approach. In: Bemporad et al. [41], pp. 557–572. DOI 10.1007/978-3-540-71493-4 43

297. Walter, W.: Ordinary Differential Equations. Springer (1998)
298. Weihrauch, K.: Computable Analysis. Springer (2005)
299. Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput. 5(1/2),

3–27 (1988). DOI 10.1016/S0747-7171(88)80003-8
300. Weispfenning, V.: Quantifier elimination for real algebra — the cubic case. In: ISSAC, pp.

258–263 (1994). DOI 10.1145/190347.190425
301. Weispfenning, V.: Quantifier elimination for real algebra — the quadratic case and beyond.

Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997). DOI 10.1007/s002000050055
302. Witsenhausen, H.S.: A class of hybrid-state continuous-time dynamic systems. IEEE Trans.

Automat. Contr. 11, 161–167 (1966)
303. Wolfram Research, Inc., Champaign, IL: Mathematica, version 5.2 edn. (2005). http:

//www.wolfram.com/
304. Zeidler, E. (ed.): Teubner-Taschenbuch der Mathematik I. Teubner (2003)
305. Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems.

Monographs in Theoretical Computer Science. Springer (2004)
306. Zhou, C., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid real-time

systems. In: Grossman et al. [144], pp. 36–59

Index

Symbols

; 41, 79, 137, 164, 218
[α] 47, 52, 139, 145, 207, 213
〈α〉 47, 52, 139, 145, 207
∧ 40, 47, 52, 79, 139, 145, 164, 207, 213,

218, 347, 349, 352
↔ 40, 139, 207, 347
∃ 40, 47, 52, 79, 164, 207, 213, 218, 347,

350, 352
∀α 76
∀ 40, 47, 52, 79, 164, 207, 213, 218, 347,

350, 352
→ 40, 47, 52, 79, 139, 145, 164, 207, 213,

218, 347, 349, 352
¬ 40, 47, 52, 79, 139, 145, 164, 207, 213,

218, 347, 349, 352
∨ 40, 47, 52, 79, 139, 145, 164, 207, 213,

218, 347, 349, 352
∪ 41, 55, 136, 145, 211
∗ 41, 55, 137, 145, 211
? 41, 55, 211
� 207
♦ 207
dL 35
(ν ,ω) |= J 142
Σ 37, 346
� 52
`DAL 168
`dL 87
`dTL 220
`D 109
∃x :N 105
∀x :N 105
|= 52, 145, 350
6|= 52, 350
φ # 108

≺ 387
φ θ

x 153
ϕ |= D 143
σi(ζ) 210
≺ 210
B 236
D(F) 155
HP(Σ) 136
D 109
F 236
F ′D 259
FOD 104
Fml(Σ) 47, 139, 207
FmlFOL (Σ) 40, 347
FmlT (Σ) 207
F (ω) 150
G (ρ) 150
HP(Σ) 41
M 236
Mα (F) 190
QE 77
Sα (~x,~v) 106
Tα (~x,~v) 225
Trm(Σ) 39, 132
Z(n)

j 105
[x 7→ d] 52, 55, 349
Λ 210
Σ ′ 134
ν̂ 210
ρ(α) 144
ρI,η (α) 55
τ(α) 211
ϕ̄ 142
DI 164, 425
DI′ 188
DI′′ 188

415

416 Index

DS 164, 425
DV 164, 425
F ′ 164
[′] 79, 424
[′]� 218, 426
[:=] 79, 164, 424, 425
[:=]� 218, 426
[;] 79, 164, 424, 425
[;]♦ 229
[;]� 218, 426
[?] 79, 424
[?]� 218, 426
[DR′] 175
[DR] 164, 425
[D] 164, 425
[J] 164, 425
[α]♦ 229
[∪] 79, 164, 424, 425
[∪]� 218, 426
[∃] 164, 425
[]gen 79, 164, 424, 425
[∗]� 218, 426
[∗n] 79, 424
[∗n]� 218, 426
∃l 79, 424
∃r 79, 424
∀l 79, 424
∀r 79, 424
∧l 79, 424
∧r 79, 424
〈′〉 79, 424
〈′〉′ 191
〈′〉♦ 218, 426
〈:=〉 79, 164, 424, 425
〈:=〉♦ 218, 426
〈;〉 79, 164, 424, 425
〈;〉♦ 218, 426
〈?〉 79, 424
〈?〉♦ 218, 426
〈DR〉 164, 425
〈D〉 164, 425
〈J〉 164, 425
〈∪〉 79, 164, 424, 425
〈∪〉♦ 218, 426
〈∃〉 164, 425
〈〉gen 79, 164, 424, 425
〈∗〉♦ 218, 426
〈∗n〉 79, 424
〈∗n〉♦ 218, 426
→l 79, 424
→r 79, 424
¬l 79, 424
¬r 79, 424
∨l 79, 424

