André Platzer

Logical Analysis
of Hybrid Systems

Proving Theorems
for Complex Dynamics

@ Springer

Logical Analysis of Hybrid Systems

André Platzer

Logical Analysis of Hybrid
Systems

Proving Theorems for Complex Dynamics

@ Springer

Dr. André Platzer

Carnegie Mellon University
School of Computer Science
5000 Forbes Ave.

Pittsburgh PA 15213

USA

aplatzer@cs.cmu.edu

ISBN 978-3-642-14508-7 e-ISBN 978-3-642-14509-4
DOI 10.1007/978-3-642-14509-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010934645
ACM Computing Classification (1998): F4.1,F3,D.2.4,1.2.3, G.1.7,1.2.8

(© Springer-Verlag Berlin Heidelberg 2010

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH, Heidelberg
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Hybrid Systems are notoriously hard to analyze and verify. So far, techniques based
on either explicit or implicit state reachability have failed to scale with the size of
such systems. Statistical Model Checking may prove useful, but sacrifices absolute
certainty about the correctness of the answer obtained. In both cases, numerical er-
ror may change the truth-value of the result from False to True or vice versa. An
alternative is to use a combination of decision procedures for real arithmetic and
interactive theorem proving. Andre Platzer’s Ph.D. thesis explores this alternative
approach in great depth. He proposes a logic called Differential Dynamic Logic for
specifying properties of Hybrid Systems, investigates the meta-theory of the logic,
and gives inference rules for it. He has developed an extremely impressive graph-
ical interface for the resulting tool KeYmaera, which is based on the KeY Prover
for verifying Java programs, developed at the University of Karlsruhe, Chalmers,
and Koblenz. Particularly noteworthy are the use of Differential Invariants for reas-
oning about complex Hybrid Systems and the examples that he is able to do: “The
European Train Control System” and a curved flight roundabout maneuver for air-
craft collision avoidance. Both examples are beyond the scope of current Hybrid
System Model Checking tools. I believe that his verification tool is unique — there
is no other one like it. I heartily recommend his book and theorem prover for those
who need to verify complex cyber-physical systems.

Pittsburgh, February 2010 Edmund M. Clarke

Preface

The design of complex systems is essential to much of engineering and science.
Equally essential is the effort to fully understand these systems and to develop tools
and techniques that can steer us away from unsafe or incorrect designs. In civil
engineering, for example, well-understood principles like statics can be used to ana-
lyse buildings before they are built, and refined architectural models can be used
to predict whether a building will be safe or whether it might collapse during an
earthquake. Similarly, in auto body design, wind tunnels and corresponding com-
puter models based on computational fluid dynamics help engineers to gain an un-
derstanding of aerodynamic forces and wind resistance for energy efficiency before
constructing the actual car and its chassis. Models and their analysis also play an im-
portant role in chip design and are used extensively in the semiconductor industry
to prevent expensive bugs in hardware. Modelling and model analysis is thus an in-
tegral part of science and engineering and is used very effectively in many areas to
ensure high-quality system designs, saving replacement cost and preventing danger-
ous side effects of malfunctioning designs.

Hybrid systems is an emergent area of growing importance, emphasising a sys-
tematic understanding of systems that combine discrete (e.g., digital) and continu-
ous (e.g., analog or physical) effects. In fact, it is foreseeable that hybrid systems and
the closely related notion of cyber-physical systems will soon play a ubiquitous role
in engineering. Combinations of computation and control can lead to very power-
ful system designs, and computational aspects are being integrated into classical
physical, mechanical, and chemical process controls on a routine basis today. The
number of systems where both computational and physical aspects are important
for really understanding them grows exponentially with modern technological ad-
vances. Hybrid systems occur frequently in automotive industries, aviation, railway
applications, factory automation, process control, medical devices, mobile robotics,
and mixed analog—digital chip design.

Despite the growing relevance in complex system designs, hybrid systems is an
area where analytic approaches are still in their infancy. Hybrid systems occur ubi-
quitously and their analysis faces inherent complexity challenges. Hence, there is
probably no other area where the gap is more noticeable between the tremendous

vii

viii Preface

complexity of the systems we can build and the modest size of systems that we can
analyse. Mankind can build systems that are significantly more complicated than
people can understand analytically. This book presents an approach with logical
analysis techniques that are intended to help overcome these difficulties and bridge
the gap between design demand and analysis power.

In light of this growing interest in the field, the purpose of this book is to provide
an introduction to hybrid systems analysis and, in particular, to present a coherent
logical analysis approach for hybrid systems. One of the highly successful tech-
niques used for analysing finite-state models in chip designs today is model check-
ing, which was pioneered in 1981 by the 2007 ACM Turing Award Laureates Ed-
mund M. Clarke, Allen Emerson, and Joseph Sifakis. Nowadays, model checking is
used routinely in the semiconductor industry. Model checking is one of the inspira-
tions for this work. Another area that is strongly related is interactive and automated
theorem proving, which is also used in advanced industrial settings. Model checking
and automated theorem proving complement each other to tackle various aspects of
formal system verification. While both areas are ultimately rooted in logic, the basic
operating principles are somewhat different. Model checking is based on systemat-
ically exploring the state space of a system in a clever way. Model checking searches
for counterexamples, i.e., traces of a system that lead to a bug and that serve as a
falsification of a correctness property. Impressive results have been demonstrated
for finite-state systems where model checking is decidable. In theorem proving, in
contrast, the notion of a proof is fundamental and represents a verification of a cor-
rectness property. In particular, a proof is a reason and explanation for why a system
works. Automated theorem proving techniques that construct proofs automatically
are another deep source of inspiration for the work presented here. In fact, several
of the proof procedures presented in this book are inspired by theorem proving prin-
ciples that have been used successfully for conventional object-oriented programs.

One important new aspect in hybrid systems is the cardinality and structure of the
state space. In (sufficiently small) finite state spaces, for instance, exhaustive state
exploration is still feasible, but becomes inherently impossible for the uncountable
continuous state spaces of hybrid systems, especially with respect to their complic-
ated interacting discrete and continuous dynamics. Most notably, the continuous
dynamics of hybrid systems that is commonly described by differential equations
poses significant new challenges compared to classical settings. Thus, verification
techniques for differential equations are one very important part of hybrid systems
analysis.

Outline

This book is intended as an introduction to hybrid systems and advanced analysis
techniques for their dynamics. It covers basic and advanced notions of hybrid sys-
tems, specification languages for hybrid systems, verification approaches for hybrid
systems, and application scenarios for hybrid systems verification. Starting from
a basic background in mathematics and computer science, this book develops all

Preface ix

notions required for understanding and analysing hybrid systems. It also provides
background material about logic and differential equations in the appendix.

This book presents a coherent logical foundation for hybrid systems analysis that
will help the reader understand how behavioural properties of hybrid systems can be
analysed successfully. The foundation developed here serves as a basis for advanced
hybrid system analysis techniques. The hybrid systems analysis approach has also
been implemented in the verification tool KeYmaera for hybrid systems, which is
available for download at the book’s Web page.

PartI describes specification and verification logics for hybrid systems that are
the basis of hybrid systems analysis. It also covers constructive proof calculi that
can be used to analyse and verify hybrid systems, including approaches for hand-
ling real arithmetic and differential equations. The chapters in Part I show a series of
logical systems that are each presented in terms of their syntax, semantics, axiomat-
ics, proof theory, and pragmatics. The syntax defines what can be said about hybrid
system behaviour. The semantics gives meaning to the symbolic formulas and shows
what we are ultimately interested in: truth, or, more precisely, what is true about the
behaviour of the particular dynamics of a hybrid system. In the axiomatic parts, this
book develops formal proof techniques that can be used by a human or machine to
establish truth by proof. After all, truth that we do not know about is less helpful
than truth that we can justify by giving a proof. The development of proof theory
connects the semantic notion of truth in the real world with the syntactic device
of formal proofs and shows that, in a sense of relative completeness, we can prove
all true facts about hybrid systems from elementary properties of differential equa-
tions. Finally, this book shows the pragmatics of using verification procedures for
analysing hybrid system scenarios. This includes both practical, algorithmic con-
siderations of developing system analysis tools and various examples, application
scenarios, and case studies that can be proven with the logics developed in PartI.

Part IT focuses on the practical and algorithmic questions of how to turn the theor-
etical foundation from Part I into automated theorem proving procedures. This part
also shows techniques for generating invariants and differential invariants of hybrid
systems that are crucial for proving correctness, and shows how to overcome com-
plexity challenges in real arithmetic verification. Part III shows how safety-critical
properties of more advanced applications of hybrid systems in railway and aircraft
control can be proven with the approach presented in Parts I and II. This part in-
cludes a study of collision avoidance in the European Train Control System (ETCS)
and roundabout collision avoidance manoeuvres in air traffic control. Numerous ex-
amples, illustrations, and proofs throughout the text will also help the reader develop
an intuition about hybrid systems behaviour and master the intricacies of the more
subtle aspects in hybrid systems analysis.

How to Read This Book

The basic suggested reading sequence is linear (with additional consultation of the
appendices for background information as needed). Except for the foundation of this

X Preface

work that is laid out in Part I, however, the chapters are mostly kept self-contained so
that they can also be studied independently. The following figure shows the reading
order dependencies among the chapters (solid lines) and the partial dependencies of
suggested reading sequences that hold for the advanced material of the respective
chapters (dashed lines).

4 I‘ll "\ —) Part T)

- J

[S |
N Part I1I

For background on classical first-order logic, we recommend you review App. A
as needed. Depending on your interest, field of study, and preference, we recom-
mend you either study the background information in App. A on first-order logic
before reading PartI or use the material in App. A as a background reference book
on demand while reading the main part of this book. Similarly, we recommend you
review the background on ordinary differential equations in App. B either before or
during the study of the main part. An intuitive approach to understanding differential
equations and formal definitions of their semantics will be given throughout the text.
Logic itself is also explained and illustrated intuitively during the main chapters, but
some readers may also find it helpful to refresh, update, or learn about the basics of
first-order logic from App. A before proceeding to the main part.

While there is a lot of flexibility in the reading sequence of the chapters, we
strongly recommend you study the logical foundations of hybrid systems analysis
in Chap. 2 of PartI before reading any other chapter of Parts I-III. Some more ad-
vanced sections in the applications in Part III also depend on the theory of differen-
tial invariants that is developed together with other extensions in Chap. 3.

Preface xi

Appendix C shows a formal relation of hybrid automata with hybrid programs.
Appendix D gives more detail on the implementation of the approach put forth in
this book in the verification tool KeYmaera. It also presents a survey of computa-
tional techniques for handling real arithmetic. Both App.C and D can be read as
needed, after studying the introductory material and notions in Chap. 2. The most
important formation rules for the logic and proof rules for the calculi are summar-
ised at the end of the book.

Online Material for This Book

The Web page for this book provides online material, including the verification tool
KeYmaera that implements our logical analysis approach for hybrid systems. We
also provide slide material for parts of this book, an online tutorial for KeYmaera,
and several KeYmaera problem files for examples from this book, including train
and air traffic control studies. The book Web page is at the following URL:

http://symbolaris.com/lahs/

Acknowledgements

This book is based on my Ph.D. thesis and would not have been possible without
the support of the PIs and collaborators on the projects that I have been working
on. My sincere thanks go to Prof. Ernst-Riidiger Olderog for his excellent advice
and support, and for giving me the opportunity to work in one of the most fascin-
ating areas of science in a group with a friendly and productive atmosphere. My
advisor, Prof. Olderog, and the Director of AVACS, Prof. Werner Damm, both de-
serve my highest gratitude, not only for their continuous support and for their faith,
but also for allowing me the freedom to pursue my own research ambitions in the
stimulating context of the AVACS project (‘“Automatic Verification and Analysis of
Complex Systems”). Ultimately, this made it possible for me to develop the logic
and verification approach presented in this book.

I want to thank the external referees of my Ph.D. thesis, Prof. Tobias Nipkow
from the Technical University of Munich and Prof. George J. Pappas from the Uni-
versity of Pennsylvania. It is an honour for me that they were willing to invest their
valuable time and effort in the careful reviewing of my thesis. In fact, I am thank-
ful to all members of my Ph.D. committee, Werner Damm, Ernst-Riidiger Olderog,
George J. Pappas, Tobias Nipkow, and Hardi Hungar for fruitful discussions and for
the highest support they offered for my work.

I am especially grateful to Prof. Edmund M. Clarke, who invited me to Carnegie
Mellon University several times, for his support, interest, and collaboration, and for
sharing with me parts of his huge knowledge in all areas of formal methods. I further
want to acknowledge the help by Prof. Peter H. Schmitt from the University of

Xii Preface

Karlsruhe (TH), Profs. Bernhard Beckert and Ulrich Furbach from the University of
Koblenz-Landau, Prof. Reiner Hdhnle from the Chalmers University of Technology,
Gothenburg, Sweden, Profs. Edmund M. Clarke and Frank Pfenning from Carnegie
Mellon University, and Prof. Rajeev Goré from the Australian National University,
Canberra, at various stages of my career.

I want to thank the program committee of the TABLEAUX 2007 conference for
selecting my first paper on differential dynamic logic for the Best Paper Award,
the first award at any TABLEAUX conference. This recognition has encouraged
me to continue pursuing my research direction, which ultimately led to the results
described in this book. I also thank the program committee of the FM 2009 confer-
ence for selecting my paper on formal verification of curved flight collision avoid-
ance maneuvers for the Best Paper Award. I am very grateful to the ACM Doctoral
Dissertation Award committee for honoring my Ph.D. thesis with the 2009 ACM
Doctoral Dissertation Honorable Mention Award.

I am truly thankful to my colleagues at Carnegie Mellon University for their
encouraging feedback about my work and for the friendly and constructive atmo-
sphere at CMU. For many fruitful discussions I thank my colleagues and friends
from Oldenburg, Ingo Briickner, Henning Dierks, Johannes Faber, Sibylle Froschle,
Jochen Hoenicke, Stephanie Kemper, Roland Meyer, Michael Moller, Jan-David
Quesel, Tim Strazny, and especially my office mate Andreas Schifer. Ernst-Riidi-
ger Olderog, Johannes Faber, Ingo Briickner, Roland Meyer, Henning Dierks, Silke
Wagner, Nicole Betz, Alex Donzé, and especially Andreas Schifer also deserve
credit for proofreading some of my earlier papers, which formed the basis for this
book. I also acknowledge Andreas Schifer’s helpful feedback from proofreading
parts of this book. I appreciate the feedback of my students on this book.

Furthermore, I thank Jan-David Quesel for writing a Master’s thesis under my
supervision and for his invaluable support with the implementation of the verific-
ation tool KeYmaera based on the techniques that I present in this book and in
prior publications. I also thank him for help with the experiments and ETCS. I am
also thankful for indispensable and reliable help from Richard Bubel and Philipp
Riimmer with the implementation internals of the KeY basis. I thank the whole KeY
team for providing the impressive Java verification tool KeY as a basis for our im-
plementation of KeYmaera.

For help with the book process, I thank Ronan Nugent from Springer.

Especially, I thank my parents, Rudolf and Brigitte Platzer, and my sister, Julia,
for their continuous support and encouragement, and I thank my wife, Nicole, for
her true faith in me. She also deserves credit for her invaluable help with some of
the illustrations in this book.

Funding
This research was partly supported by the German Research Council (DFG) under

grant SFB/TR 14 AVACS (“Automatic Verification and Analysis of Complex Sys-
tems”, see http://www.avacs.orqg); a Transregional Collaborative Research

Preface xiii

Center of the Max Planck Institute and the Universities of Oldenburg, Saarbriicken,
and Freiburg in Germany, with associated cooperations with the University of
Pennsylvania, ETH Ziirich, and the Academy of Sciences of the Czech Republic.
It was further supported partly by a research fellowship of the German Academic
Exchange Service (DAAD) and by a research award of the Floyd und Lili Biava
Stiftung. Some part of this work was also supported by the National Science Found-
ation under grant nos. CNS-0931985 and CNS-0926181, including the NSF Exped-
ition on Computational Modeling and Analysis of Complex Systems (CMACS); see
http://cmacs.cs.cmu.edu for more information.

The views and conclusions contained in this book are those of the author and
should not be interpreted as representing the official policies, either expressed or
implied, of any sponsoring institution or government.

Further Sources

This book is based on several sources, most notably the author’s Ph.D. thesis [236].
Chapter 2 is an extended version of an article in the Journal of Automated Reason-
ing [235] and also covers some material from previous work at TABLEAUX [231]
and HSCC [232]. Chapter 3 is an extended version of an article in the Journal of Lo-
gic and Computation [237], to which we now add a relative completeness argument
and prove that DAL is a conservative extension of the sublogic d.#. We further com-
bine the solution-based techniques from Chap. 2 with differential induction-based
techniques from Chap. 3 by introducing the new extension of differential monoton-
icity relaxations. Chapter 4 is a substantially extended version of a previous paper
at LFCS [233], to which we now add a complete and more elegant calculus and
provide a modular relative completeness proof.

In Chap. 5, we extend a previous paper at VERIFY [230] with more details on it-
erative background closure strategies, including experimental evaluation, and com-
plement this proof technique with a new iterative inflation strategy. Chapter 6 is
based on joint work with Edmund M. Clarke at CAV [239] and in Formal Methods
in System Design [240].

Chapter 7 is a substantially revised and improved version of joint work with Jan-
David Quesel at HSCC [243] with extensions from follow-up work [244]. Chapter 8
is a significantly improved and detailed case study developed on the basis of joint
work with Edmund M. Clarke at HSCC [238] and CAV [239] with subsequent ex-
tensions at FM [241].

Appendix B summarises classical results from the theory of differential equations
from the literature [297]. Finally, App. D uses a few excerpts from joint work with
Jan-David Quesel at IJCAR [242], adding an overall discussion of the KeYmaera
verification tool that implements the approach presented in this book. Appendix D
also adds a thorough description of computational back-ends for real arithmetic,
with extensions from joint work with Philipp Riimmer and Jan-David Quesel [246].

Pittsburgh, February 2010 André Platzer

Contents

1 Introduction

1.1 Technical Context
1.1.1 HybridSystems
1.1.2 Model Checking,
1.1.3 Deductive Verification
1.1.4 Compositional Verification
1.1.5 Lifting Quantifier Elimination

1.1.6 Differential Induction and Differential Strengthening
1.2 Related Work
1.3 Contributions
1.4 Structure of ThisBook

Part I Logics and Proof Calculi for Hybrid Systems

2 Differential Dynamic Logic d.Z

2.1 Introduction
2.1.1 Structure of This Chapter
22 SyNtax
221 Terms e
222 HybridPrograms oL
223 Formulas
2.3 SemantiCs e e e
2.3.1 Valuationof Terms
2.3.2 Valuation of Formulas
2.3.3 Transition Semantics of Hybrid Programs
2.4 Collision Avoidance in Train Control
2.5 ProofCalculus
2.5.1 Substitution
252 ProofRules

12
14
16
19
20
21
25
25

31

33
34
35
35
37
41
47
49
50
51
54
61
64
65
76

XV

XVi

3

Contents

2.5.3 Deduction Modulo with Invertible Quantifiers and Real Quan-
tifier Elimination, 88

2.5.3.1 Lifting Quantifier Elimination by Invertible Quan-

tifierRules, 88
2.5.3.2 Admissibility in Invertible Quantifier Rules 91
2.5.3.3 Quantifier Elimination and Modalities 93
2.5.3.4 Global Invertible Quantifier Rules 93
2.5.4 Verification Example 000 94
2.6 Soundness 97
2.7 Completeness 101
2.7.1 Incompleteness 102
2.7.2 Relative Completeness 103
2.7.3 Characterising Real Godel Encodings 105
2.7.4 Expressibility and Rendition of Hybrid Program Semantics . 106
2.7.5 Relative Completeness of First-Order Assertions 109
2.7.6 Relative Completeness of the Differential Logic Calculus . . 113
2.8 Relatively Semidecidable Fragments 114
2.9 Train Control Verification 118
2.9.1 Finding Inductive Candidates 118
2.9.2 Inductive Verification, 119
2.9.3 Parameter Constraint Discovery 120
210 Summary e 122
Differential-Algebraic Dynamic Logic DAL 123
3.1 Introduction 124
3.1.1 RelatedWork, 128
3.1.2 Structure of ThisChapter 130
32 Syntax e 130
321 Termso 132
3.2.2 Differential-Algebraic Programs 132
323 Formulas 139
33 Semantics 141
3.3.1 Transition Semantics of Differential-Algebraic Programs . . 141
3.3.2 Valuationof Formulas 145
33.3 Time Anomalies 145
334 Conservative Extension 147
3.4 Collision Avoidance in Air Traffic Control 148
34.1 Flight Dynamics 148
3.4.2 Differential Axiomatisation 149
3.4.3 Aircraft Collision Avoidance Manoeuvres 150
3.4.4 Tangential Roundabout Manoeuvre 151
3.5 ProofCalculus 152
3.5.1 Motivation 153
3.5.2 Derivations and Differentiation 154

3.5.3 Differential Reduction and Differential Elimination 160

Contents

354 ProofRules oL
3.5.5 Deduction Modulo by Side Deduction
3.5.6 Differential Induction with Differential Invariants
3.5.7 Differential Induction with Differential Variants
3.6 Soundness
3.7 Restricting Differential Invariants
3.8 Differential Monotonicity Relaxations
3.9 Relative Completeness
3.10 Deductive Strength of Differential Induction
3.11 Air Traffic Control Verification
3.11.1 Characterisation of Safe Roundabout Dynamics
3.11.2 Tangential Entry Procedures
3.11.3 Discussiono
3.12 Summary

4 Differential Temporal Dynamic Logic dTL
4.1 Introduction
41.1 RelatedWork o
4.1.2 Structure of ThisChapter
42 Syntax . ..o e e e
42.1 Hybrid Programs
4.2.2 State and Trace Formulas
43 Semantics
4.3.1 Trace Semantics of Hybrid Programs
4.3.2 Valuation of State and Trace Formulas
4.3.3 Conservative Temporal Extension
4.4 Safety Invariants in Train Control
45 ProofCalculus
451 ProofRules
4.5.2 Verification Example L.
4.6 Soundness e
477 Completenesso e e
477.1 Incompleteness
4.7.2 Relative Completeness
4.7.3 Expressibility and Rendition of Hybrid Trace Semantics
4.7.4 Modular Relative Completeness Proof
4.8 Verification of Train Control Safety Invariants
4.9 Liveness by Quantifier Alternation
410 Summaryl e e

Part II Automated Theorem Proving for Hybrid Systems

5 Deduction Modulo Real Algebra and Computer Algebra
5.1 Introduction

Xvii

162
168
170
181
185
188
189
193
194
197
197
200
201
201

203
204
205
206
206
207
207
210
210
213
215
216
217
218
221
221
223
223
224

. 225

226
227
228
230

231

233

Xviil Contents
5.1.1 RelatedWork, 234

5.1.2 Structure of This Chapter 235

5.2 Tableau Procedures Modulo 235
5.3 Nondeterminisms in Tableau Modulo. 238
5.3.1 Nondeterminisms in Branch Selection 238

5.3.2 Nondeterminisms in Formula Selection 239

5.3.3 Nondeterminisms in Mode Selection 240

5.4 TIterative Background Closure 243
5.5 TIterative Inflation L. 246
5.6 Experimental Results 248
5.7 Summary 251
6 Computing Differential Invariants as Fixed Points 253
6.1 Introduction 254
6.1.1 RelatedWork 255

6.1.2 Structure of This Chapter 256

6.2 Inductive Verification by Combining Local Fixed Points 256
6.2.1 Verification by Symbolic Decomposition 257

6.2.2 Discrete and Differential Induction, Differential Invariants . 258

6.2.3 Flight Dynamics in Air Traffic Control 260

6.2.4 Local Fixed-Point Computation for Differential Invariants . 262

6.2.5 Dependency-Directed Induction Candidates 263

6.2.6 Global Fixed-Point Computation for Loop Invariants 265

6.2.7 Interplay of Local and Global Fixed-Point Loops 268

6.3 Soundness 269
6.4 Optimisations v v v 271
6.4.1 Sound Interleaving with Numerical Simulation 271

6.4.2 Optimisations for the Verification Algorithm 272

6.5 ExperimentalResults 272
6.6 Summary 273

Part III Case Studies and Applications in Hybrid Systems

Verification 275
7 European Train Control System 277
7.1 Introduction 278
7.1.1 Related Work L. 280

7.1.2 Structure of This Chapter 281

7.2 Parametric European Train Control System 281
7.2.1 Overview of the ETCS Cooperation Protocol 281

7.2.2 Formal Model of Fully Parametric ETCS 284

7.3 Parametric Verification of Train Control 286
7.3.1 Controllability Discovery 287

7.3.2 Iterative Control Refinement 288

Contents XiX

7.3.3 Safety Verification, 291

7.3.4 Liveness Verification, 293

7.3.5 Full Correctness of ETCS 294

7.4 Disturbance and the European Train Control System 295
7.4.1 Controllability Discovery 296

7.4.2 TIterative Control Refinement 298

7.4.3 Safety Verification 298

7.5 Experimental Results 0., 299
7.6 Summary 301

8 Air Traffic Collision Avoidance 303
8.1 Introduction 304
8.1.1 RelatedWork L. 307

8.1.2 Structure of ThisChapter 308

8.2 Curved Flight in Roundabout Manoeuvres 309
8.2.1 Flight Dynamics 309

8.2.2 Roundabout Manoeuvre Overview 310

8.2.3 Compositional VerificationPlan 311

8.2.4 Tangential Roundabout Manoeuvre Cycles 312

8.2.5 Bounded Control Choices 315

8.2.6 Flyable Entry Procedures 315

8.2.7 Bounded Entry Duration 318

8.2.8 Safe Entry Separation 319

8.3 Synchronisation of Roundabout Manoeuvres 322
8.3.1 Successful Negotiation 322

8.3.2 Safe Exit Separation 326

8.4 Compositional Verification 328

8.5 Flyable Tangential Roundabout Manoeuvre 329

8.6 Experimental Results 331

87 Summary 333

9 Conclusion 335
Part IV Appendix 339
A First-Order Logic and Theorem Proving 341
Al Overview e 341
A2 Syntax e 346
A21 Terms 346

A22 Formulas 347

A3 Semantics 348
A3.1 Valuationof Terms 349

A.3.2 Valuation of Formulas 349

A4 ProofCalculus 350

A4.1 ProofRules 351

XX Contents
A.4.2 Proof Example: Ground Proving Versus Free-Variable Proving354
AS Soundness 356
A6 Completeness 356
A.7 Computability Theory and Decidability 357
B Differential Equations 359
B.1 Ordinary Differential Equations 359
B.2 Existence Theorems 363
B.3 Existence and Uniqueness Theorems 364
B.4 Linear Differential Equations with Constant Coefficients 365
C Hybrid Automata 369
C.1 Syntax and Traces of Hybrid Automata 369
C.2 Embedding Hybrid Automata into Hybrid Programs 371
D KeYmaera Implementation 377
D.1 KeYmaera: A Hybrid Theorem Prover for Hybrid Systems 377
D.1.1 Structure of This Appendix 379
D.2 Computational Back-ends for Real Arithmetic 380
D.2.1 Real-ClosedFields 381

D.2.2 Semialgebraic Geometry and Cylindrical Algebraic Decom-
position 383
D.2.3 Nullstellensatz and Grébner Bases 386
D.2.4 Real Nullstellensatz 392
D.2.5 Positivstellensatz and Semidefinite Programming 394
D3 Discussion. 396
D.4 Performance Measurements 399
References 401
Index 415

Operators and Proof Rules 423

List of Figures

1.1
1.2

1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

2.1

2.2
23
24
2.5
2.6
2.7

2.8

29

2.10

European Train Control System 2
ETCS: discrete evolution of acceleration a, continuous evolution of

velocity v and of position zovertimes 3
Collision avoidance manoeuvres in air traffic control 3
Hybrid automaton for an (overly) simplified train control system . 5
Hybrid automaton and hybrid program of a simple bouncing ball . 7
Switching between two damped oscillators 8
Hybrid automaton for switching damped oscillators 9
Stable trajectory switching between two damped oscillators 9
Instable trajectory switching between two damped oscillators . . . 10
Simple water tank system L 11
Successive state space exploration in finite-state model checking . 12
Failed hybrid automaton decomposition attempt 17
Successful hybrid program decomposition 18
Dependencies and suggested reading sequence of chapters and ap-

pendices 28
Hybrid program rendition of hybrid automaton for (overly) simpli-

fied traincontrol oL 36
Parametric bouncing ball 45
Parametric bouncing ball (with abbreviations resolved) 46
Transition semantics of modalities in A% formulas 52
Transition semantics and example dynamics of hybrid programs 56
Continuous flow along differential equation x' = 6 over time 57
Transition structure and transition example in (overly) simple train

control 59
ETCS train coordination protocol using dynamic movement author-

IES . . o o o 61
ETCS transition structure and various choices of speed regulation

for train speed control 63
Application of simultaneous substitutions 65

XX1i

Xxii

2.11

2.12
2.13
2.14
2.15
2.16
2.17a

2.17b

2.18
2.19a
2.19b
2.20
2.21
2.22

2.23

2.24
2.25

3.1
3.2
33
34
35
3.6
3.7

3.8
3.9

3.10
3.11
3.12
3.13a
3.13b
3.14
3.15a
3.15b
3.16
3.17
3.18

List of Figures

Rule schemata of the free-variable calculus for differential dy-

namiclogic L 79
Correspondence of dynamic proof rules and transition semantics 83
Simple propositional example proof L. 87
Deduction modulo for analysis of MA violation in braking mode . 89
Controllable region of ETCS dynamics 90
Deduction modulo for analysis of MA-safety in braking mode . . . 90
Wrong rearrangement with deduction modulo by invertible quanti-

flers 91
Correct reintroduction order with deduction modulo by invertible

quantifiers 91
Bouncing ball proof (no evolution domain) 95
Unsound attempt of induction without universal closure V* 95
Correct use of induction with universal closure V%, i.e., Vx 95
Bouncing ball proof (with evolution domain) 97

Characterisation of N as zeros of solutions of differential equations 103
Fractional encoding principle of R-Godel encoding by bit interleav-

INE . ot 105
FOD definition characterising Godel encoding of R-sequences in

onerealnumber 106
Explicit rendition of hybrid program transition semantics in FOD . 107
Evolution domain checks along backwards flow over time 108
Controllability violated in the presence of disturbance 138
Differential state flow 0. 143
Zeno SYSEM TUN v v v v et e e e e 146
Aircraftdynamics Lo 0oL 148
Reparametrise for differential axiomatisation 149
Flight manoeuvres for collision avoidance in air traffic control . . . 151
Flight control with tangential roundabout collision avoidance man-

OBUVIES . . o v vt et e e e e e e e e e 152
Vector field and a solution of a differential equation 153
Rule schemata of the proof calculus for differential-algebraic

dynamiclogic 164
Side deduction for quantifier elimination rules 164
Nested side deductions and differential variants for progress property 169
Differential invariants L. 171
Cubic dynamics proofo 172
Cubic dynamics 172
Unsound restriction of differential invariance 173
Restricting differential invariance 174
Linear dynamics 174
Proof of MA-safety in braking mode with disturbance 176
Trajectory and evolution of a damped oscillator 177

Trajectory switching between two damped oscillators 178

List of Figures Xxiil

3.19 Parametric switched damped oscillator system 178
3.20 Instable trajectory switching between two damped oscillators . . . 179
3.21 Parametric switched damped oscillator proof 180
3.22 Differential variants L 182
3.23a Monotonically decreasing convergent counterexample 184
3.23b Convergent descent dynamics 184
3.23¢ Non-inductive property in convergentdescent 184
3.24a Counterexample of unbounded dynamics without Lipschitz con-

Uity 184
3.24b Explosive dynamics with limited duration of solutions 184
3.25 Differential induction splitting over disjunctions for negative equa-

tHONS 189
3.26a Counterexample for disjunctive monotonicity 193
3.26b Interrupted dynamics 193
3.27 Quadrant sign selection regions of differential invariant 196
3.28 Circular dependencies for differential strengthening 196

3.29 Tangential construction for characteristics of roundabout dynamics 198

4.1 Trace semantics of dTL formulas 214
4.2 ETCS train coordination protocol phases 216
4.3 Rule schemata of the proof calculus for temporal differential
dynamiclogic 218
4.4 Correspondence of temporal proof rules and trace semantics . 219
4.5 Explicit rendition of hybrid program trace semantics in FOD 225
4.6 Transformation rules for alternating temporal path and trace quan-
tifiers 229
5.1 Deductive, real algebraic, computer algebraic prover combination . 236
5.2 Tableau procedure for differential dynamic logics 237
5.3 Nondeterminisms in the tableau procedure for differential dynamic
logics e 237
5.4 Computational distraction in quantifier elimination 240
5.5 Eager and lazy quantifier elimination in proof search space 241
5.6 Alarge subgoal of first-order real arithmetic during ETCS verification242
5.7a Proof strategy prioritieso 244
5.7b TIterative background closure (IBC) proof strategy 244
5.8 Iterative background closure (IBC) algorithm schema 245
5.9 General and/or-branching in proof strategies for differential dy-
namic logics o 245
5.10 Tterative inflation order (IIO) algorithm schema 247
6.1 dZ-based verification by symbolic decomposition 257
6.2 Aircraftdynamicso oo 261

6.3 Fixed-point algorithm for differential invariants (Differential Satur-
177777 7)) JE 262

XXiv

List of Figures

6.4 Differential dependencies and variable clusters of flight dynamics . 264
6.5 Fixed-point algorithm for discrete loop invariants (loop saturation) 266
6.6 Hybrid program rendition of hybrid automaton for simple water tank267
6.7 Interplay of local and global fixed-point verification loops during
symbolic decomposition oL 268
6.8 Robustness in counterexamples 271
6.9 Flyable aircraft roundabout 272
7.1 ETCS train cooperation protocol phases and dynamic movement
authorities L 282
7.2 ETCStrackprofile 283
7.3 Formal model of parametric ETCS cooperation protocol (skeleton) 284
7.4 Transition structure of ETCS skeleton 286
7.5 Controllable region of ETCS 288
7.6 ETCS cooperation protocol refined with parameter constraints . . . 291
7.7 Proof sketch for ETCS safety 292
7.8 Controllability region changes in the presence of disturbance . . . 295
7.9 Proof of ETCS controllability despite disturbance 297
7.10 Parametric ETCS cooperation protocol with disturbances 299
7.11 Parametric ETCS cooperation protocol with disturbances (full in-
stantiation) e e e e e 300
8.1 Evolution of collision avoidance manoeuvres in air traffic control . 304
8.2 Non-flyable straight-line manoeuvre with instant turns 305
8.3 Flyable aircraft roundabout, 309
8.4 Flightdynamics 309
8.5 Protocol cycle and construction of flyable roundabout manoeuvre . 310
8.6 Non-flyable tangential roundabout collision avoidance manoeuvre
NTRM 312
8.7 Tangential configuration, 313
8.8 Flyable aircraft roundabout (multiple aircraft) 314
8.9 Tangential roundabout collision avoidance manoeuvre (four aircraft) 314
8.10 Flyable entry characteristics 316
8.11 Entry separation by bounded nondeterministic overapproximation . 320
8.12 Some mutually agreeable negotiation choices for aircraft 323
8.13 Far separation for mutually agreeable negotiation choices 325
8.14a Exitray separationo 327
8.14b Incompatible exitrays 327
8.15 Flight control with flyable tangential roundabout collision avoidance 329
8.16 Verification loop for flyable tangential roundabout manoeuvres . . 330
8.17 Flight control with FTRM (synchronous instantiation) 332
9.1 Topics contributing to the logical analysis of hybrid systems 336
A.1 Rule schemata of the sequent calculus for first-order logic . . . 352
A.2a Ground proofexample oL 354

List of Figures XXV

A2b
A3

B.1

C.1
C.2a
C.2b
C3

D.1
D.2
D3
D4
D.5
D.6

D.7
D.8
D.9

Free-variable proof example 354
Wrong proof attempt in first-order logic 355
Vector field and a solution of a differential equation 360
Hybrid automaton and corresponding hybrid program 370
Hybrid automaton for water tank 373
Hybrid program for water tank 373
Parametric bouncingballo 374
Architecture and plug-in structure of the KeYmaera prover 378
Screenshot of the KeYmaera user interface 379
KeYmaera proof strategy options 380
Projection of semialgebraic sets and quantifier elimination 384
Rule schemata of Grobner calculusrules 389
Some algebraic varieties generated by one polynomial equation in

twovariables oo oo 391
Example proof using the real Nullstellensatz 393
Rule schema of Positivstellensatz calculusrule 395
Example proof using the Positivstellensatz 395

List of Tables

2.1
2.2
23

3.1

32
33

34

35

4.1

5.1
5.2
53
54

6.1

7.1

8.1

8.2
83

Al

Statements and effects of hybrid programs (HPs) 42
Statements and control structures definable with hybrid programs . . 44
Operators and meaning in differential dynamic logic (%) . . . 47
Comparison of DAL with DA-programs versus .’ with hybrid pro-

GIAMS . o o v v e e e e e e e e e e e e e e e e e e 127
Statements and effects of differential-algebraic programs 137
Classification of differential-algebraic programs and correspond-

ence to dynamical systems 139
Operators and meaning in differential-algebraic dynamic logic

MDAL) 140
Embedding hybrid programs as DA-programs 147
Operators and meaning in differential temporal dynamic logic

ATL) 208
Experimental results for proof strategies (with standalone QE)I . . 249
Experimental results for proof strategies (with standalone QE) II . . 249
Experimental results for proof strategies (no standalone QE)I . . . 250
Experimental results for proof strategies (no standalone QE) II . . . 250
Experimental results for differential invariants as fixed points 273
Experimental results for the European Train Control System 300

Verification loop properties for flyable tangential roundabout man-

OCBUVIES + v v v v v e e e e e e e e e e e e e e e 330
Experimental results for air traffic control (initial timeout = 10s) . . 331
Experimental results for air traffic control (initial timeout =4s) . . . 333

Intuitive meaning of logical operators in first-order logic 343

XX Vil

List of Theorems

L21
L22
L23
L24
L25
L26
T2.1
T22
T23
L27
L28
L29
L2.10
L2.11
P2.1
P22
T24
L2.12
P3.1
L3.1
L3.2
L33
L34
L35
L 3.6
L 3.7
T3.1
P32
P33
T3.2
P34

Uniqueness 57
Substitution Lemmao 70
Substitution property 75
Substitutions preserve validity L. 76
Quantifier elimination lifting 92
Coincidence lemmao L. 93
Soundnessof AZ 98
Incompletenessof A 102
Relative completeness of A2 104
R-Godelencoding 105
Hybrid program rendition 106
d¥ Expressibility 108
Derivability of sequents L. 109
Generalisation L 110
Relative completeness of first-order safety 111
Relative completeness of first-order liveness 112
Relatively semidecidable fragment 114
Uniform Skolem symbols 115
Conservative eXtensiono 147
Derivationlemma Lo 156
Differential substitution property 158
Differential transformation principle 158
Differential inequality elimination 161
Differential equation normalisation 161
Differential weakening L. 175
Closure properties of differential invariants 181
Soundness of DAL L 185
Open differential induction 188
Differential monotonicity, 191
Relative completenessof DAL 193
Equational deductive power 194

XXIX

XXX

T33
T34
P35
P4.1
L4.1
T4.1
T4.2
T4.3
L42
L43
P42
P6.1
P62
P6.3
T6.1
L7.1
P7.1
P72
P73
P74
P75
P7.6
T7.1
P77
P78
P79
T 8.1
TA.l
TA2
TB.1
TB.2
PB.1
PB.2
PC.1
TD.1
TD.2
TD.J3
PD.1
TD.4
TD.S
TD.6

List of Theorems

Deductive power 194
Safety of tangential roundabout manoeuvre 199
External separation of roundabout manoeuvres 200
Conservative temporal extension 215
Tracerelation. L 215
Soundnessof dTL 221
Incompletenessof dTL, 223
Relative completeness of dTL 224
Hybrid program trace rendition 225
dTL Expressibility 225
Local soundness for temporal quantifier alternation 229
Principle of differential induction 260
Differential saturation 262
Loop saturation 265
Soundness of fixed-point verification algorithm 269
Principle of separation by movement authorities 282
Controllability 288
RBC preserves train controllability 289
Reactivity of ETCS 290
Reactivity constraint 290
Safety of ETCS 291
Livenessof ETCS 293
Correctness of ETCS cooperation protocol 294
Controllability despite disturbance 296
Reactivity constraint despite disturbance 298
Safety despite disturbance oL 298
Safety property of flyable tangential roundabouts 331
Soundnessof FOL 356
Completenessof FOL 356
Existence theorem of Peano 363
Uniqueness theorem of Picard-Lindelof 364
Continuation of solutions 365
Linear systems with constant coefficients 365
Hybrid automata embedding 371
Tarski-Seidenberg principle 383
Semialgebraic sets 383
Hilbert’s basis theorem 388
Soundness of Grobner basisrules 390
Hilbert’s Nullstellensatz 391
Real Nullstellensatz for real-closed fields 392

Positivstellensatz for real-closed fields 394

Chapter 1
Introduction

Time is defined so that motion looks simple [209, p. 23]

Ensuring correct functioning of complex physical systems is among the most chal-
lenging and most important problems in computer science, mathematics, and en-
gineering. In addition to nontrivial underlying physical system dynamics, the beha-
viour of complex systems is determined increasingly by computerised control and
automatic analog or digital decision-making, e.g., in aviation, railway, and auto-
motive applications. At the same time, correct decisions and control of these sys-
tems are becoming increasingly important, because more and more safety-critical
processes are regulated using automatic or semiautomatic controllers, including
the European Train Control System [117], collision avoidance manoeuvres in air
traffic control [293, 196, 104, 238, 129, 171], car platooning technology for high-
ways following the California PATH project [166], recent driverless vehicle techno-
logy [64], and biomedical applications like automatic glucose regulation for diabetes
patients [223]. As a more general phenomenon of complex physical systems that are
exemplified in these scenarios, correct system behaviour depends on correct func-
tioning of the interaction of control with physical system dynamics and is not just
an isolated property of only the control logic or only the physical system dynamics.
These interactions of computation and control are more difficult to understand and
get right than isolated systems. Even if the control software does not crash, the sys-
tem may still malfunction, because the control software could issue unsafe control
actions to the physical process. And even if the pure physics of the process is well
understood, an attempt to control the process may still become unsafe, e.g., when
the controller reacts to situation changes too slowly because computations take too
long, or when sensor values are already outdated once the control actions finally
take effect. It is the interaction of computation and control that must be taken into
account. Systems with such an interaction of discrete dynamics and continuous dy-
namics are called hybrid dynamical systems, or just hybrid systems for short.

To illustrate typical aspects and effects in application areas, we take a look at
two examples in more detail, which will serve as running examples and case stud-
ies throughout this book. In high-speed trains like the ICE (InterCityExpress), TGV
(train a grande vitesse), Shinkansen, and the upcoming California High-Speed Rail,
whose high mass (1,000-3,000 tons) and high speed (320km/h) cause them to re-

A. Platzer, Logical Analysis of Hybrid Systems, 1
DOI 10.1007/978-3-642-14509-4 1, © Springer-Verlag Berlin Heidelberg 2010

2 1 Introduction

quire fairly long braking distances (more than 3.8 km), safe driving is impossible
just based on sight without automatic technical means that enforce a safe minimum
distance between trains. The European Train Control System (ETCS), which is cur-
rently being developed and installed in Europe [117], regulates and protects train
movement according to movement authorities (MAs). A movement authority rep-
resents permission for the train to move up to a certain point on the track (the end of
the movement authority) and is negotiated dynamically in rapid succession by wire-
less communication with decentralised radio block controllers (RBCs); see Fig. 1.1.

Fig. 1.1 European Train Control System

With the next generation development of ETCS, Level 3, all classical fixed track-
side signalling and fixed track segment partitioning with physical separation of the
train segments will become obsolete, thereby advancing to a fully autonomous op-
eration of ETCS in order to achieve its performance goals of maximum speed and
density on the track. Yet, a safe operation of ETCS requires that—while achieving
these performance goals—the train controllers still always respect their local move-
ment authorities and that the radio block controllers only grant compatible move-
ment authorities to each of the trains. Even in emergency situations, the overall train
control system must always ensure that the trains cannot crash into one another. To
determine correct functioning of these controllers it has to be shown that the train
positions, which evolve dynamically over time, are always safely separated. For this,
however, we need to be able to analyse the interaction of the train control logic and
the wireless ETCS cooperation protocol with a model of the actual physical train
dynamics, because collision freedom is not an isolated property of only the discrete
cooperation-layer control protocol, only the local train control decision process, or
only the continuous train dynamics, but a joint property of their superposition or
combination.

Train dynamics is a typical example of what is known as a hybrid system: it com-
bines instantaneous discrete jump dynamics with continuous evolution. See Fig. 1.2
for a typical evolution of the acceleration a, which changes instantaneously by dis-
crete control decisions at some points in time, and of the train velocity v and position
z, which evolve continuously over time. The continuous dynamics can be described
by a differential equation system like 7/ = v,/ = a, saying that the time derivat-

1 Introduction 3

2 4

-1 0.5
T 1 ™ 1
-2 L 1 2 3 4 1 2 3 4

o
o
N S SV I

Fig. 1.2 ETCS: discrete evolution of acceleration a, continuous evolution of velocity v and of
position z over time ¢

ive 7' of the position equals the velocity v and the time derivative V' of the velocity
equals the chosen acceleration a. The discrete dynamics can be described by an as-
signment such as a:=—2 together with the conditions of when and under which
circumstances this discrete jump will be executed. For example, the discrete dy-
namics can be described by the operations of the switching control logic, possibly
as a small control program that describes under which circumstances the accelera-
tion a switches to braking (negative acceleration), and under which circumstances
it switches to positive acceleration. By combining the continuous differential equa-
tions and discrete control logic appropriately, we obtain a description of the inter-
acting hybrid dynamics of the hybrid (dynamical) system. Yet the effects of such a
combination also need to be well-defined, including a faithful model defining unam-
biguously how discrete and continuous dynamics work together. Finally, note that
full formal verification and proof that the system operates correctly is indeed quite
important and of particular practical relevance for safety-critical complex physical
systems like ETCS. Despite careful development and testing, safety violations have
recently been reported in ETCS [143] even at its moderate currently deployed level.

In air traffic control, collision avoidance manoeuvres [293, 196, 104, 238, 129,
171] are used to help pilots resolve conflicting flight paths that arise during arbitrary
free flight of the aircraft. See Fig. 1.3 for an overview of different collision avoid-
ance approaches. These manoeuvres are last-resort means for resolving air traffic

\ en t]‘y

N

~ -

Fig. 1.3 Collision avoidance manoeuvres in air traffic control

conflicts that could otherwise lead to collisions and have not been detected before
by the pilots during free flight or by the flight directors of the Air Route Traffic
Control Centres. Consequently, complicated online trajectory prediction, trajectory

4 1 Introduction

evaluation, or lengthy manoeuvre negotiation may no longer be feasible in the short
time that remains for resolving the conflict. For example, in the tragic mid-flight
collision in Uberlingen [43] in July 2002, only less than one minute of manoeuvring
time remained to try to prevent the collision after the on-board traffic alert and col-
lision avoidance system TCAS [196] signalled a traffic alert. Thus, for safe aircraft
control we need particularly reliable instant reactions with manoeuvres whose cor-
rectness has been established previously by a thorough offline analysis. To ensure
correct functioning of aircraft collision avoidance manoeuvres under all circum-
stances, the temporal evolution of the aircraft in space must be analysed carefully
together with the effects that manoeuvring control decisions have on their dynam-
ics, giving again a superposition or combination of physical system dynamics with
control, and thus a hybrid system.

The continuous dynamics in air traffic control can again be described by differ-
ential equations for the flight dynamics. The relevant system variables for which
differential equations need to be found include the two- or three-dimensional
position in space and orientation in space for each of the aircraft at positions
x = (x1,x2,x3) € R and y = (y1,y2,y3) € R3, for instance. Because rails are essen-
tially a one-dimensional space (except for the track topology) but airspace is three-
dimensional, the resulting differential equations for flight are more involved than for
trains. The discrete dynamics in air traffic control comes, e.g., from the decisions of
when and how to initiate a collision avoidance manoeuvre, and from the discrete
change in direction or the angular velocity of the aircraft.

These examples are prototypical and similar phenomena occur in many other
application scenarios of hybrid systems. The continuous dynamics often comes from
physical movement or physical processes. Discrete dynamics often (but not always)
comes from control decisions or digital control implementations.

1.1 Technical Context

In this section we survey the technical context of this book, briefly summarise some
important technical concepts in the domain, and preview some technical highlights
of this book informally. We also give a short overview of related work.

1.1.1 Hybrid Systems

As a common mathematical model for complex physical systems, hybrid dynamical
systems, or just hybrid systems for short [289, 9, 218, 8, 56, 156, 11, 58, 189, 97,
228,90, 194], are dynamical systems [227, 177, 279] where the system state evolves
over time according to interacting laws of discrete and continuous dynamics, the
idea being to capture the superposition or combination of physical system dynamics
with control at a natural modelling level. For discrete transitions, the hybrid sys-

1.1 Technical Context 5

tem changes state instantaneously and possibly discontinuously. During continuous
transitions, the system state is a continuous function of continuous time and varies
according to a differential equation, which is possibly subject to domain restric-
tions or algebraic relations resulting from physical circumstances or the interaction
of continuous dynamics with discrete control. Continuous dynamics results, for ex-
ample, from the continuous movement of a train along the track (train position z
evolves with velocity v along the differential equation 7 = v where 7' is the time
derivative of z) or from the continuous variation of its velocity over time (V' =a
with acceleration a); see evolutions in Fig. 1.2. Other behaviour can be modelled
more naturally by discrete dynamics, for example, the instantaneous change of con-
trol variables like the acceleration (e.g., the changing of a by setting a:= —b with
braking force b > 0) or the change of status information in discrete controllers;
see Fig. 1.2 again. Both kinds of dynamics interact, e.g., when measurements of the
continuous state affect decisions of discrete controllers (the train switches to braking
mode when v is too high). Likewise, they interact when the resulting control choices
take effect by changing the control variables of the continuous dynamics (e.g., chan-
ging control variable a in 7/ = a). The superposition of continuous dynamics with
analog or discrete control causes complex system behaviour, which can be analysed
neither by purely continuous reasoning (because of the discontinuities caused by
discrete transitions) nor by considering discrete change in isolation (because safety
depends on continuous states).

Among several other models for hybrid systems [69, 100, 58, 270, 272, 40, 183],
the model of hybrid automata [156, 8] is one of the more widely used notations.
Hybrid automata specify discrete and continuous dynamics in a graph. Even though
hybrid automata are a fairly common notation for hybrid systems, there are nu-
merous slightly different notions of hybrid automata or automata-based models for
hybrid systems [289, 9, 218, 8, 56, 156, 11, 58, 189, 97, 228, 90]. We consider a
number of examples to introduce hybrid automata and illustrate simple hybrid sys-
tems informally.

Example 1.1 (Simplistic train control). See Fig. 1.4 for a (much too) simple train
control example written as a hybrid automaton. The nodes of the hybrid automaton

Fig. 1.4 Hybrid automaton 72>
for an (overly) simplified train N /\

- accel —_p brake
control system ; a: 7

=V =V

V=a V=a
v <1 v>0
a:=a+5

specify the continuous dynamics of the system and the edges specify the discrete
switching behaviour between the various modes of continuous dynamics.

Each node of the graph structure corresponds to a continuous dynamical system
and is annotated with its differential equations and an evolution domain specifying
the maximum domain of evolution. The basic differential equation in both nodes

6 1 Introduction

of the train automaton here is 7 = v,»' = a, because the time derivative of the posi-
tion z is the velocity v, and the time derivative of the velocity v is the acceleration a.
Yet both nodes have different choices for the acceleration a. By specifying a max-
imum domain of evolution in addition to the differential equations in a node, we
restrict the circumstances under which the system is allowed to stay in a node, and
enforce when it has to transition to another node instead. The system cannot stay
in a node outside this maximum domain of evolution, and is then forced to switch
to another node. The system is not required to stay as long as possible in a node
until it reaches the border of its maximum domain of evolution, however. Instead,
the system is allowed to leave a node earlier if one of the outgoing edges can be
used at any time. For example, in the node brake of Fig. 1.4, the differential equa-
tions 7/ = v,v' = a only apply within the evolution domain v > 0 (because the train
does not move backwards when braking). Thus, the system is allowed to stay in
node brake arbitrarily long, but it has to leave before the evolution domain v > 0
is violated. Edges specify the discrete switching behaviour between the respective
modes of continuous evolution. They can be annotated with conditions (guards) that
need to hold for the state when the system follows the edge, and with discrete state
transformations (jumps) that take instantaneous effect and transform the continuous
state when the system follows the edge. For example, the automaton in Fig. 1.4 can
take an edge to leave node accel when train position z passes point s (i.e., when
the current state satisfies z > s), which sets the acceleration to braking by changing
the state variables according to a:= —b, and then enter node brake. The edge from
node brake to node accel can be taken only when the guard v < 1 is true for the cur-
rent continuous state; the transition will then increase the value of the acceleration
by a:=a+5 and the system will enter node accel. The short edge pointing to accel
from nowhere in the top-left corner indicates that the system will initially start in the
accel node. In addition, we also need to know what values the continuous variables
(z,v,a,b,s) can have in the initial state.

To identify in which state a hybrid automaton is at some point in time, we need
to know real number values for all the continuous state variables (z,v,a and the
parameters b and s) and we need to know in which node the automaton currently
is (either accel or brake). Over time, the state evolves according to the discrete or
continuous dynamics. The state either evolves continuously according to the differ-
ential equation (if the state stays inside the evolution domain restriction), or follows
one of the discrete transitions of an edge (when the guard is satisfied, thereby trans-
forming the state according to the jump relation). For reference, we formally define
hybrid automata and their state transitions in App. C.

Note that an edge of a hybrid automaton can only be taken if the guard holds
true and, after updating the state according to the jump, the state is in the evolution
domain of the target node. For instance, the automaton starts in accel, and may stay
some time in accel while following the differential equations z/ = v,V = a. Then the
system could switch to brake at some point where the guard z > s is satisfied for the
current state, thereby setting the acceleration to a:= —b. Next the system can stay
in node brake, following the differential equation 7 = v,v' = a (now with a differ-
ent value for a than before), but only while staying inside the permitted evolution

1.1 Technical Context 7

domain v > 0. In particular, the system has to leave node brake and switch back to
accel before the velocity is negative. Because the only outgoing edge from brake
has a guard v < 1, the system can switch back to accel if and only if the current
velocity satisfies 0 < v < 1. The system can switch at any point in time where this is
satisfied. Suppose the system waits in brake until the speed is, say, 0.5. Then the cur-
rent speed satisfies v < 1 and the automaton can switch to accel again by updating
a:=a+>5.

Note, however, that the resulting acceleration does not have to be positive! If
b > 5, then the increase a:=a+5 for switching to accel is less than the braking
reset a := —b; hence, the value of a after switching from accel to brake and back to
accel again will still be negative. Suppose the position still satisfies the guard z > s
of the outgoing edge back to brake. Then, the system might not be allowed to follow
this edge, even though z > s holds, because the maximum evolution domain of brake
requires v > 0 to be true all the time, including when entering the state. That is, in
such a run, where the resulting velocity is negative, the automaton is stuck and can
never do any other transitions again. In summary, we can see that the operational
effect of an edge in an automaton depends not only on the guard and jump of the
edge, but also on the evolution domain restrictions in the nodes.

How can we find out if the train model always stays within the safe region on
the track? How do we find out for which choices of the parameters s and b the
model works as expected? How can we determine if the train is always able to make
progress and is never stuck? We will revisit these questions in Chaps. 2and 7. O

Example 1.2 (Bouncing ball). Another very intuitive example of a hybrid system is
the bouncing ball [110]; see Fig. 1.5. The bouncing ball is let loose in the air and is

(h’ =vV =—g&h>0;
if (h=0) then
Vi=—cv

fi)

Fig. 1.5 Hybrid automaton and hybrid program of a simple bouncing ball

falling towards the ground. When it hits the ground, the ball bounces back up and
climbs until gravity wins and it starts to fall again. The bouncing ball follows the
continuous dynamics of physical movement by gravity. It can be understood natur-
ally as a hybrid system, because its continuous movement switches from falling to
climbing by reversing its velocity whenever the ball hits the ground and bounces
back. Let us denote the height of the ball by 4 and the current velocity of the ball
by v. The bouncing ball is affected by gravity of force g > 0, so its height follows the
differential equation #”/ = —g, i.e., the second time derivative of height equals the
negative gravity force. The ball bounces back from the ground (which is at height
h = 0) after an elastic deformation. At every bounce, the ball loses energy according

8 1 Introduction

to a damping factor 0 < ¢ < 1. Figure 1.5 depicts a hybrid automaton, an illustra-
tion of the system dynamics, and a representation of the same system in a program
notation for hybrid systems. The hybrid automaton has only one node: falling along
the differential equation system 4’ = v,/ = —g (which is equivalent to /"' = —g) re-
stricted to the evolution domain /2 > 0, above the floor. In particular, the bouncing
ball can never fall through the floor. The hybrid automaton also has only one jump
edge: on the ground (when /& = 0), it can reset the velocity v to —cv and continue in
the same node. This jump will change the direction from falling (the velocity v was
negative before) to climbing (the velocity —cv is nonnegative again) after dampen-
ing the velocity v by c.

The program on the right of Fig. 1.5 represents the same bouncing ball system
textually (we will call these textual representations hybrid programs and examine
them in detail in Chap. 2). The first line of the program describes the continuous
dynamics along the differential equation &’ = v,V = —g restricted to (written &) the
maximum evolution domain region # > 0. After the sequential composition (;), an
if-then statement is executed, which resets velocity v to —cv by assignment v:= —cv
if & =0 holds at the current state. Finally, the sequence of continuous and discrete
statements can be repeated arbitrarily often, as indicated by the regular-expression-
style repetition operator (*) at the end.

Note one strange phenomenon in the bouncing ball automaton and program. It
seems like the bouncing ball will bounce over and over again, switching its direction
in shorter and shorter periods of time as indicated in Fig. 1.5 (unless ¢ = 0, which
means that the ball will just lie flat right away). Even worse, the ball will end up
switching directions infinitely often in a short amount of time. This controversial
phenomenon is called Zeno behaviour, which we discuss in more detail in later
parts of this book.

How can we see that the bouncing ball never bounces higher than its initial
height? How can we ensure that the bouncing ball fits closer to the physical reality
that it stops after some time, instead of bouncing infinitely often in finite time? O

Example 1.3 (Switching damped oscillators). Another typical example of a hybrid
system is a switching damped oscillator with continuous variables x,y; see Fig. 1.6.
This system consists of two continuous modes of damped oscillators with different

Fig. 1.6 Switching between
two damped oscillators

1.1 Technical Context 9

settings. The solid spiral in Fig. 1.6 illustrates the one continuous mode, and the
dashed spiral the other continuous mode. The overall system is a hybrid system
that switches between those two modes at the switching surfaces depicted by the
diagonal lines in Fig. 1.6. Also see a hybrid automaton model of this system in
Fig. 1.7.

Fig. 1.7 Hybrid automaton x=—y

for switching damped oscil- N P
0:=20 /

lators X =y X =y

The system starts with the solid dynamics in the node on the left. When passing
the dashed secondary diagonal (x = —y), it switches to following the dashed continu-
ous mode (right node in Fig. 1.7). When passing the solid main diagonal (x = y), the
hybrid system switches to the solid continuous dynamics (left node). An example of

«

Fig. 1.8 Stable trajectory switching between two damped oscillators

an evolution of this hybrid system that switches between both continuous modes ac-
cording to these switching conditions is shown in Fig. 1.8. The differential equations
for the damped oscillators are of the form

¥ =y,y =—0’x—2doy

with the parameters o (for the undamped angular frequency) and d (for the damping
ratio). These parameters will be adjusted whenever the hybrid system follows an

10 1 Introduction

edge in the automaton to a different continuous evolution mode. The solid parts of
the curves in Fig. 1.8 correspond to the parts where the system is in the left node
of the automaton in Fig. 1.7, and thus follow the solid spiral in Fig. 1.6 The dashed
parts of the curves in Fig. 1.8 correspond to the parts where the system has switched
to the right node of the automaton in Fig. 1.7, and thus follow the dashed spiral in
Fig. 1.6. The switching happens at the diagonals.

The evolution in Fig. 1.8 is stable, i.e., it converges to the origin x =0,y = 0.
Yet if we tilt the switching axes only slightly and switch a little later —for instance
use switching condition x = —0.5y instead of x = —y on the edge from the left to the
right node in Fig. 1.7— then the situation is quite different; see Fig. 1.9. Under these

X

N
NN

- - ~
P - /- g
, - - ~ ~
i -7 ~ ~
’ 7z - - ~ ~ N

’ , - i ~ N N

’ - -

/ \

I
T T T
\ \
\ \ \ 1 ’ / 1 1
A \
\ \ \ NN \ V) 7 1 B
\ N\ N ~ / / /

O
=

Fig. 1.9 Instable trajectory switching between two damped oscillators

circumstances, the evolution from the same initial point x = 1, y =0 is suddenly
instable, i.e., it does not converge to the origin x =0, y = 0. Instead, the evolution
diverges and x, y grow infinitely large. This is quite a remarkable difference caused
by a seemingly minor variation in the switching conditions of the hybrid systems.
In fact, this instability is caused only by the hybrid system switching, because the
continuous dynamics alone is stable in both evolution modes (i.e., if both spirals
in Fig. 1.6 are considered separately). How do we find out which parameters for
the switching surfaces make the system stable, and which parameter choices render
it instable? How can we establish whether safety and/or stability depend on the
parameters @ and d?

Finally note that the evolutions in Figs. 1.8 and 1.9 both switch nodes in the
automaton eagerly, i.e., as soon as the guards of outgoing transitions are true. This
is certainly one choice, but hybrid systems do not restrict the evolution to follow
permitted transitions as early as possible. Instead, the hybrid automaton in Fig. 1.7
would allow the system to skip a switching possibility and wait for the next one to
come along. Nondeterminism like this occurs quite frequently when modelling nat-

1.1 Technical Context 11

ural phenomena in complex physical systems, especially in the presence of external
control decisions or input. How does this flexibility in switching affect the beha-
viour of the system? How do we establish for which choices of switching diagonals
the overall system behaviour is well behaved. We will come back to these questions
about switching damped oscillators in Sect. 3.5.6. O

Example 1.4 (Simple water tank). As a further illustration of a hybrid system, con-
sider a simple water tank model, where a controller tries to keep the water level x
in a tank between a lower bound of 1 and an upper bound of 10; see Fig. 1.10. The

Fig. 1.10 Simple water tank \ x>7
system —
on Crmpiry | of
X =1 X =-0.1
x<9 x>3 |
x < 2\ /c <5
open
X =-2
¢ x>0

water tank can be filled with a pump (node on), or the pump can be turned off (node
off). For a twist, let us assume that, before activating the pump again, the valve
has to be opened completely, so that water pours out quickly (node open) until the
pump is turned on again. While the pump is on, water enters the tank, increasing
the water level continuously by the differential equation x’ = 1. The tank has a wa-
ter level sensor that shuts off the pump before the water level exceeds 9; hence, the
continuous evolution in mode on is restricted to the maximum evolution domain
x < 9. When the water level is x > 7, the controller is allowed to shut the pump off
by taking the edge from node on to node off, but during the shutdown of the valve,
more water pours in. That is, the water level increases from x to x 4 1 by the discrete
change x:=x+ 1 on the edge. Since the evolution in node on is restricted to the
evolution domain x < 9, but the transition from node on to node off requires guard
x > 7, the controller can switch from on to off no earlier than when x > 7, but no
later than when the water level still is x < 9. Any point between the water levels 7
and 9 (including 7 and 9) is a permitted switching point.

In node off, the pump is off and the valve closed, but, nevertheless, water leaks
slowly by the continuous dynamics x’ = —0.1. The controller knows about this wa-
ter leakage, so it stays in off at most as long as x > 3. Whenever x < 5, the controller
can switch along the edge from off to open for opening the valve. Again, because
of the evolution domain restriction x > 3 in off and the guard condition x < 5 on
the edge, the switch may happen at any water level between 3 (inclusive) and 5 (ex-
clusive). In node open, where the valve is open, water drains quickly following the
differential equation x’ = —2, but restricted to the evolution domain x > 0, because
water stops pouring out when there is no water left. Finally, when the water level

12 1 Introduction

satisfies guard x < 2, the system can take the edge from node open back to node on.
It is easy to see that the controller in Fig. 1.10 does not guarantee keeping the water
level within the target range of 1 to 10 always, because it can stay in node open too
long until x = 0.

How can we detect this problem and how can we find more subtle problems as
automatically as possible? If we found problems, how can we find suggestions for
fixes? And, once there are no more bugs, how do we prove that the system always
works as intended under all circumstances? O

1.1.2 Model Checking

As a standard verification technique, model checking [75, 114, 78] has been used
successfully for verifying temporal logic properties [247, 114, 115, 6, 7, 284] of
finite-state abstractions of automata transition structures by exhaustive state space
exploration [8, 159, 156, 217]. Model checking was pioneered [76] in 1981 by
Clarke and Emerson [75] and independently by Queille and Sifakis [255]. It was
originally invented for finite-state systems and has since been extended to handle
finite-state abstractions of infinite-state systems. The working principle of model
checking is to successively explore all state transitions of a transition system from
the set of initial states until an unsafe state is found; see Fig. 1.11 for an illustra-
tion. One of the biggest advantages of model checking is this search for concrete

Fig. 1.11 SuC(.:essi.ve st'fate initial state
space exploration in finite-

state model checking state transition

fif

o O o O unsafe states

counterexamples, because such a sequence of transitions to an unsafe state can be
very informative for debugging the system. If no unsafe state can be found this way,
however, then model checkers can stop only if they have made sure that they have
explored all possibilities. In finite-state systems, this exploration terminates trivi-
ally, because the search space is finite. Still, numerous successful optimisations and
refinements have been developed to ensure faster termination and avoid exhaustive

1.1 Technical Context 13

memory usage, including symbolic model checking with BDDs [66, 65], bounded
model checking with propositional SAT solvers [47, 74], and model checking based
on Craig interpolants [173, 174]. See the 2007 ACM Turing Award lecture by Ed-
mund M. Clarke, Allen Emerson, and Joseph Sifakis [76] for a detailed survey of
model checking, its successes, and its history.

For infinite-state systems the situation is more difficult than for finite automata
because no model checker can actually explore an infinite set of states, so various
abstractions have been developed that group sets of states into equivalence classes.
If a model checker finds an unsafe reachable state in an infinite-state system, this
counterexample is still extremely useful. Yet in case it does not find a counter-
example after finitely many state explorations, it becomes more difficult to make
an argument why no unsafe state could ever be reached by further exploration of
the—still infinite—remaining state space. After all, finite exploration of an infinite
state space still leaves infinitely many possibilities to consider. For example, timed
automata (finite automata with clocks that measure the progress of time) can be ab-
stracted with only finitely many equivalence classes that need to be considered, so
that model checking is still guaranteed to terminate by considering one representat-
ive of each of these finitely many equivalent behaviours [6, 7]. These timed automata
[10, 5, 86] can be understood as hybrid automata in which all differential equations
are of the form x’ = 1, all guards are of a form such as x < ¢ or x —y < ¢ for num-
bers ¢ € Q, and all jumps (if any) are of the form x:=0. But even seemingly small
extensions like stopwatch automata, which are timed automata with clocks that can
be stopped (differential equation x’ = 0) and resumed (x' = 1), have no equivalent
finite-state abstractions anymore, so that model checking becomes undecidable [67].

The more general continuous state spaces of hybrid automata are inherently infin-
ite, and do not admit equivalent finite-state abstractions either [156]. Because of this,
model checkers for hybrid automata use various approximations [159, 8, 156, 70,
125,15,77,21,291, 217] and are still more successful in falsification than in verific-
ation. Furthermore, for hybrid systems with symbolic parameters in the dynamics,
correctness crucially depends on the free parameters (e.g., b and s in Fig. 1.4). It is,
however, quite difficult to determine corresponding symbolic parameter constraints
from concrete values of a counterexample trace produced by a model checker, espe-
cially if they rely on nonstructural state splitting [70, 77, 21, 126]. Finally, in hybrid
systems with nontrivial interaction of discrete and continuous dynamics, parameters
also have a nontrivial impact on the system behaviour, leading to nonlinear para-
meter constraints and nonlinearities in the discrete and continuous dynamics. For
instance, nonlinear constraints of the form s > ;—zb + ... will turn out to be import-
ant for the safety of train systems such as the one in Fig. 1.4. Thus, the standard
model checking approaches [156, 8, 158, 70, 126, 127] cannot be used, because
they require linear dynamics in the discrete transitions and various forms of linear
approximations in the continuous dynamics. Even in simpler timed automata, in
which clocks are the only source of continuous dynamics, parameters immediately
make the model checking problem undecidable [13, 61]. Still, parameters occur fre-
quently in practical applications.

14 1 Introduction

1.1.3 Deductive Verification

Deductive approaches [35, 37, 170, 149, 148, 306, 95, 97] have been used for veri-
fying systems by proofs instead of by state space exploration and, thus, do not re-
quire finite-state abstractions. Deduction and theorem proving have already been
used very successfully for program verification [35, 23, 170], in which proofs are
used to show that a conventional program such as a Java program operates as spe-
cified. Davoren and Nerode [97] have also argued that deductive methods support
formulas with free parameters better than, e.g., the standard model checking prob-
lem does. First-order logic, for instance, has widely proven its power and flexibility
in handling symbolic parameters as free or quantified logical variables. However,
first-order logic has no built-in means for referring to state transitions, which are
crucial for verifying dynamical systems where states change over time.

In temporal logics [247, 114, 115, 6, 284], state transitions can be referred to
using modal operators. For instance, the temporal formula [J¢ would hold for a
system if formula ¢ is true always in all runs of the system. A temporal formula [1¢
that holds for all systems would be called valid. In deductive approaches, temporal
logics have been used to prove the validity of formulas in calculi [97, 306]. Valid
formulas of temporal logic, however, only express generic facts that are true for all
systems, regardless of their actual behaviour. But these are not exactly the formulas
we are interested in. We want to know the special properties of the actual system at
hand, not those generic properties shared by all possible systems at once (including
the broken implementations).

