

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for
undergraduates studying in all areas of computing and information science. From core foundational and
theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and modern
approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored by
established experts in their fields, reviewed by an international advisory board, and contain numerous
examples and problems. Many include fully worked solutions.

Also in this series

Iain Craig
Object-Oriented Programming Languages: Interpretation
978-1-84628-773-2

Max Bramer
Principles of Data Mining
978-1-84628-765-7

Hanne Riis Nielson and Flemming Nielson

Semantics with
Applications:
An Appetizer

Hanne Riis Nielson, PhD
The Technical University of Denmark
Denmark

Flemming Nielson, PhD, DSc
The Technical University of Denmark
Denmark

Series editor
Ian Mackie
École Polytechnique, France and King’s College London, UK

Advisory board
Samson Abramsky, University of Oxford, UK
Chris Hankin, Imperial College London, UK
Dexter Kozen, Cornell University, USA
Andrew Pitts, University of Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Denmark
Steven Skiena, Stony Brook University, USA
Iain Stewart, University of Durham, UK
David Zhang, The Hong Kong Polytechnic University, Hong Kong

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006939147

Undergraduate Topics in Computer Science ISSN 1863-7310
ISBN-10: 1-84628-691-3 e-ISBN-10: 1-84628-692-1
ISBN-13: 978-1-84628-691-9 e-ISBN-13: 978-1-84628-692-6

Printed on acid-free paper

© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Preface

This book is written out of a tradition that places special emphasis on the
following three approaches to semantics:

– operational semantics,

– denotational semantics, and

– axiomatic semantics.

It is therefore beyond the scope of this introductory book to cover other ap-
proaches such as algebraic semantics, game semantics, and evolving algebras.

We strongly believe that semantics has an important role to play in the fu-
ture development of software systems and domain-specific languages (and hence
is not confined to the enormous task of specifying “real life” languages such
as C++, Java or C#). We have therefore found the need for an introductory
book that

– presents the fundamental ideas behind these approaches,

– stresses their relationship by formulating and proving the relevant theorems,
and

– illustrates the applications of semantics in computer science.

This is an ambitious goal for an introductory book, and to achieve it, the bulk
of the technical development concentrates on a rather small core language of
while-programs for which the three approaches are developed to roughly the
same level of sophistication; this should enable students to get a better grasp
of similarities and differences among the three approaches.

In our choice of applications, we have selected some of the historically
important application areas as well as some of the more promising candidates
for future applications:

vi Preface

�����

�����

�����

�����

�����

Chapter 1

Chapter 2

Chapter 3 Chapter 4

Chapter 5

Chapter 6 Chapter 7

Chapter 9

Chapter 10 Chapter 8

Chapter 11

– the use of semantics for validating prototype implementations of program-
ming languages;

– the use of semantics for verifying program analyses that are part of more
advanced implementations of programming languages;

– the use of semantics for verifying security analyses; and

– the use of semantics for verifying useful program properties, including infor-
mation about execution time.

Clearly this only serves as an appetizer to the fascinating area of “Semantics
with Applications”; some pointers for further reading are given in Chapter 11.

Overview. As is illustrated in the dependency diagram, Chapters 1, 2, 5, 9,
and 11 form the core of the book. Chapter 1 introduces the example language
While of while-programs that is used throughout the book. In Chapter 2
we cover two approaches to operational semantics, the natural semantics of

Preface vii

G. Kahn and the structural operational semantics of G. D. Plotkin. Chapter
5 develops the denotational semantics of D. Scott and C. Strachey, including
simple fixed point theory. Chapter 9 introduces program verification based on
operational and denotational semantics and goes on to present the axiomatic
approach due to C. A. R. Hoare. Finally, Chapter 11 contains suggestions for
further reading. Chapters 2, 5, and 9 are devoted to the language While and
cover specification as well as theory; there is quite a bit of attention to the
proof techniques needed for proving the relevant theorems.

Chapters 3, 6, and 10 consider extensions of the approach by incorporat-
ing new descriptive techniques or new language constructs; in the interest of
breadth of coverage, the emphasis is on specification rather than theory. To be
specific, Chapter 3 considers extensions with abortion, non-determinism, par-
allelism, block constructs, dynamic and static procedures, and non-recursive
and recursive procedures. In Chapter 6 we consider static procedures that may
or may not be recursive and we show how to handle exceptions; that is, certain
kinds of jumps. Finally, in Section 10.1 we consider non-recursive and recursive
procedures and show how to deal with total correctness properties.

Chapters 4, 7, 8, and 10 cover the applications of operational, denotational,
and axiomatic semantics to the language While as developed in Chapters 2, 5,
and 9. In Chapter 4 we show how to prove the correctness of a simple compiler
using the operational semantics. In Chapter 7 we show how to specify and
prove the correctness of a program analysis for “Detection of Signs” using the
denotational semantics. Furthermore, in Chapter 8 we specify and prove the
correctness of a security analysis once more using the denotational semantics.
Finally, in Section 10.2 we extend the axiomatic approach so as to obtain
information about execution time.

Appendix A reviews the mathematical notation on which this book is based.
It is mostly standard notation, but some may find our use of ↪→ and � non-
standard. We use D ↪→ E for the set of partial functions from D to E ; this is
because we find that the D ⇀ E notation is too easily overlooked. Also, we
use R � S for the composition of binary relations R and S . When dealing with
axiomatic semantics we use formulae { P } S { Q } for partial correctness
assertions but { P } S { ⇓ Q } for total correctness assertions, hoping that
the explicit occurrence of ⇓ (for termination) may prevent the student from
confusing the two systems.

Appendix B contains some fairly detailed results for calculating the number
of iterations of a functional before it stabilises and produces the least fixed
point. This applies to the functionals arising in the program analyses developed
in Chapters 7 and 8.

viii Preface

Notes for the instructor. The reader should preferably be acquainted with the
BNF style of specifying the syntax of programming languages and should be
familiar with most of the mathematical concepts surveyed in Appendix A.

We provide two kinds of exercises. One kind helps the student in understand-
ing the definitions, results, and techniques used in the text. In particular, there
are exercises that ask the student to prove auxiliary results needed for the main
results but then the proof techniques will be minor variations of those already
explained in the text. We have marked those exercises whose results are needed
later by “Essential”. The other kind of exercises are more challenging in that
they extend the development, for example by relating it to other approaches.
We use a star to mark the more difficult of these exercises. Exercises marked by
two stars are rather lengthy and may require insight not otherwise presented
in the book. It will not be necessary for students to attempt all the exercises,
but we do recommend that they read them and try to understand what the
exercises are about. For a list of misprints and supplementary material, please
consult the webpage http://www.imm.dtu.dk/∼riis/SWA/swa.html.

Acknowledgments. This book grew out of our previous book Semantics with
Applications: A Formal Introduction [18] that was published by Wiley in 1992
and a note, Semantics with Applications: Model-Based Program Analysis, writ-
ten in 1996. Over the years, we have obtained many comments from colleagues
and students, and since we are constantly reminded that the material is still
in demand, we have taken this opportunity to rework the book. This includes
using shorter chapters and a different choice of security-related analyses. The
present version has benefitted from the comments of Henning Makholm.

Kongens Lyngby, Denmark, January 2007 Hanne Riis Nielson

Flemming Nielson

Contents

List of Tables . xi

1. Introduction . 1
1.1 Semantic Description Methods . 1
1.2 The Example Language While . 7
1.3 Semantics of Expressions . 9
1.4 Properties of the Semantics . 16

2. Operational Semantics . 19
2.1 Natural Semantics . 20
2.2 Structural Operational Semantics . 33
2.3 An Equivalence Result . 41

3. More on Operational Semantics . 47
3.1 Non-sequential Language Constructs . 47
3.2 Blocks and Procedures . 54

4. Provably Correct Implementation . 67
4.1 The Abstract Machine . 67
4.2 Specification of the Translation . 75
4.3 Correctness . 78
4.4 An Alternative Proof Technique . 88

5. Denotational Semantics . 91
5.1 Direct Style Semantics: Specification . 92
5.2 Fixed Point Theory . 99
5.3 Direct Style Semantics: Existence . 115

x Contents

5.4 An Equivalence Result . 121

6. More on Denotational Semantics . 127
6.1 Environments and Stores . 127
6.2 Continuations . 138

7. Program Analysis . 145
7.1 Detection of Signs Analysis: Specification . 149
7.2 Detection of Signs Analysis: Existence . 161
7.3 Safety of the Analysis . 166
7.4 Program Transformation . 171

8. More on Program Analysis . 175
8.1 Data Flow Frameworks . 177
8.2 Security Analysis . 183
8.3 Safety of the Analysis . 193

9. Axiomatic Program Verification . 205
9.1 Direct Proofs of Program Correctness . 205
9.2 Partial Correctness Assertions . 212
9.3 Soundness and Completeness . 220

10. More on Axiomatic Program Verification 229
10.1 Total Correctness Assertions . 229
10.2 Assertions for Execution Time . 239

11. Further Reading . 247

A. Review of Notation . 251

B. Implementation of Program Analysis . 255
B.1 The General and Monotone Frameworks . 257
B.2 The Completely Additive Framework . 259
B.3 Iterative Program Schemes . 262

Bibliography . 267

Index . 269

List of Tables

1.1 The semantics of arithmetic expressions . 14
1.2 The semantics of boolean expressions . 15

2.1 Natural semantics for While . 20
2.2 Structural operational semantics for While . 33

3.1 Natural semantics for statements of Block . 55
3.2 Natural semantics for variable declarations . 55
3.3 Natural semantics for Proc with dynamic scope rules 58
3.4 Procedure calls in case of mixed scope rules (choose one) 60
3.5 Natural semantics for variable declarations using locations 62
3.6 Natural semantics for Proc with static scope rules 63

4.1 Operational semantics for AM . 69
4.2 Translation of expressions . 75
4.3 Translation of statements in While . 76

5.1 Denotational semantics for While . 92

6.1 Denotational semantics for While using locations 130
6.2 Denotational semantics for variable declarations 131
6.3 Denotational semantics for non-recursive procedure declarations 133
6.4 Denotational semantics for Proc . 134
6.5 Denotational semantics for recursive procedure declarations 136
6.6 Continuation style semantics for While . 139
6.7 Continuation style semantics for Exc . 142

xii List of Tables

7.1 Detection of signs analysis of arithmetic expressions 153
7.2 Operations on Sign . 154
7.3 Detection of signs analysis of boolean expressions 154
7.4 Operations on Sign and TT . 155
7.5 Detection of signs analysis of statements . 155

8.1 Forward analysis of expressions . 178
8.2 Forward analysis of statements . 180
8.3 Backward analysis of expressions . 181
8.4 Backward analysis of statements . 183
8.5 Security analysis of expressions . 188
8.6 Security analysis of statements . 189

9.1 Axiomatic system for partial correctness . 215

10.1 Axiomatic system for total correctness . 231
10.2 Exact execution times for expressions . 241
10.3 Natural semantics for While with exact execution times 242
10.4 Axiomatic system for order of magnitude of execution time 243

1
Introduction

The purpose of this book is to describe some of the main ideas and methods used
in semantics, to illustrate these on interesting applications, and to investigate
the relationship between the various methods.

Formal semantics is concerned with rigorously specifying the meaning, or
behaviour, of programs, pieces of hardware, etc. The need for rigour arises
because

– it can reveal ambiguities and subtle complexities in apparently crystal clear
defining documents (for example, programming language manuals), and

– it can form the basis for implementation, analysis, and verification (in par-
ticular, proofs of correctness).

We will use informal set-theoretic notation (reviewed in Appendix A) to rep-
resent semantic concepts. This will suffice in this book but for other purposes
greater notational precision (that is, formality) may be needed, for example
when processing semantic descriptions by machine as in semantics-directed
compiler-compilers or machine-assisted proof checkers.

1.1 Semantic Description Methods

It is customary to distinguish between the syntax and the semantics of a pro-
gramming language. The syntax is concerned with the grammatical structure
of programs. So a syntactic analysis of the program

2 1. Introduction

z:=x; x:=y; y:=z

will tell us that it consists of three statements separated by the symbol ‘;’.
Each of these statements has the form of a variable followed by the composite
symbol ‘:=’ and an expression that is just a variable.

The semantics is concerned with the meaning of grammatically correct pro-
grams. So it will express that the meaning of the program above is to exchange
the values of the variables x and y (and setting z to the final value of y). If we
were to explain this in more detail, we would look at the grammatical structure
of the program and use explanations of the meanings of

– sequences of statements separated by ‘;’ and

– a statement consisting of a variable followed by ‘:=’ and an expression.

The actual explanations can be formalized in different ways. In this book, we
shall consider three approaches. Very roughly, the ideas are as follows:

Operational semantics: The meaning of a construct is specified by the compu-
tation it induces when it is executed on a machine. In particular, it is of
interest how the effect of a computation is produced.

Denotational semantics: Meanings are modelled by mathematical objects that
represent the effect of executing the constructs. Thus only the effect is of
interest, not how it is obtained.

Axiomatic semantics: Specific properties of the effect of executing the con-
structs are expressed as assertions. Thus there may be aspects of the exe-
cutions that are ignored.

To get a feeling for their different natures, let us see how they express the
meaning of the example program above.

Operational Semantics

An operational explanation of the meaning of a construct will tell how to execute
it:

– To execute a sequence of statements separated by ‘;’, we execute the individ-
ual statements one after the other and from left to right.

– To execute a statement consisting of a variable followed by ‘:=’ and another
variable, we determine the value of the second variable and assign it to the
first variable.

We shall record the execution of the example program in a state where x has the
value 5, y the value 7, and z the value 0 by the following derivation sequence:

1.1 Semantic Description Methods 3

〈z:=x; x:=y; y:=z, [x�→5, y�→7, z�→0]〉

⇒ 〈x:=y; y:=z, [x�→5, y�→7, z�→5]〉

⇒ 〈y:=z, [x�→7, y�→7, z�→5]〉

⇒ [x�→7, y�→5, z�→5]

In the first step, we execute the statement z:=x and the value of z is changed
to 5, whereas those of x and y are unchanged. The remaining program is now
x:=y; y:=z. After the second step, the value of x is 7 and we are left with the
program y:=z. The third and final step of the computation will change the
value of y to 5. Therefore the initial values of x and y have been exchanged,
using z as a temporary variable.

This explanation gives an abstraction of how the program is executed on a
machine. It is important to observe that it is indeed an abstraction: we ignore
details such as the use of registers and addresses for variables. So the operational
semantics is rather independent of machine architectures and implementation
strategies.

In Chapter 2 we shall formalize this kind of operational semantics, which
is often called structural operational semantics (or small-step semantics). An
alternative operational semantics is called natural semantics (or big-step se-
mantics) and differs from the structural operational semantics by hiding even
more execution details. In the natural semantics, the execution of the example
program in the same state as before will be represented by the derivation tree

〈z:=x, s0〉 → s1 〈x:=y, s1〉 → s2

〈z:=x; x:=y, s0〉 → s2 〈y:=z, s2〉 → s3

〈z:=x; x:=y; y:=z, s0〉 → s3

where we have used the abbreviations

s0 = [x�→5, y�→7, z�→0]

s1 = [x�→5, y�→7, z�→5]

s2 = [x�→7, y�→7, z�→5]

s3 = [x�→7, y�→5, z�→5]

This is to be read as follows. The execution of z:=x in the state s0 will result
in the state s1 and the execution of x:=y in state s1 will result in state s2.
Therefore the execution of z:=x; x:=y in state s0 will give state s2. Further-
more, execution of y:=z in state s2 will give state s3 so in total the execution
of the program in state s0 will give the resulting state s3. This is expressed by

〈z:=x; x:=y; y:=z, s0〉 → s3

4 1. Introduction

but now we have hidden the explanation above of how it was actually obtained.
The operational approaches are introduced in Chapter 2 for the language

While of while-programs and extended to other language constructs in Chap-
ter 3. In Chapter 4 we shall use the natural semantics as the basis for proving
the correctness of an implementation of While.

Denotational Semantics

In the denotational semantics, we concentrate on the effect of executing the
programs and we shall model this by mathematical functions:

– The effect of a sequence of statements separated by ‘;’ is the functional
composition of the effects of the individual statements.

– The effect of a statement consisting of a variable followed by ‘:=’ and another
variable is the function that given a state will produce a new state: it is like
the original one except that the value of the first variable of the statement
is equal to that of the second variable.

For the example program, we obtain functions written S[[z:=x]], S[[x:=y]], and
S[[y:=z]] for each of the assignment statements, and for the overall program we
get the function

S[[z:=x; x:=y; y:=z]] = S[[y:=z]] ◦ S[[x:=y]] ◦ S[[z:=x]]

Note that the order of the statements has changed because we use the usual
notation for function composition, where (f ◦ g) s means f (g s). If we want
to determine the effect of executing the program on a particular state, then we
can apply the function to that state and calculate the resulting state as follows:

S[[z:=x; x:=y; y:=z]]([x�→5, y�→7, z�→0])

= (S[[y:=z]] ◦ S[[x:=y]] ◦ S[[z:=x]])([x�→5, y�→7, z�→0])

= S[[y:=z]](S[[x:=y]](S[[z:=x]]([x�→5, y�→7, z�→0])))

= S[[y:=z]](S[[x:=y]]([x�→5, y�→7, z�→5]))

= S[[y:=z]]([x�→7, y�→7, z�→5])

= [x�→7, y�→5, z�→5]

Note that we are only manipulating mathematical objects; we are not con-
cerned with executing programs. The difference may seem small for a program
with only assignment and sequencing statements, but for programs with more
sophisticated constructs it is substantial. The benefits of the denotational ap-
proach are mainly due to the fact that it abstracts away from how programs are

1.1 Semantic Description Methods 5

executed. Therefore it becomes easier to reason about programs, as it simply
amounts to reasoning about mathematical objects. However, a prerequisite for
doing so is to establish a firm mathematical basis for denotational semantics,
and this task turns out not to be entirely trivial.

The denotational approach and its mathematical foundations are introduced
in Chapter 5 for the language While; in Chapter 6 we extend it to other lan-
guage constructs. The approach can easily be adapted to express other prop-
erties of programs besides their execution behaviours. Some examples are:

– Determine whether all variables are initialized before they are used — if not,
a warning may be appropriate.

– Determine whether a certain expression in the program always evaluates to
a constant — if so, one can replace the expression by the constant.

– Determine whether all parts of the program are reachable — if not, they
could be removed or a warning might be appropriate.

In Chapters 7 and 8 we develop examples of this.
While we prefer the denotational approach when reasoning about programs,

we may prefer an operational approach when implementing the language. It
is therefore of interest whether a denotational definition is equivalent to an
operational definition, and this is studied in Section 5.4.

Axiomatic Semantics

Often one is interested in partial correctness properties of programs: A pro-
gram is partially correct, with respect to a precondition and a postcondition, if
whenever the initial state fulfils the precondition and the program terminates,
then the final state is guaranteed to fulfil the postcondition. For our example
program, we have the partial correctness property

{ x=n ∧ y=m } z:=x; x:=y; y:=z { y=n ∧ x=m }

where x=n ∧ y=m is the precondition and y=n ∧ x=m is the postcondition. The
names n and m are used to “remember” the initial values of x and y, respectively.
The state [x�→5, y�→7, z�→0] satisfies the precondition by taking n=5 and m=7,
and when we have proved the partial correctness property we can deduce that
if the program terminates, then it will do so in a state where y is 5 and x is
7. However, the partial correctness property does not ensure that the program
will terminate, although this is clearly the case for the example program.

The axiomatic semantics provides a logical system for proving partial cor-
rectness properties of individual programs. A proof of the partial correctness
property above, may be expressed by the proof tree

6 1. Introduction

{ p0 } z:=x { p1 } { p1 } x:=y { p2 }

{ p0 } z:=x; x:=y { p2 } { p2 } y:=z { p3 }

{ p0 } z:=x; x:=y; y:=z { p3 }
where we have used the abbreviations

p0 = x=n ∧ y=m

p1 = z=n ∧ y=m

p2 = z=n ∧ x=m

p3 = y=n ∧ x=m

We may view the logical system as a specification of only certain aspects of the
semantics. It usually does not capture all aspects for the simple reason that all
the partial correctness properties listed below can be proved using the logical
system, but certainly we would not regard the programs as behaving in the
same way:

{ x=n ∧ y=m } z:=x; x:=y; y:=z { y=n ∧ x=m }

{ x=n ∧ y=m } if x=y then skip else (z:=x; x:=y; y:=z) { y=n ∧ x=m }

{ x=n ∧ y=m } while true do skip { y=n ∧ x=m }

The benefits of the axiomatic approach are that the logical systems provide an
easy way of proving properties of programs — and that to a large extent it has
been possible to automate it. Of course this is only worthwhile if the axiomatic
semantics is faithful to the “more general” (denotational or operational) se-
mantics we have in mind.

An axiomatic approach is developed in Chapter 9 for the language While; it
is extended to other language constructs in Chapter 10, where we also show how
the approach can be modified to treat termination properties and properties
about execution times.

The Complementary View

It is important to note that these kinds of semantics are not rival approaches
but are different techniques appropriate for different purposes and — to some
extent — for different programming languages. To stress this, the development
in this book will address the following issues:

1.2 The Example Language While 7

– It will develop each of the approaches for a simple language While of while-
programs.

– It will illustrate the power and weakness of each of the approaches by ex-
tending While with other programming constructs.

– It will prove the relationship between the approaches for While.

– It will give examples of applications of the semantic descriptions in order to
illustrate their merits.

1.2 The Example Language While

This book illustrates the various forms of semantics on a very simple imperative
programming language called While. As a first step, we must specify its syntax.

The syntactic notation we use is based on BNF. First we list the various
syntactic categories and give a meta-variable that will be used to range over
constructs of each category. For our language, the meta-variables and categories
are as follows:

n will range over numerals, Num,

x will range over variables, Var,

a will range over arithmetic expressions, Aexp,

b will range over boolean expressions, Bexp, and

S will range over statements, Stm.

The meta-variables can be primed or subscripted. So, for example, n, n ′, n1,
and n2 all stand for numerals.

We assume that the structure of numerals and variables is given elsewhere;
for example, numerals might be strings of digits, and variables might be strings
of letters and digits starting with a letter. The structure of the other constructs
is:

a ::= n | x | a1 + a2 | a1 � a2 | a1 − a2

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

S ::= x := a | skip | S 1 ; S 2 | if b then S 1 else S 2

| while b do S

Thus, a boolean expression b can only have one of six forms. It is called a basis
element if it is true or false or has the form a1 = a2 or a1 ≤ a2, where a1

and a2 are arithmetic expressions. It is called a composite element if it has the

8 1. Introduction

S

S ; S

�
�

�

�
�

�

S ; S

�
�

�

�
�
�

z := a

x

�
�

�

�
�
�

x := a

y

�
�

�

�
�
�

y := a

z

�
�

�

�
�
�

S
�

�
�

S
�

�
�
z :=

�
�
�
a

x

;

�
�

�
S

�
�

�
S

x := a

y

�
�

�

�
�
�

;

�
�
�

S

y := a

z

�
�

�

�
�
�

Figure 1.1 Abstract syntax trees for z:=x; x:=y; y:=z

form ¬b, where b is a boolean expression, or the form b1 ∧ b2, where b1 and b2

are boolean expressions. Similar remarks apply to arithmetic expressions and
statements.

The specification above defines the abstract syntax of While in that it sim-
ply says how to build arithmetic expressions, boolean expressions, and state-
ments in the language. One way to think of the abstract syntax is as specifying
the parse trees of the language, and it will then be the purpose of the concrete
syntax to provide sufficient information that enables unique parse trees to be
constructed.

So given the string of characters

z:=x; x:=y; y:=z

the concrete syntax of the language must be able to resolve which of the two
abstract syntax trees of Figure 1.1 it is intended to represent. In this book, we
shall not be concerned with concrete syntax. Whenever we talk about syntactic
entities such as arithmetic expressions, boolean expressions, or statements, we
will always be talking about the abstract syntax so there is no ambiguity with
respect to the form of the entity. In particular, the two trees above are different
elements of the syntactic category Stm.

It is rather cumbersome to use the graphical representation of abstract
syntax, and we shall therefore use a linear notation. So we shall write

z:=x; (x:=y; y:=z)

for the leftmost syntax tree and

1.3 Semantics of Expressions 9

(z:=x; x:=y); y:=z

for the rightmost one. For statements, one often writes the brackets as begin · · ·
end, but we shall feel free to use (· · ·) in this book. Similarly, we use brackets
(· · ·) to resolve ambiguities for elements in the other syntactic categories. To
cut down on the number of brackets needed, we shall allow use of the familiar
relative binding powers (precedences) of +, �, −, etc., and so write 1+x�2 for
1+(x�2) but not for (1+x)�2.

Exercise 1.1

The following is a statement in While:

y:=1; while ¬(x=1) do (y:=y�x; x:=x−1)

It computes the factorial of the initial value bound to x (provided that it is posi-
tive), and the result will be the final value of y. Draw a graphical representation
of the abstract syntax tree.

Exercise 1.2

Assume that the initial value of the variable x is n and that the initial value of
y is m. Write a statement in While that assigns z the value of n to the power
of m, that is

n · . . . · n
︸ ︷︷ ︸

m times
Give a linear as well as a graphical representation of the abstract syntax.

The semantics of While is given by defining so-called semantic functions
for each of the syntactic categories. The idea is that a semantic function takes
a syntactic entity as argument and returns its meaning. The operational, de-
notational, and axiomatic approaches mentioned earlier will be used to specify
semantic functions for the statements of While. For numerals, arithmetic ex-
pressions, and boolean expressions, the semantic functions are specified once
and for all below.

1.3 Semantics of Expressions

Before embarking on specifying the semantics of the arithmetic and boolean
expressions of While, let us have a brief look at the numerals; this will present

10 1. Introduction

the main ingredients of the approach in a very simple setting. So assume for
the moment that the numerals are in the binary system. Their abstract syntax
could then be specified by

n ::= 0 | 1 | n 0 | n 1

In order to determine the number represented by a numeral, we shall define a
function

N : Num → Z

This is called a semantic function, as it defines the semantics of the numerals.
We want N to be a total function because we want to determine a unique
number for each numeral of Num. If n ∈ Num, then we write N [[n]] for the
application of N to n; that is, for the corresponding number. In general, the
application of a semantic function to a syntactic entity will be written within
the “syntactic” brackets ‘[[’ and ‘]]’ rather than the more usual ‘(’ and ‘)’.
These brackets have no special meaning, but throughout this book we shall en-
close syntactic arguments to semantic functions using the “syntactic” brackets,
whereas we use ordinary brackets (or juxtapositioning) in all other cases.

The semantic function N is defined by the following semantic clauses (or
equations):

N [[0]] = 0

N [[1]] = 1

N [[n 0]] = 2 · N [[n]]

N [[n 1]] = 2 · N [[n]] + 1

Here 0 and 1 are mathematical numbers; that is, elements of Z. Furthermore,
· and + are the usual arithmetic operations on numbers. The definition above is
an example of a compositional definition. This means that for each possible way
of constructing a numeral, it tells how the corresponding number is obtained
from the meanings of the subconstructs.

Example 1.3

We can calculate the number N [[101]] corresponding to the numeral 101 as
follows:

N [[101]] = 2 · N [[10]] + 1

= 2 · (2 · N [[1]]) + 1

= 2 · (2 · 1) + 1

= 5

1.3 Semantics of Expressions 11

Note that the string 101 is decomposed in strict accordance with the syntax
for numerals.

Exercise 1.4

Suppose that the grammar for n had been

n ::= 0 | 1 | 0 n | 1 n

Can you define N correctly in this case?

So far we have only claimed that the definition of N gives rise to a well-
defined total function. We shall now present a formal proof showing that this
is indeed the case.

Fact 1.5

The equations above for N define a total function N : Num → Z.

Proof: We have a total function N if for all arguments n ∈ Num it holds that

there is exactly one number n ∈ Z such that N [[n]] = n (*)

Given a numeral n, it can have one of four forms: it can be a basis element
and then is equal to 0 or 1, or it can be a composite element and then is equal
to n ′0 or n ′1 for some other numeral n ′. So, in order to prove (*), we have to
consider all four possibilities.

The proof will be conducted by induction on the structure of the numeral
n. In the base case, we prove (*) for the basis elements of Num; that is, for
the cases where n is 0 or 1. In the induction step, we consider the compos-
ite elements of Num; that is, the cases where n is n ′0 or n ′1. The induction
hypothesis will then allow us to assume that (*) holds for the immediate con-
stituent of n; that is, n ′. We shall then prove that (*) holds for n. It then follows
that (*) holds for all numerals n because any numeral n can be constructed in
that way.

The case n = 0: Only one of the semantic clauses defining N can be used,
and it gives N [[n]] = 0. So clearly there is exactly one number n in Z (namely
0) such that N [[n]] = n.

The case n = 1 is similar and we omit the details.

The case n = n ′0: Inspection of the clauses defining N shows that only one
of the clauses is applicable and we have N [[n]] = 2 · N [[n ′]]. We can now apply
the induction hypothesis to n ′ and get that there is exactly one number n′

12 1. Introduction

such that N [[n ′]] = n′. But then it is clear that there is exactly one number n
(namely 2 · n′) such that N [[n]] = n.

The case n = n ′1 is similar and we omit the details.

The general technique that we have applied in the definition of the syntax
and semantics of numerals can be summarized as follows:

Compositional Definitions

1: The syntactic category is specified by an abstract syntax giving the
basis elements and the composite elements. The composite elements
have a unique decomposition into their immediate constituents.

2: The semantics is defined by compositional definitions of a function:
There is a semantic clause for each of the basis elements of the syntac-
tic category and one for each of the methods for constructing compos-
ite elements. The clauses for composite elements are defined in terms
of the semantics of the immediate constituents of the elements.

The proof technique we have applied is closely connected with the approach to
defining semantic functions. It can be summarized as follows:

Structural Induction

1: Prove that the property holds for all the basis elements of the syntactic
category.

2: Prove that the property holds for all the composite elements of the
syntactic category: Assume that the property holds for all the immedi-
ate constituents of the element (this is called the induction hypothesis)
and prove that it also holds for the element itself.