∨r 79, 424
ax 79, 424
con 79, 164, 424, 425
con′ 86
cut 79, 424
ind 79, 164, 424, 425
ind′ 86
[′]′ 190
A1 389
A2 389
A3 389
A4 389
A5 389
A6 389
A7 395
i∃ 79, 424
i∀ 79, 424
l∃ 164, 425
l∀ 164, 425
r∃ 164, 425
r∀ 164, 425
∼F 182
` 76, 351
nat 102
ordx 134
valI,η (·) 349
valI,η (ν , ·) 50, 52, 349
val(ν , ·) 141, 213
x′ 134
x′ = θ 41, 134
x′ = θ & χ 41
x(n) 134
x :=θ 41, 133

A

abort 210
accessibility relation 49, 141
acessibility relation 51
adjoint 70, 74
admissible see substitution, admissible, 70

monomial order 387
alphabet 37
analytic cut see cut
and-operator 47
and/or-branching 245
and/or-parallelism see and/or-branching
antecedent 76, 351
arithmetic formula see formula, R arithmetic
arity 37
assignment 50, 349
atomic formula see formula, atomic
automaton

hybrid 5–12, 46, 370, 369–375

Index 417

axiomatisable 103
axiomatise 102, 104, 223

B

bi-implication 47
binding priorities 47
bound see symbol, bound

variable renaming 65
box-modality 47
branch 77, 352

and 245
or 245

C

calculus
free-variable 354
free variable 79
ground 354
of DAL 164, 162–168
of dL 79, 64–93
of dTL 218, 217–220
of FOL 352, 350–356

Cauchy-Lipschitz 58, 144, 364
changed see symbol, changed
check see test
closed

formula see formula, closed
closure

universal 76
coincidence 93
collision-free 331
collision free 279, 294
complete 102, 356

relatively 104, 193, 224
DAL 193
dL 104
dTL 224

compositional
semantics 50, 52, 54, 144, 145, 210, 213

compositional verification 16
conclusion 77, 162
cone 394
conjunction 47
consequence 98
constant symbol 38
continued

to border 363
continuous

Lipschitz see Lipschitz, continuous
system

switched see dynamical systems,
switched

transition 41, 371
continuous-time 64
control

graph 370
refinement 287
switch 370

control-flow see dependency, control-flow
controllability 90, 287

constraint 288, 296
discovery 287

controllable 294
state 288

control structure 36
convex 192
counterexample 351
cut 80, 352

differential see differential strengthening

D

DA- see differential-algebraic
DAL see differential-algebraic, logic

calculus 162–168
formula 139
proof 168
semantics 141–147
syntax 132–141
term 132

data-flow see dependency, data-flow
DATL 207
decidable 357
decision

problem 357
deductive power 194
definable 38, 44, 76, 84, 102, 114, 139
denotational

semantics 50, 52, 145, 213
dependency

control-flow 266
data-flow 266
differential 264

derivable 168
derivation 86

lemma 156
monotonicity 190
operator 155
syntactic 155

derived rule see rule, derived, 175
design space exploration 278
diamond-modality 47
difference

equation 35
differential

axiomatisation 150

418 Index

constant 155, 156
cut see differential strengthening
dependency see dependency, differential
elimination 161
equation 35, 41, 84, 130, 161, 360

explicit 161
normalisation 161

field of fractions 155
field of quotients 155
homomorphism 156
indeterminate 156
indeterminates 155
induction 167, 170–185, 194
inequality 130, 161

elimination 161
invariant 167, 170–181, 259

as fixed points 256–271
monotonicity 191
polynomial algebra 155
refinement 166
saturation 262
state flow 142
strengthening 165, 166
substitution 158
substitution lemma 156
symbol 134, 155
total 154, 164, 170, 172, 173
transformation 158
variant 167, 181–185
weakening 166, 175

differential-algebraic
constraint 125, 130, 134

equivalent see equivalent, DA-constraint
equation 136
flow 137
logic 125, 130
program 125, 136, 136–139
temporal logic 207

DIFP see differential invariants, as fixed
points

discrete
jump

constraint 125, 130, 133, 137
set 41

program see program, discrete
time 46, 64
transition 35, 41, 371

disjunction 47
disturbance 296
dL 35

calculus 64–93
formula 47
proof 86
semantics 49–60

syntax 35–49
term 39

dTL 206
calculus 217–220
formula 207
proof 220
semantics 210–214
syntax 206–209
term 207

dynamic
rule 82, 165

dynamical system
continuous 47, 139
discrete 139
discrete-time 46
hybrid see hybrid system, 139
switched 46

dynamical systems
switched 139

E

eager 241
equivalent 47, 98

DA-constraint 159
ETCS (European Train Control System)