Hence, the behaviour of a specific hybrid system would need to be characterised
declaratively with temporal formulas to obtain meaningful results. It is quite diffi-
cult, however, (and generally impossible for reasons of lack of expressive power),
to characterise the behaviour of a hybrid system just with a set of temporal formulas
such as [lx > 0, because there are often myriads of systems satisfying the same for-
mulas. Most temporal logics are not expressive enough to characterise the dynamics
of a single system this way. Furthermore, the equivalence of declarative temporal
representations and actual system operations would still need to be proven separ-
ately using other techniques. Finally even for finite-state systems, direct temporal
characterisations can become computationally infeasible. In discrete finite-state sys-
tems, for example, direct temporal characterisations of the operational behaviour
transform the linear-time model checking problem of the temporal logic CTL [75]
into an EXPTIME-complete satisfiability problem [113].

Dynamic logic (DL) [253, 148, 149] is a successful approach for verifying
infinite-state discrete systems deductively [35, 37, 170, 149, 148]. Like model
checking, DL does not need declarative characterisations of system behaviour but
can express and analyse the transition behaviour of actual operational system models
directly. Yet, operational models are fully internalised within DL-formulas, and DL
is closed under logical operators. That is, correctness statements about systems can
be combined into bigger formulas with arbitrary propositional operators or quanti-
fiers, and even into nestings of formulas. Within a single specification and verifica-
tion language, DL combines operational system models with means to talk about the

1.1 Technical Context 15

states that are reachable by system transitions. DL provides parametrised modal op-
erators [o¢] and (ct) that refer to the states reachable by system ¢ and can be placed
in front of any formula. The formula [a]¢ expresses that all states reachable by
system o satisfy formula ¢. Likewise, (@) ¢ expresses that there is at least one state
reachable by « for which ¢ holds. These modalities can be used to express necessary
or possible properties of the transition behaviour of & in a natural way. They can be
nested or combined propositionally. In first-order dynamic logic [253], where also
quantifiers are allowed, Ip[ct](B)¢ says that there is a choice of parameter p (ex-
pressed by 3p) such that for all possible behaviours of system & (expressed by [a])
there is a reaction of system f3 (i.e., {3)) that ensures ¢. Likewise, 3p ([at]¢ A [B]y)
says that there is a choice of parameter p that makes both [a]¢ and [B]y true, sim-
ultaneously, i.e., that makes the conjunction [a]¢ A [B]y true, saying that formula ¢
holds for all states reachable by & executions and, independently, y holds after all
B executions. The logical operator A is for conjunction (“and”).

On the basis of first-order logic over the reals [288], which we use to describe
safe regions of hybrid systems and to quantify over parameter choices, we introduce
a first-order dynamic logic over the reals with modalities that directly quantify over
the possible transition behaviour of hybrid systems. Since hybrid systems are subject
to both continuous evolution and discrete state change, we generalise dynamic logic
so that operational models o of hybrid systems can be used in modal formulas such
as [a]¢.

With our extension of dynamic logic we can specify desirable properties of hy-
brid systems. Suppose frain denotes the hybrid system in Fig. 1.4; then the for-
mula [train](z < s+ 10) expresses that the train always ([train]) stays in the region
7 <s-+10, i.e., it never passes the position s+ 10. This formula cannot be true for
fast trains, however, because the model in Fig. 1.4 starts braking at position z = s at
the earliest, but there may not be sufficient braking distance to s + 10 for high velo-
cities v. For some other values of the variables and parameters, instead, the formula
may be true, but how can we find out if it is? And how do we determine corres-
ponding parameter constraints that characterise under which circumstances such a
formula is true? If we knew these parameter constraints, we may be able to choose s
wisely in practise, so that the train model always works as intended.

As a further example, let ball be the hybrid system for the bouncing ball from
Fig. 1.5. Then the formula [ball] (0 < h < H) expresses that the bouncing ball always
([ball]) stays between the ground at height 0 and maximum height H. The answer
to the question about whether this formula is true or not depends on the value of H
and on the initial height and velocity of the ball (the initial values of &,v) as well
as the value of the gravity constant g. For H = —5, the formula is certainly false,
because the ball can never be lower than the ground (2 < 0). But for 7 =v =0 and
H > 1 it is definitely true, because the ball lies still without moving then. The most
interesting cases, however, are those that are neither trivially true nor trivially false,
but those where the ball actually bounces for a certain period of time and only the
dynamics and relations of parameters and state variables determine the truth of the
formula [ball](0 < h < H).

16 1 Introduction

Finally, suppose wctrl is the hybrid system for water control from Fig. 1.10. Then
the formula [werrl](1 < x < 10) expresses that the water level always ([wetrl]) stays
between 1 and 10. This formula may be true or false. In fact, it is not true under
all circumstances for the model in Fig. 1.10, because the system could still stay in
node open too long so that 1 <x no longer holds true. Instead, the dual formula
(wetrlyx < 1 is true, because there is a run of the water tank model ((wctrl)) that
reaches a state where the water level is less than 1 (x < 1), which, in fact, holds for
any initial water level.

1.1.4 Compositional Verification

As a verification technology for our dynamic logic for hybrid systems, we devise a
compositional proof calculus for verifying properties of a hybrid system by proving
properties of its parts. Compositional verification is a very powerful proof tech-
nique with interesting scalability properties compared to monolithic approaches. It
is, in essence, a divide-and-conquer technique for verification. Compositional proof
calculi prove properties of a complex system by reducing them to subproperties
of its subsystems recursively. Compositional approaches can have the advantage
that properties for subsystems are often easier to prove, because they are simpler.
For that purpose, our calculus recursively decomposes formula [ct]¢ symbolically
into an equivalent formula, for instance, [ot]¢; A [0n]¢, about subsystems o of o
and subproperties ¢; of ¢. With this, formula [@]¢ can simply be verified by prov-
ing the formulas [o;]¢; separately—using the same symbolic decomposition prin-
ciples recursively—and combining the results conjunctively. In particular, synthes-
ised parameter constraints that are required for the desired property to hold carry
over from the latter formula to the former formula just by conjunction. Indeed, our
compositional reasoning techniques turn out to be be quite successful in reducing
the complexity of more complicated hybrid systems by decomposing them into their
submodules.

Unfortunately, hybrid automata are not suitably compositional for this purpose.
Their graph structures cannot be decomposed into subgraphs ¢; such that the for-
mula [0)¢ A [o]@o is equivalent to [a]¢, because of the dangling edges between
the subgraphs ¢;. For instance, the automaton in Fig. 1.4 cannot simply be verified
by proving [accel]@ A [brake]d, because the effects of edges between the nodes need
to be taken into account. Figure 1.12 shows an unsuccessful decomposition attempt
of the hybrid automaton for train control from Fig. 1.4. Suppose we had a logic
for hybrid automata' in which we could formulate logical formulas like [a](v < 8),
where o is the hybrid automaton from Fig. 1.4. This graphical “formula” is depic-
ted at the bottom of Fig. 1.12. The problem is that this formula at the bottom cannot

! The syntax and semantics of such a dynamic logic for hybrid automata can actually be derived
from the presentation in Part I quite easily. It is the development of a compositional proof calculus
for such a logic for hybrid automata that is technically more involved than the constructions for the
logic we present in this book.

1.1 Technical Context 17

missing link in decomposition

-,
S

Py ~
0" ~~‘
v M
- z>s
accel /—? brake
1 a. = — /
7=v Z=v
o — (v<8) /\ Vi—a (v<8)
v<1 v>0
a:=a+5
=
accel '~ =/ brake
Z=v a==b Z=v

\)/:a | \)/:a (Vgg)
/4\v§1/ v>0
- a:=a-+>5

Fig. 1.12 Failed hybrid automaton decomposition attempt

just be proven by decomposing it into a proof of [accel] (v < 8) A [brake](v < 8), be-
cause the discrete transition edges are important for the behaviour of the automaton
and cannot be ignored. For several reasons, the formula at the bottom of Fig. 1.12
cannot be proven by decomposing it into the conjunction of the two graphical for-
mulas at the top of Fig. 1.12 (the top-left formula results from the bottom formula
by isolating node brake into the top-right formula, indicated by the grey colour).

One reason why this decomposition fails is that the automaton in the top left
formula, which results from the automaton in the bottom by splitting off the brake
phase, is no longer a hybrid automaton: it now has dangling edges pointing into
nowhere. But what is the meaning and behaviour of such a broken, incomplete
automaton fragment supposed to be? Remember that node brake is not present in
the top-left formula, because we wanted to decompose the system in the first place.
What should the dynamics look like when the automaton makes a transition into the
undefined void? Another part that is missing in the failed decomposition attempt
in Fig. 1.12 is the missing (dashed) link from the transitions leaving the automaton
in the left formula to the automaton in the right formula and a link that says “if the
operations of the automaton in the right formula stop, then the system jumps back to
the automaton in the left formula, resuming action with a transition to accel.” This
missing link is pretty strange. It would be a link between the operational behaviour
of parts of multiple different formulas. What is the meaning of the left formula sup-
posed to be then if we want to consider it and reason about it alone, without the
context of the right formula?

In other words, these decomposition attempts of hybrid automata do not lead to
a compositional approach where we can reason separately about the fragments of
the system and give a compositional and denotational [277] meaning to all formulas
and system models, i.e., a semantics of the whole, solely defined in terms of the

18 1 Introduction

semantics of its parts, and not in terms of exterior formulas. The semantics of hybrid
automata is just not sufficiently compositional for our purposes. It is not impossible
to follow such a graphical approach, but it is technically quite involved and makes
decompositions of the hybrid system unnecessarily hard, which is an obstacle to
scalable verification, traceability, and tangibility.

For these reasons, we do not impose an automaton structure on the system. In-
stead, we introduce hybrid programs as a textual program notation for hybrid sys-
tems by extending conventional discrete program notations [253, 148, 182, 149].
The program on the right of Fig. 1.5 on p. 7, for instance, would be a hybrid pro-
gram notation for the hybrid automaton on the left of Fig. 1.5. Hybrid programs
allow for flexible programmatic combinations of elementary discrete or continuous
transitions by structured control programs with a perfectly compositional semantics:
The semantics of a compound hybrid program is a simple function of the semantics
of its parts and does not further depend on any automata graph structures.

This compositional semantics of hybrid programs and a logic for hybrid pro-
grams has significant advantages. Figure 1.13, for instance, shows how the ana-

Fig. 1.13 Successful hybrid
program decomposition [accel] (v < 8) A [brake](v < 8)
[accel U brake](v < 8)

lysis of a property of the hybrid program accelU brake that can choose between
the operations of accel and of brake by a nondeterministic choice (U) can be de-
composed directly into the formula [accel](v < 8) A [brake](v < 8) on the top. By
decomposing the property at the bottom about a more complicated hybrid program
into independent conjunctions—/[accel] (v < 8) and [brake](v < 8)—of properties of
simpler hybrid programs, we can recursively make the hybrid program simpler by
decomposing it until we can prove the remaining properties of subprograms. As a
special case, these decompositions also include cases that define switching condi-
tions between acceleration and braking, but no special non-compositional handling
of these is required.

In this book we study systematic analysis principles that can be used to de-
compose properties of complicated hybrid programs into simpler properties as in
Fig. 1.13 and that handle the remaining discrete dynamics (discrete assignments),
continuous dynamics (differential equations), and their hybrid interactions. We in-
troduce a first-order dynamic logic for hybrid programs that makes these informal
ideas rigorous. The resulting logic, which we call differential dynamic logic (L),
constitutes a natural specification and verification logic for hybrid systems. With the
goal of developing a solid theoretical, practical, and applicable foundation for de-
ductive verification of hybrid systems by automated theorem proving, the focus of
this book is a thorough analysis of the logic A%, its calculus, extensions, verification
procedures, and applications.

1.1 Technical Context 19

1.1.5 Lifting Quantifier Elimination

When proving formulas of differential dynamic logic (d.%), interacting hybrid dy-
namics cause interactions of arithmetic quantifiers and dynamic modalities, which
both affect the values of symbols. For continuous evolutions, we have to prove for-
mulas like V¢ [} x>0, expressing that, for all durations 7 of some continuous evolu-
tion in @, the property x > 0 holds after all runs ([¢]) of system o. The standard tech-
niques for handling quantifiers in first-order logic [122, 147, 123] are incomplete for
handling these situations, because they are based on instantiation or unification (see
App. A), which is already insufficient for proving the tautology Vz (z2 >0) of real
arithmetic. Unfortunately, decision procedures for real arithmetic, such as real quan-
tifier elimination [288, 81], cannot handle the real quantifier V¢ in V¢ [ct]x>0 either,
because of the modality [a]. The dynamics of the hybrid program o may depend
on the value of ¢, but, at the same time, the constraints on ¢ depend on the effect
of a. Quantifier elimination in real-closed fields [288, 81], however, is only defined
for first-order logic, not for first-order differential dynamic logic with modalities for
hybrid programs. Indeed, the actual algebraic constraints on the quantified real vari-
able 7 still depend on how the system variables evolve along the dynamics of ¢. This
effect inherently results from the interacting dynamics of hybrid systems, where the
duration ¢ of a continuous evolution determines the resulting state and, hence, af-
fects all subsequent discrete or continuous evolutions in . Thus, the effect of o
first needs to be analysed with respect to the arithmetical constraints it imposes on ¢
for x > 0 to hold, before the quantifier V¢ can be handled.

In this book, we present a calculus that is suitable for automation and combines
deductive and arithmetical quantifier reasoning within a single compositional proof
calculus. It introduces real-valued free variables and real Skolem terms to post-
pone quantifier elimination and continue reasoning beyond the occurrence of a real
quantifier in front of a modality. Quite unlike classical proof techniques, however,
our calculus later reintroduces a corresponding quantifier into the proof when its
algebraic constraints have been discovered completely. For Vz [et]x > 0, our calcu-
lus will, for instance, continue with the unquantified kernel [a]x > 0 after repla-
cing variable ¢ with a Skolem term s(x). Once all arithmetical constraints on s(x)
are known, a quantifier for s(x) will be reintroduced and handled by real quanti-
fier elimination [288, 81]. The Skolem term s(x) can be thought of as a new name
for the universally quantified variable 7. In a similar manner, our calculus combines
quantifier elimination with deduction for handling existential real quantifiers using
real-valued free variables.

In Chap.2, we introduce a calculus that makes this intuition formally precise.
Crucially, we exploit the relationship of Skolem terms and free variables in order to
keep track of the lost quantifier nesting to prohibit unsound rearrangements of quan-
tifiers when they are reintroduced. After all, it would be disastrous if we could start
out proving a property IxVy[o]@, turn the quantifiers for x and y into free variables
and Skolem terms, and accidentally reintroduce quantifiers in a swapped order to
prove the weaker statement Vy3x ... only. Clearly, it would not be sufficient to find
a different x for each value of y, if, what we started looking for in the first place is

20 1 Introduction

one common x for all the y such that [&t]¢ holds. The corresponding calculus rules
that we introduce, which comply with all soundness requirements, are perfectly nat-
ural and coincide nicely with the prerequisites for quantifier elimination over the
reals. Further, the A% semantics and calculus are fully compositional so that prop-
erties of a hybrid program can be proven by the reduction to properties of its parts
following a structural symbolic decomposition within the compositional .Z proof
calculus.

1.1.6 Differential Induction and Differential Strengthening

In Chap. 3, we extend our logic d.Z to the differential-algebraic dynamic logic
DAL, which is the logic of general hybrid change. DAL provides differential-
algebraic programs (DA-programs) as general models for hybrid systems by al-
lowing for propositional operators and quantifiers in discrete and continuous trans-
itions. DA-programs have a very natural semantics of simultaneous change using
just conjunctions (A) as logical operators. For instance, the conjunctive differential-
algebraic constraint X' = y Ay’ = —x, in which each conjunct needs to hold during
continuous evolutions, gives a natural semantics to differential equation systems
x' =1y,y = —x, such that ' = y,y/ = —x is a notational variant of ¥’ = y Ay = —x.
Disjunctions, in contrast, are a natural way to express switching conditions and finite
nondeterminism in the dynamics. The disjunctive differential-algebraic constraint
X' =yVvx' = —y, for instance, allows x to evolve with velocity y or with velocity —y
and even switch between both cases, because only one of the two disjuncts needs to
hold at any time. Quantifiers in the dynamics of DA-programs are a very expressive
extension with which differential-algebraic equations and differential inequalities
can be represented directly, and with which quantified disturbance in the dynam-
ics can be characterised in an elegant and uniform way. The quantified differential-
algebraic constraint 3y (x' = y Ay? < 5), for example, allows all evolutions of x with
some velocity y (i.e., dy) whose square is less than 5. This quantified nondetermin-
ism makes DA-programs quite expressive for characterising more involved system
dynamics.

The standard approach to dealing with continuous dynamics for hybrid systems
is to use symbolic or numerical solutions of their respective differential equations.
Unfortunately, the range of systems that is amenable to these techniques is fairly
limited, because even solutions of simple linear differential equations quickly fall
into undecidable classes of arithmetic. For instance, the solutions of the linear differ-
ential equation system s’ = ¢,c’ = —s are trigonometric functions like sin and cos.
But first-order arithmetic with trigonometric functions is undecidable by a simple
corollary to Godel’s famous incompleteness theorem [137]. As a means for verify-
ing hybrid systems with challenging continuous dynamics without having to solve
their differential equations, we complement discrete induction for loops and repeti-
tions with a new form of differential induction for differential equations. Differential
induction is a natural induction technique for differential equations. It is based on the

1.2 Related Work 21

local dynamics of the (right-hand side of the) differential equations themselves and
does not need closed-form solutions for the differential equations. Because differen-
tial equations are simpler than their solutions (which is part of the representational
power of differential equations), differential induction techniques working with the
differential equations themselves are more scalable than techniques that need solu-
tions of differential equations. Our differential induction techniques even generalise
to differential-algebraic constraints with differential inequalities or quantifiers in the
dynamics.

To further increase the verification power, we add differential strengthening or
differential cuts as a powerful proof technique for refining the system dynamics
with auxiliary invariants that can simplify the proof of the original property signi-
ficantly. The basic insight is that auxiliary properties that are provable invariants of
the dynamics can help prove the original property even if it was not provable before.
This phenomenon is unique to differential equations and does not happen in clas-
sical discrete systems. Overall, our combination of compositional proof calculi with
differential induction and differential strengthening turns out to be very powerful for
the analysis of advanced hybrid systems, including air traffic control applications.

1.2 Related Work

In this section, we briefly discuss related approaches to verification.

Model Checking of Hybrid Automata

Model checking approaches work by state space exploration and—due to their un-
decidable reachability problem—require [156] various abstractions or approxima-
tions [159, 8, 156, 125, 15, 77, 291, 217] for hybrid automata, including numerical
approximations [70, 21].

Beyond standard approaches [8, 156, 126] for linear automata with constant dy-
namics, the seminal work of Lafferriere et al. [189, 188, 190] presented a decision
procedure for o-minimal hybrid automata and classes of linear dynamics with a ho-
mogeneous eigenstructure. They have analysed the discrete and continuous dynam-
ics independently, which requires completely decoupled dynamics with forgetful
jumps, i.e., where the outcome of a jump is completely independent of the continu-
ous state. Unfortunately, actual systems rarely forget about states completely. For
modelling train dynamics accurately, for example, it is important that the train po-
sition z and velocity v stays the same when switching from acceleration to braking
mode in Fig. 1.4, and these variables do not just change arbitrarily and independ-
ently of their prior values.

Chutinan and Krogh [70] presented polyhedral approximations of hybrid auto-
mata with polyhedral discrete dynamics, invariants, and initial state sets. The relev-
ant discrete dynamics, initial state regions, and invariants for our train and aircraft

22 1 Introduction

applications are nonlinear and thus cannot be described accurately by polyhedra.
Frinzle [125] showed that reachability is decidable for specific classes of robust
polynomial hybrid automata, where the safe and unsafe states are sufficiently separ-
ate and the safe region is bounded. Asarin et al. [21] used piecewise linear numerical
approximations in an approximate reachability algorithm for continuous systems
with known Lipschitz bounds. Mysore et al. [217] showed decidability of bounded-
time and bounded switching reachability prefixes of semialgebraic hybrid automata.
Because there seldom is a known bound on the number of transitions that a system
can make, nor a (small) bound on the lifetime of a system, we are mostly interested
in unbounded horizon properties, which cannot be obtained with bounded model
checking.

Model checking tools like HyTech [157], PHAVer [126, 127], d/dt [22], and
CheckMate [70] are already quite successful. Still these or other approaches [156,
125, 228] cannot handle our train and aircraft applications with nonlinear switch-
ing, nonlinear discrete and continuous dynamics, and high-dimensional state spaces
(more than 30 dimensions).

Because hybrid systems do not admit equivalent finite-state abstractions [156]
and due to general limits of numerical approximation [238], model checkers are still
more successful in falsification than in verification. To obtain a sound verification
approach and for improved handling of free parameters [97], we follow a symbolic
logic-based approach and support d.Z as a significantly more expressive specifica-
tion language. Finally, we introduce hybrid programs as a more uniform model for
hybrid systems that is amenable to compositional symbolic verification.

Logics for Real-time Systems

Logics for real-time systems [159, 275] are not expressive enough to capture the
dynamics of hybrid systems, particularly their differential equations, which are the
main focus of this book. For instance, Schobbens et al. [275] give complete axio-
matisations of two decidable dense time propositional linear temporal logics. Un-
fortunately, in these propositional logics one cannot express that relevant separa-
tion properties hold always during the flight of aircraft guided by specific flight
controllers. A crucial property, for instance, is that the system never leaves re-
gion (x; —y1)? + (x2 —y2)? > p?, which expresses that the distance of the aircraft
at (x1,x2) and the aircraft at (y;,y7) is at least the protected zone p.

Successful model checking approaches for timed automata, which are a real-
time restriction of hybrid automata, have been developed before, including the tools
KRONOS [98] and UPPAAL [193]. Unlike for hybrid systems, model checking for
timed automata is decidable [10, 5, 86]. But the expressive power of timed automata
is fairly limited. The only continuous variables are clocks ¢ following the differential
equation ¢’ = 1. Positions or velocities evolving according to other laws of continu-
ous dynamics are not allowed. In fact, even very minor extensions of timed automata
make the verification problem undecidable, including stopwatches [67], which are
clocks that can be stopped (dynamics ¢’ = 0) and resumed (dynamics ¢’ = 0). For a

1.2 Related Work 23

general survey of real-time verification approaches, we refer the reader to the book
by Olderog and Dierks [221].

Logics for Hybrid Systems

Zhou et al. [306] extended the duration calculus [305] with mathematical expres-
sions in derivatives of state variables. They use a multitude of calculus rules and
a non-constructive oracle that requires external mathematical reasoning about the
notions of derivatives and continuity. This undirected reasoning about mathematics,
especially derivatives and continuity, is not suitable for automatic verification.

Davoren and Nerode [95, 97] presented a semantics of modal p-calculus [181]
in hybrid systems and examined topological aspects. They provided Hilbert-style
calculi to prove formulas that are valid for all hybrid systems simultaneously. With
this, however, only limited information can be obtained about a particular system:
In propositional modal logics, system behaviour needs to be axiomatised declarat-
ively in terms of abstract actions a,b,c of unknown effect. With unknown effects,
however, we cannot characterise, say, a train control system or the flight dynamics
for air traffic control, and not even the dynamics of a bouncing ball.

The strength of our logic primarily is that it is an expressive first-order dynamic
logic: It handles actual operational models of hybrid systems such as 7/ = a instead
of abstract propositional actions of unknown effect. The advantage of our calculus
in comparison to others [306, 95, 97] is that it provides a constructive modular
combination of arithmetic reasoning with reasoning about hybrid transitions and
works by structural symbolic decomposition. With this, our calculus can be used
easily for verifying actual operational hybrid system models, including railway and
air traffic control systems, which are of considerable practical interest [156, 58,
70, 77, 217, 90, 238, 91]. Our proof calculus supports free parameters and first-
order definable flows, which are well suited for verifying the coordination of train
dynamics. First-order approximations of more general flows can be used according
to [15, 238, 227]. More general dynamics can also be verified with the technique of
differential induction that we introduce in Chap. 3.

Specification Languages for Hybrid Systems

Inspired by a proposal by He [175], Zhou et al. [69] presented a hybrid variant of
CSP [162] as a language for describing hybrid systems. They gave a semantics in the
extended duration calculus [306]. Zhou et al. did not yet give an actual verification
approach for hybrid CSP.

Ronkko et al. [270] extended guarded command programs with differential rela-
tions and gave a weakest-precondition semantics in higher-order logic with built-in
derivatives. Without providing a means for verification of this higher-order logic,
this approach is limited to providing a notational variant of standard mathematics.

24 1 Introduction

Rounds and Song [272] have developed a hybrid version of the 7-calculus [208]
as a modelling language for embedded systems. Later, Rounds [271] gave a se-
mantics in a rich set theory for an abstract spatial logic for the hybrid 7-calculus,
which is also called @-calculus. In the hybrid m-calculus, processes interact with
a continuously changing environment, but cannot themselves evolve continuously,
which would be crucial to capture the physical movement of traffic agents. From
the semantics alone, however, no verification is possible in these approaches, except
perhaps by manual semantic reasoning.

Other process-algebraic approaches, such as y [40], have been developed for
modelling and simulation purposes [39]. At present, verification is still limited to
small fragments that can be translated directly to other verification tools such as
PHAVer [127, 126] when converted to hybrid automata or to UPPAAL [193] when
converted to timed automata.

Modelling languages for hybrid systems further include SHIFT [100] for net-
works of hybrid automata, and R-Charon for reconfigurable systems [183]. These
approaches focus more on simulation and compilation [100] or the development of
a semantics [183], so no verification or formal analysis is possible yet.

Uses of Deduction for Hybrid Systems

Manna et al. [201, 178] and Abrahdm et al. [1] used theorem provers for check-
ing invariants of hybrid automata in STeP [201] and PVS [1], respectively. Their
working principle is, however, quite different from ours. Given a hybrid automaton
and a global system invariant, they compile, in a single step, a verification condition
expressing that the invariant is preserved under all transitions of the hybrid auto-
maton. Hence, hybrid aspects and transition structure vanish completely before the
proof starts. All that remains is a flat quantified mathematical formula. Which hy-
brid systems can be verified with this approach in practise strongly depends on the
general mathematical proving capabilities of STeP and PVS, which, because of their
general-purpose focus, typically requires user interaction.

In contrast, we follow a fully symbolic approach using a genuine specification
and verification logic for hybrid systems. Our dynamic logic for hybrid systems
works deductively by symbolic decomposition and preserves the transition structure
during the proof, which simplifies the traceability of results considerably. Further,
the structure in this symbolic decomposition can be exploited for deriving invari-
ants or parametric constraints. Consequently, invariants do not necessarily need to
be given beforehand in our approach. Moreover, in practise, guiding quantifier elim-
ination procedures along natural splitting possibilities of the structural decompos-
ition performed by the our proof calculus turns out to be important for successful
automatic proof strategies (Chaps. 5 and 6).

1.4 Structure of This Book 25

1.3 Contributions

Our main conceptual contribution is a series of differential dynamic logics for hy-
brid systems (these logics are called A, DAL, and dTL), which capture the logical
quintessence of the dynamics of hybrid systems succinctly. Our logics provide a
uniform semantics and concise language for specifying and verifying correctness
properties of general hybrid systems with sophisticated dynamics. Our main prac-
tical contribution is a concise free-variable calculus that axiomatises the transition
behaviour of hybrid systems relative to differential equation solving. With our gen-
eralisation of free-variable calculi to dynamic logic over the reals, the calculus is
suitable for automated theorem proving and for verifying hybrid superpositions of
interacting discrete and continuous dynamics compositionally.

Our main theoretical contribution is that we prove our calculi to be sound and
complete relative to the handling of differential equations. To the best of our know-
ledge, this is the first relative completeness proof for a logic of hybrid systems, and
even the first formal notion of hybrid completeness. Our results fully align hybrid
and continuous reasoning proof-theoretically and show that hybrid systems with
interacting repetitive discrete and continuous evolutions can be verified whenever
differential equations can.

We further contribute a verification calculus that includes uniform proof rules
for differential induction along differential equations or more general differential-
algebraic constraints, using a combination of differential invariants, differential vari-
ants, and differential strengthening for verifying hybrid systems without having to
solve their differential constraints. Based on these calculi, we develop a fixed-point
verification algorithm that computes the required invariants and differential invari-
ants for a formula and refines the underlying system dynamics as needed during the
proof.

As applied contributions, we demonstrate the capabilities of our logics, calculi,
and algorithms by verifying collision avoidance in realistic train control applica-
tions and challenging air traffic control manoeuvres. Overall, our logical analysis
approach for hybrid systems can successfully verify realistic applications that were
out of the scope of other approaches, for both theoretical and scalability reasons.

1.4 Structure of This Book

This book consists of three parts that basically correspond to the theory, practise,
and applications, respectively, of the logical analysis of hybrid systems. You are
now reading the introduction.

26 1 Introduction

Logics and Calculi

In Part I, which is the core of this book, we introduce novel logics and proof calculi
that form the new conceptual, formal, and technical basis for the logical analysis
of hybrid systems. In Chap.2, we introduce the differential dynamic logic d.% as
a variant of dynamic logic that is suitable for specifying and verifying properties
of hybrid systems. It generalises dynamic logic to dynamic logic over the reals in
the presence of hybrid dynamics with discrete state transitions and with continuous
state evolutions along differential equations. As a verification technique, we present
a new compositional sequent calculus for . that is suitable for automation and
integrates handling of real quantifiers by generalising Skolemisation and free vari-
ables to the reals. In Chap.2, we also prove completeness relative to differential
equations as the most fundamental theoretical result in this book.

In Chap. 3, we introduce the differential-algebraic logic DAL that extends the
class of hybrid system models by allowing more general differential-algebraic equa-
tions, differential inequalities, and quantified nondeterminism. Further, we present a
uniform theory of differential induction, differential invariants, differential variants,
and differential strengthening as central symbolic verification techniques for hand-
ling challenging continuous dynamics in hybrid systems without having to solve
their differential equations.

In Chap.4, we address the handling of temporal properties and introduce the
differential temporal dynamic logic dTL along with a calculus that reduces temporal
properties to A% properties. The extensions of d.% that we present in Chaps. 3 and 4
are complementary and compatible. Their direct modular combination immediately
defines the differential-algebraic temporal dynamic logic DATL.

Automated Theorem Proving

In Part II, we focus on the practical aspects of implementing the verification calculi
from PartI. The calculi in Part] have already been designed for the practical needs
of automated theorem proving, most notably for the free-variable and Skolemisation
techniques from Chap. 2 and the compositional proof calculi from PartI. Immedi-
ate implementations of the proof calculi from PartI in automated theorem provers
can prove examples of medium complexity directly. Yet, more complex case studies
require additional algorithmic techniques for achieving high degree automation and
good scalability properties. In Chap. 5, we refine the calculi from PartI to tableau
procedures that are suitable for automated theorem proving (ATP) and present proof
strategies that navigate through their nondeterminisms to help overcome the com-
plexity issues of integrating real quantifier elimination as a decision procedure for
real arithmetic.

In Chap. 6, which is based on joint work with Edmund M. Clarke [239], we
introduce the “differential invariants as fixed points” (DIFP) paradigm. We refine
the differential induction techniques from Chap. 3 to a fully automatic verification

1.4 Structure of This Book 27

algorithm for computing the required discrete and differential invariants of a hybrid
system locally in a logic-based fixed-point loop.

Applications

In PartIII, we shift our attention to application scenarios for our logical analysis
approach for hybrid systems. Extending smaller hybrid systems which have served
as running examples throughout this book, we show full verification case studies of
the European Train Control System (ETCS) in Chap. 7, which is based on joint work
with Jan-David Quesel [243]. We also extend and show verification case studies
for aircraft collision avoidance manoeuvres in air traffic control (ATC) in Chap. 8,
which is based on joint work with Edmund M. Clarke [238, 239].

Finally, Chap.9 concludes this work with a discussion of the results and per-
spectives for future research.

Appendices

In PartIV, we provide the background in logic and differential equations that
we need for the course of this book. In App. A, we give an introduction to ba-
sic first-order logic (FOL), its syntax, semantics, and proof techniques. For refer-
ence, App. B summarises some classical results about ordinary differential equa-
tions (ODEs) that we need as background for this book. In App.C, we formally
investigate the relationship between hybrid automata [156] and hybrid programs
by embedding hybrid automata into hybrid programs. In App. D, we briefly char-
acterise the verification tool KeYmaera that implements the logics and automated
theorem proving techniques presented in this book and that has been implemented
in joint work with Jan-David Quesel [242]. We also survey various techniques that
can be used to verify real arithmetic.

Online Material

At the Website for this book, we provide the KeYmaera verification tool for down-
load and webstart. KeYmaera has been developed in joint work with Jan-David
Quesel [242] and implements the logical analysis approach presented in this book.
Slide material, an online tutorial, and KeYmaera problem files for several examples,
including the case studies of train and air traffic control, can also be found on the
Web.

The Web page for this book is at the following URL:

http://symbolaris.com/lahs/

28 1 Introduction

Suggested Reading Sequence

The basic suggested reading sequence in this book is linear (with additional con-
sultation of the appendices for background). Except for the foundation of this work
that is laid out in Part I, however, the chapters in this book are mostly self-contained
so that they can also be studied independently. Figure 1.14 shows the reading or-
der dependencies among the chapters (solid lines) and the partial dependencies of
suggested reading sequences that holds for the advanced material of the respective
chapters (dashed lines).

[|
y N, ¥ Part ITT
&=)

Fig. 1.14 Dependencies and suggested reading sequence of chapters and appendices

For a background in classical first-order logic (FOL), we recommend you review
App. A. Depending on the interest, field of study, and preference of the reader, we re-
commend he either study the background information in App. A on first-order logic
before proceeding to PartI or use the material in App. A as a background reference
book while reading the main part of this book. Similarly, we recommend he review
the background on ordinary differential equations (ODEs) in App. B either before
or during the study of this book. An intuitive approach to understanding differential
equations and formal definitions of their semantics will be given in the main parts
of this book. Logic itself is also explained and illustrated intuitively during the main
part of this book, but some readers may also find it helpful to refresh or learn about
the basics of first-order logic from App. A before proceeding to the main part.

While there is a lot of flexibility in the reading sequence of the chapters, we
strongly recommend you study the logical foundations of hybrid systems analysis
and differential dynamic logic (d.¥) in Chap. 2 of PartI before reading any other
chapter of Parts I-III. Chapter 2 develops the logical foundations, the system model

1.4 Structure of This Book 29

of hybrid programs, the differential dynamic logic (0.Z’) for expressing correctness
properties, and the proof calculus for verifying these properties that will be needed
in the remainder of this book.

Some more advanced sections in the applications in PartIII also depend on the
theory of differential invariants and the differential algebraic dynamic logic (DAL)
that is developed together with other extensions in Chap. 3. We recommend you read
Chap. 3 on DAL before studying the air traffic control (ATC) verification in Chap. 8.
While most of Chap. 7 on the European Train Control System (ETCS) verification
can be read with the foundation in ¥ from Chap.2, some advanced parts also
use results from Chap.3 on DAL. We also recommend you study the theoretical
foundations on DAL in Chap. 3 before reading the automation approach “differential
invariants as fixed points” (DIFP) in Chap. 6. Still, some level of understanding of
the DIFP automation approach in Chap. 6 can also be gained without your having
read the full theoretical background on DAL in Chap. 3.

Part I

Logics and Proof Calculi for Hybrid
Systems

Overview In this part, which is the core part of this book, we introduce novel logics
and proof calculi that form the new conceptual, formal, and technical basis for the
logical analysis of hybrid systems. In Chap. 2, we introduce the differential dynamic
logic .7 as a variant of dynamic logic that is suitable for specifying and verifying
properties of hybrid systems. It generalises classical dynamic logic to dynamic lo-
gic over the reals in the presence of hybrid dynamics with interacting discrete state
transitions and continuous state evolutions along differential equations. As a veri-
fication technique, we present a new compositional proof calculus for d.Z that is
suitable for automation and integrates handling of real quantifiers by generalising
Skolemisation and free variables to the reals. In Chap. 2, we also prove complete-
ness relative to differential equations as the most fundamental theoretical result in
this book.

In Chap. 3, we introduce the differential-algebraic logic DAL that extends the
class of hybrid system models by allowing more general differential-algebraic equa-
tions, differential inequalities, and quantified nondeterminism. Further, we present a
uniform theory of differential induction, differential invariants, differential variants,
and differential strengthening as central symbolic verification techniques for hand-
ling challenging continuous dynamics in hybrid systems without having to solve
their differential equations.

In Chap. 4, we address the handling of temporal properties and introduce the dif-
ferential temporal dynamic logic dTL along with a calculus that reduces temporal
properties to A.Z properties. The extensions of . that we present in Chap. 3 and
Chap. 4 are complementary and compatible. Their direct modular combination im-
mediately defines the differential-algebraic temporal dynamic logic DATL.

The logics and proof techniques developed in this part will form the basis for
the automation techniques developed in PartII. They also form the foundation for
the formal verification tool KeYmaera. We will also use the differential dynamic
logics to formalise safety-critical properties of the train and aircraft control studies
in Part III and prove them with the proof techniques we develop in PartI.

Chapter 2

Differential Dynamic Logic d.¥

Contents

2.1 Introduction 34
2.1.1 Structure of This Chapter 35
2.2 SYNtax . . o. .o 35
2.2.1 Terms 37
222 Hybrid Programs 41
2.2.3 Formulas. 47
2.3 Semantics 49
2.3.1 Valuationof Terms 50
232 Valuation of Formulas 51
233 Transition Semantics of Hybrid Programs 54
2.4 Collision Avoidance in Train Control 61
25 ProofCalculus. Lo 64
2.5.1 Substitution 65
252 ProofRules 76

253 Deduction Modulo with Invertible Quantifiers and Real
Quantifier Elimination 88
254 Verification Example 94
26 Soundness 97
2.7 Completeness 101
2.7.1 Incompleteness 102
272 Relative Completeness 103
2.7.3 Characterising Real Godel Encodings 105
2.7.4 Expressibility and Rendition of Hybrid Program Semantics 106
2.7.5 Relative Completeness of First-Order Assertions 109
2.7.6 Relative Completeness of the Differential Logic Calculus 113
2.8 Relatively Semidecidable Fragments 114
2.9 Train Control Verification 118
2.9.1 Finding Inductive Candidates 118
2.9.2 Inductive Verification 119
293 Parameter Constraint Discovery 120
210 Summary ... 122

A. Platzer, Logical Analysis of Hybrid Systems,
DOI 10.1007/978-3-642-14509-4 2, © Springer-Verlag Berlin Heidelberg 2010

33

34 2 Differential Dynamic Logic A

Synopsis Hybrid systems are models for complex physical systems and are defined
as dynamical systems with interacting discrete transitions and continuous evolutions
along differential equations. With the goal of developing a theoretical and practical
foundation for deductive verification of hybrid systems, we introduce a dynamic lo-
gic for hybrid programs, which is a program notation for hybrid systems. As a veri-
fication technique that is suitable for automation, we introduce a free-variable proof
calculus with a novel combination of real-valued free variables and Skolemisation
for lifting quantifier elimination for real arithmetic to dynamic logic. The calculus
is compositional, i.e., it reduces properties of hybrid programs to properties of their
parts. Our main result proves that this calculus axiomatises the transition behaviour
of hybrid systems completely relative to differential equations. In a study with co-
operating traffic agents of the European Train Control System, we further show that
our calculus is well suited for verifying realistic hybrid systems with parametric
system dynamics.

2.1 Introduction

In this chapter, we introduce the differential dynamic logic d.%, its syntax, se-
mantics, and proof calculus. It forms the core of this book and is the basis for the
extensions, algorithmic refinements, and applications in subsequent chapters of this
book.

Contributions

Our main conceptual contribution in this chapter is the differential dynamic logic
d.Z for hybrid programs, which captures the logical quintessence of the dynamics of
hybrid systems succinctly. Our main practical contribution is a concise free-variable
calculus for A% that axiomatises the transition behaviour of hybrid systems relative
to differential equation solving. It is suitable for automated theorem proving and
for verifying hybrid interacting discrete and continuous dynamics compositionally.
Our main theoretical contribution is that we prove the d.Z calculus to be sound and
complete relative to the handling of differential equations. To the best of our know-
ledge, this is the first relative completeness proof for a logic of hybrid systems, and
even the first formal notion of hybrid completeness. Our results fully align hybrid
and continuous reasoning proof-theoretically and show that hybrid systems with
interacting repetitive discrete and continuous evolutions can be verified whenever
differential equations can. As an applied contribution, we further demonstrate that
our logic and calculus can be used successfully for verifying collision avoidance in
realistic train control applications.

2.2 Syntax 35

2.1.1 Structure of This Chapter

After introducing syntax and semantics of the differential dynamic logic A% in
Sects. 2.2 and 2.3, we introduce a free-variable sequent calculus for d.Z in Sect. 2.5
and prove soundness and relative completeness in Sects. 2.6 and 2.7, respectively.
We present relatively semidecidable fragments of A% in Sect.2.8. In Sect. 2.9, we
use our calculus to prove an inductive safety property of the train control system that
we present in Sect. 2.4. We draw conclusions and discuss future work in Sect. 2.10.

2.2 Syntax of Differential Dynamic Logic

In this section, we introduce the differential dynamic logic . in which operational
models of hybrid systems are internalised as first-class citizens, so that correctness
statements about the transition behaviour of hybrid systems can be expressed as for-
mulas. As a basis, A% includes (nonlinear) real arithmetic for describing concepts
like safe regions of the state space. Further, % supports real-valued quantifiers for
quantifying over the possible values of system parameters or durations of continu-
ous evolutions. For talking about the transition behaviour of hybrid systems, d.%Z
provides modal operators such as [a] or (&) that refer to the states reachable by
following the transitions of hybrid system o.

The logic d.Z is a first-order dynamic logic over the reals for hybrid programs,
which is a compositional program notation for hybrid systems. Hybrid programs
provide the following constructs.

Discrete jump sets. Discrete transitions are represented as instantaneous assign-
ments of values to state variables, which are, essentially, difference equations.
They can express resets like a:=—b or adjustments of control variables like
a:=a+35, as occurring in the discrete transformations attached to edges in hy-
brid automata; see Fig. 2.1. Likewise, implicit discrete state changes such as the
changing of evolution modes from one node of an automaton to the other can
be expressed uniformly as, e.g., ¢ := brake, where variable g remembers the cur-
rent node. To handle simultaneous changes of multiple variables, discrete jumps
can be combined to sets of jumps with simultaneous effect following corres-
ponding techniques in the discrete case [37]. For instance, the discrete jump
set a:=a+5,A:=2a* expresses that a is increased by 5 and, simultaneously,
variable A is set to 242, which is evaluated before a receives its new value a + 5.

Differential equation systems. Continuous variation in system dynamics is rep-
resented using differential equation systems as evolution constraints. For ex-
ample the (second-order) differential equation z” = —b describes deceleration
with braking force b and 7/ = v,/ = —b&v > 0 expresses that the evolution only
applies as long as the speed is v > 0, which represents mode brake of Fig.2.1.
This is an evolution along the differential equation system 7’ = v,/ = —b that is
restricted (written &) to remain within the evolution domain region v > 0, i.e., to

36 2 Differential Dynamic Logic A

stop braking before v < 0. Such an evolution can stop at any time within v > 0, it
could even continue with transient grazing along the border v = 0, but it is never
allowed to enter v < 0. The second-order differential equation 7/ = —b itself is
equivalent to the first-order differential equation system z/ = v,v' = —b , in which
the velocity v is explicit. In this chapter, we separate the respective differential
equations in a differential equation system by a comma (,) and separate the evolu-
tion domain region (if any) from the differential equations by an ampersand (&).
We choose this notation for this chapter to make it easier to identify the evolution
domain region. In Chap. 3, we will see that both (,) and (&) can be understood
more uniformly as conjunctions.

Control structure. Discrete and continuous transitions—represented as differ-
ence or differential equations, respectively—can be combined to form a hy-
brid program with interacting hybrid dynamics using regular expression op-
erators (U,*,;) of regular programs [149] as control structure. For example,
the hybrid program g:=accelUz” = —b describes a train controller that can
choose to either switch to acceleration mode (g:=accel) or brake by the dif-
ferential equation 7/ = —b, by a nondeterministic choice (U). The nondetermin-
istic choice q:=accel Uz" = —b expresses that either ¢ :=accel or 7’ = —b hap-
pens. The sequential composition g:=accel; 7’ = —b, instead, expresses that
first g:=accel, and then 7/ = —b happens. In conjunction with other regular
combinations, control constraints can be expressed using tests like ?z > s as
guards for the system state. This test will succeed if, indeed, the current state of
the system satisfies z > s; otherwise the test will fail and execution cannot pro-
ceed. In that respect, a test is like an assert statement in conventional programs
and cuts the system run if the test is not successful.

Example 2.1 (Embedding hybrid automata). With these operations, hybrid systems
can be represented naturally as hybrid programs. For example, the right of Fig. 2.1
depicts a hybrid program rendition of the hybrid automaton on the left, which re-
peats the automaton from Fig. 1.4 on p.5. Line 1 represents that, in the beginning,

:=accel; /* initial mode is node accel */
(?7q = accel; 7 =v,vV =a)
(?q =accel \z > s; a:=—b; q:=brake; v >0)
(?q = brake; 7 =v,v' =a&v >0)
(?2q=brake N\v<1; a:=a+5; q ::accel))*

N accel /\b* brake

T=v a:=— J =

(
Vi=a Vi=a 8
vl v>0 ¥
~ a=a+5
Fig. 2.1 Hybrid program rendition of hybrid automaton for (overly) simplified train control

the current node g of the system is the initial node accel. We represent each discrete
and continuous transition of the automaton as a sequence of statements with a non-
deterministic choice (U) between these transitions. Line 4 represents a continuous
transition of the automaton. It tests if the current node g is brake, and then (i.e., if the
test was successful) follows the differential equation system 7’ = v,V = a restricted

2.2 Syntax 37

to the evolution domain v > 0. Line 3 characterises a discrete transition of the auto-
maton. It tests the guard z > s when in node accel, and, if successful, resets a:= —b
and then switches ¢ to node brake. By the semantics of hybrid automata [8, 156],
an automaton in node accel is only allowed to make a transition to node brake if
the evolution domain restriction of brake is true when entering the node, which is
expressed by the additional test ?v > 0 at the end of line 3. Observe that this test
of the evolution domain region generally needs to be checked as the last operation
after the guard and reset, because a reset like v:=v —1 could affect the outcome
of the evolution domain region test. In order to obtain a fully compositional model,
hybrid programs make all these implicit side conditions explicit. Line 2 represents
the continuous transition when staying in node accel and following the differential
equation system 7' = v,V = a. Line 5 represents the discrete transition from node
brake of the automaton to node accel.

Lines 2-5 cannot be executed unless their tests succeed. In particular, at any
state, the nondeterministic choice (U) among lines 2—-5 reduces de facto to a non-
deterministic choice between either lines 2—3 or between lines 4-5. At any state, g
can have value either accel or brake (assuming these are different constants), not
both. Consequently, when g = brake, a nondeterministic choice of lines 2-3 would
immediately fail the tests in the beginning and not execute any further. The only
remaining choices that have a chance to succeed are lines 4-5 then. In fact, only the
single successful choice of line 4 would remain if the second conjunct v < 1 of the
test in line 5 does not hold for the current state. Note that, still, all four choices in
lines 2-5 are available, but at least two of these nondeterministic choices will always
be unsuccessful. Finally, the repetition operator (*) at the end of Fig. 2.1 expresses
that the transitions of a hybrid automaton, as represented by lines 25, can repeat
indefinitely, possibly taking different nondeterministic choices between lines 2-5 at
every repetition. O

2.2.1 Terms

The construction of the logic A.Z starts with a set V of logical variables and a sig-
nature X, which is the set of names (called symbols) of all entities nameable in a
certain context. The signature X and set V form the vocabulary or alphabet of signs
from which well-formed formulas can be built. For ¥ we assume all variables
in V are interpreted over the reals and that X is a (finite) set of real-valued function
and predicate symbols, with the usual function and predicate symbols for real arith-
metic, such as 0, 1,4, —,-, /,=,<,<,>,>, where + is addition, - is multiplication,
/ is division and so on. For each function and predicate symbol, we are given the
number of arguments that it expects, which is called arity, and is a natural number.
The arity can be zero, in which case the function or predicate symbol does not have
any arguments. The function symbols for the numbers 0,1 have arity zero, because
they do not need arguments. The binary arithmetic operators +,—, -,/ have arity

38 2 Differential Dynamic Logic A

2, because they expect two arguments. The binary predicate symbols =, <, <, >, >
also have arity 2, because they need two arguments to compare.

The difference between function and predicate symbols is that function symbols
stand for functions that take the values of arguments and give back a function value.
Predicate symbols, on the other hand, are interpreted either as true for a vector of
arguments or as false. That is, they take the values of arguments and give either the
truth-value “true” or the truth-value “false”. No other result is permitted for pre-
dicate symbols. For instance, the predicate symbol > will be understood such that
>(x,y) is true if and only if the value of x is greater than or equal to the value of y.
For real arithmetic, we use standard notation and standard semantics. In particular,
we write x > y instead of >(x,y). We fix the semantics of - to be multiplication, i.e.,
the value of -(x,y) is always meant to be the product of the value of x and the value
of y. Again, we use the standard notation x -y, or just xy if no confusion arises, in-
stead of -(x,y). The denotation of a function symbol could also be, e.g., the function
that takes an argument and gives back its cube. A predicate, in contrast, cannot give
back any value other than “true” or “false”, but could hold, say, for all real numbers
larger than 5. Or it could be the relation that holds for all pairs where the second
element of the pair is larger than the square of the first element of the pair. Function
symbols are often written as f, g, h,a, b, c and predicate symbols are often written as
p:q,r-

State variables of hybrid systems, such as positions, velocities, and accelerations,
are represented as real-valued function symbols of X of arity 0. Unlike fixed symbols
like the number 1, state variables are flexible, i.e., their interpretation can change
from state to state during the execution of a hybrid program. Flexibility of symbols
will be used to represent the progression of system values along states over time
during a hybrid evolution. Symbols like 1, on the other hand, are rigid, i.e., they
have the same value at all states. The symbols of real arithmetic like 1 and +,-
are rigid, because we do not want them to change their meaning at any time. State
variables like velocity v, in contrast, are flexible, because they can change their value
depending on the state. While the velocity v may have been 0 in the beginning,
the train could increase its velocity to 10 and then decrease it again later when
approaching another train.

Note that there is no need to distinguish between discrete and continuous vari-
ables in d.Z. The distinction between logical variables in V, which can be quantified
universally or existentially, and state variables in X, which can change their value
by discrete jumps and differential equations of hybrid programs in modalities, is not
strictly required either. For instance, universal and existential quantification of state
variables is definable using auxiliary logical variables. The distinction makes the se-
mantics and soundness proof less subtle, though. Our calculus assumes that V con-
tains sufficiently many variables and X contains additional Skolem function sym-
bols, which are reserved for use by the calculus.

2.2 Syntax 39

Terms

Well-formed arguments to function symbols and predicate symbols are called terms.
Logical variables are well-formed terms, and functions applied to the appropriate
number of terms as arguments are well-formed terms. The set Trm (X, V) of terms
is defined as in classical first-order logic, yielding polynomial (or rational) expres-

sions over V and over additional Skolem terms s(¢1,...,f,) with terms ;. Our cal-
culus actually only uses Skolem terms s(Xj,...,X,) with logical variables X; € V as
arguments.

Definition 2.1 (Terms). Trm (X, V) is the set of all terms, which is the smallest set
such that:

e IfxeV,thenx e Trm(Z,V).

e If f € X is a function symbol of arity n > 0 and, for 1 <i<n, 6, € Trm(X,V),
then f(6,...,6,) € Trm(Z,V). The case n = 0 is permitted (e.g., for state vari-
ables).

More succinctly, we also say that the terms of d.Z are defined by the following
grammar (where 0y, ..., 0, are terms, f a function symbol of arity n, and x € V is a
logical variable):

0 == x| f(61,...,6).

Example 2.2. (Well-formed) terms of d.Z include:

e Logical variables X € V

e State variables x € X that may change their value during system evolution

e Expressions of nonlinear polynomial real arithmetic like x+ 5y - (x — 3y +za),
which we consider as a short notation for x+5-y-(x—3-y+z-a). Here we
assume that x,y,z,a € X are state variables. In principle, we also have to men-
tion that the number symbols 5,3 € X are (rigid) function symbols without ar-
guments. Yet these number symbols are what we assume as given throughout
this book. Note that we could just as well have assumed that x,y € X are state
variables, a € X is a rigid function symbol of arity 0, and z € V is a logical vari-
able. Then x+ 5y (x—3y-+za) is still a term for this different signature and
variables set. For terms, all ways of declaring symbols as state variables, rigid
function symbols of arity 0, or logical variables are essentially equivalent. There
are many ways to say the same thing. The differences only play a role later for
quantification and state change.

e Expressions with Skolem function terms like x +5s(X1,X2) - (x =3y +z-1(X2)).
Here we assume that x,y € X are state variables, that s, € X are rigid function
symbols of arity 2 and 1, respectively, and that X;,X> € V are logical variables.

e Real arithmetic expressions with integer powers like 8x> +2x3(y — a®bc) that can
easily be rewritten as 8 -x-x+2-x-x-x-(y—a-a-b-c). Again, we assume that
X,y,a,b,c are symbols in X or V.

The following, however, are no terms with respect to X and V:

40 2 Differential Dynamic Logic A

e | +x”, because the exponential function x’ cannot be rewritten as a finite product,
quite unlike x> =x-x-x or x* = x-x-x-x. In fact, the logical properties of the
exponential function are a very exciting and a challenging object of study in
recent model theory [107, 206, 44, 108, 45, 2].

e y? — 7, unless the transcendental number 7 = 3.1415926. .. is explicitly added to
X, because unlike rational numbers, the transcendental number cannot be charac-
terised exactly with a finite combination of sums, products, and 0, 1. Arbitrarily
precise approximations of 7, instead, can be defined; see Example 2.3. O

First-Order Formulas

Meaningful propositions that are either true or false in a context are called (well-
formed) formulas. The well-formed formulas of a logic form a formal language over
the alphabet X UV of symbols. The formulas consist of all words that can be built
by recursively combining symbols of the signature with logical operator symbols
appropriately. We first define only the fragment of first-order logic, then the syntax
of hybrid programs, and define the actual formulas of differential dynamic logic
afterwards.

The set of formulas of first-order logic is defined as usual (cf. App. A), giving
first-order real arithmetic [288] augmented with Skolem terms. We will show the
precise relationship to standard first-order real arithmetic without Skolem terms in
Lemma 2.5 of Sect.2.5.3.2.

Definition 2.2 (First-order formulas). The set Fmlgop (X,V) of formulas of first-
order logic is the smallest set with:

e If p € X is a predicate symbol of arity n >0 and 6; € Trm(Z,V) for 1 <i <n,
then p(91 RN Gn) € Fmlgor (E,V)

o If ¢7 Ve leFOL(ZaV), then _‘¢7 ((P A W)a (‘P \ W)a (¢ - W) € leFOL(ZaV)’

o If ¢ € FmlgoL (Z,V) and x € V, then (Vx(f)), (HX(P) € Fmlgor, (Z,V)

More succinctly, we also say that first-order formulas are defined by the following
grammar (where @, y are first-order formulas, 6; are terms, p is a predicate symbol
of arity n, and x € V is a logical variable):

O, W = p(61,...,0,) | 20 | AW |OVY [— w|Vxo | Ixg.

Example 2.3. (Well-formed) first-order formulas in our context include:

e v-v<2b-(m—z). Again we assume that v,b,m,z are symbols in the vocabu-
lary X or V. For instance, we could assume that z,v € X are (flexible) state vari-
ables and b,m € X are rigid function symbols of arity 0. The rationale for this
classification would be that z and v are meant to represent the position and ve-
locity of a train, which of course can change over time (flexible). The symbols
b and m are meant to represent the braking force and movement authority of a

22

Syntax 41

train, which we assume not to change in this formula (rigid). We could just as
well assume that z,v,b,m € X are (flexible) state variables.

e v>0—v-v<2b-(m—2z)Vb=0
e VxVy(x>y<»x—y>0). Here we assume x,y € V are logical variables; other-

wise the syntax would not allow us to quantify over x, y.

x>0AVy3z(x > 72 +y-z—5). Here we assume y,z € V are logical variables
and we could either assume x € X to be a state variable, or a rigid function symbol
of arity zero, or a logical variable x € V. All those choices are reasonable for this
formula, and, in fact, it does not make a real difference here, because they will
essentially have the same meaning. These distinctions become somewhat more
important for d.Z formulas later.

Formulas with divisions like b < x/y, which can easily be defined in terms of
multiplication (b-y <xAy>0)V(b-y>xAy<0).

Formulas with rational constants like a > %xz +3.1415x - y4, which can easily be
defined in terms of successive addition and inverses, say,

a>(14+1)/(1+141)-x*+31415/10000-x - y*.

Arithmetic expressions with roots like x* — yv/2z > 0, which can easily be defined
in terms of their characteristic polynomials as 3r (1> = 2z Ar > 0Ax* —y-r > 0).
]

2.2.2 Hybrid Programs

As
dis

uniform compositional models for hybrid systems, hybrid programs can combine
crete and continuous transitions to structured control programs using the regular-

expression-style operators of Kleene algebras [182].

De

finition 2.3 (Hybrid programs). The set HP(X,V) of hybrid programs, with

typical elements a, 3, is defined inductively as the smallest set such that

1.

W B~ W

6.

If x; € X is a state variable and 6; € Trm(X,V) for 1 <i < n, then the discrete
Jump set (x1:=0q,...,x,:=6,) € HP(X,V) is a hybrid program. We assume
that the x1,...,x, are pairwise different state variables.

. If x; € X is a state variable and 6; € Trm(X,V) for 1 <i < n, then x§ =6;isa
differential equation in which x| represents the time derivative of variable x;.
If x is a first-order formula, then (x; = 6y,...,x, =6,&x) € HP(Z,V). We
assume that the x, ..., x, are pairwise different state variables.

. If x is a first-order formula, then (?y) € HP(Z,V).

.Ifa,p € HP(X,V), then (¢UB) € HP(Z,V).

If a,B € HP(X,V), then (a; 8) € HP(Z, V).

If o € HP(Z,V), then (o*) € HP(XZ,V).

Table 2.1 summarises the statements and (informal) effects of hybrid programs.
More succinctly, hybrid programs are defined by the following grammar (¢, 3 are

42 2 Differential Dynamic Logic A

Table 2.1 Statements and (informal) effects of hybrid programs (HPs)

HP Notation Operation Effect

xX1:=0;,...,x,:=06, discrete jump set simultaneously assigns terms 6; to variables x;

X} =61,...,x;, =6,&x continuous evolution differential equations for x; with terms 6; with-
in first-order constraint y (evolution domain)

X state test / check test first-order formula) at current state

o B seq. composition HP S starts after HP « finishes

auUp nondet. choice choice between alternatives HP o or HP 3

a* nondet. repetition repeats HP o n-times for any n € N

hybrid programs, 6; are terms, x; € X are state variables, and y is a formula of
first-order logic):

a,B = x1:=01,...,0,:=0, | X} =0,.... X, =0,&x | x| aUB | a; 8 | &".

The effect of the discrete jump set x;:=0,...,x,:= 0, is to simultaneously
change the interpretations of the x; to the respective 6; by performing a discrete jump
in the state space. In particular, the new values 6; are evaluated before changing the
value of any variable x;. The effect of x| = 6,...,x], = 6, & x is an ongoing con-
tinuous evolution respecting the differential equation system x} = 6y,...,x), = 6,
that is restricted to remain within the evolution domain region Y. The evolution is
allowed to stop at any point in y. It is, however, required to stop before it leaves ¥ .
For unconstrained evolutions, we write X' = 6 in place of x' = 0 & true. For struc-
tural reasons, we expect both difference equations (discrete jump sets) and differ-
ential equations to be given in explicit form, i.e., with the affected variable on the
left (we allow more general implicit forms in Chap. 3). The d.% semantics allows
arbitrary differential equations. To retain feasible arithmetic, some of our calculus
rules in this chapter assume that, as in [8, 125, 217, 156], the differential equa-
tions have first-order definable flows or approximations. We assume that stand-
ard techniques are used to determine corresponding solutions or approximations,
e.g., [15, 189, 238, 227, 297]. We consider verification techniques for more ad-
vanced differential equations in Chap. 3.

The test action or state check ?y is used to define conditions. Its semantics is that
of a no-op if the formula y is true in the current state; otherwise, like abort, it allows
no transitions. That is, if the test succeeds because formula ¥ holds in the current
state, then the state does not change, and the system execution continues normally.
If the test fails because formula y does not hold in the current state, then the system
execution cannot even continue. Thus, the effect of a test action is similar to an as-
sert statement in Java. Note that, according to Definition 2.3, we have only allowed
first-order formulas as tests. Instead, we could actually allow rich fests, i.e., arbitrary
d.Z formulas y with nested modalities as tests ?y inside hybrid programs (and even
in evolution domains) of differential equations). The calculus and our meta-results,
including soundness and relative completeness, directly carry over to this rich test
version of d.Z. To simplify the presentation, however, we refrain from allowing

2.2 Syntax 43

arbitrary d.Z formulas as tests, because that requires simultaneous inductive hand-
ling of hybrid programs and d.Z’ formulas in syntax, semantics, and completeness
proofs, because d.Z formulas would then be allowed to occur in hybrid programs,
and vice versa.

The nondeterministic choice o U 8, sequential composition ¢; 3, and nondeter-
ministic repetition o* of programs are as in regular expressions but generalised to
a semantics in hybrid systems. Choices ot U8 are used to express behavioural al-
ternatives between the transitions of a and f. That is, the hybrid program aU 3
can choose nondeterministically to follow the transitions of the hybrid program ¢,
or, instead, to follow the transitions of the hybrid program f3. The sequential com-
position a;f says that the hybrid program B starts executing after o has finished
(B never starts if o does not terminate). In a; 8, the transitions of « take effect
first, until o terminates (if it does), and then continues. Observe that, like repe-
titions, continuous evolutions within & can take more or less time, which causes
uncountable nondeterminism. This nondeterminism is inherent in hybrid systems,
because they can operate in so many different ways, and as such reflected in hy-
brid programs. Repetition a* is used to express that the hybrid process « repeats
any number of times, including zero times. When following o/*, the transitions of
hybrid program o can be repeated over and over again, any nondeterministic num-
ber of times (>0). Hybrid programs form a regular-expression-style Kleene algebra
with tests [182].

Example 2.4 (Simplistic train). The differential equation 7/ = v, = a expresses
continuous movement of position z with velocity v and acceleration a. A very simple
(in fact much too simplistic) train controller could be the following hybrid program:

((a:==b)U(W < 8;a:=A)); 7 =vV =a.

By a nondeterministic choice (U), the system either chooses to set the acceleration
a to the braking force —b by executing a:= —b, or the system tries to pass the test
7v < 8 instead. If the system tries the second choice and the latter test succeeds, i.e.,
the current velocity is indeed less than 8, then the system sets the acceleration a to
A. Otherwise, if it tries the second choice but the test fails, then nothing happens
as this execution is blocked and cannot continue. Afterwards (after executing the
first part of the sequential composition, which is the nondeterministic choice), the
system follows the second part of the sequential composition, which is the differen-
tial equation 7’ = v,/ = a with the previously chosen acceleration. The system then
follows this differential equation for a certain (unspecified) period of time.

This controller leaves open too many aspects to be useful, but already illustrates a
very simple hybrid program. One of the problems is that the controller can only take
a control action for choosing the acceleration a once, at the beginning of the system
evolution, and then follows the differential equation for an arbitrarily long time. But
the above controller can never react to situation changes and change its mind with
a different choice of @ when necessary. To improve this issue, the following hybrid
program allows repetitive choices by the repetition operator *:

44 2 Differential Dynamic Logic A
(((a:==b)U (W< 8a:=A)); ' =vV =a)". .1

Unlike the previous hybrid program, the hybrid program in (2.1) contains a repe-
tition, which can change the acceleration repeatedly over and over again after fol-
lowing the continuous evolution for a certain period of time. While already an im-
provement over the last controller, this hybrid program has shortcomings. For one
thing, the differential equation does not say when it stops. It has no evolution do-
main restriction and would thus be allowed to evolve as long or as short as it pleases.
This may be unsafe if the differential equation would continue indefinitely without
giving the controller for the acceleration a chance to react to situation changes.
Furthermore, a velocity of 8 may not be a safe choice for the switching condition
between acceleration and braking. We will see in Sect. 2.4 how a reasonable train
controller can be designed as a hybrid program from first principles and elaborate
on train control further in Chap. 7 in full detail. O

Definable Operations

The control flow operations of choice, sequential composition, and repetition in hy-
brid programs can be combined with ?x to form all other control structures [149].
All classical discrete control structures can be defined in terms of the basic hybrid
program operators (it is easy to see that hybrid programs are Turing-complete). See
Table 2.2 for a selection of control structures and statements that are definable as
a hybrid program. For instance, (?); ¢)";?—y corresponds to a while loop that re-

Table 2.2 Statements and control structures definable with hybrid programs

HP Notation Operation Effect

Xi=+x% nondet. assignment assigns any real value to x
equivalently definable, see Chap. 3

if y then c else B if-then-else executes HP o if ¥ holds, otherwise HP 3
equivalent to (?x;) U (?—x;:B)

if y then « if-then executes HP o if } holds, otherwise no effect
equivalent to (?x;a) U (?—yx)

while y do o while loop repeats « if y holds, only stops if -y holds at end
equivalent to (?;0)"; 7—x

repeat o until y repeat until repeats HP o until y holds at end (at least once)
equivalent to o; (?—x;)" 2%

skip do nothing has no effect and does not change the state space
equivalent to ?true

abort aborts execution blocks current execution and allows no transition

equivalent to ?false

peats o while) holds and only stops when) ceases to hold after o. Because the
*-operator can repeat arbitrarily often, the subprogram (?y; o))" can repeat o any
number of times, but a repetition can only be successful if the test ?) succeeds.
Hence the repetitions have to stop, at the latest, when the test ?) fails. Now the

2.2 Syntax 45

subprogram (?y;@)” can repeat any number of times and is allowed to stop even if
the test ?y is successful and the loop could be repeated again. But the subsequent
sequential composition with the test 7 makes sure that (?y;)" can only stop re-
peating when y actually ceases to hold. Overall, the hybrid program (?y;o)"; 7=y
executes o if y holds and repeats o again exactly as often as y still holds after
executing «.

If-then-else can be defined with nondeterministic choices and tests. The corres-
ponding hybrid program (?x; o) U (?—x;) in Table 2.2 makes a nondeterministic
choice between ?); o and ?—; 5. While this choice is nondeterministic, at any state
only one of the subsequent tests in the two cases can succeed, because they are com-
plementary. Consequently, hybrid program o will be executed if and only if the test
?x succeeds because ¥ is true at the current state. Likewise, hybrid program § will
be executed if and only if the dual test 7—) succeeds because —y is true, i.e., X
is false at the current state. The nondeterministic assignment x:=* that assigns an
arbitrary real number to state variable x is definable also. While it is possible define
nondeterministic assignments in hybrid programs already, we will come back to this
in Chap. 3, where the definition is easier to see.

Example 2.5 (Parametric bouncing ball). As a classical example from the hybrid
systems literature [110], consider the bouncing ball. We will describe the boun-
cing ball as a hybrid program, using the definable hybrid program operations from
Table 2.2. Figure 2.2 depicts a hybrid automaton, an illustration of the bouncing ball
dynamics, and a representation of the system as a hybrid program.

) '@ ballz(
h=0At>0 hW=v “ \ h/:v,vl:—g,tl:l&hzo;
C if (1=0 A 1 > 0) then
c:=x; 20<c<1);/extra
yi= —cvy vi=—cv;t:=0
t:=0 ﬁ)*

Fig. 2.2 Parametric bouncing ball

The bouncing ball is let loose and falls from height /4, but bounces back from
the ground (which corresponds to height # = 0) after an elastic deformation. The
current speed of the ball is denoted by v, and ¢ is a clock measuring the falling
time. The bouncing ball follows the continuous dynamics of physical movement
by gravity. The ball is affected by gravity of force g, so its height follows the dif-
ferential equation & = —g. This second-order differential equation is equivalent to
the first-order differential equation system 4’ = v,V = —g, with an explicit velo-
city v. Simultaneously, clock ¢ evolves according to the differential equation ¢’ = 1.
Finally, the ball always stays above the ground and cannot fall through, thus its evol-
ution domain is restricted to & > 0. Altogether, this gives the continuous evolution
W =v,Vv = —g,t' =1&h > 0 in the beginning of the hybrid program in Fig. 2.2.

At the ground (which is at height 2 = 0), the ball bounces back after losing energy
in an elastic deformation according to a damping factor O < ¢ < 1. That s, if the ball

46 2 Differential Dynamic Logic A

is on the ground (4 = 0) and it actually fell (so time has passed, ¢ > 0), then the ball
changes its direction and bounces back into the air by reflecting its current velocity v
by a discrete jump v:= —cv and resetting the falling time by 7 :=0.

Now for illustration purposes we have added an extra twist to the hybrid program
in Fig. 2.2 that is not in the hybrid automaton. The automaton still enforces infinite
bouncing so that the ball can never stop (unless ¢ = 0, where it stops immediately).
In reality, the ball bounces a couple of times and can then come to a standstill when
its remaining kinetic energy is insufficient. To model this phenomenon without the
need to have a precise physical model for all physical forces and frictions, we allow
for the damping factor ¢ to change at each bounce. Line 4 of the hybrid program
in Fig. 2.2 represents a corresponding uncountably infinite nondeterministic choice
for ¢ as a nondeterministic assignment. The subsequent test ?(0 < ¢ < 1) restricts
the arbitrary choices for ¢ to choices in the half-open interval [0, 1) and discards all
other choices.

For comparison, Fig. 2.3 shows an equivalent hybrid program for the same boun-
cing, now with all abbreviations for extended statements resolved according to
Table 2.2. Note that it is fairly easy to see that height 2 and clock ¢ always stay
nonnegative if they start nonnegative. For that reason, the last test 2(h £ 0V <0)

in Fig. 2.3 could even be replaced equivalently by ?(h > 0V =0).]
Fig. 2.3 Parametric bouncing ball = (

ball (with abbreviations re- h’; o = —o it —1&h> 0
solved) ’ & -

(2h=0A1>0);
(d=1Ud =-1);
20<c<1);
vi=—cv;t:=0

YU2(h#0 V1 <0)

Classification of Hybrid Programs

Hybrid programs are designed as a minimal extension of conventional discrete pro-
grams. They characterise hybrid systems succinctly by adding continuous evolution
along differential equations as the only additional primitive operation to a regular
basis of conventional discrete programs. To yield hybrid systems, their operations
are interpreted over the domain of real numbers. This gives rise to an elegant syn-
tactic hierarchy of discrete, continuous, and hybrid systems. Hybrid automata [156]
can be represented as hybrid programs using a straightforward generalisation of
standard program encodings of automata; see App. C for formal details. The frag-
ment of hybrid programs without differential equations corresponds to conventional
discrete programs generalised over the reals or to discrete-time dynamical sys-
tems [56]. The fragment without discrete jumps corresponds to switched continuous
systems [56, 58], whereas the fragment of differential equations gives purely con-

2.2 Syntax 47

Table 2.3 Operators and (informal) meaning in differential dynamic logic (d.%)

d.Z Notation ~ Operator Meaning

p(6y,...,6,) atomic formula true iff predicate p holds for (6,...,6,)

-0 negation / not true if ¢ is false

Ny conjunction / and true if both ¢ and y are true

oV y disjunction / or true if ¢ is true or if Y is true

o=y implication / implies true if ¢ is false or y is true

o=y bi-implication / equivalent true if ¢ and y are both true or both false

Vx ¢ universal quantifier / for all true if ¢ is true for all values of variable x
dx¢ existential quantifier / exists true if ¢ is true for some values of variable x
[a]¢ [] modality / box true if ¢ is true after all runs of HP «

(o) o (-) modality / diamond true if ¢ is true after at least one run of HP o

tinuous dynamical systems [279]. Only the composition of mixed discrete jumps
and continuous evolutions gives rise to truly hybrid behaviour.