In the remainder of this book, we shall assume that numerals are in decimal
notation and have their normal meanings (so, for example, N [[137]] = 137 ∈
Z). It is important to understand, however, that there is a distinction between
numerals (which are syntactic) and numbers (which are semantic), even in
decimal notation.

1.3 Semantics of Expressions 13

Semantic Functions

The meaning of an expression depends on the values bound to the variables
that occur in it. For example, if x is bound to 3, then the arithmetic expression
x+1 evaluates to 4, but if x is bound to 2, then the expression evaluates to 3.
We shall therefore introduce the concept of a state: to each variable the state
will associate its current value. We shall represent a state as a function from
variables to values; that is, an element of the set

State = Var → Z

Each state s specifies a value, written s x , for each variable x of Var. Thus, if
s x = 3, then the value of x+1 in state s is 4.

Actually, this is just one of several representations of the state. Some other
possibilities are to use a table

x 5

y 7

z 0

or a “list” of the form

[x�→5, y�→7, z�→0]

(as in Section 1.1). In all cases, we must ensure that exactly one value is asso-
ciated with each variable. By requiring a state to be a function, this is trivially
fulfilled, whereas for the alternative representations above extra, restrictions
have to be enforced.

Given an arithmetic expression a and a state s, we can determine the value of
the expression. Therefore we shall define the meaning of arithmetic expressions
as a total function A that takes two arguments: the syntactic construct and
the state. The functionality of A is

A: Aexp → (State → Z)

This means that A takes its parameters one at a time. So we may supply
A with its first parameter, say x+1, and study the function A[[x+1]]. It has
functionality State → Z, and only when we supply it with a state (which
happens to be a function, but that does not matter) do we obtain the value of
the expression x+1.

Assuming the existence of the function N defining the meaning of numerals,
we can define the function A by defining its value A[[a]]s on each arithmetic
expression a and state s. The definition of A is given in Table 1.1. The clause
for n reflects that the value of n in any state is N [[n]]. The value of a variable x

14 1. Introduction

A[[n]]s = N [[n]]

A[[x]]s = s x

A[[a1 + a2]]s = A[[a1]]s + A[[a2]]s

A[[a1 � a2]]s = A[[a1]]s · A[[a2]]s

A[[a1 − a2]]s = A[[a1]]s − A[[a2]]s

Table 1.1 The semantics of arithmetic expressions

in state s is the value bound to x in s; that is, s x . The value of the composite
expression a1+a2 in s is the sum of the values of a1 and a2 in s. Similarly,
the value of a1 � a2 in s is the product of the values of a1 and a2 in s, and
the value of a1 − a2 in s is the difference between the values of a1 and a2 in
s. Note that + and − occurring on the right of these equations are the usual
arithmetic operations, while on the left they are just pieces of syntax; this is
analogous to the distinction between numerals and numbers, but we shall not
bother to use different symbols.

Example 1.6

Suppose that s x = 3. Then we may calculate:

A[[x+1]]s = A[[x]]s + A[[1]]s

= (s x) + N [[1]]

= 3 + 1

= 4

Note that here 1 is a numeral (enclosed in the brackets ‘[[’ and ‘]]’), whereas 1
is a number.

Example 1.7

Suppose we add the arithmetic expression − a to our language. An acceptable
semantic clause for this construct would be

A[[− a]]s = 0 − A[[a]]s

whereas the alternative clause A[[− a]]s = A[[0 − a]]s would contradict the
compositionality requirement.

1.3 Semantics of Expressions 15

B[[true]]s = tt

B[[false]]s = ff

B[[a1 = a2]]s =

{

tt if A[[a1]]s = A[[a2]]s

ff if A[[a1]]s �= A[[a2]]s

B[[a1 ≤ a2]]s =

{

tt if A[[a1]]s ≤ A[[a2]]s

ff if A[[a1]]s > A[[a2]]s

B[[¬ b]]s =

{

tt if B[[b]]s = ff

ff if B[[b]]s = tt

B[[b1 ∧ b2]]s =

{

tt if B[[b1]]s = tt and B[[b2]]s = tt

ff if B[[b1]]s = ff or B[[b2]]s = ff

Table 1.2 The semantics of boolean expressions

Exercise 1.8

Prove that the equations of Table 1.1 define a total function A in Aexp →
(State → Z): First argue that it is sufficient to prove that for each a ∈ Aexp
and each s ∈ State there is exactly one value v ∈ Z such that A[[a]]s = v.
Next use structural induction on the arithmetic expressions to prove that this
is indeed the case.

The values of boolean expressions are truth values, so in a similar way we
shall define their meanings by a (total) function from State to T:

B: Bexp → (State → T)

Here T consists of the truth values tt (for true) and ff (for false).
Using A, we can define B by the semantic clauses of Table 1.2. Again we have

the distinction between syntax (e.g., ≤ on the left-hand side) and semantics
(e.g., ≤ on the right-hand side).

Exercise 1.9

Assume that s x = 3, and determine B[[¬(x = 1)]]s.

Exercise 1.10

Prove that Table 1.2 defines a total function B in Bexp → (State → T).

16 1. Introduction

Exercise 1.11

The syntactic category Bexp′ is defined as the following extension of Bexp:

b ::= true | false | a1 = a2 | a1 �= a2 | a1 ≤ a2 | a1 ≥ a2

| a1 < a2 | a1 > a2 | ¬b | b1 ∧ b2 | b1 ∨ b2

| b1 ⇒ b2 | b1 ⇔ b2

Give a compositional extension of the semantic function B of Table 1.2.
Two boolean expressions b1 and b2 are equivalent if for all states s:

B[[b1]]s = B[[b2]]s

Show that for each b′ of Bexp′ there exists a boolean expression b of Bexp
such that b′ and b are equivalent.

1.4 Properties of the Semantics

Later in the book, we shall be interested in two kinds of properties for expres-
sions. One is that their values do not depend on values of variables that do
not occur in them. The other is that if we replace a variable with an expres-
sion, then we could as well have made a similar change in the state. We shall
formalize these properties below and prove that they do hold.

Free Variables

The free variables of an arithmetic expression a are defined to be the set of
variables occurring in it. Formally, we may give a compositional definition of
the subset FV(a) of Var:

FV(n) = ∅

FV(x) = { x }

FV(a1 + a2) = FV(a1) ∪ FV(a2)

FV(a1 � a2) = FV(a1) ∪ FV(a2)

FV(a1 − a2) = FV(a1) ∪ FV(a2)

As an example, FV(x+1) = { x } and FV(x+y�x) = { x, y }. It should be
obvious that only the variables in FV(a) may influence the value of a. This is
formally expressed by the following lemma.

1.4 Properties of the Semantics 17

Lemma 1.12

Let s and s ′ be two states satisfying that s x = s ′ x for all x in FV(a). Then
A[[a]]s = A[[a]]s ′.

Proof: We shall give a fairly detailed proof of the lemma using structural induc-
tion on the arithmetic expressions. We shall first consider the basis elements of
Aexp.

The case n: From Table 1.1 we have A[[n]]s = N [[n]] as well as A[[n]]s ′ = N [[n]].
So A[[n]]s = A[[n]]s ′ and clearly the lemma holds in this case.

The case x : From Table 1.1, we have A[[x]]s = s x as well as A[[x]]s ′ = s ′ x .
From the assumptions of the lemma, we get s x = s ′ x because x ∈ FV(x), so
clearly the lemma holds in this case.

Next we turn to the composite elements of Aexp.

The case a1 + a2: From Table 1.1, we have A[[a1 + a2]]s = A[[a1]]s + A[[a2]]s
and similarly A[[a1 + a2]]s ′ = A[[a1]]s ′ + A[[a2]]s ′. Since a i (for i = 1, 2) is an
immediate subexpression of a1 + a2 and FV(a i) ⊆ FV(a1 + a2), we can apply
the induction hypothesis (that is, the lemma) to a i and get A[[a i]]s = A[[a i]]s ′.
It is now easy to see that the lemma holds for a1 + a2 as well.

The cases a1 − a2 and a1 � a2 follow the same pattern and are omitted. This
completes the proof.

In a similar way, we may define the set FV(b) of free variables in a boolean
expression b as follows:

FV(true) = ∅

FV(false) = ∅

FV(a1 = a2) = FV(a1) ∪ FV(a2)

FV(a1 ≤ a2) = FV(a1) ∪ FV(a2)

FV(¬b) = FV(b)

FV(b1 ∧ b2) = FV(b1) ∪ FV(b2)

Exercise 1.13 (Essential)

Let s and s ′ be two states satisfying that s x = s ′ x for all x in FV(b). Prove
that B[[b]]s = B[[b]]s ′.

18 1. Introduction

Substitutions

We shall later be interested in replacing each occurrence of a variable y in an
arithmetic expression a with another arithmetic expression a0. This is called
substitution, and we write a[y �→a0] for the arithmetic expression so obtained.
The formal definition is as follows:

n[y �→a0] = n

x [y �→a0] =

{

a0 if x = y

x if x �= y

(a1 + a2)[y �→a0] = (a1[y �→a0]) + (a2[y �→a0])

(a1 � a2)[y �→a0] = (a1[y �→a0]) � (a2[y �→a0])

(a1 − a2)[y �→a0] = (a1[y �→a0]) − (a2[y �→a0])

As an example, (x+1)[x�→3] = 3+1 and (x+y�x)[x�→y−5] = (y−5)+y�(y−5).
We also have a notion of substitution (or updating) for states. We define

s[y �→v] to be the state that is like s except that the value bound to y is v :

(s[y �→v]) x =

{

v if x = y

s x if x �= y

The relationship between the two concepts is shown in the following exercise.

Exercise 1.14 (Essential)

Prove that A[[a[y �→a0]]]s = A[[a]](s[y �→A[[a0]]s]) for all states s.

Exercise 1.15 (Essential)

Define substitution for boolean expressions: b[y �→a0] is to be the boolean ex-
pression that is like b except that all occurrences of the variable y are replaced
by the arithmetic expression a0. Prove that your definition satisfies

B[[b[y �→a0]]]s = B[[b]](s[y �→A[[a0]]s])

for all states s.

2
Operational Semantics

The role of a statement in While is to change the state. For example, if x

is bound to 3 in s and we execute the statement x := x + 1, then we get a
new state where x is bound to 4. So while the semantics of arithmetic and
boolean expressions only inspect the state in order to determine the value of
the expression, the semantics of statements will modify the state as well.

In an operational semantics, we are concerned with how to execute pro-
grams and not merely what the results of execution are. More precisely, we are
interested in how the states are modified during the execution of the statement.
We shall consider two different approaches to operational semantics:

– Natural semantics: Its purpose is to describe how the overall results of exe-
cutions are obtained; sometimes it is called a big-step operational semantics.

– Structural operational semantics: Its purpose is to describe how the individual
steps of the computations take place; sometimes it is called a small-step
operational semantics.

We shall see that for the language While we can easily specify both kinds
of semantics and that they will be “equivalent” in a sense to be made clear
later. However, in the next chapter we shall also give examples of programming
constructs where one of the approaches is superior to the other.

For both kinds of operational semantics, the meaning of statements will be
specified by a transition system. It will have two types of configurations:

20 2. Operational Semantics

[assns] 〈x := a, s〉 → s[x �→A[[a]]s]

[skipns] 〈skip, s〉 → s

[compns]
〈S 1, s〉 → s ′, 〈S 2, s ′〉 → s ′′

〈S 1;S 2, s〉 → s ′′

[if tt
ns]

〈S 1, s〉 → s ′

〈if b then S 1 else S 2, s〉 → s ′
if B[[b]]s = tt

[ifff
ns]

〈S 2, s〉 → s ′

〈if b then S 1 else S 2, s〉 → s ′
if B[[b]]s = ff

[while tt
ns]

〈S , s〉 → s ′, 〈while b do S , s ′〉 → s ′′

〈while b do S , s〉 → s ′′
if B[[b]]s = tt

[whileff
ns] 〈while b do S , s〉 → s if B[[b]]s = ff

Table 2.1 Natural semantics for While

〈S , s〉 representing that the statement S is to be executed from the state
s and

s representing a terminal (that is final) state.

The terminal configurations will be those of the latter form. The transition
relation will then describe how the execution takes place. The difference be-
tween the two approaches to operational semantics amounts to different ways
of specifying the transition relation.

2.1 Natural Semantics

In a natural semantics we are concerned with the relationship between the
initial and the final state of an execution. Therefore the transition relation will
specify the relationship between the initial state and the final state for each
statement. We shall write a transition as

〈S , s〉 → s ′

Intuitively this means that the execution of S from s will terminate and the
resulting state will be s ′.

The definition of → is given by the rules of Table 2.1. A rule has the general

2.1 Natural Semantics 21

form
〈S 1, s1〉 → s ′1, · · ·, 〈Sn, sn〉 → s ′n

〈S , s〉 → s ′
if · · ·

where S 1, · · ·, Sn are immediate constituents of S or are statements constructed
from the immediate constituents of S . A rule has a number of premises (written
above the solid line) and one conclusion (written below the solid line). A rule
may also have a number of conditions (written to the right of the solid line)
that have to be fulfilled whenever the rule is applied. Rules with an empty set
of premises are called axioms and the solid line is then omitted.

Intuitively, the axiom [assns] says that in a state s, x := a is executed to
yield a final state s[x �→A[[a]]s], which is like s except that x has the value A[[a]]s.
This is really an axiom schema because x , a, and s are meta-variables standing
for arbitrary variables, arithmetic expressions, and states but we shall simply
use the term axiom for this. We obtain an instance of the axiom by selecting
particular variables, arithmetic expressions, and states. As an example, if s0 is
the state that assigns the value 0 to all variables, then

〈x := x+1, s0〉 → s0[x�→1]

is an instance of [assns] because x is instantiated to x, a to x+1, and s to s0,
and the value A[[x+1]]s0 is determined to be 1.

Similarly, [skipns] is an axiom and, intuitively, it says that skip does not
change the state. Letting s0 be as above, we obtain

〈skip, s0〉 → s0

as an instance of the axiom [skipns].
Intuitively, the rule [compns] says that to execute S 1;S 2 from state s we

must first execute S 1 from s. Assuming that this yields a final state s ′, we
shall then execute S 2 from s ′. The premises of the rule are concerned with the
two statements S 1 and S 2, whereas the conclusion expresses a property of the
composite statement itself. The following is an instance of the rule:

〈skip, s0〉 → s0, 〈x := x+1, s0〉 → s0[x�→1]

〈skip; x := x+1, s0〉 → s0[x�→1]

Here S 1 is instantiated to skip, S 2 to x := x + 1, s and s ′ are both instantiated
to s0, and s ′′ is instantiated to s0[x�→1]. Similarly

〈skip, s0〉 → s0[x�→5], 〈x := x+1, s0[x�→5]〉 → s0

〈skip; x := x+1, s0〉 → s0

is an instance of [compns], although it is less interesting because its premises
can never be derived from the axioms and rules of Table 2.1.

For the if-construct, we have two rules. The first one, [if tt
ns], says that to

execute if b then S 1 else S 2 we simply execute S 1 provided that b evaluates

22 2. Operational Semantics

to tt in the state. The other rule, [ifff
ns], says that if b evaluates to ff, then to

execute if b then S 1 else S 2 we just execute S 2. Taking s0 x = 0,

〈skip, s0〉 → s0

〈if x = 0 then skip else x := x+1, s0〉 → s0

is an instance of the rule [if tt
ns] because B[[x = 0]]s0 = tt. However, had it been

the case that s0 x �= 0, then it would not be an instance of the rule [if tt
ns] because

then B[[x = 0]]s0 would amount to ff. Furthermore, it would not be an instance
of the rule [ifff

ns] because the premise would contain the wrong statement.
Finally, we have one rule and one axiom expressing how to execute the

while-construct. Intuitively, the meaning of the construct while b do S in the
state s can be explained as follows:

– If the test b evaluates to true in the state s, then we first execute the body
of the loop and then continue with the loop itself from the state so obtained.

– If the test b evaluates to false in the state s, then the execution of the loop
terminates.

The rule [while tt
ns] formalizes the first case where b evaluates to tt and it says

that then we have to execute S followed by while b do S again. The axiom
[whileff

ns] formalizes the second possibility and states that if b evaluates to
ff, then we terminate the execution of the while-construct, leaving the state
unchanged. Note that the rule [while tt

ns] specifies the meaning of the while-
construct in terms of the meaning of the very same construct, so we do not
have a compositional definition of the semantics of statements.

When we use the axioms and rules to derive a transition 〈S , s〉 → s ′,
we obtain a derivation tree. The root of the derivation tree is 〈S , s〉 → s ′

and the leaves are instances of axioms. The internal nodes are conclusions of
instantiated rules, and they have the corresponding premises as their immediate
sons. We request that all the instantiated conditions of axioms and rules be
satisfied. When displaying a derivation tree, it is common to have the root
at the bottom rather than at the top; hence the son is above its father. A
derivation tree is called simple if it is an instance of an axiom; otherwise it is
called composite.

Example 2.1

Let us first consider the statement of Chapter 1:

(z:=x; x:=y); y:=z

Let s0 be the state that maps all variables except x and y to 0 and has s0 x = 5
and s0 y = 7. Then an example of a derivation tree is

2.1 Natural Semantics 23

〈z:=x, s0〉 → s1 〈x:=y, s1〉 → s2

〈z:=x; x:=y, s0〉 → s2 〈y:=z, s2〉 → s3

〈(z:=x; x:=y); y:=z, s0〉 → s3

where we have used the abbreviations:

s1 = s0[z�→5]

s2 = s1[x�→7]

s3 = s2[y�→5]

The derivation tree has three leaves, denoted 〈z:=x, s0〉 → s1, 〈x:=y, s1〉 → s2,
and 〈y:=z, s2〉 → s3, corresponding to three applications of the axiom [assns].
The rule [compns] has been applied twice. One instance is

〈z:=x, s0〉 → s1, 〈x:=y, s1〉 → s2

〈z:=x; x:=y, s0〉 → s2

which has been used to combine the leaves 〈z:=x, s0〉 → s1 and 〈x:=y, s1〉 →
s2 with the internal node labelled 〈z:=x; x:=y, s0〉 → s2. The other instance is

〈z:=x; x:=y, s0〉 → s2, 〈y:=z, s2〉 → s3

〈(z:=x; x:=y); y:=z, s0〉 → s3

which has been used to combine the internal node 〈z:=x; x:=y, s0〉 → s2 and
the leaf 〈y:=z, s2〉 → s3 with the root 〈(z:=x; x:=y); y:=z, s0〉 → s3.

Consider now the problem of constructing a derivation tree for a given
statement S and state s. The best way to approach this is to try to construct
the tree from the root upwards. So we will start by finding an axiom or rule
with a conclusion where the left-hand side matches the configuration 〈S , s〉.
There are two cases:

– If it is an axiom and if the conditions of the axiom are satisfied, then we
can determine the final state and the construction of the derivation tree is
completed.

– If it is a rule, then the next step is to try to construct derivation trees for
the premises of the rule. When this has been done, it must be checked that
the conditions of the rule are fulfilled, and only then can we determine the
final state corresponding to 〈S , s〉.

Often there will be more than one axiom or rule that matches a given configu-
ration, and then the various possibilities have to be inspected in order to find
a derivation tree. We shall see later that for While there will be at most one

24 2. Operational Semantics

derivation tree for each transition 〈S , s〉 → s ′ but that this need not hold in
extensions of While.

Example 2.2

Consider the factorial statement

y:=1; while ¬(x=1) do (y:=y � x; x:=x−1)

and let s be a state with s x = 3. In this example, we shall show that

〈y:=1; while ¬(x=1) do (y:=y � x; x:=x−1), s〉 → s[y�→6][x�→1] (*)

To do so, we shall show that (*) can be obtained from the transition system
of Table 2.1. This is done by constructing a derivation tree with the transition
(*) as its root.

Rather than presenting the complete derivation tree T in one go, we shall
build it in an upwards manner. Initially, we only know that the root of T is of
the form (where we use an auxiliary state s61 to be defined later)

〈y:=1; while ¬(x=1) do (y:=y � x; x:=x−1), s〉 → s61

However, the statement

y:=1; while ¬(x=1) do (y:=y � x; x:=x−1)

is of the form S 1; S 2, so the only rule that could have been used to produce
the root of T is [compns]. Therefore T must have the form

〈y:=1, s〉→s13 T 1

〈y:=1; while ¬(x=1) do (y:=y�x; x:=x−1), s〉→s61

for some state s13 and some derivation tree T 1 that has root

〈while ¬(x=1) do (y:=y�x; x:=x−1), s13〉→s61 (**)

Since 〈y:=1, s〉 → s13 has to be an instance of the axiom [assns], we get that
s13 = s[y�→1].

The missing part T 1 of T is a derivation tree with root (**). Since the
statement of (**) has the form while b do S , the derivation tree T 1 must have
been constructed by applying either the rule [while tt

ns] or the axiom [whileff
ns].

Since B[[¬(x=1)]]s13 = tt, we see that only the rule [while tt
ns] could have been

applied so T 1 will have the form

T 2 T 3

〈while ¬(x=1) do (y:=y�x; x:=x−1), s13〉→s61

where T 2 is a derivation tree with root

2.1 Natural Semantics 25

〈y:=y�x; x:=x−1, s13〉→s32

and T 3 is a derivation tree with root

〈while ¬(x=1) do (y:=y�x; x:=x−1), s32〉→s61 (***)

for some state s32.
Using that the form of the statement y:=y�x; x:=x−1 is S 1;S 2, it is now

easy to see that the derivation tree T 2 is

〈y:=y�x, s13〉→s33 〈x:=x−1, s33〉→s32

〈y:=y�x; x:=x−1, s13〉→s32

where s33 = s[y�→3] and s32 = s[y�→3][x�→2]. The leaves of T 2 are instances
of [assns] and are combined using [compns]. So now T 2 is fully constructed.

In a similar way, we can construct the derivation tree T 3 with root (***)
and we get

〈y:=y�x, s32〉→s62 〈x:=x−1, s62〉→s61

〈y:=y�x; x:=x−1, s32〉→s61 T 4

〈while ¬(x=1) do (y:=y�x; x:=x−1), s32〉→s61

where s62 = s[y�→6][x�→2], s61 = s[y�→6][x�→1], and T 4 is a derivation tree
with root

〈while ¬(x=1) do (y:=y�x; x:=x−1), s61〉→s61

Finally, we see that the derivation tree T 4 is an instance of the axiom
[whileff

ns] because B[[¬(x=1)]]s61 = ff. This completes the construction of the
derivation tree T for (*).

Exercise 2.3

Consider the statement

z:=0; while y≤x do (z:=z+1; x:=x−y)

Construct a derivation tree for this statement when executed in a state where
x has the value 17 and y has the value 5.

We shall introduce the following terminology. The execution of a statement
S on a state s

– terminates if and only if there is a state s ′ such that 〈S , s〉 → s ′ and

– loops if and only if there is no state s ′ such that 〈S , s〉 → s ′.

26 2. Operational Semantics

(For the latter definition, note that no run-time errors are possible.) We shall
say that a statement S always terminates if its execution on a state s terminates
for all choices of s, and always loops if its execution on a state s loops for all
choices of s.

Exercise 2.4

Consider the following statements

– while ¬(x=1) do (y:=y�x; x:=x−1)
– while 1≤x do (y:=y�x; x:=x−1)
– while true do skip

For each statement determine whether or not it always terminates and whether
or not it always loops. Try to argue for your answers using the axioms and rules
of Table 2.1.

Properties of the Semantics

The transition system gives us a way of arguing about statements and their
properties. As an example, we may be interested in whether two statements S 1

and S 2 are semantically equivalent ; this means that for all states s and s ′

〈S 1, s〉 → s ′ if and only if 〈S 2, s〉 → s ′

Lemma 2.5

The statement

while b do S

is semantically equivalent to

if b then (S ; while b do S) else skip

Proof: The proof is in two parts. We shall first prove that if

〈while b do S , s〉 → s ′′ (*)

then

〈if b then (S ; while b do S) else skip, s〉 → s ′′ (**)

Thus, if the execution of the loop terminates, then so does its one-level unfold-
ing. Later we shall show that if the unfolded loop terminates, then so will the
loop itself; the conjunction of these results then proves the lemma.

2.1 Natural Semantics 27

Because (*) holds, we know that we have a derivation tree T for it. It can
have one of two forms depending on whether it has been constructed using the
rule [while tt

ns] or the axiom [whileff
ns]. In the first case, the derivation tree T has

the form

T 1 T 2

〈while b do S , s〉 → s ′′

where T 1 is a derivation tree with root 〈S , s〉→s ′ and T 2 is a derivation tree
with root 〈while b do S , s ′〉→s ′′. Furthermore, B[[b]]s = tt. Using the derivation
trees T 1 and T 2 as the premises for the rules [compns], we can construct the
derivation tree

T 1 T 2

〈S ; while b do S , s〉 → s ′′

Using that B[[b]]s = tt, we can use the rule [if tt
ns] to construct the derivation

tree

T 1 T 2

〈S ; while b do S , s〉 → s ′′

〈if b then (S ; while b do S) else skip, s〉 → s ′′

thereby showing that (**) holds.
Alternatively, the derivation tree T is an instance of [whileff

ns]. Then
B[[b]]s = ff and we must have that s ′′=s. So T simply is

〈while b do S , s〉 → s

Using the axiom [skipns], we get a derivation tree

〈skip, s〉→s ′′

and we can now apply the rule [ifff
ns] to construct a derivation tree for (**):

〈skip, s〉 → s ′′

〈if b then (S ; while b do S) else skip, s〉 → s ′′

This completes the first part of the proof.
For the second part of the proof, we assume that (**) holds and shall prove

that (*) holds. So we have a derivation tree T for (**) and must construct one
for (*). Only two rules could give rise to the derivation tree T for (**), namely
[if tt

ns] or [ifff
ns]. In the first case, B[[b]]s = tt and we have a derivation tree T 1

with root

28 2. Operational Semantics

〈S ; while b do S , s〉→s ′′

The statement has the general form S 1; S 2, and the only rule that could give
this is [compns]. Therefore there are derivation trees T 2 and T 3 for

〈S , s〉→s ′

and

〈while b do S , s ′〉→s ′′

for some state s ′. It is now straightforward to use the rule [while tt
ns] to combine

T 2 and T 3 into a derivation tree for (*).
In the second case, B[[b]]s = ff and T is constructed using the rule [ifff

ns].
This means that we have a derivation tree for

〈skip, s〉→s ′′

and according to axiom [skipns] it must be the case that s=s ′′. But then we can
use the axiom [whileff

ns] to construct a derivation tree for (*). This completes
the proof.

Exercise 2.6

Prove that the two statements S 1;(S 2;S 3) and (S 1;S 2);S 3 are semantically
equivalent. Construct a statement showing that S 1;S 2 is not, in general,
semantically equivalent to S 2;S 1.

Exercise 2.7

Extend the language While with the statement

repeat S until b

and define the relation → for it. (The semantics of the repeat-construct is not
allowed to rely on the existence of a while-construct in the language.) Prove
that repeat S until b and S ; if b then skip else (repeat S until b) are
semantically equivalent.

Exercise 2.8

Another iterative construct is

for x := a1 to a2 do S

Extend the language While with this statement and define the relation → for
it. Evaluate the statement

2.1 Natural Semantics 29

y:=1; for z:=1 to x do (y:=y � x; x:=x−1)

from a state where x has the value 5. Hint: You may need to assume that
you have an “inverse” to N , so that there is a numeral for each number that
may arise during the computation. (The semantics of the for-construct is not
allowed to rely on the existence of a while-construct in the language.)

In the proof above Table 2.1 was used to inspect the structure of the deriva-
tion tree for a certain transition known to hold. In the proof of the next result,
we shall combine this with an induction on the shape of the derivation tree.
The idea can be summarized as follows:

Induction on the Shape of Derivation Trees

1: Prove that the property holds for all the simple derivation trees by
showing that it holds for the axioms of the transition system.

2: Prove that the property holds for all composite derivation trees: For
each rule assume that the property holds for its premises (this is
called the induction hypothesis) and prove that it also holds for the
conclusion of the rule provided that the conditions of the rule are
satisfied.

We shall say that the semantics of Table 2.1 is deterministic if for all choices
of S , s, s ′, and s ′′ we have that

〈S , s〉 → s ′ and 〈S , s〉 → s ′′ imply s ′ = s ′′

This means that for every statement S and initial state s we can uniquely
determine a final state s ′ if (and only if) the execution of S terminates.

Theorem 2.9

The natural semantics of Table 2.1 is deterministic.

Proof: We assume that 〈S , s〉→s ′ and shall prove that

if 〈S , s〉→s ′′ then s ′ = s ′′.

We shall proceed by induction on the shape of the derivation tree for 〈S , s〉→s ′.

The case [assns]: Then S is x :=a and s ′ is s[x �→A[[a]]s]. The only axiom or
rule that could be used to give 〈x :=a, s〉→s ′′ is [assns], so it follows that s ′′

must be s[x �→A[[a]]s] and thereby s ′ = s ′′.

30 2. Operational Semantics

The case [skipns]: Analogous.

The case [compns]: Assume that

〈S 1;S 2, s〉→s ′

holds because

〈S 1, s〉→s0 and 〈S 2, s0〉→s ′

for some s0. The only rule that could be applied to give 〈S 1;S 2, s〉→s ′′ is
[compns], so there is a state s1 such that

〈S 1, s〉→s1 and 〈S 2, s1〉→s ′′

The induction hypothesis can be applied to the premise 〈S 1, s〉→s0 and from
〈S 1, s〉→s1 we get s0 = s1. Similarly, the induction hypothesis can be applied
to the premise 〈S 2, s0〉→s ′ and from 〈S 2, s0〉→s ′′ we get s ′ = s ′′ as required.

The case [if tt
ns]: Assume that

〈if b then S 1 else S 2, s〉 → s ′

holds because

B[[b]]s = tt and 〈S 1, s〉→s ′

From B[[b]]s = tt we get that the only rule that could be applied to give the
alternative 〈if b then S 1 else S 2, s〉 → s ′′ is [if tt

ns]. So it must be the case that

〈S 1, s〉 → s ′′

But then the induction hypothesis can be applied to the premise 〈S 1, s〉 → s ′

and from 〈S 1, s〉 → s ′′ we get s ′ = s ′′.