1–3, 61–64, 118–122, 278, 281, 281–301
existence 363
existential quantifier see quantifier,

existential
exists 47
expressible 108, 160, 225
extension

conservative 147, 215

F

field 382
real 382
real-closed 382

first-order
logic see logic, first-order
rule 80, 163, 352

flexible see symbol, flexible
flow 55, 142

point 210
state see differential, state flow

flyable 305
FOD 104
FOL 40, 346

calculus 350–356
formula 40, 347
proof 351
semantics 348–350

Index 419

syntax 346–348
term 347

formula
R arithmetic 88
DAL 139
dL 47
dTL 207
affirmative 133
atomic 47
closed 77
FOL 40, 347
ground 77
negative 133
nontemporal 207
positive 133
state 207
trace 207

for all 47
fragile 271
free-variable

calculus see calculus, free-variable
free variable 77
FTRM 310, 309–334
function symbol see symbol, function

G

generalisation
lemma 110
rule 86

global
rule 85, 167

goal 77
Gröbner basis 388

reduced 388
ground

calculus see calculus, ground
formula see formula, ground

group
Abelian 381

guard 36, 370

H

Hoare triple 49
homogeneous

constraint 136
homomorphic continuation 70
HP see program, hybrid
hybrid

automaton see automaton, hybrid
dynamical system see hybrid system, 103,

139
program see program, hybrid

system 4

I

ideal 387
generator 387
vanishing 391

implication 47
implies-operator 47
incomplete

dL 102
dTL 223

induction
differential see differential induction
discrete see invariant, discrete and variant,

discrete
schema see invariant, inductive

initial value
problem 84, 191, 360

symbolic 361
instable 10
integer

arithmetic 102
intermediate value

property 382
interpretation 50, see valuation, 349
invariant

continuous 259
differential see differential, invariant
discrete 85, 259
inductive 85
loop see invariant, discrete
strong 259

iterative
refinement process 286

J

jump 370
jump-free 133

K

key 235
KeY 378
KeYmaera 377–379
Kleene algebra 41
Kripke semantics 49, 141

L

lazy 241
leading term 387
Leibniz

420 Index

rule 155
lifting see quantifier elimination, lifting
Lipschitz 164, 184, 187, 364

local 364
literal 155
live 294
liveness 293

check 287
logic

differential-algebraic 130
differential dynamic 35

temporal 206
first-order 40, 40, 346

logical
variable 37

loop
invariant see invariant, discrete
saturation 265
variant see variant, discrete

Lyapunov function 128

M

Mandelbrot set 370
MA (movement authority) 61, 208, 281, 289
modality 47
[·]�-modality 208
[·]♦-modality 208
[]-modality 47
〈·〉�-modality 208
〈·〉♦-modality 208
〈〉-modality 47
mode 370
model 52
modification see semantic modification
monoid 394
monomial 387
monotonicity derivation see derivation,

monotonicity

N

natural
number

definable 102
negation 47
negative

formula see formula, negative
nilpotent 365
non-differential see symbol, non-differential
nondeterminism

continuous 135
discrete 133

nondeterministic

choice 42, 137
repetition 42, 137

nontemporal
rule 218

not-operator 47

O

ODE see differential,equation,ordinary
or-operator 47
oracle 104, 109, 114
order

partial 134

P

parameter synthesis 90, 286
parametric

candidate 263
Peano 363
Picard-Lindelöf 58, 144, 187, 364
point flow see flow, point
polynomial 387
position

temporal 210
positive

formula see formula, positive
postcondition 49
power

deductive see deductive power
precondition 49
predicate symbol see symbol, predicate, 47
premise 77, 162
product

rule 155
program

differential-algebraic see differential-
algebraic, program

discrete 46, 139
hybrid 41, 41–47, 126

program rendition
DA-programs 193
HP 106
trace 225

proof
calculus see calculus
DAL 168
dL 86
dTL 220
first-order 351
rule 78

proportional-integral 278
propositional

rule 78, 351

Index 421

provable 87, 168, 220
prover

background 236
foreground 235

Q

QE (quantifier elimination) 77
quantifier

existential 47
universal 47

quantifier elimination 77
lifting 92

quotient
rule 155

R

R-Gödel 105
radical 389
RBC (radio block controller) 281
reachability 370
reactivity 290, 298

constraint 290, 298
real-closed field see field, real-closed
real field see field, real
reduction

polynomial 387
symmetry 317

remainder 387
reset 370
rich test 42
rigid see symbol, rigid
ring 381
robust 271
roundabout manoeuvre 3–4, 148–152,

197–201, 309–334
rule 77, 163

derived 86
dynamic 82, 165
first-order 80, 163, 352
foreground 235
global 85, 167
nontemporal 218
propositional 78, 351
schema 77, 162, 163
temporal 219