2.2.3 Formulas of Differential Dynamic Logic

The formulas of the differential dynamic logic . are defined as in first-order dy-
namic logic [253, 148, 149] but with real arithmetic as a semantic domain and with
hybrid programs as system models. That is, they are built using propositional con-
nectives —, A, V,—, <> and quantifiers V,3 over the reals (first-order part). In addi-
tion, if ¢ is a A formula and o a hybrid program, then [ct]¢, (o) are formulas
(dynamic part).

Definition 2.4 (. formulas). The set Fml(X,V) of formulas of A%, with typical
elements ¢, y, is the smallest set such that

1. If p is a predicate symbol of arity n > 0 and 6; € Trm (X, V) for 1 <i < n, then
p(61,...,6,) e Fml(Z,V).

2.If ¢,y € Fml(XZ,V), then =¢, (¢ Ay), (¢ V), (¢ — y) € Fml(Z,V).

3.If ¢ e Fml(X,V) and x € V, then Vx¢,3x¢ € Fml(XZ,V).

4.1f g € Fml(X,V) and o € HP(X,V), then [a]¢, ()¢ € FmI(Z,V).

For reference, the logical operators of differential dynamic logic are summarised
in Table 2.3. More succinctly, we also say that the formulas of d.% are defined by
the following grammar (where ¢,y are d.Z formulas, 6; are terms, p a predicate
symbol of arity n, x € V is a logical variable, and « is a hybrid program):

O, W = p(61,...,0,) | ~¢ | OAY[OVY [— v [Vxe |Tx¢ | [a]d | (x)¢.

We consider the bi-implication or equivalence ¢ <> Y as an abbreviation for
(¢ —) A (y — ¢) to simplify the calculus. We often leave out superfluous brack-
ets and use binding priorities instead in order to improve readability. Quantifiers

48 2 Differential Dynamic Logic A

and modalities bind strongly, i.e., their scope only extends to the formula immedi-
ately after. Unary operators (negation —), quantifiers (¥, 3), and modalities ([¢t], ()
bind stronger than binary operators. Further, conjunction A and disjunction V bind
stronger than implication — and bi-implication <. Thus

G0 A ()1 AVx P2 A3 — =94V [0t] @5 V P6

is taken to mean

(G0 A ((0) 1) A (Yx92) A3) — ((—94) V ([eX]95) V 96)

and does not mean
0o ({0} (91 AV (92 7.03)) = =(9 v [@] (95 9s)).

Example 2.6 (Train control). When train denotes the hybrid program in Fig. 2.1 or
the hybrid program in Example 2.4, or, in fact, any other hybrid program model for a
train system, then the following A% formula expresses that this train is able ({train))
to enter region z > m, thereby leaving region z < m when it starts in region z < m
with nonnegative initial velocity v > O:

v>0Az <m— (train)z > m. (2.2)

Dually, the following A% formula expresses that the train will always ([train]) stay
inside the region z < m when it starts inside it with an initial nonnegative velocity
less than 5:

v>0AV<5Az<m— [train]z < m.

For most train models train, the latter safety property will only be true for additional
constraints on the initial state and on the internal parameter choices, including, e.g.,
braking forces, reaction times, and start braking points. O

Example 2.7 (Parametric bouncing ball). Let ball denote the hybrid program for
the bouncing ball from Example 2.5. The ball loses energy at every bounce, thus
the ball never bounces higher than the initial height. This can be expressed by the
property 0 < h < H, where H denotes the initial energy level (which corresponds to
the initial height if v = 0 initially). Then, for instance, the following d.#’ formula
expresses that (under a list of assumptions on the free variables &, v,t and H, g, ¢) the
ball always stays in the region 0 < h < H:

(V <2g(H—h)Ah>0Ag>0NH >0A1>c>0)— [ball](0 < h < H). (2.3)

This . formula follows the pattern of Hoare triples [161]. It expresses that the
bouncing ball, when started in an initial state satisfying the precondition on the left
of the implication (—), always respects the postcondition 0 < & < H of the dynamic
modality [ball], i.e., all runs of the bouncing ball stay in the region 0 <h < H. 0O

2.3 Semantics 49

A dZ formulas of the form y — [ot]¢ corresponds to Hoare triples [161], gen-
eralised for hybrid systems. They occur quite frequently, because they specify that
system ¢, when starting in a state satisfying the precondition y, always respects the
postcondition ¢. That is, when started in a state satisfying y, all states reachable
by o satisty ¢. There are several other relevant shapes of d.% formulas in practical
systems verification; see Part ITI.

Note that, according to Definition 2.4, hybrid programs are not additional ex-
ternal objects but fully internalised [48] as first-class citizens within the logic d.Z
itself, and the logic is closed. That is, modalities can be combined propositionally,
by quantifiers, or nested. For instance, [a]{f3)x < ¢ says that, whatever hybrid pro-
gram « is doing, hybrid program f can react in some way to reach a controlled
state where x is less than some critical value c¢. That is, for all o actions, there is a
B (re)action such that x < ¢ holds. Dually, ()[a]x < ¢ expresses that hybrid pro-
gram f3 can stabilise x < ¢, i.e., behave in such a way that x < ¢ remains true no
matter how hybrid program o reacts. That is, there is a § action such that all «
actions maintain x < ¢. Accordingly, Ip [a]x < ¢ says that there is a choice of para-
meter p such that o remains in x < ¢. Nesting modalities and quantifiers in this way
can be quite useful for describing interactions of a hybrid program o with an en-
vironment f3, or for describing the impact of parameter choices on properties of the
system behaviour.

During our analysis, we assume differential equations and discrete transitions
to be well-defined. In particular, we assume that all divisions p/q are guarded by
conditions that ensure ¢ # 0 as, otherwise, the system behaviour is not well-defined
due to an undefined value at a singularity. It is simple but tedious to augment the
semantics and the calculus with corresponding side conditions to show that this is
respected. For instance, we assume that x:= p/q is guarded by ?¢ # 0 and that con-
tinuous evolutions are restricted such that the differential equations are well-defined
as X' = p/q&q # 0. Also see our joint work with Beckert [37] for techniques of
how such exceptional behaviour can be handled by program transformation while
avoiding partial valuations of undefinedness in the semantics. In logical formulas,
partiality can be avoided altogether by writing p = ¢- g A g # O rather than p/q = c,
and writing (p > c-gAq>0)V (p < c-qAq < 0) rather than p/q > c.

2.3 Semantics of Differential Dynamic Logic

We define the semantics of d.Z as a possible world Kripke semantics [185] with
worlds representing the possible system states and with reachability along the hy-
brid transitions of the system representing accessibility relations between worlds.
The interpretations of A% consist of states (worlds) that are essentially first-order
structures over the reals. In particular, real values are assigned to state variables,
possibly different values in each state. A potential behaviour of a hybrid system
corresponds to a succession of states that contain the observable values of system
variables during its hybrid evolution.

50 2 Differential Dynamic Logic A

2.3.1 Valuation of Terms

Symbols in the logic A% come from three different syntactic categories that we
decided to distinguish in Sect. 2.2.1:

1. rigid symbols in X that cannot change their value, e.g., 0,1, +, ;

2. flexible symbols in X, which are the state variables, whose value can change
depending on the current state of the system;

3. logical variables in V that cannot change their value over time by running hybrid
programs, but which can be quantified over universally or existentially.

All of those symbols need to be interpreted to give meaning to terms in which they
occur. We associate values with rigid symbols by what we call an interpretation /,
associate values with flexible symbols by a state v, and associate values with lo-
gical variables by an assignment 7]. Recall that there is some leeway in declaring
symbols as either rigid or flexible symbols or as logical variables. The semantics is
unambiguous for each choice, though.

An interpretation I assigns functions and relations over the reals to the respect-
ive rigid symbols in X. The function and predicate symbols of real arithmetic are
interpreted as usual by /. Especially, the interpretation I(4) is addition and () is
multiplication of real numbers. A state is a map v:X; — R; the set of all states is
denoted by Sta(X). Here, X4 denotes the set of (flexible) state variables in X (they
have arity 0, thus take no arguments). Finally, an assignment for logical variables is
amap n:V — R. It contains the values for logical variables, which are not subject
to change by modalities but only by quantification. Observe that flexible symbols
(which represent state variables) are allowed to assume different interpretations in
different states. Logical variable symbols, however, are rigid in the sense that their
value is determined by 1 alone and does not depend on the state v.

The valuation val; y (v,-) of terms is defined as usual [123, 149] with an extra
distinction of rigid and flexible functions [37]. It is defined inductively by recursion
on the structure of the term, based on the interpretation that assignment 7 assigns
to logical variables, that interpretation / assigns to rigid function symbols, and that
state v assigns to flexible state variables. The semantics of terms is compositional
and denotational [277], that is, the semantics of a complex term is defined as a
combination of the semantics of its subterms.

Definition 2.5 (Valuation of terms). The valuation of terms with respect to inter-
pretation /, assignment 7], and state vV is defined by

1. val;(v,x) = n(x) if x € V is a logical variable.

2. valyn(v,a) = v(a) if a € X is a state variable (flexible function symbol of ar-
ity 0).

3ovalin (v, f(61,...,6,) =I(f) (valyy(v,61),...,val;y(v,6,)) when f € Zisa
rigid function symbol of arity n > 0.

Example 2.8. Let interpretation / interpret the constant function symbol b € X as
I(b) =2.14, and interpret the unary function symbol ¢ € X as the cubic function

2.3 Semantics 51

dwsd3, ie., (I(c))(d)=d>. Let the assignment 7 interpret the logical variable

X €V as n(X) =4.2. Finally let the state v interpret the state variables x,y,z € X
as v(x) =3, v(y) = —5.01, v(z) = 0. Throughout this book we assume that the in-
terpretation of 0, 1,4, —, - always is as usual in real arithmetic, that is:
1(0) =0
I(1)=1
(I(+))(d,e) =d +e (addition)
(1(*)) (die)=d—e (subtraction)
(1 ()) (dye)=d-e (multiplication)

With this we can valuate terms recursively with respect to 7,7, v as follows:

valpn(v,x+y) =valpn(v,x) +valy 5 (v,y) = v(x)+v(y)
=34(=5.01) = —2.01,
valpn (v,y+2-X) =valpy(v,y) +valpn(v,2)-val; (v, X)
= V() +1(2) - N(X) = —5.01 +24.2 =3.39,
valin(v,X +b- (x+y-X)) =n(X)+1(b)- (v(x) +v(z) - n(X))

—4242.14-(3+0-4.2) = 10.62,

valyn (v,c(x+X) —x) =val;n(v,c(x+X)) —val; 5(v,x)
=1I(c)(val;n(v,x+X)) — v(x)
— 1) (v +1(X)) — V()
= (3+4.2)°> —3=370.248.

Note here, that the decision about which symbols we consider as rigid function
symbols, which ones we consider as flexible function symbols (state variables), and
which ones we consider as logical variables is somewhat arbitrary in this example.
This decision only becomes relevant when we add quantifiers (for only logical vari-
ables can be quantified over) or hybrid programs (for only state variables can be
assigned to in hybrid programs). Overall, the syntactic category of symbols is not
crucial, as there are often many equivalent ways to assign symbols to syntactic cat-
egories. But if we fix a choice of symbols, the semantics becomes less subtle, so we
assume a choice has been made for every formula. O

2.3.2 Valuation of Formulas

The valuation valy 5 (v, -) of formulas is defined as usual for first-order modal logic
[123, 149] with a distinction of rigid and flexible functions [37]. Modalities para-
metrised by a hybrid program o follow the accessibility relation spanned by the

52 2 Differential Dynamic Logic A

respective hybrid state transition relation p; (o), which is simultaneously induct-
ively defined in Definition 2.7.

The valuation of formulas is defined inductively by recursion on the structure
of formulas, based on the interpretation of the terms occurring in it. The semantics
of formulas is compositional and denotational, that is, the semantics of a complex
formula is defined as a simple function of the semantics of its subformulas. We
will use n[x — d] to denote the modification of an assignment 7 that agrees with n
except for the interpretation of the logical variable x € V, which is assigned d € R
in nfx+—d.

Definition 2.6 (Valuation of d.#” formulas). The valuation val; y(Vv,-) of formulas
with respect to interpretation /, assignment 7], and state v is defined as

Loval; (v, p(61,...,6,)) =I(p) (val;n(v,6:),...,val 5(V,6,)).

2. valpn (v, 0 A 1//) true iff valy (v, ¢) = true and valy n (v,) = true.
3.valp (v, ¢V) =true iff val (v,) = true or val; n (v, W) = true.
4. valpn(v,—¢) = true iff val; 5 (v,) # true.

5.valpn (v, ¢ —) = true iff val; y (v, 9) # true or valy (v,) = true.
6. valp n(v,Vx¢) = true iff valj y . q)(V,9) = true for all d € R.

7. valp (v, 3x¢) = true iff val; n[xﬁd](v,(p) true for some d € R.

8

valpy (v, [a]¢) = true iff val; n (@,) = true for all states @ for which the trans-
ition relation satisfies (v,) € pyn ().
9. valyn (v, (o)) = true iff val; n(®,9) = true for some state @ for which the

transition relation satisfies (v, @) € py ().

Following the usual notation, we also write 1,7,V |= ¢ iff val; (v, ¢) = true. We
then say that ¢ is satisfied in I,n,v or holds in I,n,v. We also say that ,n,v is a
model of ¢. Dually, we write 1,1,V (= ¢ iff val; (v,) # true. If ¢ is satisfied for
at least one 7,7, Vv, then ¢ is called satisfiable. Occasionally, we write just F ¢ iff
I,n,v |= ¢ holds for all 1,1, v. Formula ¢ is then called valid, i.e., true in all I, 1, v.

The semantics of modal formulas [¢]¢ and (o) ¢ in . is illustrated in Fig. 2.4,
showing how the truth of ¢ at (all or some) states @; reachable by o relates to the
truth of [a]¢ or (a)¢ at state v.

“"1)(15

ﬂ"y¢

wyﬁb

Fig. 2.4 Transition semantics of modalities in A% formulas

2.3 Semantics 53
Example 2.9. Consider the following formula that we want to evaluate:
v>0—=v-v<2b-(m—2z)Vb=0. 2.4

First we have to declare which syntactic category the symbols are meant to come
from. Suppose z,v € X are state variables (flexible function symbols of arity 0),
because they represent position and velocity of the train, which are intended to be
able to change over time from state to state. Further suppose that m,b € X are rigid
function symbols, because, for the moment, movement authority and braking force
are not allowed to change over time. Note that we could just as well have chosen all
symbols z,v,m, b to be flexible state variables. The only notable difference is that if b
is a flexible symbol, we would have to prove that a particular hybrid program never
changes the value of b to know that it denotes the same value in every part of the
program. Otherwise, if b is a rigid symbol, we already know that it cannot possibly
change its value by running a hybrid program, because b then is a constant, and
only flexible symbols are syntactically allowed to be assigned to or have differential
equations in Definition 2.3. While it is certainly not crucial to make this distinction,
it can make some things easier to see syntactically.

Now let interpretation / interpret rigid symbol m € X as I(m) =20 and inter-
pret b € X as I(b) = 2.2. Let state m interpret state variables v,z € X as o(v) = 10,
®(z) = 0. In formula (2.4), suppose we do not have any free logical variables, so
that the assignment 1) of logical variables does not matter. Then we can evaluate
formula (2.4) with respect to 1,7, ®:

valpp(®,v>0—=v-v<2b-(m—z)Vb=0)=true iff
valp n(@,v > 0) # true, or

valn(®,v-v <2b-(m—z)) = true, or

valyn(®,b = 0) = true.

Let us evaluate the terms to determine if the subformulas are true or not:

valyy(@,v > 0) = (valy.n (®,v) > valy.n (©,0)) = (0(v) > 1(0))

— (10 % 0) = true,
valy g (@,v-v < 2b - (m — 2)) (valy.n (@,v-v) < valyg (©,2b- (m - 2)))
— (@0)- o) <21()- (I(m) - o(z)
=(10-10<2-2.2-(20— 0)) (100 < 8
valy y(@,b=0) = (I(b) = 0) = (2.2 = 0) = false.

8) = false,

Consequently the formula (2.4) evaluates to false. For a different state v with slower
speed v(v) = 8 and the same position v(z) = 0, we instead evaluate (2.4) to true:

54 2 Differential Dynamic Logic A
valpn(v,v>0—=v-v<2b-(m—2z)Vb=0)=true.

Also for a different interpretation J with J(m) =20 and another braking force
J(b) = 4, but the same original state @, we evaluate (2.4) to rrue:

valyn(@,v>0—=v-v<2b-(m—2z)Vb=0)=true.

So we see that the truth-value of formula (2.4) depends on 7, 7, w. For some choices
of 1, M, w, it evaluates to true, for others it evaluates to false. Thus, formula (2.4) is
not valid, because

InoEv>0—=v-v<2b-(m—z)Vb=0

does not hold for all 7,1, . Still, the formula (2.4) is at least satisfiable, because it
holds for some 7,1, ®. O

Example 2.10. Consider the assignment 1) with n(Z) = —2 and the state v with
v(x) = —4. Then we can evaluate

valpn(V,x > =5 AVy (y* +Z > x)) = true

because V(x) > —5 and all squares are greater than or equal zero, so that for all
deR:

valy iy (V42> x) = ((ly > d)(9)2 + nly > d)(Z) > v(x)
= (d2+ (=2) ; 74) = true.
)

Note, that we have not yet explained how to evaluate formulas with modalities like
x> 0— [ctrl;drive*]z <min any I,7,V, because we first have to define the trans-
ition semantics p; (@) of hybrid programs, which we will do next.

2.3.3 Transition Semantics of Hybrid Programs

Now we define the transition semantics, p; (o), of hybrid program a. The se-
mantics of a hybrid program is captured by its hybrid state transition relation. For
discrete jumps this transition relation holds for pairs of states that respect the dis-
crete jump set. For continuous evolutions, the transition relation holds for pairs of
states that can be interconnected by a continuous flow respecting the differential
equations and evolution domain restriction throughout the evolution.

The transition semantics of hybrid programs is defined by induction based on
the structure of the programs. The semantics of hybrid programs is compositional,
that is, the semantics of a complex program is defined as a simple function of the

2.3 Semantics 55

transition semantics of its parts. We will use v[x — d] to denote the modification of
a state v that agrees with v except for the interpretation of the symbol x € X, which
is changed to d € Rin v[x — d].

Definition 2.7 (Transition semantics of hybrid programs). The valuation of a hy-
brid program ¢, denoted by p; n (), is a transition relation on states. It specifies
which state @ is reachable from a state v by operations of the hybrid program o and
is defined as follows

1. (v,0) € pry(x1:=61,...,x,:=0,) iff the state ® equals the state obtained by
semantic modification of state v as v[x| — valy (v, 61)]... [x, — val;5(v,6,)].
Particularly, the values of other variables z & {xj,...,x,} remain constant, i.e.,
valp n(®,z) = val;;(v,z), and the x; receive their new values simultaneously,
ie., valn(@,x;) =val;n(v,6;).

2. (v,o) € prp(x] =61,...,x, = 6, &) iff there is a flow f of some duration
r>0 from state v to state @ along x| = 6y,...,x, = 6,&, i.e., a function
f:]0,r] — Sta(X) such that:

. £(0)=v.f(r) = o

e f respects the differential equations: For each variable x;, the valuation
valyn (f(£),xi) = f(§)(xi) of x; at state f({) is continuous in § on [0,7]
and has a derivative of value val; » (f(), 6;) at each time { € (0,7);

e the value of other variables z ¢ {x1,...,x, } remains constant, that is, we have
valp n(f(8),z) = valpy(v,z) forall £ € [0,7];

e and f respects the invariant: valy , (f (), x) = true for each ¢ € [0, 7].

3.1 (%) ={(v,v) valj (v, x) = true}

4. prn(aUB) = pry(a)Upry(B)

5.prp(eB) ={(v,o): (v,u) € pry(a), (1, ®) € pry(B) for astate p1}

6. (v,®) € prn(o) iff there is an n € N and states v = vp,..., v, = ® such that
(Vi, Vig1) € prp (o) forall 0 <i < n.

For graphical illustrations of the transition semantics of hybrid programs and ex-
ample dynamics, see Fig.2.5. On the left of Fig. 2.5, we illustrate the generic shape
of the transition structure p; () for transitions along various cases of hybrid pro-
grams o from state v to state @. On the right of Fig. 2.5, we show examples of how
the value of a variable x may evolve over time ¢+ when following the dynamics of
the respective hybrid program . The shape of the transition structure of a discrete
jump x:= 6 (row 1) and of a differential equation x' = 6 & y (row 2) is an element-
ary one-step transition from v to @. For discrete jumps, however, the transition is
an instant jump in the state space (row 1 on the right), while the transition for a
differential equation is a continuous evolution in the state space (row 2 on the right).
Note that the modifications of a discrete jump set x| := 60y,..,x, := 6, are executed
simultaneously in Definition 2.7 in the sense that all terms 6; are evaluated in the
initial state v. For simplicity, we assume the x; to be different, and refer to previous
work [37] for a compatible semantics and calculus handling concurrent modifica-
tions of the same x;.

56 2 Differential Dynamic Logic A

x
—o o o if o(x) =valn(v,0)
v r= o i and @(z) = v(z) forz # x
J 5) oV
t
0
x
F@) e
X=0&y (0)
\% o
J J v X
T t
0 r
X=0&y
x
9
Q e v nochangeifI,n,vEx
otherwise no transition
v t
J i
o
ok ‘y xv

- N WZ

1%

J « O QO t

Fig. 2.5 Transition semantics (left) and example dynamics (right) of hybrid programs

For test 7y (row 3), the only possible transitions in the transition structure are
self-loops that do not change the state v, but even those transitions are only pos-
sible if the test succeeds, i.e., I,7n,V = x; see Fig.2.5. The transition structure for
choice U 3 (row 4) is a choice between any transition of & and any transition of 3.
Thus, in the example on the right of row 4, the system can choose between either
an evolution like the hybrid evolution (consisting, in this example, of 3 continuous
flows and 2 intermediate jumps) leading to ®; or the squiggly evolution from v
to ;. The transition structure for sequential composition ;3 (row 5) is that of any
o transition to an intermediate state , followed by any f3 transition to @. In the

2.3 Semantics 57

example evolution on the right of row 5, the system first follows a continuous evol-
ution (which would come from « in this example) and then a discrete jump (which
would come from f3). The transition structure of a repetition o* (row 6) repeats any
number of ¢ transitions to go from v to @ via some number of intermediate states
v;. In the example on the right, the system follows a sequence of various continuous
evolutions and discrete jumps, giving truly hybrid behaviour.

For differential equations like x' = 0, Definition2.7 characterises transitions
along a continuous evolution respecting the differential equation; see Fig.2.6a. A
continuous transition along x’ = 0 is possible from state v to state @ whenever there
is a continuous flow f of some duration » > 0 connecting state v with @ such that f
gives a solution of the differential equation x’ = 0. That is, its value is continu-
ous on the closed interval [0,r] and differentiable with the value of 0 as derivative
on the open interval (0, r). Further, only variables subject to a differential equation
change during such a continuous transition. Similarly, the continuous transitions
of x' = 0 & y with evolution domain x are those where f always resides within ¥
during the whole evolution; see Fig.2.6b. The evolutions of x' = 8 & ¥ may still
stop at any point in time, but they are no longer allowed to leave) and have to stop
at an arbitrary point in time before that happens; see Fig. 2.6c.

f@) ®

X =6 X=0&y

Fig. 2.6 Continuous flow along differential equation x' = 8 over time ¢

For the semantics of differential equations, derivatives are well defined on the
open interval (0,r), because the set Sta(X) of states is isomorphic to some finite-
dimensional metric real vector space spanned by the variables of the differential
equations (derivatives are not defined on the closed interval [0, r] if r = 0). For the
purpose of a differential equation system, states are fully determined by an assign-
ment of a real value to each occurring variable, which are finitely many. Further-
more, the terms of d.Z are continuously differentiable on the open domain where
divisors are nonzero, because the zero set of divisors is closed. Hence, solutions in
d.Z are unique:

Lemma 2.1 (Uniqueness). Differential equations of L have unique solutions,
i.e., for each differential equation system, each state v, and each duration r > 0,
there is at most one flow f:[0,r] — Sta(X) satisfying the conditions of Case 2 of
Definition 2.7.

Proof. Letx] = 0y,...,x, = 6, & x be a differential equation system with evolution
domain). Using simple computations in the field of rational fractions, we can as-

58 2 Differential Dynamic Logic A

sume the right-hand sides 6; of the differential equations to be of the form p;/g;
for polynomials p;,q;. The set of points in real space where g; = 0 holds is closed.
As a finite union of closed sets, the set where g =0V ---V g, = 0 holds is closed.
Hence, the valuations of the 6; are continuously differentiable on the complement
of the latter set, which is open. Thus, as a consequence of Picard-Lindel6f’s the-
orem, a.k.a. the Cauchy-Lipschitz theorem (Theorem B.2), the solutions are unique
on each connected component of this open domain. Consequently, solutions are
unique when restricted to), which, by assumption, entails g; # 0 A --- A g, # 0.

O

Example 2.11 (Evaluation of formula and transition semantics). Recall the follow-
ing hybrid program from Example 2.4 that models an (overly) simplistic train con-
troller:

train = (((a:=—b)U (W < 8a:=A)); 7 =vV =a)" 2.1%)

Recall the dZ formula (2.2) from p. 48 that claims that this simplistic train model
can leave the movement authority region m:

v>0Az<m— (train)z>m (2.2

Let us evaluate this d.% formula. Consider the interpretation / that interprets ri-
gid symbol m € X as I(m) = 20 and interprets b € X as I(b) =2 and I(A) = 1. Let
state Vv interpret state variables v,z € X as v(v) =9, v(z) = 0. Then the assump-
tions v > 0 Az < m from the left-hand side of the implication of (2.2) are satis-
fied, so for formula (2.2) to be evaluated to true, the right-hand side of the im-
plication needs to evaluate to valy (v, (train)z > m) = true. To find out if this is
the case, the semantics of (frain) in Definition 2.6 requires us to find a transition
(v,) € pyp(train) of the hybrid program train from v to some state @, according
to Definition 2.7, after which val; (w,z > m) holds true. Let us try to find such a
state @ by following the transition structure pj p(train) depicted in Fig.2.7a. Es-
sentially, we obtain the transition structure in Fig.2.7a by gluing the elementary
transition patterns from Fig. 2.5 together according to the structure of hybrid pro-
gram (2.1). We will find a path in the transition structure Fig. 2.7a from v to @ along
the transitions illustrated in Fig. 2.7b, as we explain in the following.

The top-level statement in frain is a repetition (corresponding to the outer loop in
Fig.2.7a). We are allowed to execute the repetition twice as illustrated in the double
unrolling in Fig.2.7b (we could also repeat it any other number of times, but two
times is sufficient). Thus, we hope to find an intermediate state 6, such that both

(v,02) € prp(((a:==b)U (v < 8;a:=A)); Z =v,V =a) (2.5)

and
(02,0) € prn(((a:==b)U (v < 8;a:=A)); Z =v,V =a) (2.6)

In the first transition (2.5), the top-level statement is a sequential composition (;)
with a nondeterministic choice (U) as its first action. This nondeterministic choice
can choose either side, indicated as upper and lower choices on the left of Fig. 2.7b.

2.3 Semantics 59

a.
a:=-—b
J J\ ' =a
W= o)
—
<8
b. v=9
ZZOZ v=7
a = — P
v=9 a:=—b _8

)

zto Uv y—»l 0'1 ' =a ‘J—< '=a
-)< ‘/stayls - - /staqu J
7 J"v<8 Ja V=17 v=9

v=7 =8 =24
=8 a=1 a=1
a=-2

Fig. 2.7 Transition structure and transition example in (overly) simple train control

If it chooses to try to run the second (lower) choice (?v < 8;a:=A), however, the hy-
brid program cannot run successfully, because the test 7v < 8 will fail and abort the
transition as a dead end, since this test evaluates to val; (v, v < 8) = false at state v.
Hence, the hybrid program can only choose the first (upper) option (a:=—b) to a
state o1 whose only difference with v is that oy (a) = —2 = val; (v, —b). For this
state, we have (v, 01) € prp(a:=—b). Next, the differential equation will run from
o1 as the second part of the sequential composition. Because o (a) < 0, it will brake
and the velocity v will decrease over time. If we just follow this differential equa-
tion long enough, say for one second, then the velocity at the end of it will be less
than 8. Indeed, after staying in the differential equation for one second, we reach a
state 0> with (01,02) € pry(Z =v,v =a) and 6,(v) =7 and 0>(z) = 8, because
z(t) := Z1> 4+ 9t +0 and v(t) := —2¢ + 9 is the solution of the differential equation
when starting in state o7 with the interpretation / and staying for ¢ time units. Thus,
by the semantics of sequential composition and nondeterministic choice, Defini-
tion 2.7, we have that relation (2.5) holds for this state 0,, and all we need to do is
make sure that relation (2.6) holds as well.

For the transition (2.6), we can choose the second (lower) part of the non-
deterministic choice, because, unlike before, the test ?v < 8 succeeds in the new
state now: valj n (02,v < 8) = true. Hence, we follow ?v < 8;a:=A to the state o3
that is like 6, except that we now have 03(a) =I(A) = 1. From state 03, we can
stay with and follow the subsequent differential equation as long as we want to,
because there is no evolution domain restriction on it. From this particular ini-
tial state o3, the solution of the differential equation is z(¢) := %t2+7t—|—8 and
v(t) := 1t +7 when staying for ¢ time units. If now we just follow the continu-
ous evolution along this differential equation for long enough, we will eventually
reach a state ® with (03, ®) € py(z' = v,V = a) such that val; y (@,z > m) = true.
In fact, the minimum time for this to happen is 1.544 time units, after which z has

60 2 Differential Dynamic Logic A

a value greater or equal 7(m) = 20. But any longer period of time will do too. For
instance, after 2 time units, we would have @(z) = 24 > 20 and @(v) = 9. Thus we
have shown 1,1, ® = z > m and

(v,0) € pra((((a:==b)U(W < 8a:=A)); Z =v =a)") ,

which implies that formula (2.2) holds for 7,1, v.

So far, we have shown by semantic reasoning that formula (2.2) is true for 7,1, v.
Yet formula (2.2) does not evaluate to true under all interpretations and states. For
a different interpretation J with J(m) = 1,000, braking force J(b) =4, and (now
negative) acceleration J(A) = —2, but the same original state v, we evaluate (2.4) to
false. The reason is that, no matter which choice the hybrid program uses, the train
always brakes, either with braking acceleration —J(b) = —4 or with negative accel-
eration J(A) = —2. Either way, the initial velocity v(v) =9 is not high enough to
reach 7(m) = 1,000 from the initial position v(z) = 0. Eventually, the train velocity
will be 0 and it cannot move forward anymore.

Another trivial example to show that formula (2.2) can evaluate to false for some
J,m, o is the interpretation J with J(m) = 20, J(b) =2, and I(A) = 0 along with
the state @ that interprets @(v) =0, ®(z) = 0. Then, the train stands still in the
beginning and cannot move forward to I(m) = 20 at all. In particular, formula (2.2)
is not valid, because it does not evaluate to frue for all I, 1, v. |

What we notice in this example is that it is quite difficult and cumbersome to
reason about A formulas and the dynamics of hybrid systems on the level of se-
mantics. Especially, we have only analysed particular behaviours starting at specific
initial values for all the variables. For validity, we are interested in analysing all
possible initial values, all numbers of repetitions, and arbitrary durations of staying
in the continuous evolution modes. To do this in an elegant and coherent way, we
introduce a proof calculus for d.Z in Sect. 2.5. After all, the semantics gives mean-
ing to formulas and captures the intended meaning and behaviour in real systems.
The semantics is intended to be intuitive to relate to the real world, not necessar-
ily for being easy to use in meta-reasoning. Supporting simple analysis and proofs
is the task of the proof calculus for .Z that we develop in Sect. 2.5. Still, a good
semantics like the one we chose is compositional, which makes the proof calculus
simpler.

Further note that, for control-feedback loops o with a discrete controller reg-
ulating a continuous plant, transition structures involve all safety-critical states;
hence, ¥ — [a]¢ is a natural rendition of the safety property that ¢ holds at all
states reachable by o from initial states that satisfy y. Otherwise, d.Z can be aug-
mented with temporal operators to refer to intermediate states or nonterminating
traces. The corresponding calculus is compatible and reduces temporal properties to
nontemporal properties at intermediate states of the hybrid program, as we illustrate
in Chap. 4.

2.4 Collision Avoidance in Train Control 61

2.4 Collision Avoidance in Train Control

As a case study to illustrate how A% can be used for specifying and verifying hybrid
systems, we examine a scenario of cooperating traffic agents in the European Train
Control System (ETCS) [91]. The purpose of ETCS is to ensure that trains cannot
crash into other trains or pass open gates. Its secondary objective is to maximise
throughput and velocity without endangering safety. To achieve these objectives,
ETCS discards the static partitioning of the track into fixed segments of mutually
exclusive and physically separated access by trains, which has been used tradition-
ally. Instead, permission to move is granted dynamically by decentralised Radio
Block Controllers (RBCs) depending on the current track situation and movement
of other traffic agents within the region of responsibility of the RBC; see Fig.2.8.

far ST neg SB cor MA

Fig. 2.8 ETCS train coordination protocol using dynamic movement authorities

Movement Authorities

This moving block principle is achieved by dynamically giving a movement author-
ity (MA) to each traffic agent, within which it is obliged to remain. Before a train
moves into a part of the track for which it does not have MA, it asks the RBC for an
MA extension (during the negotiation phase indicated neg in Fig. 2.8). Depending
on the MA that the RBC has currently given to other traffic agents or gates, the RBC
will grant this extension and the train can move on. If the requested MA extension
is still in the possession of another train that could possibly occupy the same part
of the track, or if the MA is still consumed by an open gate, the RBC will deny the
MA extension such that the requesting train needs to reduce speed or start braking in
order to safely remain within its old MA. This is the correction phase cor in Fig. 2.8,
which has to happen at the point SB (for start braking) at the latest. As the nego-
tiation process with the RBC can take time because of possibly unreliable wireless
communication and negotiation of the RBC with other agents, the train initiates ne-
gotiation well before reaching the end of its MA. This negotiation phase neg starts
at the start talking point ST at the latest. Only if the train has a very large distance

62 2 Differential Dynamic Logic A

to the end of its MA (phase far in Fig. 2.8) is it safe to drive freely and not yet ne-
cessary to request MA extensions. When the rear end of a train has safely left a part
of a track, the train can give that part of its MA back to RBC control such that it can
be used by other traffic agents, including trains or gates.

In addition to increased flexibility and throughput of this moving block principle,
the underlying technical concept of movement authorities can be exploited for veri-
fying ETCS. It can be shown that a system of arbitrarily many trains, gates, and
RBCs, which communicate in the aforementioned manner, safely avoids collisions
if each traffic agent always resides within its MA under all circumstances, provided
that the RBCs grant MAs mutually exclusively so that the MAs dynamically par-
tition the track (Chap. 7). This way, verification of a system of unboundedly many
traffic agents can be reduced to an analysis of individual agents with respect to their
specific MA.

Train Control Model

In trains, speed supervision and automatic train protection are responsible for loc-
ally controlling the movement of a train such that it always respects its MA [90].
Depending on the current driving situation, the train controller determines a point
SB (for start braking) up to which driving is safe, and adjusts its acceleration a
in accordance with SB. Before SB, speed can be regulated freely (to keep the de-
sired speed and throughput of a track profile). Beyond SB (correcting phase cor in
Fig.2.8), the train starts braking in order to make sure it remains within its MA if
the RBC does not grant an extension in time.

We assume that an MA has been granted up to some track position, which we
call m, and the train is located at position z, heading with current speed v towards m:.
We represent the point SB as the safety distance s relative to the end m of the MA
(i.e., m—s = SB). In this situation, A% can analyse the following crucial safety
property of ETCS, which we state as a ¥ formula:

= [(ctrl;drive)]z <m (2.7
wherectrl =(Mm—z<s;a:=—b)U(Im—z>s,a:=A),
drive =7:=0;(=v,V =a,7 =1&v>0AT < ¢).

It expresses that a train always ([(ctrl; drive)*]) remains within its MA (z < m), as-
suming some constraint Y for its parameters. The operational system model is a
control-feedback loop of the digital controller czrl and the plant drive. In ctrl, the
train controller corrects its acceleration or brakes on the basis of the remaining dis-
tance (m — z). As a fail-safe recovery manoeuvre [90], it applies brakes with force b
if the remaining MA is less than or equal to s. Otherwise, speed is regulated freely.
The controller ctrl has a nondeterministic choice (U) where the left option starts
with test ?m —z < s and the right option starts with test 7m —z > s. The controller
can try both options, but the left test will only succeed if m —z < s holds for the
current state, and the right test will only succeed if m —z > s holds. In particular, if

2.4 Collision Avoidance in Train Control 63

m — z < s holds the controller can only choose the left option, leading to braking by
the assignment a:= —b. If m —z > s holds the controller can only choose the right
option, leading to acceleration by the assignment a := A. If both tests could succeed,
i.e., m —z = s, then either choice can be taken, nondeterministically. For simplicity,
we assume the train uses a fixed acceleration A before passing s and does not choose
any other accelerations than full braking b and full acceleration A (bang-bang con-
trol). The verification is quite similar when the controller can dynamically choose
any acceleration a < A instead, as we illustrate in Chap. 7.

After acceleration a has been set in ctrl, the second half of the sequential com-
position ctrl; drive executes, and the train continues moving in drive. There, the pos-
ition z of the train evolves according to the differential equation system 7 = v,V = a
(i.e., 7/ = a). The evolution in drive stops when the speed v drops below zero (or
earlier), because the train would not drive backwards just by braking. Thus, v > 0 is
in the maximum evolution domain of drive. Simultaneously, clock T measures the
duration of the current drive phase before the controllers react to situation changes
again. Clock 7 is reset to zero by 7:=0 when entering drive, constantly evolves
along 7’ = 1 together with the differential equations 7/ = v,V = a, and is restricted
by the evolution domain 7 < €. Hence, the system can only follow drive for up to €
time units and at most as long as v > 0. The effect is that a drive phase is interrupted
for reassessing the driving situation after at most € seconds, and the ctrl; drive feed-
back loop repeats by the repetition operator (*). In particular, the continuous evolu-
tion cannot just be followed indefinitely without giving the controller czr/ a chance to
react to situation changes. The corresponding transition structure py ((ctrl; drive)”)
is depicted in Fig. 2.9a. Essentially, we obtain the transition structure in Fig. 2.9a by
gluing the elementary transition patterns from Fig.2.5 together according to the
structure of the hybrid program in (2.7).

J—’ J—’ J =<
J 0:45 &rgs ----- ~)

Im—z>s t

Fig. 2.9 ETCS transition structure and various choices of speed regulation for train speed control

Figure 2.9b shows possible runs of the train where speed regulation successively
decreases velocity v because its MA has not been extended in time. Figure 2.9b
shows three different runs (three upper position curves and three lower, partially
overlapping velocity curves) which correspond to different choices of parameter s,
where only the lowest velocity choice is safe. Finally, observe that the evolution
domain v > 0A 7 < € needs to be true at all times during continuous evolutions of
drive; otherwise there is no corresponding transition in py j (drive). This not only
restricts the maximum duration of drive, but also imposes a constraint on permitted

64 2 Differential Dynamic Logic A

initial states: The arithmetic constraint v > 0 expresses that the differential equation
only applies for nonnegative speed. Hence, as in a test 7v > 0, program drive allows
no transitions at all when v is initially less than 0. In that case, p; 5 ((ctrl;drive)”)
collapses to the trivial identity transition where only zero repetitions are possible.

Discussion

Here, we explicitly take into account possibly delayed controller reactions to bridge
the gap of continuous-time models and discrete-time control design. To get mean-
ingful results, we need to assume a maximum reaction delay €, because safety can-
not otherwise be guaranteed (the system would not be safe if the controllers can
never execute). Polling cycles of sensors and digital controllers as well as latencies
of actuators such as brakes contribute to €. Instead of using specific estimates for €
for a particular train, we accept € as a fully symbolic parameter. Further, instead
of manually choosing specific values for the free parameters of (2.7) as in model
checking approaches [91], we will use our calculus to synthesise constraints on the
relationship of parameters that are required for safe operation of train control. We do
not model weather conditions, slope of track, wheel friction, or train mass, because
these are less relevant for the cooperation layer of train control [90].

Because of its nonlinear behaviour and nontrivial reset relations, system (2.7)
is beyond the modelling capabilities of linear hybrid automata [8, 156, 126] and
beyond o-minimal automata [189]. Previous approaches need linear flows [8, 156],
do not support the coupled dynamics caused by nontrivial resets [189], require
polyhedral initial sets and discrete dynamics [70], only handle robust systems with
bounded regions [125] although parametric systems are not robust uniformly for all
parameter choices, or handle only bounded-time safety for systems with bounded
switching [217]. Finally, in addition to general numerical limits [238], numerical
approaches [70, 21] quickly become intractable due to the exponential impact of the
number of variables (curse of dimensionality).

2.5 Free-Variable Proof Calculus for Differential Dynamic Logic

In this section, we introduce a sequent calculus for formally verifying hybrid sys-
tems by proving validity of corresponding d.% formulas. The basic idea is to sym-
bolically compute the effects of hybrid programs and successively transform them
into logical formulas describing these effects by structural symbolic decomposition.
The calculus consists of standard propositional rules, rules for dynamic modalities
that are generalised to hybrid programs, and novel quantifier rules that integrate real
quantifier elimination (or, in fact, any other quantifier elimination procedure) into
the modal calculus using free variables and Skolemisation.

2.5 Proof Calculus 65

2.5.1 Substitution

The d.% calculus uses substitutions that take effect within formulas and programs.
The result of applying to a A% formula ¢ the substitution that simultaneously re-
places variable y; by term 6; (for 1 <i <m) is defined as usual. Figure 2.10 shows

o(yi) =6 for1<i<n
o(z) = ifz& {y1,...,ym} is a variable
o(f(6y,...,6,)) = f(c(61),...,0(6,)) if f is a function symbol
o(p(6y,...,6,)) = p(c(61),...,0(6,)) if p is a predicate symbol
o(=¢) = —o(9)
(oY) =o(9)No(y)
o(¢Vvy) =oa(9)Va(y)
o(¢p—y)=0(9) —o(y)
o(Vx¢9) = Vxo(¢) if admissible
o(Ix¢g) = Ixo(9) if admissible
o([a]¢) = [o(a)]o(9) if admissible
o((a)9) = (o(a))c(9) if admissible
o(x1:=01,..,%,:=6,) = x1:=06(601),..,%,:=0(6,) if admissible

(X =61,...x, = 6,&)) = ¥, = 6(61),..,x, = 5(6,) & () if admissible
o(?) = (%)
o(a;B) = o(a);o(B)
o(aUp) = o(a)Uuc(B)

o(a’) = (o(a))”

Fig. 2.10 Application of substitution o that simultaneously replaces variable y; by term 6;
(for 1 <i<m)

how the substitution ¢ that replaces variable y; by term 6; (for each 1 <i < m) can
be applied to a term, d.Z formula, or hybrid program, respectively. The first line in
Fig. 2.10 represents that the substitution ¢ matches on the replaced (logical or state)
variables y; and replaces them by 6;, respectively. The second line represents that no
logical or state variable z other than y1,...,y, are affected by ©. The third line maps
the substitution 6 homomorphically over function applications by applying ¢ re-
cursively to all argument terms. Similarly, the next block of cases in Fig. 2.10 maps
substitutions homomorphically over all subformulas. Yet for quantifiers (V,3) and
modalities ([a], (), the substitution is only applicable if admissible (as defined
below) so that the bound variable x of the quantifier does not interfere with the
substitution. We assume bound variable renaming (also known as o conversion)
for renaming as needed: bound variables can be renamed to resolve conflicts, e.g.,
Vx ¢ (x) =Vz¢(z). Likewise, for applying the substitution homomorphically to hy-
brid programs (last block in Fig.2.10) admissibility of the substitution is crucial in
all cases. Admissibility implies, for instance, that the variables y; replaced by the

66 2 Differential Dynamic Logic A

substitution are different from the changed variables x; on the left-hand sides of the
assignments or differential equations of the hybrid program.

Definition 2.8 (Admissible substitution). An application of a substitution o is
admissible if no variable x that ¢ replaces by ¢ (x) occurs in the scope of a quantifier
or modality binding x or a (logical or state) variable of the replacement ¢ (x). A
modality binds a state variable x iff it contains a discrete jump set assigning to x
(such as x:= 0) or a differential equation containing x’ (such as x' = 0).

In this book, only admissible substitutions are applicable, which is crucial for sound-
ness. Admissible substitutions are denotation-preserving: They ensure that symbols
still denote the same values after a substitution when they did so before.

Example 2.12 (Non-admissible substitution). It is important that only admissible
substitutions are applicable. For the following formula, ¢,

x=z—= (z:=z+1)(z>x+1),

the substitution o that replaces all occurrences of x by z is not admissible. This is
due to the fact that for when we try to apply o to ¢ forming

2=z — (z:=z+ 1)(z>z+1),

the substitution replaces x in postcondition z > x + 1 by z, which is bound by modal-
ity (z:=z+ 1). Hence, within the scope of the modality, symbol z denotes a different
value than outside the modality, thereby destroying the property of the occurrences
of x—or, after the substitution, those of z—to share the same value throughout the
formula. Instead, a substitution 0, of x by y+ 1 in ¢ to form 6,(¢) is admissible for
other symbols y, giving the formula ¢, (¢):

y+l=z—= (zi=z+1)(z>y+1+1).
O

More succinctly, we abbreviate the result of applying to ¢ the substitution ¢ that
replaces variable y; with term 6; (for 1 <i<m) by ¢y91‘ . 3’3 Thus ¢;?11 . '.&Z is an
abbreviation for o(¢) defined according to Fig.2.10. When no confusion arises,
we also use implicit notation for substitutions to improve readability. Let ¢(z) be a
formula with a free variable z. Then for any term 6, we use ¢(0) as an abbreviation

for the formula (]J(z)f that results from ¢ (z) by substituting 6 for z.

Example 2.13 (Admissible versus non-admissible substitutions). Consider the (valid)
d.Z formula ¢ defined as

O =x>0Ay>1Az>x — [z:=z+xy]z> x.

Now the substitution that replaces x by 5a 4 x> —y is admissible for ¢, giving the

2_,
result 2™ 7

2.5 Proof Calculus 67
Sa4+x>—y>0Ay>1Az>5a+x>—y = [zi=z+ (5a+x> —y)y]z> 5a+x> —y.

This formula q)f ata’ =y , which results by an admissible substitution from ¢, is valid,
just like ¢.

However, the substitution that replaces x with the term az is not admissible for ¢,
because variable z occurs in the replacement az but is bound in ¢, and could thus
have a different value at its various occurrences. So we cannot apply this substitution
to ¢. Yet if we choose a fresh variable « and use bound variable renaming to rename
all occurrences of bound variable z to u, we obtain the formula

b = x>0Ay>1Az>x = [ur=z+xylu>x

This variant ¢ is equivalent to ¢, because only bound variables have been renamed.
After this bound variable renaming, the substitution replacing x by az becomes ad-
missible and we obtain

0% = az>0Ay>1Az>az — [ui=z+ (az)ylu > az.

This formula is valid (just like ¢ and ¢). But it is quite different from the formula
we would obtain if we had just naively replaced every occurrence of x (admissible
or not) by az, instead of using more careful admissible substitutions:

az>0Ay>1Az>az — [z:=z+ (az)y]z > az.

The latter formula is clearly false for all 7,m,v with val;,(v,a) = 1, because z
cannot possibly be greater than az then. Contrast this with the validity of the original
formula ¢ and its (admissible) substitution instance (5)?1.

Similarly, the substitution that replaces z with ax is not admissible for ¢, because
the replaced variable z is bound in ¢, and could thus have a different value at its
various occurrences. So we cannot apply this substitution. Yet if we again choose
a fresh variable u and use bound variable renaming to rename all occurrences of
bound variable z to u, we obtain the formula (}3 above. After this bound variable
renaming, the substitution replacing z with ax becomes admissible and we obtain

0 = x>0Ay>1Aax>x — [u:=ax+xy|u> x.

Again, this formula is valid and quite different from the formula we would obtain if
we had just naively replaced every occurrence of z (admissible or not) by ax:

x>0Ay>1Aax>x — [z:=ax+xy|ax > x.

The latter formula is again false for all 7,1, v with val; 5 (v,a) = 1, because x can-
not possibly be greater than ax then. Contrast this with the validity of the original
formula ¢ and the admissible substitution instance ¢&*.

Thus, there is a close connection between the formula ¢ and its various substitu-
tion instances (if admissible!), which we will identify in the next lemma. As part of
that, we will show that, since ¢ is valid, all of its (admissible) substitution instances

68 2 Differential Dynamic Logic A

are valid. This close connection (and every other similarity) breaks when we naively
replace terms in ¢ instead of obeying the requirements of admissible substitutions.
]

Example 2.14 (Non-admissibility in repetitions). The last example is prototypical
for several A% formulas and works similarly for all % formulas without repetitions
or differential equations. Yet repetitions and differential equations themselves are
more involved. Consider a (valid) d.% formula with a repetition:

Vv =x>0Ay>1Az>x = [(z:=z4+x)"]z> x. (2.8)

As with the formula ¢ from the last example, the substitution that replaces x by the
2_
term 5a +x2 — y is admissible for v, giving the result y3*™ -

S5a+x>—y>0Ay>1Az>5a4+x>—y = [(z:=z+ (Sa+x* —y)y)*]z>5a—|—x2—y

This formula l//f'”xz 7, which results by an admissible substitution from v is valid,
just like y.

Again, the substitution that replaces x by the term az is not admissible for v,
because variable z occurs in the replacement az but is bound in y, and could have
different values at its occurrences. Hence, we cannot apply this substitution. How-
ever, for repetitions, it is not so easy to do bound variable renaming to get around
this! We cannot simply replace all bound occurrences of z by one fresh variable u,
which would give

x>0Ay>1Az>x = [(u:=i+xy)]u>x.

But here the connection of u with the input z has been lost and the formula is no
longer valid. The reason is that the occurrence of z on the right-hand side z + xy of
the jump (which corresponds to the occurrence of u we marked ” in the last formula)
is neither just free nor just bound. During the first iteration of the repetition, it would
be free (because it receives its value from outside); during subsequent iterations,
however, it would be bound (because it receives its value from the last assignment).
The formula we would obtain if we had just naively replaced every occurrence of x
(admissible or not) by az is also quite different and not valid:

x>0Ay>1Az>x — [(2:=z2+ (a2)y)"]z > az.

The reason is that the occurrence marked with ~ is neither just free nor just bound,
because it depends on the number of iterations of the loop.

Likewise, the substitution that replaces z by ax is not admissible for y and cannot
be applied, because the replaced variable z is bound in y. We thus cannot apply this
substitution. Once more, it is not so easy to do bound variable renaming to get
around this and we cannot just rename z to a fresh variable u to resolve this issue.
The formula we would obtain if we had just naively replaced every occurrence of x
(admissible or not) by az is also quite different and not valid:

2.5 Proof Calculus 69
x>0Ay>1Aax>x — [(z:=dx+xy)"|ax > x.

The reason is again that the occurrence of z (prior to replacing) at the position
marked ~ is neither just free nor just bound. While it would be perfectly alright to
replace the first dynamic occurrence of z (in the sequential execution order) by ax,
subsequent occurrences (including those in repetitions) have a different operational
value and cannot be replaced.

In these two cases, the substitutions are just not admissible for y and cannot be
applied, because the modalities of y bind relevant replaced variables or variables in
the replacements. Our proof calculus in Sect.2.5.2 will use other ways that do not
need substitution to prove formulas with repetitions like these. O

Example 2.15 (Non-admissibility in differential equations). The situation with dif-
ferential equations is quite similar. In the A% formula

Vv =x>0Ay>1Az>x = [=z+x]z>x (2.9

the occurrences of z in the differential equation are neither just free nor just bound:
The value 7 affects the initial value z of the differential equation, but the value of z
also evolves over time when following the differential equation to a new value.
Thus, z is both a free initial value and bounded or updated during the evolution.
The substitution that replaces x with 5a* +x> —y is still admissible for v, giving

lﬁaz-&-xz—y,
x .
50 +x*—y>0Ay > 1Az> 58 +x° —y = [=72+ (5a° + x> —y)y|z > 5a*> +x*> —y

But we cannot substitute x with az, because the substitution is not admissible for y
as bound variable z occurs in the replacement az. Nor can we substitute z with ax,
because this substitution is not admissible for y either, as the replaced variable z
is bound in y. The formula we would obtain if we had just naively replaced every
occurrence of x (admissible or not) with az, is different and not valid:

az>0Ay>1Az>x = [=z+(a2)y]z > az.

The formula we would obtain, instead, if we had just naively replaced every occur-
rence of z (admissible or not) by ax, is also different and not valid:

x>0Ay>1Aax>x — [{ =dx+xy|lax > x.

In both cases, we marked the positions where the occurrences have been neither free
nor bound with ” once again.

In these two cases, the substitutions are not admissible for ¥ and cannot be ap-
plied, because the modalities of y bind relevant replaced variables or variables in
the replacements. Our proof calculus in Sect. 2.5.2 will prove such properties of dif-
ferential equations differently. O

Example 2.16 (Bound variable renaming for repetitions and differential equations).
On a side note, it would not be impossible to define bound variable renaming for

70 2 Differential Dynamic Logic A

repetitions and differential equations. We decide not to use these extensions in our
approach, because they are technically more involved and not necessary for our
proof calculus. The purpose of this example is to show how bound variable renam-
ing could be extended appropriately, nevertheless. When we add an extra discrete
jump, we could define the following extended bound variable renaming variant of
formula (2.8):

x>0Ay>1Az>x = [ui=z (u:=u+xy)Ju>x.

This formula separates the initial value assignment from the loop. Similarly when
we add an extra discrete jump, we could define the following extended bound vari-
able renaming variant of formula (2.9):

x>0Ay>1Az>x — [ui=z u' =u+xylu>x

Again, this formula separates the initial value assignment from the differential equa-
tion. For both variants, the substitution replacing x with az is admissible, and so is
the substitution replacing z with ax. Essentially, the above two variants retain the ini-
tial value z explicitly before the repetition or differential equation. We have chosen
not to use these extended bound variable renamings in this book and, instead, follow
our choice that non-admissible substitutions are not applicable at all. O

There is a direct connection between a formula ¢ and its substitution instance
o(¢), provided that the substitution ¢ is admissible for ¢. In fact, the valuation of ¢
and o (¢) coincide if only we change the interpretation of the replaced symbols ap-
propriately when evaluating ¢. That is, semantically evaluating ¢ (after modifying
the interpretation of the symbols replaced by ¢ in I,7n,V) is the same as semantic-
ally evaluating ¢ in the original I, 1, Vv after applying the substitution (resulting in
o (9)). Stated differently, we can show that, for admissible substitutions, syntactic
substitution in the formula and semantic modification of 7,1, v have the same effect:

Lemma 2.2 (Substitution Lemma). Let ¢ be an admissible substitution for the
(term or) formula ¢ and let © replace only logical variables; then

foreach I,n,v : val; n(v,0(9)) = val; 5+ (v, 9),

where the semantic modification ¢*(n) of assignment 1 is adjoint to o, i.e.,
0*(n) is identical to M, except that 6*(N)(x) = val; (v, 0(x)) for all logical vari-
ablesx V.

Proof. In essence, the proof of this lemma is a simple corollary to the fact that
both substitution and valuation are homomorphisms defined inductively on formu-
las from their effect on atomic symbols. The application of an admissible substi-
tution ¢ is a homomorphic continuation of its effect on atomic symbols to all d.Z
formulas by way of Fig. 2.10. That is, the effect of an admissible(!) substitution on
a compound formula is just defined by applying the substitution recursively to all

2.5 Proof Calculus 71

subformulas. Likewise, the valuation is a homomorphic continuation of the inter-
pretation /, state v, and assignment 1 on atomic symbols to all A% formulas by
way of Definition 2.6. That is, the valuation of a compound formula is just defined
by using the valuation on all subformulas.

First we prove the substitution lemma applied to terms 0:

foreach I,n,v : valn(v,0(0)) =val; +(y)(Vv,0).

The proof is by induction on the structure of the term 6.

1. If O is a logical variable x € V, then, by definition of *(n):

valpn(v,0(x)) = 6" (n)(x) = val g« () (v, x).

2. If 0 is a state variable x € X, then it is different from replaced logical vari-
ables u € V and o(x) = x. Hence

valyn(v,0(x)) = val n(v,x) = v(x) = valj g«)(V,x).
3. If 6 is of the form f(6y,...,6,) for a function symbol f of arity n > 1, then

valyn(v,6(f(61,...,6,)))
=valiy(v,f(0(61),...,5(6,)))
=I(f)(val;y(v,0(61)),...,val;5(v,0(6,)))
=1(f) (vallﬁ*m)(v, 01),...,valy g+(n)(V, 6,,))
=valy g+) (V, f(61,...,6))

because the 6; are simpler than f(6,...,6,) so that, by induction hypothesis,
we have for each i:

val,_n (V7 6(9,)) = val,’c*m) (V7 9,)
Next we prove the substitution lemma applied to d.Z formulas ¢:
foreach I,n,v : valn(v,0(9)) = valy g+ (V, 9).

The proof is by induction on the structure of the formula ¢.

1. If ¢ is of the form p(6,...,6,) for a predicate symbol p of arity n > 1, then the
proof is almost identical to that for function symbols above.

2. If ¢ is of the form ¢; V ¢», then we use the induction hypothesis on ¢; and ¢ to
conclude

valpn (v, 0(¢1V 2))
=val;(v,0(91)Vo(¢)) =true
iff val; (v, 0(91)) = true or valy (v, 6(¢2)) = true

72 2 Differential Dynamic Logic A

iff valy g () (v, §1) = true or valy gy (v, §2) = true
iff valy gv) (v, 01V §2) = true

If ¢ is of the form ¢; A ¢ or of the form ¢; — ¢» or —¢;, then the proof is
similar.

3. If ¢ is of the form Ixy, then we use that ¢ was assumed to be admissible
for ¢. In particular (by bound variable renaming), x is not one of the replaced
variables u and x does not occur in any of the replacements o (u). We use the
induction hypothesis on y to conclude

valyn(v,0(3xy)) =val;y(v,3xo(y)) = true

iff there is a d such that val; . ,q)(V, 0 (V) = true
iff there is a d such that val; s+ (yvsa)) (V, W) = true
iff there is a d such that val; s+ (y)xa) (V, V) = true
iff valy g+ () (v, 3x W) = true.

Note that 6*(n[x — d]) = 6*(n)[x — d], because x is not affected by the sub-
stitution o (since admissible); hence x is not affected by adjoint assignments. If
¢ is of the form Vx y, the proof is similar.

4. If ¢ is of the form [ct]y, then we use that the substitution & is admissible by
assumption. Hence, o does not bind any of the replaced variables nor any of
the variables that occur in any of the replacements o (u). We use the induction
hypothesis on y to conclude

valpn (v, o([a]y)) = valpy (v,[o(a)]o(y)) = true
iff for all @ with (v,®) € pyp(o(a)) : valp (@, 0(y)) = true
iff for all ® with (v, ®) € p;n(0(@)) : valj o) (@, ¥) = true
iff* for all @ with (V,) € p; g+ () (@) : valy g+ () (@, W) = true
iff valy g« () (v, [a] W) = true.

For the middle step marked with %, we still have to prove the substitution lemma
for hybrid programs:

prn(0(®)) = pro-m) (). (2.10)
If o is of the form (o) y then the proof is similar.

Finally we prove the substitution lemma for hybrid programs o as formulated
in (2.10). The proof is by induction on the structure of hybrid program o.

1. If « is of the form x; :=0y,...x, := 6,, then we use the substitution lemma on
the terms 6; to show

2.5 Proof Calculus 73

(v,0) € prp(o(x1:=61,..x%,:=6,)) = pry(x1:=0(61),...x,:=0(6y))
iff vxy = valpy(v,0(601))]... [x0 = valpn(v,06(6,))] =
iff v[xy = valy ooy (v, 01)] ... [xn = valy o) (V, 0,)]
iff (v,m) € p,,g*(n)(xl =0,...%,:=6,).

2. If ar is of the form ?y for a (first-order) d.Z formula), then we use the substi-
tution lemma on the (simpler and even first-order) d.¢ formula y:

(v, @) € pra((22)) = prn (2())
iff v = and val; 5 (v,0())) = true
iff v = and val; g+ () (v, X) = true
iff (v,w) € Plﬁ*(n)(?X)'

3. If o is of the form x| = 6y,...x], = 6, & ¥, then we use the substitution lemma
on terms and on the (first-order) A% formula y to conclude:

(v,o) € pry(o(x) =6i,...x,=6,&%))
=Pry(x1=0(61),...x, = 0(6,) & (),
which holds if and only if there is a continuous flow function f:[0,r] — Sta(X)

with £(0) = v, f(r) = w and val; (f({),2) = val;»(v,z) for all £ € [0,7] and
all z ¢ {xy,...,x,} such that:

o for each x;, val; 5 (f($),xi) = f(&)(x;) is continuous in ¢ on [0,7] and has a
derivative of value val; , (f({),0(6;)) at each time { € (0,7),
o and val;y(f(8),0(x)) = true for each { € [0, r].

By the substitution lemma for terms and formulas, respectively, these conditions
are equivalent to

e for each x;, valy g+(y)(f(§),xi) = f(&)(x;) is continuous in £ on [0,r] and
has a derivative of value val; 5« (5 (f(&), 6;) at each time ¢ € (0,r),
e and valj oy (f(8),x) = true for each { € [0, 1],

which hold if and only if
(V,0) € pro+(n)(X] = 61,...x, = 6, & x).

4. If o is of the form B U Y, then we can use the induction hypothesis on 8 and y
to conclude

Prn(c(BUY)) =prn(c(B)Uc(y)) =pin(c(B))Uprn(o(y))
= pl,o*(n)(ﬁ) Upl,o*(n) (Y) = Pr.6*(n) (ﬁ J Y)~

5. If « is of the form f3;7, then we use the induction hypothesis on 3 and on ¥ to
conclude

74 2 Differential Dynamic Logic A

(v,0) € pry(a(B;7)) = prn(c(B):o(7))
iff there is a u with (v, u) € pr (o (B)) and (u, @) € pry(c (7))
iff there is a g with (v, i) € py o) (B) and (1, @) € Py 5+ (V)

iff (v,w) € plﬁ*(n)(ﬁ; 7).

6. The case where « is of the form * is similar, again using admissibility:

(v,0) € pry(0(B)) = pry(c(B)’)
iff there are n € N, o = v, ly,..., 1y = @ : (Wi, hiv1) € Prn(c(B))
iff there are n € N, tlo = v, i1, fty = @ = (Ui, i 1) € Pr.o+(n)(B)
iff (V,(D) epl,o*(n)(ﬁ*)~

O

The substitution lemma implies a simple corollary for substituting program vari-
ables instead of (or in addition to) logical variables. The proof is an immediate
consequence of a double application of the substitution lemma, so that, in the re-
mainder of this book, we do not distinguish between Lemma 2.2 and the following
corollary.

Corollary 2.1. Let 6 be an admissible substitution for the (term or) formula ¢; then

foreach I,n,v: val;n(v,0(9)) = val; g+(n)(07(V),9),

where the semantic modification 6*(V) of state v is adjoint to 6. The adjoint (V)
is identical to v, except that 6*(v)(x) = val; (v, 0 (x)) for all state variables x € X.
The adjoint 6*(n) is defined as in Lemma 2.2.

Proof. The proof is a simple corollary to Lemma 2.2, using fresh logical variables z;
to relate (¢) with ¢ for gluing two uses of Lemma 2.2 together. To simplify nota-
tion, assume that o only replaces a single state variable x by 6 and let us denote
the result of applying this substitution to ¢ by (Pxe. Let z be a fresh logical vari-
able. Since the substitution ¢ is admissible for ¢, the replaced variable x and all
variables in its replacement 6 are not bound in ¢. Thus, ¢ is of the form y? for
the formula v, which is like ¢ except that it has z in place of x everywhere. Now
abbreviate valy (v, 0) as e, and abbreviate val;, (V[x — e],x) as d. Then, we use
Lemma 2.2 at the positions indicated % to conclude:

Vaan (V, (pxe) = Vallﬂl(v’ ‘Vgg) = Vallﬁﬂ (V7 WZG) = Vall,n[zHe](vv W)
=valyyzsa (VX — e, v) Zvalyy (Vx> e], yb) = valp y (Vx> e, 9).
Note that the two lines are equal because the value of state variable x in the state does

not matter for y, where x does not occur, and because d = valy , (V[x — e],x) =e.
O

2.5 Proof Calculus 75

. . . 2
Example 2.17. Again consider the formula ¢, and an instance ¢ * under an ad-
missible substitution:

p=x=z— (z:=z+1)(z>x+1),
O3 =5 4 b=z — (=24 1)(z > 5>+ b+1).

Using the substitution lemma, we can conclude that with respect to any 7,7, v, the
. . 2 .
formula ¢ and its instance ¢>* *? evaluate to the same truth-value when adapting

the value of x appropriately. That is, let o be the substitution that replaces x with
5a%+b,ie., () = ¢37+P; then (the corollary to) Lemma2.2 implies:

2 *
valy (v, ¢f“ +b) = vallﬁ*(n)(c (v),0).

Let us abbreviate the value val; n (V,5a* + b) of the replacement 5a> + b of x by e.
Then if x € V is a logical variable, then 6*(v) = v and 6*(1) = n[x — e¢]; hence

¢Sa2+b

Vall,rl(va x)= Val].,n[)o—)e](vv(P)'

If, instead, x € X is a state variable, then 6*(1) =1 and 6*(v) = v[x — ¢]; hence

valpn (v, 3“2”7) =valn(Vix e, 9).
In either case (either x € V or x € X), if the value of x and its replacement 5a° + b
agree in the original 1,1,V already, i.e., if val;(v,x) =val; 5(v,5a> +b), then
their valuations agree according to the substitution lemma:

2
valy n (v, 924) = valp (v, 9).

O

The substitution lemma is a very powerful tool, because, among other things, we
can use it to replace equals for equals without changing the valuation (substitution
property). If we know that x and 6 have the same value in I,7,V, then we can
substitute 0 for x in a formula ¢ (if admissible) without changing the truth-value
of ¢, that is:

Lemma 2.3 (Substitution property). IfI,n,v}=x=0, then I.n,v = ¢ < ¢
for any formula ¢ for which the substitution replacing x with 0 is admissible.

Proof. Consider any I,1,v with 1,1,V |= x = 6. First, note that this assumption
is equivalent to valy,(v,x) =val;y(v,0). We have to show 1,n,v = ¢ > ¢,
or, equivalently, valy (v, 9) = val;n(v,$?). This follows from the Substitution
Lemma 2.2 when we choose o to be the substitution that replaces x by 6 since

val;n(v,90) = val; g+ () (6% (), 9) = val; (v, 9).

76 2 Differential Dynamic Logic A

The last step follows from the fact that 7,1,V equals I,6*(1), 0" (v), respectively,
because the substitution ¢ only replaces x by 0, which already have the same value
to begin with, as we assumed valy (v,x) = val; (v, 0). O

In addition, whenever a formula ¢ is valid (¢ is true in all 7,7, V), the substitution
lemma implies that all of its (admissible) substitution instances o(¢) are valid too
for any substitution ¢ that is admissible for ¢.

Lemma 2.4 (Substitutions preserve validity). IfF ¢, i.e., ¢ is valid, then = c(¢)
for any substitution © that is admissible for ¢.

Proof. Let ¢ be valid, i.e., I,n,v = ¢ for all I,n,v. Consider any 1,1,V and any
substitution ¢ that is admissible for ¢. Now the Substitution Lemma 2.2 implies

valpn(v,0(9)) = val o) (6*(v),9) = true.

The last step holds because ¢ is valid and, in particular, holds for 7,6*(n), 0" (v).
O

Observe that, for soundness, the notion of bound variables in Definition 2.8 could
in fact be any overapproximation of the set of variables that possibly change their
value during a hybrid program. In vacuous identity changes like x:=x or X' =0,
variable x will not really change its value, but we still consider x as a bound variable
for simplicity. For a hybrid program «, we denote by V*¢ the universal closure of
formula ¢ with respect to all state variables bound in . Quantification over state
variable x is definable as VX [x:=X]® using an auxiliary logical variable X.

2.5.2 Rules of the Calculus for Differential Dynamic Logic

We present a proof calculus for A% as a Gentzen-style sequent calculus [133].
Sequents are essentially a standard form for logical formulas that is convenient
for proving. A sequent is of the form I' + A, where the antecedent I and suc-
cedent A are finite sets of formulas. The semantics of I" - A is that of the for-
mula Ayer ¢ — Vyen Y. For quantifier elimination rules, we make use of this fact
by considering sequent I" = A as an abbreviation for the latter formula. The ante-
cedent I can be thought of as the formulas we assume to be true, whereas the
succedent A can be understood as formulas for which we want to show that at least
one of them is true assuming all formulas of I" are true. So for proving a sequent
I' F A, we assume all I" and want to show that one of the A is true. For some simple
sequents like I, ¢ = ¢, A, we directly know that they are valid, because we can cer-
tainly show ¢ if we assume ¢ (in fact, we will use this as an axiom). For other
sequents, it is more difficult to see whether they are valid (true under all circum-
stances) and it is the purpose of a proof calculus to provide a means to find out.