The case [ifff
ns]: Analogous.

The case [while tt
ns]: Assume that

〈while b do S , s〉 → s ′

because

B[[b]]s = tt, 〈S , s〉→s0 and 〈while b do S , s0〉→s ′

The only rule that could be applied to give 〈while b do S , s〉 → s ′′ is [while tt
ns]

because B[[b]]s = tt, and this means that

〈S , s〉→s1 and 〈while b do S , s1〉 → s ′′

must hold for some s1. Again the induction hypothesis can be applied to the
premise 〈S , s〉→s0, and from 〈S , s〉→s1 we get s0 = s1. Thus we have

〈while b do S , s0〉→s ′ and 〈while b do S , s0〉→s ′′

2.1 Natural Semantics 31

Since 〈while b do S , s0〉→s ′ is a premise of (the instance of) [while tt
ns], we can

apply the induction hypothesis to it. From 〈while b do S , s0〉→s ′′ we therefore
get s ′ = s ′′ as required.

The case [whileff
ns]: Straightforward.

Exercise 2.10 (*)

Prove that repeat S until b (as defined in Exercise 2.7) is semantically equiv-
alent to S ; while ¬b do S . Argue that this means that the extended semantics
is deterministic.

It is worth observing that we could not prove Theorem 2.9 using structural
induction on the statement S . The reason is that the rule [while tt

ns] defines the
semantics of while b do S in terms of itself. Structural induction works fine
when the semantics is defined compositionally (as, e.g., A and B in Chapter 1).
But the natural semantics of Table 2.1 is not defined compositionally because
of the rule [while tt

ns].
Basically, induction on the shape of derivation trees is a kind of structural

induction on the derivation trees: In the base case, we show that the property
holds for the simple derivation trees. In the induction step, we assume that the
property holds for the immediate constituents of a derivation tree and show
that it also holds for the composite derivation tree.

The Semantic Function Sns

The meaning of statements can now be summarized as a (partial) function from
State to State. We define

Sns: Stm → (State ↪→ State)

and this means that for every statement S we have a partial function

Sns[[S]] ∈ State ↪→ State.

It is given by

Sns[[S]]s =
{

s ′ if 〈S , s〉 → s ′

undef otherwise

Note that Sns is a well-defined partial function because of Theorem 2.9. The
need for partiality is demonstrated by the statement while true do skip that
always loops (see Exercise 2.4); we then have

32 2. Operational Semantics

Sns[[while true do skip]] s = undef

for all states s.

Exercise 2.11

The semantics of arithmetic expressions is given by the function A. We can also
use an operational approach and define a natural semantics for the arithmetic
expressions. It will have two kinds of configurations:

〈a, s〉 denoting that a has to be evaluated in state s, and

z denoting the final value (an element of Z).

The transition relation →Aexp has the form

〈a, s〉 →Aexp z

where the idea is that a evaluates to z in state s. Some example axioms and
rules are

〈n, s〉 →Aexp N [[n]]

〈x , s〉 →Aexp s x

〈a1, s〉 →Aexp z 1, 〈a2, s〉 →Aexp z 2

〈a1 + a2, s〉 →Aexp z
where z = z 1 + z 2

Complete the specification of the transition system. Use structural induction
on Aexp to prove that the meaning of a defined by this relation is the same
as that defined by A.

Exercise 2.12

In a similar, way we can specify a natural semantics for the boolean expressions.
The transitions will have the form

〈b, s〉 →Bexp t

where t ∈ T. Specify the transition system and prove that the meaning of b
defined in this way is the same as that defined by B.

Exercise 2.13

Determine whether or not semantic equivalence of S 1 and S 2 amounts to
Sns[[S 1]] = Sns[[S 2]].

2.2 Structural Operational Semantics 33

[asssos] 〈x := a, s〉 ⇒ s[x �→A[[a]]s]

[skipsos] 〈skip, s〉 ⇒ s

[comp 1
sos]

〈S 1, s〉 ⇒ 〈S ′
1, s ′〉

〈S 1;S 2, s〉 ⇒ 〈S ′
1;S 2, s ′〉

[comp 2
sos]

〈S 1, s〉 ⇒ s ′

〈S 1;S 2, s〉 ⇒ 〈S 2, s ′〉

[if tt
sos] 〈if b then S 1 else S 2, s〉 ⇒ 〈S 1, s〉 if B[[b]]s = tt

[ifff
sos] 〈if b then S 1 else S 2, s〉 ⇒ 〈S 2, s〉 if B[[b]]s = ff

[whilesos] 〈while b do S , s〉 ⇒

〈if b then (S ; while b do S) else skip, s〉

Table 2.2 Structural operational semantics for While

2.2 Structural Operational Semantics

In structural operational semantics, the emphasis is on the individual steps of
the execution; that is, the execution of assignments and tests. The transition
relation has the form

〈S , s〉 ⇒ γ

where γ either is of the form 〈S ′, s ′〉 or of the form s ′. The transition ex-
presses the first step of the execution of S from state s. There are two possible
outcomes:

– If γ is of the form 〈S ′, s ′〉, then the execution of S from s is not completed and
the remaining computation is expressed by the intermediate configuration
〈S ′, s ′〉.

– If γ is of the form s ′, then the execution of S from s has terminated and the
final state is s ′.

We shall say that 〈S , s〉 is stuck if there is no γ such that 〈S , s〉 ⇒ γ.
The definition of ⇒ is given by the axioms and rules of Table 2.2, and the

general form of these is as in the previous section. Axioms [asssos] and [skipsos]
have not changed at all because the assignment and skip statements are fully
executed in one step.

The rules [comp 1
sos] and [comp 2

sos] express that to execute S 1;S 2 in state s
we first execute S 1 one step from s. Then there are two possible outcomes:

34 2. Operational Semantics

– If the execution of S 1 has not been completed, we have to complete it before
embarking on the execution of S 2.

– If the execution of S 1 has been completed, we can start on the execution of
S 2.

The first case is captured by the rule [comp 1
sos]: if the result of executing the

first step of 〈S , s〉 is an intermediate configuration 〈S ′
1, s ′〉, then the next

configuration is 〈S ′
1;S 2, s ′〉, showing that we have to complete the execution of

S 1 before we can start on S 2. The second case above is captured by the rule
[comp 2

sos]: if the result of executing S 1 from s is a final state s ′, then the next
configuration is 〈S 2, s ′〉, so that we can now start on S 2.

From the axioms [if tt
sos] and [ifff

sos] we see that the first step in executing a
conditional is to perform the test and to select the appropriate branch. Finally,
the axiom [whilesos] shows that the first step in the execution of the while-
construct is to unfold it one level; that is, to rewrite it as a conditional. The
test will therefore be performed in the second step of the execution (where one
of the axioms for the if-construct is applied). We shall see an example of this
shortly.

A derivation sequence of a statement S starting in state s is either

1. a finite sequence

γ0, γ1, γ2, · · ·, γk

which is sometimes written

γ0 ⇒ γ1 ⇒ γ2 ⇒ · · · ⇒ γk

consisting of configurations satisfying γ0 = 〈S , s〉, γi ⇒ γi+1 for 0≤i<
k, where k≥0 and where γk is either a terminal configuration or a stuck
configuration, or it is

2. an infinite sequence

γ0, γ1, γ2, · · ·

which is sometimes written

γ0 ⇒ γ1 ⇒ γ2 ⇒ · · ·

consisting of configurations satisfying γ0 = 〈S , s〉 and γi ⇒ γi+1 for 0≤i.

We shall write γ0 ⇒i γi to indicate that there are i steps in the execution from
γ0 to γi, and we write γ0 ⇒∗ γi to indicate that there are a finite number

2.2 Structural Operational Semantics 35

of steps. Note that γ0 ⇒i γi and γ0 ⇒∗ γi need not be derivation sequences:
they will be so if and only if γi is either a terminal configuration or a stuck
configuration.

Example 2.14

Consider the statement

(z := x; x := y); y := z

of Chapter 1, and let s0 be the state that maps all variables except x and y to
0 and that has s0 x = 5 and s0 y = 7. We then have the derivation sequence

〈(z := x; ¯x := y); y := z, s0〉

⇒ 〈x := y; y := z, s0[z�→5]〉

⇒ 〈y := z, (s0[z�→5])[x�→7]〉

⇒ ((s0[z�→5])[x�→7])[y�→5]

Corresponding to each of these steps, we have derivation trees explaining why
they take place. For the first step

〈(z := x; x := y); y := z, s0〉 ⇒ 〈x := y; y := z, s0[z�→5]〉

the derivation tree is

〈z := x, s0〉 ⇒ s0[z�→5]

〈z := x; x := y, s0〉 ⇒ 〈x := y, s0[z�→5]〉

〈(z := x; x := y); y := z, s0〉 ⇒ 〈x := y; y := z, s0[z�→5]〉

and it has been constructed from the axiom [asssos] and the rules [comp 1
sos] and

[comp 2
sos]. The derivation tree for the second step is constructed in a similar

way using only [asssos] and [comp 2
sos], and for the third step it simply is an

instance of [asssos].

Example 2.15

Assume that s x = 3. The first step of execution from the configuration

〈y:=1; while ¬(x=1) do (y:=y � x; x:=x−1), s〉

will give the configuration

〈while ¬(x=1) do (y:=y � x; x:=x−1), s[y�→1]〉

36 2. Operational Semantics

This is achieved using the axiom [asssos] and the rule [comp 2
sos] as shown by

the derivation tree

〈y:=1, s〉 ⇒ s[y�→1]

〈y:=1; while ¬(x=1) do (y:=y�x; x:=x−1), s〉 ⇒
〈while ¬(x=1) do (y:=y�x; x:=x−1), s[y�→1]〉

The next step of the execution will rewrite the loop as a conditional using the
axiom [whilesos] so we get the configuration

〈if ¬(x=1) then ((y:=y�x; x:=x−1);
while ¬(x=1) do (y:=y�x; x:=x−1))

else skip, s[y�→1]〉

The following step will perform the test and yields (according to [if tt
sos]) the

configuration

〈(y:=y�x; x:=x−1); while ¬(x=1) do (y:=y � x; x:=x−1), s[y�→1]〉

We can then use [asssos], [comp 2
sos], and [comp 1

sos] to obtain the configuration

〈x:=x−1; while ¬(x=1) do (y:=y � x; x:=x−1), s[y�→3]〉

as is verified by the derivation tree

〈y:=y�x, s[y�→1]〉⇒s[y�→3]

〈y:=y�x; x:=x−1, s[y�→1]〉⇒〈x:=x−1, s[y�→3]〉

〈(y:=y�x; x:=x−1); while ¬(x=1) do (y:=y�x; x:=x−1), s[y�→1]〉 ⇒
〈x:=x−1; while ¬(x=1) do (y:=y � x; x:=x−1), s[y�→3]〉

Using [asssos] and [comp 2
sos], the next configuration will then be

〈while ¬(x=1) do (y:=y � x; x:=x−1), s[y�→3][x�→2]〉

Continuing in this way, we eventually reach the final state s[y�→6][x�→1].

Exercise 2.16

Construct a derivation sequence for the statement

z:=0; while y≤x do (z:=z+1; x:=x−y)

when executed in a state where x has the value 17 and y has the value 5. De-
termine a state s such that the derivation sequence obtained for the statement
above and s is infinite.

2.2 Structural Operational Semantics 37

Given a statement S in the language While and a state s, it is always
possible to find at least one derivation sequence that starts in the configuration
〈S , s〉: simply apply axioms and rules forever or until a terminal or stuck
configuration is reached. Inspection of Table 2.2 shows that there are no stuck
configurations in While, and Exercise 2.22 below will show that there is in
fact only one derivation sequence that starts with 〈S , s〉. However, some of the
constructs considered in Chapter 3 that extend While will have configurations
that are stuck or more than one derivation sequence that starts in a given
configuration.

In analogy with the terminology of the previous section, we shall say that
the execution of a statement S on a state s

– terminates if and only if there is a finite derivation sequence starting with
〈S , s〉 and

– loops if and only if there is an infinite derivation sequence starting with
〈S , s〉.

We shall say that the execution of S on s terminates successfully if 〈S , s〉 ⇒∗ s ′

for some state s ′; in While an execution terminates successfully if and only if
it terminates because there are no stuck configurations. Finally, we shall say
that a statement S always terminates if it terminates on all states, and always
loops if it loops on all states.

Exercise 2.17

Extend While with the construct repeat S until b and specify a structural
operational semantics for it. (The semantics for the repeat-construct is not
allowed to rely on the existence of a while-construct.)

Exercise 2.18

Extend While with the construct for x := a1 to a2 do S and specify the
structural operational semantics for it. Hint: You may need to assume that
you have an “inverse” to N so that there is a numeral for each number that
may arise during the computation. (The semantics for the for-construct is not
allowed to rely on the existence of a while-construct.)

Properties of the Semantics

For structural operational semantics, it is often useful to conduct proofs by
induction on the lengths of the finite derivation sequences considered. The

38 2. Operational Semantics

proof technique may be summarized as follows:

Induction on the Length of Derivation Sequences

1: Prove that the property holds for all derivation sequences of length 0.

2: Prove that the property holds for all finite derivation sequences: As-
sume that the property holds for all derivation sequences of length at
most k (this is called the induction hypothesis) and show that it holds
for derivation sequences of length k+1.

The induction step of a proof following this principle will often be done by
inspecting either

– the structure of the syntactic element or

– the derivation tree validating the first transition of the derivation sequence.

Note that the proof technique is a simple application of mathematical induction.
To illustrate the use of the proof technique, we shall prove the following

lemma (to be used in the next section). Intuitively, the lemma expresses that
the execution of a composite construct S 1;S 2 can be split into two parts, one
corresponding to S 1 and the other corresponding to S 2.

Lemma 2.19

If 〈S 1;S 2, s〉 ⇒k s ′′, then there exists a state s ′ and natural numbers k1 and
k2 such that 〈S 1, s〉 ⇒k1 s ′ and 〈S 2, s ′〉 ⇒k2 s ′′, where k = k1+k2.

Proof: The proof is by induction on the number k; that is, by induction on the
length of the derivation sequence 〈S 1;S 2, s〉 ⇒k s ′′.

If k = 0, then the result holds vacuously (because 〈S 1;S 2, s〉 and s ′′ are
different).

For the induction step, we assume that the lemma holds for k ≤ k0, and we
shall prove it for k0+1. So assume that

〈S 1;S 2, s〉 ⇒k0+1 s ′′

This means that the derivation sequence can be written as

〈S 1;S 2, s〉 ⇒ γ ⇒k0 s ′′

for some configuration γ. Now one of two cases applies depending on which of
the two rules [comp 1

sos] and [comp 2
sos] was used to obtain 〈S 1;S 2, s〉 ⇒ γ.

In the first case, where [comp 1
sos] is used, we have γ = 〈S′

1;S2, s
′〉 and

2.2 Structural Operational Semantics 39

〈S 1;S 2, s〉 ⇒ 〈S ′
1;S 2, s ′〉

because

〈S 1, s〉 ⇒ 〈S ′
1, s ′〉

We therefore have

〈S ′
1;S 2, s ′〉 ⇒k0 s ′′

and the induction hypothesis can be applied to this derivation sequence because
it is shorter than the one with which we started. This means that there is a
state s0 and natural numbers k1 and k2 such that

〈S ′
1, s ′〉 ⇒k1 s0 and 〈S 2, s0〉 ⇒k2 s ′′

where k1+k2=k0. Using that 〈S 1, s〉 ⇒ 〈S ′
1, s ′〉 and 〈S ′

1, s ′〉 ⇒k1 s0, we get

〈S 1, s〉 ⇒k1+1 s0

We have already seen that 〈S 2, s0〉 ⇒k2 s ′′, and since (k1+1)+k2 = k0+1, we
have proved the required result.

The second possibility is that [comp 2
sos] has been used to obtain the deriva-

tion 〈S 1;S 2, s〉 ⇒ γ. Then we have

〈S 1, s〉 ⇒ s ′

and γ is 〈S 2, s ′〉 so that

〈S 2, s ′〉 ⇒k0 s ′′

The result now follows by choosing k1=1 and k2=k0.

Exercise 2.20

Suppose that 〈S 1;S 2, s〉⇒∗〈S 2, s ′〉. Show that it is not necessarily the case
that 〈S 1, s〉⇒∗s ′.

Exercise 2.21 (Essential)

Prove that

if 〈S 1, s〉 ⇒k s ′ then 〈S 1;S 2, s〉 ⇒k 〈S 2, s ′〉
I.e., the execution of S 1 is not influenced by the statement following it.

In the previous section, we defined a notion of determinism based on the
natural semantics. For the structural operational semantics, we define the sim-
ilar notion as follows. The semantics of Table 2.2 is deterministic if for all
choices of S , s, γ, and γ′ we have that

40 2. Operational Semantics

〈S , s〉 ⇒ γ and 〈S , s〉 ⇒ γ′ imply γ = γ′

Exercise 2.22 (Essential)

Show that the structural operational semantics of Table 2.2 is deterministic.
Deduce that there is exactly one derivation sequence starting in a configuration
〈S , s〉. Argue that a statement S of While cannot both terminate and loop
on a state s and hence cannot both be always terminating and always looping.

In the previous section, we defined a notion of two statements S 1 and S 2

being semantically equivalent. The similar notion can be defined based on the
structural operational semantics: S 1 and S 2 are semantically equivalent if for
all states s

– 〈S 1, s〉 ⇒∗ γ if and only if 〈S 2, s〉 ⇒∗ γ, whenever γ is a configuration that
is either stuck or terminal, and

– there is an infinite derivation sequence starting in 〈S 1, s〉 if and only if there
is one starting in 〈S 2, s〉.

Note that in the first case the lengths of the two derivation sequences may be
different.

Exercise 2.23

Show that the following statements of While are semantically equivalent in
the sense above:

– S ;skip and S

– while b do S and if b then (S ; while b do S) else skip

– S 1;(S 2;S 3) and (S 1;S 2);S 3

You may use the result of Exercise 2.22. Discuss to what extent the notion of
semantic equivalence introduced above is the same as that defined from the
natural semantics.

Exercise 2.24

Prove that repeat S until b (as defined in Exercise 2.17) is semantically
equivalent to S ; while ¬ b do S .

2.3 An Equivalence Result 41

The Semantic Function Ssos

As in the previous section, the meaning of statements can be summarized by
a (partial) function from State to State:

Ssos: Stm → (State ↪→ State)

It is given by

Ssos[[S]]s =

{

s ′ if 〈S , s〉 ⇒∗ s ′

undef otherwise

The well-definedness of the definition follows from Exercise 2.22.

Exercise 2.25

Determine whether or not semantic equivalence of S 1 and S 2 amounts to
Ssos[[S 1]] = Ssos[[S 2]].

2.3 An Equivalence Result

We have given two definitions of the semantics of While and we shall now
address the question of their equivalence.

Theorem 2.26

For every statement S of While, we have Sns[[S]] = Ssos[[S]].

This result expresses two properties:

– If the execution of S from some state terminates in one of the semantics,
then it also terminates in the other and the resulting states will be equal.

– If the execution of S from some state loops in one of the semantics, then it
will also loop in the other.

It should be fairly obvious that the first property follows from the theorem be-
cause there are no stuck configurations in the structural operational semantics
of While. For the other property, suppose that the execution of S on state s
loops in one of the semantics. If it terminates in the other semantics, we have a
contradiction with the first property because both semantics are deterministic
(Theorem 2.9 and Exercise 2.22). Hence S will have to loop on state s also in
the other semantics.

42 2. Operational Semantics

The theorem is proved in two stages, as expressed by Lemma 2.27 and
Lemma 2.28 below. We shall first prove Lemma 2.27.

Lemma 2.27

For every statement S of While and states s and s ′ we have

〈S , s〉 → s ′ implies 〈S , s〉 ⇒∗ s ′

So if the execution of S from s terminates in the natural semantics, then it will
terminate in the same state in the structural operational semantics.

Proof: The proof proceeds by induction on the shape of the derivation tree for
〈S , s〉 → s ′.

The case [assns]: We assume that

〈x := a, s〉 → s[x �→A[[a]]s]

From [asssos], we get the required

〈x := a, s〉 ⇒ s[x �→A[[a]]s]

The case [skipns]: Analogous.

The case [compns]: Assume that

〈S 1;S 2, s〉 → s ′′

because

〈S 1, s〉 → s ′ and 〈S 2, s ′〉 → s ′′

The induction hypothesis can be applied to both of the premises 〈S 1, s〉 → s ′

and 〈S 2, s ′〉 → s ′′ and gives

〈S 1, s〉 ⇒∗ s ′ and 〈S 2, s ′〉 ⇒∗ s ′′

From Exercise 2.21, we get

〈S 1;S 2, s〉 ⇒∗ 〈S 2, s ′〉

and thereby 〈S 1;S 2, s〉 ⇒∗ s ′′.

The case [if tt
ns]: Assume that

〈if b then S 1 else S 2, s〉 → s ′

because

B[[b]]s = tt and 〈S 1, s〉 → s ′

Since B[[b]]s = tt, we get

2.3 An Equivalence Result 43

〈if b then S 1 else S 2, s〉 ⇒ 〈S 1, s〉 ⇒∗ s ′

where the first relationship comes from [if tt
sos] and the second from the induction

hypothesis applied to the premise 〈S 1, s〉 → s ′.

The case [ifff
ns]: Analogous.

The case [while tt
ns]: Assume that

〈while b do S , s〉 → s ′′

because

B[[b]]s = tt, 〈S , s〉 → s ′ and 〈while b do S , s ′〉 → s ′′

The induction hypothesis can be applied to both of the premises 〈S , s〉 → s ′

and 〈while b do S , s ′〉 → s ′′ and gives

〈S , s〉 ⇒∗ s ′ and 〈while b do S , s ′〉 ⇒∗ s ′′

Using Exercise 2.21, we get

〈S ; while b do S , s〉 ⇒∗ s ′′

Using [whilesos] and [if tt
sos] (with B[[b]]s = tt), we get the first two steps of

〈while b do S , s〉

⇒ 〈if b then (S ; while b do S) else skip, s〉

⇒ 〈S ; while b do S , s〉

⇒∗ s ′′

and we have already argued for the last part.

The case [whileff
ns]: Straightforward.

This completes the proof of Lemma 2.27. The second part of the theorem
follows from Lemma 2.28.

Lemma 2.28

For every statement S of While, states s and s ′ and natural number k, we
have that

〈S , s〉 ⇒k s ′ implies 〈S , s〉 → s ′.

So if the execution of S from s terminates in the structural operational seman-
tics, then it will terminate in the same state in the natural semantics.

44 2. Operational Semantics

Proof: The proof proceeds by induction on the length of the derivation sequence
〈S , s〉 ⇒k s ′; that is, by induction on k.

If k=0, then the result holds vacuously.
To prove the induction step we assume that the lemma holds for k ≤ k0,

and we shall then prove that it holds for k0+1. We proceed by cases on how the
first step of 〈S , s〉 ⇒k0+1 s ′ is obtained; that is, by inspecting the derivation
tree for the first step of computation in the structural operational semantics.

The case [asssos]: Straightforward (and k0 = 0).

The case [skipsos]: Straightforward (and k0 = 0).

The cases [comp 1
sos] and [comp 2

sos]: In both cases, we assume that

〈S 1;S 2, s〉 ⇒k0+1 s ′′

We can now apply Lemma 2.19 and get that there exists a state s ′ and natural
numbers k1 and k2 such that

〈S 1, s〉 ⇒k1 s ′ and 〈S 2, s ′〉 ⇒k2 s ′′

where k1+k2=k0+1. The induction hypothesis can now be applied to each of
these derivation sequences because k1 ≤ k0 and k2 ≤ k0. So we get

〈S 1, s〉 → s ′ and 〈S 2, s ′〉 → s ′′

Using [compns], we now get the required 〈S 1;S 2, s〉 → s ′′.

The case [if tt
sos]: Assume that B[[b]]s = tt and that

〈if b then S 1 else S 2, s〉 ⇒ 〈S 1, s〉 ⇒k0 s ′

The induction hypothesis can be applied to the derivation 〈S 1, s〉 ⇒k0 s ′ and
gives

〈S 1, s〉 → s ′

The result now follows using [if tt
ns].

The case [ifff
sos]: Analogous.

The case [whilesos]: We have

〈while b do S , s〉

⇒ 〈if b then (S ; while b do S) else skip, s〉

⇒k0 s ′′

The induction hypothesis can be applied to the k0 last steps of the derivation
sequence and gives

〈if b then (S ; while b do S) else skip, s〉 → s ′′

2.3 An Equivalence Result 45

and from Lemma 2.5 we get the required

〈while b do S , s〉 → s ′′

Proof of Theorem 2.26: For an arbitrary statement S and state s, it follows from
Lemmas 2.27 and 2.28 that if Sns[[S]]s = s ′ then Ssos[[S]]s = s ′ and vice versa.
This suffices for showing that the functions Sns[[S]] and Ssos[[S]] must be equal:
if one is defined on a state s, then so is the other, and therefore if one is not
defined on a state s, then neither is the other. �

Exercise 2.29

Consider the extension of the language While with the statement repeat S
until b. The natural semantics of the construct was considered in Exercise 2.7
and the structural operational semantics in Exercise 2.17. Modify the proof of
Theorem 2.26 so that the theorem applies to the extended language.

Exercise 2.30

Consider the extension of the language While with the statement for x := a1

to a2 do S . The natural semantics of the construct was considered in Exercise
2.8 and the structural operational semantics in Exercise 2.18. Modify the proof
of Theorem 2.26 so that the theorem applies to the extended language.

The proof technique employed in the proof of Theorem 2.26 may be sum-
marized as follows:

Proof Summary for While:

Equivalence of two Operational Semantics

1: Prove by induction on the shape of derivation trees that for each
derivation tree in the natural semantics there is a corresponding finite
derivation sequence in the structural operational semantics.

2: Prove by induction on the length of derivation sequences that for each
finite derivation sequence in the structural operational semantics there
is a corresponding derivation tree in the natural semantics.

When proving the equivalence of two operational semantics for a language with
additional programming constructs, one may need to amend the above tech-
nique above. One reason is that the equivalence result may have to be expressed

46 2. Operational Semantics

differently from that of Theorem 2.26 (as will be the case if the extended lan-
guage is non-deterministic).

3
More on Operational Semantics

For the While language, the choice between the structural operational seman-
tics and the natural semantics is largely a matter of taste — as expressed by
Theorem 2.26, the two semantics are equivalent. For other language constructs,
the situation may be more complex: sometimes it is easy to specify the seman-
tics in one style but difficult or even impossible in the other. Also, there are
situations where equivalent semantics can be specified in the two styles but
where one of the semantics is to be preferred because of a particular applica-
tion.

In the first part of this chapter, we shall study extensions of the language
While with non-sequential constructs such as abortion, non-determinism, and
parallelism, and in each case we shall consider how to modify the operational
semantics of the previous chapter. In the second part, we shall extend While
with blocks and local variable and procedure declarations. This leads to the
introduction of important semantics concepts such as environments and store,
and we shall illustrate this in the setting of a natural semantics.

3.1 Non-sequential Language Constructs

In order to illustrate the power and weakness of the two approaches to oper-
ational semantics, we shall in this section consider various extensions of the
language While. For each extension, we shall discuss how to modify the two
styles of operational semantics.

48 3. More on Operational Semantics

Abortion

We first extend While with the simple statement abort. The idea is that
abort stops the execution of the complete program. This means that abort

behaves differently from while true do skip in that it causes the execution
to stop rather than loop. Also, abort behaves differently from skip because a
statement following abort will never be executed, whereas one following skip

certainly will.
Formally, the new syntax of statements is given by

S ::= x := a | skip | S 1 ; S 2 | if b then S 1 else S 2

| while b do S | abort
We shall not repeat the definitions of the sets of configurations but tacitly
assume that they are modified so as to correspond to the extended syntax. The
task that remains, therefore, is to define the new transition relations → and
⇒.

The fact that abort stops the execution of the program may be modelled
by ensuring that the configurations of the form 〈abort, s〉 are stuck . Therefore
the natural semantics of the extended language is still defined by the transi-
tion relation → of Table 2.1. So although the language and thereby the set of
configurations have been extended, we do not modify the definition of the tran-
sition relation. Similarly, the structural operational semantics of the extended
language is still defined by Table 2.2.

From the structural operational semantics point of view, it is clear now that
abort and skip cannot be semantically equivalent. This is because

〈skip, s〉 ⇒ s

is the only derivation sequence for skip starting in s and

〈abort, s〉
is the only derivation sequence for abort starting in s. Similarly, abort cannot
be semantically equivalent to while true do skip because

〈while true do skip, s〉

⇒ 〈if true then (skip; while true do skip) else skip, s〉

⇒ 〈skip; while true do skip, s〉

⇒ 〈while true do skip, s〉

⇒ · · ·
is an infinite derivation sequence for while true do skip, whereas abort has
none. Thus we shall claim that the structural operational semantics captures
the informal explanation given earlier.

3.1 Non-sequential Language Constructs 49

From the natural semantics point of view, it is also clear that skip and
abort cannot be semantically equivalent. However, somewhat surprisingly, it
turns out that while true do skip and abort are semantically equivalent! The
reason is that in the natural semantics we are only concerned with executions
that terminate properly. So if we do not have a derivation tree for 〈S , s〉 → s ′,
then we cannot tell whether it is because we entered a stuck configuration or a
looping execution. We can summarize this as follows:

Natural Semantics versus Structural Operational Semantics

• In a natural semantics, we cannot distinguish between looping and ab-
normal termination.

• In a structural operational semantics, looping is reflected by infinite
derivation sequences and abnormal termination by finite derivation se-
quences ending in a stuck configuration.

We should note, however, that if abnormal termination is modelled by “normal
termination” in a special error configuration (included in the set of terminal
configurations), then we can distinguish among the three statements in both
semantic styles.

Exercise 3.1

Theorem 2.26 expresses that the natural semantics and the structural oper-
ational semantics of While are equivalent. Discuss whether or not a similar
result holds for While extended with abort.