S

safe 199, 294, 331
dynamics 197

safety 48, 60, 61, 208, 291, 298
convergence 287

satisfaction relation see valuation
satisfiable 52
satisfied 52
saturation

differential see differential, saturation
loop see loop, saturation

SB (start braking) 62, 283, 290, 298
semantics

of DAL 141–147
of dL 49–60
of dTL 210–214
of FOL 348–350
trace 211
transition see transition, semantics

semantic modification 52, 55
semialgebraic 383
semidecidable 357

dL -fragment 114
semigroup

commutative 381
sensor polling 285
separation 200
sequent 76, 351

calculus see calculus
sequential composition 42, 137
sign 37
signature 37, 346
Skolem

constant see Skolem, function
function 79, 81, 90, 352, 353
term 39, 91

solution 57, 359
sound 98, 185, 221

algorithm 269
DAL 185
dL 98
dTL 221
locally 98, 185, 222

stable 10
state 50, 141, 210

differentially augmented 142
flow see differential, state flow
test see test
variable 38, 41

ST (start talking) 216, 282
subgoal 77
substitution 65, 70

admissible 66, 91, 162
differential see differential substitution
Lemma 70
property 75, 157

succedent 76, 351
superdense 94
symbol 37, 132, 346

422 Index

bound 66, 162
changed 133, 134, 162
constant 38
differential see differential, symbol
flexible 38, 132
free 77
function 37, 346
non-differential 134
predicate 37, 346
rigid 38
variable 346

symbolic decomposition 64, 82, 152
synchronise

branch 239
syntax

of DAL 132–141
of dL 35–49
of dTL 206–209
of FOL 346–348

T

temporal
rule 219

term
DAL 132
dL 39
dTL 207
FOL 347
leading see leading term

terminates 210
test 36, 42
timed automaton 22
trace 210

semantics 211
transformation

differential see differential transformation
transition 371

relation 144
semantics

DA-programs 144
dL 55, 56
HP 55

truth-value 38, 346

U

undecidable 357
unification 355
uniqueness 57, 364
universal quantifier see quantifier, universal

V

valid 52, 98, 213, 350
valuation 50, 51

of DA-constraints 143
of DA-programs 144
of DAL 145
of DJ-constraints 142
of dL 52
of dTL 213
of FOL 349
of formulas see of dL ,DAL,dTL
of programs 55, 211
of state formulas 213
of terms 50, 141, 349
of trace formulas 213

variable see symbol
cluster 264

variant
differential see differential, variant
discrete 85
loop see variant, discrete

variety
algebraic 391

vocabulary 37

W

weak negation 182
well-formed

formula 37
term 39

Z

Zeno 146

Operators and Proof Rules 423

Table 2.1 Statements and effects of hybrid programs (HPs)

HP Notation Operation Effect
x1 :=θ1, . . . ,xn :=θn discrete jump set simultaneously assigns terms θi to variables xi
x′1 = θ1, . . . ,x′n = θn & χ continuous evolution differential equations for xi with terms θi with-

in first-order constraint χ (evolution domain)
?χ state test / check test first-order formula χ at current state
α; β seq. composition HP β starts after HP α finishes
α ∪β nondet. choice choice between alternatives HP α or HP β

α∗ nondet. repetition repeats HP α n-times for any n ∈ N

Tables 2.3, 3.4 and 4.1 Operators of differential dynamic logic (dL), and additional operators of
differential-algebraic dynamic logic (DAL) and differential temporal-dynamic logic (dTL)

dL Notation Operator Meaning
p(θ1, . . . ,θn) atomic formula true iff predicate p holds for (θ1, . . . ,θn)
¬φ negation / not true if φ is false
φ ∧ψ conjunction / and true if both φ and ψ are true
φ ∨ψ disjunction / or true if φ is true or if ψ is true
φ → ψ implication / implies true if φ is false or ψ is true
φ ↔ ψ bi-implication / equivalent true if φ and ψ are both true or both false
∀xφ universal quantifier / for all true if φ is true for all values of variable x
∃xφ existential quantifier / exists true if φ is true for some values of variable x
[α]φ [·] modality / box true if φ is true after all runs of HP α

〈α〉φ 〈·〉 modality / diamond true if φ is true after at least one run of HP α

[α]φ [·] modality / box (DAL) true if φ is true after all runs of DA-program α

〈α〉φ 〈·〉 modality / diamond (DAL) true if φ is true after some run of DA-program α

[α]�φ [·]� modality nesting (dTL) if φ is true always during all traces of HP α

〈α〉♦φ 〈·〉♦ modality nesting (dTL) if φ is true sometimes during some trace of HP α

[α]♦φ [·]♦ modality nesting (dTL) if φ is true sometimes during all traces of HP α

〈α〉�φ 〈·〉� modality nesting (dTL) if φ is true always during some trace of HP α

Table 3.2 Statements and effects of differential-algebraic programs

DA-program Operation Effect
J discrete jump jump constraint with assignments holds for discrete jump
D diff.-alg. flow differential-algebraic constraint holds during continuous flow
α; β seq. composition DA-program β starts after DA-program α finishes
α ∪β nondet. choice choice between alternative DA-programs α or β