For handling quantifiers in the d.Z calculus, we cannot use the standard proof
rules [147, 122, 123], because these are for uninterpreted first-order logic and (ul-
timately) work by instantiating quantifiers, either eagerly as in ground tableaux or

2.5 Proof Calculus 77

lazily by unification as in free-variable tableaux [147, 122, 123]. Also, see App. A
for an exposition of proving in uninterpreted first-order logic. The basis of d.Z,
in contrast, is first-order logic interpreted over the reals or in the theory of real-
closed fields [287, 288]. A formula like JaVx (x> +a > 0) cannot be proven by
instantiation-based quantifier rules but is valid in the theory of real-closed fields.
Unfortunately, quantifier elimination (QE) over the reals [81, 288], which is the
standard decision procedure for real arithmetic, cannot be applied to formulas with
modalities either. Hence, we introduce new quantifier rules that integrate quantifier
elimination in a way that is compatible with dynamic modalities (as we illustrate in
Sect. 2.5.3).

Definition 2.9 (Quantifier elimination). A first-order theory admits quantifier elim-
ination if, with each formula ¢, a quantifier-free formula QE(¢) can be associated
effectively that is equivalent (i.e., ¢ <> QE(¢) is valid) and has no additional free
variables or function symbols. The operation QE is further assumed to evaluate
ground formulas (i.e., without variables), yielding a decision procedure for closed
formulas of this theory (i.e., formulas without free variables).

Example 2.18. Quantifier elimination uses the special structure of real arithmetic to
express quantified arithmetic formulas equivalently without quantifiers and without
using more free variables. For instance, QE yields the following equivalence:

QE(Fx(ax’> +bx+c=0)) = (a#O0Ab> —dac>0)V(a=0A(b=0—c=0)).

In this particular case, the equivalence can be found by using the generic condition
for solvability of quadratic equations over the reals plus special cases when coef-
ficients are zero. For details on quantifier elimination in real-closed fields and an
overview of decision procedures for real arithmetic, also see App.D.2. O

As usual in sequent calculus rules—although the direction of entailment in the
proof rules is from premises (above rule bar) to conclusion (below)—the order of
reasoning is goal-directed: Rules are applied backwards, i.e., starting from the de-
sired conclusion at the bottom (goal) to the resulting premises (subgoals). To high-
light the logical essence of the d.Z calculus, Fig. 2.11 provides rule schemata with
which the following definition associates the calculus rules that are applicable in d.Z
proofs. The calculus consists of propositional rules (—r—cut), first-order quantifier
rules (Vr-i3), rules for dynamic modalities ((;)—[']), and global rules ([]gen—con).
All substitutions in the rules in Fig.2.11 need to be admissible for the rules to be
applicable, including the substitution that inserts s(Xj,..,X,) into ¢(s(X1,..,Xy)).
Proof schemata come in three kinds with which the following definition associates
proof rules: 1) sequent proof schemata that mention the sequent symbol |-, 2) sym-
metric proof schemata that do not mention the sequent symbol - and can be applied
on either side of the sequent, 3) the special proof schema i3 that merges multiple
branches.

Definition 2.10 (Rules). The rule schemata in Fig. 2.11—in which all substitutions
need to be admissible for the rules to be applicable, including the substitution that
inserts s(Xi,..,X,) into ¢ (s(X1,..,X,))—induce calculus rules by:

78

2 Differential Dynamic Logic A

If

oY ... DY,
O - %

is an instance of a rule schema in Fig. 2.11 (rules Vr—Vl, iV, and the propositional
and global rule schemata have this form), then

F7</>¢1}_<f>lplaA F7</>¢’n|—</>‘f/n,A
1—‘7</>(I)0F <j>%7A

can be applied as a proof rule of the d.Z calculus, where I',;A are arbitrary
finite sets of additional context formulas (including empty sets) and _¢Z is a
discrete jump set (including the empty set). Hence, the rule context I';A and
prefix (_#) remain unchanged during rule applications; only the formulas men-
tioned in (2.11) are affected.

@2.11)

. Symmetric schemata can be applied on either side of the sequent: If

o

o
is an instance of one of the symmetric rule schemata (the dynamic rules) in
Fig.2.11, then

(/)0 » I.(f)0ra
TE (/)04 T/)hr 4

can both be applied as proof rules of the A calculus, where I", A are arbitrary
finite sets of context formulas (including the empty set) and _¢# is a discrete
jump set (including empty sets). In particular, symmetric schemata yield equi-
valence transformations, because the same rule applies in the antecedent as in
the succedent.

. Schema i3 applies to all goals containing X at once: If @ - ¥,..,®, - Y,

is the list of all open goals of the proof that contain free variable X, then an

instance
FQE(3IX N\(®i - F))

Y .. PR,

of rule schema i3 can be applied as a proof rule of the d.Z calculus.

Propositional Rules

For propositional logic, standard propositional rules —r—cut with the cut rule are
listed in the first block of Fig.2.11. They decompose the propositional structure of
formulas. Rules —r and —I use simple dualities caused by the implicative semantics
of sequents. Essentially, instead of showing —¢ in the succedent, we assume the
contrary ¢ in the antecedent with rule —r. In rule —l, instead of assuming —¢ in

2.5 Proof Calculus 79
o+ Fo.y Fo Fy oy
(=) - (Vr) Fovy (Ar) W (—r) m (ax) m
- o ik = Fo o oy XL
(=D o (VD SV (AD (=D rEYTS (cur) B w—
L (e (B)g o OV () - oo
) (a;B)o " (o (=D (X1:=01,..,%, = 6,) 0
.. lal[Ble s 9N [0 [0 =61, 0= 6,)0
s R e 3T
()¢ Vv (B)¢ ANy o3>0 (YO<T< (A1) x) A1))
D Zupe gy D6 m=6&00
() (Ao Blo (LY @ V>0 (VO<F<t ()) = (F)9) |
[cUBlo 2xly X} =61,...x, = 6,&x]¢
Fo(s(X1,.., X)) Fo(X)
) — e ’) o)
¢(S(X]7..7Xn))|_ ¢(X)|_
@ I d(x) - ’ D Vx ¢ (x) !
W) F QE(VX (@(X) - ¥(X))) Q3 FQEEX N\i(®iF¥)) 5
G, X)) F P(s(X1,- . X)) Yot ey,
FY*(¢ — y) FY*(¢ — y)
e oo oty Ve G Ty
(ind) FYY(9 — [a]9) © FY*%W>0((v) = (a)p(v—1)) ¢
" F o] TS 00 (ar)Iv<00(v)

!t and 7 are fresh logical variables and (.%;) is the jump set (x; :=y;(t),.., %, :=y,(t)) with sim-
ultaneous solutions yj,..,y, of the respective differential equations with constant symbols x; as
symbolic initial values.

2 s is a new (Skolem) function symbol and Xj, .., X, are all free logical variables of Vx ¢ (x).
3 X is anew logical variable. Further, QE needs to be defined for the formula in the premise.
4 X is a new logical variable.

3 Among all open branches, free logical variable X only occurs in the branches &; - ¥. Further,
QE needs to be defined for the formula in the premise, especially, no Skolem dependencies on X
can occur.

6 Logical variable v does not occur in a.

Fig. 2.11 Rule schemata of the free-variable proof calculus for differential dynamic logic

the antecedent, we show the contrary ¢ in the succedent. Rule Vr uses the fact that
formulas are combined disjunctively in succedents, rule Al that they are conjunctive
in antecedents. The comma between formulas in an antecedent has the same effect as
a conjunction, and the comma between formulas in the succedent has the same effect
as a disjunction. Rules V1 and Ar split the proof into two cases, because conjuncts in
the succedent can be proven separately (Ar) and, dually, disjuncts of the antecedent
can be assumed separately (\VV1). For Ar we want to show conjunction ¢ A Y, so in
the left branch we proceed to show I' - ¢, A and, in addition, in the right branch we

80 2 Differential Dynamic Logic A

show I' = y, A, which, together, entail I" = ¢ Ay, A. If, as in rule VI, we assume
disjunction ¢ VV y as part of the antecedent, then we do not know if we can assume
¢ to hold or if we can assume Y to hold in the antecedent, but know only that one of
them holds. Hence, as in a case distinction, V1 considers both cases, the case where
we assume ¢ in the antecedent, and the case where we assume . If both subgoals
can be proven, this entails I", ¢ VV y = A. Rules —r and —1 can be derived from the
equivalence of ¢ — w and —¢ V y. Rule —1 uses the fact that implication — has the
same meaning as the sequent arrow - of a sequent. Intuitively, to show implication
¢ — v, rule —r assumes ¢ (in the antecedent) and shows y (in the succedent). Rule
—1 assumes an implication ¢ — y to hold in the antecedent, but we do not know
if this implication holds because ¢ is false, or because y is true, so —1 splits into
those two branches.

The axiom rule ax closes a goal (there are no further subgoals, which we some-
times mark * explicitly), because assumption ¢ in the antecedent trivially entails ¢
in the succedent (sequent I',¢ |- ¢, A is a simple syntactic tautology). Rule cut is
the cut rule that can be used for case distinctions: The right subgoal assumes any
additional formula ¢ in the antecedent that the left subgoal shows in the succedent.
Dually: regardless of whether ¢ is actually true or false, both cases are covered by
proof branches. We only use cuts in an orderly fashion to derive simple rule dualities
and to simplify meta-proofs. In practical applications, cuts are not usually needed
and we conjecture that this is no coincidence.

According to the definition in Definition 2.10, all propositional rules can be ap-
plied with an additional context I",A. In particular, rules ax and cut can also be
applied as:

I't¢,A I'¢FA
and cur

“ToF¢,A T'FA

First-Order Quantifier Rules

The quantifier rules Vr,31,3r,V1,iV,i3 constitute a purely modular interface to arith-
metic mathematical reasoning. They can use any theory that admits quantifier elim-
ination and has a decidable ground theory (formulas without quantifiers or vari-
ables), including the theory of real arithmetic or real-closed fields [288, 81]. Rules
Vr,31,3r,V1 handle quantifiers and replace quantified variables by Skolem function
terms (Vr,31) or free logical variables (3r,V1), respectively. Later in the proof, rules
iV,i3 can reintroduce quantifiers for these previously quantified symbols and apply
quantifier elimination in real-closed fields once the remaining formulas are first-
order in the relevant symbols.

Rule 31, with which we want to show Jx @ (x) in the succedent, introduces a new
free logical variable X for an existentially quantified variable x. Essentially, free
variable X can be thought of as a variable for which an appropriate value still needs
to be found for the proof to close. This makes sense, because at the time of applying
proof rule I, it is mostly impossible to know which particular instance to choose
for X that will help. But once we find such an X that proves the subgoal I' - ¢ (X), A

2.5 Proof Calculus 81

later, we have also proven the goal I' - Jx @ (x), A, because X will be a witness for
the existence. We have also proven the goal if, later during the proof, we prove the
existence of an X satisfying the constraints indirectly, without directly instantiating
a witness. This is what rule i3 is for.

The dual rule V1, which assumes Vx ¢ (x) in the antecedent, introduces a new free
logical variable X for the universally quantified variable x in the antecedent. If, later,
we have found an instance of X that proves subgoal I', ¢ (X) - A, then we have also
proven goal I, Vx @ (x) F A, because if we can prove the subgoal just from assuming
the particular ¢ (X) in the antecedent, then the goal also holds where we even assume
¢ (x) holds for all x. While this reasoning is perfectly good if it works, it is somewhat
surprising why this should always work for all cases. Why should one instance be
enough? Why should it not be necessary to assume two different instances ¢ (X) and
¢(Y) during the proof? The fact that this is not necessary comes from proof rule i3,
which can reintroduce quantifiers and eliminate them equivalently.

Rule Vr, with which we want to show Vx ¢ (x) in the succedent, introduces a new
(Skolem) function symbol s for the previously quantified variable x and replaces x
by a (Skolem) term s(Xi,...,X,) where Xi,..., X, are all the free logical variables
of the original formula Vx @ (x). This works like a proof in mathematics, where we
want so show Vx ¢ (x) in the succedent and do so by choosing a fresh symbol s for
which we prove that ¢(s(Xj,...,X,)) holds. Because s was arbitrary and we did
not assume anything special about the value of s, this implies that Vx ¢ (x) holds.
The free variables X, ..., X, of the Skolem terms keep track of the dependencies of
the symbols for nested quantifiers. Having all free logical variables X, ..., X, in the
Skolem term is important for soundness in order to prevent unsound rearrangements
of quantifiers, as we elaborate in Sect.2.5.3.

The dual rule d1 is similar. When we assume 3x¢@(x) in the antecedent, then
we only know that such an x exists, not what value it has. Hence, 3l introduces
a new name for this object in the form of a new (Skolem) function symbol s and
replaces x by a (Skolem) term s(Xj,...,X,) where Xj, ..., X, are all the free logical
variables of the original formula Jx ¢ (x). If we can prove the subgoal, the subgoal
entails the goal, because we did not assume anything special about s. Having all
free logical variables X{,...,X, in the Skolem term to track the dependencies of
the symbols is again important for soundness to prevent unsound rearrangements
of quantifiers. Intuitively, for a formula like Vx3y ¢ (x,y) in the antecedent—which
will yield 3y ¢(X,y) after applying Vl—we need to track the dependency of y on X,
which yields ¢ (s(X),X) when applying J1. We need to remember that the choice
for s may depend on X, because the choice of y may depend on x.

With the rule iV, we can reintroduce a universal quantifier for a Skolem term
s(Xi,...,X,), which corresponds to a previously universally quantified variable in
the succedent or a previously existentially quantified variable in the antecedent. The
point of reintroducing the quantifier is that this makes sense when the remaining
formulas are first-order in the quantified variable so that they can be handled equi-
valently by quantifier elimination in real-closed fields. When we have proven the
subgoal (with for all X) then this entails the goal for the particular s(Xi,...,,). In
particular, when we remove a quantifier with Vr,31 to obtain a Skolem term, we can

82 2 Differential Dynamic Logic A

continue with other proof rules to handle the dynamic modalities and then reintro-
duce the quantifier for the Skolem term with iV once quantifier elimination for real
arithmetic becomes applicable.

The dual rule id can reintroduce an existential quantifier for a free logical vari-
able that was previously existentially quantified in the succedent or previously uni-
versally quantified in the antecedent. Again, this makes sense when the resulting
formula in the premise is first-order in the quantified variable X so that quantifier
elimination can eliminate the quantifier equivalently. When we remove a quantifier
with Jr,V1 to obtain a free logical variable, we can continue using other proof rules
to handle the dynamic modalities and then reintroduce the quantifier for the free
logical variable with i3 once quantifier elimination is applicable.

The quantifier rules Vr and 31 correspond to the liberalised " -rule of Hiihnle and
Schmitt [147]. Rules Jr and V1 resemble the usual y-rule but, unlike in [122, 123,
147, 134], they cannot be applied twice because the original formula is removed
(3x¢(x) in 3r). The calculus still has a complete handling of quantifiers due to iV
and i3, which can reconstruct and eliminate quantifiers once QE is applicable as
the remaining constraints are first-order in the respective variables. In the premise
of iV and i3, we again consider sequents @ - ¥ as abbreviations for formulas. For
closed formulas, we do not need other arithmetic rules. We defer illustrations and
further discussion of quantifier rules to Sect. 2.5.3. For comparison, App. A gives a
summary of the standard y-rules and & "-rules that are used for handling quantifiers
in uninterpreted first-order logic. In Sect. 3.5.5, we show an alternative way of hand-
ling real arithmetic in a modular way using deduction modulo by side deductions.

Dynamic Rules

The dynamic modality rules transform a hybrid program into structurally simpler
logical formulas by symbolic decomposition. Rules (;),[;],(U),[U],("),["].(?).[?]
are as in discrete dynamic logic [149, 37]. Also, see Fig.2.12 for an illustration of
the correspondence of a representative set of proof rules for dynamic modalities to
the transition semantics of hybrid programs (from Definition 2.7).
Nondeterministic choices split into their alternatives ((U),[U]). For rule [U]: If all
o transitions lead to states satisfying ¢ (i.e., [&t]¢ holds) and all 3 transitions lead
to states satisfying ¢ (i.e., [B]¢ holds), then, all transitions of program o U 3 that
choose between following o and following 8 also lead to states satisfying ¢ (i.e.,
[U B]¢ holds). Dually for rule (U), if there is an o transition to a ¢ state ({¢t) @) or
a B-transition to a ¢ state ((8)¢), then, in either case, there is a transition of ot U 3 to
¢ ((aUB)¢ holds), because aU 3 can choose which of those transitions to follow.
A general principle behind the d.Z proof rules that is most noticeable in (U),[U] is
that these proof rules symbolically decompose the reasoning into two separate parts
and analyse the fragments a and 3 separately, which is good for scalability. For
these symbolic structural decompositions, it is very helpful that . is a full logic
that is closed under all logical operators, including disjunction and conjunction, for
then the premises in [U],(U) are A% formulas again (unlike in Hoare logic [161]).

2.5 Proof Calculus

RN
“'DEEEE

>0 {x:=y(1))d

) =

FI>0 (A (x:=y.(1))0)
() W=0&ye
R =V0<s<t (x:=y:(s))x

[a]¢ A[Blg

M Taopie

[o][B]¢

(B)) o

F V(¢ — [o]¢)

" s

(con)

o) F (a*)Iv<00(v)

83

0
v [0
d x:=0
D)
X=0
A% (0]
—42)
e 9
x*}x(t)
X=0&y
A%

U o d o 7« wj

FVOW>0(p(v) = {a)p(v—1)) Fve(v) “Z0(0(v) - (@)p(v— 1) I<00(v)

U o d o < wj

Fig. 2.12 Correspondence of dynamic proof rules and transition semantics

Sequential compositions are proven using nested modalities ({;),[;]). For rule [;]:
If after all a-transitions, all B-transitions lead to states satisfying ¢ (i.e., [a][B]¢
holds), then also all transitions of the sequential composition ¢; 3 lead to states sat-
isfying ¢ (i.e., [ct; B]¢ holds). See, again, Fig. 2.12 for a graphical illustration of this
proof principle. The dual rule (;) uses the fact that if there is an o-transition, after
which there is a B-transition leading to ¢ (i.e., ()(f)¢), then there is a transition
of a; B leading to ¢ (that is, {o;; B)¢), because the transitions of o; § are just those
that first do any a-transition, followed by any f-transition (Definition 2.7).

84 2 Differential Dynamic Logic A

Rules (*),[*"] are the usual iteration rules, which partially unwind loops. Rule
(*") uses the fact that ¢ holds after repeating o (i.e., (0t*)¢), if ¢ holds at the begin-
ning (for ¢ holds after zero repetitions then), or if, after one execution of &, ¢ holds
after any number of repetitions of ¢, including zero repetitions (i.e., (a)(a*)¢9). So
rule (*") expresses that for (@*)¢ to hold, ¢ must hold either immediately or after
one or more repetitions of a. Rule [*"] is the dual rule expressing that ¢ must hold
after all of those combinations for [0*]¢ to hold.

Tests are proven by showing (with a conjunction in rule (?)) or assuming (with an
implication in rule [?]) that the test succeeds, because test ? can only make a trans-
ition when condition) actually holds true (Definition 2.7). Thus, for d.Z formula
(7%)¢ rule (?) is used to prove that) holds true (otherwise there is no transition
and thus the reachability property is false) and that ¢ holds after the resulting no-op.
Rule [?] for dZ formula [?x]¢, in contrast, assumes that) holds true (otherwise
there is no transition and thus nothing to show) and that ¢ holds after the resulting
no-op.

Rule (:=) uses simultaneous substitutions from Fig. 2.10 for handling discrete
jump sets. To show that ¢ is true after a discrete jump, (:=) shows that ¢ has been
true before, when replacing the affected variables x; with their new values 6; in ¢ by
an admissible substitution (Definition 2.8). Alternatively, the discrete jump set can
also remain an unchanged prefix (_# in Definition 2.10) for other d.# rules applied
to ¢, until the substitution for rule (:=) becomes admissible. This is what our proof
calculus uses instead of what we have shown in Example 2.16. Rule [:=] uses the
fact that discrete jump sets characterise a unique deterministic transition. Hence,
its premise and conclusion are actually equivalent, because there is exactly one ter-
minating transition for each discrete jump set. Assuming the presence of vacuous
identity jumps a:=a for variables a that do not otherwise change (vacuous identity
jumps can be added as they do not change state), we can further use rule (:=) to
merge subsequent discrete jumps into a single discrete jump set (see previous res-
ults [37] for a compatible calculus detailing jump set merging, which works without
the need to add vacuous identity jumps a:=a):

(z:=—L12+Vt,v:=V+l,a:=—b)[B]¢
(a:=—=b,v:=V)(z:= %tz—l—vt,v::v—i- l,a:=a)[B]¢
(

(

a:=—b,v:=V)[z:=%>+vt,v:=v+1,a:=d|[B]¢
a:=—b,v:=V)[z:=42+vt,v:i=v+1l,a:=a; B¢

More generally, (x;:=0,...,x,:=6,)(x; :=0,...,x,:=,)¢ can be merged by
(:=)to (x]:= 19131' L = 19nf11 ...%) 9. Also see previous work [37] for more
advanced and optimised merging techniques for state changes.

Given first-order definable flows for their differential equations, proof rules ('),[']
handle continuous evolutions (see [15, 189, 238] and App. B for flow approxima-
tion and solution techniques). These flows are combined in the discrete jump set ..
Given a solution .; for the differential equation system with symbolic initial val-
ues x,...,X,, continuous evolution along differential equations can be replaced by

a discrete jump (.#;) with an additional quantifier for the evolution time z. The effect

2.5 Proof Calculus 85

of the constraint on J is to restrict the continuous evolution such that its solution .7
remains in the evolution domain yx at all intermediate times 7 < ¢. This constraint
simplifies to frue if the evolution domain restriction Y is frue, which makes sense,
because there are no special constraints on the evolution (other than the differential
equations) if the evolution domain region is described by true, hence the full space
R". A notable special case of rules ['] and (') is when the evolution domain is frue:

VI>0(7)¢ F>0(S)¢
[x/lzela",xézzen]q& <x/1:917"’x;1:6">¢

Similar simplifications can be made for convex invariant conditions (Sects. 2.9
and 3.8).

2.12)

Global Rules

The last block of rules [|gen, () gen,ind,con are global rules. They depend on the truth
of their premises in all states reachable by hybrid program o, which is ensured by
the universal closure V* with respect to all bound state variables (Definition 2.8) of
the respective hybrid program «. This universal closure overapproximates all pos-
sible change caused by o, because it comprises all bound variables. This universal
closure is required for soundness in the presence of contexts I', A (Definition 2.10)
or free variables. The global rules are given in a form that best displays their under-
lying logical principles. The general pattern for applying global rules to prove that
the succedent of their conclusion holds is to prove that both their premise and the
antecedent of their conclusion hold. In particular, the antecedent can be thought of
as holding in the current state, whereas the premise can be thought of as holding in
all reachable states because of the universal closure.

Rules [|gen,() gen are generalisation rules and can be used to strengthen postcon-
ditions: antecedent [o]¢ is sufficient for proving succedent [o]y when postcondi-
tion ¢ entails y in all relevant states reachable by o, which are overapproximated
by the universal closure V* with respect to the bound variables of . Clearly, for
rule [|gen, if all states reachable by o satisfy ¢ ([a]¢) and ¢ implies y in all these
states (V*¢ —), then y also holds in all states reachable by o ([of]y). Similarly,
for rule ()gen, if some state reachable by a satisfies ¢ ((a)¢) and ¢ implies y in all
reachable states (V*¢ —), then y also holds in some state reachable by a ((a) y).

Rule ind is an induction schema with inductive invariant ¢. Similarly, con is a
generalisation of Harel’s convergence rule [149] to the hybrid case with decreasing
variant @. Both rules are given in a form that best displays their underlying logical
principles and similarity. Rule ind says that ¢ holds after any number of repetitions
of « if it holds initially (antecedent) and, for all reachable states (as overapproxim-
ated by V%), invariant ¢ remains true after one iteration of o (premise). If ¢ is true
after executing @ whenever ¢ has been true before, then, if ¢ holds in the begin-
ning, ¢ will continue to hold, no matter how often we repeat & in [0*]¢@; again, see
Fig.2.12 for an illustration. Rule con expresses that the variant ¢(v) holds for some
real number v < 0 after repeating o sufficiently often if ¢(v) holds for some real

86 2 Differential Dynamic Logic A

number at all in the beginning (antecedent) and, by premise, @(v) decreases after
every execution of ¢ by 1 (or another positive real constant). This rule can be used
to show positive progress (by 1) with respect to ¢(v) by executing o.

For practical verification, rules ind or con can be combined with generalisation
([Jgen,()gen) to prove a postcondition y of a loop a* by showing that (a) the ante-
cedents of the respective goals of ind and con, which represent the induction start,
holds initially (b) their subgoals, which represent the induction step, hold and (c) the
postcondition of the succedentd in their goals entails y. The corresponding variants
of ind and con are derived rules. That is, these rules are non-essential, because they
can be derived easily by chaining the proof rules from Fig.2.11 together in an ap-
propriate way.

[Eo F9 o [al) 9 y)
o]y
Fve(v) FY*WW>0(e(v) = (aye(v—1)) FV*Fv<00(v) —)
= {a*)y
For example, using a cut with ¢ — [@*|¢, rule ind’ can be derived from ind and
[lgen as follows:

(ind’

(con”)

EVi(¢ — [a]¢) V(¢ —)
ind¢ - [(X*]¢ F ¢ []gen[a*]q) - [(X*]W
T Fo—[aTe "o — (oo F o]y
Cur F [a*]w

These derived rules are not necessary in theory, but still useful in practise.

Derivability and Proofs

We call any formula ¢ provable or derivable (in the . calculus) if we can find
a A proof for it that starts with axioms (rule ax) at the leaves and ends with a
sequent F ¢ at the bottom. While constructing proofs, however, we would start with
the desired goal F ¢ at the bottom and work our way backwards to the subgoals
until they can be proven to be valid as axioms (ax). Once all subgoals have been
proven to be valid axioms, they entail their consequences, which, recursively, entail
the original goal F ¢. This property of preserving truth or preserving entailment,
which we prove in Sect. 2.6, is called soundness. Thus, while constructing proofs,
we work bottom-up from the goal. When we have found a proof, we justify formulas
from the axioms top-down to the original goal.

The notions of derivations and proofs for the . calculus are standard, except
that i3 produces multiple conclusions. Hence, we define derivations as finite acyclic
graphs instead of trees. We want proofs to be acyclic and not accept a formula that
is used to prove itself.

Definition 2.11 (Provability). A derivation is a finite acyclic graph labelled with
sequents such that, for every node, the (set of) labels of its children must be the (set

2.5 Proof Calculus 87

of) premises of an instance of one of the calculus rules (Definition 2.10) and the (set
of) labels of the parents of these children must be the (set of) conclusions of that rule
instance. A formula y is provable from a set @ of formulas, denoted by @ Fq¢ v,
iff there is a finite subset @y C @ for which the sequent @y - v is derivable, i.e.,
there is a derivation with a single root (i.e., node without parents) labelled ®g - .

Example 2.19. A very simple (in fact essentially propositional) proof of the formula

V<10Ab>0—b>0A(=(v>0) Vv <10) (2.13)

is shown in Fig. 2.13. The proof starts with the proof goal as a sequent at the bottom:

FvE<10Ab>0—b>0A(=(v>0) V> <10).

%
* V2 <10,b>0F ~(v>0
@2<10,b>0Fb>0 M2 <I10AL>0F —(v>0),02
M2<10Ab>0Fb>0 YV <10Ab>0F —(v>0
e Vv <10Ab>0Fb>0A(~(v>0)Vy? <10)
o FVv2<10Ab>0—b>0A(=(v>0) V12 < 10)

Fig. 2.13 Simple propositional example proof

The first (i.e., bottom most) proof step applies proof rule —r to turn the implic-
ation (—) to the sequent level by moving the assumption into the antecedent. The
next proof step applies rule Ar to split the proof into the left branch for showing that
conjunct b > 0 follows from the assumptions in the antecedent and into the right
branch for showing that conjunct —(v > 0) Vv < 10 follows from the antecedent
also. On the left branch, the proof closes with an axiom ax after splitting the con-
junction A on the antecedent with rule Al. We mark closed proof goals with *. The
right branch closes with an axiom ax after splitting the disjunction (V) in the suc-
cedent with rule Vr and then splitting the conjunction (A) in the antecedent with rule
Al Now that all branches of the proof have closed (with ax), we know that all leaves
at the top are valid, and, hence, since the premises are valid, each application of a
proof rule ensures that their respective conclusions are valid also. By recursively
following this derivation from the leaves at the top to the original root at the bottom,
we see that the original goal is valid and formula (2.13) is, indeed, true under all
circumstances (valid).

While this proof does not show anything particularly exciting, because it only
uses propositional rules, it shows how a proof can be build systematically in the d.Z
calculus and gives an intuition about how validity is inherited from the premises to
the conclusions.]

88 2 Differential Dynamic Logic A

2.5.3 Deduction Modulo with Invertible Quantifiers and Real
Quantifier Elimination

The first-order quantifier rules in Fig.2.11 lift quantifier elimination to A% by
following a generalised deduction modulo approach. They integrate decision pro-
cedures, e.g., for real quantifier elimination as a background prover [32], into the
deductive proof system. Yet, unlike in the approaches of Dowek et al. [103] and
Tinelli [290], the information given to the background prover is not restricted to
ground formulas [290] or atomic formulas [103]. Further, real quantifier elimina-
tion is different from uninterpreted logic [147, 122, 134] in that the resulting formu-
las are not obtained by instantiation but by intricate arithmetic recombination. The
quantifier rules can use any theory that admits quantifier elimination (see Defini-
tion2.9) and has a decidable ground theory, for instance, the first-order theory of
real arithmetic (which is equivalent to the theory of real-closed fields [288, 81]). A
Sformula of real arithmetic is a first-order formula with +,—, -, /,=,<,<,>,> as
the only function or predicate symbols besides constant symbols of X and logical
variables of V. Also see App.D.2.

Integrating quantifier elimination to deal with statements about real quantities
is quite challenging in the presence of modalities that influence the values of flex-
ible symbols. In principle, quantifier elimination can be used to handle quantified
constraints such as those arising for continuous evolutions. In d.%, however, real
quantifiers interact with modalities containing further discrete or continuous trans-
itions, which is an effect nherent in the interacting nature of hybrid systems. A hy-
brid formula like 3z(z" = —b;Im —z > 5;7 = 0) m — z < s is not first-order; hence
quantifier elimination cannot be applied. Even more so, the effect of a modality de-
pends on the solutions of the differential equations contained therein. The dynamics
of a hybrid program depends on the values of its parameters (z,b,m,s in the above
case), but, at the same time, the constraints on a quantified variable like z depend on
the effect of the hybrid program. For instance, it is hard to know in advance, which
first-order constraints need to be solved by QE for the above formula. To find out
how z evolves from quantifier 3z to postcondition m — z < s, the system dynamics in
the modality needs to be taken into account (as for repetitions). Hence, our calculus
first unwraps the first-order structure before applying QE to the resulting arithmetic
formulas.

2.5.3.1 Lifting Quantifier Elimination by Invertible Quantifier Rules

The purpose of the quantifier rules in Fig.2.11 is to postpone QE until the actual
arithmetic constraints become apparent. The idea is that Vr,31,3r, and V1 temporar-
ily remove quantifiers by introducing new auxiliary symbols for quantified variables
such that the proof can be continued beyond the occurrence of the quantifier to fur-
ther analyse the modalities contained therein. Later, when the actual first-order con-
straints for the auxiliary symbol have been discovered, the corresponding quantifier

2.5 Proof Calculus 89

v>0,z<mb v >2b(m—7z)

Fv>0Az<m—v?>2b(m—z)

v>0,z<mkbt 73T2+VT+Z>m

3 9>0z<mFT>0 <::>v207z<m}—(z::f§T2+vT+z>z>m
Ar v20,z<m|—TZO/\(z:zf%T2+vT+Z)Z>m
v>0,z<mb 3>0(z:=—524vt+2)z>m
O v>0,z<mb{ =vV =-bz>m
—nAl Fv>0Az<m— ({=vV =—bz>m

—1,Al

Ir

Fig. 2.14 Deduction modulo for analysis of MA violation in braking mode

can be reintroduced (iV, id) and quantifier elimination QE is applied to reduce the
sequents equivalently to a simpler formula with less (distinct) symbols. In 3r,V1,i3,
the respective auxiliary symbols are free logical variables. In Vr,3LiV, Skolem func-
tion terms are used instead for reasons that are crucial for soundness and will be
illustrated in the remainder of this section. In this context, we think of free logical
variables as being introduced by y-rules (3r and V1), and hence implicitly existen-
tially quantified.

To illustrate how quantifier and dynamic rules of d.Z interact to combine arith-
metic with dynamic reasoning in hybrid systems, we analyse the braking behaviour
in train control. The proof in Fig.2.14 can be used to analyse whether a train can
violate its MA although it is braking. That is, if the train position z can leave m
(z > m) although it starts inside (z < m) and is braking will full braking force all the
time:

v>0Az<m— { =vV =—b)z>m.

As the proof reveals, the answer depends on the initial velocity v. The proof starts
with the conjecture at the bottom and applies propositional transformation rules
—r,Al to obtain a decomposed sequent form. Then it uses rule (') to replace the dif-
ferential equation with a quantified formula about its solution. For notational con-
venience, we use the simplified <’) rule from (2.12), as the differential equation is
not restricted to an evolution domain. Now we have a quantified modal formula,
>0(z:=— %tz + vt +z)z > m, which, unfortunately, cannot be handled by quan-
tifier elimination in real-closed fields, because it is not first-order. Using rule dr,
however, the proof can continue by introducing a new free variable T for the quan-
tified variable ¢ and postpone QE. After introducing 7', the proof can continue by
splitting a conjunction in the succedent into two branches (rule Ar) and applying
the assignment with a substitution on the right branch (rule (:=)). Finally, the previ-
ously quantified free variable T only occurs in first-order formulas on all open goals.
Then rule i3 can be applied in Fig. 2.14 to merge all open proof goals mentioning 7',
reintroduce the quantifier for 7, and apply quantifier elimination. The conjunction
of the two goals can be handled by QE and simplification, yielding the resulting
subgoal:

90 2 Differential Dynamic Logic A

b
QE(AT(v=20Az<m—T>0)A(v=0Az<m— —§T2+vT—|—Z>m)))
=v>0Az<m — 1V >2b(m—72).

After applying rules —1,Al for structural reasons again, the open branch with this
formula reveals the speed limit and can be used to synthesise a corresponding para-
meter constraint. When v> > 2b(m — z) holds initially, 7 can eventually be violated
even in braking mode, as the velocity exceeds the braking force.

Similarly, the dual constraint v? < 2b(m — z) guarantees that m can be respected
by appropriate braking. The constraint so discovered thus forms a controllability
constraint of ETCS, i.e., a constraint that characterises from which states control
choices exist that guarantee safety. It is essentially equivalent to [7/ = —b]z <m
and Ja(—b <a <AA[7" = a]z < m). The resulting controllable region of the state
space of ETCS is illustrated in Fig.2.15.

Fig. 2.15 Controllable region v 5
of ETCS dynamics v <2b(m—7z)
2
m
For comparison, the dual formulav > 0Az <m — [¢ = v,V = —b]z < m can be

analysed as shown in Fig. 2.16 to study under which circumstances the MA is always
respected ([7” = —b|z < m) rather than under which it can fail ((Z/ = —b)z > m).
The outcome again discovers the controllability constraint. The difference of the

v>0,z<mbv:<2b(m—7z)
oAl Fv>0Az<m—v?<2b(m—z)
Y oy >0,z<ms>0F —'—2’32+vs+ZSm
=)y >0z<ms>0F (z::—gsz—&—vs—i-z)zgm
(=] v>0,z<mys>0F [z::—gsz—&—vs-i-z}zgm
-t v>0,z<mbs>0—[z:i=—2s2 +vs+zz<m
v20,z<mFVt20[z::—gt2+vt+z}Z§m

y v>0,z<mb [=vy =-bz<m
—r,Al

vr

Fv>0Az<m— [=vV =-blz<m

Fig. 2.16 Deduction modulo for analysis of MA-safety in braking mode

deduction in Fig. 2.16 compared to that in Fig. 2.14 is that we now use rule ['], which
gives a universal quantifier for time ¢. With rule Vr, the quantifier can be turned into
a Skolem constant term s, which does not have any arguments, because no free
logical variables occur. After applying the solution of the differential equation with

2.5 Proof Calculus 91

[:=],(:=), the resulting formula is first-order in the Skolem term s. Then rule iV can
be used to reintroduce a universal quantifier for the previously quantified variable,
and to apply quantifier elimination:

b
QE(VS(VZO/\Z<m/\SZO—>—§S2+VS+ZSm))

=v>0Az<m — v} <2b(m—72).

2.5.3.2 Admissibility in Invertible Quantifier Rules

The requirement that substitutions in iV are admissible implies that no occurrence
of s(Xi,...,X,) is within the scope of a quantifier for any of these X;. Admissibil-
ity makes sense, because variables in s(X7,...,X,) would otherwise be captured by
quantifiers when substituting. The admissibility condition prevents iV from rearran-
ging the order of quantifiers from 3X; Vs to the weaker Vs 3X;. Such a rearrangement
would be unsound, because it is not sufficient to show the weak subgoal Vs3X;
(each s has an X;) in order to prove the strong statement 3X;Vs saying that the
same X; works for all s. Because this is an important part of soundness, we illustrate
in detail why unsound rearrangements are prevented.

false

iV is not applicable FQE(EBX QE(Vs(2X +1 <))
FQE(3X (2X + 1 < s(X))) HEQE(Vs(2X +1 <))

BH2X 1< s(X) VX +1 < s(X)

e r=2X + 1) (x < s(X)) e e=2X + 1) (x < (X))

Ry (i=2X + 1) (x < y) ey (xi=2X + 1) (x < y)

T Vy (=204 1) (x < y) T Iy (r=2x+ 1) (x <)
Fig. 2.17a Wrong rearrangement with de- Fig. 2.17b Correct reintroduction order with
duction modulo by invertible quantifiers deduction modulo by invertible quantifiers

For the moment, suppose the rules did not contain QE. The requirement for ad-
missible substitutions (Definition 2.8) ensures that the proof attempt of an invalid
formula in Fig.2.17a cannot close in the d.% calculus. At the indicated position at
the top, iV, which would unsoundly invert the quantifier order to V.S3X, cannot be
applied: In iV, the substitution inserting s(X) gives ¥ (2Y + 1 < s(X)) by bound
variable renaming instead of 3X (2X + 1 < s(X)), because the substitution would
not otherwise be admissible. Thus, iV is not applicable, because the quantified for-
mula is not of the form ¥ (s(X)).

Now, we consider what happens in the presence of QE. The purpose of QE is
to (equivalently) remove quantifiers like 3X . Thus it is no longer obvious that the
admissibility argument applies, because the blocking variable X would have disap-
peared after successful quantifier elimination. However, quantifier elimination over
the reals is defined in the first-order theory of real arithmetic [288, 81]. Yet, when

92 2 Differential Dynamic Logic A

eliminating X in Fig.2.17a, the Skolem term s(X) is no term of real arithmetic, as,
unlike that of +, the interpretation of the Skolem function s is arbitrary. The truth-
value of 3X (2X + 1 < s(X)) depends on the interpretation of s. If /() happens to be
a constant function, the formula is true, if I(s)(a) = 2a, however, it is false. In gen-
eral, such cases cannot be distinguished without quantifiers, because two functions
cannot be shown to be identical by evaluating them at finitely many points. Thus,
in the presence of uninterpreted function terms, real arithmetic does not generally
admit quantifier elimination. Consequently, i3 and iV are only applicable if QE is
defined. Yet, we show that QE can be lifted to formulas with Skolem functions,
nevertheless, when these are instances of real arithmetic formulas:

Lemma 2.5 (Quantifier elimination lifting). Quantifier elimination can be lifted
to instances of formulas of first-order theories that admit quantifier elimination, i.e.,
to formulas that result from the base theory by substitution.

Proof. Let formula ¢ be an instance of y, with y being a formula of the base
theory, i.e., ¢ is lllzell..‘g:' for some variables z; and arbitrary terms 6;. As QE is
defined for the base theory, let QE () be the quantifier-free formula belonging to y

according to Definition 2.9. Then QE (W)Zell .. .f: satisfies the requirements of Defin-

ition 2.9 for ¢, because = l[/fl‘ .. .gj < QE (y)% . .ZG;: For F defined as v <> QE(y),

2
we have that F F implies F Fz?l .. .f: by a standard consequence of the Substitution
Lemma 2.2. And y <> QE(v) is indeed valid, by the properties of QE; see Defini-
tion2.9. O

With this, consider again the example in Fig. 2.17a. By Lemma 2.5, QE is defined
in the presence of Skolem terms that do not depend on quantified variables, e.g.,
for 3X (2X + 1 < #(Y,Z)), which is an instance of the form (IX (2X + 1 < z))tZ<Y’Z).
However, QE is not defined in the premise of i3 when Skolem dependencies on X

occur. In Fig. 2.17a, 3X (2X + 1 < s(X)) is no instance of first-order real arithmetic,
because, by bound variable renaming (3X (2X +1 < z));(x) yields a different for-
mula 3Y (2Y + 1 < s(X)). An occurrence of s(X), which corresponds to a quantifier
nesting of 3X Vs, thus requires s(X) to be eliminated by iV before i3 can elimin-
ate X; see Fig.2.17b. Hence, inner universal quantifiers are enforced to be handled
first and unsound quantifier rearrangements are prevented even in the presence of
QE.

Finally, observe that iV and i3 do not require quantifiers to be eliminated in the
exact same order in which they occurred in the original formula. The elimination
order within homogeneous quantifier blocks like Vx; Vx; is not restricted as there
are no Skolem dependencies among the corresponding auxiliary Skolem terms. Yet,
eliminating such a quantifier block is sound in any order (accordingly for Jx; 3x,).
Similarly, i3 and iV could interchange the order of Vx3dy to the stronger JyVx, be-
cause the resulting Skolem term s for x in the former formula does not depend
on y. In this direction, however, the interchange is sound, as it amounts to proving a
stronger statement. This quantifier rearrangement is not necessarily wise, because it
requires proving a stronger formula, but it is at least sound.

2.5 Proof Calculus 93

2.5.3.3 Quantifier Elimination and Modalities

Quantifier elimination over the first-order theory of reals cannot handle modal for-
mulas. Hence, the A% calculus first reduces modalities to first-order constraints
before applying QE. Yet, this is not necessary for all modalities. The modal sub-
formula in the following example does not impose any constraints on X, but its
truth-value only determines which first-order constraints are imposed on X:

QE(IX (X <OA(({(y:=2y+1)y>0) =X >y))) = ({(y:=2y+ 1)y >0) —» y <0.

Modal formulas not containing elimination variable X can be handled by propos-
itional abstraction in QE and remain unchanged. Syntactically, the reason for this
is that d.Z rule applications on modal formulas that do not contain X will never
produce formulas which do. The semantical reason for the same fact is a general-
isation of the coincidence lemma to d.%, which says that values of variables that
do not occur will neither affect the transition structure of a hybrid program nor the
truth-value of formulas.

Lemma 2.6 (Coincidence lemma). If the interpretations (and assignments and
states, respectively) I,1,v and J,€,® agree on all symbols that occur freely in the
formula @, then valy (v,) =valj¢(®,9).

Proof. The proof is by a simple structural induction using the definitions of valu-
ation valy 5 (v,-) and py p(-) in Definitions 2.5-2.7. O

2.5.3.4 Global Invertible Quantifier Rules

Rules iV and i3 display an asymmetry. While iV works locally on a branch, i3 needs
to inspect all branches that contain X. The reason for this is that branches are im-
plicitly combined conjunctively in sequent calculus, as all branches have to close
simultaneously for a proof to succeed (Definition 2.11). Universal quantifiers can be
handled separately for conjunctions by Vx (¢ A) = Vx ¢ A Vx y. Existential quan-
tifiers, however, can only be dealt with separately for disjunctions but not for con-
junctions: 3x (¢ V w) = Ix ¢ V Ix y. In calculi with a disjunctive proof structure, the
roles of iV and i3 would be interchanged but the phenomenon remains.

Rule i3 can be applied to the full proof (i.e., all open goals) as a global closing
substitution in the free-variable tableau calculus [122]; cf. App. A. By Lemma 2.6,
however, rule i3 only needs to consider the set of all open goals &; - 'F; that ac-
tually contain X. Rule id resembles global closing substitutions in uninterpreted
free-variable tableaux [134]. Both avoid the backtracking over closing substitutions
that local closing substitutions require. Unlike closing substitutions, however, rule
id uses the fixed semantics of function and predicate symbols of real arithmetic such
that variables can be eliminated equivalently by QE before the proof completes. Ap-
plying iV or i3 early does not necessarily close the proof. Instead, equivalent con-
straints on the remaining variables will be revealed, which can simplify the proof or
help in deriving parametric constraints or invariants.

94 2 Differential Dynamic Logic A

2.5.4 Verification Example

As a simple example to prove, recall the bouncing ball system (ball) from Ex-
ample 2.5 on p. 45 and its d.Z specification from Example 2.7 on p. 48. Consider the
intuitive property that the bouncing ball never bounces higher than initial height H
when the precondition of property (2.3) holds initially:

(v <2g(H—h)Ah>0Ag>0AH >0A1>c¢>0)— [ball](0 < h < H). (2.3

The bouncing ball is very simple, but shows some interesting aspects of proofs. In
order to simplify the proof notation, let us discard clock variable 7. Clock 7 is not
necessary for the property, and only used to ensure natural switching during the
bounce to prevent the ball from bouncing multiple times while still on the ground
(which would be superdense switching with multiple discrete switches at the exact
same point in time).

For the proof, we define some abbreviations. Let y denote the general assump-
tions in the precondition about parameters that do not change during bouncing ball
runs, and let ¢ denote the state-dependent part of the precondition, that is:

Yv=g>0AH>0A1>c>0,
0 =v?><2g(H—h)Ah>0.

The d.Z proof for the bouncing ball property (2.3) is shown in Fig. 2.18.

The proof starts with the property (2.3) at the bottom (goal). After normalising
to sequent form with rules —r,Al, the proof follows an induction (using the rule
ind' from p. 86) with invariant ¢. Rule ind’ produces two other proof subgoals that
are not shown in Fig. 2.18: the proof goal that the precondition y A ¢ implies the
invariant ¢ (i.e., ¥, ¢ - ¢) and the proof goal that the invariant ¢ implies the post-
condition, which gives y, ¢ - VAVv (¢ — 0<h<H). Both goals are trivial to prove
by ax and Vr,iV, respectively. The quantifiers VAVv in the latter goal result from the
universal closure V¥ in rule ind’. Universal closures are not strictly necessary in
this particular proof, because the premise only contains invariant ¢ and formula y
about symbols that do not change during the hybrid program runs. Thus, the uni-
versal closure immediately disappears after applying Vr. In general, however, uni-
versal closures in ind and the other global proof rules are critical for soundness; see
Fig.2.19a versus Fig. 2.19b.

After splitting the sequential composition by d.% rule [;], the proof uses rule []
with the solution (h:=h+ vt — %tz, v:=v — gr) of the differential equation system
W =v,v = —g. We abbreviate this solution by (.#;). Again, we use the simplified
['] rule from (2.12). QE cannot be applied to the result quantifier V>0 (.%;) ..., be-
cause the quantified variable ¢ occurs in modalities to which QE is not applicable.
Thus the proof uses Vr to introduce a Skolem function s for the previously quan-
tified variable 7. But unlike for the proof in Fig.2.14, we do not directly apply the
resulting solution (%) by rule (:=). The reason is the different system structure
of the bouncing ball. In the bouncing ball program, the differential equation comes

2.5 Proof Calculus 95

*

V9,520, h+vs — %sz =0k (—c(v

—g5))> <2g(H — (h+vs—5s2)) Ah+vs— 552 >0

(v
= y,0,520,(A)h =01 (S) (vi=—cv)
L 0,520, (A)h=0F (F)[vi=—c]9
o V0,520 (A)(h=0— [v:=—cv]9)
g W.0,5>0 - (F)[2%h = 0][v:i=—cv]9
] V. 0,5>0F () [2h=0;v:=—cv]o

*

v V,0,5>0,h+vs— 5§57 >0k (v—gs)? <2g(H— (h-+vs—$s2)) Ah+vs— 5§52 >0
T .0.520.(F)h>0F (A)9

o V9,520 (F5)(h>0—9)

. Y, 9,50 F (F)[2h > 0]

v, 9,5>0F () [?h > 0]¢ WV, 0,5>0F () [?2h = 0;v:=—cv]¢

A v, 0,5>0 F () ([2h > 0]¢ A[2h = 0;v:=—cv]¢)

] V, 0,520 F (L)[?h>0U(2h=0;v:=—cv)]9

e v, 0 Fs>0— (L) [2h>0U(2h=0;v:i=—cv)]|¢
v v, F V>0 [2%h > 0U (2 =0;v:=—cv)|o

[l v, 0 - [=—g][?h > 0U(?%h=0;v:=—cv)]¢
B v, o b [=—g(2h>0U(?h=0;v:=—cv))]¢
ind’ V.9 (W = —g (2> 0U (2 =0;v:=—cv)))"|(0<h<H)
—rAl F YA = [(H" = —g:(?h > 0U (2% = 0;v:=—cv))) | (0<h<H)

Fig. 2.18 Bouncing ball proof (no evolution domain)

not provable
unsound X0y <ITFy+1<1
¥s0xslfxtlsl = <oy <1k [y=y+1y<1
x<O0x<TFDi=x+1x<1 1 TS0y SISy FIy <1

x<OFx<l-o[xi=x+1x<1 v -
X<OF [a=xt) x <1 o Y0P xSl r=xt 1< 1)
" x<O0F [(x:=x+1)"]x <1
Fig. 2.19a Unsound attempt of induction Fig. 2.19b Correct use of induction with uni-

without universal closure V¢ versal closure V¥, i.e., Vx

96 2 Differential Dynamic Logic A

first, and the discrete control equations are executed after that. Thus we keep the
discrete jump set for the solution (.#;) as an unmodified discrete jump prefix ({_#)
in Definition 2.10) for the following rule applications and only apply the assignment
with rule (:=) to first-order formulas at the end of the proof.

On a side note: we could, in fact, just as well have used rule (:=) here right away
and substituted v,/ inside the hybrid programs immediately, because there are no
remaining loops or differential equations. That would clutter the notation, though,
and we want to illustrate how discrete jump sets can be used as unmodified proof
rule prefixes in Fig. 2.18.

Leaving prefix (%) unchanged, the proof in Fig.2.18 continues by splitting the
choice between h > 0 and & = 0 with rule [U] into two conjuncts, which split into
two branches by rule Ar. On both branches, which are continued as indicated by the
arrows, the test statements are turned into implications by rule [?] and, ultimately,
the accumulated discrete jump sets are applied (with rules [:=],(:=)) when the re-
maining formulas are simple. The last step of the proof is to reintroduce quantifiers
for Skolem term s by rule iV and apply quantifier elimination to the resulting first-
order formulas on the left and right branches respectively:

QE (Vs(l///\(])/\sZO/\h—I—vs—%s2 >0

— (v—gs)? <2g(H — (h+vs— gsz)) ANh+vs— %sz > O)) = frue;

QE (Vs(l[l/\(])/\sZO/\h—i—vs—%s2 =0
— (—c(v—gs))? <2g(H — (h+vs— %sz))/\thvsf %sz > O)) = true.

In the proof of Fig.2.18, we have used a bouncing ball without an evolution do-
main restriction. The bouncing ball property can also be proven with its evolution
domain restricted to & > 0 on the differential equation system as in Fig.2.2; see
Fig.2.20 for a proof. The proof is slightly more involved compared to Fig.2.18,
because of the extra constraints from the non-simplified rule [']. This time, for
a change, we simply choose the full precondition as invariant, although the part
marked in grey is still unaffected by the dynamics:

0=V <2g(H—h)Ah>0ANg>0AH>0A1>c¢>0.

Note, in particular, that there are many invariants that can be used to prove the same
property. We just need to find one invariant that works.

2.6 Soundness 97

*
¥, s>0, h+vs7%s2—0}—

gs))2 <2g(H— (h+vs—5s*)) Ah+vs— 55> >0

(—c(v
()
>0,.(>=0F<«5”s>[v:=fCV]¢
o $,5>0,(S)h > 0F (L) (h=0— [vi=—cv]9)
. 9,520, (L)h>0F (H)[2h =0][p:=—c1]¢
1 $.5>0,(F)h >0+ (F)[2h=0;v:=—cv]p

*

v ¢, s>0,,h+vsf§s >0k (Vfgs)z <2g(H— (thvsfis))/\h+V57752 >0
= 0,520, (F)h >0k (F)é

-t 0,5>0,(S)h >0 (L) (h>0— ¢)
. 0,520, (S)h>0F () [%h > 09

L E(I [> 09 0,5>0,(F)h >0 F (L)% =0;v:=—cv]¢
N g,5>0,(FWh >0 F () ([2h > 019 A[2h = 0;v:i=—cv]$)
L7 9,5>0,(F)h >0 F (F)[2h>0U (2 = 0;v:=—cv)]9

- 0,5>0F (S)h>0— (L) [?h>0U(2h=0;v:i=—cv)]¢
o O s>0— ((F)h>0— ([>0U(2%h=0;v:=—cv)]0)
Vf O = Y>0((F)h >0 — () [2h>0U (2%h=0;v:i=—cv)]0)

y OF [=—g&h>0][2h>0U(2%h=0;v:=—cv)]p

G O B =—g&h>0;(2%>0U((%h=0;v:=—cv))]¢

ind O F[(W = —g&h>0;(2h>0U(2%h = 0;v:=—cv)))*|(0<h<H)

o F o — [(1" = —g&h > 0;(?h > 0U (2% = 0,vi=—cv)))*](0<h<H)

Fig. 2.20 Bouncing ball proof (with evolution domain)

2.6 Soundness

In this section, we prove that the d.% calculus is a sound axiomatisation of the
transition behaviour of hybrid systems. Whatever we can prove in the d.% calculus
is actually true.

The proof calculus for dZ in Fig. 2.11 needs to fit to the semantics of differential
dynamic logic from Sect. 2.3; otherwise, the proof rules would not be meaningful.
Fortunately, every differential dynamic logic formula that can be derived in the A%
calculus from Fig.2.11 really is a valid formula! This property of the calculus is
called soundness and is crucial, because it would be disastrous if a formula would
be called “proven” when it is actually not valid, since we could not trust our proofs
then. A calculus is sound iff every formula that can be derived in the calculus is also
valid according to the semantics.

98 2 Differential Dynamic Logic A

We prove that a successful deduction in the d.Z calculus always produces correct
verification results about hybrid systems: The d.Z calculus is sound, i.e., all prov-
able (closed) formulas are valid in all states of all interpretations. We can restrict
our attention to closed formulas, i.e., formulas without free variables to begin with,
because we can start with the universal closure of the formula for validity just as
well. To reflect the interaction of free variables and Skolem terms, we adapt the no-
tion of soundness for the liberalised 8 -rule in free-variable tableau calculi [147] to
sequent calculus.

A formula ¢ has a model [147] if there is an interpretation / and a state v such
that for all variable assignments 17 we have I, 1, v |= ¢. Closed tableaux prove the
unsatisfiability of the negated goal [147]. Sequent calculi work dually and show
validity of the original proof goal. Consequently, we use the dual notion and say
that formula y is a consequence of ¢ iff, for every I,V there is an assignment 7
such that 1,7,V = v provided that, for every I, Vv, there is an assignment 1) such
that 7,1, v = ¢. A proof rule that concludes ¥ from the premises P is sound if ¥
is, indeed, a consequence of @ in the sense just defined. As usual, multiple branches
in ¥ or @ are combined conjunctively.

In this context, we think of free logical variables as being introduced by 7-rules,
i.e., Jr and VI (hence the implicit existential quantification of free logical variables
by 1). For closed formulas (without free logical variables), validity corresponds to
being a consequence from an empty set of open goals. Hence, closed formulas that
are provable with a sound deduction are valid (true in all states of all interpretations).

Theorem 2.1 (Soundness of A¥). The d.Z calculus is sound.

Proof. The calculus is sound if each rule instance is sound. All rules of the . cal-
culus except Vr,3l and i3 are also locally sound, i.e., their conclusion is true at 7,7, v
if all its premises are true in /, 7], v, which implies soundness. It is also easy to show
that locally sound rules remain sound when adding contexts I", A, (_#) as in Defin-
ition 2.10, since a discrete jump set (_¢) characterises a unique state transition.
Local soundness proofs of (;),[;],(U),[U],{(*"),[*"],(?),]?] and propositional rules are
as usual. Note that, for symmetric rules, local soundness implies that the premise
and conclusion are equivalent, i.e., true in the same states. For an illustration of the
dynamics behind the dynamic proof rules, we recall Fig. 2.12 from p. 83.

(:=) Therule (:=) is locally sound. Assume that the premise holdsin 7,1, v, i.e.,
ILn,vE (1))?1‘ .. .f,':. We have to show that 1,1, v = (x;:=0,..,x,:=6,)¢,
ie,l,n, o = ¢ forastate ® with (v,) € pyp(x1:=6y,..,x,:=6,). This
follows directly from the Substitution Lemma 2.2 for admissible substi-
tutions (Definition 2.8). The proof for rule [:=] uses the fact that discrete
jumps are deterministic.

) Rule (;) is locally sound. Assume that the premise holds in 7,7,V, i.e.,
I,n,vE (a)(B)¢. We have to show that the conclusion holds in 7,7, Vv,
ie.,I,n,v = (a;B)¢. By premise, 1,1,V = (a)(B)¢, we know that there
is a state u such that (v, u) € py»(a) and I,m, u = (B)¢. Hence, there is a
state @ such that (1, ®) € p;n(B) and 1,7, ® |= ¢. Now, by the semantics

2.6 Soundness 99

)

of o; B (Definition 2.7), there is a transition from Vv to @ (via intermediate
state i) along o; B. Thus, (v,®) € pry(o;) and 1,1, ® |= ¢, which im-
plies I,m,v |= (o;) ¢. The converse direction can be proven similarly to
show equivalence and the local soundness of the dual rule [;].

Rule (U) is locally sound. Assume that the premise holds in 1,1, Vv, i.e.,
In,vE (a)pV{B)p. We have to show that the conclusion holds in 7,7, v,
ie,I,n,vE (aUPB)¢. If the disjunction in the premise is true, then one of
its disjuncts must hold in 7,7, v. Consider the case where 1,71,V = (o) ¢.
Then there is a state @ such that (v,®) € p;y(«) and I,n,® = ¢. By
the semantics of o U in Definition 2.7, every transition of @ is a trans-
ition of v UB. Hence (v,) € pyn(aUB) and I,n, ® = ¢, which imply
I,n,vE (aUPB)¢. If, instead, the second disjunct 1,7,V = ()¢ holds,
then the proof is similar. Either way, we have I,7n, Vv = (o« U 3)¢. The con-
verse direction can be proven accordingly to show equivalence and the local
soundness of the dual rule [U].

Rule (*") is locally sound. Assume that the premise holds in 7,1, V, i.e.,
assume 1,1,V = ¢ V (a){a*)¢. We have to show that the conclusion holds
inl;n,v,ie.,I,n,v E (a*)¢. The disjunction in the premise holds; hence,
one of the disjuncts holds. Consider the case where 1,1,V |= ¢; then
I,n,v = (a*)¢ already holds with zero repetitions o* for ¢ is true in the
beginning. Consider the case where 1,7,V = (a)({a*)¢. Thus, there is an
o-transition to a state u such that (v, i) € pyp(ct) with I,n, 1 = (o) 9.
Consequently, there is an o/*-transition to a state @ with (i, @) € p;,(o*)
and 1,1, ® |= ¢. Obviously, every o-transition also is an o *-transition, be-
cause repetitions may choose to repeat only once. In particular, by chain-
ing the o-transition (v,u) € pry(a) C pry(a*) with the a*-transition
(1, @) € prp(e*), we obtain a longer o*-transition (v, ®) € pyn(a*) by
the transition semantics in Definition 2.7. Hence, in either case, we con-
clude I,m,v = (a*)¢. The converse direction can be proven accordingly
to show equivalence and the local soundness of the dual rule [*"].

Rule (?) is locally sound. Assume that the premise holds in 7,7, V, i.e.,
I,n,v E x AN ¢. We have to show that the conclusion holds in 7,1, V, i.e.,
I,n,v = (2x)¢. We have to show that there is a transition along ?y to a
state where ¢ holds. By the semantics in Definition 2.7, there is only a trans-
ition along hybrid program ?y if I,1,v = x and the state is not changed
by ?y transitions. Now the premise implies 7,1,V = x and 1,1,V = ¢,
which, together, imply 7,1,V |= (?x)¢. Since this is the only case where
?x can make a transition to a state satisfying ¢, it shows equivalence. Local
soundness of the dual rule [?] follows from this.

The rule (') is locally sound. Let yi,...,y, be a solution for the dif-
ferential equation system x| = 6y,...,x], = 6, with symbolic initial val-
ues xi,. . .,X,. Let further (#) be the jump set (x; :=y;(z),...,x, ==y, ().
Assume I, 7,V are such that the premise is true: 1,1, v = F >0 (¥ A (S)9)
with YO<7<r (.#;)x abbreviated as ¥. For any { € R, we denote by n the
assignment that agrees with 1) except that it assigns { to 7. Then, by as-

100

Vr

iV

dr

i3

2 Differential Dynamic Logic A

sumption, there is a real value » > 0 such that I, ", v = ¥ A (.%;)¢. Abbre-
viate x} = 0y,..,x), = 6, & x by 2. We have to show that 1,1,V |= (2)¢.
Equivalently, by Lemma 2.6, we show I,1", v |= (%) ¢, because ¢ is a fresh
variable that does not occur in & or ¢. Let function f:[0,r] — Sta(X) be
defined such that (v, f(£)) € p; ¢ (#7) for all £ € [0,7]. By premise, f(0)
is identical to v and ¢ holds at f(r). Thus it only remains to be shown
that f respects the constraints of Definition 2.7 for . In fact, f obeys the
continuity and differentiability properties of Definition2.7 by the corres-
ponding properties of the y;. Moreover, valy nr (f($),x;) = valyyr(v,yi(t))
has a derivative of value val; - (f(£),6;), because y; is a solution of the
differential equation x; = 6; with corresponding initial value v(x;). Fur-
ther, it can be shown that the evolution domain) is respected along f
as follows: By premise, 7,n",v |= % holds for the initial state v; thus
valy nr(f(8), x) = true for all { € [0,r]. Combining these results, we can
conclude that f is a witness for I, 1, v |= (Z)¢. The converse direction can
be shown accordingly to prove the dual rule '] using Lemma2.1.

The proof is a sequent calculus adaptation of that in [147]. By contra-
position, assume that there are I,v such that for all n it is the case
that 7,1, v [~ Vx@(x); hence 1,1,V |= 3x—¢(x). We construct an inter-
pretation I’ that agrees with I except for the new function symbol s.
Let by,...,b, € R be arbitrary elements and let 7” assign b; to the re-
spective X; for 1 <i<n. As I,n,v | Ix—¢(x) holds for all 7, we pick
a witness d for I,n?, v = Jx—¢(x) and choose I'(s)(b1,...,b,) = d. For
this interpretation I’ and state v we have I', 1,V £ ¢ (s(Xi,...,X,)) for all
assignments 17 by Lemma?2.6, as Xj,.., X, are all free variables determ-
ining the truth-value of ¢ (s(Xj,...,X,)). To see that the contexts I",A of
Definition 2.10 can be added to instantiate this rule, consider the follow-
ing. Since s is new and does not occur in the context I, A, the latter do not
change their truth-value by passing from / to I’. Likewise, s is rigid so that
it does not change its value by adding jump prefix (_#) which concludes
the proof. The proof of Jl is dual.

iV is locally sound. Assume that 7,1,V = QE(VX (®(X) F ¥(X))). Since
QE yields an equivalence, we can conclude I,1,v E VX (®(X) F P(X)).
Then if the antecedent of the conclusion is true, 1,1,V = @ (s(Xi,...,X,)),
we conclude 7,7, v |= ¥(s(Xi,...,X,)) by choosing val; » (v,s(Xi,...,X,))
for X in the premise. By admissibility of substitutions, variables Xi,...,X,
are free at all occurrences of s(Xj,...,X,), and hence their value is the same
in all occurrences.

dr is locally sound by a simplified version of the proof in [147]. For
any 1,7,V with 1,7,V = ¢(X) we can conclude 7,71,V |= Jx ¢ (x) accord-
ing to the witness 1(X). The proof of V1 is dual.

For any I,v let 1 be such that I,n,v = QE(3IX A;(d; - ¥)). Again,
this implies 1,1, v |= 3X A;(P; b+ ¥), because quantifier elimination yields
an equivalence. We pick a witness d € R for this existential quantifier.
As X does not occur anywhere else in the proof, it disappears from all

2.7 Completeness 101

()gen

ind

con

open premises of the proof by applying id. Hence, by the Coincidence
Lemma 2.6, the value of X does not change the truth-value of the premise
of i3. Consequently, 1 can be extended to 1’ by changing the interpreta-
tion of X to the witness d such that I,n’,v = A;(®; = ¥). Thus, 1’ ex-
tends 7,1, v to a simultaneous model of all conclusions.

Rules [Jgen—con are locally sound by a variation of the usual proofs [149]
using universal closures for local soundness. [|gen,()gen are simple refine-
ments of Lemma 2.6 using the fact that the universal closure Y% comprises
all variables that change in a. Let 1,1, v |= ()¢, i.e., let (v, V') € prp ()
with I,1,V' = ¢. As o can only change its bound variables, which are
quantified universally in the universal closure V%, the premise implies
ILn,Vv E¢—y,thusl,n,vV E yandI,n,v = (o) y. The proof of [|gen
is similar.

Forany I,n,v withI,n,v = V*(¢ — [a]9), weknow I,1,V' = ¢ — [ct]¢
for all v/ with (v,Vv') € p;p(). As these share the same 1, we can fur-
ther conclude 1,1,V = ¢ — [a*]¢ by induction along the series of states v/
reached from v by repeating ¢. The universal closure is necessary as, oth-
erwise, the premise may yield different 1 in different states v'.

Assume that the antecedent and premise hold in 7,71, v. By premise, we
have I,n[v—d],vV Ev>0A@(v) = (a)p(v—1) for all d € R and all
states V' that are reachable by o* from v, because V* comprises all vari-
ables that are bound by ¢, which are the same as those bound by a*.
By antecedent, there is a d € R such that I,n[v+—d],v = @(v). Now,
the proof is a well-founded induction on d. If d <0, we directly have
I.n,v = (a*)3v<0¢(v) for zero repetitions. Otherwise, if d > 0, we have,
by premise, that

Inyv—d,viEv>0ne(v) — (a)p(v—1).

As v>0A@(v) holds true at I,n[v+> d],v, we have for some v/ with
(V,V') € prypwsa (@) that I,n[v i d], V' = @(v— 1). In particular, we can
conclude that I,n[v— d — 1],V = ¢(v) satisfies the induction hypothesis
for a smaller d and a reachable V', because (v, V') € py () as v does not
occur in ¢. The induction is well-founded, because d decreases by 1 up to
the base case d < 0. O

With this soundness theorem, we now know that everything we prove in the d.Z
calculus accurately reflects reality, because the syntactic proofs built with Fig. 2.11
fit to the semantics defined in Sect. 2.3.

2.7 Completeness

In this section, we prove that the d.Z calculus is a sound and complete axiomatisa-
tion of the transition behaviour of hybrid systems relative to differential equations.

102 2 Differential Dynamic Logic A

With Soundness Theorem 2.1, we have shown that all provable formulas are
valid. So we know that will never prove something that does not even hold (is not
valid). The converse question is whether all valid formulas are also provable, i.e.,
whether we will always be able to prove all formulas that are “true” (valid). Have
we just been lucky with the successful proofs that we managed to show so far? Or
is there a deeper reason for which we can know that, in principle, we could also find
proofs for all other valid formulas?

2.7.1 Incompleteness

Theorem 2.1 shows that all provable closed A% formulas are valid. The converse
question is whether the d. calculus is complete, i.e., all valid d.Z formulas are
provable. Combining completeness for first-order logic [147] and decidability of
real arithmetic [81], it is easy to see that our calculus is complete for closed for-
mulas of first-order real arithmetic by chaining the quantifier rules Vr,31,3r,VI with
the respective inverse rules iV,id, using propositional rules as needed to unfold the
propositional structure. In the presence of modalities, however, A% is not axiomat-
isable and, unlike its basis of first-order real arithmetic, % is undecidable. Both
unbounded repetition in the discrete fragment and unbounded evolution in the con-
tinuous fragment cause incompleteness. Beyond hybrid dynamics, where reachab-
ility is known to be undecidable [156], we show that even the purely discrete and
purely continuous parts of d.Z are not effectively axiomatisable. Hence, valid d.Z
formulas are not always provable.

Theorem 2.2 (Incompleteness of A.%). Both the discrete fragment and the con-
tinuous fragment of L are not effectively axiomatisable, i.e., they have no sound
and complete effective calculus, because natural numbers are definable in both frag-
ments.

Proof. We prove that natural numbers are definable among the real numbers of d.%’
interpretations in both fragments. Then these fragments extend first-order integer
arithmetic such that the incompleteness theorem of Godel [137] applies. Godel’s
incompleteness theorem shows that no logic extending first-order integer arithmetic
can have a sound and complete effective calculus. Natural numbers are definable in
the discrete fragment without continuous evolutions using repetitive additions:

nat(n) < (x:=0;(x:=x+1)") x=n.

In the continuous fragment, an isomorphic copy of the natural numbers is definable
using linear differential equations:

nat(n) <» IsJcIt(s=0Ac=1AT=0A(s'=¢c,d = —5,7 = 1)(s=0AT=n)).

These differential equations characterise sin and cos as unique solutions for s and c,

2.7 Completeness 103

/\ /\' T
7\/27: 3n Y4 S

Fig. 2.21 Characterisation of N as zeros of solutions of differential equations

N

respectively. Their zeros, as detected by 7, correspond to an isomorphic copy of
natural numbers, scaled by 7, i.e., nat(n) holds iff n is of the form kx for a k € N;
see Fig. 2.21. The initial values for s and ¢ prevent the trivial solution identical to 0.

O

In this context, note that hybrid programs contain a computationally complete
sublanguage and that reachability of hybrid systems is undecidable [156].