Exercise 3.2

Extend While with the statement

assert b before S

The idea is that if b evaluates to true, then we execute S, and otherwise the
execution of the complete program aborts. Extend the structural operational
semantics of Table 2.2 to express this (without assuming that While contains
the abort-statement). Show that assert true before S is semantically equiv-
alent to S but that assert false before S is equivalent to neither while true

do skip nor skip.

50 3. More on Operational Semantics

Non-determinism

The second extension of While has statements given by

S ::= x := a | skip | S 1 ; S 2 | if b then S 1 else S 2

| while b do S | S 1 or S 2

The idea here is that in S 1 or S 2 we can non-deterministically choose to execute
either S 1 or S 2. So we shall expect that execution of the statement

x := 1 or (x := 2; x := x + 2)

could result in a state where x has the value 1, but it could as well result in a
state where x has the value 4.

When specifying the natural semantics, we extend Table 2.1 with the fol-
lowing two rules:

[or 1
ns]

〈S 1, s〉 → s ′

〈S 1 or S 2, s〉 → s ′

[or 2
ns]

〈S 2, s〉 → s ′

〈S 1 or S 2, s〉 → s ′

Corresponding to the configuration 〈x := 1 or (x := 2; x := x+2), s〉, we have
derivation trees for

〈x := 1 or (x := 2; x := x+2), s〉 → s[x�→1]

as well as

〈x := 1 or (x := 2; x := x+2), s〉 → s[x�→4]

It is important to note that if we replace x := 1 by while true do skip in the
statement above, then we will only have one derivation tree, namely that for

〈(while true do skip) or (x := 2; x := x+2), s〉 → s[x�→4]

Turning to the structural operational semantics, we shall extend Table 2.2
with the following two axioms:

[or 1
sos] 〈S 1 or S 2, s〉 ⇒ 〈S 1, s〉

[or 2
sos] 〈S 1 or S 2, s〉 ⇒ 〈S 2, s〉

For the statement x := 1 or (x := 2; x := x+2), we have two derivation
sequences:

〈x := 1 or (x := 2; x := x+2), s〉 ⇒∗ s[x�→1]

and

3.1 Non-sequential Language Constructs 51

〈x := 1 or (x := 2; x := x+2), s〉 ⇒∗ s[x�→4]

If we replace x := 1 by while true do skip in the statement above, then we
still have two derivation sequences. One is infinite

〈(while true do skip) or (x := 2; x := x+2), s〉

⇒ 〈while true do skip, s〉

⇒3 〈while true do skip, s〉

⇒ · · ·
and the other is finite

〈(while true do skip) or (x := 2; x := x+2), s〉 ⇒∗ s[x�→4]

Comparing the natural semantics and the structural operational semantics,
we see that the latter can choose the “wrong” branch of the or-statement,
whereas the first always chooses the “right” branch. This is summarized as
follows:

Natural Semantics versus Structural Operational Semantics

• In a natural semantics, non-determinism suppresses looping, if possible.

• In a structural operational semantics, non-determinism does not sup-
press looping.

Exercise 3.3

Consider the statement

x := −1; while x≤0 do (x := x−1 or x := (−1)�x)

Given a state s, describe the set of final states that may result according to
the natural semantics. Further, describe the set of derivation sequences that
are specified by the structural operational semantics. Based on this, discuss
whether or not you would regard the natural semantics as being equivalent to
the structural operational semantics for this particular statement.

Exercise 3.4

We shall now extend While with the statement

random(x)

52 3. More on Operational Semantics

and the idea is that its execution will change the value of x to be any positive
natural number. Extend the natural semantics as well as the structural oper-
ational semantics to express this. Discuss whether random(x) is a superfluous
construct in the case where While is also extended with the or construct.

Parallelism

We shall now consider an extension of While with a parallel construct. So the
syntax of expressions is given by

S ::= x := a | skip | S 1 ; S 2 | if b then S 1 else S 2

| while b do S | S 1 par S 2

The idea is that both statements of S 1 par S 2 have to be executed but that
the execution can be interleaved. This means that a statement such as

x := 1 par (x := 2; x := x+2)

can give three different results for x, namely 4, 1, and 3. If we first execute
x := 1 and then x := 2; x := x+2, we get the final value 4. Alternatively, if
we first execute x := 2; x := x+2 and then x := 1, we get the final value 1.
Finally, we have the possibility of first executing x := 2, then x := 1, and lastly
x := x+2, and we then get the final value 3.

To express this in the structural operational semantics, we extend Table 2.2
with the following rules:

[par 1
sos]

〈S 1, s〉 ⇒ 〈S ′
1, s ′〉

〈S 1 par S 2, s〉 ⇒ 〈S ′
1 par S 2, s ′〉

[par 2
sos]

〈S 1, s〉 ⇒ s ′

〈S 1 par S 2, s〉 ⇒ 〈S 2, s ′〉

[par 3
sos]

〈S 2, s〉 ⇒ 〈S ′
2, s ′〉

〈S 1 par S 2, s〉 ⇒ 〈S 1 par S ′
2, s ′〉

[par 4
sos]

〈S 2, s〉 ⇒ s ′

〈S 1 par S 2, s〉 ⇒ 〈S 1, s ′〉
The first two rules take account of the case where we begin by executing the first
step of statement S 1. If the execution of S 1 is not fully completed, we modify
the configuration so as to remember how far we have reached. Otherwise only
S 2 has to be executed and we update the configuration accordingly. The last
two rules are similar but for the case where we begin by executing the first step
of S 2.

Using these rules, we get the following derivation sequences for the example
statement:

3.1 Non-sequential Language Constructs 53

〈x := 1 par (x := 2; x := x+2), s〉 ⇒ 〈x := 2; x := x+2, s[x�→1]〉

⇒ 〈x := x+2, s[x�→2]〉

⇒ s[x�→4]

〈x := 1 par (x := 2; x := x+2), s〉 ⇒ 〈x := 1 par x := x+2, s[x�→2]〉

⇒ 〈x := 1, s[x�→4]〉

⇒ s[x�→1]

and
〈x := 1 par (x := 2; x := x+2), s〉 ⇒ 〈x := 1 par x := x+2, s[x�→2]〉

⇒ 〈x := x+2, s[x�→1]〉

⇒ s[x�→3]

Turning to the natural semantics, we might start by extending Table 2.1
with the two rules

〈S 1, s〉 → s ′, 〈S 2, s ′〉 → s ′′

〈S 1 par S 2, s〉 → s ′′

〈S 2, s〉 → s ′, 〈S 1, s ′〉 → s ′′

〈S 1 par S 2, s〉 → s ′′

However, it is easy to see that this will not do because the rules only express
that either S 1 is executed before S 2 or vice versa. This means that we have
lost the ability to interleave the execution of two statements. Furthermore, it
seems impossible to be able to express this in the natural semantics because
we consider the execution of a statement as an atomic entity that cannot be
split into smaller pieces. This may be summarized as follows:

Natural Semantics versus Structural Operational Semantics

• In a natural semantics, the execution of the immediate constituents is
an atomic entity so we cannot express interleaving of computations.

• In a structural operational semantics, we concentrate on the small steps
of the computation so we can easily express interleaving.

Exercise 3.5

Consider an extension of While that in addition to the par-construct also
contains the construct

54 3. More on Operational Semantics

protect S end

The idea is that the statement S has to be executed as an atomic entity so that
for example

x := 1 par protect (x := 2; x := x+2) end

only has two possible outcomes, namely 1 and 4. Extend the structural oper-
ational semantics to express this. Can you specify a natural semantics for the
extended language?

Exercise 3.6

Specify a structural operational semantics for arithmetic expressions where the
individual parts of an expression may be computed in parallel. Try to prove
that you still obtain the result that was specified by A.

3.2 Blocks and Procedures

We now extend the language While with blocks containing declarations of
variables and procedures. In doing so, we introduce a couple of important con-
cepts:

– variable and procedure environments and

– locations and stores.

We shall concentrate on the natural semantics and will consider dynamic scope
as well as static scope and non-recursive as well as recursive procedures.

Blocks and Simple Declarations

We first extend the language While with blocks containing declarations of
local variables. The new language is called Block and its syntax is

S ::= x := a | skip | S 1 ; S 2 | if b then S 1 else S 2

| while b do S | begin DV S end

where DV is a meta-variable ranging over the syntactic category DecV of
variable declarations. The syntax of variable declarations is given by

DV ::= var x := a; DV | ε

3.2 Blocks and Procedures 55

[blockns]
〈DV , s〉 →D s ′, 〈S , s ′〉 → s ′′

〈begin DV S end, s〉 → s ′′[DV(DV)�−→s]

Table 3.1 Natural semantics for statements of Block

[varns]
〈DV , s[x �→A[[a]]s]〉 →D s ′

〈var x := a; DV , s〉 →D s ′

[nonens] 〈ε, s〉 →D s

Table 3.2 Natural semantics for variable declarations

where ε is the empty declaration. The idea is that the variables declared inside
a block begin DV S end are local to it. So in a statement such as

begin var y := 1;

(x := 1;

begin var x := 2; y := x+1 end;

x := y+x)

end

the x in y := x+1 relates to the local variable x introduced by var x := 2,
whereas the x in x := y+x relates to the global variable x that is also used in
the statement x := 1. In both cases, the y refers to the y declared in the outer
block. Therefore, the statement y := x+1 assigns y the value 3 rather than 2,
and the statement x := y+x assigns x the value 4 rather than 5.

Before going into the details of how to specify the semantics, we shall define
the set DV(DV) of variables declared in DV :

DV(var x := a; DV) = {x} ∪ DV(DV)

DV(ε) = ∅
We next define the natural semantics. The idea will be to have one transition

system for each of the syntactic categories Stm and DecV. For statements,
the transition system is as in Table 2.1 but extended with the rule of Table
3.1 to be explained below. The transition system for variable declarations has
configurations of the two forms 〈DV , s〉 and s and the idea is that the transition
relation →D specifies the relationship between initial and final states as before:

〈DV , s〉 →D s ′

The relation →D for variable declarations is given in Table 3.2. We generalize
the substitution operation on states and write s ′[X �−→s] for the state that is
like s ′ except for variables in the set X, where it is as specified by s. Formally,

56 3. More on Operational Semantics

(s ′[X �−→s]) x =
{

s x if x ∈ X
s ′ x if x /∈ X

This operation is used in the rule of Table 3.1 to ensure that local variables are
restored to their previous values when the block is left.

Exercise 3.7

Use the natural semantics of Table 3.1 to show that execution of the statement

begin var y := 1;

(x := 1;

begin var x := 2; y := x+1 end;

x := y+x)

end

will lead to a state where x has the value 4.

It is somewhat harder to specify a structural operational semantics for the
extended language. One approach is to replace states with a structure that is
similar to the run-time stacks used in the implementation of block structured
languages. Another is to extend the statements with fragments of the state.
However, we shall not go further into this.

Procedures

We shall now extend the language Block with procedure declarations. The
syntax of the language Proc is:

S ::= x := a | skip | S 1 ; S 2 | if b then S 1 else S 2

| while b do S | begin DV DP S end | call p

DV ::= var x := a; DV | ε

DP ::= proc p is S ; DP | ε

Here p is a meta-variable ranging over the syntactic category Pname of proce-
dure names; in the concrete syntax, there need not be any difference between
procedure names and variable names, but in the abstract syntax it is convenient
to be able to distinguish between the two. Furthermore, DP is a meta-variable
ranging over the syntactic category DecP of procedure declarations.

3.2 Blocks and Procedures 57

We shall give three different semantics of this language. They differ in their
choice of scope rules for variables and procedures:

– dynamic scope for variables as well as procedures,

– dynamic scope for variables but static scope for procedures, and

– static scope for variables as well as procedures.

To illustrate the difference, consider the statement

begin var x := 0;

proc p is x := x � 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x

end

end

If dynamic scope is used for variables as well as procedures, then the final value
of y is 6. The reason is that call q will call the local procedure p, which will
update the local variable x. If we use dynamic scope for variables but static
scope for procedures, then y gets the value 10. The reason is that now call q

will call the global procedure p and it will update the local variable x. Finally,
if we use static scope for variables as well as procedures, then y gets the value
5. The reason is that call q will now call the global procedure p, which will
update the global variable x so the local variable x is unchanged.

Dynamic scope rules for variables and procedures. The general idea is that to
execute the statement call p we shall execute the body of the procedure. This
means that we have to keep track of the association of procedure names with
procedure bodies. To facilitate this, we shall introduce the notion of a procedure
environment . Given a procedure name, the procedure environment envP will
return the statement that is its body. So envP is an element of

EnvP = Pname ↪→ Stm

The next step will be to extend the natural semantics to take the environ-
ment into account. We shall extend the transition system for statements to
have transitions of the form

envP � 〈S , s〉 → s ′

58 3. More on Operational Semantics

[assns] envP � 〈x := a, s〉 → s[x �→A[[a]]s]

[skipns] envP � 〈skip, s〉 → s

[compns]
envP � 〈S 1, s〉 → s ′, envP � 〈S 2, s ′〉 → s ′′

envP � 〈S 1;S 2, s〉 → s ′′

[ifttns]
envP � 〈S 1, s〉 → s ′

envP � 〈if b then S 1 else S 2, s〉 → s ′

if B[[b]]s = tt

[ifffns]
envP � 〈S 2, s〉 → s ′

envP � 〈if b then S 1 else S 2, s〉 → s ′

if B[[b]]s = ff

[whilett
ns]

envP � 〈S , s〉 → s ′, envP � 〈while b do S , s ′〉 → s ′′

envP � 〈while b do S , s〉 → s ′′

if B[[b]]s = tt

[whileff
ns] envP � 〈while b do S , s〉 → s

if B[[b]]s = ff

[blockns]
〈DV , s〉 →D s ′, updP(DP , envP) � 〈S , s ′〉 → s ′′

envP � 〈begin DV DP S end, s〉 → s ′′[DV(DV)�−→s]

[callrecns]
envP � 〈S , s〉 → s ′

envP � 〈call p, s〉 → s ′
where envP p = S

Table 3.3 Natural semantics for Proc with dynamic scope rules

The presence of the environment means that we can always access it and there-
fore get hold of the bodies of declared procedures. The result of modifying Table
2.1 to incorporate this extra information is shown in Table 3.3.

Concerning the rule for begin DV DP S end, the idea is that we update the
procedure environment so that the procedures declared in DP will be available
when executing S . Given a global environment envP and a declaration DP , the
updated procedure environment, updP(DP , envP), is specified by

updP(proc p is S ; DP , envP) = updP(DP , envP [p �→S])

updP(ε, envP) = envP

3.2 Blocks and Procedures 59

As the variable declarations do not need to access the procedure environ-
ment, it is not necessary to extend the transition system for declarations with
the extra component. So for variable declarations we still have transitions of
the form

〈D , s〉 →D s ′

The relation is defined as for the language Block; that is, by Table 3.2.
We can now complete the specification of the semantics of blocks and pro-

cedure calls. Note that in the rule [blockns] of Table 3.3, we use the updated
environment when executing the body of the block. In the rule [callrecns] for
procedure calls, we make use of the information provided by the environment.
It follows that procedures will always be allowed to be recursive. Note that
attempting to call a non-existing procedure will abort.

Exercise 3.8

Consider the following statement of Proc:

begin proc fac is begin var z := x;

if x = 1 then skip

else (x := x−1; call fac; y := z�y)
end;

(y := 1; call fac)

end

Construct a derivation tree for the execution of this statement from a state s,
where s x = 3.

Exercise 3.9

Use the semantics to verify that the statement

begin var x := 0;

proc p is x := x � 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x

end

end

60 3. More on Operational Semantics

[callns]
env ′

P � 〈S , s〉 → s ′

envP � 〈call p, s〉 → s ′

where envP p = (S , env ′
P)

[callrecns]
env ′

P [p �→(S , env ′
P)] � 〈S , s〉 → s ′

envP � 〈call p, s〉 → s ′

where envP p = (S , env ′
P)

Table 3.4 Procedure calls in case of mixed scope rules (choose one)

considered earlier does indeed assign the expected value 6 to y.

Static scope rules for procedures. We shall now modify the semantics of Proc
to specify static scope rules for procedures. Basically this amounts to ensuring
that each procedure knows which other procedures already have been intro-
duced when it itself was declared. To provide this information, the first step
will be to extend the procedure environment envP so that procedure names are
associated with their body as well as the procedure environment at the point
of declaration. To this end, we define

EnvP = Pname ↪→ Stm × EnvP

This definition may seem problematic because EnvP is defined in terms of itself.
However, this is not really a problem because a concrete procedure environment
always will be built from smaller environments, starting with the empty pro-
cedure environment. The function updP updating the procedure environment
can then be redefined as

updP(proc p is S ; DP , envP) = updP(DP , envP [p �→(S , envP)])

updP(ε, envP) = envP

The semantics of variable declarations are unaffected, and so is the seman-
tics of most of the statements. Compared with Table 3.3, we shall only need to
modify the rules for procedure calls. In the case where the procedures of Proc
are assumed to be non-recursive, we simply consult the procedure environment
to determine the body of the procedure and the environment at the point of
declaration. This is expressed by the rule [callns] of Table 3.4, where we, of
course, make sure to use the procedure environment env′P when executing the
body of the procedure. In the case where the procedures of Proc are assumed
to be recursive, we have to make sure that occurrences of call p inside the
body of p refer to the procedure itself. We shall therefore update the procedure
environment to contain that information. This is expressed by the rule [callrecns]

3.2 Blocks and Procedures 61

of Table 3.4. The remaining axioms and rules are as in Tables 3.3 (without
[callrecns]) and 3.2. (Clearly a choice should be made between [callns] or [callrecns].)

Exercise 3.10

Construct a statement that illustrates the difference between the two rules
for procedure calls given in Table 3.4. Validate your claim by constructing
derivation trees for the executions of the statement from a suitable state.

Exercise 3.11

Use the semantics to verify that the statement of Exercise 3.9 assigns the
expected value 10 to y.

Static scope rules for variables. We shall now modify the semantics of Proc
to specify static scope rules for variables as well as procedures. To achieve this,
we shall replace the states with two mappings: a variable environment that
associates a location with each variable and a store that associates a value
with each location. Formally, we define a variable environment envV as an
element of

EnvV = Var → Loc

where Loc is a set of locations; one may think of locations as a kind of abstract
addresses. For the sake of simplicity, we shall take Loc = Z. A store sto is an
element of

Store = Loc ∪ { next } → Z

where next is a special token used to hold the next free location. We shall need
a function

new: Loc → Loc

that given a location will produce the next free one. In our case, where Loc is
Z, we shall simply take ‘new’ to be the successor function on the integers.

So rather than having a single mapping s from variables to values, we have
split it into two mappings, envV and sto, and the idea is that s = sto ◦ envV .
To determine the value of a variable x, we shall first

– determine the location l = envV x associated with x and then

– determine the value sto l associated with the location l .

Similarly, to assign a value v to a variable x, we shall first

62 3. More on Operational Semantics

[varns]
〈DV , envV [x �→l], sto[l �→v][next �→new l]〉 →D (env ′

V , sto′)

〈var x := a; DV , envV , sto〉 →D (env ′
V , sto′)

where v = A[[a]](sto◦envV) and l = sto next

[nonens] 〈ε, envV , sto〉 →D (envV , sto)

Table 3.5 Natural semantics for variable declarations using locations

– determine the location l = envV x associated with x and then

– update the store to have sto l = v .

The initial variable environment could for example map all variables to
the location 0 and the initial store could for example map next to 1. The
variable environment (and the store) is updated by the variable declarations.
The transition system for variable declarations is therefore modified to have
the form

〈DV , envV , sto〉 →D (env ′
V , sto′)

because a variable declaration will modify the variable environment as well as
the store. The relation is defined in Table 3.5. Note that we use sto next to
determine the location l to be associated with x in the variable environment.
Also, the store is updated to hold the correct value for l as well as next. Finally,
note that the declared variables will get positive locations.

To obtain static scoping for variables, we shall extend the procedure envi-
ronment to hold the variable environment at the point of declaration. Therefore
envP will now be an element of

EnvP = Pname ↪→ Stm × EnvV × EnvP

The procedure environment is updated by the procedure declarations as before,
the only difference being that the current variable environment is supplied as
an additional parameter. The function updP is now defined by

updP(proc p is S ; DP , envV , envP) = updP(DP , envV ,
envP [p �→(S , envV , envP)])

updP(ε, envV , envP) = envP

Finally, the transition system for statements will have the form

envV , envP � 〈S , sto〉 → sto′

so given a variable environment and a procedure environment, we get a rela-
tionship between an initial store and a final store. The modification of Tables
3.3 and 3.4 is rather straightforward and is given in Table 3.6. Note that in the

3.2 Blocks and Procedures 63

[assns] envV , envP � 〈x := a, sto〉 → sto[l �→v]
where l = envV x and v = A[[a]](sto◦envV)

[skipns] envV , envP � 〈skip, sto〉 → sto

[compns]

envV , envP � 〈S 1, sto〉 → sto′

envV , envP � 〈S 2, sto′〉 → sto′′

envV , envP � 〈S 1;S 2, sto〉 → sto′′

[ifttns]
envV , envP � 〈S 1, sto〉 → sto′

envV , envP � 〈if b then S 1 else S 2, sto〉 → sto′

if B[[b]](sto◦envV) = tt

[ifffns]
envV , envP � 〈S 2, sto〉 → sto′

envV , envP � 〈if b then S 1 else S 2, sto〉 → sto′

if B[[b]](sto◦envV) = ff

[whilett
ns]

envV , envP � 〈S , sto〉 → sto′,
envV , envP � 〈while b do S , sto′〉 → sto′′

envV , envP � 〈while b do S , sto〉 → sto′′

if B[[b]](sto◦envV) = tt

[whileff
ns] envV , envP � 〈while b do S , sto〉 → sto

if B[[b]](sto◦envV) = ff

[blockns]

〈DV , envV , sto〉 →D (env ′
V , sto′),

env ′
V , env ′

P � 〈S , sto′〉 → sto′′

envV , envP � 〈begin DV DP S end, sto〉 → sto′′

where env ′
P = updP(DP , env ′

V , envP)

[callns]
env ′

V , env ′
P � 〈S , sto〉 → sto′

envV , envP � 〈call p, sto〉 → sto′

where envP p = (S , env ′
V , env ′

P)

[callrecns]
env ′

V , env ′
P [p �→(S , env ′

V , env ′
P)] � 〈S , sto〉 → sto′

envV , envP � 〈call p, sto〉 → sto′

where envP p = (S , env ′
V , env ′

P)

Table 3.6 Natural semantics for Proc with static scope rules

64 3. More on Operational Semantics

new rule for blocks there is no analogue of s ′′[DV(DV)�−→s], as the values of
variables can only be obtained by accessing the environment.

Exercise 3.12

Apply the natural semantics of Table 3.6 to the factorial statement of Exercise
3.8 and a store where the location for x has the value 3.

Exercise 3.13

Verify that the semantics applied to the statement of Exercise 3.9 gives the
expected result.

Exercise 3.14 (*)

An alternative semantics of the language While is defined by the axioms and
rules [assns], [skipns], [compns], [ifttns], [ifffns], [whilett

ns], and [whileff
ns] of Table 3.6.

Formulate and prove the equivalence between this semantics and that of Table
2.1.

Exercise 3.15

Modify the syntax of procedure declarations so that procedures take two call-
by-value parameters:

DP ::= proc p(x 1,x 2) is S ; DP | ε

S ::= · · · | call p(a1,a2)

Procedure environments will now be elements of

EnvP = Pname ↪→ Var × Var × Stm × EnvV × EnvP

Modify the semantics given above to handle this language. In particular, provide
new rules for procedure calls: one for non-recursive procedures and another for
recursive procedures. Construct statements that illustrate how the new rules
are used.

Exercise 3.16

Now consider the language Proc and the task of achieving mutual recursion.
The procedure environment is now defined to be an element of

EnvP = Pname ↪→ Stm × EnvV × EnvP × DecP

3.2 Blocks and Procedures 65

The idea is that if envP p = (S , env ′
V , env ′

P , D�
P), then D�

P contains all the
procedure declarations that are made in the same block as p. Define upd′

P by

upd′
P (proc p is S ; DP , envV , envP , D�

P) =
upd′

P (DP , envV , envP [p �→(S , envV , envP , D�
P)], D�

P)

upd′
P (ε, envV , envP ,D�

P) = envP

Next redefine updP by

updP (DP , envV , envP) = upd′
P (DP , envV , envP , DP)

Modify the semantics of Proc so as to obtain mutual recursion among proce-
dures defined in the same block. Illustrate how the new rules are used on an
interesting statement of your choice.

(Hint: Convince yourself that [callrecns] is the only rule that needs to be
changed. Then consider whether or not the function updP might be useful in
the new definition of [callrecns].)

Exercise 3.17

We shall consider a variant of the semantics where we use the variable environ-
ment rather than the store to hold the next free location. So assume that

EnvV = Var ∪ { next } → Loc

and

Store = Loc → Z

As before we shall write sto ◦ envV for the state obtained by first using envV to
find the location of the variable and then sto to find the value of the location.
The clauses of Table 3.5 are now replaced by

〈DV , envV [x �→l][next �→new l], sto[l �→v]〉 →D (env ′
V , sto′)

〈var x := a; DV , envV , sto〉 →D (env ′
V , sto′)

where v = A[[a]](sto◦envV) and l = envV next

〈ε, envV , sto〉 →D (envV , sto)

Construct a statement that computes different results under the two variants
of the semantics. Validate your claim by constructing derivation trees for the
executions of the statement from a suitable state. Discuss whether or not this
is a useful semantics.

4
Provably Correct Implementation

A formal specification of the semantics of a programming language is useful
when implementing it. In particular, it becomes possible to argue about the
correctness of the implementation. We shall illustrate this by showing how to
translate the language While into a structured form of assembler code for an
abstract machine, and we shall then prove that the translation is correct. The
idea is that we first define the meaning of the abstract machine instructions
by an operational semantics. Then we define translation functions that will
map expressions and statements in the While language into sequences of such
instructions. The correctness result will then state that if we

– translate a program into code and

– execute the code on the abstract machine,

then we get the same result as was specified by the semantic functions Sns and
Ssos of Chapter 2.

4.1 The Abstract Machine

When specifying the abstract machine, it is convenient first to present its con-
figurations and next its instructions and their meanings.

The abstract machine AM has configurations of the form 〈c, e, s〉, where

– c is the sequence of instructions (or code) to be executed,

68 4. Provably Correct Implementation

– e is the evaluation stack, and

– s is the storage.

We use the evaluation stack to evaluate arithmetic and boolean expressions.
Formally, it is a list of values, so writing

Stack = (Z ∪ T)�

we have e ∈ Stack. For the sake of simplicity, we shall assume that the storage
is similar to the state — that is, s ∈ State — and it is used to hold the values
of variables.

The instructions of AM are given by the abstract syntax

inst ::= push-n | add | mult | sub

| true | false | eq | le | and | neg

| fetch-x | store-x

| noop | branch(c, c) | loop(c, c)

c ::= ε | inst :c

where ε is the empty sequence. We shall write Code for the syntactic cate-
gory of sequences of instructions, so c is a meta-variable ranging over Code.
Therefore we have

〈c, e, s〉 ∈ Code × Stack × State

A configuration is a terminal (or final) configuration if its code component is
the empty sequence; that is, if it has the form 〈ε, e, s〉.

The semantics of the instructions of the abstract machine is given by an
operational semantics. As in the previous chapters, it will be specified by a
transition system. The configurations have the form 〈c, e, s〉 as described above,
and the transition relation � specifies how to execute the instructions:

〈c, e, s〉 � 〈c′, e ′, s ′〉

The idea is that one step of execution will transform the configuration 〈c, e,
s〉 into 〈c′, e ′, s ′〉. The relation is defined by the axioms of Table 4.1, where
we use the notation ‘:’ both for appending two instruction sequences and for
prepending an element to a sequence. The evaluation stack is represented as a
sequence of elements. It has the top of the stack to the left, and we shall write
ε for the empty sequence.

In addition to the usual arithmetic and boolean operations, we have six
instructions that modify the evaluation stack. The operation push-n pushes a
constant value n onto the stack, and true and false push the constants tt
and ff, respectively, onto the stack. The operation fetch-x pushes the value

4.1 The Abstract Machine 69

〈push-n:c, e, s〉 � 〈c, N [[n]]:e, s〉

〈add:c, z 1:z 2:e, s〉 � 〈c, (z 1+z 2):e, s〉 if z 1, z 2∈Z

〈mult:c, z 1:z 2:e, s〉 � 〈c, (z 1�z 2):e, s〉 if z 1, z 2∈Z

〈sub:c, z 1:z 2:e, s〉 � 〈c, (z 1−z 2):e, s〉 if z 1, z 2∈Z

〈true:c, e, s〉 � 〈c, tt:e, s〉

〈false:c, e, s〉 � 〈c, ff:e, s〉

〈eq:c, z 1:z 2:e, s〉 � 〈c, (z 1=z 2):e, s〉 if z 1, z 2∈Z

〈le:c, z 1:z 2:e, s〉 � 〈c, (z 1≤z 2):e, s〉 if z 1, z 2∈Z

〈and:c, t1:t2:e, s〉 �
{

〈c, tt : e, s〉

〈c,ff : e, s〉

if t1=tt and t2=tt

if t1=ff or t2=ff, and t1, t2∈T

〈neg:c, t :e, s〉 �
{

〈c,ff : e, s〉

〈c, tt : e, s〉

if t=tt

if t=ff

〈fetch-x :c, e, s〉 � 〈c, (s x):e, s〉

〈store-x :c, z :e, s〉 � 〈c, e, s[x �→z]〉 if z∈Z

〈noop:c, e, s〉 � 〈c, e, s〉

〈branch(c1, c2):c, t :e, s〉 �
{

〈c1 : c, e, s〉

〈c2 : c, e, s〉

if t=tt

if t=ff

〈loop(c1, c2):c, e, s〉 �

〈c1:branch(c2:loop(c1, c2), noop):c, e, s〉

Table 4.1 Operational semantics for AM

bound to x onto the stack, whereas store-x pops the topmost element off the
stack and updates the storage so that the popped value is bound to x . The
instruction branch(c1, c2) will also change the flow of control. If the top of
the stack is the value tt (that is, some boolean expression has been evaluated
to true), then the stack is popped and c1 is to be executed next. Otherwise, if
the top element of the stack is ff, then it will be popped and c2 will be executed
next.