α∗ nondet. repetition repeats DA-program α n-times for any n ∈ N

424 Operators and Proof Rules

(¬r)
φ `
` ¬φ

(¬l)
` φ

¬φ `

(∨r)
` φ ,ψ

` φ ∨ψ

(∨l)
φ ` ψ `

φ ∨ψ `

(∧r)
` φ ` ψ

` φ ∧ψ

(∧l)
φ ,ψ `

φ ∧ψ `

(→r)
φ ` ψ

` φ → ψ

(→l)
` φ ψ `
φ → ψ `

(ax)
φ ` φ

(cut)
` φ φ `
`

(〈;〉) 〈α〉〈β 〉φ〈α;β 〉φ

([;])
[α][β]φ

[α;β]φ

(〈∪〉) 〈α〉φ ∨〈β 〉φ〈α ∪β 〉φ

([∪]) [α]φ ∧ [β]φ
[α ∪β]φ

(〈∗n〉) φ ∨〈α〉〈α∗〉φ
〈α∗〉φ

([∗n])
φ ∧ [α][α∗]φ

[α∗]φ

(〈?〉) χ ∧ψ

〈?χ〉ψ

([?])
χ → ψ

[?χ]ψ

(〈:=〉) φ
θ1
x1 . . .

θn
xn

〈x1 :=θ1, . . ,xn :=θn〉φ

([:=])
〈x1 :=θ1, . . ,xn :=θn〉φ
[x1 :=θ1, . . ,xn :=θn]φ

(〈′〉) ∃t≥0
(
(∀0≤t̃≤t 〈St̃〉χ)∧〈St〉φ

)
〈x′1 = θ1, . . ,x′n = θn & χ〉φ

1

([′])
∀t≥0

(
(∀0≤t̃≤t 〈St̃〉χ)→ 〈St〉φ

)
[x′1 = θ1, . . ,x′n = θn & χ]φ

1

(∀r) ` φ(s(X1, . . ,Xn))

` ∀xφ(x)
2

(∃l) φ(s(X1, . . ,Xn)) `
∃xφ(x) `

2

(i∀) ` QE(∀X (Φ(X) `Ψ(X)))

Φ(s(X1, . . ,Xn)) `Ψ(s(X1, . . ,Xn))
3

(∃r) ` φ(X)

` ∃xφ(x)
4

(∀l) φ(X) `
∀xφ(x) `

4

(i∃) ` QE(∃X ∧i(Φi `Ψi))

Φ1 `Ψ1 . . . Φn `Ψn

5

([]gen)
` ∀α (φ → ψ)

[α]φ ` [α]ψ

(ind)
` ∀α (φ → [α]φ)

φ ` [α∗]φ

(〈〉gen)
` ∀α (φ → ψ)

〈α〉φ ` 〈α〉ψ

(con)
` ∀α∀v>0(ϕ(v)→ 〈α〉ϕ(v−1))
∃vϕ(v) ` 〈α∗〉∃v≤0ϕ(v)

6

1 t and t̃ are fresh logical variables and 〈St〉 is the jump set 〈x1 :=y1(t), . . ,xn :=yn(t)〉 with sim-
ultaneous solutions y1, . . ,yn of the respective differential equations with constant symbols xi as
symbolic initial values.
2 s is a new (Skolem) function symbol and X1, . . ,Xn are all free logical variables of ∀xφ(x).
3 X is a new logical variable. Further, QE needs to be defined for the formula in the premise.
4 X is a new logical variable.
5 Among all open branches, free logical variable X only occurs in the branches Φi `Ψi. Further,
QE needs to be defined for the formula in the premise, especially, no Skolem dependencies on X
can occur.
6 Logical variable v does not occur in α .

Fig. 2.11 Proof calculus for differential dynamic logic (dL)

Operators and Proof Rules 425

(r∀) QE(∀x ∧i(Γi ` ∆i))

Γ ` ∆ ,∀xφ

1

(l∀) QE(∃x ∧i(Γi ` ∆i))

Γ ,∀xφ ` ∆

1

(r∃) QE(∃x ∧i(Γi ` ∆i))

Γ ` ∆ ,∃xφ

1

(l∃) QE(∀x ∧i(Γi ` ∆i))

Γ ,∃xφ ` ∆

1

(〈;〉) 〈α〉〈β 〉φ〈α;β 〉φ

([;])
[α][β]φ

[α;β]φ

(〈∪〉) 〈α〉φ ∨〈β 〉φ〈α ∪β 〉φ

([∪]) [α]φ ∧ [β]φ
[α ∪β]φ

(〈∃〉) ∃x〈J 〉φ〈∃xJ 〉φ

([∃]) ∀x [J]φ

[∃xJ]φ

(〈J〉) 〈J1∪ . . .∪Jn〉φ
〈J 〉φ

2

([J])
[J1∪ . . .∪Jn]φ

[J]φ
2

(〈:=〉) χ ∧φ
θ1
x1 . . .

θn
xn

〈x1 :=θ1∧ . .∧ xn :=θn∧χ〉φ
3

([:=])
χ → φ

θ1
x1 . . .