2.7.2 Relative Completeness

The standard approach for showing adequacy of a calculus when its logic is not
effectively axiomatisable is to analyse the deductive power of the calculus relative
to a base logic or to an ineffective oracle rule for the base logic [87, 148, 149].
In calculi for discrete programs, completeness is proven relative to the handling
of data [87, 148, 149]. For hybrid systems, this is inadequate: By Theorem 2.2,
no sound calculus for A can be complete relative to its data (the reals), because
its basis, first-order real arithmetic, is a perfectly decidable and axiomatisable the-
ory [288]. If the A.Z calculus itself would be complete relative to the data of first-
order real arithmetic, then, since this is a decidable logic, the d.Z calculus would be
complete altogether, which would contradict Theorem 2.2. Thus, we need a different
basis for a relative completeness argument. Unlike in classical discrete programs,
the data is not where the complexity comes from. In hybrid dynamical systems, the
complexity truly originates from the actual dynamics.

According to Theorem 2.2, both continuous evolutions and repetitive discrete
transitions, as well as their interaction, cause non-axiomatisability of A.Z. Discrete
transitions and repetition do not supersede the complexity of continuous transitions.
Even relative to an oracle for handling properties of discrete jumps and repetition,
the d.% calculus is not complete, simply because not all differential equations have
solutions that are definable in first-order arithmetic so that rule ['] can be used.
For instance, the solutions of s’ = ¢,¢’ = —s are trigonometric functions (like sin
and cos), which are not first-order definable. The question is whether the converse
is true, i.e., whether hybrid programs can be verified given that all required differ-
ential equations can be handled.

104 2 Differential Dynamic Logic A

To calibrate the deductive power of the d.Z calculus in light of its inherent in-
completeness, we analyse the quotient of reasoning about hybrid systems modulo
differential equation handling. Using generalisations of the usual notions of relative
completeness for discrete systems [87, 148, 149] to the hybrid case, we show that
the d.Z calculus completely axiomatises d.Z relative to one single additional axiom
about valid first-order properties of differential equations. Essentially, we drop the
effectiveness requirement for one oracle axiom and show that the resulting d.% cal-
culus is sound and complete. We thus show that the d.Z calculus would be complete
if only we had a complete replacement for ['],{’). Although repetitions and inter-
actions of hybrid programs are more involved than purely continuous systems, this
results emphasises the importance of studying approximations of this continuous
oracle for the analysis of hybrid systems, as we do in Chap. 3.

As a basis, we define FOD as the first-order logic of differential equations, i.e.,
first-order real arithmetic augmented with formulas expressing properties of differ-

ential equations, that is, A formulas of the form [x] = 6y,...,x], = 6,]F with a
first-order formula F. Dually, the diamond formula (x; = 6y,...,x), = 6,)F is ex-
pressible as —[x| = 6y,...,x], = 6,]F.

Theorem 2.3 (Relative completeness of A¥). The A.Z calculus is complete rel-
ative to FOD, i.e., every valid AZ formula can be derived from FOD tautologies.

Proof (Outline). The (constructive) proof, which, in full, is contained in the re-
mainder of this section, adapts the techniques of Cook [87] and Harel [148, 149] to
the hybrid case. The decisive step is to show that every valid property of a repeti-
tion a* can be proven by rules ind or con, respectively, with a sufficiently strong
invariant or variant that is expressible in .. For this, we show that A% formulas
can be expressed equivalently in FOD, and that valid A% formulas can be derived
from corresponding FOD axioms in the d.Z calculus. In turn, the crucial step is to
construct a finite FOD formula that characterises the effect of unboundedly many
repetitive hybrid transitions and just uses finitely many real variables. O

This main result completely aligns hybrid and continuous verification proof-the-
oretically. It gives a formal justification that reasoning about hybrid systems is pos-
sible to exactly the same extent to which it is possible to show properties of solutions
of differential equations. Theorem 2.3 shows that superpositions or combinations of
discrete jumps, continuous evolutions, and repetitions of hybrid processes can be
verified whenever corresponding (intermediate) properties of differential equations
are provable. Moreover, in a proof-theoretical sense, our calculus completely lifts
all verification techniques for dynamical systems to hybrid systems perfectly. Sum-
marising Theorems 2.1 and 2.3:

The d.% calculus axiomatises the transition behaviour of hybrid systems com-
pletely relative to the handling of differential equations!

In the following subsections, we present a fully constructive proof of The-
orem 2.3, which generalises the techniques of Harel [148, 149] and Cook [87] to

2.7 Completeness 105

the hybrid case. It shows that for every valid A% formula, there is a finite set of
valid FOD formulas from which it can be derived in the .Z calculus. Recall the
proof outline of Theorem 2.3 for a road map of the proof.

Natural numbers are definable in FOD by Theorem 2.2. In this section, we ab-
breviate quantifiers over natural numbers, e.g., Vx(nat(x) — ¢) by Vx:N ¢ and
Jx (nat(x) A ¢) by Ix:N ¢. Likewise, we abbreviate quantifiers over integers, e.g.,
Vx ((nat(x) V nat(—x)) — @) by Vx:Z ¢.

2.7.3 Characterising Real Godel Encodings

As the central device for constructing a FOD formula that captures the effect of un-
boundedly many repetitive hybrid transitions and just uses finitely many real vari-
ables, we prove that a real version of Godel encoding is definable in FOD. That is,
we give a FOD formula that reversibly packs finite sequences of real values into a
single real number.

Observe that a single differential equation system is not sufficient for defin-
ing these pairing functions as their solutions are differentiable, and yet, as a con-
sequence of Morayne’s theorem [213], there is no differentiable surjection R — R2,
nor to any part of R? of positive measure. We show that real sequences can be
encoded nevertheless by chaining the effects of solutions of multiple differential
equations and quantifiers.

Lemma 2.7 (R-Gédel encoding). The formula at(Z,n, j,z), which holds iff Z is a
real number that represents a Godel encoding of a sequence of n real numbers with
real value z at position j (for 1 < j <m), is definable in FOD. For a formula ¢(z)

we abbreviate 3z (at(Z,n, j,z) N9 (z)) by (j)(Zj(.")).

i& =dp.ayaz
i=0 2 oo
a; b,‘
Z (22’,71 + ﬁ) = apbg.a1byazxb, . ..
> b i=0
22—; =bo.b1by. ..
i=0

Fig. 2.22 Fractional encoding principle of R-Godel encoding by bit interleaving

Proof. The basic idea of the R-Godel encoding is to interleave the bits of real num-
bers as depicted in Fig.2.22 (for a pairing of n = 2 numbers a and b). For de-
fining at(Z,n, j,z), we use several auxiliary functions to improve readability; see
Fig.2.23. Note that these definitions need no recursion. Hence, as in the nota-
tion (p(ZE-")), we can consider occurrences of the function symbols as syntactic ab-
breviations for quantified variables satisfying the respective definitions.

106 2 Differential Dynamic Logic A

at(Z,n, j,z) < Vi:Z digit(z,i) = digit(Z,n(i — 1) + j) Anat(n) Anat(j) An >0
digit(a,i) = intpart(2frac(2'~'a))
intpart(a) = a — frac(a)
fracla) =z <> Ji:Zz=a—iN—-1<zAz<1Aaz>0
2 =74 i>0AI]F (x=1At=0A{ =xIn2,/' =1)(t =iAx=7))
Vi<OATI(x=1At=0A(=—xIn2,/' =—1)(r=iAx=72))
2=z FI(x=1At=0A& =xt' =1)(x=2A1t=2))

Fig. 2.23 FOD definition characterising Godel encoding of R-sequences in one real number

The function symbol digit(a, i) gives the ith bit of a € R when represented with
basis 2. For i > 0, digit(a, i) yields fractional bits, and, for i < 0, it yields bits of the
integer part. For instance, digit(a, 1) yields the first fractional bit, digit(a,0) is the
least-significant bit of the integer part of a. The function intpart(a) represents the
integer part of a € R. The function frac(a) represents the fractional part of a € R,
which drops all integer bits. The last constraint in its definition implies that frac(a)
keeps the sign of a (or 0). Consequently, intpart(a) and digit(a,i) also keep the
sign of a (or 0). Exponentiation 2 is definable using differential equations, using
an auxiliary characterisation of the natural logarithm In2. The definition of 2/ splits
into the case of exponential growth when i > 0 and a symmetric case of exponential
decay when i < 0. O

2.7.4 Expressibility and Rendition of Hybrid Program Semantics

In order to show that d.% is sufficiently expressive to state the invariants and vari-
ants that are needed for proving valid statements about loops with rules ind and
con, we prove an expressibility result. We give a constructive proof that the state
transition relation of hybrid programs is definable in FOD, i.e., there is a FOD for-
mula .7 (X, V) characterising the state transitions of hybrid program « from the state
characterised by the vector X of variables to the state characterised by vector V.

For this, we need to characterise hybrid processes equivalently by differential
equations in FOD. Observe that the existence of such characterisations does not fol-
low from results embedding Turing machines into differential equations [57, 140],
because, unlike Turing machines, hybrid processes are not restricted to discrete val-
ues on a grid (such as NX) but work with continuous real values. Furthermore, Tur-
ing machines only have repetitions of discrete transitions on discrete data (e.g., N).
For hybrid programs, in contrast, we have to characterise repetitive interactions of
discrete and continuous transitions in continuous space (some RF).

Lemma 2.8 (Hybrid program rendition). For every hybrid program o with vari-
ables among X = x1,...,xy, there is a FOD formula .%4(X,V) with variables among
the 2k distinct variables X = x1,...,x; and V = v1,...,v; such that

F Za(X,V) < ()X =V

2.7 Completeness 107
or, equivalently, for every I,n,V,

In,vE S&V) iff (v,v[X—valpy(v,V)]) € pry(a).

Fa—0y..—0,TV) = () =01, 0 =)V =

‘yx/]:ela»uﬂ:ek&x(f’v) = (t =0A <x/] = 9],..,)6;{ = ek,[/ = 1>(17j56‘
]

BT =T =TA Y
Fpuy(E,7) = S (X, V) V.S (X, V)

1 it

Fig. 2.24 Explicit rendition of hybrid program transition semantics in FOD

Proof. By Lemma 2.6, interpretations of the vectors X and V characterise the input
and output states, respectively, as far as « is concerned. These vectors are finite
because « is finite. Vectorial equalities like X = V or quantifiers 3V are to be under-
stood componentwise. The program rendition is defined inductively in Fig. 2.24. To
simplify the notation, we assume that all variables xp,...,x; are affected in discrete
jumps and differential equations by adding vacuous x; :=x;, or x; = 0 if x; does not
change in the respective statement.

Differential equations give FOD formulas; no further reduction is needed. Evol-
ution along differential equations with evolution domain restrictions is definable by
following the unique flow (Lemma2.1) backwards. Continuous evolution is revers-
ible, i.e., the transitions of x; = —6 are inverse to those of x; = 6. Consequently,
with an auxiliary variable ¢, all evolutions of [x] = —6,..,x; = —6,¢’ = —1] fol-
low the same flow as (x] = 6y,..,x; = 6,t' = 1), but backwards. By also reversing
clock 7, we ensure that, along the reverse flow, } has been true at all times (because
of the box modality) until starting time ¢ = 0; see Fig. 2.25.

To show reversibility, let (v, ®) € pry(x] = 61,..,x;, = 6), thatis, let f: [0,r] —
Sta(X) be a solution of x| = 6y,..,x; = 6 starting in state v and ending in ®. Then
g:10,7r] = Sta(X), defined as g(§) = f(r — §), starts in @ and ends in v. Thus, it
only remains to show that g is a solution of x| = —6y,..,x} = —6, which can be
seen for 1 < i <k as follows:

108 2 Differential Dynamic Logic A

Fig. 2.25 Evolution domain
checks along backwards flow
over time ¢

reverse flow and time;
check y backwards

&\

> =l
&l

d(0)() o _dF—00)) _ dFG0) dr—1) -
S g =R g = SR U) - SR g

= —vali(f(§),6:) = valy (f(§),—6:)-

Unlike all other cases, case yx/l:(,lwxizek&x()?, V) in Fig.2.24 uses nested FOD

modalities. Nested modalities can be avoided in .7 (¥, V) using an equivalent FOD
formula without them; see Fig. 2.25:

F3Ir(t=0A (] =061,...x, =6, =1)(F=XAr=1)A
VEVE(R=VAt=r—[X; = =01,..,x, = = 6,1 =—1](1 >0 — x))).

With a finite formula, the characterisation of repetition .3 (¥,V) in FOD needs to
capture arbitrarily long sequences of intermediate real-valued states and the correct
transition between successive states of such a sequence. To achieve this with first-
order quantifiers, we use the real Godel encoding from Lemma?2.7 in Fig.2.24 to
map unbounded sequences of real-valued states reversibly to a single real number Z,
which can be quantified over in first-order logic. a

Using the program rendition from Lemma?2.8 to characterise modalities, we
prove that every d.Z formula can be expressed equivalently in FOD by structural
induction.

Lemma 2.9 (d.Z Expressibility). Logic A.Z is expressible in FOD: for all A% for-
mulas ¢ € Fml(X,V) there is a FOD formula ¢* € Fmlpop(Z,V) that is equivalent,
ie., = ¢ < ¢ The converse holds trivially.

Proof. The proof follows an induction on the structure of formula ¢ for which it
is imperative to find an equivalent ¢* in FOD. Observe that the construction of ¢*
from ¢ is effective.

0. If ¢ is a first-order formula, then ¢* := ¢ already is a FOD formula such that
nothing has to be shown.

1. If ¢ is of the form ¢V y, then by the induction hypothesis there are FOD for-
mulas @*, y* such that £ ¢ < ¢* and F v < y*, from which we can con-
clude by congruence that = (¢ V y) < (¢* v y#), giving F ¢ + ¢# by choos-
ing @* v y* for ¢*. Similar reasoning addresses the other propositional con-
nectives or quantifiers.

2. The case where ¢ is of the form (o) y is a consequence of the characterisation of
the semantics of hybrid programs in FOD. The expressibility conjecture holds

2.7 Completeness 109

by the induction hypothesis using the equivalence of explicit hybrid program
renditions from Lemma 2.8:

E o)y o T (Sal@ D) AT,
3. The case where ¢ is [o]y is again a consequence of Lemma 2.8:
= [0y o (ST - v
O

The above proofs directly carry over to rich test A%, i.e., the logic where d.Z
formulas are allowed in tests ?y of hybrid programs and evolution domain restric-
tions y of differential equations, when using x* in place of y in Fig.2.24. Accord-
ingly, nested modalities can be avoided in FOD by using the following formula for

x“’lzel =0 &) (X,V):

F3Ir(t=0A(x] =061,...x. =6, i’ =1)(F=XAr=1)A
VZ(ERI (R=VAt=rA{x|=—0,.. .5, =—6,'=—1)(t > 0NT=X))
Z

%X#f))

2.7.5 Relative Completeness of First-Order Assertions

As special cases of Theorem 2.3, we first prove relative completeness for first-order
assertions about hybrid programs. These first-order cases constitute the basis for the
general completeness proof for arbitrary formulas of differential dynamic logic.

In the following relative completeness proofs, we use the notation -4 ¢ to indic-
ate that a d.Z formula ¢ is derivable (Definition 2.11) from a set of FOD tautologies,
which is equivalent to saying that ¢ is derivable in the d.Z calculus augmented with
a single oracle axiom & that gives all valid FOD instances. Likewise, we use the
notation I ¢ A to indicate that the sequent I" - A is derivable from 2.

For the completeness proof, we use several simplifications. For uniform proofs,
we assume formulas to use a simplified vocabulary. A formula ¢ is valid iff it is true
in all I,n,v. In particular, we can assume valid ¢ to use Skolem constants (or state
variables) instead of free logical variables. Existential quantifiers can be represented
as modalities: Ix¢ = (x' = 1)¢ V (X' = —1)¢. For simplicity, we use cut (cur) and
weakening to glue together subproofs propositionally. Weakening (i.e., from ¢ - y
infer ¢1,¢ - v, yp) can be emulated using contexts I',A from Definition 2.10, and
we use it implicitly together with rule cut in the following. Derivability of sequents
and derivability of corresponding formulas are equivalent by the following lemma.

Lemma 2.10 (Derivability of sequents). -4 ¢ — v iff o -4 y.

110 2 Differential Dynamic Logic A

Proof. When we consider sequents as abbreviations for formulas, both sides are
identical. Otherwise, lett-¢ ¢ — W be derivable from Z. Using cut (and weakening)
with ¢ — , this derivation can be extended to one of ¢ 4 y:

* *
* Zorev Tyoby
Fo—ww T ovby
oy
The converse direction is by an application of —r. ad

Lemma 2.11 (Generalisation). Ift ¢ is provable without free logical variables,
then so are =g Vx ¢ and b g (x| :=0y,...x,:=6,) 9.

Proof. For the second conjecture, let (/) abbreviate (x;:=0y,...x,:=6,). We
prefix each formula in the proof of ¢ with (/) and show that this gives a proof
of («7)¢. 13 is not needed in the proof due to the absence of free logical variables. As
an intermediate step, we first show that prefixing with (.7) gives an (extended) proof
with rule applications generalised to allow for nested jump prefixes () (_#): By
the argument in Theorem 4.1, it is easy to see for discrete jump sets (<) and (_#)
that the d.% rules remain sound with nested jump prefix (./)(_#) in place of only
a single prefix (_#) from Definition 2.10. Applicability conditions of rules do not
depend on jump prefixes, as Definition 2.10 allows adding any jump prefix. Thus,
we obtain a sound (extended) proof of (/)¢ when replacing—with arbitrary un-
changed context I', A, (_#)—every rule application of the form

F,<f>q51|—<j>'{/1,A F7</><I7n|—</>'f’mA
r(7)ok (7)%,A

in the proof of ¢ by a rule application with the additional unchanged prefix (<) for
corresponding I', A, (_7):

LA)P () () HA . TAA)()Pt (F)(JF), A
LA)(J) ot () 7). A

Next, we show that these nested jump prefixes can be reduced to a single jump
prefix as Definition 2.10 allows: Let (.7 _#') denote the discrete jump set obtained by
merging (/) and (_7) using (:=) as in Sect. 2.5.2. We replace each rule application
(with nested prefixes) of the form (2.14) by the following derivation with only a
single prefix (assuming n = 1 for notational convenience):

(2.14)

‘”‘F,(dj)cbl F(o 7)Pi,A
(@ 7T%A T (o J)01 - () F)P1.A
cut F7< />¢1F<d/>%7
T (d 7)o F (7%, A
=h=) T () {7) Py () (_7) %, A

2.7 Completeness 111

The bottom most (:=) applications merge (.<7) into (_#) in the antecedent and suc-
cedent, respectively. The unmarked rule applies the same rule that has been used
in (2.14), which is applicable on @y F ¥ for any context by Definition 2.10, in-
cluding I',A, (&7 ¢). The subsequent cut with (.o7)(_#)P restores the form of
the premise in (2.14). The left branch continues using a dual argument to turn suc-
cedent (&7 _#)¥, into (o7)(_7)W, thereby yielding a set of non-extended rule ap-
plications with the same conclusions and premises as the extended rule applica-
tion (2.14):

C T (g)N (A J)A
LA ()P () () MA T) () (A J)H,.A
“ AN)P E (o J)H,A

For reducing the first conjecture of this lemma to the second, let s be a Skolem
constant for state variable x. By the above proof, we derive -4 (x:=s)¢. Using Vr,
we continue this derivation to a proof of VX (x:=X)¢, which we abbreviate as Vx ¢
(see the text below Definition 2.8). Rule Vr is applicable for Skolem constant s as no
free logical variables occur in the proof. O

Now we prove two special cases of Theorem 2.3 for formulas of a special form.

Proposition 2.1 (Relative completeness of first-order safety). For every hybrid
program o, € HP(X,V) and all FOD formulas F,G € Fmlpop(XZ,V)

EF — [o]G implies b4 F — [a]G (and F F4 [&]G by Lemma 2.10).

Proof. We generalise the relative completeness proof by Cook [87] to d.% and fol-
low an induction on the structure of program «. In the following, /H is short for the
induction hypothesis.

1. The cases where «a is of the form x;:=6y,...,x,:=6,, 7%, BUY, or By
are consequences of the soundness of the symmetric rules [;],[U],[?].(:=),[:=].
Since these rules are symmetric, they perform equivalent transformations. Con-
sequently, whenever their conclusion is valid, their premise is valid and of smal-
ler complexity (the programs get simpler), and hence derivable by IH. Thus, we
can derive F — [ot]G by applying the respective rule. We explicitly show the
proof for ;7 as it contains an extra twist.

2. E F — [B;v]G, which implies £ F — [][y]G. By Lemma 2.9, there is a FOD
formula G* such that F G* <+ [y]G. From the validity of F F — [8]G", we can
conclude by TH that F 4 [B]G" is derivable. Similarly, due to F G* — [y]G,
we conclude 4 G* — [y]G by IH. Using Lemma2.11, we conclude that also
o VP (G* — [¥]G). With an application of [|gen, the latter derivation can be
extended to a derivation of [8]G* -4 [B][y]G. Combining the above derivations
propositionally by a cut with [3]G*, we can derive F -4 [B][y]G, from which [;]
yields F 4 [B;7]G as desired (and Lemma2.10 or —r yield o F — [;7]G).

112 2 Differential Dynamic Logic A

3. EF — [x] = 6y,...,x,, = 6,]G is a FOD formula and hence derivable as a 2
axiom. Continuous evolution x| = 6y,...,x, = 6, & x with evolution domain
restrictions is definable in FOD by Lemma 2.8, which we consider as an abbre-
viation in this proof.

4. E F — [B*]G can be derived by induction. For this, we define the invariant as
a FOD encoding of the statement that all potential post-states of * satisfy G
according to Lemma2.9:

¢ = ([B*1G)* =W (S (X,V) — GY).

Since F — ¢ and ¢ — G are valid FOD formulas, they are derivable by Z; so is
F 4 ¢ derivable by Lemma 2.10. By Lemma2.11 and [|gen, [B*]¢ 4 [B*]G is
derivable. Likewise, ¢ — [B]¢ is valid according to the semantics of repetition,
and thus derivable by IH, since f3 is less complex. Using Lemma2.11, we can
derive 4 VP (¢ — [B]¢), from which ind yields ¢ 4 [3*]¢. Combining the
above derivations propositionally by a cut with [3*]¢ and ¢ yields F F4 [B*]G.

O

Proposition 2.2 (Relative completeness of first-order liveness). For each hybrid
program oo € HP(X,V) and all FOD formulas F,G € Fmlpop(Z,V)

EF — (a)G implies b9 F — ()G (and F -4 (a)G by Lemma 2.10).

Proof. We generalise the arithmetic completeness proof by Harel [148] to the hybrid
case. Most cases of the proof are simple adaptations of the corresponding cases in
Proposition 2.1. What remains to be shown is the case of repetitions. Assume that
EF — (B*)G. To derive this formula by con, we use a FOD formula ¢(n) as a
variant expressing that, after n iterations, 8 can lead to a state satisfying G. This
formula is obtained from Lemmas 2.8 and 2.9 as ((8*)G)* = 3 (.« (X,%) A G;’),
except that the quantifier on the repetition count n is removed such that n becomes
a free variable (plus index shifting to count repetitions):

pin—1) = F33Z (2" =3nZ) = VAN (1 <i<n— S(Z",Z7)) AGE).
By Lemma 2.7, ¢(n) can only hold true if n is a natural number.

According to the loop semantics, = n > 0A @(n) — (B)@(n—1) is valid by con-
struction: If n > 0 is a natural number then so is n— 1, and if § reaches G after n
repetitions, then, after executing § once, n — 1 repetitions of § reach G. By IH, this
formula is derivable, since contains less loops. By Lemma2.11, we extend this
derivation to - YAVn>0(@(n) — (B)@(n—1)). Thus I o(v) -4 (B*)Iv<00(v)
by con. It only remains to show that the antecedent is derivable from F and ()G is
derivable from the succedent. From our assumption, we conclude that the following
are valid FOD formulas, hence & axioms:

e FF— Ive(v), because F F — (B*)G, and

2.7 Completeness 113

e E (I<0¢(v)) — G, because v < 0, and the fact, that by Lemma 2.7, ¢(v) only
holds true for natural numbers, imply ¢(0). Further, ¢(0) entails G, because zero
repetitions of 8 have no effect.

From the latter we derive ¢ ¥# (3v<0¢(v) — G) by Lemma2.11 and extend the
derivation to (f*)Iv<0¢(v) o (B*)G by ()gen. From 4 F — Jv@(v) we con-
clude F F4 Jve(v) by Lemma2.10. Now, the above derivations can be combined
propositionally by a cut with ($*)3v<0¢(v) and with Jv @ (v) to yield F 4 (f*)G.

O

2.7.6 Relative Completeness of the Differential Logic Calculus

Having succeeded with the proofs of the above statements we can finish the proof
of Theorem 2.3, which is the central theoretical result of this chapter.

Proof (of Theorem2.3). The proof follows a basic structure analogous to that of
Harel’s proof for the discrete case [148, Theorem 3.1]. We have to show that every
valid d.Z formula ¢ can be proven from FOD axioms within the d.% calculus: from
F ¢ we have to prove -4 ¢. The proof proceeds as follows: By propositional re-
combination, we inductively identify fragments of ¢ that correspond to ¢; — [ct|
or ¢; — (o) ¢ logically. Next, we express subformulas ¢; equivalently in FOD by
Lemma 2.9, and use Propositions 2.1 and 2.2 to resolve these first-order safety or
liveness assertions. Finally, we prove that the original A% formula can be re-derived
from the subproofs.

We can assume ¢ to be given in conjunctive normal form by appropriate pro-
positional reasoning. In particular, we assume that negations are pushed inside
over modalities using the dualities —[ct]¢ = (@)—¢ and —(ct)$ = [x]—¢. The re-
mainder of the proof follows an induction on a measure |¢| defined as the num-
ber of modalities in ¢. For a simple and uniform proof, we assume quantifi-
ers to be abbreviations for modal formulas: Ix¢ = (X' =1)¢ V(¥ =—1)¢ and

Vxg =[x =1]p A X' =—1]¢.

0. |¢| = 0; then ¢ is a first-order formula; hence derivable by 2.

1. ¢ is of the form —¢;; then ¢@; is first-order, as we assumed negations to be
pushed inside. Hence, |¢| = 0 and Case 0 applies.

2. ¢ is of the form @; A ¢, then individually deduce the simpler proofs for ¢ ¢,
and 4 ¢, by IH, which can be combined by rule Ar.

3. ¢ is a disjunction and—without loss of generality—has one of the following
forms (otherwise use associativity and commutativity to select a different order
for the disjunction):

¢V [
o1V (o)

114 2 Differential Dynamic Logic A

As a unified notation for those cases we use ¢V (] ¢>. Then, |¢2] < |9],
since ¢» has less modalities. Likewise, |@;]| < |@| because (o])¢» contributes
one modality to |¢| that is not part of ¢;.
According to Lemma 2.9 there are FOD formulas ¢f‘ , ¢)§“t with E ¢; <> ¢} for
i =1,2. By congruence, the validity F ¢ yields F ¢ v (a) ¢4, which directly
implies F —¢] — (o)) ¢¥. Then by Propositions 2.1 or 2.2, respectively, we can
derive

=0t ko ()93 (2.15)

Further ¢; < ¢f implies F —~¢; — —¢¥, which is derivable by IH, because
|¢1] < |¢|. By Lemma2.10, we obtain —¢; -5 —¢f, which we combine with
(2.15) by a cut with ¢ to

—¢1 o () o, (2.16)

Likewise F ¢, <> ¢F implies = ¢F — ¢», which is derivable by IH, as || < |¢].
We can extend the derivation of - ¢§ — ¢, to one of o V*(¢§ — ¢) by
Lemma2.11 and conclude (a) ¢4 4 () ¢> by [Jgen—()gen. Finally we com-
bine the latter derivation propositionally with (2.16) by a cut with (a)¢¥ to
derive =@ F4 () ¢2, from which k4 ¢; V (o] ¢, can be obtained, again using
cut, to complete the proof. O

This concludes the main theoretical proof of relative completeness of the A%
calculus, i.e., of Theorem 2.3.

2.8 Relatively Semidecidable Fragments

To strengthen the completeness result from Theorem 2.3, we consider fragments of
d.Z where the required FOD tautologies are sufficiently simple as differential equa-
tions have first-order definable flows and the required loop invariants (or variants)
are expressible in first-order logic over the reals. In these fragments, the only dif-
ficulty is to find the required invariants and variants for the proof. Relative to an
(ineffective) oracle that provides first-order invariants and variants for repetitions,
the d.Z calculus can be used as a semidecision procedure. That is, when we assume
the oracle to provide suitable (in)variants, validity of formulas can be proven in the
A% calculus. If an imperfect oracle chooses inadequate (in)variants, applying the
d.Z calculus rules results in goals that are not valid, which is again decidable by
quantifier elimination in the d.Z calculus.

Theorem 2.4 (Relatively semidecidable fragment). Relative to an oracle gener-
ating first-order invariants and variants, the L calculus gives a backtracking-free
semidecision procedure for (closed) AL formulas with differential equations having

first-order definable flows.

2.8 Relatively Semidecidable Fragments 115

Proof (Outline). The (constructive) proof, which, in full, can be found in the re-
mainder of this section, shows that there are always applicable d.Z rules that trans-
form the formulas equivalently and that formulas in this d.% proof descend along
a well-founded order. For loops, we assume that suitable (in)variants are obtained
from the oracle and we can guarantee termination when these (in)variants are first-
order (or contain fewer loops). O

As a consequence, enumerating first-order invariants or variants gives a semide-
cision procedure for the fragment of Theorem2.4. As a corollary to Theorems 2.2
and 2.4, there are valid . formulas that need proper d.Z (or FOD) invariants to be
provable and cannot be proven just using (in)variants of first-order real arithmetic.
Similarly, the fragment with first-order definable flows and bounded loops is decid-
able: When loops o* are annotated with natural numbers indicating the maximum
number of repetitions of o, an effective oracle for Theorem 2.4 can be obtained by
unrolling, e.g., by rule (*").

As an auxiliary result for proving Theorem 2.4, we show that, in d.% proofs,
Skolem symbols occur in a uniform way, i.e., a Skolem symbol s always occurs
with the same list of arguments.

Lemma 2.12 (Uniform Skolem symbols). Let ¢ be a AL formula without Skolem
symbols. In any derivation of ¢, Skolem symbols only occur with a unique list of free
logical variables as arguments, provided that the formulas in cuts (rule cut) obey
this restriction.

Proof. The proof is by induction on the structure of proofs in the d.Z calculus. For
derivations of length zero, the conjecture holds, because ¢ does not contain Skolem
symbols. We show that the conjectured Skolem occurrence property is preserved in
all subgoals when applying a rule to a goal that satisfies the conjecture.

Vr The symbols s(Xj,...,X,) introduced by rules Vr,3l are of the required
form as the X; are precisely the free logical variables. In addition, the sym-

bol s(Xj,...,X,) does not occur nested in other Skolem terms, because, by the
induction hypothesis, the bound variable x does not occur in Skolem terms of
the goal.

iV Rules iV and i3 are only applicable to instances of first-order real arithmetic
(Lemma 2.5), for which the equivalence transformations of quantifier elimin-
ation preserve the Skolem occurrence property, because they never introduce
quantifiers to bind free variables.

("y Rule (') preserves the property, as it only substitutes state variables x; € X,
not logical variables X; € V.

cut Cuts preserve the Skolem occurrence property, as we assumed the formulas
that cut introduces to adhere to the Skolem occurrence property.

- The other rules of the A% calculus preserve the property as they never replace
arguments of Skolem function symbols (which are free variables by induction
hypothesis).]

Proof (of Theorem 2.4). The proof is by well-founded induction. We prove that there
is a well-founded strict partial order < such that:

116 2 Differential Dynamic Logic A

IH: For all non-atomic formulas occurring in the sequents during a proof, there
is an applicable series of A% rules such that all resulting subgoals are sim-
pler with respect to < and have no additional free variables or function sym-
bols, and their conjunction is equivalent to the conclusion (for suitable oracle
choices).

By applying these d.Z rules exhaustively, we obtain a decision procedure relative
to the oracle, because the subgoals descend along the well-founded order <, which
has no infinite descending chain. Finally, validity of the remaining sequents with
atomic formulas is decidable by evaluating ground instances (Definition 2.9), be-
cause, by IH, the resulting formulas have no free variables when the initial formula
is closed (open formulas, in contrast, yield equivalent parameter constraints as res-
ults). We use the derived rules ind’ and con’ from p. 86 in place of ind and con;
see Sect. 2.5.2. To obtain a backtracking-free procedure, we remove rules (*"),[*"],
[lgen,()gen,ind,con and cur from the calculus: If a calculus with less rules gives a
decision procedure, then so does the full calculus.

We define the order < as the lexicographical order of, respectively, the num-
ber of: loops, differential equations, sequential compositions, choices, modalities,
quantifiers, number of different variables and Skolem function symbols, and the
number of logical connectives. As a lexicographical order of natural numbers, < is
well-founded [99]. It lifts to sequents in rule applications (Definition 2.10) when all
subgoals of all rule schemata are simpler than their goals with respect to <, which
can be shown to retain well-foundedness as a multiset ordering [99].

Now the proof of IH is by induction along <. Let ¢ be a non-atomic formula of
a sequent in an open branch of the proof. We assume ¢ to occur in the succedent;
the respective proofs for the antecedent are dual. Hence, we consider the sequent to
be of the form I" - ¢, A.

1. If ¢ is of the form y; A y», then rule Ar is applicable, yielding smaller sequents
(with less logical connectives) that are equivalent. Other logical connectives are
handled likewise using rules —r,Vr,Ar,—T, respectively.

2. If ¢ is of the form [a]y or (o) y and a is of the form 2y, fB;y or B U7, the
corresponding rule (;),[;],(U),[U] or (?),[?] is applicable, yielding a simpler yet
equivalent formula.

3. If ¢ is of the form [x| = 6y,...,x, = 6, & x|y, then rule ['] is applicable, as
we assumed differential equations to have first-order definable flows. The res-
ulting formula is equivalent and simpler, because it contains fewer differen-
tial equations. It involves additional bound variables but not free variables.
Case (x| = 6y,...,x), = 6, &)y is similar, by rule ().

4. If ¢ is of the form [o*]y, then rule ind’ is applicable with a first-order invari-
ant F obtained from the oracle. The resulting subgoals are simpler according
to <, because they contain less loops (F does not contain loops). The resulting
subgoals do not have additional free variables as all bound variables of a* re-
main bound by the universal closure V¥ in the respective premises. Finally, we
assume the oracle to give an invariant such that the conjunction of the result-
ing subgoals is equivalent to the goal (otherwise we have nothing to show for

2.8 Relatively Semidecidable Fragments 117

inadequate choices by the oracle). The case (a*)y is similar, using rule con’
instead.

5. If ¢ is of the form (x; :=06y,...,x,:= 6,)y, there are two cases. If rule (:=) is
applicable, it yields equivalent simpler sequents. Otherwise, we have

V< <x1 2291,...,xn229n>1[1.

Thus, by IH, there is a finite sequence of rule applications on y yielding
equivalent sequents with atomic formulas. Prefixing the resulting proof with
(x1:=01,...,x,:=6,) yields a corresponding proof for deriving I' - ¢,A by
Lemma2.11. The formulas of the open branches of this proof resulting from ¢

are of the form (x;:=6,...,x,:=6,)G for atomic formulas G, where, at the
latest, rule (:=) is applicable, as substitutions are admissible on atomic formu-
las. Case [x]:=0),...,x, := 6,]y is similar, using rule [:=] first.

6. If ¢ is of the form Vx y/(x), we can apply rule Vr giving w(s(Xj,...,X,)). Now,
we have y(s(Xy,...,X,)) < Vxy(x); hence, by TH, y(s(Xy,...,X,)) can be
transformed equivalently to a set of sequents of the form

Di(s(Xy,..., X)) F H(s(Xy,..., X))

with atomic formulas (without loss of generality, we can assume s(Xi,...,X,)
to occur in all branches). Hence, QE is defined for these atomic formulas and
rule iV can be applied on each branch, yielding QE (Vs (®;(s) - ¥(s))). Con-
sequently, the original sequent I" F Vx y/(x),A is equivalent to

A\QE(s((s) - ()

for the following reason: I' - y(s(X1,...,X,)),A is equivalent to

N(@i(s(X1,.... X)) - H(s(X1,...,. X))

l
by IH, using the equivalence QE (Vs (F AG)) = QE(VsF) AQE(VsG) and the
fact that s does not occur in I',A. After applying rule iV, the result has no
additional free symbols, although intermediate formulas do.

7. If ¢ is of the form Jx y(x), then rule 3r is applicable giving y(X) for a fresh lo-
gical variable X. Then y(X) < 3x y(x); hence, by IH, y(X) can be transformed
equivalently to a set of sequents ®; - ¥ with atomic formulas. If no Skolem
dependency on X occurs in @; - ¥, then QE is defined and rule i3 applicable,
giving QE(3X A;(P; - ¥)), which is equivalent to 3X A;(P; -). By IH, this
is equivalent to I' - 3X y(X), A, because X does not occur in I";A. Other-
wise, if a Skolem term s(Xj,...,X,...,X,) occurs in a ®; - ¥, then, by IH, the
Skolem function s already occurred in y(X). By Lemma 2.12, the Skolem term
s(Xp,...,X,...,X,) itself must already have occurred in y(X), which contra-
dicts the fact that X is fresh and that bound variable x does not occur in Skolem

118 2 Differential Dynamic Logic A

terms of Ix y(x), again by Lemma?2.12. After applying rule i3 the additional
free variable X disappears. a

This completes the proof of Theorem 2.4, showing that the d.Z calculus can be
used as a semidecision procedure for a particular set of (in)variants provided by an
oracle. Consequently, these results show that, in a certain sense, finding (in)variants
is the only challenge in hybrid systems’ verification, because the A% calculus takes
care of everything else. In Chap. 3 we revisit and strengthen this result, because we
show that properties of differential equations can be proven by appropriate general-
isations of (in)variants that we call differential invariants. Furthermore, we turn to
the challenge of finding these (differential) invariants in Chap. 6.

2.9 Train Control Verification

In this section, we verify collision avoidance of the train control system presented
in Sect. 2.4. Especially, we identify the constraints required for the free parameters
of the system and discover the preconditions for safe driving.

2.9.1 Finding Inductive Candidates

Recall the d.Z formula from Sect. 2.4 that expresses that the simplified ETCS train
control system ensures that trains always stay inside their movement authority m to
ensure collision-freedom:

v — [(ctrl;drive)")z <m (2.7%)

We want to prove safety statement (2.7) of the simplified version of the European
Train Control System. Note that this is a significantly simplified version showing
only the true essentials of ETCS. We consider the ETCS cooperation protocol in
more detail in Chap. 7.

Using parametric extraction techniques, we identify both the requirement y for
safe driving and the induction hypothesis ¢ that is required for the proof. Similar to
the proof in Fig.2.16, which is dual to the proof in Fig.2.14, an unwinding of the
loop in (2.7) by rule [*"] can be used to extract a candidate for a parametric inductive
hypothesis. It expresses that there is sufficient braking distance at current speed v,
which basically corresponds to the controllability constraint for ETCS (as illustrated
in Fig.2.15 on p. 90):

¢ =v2<2b(m—2)Ab>0ANA>0 . (2.17)

2.9 Train Control Verification 119

2.9.2 Inductive Verification

Using proof rule ind to prove d.Z formula (2.7) by induction, we show that (a) in-
variant ¢ holds initially, i.e., Y I ¢ (implying the antecedent of the conclusion of
ind), (b) the invariant is sustained after each execution of ctrl;drive, and (c) invari-
ant ¢ implies postcondition z < m. Case (c) holds by QE, as 0 <v? < 2b(m —2)
and b > 0. The induction start (a) will be examined after the full proof, since we
want to identify the prerequisite y for safe driving by proof analysis. In the proof
of the induction step ¢ — [ctrl;drive]@, we omit condition m — z < s from ctrl, be-
cause it is not used in the proof (braking remains safe with respect to z < m). The
induction is provable in d.Z as follows (for notational convenience, we assume rule
Vr calls the Skolem constant for m again m, and so on, as there are no free logical
variables):

o,m—z>s p(a:zA)[drive]q)

0 = (a:=—Db)[drive] ()= O = [?2m—z> s;a:=A][drive]¢
[LlAx ¢ = [ctrl)[drive]®
] O & [ctrl;drive]¢
e F ¢ — [ctrl;drive]¢
v F Y% (¢ — [ctrl;drive]d)
ind o - [(ctrl;drive)*|¢

The differential equation system in drive is linear with a constant coefficient mat-
rix M. Its solution can be obtained by symbolically computing the exponential
series e’'n with symbolic initial value 1) = (z,v) and similar symbolic integration
of the inhomogeneous part [297, §18.VI]; also see App. B.4. We abbreviate the solu-
tion (z:= —gtz + vt +2z,v:=—bt +v) thus obtained by (.#;). See Example B.3 in
App. B for an explanation of why this is a solution of the differential equations.
In this example, the evolution domain restrictions are convex; hence the constraint
VO<i<r (%) of rule [] can be simplified to (-;) x as in (2.12) to save space. Fur-
ther, we leave out conditions which are unnecessary for closing the above proof.
In the left branch, the constrained evolution of clock 7 is irrelevant and will be left
out to save space (braking is the safest operation and can be continued indefinitely
without extra risk). The left branch closes (marked *):

*
(=) 0,0 >0,—bt+v>0F (A0
(= 9.1>0,(vi=—bt+v)v>0F ()¢
T OF1>0— ((vi==bt+v)v>0— (A)9)
i ¢ FVe>0((vi=—bt +v)v >0 — (A)9)

!

O [Z=vV=—-b&v>0]0
¢ = (a:=—b)[drive]|d
¢ - [a:=—Db][drive]

TA
o

120 2 Differential Dynamic Logic A

The right branch does not need the evolution domain constraint v > 0, because v
does not decrease when accelerating. We again use (.%;) as an abbreviation for the
solution (z:= 41 + vt +z,v:=At +v).

' ¢,m—z25l—sz;—;+(%+1)(’%82+EV)
Vo m—z>50<r<ek ()¢

—1(:=) om—z>sHt>0— ((1:=1)1<€— (S)9)
vr Om—z>sEV>0((t:=t)t<e— (S)9P)
(=) p,m—z>st (1:=0Wr>0((T:=1+ 1)1 < € = (S)9)

[l oom—z>sH(1:=0)7 =vV =A,7"=1&T< €|
[

(=l o,m—z>sk [1:=0] =v,V =A,7 = 1&T < €]$
(=) om—z>sk (a:=A)1:=0][=vV=a, 7 =1&T < €]
g O.m—z>sk (a:=A)[drive]¢

2.9.3 Parameter Constraint Discovery

The right branch only closes when the succedent of its open goal is guaranteed.
That formula expresses that there will still be sufficient braking distance even after
accelerating by < A for up to € seconds:

voo(A A,
> —+ | = = . .
s2b+(b+l><2£ +ev> (2.18)

This constraint can be discovered automatically in the above proof by the indic-
ated application of rule iV using quantifier elimination with some simplifications.
Constraint (2.18) is required to make sure invariant (2.17) still holds after acceler-
ating. In fact, augmenting the case study with (2.18) makes the argument inductive,
and the whole proof of the safety statement (2.7) closes when v is chosen identical
to ¢. Here, the conditions of y cannot be removed without leaving the proof open
due to a counterexample, as the invariant (2.17) is a controllability constraint; see
Sect.2.5.3.1.

Quite unlike in the acceleration-free case [231], constraint (2.18) needs to be
enforced dynamically as the affected variables change over time. That is, at the
beginning of each ctrl cycle, s needs to be updated in accordance with (2.18), which
admits complex behaviour as in Fig.2.9b on p. 63. Further, this constraint can be
used to find out how densely a track can be packed with trains in order to maximise
ETCS throughput without compromising safety. The resulting provably safe train
control system can be summarised as follows:

V2 <2b(m—z) Ab>0AA >0 — [(ctrl;drive)*|z <m (2.19)

2.9 Train Control Verification 121

2

v A A 5
h =si=—+|=+1 —e°+ ;
where ctrl = s T (b)(28 €v>

(Mm—z<s;a:=—=b)U(Mm—z>s;a:=A)
drive =17:=0;(=v =a,7 =1&v>0AT<¢).

Using the d.% calculus, similar constraints can be derived (Sect. 4.8) to find out how
early a train needs to start negotiation in order to minimise the risk of having to
reduce speed when the MA is not extensible in time, which is the ST parameter of
Fig.2.8.

For the resulting ETCS system, liveness can be proven in the d.Z calculus by
showing that the train can pass every point p by an appropriate choice of m by the
RBC:

2=20Av=v9>0AE>0AD>0AA>0—VpIm((ctrl;drive)*) 7 > p. (2.20)

For A = 0, the proof of property (2.20) uses the variant ¢(n) = z+nevo > pAv =y
for rule con, which expresses that the speed does not decrease (until n < 0) and that
the remaining distance from z to target p can be covered after at most n iteration
cycles. This directly proves the property even when A = 0 for appropriate accelera-
tion choices. For general A > 0, the following variant proves property (2.20) by con:

@(n) = ((z+nevo > pAzo <zAV? <Vi+24A(z—20) Av > v Az < p)Vz > p) Av>0.

(2.21)
It expresses that, when z < p, the remaining distance can be covered after at most n
iterations while the train position and velocity increase, yet the velocity is bounded
depending on the initial velocity vy, acceleration A, and distance z — z9. The appro-
priate choice of m to prove property (2.20) with this variant is

2
ve+2A(p —z A A
m2p+$+ (b—i-l) (282> +8\/v(2)+2A(p—Zo),

which can be obtained by overapproximating braking condition (2.18) with the
speed limit v < v3 +2A(z —z,) from the variant. We will analyse ETCS in more
detail in Chap. 7.

In this example, we can see the effect of the d.Z calculus. It takes a specific-
ation of a hybrid system and successively identifies constraints on the parameters
which are needed for correctness. These constraints can then be handled in a purely
modular way by rules iV and i3. As a typical characteristic of hybrid systems, fur-
ther observe that intermediate formulas are significantly more complex than the
original proof obligation, which can be expressed succinctly in the expressive lan-
guage of d.Z. This reflects the fact that the actual complexity of hybrid systems ori-
ginates from hybrid interaction, not from a single transition. Still, using appropriate
proof strategies (Chap. 5) for the A calculus, the safety statement (2.7) with invari-
ant (2.17) can be verified automatically in a theorem prover that invokes Mathem-

122 2 Differential Dynamic Logic A

atica for rules ('),['], iV, and i3. In fact, using the invariant computation techniques
that we introduce in Chap. 6, the overall safety property (2.7) can be verified fully
automatically even without providing an invariant manually.

2.10 Summary

We have introduced a first-order dynamic logic for hybrid programs, which are uni-
form operational models for hybrid systems with interacting discrete jumps and
continuous evolutions along differential equations. For this differential dynamic lo-
gic, d.Z, we have presented a concise generalised free-variable proof calculus over
the reals.

Our sequent calculus for A% is a generalisation of classical calculi for discrete
dynamic logic [35, 37, 149, 148] to the hybrid case. It is a compositional verifica-
tion calculus for verifying properties of hybrid programs by decomposing them into
properties of their parts. In order to handle interacting hybrid dynamics, we lift real
quantifier elimination to the deductive calculus in a new modular way that is suit-
able for automation, using real-valued free variables, Skolem terms, and invertible
quantifier rules over the reals.

As a fundamental result aligning hybrid and continuous reasoning proof-theoret-
ically, we have proven our calculus to axiomatise the transition behaviour of hybrid
systems completely relative to the handling of differential equations. To the best
of our knowledge, this is the first relative completeness result for hybrid systems’
verification. Moreover, we have demonstrated that our calculus is well suited for
practical automatic verification in a realistic case study of a fully parametric version
of the European Train Control System.

Dynamic logic can be augmented [37] to support reasoning about dynamically
reconfiguring system structures, which we want to extend to hybrid systems in future
work. While the . calculus is complete relative to the continuous fragment, it is a
subtle open problem whether a converse calculus can exist that is complete relative
to various discrete fragments.

Chapter 3

Differential-Algebraic Dynamic Logic DAL

Contents

3.1 Introduction

3.1.1
312
3.2 Syntax
321
322
323

Terms
Differential-Algebraic Programs
Formulas.

33 SemanticS e e e e

3.3.1
332
333
334

Transition Semantics of Differential-Algebraic Programs
Valuation of Formulas
Time Anomalies
Conservative Extension

3.4 Collision Avoidance in Air Traffic Control

3.4.1
342
343
3.44

Flight Dynamics
Differential Axiomatisation
Aircraft Collision Avoidance Manoeuvres
Tangential Roundabout Manoeuvre

35 ProofCalculus.

3.5.1
352
353
354
3.5.5
3.5.6
3.5.7

Motivation
Derivations and Differentiation
Differential Reduction and Differential Elimination . . .
Proof Rules
Deduction Modulo by Side Deduction
Differential Induction with Differential Invariants
Differential Induction with Differential Variants

36 Soundnessl
3.7 Restricting Differential Invariants
3.8 Differential Monotonicity Relaxations
3.9 Relative Completeness
3.10 Deductive Strength of Differential Induction
3.11 Air Traffic Control Verification

3.11.1 Characterisation of Safe Roundabout Dynamics
3.11.2 Tangential Entry Procedures
3.11.3 Discussion
312 Summary ...

A. Platzer, Logical Analysis of Hybrid Systems,
DOI 10.1007/978-3-642-14509-4 3, © Springer-Verlag Berlin Heidelberg 2010

123

124 3 Differential-Algebraic Dynamic Logic DAL

Synopsis We generalise dynamic logic to a logic for differential-algebraic pro-
grams, i.e., discrete programs augmented with first-order differential-algebraic for-
mulas as continuous evolution constraints in addition to first-order discrete jump
formulas. These programs characterise interacting discrete and continuous dynam-
ics of hybrid systems elegantly and uniformly, including systems with disturbance
and differential-algebraic equations. For our logic, we introduce a calculus over
real arithmetic with discrete induction and a new differential induction with which
differential-algebraic programs can be verified by exploiting their differential con-
straints algebraically without having to solve them. We develop the theory of differ-
ential induction and differential refinement and analyse their deductive power. As
an example, we present parametric tangential roundabout manoeuvres in air traffic
control and prove collision avoidance in our calculus.

3.1 Introduction

In Chap. 2, we have shown a verification logic for hybrid programs and proof rules
for differential equations that are solvable in polynomial arithmetic. While the veri-
fication approach is, of course, more general, the primary application that we have
seen so far is train control. The same proof techniques also work for many other
systems, including car control where the continuous dynamics can be solved. Now
we consider air traffic control scenarios as a motivating example for hybrid systems
where differential equations can no longer be solved in decidable arithmetic, so that
more advanced verification techniques for differential equations are needed.

Verification of Hybrid Systems

Flight manoeuvres in air traffic control [293, 196, 203, 104, 92, 238, 129, 171] give
rise to hybrid systems with challenging dynamics. There the continuous dynamics
results from continuous movement of aircraft in space, and the discrete dynamics is
caused by the instantaneous switching of manoeuvring modes or by discrete aircraft
controllers that decide when and how to initiate flight manoeuvres. Proper function-
ing of these systems is highly safety-critical for the spatial separation of aircraft
during all flight manoeuvres, especially collision avoidance manoeuvres. Their ana-
lysis, however, is challenging due to the superposition of involved continuous flight
dynamics with nontrivial discrete control, causing hybrid systems like these to be
amenable neither to mere continuous reasoning nor to verification techniques for
purely discrete systems. Since, especially in the presence of parameters, hybrid sys-
tems cannot be verified numerically [238, 85], we present a purely symbolic ap-
proach using combined deductive and algebraic verification techniques.

In practise, correctness of hybrid systems further depends on the choice of para-
meters that arise naturally from the degrees of freedom of how a part of the system

3.1 Introduction 125

can be instantiated or how a controller can respond to input [293, 97, 91, 238, 171].
For instance, correct angular velocities, proper timing, and compatible manoeuvre
points are equally required for safe air traffic control [293, 238]. Additionally, rel-
evant correctness properties for hybrid systems include safety, liveness, and mixed
properties like reactivity (see Chap. 7), all of which can possibly involve (alternat-
ing) quantifiers or free variables for parameters. As a uniform approach for specify-
ing and verifying these heterogeneous properties of hybrid systems with symbolic
parameters, we introduce an extension of our first-order logic and dynamic logic for
handling correctness statements about hybrid systems.

Logic for Hybrid Systems

The aim of this chapter is to present logical analysis techniques with which gen-
eral hybrid systems with interacting discrete and continuous dynamics can be spe-
cified and verified in a coherent logical framework. To this end, we introduce
the differential-algebraic dynamic logic (DA-logic or DAL for short) as the logic
of general hybrid change. As an elegant and uniform operational model for hy-
brid systems in DAL, we introduce differential-algebraic programs (DA-programs).
These programs combine first-order discrete jump constraints (DJ-constraints) to
characterise discrete transitions with support for first-order differential-algebraic
constraints (DA-constraints) to characterise continuous transitions. DA-constraints
provide a convenient way for expressing continuous system evolution constraints
and give a uniform semantics to differential evolutions, systems of differential equa-
tions [297], switched systems [55], invariant constraints [156, 97], triggers [55],
differential-algebraic equations [132, 187], and differential inequalities [153, 297].
In DJ-constraints and DA-constraints, first-order quantifiers further give a natural
and semantically well-founded way of expressing unbounded discrete or continuous
nondeterminism in the dynamics, including nondeterminism resulting from internal
choices or external disturbances. In interaction with appropriate control structure,
DJ-constraints and DA-constraints can be combined to form DA-programs as uni-
form operational models for hybrid systems. With this, DA-programs are a general-
ised program notation for hybrid systems.

As a specification and verification logic for hybrid systems that are given as DA-
programs, we design the first-order dynamic logic DAL as an extension of d.Z. In
particular, we generalise discrete dynamic logic [149] to hybrid control and support
DA-programs as actions of a first-order multi-modal logic [123], such that its mod-
alities can be used to specify and verify correctness properties of more advanced
hybrid systems. As in Chap. 2, the DAL formula [ot]¢ expresses that all runs of
DA-program ¢ lead to states satisfying the DAL formula ¢. Likewise, (&)@ says
that there is at least one state reachable by DA-program ¢ which satisfies ¢. Simil-
arly, 3p [a](B)¢ says that there is a choice of parameter p such that for all possible
behaviour of DA-program « there is a reaction of DA-program f that ensures ¢.

126 3 Differential-Algebraic Dynamic Logic DAL

Deductive Verification and Differential Induction

As a means for verifying hybrid systems by proving corresponding DAL formulas,
we introduce a sequent calculus. It uses side deductions as a simple and concise, yet
constructive, modular technique to integrate real quantifier elimination with calcu-
lus rules for modalities. For handling discrete transitions, we present a first-order
generalisation of standard proof rules [149, 37]. Interacting continuous transitions
are more involved. Formulas with very simple differential equations can be verified
by using their solutions as in Chap.2: Linear differential equations with nilpotent
constant coefficients (i.e., X' = Ax for a matrix A with A" = 0 for some n) have poly-
nomial solutions so that arithmetic formulas about these solutions can be verified by
quantifier elimination [81]; see Apps. B and D.2 for details. This approach, however,
does not scale to hybrid systems with more sophisticated differential constraints be-
cause their solutions do not support quantifier elimination (e.g., when they involve
transcendental functions), cannot be given in closed form [297], are not comput-
able [250], or do not even exist [297, 179]. As part of the descriptive power of dif-
ferential equations, solutions of differential equations are much more complicated
than the original equations and can become transcendental even for simple linear
differential equations like X' = —y,y’ = x, where the solutions will be trigonometric
functions.

Instead, as a logical analysis technique for verifying DA-programs with more
general differential-algebraic constraints, we introduce first-order differential in-
duction as a fully algebraic form of proving logical statements about DA-constraints
using their differential-algebraic constraints in a differential induction step instead
of using their solutions in a reachability computation. Unlike in discrete induction,
the invariant is a differential invariant, i.e., a property that is closed under total
differentiation with respect to the differential constraints. There, the basic idea for
showing invariance of a property F is to show that F holds initially and its total
derivative F’ holds always along the dynamics (with generalisations of total dif-
ferentials to logical formulas and corresponding generalisations for quantified DA-
constraints). This analysis considers all non-Zeno executions, i.e., where the system
cannot switch its mode infinitely often in finite time. In addition, we introduce dif-
ferential strengthening or differential cuts as a technique for refining the system dy-
namics by differential invariants until the property becomes provable for the refined
dynamics, which we show to be crucial in practical applications.

Comparison

In Chap. 2 we have introduced a logic and calculus for verifying hybrid programs,
which is the quantifier-free subclass of DA-programs without propositional con-
nectives (see Table 3.1 for examples). Further, we have proven this calculus to be
complete relative to the handling of differential equations (Theorem 2.3). Comple-
mentarily, in this chapter, we address the question how sophisticated differential
constraints themselves can be specified and verified in a way that lifts to hybrid sys-

3.1 Introduction 127

Table 3.1 Comparison of DAL with DA-programs versus . with hybrid programs

d.Z/hybrid programs DAL/DA-programs

single assignments propositional/quantified DJ-constraints
expressive x:=1 x>0—3Jala<5Ax:=a’>+1)
power differential equations propositional/quantified DA-constraints

x’l :LZ],x,z:dz ngl(d{:—a)dzAdQ:a)dl)\/dﬁ Sd&SZd]

verification substitutions quantifier elimination and substitutions
technology polynomial solutions first-order differential induction
quantifier real-valued free variables,

. . o side deductions
integration Skolemisation

scope of ap- nilpotent dynamics, e.g., algebraic dynamics and polynomial differential
plications trains in R! constraints, e.g., curved aircraft flight

tems, and how these techniques can be integrated seamlessly into a logic. In this
chapter, we thus show how properties of systems with more complicated dynamics
can be expressed and proven.

To this end, we design differential-algebraic programs as the first-order com-
pletion of hybrid programs, and we augment both the logic and the calculus with
means for handling DA-constraints. In particular, we extend our logic d.Z to the
logic DAL with general first-order differential constraints plus first-order jump for-
mulas and introduce differential induction for verifying differential-algebraic pro-
grams. Specifically, the continuous evolutions which can be handled by differential
induction are strictly more expressive than those that previous calculi [306, 270, 97]
or the d.Z calculus are able to handle. DAL even supports differential-algebraic
equations [132, 187]. Consequently, the DAL calculus can verify much more gen-
eral scenarios, including the dynamics of aircraft manoeuvres or the dynamics of
systems with disturbances, which were out of scope for approaches that require
polynomial solutions [125, 228]. Table 3.1 summarises the differences in syntactic
expressiveness, discrete and continuous verification technology, arithmetic quanti-
fier integration approach, and overall scope of applicability. The DAL extensions
presented in this chapter are both complementary to and compatible with our .
calculus extensions for integrating arithmetic as presented in Chap. 2.

Contributions

The first contribution of this chapter is the generalised differential-algebraic dy-
namic logic DAL for differential-algebraic programs as the first-order completion
of hybrid programs. DAL provides a uniform semantics and a concise language
for specifying and verifying correctness properties of general hybrid systems with
sophisticated (possibly quantified) first-order dynamics. The main contribution is a
verification calculus for DAL including uniform proof rules for differential induc-
tion along first-order differential-algebraic constraints with differential invariants,
differential variants, and differential strengthening. Our main theoretical contribu-
tion is our analysis of the deductive power of differential induction for classes of

128 3 Differential-Algebraic Dynamic Logic DAL

differential invariants. As an applied contribution, we introduce a generalised tan-
gential roundabout manoeuvre in air traffic control and demonstrate the capabilities
of our approach by verifying collision avoidance in the DAL calculus. To the best
of our knowledge, this is the first formal proof for safety of the hybrid dynamics of
an aircraft manoeuvre with curved flight dynamics and the first sound verification
result for collision avoidance with curved aircraft dynamics.

3.1.1 Related Work

Most verification approaches for hybrid systems follow the paradigm of model
checking for hybrid automata and use approximations or abstraction refinement,
e.g., [156, 77, 21], because reachability is undecidable for hybrid automata [156].
We have shown in previous work [238] that even reachability problems for fairly
restricted classes of single continuous transitions are not decidable using numerical
computations. Thus, we follow a purely symbolic approach in this book.

Invariants of Hybrid Systems

Several authors [274, 269, 251, 252] argue that invariant techniques scale to more
general dynamics than explicit reach-set computations or techniques that require
solutions of the differential equations [125, 228, 231, 233]. Among them, there are
model checking approaches [274, 269] that use equational polynomial invariants
based on Grobner basis computations. Still, the approach of Rodriguez-Carbonell
and Tiwari [269] requires closed-form solutions and is restricted to linear dynam-
ics. The major limitation of these approaches [274, 269], however, is that they only
work for equational invariants of fully equation-definable hybrid systems, including
equational initial sets and switching surfaces. Yet, this assumes highly regular sys-
tems without tolerances and only works for null sets. In practise, the set of initial
states usually does not have measure zero, though. A thorough analysis of collision
avoidance manoeuvres, for instance, should consider all initial flight paths in free
flight instead of just a single restricted position corridor. In train control, the relevant
constraints and initial regions are non-equational.

Prajna et al. [251, 252] have generalised Lyapunov functions to barrier certific-
ates, i.e., a function B decreasing along the dynamics whose zero set separates ini-
tial from unsafe states. Further, they focus on stochastic extensions. DAL provides
barrier certificates as a special case using B < 0 as a differential invariant. In a sim-
ilar vein, criticality functions [91] generalise Lyapunov-functions from stability to
safety, which DAL provides as a special case of differential invariants.

We generalise purely equational invariants [274, 269] and single polynomial
expressions [274, 251, 252, 91] to general differential induction with real arith-
metic formulas. In practise, such more general differential invariants are needed
for verifying sophisticated hybrid systems, including aircraft manoeuvres. Further,

3.1 Introduction 129

unlike other approaches [274, 269, 251, 252], DAL leverages the full deductive
power of logic, combining differential induction with discrete induction to lift these
proof techniques uniformly to hybrid systems. In addition, dynamic logic can be
used to prove sophisticated statements involving quantifier and modality alterna-
tions for parametric verification [231]. Finally, the DAL calculus supports combin-
ations with differential variants for liveness properties and combinations with dif-
ferential strengthening, which we show to be crucial in verifying realistic aircraft
manoeuvres.

Air Traffic Control Verification

In air traffic control, Tomlin et al. [293] analyse competitive aircraft manoeuvres
game-theoretically using Hamilton-Jacobi-Isaacs partial differential equations. They
derive saddle solutions for purely angular or purely linear control actions. They pro-
pose roundabout manoeuvres and give bounded-time verification results for trap-
ezoidal straight-line approximations. Our symbolic techniques avoid exponential
state space discretisations that are required for complicated PDEs and are thus more
scalable for automation. Further, we handle fully parametric cases, even for more
complicated curved flight dynamics.

Hwang et al. [171] have presented a straight-line aircraft conflict avoidance man-
oeuvre that involves optimisation over complicated trigonometric computations, and
validate it on random numerical simulation. They show examples where the de-
cisions of the manoeuvre change only slightly for small perturbations. Hwang et al.
do not, however, prove that their proposed manoeuvre is safe with respect to actual
hybrid flight dynamics.

Dowek et al. [104] and Galdino et al. [129] consider straight-line manoeuvres and
formalise geometrical proofs in PVS. As in the work of Hwang et al. [171], they do
not, however, consider curved flight paths nor verify actual hybrid dynamics but
work with geometrical meta-level reasoning instead.

In all these approaches [104, 129, 171], it remains to be proven separately that
the geometrical meta-level considerations actually fit the hybrid dynamics and flight
equations. In contrast, our approach directly works for the hybrid flight dynamics
and we verify roundabout manoeuvres with curves instead of straight-line man-
oeuvres with non-flyable instant turns only. A few approaches [92, 203] have been
undertaken to model check discretisations of roundabout manoeuvres, which indic-
ate avoidance of orthogonal collisions. However, the counterexamples found by our
model checker in previous work [238] show for these manoeuvres that collision
avoidance does not extend to other initial flight paths.

130 3 Differential-Algebraic Dynamic Logic DAL

3.1.2 Structure of This Chapter

In Sects. 3.2 and 3.3, we introduce syntax and semantics of the differential-algebraic
logic DAL. In Sect.3.4, we introduce tangential roundabout manoeuvres in air
traffic control as a case study and running example. Further, we introduce a se-
quent calculus with differential induction for DAL in Sect. 3.5 and prove soundness
in Sect.3.6. We show extensions of differential induction techniques in Sect. 3.7.
We exploit differential induction techniques for differential monotonicity relaxa-
tions in Sect. 3.8. We prove relative completeness of the DAL calculus in Sect. 3.9
and compare the deductive strength of differential invariants in Sect. 3.10. Using
the DAL calculus, we prove, in Sect. 3.11, safety of the tangential roundabout man-
oeuvre in air traffic control. Finally, we draw conclusions and discuss future work
in Sect. 3.12.

3.2 Syntax of Differential-Algebraic Logic

In this section, we introduce the differential-algebraic logic (DAL) as a specifica-
tion and verification logic for differential-algebraic programs (DA-programs). DA-
programs constitute an elegant and uniform model for hybrid systems with express-
ive dynamics, including differential-algebraic equations, differential inequalities,
and disturbance in the dynamics. We start with an informal introduction that mo-
tivates the definitions to come. DA-programs have three basic characteristics, as
follows.

Discrete jump constraints. Discrete transitions, which can possibly lead to dis-
continuous change, are represented as discrete jump constraints (DJ-constraints),
i.e., first-order formulas with instantaneous assignments of values to state vari-
ables as additional atomic formulas. DJ-constraints specify what new values the
respective state variables assume by an instant change. For instance, d; := —d»
specifies that the value of variable d; is changed to the value of —d,. Multiple
discrete changes can be combined conjunctively (A) with simultaneous effect, for
instance, d| := —d» A dy :=dj, which assigns the previous value of —d> to d; and,
simultaneously, the previous value of d; to d». This operation instantly rotates the
vector d = (dy,d>) by 7/2 to the left. Using d :=d" as a short vectorial notation
for this jump, the DJ-constraint (d; >0 — d:=d>) A (d; <0 — d:=—d") spe-
cifies that the direction of the rotation depends on the initial value of d;. Finally,
the DJ-constraint Ja (@ :=a” Aa < 5) assigns the square of some number a less
than 5 to w.

Differential-algebraic constraints. Continuous dynamics is represented with dif-
ferential-algebraic constraints (DA-constraints) as evolution constraints, i.e., first-
order formulas with differential symbols x/, e.g., in differential equations or in-
equalities. DA-constraints specify how state variables change continuously over
time. For instance, x| = d; Ax) = d, says that the system evolves continuously

3.2 Syntax 131

by moving the vector x = (x,x,) in direction d = (dy,d,) along the differential
equation system (x| =d;,x, =d,). Likewise, d| = —wdy Nd}, = wd; Nd; >0
specifies that the vector d is rotating continuously with angular velocity @, so that
(in conjunction with x| = d| Ax} = d»), the direction in which point x is heading
changes over time. By adding d; > 0 conjunctively to the DA-constraint, we ex-
press that the curving will only be able to continue while d; > 0. This evolution
will have to stop before d; < 0. The evolution is impossible altogether if d; > 0
already fails to hold initially. DA-constraints are first-order and can have quan-
tifiers. The quantified DA-constraint 3o (d] = —@wdy Ndy = ody AN—1 < o < 1)
characterises rotation with some angular velocity —1 < w < 1, which may even
change over time, in contrast to dj = —@ds ANdy = 0di AN —1 <0 < 1A@' =0
or constraint d{ = —wd> /\dé = w, where o is not allowed to change.

Differential-algebraic programs. As an operational model for hybrid systems,
DJ-constraints and DA-constraints, which represent general discrete and continu-
ous transitions, respectively, can be combined to form a DA-program using regu-
lar expression operators (U, *, ;) of regular discrete dynamic logic [149] as control
structure. For example, w:=1U ®:=—1 describes a controller that can choose
to set angular velocity w either to a left or to a right curve by a nondeterministic
choice (U). Similarly, sequential composition @ := @ + 1;d] = —wd, Ad, = 0d,
says that the system first increases its angular velocity @ by a discrete transition
and then switches to a mode in which it follows a continuous rotation with this
angular velocity.

Discussion

Not all constraints involving x := 0 or x’ qualify as reasonable ways of characterising
elementary system transitions. Unlike positive occurrences, negative occurrences of
assignments such as in —(x:=5) are somewhat pointless, because they impose no
meaningful transition constraints on what new value x actually assumes (but only
on what value is nor assigned to x). Likewise, negative occurrences of differential
constraints as in =(x’ = 5) would be pointless as they do not constrain the overall
evolution but allow arbitrary transitions.

Further, we disallow duplicate constraints that constrain the same variable in
incompatible ways at the same time as, e.g., in x:=2Ax:=3 or X’ =2 Ax =3. At
any state during a system evolution, variable x can only assume one value at a time,
not both 2 and 3 at once. Similarly, variables cannot evolve with contradictory slopes
at the same time for any positive duration.

Finally, Va (x:=a) would be equivalent to false, because it is impossible to as-
sign all possible choices for a (hence all reals) simultaneously to x, which can only
assume one value at a time. Likewise, no interesting evolutions are possible along
Va (x' = a), because x’ can only equal one real value at a time. Dually, Ja (a:=0)
is equivalent to true, because the DJ-constraint imposes no constraints, nor has any
visible effects (the scope of the quantified a ends with the DJ-constraint). The situ-
ation with 3a (a’ = 0) is similar.

132 3 Differential-Algebraic Dynamic Logic DAL

Even though semantics and proof rules for all these cases could still be defined,
the respective transitions are degenerate and their technical handling is not very
illuminating. Hence, we define DJ-constraints and DA-constraints to avoid these
insignificant cases altogether. Note that the syntactical restrictions are non-essential
but simplify the presentation by allowing us to focus on the interesting cases instead.

3.2.1 Terms

To simplify the presentation, we use side deduction rules for quantifiers in this
chapter. The free-variable calculus rules from Chap. 2 are compatible with the find-
ings in this chapter, but we refrain from using them formally in this chapter to keep
things simple. Consequently, we do not need to distinguish between free logical
variables from V and free state variables from X. Thus, we do not distinguish X
and V here at all.

The formulas of DAL are built over a signature X of real-valued function and pre-
dicate symbols. The signature X contains the usual function and predicate symbols
for real arithmetic, +, —,-, /,=,<,<,>, >, and number symbols such as 0, 1. State
variables are represented as real-valued function symbols of arity zero (constants)
in X. These state variables are flexible [37], i.e., their interpretation can change from
state to state while following the transitions of a DA-program. Observe that there is
no need to distinguish between discrete and continuous variables in DAL. The set
Term(X) of terms is defined as in classical first-order logic, yielding rational ex-
pressions over the reals. The set of formulas of first-order logic is defined as usual
(Definition 2.2 and App. A), giving first-order real arithmetic.