The abstract machine has two instructions that change the flow of control.
The instruction branch(c1, c2) will be used to implement the conditional: as

70 4. Provably Correct Implementation

described above, it will choose the code component c1 or c2 depending on the
current value on top of the stack. If the top of the stack is not a truth value,
the machine will halt, as there is no next configuration (since the meaning of
branch(· · ·,· · ·) is not defined in that case). A looping construct such as the
while-construct of While can be implemented using the instruction loop(c1,
c2). The semantics of this instruction is defined by rewriting it to a combination
of other constructs including the branch-instruction and itself. We shall see
shortly how this can be used.

The operational semantics of Table 4.1 is indeed a structural operational
semantics for AM. Corresponding to the derivation sequences of Chapter 2, we
shall define a computation sequence for AM. Given a sequence c of instructions
and a storage s, a computation sequence for c and s is either

1. a finite sequence

γ0, γ1, γ2, · · · , γk

sometimes written

γ0 � γ1 � γ2 � · · · � γk

consisting of configurations satisfying γ0 = 〈c, ε, s〉 and γi � γi+1 for
0≤i<k, k≥0, and where there is no γ such that γk � γ, or it is

2. an infinite sequence

γ0, γ1, γ2, · · ·

sometimes written

γ0 � γ1 � γ2 � · · ·

consisting of configurations satisfying γ0 = 〈c, ε, s〉 and γi � γi+1 for 0≤i.

Note that initial configurations always have an empty evaluation stack. A com-
putation sequence is

– terminating if and only if it is finite and

– looping if and only if it is infinite.

A terminating computation sequence may end in a terminal configuration (that
is, a configuration with an empty code component) or in a stuck configuration
(for example, 〈add, ε, s〉).

4.1 The Abstract Machine 71

Example 4.1

Consider the instruction sequence

push-1:fetch-x:add:store-x

From the initial storage s with s x = 3 we get the terminating computation

〈push-1̄:fetch-x:add:store-x, ε, s〉

� 〈fetch-x:add:store-x, 1, s〉

� 〈add:store-x, 3:1, s〉

� 〈store-x, 4, s〉

� 〈ε, ε, s[x�→4]〉
At this point the computation stops because there is no next step.

Example 4.2

Consider the code

loop(true, noop)

We have the following looping computation sequence

〈loop(¯true, noop), ε, s〉

� 〈true:branch(¯noop:loop(true, noop), noop), ε, s〉

� 〈branch(¯noop:loop(true, noop), noop), tt, s〉

� 〈noop:loop(true, noop), ε, s〉

� 〈loop(true, noop), ε, s〉

� · · ·
where the unfolding of the loop-instruction is repeated.

Exercise 4.3

Consider the code

push-0:store-z:fetch-x:store-r:

loop(fetch-r:fetch-y:le,

fetch-y:fetch-r:sub:store-r:

push-1:fetch-z:add:store-z)

Determine the function computed by this code.

72 4. Provably Correct Implementation

Properties of AM

The semantics we have specified for the abstract machine is concerned with the
execution of individual instructions and is therefore close in spirit to the struc-
tural operational semantics studied in Chapter 2. When proving the correctness
of the code generation, we shall need a few results analogous to those holding
for the structural operational semantics. As their proofs follow the same lines as
those for the structural operational semantics, we shall leave them as exercises
and only reformulate the proof technique from Section 2.2:

Induction on the Length of Computation Sequences

1: Prove that the property holds for all computation sequences of length
0.

2: Prove that the property holds for all other computation sequences: As-
sume that the property holds for all computation sequences of length
at most k (this is called the induction hypothesis) and show that it
holds for computation sequences of length k+1.

The induction step of a proof following this technique will often be done by a
case analysis on the first instruction of the code component of the configuration.

Exercise 4.4 (Essential)

By analogy with Exercise 2.21, prove that

if 〈c1, e1, s〉 �k 〈c′, e ′, s ′〉 then 〈c1:c2, e1:e2, s〉 �k 〈c′:c2, e ′:e2, s ′〉

This means that we can extend the code component as well as the stack com-
ponent without changing the behaviour of the machine.

Exercise 4.5 (Essential)

By analogy with Lemma 2.19, prove that if

〈c1:c2, e, s〉 �k 〈ε, e ′′, s ′′〉

then there exists a configuration 〈ε, e ′, s ′〉 and natural numbers k1 and k2 with
k1+k2=k such that

〈c1, e, s〉 �k1 〈ε, e ′, s ′〉 and 〈c2, e ′, s ′〉 �k2 〈ε, e ′′, s ′′〉

4.1 The Abstract Machine 73

This means that the execution of a composite sequence of instructions can be
split into two pieces.

The notion of determinism is defined as for the structural operational
semantics. So the semantics of an abstract machine is deterministic if for all
choices of γ, γ′, and γ′′ we have that

γ � γ′ and γ � γ′′ imply γ′ = γ′′

Exercise 4.6 (Essential)

Show that the machine semantics of Table 4.1 is deterministic. Use this to de-
duce that there is exactly one computation sequence starting in a configuration
〈c, e, s〉.

The Execution Function M

We shall define the meaning of a sequence of instructions as a (partial) function
from State to State:

M: Code → (State ↪→ State)

It is given by

M[[c]] s =

{

s ′ if 〈c, ε, s〉 �∗ 〈ε, e, s ′〉

undef otherwise

The function is well-defined because of Exercise 4.6. Note that the definition
does not require the stack component of the terminal configuration to be empty
but it does require the code component to be so.

The abstract machine AM may seem far removed from more traditional
machine architectures. In the next few exercises we shall gradually bridge this
gap.

Exercise 4.7

AM refers to variables by their name rather than by their address. The abstract
machine AM1 differs from AM in that

– the configurations have the form 〈c, e, m〉, where c and e are as in AM and
m, the memory , is a (finite) list of values; that is, m ∈ Z�, and

– the instructions fetch-x and store-x are replaced by instructions get-n
and put-n, where n is a natural number (an address).

74 4. Provably Correct Implementation

Specify the operational semantics of the machine. You may write m[n] to select
the nth value in the list m (when n is positive but less than or equal to the
length of m). What happens if we reference an address that is outside the
memory — does this correspond to your expectations?

Exercise 4.8

The next step is to get rid of the operations branch(· · ·,· · ·) and loop(· · ·,· · ·).
The idea is to introduce instructions for defining labels and for jumping to labels.
The abstract machine AM2 differs from AM1 (of Exercise 4.7) in that

– the configurations have the form 〈pc, c, e, m〉, where c, e, and m are as before
and pc is the program counter (a natural number) pointing to an instruction
in c, and

– the instructions branch(· · ·,· · ·) and loop(· · ·,· · ·) are replaced by the in-
structions label-l , jump-l, and jumpfalse-l, where l is a label (a natural
number).

The idea is that we will execute the instruction in c that pc points to and in
most cases this will cause the program counter to be incremented by 1. The
instruction label-l has no effect except updating the program counter. The
instruction jump-l will move the program counter to the unique instruction
label-l (if it exists). The instruction jumpfalse-l will only move the program
counter to the instruction label-l if the value on top of the stack is ff; if it is
tt, the program counter will be incremented by 1.

Specify an operational semantics for AM2. You may write c[pc] for the
instruction in c pointed to by pc (if pc is positive and less than or equal to the
length of c). What happens if the same label is defined more than once — does
this correspond to your expectations?

Exercise 4.9

Finally, we shall consider an abstract machine AM3 where the labels of the
instructions jump-l and jumpfalse-l of Exercise 4.8 are absolute addresses;
so jump-7 means jump to the 7th instruction of the code (rather than to the
instruction label-7). Specify the operational semantics of the machine. What
happens if we jump to an instruction that is not in the code?

4.2 Specification of the Translation 75

CA[[n]] = push-n

CA[[x]] = fetch-x

CA[[a1+a2]] = CA[[a2]]:CA[[a1]]:add

CA[[a1 � a2]] = CA[[a2]]:CA[[a1]]:mult

CA[[a1−a2]] = CA[[a2]]:CA[[a1]]:sub

CB[[true]] = true

CB[[false]] = false

CB[[a1 = a2]] = CA[[a2]]:CA[[a1]]:eq

CB[[a1≤a2]] = CA[[a2]]:CA[[a1]]:le

CB[[¬b]] = CB[[b]]:neg

CB[[b1∧b2]] = CB[[b2]]:CB[[b1]]:and

Table 4.2 Translation of expressions

4.2 Specification of the Translation

We shall now study how to generate code for the abstract machine.

Expressions

Arithmetic and boolean expressions will be evaluated on the evaluation stack of
the machine, and the code to be generated must effect this. This is accomplished
by the (total) functions

CA: Aexp → Code

and

CB: Bexp → Code

specified in Table 4.2. Note that the code generated for binary expressions
consists of the code for the right argument followed by that for the left argument
and finally the appropriate instruction for the operator. In this way it is ensured
that the arguments appear on the evaluation stack in the order required by the
instructions (in Table 4.1). Note that CA and CB are defined compositionally.

76 4. Provably Correct Implementation

CS[[x := a]] = CA[[a]]:store-x

CS[[skip]] = noop

CS[[S 1;S 2]] = CS[[S 1]]:CS[[S 2]]

CS[[if b then S 1 else S 2]] = CB[[b]]:branch(CS[[S 1]],CS[[S 2]])

CS[[while b do S]] = loop(CB[[b]],CS[[S]])

Table 4.3 Translation of statements in While

Example 4.10

For the arithmetic expression x+1, we calculate the code as follows:

CA[[x+1]] = CA[[1]]:CA[[x]]:add = push-1:fetch-x :add

Exercise 4.11

It is clear that A[[(a1+a2)+a3]] equals A[[a1+(a2+a3)]]. Show that it is not the
case that CA[[(a1+a2)+a3]] equals CA[[a1+(a2+a3)]]. Nonetheless, show that
CA[[(a1+a2)+a3]] and CA[[a1+(a2+a3)]] do in fact behave similarly.

Statements

The translation of statements into abstract machine code is given by the func-
tion

CS: Stm → Code

specified in Table 4.3. The code generated for an arithmetic expression a ensures
that the value of the expression is on top of the evaluation stack when it has
been computed. So in the code for x := a it suffices to append the code for
a with the instruction store-x . This instruction assigns to x the appropriate
value and additionally pops the stack. For the skip-statement, we generate
the noop-instruction. For sequencing of statements, we just concatenate the
two instruction sequences. When generating code for the conditional, the code
for the boolean expression will ensure that a truth value will be placed on
top of the evaluation stack and the branch-instruction will then inspect (and
pop) that value and select the appropriate piece of code. Finally, the code for
the while-construct uses the loop-instruction. Again we may note that CS is
defined in a compositional manner — and that it never generates an empty
sequence of instructions.

4.2 Specification of the Translation 77

Example 4.12

The code generated for the factorial statement considered earlier is as follows:

CS [[y:=1; while ¬(x=1) do (y:=y � x; x:=x−1)]]

=CS[[y:=1]]:CS[[while ¬(x=1) do (y:=y � x; x:=x−1)]]

=CA[[1]]:store-y:loop(CB[[¬(x=1)]],CS[[y:=y � x; x:=x−1]])

= push-1:store-y:loop(CB[[x=1]]:neg,CS[[y:=y � x]]:CS[[x:=x−1]])
...

= push-1:store-y:loop(push-1:fetch-x:eq:neg,

fetch-x:fetch-y:mult:store-y:

push-1:fetch-x:sub:store-x)

Exercise 4.13

Use CS to generate code for the statement

z:=0; while y≤x do (z:=z+1; x:=x−y)

Trace the computation of the code starting from a storage where x is 17 and
y is 5.

Exercise 4.14

Extend While with the construct repeat S until b and specify how to gen-
erate code for it. Note that the definition has to be compositional and that it
is not necessary to extend the instruction set of the abstract machine.

Exercise 4.15

Extend While with the construct for x := a1 to a2 do S and specify how to
generate code for it. As in Exercise 4.14, the definition has to be compositional,
but you may have to introduce an instruction copy that duplicates the element
on top of the evaluation stack.

78 4. Provably Correct Implementation

The Semantic Function Sam

The meaning of a statement S can now be obtained by first translating it into
code for AM and next executing the code on the abstract machine. The effect
of this is expressed by the function

Sam: Stm → (State ↪→ State)

defined by

Sam[[S]] = (M ◦ CS)[[S]]

Exercise 4.16

Modify the code generation so as to translate While into code for the abstract
machine AM1 of Exercise 4.7. You may assume the existence of a function

env : Var → N

that maps variables to their addresses. Apply the code generation function to
the factorial statement also considered in Example 4.12 and execute the code
so obtained starting from a memory where x is 3.

Exercise 4.17

Modify the code generation so as to translate While into code for the abstract
machine AM2 of Exercise 4.8. Be careful to generate unique labels, for example
by having “the next unused label” as an additional parameter to the code
generation functions. Apply the code generation function to the factorial state-
ment and execute the code so obtained starting from a memory where x has
the value 3.

4.3 Correctness

The correctness of the implementation amounts to showing that, if we first
translate a statement into code for AM and then execute that code, then we
must obtain the same result as specified by the operational semantics of While.

4.3 Correctness 79

Expressions

The correctness of the implementation of arithmetic expressions is expressed
by the following lemma.

Lemma 4.18

For all arithmetic expressions a, we have

〈CA[[a]], ε, s〉 �∗ 〈ε, A[[a]]s, s〉

Furthermore, all intermediate configurations of this computation sequence will
have a non-empty evaluation stack.

Proof: The proof is by structural induction on a. Below we shall give the proof
for three illustrative cases, leaving the remaining ones to the reader.

The case n: We have CA[[n]] = push-n, and from Table 4.1 we get

〈push-n, ε, s〉 � 〈ε, N [[n]], s〉

Since A[[n]]s = N [[n]] (see Table 1.1) we have completed the proof in this case.

The case x : We have CA[[x]] = fetch-x, and from Table 4.1 we get

〈fetch-x , ε, s〉 � 〈ε, (s x), s〉

Since A[[x]]s = s x, this is the required result.

The case a1+a2: We have CA[[a1+a2]] = CA[[a2]]:CA[[a1]]:add. The induction
hypothesis applied to a1 and a2 gives that

〈CA[[a1]], ε, s〉 �∗ 〈ε, A[[a1]]s, s〉

and

〈CA[[a2]], ε, s〉 �∗ 〈ε, A[[a2]]s, s〉

In both cases, all intermediate configurations will have a non-empty evaluation
stack. Using Exercise 4.4, we get that

〈CA[[a2]]:CA[[a1]]:add, ε, s〉 �∗ 〈CA[[a1]]:add, A[[a2]]s, s〉

Applying the exercise once more, we get that

〈CA[[a1]]:add, A[[a2]]s, s〉 �∗ 〈add, (A[[a1]]s):(A[[a2]]s), s〉

Using the transition relation for add given in Table 4.1, we get

〈add, (A[[a1]]s):(A[[a2]]s), s〉 � 〈ε, A[[a1]]s+A[[a2]]s, s〉

80 4. Provably Correct Implementation

It is easy to check that all intermediate configurations have a non-empty eval-
uation stack. Since A[[a1+a2]]s = A[[a1]]s + A[[a2]]s, we thus have the desired
result.

We have a similar result for boolean expressions.

Exercise 4.19 (Essential)

Show that, for all boolean expressions b, we have

〈CB[[b]], ε, s〉 �∗ 〈ε, B[[b]]s, s〉

Furthermore, show that all intermediate configurations of this computation
sequence will have a non-empty evaluation stack.

Statements

When formulating the correctness of the result for statements, we have a choice
between using

– the natural semantics or

– the structural operational semantics.

Here we shall use the natural semantics, but in the next section we sketch the
proof in the case where the structural operational semantics is used.

The correctness of the translation of statements is expressed by the following
theorem.

Theorem 4.20

For every statement S of While, we have Sns[[S]] = Sam[[S]].

This theorem relates the behaviour of a statement under the natural
semantics with the behaviour of the code on the abstract machine under its
operational semantics. In analogy with Theorem 2.26, it expresses two proper-
ties:

– If the execution of S from some state terminates in one of the semantics,
then it also terminates in the other and the resulting states will be equal.

– Furthermore, if the execution of S from some state loops in one of the
semantics, then it will also loop in the other.

4.3 Correctness 81

The theorem is proved in two parts, as expressed by Lemmas 4.21 and 4.22
below. We shall first prove Lemma 4.21.

Lemma 4.21

For every statement S of While and states s and s ′, we have that

if 〈S , s〉 → s ′ then 〈CS[[S]], ε, s〉 �∗ 〈ε, ε, s ′〉

So if the execution of S from s terminates in the natural semantics, then the
execution of the code for S from storage s will terminate and the resulting
states and storages will be equal.

Proof: We proceed by induction on the shape of the derivation tree for
〈S , s〉→s ′.

The case [assns]: We assume that

〈x :=a, s〉→s ′

where s ′=s[x �→A[[a]]s]. From Table 4.3, we have

CS[[x :=a]] = CA[[a]]:store-x

From Lemma 4.18 applied to a, we get

〈CA[[a]], ε, s〉 �∗ 〈ε, A[[a]]s, s〉

and then Exercise 4.4 gives the first part of

〈CA[[a]]:store-x , ε, s〉 �∗ 〈store-x , (A[[a]]s), s〉

� 〈ε, ε, s[x �→A[[a]]s]〉
and the second part follows from the operational semantics for store-x given
in Table 4.1. Since s ′ = s[x �→A[[a]]s], this completes the proof.

The case [skipns]: Straightforward.

The case [compns]: Assume that

〈S 1;S 2, s〉 → s ′′

holds because

〈S 1, s〉 → s ′ and 〈S 2, s ′〉 → s ′′

From Table 4.3, we have

CS[[S 1;S 2]] = CS[[S 1]]:CS[[S 2]]

We shall now apply the induction hypothesis to the premises 〈S 1, s〉 → s ′ and
〈S 2, s ′〉 → s ′′, and we get

82 4. Provably Correct Implementation

〈CS[[S 1]], ε, s〉 �∗ 〈ε, ε, s ′〉

and

〈CS[[S 2]], ε, s ′〉 �∗ 〈ε, ε, s ′′〉

Using Exercise 4.4, we then have

〈CS[[S 1]]:CS[[S 2]], ε, s〉 �∗ 〈CS[[S 2]], ε, s ′〉 �∗ 〈ε, ε, s ′′〉

and the result follows.

The case [if tt
ns]: Assume that

〈if b then S 1 else S 2, s〉 → s ′

because B[[b]]s = tt and

〈S 1, s〉 → s ′

From Table 4.3, we get that

CS[[if b then S 1 else S 2]] = CB[[b]]:branch(CS[[S 1]], CS[[S 2]])

Using Exercises 4.19 and 4.4 we get the first part of

〈CB[[b]]:branch(CS[[S 1]], CS[[S 2]]), ε, s〉

�∗ 〈branch(CS[[S 1]], CS[[S 2]]), (B[[b]]s), s〉

� 〈CS[[S 1]], ε, s〉

�∗ 〈ε, ε, s ′〉
The second part follows from the definition of the meaning of the instruction
branch in the case where the element on top of the evaluation stack is tt
(which is the value of B[[b]]s). The third part of the computation sequence
comes from applying the induction hypothesis to the premise 〈S 1, s〉 → s ′.

The case [ifff
ns]: Analogous.

The case [while tt
ns]: Assume that

〈while b do S , s〉 → s ′′

because B[[b]]s = tt,

〈S , s〉 → s ′ and 〈while b do S , s ′〉 → s ′′

From Table 4.3, we have

CS[[while b do S]] = loop(CB[[b]], CS[[S]])

and get

4.3 Correctness 83

〈loop(CB[[b]], CS[[S]]), ε, s〉

� 〈CB[[b]]:branch(CS[[S]]:loop(CB[[b]], CS[[S]]), noop), ε, s〉

�∗ 〈branch(CS[[S]]:loop(CB[[b]], CS[[S]]), noop), (B[[b]]s), s〉

� 〈CS[[S]]:loop(CB[[b]], CS[[S]]), ε, s〉

Here the first part follows from the meaning of the loop-instruction (see Table
4.1) and the second part from Exercises 4.19 and 4.4. Since B[[b]]s = tt the
third part follows from the meaning of the branch-instruction. The induction
hypothesis can now be applied to the premises 〈S , s〉 → s ′ and 〈while b do S ,
s ′〉 → s ′′ and gives

〈CS[[S]], ε, s〉 �∗ 〈ε, ε, s ′〉

and

〈loop(CB[[b]], CS[[S]]), ε, s ′〉 �∗ 〈ε, ε, s ′′〉

so using Exercise 4.4 we get

〈CS[[S]]:loop(CB[[b]], CS[[S]]), ε, s〉

�∗ 〈loop(CB[[b]], CS[[S]]), ε, s ′〉

�∗ 〈ε, ε, s ′′〉

The case [whileff
ns]: Assume that 〈while b do S , s〉 → s ′ holds because

B[[b]]s = ff and then s = s ′. We have

〈loop(CB[[b]], CS[[S]]), ε, s〉

� 〈CB[[b]]:branch(CS[[S]]:loop(CB[[b]], CS[[S]]), noop), ε, s〉

�∗ 〈branch(CS[[S]]:loop(CB[[b]], CS[[S]]), noop), (B[[b]]s), s〉

� 〈noop, ε, s〉

� 〈ε, ε, s〉
using the definitions of the loop-, branch-, and noop-instructions in Table
4.1 together with Exercises 4.19 and 4.4.

This proves Lemma 4.21. The second part of the theorem follows from
Lemma 4.22:

Lemma 4.22

For every statement S of While and states s and s ′, we have that

if 〈CS[[S]], ε, s〉 �k 〈ε, e, s ′〉 then 〈S , s〉 → s ′ and e = ε

84 4. Provably Correct Implementation

So if the execution of the code for S from a storage s terminates, then the
natural semantics of S from s will terminate in a state being equal to the
storage of the terminal configuration.

Proof: We shall proceed by induction on the length k of the computation se-
quence of the abstract machine. If k = 0, the result holds vacuously because
CS[[S]] = ε cannot occur. So assume that it holds for k ≤ k0 and we shall prove
that it holds for k = k0+1. We proceed by cases on the statement S .

The case x :=a: We then have CS[[x := a]] = CA[[a]]:store-x so assume that

〈CA[[a]]:store-x , ε, s〉 �k0+1 〈ε, e, s ′〉

Then, by Exercise 4.5, there must be a configuration of the form 〈ε, e ′′, s ′′〉
such that

〈CA[[a]], ε, s〉 �k1 〈ε, e ′′, s ′′〉

and

〈store-x , e ′′, s ′′〉 �k2 〈ε, e, s ′〉

where k1 + k2 = k0 + 1. From Lemma 4.18 and Exercise 4.6, we get that
e ′′ must be (A[[a]]s) and s ′′ must be s. Using the semantics of store-x we
therefore see that s ′ is s[x �→A[[a]]s] and e is ε. It now follows from [assns] that
〈x :=a, s〉→s ′.

The case skip: Straightforward.

The case S 1;S 2: Assume that

〈CS[[S 1]]:CS[[S 2]], ε, s〉 �k0+1 〈ε, e, s ′′〉

Then, by Exercise 4.5, there must be a configuration of the form 〈ε, e ′, s ′〉 such
that

〈CS[[S 1]], ε, s〉 �k1 〈ε, e ′, s ′〉

and

〈CS[[S 2]], e ′, s ′〉 �k2 〈ε, e, s ′′〉

where k1 + k2 = k0 + 1. Since CS[[S 2]] is non-empty, we have k2 > 0 and hence
k1 ≤ k0. The induction hypothesis can now be applied to the first of these
computation sequences and gives

〈S 1, s〉 → s ′ and e ′ = ε

Thus we have 〈CS[[S 2]], ε, s ′〉 �k2 〈ε, e, s ′′〉 and since k2 ≤ k0 the induction
hypothesis can be applied to this computation sequence and gives

4.3 Correctness 85

〈S 2, s ′〉 → s ′′ and e = ε

The rule [compns] now gives 〈S 1;S 2, s〉 → s ′′ as required.

The case if b then S 1 else S 2: The code generated for the conditional is

CB[[b]]:branch(CS[[S 1]], CS[[S 2]])

so we assume that

〈CB[[b]]:branch(CS[[S 1]], CS[[S 2]]), ε, s〉 �k0+1 〈ε, e, s ′〉

Then, by Exercise 4.5, there must be a configuration of the form 〈ε, e ′′, s ′′〉
such that

〈CB[[b]], ε, s〉 �k1 〈ε, e ′′, s ′′〉

and

〈branch(CS[[S 1]], CS[[S 2]]), e ′′, s ′′〉 �k2 〈ε, e, s ′〉

where k1 + k2 = k0 + 1. From Exercises 4.19 and 4.6, we get that e ′′ must
be B[[b]]s and s ′′ must be s. We shall now assume that B[[b]]s = tt. Then there
must be a configuration 〈CS[[S 1]], ε, s〉 such that

〈CS[[S 1]], ε, s〉 �k2−1 〈ε, e, s ′〉

The induction hypothesis can now be applied to this computation sequence
because k2 − 1 ≤ k0 and we get

〈S 1, s〉 → s ′ and e = ε

The rule [if tt
ns] gives the required 〈if b then S 1 else S 2, s〉 → s ′. The case

where B[[b]]s = ff is similar.

The case while b do S : The code for the while-loop is loop(CB[[b]], CS[[S]])
and we therefore assume that

〈loop(CB[[b]], CS[[S]]), ε, s〉 �k0+1 〈ε, e, s ′′〉

Using the definition of the loop-instruction, this means that the computation
sequence can be rewritten as

〈loop(CB[[b]], CS[[S]]), ε, s〉

� 〈CB[[b]]:branch(CS[[S]]:loop(CB[[b]], CS[[S]]), noop), ε, s〉

�k0 〈ε, e, s ′′〉

According to Exercise 4.5, there will then be a configuration 〈ε, e ′, s ′〉 such
that

〈CB[[b]], ε, s〉 �k1 〈ε, e ′, s ′〉

86 4. Provably Correct Implementation

and

〈branch(CS[[S]]:loop(CB[[b]], CS[[S]]), noop), e ′, s ′〉 �k2 〈ε, e, s ′′〉

where k1 + k2 = k0. From Exercises 4.19 and 4.6, we get e ′ = B[[b]]s and s ′ =
s. We now have two cases.

In the first case, assume that B[[b]]s = ff. We then have

〈branch(CS[[S]]:loop(CB[[b]], CS[[S]]), noop), B[[b]]s, s〉

� 〈noop, ε, s〉

� 〈ε, ε, s〉

so e = ε and s = s ′′. Using rule [whileff
ns], we get 〈while b do S , s〉 → s ′′ as

required.
In the second case, assume that B[[b]]s = tt. Then we have

〈branch(̄CS[[S]]:loop(CB[[b]], CS[[S]]), noop), B[[b]]s, s〉

� 〈CS[[S]]:loop(CB[[b]], CS[[S]]), ε, s〉

�k2−1 〈ε, e, s ′′〉
We then proceed very much as in the case of the composition statement and
get a configuration 〈ε, e ′, s ′〉 such that

〈CS[[S]], ε, s〉 �k3 〈ε, e ′, s ′〉

and

〈loop(CB[[b]], CS[[S]]), e ′, s ′〉 �k4 〈ε, e, s ′′〉

where k3 + k4 = k2 − 1. Since k3 ≤ k0, we can apply the induction hypothesis
to the first of these computation sequences and get

〈S , s〉 → s ′ and e ′ = ε

We can then use that k4 ≤ k0 and apply the induction hypothesis to the
computation sequence 〈loop(CB[[b]], CS[[S]]), ε, s ′〉 �k4 〈ε, e, s ′′〉 and get

〈while b do S , s ′〉 → s ′′ and e = ε

Using rule [while tt
ns], we then get 〈while b do S , s〉 → s ′′ as required. This

completes the proof of the lemma.

The proof technique employed in the proof above may be summarized as
follows:

4.3 Correctness 87

Proof Summary for While:

Correctness of Implementation

1: Prove by induction on the shape of derivation trees that for each
derivation tree in the natural semantics there is a corresponding finite
computation sequence on the abstract machine.

2: Prove by induction on the length of computation sequences that for
each finite computation sequence obtained from executing a statement
of While on the abstract machine there is a corresponding derivation
tree in the natural semantics.

Note the similarities between this proof technique and that for showing the
equivalence of two operational semantics (see Section 2.3). Again one has to be
careful when adapting this approach to a language with additional program-
ming constructs or a different machine language.

Exercise 4.23

Consider the “optimized” code generation function CS ′ that is like CS of Table
4.3 except that CS ′[[skip]] = ε. Would this complicate the proof of Theorem
4.20?

Exercise 4.24

Extend the proof of Theorem 4.20 to hold for the While language extended
with repeat S until b. The code generated for this construct was studied in
Exercise 4.14 and its natural semantics in Exercise 2.7.

Exercise 4.25

Prove that the code generated for AM1 in Exercise 4.16 is correct. What
assumptions do you need to make about env?

Exercise 4.26 (**)

The abstract machine uses disjoint representations of integer and boolean val-
ues. For example, the code sequence

push-5:false:add

88 4. Provably Correct Implementation

will get stuck rather than compute some strange result.
Now reconsider the development of this chapter and suppose that the stack

only holds integers. For this to work, the instructions operating on the truth val-
ues ff and tt instead operate on integers 0 and 1. How should the development
of the present chapter be modified? In particular, how would the correctness
proof need to be modified?

4.4 An Alternative Proof Technique

In Theorem 4.20, we proved the correctness of the implementation with respect
to the natural semantics. It is obvious that the implementation will also be
correct with respect to the structural operational semantics; that is,

Ssos[[S]] = Sam[[S]] for all statements S of While

because we showed in Theorem 2.26 that the natural semantics is equivalent to
the structural operational semantics. However, one might argue that it would
be easier to give a direct proof of the correctness of the implementation with
respect to the structural operational semantics because both approaches are
based on the idea of specifying the individual steps of the computation. We
shall comment upon this shortly.