θn
xn

[x1 :=θ1∧ . .∧ xn :=θn∧χ]φ
3

(〈D〉) 〈(D1∪ . . .∪Dn)
∗〉φ

〈D〉φ
4

([D])
[(D1∪ . . .∪Dn)

∗]φ
[D]φ

4

([DR])
` [E]φ

` [D]φ
5 (〈DR〉) ` 〈D〉φ` 〈E 〉φ

5 (DS)
` [D]χ ` [D ∧χ]φ

` [D]φ

([]gen)
` ∀α (φ → ψ)

[α]φ ` [α]ψ

(ind)
` ∀α (φ → [α]φ)

φ ` [α∗]φ

(〈〉gen)
` ∀α (φ → ψ)

〈α〉φ ` 〈α〉ψ

(con)
` ∀α∀v>0(ϕ(v)→ 〈α〉ϕ(v−1))
∃vϕ(v) ` 〈α∗〉∃v≤0ϕ(v)

6

(DI)
` ∀α∀y1 . .∀yk (χ → F ′θ1

x′1
. . .θn

x′n
)

[∃y1 . .∃yk χ]F ` [∃y1 . .∃yk (x′1 = θ1∧ . .∧ x′n = θn∧χ)]F
7

(DV)
` ∃ε>0∀α∀y1 . .yk (¬F ∧χ → (F ′ ≥ ε)θ1

x′1
. . .θn

x′n
)

[∃y1 . .yk (x′1 = θ1∧ . .∧ x′n = θn∧∼F)]χ ` 〈∃y1 . .yk (x′1 = θ1∧ . .∧ x′n = θn∧χ)〉F
8

1 Γi ` ∆i are obtained from the subgoals of side deduction (?) in Fig. 3.10, in which x is assumed
to occur in first-order formulas only, as QE is then applicable. The side deduction starts from goal
Γ ` ∆ ,φ at the bottom (or Γ ,φ ` ∆ for l∀ and l∃), where x does not occur in Γ ,∆ using renaming.
2 J1∨·· ·∨Jn is a disjunctive normal form of the DJ-constraint J .
3 Rule applicable for any reordering of the conjuncts of the DJ-constraint where χ is jump-free.
4 D1∨·· ·∨Dn is a disjunctive normal form of the DA-constraint D .
5 D implies E , i.e., satisfies the assumptions of Lemma 3.3.
6 Logical variable v does not occur in α .
7 Applicable for any reordering of the conjuncts where χ is non-differential. F is first-order without
negative equalities, and F ′ abbreviates D(F), with z′ replaced with 0 for unchanged variables.
8 Like DI, but F contains no equalities and the differential equations are Lipschitz continuous.

Fig. 3.9 Proof calculus for differential-algebraic dynamic logic (DAL)

r∃
QE(∃x ∧i(Γi ` ∆i))

Γ ` ∆ ,∃xφ

Γ1 ` ∆1
. . . `

Γn ` ∆n
. . . ` . . .

Γ ` ∆ ,φ

 (?)

start side

QE

Fig. 3.10 Side deduction

426 Operators and Proof Rules

([∪]�)
[α]π ∧ [β]π
[α ∪β]π

1

([;]�)
[α]�φ ∧ [α][β]�φ

[α;β]�φ

([?]�)
φ

[?χ]�φ

([:=]�)
φ ∧ [x :=θ]φ

[x :=θ]�φ

([′]�)
[x′ = θ]φ

[x′ = θ]�φ

([∗n]�)
[α;α∗]�φ

[α∗]�φ

([∗]�)
[α∗][α]�φ

[α∗]�φ

(〈∪〉♦) 〈α〉π ∨〈β 〉π〈α ∪β 〉π
1

(〈;〉♦) 〈α〉♦φ ∨〈α〉〈β 〉♦φ

〈α;β 〉♦φ

(〈?〉♦) φ

〈?χ〉♦φ

(〈:=〉♦) φ ∨〈x :=θ〉φ
〈x :=θ〉♦φ

(〈′〉♦) 〈x
′ = θ〉φ

〈x′ = θ〉♦φ

(〈∗n〉♦) 〈α;α∗〉♦φ

〈α∗〉♦φ

(〈∗〉♦) 〈α
∗〉〈α〉♦φ

〈α∗〉♦φ

1 π is a trace formula and—unlike the state formulas φ and ψ—may thus begin with a temporal
modality � or ♦.