Although we are primarily interested in polynomial cases, our techniques gen-
eralise to the presence of division. Yet to avoid partiality in the semantics, we only
allow use of p/q when g # 0 is present or ensured. Essentially, we assume con-
straints ¢ containing a term of the form p/g to mean an appropriate constraint
like ¢ A—(g = 0). Note that, in a certain sense, divisions cause less difficulties for
the calculus than for the semantics. Particularly, our calculus uses indirect means of
differential induction to conclude properties of solutions of DA-constraints, thereby
avoiding the need to handle singularities in these solutions explicitly, as caused by
divisions by zero.

3.2.2 Differential-Algebraic Programs

We build DA-programs with first-order discrete jumps and first-order differential-
algebraic constraints as primitive operations, which interact using regular control
structure by regular-expression-style operators (; U, *). Reflecting the discussion be-
fore Sect. 3.2.1, we characterise reasonable occurrences for changes like x:= 6 or x’

3.2 Syntax 133

in these constraints as follows. We call a formula G an affirmative subformula of a
first-order formula F iff:

1. Gisapositive subformula of F, i.e., it occurs with an even number of negations,
and

2. no variable y that occurs in G is in the scope of a universal quantifier Vy of a
positive subformula of F (or in the scope of an existential quantifier 3y of a
negative subformula of F).

Discrete Jump Constraints

Definition 3.1 (Discrete jump constraint). A discrete jump constraint (or DJ-
constraint) is a formula _# of first-order real arithmetic over X with additional
atomic formulas of the form x:=6 where x € X, 8 € Term(X). The latter are called
assignments and are only allowed in affirmative subformulas of DJ-constraints that
are not in the scope of a quantifier for x of _#. A DJ-constraint without assignments
is called jump-free. A variable x is (possibly) changed in _# iff an assignment of
the form x:= 6 occursin 7.

The effect of (x;: =01 A..Ax,:=0,Ax; >0)V (x;:=H A..Ax,:=, Ax; <0)
is to simultaneously change the interpretations of the variables x; to the respect-
ive 6; if x; > 0, and to change the x; to ¥; if x; < 0. If neither case applies (x; = 0),
the DJ-constraint evaluates to false as no disjunct applies, so no jump is possible
at all, which will prevent the system from continuing any further. In particular, a
jump-free DJ-constraint such as x > y corresponds to a test. It completes without
changing the state if, in fact, x > y holds true in the current state, and it aborts
system evolution otherwise (deadlock). Especially, unlike the assignment x:=6,
which changes the value of x to that of 0, the test x = 0 fails by aborting the sys-
tem evolution if x does not already happen to have the value 6. If cases overlap,
as in (x:=x—1Ax>0)Vx:=0, either disjunct can be chosen to take effect by a
nondeterministic choice.

Quantifiers within DJ-constraints express unbounded discrete nondeterministic
choices. For instance, the following quantified DJ-constraint assigns some vector
u € R? to e such that the rays spanned by d = (dy,d,) and u = (uy,u,) intersect:

JuyJuy (61 =ujNey:=up /\32.>03[J>0()»d1 = Uuy ANAdr = ‘LLLtz))

We informally use vectorial notation when no confusion arises. Using vectorial
quantifiers, equations, arithmetic, and assignments, the latter DJ-constraint simpli-
fies to:

Ju(e:=uN3IA>03u>0Ad = pu).

Example 3.1 (DJ-constraints). Examples of DJ-constraints include:

(] d1 = —d2

134 3 Differential-Algebraic Dynamic Logic DAL

e di:=—dy Ndr:=d; — simultaneous effect is an instant left rotation by %
(d] >0—d i=—dyNd> Z:d]) A (d] <0—d:=daNdr:= —dl) — effect
depends on the sign of d;

e Ja(®:=a*Na < 5) — quantified nondeterministic effect

e dy >0— 3Ja(a<5Ad;:=a*+ 1) — but this DJ-constraint is inhomogeneous,
it does not specify what happens if d; < 0.

The following cases are not allowed as DJ-constraints:

e d,:=—d> Nd;:=0— incompatible jump, because d; cannot assume both values
at once

e —(d;:=5) — does not specify what really is assigned to d;, only what is not

e Va(w:=a*) — o cannot assume all those values a” at once for all a

e Jda(a:=d;) — is just equivalent to frue, because it has no visible effects or
constraints (the scope of the quantified a ends with the DJ-constraint)

It is not impossible to give a reasonable semantics to these disallowed cases and
handle them in proof rules. Yet it would complicate the technical treatment unne-
cessarily and would distract from the important aspects. O

Differential-Algebraic Constraints

Definition 3.2 (Differential-algebraic constraints). A differential-algebraic con-
straint (DA-constraint) is a formula & of first-order real arithmetic over X U X’ in
which symbols of X’ only occur in affirmative subformulas that are not in the scope
of a quantifier of 2 for that symbol. Here, X is the set of all differential symbols x")
with n € N for state variables x € X. A DA-constraint without differential symbols
x for n> 1 is called non-differential. A variable x is (possibly) changed in 9
iff x(") occurs in Z for an n > 1.

Syntactically, x) is like an ordinary function symbol of arity 0, but only allowed to
occur within DA-constraints, and not in any other formula. The intended semantics
of a differential symbol x™ is to denote the nth time derivative of x, which is used to
form differential equations (or differential inequalities). We write x’ for x(!) and x”
for x(and, sometimes, x© for the non-differential symbol x. The (partial) or-
der ord, 7 of a DA-constraint & in x is the highest order n € N of a differential
symbol x() occurring in &, or is not defined if no such x occurs. The notion of
order is accordingly for terms.

The effect of a DA-constraint Z is an ongoing continuous evolution respecting
the differential and non-differential constraints of & during the whole evolution.
For instance, the effect of (¥ = 8 Ax > 0)V (X = —x> Ax < 0) is that the system
evolves along ¥’ = 6 while x > 0, yet evolves along x' = —x> when x < 0. This
evolution can stop at any time but is never allowed to enter the region where neither
case applies anymore (x = 0). There also is no transition at all if x = 0 holds in the
beginning, because no disjunct applies in the initial state then.

3.2 Syntax 135

More generally, the differential constraints of & describe how the valuations of
the respective state variables change continuously over time while following Z.
The non-differential constraints of & can be understood to express evolution do-
main restrictions or invariant regions of these evolutions for which the differential
equations apply or within which the evolution resides. For instance, in the DA-
constraint d| = —wdy ANdy = wd, Nd; > 0, differential equations d| = —wd, and
dé = wd; describe the change and d; > 0 describes the invariance region or max-
imal domain of evolution. Overlapping cases are resolved as in DJ-constraints, i.e.,
by nondeterministic choice. Likewise, a DA-constraint where no case applies aborts
the system evolution as it does not satisfy the DA-constraint. Hence, non-differential
DA-constraints and jump-free DJ-constraints are both equivalent to pure tests (7
from Chap.2). Except for such tests, we need to distinguish DA-constraints from
DJ-constraints: Only DA-constraints can have evolutions of nonzero duration and
only DJ-constraints can lead to discontinuous changes.

Quantifiers within DA-constraints express continuous nondeterministic choices.
For example, constraint Ju (d] = —(®0+u)dy Ndy = (@ +u)dy A—0.1 <u <0.1)
expresses that the system follows a continuous evolution in which, at each time, the
differential equations are respected for some choice of u in —0.1 < u < 0.1. In par-
ticular, the choice of u can be different at each time so that # amounts to a bounded
nondeterministic disturbance during the rotation in the above DA-constraint.

Example 3.2 (DA-constraints). Examples of DA-constraints include:

x’l =d /\x’z =dy

x’l =d /\x’z :dz/\d; = —(Odz/\dé = 0d,

d) = —wdy Ad)y = od) Ady >0

(dh >O—>di :—dz/\dézcll)/\(dl SO—)d{ Zdz/\déz—dl)

x’l <d /\x’z <dp

xj=d\A\xh <dryNd} <2Nd5>0

do(d] = —od \Ndy = odi N—1 < o0 <1)

Jo(d] = —od Nd) =wdi N—1 < o0 < 1)V (d] <d)<2d)

di >0 — x| =d| NxXy = dy Nd] = —wd, — but this DA-constraint is inhomo-
geneous, it does not specify what happens if d; <0

The following cases are not allowed as DA-constraints:

e d; = —d, Nd] = 1 — incompatible slope, because d; cannot evolve with two
different slopes at once
—(d} =5) — does not specify what the slope of d; really is, only what it is not
e Vo (d] = —wdy Ndy = od,) — d; cannot have all those slopes at once
Jda(a’ = dy) — is just equivalent to true, because it has no visible effects or
constraints (the scope of the quantified a ends with the DA-constraint)

It is not impossible to give a reasonable semantics to these disallowed cases and
handle them in proof rules. But it would complicate the technical treatment unne-
cessarily. 0

136 3 Differential-Algebraic Dynamic Logic DAL

When using constraint formulas to characterise system transitions, we face the
usual frame problem: Typically, one does not expect variables to change their values
unless the respective constraint explicitly specifies how. In this chapter, we indicate
constant variables explicitly so that no confusion arises. In practical applications,
however, it can be quite cumbersome to have to specify z:=z or 7 = 0 explicitly for
all variables z that are not supposed to change in a DJ-constraint or DA-constraint,
respectively. To account for that, we will define the DAL semantics so that variables
that are not changed by a DJ-constraint or DA-constraint keep their value. Since free
nondeterministic change of variable y is expressible using Ja (y:=a) or Ja (y = a),
respectively, we expect the changes of all changed variables to be specified explicitly
in all cases of the constraints to improve readability:

Definition 3.3 (Homogeneous constraints). A DA-constraint or DJ-constraint €’ is
called homogeneous iff, in each of the disjuncts of a disjunctive normal form of %,
every changed variable of 4 is changed exactly once.

Note that Lemma 3.3 from Sect.3.5.2 will show that DA-constraints are equival-
ent to their disjunctive normal forms and, hence, the notion of homogeneity is
well-defined. Throughout the chapter, we assume that all DA-constraints and DJ-
constraints are homogeneous, thereby ensuring that all changed variables receive a
new value in all cases of the respective constraint (or stay constant because they are
changed nowhere in the constraint) and that no change conflicts occur.

Hence, variable y does not change during the DA-constraint X' = —x A x > y but
works as a constant lower bound for the evolution of x, because no differential
symbol y) with n > 1 occurs so that y =0 is assumed implicitly. If y is inten-
ded to vary, but its variation is not specified by a differential equation, because y
varies according to some algebraic relation with x, then quantified DA-constraints
can be used to represent such differential-algebraic equations [132]. For instance,
the differential-algebraic equation X’ = —x,y* = x, in which y?> = x is an algebraic
variational constraint specifying how y changes over time, is expressible as the
DA-constraint x' = —x A Ju (Y’ = u Ay*> = x). There, the quantified differential con-
straint on y essentially says that y can change arbitrarily (with arbitrary disturbance u
as slope), but only so that it always respects the relation y* = x.

Differential-Algebraic Programs

Now we can define DA-programs as regular combinations of DJ-constraints and
DA-constraints.

Definition 3.4 (Differential-algebraic programs). The set DA-program(X) of dif-
ferential-algebraic programs, with typical elements o, 3, is inductively defined as
the smallest set such that:

e If ¢ isaDJ-constraint over X, then # € DA-program(X).
e If 7 is a DA-constraint over £ UX’, then ¥ € DA-program(X).
e If o, f € DA-program(X) then (U) € DA-program(X).

3.2 Syntax 137

Table 3.2 Statements and (informal) effects of differential-algebraic programs

DA-program Operation Effect

§ discrete jump jump constraint with assignments holds for discrete jump

9 diff.-alg. flow differential-algebraic constraint holds during continuous flow
o B seq. composition DA-program f starts after DA-program o finishes

aUp nondet. choice choice between alternative DA-programs « or 3

ot nondet. repetition repeats DA-program « n-times for any n € N

e If o, € DA-program(X) then (o;) € DA-program(X).
e If oo € DA-program(X) then (a*) € DA-program(X).

Choices atU 8 are used to express behavioural alternatives between o and f3, i.e.,
the system follows either & or . In particular, the difference between the DA-
constraint 7 V & and the DA-program 2 U & is that the system has to commit to one
choice of either Z or & in 2 U&, but it can switch back and forth multiple times
between disjunct & and & in 2V &. The sequential composition «; 3 says that
DA-program f3 starts executing after & has finished (8 never starts if & does not ter-
minate, e.g., due to a failed test in ¢¢). Observe that, as with repetitions, continuous
evolutions within ¢ can take more or less time. This nondeterminism is inherent in
hybrid systems and as such reflected in DA-programs. Additional restrictions on the
permitted duration of evolutions can simply be specified using auxiliary clocks, i.e.,
variables of derivative T = 1. For instance, T:=0; X = — x> AT = IAT<5;2T>2
specifies that the system only follows those evolutions along x’ = —x? that take at
most five (conjunct T < 5) but at least two time units (subsequent test 77 > 2). Re-
petition & is used to express that the hybrid process repeats any number of times,
including zero.

Table 3.2 summarises the statements and (informal) effects of DA-programs. DA-
programs still form a Kleene algebra [182] like hybrid programs from Chap. 2, but
the primitive programs are more powerful. Further tests ?)y are not necessary, be-
cause they can be defined by a jump-free DJ-constraint ¥ or by a non-differential
DA-constraint .

Example 3.3 (Train control with disturbance). Recall the hybrid program for a train
control system from d.% formula (2.7) in Sect. 2.4:

v — [(ctrl;drive)]z <m (2.7

[
where ctrl = (Mm—z <s;a:=—b)U(MIm—z>s;a:=A),
drive =7:=0;(=vV =a, 7 =1&v>0AT<¢).

With a minor notational variation, this hybrid program is a DA-program:

v — [(ctrl;drive)"]|z <m
where ctrl = (m—z<sAa:=—b)U(m—z>sNa:=A),
drive =1:=0;(=vAV =anT =1Av>0AT<E).

138 3 Differential-Algebraic Dynamic Logic DAL

Note also that we have decided to merge the test ?m —z < s with the subsequent
assignment a := —b here to form the DJ-constraint m — z < s A a:= —b. This simpli-
fication is non-essential and just used to show the expressiveness of DA-programs.
In fact, we could also replace ctrl by a single DJ-constraint with the same semantics:

(m—z<sAha:=—=b)V(m—z>sha:=A).

The simple program assumes ideal-world dynamics with perfect control of the
acceleration a, which takes effect exactly by the differential equation 7/ = v,v' = a.
Yet this is not quite realistic. In reality, there are more aspects to train control that
have an important impact on the dynamics, including wind, track conditions, slope
of the track, mass, etc. In order to take these effects into account without having
to build a full physical model of all parts, we replace the differential equation by
a differential inequality, which allows for minor discrepancies. We thus replace the
differential equation DA-constraint 7 = v AV =aAv >0 with the differential in-
equality DA-constraint

7=vAha—1<V <a+uiv>0 3.1

for bounds / > 0 and # > 0 on how much the actual acceleration may deviate from
the set acceleration a. See Fig. 3.1 for an illustration of how the dynamics can devi-
ate from the ideal-world dynamics in the presence of a disturbance that can change
over time. With this generalisation the program can only be represented as a DA-

Fig. 3.1 Controllability vi- v
olated in the presence of
disturbance

program, and no longer as a hybrid program. Now, the formula from (2.7) will no
longer be a A% formula, because DA-programs are not allowed in d.%. Instead, we
will see that it is a well-formed DAL formula in Sect. 3.2.3.

Let us continue this line and replace the original differential equation by a quan-
tified DA-constraint with a quantified disturbance as input to the dynamics:

7=vAId(V =dAha—-1<dNd<a+u)A\v>0. (3.2)

This DA-constraint expresses that, at every point in time, there is a disturbance d
affecting the actual dynamics. Yet this disturbance is bounded at any point by a —/
and a + u. Again, we obtain a DA-program instead of a hybrid program and again
the resulting formula is no longer a A% formula. One question is what the relation
is of those two different ways of generalising the ideal-world dynamics. It will turn
out in Sect. 3.5.3 that the DA-constraints (3.1) and (3.2) are, in fact, equivalent, and
so are the resulting DA-programs. O

3.2 Syntax 139

Classification of Differential-Algebraic Programs

DA-programs give rise to an elegant syntactic hierarchy of discrete, continuous, and
hybrid systems; see Table 3.3. Purely conjunctive DA-constraints correspond to con-
tinuous dynamical systems [279]. DA-constraints with disjunctions correspond to
switched continuous dynamical systems [55]. DA-programs without DA-constraints
correspond to discrete dynamical systems or, when restricted to domain N (which
is definable in DAL), to discrete while programs [149]. Regular combinations of
DJ-constraints form a complete basis of discrete programs [149]. Finally, general
DA-programs correspond to (first-order generalisations of) hybrid dynamical sys-
tems [55, 156, 97].

Table 3.3 Classification of differential-algebraic programs and correspondence to dynamical sys-

tems
DA-program class Dynamical systems class
conjunctive DA-constraints continuous dynamical systems
DA-constraints switched continuous dynamical systems
no DA-constraints discrete dynamical systems
no DA-constraints, over N discrete while programs
general DA-programs hybrid dynamical systems

+ (generalised to first-order dynamics)

3.2.3 Formulas of Differential-Algebraic Logic

The set of formulas of DAL is defined as common in first-order dynamic logic [149].
They are built using propositional connectives and, in addition, if ¢ is a DA-program
and ¢ is a DAL formula, then [a]¢, (a)¢ are DAL formulas. The intuitive reading
of [a]¢ is that every run of DA-program ¢ leads to states satisfying ¢. Dually, (a)¢
expresses that there is at least one run of DA-program o leading to such a state.

Definition 3.5 (DAL formulas). The set Fml(X) of DAL formulas, with typical
elements @, y, is inductively defined as the smallest set with:

o If 6,0, € Term(X) are terms, then (6; > 6,) € Fml(X). The definition is ac-
cordingly for =, <, <, >.

o If ¢,y € Fml(X), then =9, (9 Ay), (¢ V ¥),(¢ — y) € Fml(X).
e If ¢ € Fml(ZX) and o € DA-program(X), then [c]¢, (ot)¢ € Fml(Z).

Quantifiers in DAL formulas are definable in terms of DA-constraints or quantified
DJ-constraints. We consider quantifiers as abbreviations:

Vx¢ = [Hax:=alp =[x =1vy =-1]¢
Ix¢, = (Jax:=a)p={(x'=1Vvx = —1)¢.

140 3 Differential-Algebraic Dynamic Logic DAL

Table 3.4 Operators and meaning in differential-algebraic dynamic logic (DAL)

DAL Operator Meaning

6; > 6, comparison true iff denotation of 6, is greater or equal that of 6,
—¢ negation / not true if ¢ is false

¢ ANy conjunction / and true if both ¢ and y are true

¢Vy disjunction/ or true if ¢ is true or if Y is true

¢ — vy implication / implies true if @ is false or y is true

¢ <>y bi-implication / equivalent true if ¢ and y are both true or both false

Vx¢ universal quantifier / for all true if ¢ is true for all values of variable x

Ix¢ existential quantifier / exists true if ¢ is true for some values of variable x

(]9 [-] modality / box true if ¢ is true after all runs of DA-program o
(a)¢ () modality / diamond true if ¢ is true after at least one run of DA-program o

The DAL formula [3ax:=al¢ considers all possibilities of assigning some value a
to x, which amounts to universal quantification. Likewise, (Jax:=a)¢ considers
some such choice, which is existential quantification. Similarly, the indeterminate
continuous evolution X’ = 1 VX' = —1 reaches all values, which amounts to the re-
spective quantifier when combined with the appropriate modality. Note here that we
can define quantifiers in terms of both DJ-constraints and DA-constraints although
the former are discrete and the latter are continuous. The reason for this is that the
time that passed during the continuous evolution is not observable in the system as
no clock variable is included in the DA-constraint that could measure the progress
of time.

With these abbreviations, we summarise the operators of differential-algebraic
dynamic logic in Table 3.4. The structure of the logic DAL is mostly identical to the
structure of d.Z except for the significantly more expressive DA-programs inside
modalities.

Example 3.4 (Train control with disturbance). In Example 3.3 we have replaced the
differential equation of the train example by more general DA-constraints: the dif-
ferential inequality (3.1) and the quantified DA-constraint (3.2), respectively. The
generalised counterpart of the A% formula (2.7) for its hybrid program is the fol-
lowing DAL formula for its DA-program:

— [(ctrly ;driveg)]z <m (3.3)
w1thctrld =(Mm—z<s;a:=—b)U(Mm—z>s,a:=A)
drive; = 1:=0;

=vA3d(V=dra—1<dNd<a+u)AT =1Av>0AT<E).

DAL formula (3.3) is more general than d.Z formula (2.7), because it makes a safety
claim about a more general dynamics, with nondeterministic quantified input d as
disturbance. If we prove DAL formula (3.3) then this implies validity of . for-
mula (2.7), because all behaviour of the hybrid program is a special case of the
behaviour of the DA-program (with constant disturbance d = 0). Yet, how do we
prove the more general DAL formula to be valid? Certainly, we can no longer solve

3.3 Semantics 141

its differential equations, because the DA-constraints now depend on quantified in-
put or differential inequalities. O

One common pattern for representing safety statements about hybrid control
loops is to use DAL formulas of the form ¢ — [(controller; plant)*|y for specifying
that the system satisfies property y whenever the initial state satisfies ¢. There, the
system repeats a controller plant feedback loop, with a DA-constraint plant describ-
ing the continuous plant dynamics and a discrete DA-program controller describing
the control decisions. The controller plant interaction repeats as indicated by the re-
petition star. Still, more general forms of systems and properties can be formulated
and verified in DAL as well.

3.3 Semantics of Differential-Algebraic Logic

The semantics of DAL is a Kripke semantics with possible states of a hybrid system
as possible worlds, where the accessibility relation between worlds is generated by
the discrete or continuous transitions of DA-programs. A potential behaviour of
a hybrid system corresponds to a succession of states that contain the observable
values of system variables during its hybrid evolution.

3.3.1 Transition Semantics of Differential-Algebraic Programs

Since in this chapter we do not distinguish between free logical variables and con-
stants, the semantics does not need to distinguish states and variable assignments.

A state is a map v : X — RR; the set of all states is denoted by State(X). The
function and predicate symbols of real arithmetic are interpreted as usual.

Definition 3.6 (Valuation of terms). The valuation val(v,-) of terms with respect
to state v is defined by

1. val(v,x) = v(x) if x € X is a variable.

2.val(v,0;+ 6,) =val(v,0)) +val(v,6,).

3.val(v,0; — 6) =val(v,0)) —val(v,6,).
4.val(v,0,-0,) =val(v,0,)-val(v,0).
5.val(v,0;/6y) =val(v,0y)/val(v,6,) if val(v,0,) # 0.

Note that we do not need the semantics of 6;/6, for val(v,6,) =0, because we
have assumed the presence of constraints ensuring —(6, = 0) for divisions.
Discrete Jump Constraints

The interpretation of discrete jump constraints is defined as in first-order real arith-
metic, with the addition of an interpretation for assignment formulas.

142 3 Differential-Algebraic Dynamic Logic DAL

Definition 3.7 (Interpretation of discrete jump constraints). The interpretation
(v,®) = # of DJ-constraint ¢ for the pair of states (v, ®) is defined as follows,
where ©(z) = val(w,z) = val(v,z) = v(z) for all variables z that are not changed

in _¢:

—~

= x:=0 iff val(w,x) = val(v,0).

E 0, > 0, iff val(v,0)) > val(v,6,), and accordingly for =, <, <,>.
EoAYiff (v,o) = ¢ and (v,®) = y. Accordingly for — \/ —

= OVl (v, 0) = ¢ or (v,0) E .

= —¢ iff it is not the case that (v, ®) = ¢

= ¢ — v iff it is not the case that (v, a)) = ¢ or it is the case that
=y

< << <2< <=
geeeeee

o S I

)
(v.0)
(v, o)
(v, 0)
(v, 0)
(v, 0)
(v,0)
(v, @)

~

V,0) = Vx(b iff (v, @) = ¢ for all states v, that agree with v except for the
value of x.

. (v,0) = 3x¢ iff (v,) = ¢ for some state v, that agrees with v except for
the value of x.

oo

Differential-Algebraic Constraints

To give a semantics to DA-constraints, differential symbols x’ € X’ must get a mean-
ing. However, a DA-constraint like dj = —@d, A d) = wd; cannot be interpreted in
a single state v, because derivatives are not defined in isolated points. Instead, DA-
constraints are constraints that have to hold for an evolution of states over time.
Along such a flow function ¢ : [0,7] — State(X), DA-constraints can again be in-
terpreted locally by assigning to the formal differential symbol d} the analytic time
derivative of the value of d; along ¢ at the respective points in time. As we as-
sumed DA-constraints to avoid zero divisions, analytic derivatives are well-defined
for r > 0 as State(X) is isomorphic to a finite-dimensional real space with respect
to the finitely many differential symbols occurring in the DA-constraint. We give
a uniform definition for all durations r > 0 and defer the discussion of the under-
standing for » = 0 until the DA-constraint semantics has been presented in full. The
philosophy behind hybrid systems is to isolate discontinuities in discrete transitions.
Thus we assume that state variables (and their differential symbols, if present) al-
ways vary continuously along continuous evolutions over time.

Definition 3.8 (Differential state flow). A function ¢ : [0,7] — State(X) is called
state flow of duration r > 0 if ¢ is componentwise continuous on [0,r], i.e., for
allx € Z, ¢(&)(x) is continuous in . Then, the differentially augmented state ¢ (&)
of @ at § € [0, 7] agrees with @ (&) except that it further assigns values to some of the
differential symbols x") € X': If ¢(t)(x) is n times continuously differentiable in

at ¢, then @(&) assigns the nth time derivative %(C) of x at § to differential

symbol x") € £'; otherwise the value of x") € X’ is not defined in @(&).

For a DA-constraint Z, a state flow @ of duration r is called state flow of the order
of 2 iff the value of each differential symbol occurring in & is defined on [0, 7],
i.e., @(£)(x) is n times continuously differentiable in § on [0, 7] for n = ord, 2.

3.3 Semantics 143

Example 3.5 (Differential state flow). We want to give a semantics to the DA-
constraint ¥’ = x°, for which we have to specify where the dynamics of this DA-
constraint evolves to when evolution starts in a state v. Clearly, we can say what
the semantics of the right-hand side of the differential equation is, and how the term
x> evaluates in any state v. But what should x’ evaluate to? And how do we define
when the terms x’ and x> are equal. Remember: we also have to define when one
term is less than the other for giving a semantics to differential inequalities like
¥ < x3 or¥’ <x3. Atasingle state v, which is just an isolated point, derivatives are
not defined, so that we cannot really give a meaning to the DA-constraints x’ = x°
or X' < x> when looking only at a single point.

Yet along a continuous state flow ¢, we can make sense of x’. At any time
during the continuous state flow ¢, we have values for all the variables, and can
thus evaluate val(¢(),x*) based on the value of variable @({)(x) and of any other
variables that occur. At time { along the flow, however, we can also give a value
to x” as the value of the derivative of the value val(p(¢),x) of x by time ¢ at the point
in time ; see illustration in Fig. 3.2. We assign this value of the derivative at { to

Fig. 3.2 Differential state X
flow

0 } t
¢

@(&)(x') in the differentially augmented state @ at time §. Intuitively, ¢(&)(x') is
determined by considering how the value val(®(&),x) of x changes along the flow ¢
when we change time { “only a little bit”. With this definition of the differentially
augmented states ¢, we can easily evaluate DA-constraints like X’ = x> or x’ < x> at
every point in time { by checking if ¢({) = x' = x3 or $({) |= ¥’ < x3, respectively,
hold in the standard valuation of first-order logic, which is the same as checking
if val(@({),x') =val(¢(£),x*) or val(§({),x') < val(p(),x*), respectively. The
same principle can be used to give a semantics to more complicated DA-constraints,
just by evaluating the first-order logic (including quantifiers) locally at every point
in time along the differentially augmented state flow @(&). O

Definition 3.9 (Interpretation of differential-algebraic constraints). The inter-
pretation of DA-constraint 9 with respect to a state flow ¢ of the order of & and
duration r > 0 is defined by: ¢ |= Z iff, for all { € [0, 7],

1. o(8) =r Z using the standard semantics =g of first-order real arithmetic
(App. A), and
2.val(9(8),z) = val($(0),z) for all variables z that are not changed by 2.

Observe that, along the state flows for a DA-constraint 2, only those variables
whose differential symbols occur in & have to be continuously differentiable to the

144 3 Differential-Algebraic Dynamic Logic DAL

appropriate order. Quantified variables can change more arbitrarily (even discon-
tinuously) during the evolution. The reason is that the semantics does not directly
relate the value of a quantified variable like u in Jux’ = u? at time ¢ with the val-
ues that u assumes at later times. In particular, the value chosen for the quantified
variable u can be different at every point in time, thereby giving a semantics of
disturbance. Quantified variables may be constrained indirectly by their relations,
though: In Jux’ = u2, the value of 42 (but not that of «) also varies continuously
over time, because x’ varies continuously.

As a consequence of Picard-Lindelof’s theorem, a.k.a. the Cauchy-Lipschitz
theorem (Theorem B.2), and using the fact that DAL terms are continuously dif-
ferentiable on the open domain where divisors are nonzero, the flows of explicit
quantifier-free, conjunctive DA-constraints of the form x; =6, A---Ax, =6, A\ x
with non-differential constraint) are unique (as long as they exist): For each dura-
tion and initial value, there is at most one state flow ¢ respecting the DA-constraint
(see Lemma2.1). Yet, this is not the case for disjunctive DA-constraints, differen-
tial inequalities, quantified DA-constraints, or DA-constraints in implicit form such
as ¥> —1=0, which has solutions x(r) = x(0) +¢ and x(¢) = x(0) —¢. Finally, a
non-differential constraint)} imposes no change but only tests whether y holds.
Hence, without differential constraints, a non-differential DA-constraint) itself
only has constant flows (if any), i.e., ¢(§) = ¢(0) for all &.

Restrictions of differential state flows to a prefix are again state flows. In partic-
ular, for all differential equations, the restriction to the point interval [0,0] yields a
trivial flow of no effect. For such point duration r = 0, however, derivatives and dif-
ferentiability are not defined. To admit trivial flows nevertheless, the understanding
of a DA-constraint is that its differential terms take no effect for flows of zero dura-
tion. That is, for trivial flows, atomic formulas with differential symbols are defined
to evaluate to true as they occur only positively in DA-constraints. Thus, only the
non-differential constraints of & impose constraints for trivial flows. A state flow
of duration zero satisfying & and starting in some state v exists iff v satisfies the
non-differential part of &, which acts as a test condition.

Differential-Algebraic Programs

Based on the semantics of DJ-constraints and DA-constraints that we have defined
above, we can now define the transition semantics of DA-programs. We define the
transition semantics, p(c), of a DA-program ¢, compositionally and denotationally
in terms of the semantics of its parts. The semantics of a DA-program is captured
by the discrete or continuous transitions that are possible by following this DA-
program. For DJ-constraints this transition relation holds for pairs of states that
satisfy the jump constraints. For DA-constraints, the transition relation holds for
pairs of states that can be interconnected by a differential state flow respecting the
DA-constraint.

Definition 3.10 (Transition semantics of differential-algebraic programs). The
valuation, p(a) of a DA-program o is a transition relation on states. It specifies

3.3 Semantics 145

which state @ is reachable from a state v by operations of the hybrid system « and
is defined as:

1. (v,o) e p() iff (v,®) = _# according to Definition3.7 when ¢ is a DJ-
constraint.

2.p(2)={(9(0),0(r)) : @isadifferential state flow of the order of & and some
duration r > 0 such that ¢ = 2} when 2 is a DA-constraint; see Definition 3.9.

3.p(aUpB) =p(a) Up(B).

4.p(0;B)={(v,0): (v,u) € p(a),(u,») € p(B) for some state p}.

5. (v,0) € p(a*) iff there is n € N and there are v = Vy,...,V, = ® such that

(Vi,Viy1) € p(a) forall 0 < i < n.

3.3.2 Valuation of Formulas

Now, the interpretation of DAL formulas is defined as usual for first-order modal lo-
gic [123, 149], with the transition semantics, p(¢), of DA-programs for modalities.
The semantics of formulas is compositional and denotational, that is, the semantics
of a complex formula is defined as a simple function of the semantics of its subfor-
mulas. The definition is, in fact, an equivalent reformulation of the definition of the
semantics of d.Z in Sect. 2.3, yet using the semantics of DA-programs instead of
that of hybrid programs.

Definition 3.11 (Interpretation of DAL formulas). The interpretation |= of DAL
formulas with respect to state v is defined as

.VE 6 > 06,iff val(v,01) > val(v,6,), and accordingly for =, <, <, >.
VEAYIffviE¢and v E .

.VEOVVYIiffvEdorvEy.

. v |= —¢ iff it is not the case that v = ¢.

. V= ¢ — yiff it is not the case that v |= ¢ or it is the case that v |= .
. v E [a]¢ iff o = ¢ for all states @ with (v, ®) € p(a).

7. v E (a)¢ iff o = ¢ for some state @ with (v, ®) € p(a).

AN AW

The semantics of quantifiers is defined, because we considered them as abbrevi-
ations. In particular:

5. vEVx¢ iff @ = ¢ for all states o that agree with v except for the value of x.
6. v = dx¢ iff o = ¢ for some o that agrees with v except for the value of x.

3.3.3 Time Anomalies

Hybrid systems evolve along piecewise continuous trajectories, which consist of
a sequence of continuous flows interrupted by (possibly discontinuous) discrete
jumps. A common phenomenon in hybrid system models is that their semantics

146 3 Differential-Algebraic Dynamic Logic DAL

and analysis are more controversial when discrete and continuous behaviour are al-
lowed to interact without certain regularity assumptions [176, 270, 97, 156]. Zeno-
anomalies occur when the hybrid system is allowed to take infinitely many discrete
transitions in finite time.

Consider the DA-program (¢’ = —1 Ad < a;d:=d/2)" starting in a state where
a>d>0 and a and d progress towards goal 0. The (inverse) clock variable a
decreases continuously, yet d bounds the maximum duration of each continuous
evolution phase. At the latest when a = d, variable d decreases by a discrete trans-
ition. This Zeno system generates infinitely many transitions in finite time and it
is impossible for clock a to finally reach 0, because a > d > 0 will always re-
main true; see the dynamics in Fig.3.3. Yet this behaviour is, in a certain sense,

Fig. 3.3 Zeno system run a

d N
0 t

counterfactual, because it fails to obey divergence of time: Real time diverges,
whereas clock a converges to 0. Further, systems with Zeno-anomalies cannot be
realised [176, 270, 97, 156] so that corresponding regularity assumptions can be
justified for practical purposes.

Another example for a Zeno system is the bouncing ball from Fig. 2.2 on p. 45.
The bouncing ball will bounce infinitely often in finite time unless the damping
coefficient ¢ decreases to 0 at some point.

To avoid pitfalls of time anomalies, we define the DAL semantics so that it
only refers to well-defined system behaviour with finitely many transitions in fi-
nite time: We restrict the semantics of DA-constraints and disallow infinite numbers
of switches between differential equations in bounded time. With DA-constraint &
defined as, say, (x >0 —x" = —1)A (x <0 — x" =1) Ay’ = 1, the DAL formula

Fe(D)[P2](y >e—x<d)

expresses that, after some time, the system can stabilise such that it always remains
within the region x < d when y > e for some choice of e. For such a stability prop-
erty, we do not analyse what happens after there have been infinitely many switches
from x” =1 to x”" = —1 within the first second. Instead, our semantics is such that
our calculus reveals what happens for any finite number of switches. Accordingly,
we restrict the semantics of DA-constraints to only accept non-Zeno evolutions:

Definition 3.12. A differential state flow ¢ for a DA-constraint Z is called non-
Zeno if there only is a finite number of points in time where some variable
needs to obey another differential constraint of & than those before the respect-
ive point in time: Let &, V---V &, be a disjunctive normal form of ; then flow

3.3 Semantics 147

¢ : [0,r] — State(X) is non-Zeno iff there are m e Nand 0= < {1 <--- < Gu=r
and indices i,...,i, € {1,...,n} such that ¢ respects Z;, on the interval [§;_1, (],
ie, @l o) F % forallke {1,...,m}.

The semantics of DA-programs entails that runs with non-Zeno state flows are non-
Zeno, because " does not accept infinitely many switches.

3.3.4 Conservative Extension

The following result shows that A% formulas with hybrid programs can be em-
bedded syntactically into the extension of DAL by DA-programs without changing
the meaning of the d.% formulas. That is, the semantics of DAL formulas given
in Definition3.11 and 3.10 is equivalent to the semantics given in Definitions 2.6
and 2.7 for the sublogic d.Z of dTL using the syntactic embedding of hybrid pro-
grams into DA-programs from Table 3.5.

Table 3.5 Embedding hybrid programs as DA-programs

Hybrid program DA-program
assignment / discrete jump set DA-constraint
x1:=0;,...,x,:=6, X1 =01 A---Ax,: =6,
differential equation system DA-constraint
X=61,...,x,=6,&x Xy=6iA--Ax,=6,N%
test DJ-constraint / DA-constraint
X X

Proposition 3.1 (Conservative extension). The logic DAL is a conservative exten-
sion of A%, i.e., the set of valid AL formulas is the same with respect to the trans-
ition semantics of hybrid programs (Definition 2.7) as with respect to the transition
semantics of DA-programs (Definition 3.10).

Proof. The valuation of formulas of A% and DAL is directly compatible (Defini-
tion3.11 and 2.6, respectively). By comparing Definition 2.7 with Definition 3.10, it
is easy to see that we only need to show that differential equations generate the same
transitions. Using vectorial notation, let ¥’ = 0 & ¥ be a differential equation with
evolution domain restriction x. Let (v, @) € p(x' = 8 &) according to a flow @ of
duration r as a witness due to Definition2.7. Then ¢ is a differential state flow of
the order of x' = 6 and ¢(0) = v, ¢(r) = ® and @ |= ¥ and the value of variables z
other than x remains constant. Assume r > 0 as there is nothing else to show oth-
erwise. By Definition 2.7, we know that ¢ |= x’ = 6 holds on the interval (0, r) and
have to show that there is a continuation of ¢ so that ¢ = x’ = 6 holds on [0, r|.
The right-hand side 0 of the differential equation assumes values that are defined
along @, because ¢ = y and y guards against zeros of denominators. Hence, the im-
age of @ remains in the domain of definition of 6. Further, ¢ is continuous on [0, r];

148 3 Differential-Algebraic Dynamic Logic DAL

hence, as a compact image of a continuous map, its image is compact. Thus, by the
continuation theorem for solutions of differential equations (Proposition B.1), ¢ can
be continued to a solution of x’ = 6 on [0, r].

Conversely, it is easy to see that (v,0) € p(x’ = 0 Ax) according to Defini-
tion 3.10 directly implies (v, ®) € p(x' = 6 & x) according to Definition 2.7. O

Clearly, the DAL calculus will nof be a conservative extension of the d.% calculus,
because it contains more powerful proof rules for verifying properties of differential
equations. We will see that there are d.% formulas that can be proven in the DAL
calculus but not in the d.Z calculus. With our differential induction techniques in
Sects. 3.5.6 and 3.5.7, the DAL calculus has better handling of differential equations
than the solution-based proof rules presented in Chap. 2.

3.4 Collision Avoidance in Air Traffic Control

As a case study, which will serve as a running example, we show how succinctly
collision avoidance manoeuvres in air traffic control can be described in DAL. In
Sect. 3.11, we will verify such manoeuvres in the DAL calculus.

3.4.1 Flight Dynamics

Assuming, for simplicity, aircraft remain at the same altitude, an aircraft is described
by its planar position x = (x1,x,) € R? and angular orientation . The dynamics of
an aircraft is determined by its linear velocity v € R and angular velocity ®; see
Fig. 3.4 (depicted with ¥ = 0 in the illustration). When neglecting wind, gravitation,

Fig. 3.4 Aircraft dynamics 9

and so on, which is appropriate for analysing cooperation in air traffic control [293,
196, 203, 92, 238], the in-flight dynamics of an aircraft at x can be described by the
following differential equation system; see [293] for details:

X} =vcos ¥ xh =vsind ¥ = 0. (3.4)

3.4 Collision Avoidance in Air Traffic Control 149

That is, the linear velocity v of the aircraft changes both positions x; and x, in the
(planar) direction corresponding to the orientation ¥ the aircraft is currently heading
toward. Further, the angular velocity @ of the aircraft changes the orientation ¥ of
the aircraft.

3.4.2 Differential Axiomatisation

Unlike for straight-line flight (w = 0), the nonlinear dynamics in (3.4) is difficult
to analyse [293, 196, 203, 92, 238] for curved flight (@ # 0), especially due to the
trigonometric expressions which are generally undecidable. Solving (3.4) requires
the Floquet theory of differential equations with periodic coefficients [297, The-
orem 18.X] and yields mixed polynomial expressions with multiple trigonometric
functions. A true challenge, however, is the need to verify properties of the states
that the aircraft reach by following these solutions, which requires proving that com-
plicated formulas with mixed polynomial arithmetic and trigonometric functions
hold true for all values of state variables and all possible evolution durations. How-
ever, quantified arithmetic with trigonometric functions is undecidable: By Godel’s
incompleteness theorem [137], the resulting first-order real arithmetic with trigo-
nometric functions is not semidecidable, because the roots of sin characterise an
isomorphic copy of natural numbers (Theorem 2.2).

To obtain polynomial dynamics, we axiomatise the trigonometric functions in
the dynamics differentially and reparametrise the state correspondingly. Instead of
angular orientation ¥ and linear velocity v, we use the linear speed vector

d = (d,d>) := (vcos¥,vsin) € R?

which describes both the linear speed ||d|| := y/d} +d3 = v and the orientation of
the aircraft in space; see Figs. 3.4 and 3.5. Substituting this coordinate change into

Fig. 3.5 Reparametrise for X2
differential axiomatisation

3
vsin O|= da

\ ‘dlzvcosﬁ) "

differential equations (3.4), we immediately have x| = d; and x}, = d». With the co-
ordinate change, we further obtain differential equations for d;,d, from differential
equation system (3.4) by simple symbolic differentiation:

dj= (vcos®) =V cos ¥ +v(—sin¥)¥ = —(vsin¥)w = —od,,

150 3 Differential-Algebraic Dynamic Logic DAL
dy= (vsin®) =V'sin® +v(cos¥)y = (vecosd)w= od;.

The middle equality holds for constant linear velocity (v' = 0), which we assume,
because only limited variations in linear speed are possible and cost-effective during
the flight [293, 196] so that angular velocity @ is the primary control parameter
in air traffic control. Hence, equations (3.4) can be restated as the following DA-
constraint .7 (®):

x/l =d /\x/2=d2/\d1 Z—wdz/\déza)d1 (7 (w))
Vi =e1 AYy = ey Nl = —@ey Neh = ey (¢ (@))

DA-constraint .% (@) expresses that position x = (x1,x2) changes according to the
linear speed vector d = (dy,d,), which in turn rotates according to @. Simultaneous
movement together with a second aircraft at y € R? having linear speed e € R? (also
indicated with angle 9 in Fig. 3.4) and angular velocity @ corresponds to the DA-
constraint .7 (0) AY(®@). DA-constraints capture simultaneous dynamics of mul-
tiple traffic agents succinctly using conjunction.

By this differential axiomatisation, we thus obtain polynomial differential equa-
tions. Note, however, that their solutions still involve the same complicated non-
linear trigonometric expressions so that solutions still give undecidable arithmetic
(see Example B.4 in App.B). Our proof calculus in this chapter works with the
differential equations themselves and not with their solutions, so that differential
axiomatisation helps. Since the solutions involve trigonometric functions, previous
approaches [306, 156, 125, 270, 97, 228] were not able to handle such dynamics.

3.4.3 Aircraft Collision Avoidance Manoeuvres

Due to possible turbulence or collisions, a flight configuration is unsafe if another
aircraft is within a protected zone of radius p, i.e., ||x—y||> < p?. Guiding aircraft
by collision avoidance manoeuvres to automatically resolve conflicting flight paths
that would lead to possible loss of separation, is a major challenge for both air traffic
control and verification [293, 196, 203, 104, 92, 238, 129, 171]. Several different
classes of collision avoidance manoeuvres for air traffic control have been sugges-
ted [293, 196, 203, 104, 129, 171]. The classical traffic alert and collision avoidance
system (TCAS) [196] directs one aircraft on climbing routes and the other on des-
cending routes to resolve conflicts at different altitudes but keeps otherwise unmod-
ified straight-line flight paths. While the simplistic TCAS manoeuvre has several
benefits, it does not scale up easily to multiple aircraft or dense traffic situations
near airports. As a more scalable alternative, Tomlin et al. [293] suggested round-
about manoeuvres on circular paths (see Fig. 3.6a), where, even at the same altitude,
several aircraft can participate in collision avoidance manoeuvres. Because the con-
tinuous dynamics of curved flights with @ # 0 is quite intricate, Tomlin et al. [293]
and Massink and De Francesco [203] have analysed trapezoidal straight-line (@ = 0)

3.4 Collision Avoidance in Air Traffic Control 151

Fig. 3.6 Flight manoeuvres for collision avoidance in air traffic control

approximations of roundabouts instead, which consist only of a series of two to five
straight line segments connected by several instant turns (Fig. 3.6b). Unfortunately,
the discontinuities in instant turns are not flyable by aircraft.

As a more realistic model, we investigate curved roundabout manoeuvres pro-
posed by Tomlin et al. [293]. Roundabouts have proper flight curves with nonzero
angular velocities @ (Fig.3.6a). We have shown previously [238] that classical
roundabout manoeuvres with fixed turns [293, 196, 203, 92] are unsafe for non-
orthogonal initial flight paths (see Fig.3.6c for a counterexample that our model
checker found), and we have proposed a tangential roundabout manoeuvre [238]
with position-dependent evasive actions to overcome these deficiencies. However,
because of general limits of numerical approximation techniques [238, 85], we
could not actually verify the tangential roundabout manoeuvre numerically.

In this chapter, we introduce a generalised class of tangential roundabout man-
oeuvres with curved flight paths (Fig. 3.6d) and formally verify separation proper-
ties of this manoeuvre in the purely symbolic DAL calculus. Our main motivation
for studying roundabouts are their curved flight paths, which constitute a substan-
tial challenge for verification of hybrid systems with nontrivial dynamics and an
important part of realistic flight manoeuvres.

3.4.4 Tangential Roundabout Manoeuvre

In the tangential roundabout manoeuvre, sketched in Fig. 3.6d, the idea is that the
aircraft agree on some common angular velocity @ and common centre ¢ around
which both can circle safely without coming closer to each other (their linear velocit-
ies can differ, though, to compensate for different cruise speeds). Note that neither ¢
nor m needs to be discovered by complicated online trajectory predictions. Instead,
we present a simple characterisation of safe choices for the parameters of the tan-
gential roundabout manoeuvre in Sect.3.11 and determine safety of the resulting
flight paths using formal proofs in the DAL calculus.

In Fig.3.7, we introduce the DAL model for the tangential roundabout man-
oeuvre, which is a simplified and more uniform generalisation of our previous
work [238]. Observe how concisely complicated aircraft manoeuvres can be spe-
cified in DAL. There, safety property y for aircraft manoeuvres expresses that pro-

152 3 Differential-Algebraic Dynamic Logic DAL
V= ¢ [rm']e
2 2 2 2
¢ = lx=ylI"=p" = —y) +—y) =p
trm = free; tang; F(w) N9 ()
free = o F(0)\IBY(@)N
tang = will be derived in Sect. 3.11

2

Fig. 3.7 Flight control with tangential roundabout collision avoidance manoeuvres

tected zones are respected during the flight (specified by the separation property ¢).
The flight controller (zrm*) performs collision avoidance manoeuvres by tangen-
tial roundabouts and repeats these manoeuvres any number of times, as needed,
as indicated by the * repetition operator. During each trm phase, the aircraft first
perform arbitrary free flight (free) by (repeatedly) independently adjusting their
angular velocities @ and @ (by J® and J®@) while the aircraft are safely separ-
ated. This is expressed by conjunct ¢ of the DA-constraint. Observe that, unlike
in Ju(w:=u); #(w), angular velocities can be (re)adjusted continuously during
free flight in 3@ .% (), rather than just once. In particular, free includes piece-
wise constant choices as in (Ju(@:=u) AJu(@:=u); F(0) AY(@))". Due to
evolution domain ¢ of free, the tangential roundabout manoeuvre must be initi-
ated (by a tangential initiation controller tang) before the flight paths become un-
safe. Then, the tangential roundabout manoeuvre itself is carried out by the DA-
constraint .7 (®) A¥ () according to some common angular velocity @ determ-
ined by tang. Finally, the collision avoidance roundabouts can be left again by re-
peating the loop frm™ and entering arbitrary free flight at any time. When further
conflicts occur during free flight, the controller in Fig. 3.7 again enters roundabout
conflict resolution manoeuvres.

In summary, property y of Fig. 3.7 expresses that the aircraft remain safe during
the flight, especially during evasive roundabout manoeuvres. In Sect. 3.11, we will
determine a constraint on the parameter adjustment by tang such that the roundabout
manoeuvre is safe, and we give a simple choice for fang respecting this parameter
constraint.

3.5 Proof Calculus for Differential-Algebraic Logic

In this section, we introduce a sequent calculus for proving DAL formulas. The basic
idea is to symbolically compute the effects of DA-programs and successively trans-
form them into simpler logical formulas describing their effects by symbolic decom-
position. The calculus consists of standard propositional rules, dedicated rules for
handling DA-program modalities, including differential induction rules for sophist-
icated differential constraints, and side deduction rules for integrating real quantifier
elimination.

3.5 Proof Calculus 153

For our calculus, recall the definition of substitutions: The result of applying to ¢
the substitution that replaces x by 6 is defined as usual (Sect.2.5.1); it is denoted
by ¢f. Likewise, in a simultaneous substitution ¢,\?1‘ .. ')(?:: the x; are replaced simul-
taneously by the respective 6;.

3.5.1 Motivation

DA-constraints are a very expressive formalism and can represent rich forms of con-
tinuous dynamics, including differential equations, differential-algebraic equations,
differential inequalities, and differential equations with quantified nondeterminism
and disturbance input. Even for quite simple differential equations, formal verific-
ation of properties of their behaviour is challenging and, in general, undecidable
(Theorem 2.2). Even the linear differential equations x' = ajx+axy Ay = azx +agy
have trigonometric solutions that fall outside decidable classes of arithmetic for ap-
propriate coefficients a; € R.

Working with solutions of differential equations as in d.% rules ('),['] of Chap.2
is, thus, not a very promising verification approach. Instead, we are looking for
a verification principle that works implicitly based on the local dynamics and the
differential equation itself, not on its solution. Solutions of differential equations are
usually much more complicated than the differential equations themselves, which
makes differential equations representationally powerful—and even more so for the
more expressive DA-constraints.

Intuitively, the global solution of a differential equation, while helpful, is not
really required for deciding a property. Consider Fig. 3.8, which shows the vector
fields of a differential equation system (intuitively, at each point it shows the vec-
tor of the right-hand side, i.e., the direction into which the differential equations
dynamics points locally). Geometrically, a solution is obtained by following the

Fig. 3.8 Vector field and
a solution of a differential
equation

g
N g

4

]
NN\
NN\
A NN NN

<<<<<

<<<<<<

154 3 Differential-Algebraic Dynamic Logic DAL

direction of the dynamics “at every point” along the vector field. The solid curve
shows one global solution starting at a particular point as initial value. Suppose the
two shaded transparent regions represent the set of unsafe states for a system. In
principle, verification could proceed by considering each global solution starting at
any initial point (typically uncountably many) and show that no such solution enters
the unsafe region at any time (uncountably many points in time). Of course, liter-
ally following this enumeration of solutions and enumerating all points in time will
not work because there are uncountably many initial states and points in time. This
principle is what proof rules {),['] from the A calculus in Fig.2.11 on p. 79 make
formally rigorous and sound using symbolic polynomial solutions and quantifier
elimination in real-closed fields. It is generally not very scalable and it can be quite
difficult to ensure soundness for more general dynamics.

The point is, however, that proving does not need to use solutions of differential
equations! In Fig. 3.8 the question about whether the system can ever enter an unsafe
state (in the two transparent shaded regions) can be answered by inspection of the
local dynamics of the vector field alone. If the vector field never points from a safe
state into the unsafe region, then, intuitively, the system can never end unsafe if it
starts safe and always follows the local dynamics of the vector field. Similarly, for
a reachability property, we do not necessarily need a solution for the differential
equations to decide if the system is able to reach a target region. Intuitively, it can
also be answered in the positive if the dynamics is always making good progress
towards the target region locally.

The challenge is how to turn this geometrical intuition into a sound proof prin-
ciple. In fact, it turns out throughout the course of this chapter that this is a sur-
prisingly subtle matter and easy to get wrong. In this section, we develop a sound
reasoning framework and a proof calculus for DAL that follows these principles of
proving by local dynamics without leading astray into the unsound. We first develop
appropriate notions from differential algebra that will be invaluable for our formal
development of sound proof rules.

3.5.2 Derivations and Differentiation

As a purely algebraic device for proving properties about continuous evolutions in
our calculus, we define syntactic derivations of terms and show that their valuation
coincides with analytic differentiation (the total differential). With this, we can build
proof rules for verifying DA-programs fully algebraically by a differential form of
induction without the need to carry out analytic reasoning about analytic limits or
similar concepts that would require higher-order logic. The advantage of our syn-
tactic notions that are inspired from differential algebra is that syntactic algebraic
reasoning can be carried out with a calculus that is still suitable for automatic the-
orem proving.

3.5 Proof Calculus 155

Derivations
We define a syntactic total derivation and prove that its valuation along differential
flows coincides with analytic differentiation.

Definition 3.13 (Derivation). The operator D : Term(XUZX’) — Term(XUX’) that
is defined as follows is called syntactic (total) derivation:

D(r)=0 if » € Q is a rational number (3.5a)
D(x") = xtn*1) if x € X is a state variable,n >0 (3.5b)
D(a+b) = D(a)+D(b) (3.50)
D(a—b) =D(a)—D(b) (3.5d)
D(a-b) =D(a)-b+a-D(b) (3.5¢)
D(a/b) = (D(a)-b—a-D(b))/b® (3.5)

For a first-order formula F', we define the following abbreviations:

m
D(F) = \D(F) where {F},...,F,} is the set of all literals of F;
1
D(a>b) = D(a) > D(b) and accordingly for <, >, <, = or negative literals.

Recall that a literal is a logical formula with no logical operators other than —. A
literal is negative if it has an odd number of — operators, and is positive if it has an
even number. More than one — is not needed because ——F; = F;.

To illustrate the naturalness of this definition, we briefly align it in terms of the al-
gebraic structures from differential algebra [179]. Case (3.5a) defines number sym-
bols as differential constants, which do not change during continuous evolution.
Their total derivative is zero. Equation (3.5c) and the Leibniz or product rule (3.5e)
are defining conditions for derivation operators on rings. The derivative of a sum
is the sum of the derivatives (additivity or a homomorphic property with respect
to addition) according to equation (3.5c). Furthermore, the derivative of a product
is the derivative of one factor times the other factor plus the one factor times the
derivative of the other factor as in (3.5¢). Equation (3.5d) is a derived rule for sub-
traction according to a — b = a+ (—1) - b and again expresses a homomorphic prop-
erty, now with respect to subtraction. In addition, equation (3.5b) uniquely defines
operator D on the differential polynomial algebra spanned by the differential inde-
terminates x € X. It says that we understand the higher-order differential symbol
x("+1) as the derivative of the symbol x) for all state variables x € £ and orders
n > 0. Equation (3.5f) canonically extends D to the differential field of quotients by
the usual quotient rule. As the base field R has no zero divisors, the right-hand side
of (3.5f) is defined whenever the original division a/b can be carried out, which,
as we assumed, is guarded by b # 0. The resulting structure Term (ZUZX"), together
with the derivation D, corresponds to the differential field of rational fractions with

156 3 Differential-Algebraic Dynamic Logic DAL

state variables as differential indeterminates over R and with rational numbers as
differential constants.

The conjunctive definition of the formula D(F') in Definition 3.13 corresponds to
the joint total derivative of all atomic subformulas of F and will be an important
tool for differential induction rules of our calculus.

Example 3.6 (Total differential of aircraft separation). Consider the separation prop-
erty ¢ for aircraft manoeuvres from Fig. 3.7 on p. 152, which expresses that two air-
craft at positions x = (x1,x2) and y = (y1,y2), respectively, have at least distance p:

F=(xi—y)+ (2 —y)* > p*.

The total differential of formula F is formed by applying the syntactic total deriva-
tion D(+) on the terms of each literal, which gives:

D(F) =D((x1 —y1)*)+D((x2—y2)*) > D(p*)

2(x1 —y1)D(x1 —y1) +2(x2 — y2)D(x2 —y2) > 2pD(p)

2(x1 =y1)(D(x1) = D(y1)) +2(x2 = y2)(D(x2) = D(y2)) = 2pD(p)
2(x; —

Y1) (& =) +2(x2 —y2) (¥h —y5) > 2pp.

X1

An interesting question that we will answer in the following is, what can we con-
clude about the truth-value of F' along the evolution of the system by evaluating its
total derivative D(F)? O

The following central lemma, which is the differential counterpart of the sub-
stitution lemma, establishes the connection between syntactic derivation of terms
and semantic differentiation as an analytic operation to obtain analytic derivatives
of valuations along differential state flows. It will allow us to draw analytic con-
clusions about the behaviour of a system along differential equations from the truth
of purely algebraic formulas obtained by syntactic derivation. In a nutshell, the fol-
lowing lemma shows that, along a flow, analytic derivatives of valuations coincide
with valuations of syntactic derivations. For comparison, the classical substitution
lemma (Lemma 2.2) shows that the valuation val(6*Vv, ¢) in the semantically mod-
ified state 6*v equals valuation of the syntactic substitution val(v,), where 6*v
is like v except that x is interpreted as val(Vv, 0). The derivation lemma has the same
form, using derivation instead of substitution.

Lemma 3.1 (Derivation lemma). The valuation of DAL terms is a differential
homomorphism: Let 6 € Term(X) and let ¢ : [0,r] — State(X) be any state flow of
the order of D(0) and of duration r > 0 along which the value of 0 is defined (as no
divisions by zero occur). Then we have for all £ € [0, r] that

dval((1),0)

PEL () =val ((0),D(6))

In particular, val(¢(t), 0) is continuously differentiable (where 0 is defined) and its
derivative exists on [0, r].

3.5 Proof Calculus 157

Proof. The proof is an inductive consequence of the correspondence of the se-
mantics of differential symbols and analytic derivatives in state flows (Defini-
tion 3.8). It uses the assumption that the flow ¢ remains within the domain of defin-
ition of O and is continuously differentiable in all variables of 6. In particular, all
denominators are nonzero during ¢.

e If 0 is a variable x, the conjecture holds immediately by Definition 3.8:
dval(¢(t),x do(t)(x _ _
QallO):2) () = 49U () — p(¢)() = vat(@(), D).

There, the derivative exists because the state flow is of order 1 in x and, thus,
(continuously) differentiable for x.

e If O is of the form a + b, the desired result can be obtained by using the properties
of derivatives, derivations (Definition 3.13), and valuations (Definition 3.6):

d

3 val(e(t),a+0))(¢)
= jt(val((p(t),a)+val(o(t),b))(£) val(v,-) homomorphic for +
d d d . . .
= g(val((p(t),a))(g) d—(val((p(t),b))(é’) g sa (linear) derivation
=val(p(§),D(a)) +val(9(&),D(b)) by induction hypothesis
=val(p(§),D(a)+ D(b)) val(v,-) homomorphic for +
=val(p(§),D(a+Db)) D(-) is a syntactic derivation

e The case where 0 is of the form a-b or a — b is similar, using Leibniz product
rule (3.5e) or subtractivity (3.5d) of Definition 3.13, respectively.

e The case where 0 is of the form a/b uses (3.5f) of Definition 3.13 and further
depends on the assumption that b # 0 along ¢. This holds as the value of 0 is
assumed to be defined all along state flow ¢.

e The values of numbers r € Q do not change during a state flow (in fact, they are
not affected by the state at all); hence their derivative is D(r) = 0. O

Differential Transformations

The substitution property Lemma 2.3 can be lifted to differential equations, i.e., dif-
ferential equations can be used for equivalent substitutions along differential state
flows respecting the corresponding differential constraints. In a nutshell, the follow-
ing lemma can be used to substitute right-hand sides of differential equations for the
left-hand side derivatives for flows along which these differential equations hold.
For comparison, the classical substitution property says that equals can be substi-
tuted for equals, i.e., left-hand sides of equations can be substituted by right-hand
sides of equations within formulas in which the equations hold.

158 3 Differential-Algebraic Dynamic Logic DAL

Lemma 3.2 (Differential substitution property). If ¢ is a state flow satisfying
OEX|=0N-AX,=0,\X, then 9 = D < (x — .@f,‘...ﬁ/”) holds for all DA-
1 n

constraints 9.

Proof. The proof is by using the Substitution Lemma 2.2 for first-order logic on the
basis of val(Q(§),x}) =val(¢({),6;) and ¢({) |= x at each time in the domain

of ¢. ad

Example 3.7 (Differential substitution for aircraft dynamics). Continuing the air-
craft scenario from Example 3.6, recall the differential equations (% (w)) for flight:

x/] =d /\x/2=d2/\d1 Z—G)dz/\dé:wdl (F(0)%)

While the aircraft follow this differential equation, all corresponding differential
state flows @ satisfy

OEX|=d ANXy=dy Nd} = —0dy N\ dy = ©d;

Consequently, by Lemma 3.2, along ¢ we can substitute in the right-hand sides of
these differential equations for the left-hand sides. When we perform this substitu-
tion for D(F) from Example 3.6, we get
dl d2 —a)dz a)d1 _ / / /
D(F)Xll b d = (x1 =y1)(d1 —y1) +2(x2 = y2)(d2 —»3) > 2pp’.
If we also substitute in the differential equations (¢ (@)) for the second aircraft and
assume p’ = 0, we obtain

D)2 0 g T2 o =2 —y)(di —e1) + 200~ y2)(da — e2) 2 0.
Expressions like these will play a very important role in our proof calculus, because
we will use them to show (in)variance of properties without the need for knowing
solutions of differential equations. From the truth of such a differential substitution
of a total derivative, we will be able to conclude invariance of F by the derivation
lemma. O

The following lemma captures that the semantics of DA-constraints is not sens-
itive to how the DA-constraint is presented. It also plays its part in the soundness
proof of our calculus, because it immediately makes all implicational and equival-
ence transformations of real arithmetic available for DA-constraints.

Lemma 3.3 (Differential transformation principle). Let & and & be two DA-
constraints (with the same changed variables). If ¥ — & is a tautology of (non-
differential) first-order real arithmetic (that is, when considering x™ as a new vari-
able independent of x), then p(Z) C p(&).

Proof. Let the first-order formulas ¢ and y be obtained from ¥ and &, respect-
ively, by replacing all x’ with new variable symbols X (accordingly for higher-order

3.5 Proof Calculus 159

differential symbols x(). Using vectorial notation, we write ¢;§’ for the formula ob-
tained from ¢ by substituting all variables X by x’. Thus, (j)jé/ is and l//j{ is &.
Let ¢ — v be valid in (non-differential) real arithmetic. Let (v, @) € p(2) accord-
ing to a state flow ¢. Then ¢ also is a state flow for & that justifies (v,®) € p(&):

For any ¢ € [0, 7], we have ¢({) = 2. Hence ¢({) = &, because ¢({) = ¢F im-
mediately implies ¢(&) = 1//3? by validity of ¢ — y. The assumption of Z and &
having the same set of changed variables is only required for compatibility with
condition 2 of Definition 3.9, which enforces that unchanged variables z remain
constant. It can be established easily by adding constraints of the form 7/ =0 as
required. a

DA-constraints & and & are equivalent iff p(2) = p(&). In particular, the se-
mantics of DA-programs is preserved when replacing a DA-constraint by another
DA-constraint that is equivalent in non-differential first-order real arithmetic (sim-
ilarly for DJ-constraints).

Example 3.8. Lemma 3.3 is a very powerful tool for analysing DA-constraints, be-
cause it lifts equivalence or implication-preserving transformations from first-order
real arithmetic to DA-constraints. In general, it may be difficult to determine the
relationship of the reachability relations of differential equations or DA-constraints.
With Lemma 3.3, however, we can use the first-order arithmetic structure to find
out. For example, the dynamics of DA-constraint X' = 5x Ay’ = 1 —xAx > 0 can be
overapproximated safely by the dynamics of x' =5xAy’ < 1Ax > 0, because the
following implication is valid in first-order logic, where we consider x!) and y(!) as
new variables independent of x and y:

x(:5x/\y(1) =1-xAx>0 — xtV :5)c/\y(1> <1Ax>0.
0

Example 3.9 (Disturbance in the train dynamics). Similarly, we have a formally pre-
cise way to prove why the transition relation p(-) of train dynamics 7 =vAV =a
from Chap.2 is contained in the transition relation of the differential inequality
7 =vAV >a—IAV <a+u for bounds [>0 and u > 0, which, in turn, is con-
tained in the transition relation of 7/ = v AV > a—[. The first differential equation
characterises ideal-world dynamics, where the chosen acceleration a takes effect
exactly. The second differential inequality characterises dynamics with a bounded
disturbance on the actual acceleration a. By the nature of the differential inequal-
ity, the actual disturbance may vary quite arbitrarily over time, but only inside the
bounds —/ and u. The last differential inequality is a variant that is only bounded in
one direction.

The proof of inclusion of the above three DA-constraints only amounts to check-
ing the validity of the following formulas in first-order real arithmetic, again con-
sidering z!) and v(!) as new variables:

W=vavl=a = D=y >a—1nvV) <a+tu,

160 3 Differential-Algebraic Dynamic Logic DAL

z(l) — Ay za—l/\v(l> <a+u — zm —vAv(D >a—1.

Similarly, we prove that the differential inequality 7 =vAV >a—IAV <a+u
and the following quantified DA-constraint have equivalent reachability relations:

7 =vAId(V =dAha—-1<dNd<a+u)A\v>0. (3.2%)

By Lemma 3.3, we only need to check equivalence of the corresponding formulas
in first-order real arithmetic, considering z(1) and v(1) as new variables:

(z(l) =vAv) >a—1ay) <a+u)
oW =vAdd() =dra—1<dAd <a+u)Av>0).

O

Counterexample 3.10 (Same changed variables). For correctness of Lemma 3.3, we
have to assume that & is not allowed to have more differential variables than &, be-
cause of our implicit assumption that variables without differential constraints are
constant. At first sight, it may look like the transition relation 7/ = vAV =a At =1
may be overapproximated by 7/ = vAt’ = 1, because the following arithmetic for-
mula is valid:

z“) =vavD =anW =1 — z(1> —vAar) =1,

But this does not work, because of our convention that assumes variables do not
change if they are not mentioned in a differential equation. Thus in 7/ = vAt =1,
we silently assume V' = 0, because no differential constraint for v is mentioned.
Then the transition relations are very different, however, because v may change in
the former but will stay constant in the latter. If, instead, we make the implicit as-
sumption v/ = 0 explicit in the DA-constraint, so that both DA-constraints have the
same changed variables, then this subtlety does not happen, because the following
formula is not valid (unless a = 0, in which case both DA-constraints are, indeed,
equivalent):

z(l) =vAavl) =ant =1 = z(l) =warD =10 =0,

3.5.3 Differential Reduction and Differential Elimination

Using the expressive power of DA-constraints, several reductions can be performed
to simplify the syntactic form of DA-constraints. With quantified DA-constraints,
we can reduce differential inequalities to quantified differential equations equival-
ently:

3.5 Proof Calculus 161

Lemma 3.4 (Differential inequality elimination). DA-constraints admit differ-
ential inequality elimination, i.e., with each DA-constraint &, an equivalent DA-
constraint without differential inequalities can be effectively associated that has no
other free variables.

Proof. Let & be obtained from & by replacing all differential inequalities 6; < 6,
by a quantified differential equation Ju (6; = 6, —u Au > 0) with a new variable u
for the quantified disturbance (accordingly for >, >, <). By Lemma 3.3, the equi-
valence of & and & is a simple consequence of the corresponding equivalences in
first-order real arithmetic. a

Example 3.11. Lemma 3.4 can turn differential inequalities to DA-constraints with
quantifiers and equations in place of the differential inequalities. Let [> 0. We
can transform the differential inequality 7 = v AV >a—1I1Av >0 to an equivalent
quantified DA-constraint

3d (7 =vAV =a—dANd <IAv>0).

Both DA-constraints are equivalent. The latter DA-constraint has a structural ad-
vantage: we only have differential equations and quantifiers, while the inequalities
are isolated in the non-differential evolution domain constraints d <[Av > 0. Thus
we can handle differential inequalities if we can handle quantified disturbance. In
fact, we could even go on and replace all inequalities (differential or not) by equi-
valent equations and quantifiers with Lemma 3.4:

3d(Z =vAV =a—dAJuyd =1—1u3 Aupv = u3).

But, unlike differential inequalities, those inequalities that only occur in the non-
differential part d </ Av > 0 are not complicated for proofs, because they can be
handled easily by quantifier elimination in real-closed fields [288, 81]; also see
App.D. O

In this book, we assume this transformation has been applied such that we can
focus on DA-constraints with differential equations, i.e., where differential sym-
bols only occur in differential equations, and where inequalities do not contain
differential symbols. Yet, the DA-constraint resulting from Lemma 3.4 could be-
come inhomogeneous when multiple differential equations are produced for the
same variable from multiple differential inequalities. For instance, 0; < x’ < 6, pro-
duces JuIv(x' =0, +urx' =6, —vAu>0Av>0), which has two differential
equations for x. To homogenise this DA-constraint again, we use the following:

Lemma 3.5 (Differential equation normalisation). DA-constraints admit differ-
ential equation normalisation, i.e., with each DA-constraint 9, an equivalent DA-
constraint with at most one differential equation for each differential symbol can be
effectively associated that has no other free variables. Furthermore, this differential
equation is explicit, i.e., of the form x" = 0 where ord, 6 < n.