A direct proof of the correctness result with respect to the structural op-
erational semantics could proceed as follows. We shall define a bisimulation
relation ≈ between the configurations of the structural operational semantics
and those of the operational semantics for AM. It is defined by

〈S , s〉 ≈ 〈CS[[S]], ε, s〉

s ≈ 〈ε, ε, s〉
for all statements S and states s. The first stage will then be to prove that
whenever one step of the structural operational semantics changes the configu-
ration, then there is a sequence of steps in the semantics of AM that will make
a similar change in the configuration of the abstract machine.

Exercise 4.27 (*)

Show that if

γsos ≈ γam and γsos ⇒ γ′
sos

then there exists a configuration γ′
am such that

γam �+ γ′
am and γ′

sos ≈ γ′
am

4.4 An Alternative Proof Technique 89

Argue that if 〈S , s〉 ⇒∗ s ′, then 〈CS[[S]], ε, s〉 �∗ 〈ε, ε, s ′〉.

The second part of the proof is to show that whenever AM makes a se-
quence of moves from a configuration with an empty evaluation stack to another
configuration with an empty evaluation stack, then the structural operational
semantics can make a similar change of configurations. Note that AM may
have to make more than one step to arrive at a configuration with an empty
stack due to the way it evaluates expressions; in the structural operational
semantics, however, expressions are evaluated as part of a single step.

Exercise 4.28 (**)

Assume that γsos ≈ γ 1
am and

γ 1
am � γ 2

am � · · · � γ k
am

where k>1 and only γ 1
am and γ k

am have empty evaluation stacks (that is, are of
the form 〈c, ε, s〉). Show that there exists a configuration γ′

sos such that

γsos ⇒ γ′
sos and γ′

sos ≈ γ k
am

Argue that if 〈CS[[S]], ε, s〉 �∗ 〈ε, ε, s ′〉, then 〈S , s〉 ⇒∗ s ′.

Exercise 4.29

Show that Exercises 4.27 and 4.28 together constitute a direct proof of Ssos[[S]]
= Sam[[S]] for all statements S of While.

The success of this approach relies on the two semantics proceeding in lock-
step: that one is able to find configurations in the two derivation sequences
that correspond to one another (as specified by the bisimulation relation). Of-
ten this is not possible and then one has to raise the level of abstraction for
one of the semantics. This is exactly what happens when the structural oper-
ational semantics is replaced by the natural semantics: we do not care about
the individual steps of the execution but only about the result.

The proof technique employed in the sketch of proof above may be summa-
rized as follows:

90 4. Provably Correct Implementation

Proof Summary for While:

Correctness of Implementation Using Bisimulation

1: Prove that one step in the structural operational semantics can be
simulated by a non-empty sequence of steps on the abstract machine.
Show that this extends to sequences of steps in the structural opera-
tional semantics.

2: Prove that a carefully selected non-empty sequence of steps on the
abstract machine can be simulated by a step in the structural oper-
ational semantics. Show that this extends to more general sequences
of steps on the abstract machine.

Again, this method may need to be modified when considering a programming
language with additional constructs or a different abstract machine.

Exercise 4.30 (*)

Consider the following, seemingly innocent, modification of the structural oper-
ational semantics of Table 2.2 in which [whilesos] is replaced by the two axioms

〈while b do S , s〉 ⇒ 〈S ; while b do S , s〉 if B[[b]]s = tt

〈while b do S , s〉 ⇒ s if B[[b]]s = ff

Show that the modified semantic function, S ′
sos, satisfies

Ssos[[S]] = S ′
sos[[S]] for all statements S of While

Investigate whether or not this complicates the proofs of (analogues of) Exer-
cises 4.27 and 4.28.

5
Denotational Semantics

In the operational approach, we were interested in how a program is executed.
This is contrary to the denotational approach, where we are merely interested
in the effect of executing a program. By effect we mean here an association
between initial states and final states. The idea then is to define a semantic
function for each syntactic category. It maps each syntactic construct to a
mathematical object, often a function, that describes the effect of executing
that construct.

The hallmark of denotational semantics is that semantic functions are de-
fined compositionally ; that is,

– there is a semantic clause for each of the basis elements of the syntactic
category, and

– for each method of constructing a composite element (in the syntactic cate-
gory) there is a semantic clause defined in terms of the semantic function
applied to the immediate constituents of the composite element.

The functions A and B defined in Chapter 1 are examples of denotational
definitions: the mathematical objects associated with arithmetic expressions
are functions in State → Z and those associated with boolean expressions are
functions in State → T. The functions Sns and Ssos introduced in Chapter 2
associate mathematical objects with each statement, namely partial functions
in State ↪→ State. However, they are not examples of denotational definitions
because they are not defined compositionally.

92 5. Denotational Semantics

Sds[[x := a]]s = s[x �→A[[a]]s]

Sds[[skip]] = id

Sds[[S 1 ; S 2]] = Sds[[S 2]] ◦ Sds[[S 1]]

Sds[[if b then S 1 else S 2]] = cond(B[[b]], Sds[[S 1]], Sds[[S 2]])

Sds[[while b do S]] = FIX F

where F g = cond(B[[b]], g ◦ Sds[[S]], id)

Table 5.1 Denotational semantics for While

5.1 Direct Style Semantics: Specification

The effect of executing a statement S is to change the state so we shall define
the meaning of S to be a partial function on states:

Sds: Stm → (State ↪→ State)

This is also the functionality of Sns and Ssos, and the need for partiality is
again demonstrated by the statement while true do skip. The definition is
summarized in Table 5.1 and we explain it in detail below; in particular, we
shall define the auxiliary functions cond and FIX.

For assignment, the clause

Sds[[x := a]]s = s[x �→A[[a]]s]

ensures that if Sds[[x := a]]s = s ′, then s ′ x = A[[a]]s and s ′ y = s y for y �=x .
The clause for skip expresses that no state change takes place: the function id
is the identity function on State so Sds[[skip]]s = s.

For sequencing, the clause is

Sds[[S 1 ; S 2]] = Sds[[S 2]] ◦ Sds[[S 1]]

So the effect of executing S 1 ; S 2 is the functional composition of the effect
of executing S 1 and that of executing S 2. Functional composition is defined
such that if one of the functions is undefined on a given argument, then their
composition is undefined as well. Given a state s, we therefore have

5.1 Direct Style Semantics: Specification 93

Sds[[S 1 ; S 2]]s = (Sds[[S 2]] ◦ Sds[[S 1]])s

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

s ′′ if there exists s ′ such that Sds[[S 1]]s = s ′

and Sds[[S 2]]s ′ = s ′′

undef if Sds[[S 1]]s = undef

or if there exists s ′ such that Sds[[S 1]]s = s ′

but Sds[[S 2]]s ′ = undef

It follows that the sequencing construct will only give a defined result if both
components do.

For conditional, the clause is

Sds[[if b then S 1 else S 2]] = cond(B[[b]], Sds[[S 1]], Sds[[S 2]])

and the auxiliary function cond has functionality

cond: (State → T) × (State ↪→ State) × (State ↪→ State)

→ (State ↪→ State)

and is defined by

cond(p, g1, g2) s =

{

g1 s if p s = tt

g2 s if p s = ff

The first parameter to cond is a function that, when supplied with an argument,
will select either the second or the third parameter of cond and then supply
that parameter with the same argument. Thus we have

Sds[[if b then S 1 else S 2]] s

= cond(B[[b]], Sds[[S 1]], Sds[[S 2]]) s

=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

s ′ if B[[b]]s = tt and Sds[[S 1]]s = s ′

or if B[[b]]s = ff and Sds[[S 2]]s = s ′

undef if B[[b]]s = tt and Sds[[S 1]]s = undef

or if B[[b]]s = ff and Sds[[S 2]]s = undef

So if the selected branch gives a defined result then so does the conditional.
Note that since B[[b]] is a total function, B[[b]]s cannot be undef.

Defining the effect of while b do S is a major task. To motivate the actual
definition, we first observe that the effect of while b do S must equal that of

if b then (S ; while b do S) else skip

94 5. Denotational Semantics

Using the parts of Sds that have already been defined, this gives

Sds[[while b do S]] = cond(B[[b]], Sds[[while b do S]] ◦ Sds[[S]], id) (*)

Note that we cannot use (*) as the definition of Sds[[while b do S]] because
then Sds would not be a compositional definition. However, (*) expresses that

Sds[[while b do S]]

must be a fixed point of the functional F defined by

F g = cond(B[[b]], g ◦ Sds[[S]], id)

that is Sds[[while b do S]] = F (Sds[[while b do S]]). In this way, we will get
a compositional definition of Sds because when defining F we only apply Sds

to the immediate constituents of while b do S and not to the construct itself.
Thus we write

Sds[[while b do S]] = FIX F

where F g = cond(B[[b]], g ◦ Sds[[S]], id)

to indicate that Sds[[while b do S]] is a fixed point of F . The functionality of
the auxiliary function FIX is

FIX: ((State ↪→ State) → (State ↪→ State)) → (State ↪→ State)

Example 5.1

Consider the statement

while ¬(x = 0) do skip

It is easy to verify that the corresponding functional F ′ is defined by

(F ′ g) s =

{

g s if s x �= 0

s if s x = 0

The function g1 defined by

g1 s =

{

undef if s x �= 0

s if s x = 0

is a fixed point of F ′ because

(F ′ g1) s =

{

g1 s if s x �= 0

s if s x = 0

=

{

undef if s x �= 0

s if s x = 0
= g1 s

5.1 Direct Style Semantics: Specification 95

Next we claim that the function g2 defined by

g2 s = undef for all s

cannot be a fixed point for F ′. The reason is that if s ′ is a state with s ′ x = 0,
then (F ′ g2) s ′ = s ′, whereas g2 s ′ = undef.

Unfortunately, this does not suffice for defining Sds[[while b do S]]. We face
two problems:

– there are functionals that have more than one fixed point, and

– there are functionals that have no fixed point at all.

The functional F ′ of Example 5.1 has more than one fixed point. In fact, every
function g ′ of State ↪→ State satisfying g ′ s = s if s x = 0 will be a fixed
point of F ′.

For an example of a functional that has no fixed points, consider F 1 defined
by

F 1 g =

{

g1 if g = g2

g2 otherwise

If g1 �=g2, then clearly there will be no function g0 such that F 1 g0 = g0. Thus
F 1 has no fixed points at all.

Exercise 5.2

Determine the functional F associated with the statement

while ¬(x=0) do x := x−1

using the semantic equations of Table 5.1. Consider the following partial func-
tions of State ↪→ State:

g1 s = undef for all s

g2 s =

{

s[x�→0] if s x ≥ 0

undef if s x < 0

g3 s =

{

s[x�→0] if s x ≥ 0

s if s x < 0
g4 s = s[x�→0] for all s

g5 s = s for all s

Determine which of these functions are fixed points of F .

96 5. Denotational Semantics

Exercise 5.3

Consider the following fragment of the factorial statement:

while ¬(x=1) do (y := y�x; x := x−1)

Determine the functional F associated with this statement. Determine at least
two different fixed points for F .

Requirements on the Fixed Point

Our solution to the two problems listed above will be to develop a framework
where

– we impose requirements on the fixed points and show that there is at most
one fixed point fulfilling these requirements, and

– all functionals originating from statements in While do have a fixed point
that satisfies these requirements.

To motivate our choice of requirements, let us consider the execution of a
statement while b do S from a state s0. There are three possible outcomes:

A: It terminates .

B: It loops locally ; that is, there is a construct in S that loops.

C: It loops globally ; that is, the outer while-construct loops.

We shall now investigate what can be said about the functional F and its fixed
points in each of the three cases.

The case A: In this case, the execution of while b do S from s0 terminates.
This means that there are states s1,· · ·, sn such that

B[[b]] s i =

{

tt if i<n

ff if i=n

and

Sds[[S]] s i = s i+1 for i<n

An example of a statement and a state satisfying these conditions is the state-
ment

while 0≤x do x := x−1

and any state where x has a non-negative value.
Let g0 be any fixed point of F ; that is, assume that F g0 = g0. In the case

where i<n, we calculate

5.1 Direct Style Semantics: Specification 97

g0 s i = (F g0) s i

= cond(B[[b]], g0 ◦ Sds[[S]], id) s i

= g0 (Sds[[S]] s i)

= g0 s i+1

In the case where i=n, we get

g0 sn = (F g0) sn

= cond(B[[b]], g0 ◦ Sds[[S]], id) sn

= id sn

= sn

Thus every fixed point g0 of F will satisfy

g0 s0 = sn

so in this case we do not obtain any additional requirements that will help us
to choose one of the fixed points as the preferred one.

The case B: In this case, the execution of while b do S from s0 loops locally .
This means that there are states s1, · · ·, sn such that

B[[b]]s i = tt for i≤n

and

Sds[[S]]s i =

{

s i+1 for i<n

undef for i=n

An example of a statement and a state satisfying these conditions is the state-
ment

while 0≤x do (if x=0 then (while true do skip)

else x := x−1)
and any state where x has a non-negative value.

Let g0 be any fixed point of F ; that is, F g0 = g0. In the case where i<n,
we obtain

g0 s i = g0 s i+1

just as in the previous case. However, in the case where i=n, we get

g0 sn = (F g0) sn

= cond(B[[b]], g0 ◦ Sds[[S]], id) sn

= (g0 ◦ Sds[[S]]) sn

= undef

98 5. Denotational Semantics

Thus any fixed point g0 of F will satisfy

g0 s0 = undef

so, again, in this case we do not obtain any additional requirements that will
help us to choose one of the fixed points as the preferred one.

The case C: The potential difference between fixed points comes to light when
we consider the possibility that the execution of while b do S from s0 loops
globally . This means that there is an infinite sequence of states s1, · · · such that

B[[b]]s i = tt for all i

and

Sds[[S]]s i = s i+1 for all i.

An example of a statement and a state satisfying these conditions is the state-
ment

while ¬(x=0) do skip

and any state where x is not equal to 0.
Let g0 be any fixed point of F ; that is, F g0 = g0. As in the previous cases,

we get

g0 s i = g0 s i+1

for all i≥0. Thus we have

g0 s0 = g0 s i for all i

and we cannot determine the value of g0 s0 in this way. This is the situation
in which the various fixed points of F may differ.

This is not surprising because the statement while ¬(x=0) do skip of
Example 5.1 has the functional F ′ given by

(F ′ g) s =

{

g s if s x �= 0

s if s x = 0

and any partial function g of State ↪→ State satisfying g s = s if s x = 0 will
indeed be a fixed point of F ′. However, our computational experience tells us
that we want

Sds[[while ¬(x=0) do skip]]s0 =

{

undef if s0 x �= 0

s0 if s0 x = 0

in order to record the looping. Thus our preferred fixed point of F ′ is the
function g0 defined by

5.2 Fixed Point Theory 99

g0 s =

{

undef if s x �= 0

s if s x = 0

The property that distinguishes g0 from some other fixed point g ′ of F ′ is that
whenever g0 s = s ′ then we also have g ′ s = s ′ but not vice versa.

Generalizing this experience leads to the following requirement: the desired
fixed point FIX F should be a partial function g0: State ↪→ State such that

– g0 is a fixed point of F (that is, F g0 = g0), and

– if g is another fixed point of F (that is, F g = g), then

g0 s = s ′ implies g s = s ′

for all choices of s and s ′.

Note that if g0 s = undef, then there are no requirements on g s.

Exercise 5.4

Determine which of the fixed points considered in Exercise 5.2, if any, is the
desired fixed point.

Exercise 5.5

Determine the desired fixed point of the functional from Exercise 5.3.

5.2 Fixed Point Theory

To prepare for a framework that guarantees the existence of the desired fixed
point FIX F, we shall reformulate the requirements to FIX F in a slightly more
formal way. The first step will be to formalize the requirement that FIX F
shares its results with all other fixed points. To do so, we define an ordering �
on partial functions of State ↪→ State. We set

g1 � g2

when the partial function g1: State ↪→ State shares its results with the partial
function g2: State ↪→ State in the sense that

if g1 s = s ′ then g2 s = s ′

for all choices of s and s ′.

100 5. Denotational Semantics

Example 5.6

Let g1, g2, g3, and g4 be partial functions in State ↪→ State defined as follows:

g1 s = s for all s

g2 s =

{

s if s x ≥ 0

undef otherwise

g3 s =

{

s if s x = 0

undef otherwise

g4 s =

{

s if s x ≤ 0

undef otherwise

Then we have

g1 � g1,

g2 � g1, g2 � g2,

g3 � g1, g3 � g2, g3 � g3, g3 � g4, and

g4 � g1, g4 � g4.

It is neither the case that g2 � g4 nor that g4 � g2. Pictorially, the ordering
may be expressed by the following diagram (sometimes called a Hasse diagram):

• g2 • g4

• g1

• g3
	

	
	

	

	
	

	
	

The idea is that the smaller elements are at the bottom of the picture and that
the lines indicate the order between the elements. However, we shall not draw
lines when there already is a “broken line”, so the fact that g3 � g1 is left
implicit in the picture.

Exercise 5.7

Let g1, g2, and g3 be defined as follows:

g1 s =

{

s if s x is even

undef otherwise

5.2 Fixed Point Theory 101

g2 s =

{

s if s x is a prime

undef otherwise
g3 s = s

First, determine the ordering among these partial functions. Next, determine a
partial function g4 such that g4 � g1, g4 � g2, and g4 � g3. Finally, determine
a partial function g5 such that g1 � g5, g2 � g5, and g5 � g3 but g5 is equal
to neither g1, g2, nor g3.

Exercise 5.8 (Essential)

An alternative characterization of the ordering � on State ↪→ State is

g1 � g2 if and only if graph(g1) ⊆ graph(g2) (*)

where graph(g) is the graph of the partial function g as defined in Appendix
A. Prove that (*) is indeed correct.

The set State ↪→ State equipped with the ordering � is an example of
a partially ordered set, as we shall see in Lemma 5.13 below. In general, a
partially ordered set is a pair (D , �D), where D is a set and �D is a relation
on D satisfying

d �D d (reflexivity)

d1 �D d2 and d2 �D d3 imply d1 �D d3 (transitivity)

d1 �D d2 and d2 �D d1 imply d1 = d2 (anti-symmetry)

for all d, d1 and d1 in D.
The relation �D is said to be a partial order on D and we shall often omit

the subscript D of �D and write �. Occasionally, we may write d1 � d2 instead
of d2 � d1, and we shall say that d2 shares its information with d1. An element
d of D satisfying

d � d ′ for all d ′ of D

is called a least element of D, and we shall say that it contains no information.

Fact 5.9

If a partially ordered set (D , �) has a least element d, then d is unique.

Proof: Assume that D has two least elements d1 and d2. Since d1 is a least
element, we have d1 � d2. Since d2 is a least element, we also have d2 � d1.

102 5. Denotational Semantics

The anti-symmetry of the ordering � then gives that d1 = d2.

This fact permits us to talk about the least element of D , if one exists, and
we shall denote it by ⊥D or simply ⊥ (pronounced “bottom”).

Example 5.10

For simplicity, let S be a non-empty set, and define

P(S) = { K | K ⊆ S }

Then (P(S), ⊆) is a partially ordered set because

– ⊆ is reflexive: K ⊆ K

– ⊆ is transitive: if K 1 ⊆ K 2 and K 2 ⊆ K 3 then K 1 ⊆ K 3

– ⊆ is anti-symmetric: if K 1 ⊆ K 2 and K 2 ⊆ K 1 then K 1 = K 2

In the case where S = {a,b,c}, the ordering can be depicted as follows:

• {a,b,c}

• {a,b} • {a,c} • {b,c}

• {a} • {b} • {c}

• ∅��������

��������
��������

��������

��������

��������
��������

��������

Also, (P(S), ⊆) has a least element, namely ∅.

Exercise 5.11

Show that (P(S), ⊇) is a partially ordered set, and determine the least element.
Draw a picture of the ordering when S = {a,b,c}.

Exercise 5.12

Let S be a non-empty set, and define

Pfin(S) = { K | K is finite and K ⊆ S }

5.2 Fixed Point Theory 103

Verify that (Pfin(S), ⊆) and (Pfin(S), ⊇) are partially ordered sets. Do both
partially ordered sets have a least element for all choices of S?

Lemma 5.13

(State ↪→ State, �) is a partially ordered set. The partial function ⊥: State
↪→ State defined by

⊥ s = undef for all s

is the least element of State ↪→ State.

Proof: We shall first prove that � fulfils the three requirements to a partial
order. Clearly, g � g holds because g s = s ′ trivially implies that g s = s ′ so
� is a reflexive ordering.

To see that it is a transitive ordering, assume that g1 � g2 and g2 �, g3

and we shall prove that g1 � g3. Assume that g1 s = s ′. From g1 � g2, we get
g2 s = s ′, and then g2 � g3 gives that g3 s = s ′.

To see that it is an anti-symmetric ordering, assume that g1 � g2 and g2

� g1, and we shall then prove that g1 = g2. Assume that g1 s = s ′. Then g2

s = s ′ follows from g1 � g2, so g1 and g2 are equal on s. If g1 s = undef,
then it must be the case that g2 s = undef since otherwise g2 s = s ′ and the
assumption g2 � g1 then gives g1 s = s ′, which is a contradiction. Thus g1

and g2 will be equal on s.
Finally, we shall prove that ⊥ is the least element of State ↪→ State. It

is easy to see that ⊥ is indeed an element of State ↪→ State, and it is also
obvious that ⊥ � g holds for all g since ⊥ s = s ′ vacuously implies that g s =
s ′.

Having introduced an ordering on the partial functions, we can now give a
more precise statement of the requirements to FIX F :

– FIX F is a fixed point of F (that is, F (FIX F) = FIX F), and

– FIX F is a least fixed point of F ; that is,

if F g = g then FIX F � g .

Exercise 5.14

By analogy with Fact 5.9, show that if F has a least fixed point g0, then g0 is
unique.

104 5. Denotational Semantics

The next task will be to ensure that all functionals F that may arise do in-
deed have least fixed points. We shall do so by developing a general theory that
gives more structure to the partially ordered sets and that imposes restrictions
on the functionals so that they have least fixed points.

Exercise 5.15

Determine the least fixed points of the functionals considered in Exercises 5.2
and 5.3. Compare them with Exercises 5.4 and 5.5.

Complete Partially Ordered Sets

Consider a partially ordered set (D , �) and assume that we have a subset
Y of D . We shall be interested in an element of D that summarizes all the
information of Y, and this is called an upper bound of Y ; formally, it is an
element d of D such that

∀d ′ ∈Y : d ′ � d

An upper bound d of Y is a least upper bound if and only if

d ′ is an upper bound of Y implies that d � d ′

Thus a least upper bound of Y will add as little extra information as possible
to that already present in the elements of Y .

Exercise 5.16

By analogy with Fact 5.9, show that if Y has a least upper bound d, then d is
unique.

If Y has a (necessarily unique) least upper bound, we shall denote it by
⊔

Y . Finally, a subset Y is called a chain if it is consistent in the sense that
if we take any two elements of Y, then one will share its information with the
other; formally, this is expressed by

∀d1, d2 ∈Y : d1 � d2 or d2 � d1

Example 5.17

Consider the partially ordered set (P({a,b,c}), ⊆) of Example 5.10. Then the
subset

5.2 Fixed Point Theory 105

Y 0 = { ∅, {a}, {a,c} }

is a chain. Both {a,b,c} and {a,c} are upper bounds of Y 0, and {a,c} is the
least upper bound. The element {a,b} is not an upper bound because {a,c} �⊆
{a,b}. In general, the least upper bound of a non-empty chain in P({a,b,c})
will be the largest element of the chain.

The subset { ∅, {a}, {c}, {a,c} } is not a chain because {a} and {c} are
unrelated by the ordering. However, it does have a least upper bound, namely
{a,c}.

The subset ∅ of P({a,b,c}) is a chain and has any element of P({a,b,c}) as
an upper bound. Its least upper bound is the element ∅.

Exercise 5.18

Let S be a non-empty set, and consider the partially ordered set (P(S), ⊆).
Show that every subset of P(S) has a least upper bound. Repeat the exercise
for the partially ordered set (P(S), ⊇).

Exercise 5.19

Let S be a non-empty set, and consider the partially ordered set (Pfin(S), ⊆)
as defined in Exercise 5.12. Show by means of an example that there are choices
of S such that (Pfin(S), ⊆) has a chain with no upper bound and therefore no
least upper bound.

Example 5.20

Let gn: State ↪→ State be defined by

gn s =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

undef if s x > n

s[x�→−1] if 0 ≤ s x and s x ≤ n

s if s x < 0

It is straightforward to verify that gn � gm whenever n ≤ m because gn will
be undefined for more states than gm. Now define Y 0 to be

Y 0 = { gn | n ≥ 0 }

Then Y 0 is a chain because gn � gm whenever n ≤ m. The partial function

g s =

{

s[x�→−1] if 0 ≤ s x

s if s x < 0

is the least upper bound of Y .

106 5. Denotational Semantics

Exercise 5.21

Construct a subset Y of State ↪→ State such that Y has no upper bound and
hence no least upper bound.

Exercise 5.22

Let gn be the partial function defined by

gn s =

{

s[y�→(s x)!][x�→1] if 0 < s x and s x ≤ n

undef if s x ≤ 0 or s x > n

(where m! denotes the factorial of m). Define Y 0 = { gn | n ≥ 0 } and show
that it is a chain. Characterize the upper bounds of Y 0 and determine the least
upper bound.

A partially ordered set (D , �) is called a chain complete partially ordered
set (abbreviated ccpo) whenever

⊔

Y exists for all chains Y. It is a complete
lattice if

⊔

Y exists for all subsets Y of D.

Example 5.23

Exercise 5.18 shows that (P(S), ⊆) and (P(S), ⊇) are complete lattices; it fol-
lows that they both satisfy the ccpo-property. Exercise 5.19 shows that (Pfin(S),
⊆) need not be a complete lattice nor a ccpo.

Fact 5.24

If (D , �) is a ccpo, then it has a least element ⊥ given by ⊥=
⊔

∅.

Proof: It is straightforward to check that ∅ is a chain, and since (D , �) is a ccpo
we get that

⊔

∅ exists. Using the definition of
⊔

∅, we see that for any element
d of D, we have

⊔

∅ � d. This means that
⊔

∅ is the least element of D .

Exercise 5.21 shows that State ↪→ State is not a complete lattice. Fortu-
nately, we have the following lemma.

Lemma 5.25

(State ↪→ State, �) is a ccpo. The least upper bound
⊔

Y of a chain Y is
given by

graph(
⊔

Y) =
⋃

{ graph(g) | g ∈Y }

5.2 Fixed Point Theory 107

that is, (
⊔

Y)s = s ′ if and only if g s = s ′ for some g ∈ Y .

Proof: The proof is in three parts. First we prove that
⋃

{ graph(g) | g ∈ Y } (*)

is indeed a graph of a partial function in State ↪→ State. Second, we prove
that this function will be an upper bound of Y. Thirdly, we prove that it is less
than any other upper bound of Y ; that is, it is the least upper bound of Y.

To verify that (*) specifies a partial function, we only need to show that if
〈s, s ′〉 and 〈s, s ′′〉 are elements of

X =
⋃

{ graph(g) | g∈Y }

then s ′ = s ′′. When 〈s, s ′〉 ∈ X, there will be a partial function g ∈ Y such
that g s = s ′. Similarly, when 〈s, s ′′〉 ∈ X, then there will be a partial function
g ′ ∈ Y such that g ′ s = s ′′. Since Y is a chain, we will have that either g � g ′

or g ′ � g . In any case, we get g s = g ′ s, and this means that s ′ = s ′′ as
required. This completes the first part of the proof.

In the second part of the proof, we define the partial function g0 by

graph(g0) =
⋃

{ graph(g) | g ∈ Y }

To show that g0 is an upper bound of Y, let g be an element of Y. Then we
have graph(g) ⊆ graph(g0), and using the result of Exercise 5.8 we see that g
� g0 as required and we have completed the second part of the proof.

In the third part of the proof, we show that g0 is the least upper bound
of Y . So let g1 be some upper bound of Y . Using the definition of an upper
bound, we get that g � g1 must hold for all g ∈Y . Exercise 5.8 gives that
graph(g) ⊆ graph(g1). Hence it must be the case that

⋃

{ graph(g) | g ∈ Y } ⊆ graph(g1)

But this is the same as graph(g0) ⊆ graph(g1), and Exercise 5.8 gives that g0

� g1. This shows that g0 is the least upper bound of Y and thereby we have
completed the proof.

Continuous Functions

Let (D , �) and (D ′, �′) satisfy the ccpo-property, and consider a (total) func-
tion f : D → D ′. If d1 � d2, then the intuition is that d1 shares its information
with d2. So when the function f has been applied to the two elements d1 and
d2, we shall expect that a similar relationship holds between the results. That

108 5. Denotational Semantics

is, we shall expect that f d1 �′ f d2, and when this is the case we say that f
is monotone. Formally, f is monotone if and only if

d1 � d2 implies f d1 �′ f d2

for all choices of d1 and d2.

Example 5.26

Consider (P({a,b,c}), ⊆) and (P({d,e}), ⊆). The function f 1: P({a,b,c}) →
P({d,e}) defined by the table

X {a,b,c} {a,b} {a,c} {b,c} {a} {b} {c} ∅
f 1 X {d,e} {d} {d,e} {d,e} {d} {d} {e} ∅

is monotone: it simply changes a’s and b’s to d’s and c’s to e’s.
The function f 2: P({a,b,c}) → P({d,e}) defined by the table

X {a,b,c} {a,b} {a,c} {b,c} {a} {b} {c} ∅
f 2 X {d} {d} {d} {e} {d} {e} {e} {e}

is not monotone because {b,c} ⊆ {a,b,c} but f 2 {b,c} �⊆ f 2 {a,b,c}. Intuitively,
all sets that contain an a are mapped to {d}, whereas the others are mapped
to {e}, and since the elements {d} and {e} are incomparable this does not give
a monotone function. However, if we change the definition such that sets with
an a are mapped to {d} and all other sets to ∅, then the function will indeed
be monotone.