Fig. 4.3 Proof calculus for differential temporal dynamic logic (dTL)

	Cover
	Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics
	Copyright
	9783642145087

	Foreword
	Preface
	Contents
	List of Figures
	List of Tables
	List of Theorems
	Chapter 1 Introduction
	1.1 Technical Context
	1.1.1 Hybrid Systems
	1.1.2 Model Checking
	1.1.3 Deductive Verification
	1.1.4 Compositional Verification
	1.1.5 Lifting Quantifier Elimination
	1.1.6 Differential Induction and Differential Strengthening

	1.2 Related Work
	1.3 Contributions
	1.4 Structure of This Book

	Part I Logics and Proof Calculi for Hybrid Systems
	Chapter 2 Differential Dynamic Logic d\mathcal{L}
	2.1 Introduction
	2.1.1 Structure of This Chapter

	2.2 Syntax of Differential Dynamic Logic
	2.2.1 Terms
	2.2.2 Hybrid Programs
	2.2.3 Formulas of Differential Dynamic Logic

	2.3 Semantics of Differential Dynamic Logic
	2.3.1 Valuation of Terms
	2.3.2 Valuation of Formulas
	2.3.3 Transition Semantics of Hybrid Programs

	2.4 Collision Avoidance in Train Control
	2.5 Free-Variable Proof Calculus for Differential Dynamic Logic
	2.5.1 Substitution
	2.5.2 Rules of the Calculus for Differential Dynamic Logic
	2.5.3 Deduction Modulo with Invertible Quantifiers and Real Quantifier Elimination
	2.5.3.1 Lifting Quantifier Elimination by Invertible Quantifier Rules
	2.5.3.2 Admissibility in Invertible Quantifier Rules
	2.5.3.3 Quantifier Elimination and Modalities
	2.5.3.4 Global Invertible Quantifier Rules

	2.5.4 Verification Example

	2.6 Soundness
	2.7 Completeness
	2.7.1 Incompleteness
	2.7.2 Relative Completeness
	2.7.3 Characterising Real Godel Encodings
	2.7.4 Expressibility and Rendition of Hybrid Program Semantics
	2.7.5 Relative Completeness of First-Order Assertions
	2.7.6 Relative Completeness of the Differential Logic Calculus

	2.8 Relatively Semidecidable Fragments
	2.9 Train Control Verification
	2.9.1 Finding Inductive Candidates
	2.9.2 Inductive Verification
	2.9.3 Parameter Constraint Discovery

	2.10 Summary

	Chapter 3 Differential-Algebraic Dynamic Logic DAL
	3.1 Introduction
	3.1.1 Related Work
	3.1.2 Structure of This Chapter

	3.2 Syntax of Differential-Algebraic Logic
	3.2.1 Terms
	3.2.2 Differential-Algebraic Programs
	3.2.3 Formulas of Differential-Algebraic Logic

	3.3 Semantics of Differential-Algebraic Logic
	3.3.1 Transition Semantics of Differential-Algebraic Programs
	3.3.2 Valuation of Formulas
	3.3.3 Time Anomalies
	3.3.4 Conservative Extension

	3.4 Collision Avoidance in Air Traffic Control
	3.4.1 Flight Dynamics
	3.4.2 Differential Axiomatisation
	3.4.3 Aircraft Collision Avoidance Manoeuvres
	3.4.4 Tangential Roundabout Manoeuvre

	3.5 Proof Calculus for Differential-Algebraic Logic
	3.5.1 Motivation
	3.5.2 Derivations and Differentiation
	3.5.3 Differential Reduction and Differential Elimination
	3.5.4 Rules of the Calculus for Differential-Algebraic Logic
	3.5.5 Deduction Modulo by Side Deduction
	3.5.6 Differential Induction with Differential Invariants
	3.5.7 Differential Induction with Differential Variants

	3.6 Soundness
	3.7 Restricting Differential Invariants
	3.8 Differential Monotonicity Relaxations
	3.9 Relative Completeness
	3.10 Deductive Strength of Differential Induction
	3.11 Air Traffic Control Verification
	3.11.1 Characterisation of Safe Roundabout Dynamics
	3.11.2 Tangential Entry Procedures
	3.11.3 Discussion

	3.12 Summary

	Chapter 4 Differential Temporal Dynamic Logic dTL
	4.1 Introduction
	4.1.1 Related Work
	4.1.2 Structure of This Chapter

	4.2 Syntax of Temporal Dynamic Logic for Hybrid Systems
	4.2.1 Hybrid Programs
	4.2.2 State and Trace Formulas

	4.3 Semantics of Temporal Dynamic Logic for Hybrid Systems
	4.3.1 Trace Semantics of Hybrid Programs
	4.3.2 Valuation of State and Trace Formulas
	4.3.3 Conservative Temporal Extension

	4.4 Safety Invariants in Train Control
	4.5 Proof Calculus for Temporal Invariants
	4.5.1 Proof Rules
	4.5.2 Verification Example

	4.6 Soundness
	4.7 Completeness
	4.7.1 Incompleteness
	4.7.2 Relative Completeness
	4.7.3 Expressibility and Rendition of Hybrid Trace Semantics
	4.7.4 Modular Relative Completeness Proof for the Differential Temporal Dynamic Logic Calculus

	4.8 Verification of Train Control Safety Invariants
	4.9 Liveness by Quantifier Alternation
	4.10 Summary

	Part II Automated Theorem Proving for Hybrid Systems
	Chapter 5 Deduction Modulo Real Algebra and Computer Algebra
	5.1 Introduction
	5.1.1 Related Work
	5.1.2 Structure of This Chapter