162 3 Differential-Algebraic Dynamic Logic DAL

Proof. For each differential symbol x e 5’ occurring in 7, we introduce a new
non-differential variable X, € X. Let @jﬁ) denote the result of substituting X,

for x* in 2. By Lemma 3.3, the equivalence of 2 and 3X, (x") = X, A .@jﬁ)) is
a simple consequence of the corresponding equivalence in first-order logic. Pro-
ceeding inductively for all such x) € £’ in @ gives the desired result. O

Example 3.12. Directly using the construction in Lemma3.4 on 6; <x' < 6, we
obtain an equivalent DA-constraint Ju3v (X' = 6; +uAX' =6 —vAu>0Av>0)
without differential inequalities but with inhomogeneous parts (two separate differ-
ential equations for x). After normalisation with Lemma 3.5, we obtain the equival-
ent DA-constraint 3X; JuIv (X = X1 AX1 =01 +uAX; =6, —vAu>0Av>0).
O

Similarly, higher-order differential constraints reduce to first-order constraints
by introducing new non-differential auxiliary variables X, for each of the higher-
order differential symbols x). For 1 < ord, 6 < n, we can replace a higher-order
differential equation x") = @ with:

Xoo1 Xp
: -x<"*1) x(") :

X=X\ AX{=XoA .. AX)_y = Xe 1 AX)_ = 0.

3.5.4 Rules of the Calculus for Differential-Algebraic Logic

Sequents and substitutions are defined as in Sect.2.5.2. We again assume bound
variable renaming as needed. In the DAL calculus, only admissible substitutions are
applicable, which is crucial for soundness.

Definition 3.14 (Admissible substitution). An application of a substitution o is
admissible if no replaced variable x occurs in the scope of a quantifier or modality
binding x or a variable of the replacement ¢ (x). A modality binds x if its DA-
program (possibly) changes x, i.e., if it contains a DJ-constraint containing x:= 6 or
a DA-constraint containing x" e X' forann > 1.

As usual in sequent calculus—although the direction of entailment is from premises
(above rule bar) to conclusion (below)—the order of reasoning and reading is goal-
directed in practise: Rules are applied backwards, that is, starting from the desired
conclusion at the bottom (goal) to the resulting premises (subgoals). To highlight
the logical essence of the DAL calculus, Fig. 3.9 provides rule schemata with which
the following definition associates the calculus rules that are applicable during a
DAL proof. The calculus inherits the propositional rules from Fig.2.11 on p.79
and further consists of first-order quantifier rules (rV,1V,r3,13), rules for dynamic
modalities ((;)-DS), and global rules ([Jgen,()gen,ind,con,DI,DV). The DAL rules
that have the same name as corresponding d. rules are actually identical, except
for minor syntactic variations and generalisations. Rule (;), for instance, is identical
in the d.% calculus in Fig.2.11 and the DAL calculus in Fig. 3.9. We just repeat it
here for convenience to have a comprehensive representation of the DAL calculus.

3.5 Proof Calculus 163

The definition of rules is a simplified version of that in Definition 2.10, with side
deductions in place of the free-variable quantifier rules from Chap.2. Further, we
can simplify the presentation by avoiding update prefixes (which would also be
sound here when allowing conjunctive DA-constraints as prefixes). Note that this
choice generally requires more complicated invariants and variants than in the d.Z
calculus of Chap. 2, where discrete jump set prefixes are allowed for rule applica-
tions so that more information about the pre-state is retained automatically.

Definition 3.15 (Rules). The rule schemata in Fig. 3.9—in which all substitutions
need to be admissible—induce calculus rules by:

LI
OFY ... DFY,

Do =W

is an instance of one of the rule schemata in Fig. 3.9, then

L& FHA ... [,&,F% A
T, & F %, A

can be applied as a proof rule of the DAL calculus, where I',A are arbitrary
finite sets of context formulas (including empty sets).
2. Symmetric schemata can be applied on either side of the sequent. If

[}

®o
is an instance of one of the symmetric rule schemata (dynamic rules (;)—[D]) in
Fig. 3.9, then

' ¢1,A d I' oA
T+ g0, A o T.g0F A

can both be applied as proof rules of the DAL calculus, where I", A are arbitrary
finite sets of context formulas (including empty sets).

Propositional Rules

For propositional logic, we reuse the standard propositional rules —r—cut from the
d.Z calculus in Fig. 2.11.

First-Order Quantifier Rules

Unlike in uninterpreted first-order logic [122, 123], quantifier rules have to respect
the specific semantics of real arithmetic. Thus, our rules handle real quantifiers

164 3 Differential-Algebraic Dynamic Logic DAL

™) T A,vxo R N P
L (B)e 3 ()9 _ AN O ;
D pe D Ee =D m=ar An=6A00
., [al[Blo vx[]9 , X 0.
D Tl e =D oo r et g
() <o&¢uv B<>qu¢ w2 U<}>U¢/n>¢ 2 oyl u{é;@n)*w s
H(&le = (2)¢ FZlx F12nx]¢
(DR) & > (DR s % > (DS) ST
FY*(¢ — y) FY*(¢ — y)
e Tagg Ty Ve Tajo - Tew
iy Y00 [a10) comy Y000 = (@)p(v—1)
o= [a*]¢ o) F (a*)Tv<09(v)
(VY (= FY) ;

DI
) B P F B I = B A Ax, = G AR)IF

F 3e>0V*y..yp (FFAx — (F' > s)f,ll...fz))

V)

vy =01 A AX, =0, A~F)x = Gy (X] =01 ALAX, =6, AX))F

' I; - A; are obtained from the subgoals of side deduction (x) in Fig.3.10, in which x is assumed
to occur in first-order formulas only, as QE is then applicable. The side deduction starts from goal
' A, ¢ at the bottom (or I, ¢ = A for IV and 13), where x does not occur in I, A using renaming.

2 #1V---V g, is a disjunctive normal form of the DJ-constraint ¢ .

3 Rule applicable for any reordering of the conjuncts of the DJ-constraint where is jump-free.
* 2,V ---V 9, is a disjunctive normal form of the DA-constraint 2.

> 9 implies &, i.e., satisfies the assumptions of Lemma 3.3.

6 Logical variable v does not occur in a.

7 Applicable for any reordering of the conjuncts where ¥ is non-differential. F is first-order without
negative equalities, and F’ abbreviates D(F'), with Z’ replaced with O for unchanged variables.

8 Like DI, but F contains no equalities and the differential equations are Lipschitz continuous.

Fig. 3.9 Rule schemata of the proof calculus for differential-algebraic dynamic logic

A\
S LOEFA I,- A,

QEEA(GFA) o T Fo. .. TFo ()
TR A TF4.6
start side

Fig. 3.10 Side deduction for quantifier elimination rules

3.5 Proof Calculus 165

using quantifier elimination (QE) over the reals [81]. Unfortunately, QE is only
defined in first-order real arithmetic and cannot handle DAL modalities, where vari-
ables evolve along hybrid trajectories over time. We establish compatibility with
dynamic modalities using (cut-like) side deductions for the quantifier rules, as illus-
trated in Sect. 3.5.5. Alternatively, the quantifier rules in Fig. 3.9 can be replaced by
the quantifier rules of Chap. 2, which generalise free variables, Skolemisation, and
Deskolemisation to real arithmetic for integrating quantifier elimination with modal
rules. Instead, here, we use side deductions that we have introduced in previous
work [231] as a very intuitive and simple approach for handling real quantifiers.

Dynamic Rules

The dynamic rules transform a DA-program into simpler logical formulas. Rules
(:)5[;],(U),[U] are as in discrete dynamic logic [149, 37] and in the d.Z calculus in
Fig.2.11. The new rules (/) and [J] normalise DJ-constraints to their disjunctive
normal form such that the jump alternatives can be read off easily. They also turn
the disjuncts of the disjunctive normal form into nondeterministic choices so that
(U),[U] will reason separately for each case. Rules (3) and [3] lift quantified choices
in DJ-constraints to DAL quantifiers, which are, in turn, handled by quantifier rules.
They use the fact that all choices of assigning some value to x correspond to the
universal quantifier (rule [3]), whereas some choice of assigning some value to x
corresponds to the existential quantifier (rule (3)).

Rules (:=) and [:=] use generalised simultaneous substitutions for handling dis-
crete change by substituting the respective new values 6; for all the affected vari-
ables x; at once (foralli = 1,...,n) and checking the jump-free constraint y. In fact,
this check or assumption of the jump-free constraint is the only essential differ-
ence in rules (:=),[:=] in Fig. 3.9 compared to those in Fig.2.11. Notice however,
that as in rules (?),[?] from Fig. 2.11, the presence of y already makes [x:=0 A x]¢
and (x:= 0 A)¢ non-equivalent. Thus, for (x:=6 A)¢ rule (:=) is used to prove
that y holds true (otherwise there is no transition and thus the reachability prop-
erty is false) and that ¢ holds after replacing x with its new value 6. Rule [:=] for
[x:=6 A x]¢ instead assumes that) holds true (otherwise there is no transition and
thus nothing to show) and that ¢ holds after replacing x with its new value 0.

Similarly to rules (J),[J], rules (D),[D] normalise DA-constraints to a form where
their differential evolution alternatives are readily identifiable. They turn a DA-
constraints into its disjunctive normal form and split disjuncts into nondeterministic
choices. Unlike for (J),[J], however, continuous evolutions take time so that the
system can switch back and forth (repeatedly) between the various cases of the DA-
constraint during one continuous evolution, and hence the repetition. Observe that
finitely many repetitions are sufficient for non-Zeno flows (Definition 3.12), which
can only switch finitely often in finite time.

Rules [DR],(DR), and DS are differential weakening, differential refinement,
and differential strengthening rules for DA-constraints, respectively. In rules [DR]
and (DR), DA-constraint & implies & in real arithmetic according to Lemma 3.3,

166 3 Differential-Algebraic Dynamic Logic DAL

which is easy to decide by QE in practise. Note that [DR] and (DR) are sound
for any such combination of & and &. Their primary practical purpose is to use
[DR] for overapproximating individual variable evolutions by a weaker version (dif-
ferential weakening) and (DR) for refining nondeterministic variable evolutions
to specific differential equations (differential refinement). For instance, rule [DR]
can weaken ¥ =5xAy =1—xAx>0]¢ to X' =5xAy <1Ax>0]¢, because
the former DA-constraint implies the latter DA-constraint according to Lemma 3.3.
Such overapproximations have the advantage of decoupling differential equations.
In particular, we use [DR] onto project conjunctive differential constraints Z to their
non-differential constraints. As we illustrate in Sect.3.11, this gives a powerful
verification technique in combination with differential strengthening (DS), which
can refine the system dynamics by auxiliary constraints. Rule (DR) can refine non-
deterministic variable evolutions into specific cases, e.g., (. = v AV > —b)¢ to the
borderline case (7 =v AV = —b)¢. The latter refines the former, because it is a
special case (the latter DA-constraint implies the former DA-constraint in the sense
of Lemma 3.3).

While rule [DR] can be used to remove information from a DA-constraint, the
differential strengthening rule DS does the opposite and can be used to add inform-
ation. But, of course, DS can only add constraints y (to the right premise) that have
been proven to be invariant (in the left premise); otherwise it would alter the reach-
able set incorrectly. With the left premise proven, rule DS changes the dynamics of
the DA-program and restricts the DA-constraint & to remain within evolution do-
main . But this restriction is a pseudo restriction, because the left premise shows
that x actually is an invariant of the previous dynamics . In fact, assuming the left
premise [Z]x to be valid, the right premise F [Z A x]¢ and conclusion F [Z]¢ are
actually equivalent (as we will show in Proposition 6.2). The differential strengthen-
ing rule DS is essentially a differential cut. We address the problem of automatically
determining the respective strengthenings y that actually help the proof in Chap. 6,
where we derive automatic verification algorithms from the results presented in this
chapter. Furthermore, [DR] and (DR) make all equivalence transformations on DA-
constraints from Sect. 3.5.3 available as proof rules, including index reduction tech-
niques for differential-algebraic equations [132].

Note that DAL does not need rules for handling negation in DA-constraints or DJ-
constraints, as—possibly after applying (J),[J] or (D),[D], respectively—negations
only occur in jump-free or non-differential parts, because assignments and differ-
ential symbols only occur positively by Definitions 3.1 and 3.2. Similarly, no rules
for universal quantifiers within DA-constraints or DJ-constraints are needed. Like
other propositional operators or quantifiers, negation and universal quantifiers are
allowed without restriction in non-differential or jump-free) and are then handled
by (:=),[:=] or DI,DV.

3.5 Proof Calculus 167

Global Rules

The global rules [|gen,()gen,ind,con,DI,DV depend on the truth of their premises
in all states, which is ensured by the universal closure with respect to all bound
variables of the respective DA-program o (see Definition 3.14). In particular, the
rules [|gen,()gen,ind,con are as in the A calculus of Fig.2.11. The differential
induction rules DI and DV are new.

Rule DI is a rule for differential induction, which is a continuous form of induc-
tion along differential constraints. The induction rules ind and DI (or con and DV
respectively) differ in the way the invariant is sustained (or in the way the variant
makes progress). Rule ind uses the inductive nature of repetition and, ultimately, fol-
lows an induction on the number of repetitions. Rule DI, in contrast, uses continuity
of evolution and the differential equation for a continuous induction step with the
differential invariant F: If F holds initially (antecedent of conclusion) and its total
differential F’ satisfies the same relations when taking into account the differential
constraints (premise), then F itself is sustained differentially (succedent of conclu-
sion). Formula F’ abbreviates D(F) (see Definition 3.13) with 7' replaced with 0O
for all variables z that are unchanged by the DA-constraint, i.e., that are distinct
from {xj,...,x,}, because these are assumed constant in the semantics. By bound
variable renaming, the y; do not occur in F'. Thus, an important difference between
the operating principles of rules ind and DI is that ind uses induction over natural
numbers for repetitions of a loop, whereas DI uses induction in the continuous do-
main along the vector fields of differential equations, and is based on differential
algebra (Sects. 3.5.2 and 3.5.3). A notable special instance of rule DI is the follow-
ing case for quantifier-free DA-constraints:

FVY%yx — F’f{...fz)

XIFE X, =01A..AX, =0, \Nx]F

Rule DV is a differential variant rule where the variant F is finally reached dif-
ferentially (with some minimal progress €), rather than sustained as in DI. Differ-
ential induction, the requirement of the differential equations for DV to be Lipschitz
continuous, and the notations F’ > € and ~F will be illustrated in more detail in
Sects. 3.5.6 and 3.5.7 after side deductions for quantifiers have been explained in
Sect. 3.5.5. Finally, global rules can be combined with generalisation ([|gen,()gen)
to strengthen postconditions as needed, similarly to rules ind’ and con’ from p. 86.
A notable special instance of rule DV is the following case for quantifier-free DA-
constraints:

F3e>0V*(=F Ay — (F' > s)f}...f,")
1 n
X|=60iA. . AxX, =0, \~Fly (X} =01 A..AX, =0, A\ X)F

168 3 Differential-Algebraic Dynamic Logic DAL

Derivability and Proofs

Provability can be defined as a simplified version of Definition2.11, because all
DAL rules have only one conclusion; so a proof will be inductively defined as a tree,
not as an acyclic graph (as was necessary for the quantifier rules from Chap. 2).

Definition 3.16 (Provability). A formula y is provable from a set @ of formulas,
denoted by @ Fpar Vv, iff there is a finite set @y C @ for which the sequent &y - v
is derivable. Derivability is inductively defined so that a sequent @ - ¥ is derivable
iff there is a proof rule of the DAL calculus (Definition 3.15) with conclusion @ -+ ¥
such that all premises of the rule are derivable.

3.5.5 Deduction Modulo by Side Deduction

The quantifier rules constitute a purely modular interface to mathematical reason-
ing. They can use any theory that admits quantifier elimination and has a decidable
ground theory, e.g., the theory of first-order real arithmetic, which is equivalent
to the theory of real-closed fields [81]. Unlike in deduction modulo approaches of
Dowek et al. [103] and Tinelli [290], the information given to the background prover
is not restricted to ground formulas [290] or atomic formulas [103], and the effect
of modalities has to be taken into account.

Integrating quantifier elimination to deal with statements about real quantities is
quite challenging in the presence of modalities that influence the values of variables
and terms. Real quantifier elimination cannot be applied to formulas with mixed
quantifiers and modalities such as 3x [x’ = —x;x:=2x]x < 5. To find out which first-
order constraints are actually imposed on x by this DAL formula, we have to take
into account how x evolves from dx to x < 5 along the hybrid system dynamics.
Hence, our calculus first unveils the first-order constraints on x before applying QE.
To achieve this in a concise and simple way, we use side deductions that we have
introduced in previous work [231].

The effect of a side deduction is as follows. First, the DAL calculus discov-
ers all relevant first-order constraints from modal formulas using a side deduction.
Secondly, these constraints are re-imported into the main proof and equivalently re-
duced using QE, and then the main proof continues. For instance, an application of
rd to a sequent I' = A,3x ¢ starts a side deduction (marked (%) in Fig.3.10) with
the unquantified kernel I' = A, ¢ as a goal at the bottom. This side deduction is car-
ried out in the DAL calculus until x no longer occurs within modal formulas of the
remaining open branches I; - A; of (x). Once all occurrences of x are in first-order
formulas, the resulting subgoals I; - A; of (x) are copied back to the main proof and
QE is applied to eliminate x altogether (which determines the resulting subgoal of
rule r3 on the upper left side of Fig. 3.10). The remaining modal formulas not con-
taining x can be considered as atoms for this purpose, as they do not impose con-
straints on x. Formally, this can be proven using the coincidence lemma 2.6. When

3.5 Proof Calculus 169

Fb>0
Q&i QE(3d ((||d||* <b*) A (dy > 0Ady >0))))QE
Fdy>0Ady, >0
S Fe>0Vx1,x2 (x1 < p1Vxp < pr —d) > €Ndy > €)
F > <b? PYE(Z(0))(x1 > p1 Ax2 > po)

;§© " Fdl* <6 A (F(0))(x1 > pi Axa > p2)
3P 3d([dIP <0 A F(0)) (0 > pr A > p2))
“OEpFd (|dIT < B A(F(0) (51 = prAx = pa))

QE QE

Fig. 3.11 Nested side deductions and differential variants for progress property

several quantifiers are nested, side deductions will be nested in a cascade, as they
can again spawn further side deductions. According to the applicability conditions
of quantifier rules, inner nested side deductions need to be completed by QE before
outer deductions continue. For instance, further side deductions started within (x)
of Fig.3.10 will be completed before (x) continues and the quantifier elimination
result of (%) is returned to the main r3 application.

Example 3.13 (Aircraft progress). To illustrate how our calculus combines arith-
metic with dynamic reasoning using side deductions, we look at an aircraft example.
Using the notation from Sect. 3.4 where .% (@) denotes the flight equation with an-
gular velocity o, the following DAL formula expresses a simple progress property
about aircraft: The aircraft at x can finally fly beyond any point p € R? by adjust-
ing its speed vector d appropriately, using only speed vectors d € R? of bounded
speed ||d|| < b, ie., ||d||> <b? =d? +d3 < b*:

Vp3d (||d|)* < b* A(F(0))(x1 = p1 Ax2 > p2)). (3.6)

There, point p is constant during the evolution, i.e., pj = p5 =0 and b’ = 0. The
DAL proof in Fig. 3.11 proves this property using nested side deductions for nested
quantifiers and differential variant induction DV. Applying 1V in the main branch
yields a side deduction for quantifier Vp, which, in turn, yields another side deduc-
tion by applying r3 for the nested quantifier 3d . O

These nested side deductions in Fig. 3.11 are inlined and indicated by indenting the
side deductions, with arrows marked “side” pointing to the start of the respective
inner side deduction and arrows marked “QE” pointing back to the continuation
of the outer deduction (as in Fig.3.10). The two branches for the side deduction
for r3 recombine conjunctively and, after quantifiers are re-added, quantifier elim-
ination yields » > 0, which reveals the parameter constraint on the speed bound b.
Consequently, property (3.6) holds true and the proof closes for all positive speed
bounds b > 0. The right branch of the inner r side deduction uses differential vari-
ant induction DV, as will be illustrated in Sect. 3.5.7. There, the quantifiers for x,x;
result from the universal closure V% in DV. The subsequent innermost r3 side de-
duction can be abbreviated by directly applying QE, because the affected formula

170 3 Differential-Algebraic Dynamic Logic DAL

already is first-order. That is, the side deduction for 3¢ is the identity proof with
zero rule applications.

As with the other aircraft examples in this chapter, formula (3.6) is provable
in our theorem prover KeYmaera within a few seconds, despite the complicated
underlying aircraft dynamics.

3.5.6 Differential Induction with Differential Invariants

The purpose of DI and DV is to prove properties about continuous evolutions by
differential induction using differential invariants or differential variants, respect-
ively. They work with the differential constraints directly instead of with the com-
plicated (possibly undecidable) arithmetic of their solutions. Unlike approaches us-
ing solutions [125, 228, 231, 233, 235], differential induction can even be used
to verify systems with nondeterministic quantified input, which would otherwise
cause quantified higher-order functions for the time-dependent input of the solu-
tions. Solutions of differential equations lead to a quantifier over time (see d.Z rules
[',{} in Fig.2.11). In addition to their dependency on time, solutions of quantified
differential equations or differential equations with input disturbance depend on a
function u : [0,00) — R that specifies how this input u(r) changes over time 7. When
generalising solution-based proof rules for these situations, quantification over dis-
turbances would thus lead to quantifiers over functions in higher-order logic, as in
Vu: R — RVt>0(x:=y,(t))@9, where y,(¢) is the solution at time ¢ depending on
the input disturbance function u. With the theory of differential induction, we avoid
these higher-order quantifiers in the proof calculus. Further, unlike in discrete induc-
tion, differential induction proof rules exploit continuity of evolution and knowledge
of the differential constraints for a continuous induction step. We demonstrate the
capabilities and the necessity of the requirements of differential induction rules in a
series of examples and counterexamples.

Differential Invariants

Rule DI uses differential induction to prove that F' is a differential invariant, i.e., F
is closed under total differentiation (Definition 3.13) relative to the differential con-
straints. For this, the premise of DI shows that the total differential F'—i.e., D(F)
with 7’ replaced by 0 for unchanged variables z— holds within evolution domain
when substituting the differential equations into F”’. Now, if F holds initially (ante-
cedent of conclusion), then F itself is sustained (succedent of conclusion). Intuit-
ively, the premise expresses that, within j, the total derivative F’ along the differen-
tial constraints is pointing inwards or transversally to F but never outwards to —F;
see Fig. 3.12. Intuitively, if we start in F and, as indicated by F’, the local dynam-
ics never points outside F, then the system always stays in F when following the
dynamics. At this point, it is important to note that, even though meta-proofs about

3.5 Proof Calculus 171

Fig. 3.12 Differential invari-
ants

DAL involve analytic reasoning, proofs within the DAL calculus are fully alge-
braic, including the handling of differential constraints by DI. Further observe that
the premise of DI is a well-formed DAL formula, because all differential symbols

are replaced by non-differential terms when forming F ’f} . .3,".

1 n
Example 3.14 (Quartic dynamics). As a first simple example, consider the differen-
tial equation x’ = x*. It is not so easy to see the solution of this differential equation.
Still, with implicit means of differential induction, we can establish easily that the

solution always stays above % whenever the dynamics initially starts above %:

*
' FVx (x* > 0)
DIXZ}"_ [.X/:.x4}x2 1

Bl

This deduction proves the invariance of x > % along the differential equation x’ = x*

by differential induction and without having to solve the differential equation. To ap-
ply the differential induction rule DI, we form the total derivative of the differential
invariant F = x > % and obtain the differential expression F’ = D(x > %) =x>0.
Now, the differential induction rule DI takes into account that the derivative of state
variable x along the dynamics is known (the trick, of course, is to show why this
intuitive reasoning is sound, which we will prove in Sect. 3.6). Substituting the dif-
ferential equation ¥’ = x* into the inequality above yields F” ﬁ =x* >0, whichis a
valid formula and closes by quantifier elimination with rvV. Observe how elegantly
differential induction establishes the desired result indirectly by working with the
differential equation itself in an algebraic way instead of requiring its solution.

Even more so, for the differential equations x’ = x> 4+ x* or x’ = x> — 4x + 6, solu-
tions are hard to obtain both symbolically and numerically. With differential induc-
tion, however, we directly establish the following result about their dynamics:

*
r FVx (3(x* +x*) > 0)
Dl3x2%F[x’:x +x43x >

1
1

*
g FVx(3(x* —4x+6) > 0)
Dl3x2%F[x’:x2—4x+6]3 >1

172 3 Differential-Algebraic Dynamic Logic DAL
For the latter proof, note that 3(x*> — 4x+6) = 3((x —2)>+2) > 0. O

Example 3.15 (Cubic dynamics). Similarly, differential induction can easily prove
that % < 5x? is an invariant of the cubic dynamics x’ = x; see the proof in Fig. 3.13a
for the dynamics in Fig. 3.13b. To apply the differential induction rule DI, we again

*
r Fvx (0 <5-2x(x))
Dl_% <5 Y :x3]% < 5x%

Fig. 3.13a Cubic dynamics proof Fig. 3.13b Cubic dynamics

form the total derivative of the differential invariant F = % < 5x2, which gives the
differential expression F’ = D(% < 5x%) =0 < 5-2xx'. Now, the differential induc-
tion rule DI takes into account that the derivative of state variable x along the dy-
namics is known. Substituting the differential equation x' = x> into the inequality

3
yields F"; =0 < 5-2xx, which is a valid formula and closes by quantifier elimin-
ation with rV. O

Example 3.16 (Linear versus angular speed). Consider the following simple proof,
which shows that the speed v of the aircraft with position x is maintained even when
it changes its angular velocity @ nondeterministically during the flight (as in mode
free of Fig.3.7). Again, recall the flight equation with angular velocity w:

x/] =d /\x/2=d2/\d1 Z—G)dz/\dé:wdl (ﬂ((x))*)
X
QEK F QE (Vx1,x,Vd),da Vo (2d (—0dy) + 2dr 0d; = 0))
i - Vx1,x2 Yy, do Vo (2d) (— 0da) + 2dr 0dy = 0)) QE
Pl + & =+ [Bo 7 (o)) d} +d3 =V?
g@?ﬁf Fd?+d2 =12 P07 (0))d+d2 =1?
YW (d +d3 =v - B F(0)]d} +d3 =1?)

The total derivative of the property F = d% + d% = ? for differential induction with
DI is F' = D(d} +d; =v*) =2d,d} +2d»d, = 2v/. Substituting the differential
equations .Z (@) of flight yields F’;,l‘"dz ;’;’1 0, =2d,(~wd>) +2drwd; = 0, which is
valid and closes by quantifier elimination. This example shows the difference of dif-
ferential continuous evolution (of d;,d;) and nondeterministic continuous evolution

(of). The DA-constraint specifies how the d; evolve along differential equations;

3.5 Proof Calculus 173

hence d{ is substituted in F’. For @, in contrast, the DA-constraint is nondetermin-
istic (3w) and does not specify how @ changes precisely. In particular, there is no
equation for @’ that could be used for substitution. Yet such an equation is not even
needed for forming the premise of DI, because, after bound variable renaming, @
cannot occur in F, since the scope of 3@ ends with the DA-constraint and does not
extend to postcondition F. In the proof, the quantifiers for x; and d; result from the
universal closure V¥ in DI. The quantifier for ® is introduced by DV and ensures
that all possible evolutions of @ are taken into account as there is no specific equa-
tion for @’. After all, @ is a quantified input and we cannot know a specific value
for its slope, but have to expect any (V@) choice. Finally, note that in such cases
without existential variables, side deductions can be inlined; see Chap. 2 for formal
details on proof rules with Skolem function terms. O

Requirements of Differential Invariants

Next, we illustrate why the requirements formulated for the proof rule DI are neces-
sary in general.

Counterexample 3.17. For soundness of differential induction, it is crucial that
Definition 3.13 defines the total derivative D(F V G) of a disjunction conjunctively
as D(F) AD(G) instead of as D(F)V D(G). From an initial state v which satis-
fies v = F, and hence v |= F V G, the formula F V G only is sustained differentially
if I itself is a differential invariant, not if G is. For instance, x; > 0V d]Z + d% =12is
no differential invariant of 3@ % (®), because x; > 0 can be invalidated by appro-
priate curved flights along .7 (®); see formula (3.6). In practise, splitting differential
induction proofs over disjunctions can be useful.

Note, however, that D(FV G) = D(F) AD(G) is not the only definition that
works. We could just as well define D(F vV G) = (F AD(F)) V (GAD(G)) instead.
It is a simple exercise to show soundness of this modification. O

Counterexample 3.18 (Restricting differential invariance). It may be tempting to
suspect that in DI the differential invariant ' only needs to be differentially in-
ductive at the states where F actually holds true. After all, the rule is used to prove
that F stays true all the time, and in discrete loop induction (ind), the invariant ¢ can
also be assumed to hold when showing the induction step in the premise. So why
did we not assume F when proving F’ in the premise of rule DI? See Fig. 3.14 for a
tempting attempt of what a proof rule could be. But the differential induction needs

Fig. 3.14 Unsound restriction
of differential invariance
9 n
)—V“(F/\XHF’{I‘...ZT)

XIFF[¥] =601 A AX, =0, \X]F

to hold in a neighbourhood, such that adding F' (or even just the border of F) to the

174 3 Differential-Algebraic Dynamic Logic DAL

assumptions in the premise of DI would be unsound! Consider the counterexample
in Fig. 3.15a, where the differential invariance restricted to ' would seem to indic-
ate the region x> < 0 was never left when following the dynamics x’ = 1. This is,
of course, completely counterfactual as the dynamics in Fig.3.15b shows, where
region x* < 0 is actually left immediately when following the dynamics x' = 1.

X X0+t
* (unsound) J N
I—V)c(x2 <0—2x<0)
X<O0FW=12<0 0+ !
Fig. 3.15a Restricting differential invariance Fig. 3.15b Linear dynamics

Thus, although restricting the domain where proof rules require differential in-
variance appears to be a tempting idea, we have to be very careful to ensure the
proof rules are sound in this subtle domain. In fact, the same counterexample in
Fig. 3.15a also demonstrates unsoundness of other approaches that have been pro-
posed to handle nontrivial differential equations [251, 145]. With a minor variation
(replacing assumption x> < 0 in the premise by x> = 0), Fig. 3.15a also shows that
it is not sufficient to restrict the differential to the border of F'. The problem causing
this unsoundness is circular reasoning and the fact that derivatives are only defined
in domains with non-empty interior. Strictly speaking, in the beginning we only
know invariant F to hold at a single point (antecedent of conclusion of DI). Now if
we assume F' to hold in some domain for the induction step (premise of DI), then,
initially, we only know that F holds in a region with an empty interior. This is not
sufficient to conclude anything based on following derivatives, because these are not
defined on regions with an empty interior. Thus, the reasoning in Fig. 3.15a assumes
more than it has proven already, which explains the unsoundness, and the unsound-
ness of the rule in Fig. 3.14. O

This counterexample illustrates that differential invariance is a powerful but also
subtle matter and that we have to prove soundness of the proof rules very carefully.
We prove soundness of the DAL calculus and its differential induction principles in
Sect. 3.6. In particular, we cannot generally use differential invariants for proving
their continuous induction step. If, however, F' describes an open set (e.g., F' only
involves strict inequalities), then DI is sound even when adding F to the assumptions
of the premise as in Fig. 3.14. Likewise, F' can be added to the assumptions of the
premise when strengthening F”’ to strict inequalities. We will prove both refinements
in Sect. 3.7. Furthermore, differential strengthening (DS) can be an extraordinarily
successful proof technique for successively enriching evolution domain restrictions
by derived invariants until F itself becomes differentially inductive, as we illustrate
in Sects. 3.10 and 3.11. Also if polynomial solutions exist, they can be used as
differential invariants.

3.5 Proof Calculus 175

Counterexample 3.19 (Negative equations). It is crucial for soundness of differen-
tial induction that F be not allowed to contain negative equations. In the following
counterexample, variable x can reach x = 0 without its derivative ever being 0; again,
see Fig. 3.15b for the dynamics.

* (unsound)
FVvx(1+#£0)
x#0F [=1]x#0

If, instead, both inequalities x < 0 and x > 0 are differential invariants of a system
(e.g., of the differential equation x’ = x), then x # 0 can be proven indirectly by
representing it equivalently as x < 0V x > 0. We pursue this further in Example 3.29
in Sect. 3.7. a

Differential Weakening

A useful special case of the differential refinement rule [DR] is the following derived
weakening rule, with which we can assume the evolution domain constraint) to
hold for all reachable states.

Lemma 3.6 (Differential weakening). The following is a derived proof rule:

E VUYL Y (X = 9)

DR’
(DR F Oy I =0iAAx,=6,A%)|¢

Proof. Rule [DR'] is sound, because y is true along all state flows of the DA-
constraint and ¢ is a consequence of ¥ in all reachable states (as overapproximated
by V%) by premise. Rule [DR’] can be derived as follows:

KQE Wy VeV Y (g g)
P
S Hl—[l._a’l/\ /\xn.—dn/\x)f’ll...;’s]q)
YRy YVdy L Ny ([=dy A Axi=dy AL 89)
By 3 3d . 3, (= d A A =da A g)]0
PRI 3y . 3y 3dy . 3dy (X, =di A AX, = d N)]0
PRI [3yy . 3y (8, = B A~ AX, = B, A)]0

The second application of [DR] uses the fact that fully nondeterministic continuous
state change is equivalent to fully nondeterministic discrete state change, as they
generate the same transitions. Finally, ¥y — ¢ can be obtained by bound variable
renaming. a

176 3 Differential-Algebraic Dynamic Logic DAL

Differential Invariants for Disturbance

So far, we have used differential induction rule DI for various differential equations.
Yet proof rule DI and the technique of differential induction is more general than
that. The rule also works for DA-constraints with quantifiers, differential inequalit-
ies, or systems with disturbance in the dynamics.

Example 3.20 (Disturbance in the train dynamics). Differential induction can be
used to handle differential inequalities and disturbance in differential equations.
Continuing Example 3.9 from p. 159, let us abbreviate the differential inequality

Z=vAha—1<V <a+uiv>0 (3.1%)

succinctly by z”~a. This differential inequality characterises that the train at posi-
tion z with velocity v follows approximately the chosen acceleration a, with a devi-
ation from a that is bounded by lower bound —/ < 0 and upper bound u > 0. Now,
for the choice of a:= —b for braking, we can prove that the train that we considered
in Sect. 2.5.3 always stays inside its movement authority m, despite the differential
inequality disturbance in the dynamics, when starting in an initial state that satisfies:

¢ =V <2(b—u)(m—2)Ab>u>0A1>0.

See Fig. 3.16 for a proof. The proof uses differential strengthening rule DS to aug-

*

Yo E VA (—1 <d <uhv>0—2v(d—b) < —2v(b—u)) %

DLy Ed(—I<d<uni = —b+dAv>0)o Y EVEGS0NG — 2z <m)
PRI = 2 — b Av > 0]9 PRI [— b Av>0 A 9lz<m
DS O ["~—bAv>0lz<m
e Fo—["~—bAv>0z<m

Fig. 3.16 Proof of MA-safety in braking mode with disturbance

ment the differential inequality 7"~ — b with ¢ as an auxiliary invariant. The result-
ing right branch where DS added ¢ to the DA-constraint can then be proven easily
using differential weakening [DR’] to show that the newly augmented evolution do-
main region v > 0 A ¢ implies the postcondition z < m. In the left branch, we use
differential induction rule DI to prove that the auxiliary invariant ¢ that we assumed
in the right branch is actually an invariant of the dynamics and can thus be added
soundly to the evolution domain restriction in the right branch, because ¢ is a pseudo
restriction. Before the differential induction DI on the left branch, we use differen-
tial refinement [DR] for an equivalence transformation that replaces the differential
inequality 7/~ — b from (3.1) with a quantified DA-constraint with a quantifier for
the disturbance d that is restricted to the domain —/ < d < u:

Jd (-1 <d<ul =vAV =—-b+dAv>0). (3.7)

3.5 Proof Calculus 177

The equivalence of the quantified DA-constraint (3.7) with disturbance and the dif-
ferential inequality (3.1) that is required for applying [DR] can be established easily
using Lemma 3.3. More detailed examples for properties of dynamics with disturb-
ance, even equivalence properties, can be found in Sect. 7.4. O

Differential Invariants and Oscillation

Differential invariants are an interesting proof technique also for proving properties
of dynamical systems with oscillation. In these systems, solutions of the differential
equations cannot (really) be used for verification, because the solutions of oscillating
processes involve trigonometric functions of undecidable classes of arithmetic.

Example 3.21 (Damped oscillator). Recall the damped oscillator from Example 1.3
on p. 8, which corresponds to the DA-constraint

X =yAy = —0’x—2dwy (3.8)

with parameters @ > 0 (for the undamped angular frequency) and d > 0 (for the
damping ratio). See Fig. 3.17 for one example of an evolution along this continuous
dynamics. Figure 3.17 shows a trajectory in the x,y space on the left, and an evolu-

Fig. 3.17 Trajectory and evolution of a damped oscillator

tion of x over time ¢ on the right. For the damped oscillator dynamics, we can easily
prove the following invariance property:

*
r ® >0,d >0+ VxVy (20 xy — 20%xy — 4dwy* < 0)
Pln>0,d > 0,022 +y2 < F ¥ =yAY = —0*x —2dwy|w?x® +y2 < 2

The total derivative of the property F = ®’x>+y> < ¢? for differential induc-
tion with DI is F' = D(0*x* +y*> < ¢?) = 20%xx’ +20w'x> 4 2yy’ < 0. Substitut-
—w*x—2dwyo 0 0

ing with the differential equations (3.8) gives F’ z Iy o d o

valent to:

which is equi-

178 3 Differential-Algebraic Dynamic Logic DAL
20%xy + 2y(—w*x —2dwy) < 0 = 20*xy — 20%xy —4dwy* <0 = —4dwy’ < 0.
This formula is valid and closes by quantifier elimination (1V), because dw > 0. O

Example 3.22 (Switched damped oscillators). Recall the switched damped oscillator
from Example 1.3, which switches between two different damped oscillators of the
form (3.8) for different choices of @ and d. The switched damped oscillator switches
from one damped oscillator to the other at the diagonals of the state space. See
Fig. 3.18 for an illustration of one possible evolution of the system. The hybrid sys-

Fig. 3.18 Trajectory switch-
ing between two damped

oscillators
2w

tem switches between two different damped oscillators at the switching surfaces
depicted by the diagonal lines in Fig. 1.6 on p.8 from one mode (shown in solid
curves, with smaller) to the other mode (shown in dashed curves, with greater ®)
and back again. At the solid diagonal, the system switches to the dynamics shown by
a solid curve (with a smaller w value), and at the dashed diagonal, it switches to the
dynamics shown by a dashed curve (with greater @ value). We model a generalised
parametric version of a corresponding switched damped oscillator in the first line
of Fig.3.19, with subsequent abbreviations. More generally, we assume the system

%

) 16

0= (2:TU(x=ay;0:=20..)U(x=by;0:=

S1RS

where ¢ =w 20/\(120/\(1)2)62-i-y2 <c
P =x=yNy = —0*x—2dwy

2T = Mrue
d 20)% +12
(‘.’x:ay;a)::2a)..)z?x:uy;a)::2a);d::E;c::c(wz)f+12
2,12
w 0] o +1
N — by (1) — — — Y —hv @) — — =D =
(2x=by;m: 2..)_.x by,m: 2,(1. 2d;c: L(2(u)2+12

Fig. 3.19 Parametric switched damped oscillator system

switches on a diagonal of the form x = ay (dashed diagonal) to the faster angular fre-

3.5 Proof Calculus 179

quency (@ :=2®), and switches to the slower angular frequency(w := %) at a diag-
onal of the form x = by (solid diagonal). When the undamped angular frequency ®
changes, the damping factor d is changed conversely and the range coefficient ¢
adapts to the current .

Note that the system in Fig.3.19 does not force the system to switch modes
eagerly (there is no evolution domain restriction on the differential equations). Yet,
while the system does not force switching, it only allows switching at the respect-
ive diagonals, when the tests 7x = ay or ?x = by are successful, which is all that
we need. The intuition why we do not need to enforce switching to obtain a safe
model is that the previous example, Example 3.21, showed that the continuous DA-
constraint is safe and only switching could make it unsafe. But comparing the safe
(and stable) evolution in Fig. 3.18 with the unsafe (and even divergent) evolution in
Fig.3.20, we find that the choice of a and b for the switching surfaces is crucial,

Fig. 3.20 Instable traject-
ory switching between two
damped oscillators

which is the only difference between both evolutions. How do we find out which
choices of parameters a and b are safe?

With differential induction (and differential strengthening and differential weak-
ening, respectively), we can analyse the safety property in Fig. 3.19 of the switched
damped oscillators, which conjectures that the system always stays within the re-
gion ®’x* +y* < c. We analyse this property in the DAL proof in Fig.3.21, using
the abbreviations from Fig. 3.19.

The proof follows an induction by proof rule ind with invariant ¢ and then uses
differential strengthening DS to show that ¢ is an auxiliary invariant of the DA-
constraint Z, which can be proven by differential induction DI in the left branch
immediately. Consequently, differential strengthening rule DS adds the auxiliary in-
variant @. This rule adds auxiliary invariant ¢ into the evolution domain restrictions
on the right branch after it has been proven € on the left branch to be invariant
under the dynamics by DI. The addition of ¢ on the right branch then is a pseudo
restriction of the dynamics, because ¢ is an invariant. The right branch now uses
the (derived) differential weakening rule [DR'] to overapproximate the dynamics to
the new evolution domain restriction ¢. From ¢, the remaining switching dynamics
of the DA-program can be proven by splitting it into the three cases resulting from

180 3 Differential-Algebraic Dynamic Logic DAL

*

'¢I—¢ o —-2<a<?2 ¢H—bz>1
Yo - [2T]9 ¢ F [(x=ay0:=20.)]p A[(%x=by:0:=2)¢
“ ¢+ 2T N [(2x = ay; 0:=20.)9 A[(2x=by;0:=)¢
] P [TU(x=ay;0:=20..)U(%x=by;0:=2..))]¢
- O ¢ = [TU(x=ay;0:=20..)U(x=Dby;0:=9F..))]¢
* v OEYV (= [TU (M =ay;0:=20..)U(x=by;® —%))M))
Yok [7)9 1PK) OF[ZA9][(TU (I =ay;0:=20..)U(x=by.0:=2.))]¢

bs 0 [2)[0TU (X =ay;0:=20..)U(x=hby;0:=2..))]¢
1 [2: T U (%x = ay;0:=20..)U(x=by;0:=2..))]0
ind OF[(2; TU (M =ay;0:=20..)U(x=by;0:=2..)))]¢
- Fo—[(2:(TU(x=ay;0:=20..)U(x=by;0:=2..))) ¢

(2]
2"

@«
2

Fig. 3.21 Parametric switched damped oscillator proof

the three cases of the nondeterministic choice by rules [U],Ar. The leftmost of those
branches is provable by the axiom rule ax directly, the rightmost two cases need a
few more rule applications, including quantifier elimination, and then lead to the
two branches indicated on the top right:

¢ —-2<a<2 and ¢|—b22§
The left case corresponds to the choice (?x = ay; w:=2®..), and the right case to
the choice (?x = by; := ¢ ..). From this proof, we can thus identify the constraints
on the switching regions a and b that we need for the safety property to hold —
quite similarly to our approach in Sect.2.9 and, later, in Sect.3.11. The resulting
constraints we identify by combining the missing requirements are:

1
—2<a<2Ab? > -, (3.9)

b.)

In particular, when we add these assumptions to ¢, the proof in Fig.3.21 closes
successfully, showing that the switched damped oscillator does not diverge but stays
inside its region under these constraints.

Observe that, even though the system switches between two safe and stable con-
tinuous modes (damped oscillators), it is not at all evident that the switched damped
oscillator is safe. In fact, the counterexample in Fig.3.20 shows that surprisingly
small variations of a and/or b make the switched system unsafe and instable, even
make it diverge to infinity. The discovered constraints (3.9) characterise the different
situations. For the evolution in Fig. 3.18, we have chosen the switching conditions
a=—1,b=1, and for Fig. 3.20 we have chosena = —1,b =0.5. O

3.5 Proof Calculus 181

Structural Properties of Differential Invariants

Differential invariants enjoy structural closure properties. They are closed under
conjunction (because of the conjunctive definition in Definition 3.13) and the next
lemma shows that they are closed under differentiation, which we summarise as:

F,G differential invariants then F A G differential invariant (of same system)
F differential invariant then D(F) differential invariant (of same system)

Lemma 3.7 (Closure properties of differential invariants). Differential invari-
ants are closed under differentiation: The total derivative of a differential invariant
is an invariant of the same DA-constraint.

Proof. Let F be a differential invariant, i.e., satisfy DI for some DA-constraint of
the form Jy (x' = 6 A), using vectorial notation for x and y. Hence, the premise of

DI is provable: VxVy (y — F’ f/) where the quantifier for x results from the universal
closure V*. We have to show that the derivative F’ f/ is invariant and extend the proof
to a proof of [Jy (x' = 8 A x)]F'% by weakening (Lemma 3.6):

k
Yo QE(vavy(x — F'9))
PRI 3y (X = 6 A Y)IF'Y

3.5.7 Differential Induction with Differential Variants

The differential induction techniques with differential invariants (rule DI) can prove
invariance properties. There is a dual proof technique of differential induction with
differential variants (rule DV') to prove reachability or attractor properties.

Differential Variants

Unlike the differential induction rule DI for differential invariants, rule DV uses
differential induction to prove that F is a differential variant, which is reached dif-
ferentially as an attractor region rather than sustained differentially as in DI. The
essential difference between DV and DI thus is the progress condition F’ > € in
the premise, saying that the total differential of F' along the DA-constraint is pos-
itive and at least some € > 0. There, F’ > € is a mnemonic notation for replacing
all occurrences of inequalities @ > b in F/ witha>b+¢€ anda>bby a>b+¢
(accordingly for <, >, <). Intuitively, the premise expresses that, wherever) holds
but F does not yet hold, the total derivative is pointing towards F'; see Fig.3.22.

182 3 Differential-Algebraic Dynamic Logic DAL

Fig. 3.22 Differential variants

Especially, F’ > € guarantees a minimum progress rate of € towards F along the dy-
namics. To further ensure that the continuous evolution towards F remains within J,
the antecedent of the conclusion shows that) holds until F' is attained, which can
again be proven using DI. Overall, the premise of rule DV shows that the dynamics
makes progress (at least €) toward F, and the antecedent shows that the dynamics
does not leave evolution domain restriction) on the way to F. In this context, ~F
is a shorthand notation for weak negation, i.e., the operation that behaves like —,
except that ~(a > b) =b > a and ~(a > b) = a < b. Unlike negation, weak neg-
ation retains the border of F, which is required in DV as y needs to continue to
hold (including the border of F) until F is reached. Especially, for rule DV, in-
variant J is not required to hold after ' has been reached successfully. The opera-
tions F' > € and ~F are defined accordingly for other inequalities (in rule DV, we
do not permit F to contain equalities; see Counterexample 3.25 below). Again, we
demonstrate differential induction and the necessity of its prerequisites in a series
of examples.

Example 3.23. As a very simple example for using differential induction with dif-
ferential variants, consider the property where we want to prove that (x' = a)x > b,
i.e., we can finally reach region x > b, when we follow the dynamics x’ = a long
enough. We analyse this DAL formula in the following DAL proof:

Fa>0
P 3e>0Vx(x<b—a>¢)
VW =ax>b

As the proof reveals, the property is valid if only a > 0, which makes sense, because
the system dynamics is then evolving towards x > b; otherwise it is evolving away
from x > b (if a < 0) or is constant (a = 0). For the above proof, we do not need
to solve the differential equations. Solving the differential equation would be trivial
here for a constant a, but is more involved when a is an arbitrary term. Thus, instead,
we just form the total differential of F =x > b, which gives F’ =x' > b'. When
we substitute in the differential equations x' = a and assume that o’ = 0,5’ = 0, we
obtain F'%% 9, =a > 0. Consequently, (F’ > €)%Y gives a > €. If we can prove
a > € holds for one common minimum progress € > 0, then the system makes some
minimum progress towards the goal and will reach it in finite time. This even holds
if we restrict the progress condition to all x that have not yet reached x > b or are on
the border of x > b, which is the assumption x < b in the premise. O

3.5 Proof Calculus 183

Example 3.24 (Aircraft progress). Recall the aircraft progress property that we
proved in Fig.3.11 on p.169. In the rightmost side deduction, DV is used to
prove that F =x; > p; Axp > p> is finally reached. There, the total derivative
is F' =x{ > 0AX, >0, which yields d; > O/\dz 2 0 when substituting the flight
equations . (@), because x| = dy,x = d», pj = p5 = 0. Consequently, for ® =0,
(F' > £)d} f,z ;/wdz ;’,dl g, g, is identical to (F’ > s)dl i 0, 0, , giving d; > e Ndy > €.
Slmllarly, the proof for1 fozrmula (3.6) can be generahée(li to differential inequalities,
again assuming d| = d), = p| = p, =0and b’ =0:

Vpﬂd(||d||2 <b*A (X} >dy Ny > dy)(x1 > pr Axa > p2)).

Using differential refinement rule (DR) and Lemma 3.4, the differential inequalities,
which express lower bounds on the evolution of x; and x;, can be reduced equival-
ently to differential equations with quantified disturbance u € R?:

Vp3d .. (Fu(x| =dy +uy Axh =dr+uz Aup > 0Aup > 0))(x1 > pr Axa > pa).

The proof for this DAL formula is identical to that in Fig. 3.11, except that DV now
yields VxVu ((x; < p1Vxa < p2)Aup >0Aup >0 — dy+uy > eNdy +up > €).
O

Requirements of Differential Variants

Like the proof rule DI for differential invariants, the proof rule DV for differen-
tial variants has requirements on the formulas. We illustrate why the requirements
formulated for the proof rule DV are necessary in general.

Counterexample 3.25 (Equational differential variants). Rule DV is not applicable
for equations like x = y. Even though x =y can be encoded as F =x <yAx >y,
the corresponding F’ > € =x"+ & <y Ax' >y + € is equivalent to false for € > 0.
Indeed, assuming a' = = = 0, the validity of a formula like (x' =aAy =b)x =
depends on a more involved relationship of the initial values of x and y and the
constants a and b: It is true, iff (x—y)(a — b) < 0V x =y holds initially.

More generally, differential variants cannot (directly) verify conjunctive equa-
tions as in (X =aAy =b)(x=0Ay=0) because differential variants guarantee
that a target region F' will be reached, but not when precisely. In particular, differen-
tial variants cannot guarantee that x = 0 and y = 0 would be reached simultaneously.
In fact, for a, b # 0, the above reachability property is only valid iff bx = ay Aax < 0
initially. O

Counterexample 3.26 (Minimal progress requirement). Unlike in discrete domains,
strictly monotonic sequences can converge in R. Thus, the premise F’ > ¢ for
an € > 0 of DV cannot be weakened to F’ > 0. To see why, consider the counter-
example in Fig. 3.23a, in which x converges monotonically to 0 along the dynamics
shown in Fig. 3.23b. This counterexample illustrates that differential variance is a

184 3 Differential-Algebraic Dynamic Logic DAL

X

X0
o
* (unsound) 3 ;
FVx(x>0——x<0) ¢
FX=—-xx<0 0+ t
Fig. 3.23a Monotonically decreasing con- Fig. 3.23b Convergent descent dynamics

vergent counterexample

false
r FVx(—x>0)
DL >0F [=—x]x>0

Fig. 3.23c¢ Non-inductive property in conver-
gent descent

matter that is no less subtle than differential invariance, and we have to prove sound-
ness of the proof rules very carefully. Moreover, this example demonstrates that, in
the presence of convergent dynamics, a property like x > 0 can be invariant even
though it is not differentially invariant; see Fig. 3.23c. O

Counterexample 3.27 (Lipschitz continuity requirement). As the counterexample in
Fig. 3.24a shows, Lipschitz continuity (or at least the existence of a solution of suf-
ficient duration) is, in fact, a necessary prerequisite for DV. For x = y = 0 initially,
the solution of the differential equations in Fig. 3.24a is x(¢) =t and y(¢) = tant. In
explosive examples like the corresponding dynamics in Fig. 3.24b, where solution y
grows unbounded in finite time, the duration of existence of solutions is limited so
that the target region x > 6 is physically unreachable. More precisely, the dynamics

* (unsound)
F3e>0VaVy(x <6 —1>¢)
FO=1AY =14+y)x>6

Fig. 3.24a Counterexample of unbounded Fig. 3.24b Explosive dynamics with limited
dynamics without Lipschitz continuity duration of solutions

is not well-posed beyond the explosive point of unbounded growth at the singular-
ity Z and is non-physical beyond that singularity. The reason this can happen is
that the differential equation is not (globally) Lipschitz continuous but only locally
Lipschitz continuous and disobeys divergence of time (Sect. 3.3). The condition of

(global) Lipschitz continuity is directly expressible as a formula for DV:

3.6 Soundness 185

ALYy . Yy Vg . VX, VLY VR L LOYE,
(01— 012+ + (0, —0,)> <L*((x1 —51)> + -+ (xa — 0)?)

where 6; denotes the result of substituting all x ;j in 6; with the corresponding %;, and
the y; with ;. Observe that, besides Lipschitz continuity, any other condition can be
used for rule DV that ensures the existence of a solution of sufficient duration. O

3.6 Soundness

In this section we prove that verification with the DAL calculus always produces
correct results about DA-programs, i.e., the DAL calculus is sound. In light of the
various subtleties and sources of unsoundness we have pointed out in the previous
sections, we will devote our attention to a very careful soundness proof.

Theorem 3.1 (Soundness of DAL). The DAL calculus is sound, i.e., every DAL
formula that can be derived in the DAL calculus is valid (true in all states).

Proof. The calculus is sound if each rule instance is sound. The rules of the DAL
calculus are even locally sound, i.e., their conclusion is true in state v if all its
premises are true in V. Local soundness implies soundness. The local soundness
proofs of (;),[;],(U),[U] and the propositional rules are as in Theorem 2.1. Similarly,
rules ind and con are local versions of induction schemes, and the proof is as in
Theorem 2.1; likewise for rules [Jgen,()gen. The local soundness of (:=),[:=] is a
generalisation of the proofs for update rules [37] to first-order DJ-constraints. The
proofs for (3),[3],(J),[J] are simple. Finally, our results from Theorem 2.1 can be
lifted to show that locally sound rules are closed under addition of the I", A context
in Definition 3.16. Soundness would even be closed under the addition of conjunct-
ive DJ-constraints as rule prefixes as in Definition2.11. For soundness, however,
conjunctive DJ-constraints are crucial here [37, 235] as these are deterministic.

r3 Rule r3 is locally sound: Let v be a state in which the premise is true, i.e.,

v E QE(Ix \(Ii+- 4)).

1

We have to show that the conclusion is true in this state. Using the fact that
quantifier elimination (QE) yields an equivalence, we see that state v also
satisfies 3x A\;(I7 - A;) prior to the quantifier elimination. Hence, for some
state V, that agrees with v except for the value of x, we obtain:

v = A\ H 4).

As the side deduction (%) in Fig.3.10 is inductively shown to be locally
sound, we can conclude that v, |= (I' = A,¢). Hence, v = 3x(I'F A, ¢).

186

DI

3 Differential-Algebraic Dynamic Logic DAL

Now the conjecture can be obtained using standard reasoning with quan-
tifiers and the absence of x in I';A by rewriting the conclusion with local
equivalences:

(A Q)=Ix(-['VAVO)=-T'VAVIX¢=I'FA,Ix¢.
(3.10)
The soundness proof for rV is similar since (3.10) holds for any quantifier,
as x does not occur in I',A. The proofs of 13 and IV can be derived using
duality of quantifiers.
By Lemma 3.3, there is an equivalent disjunctive normal form 2,V ---V 2,
of 2. Thus, it only remains to show that p(2) C p((21U...U%,)") as the
converse inclusion is obvious. Let ¢ be a differential state flow for a trans-
ition (v,) € p(Z). We assume that ¢ is non-Zeno according to Defini-
tion 3.12. Thus, there is a finite number, m, of switches between the dis-
juncts Z;, say Zi,,%i,,.--, i, Then, the transition (v, ®) belonging to ¢
can be simulated piecewise by m repetitions of 2, U...U Z,, where each
piece selects the respective part .@,-j. The proof for (D) is similar.
Local soundness of the rules [DR] and (DR) is an immediate consequence
of Lemma 3.3 and the respective semantics of modalities.
Rule DS can be proven locally sound using the fact that the left premise im-
plies that every flow ¢ that satisfies & also satisfies y all along the flow.
Thus, ¢ = 2 implies ¢ = 2 A x so that the right premise entails the con-
clusion.
Let v satisfy the premise and the antecedent of the conclusion as, other-
wise, there is nothing to show. Because D(F) is defined in terms of the
literals of F, we can assume F to be in disjunctive normal form (also see
Lemma 3.3). Consider any disjunct G of F that is true at v. In order to
show that F' is sustained during the continuous evolution, it is sufficient
to show that each conjunct of G is. We can assume these conjuncts to be
of the form ¢ > 0 (or ¢ > 0 where the proof is similar). Finally, using vec-
torial notation, we write x' = 0 for the differential equation system and Jy
for the chain of quantifiers. Now let ¢ : [0,r] — State(X) be any state flow
with ¢ = Jy (X' = 6 A x) beginning in ¢(0) = v. In particular, ¢ = Jyy,
which, by antecedent, implies v |= F, i.e., ¢ > 0 holds at v. We assume dur-
ation r > 0, because the other case is immediate (v = ¢ > 0 already holds).
We show that ¢ > 0 holds all along the flow ¢, i.e., ¢ = ¢ > 0.
Suppose there was a § € [0, r] where ¢ (&) |= ¢ < 0; this will lead to a contra-
diction. Then the function & : [0, 7] — R defined as &(t) = val(@(t),c) satis-
fies (0) > 0 > h({), because v = ¢ > 0 by antecedent. Clearly, ¢ is of the
order of D(c), because: @ is of order 1 for all variables in vector x, and trivi-
ally of order oo for variables that do not change during the DA-constraint.
Further, by bound variable renaming, D(c) cannot contain the quantified
variables y; hence, ¢ is not required to be of any order in y. The value
of ¢ is defined all along ¢, because we have assumed y to guard against
zeros of denominators. Thus, by Lemma 3.1, & is continuous on [0, 7] and

3.6 Soundness 187

DV

differentiable at every & € (0, r). The mean value theorem implies that there

is a & € (0,¢) such that (&) (£ —0) = h({) —h(0) < 0. In particular,

since § > 0, we can conclude that %(tt)(é) < 0. Now Lemma3.1 implies

that 247 (&) = val(§(&),D(c)) < 0. The latter equals' val(¢(£)",D(c)%)
by Lemma 3.2, because ¢ [= Jy (x' = 0 A x) so that §(§)y [= ' = 6 A x for
some u € R and because y' does not occur and y & c. This, however, is a con-
tradiction, because the premise implies that ¢ |= Vy (x — D(c)f, >0)asV*
comprises all variables that change during the flow ¢ along x' = 6, i.e., the
vector x. In particular, as (&)} = x holds, we have ¢(&)] |= D(c)% >o0.
First, we consider the quantifier free case, again using vectorial notation.
Let v be any state satisfying the premise and the antecedent of the conclu-
sion. Since Vv satisfies the premise and, after bound variable renaming, € is
a fresh variable, we can assume V to satisty v = V*(=F Ay — (F' > 8)3).
For DV, we required X' = 0 to be Lipschitz continuous so that the global
Picard-Lindelof theorem (Theorem B.2 or its corollary Corollary B.1) en-
sures the existence of a global solution of arbitrary duration » > 0, which is
all we need here. Let ¢ be a state flow corresponding to a solution of the
differential equation x’ = 0 starting in v of some duration r > 0. If there is
a point in time § at which @({) = F, then by antecedent, until (and includ-
ing, because ~F contains the closure of —F) the first such point, y holds
true during ¢. Hence, the restriction of ¢ to [0,{] is a state flow witness-
ing v = (X' = 0 A x)F. If, otherwise, there is no such point, then we show
that extending ¢ by choosing a larger r will inevitably make F true. We
thus have ¢ = —F A x and, by premise, ¢ = F/f?/ > g, because V* com-
prises the variables x that change during ¢. By Definition 3.13, F ’f/ >€is
a conjunction. Consider one of its conjuncts, say ¢’ f/ > ¢ belonging to a lit-
eral ¢ > 0 of F (the other cases are similar). Again, @ is of the order of D(c)
and the value of ¢ is defined along ¢, because ¢ |= ¥ and y is assumed to
guard against zeros. Hence, by the mean value theorem, Lemma 3.1, and
Lemma 3.2, we conclude for each § € [0, r] that

val(9($),¢) —val(9(0),c) = val(@(&),¢'7)(§ —0) > {val(9(0), &)

for some & € (0,&). Now as val(¢(0),€) > 0 we have forall § > f%m
that @(§) =c>0 and @(r) = ¢ >0, and even ¢(r) = ¢ > 0. By enlar-
ging r sufficiently, we have that all literals ¢ > 0 of one conjunct of F are
true, which concludes the proof, because, until F finally holds, ¢ = x is
implied by the antecedent as shown earlier.

In the presence of quantifiers (dy with vectorial notation), rule DV im-
plies a slightly stronger statement, because y is quantified universally in the
premise (and antecedent): F' can be reached for all choices of y that respect

" ForuecRlet ¢(&);‘ denote the (augmented) state that agrees with ¢(&) except that the value of y

is u.

188 3 Differential-Algebraic Dynamic Logic DAL

(rather than just for one). By antecedent, there is a u € R such that v/ = x.
Hence, vy satisfies the assumptions of the above quantifier-free case. Thus,
vy = (' = 8 A x)F, which ental}s that v‘|: Fy = OAX))F using u con-
stantly as the value for the quantified variable y during the evolution. ad

Consequently, we know that all formulas provable in the DAL calculus are valid and
hence reflect true properties.

3.7 Restricting Differential Invariants

Example 3.18 on p. 173 shows that differential invariant F' cannot generally be as-
sumed to hold in the premise of DI without losing soundness. Nevertheless, we
present two corresponding refinements of DI that are indeed sound, even though
they assume the differential invariant F to hold in the induction step.

Proposition 3.2 (Open differential induction). Using the notation of the proof
rulesDI, DV, the following variations of differential induction rule DI are sound (in
DI', F describes an open set):

0, o,
I—V“Vyl "'vﬂ(FAX—)F/X’:“'x;l)

Byr. 3 xFEEy.. 3 (X, =601 A---AX, =6, A Y)|F
F YOy L Y (FA Y — (F > 0)%...%)
1

/
Xn

Byi-. I xFE By I (xX] =01 A~ Ax, =0, A Y)F

(DI')

(DI")

Proof. The proof that rule DI’ is sound is similar to the soundness proof for DI in
Theorem 3.1, except that assuming ¢ (&) = —F only yields ~(0) > 0 > h({), which
does not lead to a contradiction. However, by using the fact that F is open, the
distance to the border of F is positive in the initial state ¢(0), which yields the
inequality ~(0) > 0 > h({), and the contradiction arises accordingly.

The soundness of rule DI” needs more adaptation. Repeating the argument for
DI, we can assume F to be of the form ¢ > 0. Suppose there was a 1 € [0,r]
where @(1) |= ¢ < 0, which will lead to a contradiction. Let § € [0, r] be the infimum
of these t; hence, ¢({) |= ¢ =0 by continuity. Then the function 4 :[0,r] = R
defined as i(t) = val(@(t),c) satisfies h(0) > 0 > h({), because v |= ¢ > 0 by ante-
cedent. By repeating the argument with Lemma3.1 as in the proof for DI, h
is continuous on [0,r] and differentiable at every & € (0,r) with a derivative of
%(I’)(é) =val(§(€),D(c)), which in turn equals val(¢(£),D(c)%), as @ = x' = 6.
Now, the mean value theorem implies that there is a £ € (0, {) such that

——(8)-(£—0) =h(§) —h(0) <0.

dh(r)
dr

. dh —
In particular, as { >0, we can conclude that %(é) :val((p(é),D(c)f/) <0.

This, however, contradicts the fact that the premise implies ¢(&) |= D(c)f, >0, as

3.8 Differential Monotonicity Relaxations 189

the flow satisfies @ = x and @(&) = ¢ > 0, because § > & is the infimum of the
counterexamples 1 with ¢(1) = ¢ < 0. O

Example 3.28. Consider the differential equation x' = x>. With either rule DI’ or rule
DI”, we can establish easily that the system stays above % whenever the dynamics

starts above i (refer to Fig. 3.13b on p. 172 for the dynamics):

*
FVx(x> 1 —x°>0)
DIx>%F W =xx> 1

v

Observe that this property is not provable with rule DI directly, because x* > 0 does
not hold for all x, but only for those where the invariant x > % is true already. O

Example 3.29 (Negative equations splitting). As an example with a negative equal-
ity consider the DAL formula x # 0 — [¥' = x]x # 0 with the negative equality
x # 0. In examples like these, differential induction does not work directly; see
Counterexample 3.19. Yet when we replace x # 0 by the equivalent x <0V x > 0,
we can prove invariance of this formula along the dynamics x’ = x separately by
reasoning by cases; see Fig. 3.25. In the left branch, we strengthen the differential

* *

v FVx(x<0—x<0) " FVx(x<0—x#0)
Py <OF W =xx<0 PRIy <OF [=xAx <0x £0 * similarly
bs x<O0F W =x]x#0 DSy >0 W =xx#0

! x<0Vx>0F ¥ =x]x#0

Fig. 3.25 Differential induction splitting over disjunctions for negative equations

equations with x < 0 by DS and prove that x < 0 is a differential invariant (by rule
DI’ or DI"). In the middle branch, we show that the auxiliary evolution domain
x < 0 implies the postcondition x # 0 by differential weakening [DR']. On the right
branch, there is a corresponding proof for strengthening with x > 0 by DS and prov-
ing differential invariance by rule DI’ and differential weakening by [DR'] to show
that x > 0 also implies x # 0. Note in particular that two different ways to use differ-
ential strengthening are required on both branches here when splitting differential
induction over disjunctions. O

3.8 Differential Monotonicity Relaxations

Evolution domain constraints of DA-constraints are helpful for differential induction
rule DI, because they provide stronger assumptions for the premise. In fact, the

190 3 Differential-Algebraic Dynamic Logic DAL

whole purpose of the differential strengthening rule DS is to enrich evolution domain
constraints of DA-constraints in order to weaken the subgoals of DI.

In contrast, evolution domain constraints are more demanding for differential
variant induction rule DV, because the antecedent of its goal requires that evolu-
tion domain region ¥ be shown to remain true throughout the evolution (after all,
evolution domains) of DA-constraints & are restrictions that can be used as as-
sumptions for [Z A x]¢ but have to be shown to hold true for (2 A x)¢). Similarly,
for evolution rules that are based on solutions of differential equations—rules (’),[']
from the . calculus in Fig.2.11 on p.79—evolution domain regions make the
subgoal formulas much more complex (even though they lead to weaker subgoals
for rule [']). In particular, evolution domain regions increase the number of quanti-
fier alternations in ('),['], which have the predominant influence on the complexity
of quantifier elimination [94].

For simplifying non-differential evolution domain region ¥ from [Z A x]¢ with a
DA-constraint 2, we can simply use the differential weakening rule [DR] to drop x:

1710
F[ZAx]¢

Less conservatively, we can approximate the assumption VO<7<r (.#;) x on the solu-
tion . in the subgoal of rule '] from Fig.2.11 by (.%7)x (or by x A{#)x) in a
sound yet incomplete way. If every evolution of the solution .#; satisfying y at the
end satisfies ¢, then every evolution along 7 satisfying y all the time must satisfy ¢
even more so. Thus, the following variant of ['] is sound (but less complete) where
S is the solution of the differential equation as for rule [']:

o =0 (X = () (X — ¢))
X, =61A..AxX, =0, Nx]¢

For simplifying non-differential evolution domain region) from (Z A)¢, we
can use the dual of the differential strengthening rule DS and show that y remains
true throughout the evolution along & (left subgoal, which can be handled using
DI) so that only some evolution along & remains to be found that actually reaches ¢
(right subgoal):

H12lx F(2)¢
F(Zr)¢

When using DI to prove the left subgoal [Z]yx by showing validity of a formula of

DS

the form V7 %/3, we actually show invariance of y along Z.

More generally, we can use differential-algebraic techniques similar to differen-
tial induction to prove the weaker property of monotonicity instead of invariance
of x.

Definition 3.17 (Monotonicity derivation). Let o be a DA-program. For a first-
order formula F, the following formula is called monotonicity derivation of F,
where the syntactic derivative D(a) is defined according to Definition 3.13:

3.8 Differential Monotonicity Relaxations 191

M*(F) = \M%(F) where {Fi,...,F,} is the set of all literals of F;
i=1
M%(a ~b) =V*(D(a) > D(b)) VV*(D(a) < D(b)) where ~ € {<,> <, >, =}.

Proposition 3.3 (Differential monotonicity). Let (.%;) be the DJ-constraint for the
solution at time t of the symbolic initial value problem for the differential equation 9
defined as x| = 01 \--- \xj, = 0, as in rule (') of Fig. 2.11. Let the non-differential
constraint X be a conjunction of atomic formulas without negative equalities; then
the following is a sound proof rule:

6
FIZ0(A (A N) FMT ()
FX=601AAX, =60, X)¢

~
—~

<
~

Proof. Local soundness is a simple consequence of the well-known fact that, for a
differentiable function f, monotonic increasing of f on an interval [c,d] is equival-
ent to f'(z) > 0 on (c,d). With this, the right subgoal implies that, for any conjunct
a > b of x (likewise for <, <,>,=), the value of a — b is either monotonically in-
creasing or monotonically decreasing along the flow. Either way, if ¥ holds in the
beginning and the end of a flow of some duration 7 (as implied by the left subgoal),
monotonicity implies that y holds all along the flow, so that the subgoals imply the
conclusion as in case (') of the proof of Theorem 2.1.

Formally, let ¢ be a state flow of an appropriate duration r following solu-
tion ., according to the left subgoal as in Theorem2.1. By the left subgoal we
have ¢(r) = ¢ (when r is the witness for 3r>0) and we only need to show that
¢ |= x. Consider a conjunct a > b of) and consider the case where the right
subgoal implies ¢(0) |= V7 (D(a) < D(b))f,, using vectorial notation for x and 6.
Then ¢ |= (d' <V’)f/, because the universal closure V¥ comprises all variables
that change during the flow ¢ along 2. Thus @ =d' <b' by Lemma3.2. Let
h:]0,r] — R be the function defined as h(t) = val(¢(t),a — b). Again, @ is of the
order of @’ — b’ (¢ is of the order 1 in each x; and of arbitrary order for other vari-
ables) and the value of a — b is defined all along ¢, because y guards against zeros
in x. Thus, Lemma 3.1 is applicable and # is differentiable at every & € (0,r). For
any ¢ € [0, 7], we have to show that ¢(&) = x. By the mean value theorem, there is
a & € (€, r) such that, when using Lemma 3.1, we have

h(r) =h(§) = (&) (r— &) =val(§(&),d' —b') - (r—{) <0

because Q(&) = d’ < b'. Thus, we have h({) > h(r) >0, since ¢(r) = x, which
implies that (r) Ea—b > 0and @(r) = a > b.