Exercise 5.27

Consider the ccpo (P(N), ⊆). Determine which of the following functions in
P(N) → P(N) are monotone:

f 1 X = N \ X

f 2 X = X ∪ {27}

f 3 X = X ∩ {7, 9, 13}

f 4 X = { n ∈ X | n is a prime }

f 5 X = { 2 · n | n ∈ X }

Exercise 5.28

Determine which of the following functionals of

(State ↪→ State) → (State ↪→ State)

5.2 Fixed Point Theory 109

are monotone:

F 0 g = g

F 1 g =

{

g1 if g = g2

g2 otherwise
where g1 �= g2

(F ′ g) s =

{

g s if s x �= 0

s if s x = 0

The monotone functions have a couple of interesting properties. First we
prove that the composition of two monotone functions is a monotone function.

Fact 5.29

Let (D , �), (D ′, �′), and (D ′′, �′′) satisfy the ccpo-property, and let f : D → D ′

and f ′: D ′ → D ′′ be monotone functions. Then f ′ ◦ f : D → D ′′ is a monotone
function.

Proof: Assume that d1 � d2. The monotonicity of f gives that f d1 �′ f d2.
The monotonicity of f ′ then gives f ′ (f d1) �′′ f ′ (f d2) as required.

Next we prove that the image of a chain under a monotone function is itself
a chain.

Lemma 5.30

Let (D , �) and (D ′, �′) satisfy the ccpo-property, and let f : D → D ′ be a
monotone function. If Y is a chain in D, then { f d | d ∈ Y } is a chain in D ′.
Furthermore,

⊔′{ f d | d ∈ Y } �′ f (
⊔

Y)

Proof: If Y = ∅, then the result holds immediately since ⊥′ �′ f ⊥; so for the
rest of the proof we may assume that Y �= ∅. We shall first prove that { f d |
d ∈ Y } is a chain in D ′. So let d ′

1 and d ′
2 be two elements of { f d | d ∈ Y }.

Then there are elements d1 and d2 in Y such that d ′
1 = f d1 and d ′

2 = f d2.
Since Y is a chain, we have that either d1 � d2 or d2 � d1. In either case, we
get that the same order holds between d ′

1 and d ′
2 because of the monotonicity

of f . This proves that { f d | d ∈ Y } is a chain.
To prove the second part of the lemma, consider an arbitrary element d

of Y . Then it is the case that d �
⊔

Y . The monotonicity of f gives that
f d �′ f (

⊔

Y). Since this holds for all d ∈ Y, we get that f (
⊔

Y) is an upper
bound on { f d | d ∈Y }; that is,

⊔′ { f d | d ∈Y } �′ f (
⊔

Y).

110 5. Denotational Semantics

In general, we cannot expect that a monotone function preserves least upper
bounds on chains; that is,

⊔′ { f d | d ∈Y } = f (
⊔

Y). This is illustrated by
the following example.

Example 5.31

From Example 5.23, we get that (P(N ∪ {a}), ⊆) is a ccpo. Now consider the
function f : P(N ∪ {a}) → P(N ∪ {a}) defined by

f X =

{

X if X is finite

X ∪ {a} if X is infinite

Clearly, f is a monotone function: if X 1 ⊆ X 2, then also f X 1 ⊆ f X 2. However,
f does not preserve the least upper bounds of chains. To see this, consider the
set

Y = { {0,1,· · ·,n} | n≥0 }

It consists of the elements {0}, {0,1}, {0,1,2}, · · · and it is straightforward to
verify that it is a chain with N as its least upper bound; that is,

⊔

Y = N.
When we apply f to the elements of Y, we get

⊔

{ f X | X ∈ Y } =
⊔

Y = N

However, we also have

f (
⊔

Y) = f N = N ∪ {a}

showing that f does not preserve the least upper bounds of chains.

We shall be interested in functions that preserve least upper bounds of
chains; that is, functions f that satisfy

⊔′{ f d | d ∈Y } = f (
⊔

Y)

Intuitively, this means that we obtain the same information independently of
whether we determine the least upper bound before or after applying the func-
tion f .

We shall say that a function f : D → D ′ defined on (D , �) and (D ′, �′) is
continuous if it is monotone and

⊔′{ f d | d ∈Y } = f (
⊔

Y)

holds for all non-empty chains Y. If
⊔

{ f d | d ∈ Y } = f (
⊔

Y) holds for the
empty chain (that is, ⊥ = f ⊥), then we shall say that f is strict.

5.2 Fixed Point Theory 111

Example 5.32

The function f 1 of Example 5.26 is also continuous. To see this, consider a non-
empty chain Y in P({a,b,c}). The least upper bound of Y will be the largest
element, say X 0, of Y (see Example 5.17). Therefore we have

f 1 (
⊔

Y) = f 1 X 0 because X 0 =
⊔

Y

⊆
⊔

{ f 1 X | X ∈ Y } because X 0 ∈ Y

Using that f 1 is monotone, we get from Lemma 5.30 that
⊔

{ f 1 X | X ∈ Y } ⊆
f 1 (

⊔

Y). It follows that f 1 is continuous. Also, f 1 is a strict function because
f 1 ∅ = ∅.

The function f of Example 5.31 is not a continuous function because there
is a chain for which it does not preserve the least upper bound.

Exercise 5.33

Show that the functional F ′ of Example 5.1 is continuous.

Exercise 5.34

Assume that (D , �) and (D ′, �′) satisfy the ccpo-property, and assume that
the function f : D → D ′ satisfies

⊔′{ f d | d ∈Y } = f (
⊔

Y)

for all non-empty chains Y of D . Show that f is monotone.

We can extend the result of Lemma 5.29 to show that the composition of
two continuous functions will also be continuous, as follows.

Lemma 5.35

Let (D , �), (D ′, �′), and (D ′′, �′′) satisfy the ccpo-property, and let the
functions f : D → D ′ and f ′: D ′ → D ′′ be be continuous. Then f ′ ◦ f : D → D ′′

is a continuous function.

Proof: From Fact 5.29 we get that f ′ ◦ f is monotone. To prove that it is
continuous, let Y be a non-empty chain in D . The continuity of f gives

⊔′{ f d | d ∈ Y } = f (
⊔

Y)

Since { f d | d ∈ Y } is a (non-empty) chain in D ′, we can use the continuity
of f ′ and get

112 5. Denotational Semantics

⊔′′{ f ′ d ′ | d ′ ∈ { f d | d ∈ Y } } = f ′ (
⊔′{ f d | d ∈ Y })

which is equivalent to
⊔′′{ f ′ (f d) | d ∈ Y } = f ′ (f (

⊔

Y))

This proves the result.

Exercise 5.36

Prove that if f and f ′ are strict functions, then so is f ′ ◦ f .

We can now define the required fixed point operator FIX as follows.

Theorem 5.37

Let f : D → D be a continuous function on the ccpo (D , �) with least element
⊥. Then

FIX f =
⊔

{ f n ⊥ | n≥0 }

defines an element of D, and this element is the least fixed point of f.

Here we have used the notation that f 0 = id, and f n+1 = f ◦ f n for n≥0.

Proof: We first show the well-definedness of FIX f . Note that f 0 ⊥ = ⊥ and
that ⊥ � d for all d ∈ D . By induction on n, one may show that

f n ⊥ � f n d

for all d ∈ D since f is monotone. It follows that f n ⊥ � f m ⊥ whenever n≤m.
Hence { f n ⊥ | n≥0 } is a (non-empty) chain in D, and FIX f exists because D
is a ccpo.

We next show that FIX f is a fixed point ; that is, f (FIX f) = FIX f . We
calculate

f (FIX f) = f (
⊔

{ f n ⊥ | n≥0 }) (definition of FIX f)

=
⊔

{ f (f n ⊥) | n≥0 } (continuity of f)

=
⊔

{ f n ⊥ | n≥1 }

=
⊔

({ f n ⊥ | n≥1 } ∪ {⊥}) (
⊔

(Y ∪ {⊥}) =
⊔

Y

for all chains Y)

=
⊔

{ f n ⊥ | n≥0 } (f 0 ⊥ = ⊥)

= FIX f (definition of FIX f)

5.2 Fixed Point Theory 113

To see that FIX f is the least fixed point, assume that d is some other fixed
point. Clearly ⊥ � d so the monotonicity of f gives f n ⊥ � f n d for n≥0, and
as d was a fixed point, we obtain f n ⊥ � d for all n≥0. Hence d is an upper
bound of the chain { f n ⊥ | n≥0 }, and using that FIX f is the least upper
bound, we have FIX f � d .

Example 5.38

Consider the function F ′ of Example 5.1:

(F ′ g) s =

{

g s if s x �= 0

s if s x = 0

We shall determine its least fixed point using the approach of Theorem 5.37.
The least element ⊥ of State ↪→ State is given by Lemma 5.13 and has ⊥ s
= undef for all s. We then determine the elements of the set { F ′n ⊥ | n≥0 }
as follows:

(F ′0 ⊥) s = (id ⊥) s (definition of F ′0 ⊥)

= undef (definition of id and ⊥)

(F ′1 ⊥) s = (F ′ ⊥) s (definition of F ′1 ⊥)

=

{

⊥ s if s x �= 0

s if s x = 0
(definition of F ′ ⊥)

=

{

undef if s x �= 0

s if s x = 0
(definition of ⊥)

(F ′2 ⊥) s = F ′ (F ′1 ⊥) s (definition of F ′2 ⊥)

=

{

(F ′1 ⊥) s if s x �= 0

s if s x = 0
(definition of F ′)

=

{

undef if s x �= 0

s if s x = 0
(definition of F ′1 ⊥)

...

In general, we have F ′n ⊥ = F ′n+1 ⊥ for n > 0. Therefore
⊔

{F ′n ⊥ | n≥0 } =
⊔

{F ′0 ⊥, F ′1 ⊥} = F ′1 ⊥

because F ′0 ⊥ = ⊥. Thus the least fixed point of F ′ will be the function

114 5. Denotational Semantics

g1 s =

{

undef if s x �= 0

s if s x = 0

Exercise 5.39

Redo Exercise 5.15 using the approach of Theorem 5.37; that is, deduce the
general form of the iterands, F n ⊥, for the functional, F , of Exercises 5.2 and
5.3.

Exercise 5.40 (Essential)

Let f : D → D be a continuous function on a ccpo (D , �) and let d∈D satisfy
f d � d . Show that FIX f � d .

The table below summarizes the development we have performed in order
to demonstrate the existence of least fixed points:

Fixed Point Theory

1: We restrict ourselves to chain complete partially ordered sets (abbre-
viated ccpo).

2: We restrict ourselves to continuous functions on chain complete
partially ordered sets.

3: We show that continuous functions on chain complete partially
ordered sets always have least fixed points (Theorem 5.37).

Exercise 5.41 (*)

Let (D , �) be a ccpo and define (D→D , �′) by setting

f 1 �′ f 2 if and only if f 1 d � f 2 d for all d ∈ D

Show that (D→D , �′) is a ccpo and that FIX is “continuous” in the sense that

FIX(
⊔′ F) =

⊔

{ FIX f | f ∈ F }

holds for all non-empty chains F ⊆ D→D of continuous functions.

5.3 Direct Style Semantics: Existence 115

Exercise 5.42 (** For Mathematicians)

Given a ccpo (D , �), we define an open set of D to be a subset Y of D satisfying

(1) if d1∈Y and d1 � d2 then d2∈Y , and

(2) if Y ′ is a non-empty chain satisfying
⊔

Y ′ ∈ Y, then there exists an element
d of Y ′ that also is an element of Y .

The set of open sets of D is denoted OD. Show that this is indeed a topology
on D ; that is, show that

– ∅ and D are members of OD,

– the intersection of two open sets is an open set, and

– the union of any collection of open sets is an open set.

Let (D , �) and (D ′, �′) satisfy the ccpo-property. A function f :D→D ′ is
topologically continuous if and only if the function f −1: P(D ′) → P(D) defined
by

f −1(Y ′) = { d ∈ D | f d ∈ Y ′ }

maps open sets to open sets; that is, specializes to f −1: OD′ → OD. Show that
f is a continuous function between D and D ′ if and only if it is a topologically
continuous function between D and D ′.

5.3 Direct Style Semantics: Existence

We have now obtained the mathematical foundations needed to prove that the
semantic clauses of Table 5.1 do indeed define a function. So consider once
again the clause

Sds[[while b do S]] = FIX F

where F g = cond(B[[b]], g ◦ Sds[[S]], id)

For this to make sense, we must show that F is continuous. To do so, we first
observe that

F g = F 1 (F 2 g)

where

F 1 g = cond(B[[b]], g , id)

and

116 5. Denotational Semantics

F 2 g = g ◦ Sds[[S]]

Using Lemma 5.35, we then obtain the continuity of F by showing that F 1 and
F 2 are continuous. We shall first prove that F 1 is continuous:

Lemma 5.43

Let g0: State ↪→ State, p: State → T, and define

F g = cond(p, g , g0)

Then F is continuous.

Proof: We shall first prove that F is monotone. So assume that g1 � g2 and we
shall show that F g1 � F g2. It suffices to consider an arbitrary state s and
show that

(F g1) s = s ′ implies (F g2) s = s ′

If p s = tt, then (F g1) s = g1 s, and from g1 � g2 we get that g1 s = s ′

implies g2 s = s ′. Since (F g2) s = g2 s, we have proved the result. So consider
the case where p s = ff. Then (F g1) s = g0 s and similarly (F g2) s = g0 s
and the result is immediate.

To prove that F is continuous, we shall let Y be a non-empty chain in
State ↪→ State. We must show that

F (
⊔

Y) �
⊔

{ F g | g∈Y }

since F (
⊔

Y) �
⊔

{ F g | g∈Y } follows from the monotonicity of F (see
Lemma 5.30). Thus we have to show that

graph(F (
⊔

Y)) ⊆
⋃

{ graph(F g) | g∈Y }

using the characterization of least upper bounds of chains in State ↪→ State
given in Lemma 5.25. So assume that (F (

⊔

Y)) s = s ′ and let us determine g
∈ Y such that (F g) s = s ′. If p s = ff, we have F (

⊔

Y) s = g0 s = s ′ and
clearly, for every element g of the non-empty set Y we have (F g) s = g0 s =
s ′. If p s = tt, then we get (F (

⊔

Y)) s = (
⊔

Y) s = s ′ so 〈s, s ′〉 ∈ graph(
⊔

Y).
Since

graph(
⊔

Y) =
⋃

{ graph(g) | g∈Y }

(according to Lemma 5.25), we therefore have g∈Y such that g s = s ′, and it
follows that (F g) s = s ′. This proves the result.

5.3 Direct Style Semantics: Existence 117

Exercise 5.44 (Essential)

Prove that (in the setting of Lemma 5.43) F defined by F g = cond(p, g0, g) is
continuous; that is, cond is continuous in its second and third arguments.

Lemma 5.45

Let g0: State ↪→ State, and define

F g = g ◦ g0

Then F is continuous.

Proof: We first prove that F is monotone. If g1 � g2, then graph(g1) ⊆
graph(g2) according to Exercise 5.8, so that graph(g0) � graph(g1), which is the
relational composition of graph(g0) and graph(g1) (see Appendix A), satisfies

graph(g0) � graph(g1) ⊆ graph(g0) � graph(g2)

and this shows that F g1 � F g2. Next we shall prove that F is continuous.
If Y is a non-empty chain, then

graph(F (
⊔

Y)) = graph((
⊔

Y) ◦ g0)

= graph(g0) � graph(
⊔

Y)

= graph(g0) �
⋃

{graph(g) | g∈Y }

=
⋃

{graph(g0) � graph(g) | g∈Y }

= graph(
⊔

{F g | g∈Y })

where we have used Lemma 5.25 twice. Thus F (
⊔

Y) =
⊔

{F g | g∈Y}.

Exercise 5.46 (Essential)

Prove that (in the setting of Lemma 5.45) F defined by F g = g0 ◦ g is
continuous; that is, ◦ is continuous in both arguments.

We have now established the results needed to show that the equations of
Table 5.1 define a function Sds as follows.

Proposition 5.47

The semantic equations of Table 5.1 define a total function Sds in Stm →
(State ↪→ State).

118 5. Denotational Semantics

Proof: The proof is by structural induction on the statement S .

The case x := a: Clearly the function that maps a state s to the state
s[x �→A[[a]]s] is well-defined.

The case skip: Clearly the function id is well-defined.

The case S 1;S 2: The induction hypothesis gives that Sds[[S 1]] and Sds[[S 2]] are
well-defined, and clearly their composition will be well-defined.

The case if b then S 1 else S 2: The induction hypothesis gives that Sds[[S 1]]
and Sds[[S 2]] are well-defined functions, and clearly this property is preserved
by the function cond.

The case while b do S : The induction hypothesis gives that Sds[[S]] is well-
defined. The functions F 1 and F 2 defined by

F 1 g = cond(B[[b]], g , id)

and

F 2 g = g ◦ Sds[[S]]

are continuous according to Lemmas 5.43 and 5.45. Thus Lemma 5.35 gives
that F g = F 1 (F 2 g) is continuous. From Theorem 5.37, we then have that
FIX F is well-defined and thereby that Sds[[while b do S]] is well-defined. This
completes the proof.

Example 5.48

Consider the denotational semantics of the factorial statement:

Sds[[y := 1; while ¬(x=1) do (y:=y�x; x:=x−1)]]

We shall be interested in applying this function to a state s0 where x has the
value 3. To do that, we shall first apply the clauses of Table 5.1, and we then
get that

Sds[[y := 1; while ¬(x=1) do (y:=y�x; x:=x−1)]] s0

= (FIX F) s0[y�→1]

where

F g s =

{

g (Sds[[y:= y�x; x:=x−1]] s) if B[[¬(x=1)]] s = tt

s if B[[¬(x=1)]] s = ff

or, equivalently,

5.3 Direct Style Semantics: Existence 119

F g s =

{

g (s[y�→(s y)·(s x)][x�→(s x)−1]) if s x �= 1

s if s x = 1

We can now calculate the various functions F n ⊥ used in the definition of FIX

F in Theorem 5.37:

(F 0 ⊥) s = undef

(F 1 ⊥) s =

{

undef if s x �= 1

s if s x = 1

(F 2 ⊥) s =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

undef if s x �= 1 and s x �= 2

s[y�→(s y)·2][x�→1] if s x = 2

s if s x = 1

Thus, if x is 1 or 2, then F 2 ⊥ will give the correct value for y, and for all other
values of x the result is undefined. This is a general pattern: the n’th iterand
F n ⊥ will determine the correct value if it can be computed with at most n
unfoldings of the while-loop (that is, n evaluations of the boolean condition).
The general formula is

(Fn ⊥) s =

{

undef if s x < 1 or s x > n

s[y�→(s y)·j . . .·2·1][x�→1] if s x = j and 1≤j and j≤n

We then have

(FIX F) s =

{

undef if s x < 1

s[y�→(s y)·n. . .·2·1][x�→1] if s x = n and n≥1

So in the state s0 where x has the value 3, we get that the value computed by
the factorial statement is

(FIX F) (s0[y�→1]) y = 1 · 3 · 2 · 1 = 6

as expected.

Exercise 5.49

Consider the statement

z:=0; while y≤x do (z:=z+1; x:=x−y)

and perform a development analogous to that of Example 5.48.

Exercise 5.50

Show that Sds[[while true do skip]] is the totally undefined function ⊥.

120 5. Denotational Semantics

Exercise 5.51

Extend the language with the statement repeat S until b and give the new
(compositional) clause for Sds. Validate the well-definedness of the extended
version of Sds.

Exercise 5.52

Extend the language with the statement for x := a1 to a2 do S and give
the new (compositional) clause for Sds. Validate the well-definedness of the
extended version of Sds.

To summarize, the well-definedness of Sds relies on the following results
established above:

Proof Summary for While:

Well-definedness of Denotational Semantics

1: The set State ↪→ State equipped with an appropriate order � is a
ccpo (Lemmas 5.13 and 5.25).

2: Certain functions Ψ : (State ↪→ State) → (State ↪→ State) are con-
tinuous (Lemmas 5.43 and 5.45).

3: In the definition of Sds, we only apply the fixed point operation to
continuous functions (Proposition 5.47).

Properties of the Semantics

In the operational semantics, we defined a notion of two statements being
semantically equivalent. A similar notion can be defined based on the denota-
tional semantics: S 1 and S 2 are semantically equivalent if and only if

Sds[[S 1]] = Sds[[S 2]]

Exercise 5.53

Show that the following statements of While are semantically equivalent in
the sense above:

– S ;skip and S

5.4 An Equivalence Result 121

– S 1;(S 2;S 3) and (S 1;S 2);S 3

– while b do S and if b then (S ; while b do S) else skip �

Exercise 5.54 (*)

Prove that repeat S until b and S ; while ¬b do S are semantically equivalent
using the denotational approach. The semantics of the repeat-construct is
given in Exercise 5.51.

5.4 An Equivalence Result

Having produced yet another semantics of the language While, we shall be
interested in its relation to the operational semantics, and for this we shall
focus on the structural operational semantics given in Section 2.2.

Theorem 5.55

For every statement S of While, we have Ssos[[S]] = Sds[[S]].

Both Sds[[S]] and Ssos[[S]] are functions in State ↪→ State; that is, they are
elements of a partially ordered set. To prove that two elements d1 and d2 of a
partially ordered set are equal, it is sufficient to prove that d1 � d2 and that
d2 � d1. Thus, to prove Theorem 5.55, we shall show that

– Ssos[[S]] � Sds[[S]] and

– Sds[[S]] � Ssos[[S]].

The first result is expressed by the following lemma.

Lemma 5.56

For every statement S of While, we have Ssos[[S]] � Sds[[S]].

Proof: It is sufficient to prove that for all states s and s ′

〈S , s〉 ⇒∗ s ′ implies Sds[[S]]s = s ′ (*)

To do so, we shall need to establish the following property

〈S , s〉 ⇒ s ′ implies Sds[[S]]s = s ′

〈S , s〉 ⇒ 〈S ′, s ′〉 implies Sds[[S]]s = Sds[[S ′]]s ′
(**)

122 5. Denotational Semantics

Assuming that (**) holds, the proof of (*) is a straightforward induction on
the length k of the derivation sequence 〈S , s〉 ⇒k s ′ (see Section 2.2).

We now turn to the proof of (**), and for this we shall use induction on the
shape of the derivation tree for 〈S , s〉 ⇒ s ′ or 〈S , s〉 ⇒ 〈S ′, s ′〉.

The case [asssos]: We have

〈x := a, s〉 ⇒ s[x �→A[[a]]s]

and since Sds[[x := a]]s = s[x �→A[[a]]s], the result follows.

The case [skipsos]: Analogous.

The case [comp 1
sos]: Assume that

〈S 1;S 2, s〉 ⇒ 〈S ′
1;S 2, s ′〉

because 〈S 1, s〉 ⇒ 〈S ′
1, s ′〉. Then the induction hypothesis applied to the latter

transition gives Sds[[S 1]]s = Sds[[S ′
1]]s

′ and we get

Sds[[S 1;S 2]] s = Sds[[S 2]](Sds[[S 1]]s)

= Sds[[S 2]](Sds[[S ′
1]]s

′)

= Sds[[S ′
1;S 2]]s ′

as required.

The case [comp 2
sos]: Assume that

〈S 1;S 2, s〉 ⇒ 〈S 2, s ′〉
because 〈S 1, s〉⇒ s ′. Then the induction hypothesis applied to that transition
gives Sds[[S 1]]s = s ′ and we get

Sds[[S 1;S 2]]s = Sds[[S 2]](Sds[[S 1]]s)

= Sds[[S 2]]s ′

where the first equality comes from the definition of Sds and we just argued for
the second equality. This proves the result.

The case [if tt
sos]: Assume that

〈if b then S 1 else S 2, s〉 ⇒ 〈S 1, s〉
because B[[b]] s = tt. Then

Sds[[if b then S 1 else S 2]]s = cond(B[[b]], Sds[[S 1]], Sds[[S 2]])s

= Sds[[S 1]]s

as required.

The case [ifff
sos]: Analogous.

The case [whilesos]: Assume that

5.4 An Equivalence Result 123

〈while b do S , s〉 ⇒ 〈if b then (S ; while b do S) else skip, s〉

From the definition of Sds, we have Sds[[while b do S]] = FIX F , where F g =
cond(B[[b]], g ◦ Sds[[S]], id). We therefore get

Sds[[while b do S]] = (FIX F)

= F (FIX F)

= cond(B[[b]], (FIX F) ◦ Sds[[S]], id)

= cond(B[[b]], Sds[[while b do S]] ◦ Sds[[S]], id)

= cond(B[[b]], Sds[[S ; while b do S]], Sds[[skip]])

= Sds[[if b then (S ; while b do S) else skip]]

as required. This completes the proof of (**).

Note that (*) does not imply that Ssos[[S]] = Sds[[S]], as we have only proved
that if Ssos[[S]]s �= undef, then Ssos[[S]]s = Sds[[S]]s. Still, there is the possibility
that Sds[[S]] may be defined for more arguments than Ssos[[S]]. However, this is
ruled out by the following lemma.

Lemma 5.57

For every statement S of While, we have Sds[[S]] � Ssos[[S]].

Proof: We proceed by structural induction on the statement S .

The case x := a: Clearly Sds[[x := a]]s = Ssos[[x := a]]s. Note that this means
that Ssos satisfies the clause defining Sds in Table 5.1.

The case skip: Clearly Sds[[skip]]s = Ssos[[skip]]s.

The case S 1 ; S 2: Recall that ◦ is monotone in both arguments (Lemma 5.45
and Exercise 5.46). We then have

Sds[[S 1 ; S 2]] = Sds[[S 2]] ◦ Sds[[S 1]]

� Ssos[[S 2]] ◦ Ssos[[S 1]]

because the induction hypothesis applied to S 1 and S 2 gives Sds[[S 1]] � Ssos[[S 1]]
and Sds[[S 2]] � Ssos[[S 2]]. Furthermore, Exercise 2.21 gives that if 〈S 1, s〉 ⇒∗ s ′

then 〈S 1 ; S 2, s〉 ⇒∗ 〈S 2, s ′〉 and hence

Ssos[[S 2]] ◦ Ssos[[S 1]] � Ssos[[S 1 ; S 2]]

and this proves the result. Note that in this case Ssos fulfils a weaker version
of the clause defining Sds in Table 5.1.

124 5. Denotational Semantics

The case if b then S 1 else S 2: Recall that cond is monotone in its second
and third arguments (Lemma 5.43 and Exercise 5.44). We then have

Sds[[if b then S 1 else S 2]] = cond(B[[b]], Sds[[S 1]], Sds[[S 2]])

� cond(B[[b]], Ssos[[S 1]], Ssos[[S 2]])

because the induction hypothesis applied to S 1 and S 2 gives Sds[[S 1]] � Ssos[[S 1]]
and Sds[[S 2]] � Ssos[[S 2]]. Furthermore, it follows from [if tt

sos] and [ifff
sos] that

Ssos[[if b then S 1 else S 2]]s = Ssos[[S 1]]s if B[[b]]s = tt

Ssos[[if b then S 1 else S 2]]s = Ssos[[S 2]]s if B[[b]]s = ff

so that

cond(B[[b]], Ssos[[S 1]], Ssos[[S 2]]) = Ssos[[if b then S 1 else S 2]]

and this proves the result. Note that in this case Ssos fulfils the clause defining
Sds in Table 5.1.

The case while b do S : We have

Sds[[while b do S]] = FIX F

where F g = cond(B[[b]], g ◦ Sds[[S]], id), and we recall that F is continuous. It
is sufficient to prove that

F (S sos[[while b do S]]) � S sos[[while b do S]]

because then Exercise 5.40 gives FIX F � S sos[[while b do S]] as required. From
Exercise 2.21, we get

Ssos[[while b do S]] = cond(B[[b]], Ssos[[S ; while b do S]], id)

� cond(B[[b]], Ssos[[while b do S]] ◦ Ssos[[S]], id)

The induction hypothesis applied to S gives Sds[[S]] � Ssos[[S]], so using the
monotonicity of ◦ and cond, we get

Ssos[[while b do S]] � cond(B[[b]], Ssos[[while b do S]] ◦ Ssos[[S]], id)

� cond(B[[b]], Ssos[[while b do S]] ◦ Sds[[S]], id)

= F (Ssos[[while b do S]])

Note that in this case Ssos also fulfils a weaker version of the clause defining
Sds in Table 5.1.

The key technique used in the proof can be summarized as follows:

5.4 An Equivalence Result 125

Proof Summary for While:

Equivalence of Operational and Denotational Semantics

1: Prove that Ssos[[S]] � Sds[[S]] by first using induction on the shape of
derivation trees to show that

– if a statement is executed one step in the structural operational
semantics and does not terminate, then this does not change the
meaning in the denotational semantics, and

– if a statement is executed one step in the structural operational
semantics and does terminate, then the same result is obtained in
the denotational semantics

and secondly by using induction on the length of derivation sequences.

2: Prove that Sds[[S]] � Ssos[[S]] by showing that

– Ssos fulfils slightly weaker versions of the clauses defining Sds in
Table 5.1, that is, if

Sds[[S]] = Ψ(· · · Sds[[S ′]] · · ·)

then Ssos[[S]] � Ψ(· · · Ssos[[S ′]] · · ·)

A proof by structural induction then gives that Sds[[S]] � Ssos[[S]].

Exercise 5.58

Give a detailed argument showing that

Ssos[[while b do S]] � cond(B[[b]], Ssos[[while b do S]] ◦ Ssos[[S]], id).

Exercise 5.59

Extend the proof of Theorem 5.55 so that it applies to the language when
augmented with repeat S until b.

Exercise 5.60

Extend the proof of Theorem 5.55 so that it applies to the language when
augmented with for x :=a1 to a2 do S .

126 5. Denotational Semantics

Exercise 5.61

Combining the results of Theorem 2.26 and Theorem 5.55, we get that Sns[[S]]
= Sds[[S]] holds for every statement S of While. Give a direct proof of this
(that is, without using the two theorems).