	5.2 Tableau Procedures Modulo
	5.3 Nondeterminisms in Tableau Modulo
	5.3.1 Nondeterminisms in Branch Selection
	5.3.2 Nondeterminisms in Formula Selection
	5.3.3 Nondeterminisms in Mode Selection

	5.4 Iterative Background Closure
	5.5 Iterative Inflation
	5.6 Experimental Results
	5.7 Summary

	Chapter 6 Computing Differential Invariants as Fixed Points
	6.1 Introduction
	6.1.1 Related Work
	6.1.2 Structure of This Chapter

	6.2 Inductive Verification by Combining Local Fixed Points
	6.2.1 Verification by Symbolic Decomposition
	6.2.2 Discrete and Differential Induction, Differential Invariants
	6.2.3 Flight Dynamics in Air Traffic Control
	6.2.4 Local Fixed-Point Computation for Differential Invariants
	6.2.5 Dependency-Directed Induction Candidates
	6.2.6 Global Fixed-Point Computation for Loop Invariants
	6.2.7 Interplay of Local and Global Fixed-Point Loops

	6.3 Soundness
	6.4 Optimisations
	6.4.1 Sound Interleaving with Numerical Simulation
	6.4.2 Optimisations for the Verification Algorithm

	6.5 Experimental Results
	6.6 Summary

	Part III Case Studies and Applications in Hybrid Systems Verification
	Chapter 7 European Train Control System
	7.1 Introduction
	7.1.1 Related Work
	7.1.2 Structure of This Chapter

	7.2 Parametric European Train Control System
	7.2.1 Overview of the ETCS Cooperation Protocol
	7.2.2 Formal Model of Fully Parametric ETCS

	7.3 Parametric Verification of Train Control
	7.3.1 Controllability Discovery in Parametric ETCS
	7.3.2 Iterative Control Refinement of ETCS Parameters
	7.3.3 Safety Verification of Refined ETCS
	7.3.4 Liveness Verification of Refined ETCS

	7.4 Disturbance and the European Train Control System
	7.4.1 Controllability in ETCS with Disturbances
	7.4.2 Iterative Control Refinement of Parameters with Disturbances
	7.4.3 Safety Verification of ETCS with Disturbances

	7.5 Experimental Results
	7.6 Summary

	Chapter 8 Air Traffic Collision Avoidance
	8.1 Introduction
	8.1.1 Related Work
	8.1.2 Structure of This Chapter

	8.2 Curved Flight in Roundabout Manoeuvres
	8.2.1 Flight Dynamics
	8.2.2 Roundabout Manoeuvre Overview
	8.2.3 Compositional Verification Plan
	8.2.4 Tangential Roundabout Manoeuvre Cycles (AC1)
	8.2.5 Bounded Control Choices (AC2)
	8.2.6 Flyable Entry Procedures (AC3)
	8.2.7 Bounded Entry Duration (AC4)
	8.2.8 Safe Entry Separation (AC5)

	8.3 Synchronisation of Roundabout Manoeuvres
	8.3.1 Successful Negotiation (AC6)
	8.3.2 Safe Exit Separation (AC7)

	8.4 Compositional Verification
	8.5 Flyable Tangential Roundabout Manoeuvre
	8.6 Experimental Results
	8.7 Summary

	Chapter 9 Conclusion

	Part IV Appendix
	Appendix A First-Order Logic and Theorem Proving
	A.1 Overview
	A.2 Syntax of First-Order Logic
	A.2.1 Terms
	A.2.2 First-Order Formulas

	A.3 Semantics of First-Order Logic
	A.3.1 Valuation of Terms
	A.3.2 Valuation of First-Order Formulas

	A.4 A Sequent Proof Calculus for First-Order Logic
	A.4.1 Proof Rules for First-Order Logic
	A.4.2 Proof Example: Ground Proving Versus Free-Variable Proving

	A.5 Soundness
	A.6 Completeness
	A.7 Computability Theory and Decidability

	Appendix B Differential Equations
	B.1 Ordinary Differential Equations
	B.2 Existence Theorems
	B.3 Existence and Uniqueness Theorems
	B.4 Linear Differential Equations with Constant Coefficients

	Appendix C Hybrid Automata
	C.1 Syntax and Traces of Hybrid Automata
	C.2 Embedding Hybrid Automata into Hybrid Programs

	Appendix D KeYmaera Implementation
	D.1 KeYmaera: A Hybrid Theorem Prover for Hybrid Systems
	D.1.1 Structure of This Appendix

	D.2 Computational Back-ends for Real Arithmetic
	D.2.1 Real-Closed Fields
	D.2.2 Semialgebraic Geometry and Cylindrical Algebraic Decomposition
	D.2.3 Nullstellensatz and Gr¨obner Bases
	D.2.4 Real Nullstellensatz
	D.2.5 Positivstellensatz and Semidefinite Programming

	D.3 Discussion
	D.4 Performance Measurements

	References
	Index
	Operators and Proof Rules