The other case where the right subgoal implies @(0) = V*(a’ > b') is simpler
using the fact that ¢ (0) = x and is, in fact, a direct consequence of the proof of DI
in Theorem 3.1. The other conjuncts of the form a < b,a < b,a > b, and a = b are
almost identical, because the monotonicity argument for a — b carries over easily, as
the respective conjunct holds before and after the continuous evolution. O

192 3 Differential-Algebraic Dynamic Logic DAL

Example 3.30 (Monotonic invariants in train control). Consider the differential con-
straints for train control (equation (2.7) on p. 62 in Sect. 2.4). For the DA-constraint
7 =vAV =aAT =1Av>0AT<Eg, evolution domain region v > 0A T < € can
be shown to be monotonic or convex with respect to the dynamics. That is, if it holds
in the beginning and at the end of an evolution, the invariant also holds in between.
Monotonicity is easy to prove with the above proof rule using the following sym-
bolic computations for the right subgoal (where V¥ is VzVvV7):

valoO
7V te

(V*(V = 0) vV (Y <0)) A (V¥(T > &) vV (T < €')))
= (V¥ (a>0)vV*(@<0)) A (V*(1>0)VvV*(1<0))

Observe that the invariant domain will not be a differential invariant, here, because
v >0 is only an invariant of 7 =v AV =a for a > 0. For any a, however, v > 0
will be either a monotonically increasing (if @ > 0 constantly) or a monotonically
decreasing (if a < 0 constantly) property, one of which is true for every constant a.
Thus, if v > 0 has been true before and after an evolution along 7 = vAV =a, it
must have been true throughout this evolution. Likewise, T < € never is a differential
invariant of T’ = 1, because the passing of time along 7/ = 1 will inevitably violate
T < € sooner or later. Still, it is a monotonically decreasing property. Consequently,
the monotonicity relaxation of Proposition 3.3 applies for the train control example,
thereby simplifying proofs with evolution domain regions considerably, because the
invariant only needs to be checked before and after rather than throughout the evol-
ution. For instance, this simplifies the proof of property (2.20) on p. 121. O

Similarly, the right subgoal of rule (')’ is a sufficient condition to ensure that rule [']’
is a complete replacement for rule [].

Counterexample 3.31 (Disjunctive monotonicity). For soundness of the differential
monotonicity relaxations, it is crucial that rule (')’ only accept conjunctive evol-
ution domain regions. As the counterexample in Fig.3.26a with the dynamics in
Fig. 3.26b shows, differential monotonicity relaxations do not hold for disjunctive
evolution domain regions, because the same disjunct has to hold before and after the
evolution for monotonicity arguments to be sound. Let y abbreviate the disjunctive
evolution domain region x < 1V x > 2. Then the differential monotonicity criterion
Vx (1 <0)VVx(1>0) would be fulfilled, but a different disjunct holds at the initial
state x = 0 than at the target x > 3 so that monotonicity implies neither that x < 1
nor that x > 2 holds in between.]

Counterexample 3.32 (Negative equalities). A similar counterexample shows why
rule (') does not allow negative equalities. Along the dynamics X' = 1 Ax # 2 we
cannot conclude from the truth of x # 2 before and after the evolution that, on the
basis of a condition on the derivative x’ # 0, x # 2 held true throughout the evolu-
tion. A continuous evolution from x = 0 to x = 3 still leaves x # 2 in between. O

3.9 Relative Completeness 193

3 ,\d/o x>3
2 A
* (unsound) 1 4
F3r>0 (x A (ci=x+1)(x Ax > 3)) 0 % % =1
x=0F ¥ =1AKx<1Vx>2))x>3 1 2 3
Fig. 3.26a Counterexample for disjunctive Fig. 3.26b Interrupted dynamics

monotonicity

3.9 Relative Completeness

As a consequence of the Incompleteness Theorem 2.2 for A% and the fact that
DAL is a conservative extension of d.Z (Proposition 3.1), the DAL calculus is not
effectively axiomatisable (yet even just reachability is undecidable for hybrid sys-
tems [156]).

It is easy to see that the relative completeness proof for A% (Theorem 2.3) gen-
eralises to DAL with only minor modifications when using the first-order logic of
DA-constraints as a basis in place of FOD (again, nested modalities can be avoided
when using quantifiers). The first-order logic of DA-constraints results from FOD
by allowing DA-constraints in place of differential equations inside modalities.

Theorem 3.2 (Relative completeness of DAL). The DAL calculus is complete
relative to DA-constraints, i.e., every valid DAL formula can be derived from tauto-
logies of the first-order logic of DA-constraints.

Proof. The proof is a simple adaptation of the proof of Theorem 2.3 for d.Z in
Sect. 2.7.2: In the proof of the program rendition Lemma 2.8, we replace all cases
for continuous evolutions along differential equations or for discrete jumps by the
following cases for DA-constraints & or DJ-constraints ¢, respectively:

The first-order formula jxv,iee, " results from _# by replacing all assignments of

any form x; := 6; with equations v; = 6;. The rest of the relative completeness proof

generalises immediately using the fact that the respective rules ((3),[:=]) for DJ-
constraints are symmetric, and hence equivalent, and their premises are of smaller
complexity. a

Note that, for generalising the relative completeness proof in the most simple way,
we formally need to allow update prefixes in DAL proofs as in Definition 2.10,
which is easily seen to be sound for deterministic DJ-constraints.

194 3 Differential-Algebraic Dynamic Logic DAL

3.10 Deductive Strength of Differential Induction

We analyse the deductive power of differential induction with respect to classes of
formulas that are allowed as differential invariants. For purely equational differential
invariants, the deductive power is not affected by allowing or disallowing proposi-
tional operators in differential invariants:

Proposition 3.4 (Equational deductive power). The deductive power of differen-
tial induction with atomic equations is identical to the deductive power of differen-
tial induction with propositional combinations of polynomial equations: Formulas
are provable with propositional combinations of equations as differential invariants
iff they are provable with only atomic equations as differential invariants.

Proof. We show that every differential invariant that is a propositional combina-
tion ¢ of polynomial equations is expressible as a single atomic polynomial equa-
tion (the converse inclusion is obvious). We assume ¢ to be in negation normal form
and reduce ¢ inductively using the following transformations:

o If ¢ is of the form p; = p» V g1 = ¢, then ¢ is equivalent to the single equation
(p1 —p2)(q1 —q2) = 0. Further, ¢’ = p, = p A ¢}, = ¢} directly implies

((p1=p2)(q1 —q2)) = 0= (p} — P2)(q1 — q2) + (p1 — p2) (41 — ¢5) = 0.

e If ¢ is of the form p; = p» A g1 = g2, then ¢ is equivalent to the single equation
(p1 —p2)?+ (q1 — q2)* = 0. Further, ¢’ = p| = p) Aq| = ¢}, implies

((p1 = p2)> + (g1 — 42)?) =0 =2(p1 — p2) (P —) +2(q1 — 02) (¢}, —) =O.

e If ¢ is of the form —(p; = p»), then ¢ does not qualify as a differential invariant,
because it contains a negative equality, which is disallowed for DI according to
the conditions in Fig. 3.9. O

Observe, however, that the required polynomial degree of atomic equations is larger
than for propositional combinations, which can have computational disadvantages
for quantifier elimination.

For general differential invariants, where inequalities are allowed, the situation
is different: We show that, in general, the deductive power of differential induction
depends on which class of formulas is allowed as differential invariants! Some DAL
formulas cannot by proven by a differential induction step with only atomic formu-
las but no propositional operators as differential invariants, while they are provable
immediately using unrestricted differential invariants.

Theorem 3.3 (Deductive power). The deductive power of differential induction
with arbitrary formulas exceeds the deductive power of differential induction with
atomic formulas: All DAL formulas that are provable using atomic differential in-
variants are provable using general differential invariants, but not vice versa!

3.10 Deductive Strength of Differential Induction 195

Proof. The inclusion is obvious. Conversely, we have to show that there are DAL
formulas that are provable with general differential invariants but not with atomic
differential invariants. Consider the following example, which is provable using rule
DI, i.e., the variant of DI for open sets (Sect.3.7), with the non-atomic formula
x> 0Ay > 0 as differential invariant:

*
FVxVy(x>0Ay>0—xy>0Axy>0)
DIy >0ny>0F [=xyAy =xy](x >0Ay > 0)

v

First, we show that this formula is not provable by a differential induction step
with only atomic formulas as differential invariants. Suppose there was a single
polynomial p(x,y) in variables x,y such that p(x,y) > 0 is a differential invariant
proving the above formula, which will lead to a contradiction. The conditions for
differential invariants (DI or DI') imply that the following formulas have to be valid:

I. x>0Ay>0— p(x,y) >0, as differential invariants have to hold in the pre-
state according to the antecedent of DI (or DI').

2. p(x,y) >0—x>0Ay> 0, as the differential invariant has to imply the post-
condition (when using [Jgen to show that the differential invariant implies the
postcondition).

In particular, x > 0Ay > 0 <> p(x,y) > 0 is valid, and p is not the zero polynomial.
Thus, p enjoys the property:

p(x,y) > 0forx >0,y >0, and, otherwise, p(x,y) <O0. (3.11)

Assume p has minimal total degree with property (3.11). Now, p(x,0) is a univari-
ate polynomial in x with zeros at all x > 0; thus p(x,0) = 0 is the zero polynomial,
hence y divides p(x,y). Similarly, p(0,y) = O for all y, and hence x divides p(x,y).

Thus, xy divides p. But by comparing the signs (cf. Fig. 3.27), we see that the poly-
nomial w also satisfies property (3.11) with a smaller total degree than p,
which is a contradiction. In detail: p(x,y) satisfies the sign conditions (3.11) indic-
ated in the outer part of Fig.3.27. It is divisible by xy, but % satisfies different

sign conditions (indicated in the middle part of Fig. 3.27). Yet, by flipping the signs,
w again satisfies the same sign conditions (3.11) as p(x,y) but with a smaller
total degree (indicated in the inner part of Fig. 3.27), which is a contradiction.

Similarly, there is no polynomial p such that x > 0Ay > 0+ p(x,y) =0, be-
cause only the zero polynomial is zero on the full quadrant (0,c0)?. Finally, prop-
erty x > 0Ay > 0+ p(x,y) > 0 is impossible for continuity reasons, which imply
that p(0,0) = 0, which is a contradiction. More generally, the same argument holds
for any other sign condition that is supposed to characterise one quadrant of R?
uniquely.

Observe that, so far, the argument does not depend on the actual dynamics and
is, thus, still valid in the presence of arbitrary differential weakening ([DR)).

196 3 Differential-Algebraic Dynamic Logic DAL

x p(x,0)=0

=

\Ppxy) < p(x.y) <0)

Fig. 3.27 Quadrant sign selection regions of differential invariant

Next, to see that the above example cannot be proven indirectly after dif-
ferential strengthening (DS), we use the fact that, inductively, the strengthen-
ing y itself needs to be a differential invariant: Ultimately, the left subgoal of
DS can only be shown using differential induction. The above example, how-
ever, is built such that, as ¥’ = xy is the differential equation, xy > 0 is required
for x >0 to be a differential invariant (which thus also requires y > 0). Con-
versely, due to y’ = xy, formula xy > 0 is a prerequisite for the differential in-
variance of y > 0 (which thus also needs x > 0). Yet, for differential invariance
of xy > 0, we have to prove xy > 0 — (y+x)xy > 0 for DI, because (xy)" j,‘ gives
(x/y_|_yx/)i,y;~,y, i.e., xyy+yxy. But the property xy > 0 — (y+x)xy > 0 is, again,
equivalent to x > 0Vy > 0, and thus equivalent to =(—x > 0 A —y > 0), which can-
not be proven by atomic differential induction (or differential weakening) according
to the first part of this proof. Thus, the required atomic differential invariants have

Fig. 3.28 Circular dependen- xy>0

cies for differential strength-
ening x’:xy>0/ V\‘y,_xy>0

x>0 y>0

circular dependencies for differential strengthening by x > 0, y > 0, and xy > 0, re-
spectively; see Fig. 3.28. These cannot be resolved in any proof tree without simul-

3.11 Air Traffic Control Verification 197

taneous differential induction using non-atomic differential invariants, because dif-
ferential strengthenings have to be ordered totally along each proof branch. a

As a special case, this result implies that differential induction in DAL is deduct-
ively stronger than approaches using barrier certificates [251, 252], criticality func-
tions [91], or polynomial invariant equations [274, 269]. On top of that, the DAL
calculus adds differential strengthening and weakening techniques, which add fur-
ther deductive power. The roundabout manoeuvre that we verify in the next section
is a practical example where differential induction with mixed non-atomic formulas
and successive differential strengthening turns out to be decisive.

3.11 Air Traffic Control Verification

In this section we verify that the tangential roundabout manoeuvre for collision
avoidance in air traffic control that we presented in Sect. 3.4 is collision-free. That
is, the manoeuvre directs aircraft on flight paths with global minimal distance p > 0.
We determine a corresponding parameter constraint on the tang procedure from
the roundabout manoeuvre in Fig. 3.7. Using differential induction and differential
strengthening, we can verify the flight manoeuvre despite the complicated hybrid
flight dynamics of aircraft whose solutions fall into undecidable classes of arith-
metic. Recall the differential flight equations from Sect. 3.4.2:

x| =d\ \xXy =do Nd| = —wdy Nds = &d, (Z(0)*)
Yi =e1 \Ys =er Ney = —@ey Neh = e, @ (@)")

3.11.1 Characterisation of Safe Roundabout Dynamics

Property ¢ in Fig. 3.7 defines safe states as those with separation ||x —y|| > p. This
does not, however, characterise the states with safe dynamics: Several states that sat-
isfy ¢ will not remain safe when following curved roundabout flight manoeuvres;
see Fig.3.6c on p. 151 for a counterexample violating ¢ after some time. In par-
ticular, the angular velocity @ and initial speed vectors d and e must fit to the re-
lative positioning of the aircraft x and y. Otherwise the aircraft dynamics will not
remain safe from safely separated initial states. In order to discover the required
parametric constraints for safety of the roundabout manoeuvre, we analyse the DAL
formula ¢ — [trm*|¢ in the DAL calculus and identify a corresponding parameter
constraint .7. For notational convenience, we inline side deductions and slightly
simplify the universal closure notation V* by taking free variables as universally
quantified here, as with Skolem terms in Chap. 2, because the following DAL proof
needs no existential variables.

198 3 Differential-Algebraic Dynamic Logic DAL

Y EVxyde(@—9) 9F ang](§AT) GATF [F(0) AT (@)
PR - [free] ¢ [gen o F [tang, 7 (0) NG (0)]9
llgen 0 &= [free][tang; F (0) N9 ()]
[o+ [trm]¢
e - (9 — [trm]9)
ind o = [trm*]¢
-t o — [trm*]¢

The left branch closes, because postcondition ¢ is the evolution domain restriction
in free flight such that its DA-constraint can be weakened by Lemma 3.6. In the other
branches, 7 is the parameter constraint that rang needs to establish in addition to ¢
(middle branch) for the roundabout dynamics to be safe (right branch). Hence condi-
tion .7 mediates between the middle and right branches. Using successive quantifier
elimination on the right branch, we derive the following constraint .7 as a prerequis-
ite for ¢ to be differentially inductive. It is the decisive constraint that characterises
configurations with safely controllable dynamics in curved roundabout manoeuvres
(using vectorial notation and orthogonal complements d* from Sect. 3.2):

T =d—e=0w(x—y)" (or, equivalently (d—e)t = —w(x—y)) (3.12)
=di—e1=—0(x2—y2) Adr — ez = O(x1 —y1).

This formula expresses that the relative speed vector d — e is orthogonal to the relat-
ive position x —y and compatible with the angular velocity @ and tangential orienta-
tion of d and e. Figure 3.29a illustrates the symmetric case of .7 with identical linear
speed ||d|| = ||e]|. Figures 3.29b and 3.29c show asymmetric cases with distinct lin-
ear speeds ||d|| # ||e||, which is possible as well. Condition .7 gives the decisive

Fig. 3.29 Tangential construction for characteristics .7 of roundabout dynamics

handle for an inductive characterisation of safe tangential roundabout configura-
tions: For the right branch of the above proof, we need to show that the tangential
configuration .7 is sufficient for ¢ to be sustained during curved evasive actions.
In the following, we prove that the relative speed vector configuration .7 is itself
differentially inductive (rule DI in left branch). We use differential strengthening
with DS as a differential cut to augment the dynamics with .7 as a derived invariant

3.11 Air Traffic Control Verification 199

for proving that the actual safety property ¢ is sustained (right branch), again by
differential induction rule DI:

' - va(j;,(w)w(w)) V(T ‘Pf{ﬂ,?(w)w(w))
Plo 7+ [Z(0) N9 ()T Plo H1.Z (0) NG (0) N T
bs ¢, 7 F[F(0) Y (0)]¢
N ONT [Z(0) Y ()¢

Observe that differential strengthening by rule DS is crucial for the proof, because
neither ¢ nor .7 A ¢ is differentially inductive for .7 (w) A ¥ (®)! Instead, the tan-
gential configuration .7 itself is differentially inductive relative to .7 (w) AY(®)
(left branch) and strong enough to make ¢ differentially inductive relative to the aug-
mented DA-constraint % (@) A9 (w) A 7 (right branch). For readability, we use a
slightly weaker rule for differential induction, with ¢ rather than [.7]¢ in the ante-
cedent of the conclusion. This variant can be derived easily using a cut and will
again be called DI. The differential induction DI on the left and right branch close
using quantifier elimination in rV. The arithmetic is also provable by the following
algebraic equational reasoning (9 7 (079 (0) is a short notation for substituting the

differential equations from .7 (@) A¥(®) into D(.7); see Lemma 3.2):

T s = (di—e1) = —0(n—y) Ad—e) = o(xi = 1)) 7(0)r

= (d) —e] = —0(xy —y3) Ndy — &y = O(X] = Y1) 7 (w)r%(w)
—0dy+wey = —0(dy — er) Nwd) — we; = 0(dy —ey) = true
(201 =y1)(x1 =y1) +2(x2 = y2) (22 = ¥2)" > 0) 7(0)r%(00)

N

(@)

<
S=
e
=
2
g
If

= (2001 —y1)(x] = ¥1) +2(x2 = y2) (% = ¥3) > 0) ()1 %/(0)
=2(x1—y1)(di —e1) +2(x2—y2)(d2 —€2) 2 0
(using 7) =2(x1 —y1)(—0(x2 —y2)) +2(x2 —y2)0(x; —y1) =0>0 = true.

Altogether, we have shown that every tangential roundabout evasion manoeuvre
respecting .7 is safe. Further, the middle branch of the above proof reveals the
parameter constraint imposed on tang for safe roundabouts, which concludes the
proof of the following result.

Theorem 3.4 (Safety of tangential roundabout manoeuvre). For every choice
of the tangential entry procedure that satisfies ¢ — [tang](¢ N T), the tangential
roundabout flight manoeuvre in Fig. 3.7 safely avoids collisions, i.e., it directs air-
craft on flight paths with minimal horizontal aircraft separation at least p > 0.

This result can be proven in our theorem prover [242] in two seconds including
user interactions for rules ind and DS. Its proof does not need rule [|gen, which we
only used here to shorten the proof presentation. Theorem 3.4 expresses unbounded-
time safety for fully parametric tangential roundabouts with arbitrary choices for the
free parameters. The proof of Theorem 3.4 generalises to roundabouts entered by
more than two participants when ¢ and .7 are augmented similarly. For instance,

200 3 Differential-Algebraic Dynamic Logic DAL

using our automatic proof procedure from Chap. 6, our theorem prover can prove
mutual collision avoidance for five aircraft fully automatically; see Chaps. 6 and 8.
Likewise, rules DI and DS can be used to prove that external separation to all other
sufficiently far points is maintained during the roundabout manoeuvre. In particular,
the manoeuvre only needs bounded space:

Proposition 3.5 (External separation of roundabout manoeuvres). Separation
of aircraft x to all external points u € R* of distance beyond the roundabout dia-
meter 2r is maintained, because the following DAL formula is provable:

r>0A (o) = [ld|* = Yu(llx—ul* > (2r+p)* = [F (@)](lx—ul* > p?)).

3.11.2 Tangential Entry Procedures

As a simple choice for the tangential initiation procedure fang satisfying prop-
erty .7, consider the following operation which chooses an arbitrary angular ve-
locity @ and an arbitrary centre ¢ € R? for the roundabout manoeuvre, and adjusts d
and e tangentially:

tang = uw:=u; Ic(d:=w(x—c) Ne:=w(y—c)t). (3.13)

This formula expresses that the speed vectors d and e of both aircraft at x and y,
respectively, are tangential and of the same angular velocity @ relative to the in-
tended centre ¢ of the roundabout, with the same orientation (Fig. 3.29). For this
choice, the assumption of Theorem 3.4 can be proven after rule [:=| substitutes the
corresponding terms for d and e in .7, using rule r¥ (or linearity of d):

“GF 6 pro—c -—oly—o'=wx-—y)"
Ar P9 NOx—c) —w(y—c' = ()
[:=] O+ [d:=w(x—) Ne:=o(y—) J(9ANT)
v,rv (b"V(DVC[d::(D(X_C)J_/\e:: (_C)]((b/\ﬂ)
FEE - [rang] (9 A7)

It can also be shown that 3¢ (d = @(x —¢)* Ae = w(y —¢)*) is equivalent to .7 for
nonzero @. With choice (3.13), the tangential roundabout manoeuvre in Fig. 3.7 is
safe and has been significantly simplified and generalised in comparison to our prior
work [238].

3.12 Summary 201

3.11.3 Discussion

Our tangential roundabout manoeuvre leaves open the questions of how and when
precisely the collision avoidance manoeuvre is initiated or left. For instance, (3.13)
does not restrict ¢ and @ but accepts any choice including choices optimising sec-
ondary objectives such as fuel consumption. Furthermore, as specified in Fig. 3.7
and proven in this section, the roundabout manoeuvre can be left safely with arbit-
rary free flight by repeating the loop at any time: The roundabout manoeuvre will
simply be initiated again during free flight when necessary. As a special case, this
open policy includes free flight, enabling the aircraft to leave the roundabout in their
original direction. While the simple choice (3.13) is possibly discontinuous in d
and e, it is comparably easy to see that there are fully curved entry and exit proced-
ures that remain safe when the entry procedure is initiated with sufficient distance
by using the separation limit of Proposition 3.5. We refine the roundabout collision
avoidance manoeuvre and develop a corresponding entry procedure in Chap. 8. Our
proof shows that the tangential roundabout manoeuvre is safe for every such entry
procedure. In particular, the control parameters ¢ and @ of (3.13) can also be chosen
such that the resulting speed vectors d and e are in a bounded range meeting external
speed requirements of the aircraft, which can be proven in the DAL calculus easily:

W (9 — (tang) (9 AT A|d|* = |le]> =1?)). (3.14)

3.12 Summary

We have introduced a first-order dynamic logic for differential-algebraic programs
with interacting first-order discrete jump constraints and first-order differential-al-
gebraic constraints. For this differential-algebraic logic, DAL, we have presented a
calculus for verifying hybrid systems given as differential-algebraic programs.

In differential-algebraic programs, both internal choices and disturbances during
continuous evolutions and nondeterminism in discrete operations can be described
uniformly by quantifiers. Most importantly, we have introduced first-order differen-
tial induction with differential invariants and differential variants for proving cor-
rectness statements with first-order differential-algebraic constraints purely algeb-
raically, using the differential constraints themselves instead of their solutions. In
combination with successive differential strengthening or differential cuts for refin-
ing the system dynamics by auxiliary differential invariants, we obtain a powerful
verification calculus for systems with challenging dynamics. We have compared
the deductive strength for classes of differential invariants and have shown that the
deductive power of general differential induction exceeds the deductive power of
atomic differential invariants.

We have demonstrated that our calculus can be used successfully for verifying
fully parametric roundabout manoeuvres in air traffic control. To the best of our

202 3 Differential-Algebraic Dynamic Logic DAL

knowledge, this is the first formal proof for unbounded safety of hybrid aircraft dy-
namics in curved collision avoidance manoeuvres for air traffic control. Moreover,
we argue that our fully formal proof about aircraft gives more confidence in flight
manoeuvres than informal approaches that do not consider the actual hybrid flight
dynamics [171, 104, 129] or results that only prevent orthogonal collisions in dis-
cretisations of the system [92, 203]. Our logic DAL is also more convenient, because
hybrid systems like the tangential roundabout manoeuvre can be specified and veri-
fied uniformly within a single logic. Despite challenging flight dynamics, the DAL
formulas about aircraft and roundabout manoeuvres that we presented in this chapter
can be proven in our theorem prover KeYmaera within a few seconds.

While this work answers the open issues (1), (3), and (4) raised in the work of
Piazza et al. [228], we are interested in extending differential-algebraic methods
to address further questions about hybrid systems. In Chap. 6, we investigate al-
gorithms for constructing differential invariants automatically on the basis of our
DAL calculus presented here. Interesting future work for the aircraft case study is to
find a fully curved manoeuvre that achieves collision avoidance by joint horizontal
and vertical evasive actions.

Chapter 4
Differential Temporal Dynamic Logic dTL

Contents
4.1 Introduction 204
4.1.1 Related Work 205
4.1.2 Structure of This Chapter 206
42 SYntax . .o 206
4.2.1 Hybrid Programs 207
422 State and Trace Formulas 207
43 Semantics 210
4.3.1 Trace Semantics of Hybrid Programs 210
432 Valuation of State and Trace Formulas 213
433 Conservative Temporal Extension 215
4.4 Safety Invariants in Train Control 216
45 ProofCalculus 217
4.5.1 Proof Rules 218
4.5.2 Verification Example 221
4.6 Soundness 221
4.7 Completeness 223
4.7.1 Incompleteness 223
4.7.2 Relative Completeness 224
4.7.3 Expressibility and Rendition of Hybrid Trace Semantics . 225
474 Modular Relative Completeness Proof 226
4.8 Verification of Train Control Safety Invariants 227
4.9 Liveness by Quantifier Alternation 228
410 Summary ... 230
A. Platzer, Logical Analysis of Hybrid Systems, 203

DOI 10.1007/978-3-642-14509-4 4, © Springer-Verlag Berlin Heidelberg 2010

204 4 Differential Temporal Dynamic Logic dTL

Synopsis We combine first-order dynamic logic for reasoning about the possible
behaviour of hybrid systems with temporal logic for reasoning about the temporal
behaviour during their operation. Our logic supports verification of hybrid programs
with first-order definable flows and provides a uniform treatment of discrete and
continuous evolution. For our combined logic, we generalise the semantics of dy-
namic modalities to refer to hybrid traces instead of final states. Further, we prove
that this gives a conservative extension of our dynamic logic for hybrid systems.
On this basis, we provide a modular verification calculus that reduces correctness
of temporal behaviour of hybrid systems to nontemporal reasoning, and prove that
we obtain a complete axiomatisation relative to the nontemporal base logic. Using
this calculus, we analyse safety invariants in a train control system and symbolically
synthesise parametric safety constraints.

4.1 Introduction

Correctness of real-time and hybrid systems depends on a safe operation through-
out all states of all possible trajectories, and the behaviour at intermediate states is
highly relevant [90].

Temporal logics (TLs) use temporal operators to talk about intermediate states
[247, 114, 115, 6, 284]. In addition to having successful uses in model checking
[78, 6, 159, 156, 217], temporal logics have been used in deductive approaches
to prove validity of formulas in calculi [97, 96]. Among other shortcomings and
difficulties discussed in Chap. 1, the major drawback of TL calculi for our purpose
is that TL formulas cannot generally characterise the operations of a specific hybrid
system.

Like model checking, dynamic logic (DL) [149] can directly analyse the beha-
viour of actual system models. However, DL only considers the behaviour at the
final states, which is insufficient for verifying safety invariants that have to hold all
the time, throughout the execution of the system.

We close this gap of expressivity by combining first-order dynamic logic [149]
with temporal logic [247, 114, 115]. We use the generalisation of operational sys-
tem models and semantics to hybrid systems from Chap. 2. In this chapter, we intro-
duce a temporal dynamic logic dTL, which provides modalities for quantifying over
traces of hybrid systems based on differential dynamic logic. We equip dTL with
temporal operators to state what is true all along a trace or at some point during a
trace. In this chapter, we modify the semantics of the dynamic modality [o(] to refer
to all fraces of o instead of all final states reachable with ¢ (similarly for (o)). For
instance, the formula [a](]¢ expresses that ¢ is true at each state during all traces of
the hybrid system ¢. With this, dTL can also be used to verify temporal statements
about the behaviour of & at intermediate states during system runs. As in our non-
temporal dynamic logic ., we use hybrid programs as an operational model for
hybrid systems, since they admit a uniform compositional treatment of interacting
discrete and continuous evolution in logic.

4.1 Introduction 205

As a semantical foundation for combined temporal dynamic formulas, we intro-
duce a hybrid trace semantics for dTL. We prove that dTL is a conservative exten-
sion of d.Z, that is, for nontemporal specifications, trace semantics is equivalent to
the nontemporal transition semantics of A% from Chap. 2.

As a means for verification, we introduce a sequent calculus for dTL that success-
ively reduces temporal statements about traces of hybrid programs to nontemporal
d.Z formulas. In this way, we make the intuition formally precise that temporal
safety invariants can be checked by augmenting proofs with appropriate assertions
about intermediate states. As in Chap. 2, our calculus works compositionally: It de-
composes correctness statements about hybrid programs structurally into corres-
ponding statements about its parts by symbolic transformation. Observe that this is
somewhat challenging for hybrid systems, because even a single elementary system
operation of continuous evolution exhibits temporal behaviour as it assumes several
different states as time passes.

Contributions

Our approach combines the advantages of dynamic logic in reasoning about the
behaviour of (multiple and parametric) operational system models with those of
temporal logic to verify temporal statements about traces. Our first contribution is
the logic dTL, which provides a coherent foundation for reasoning about the tem-
poral behaviour of operational models of hybrid systems with symbolic parameters.
The main contribution in this chapter is our calculus for deductively verifying tem-
poral statements about hybrid systems, which is a complete axiomatisation relative
to nontemporal d.%.

4.1.1 Related Work

Based on [254], Beckert and Schlager [38] added separate trace modalities to dy-
namic logic and presented a relatively complete calculus for discrete while pro-
grams. Their approach only handles discrete state spaces. In contrast, dTL works for
hybrid programs with continuous state spaces. There, a particular challenge is that
invariants may change their truth-value multiple times during a single continuous
evolution; hence relevant temporal behaviour even occurs during single transitions.

Davoren and Nerode [97] extended the propositional modal p-calculus with a
semantics in hybrid systems and examine topological aspects. In [96], Davoren et
al. gave a semantics in general flow systems for a generalisation of CTL* [115].
In both cases, the authors of [97] and [96] provided Hilbert-style calculi to prove
formulas that are valid for all systems simultaneously using abstract actions.

As discussed in Sect. 1.2, the strength of our logic primarily is that it is a first-
order dynamic logic and handles actual hybrid programs like x:=x+ 1;x' =2y
rather than only abstract actions of unknown effect.

206 4 Differential Temporal Dynamic Logic dTL

4.1.2 Structure of This Chapter

After introducing syntax and semantics of the differential temporal dynamic lo-
gic dTL in Sects. 4.2 and 4.3, we introduce a modular sequent calculus for dTL
in Sect. 4.5 that extends our previous calculi with temporal proof rules in a com-
pletely modular way. We prove soundness and relative completeness in Sects. 4.6
and 4.7, respectively. In Sect. 4.8, we use our calculus to analyse safety invariants in
the train control system from Sect. 4.4. We further present extensions for quantifier
alternation and liveness in Sect. 4.9. We draw conclusions and discuss future work
in Sect. 4.10.

4.2 Syntax of Temporal Dynamic Logic for Hybrid Systems

The temporal differential dynamic logic dTL extends dynamic logic [149] with three
concepts for verifying temporal specifications of hybrid systems:

Hybrid programs. The behaviour of hybrid systems can be described by hy-
brid programs (Sect.2.2.2), which generalise real-time programs [159] to hy-
brid change. The distinguishing feature of hybrid programs in this context is that
they provide uniform discrete jumps and continuous evolutions along differential
equations, which can be combined by regular control operations. While hybrid
automata [156] can be embedded, program structures are more amenable to com-
positional symbolic processing by calculus rules.

Modal operators. Modalities of dynamic logic express statements about all pos-
sible behaviour ([o]7) of a system «, or about the existence of a trace ({&)),
satisfying condition 7. Unlike in standard dynamic logic, & is a modal of a hy-
brid system. We use hybrid programs to describe ¢ as in Chap. 2. Yet, unlike in
standard dynamic logic [149] or A.Z, 7 is a trace formula in dTL, and 7 can refer
to all states that occur during a trace using temporal operators.

Temporal operators. For dTL, the temporal trace formula [1¢ expresses that the
formula ¢ holds all along a trace selected by [@] or (). For instance, the state
formula (o)(J¢ says that the state formula ¢ holds at every state along at least
one trace of . Dually, the trace formula (¢ expresses that ¢ holds at some
point during such a trace. It can occur in a state formula (@) ¢ to express that
there is such a state in some trace of o, or as [t]) ¢ to say that along each trace
there is a state satisfying ¢. In this chapter, the primary focus of attention is on
homogeneous combinations of path and trace quantifiers like [a]J¢ or (o) O ¢.

4.2 Syntax 207

4.2.1 Hybrid Programs

The formulas of dTL are built from a non-empty set X of real-valued variables and
function and predicate symbols. Signature X is assumed to contain the usual func-
tion and predicate symbols for real arithmetic: 0,1, +,-,=, <, <, >,>. For simpli-
city, we do not distinguish between logical variables in V and state variables from X.
The set Trm(X) of rerms is defined as in classical first-order logic.

The hybrid programs allowed in dynamic modalities of dTL are the same as those
of d.Z; see Definition 2.3 in Sect.2.2.2. They are built from elementary discrete
jumps and continuous evolutions using a regular control structure. The set HP(X)
of hybrid programs with variables in X is defined in Definition2.3. Similarly,
differential-algebraic programs from Chap. 3 can be allowed when using DAL as
a basis instead of ., giving differential-algebraic temporal dynamic logic DATL.

4.2.2 State and Trace Formulas

The formulas of dTL are defined similarly to first-order dynamic logic [149]. How-
ever, the modalities [o] and () accept trace formulas that refer to the temporal
behaviour of all states along a trace. Inspired by CTL and CTL"* [114, 115], we
distinguish between state formulas, which are true or false in states, and trace for-
mulas, which are true or false for system traces. The sets Fml(X) of state formulas
and Fmly(X) of trace formulas with variables in X are simultaneously inductively
defined in Definition 4.1.

Definition 4.1 (dTL formulas). The set Fml(X) of (state) formulas is simultan-
eously inductively defined as the smallest set such that:

1. If p € X is a predicate of arity n > 0 and if 6y,...,6, € Trm(X) are terms, then
p(61,...,6,) € Fml(X).

2.1f ¢,y € Fml(X), then ¢, (¢ Ay), (¢ V), (¢ — v) € FmI(X).

3.If ¢ € Fml(X) and x € X, then Vx ¢, Ix ¢ € Fml(Z).

4.If # € Fmly(X) and o € HP(Z), then ||, (o)7 € FmlI(X).

The set Fmly (X) of trace formulas is the smallest set with:

1.If ¢ € Fml(Z), then ¢ € Fmly(X).
2. If ¢ € Fml(X), then OJ¢,0¢ € Fmly(X).

Formulas without [J and ¢, i.e., without Case 2 of the trace formulas, are nontem-
poral AZ formulas (Chap.?2). Unlike in CTL, state formulas are true on a trace
(Case 1) if they hold for the last state of a trace, not for the first. Thus, [a]¢ ex-
presses that ¢ is true at the end of each trace of . In contrast, [a](J¢ expresses
that ¢ is true all along all states of every trace of ¢. This combination gives a
smooth embedding of nontemporal A% into dTL and makes it possible to define

208 4 Differential Temporal Dynamic Logic dTL

Table 4.1 Operators and meaning in differential temporal dynamic logic (dTL)

dTL Notation Operator Meaning

p(6i,..,6,) atomic predicate true iff predicate p holds for (6,...,6,)

-0 negation / not true if ¢ is false

Ay conjunction / and true if both ¢ and y are true

oVy disjunction / or true if ¢ is true or if Y is true

o=y implication / implies true if ¢ is false or y is true

Oy bi-implication / equivalent true if ¢ and y are both true or both false
Vx¢ universal quantifier / for all ¢ is true for all values of variable x

dx¢ existential quantifier / exists ¢ is true for some values of variable x

[a]¢ [-] modality / box ¢ is true after all runs of HP

(a)¢ (-) modality / diamond ¢ is true after at least one run of HP o
[a]0¢ [modality nesting ¢ is true always during all traces of HP o
()0 ¢ (-)¢ modality nesting ¢ is true sometimes during some trace of HP
[a]O¢ []0 modality nesting ¢ is true sometimes during all traces of HP o
()OI (-)O modality nesting ¢ is true always during some trace of HP o

a compositional calculus. Like CTL, dTL allows nesting with a branching time se-
mantics [114], e.g., [@]0(x >2 — (B)0x < 0).

For reference, the operators of differential temporal dynamic logic and typical
operator nestings are summarised in Table 4.1.

Example 4.1 (Train control). Recall the simplified ETCS train control system from
Sect. 2.4 with the refinements from Sect.2.9. In Sect. 2.9, we have proven the fol-
lowing d.Z formula that expresses that the train control system ensures that trains
stay inside their movement authority m, no matter how long the controller runs:

V2 <2b(m—2z) Ab>0ANA>0 — [(ctrl;drive)’]z < m. (2.19%)

But this d.Z formula only refers to the safety of the train position at all final states
of the hybrid program (ctrl;drive)”, which corresponds to the rightmost state in the
transition structure from Fig.2.9a on p. 63. Formula (2.19) does not say whether
z < m is actually also ensured in all intermediate states of the transition structure in
Fig. 2.9a. For hybrid system verification, it is often insufficient to prove the safety
property z < m only at the final states, because the passengers will not like to crash
into another train at an intermediate state either.

Now because the dTL modality [a] does not need to be followed by a temporal
modality [J or ¢, the A formula (2.7) also is a dTL formula. In fact, all d.Z
formulas are dTL formulas (those without temporal modalities). But in dTL, we
can do better. We can express that the movement authority m is respected always
throughout the system run, not just at the final states:

V2 <2b(m—z) Ab>0AA >0 — [(ctrl;drive)’ |0z < m. (4.1

Unlike the d.Z formula (2.19), the dTL formula (4.1) also refers to safety at all in-
termediate states of the transition structure in Fig.2.9a. In fact, for this particular
system model, both formulas are equivalent, because the variables in the postcon-

4.2 Syntax 209

dition z < m only change in the last step drive of the hybrid program . Also z <m
must have been true at all intermediate states if it holds at the final state, because z
increases monotonically (the train is not allowed to drive backwards). In that sense,
the final states of the hybrid program (ctrl;drive)” included all safety-critical states,
because the hybrid program was written as an appropriate controller plant loop.
For other systems, where the variables of the postcondition change in multiple
parts of the hybrid program, this is no longer the case, and the temporal modality [J
is, in fact, crucial to express safety properly. As a simple (though somewhat con-
trived) example, consider the following modification, in which we allow drive to
also drive backwards by removing the evolution domain restriction v > 0 from it:

V2 <2b(m—z) Ab>0AA >0 — [(a:=0;drive;ctrl;drive) |0z <m. (4.2)

In the hybrid program of this dTL formula, the position z changes at two places: the
two occurrences of drive. In the first occurrence, the train always keeps its speed for
some time by choosing the acceleration a :=0, because the sensor information is not
yet available. Only in the second occurrence of drive do the controller actions ctrl
actually take effect. For specifying safety adequately in (4.2), we need the temporal
modality [, because we want the movement authority to be respected at all states of
the system, including intermediate states. Especially we would not want the move-
ment authority to be violated at some point during the first drive even if the system
recovers during the second drive, e.g., by driving backwards.

Surprisingly, the temporal modality [is still redundant in (4.2), because all pos-
sibilities of running its hybrid program especially include the case where the first
drive is run for an arbitrary time s < € and the second drive is run for zero seconds.
Thus all relevant safety-critical states are covered by final states and [is not needed.
But as soon as we modify drive to the hybrid program

7:=0; ({ =vV =a,7 =1&1<¢); At =¢),

the temporal modality [becomes truly necessary. The reason is that this modific-
ation restricts the continuous evolution to take exactly € time units (the evolution
domain region restricts the evolution to 7 < € and the subsequent test to 77 = €)
and no intermediate state is visible as a final state anymore. O

This example shows that the question about whether all relevant intermediate
safety-critical states are covered by a A% modality can be surprisingly subtle. In
larger systems, in fact, it can become quite difficult to analyse this manually. Instead,
temporal dTL modality combinations like [ot](J¢ can be used to ensure that all
states are covered and the hybrid system o satisfies ¢ all the time for all possible
executions.

Inspired by CTL* [115], syntactic and semantic extensions from dTL to dTL*
are straightforward and amount to allowing propositional combinations of trace for-
mulas. Finding appropriate proof calculi, however, is much more difficult, even for
CTL* [248, 261].

210 4 Differential Temporal Dynamic Logic dTL

4.3 Semantics of Temporal Dynamic Logic for Hybrid Systems

In standard dynamic logic [149], the logic A from Chap. 2, and the logic DAL
from Chap. 3, modalities only refer to the final states of system runs and the se-
mantics is a reachability relation on states: State @ is reachable from state v using
system ¢ if there is a run of o which terminates in @ when started in v. For dTL,
however, formulas can refer to intermediate states of runs as well. To capture this,
we change the semantics of a hybrid system o to be the set of its possible traces,
i.e., successions of states that occur during the evolution of ¢. The relation between
the initial and the final state alone is not sufficient.

4.3.1 Trace Semantics of Hybrid Programs

States contain values of system variables during a hybrid evolution. A state is a
map Vv : ¥ — R. In addition, we distinguish a separate state A to denote the failure of
a system run when it is aborted due to a test ?) that yields false. In particular, A can
only occur at the end of an aborted system run and marks that no further extension
is possible because of a failed test. The set of all states is denoted by Sta(X).

Hybrid systems evolve along piecewise continuous traces in multi-dimensional
space as time passes. Continuous phases are governed by differential equations,
whereas discontinuities are caused by discrete jumps in state space. Unlike in dis-
crete cases [254, 38], traces are not just sequences of states, since hybrid systems
pass through uncountably many states even in bounded time. Beyond that, continu-
ous changes are more involved than in pure real time [6, 159], because all variables
can evolve along differential equations with different slopes. Generalising the real-
time traces of [159], the following definition captures hybrid behaviour by splitting
the uncountable succession of states into periods o; that are regulated by the same
control law. For discrete jumps, some of those periods are point flows of duration 0.

The (trace) semantics of hybrid programs is compositional, that is, the semantics
of a complex program is defined as a simple function of the trace semantics of its
parts.

Definition 4.2 (Hybrid trace). A trace is a (nonempty) finite or infinite sequence
6 =(0y,01,02,...) of functions o; : [0,r;] — Sta(X) with their respective dura-
tions r; € R (for i € N). A position of ¢ is a pair (i,{) with i € N and ¢ in the
interval [0,r]; the state of ¢ at (i,{) is 0;({). Positions of ¢ are ordered lex-
icographically by (i,&) < (j,&) iff either i < j, or i = j and { < &. Further, for a
state v € Sta(X), V:0+ Vv is the point flow at v with duration 0. A trace termin-
ates if it is a finite sequence (0,07, ...,0,) and 6,(r,) # A. In that case, the last
state 0, (r,) is denoted by last . The first state 0p(0) is denoted by firsto.

Unlike in [6, 159], the definition of traces also admits finite traces of bounded dura-
tion, which is necessary for compositionality of traces in ¢ ; 8. The semantics of hy-
brid programs « as the set 7() of its possible traces depends on valuations val(v,-)

4.3 Semantics 211

of formulas and terms at intermediate states v. The valuation of terms and interpret-
ations of function and predicate symbols are as for real arithmetic (Chap. 2). The
valuation of formulas will be defined in Definition 4.4. Again, we use V[x — d] to
denote the modification that agrees with state v on all variables except for the sym-
bol x, which is changed to d € R.

Definition 4.3 (Trace semantics of hybrid programs). The rrace semantics, (),
of a hybrid program «, is the set of all its possible hybrid traces and is defined
inductively as follows:

1 t(x1:=01,..,%,:=6,) ={(V,®) : ®=V[x; = val(v,0)]..[x, = val(v,6,)]
for v e Sta(X)}
2.7(x) = 6y,....x, = 6,&x) = {(9) : ¢isastate flow of order 1 and some dur-
ation r > 0 such that ¢ = x| = 6; A--- Ax], = 6, A x; see Definition 3.9}
() ={(V) : val(v,x) = truey U{(V,A) : val(v,yx) = false}
(@ UB) = 5(c) UT(B)
5.17(a;B)={0c0¢ : c€1(a), ¢ € t(B) when 6 og is defined};
the composition of 6 = (6y, 61,07,...) and ¢ = (&, 61,S,---) is

W

(00,---,01,50,6G1,-..) if O terminates at 6, and lastc = firstg
0o0G:=(0 if o does not terminate

not defined otherwise
6. T(a0*) = Upen T("), where ! := (a; o) for n > 1, as well as o' := o and
a® = (2true).

Time passes differently during discrete and continuous change. During continuous
evolution, the discrete step index i of positions (i, {) remains constant, whereas the
continuous duration { remains 0 during discrete point flows. This permits multiple
discrete state changes to happen at the same (super-dense) continuous time, unlike
in other approaches [6].

Example 4.2. For comparing the transition semantics of hybrid programs for d.Z
from Definition 2.7 and the trace semantics of hybrid programs for dTL from Defin-
ition 4.3, consider the following simple hybrid program o:

a:=-—2a; a =a>.
The transition semantics is just the relation between initial and final states:

pla)={(v,0) : oislike v except that w(a) = 4v(a)?}.

In particular, the d.% formula [a]a > 0 is valid, because all final states have a square
as the value of a. In contrast, the trace semantics of « retains all intermediate states:

t(a) = {(V,8,®) : sislike v except s(a) = —2v(a)

and o is like s except ®(a) = s(a)? = 4v(a)?}.

212 4 Differential Temporal Dynamic Logic dTL

During these traces, a > 0 does not hold at all states. If the trace starts with a pos-
itive value (v = a > 0), then it will become negative at the point flow s (where
s = a < 0), yet recover to a positive value (@ |= a > 0) at the end. m

Example 4.3. The previous example only had discrete jumps, and, thus, the traces
only involved point flows. Now consider the hybrid program from the train con-
text:

a=—b; 7 =vyV =a, >0, a:=A; 7 =v,V =a.

The transition semantics of this program only considers successful runs to comple-
tion. In particular, if A > 0, the velocity v will always be nonnegative at the end
(otherwise the test ?v > 0 in the middle fails and the program aborts), because the
last differential equation will accelerate and increase the velocity again. Thus, the
position z at the end of the program run will never be smaller than at the beginning.

If, instead, we consider the trace semantics of 3, all intermediate states are in the
set of traces:

©(B) = {(do, A1, @1, th2, fi3,92) = 1 = pola — —o(b)] and
@ is a state flow of some duration r; > 0 with @; = Z=vAV =a

starting in ¢; (0) = u; and ending in a state with @;(r;)(v) >0

and fo = @1 (r1), 45 = @1 (r1)[a > @1 (r1)(A)] and
@, is a state flow of some duration r, > 0 with ¢, =7 =vAY =a
starting in ¢,(0) = u3 and ending in state @2 (r2)}

U {(Ho, fir, @1, fi2, A) = 1 = piola = —pio(b)] and
@) is a state flow of some duration r > 0 with @; =7 =vAV =a
starting in ¢; (0) = ; and ending in a state with @;(r)(v) <0
further 1, = ¢, (r)}.

The first set is the set of traces where the test ?v > 0 in the middle succeeds and the
system continues. The second set (after the union) is the set of traces that are aborted
with A during their execution, because the middle test fails. Note that the traces in
the first set have two continuous flows @y, ¢, and four point flows o, 11, i, 13
in each trace. The traces in the second set have only one continuous flow ¢; and
three point flows iy, L, >, because the subsequent aborting point flow A does not
terminate and aborts all further execution. In the trace semantics, v < 0 is possible
in the middle of some traces, which is a fact that the transition semantics does not
notice. Combining traces for o U 3, that is, for

(a:=—2a; a::az)u(a::—b; d=vV=a; >0, a:=A;7 =vV =aq)

is just the union 7(or) U t(B) of the traces T(er) and 7() from Examples 4.2 and 4.3.
Note that ¢ < 0 will hold at least once during every trace of o U 3, either in the
beginning, or after setting a:=—2a or a:= —b, respectively, when we assume b > 0.

o

4.3 Semantics 213

4.3.2 Valuation of State and Trace Formulas

In the semantics of dTL formulas, the dynamic modalities determine the set of
traces according to the trace semantics of hybrid programs, and, independently, the
temporal modalities determine at which points in time the respective postcondition
needs to hold. The semantics of formulas is compositional and denotational, that is,
the semantics of a complex formula is defined as a simple function of the semantics
of its subformulas.

Definition 4.4 (Valuation of dTL formulas). For state formulas, the valuation
val(v,-) with respect to state v is defined inductively as follows:

Lval(v,p(6y,...,6,)) = p'(val(v,6y),...,val(v,6,)), where p’ is the relation
associated with p by the fixed semantics of real arithmetic.

2.val(v,¢ Ay) = true iff val(v,) = true and val (v, y) = true

3.val(v,0 NV) = true iff val(v,9) = true or val(v,y) = true

4. val(v,—@) = true iff val (v, §) # true

5.val(v,¢ —) = true iff val(v,§) # true or val(v,y) = true

6. val(v,Vx @) = true iff val(v[x — d],§) = true for all d € R

7.val(v,3x¢) = true iff val(v[x — d|, ¢) = true for some d € R

8. val(v,[a]r) = true iff foreachtrace c € t(o) that starts in firsto = v, if
val(o,7) is defined, then val(o,) = true.

9. val(v, (o)1) = true iff there is a trace ¢ € 7() starting in first & = v such that

val(c,) is defined and val (0,) = true.

For trace formulas, the valuation val(c, -) with respect to trace o is defined induct-
ively as:

1. If ¢ is a state formula, then val(o,¢) = val(lasto, ¢) if o terminates, whereas
val(o,) is not defined if ¢ does not terminate.

2.val(o,0¢) = true iff val(c;({),¢) = true holds for all positions (i,§) of &
with O'i(C) # A.

3.val(0,0¢) = true iff val(c;({),¢) = true holds for some position (i,§) of o
with 6;() # A.

As usual, a (state) formula is valid if it is true in all states. Further for (state)
formula ¢ and state v we write v |= ¢ iff val(v,¢) = true. We write v [~ ¢ iff
val(v,¢) = false. Likewise, for trace formula 7 and trace 6 we write 6 =7
iff val(o,m) = true and o [~ & iff val(o,) = false. In particular, we only write
o E mor o £ mif val(o,n) is defined, which it is not the case if 7 is a state for-
mula and ¢ does not terminate. The points where a dTL property ¢ has to hold
for the various combinations of temporal and dynamic modalities are illustrated in
Fig.4.1.

Example 4.4. Recall the hybrid programs « and 3 from Examples 4.2 and 4.3. For
these, we see the following difference between the .7 transition semantics and the
dTL trace semantics, which gives the same difference between the dTL semantics
for nontemporal formulas (which are d.% formulas) and the dTL trace semantics

214 4 Differential Temporal Dynamic Logic dTL

¢, 0o ,R
/i ~
ad - o~ :
VoA e L e Y
= R SN (oo 9
oL’ L
il T
¢S D¢ N
. 0 L~
i '
VAN 00 V AN 0
oo =L ¢ (op e ¢ 0
L L
¢>‘ <>¢ >
2
p/‘-\f: ¢
o~ : o~ :
VAN @) V NSNS @
(o] JI = (a)¢ JVLVL J(P
T s
QL ; !

2)

Fig. 4.1 Trace semantics of dTL formulas

for formulas with temporal modalities. The A% formula [ot]a > 0 is valid (the dTL
formula [a]a > 0 is also valid), because a > 0 holds at the end of all runs of a.
The dTL formula [@]da > 0, on the other hand, is not valid, because a may be
negative after the first step. Likewise, the A% formula [B]v > 0 is valid (the dTL
formula [B]v > 0 is also valid), because v > 0 holds at the end of all runs of f3.
The dTL formula [$]Cv > 0, instead, is not valid, because v may be negative at an
intermediate state (those that later fail the middle test ?v > 0 and get aborted). If we
add an evolution domain restriction v > 0 to the differential equation, however, the
formula v > 0 — [B]0v > 0 is valid.

For the combined hybrid program o U 8 from both examples, we find that the
dTL formula [oc U B]Oa < 0 is valid, because a is nonpositive at least once during
each of the traces. O

4.3 Semantics 215

4.3.3 Conservative Temporal Extension

The following result shows that the extension of dTL by temporal operators does
not change the meaning of nontemporal formulas. The trace semantics given in
Definition4.4 is equivalent to the final state reachability relation semantics given
in Definition 2.6 for the sublogic d.Z of dTL.

Proposition 4.1 (Conservative temporal extension). The logic dTL is a conser-
vative extension of nontemporal A%, i.e., the set of valid L formulas is the same
with respect to transition reachability semantics of L (Definition 2.6) as with re-
spect to the trace semantics of dTL (Definition 4.4).

The proof of Proposition4.1 uses the following relationship of reachability and
trace semantics of dTL programs, which agree on initial and final states.

Lemma 4.1 (Trace relation). For hybrid programs o. € HP(X), we have

p(a) = {(firsto,lasto) : o € 7() terminates}.

Proof. The proof follows an induction on the structure of «.

e The cases x:=0, ¥ =0, and aUf are simple comparisons of Definitions 4.3
and 2.7.
e For ?y, the reasoning splits into two directions.

“2” For inclusion “2”, assume o € 7(?y). We distinguish between two cases.
If val(firsto,) = true, then ¢ = (?) has length one, lasto = firsto, and
(firsto, first) € p(a). If, however, val(firsto,) = false, then & = (¥,A)
does not terminate; hence, there is nothing to show.

“C” Conversely, for inclusion “C”, assume (v,v) € p(?x); then val(v,) = true
and (V) € t(a) satisfies the conditions on ©.

e For a; 3, the reasoning again splits into the two directions.

“D2” For inclusion “27”, assume that cog € 7(or;) terminates with o € 7(a),
¢ € 7(B), and lastc = firstg. Then, by induction hypothesis, we can assume
that (firsto,lasto) € p(a) and (firstg,lastg) € p(B). By the semantics of se-
quential composition, we have (first(c o ¢),last(co¢)) € p(o;).

“C” Conversely, for inclusion “C”, assume that (v,w) € p(o;). That is, let
(v,2) € p(@) and (z,w) € p(B). By induction hypothesis, there is a termin-
ating trace ¢ € t(o) with firstoc = v and lasto = z. Further, by the induc-
tion hypothesis, there is a terminating ¢ € 7(f) with first¢ = z and lastg = w.
Hence, 6 o6 € t(o; B) terminates with first (0 o6) = v and first (G o g) = w.

e The case a* is an inductive consequence of the sequential composition case. O

Proof (of Proposition4.1). The formulas of A% are a subset of the dTL formulas.
In the course of this proof, we use the notation val, ., (v,) to indicate that the d%’

216 4 Differential Temporal Dynamic Logic dTL

valuation from Definition 4.4 in Sect. 2.3 is used. For d.Z formulas y, we show that
the valuations with respect to Definitions 4.4 and 2.6 are the same for all states v:

val(v,y) =val, ,(v,y) forall v.

We prove this by induction on the structure of y. The cases 1-3 of the definition of
state formulas in Definition 4.1 are obvious. The other cases are proven as follows.

e If y has the form [ct]¢, assume that val(v,[a]¢) = false. Then there is some
terminating trace o € t(¢t) with firsto = v such that val(lasto, ¢) = false. By
the induction hypothesis, this implies that val, ., (lastc,¢) = false. According
to Lemma4.1, (v,lasto) € p(c) holds, which implies val, ., (v, [a]¢) = false.
For the converse direction, assume that val, ., (v,[]¢) = false. Then there is
a (v,w) € p(a) with val, ,(w,¢) = false. By Lemma4.1, there is a terminat-
ing trace ¢ € 7(a) with firstc = Vv and lastoc = w. By induction hypothesis,
val(lasto, ¢) = false. Thus, we can conclude that both val(c,¢) = false and
val(v,[a]¢) = false.

e The case ¥ = ()¢ is proven similarly. O

4.4 Safety Invariants in Train Control

In the European Train Control System (ETCS), trains are coordinated by decentral-
ised Radio Block Centres (RBCs), which grant or deny movement authorities (MAs)
dynamically to the individual trains by wireless communication. In emergencies,
trains always have to stop within the MA issued by the RBC; see Fig. 4.2. Following

RBC) N

< neg
L / =

L

| 3
far ST neg SB cor MA fsy&/ ")

Fig. 4.2 ETCS train coordination protocol phases

the reasoning pattern for traffic agents in [89], each train negotiates with the RBC
to extend its MA when approaching the end of its current MA. Since wireless com-
munication takes time, this negotiation is initiated in due time before reaching m.
To simplify the presentation, we adopt the assumption of Damm et al. [89] here that
trains keep their desired speed (or at least their maximum speed limit) during ne-
gotiation. Before entering negotiation at some point ST (for start talking), the train

4.5 Proof Calculus 217

still has sufficient distance to MA (it is in far mode) and can regulate its speed freely
within the track limits. After the point SB (for start braking), the train has to start
applying the brakes as identified in Sect. 2.9.

As a model for train movements, we use the ideal-world model from Sect. 2.4.
For a safe operation of multiple traffic agents, it is crucial that the MA be respected
at every point in time during this protocol, not only at its end. Hence, we need to
consider temporal safety invariants. For instance, when the train has entered the
negotiation phase at its current position z, dTL can analyse the following safety
invariant of a part of the protocol cycle of the train controller:

v — [neg;cor;drive] (¢ <L — z <m) 4.3)
where neg =7 =v, 0 =1
cor =(Mm—z<s;a:=—b)U(Mm—z>sa:=...)

. — ! /
drive =7 =v,V =a.

It expresses that—under a sanity condition y for parameters—a train will always
remain within its MA m as long as the accumulated RBC negotiation latency ¢ is
at most L. We refer to the work of Faber and Meyer [119] for details on what kind
of message passing contributes to £. Like in [89], we model the train to first negoti-
ate while keeping a constant speed (7' = v) in neg. The differential equation ¢ = 1
defines ¢ as a clock that is never reset, but accumulates the time spent in negoti-
ation. Thereafter, in cor, the train corrects its acceleration or brakes with force b
(as a fail-safe recovery manoeuvre) on the basis of the remaining distance (m — z).
That is, if the distance of the movement authority and position is less than s (the test
Im — z < s succeeds), the acceleration is set to braking by a:= —b. If, instead, the
other test 7m — z > s succeeds, then acceleration is set to another value (not shown
in cor). Finally, the train continues moving according to the differential equation
system drive or, equivalently, 7/ = a. Instead of manually choosing specific values
for the free parameters of (4.3) as in [89, 119], we will use the techniques developed
in this book to automatically synthesise constraints on the relationship of parameters
that are required for a safe operation of cooperative train control.

4.5 Proof Calculus for Temporal Invariants

In this section, we introduce a sequent calculus for verifying temporal specifica-
tions of hybrid systems in differential temporal dynamic logic dTL. With the basic
idea being to perform a symbolic decomposition, the calculus transforms hybrid
programs successively into simpler logical formulas describing their effects. State-
ments about the temporal behaviour of a hybrid program are successively reduced
to corresponding nontemporal statements about the intermediate states.

218 4 Differential Temporal Dynamic Logic dTL

(V) % ! (L) % .
(o LIPS (1o {2108 B0
9 s (1) 0o

(= SEEE 20 = T ares
(o) g o E=08

(o T (o L0

(o e (g0 2000

! 1 is a trace formula and—unlike the state formulas ¢ and y—may thus begin with a temporal

modality (J or ¢.

Fig. 4.3 Rule schemata of the proof calculus for temporal differential dynamic logic

4.5.1 Proof Rules

We introduce a proof calculus for differential temporal dynamic logic dTL that in-
herits the proof rules of d.Z from Chap.2 and adds new proof rules for temporal
modalities. We can, in fact, get a corresponding proof calculus when we add the
same proof rules for temporal modalities to the DAL proof rules from Chap. 3. In
the latter case, the resulting logic is called differential-algebraic temporal dynamic
logic DATL.

Inherited Nontemporal Rules

The dTL calculus is presented in Fig. 4.3 and inherits the (nontemporal) d.% proof
rules, i.e., the propositional, first-order, dynamic, and global rules from d.. That
is, it includes the propositional rules from Fig.2.11 on p.79 and either the free-
variable quantifier rules from Fig.2.11 or the simpler quantifier rules from Fig. 3.9
on p. 164 that are based on side deductions. The dynamic rules ((;)—[']) and global
rules ([|gen,()gen,ind,con) for handling nontemporal dynamic modalities are also
inherited directly from Fig. 2.11. The only possible exception is that [U],(U) can be
generalised to apply to formulas of the form [ot U B]7 where 7 is an arbitrary trace
formula, and not just a state formula as in d.Z. Thus, 7 may begin with [J or ¢,
which is why the rules are repeated in this generalised form as [U]0 and (U)¢ in
Fig.4.3.

4.5 Proof Calculus 219

: | 0 . 0
dNA[x:=0]¢ xX:i=
(=)o) —_— Vo e NI")
[c:=6]0¢ J[X:: olo ")
X=0
Lo
6o ,\/\/\/\NW
(S = e VJ\N\N@A/\M ®
= omp 2
(0
o 0
PG =L T ST R el AN
[o: 5109 N B¢
A A A
¢ o;p = a (if non-terminating)
O
o A&
[2]09 A [BI09 X
(Vo) @U B9 va “\,auﬁ
£ o)
a*
AN "E¢
() (L ledDe v jf\\fffoif I 3 f\ff‘\.;\m'j ®
* NN HI N NN .
CRED X po= 0y
a*

Fig. 4.4 Correspondence of temporal proof rules and trace semantics

Temporal Rules

The new temporal rules in Fig.4.3 for the dTL calculus successively transform
temporal specifications of hybrid programs into nontemporal d.% formulas. The
idea underlying this transformation is to decompose hybrid programs and recurs-
ively augment intermediate state transitions with appropriate specifications. Also
see Fig. 4.4 for an illustration of the correspondence of a representative set of proof
rules for temporal modalities to the trace semantics of hybrid programs (Defini-
tion4.3).

Rule [;]0 decomposes invariants of a;f (i.e., [o;] ¢ holds) into an invariant
of a (i.e., [@]0J¢) and an invariant of that holds when f3 is started in any final state
of a (i.e., [@]([B]E¢)). Its difference with the d.Z rule [;] thus is that the dTL rule
[;]O also checks safety invariant ¢ at the symbolic states in between the execution

220 4 Differential Temporal Dynamic Logic dTL

of o and 3, and recursively so because of the temporal modality [J. Again, see
Fig. 4.4 for an illustration of this proof principle.

Rule [:=]0 expresses that invariants of assignments need to hold before and after
the discrete change (similarly for [?]0, except that tests do not lead to a state change,
so ¢ holding before the test is all there is to it). Rule [']0 can directly reduce invari-
ants of continuous evolutions to nontemporal formulas as restrictions of solutions of
differential equations are themselves solutions of different duration and thus already
included in the evolutions of X' = 6. In particular, observe that the handling of dif-
ferential equations within hybrid systems is fully encapsulated within the fragment
of dynamic rules from Fig.2.11. The rules ['|o, ()¢, [:=]0, and (:=)¢ directly gen-
eralise to discrete jump sets and systems of differential equations or even to DA-
constraints from Chap. 3.

The (optional) iteration rule [*"]0 can partially unwind loops. It relies on rule [;]O0
and is simpler than d.Z rule [*"], because the other rules will inductively produce a
premise that ¢ holds in the current state, because of the temporal modality [J¢. The
dual rules (U)0,(;)0,(?)0,(:=)0,{")0,(*")o work similarly.

In Chaps. 2 and 3, the primary means for handling loops are the invariant induc-
tion (ind) and variant convergence (con) rules. Here, we take a different, completely
modular approach for verifying temporal properties of loops based on the d.Z cap-
abilities for verifying nontemporal properties of loops. Rules [*]0 and (*)¢ actually
define temporal properties of loops inductively. Rule [*]0 expresses that ¢ holds
at all times during repetitions of a (i.e., [o*]()¢9) iff, after repeating o any num-
ber of times, ¢ holds at all times during one execution of a (i.e., [a*]([ct]I¢)).
See Fig.4.4 for an illustration. Dually, (*)¢ expresses that o holds at some time
during repetitions of « (i.e., (a*)O¢) iff, after some number of repetitions of «,
formula ¢ holds at some point during one execution of ¢ (i.e., {(a*)({@)0¢)). In
this context, the nontemporal modality (a*) can be thought of as skipping over to
the iteration of o during which ¢ actually occurs, as expressed by the nested dTL
formula (ot){ ¢. The inductive definition rules [*|0 and (*)¢ completely reduce tem-
poral properties of loops to dTL properties of standard nontemporal d.%’-modalities
such that standard induction (ind) or convergence rules (con) can be used for the
outer nontemporal modality of the loop. Hence, after applying the inductive loop
definition rules [*]0 and (*)¢, the standard . loop invariant and variant rules can
be used for verifying temporal properties of loops without change, except that the
postcondition contains temporal modalities.

Rules for handling [@]Q ¢ and (&)@ are discussed in Sect. 4.9. Finally, provab-
ility in the dTL calculus is denoted by @ 411, W, and defined according to Defin-
ition2.11 or Definition 3.16. The notion of a dTL proof directly follows from the
previous definitions in Chaps. 2 and 3.

4.6 Soundness 221

4.5.2 Verification Example

Consider the bouncing ball example from Sect. 2.5.4. The proof in Fig.2.20 can be
generalised easily to a proof of the temporal property

V2 <2¢(H—h)Ah>0Ag>0AH>0A1>c>0
— (W' =—g&h>0;(?h>0U (2 =0;v:=—cv)) OO0 <h<H). (44)

The only aspect of the proof that changes is that the temporal proof rules in Fig. 4.3
are used instead of the dynamic proof rules from Fig.2.11, and that the resulting
extra proof goals for the invariance property at intermediate steps have to be proven.
In contrast, the proof in Fig.2.18 for the simplified dynamics without evolution
domain restriction & > 0 cannot be generalised to a proof of the temporal property

VvV <2g(H—h)Ah>0Ag>0AH>0A1>¢>0
= [(W"=—g;(?h >0U(?h=0;v:=—cv))) |00 <h<H). (4.5)

This difference in provability is for good reasons. The property in (4.4) is valid,
but the property in (4.5) is not! While there was no noticeable semantical differ-
ence between the nontemporal properties proven in Figs. 2.18 and 2.20, there is a
decisive difference between the corresponding temporal properties (4.5) and (4.4).
Because there is no evolution domain restriction in (4.5), its hybrid program does
not prevent continuous evolution to a negative height under the floor (4 < 0), for
which 0 < h < H does not hold.

The reason for this discrepancy of the temporal version compared to the nontem-
poral versions thus is that the nontemporal modalities do not “see” the temporary
violation of 0 < h < H. Such a temporary violation of 0 < & during the continu-
ous evolution does not produce a successful run of the hybrid program, because it
is blocked by the subsequent tests 22 = 0 and ?h > 0. A state with negative height
fails both tests. While this behaviour does not give a successful program transition
of (v,m) € p(ball) by Definition2.7 so that the proof in Fig.2.18 is correct, the
behaviour still gives a valid trace ¢ € t(ball) by Definition4.3. This trace o is a
partial trace, because it ends in a failure state A, but it is still one of the traces
that [ball]J(0 < h < H) quantifies over (quite unlike [pall](0 < h < H), which only
considers final states of successful traces).

4.6 Soundness

The following result shows that verification with the dTL calculus always produces
correct results about the safety of hybrid systems, i.e., the dTL calculus is sound.

Theorem 4.1 (Soundness of dTL). The dTL calculus is sound, i.e., derivable
(state) formulas are valid.

222

4 Differential Temporal Dynamic Logic dTL

Proof. We show that all rules of the dTL calculus are locally sound, i.e., for all
states v, the conclusion of a rule is true in state v when all premises are true in V.
Let v be any state. For each rule we have to show that the conclusion is true in v
assuming the premises are true in V. The propositional rules are locally sound by
Theorem 2.1. Inductively, the soundness of the dynamic rules follows from Propos-
ition4.1 and local soundness of the corresponding rules in d.Z. The proof for the
generalisation in [U] and (U) to path formulas 7 is a straightforward extension. The
quantifier rules are sound by Theorems 2.1 and 3.1, respectively.

H=

[*n}D

Assume v |= [@]0¢ and v = [a][f]0¢. Let 6 € t(a;), i.e., c=pog
with firsto = v, p € 7(at), and g € 7(f). If p does not terminate, then
c=pet(a) and 6 = 0¢ by premise. If, instead, p terminates with
lastp = firstg, then p |= (¢ by premise. Further, we know v |= [a][f]T¢.
In particular for trace p € 7(c), we have lastp = [f]0¢. Thus, ¢ = ¢
because ¢ € () starts at firstg = lastp. By composition, pog = ¢.
As 0 = p o¢ was arbitrary, we can conclude v = [or; f]0¢. The converse
direction holds, as all traces of & are prefixes of traces of ;3. Hence, the
assumption Vv |= [a; f]0¢ directly implies v |= [o][J¢. Further, all traces
of B that begin at a state reachable from v by « are suffixes of traces of a; 3
starting in v. Hence, v |= [o][8]0¢ is implied as well.

Soundness of [?]0 is obvious, since, by premise, we can assume V = ¢,
and there is nothing to show for A states according to Definition 4.4. Con-
versely, V is a prefix of all traces in 7(?y) that start in v.

Assuming v = ¢ and v |= [x:= 0]¢, we have to show that v |= [x:= 6]0¢.
Let o € 7(x:=0) be any trace with firstc = v, i.e., 0 = (V,®) by Defin-
ition4.3. Hence, the only two states we need to consider are 0p(0) = v
and 01(0) = ®. By premise, 0p(0) =V yields 0p(0) = ¢. Similarly, for
the state 07(0) = lasto = @, the premise gives 01(0) = ¢. The converse
direction is similar.

We prove that [']0 is locally sound by contraposition. For this, assume
that v [~ [¥' = 0]0¢; th