6
More on Denotational Semantics

The previous chapter presented the foundations for denotational semantics, and
we shall now study two extensions of the language While: first with blocks and
procedures, much as in Chapter 3, and subsequently with exceptions. In doing
so, we introduce some important semantic concepts:

– environments and stores and

– continuations.

For both language extensions, the semantic specifications are obtained by suit-
able modifications of Table 5.1. Although we shall not go into great detail about
the foundational properties of the specifications in the present chapter, it is im-
portant to note that the fixed point theory of chain complete partially ordered
sets and continous functions presented in the previous chapter also applies for
the development performed here.

6.1 Environments and Stores

We shall first extend While with blocks declaring local variables and proce-
dures. The new language is called Proc, and its syntax is

128 6. More on Denotational Semantics

S ::= x := a | skip | S 1 ; S 2 | if b then S 1 else S 2

| while b do S | begin DV DP S end | call p

DV ::= var x := a; DV | ε

DP ::= proc p is S ; DP | ε

where DV and DP are meta-variables ranging over the syntactic categories
DecV of variable declarations and DecP of procedure declarations, respec-
tively, and p is a meta-variable ranging over the syntactic category Pname of
procedure names. The idea is that variables and procedures are only known
inside the block where they are declared. Procedures may or may not be re-
cursive, and we shall emphasize the differences in the semantics to be specified
below.

We shall adopt static scope rules rather than dynamic scope rules. Consider
the following statement:

begin var x := 7; proc p is x := 0;

begin var x := 5; call p end

end

Using static scope rules, the effect of executing call p in the inner block will
be to modify the global variable x. Using dynamic scope rules, the effect will
be to modify the local variable x.

To obtain static scope rules, we shall follow the approach of Section 3.2
and introduce the notion of locations: to each variable, we associate a unique
location, and to each location we associate a value. This is in contrast to what
we did in Table 5.1, where we employed a direct association between variables
and values. The idea then is that whenever a new variable is declared it is
associated with a new unused location and that it is the value of this location
that is changed by assignment to the variable. With respect to the statement
above, this means that the global variable x and the local variable x will have
different locations. In the inner block, we can only directly access the location
of the local variable, but the procedure body for p may only access the location
of the global variable.

Stores and Variable Environments

So far, states in State have been used to associate values with variables. We
shall now replace states with stores that map locations to values and with vari-
able environments that map variables to locations. We introduce the domain

Loc = Z

6.1 Environments and Stores 129

of locations, which for the sake of simplicity has been identified with the inte-
gers. We shall need an operation

new: Loc → Loc

on locations that given a location will give the next one; since Loc is Z, we
may take ‘new’ to be the successor function on the integers.

We can now define a store, sto, as an element of

Store = Loc ∪ {next} → Z

where next is a special token used to hold the next free location. Note that since
Loc is Z we have that sto next is a location.

A variable environment envV is an element of

EnvV = Var → Loc

Thus the variable environment will assign a location to each variable.
So, rather than having a single mapping s from variables to values, we have

split it into two mappings, envV and sto, and the idea is that s = sto ◦ envV .
This motivates defining the function ‘lookup’ by

lookup envV sto = sto ◦ envV

so that ‘lookup envV ’ will transform a store to a state; that is,

lookup: EnvV → Store → State

Having replaced a one-stage mapping with a two-stage mapping, we shall
want to reformulate the semantic equations of Table 5.1 to use variable envi-
ronments and stores. The new semantic function S ′

ds has functionality

S ′
ds: Stm → EnvV → (Store ↪→ Store)

so that only the store is updated during the execution of statements. The clauses
defining S ′

ds are given in Table 6.1. Note that in the clause for assignment, the
variable environment is consulted to determine the location of the variable, and
this location is updated in the store. In the clauses for the conditional and the
while-construct, we use the auxiliary function cond of functionality

cond: (Store → T) × (Store ↪→ Store) × (Store ↪→ Store)

→ (Store ↪→ Store)

and its definition is as in Section 5.1.

Exercise 6.1

We have to make sure that the clauses of Table 6.1 define a well-defined function
S ′

ds. To do so,

130 6. More on Denotational Semantics

S ′
ds[[x :=a]]envV sto = sto[l �→A[[a]](lookup envV sto)]

where l = envV x

S ′
ds[[skip]]envV = id

S ′
ds[[S 1 ; S 2]]envV = (S ′

ds[[S 2]]envV) ◦ (S ′
ds[[S 1]]envV)

S ′
ds[[if b then S 1 else S 2]]envV

= cond(B[[b]]◦(lookup envV), S ′
ds[[S 1]]envV , S ′

ds[[S 2]]envV)

S ′
ds[[while b do S]]envV = FIX F

where F g = cond(B[[b]]◦(lookup envV), g ◦ (S ′
ds[[S]]envV), id)

Table 6.1 Denotational semantics for While using locations

– equip Store ↪→ Store with a partial ordering such that it becomes a ccpo,

– show that ◦ is continuous in both of its arguments and that cond is continuous
in its second and third arguments, and

– show that the fixed point operation is only applied to continuous functions.

Conclude that S ′
ds is a well-defined function.

Exercise 6.2 (*)

Prove that the two semantic functions Sds and S ′
ds satisfy

Sds[[S]] ◦ (lookup envV) = (lookup envV) ◦ (S ′
ds[[S]]envV)

for all statements S of While and for all envV such that envV is an injective
mapping.

Exercise 6.3

Having replaced a one-stage mapping with a two-stage mapping, we might
consider redefining the semantic functions A and B. The new functionalities of
A and B might be

A′: Aexp → EnvV → (Store → Z)

B′: Bexp → EnvV → (Store → T)

and the intended relationship is that

6.1 Environments and Stores 131

DV
ds[[var x := a; DV]](envV , sto) =

DV
ds[[DV]](envV [x �→l], sto[l �→v][next �→new l])

where l = sto next and v = A[[a]](lookup envV sto)

DV
ds[[ε]] = id

Table 6.2 Denotational semantics for variable declarations

A′[[a]]envV = A[[a]] ◦ (lookup envV)

B′[[b]]envV = B[[b]] ◦ (lookup envV)

Give a compositional definition of the functions A′ and B′ such that this is the
case.

Updating the Variable Environment

The variable environment is updated whenever we enter a block containing
local declarations. To express this, we shall introduce a semantic function DV

ds

for the syntactic category of variable declarations. It has functionality

DV
ds: DecV → (EnvV × Store) → (EnvV × Store)

The function DV
ds[[DV]] will take a pair as arguments: the first component of

that pair will be the current variable environment and the second component
the current store. The function will return the updated variable environment
as well as the updated store. The function is defined by the semantic clauses
of Table 6.2. Note that we process the declarations from left to right and that
we update the value of the token next in the store.

In the case where there are no procedure declarations in a block, we can
extend the semantic function S ′

ds of Table 6.1 with a clause such as

S ′
ds[[begin DV S end]]envV sto = S ′

ds[[S]]env ′
V sto′

where DV
ds[[DV]](envV , sto) = (env ′

V , sto′)

Thus we evaluate the body S in an updated variable environment and an
updated store. We shall later modify the clause above to take the procedure
declarations into account.

Exercise 6.4

Consider the following statement of Proc:

132 6. More on Denotational Semantics

begin var y := 0; var x := 1;

begin ¯var x := 7; x := x+1 end;

y := x

end

Use S ′
ds and DV

ds to show that the location for y is assigned the value 1 in the
final store.

Procedure Environments

To cater to procedures, we shall introduce the notion of a procedure environ-
ment. It will be a total function that will associate each procedure with the
effect of executing its body. This means that a procedure environment, envP ,
will be an element of

EnvP = Pname → (Store ↪→ Store)

Remark This notion of procedure environment differs from that of the oper-
ational approach studied in Section 3.2. �

The procedure environment is updated using the semantic function DP
ds for

procedure declarations. It has functionality

DP
ds: DecP → EnvV → EnvP → EnvP

So given the current variable environment and the current procedure environ-
ment, the function DP

ds[[DP]] will return the updated procedure environment.
The variable environment must be available because procedures must know the
variables that have been declared so far. An example is the statement

begin var x := 7; proc p is x := 0;

begin var x := 5; call p end

end

where the body of p must know that a variable x has been declared in the outer
block.

The semantic clauses defining DP
ds in the case of non-recursive procedures

are given in Table 6.3. In the clause for procedure declarations, we use the
semantic function Sds for statements (defined below) to determine the meaning
of the body of the procedure using that envV and envP are the environments
at the point of declaration. The variables occurring in the body S of p will
therefore be bound to the locations of the variables as known at the time of
declaration, but the values of these locations will not be known until the time

6.1 Environments and Stores 133

DP
ds[[proc p is S ; DP]]envV envP = DP

ds[[DP]]envV (envP [p �→g])

where g = Sds[[S]]envV envP

DP
ds[[ε]]envV = id

Table 6.3 Denotational semantics for non-recursive procedure declarations

of the call. In this way, we ensure that we obtain static scope for variables. Also,
an occurrence of call p′ in the body of the procedure will refer to a procedure
p′ mentioned in envP ; that is, a procedure declared in an outer block or in
the current block but preceding the present procedure. In this way, we obtain
static scope for procedures. This will be illustrated in Exercise 6.6 below.

The Semantic Function Sds for Proc

The meaning of a statement depends on the variables and procedures that have
been declared. Therefore the semantic function Sds for statements in Proc will
have functionality

Sds: Stm → EnvV → EnvP → (Store ↪→ Store)

The function is defined by the clauses of Table 6.4. In most cases, the definition
of Sds is a straightforward modification of the clauses of S ′

ds. Note that the
meaning of a procedure call is obtained by simply consulting the procedure
environment.

Example 6.5

This example shows how we obtain static scope rules for the variables. Consider
the application of the semantic function Sds to the statement

begin var x := 7; proc p is x := 0;

begin var x := 5; call p end

end

Assume that the initial environments are envV and envP and that the initial
store sto has sto next = 12. Then the first step will be to update the variable
environment with the declarations of the outer block:

DV
ds[[var x := 7;]](envV , sto)

= DV
ds[[ε]](envV [x�→12], sto[12�→7][next �→13])

= (envV [x�→12], sto[12�→7][next �→13])

134 6. More on Denotational Semantics

Sds[[x :=a]]envV envP sto = sto[l �→A[[a]](lookup envV sto)]

where l = envV x

Sds[[skip]]envV envP = id

Sds[[S 1 ; S 2]]envV envP = (Sds[[S 2]]envV envP) ◦ (Sds[[S 1]]envV envP)

Sds[[if b then S 1 else S 2]]envV envP =

cond(B[[b]]◦(lookup envV), Sds[[S 1]]envV envP ,

Sds[[S 2]]envV envP)

Sds[[while b do S]]envV envP = FIX F

where F g = cond(B[[b]]◦(lookup envV),

g ◦ (Sds[[S]]envV envP), id)

Sds[[begin DV DP S end]]envV envP sto = Sds[[S]]env ′
V env ′

P sto′

where DV
ds[[DV]](envV , sto) = (env ′

V , sto′)

and DP
ds[[DP]]env ′

V envP = env ′
P

Sds[[call p]]envV envP = envP p

Table 6.4 Denotational semantics for Proc

Next we update the procedure environment:

DP
ds[[proc p is x := 0;]](envV [x�→12]) envP

= DP
ds[[ε]](envV [x�→12]) (envP [p�→g])

= envP [p�→g]

where

g sto = Sds[[x := 0]](envV [x�→12]) envP sto

= sto[12�→0]

because x is to be found in location 12 according to the variable environment.
Then we get

Sds[[begin var x := 7; proc p is x := 0;

begin var x := 5; call p end end]]envV envP sto

= Sds[[begin var x := 5; call p end]] (envV [x�→12]) (envP [p�→g])

(sto[12�→7][next �→13])

6.1 Environments and Stores 135

For the variable declarations of the inner block we have

DV
ds[[var x := 5;]](envV [x�→12], sto[12�→7][next �→13])

= DV
ds[[ε]](envV [x�→13], sto[12�→7][13�→5][next �→14])

= (envV [x�→13], sto[12�→7][13�→5][next �→14])

and

DP
ds[[ε]](envV [x�→13]) (envP [p�→g]) = envP [p�→g]

Thus we get

Sds[[begin var x := 5; call p end]] (envV [x�→12]) (envP [p�→g])

(sto[12�→7][next �→13])

= Sds[[call p]](envV [x�→13]) (envP [p�→g])

(sto[12�→7][13�→5][next �→14])

= g (sto[12�→7][13�→5][next �→14])

= sto[12�→0][13�→5][next �→14]

so we see that in the final store the location for the local variable has the value
5 and the one for the global variable has the value 0.

Exercise 6.6

Consider the following statement in Proc:

begin var x := 0;

proc p is x := x+1;

proc q is call p;

begin proc p is x := 7;

call q

end

end

Use the semantic clauses of Proc to illustrate that procedures have static scope;
that is, show that the final store will associate the location of x with the value
1 (rather than 7).

136 6. More on Denotational Semantics

DP
ds[[proc p is S ; DP]]envV envP = DP

ds[[DP]]envV (envP [p �→FIX F])

where F g = Sds[[S]]envV (envP [p �→g])

DP
ds[[ε]]envV = id

Table 6.5 Denotational semantics for recursive procedure declarations

Recursive Procedures

In the case where procedures are allowed to be recursive, we shall be interested
in a function g in Store ↪→ Store satisfying

g = Sds[[S]]envV (envP [p �→g])

since this will ensure that the meaning of all the recursive calls is the same as
that of the procedure being defined. For this we only need to change the clause
for DP

ds[[proc p is S ; DP]] of Table 6.3, and the new clause is given in Table
6.5. We shall see in Exercise 6.8 that this is a permissible definition; that is, F
of Table 6.5 is indeed continuous.

Remark Let us briefly compare the semantics above with the operational se-
mantics given in Section 3.2 for the same language. In the operational seman-
tics, the possibility of recursion is handled by updating the environment each
time the procedure is called and, except for recording the declaration, no action
takes place when the procedure is declared. In the denotational approach, the
situation is very different. The possibility of recursion is handled once and for
all, namely when the procedure is declared. �

Exercise 6.7

Consider the declaration of the factorial procedure

proc fac is begin var z := x;

if x = 1 then skip

else (x := x − 1; call fac; y := z � y)
end;

Assume that the initial environments are envV and envP and that envV x =
lx and envV y = ly. Determine the updated procedure environment.

As for While, we must ensure that the semantic clauses define a total
function Sds. We leave the details to the exercise below.

6.1 Environments and Stores 137

Exercise 6.8 (**)

To ensure that the clauses for Sds define a total function, we must show that
FIX is applied only to continuous functions. In the case of recursive procedures,
this is a rather laborious task. First, one may use structural induction to show
that DV

ds is indeed a well-defined function. Second, one may define

envP �′ env ′
P if and only if envP p � env ′

P p for all p ∈ Pname

and show that (EnvP, �′) is a ccpo. Finally, one may use Exercise 5.41 (with
D being Store ↪→ Store) to show that for all envV ∈ EnvV the clauses of
Tables 6.2, 6.4, and 6.5 do define continuous functions

Sds[[S]]envV : EnvP → (Store ↪→ Store)

and

DP
ds[[DP]]envV : EnvP → EnvP

This is performed using mutual structural induction on statements S and dec-
larations DP.

Exercise 6.9

Modify the syntax of procedures so that they take two call-by-value parameters:

DP ::= proc p(x 1,x 2) is S ; DP | ε

S ::= · · · | call p(a1,a2)

The meaning of a procedure will now depend upon the values of its parameters
as well as the store in which it is executed. We therefore change the definition
of EnvP to be

EnvP = Pname → ((Z × Z) → (Store ↪→ Store))

so that given a pair of values and a store we can determine the final store.
Modify the definition of Sds to use this procedure environment. Also provide
semantic clauses for DP

ds in the case of non-recursive as well as recursive pro-
cedures. Finally, construct statements that illustrate how the new clauses are
used.

Exercise 6.10 (*)

Modify the semantics of Proc so that dynamic scope rules are employed for
variables as well as procedures.

138 6. More on Denotational Semantics

6.2 Continuations

Another important concept from denotational semantics is that of continua-
tions. To illustrate it, we shall consider an extension of While where exceptions
can be raised and handled. The new language is called Exc and its syntax is

S ::= x := a | skip | S 1 ; S 2 | if b then S 1 else S 2

| while b do S | begin S 1 handle e: S 2 end | raise e

The meta-variable e ranges over the syntactic category Exception of excep-
tions. The statement raise e is a kind of jump instruction: when it is en-
countered, the execution of the encapsulating block is stopped and the flow of
control is given to the statement declaring the exception e. An example is the
statement

begin while true do if x≤0

then raise exit

else x := x−1
handle exit: y := 7

end

Assume that s0 is the initial state and that s0 x > 0. Then the false branch
of the conditional will be chosen and the value of x decremented. Eventually, x
gets the value 0 and the true branch of the conditional will raise the exception
exit. This will cause the execution of the while-loop to be terminated and
control will be transferred to the handler for exit. Thus the statement will
terminate in a state where x has the value 0 and y the value 7.

The meaning of an exception will be the effect of executing the remainder
of the program starting from the handler. Consider a statement of the form

(if b then S 1 else S 2) ; S 3

In the language While it is evident that independently of whether we execute
S 1 or S 2 we have to continue with S 3. When we introduce exceptions this does
not hold any longer: if one of the branches raises an exception not handled inside
that branch, then we will certainly not execute S 3. It is therefore necessary to
rewrite the semantics of While to make the “effect of executing the remainder
of the program” more explicit.

Continuation Style Semantics for While

In a continuation style semantics, the continuations describe the effect of exe-
cuting the remainder of the program. For us, a continuation c is an element of

6.2 Continuations 139

S ′
cs[[x :=a]]c s = c (s[x �→A[[a]]s])

S ′
cs[[skip]] = id

S ′
cs[[S 1 ; S 2]] = S ′

cs[[S 1]] ◦ S ′
cs[[S 2]]

S ′
cs[[if b then S 1 else S 2]]c = cond(B[[b]], S ′

cs[[S 1]]c, S ′
cs[[S 2]]c)

S ′
cs[[while b do S]] = FIX G

where (G g) c = cond(B[[b]], S ′
cs[[S]](g c), c)

Table 6.6 Continuation style semantics for While

the domain

Cont = State ↪→ State

and is thus a partial function from State to State. Sometimes one uses partial
functions from State to a “simpler” set Ans of answers, but in all cases the
purpose of a continuation is to express the “outcome” of the remainder of the
program when started in a given state.

Consider a statement of the form · · · ; S ; · · · and let us explain the meaning
of S in terms of the effect of executing the remainder of the program. The
starting point will be the continuation c determining the effect of executing
the part of the program after S ; that is, c s is the state obtained when the
remainder of the program is executed from state s. We shall then determine
the effect of executing S and the remainder of the program; that is, we shall
determine a continuation c′ such that c′ s is the state obtained when executing
S and the part of the program following S from state s. Pictorially, from

· · · ; S ; · · ·
︸ ︷︷ ︸

c
we want to obtain

· · · ; S ; · · ·
︸ ︷︷ ︸

c′

We shall define a semantic function S ′
cs for While that achieves this. It has

functionality

S ′
cs: Stm → (Cont → Cont)

and is defined in Table 6.6. The clauses for assignment and skip are straight-
forward; however, note that we now use id as the identity function on Cont;
that is, id c s = c s. In the clause for composition, the order of the functional
composition is reversed compared with the direct style semantics of Table 5.1.

140 6. More on Denotational Semantics

Intuitively, the reason is that the continuations are “pulled backwards” through
the two statements. So assuming that c is the continuation for the remainder
of the program, we shall first determine a continuation for S 2 followed by the
remainder of the program and next for S 1 followed by S 2 and the remainder
of the program.

The clause for the conditional is straightforward as the continuation applies
to both branches. In the clause for the while-construct, we use the fixed point
operator as in the direct style semantics. If the test of while b do S evaluates
to ff, then we return the continuation c for the remainder of the program. If
the test evaluates to tt, then g c denotes the effect of executing the remainder
of the loop followed by the remainder of the program and is the continuation
to be used for the first unfolding of the loop.

Example 6.11

Consider the statement z := x; x := y; y := z of Chapter 1. Let id be the
identity function on State. Then we have

S ′
cs[[¯z := x; x := y; y := z]]id

= (S ′
cs[[z := x]] ◦ S ′

cs[[x := y]] ◦ S ′
cs[[y := z]]) id

= (S ′
cs[[z := x]] ◦ S ′

cs[[x := y]]) g1

where g1 s = id(s[y�→(s z)])

= S ′
cs[[z := x]]g2

where g2 s = g1(s[x�→(s y)])

= id(s[x�→(s y)][y�→(s z)])
= g3

where g3 s = g2(s[z�→(s x)])

= id(s[z�→(s x)][x�→(s y)][y�→(s x)])

Note that the semantic function is constructed in a “backwards” manner.

As in the case of the direct style semantics, we must ensure that the semantic
clauses define a total function S ′

cs. We leave the details to the exercise below.

Exercise 6.12 (**)

To ensure that the clauses for S ′
cs define a total function, we must show that

FIX is only applied to continuous functions. First, one may define

g1 �′ g2 if and only if g1 c � g2 c for all c ∈ Cont

6.2 Continuations 141

and show that (Cont → Cont, �′) is a ccpo. Second, one may define

[Cont → Cont] = { g : Cont → Cont | g is continuous }

and show that ([Cont → Cont], �′) is a ccpo. Finally, one may use Exercise
5.41 (with D = [Cont → Cont]) to show that the clauses of Table 6.6 define
a function

S ′
cs: Stm → [Cont → Cont]

using structural induction on S .

Exercise 6.13 (*)

Prove that the two semantic functions Sds and S ′
cs satisfy

S ′
cs[[S]]c = c ◦ Sds[[S]]

for all statements S of While and for all continuations c.

Exercise 6.14

Extend the language While with the construct repeat S until b and give the
new (compositional) clause for S ′

cs.

The Semantic Function Scs for Exc

In order to keep track of the exceptions that have been introduced, we shall
use an exception environment. It will be an element, envE , of

EnvE = Exception → Cont

Given an exception environment envE and an exception e, the effect of execut-
ing the remainder of the program starting from the handler for e, will then be
envE e.

The semantic function Scs for the statements of the language Exc has
functionality

Scs: Stm → EnvE → (Cont → Cont)

The function is defined by the clauses of Table 6.7. Most of the clauses are
straightforward extensions of those given for While in Table 6.6. The mean-
ing of the block construct is to execute the body in the updated environment.
Therefore the environment is updated so that e is bound to the effect of exe-
cuting the remainder of the program starting from the handler for e and this is
the continuation obtained by executing first S 2 and then the remainder of the

142 6. More on Denotational Semantics

Scs[[x :=a]]envE c s = c (s[x �→A[[a]]s])

Scs[[skip]]envE = id

Scs[[S 1 ; S 2]]envE = (Scs[[S 1]]envE) ◦ (Scs[[S 2]]envE)

Scs[[if b then S 1 else S 2]]envE c =

cond(B[[b]], Scs[[S 1]]envE c, Scs[[S 2]]envE c)

Scs[[while b do S]]envE = FIX G

where (G g) c = cond(B[[b]], Scs[[S]]envE (g c), c)

Scs[[begin S 1 handle e: S 2 end]]envE c =

Scs[[S 1]](envE [e �→Scs[[S 2]]envE c]) c

Scs[[raise e]]envE c = envE e

Table 6.7 Continuation style semantics for Exc

program; that is, Scs[[S 2]]envE c. Finally, in the clause for raise e, we ignore
the continuation that is otherwise supplied. So rather than using c, we choose
to use envE e.

Example 6.15

Let envE be an initial environment and assume that the initial continuation is
the identity function, id. Then we have

Scs[[begin while true do if x≤0 then raise exit else x := x−1

handle exit: y := 7 end]]envE id

= (FIX G) id

where G is defined by

G g c s = cond(B[[true]],

cond(B[[x≤0]], cexit,

S cs[[x := x−1]]envE [exit �→cexit] (g c)),

c) s

=

{

cexit s if s x ≤ 0

(g c) (s[x�→(s x)−1]) if s x > 0

and the continuation cexit associated with the exception exit is given by

6.2 Continuations 143

cexit s = id (s[y�→7]) = s[y�→7]

Note that G will use the “default” continuation c or the continuation cexit

associated with the exception, as appropriate. We then get

(FIX G) id s =

{

s[y�→7] if s x ≤ 0

s[x�→0][y�→7] if s x > 0

Exercise 6.16

Show that FIX G as specified in the example above is indeed the least fixed
point; that is, construct the iterands Gn ⊥ and show that their least upper
bound is as specified.

Exercise 6.17 (**)

Extend Exercise 6.12 to show the well-definedness of the function Scs defined
by the clauses of Table 6.7.

Exercise 6.18

Suppose that there is a distinguished output variable out ∈ Var and that only
the final value of this variable is of interest. This might motivate defining

Cont = State ↪→ Z

Define the initial continuation c0 ∈ Cont. What changes to EnvE, the func-
tionality of Scs, and Table 6.7 are necessary?

7
Program Analysis

The availability of powerful tools is crucial for the design, implementation, and
maintenance of large programs. Advanced programming environments provide
many such tools: syntax-directed editors, optimizing compilers, and debuggers
— in addition to tools for transforming programs and estimating their perfor-
mance. Program analyses play a major role in many of these tools: they are able
to give useful information about the dynamic behaviour of programs without
actually running them. Below we give a few examples.

In a syntax-directed editor, we may meet warnings like “variable x is used
before it is initialised”, “the part of the program starting at line 1298 and
ending at line 1354 will never be executed”, or “there is a reference outside the
bounds of array a”. Such information is the result of various program analyses.
The first warning is the result of a definition-use analysis: at each point of a
program where the value of a variable is used, the analysis will determine those
points where the variable might have obtained its present value; if there are
none, then clearly the variable is uninitialised. The second warning might be the
result of a constant propagation analysis: at each point of a program where an
expression is evaluated, the analysis will attempt to deduce that the expression
always evaluates to a constant. So if the expression is the test of a conditional,
we might deduce that only one of the branches can ever be taken. The third
warning could be the result of an interval analysis: instead of determining a
possible constant value, we determine upper and lower bounds of the value to
which the expression may evaluate. So if the expression is an index into an
array, then a comparison with the bounds of the array will suffice for issuing
the third warning above.

146 7. Program Analysis

Traditionally, program analyses have been developed for optimizing compil-
ers. They are used at all levels in the compiler: some optimizations apply to the
source program, others to the various intermediate representations used inside
the compiler, and finally there are optimizations that exploit the architecture
of the target machine and therefore directly improve the target code. The im-
provements facilitated by these analyses, and the associated transformations,
may result in dramatic reductions of the running time. One example is the
available expressions analysis: an expression E is available at a program point
p if E has been computed previously and the values of the free variables of E

have not changed since then. Clearly we can avoid recomputing the expression
and instead use the previously computed value. This information is particularly
useful at the intermediate level in a compiler for computing actual addresses
into data structures with arrays as a typical example. Another example is live
variable analysis: given a variable x and a point p in the program, will the
value of x at p be used at a later stage? If so, then x is said to be live at p;
otherwise it is said to be dead. Such information is useful when deciding how to
use the registers of a machine: the values of dead variables need not be stored in
memory when the registers in which they reside are reused for other purposes.

Many program transformations are only valid when certain conditions are
fulfilled. As an example, it is only safe to move the computation of an expression
outside a loop if its value is not affected by the computations in the remainder
of the loop. Similarly, we may only replace an expression with a variable if
we know that the expression already has been evaluated in a context where
it gave the same result as here and where its value has been assigned to the
variable. Such information may be collected by a slight extension of an available
expression analysis: an expression E is available in x at a program point p if
E has been evaluated and assigned to x on all paths leading to p and if the
values of x and the free variables of E have not changed since then.

Properties and Property States

Program analyses give information about the dynamic behaviour of programs.
The analyses are performed statically, meaning that the programs are not run
on all possible inputs in order to find the result of the analysis. On the other
hand, the analyses are safe, meaning that the result of the analysis describes
all possible runs of the program. This effect is obtained by letting the analysis
compute with abstract properties of the “real” values rather than with the
“real” values themselves.

Let P denote the set of abstract properties. As an example, in the detec-
tion of signs analysis, P will contain the properties pos, zero, neg, and any

7. Program Analysis 147

(and others), and in a live variable analysis it will contain the properties live

and dead. Since some properties are more discriminating than others, we shall
equip P with a partial ordering �P . So, for example, in the detection of signs
analysis, we have pos �P any because it is more discriminating to know that
a number is positive than it is to know that it can have any sign. Similarly,
in the live variable analysis, we may take dead �P live because it is more
discriminating to know that the value of a variable definitely is not used in the
rest of the computation than it is to know that it might be used. (One might
rightly feel that this intuition is somewhat at odds with the viewpoint of deno-
tational semantics; nonetheless, the approach makes sense!) When specifying
an analysis, we shall always make sure that

(P, �P) is a complete lattice

as defined in Chapter 5. The lattice structure gives us a convenient method for
combining properties: if some value has one of the two properties p1 or p2, then
we can combine this to say that it has the property

⊔

P {p1, p2}, where
⊔

P is
the least upper bound operation on P. It is convenient to write p1 �P p2 for
⊔

P {p1, p2}.
Many analyses (for example, the detection of signs analysis) associate prop-

erties with the individual variables of the program, and here the function spaces
are often used to model property states: in the standard semantics, states map
variables to values, whereas in the analysis, the property states will map vari-
ables to their properties:

PState = Var → P

The property states inherit the ordering from the properties in a pointwise
manner. This is in fact a corollary of a fairly general result, which can be
expressed as follows.

Lemma 7.1

Assume that S is a non-empty set and that (D, �) is a partially ordered set.
Let �′ be the ordering on the set S → D defined by

f1 �′ f2 if and only if f1 x � f2 x for all x ∈ S

Then (S → D, �′) is a partially ordered set. Furthermore, (S → D, �′) is a
ccpo if D is, and it is a complete lattice if D is. In both cases, we have

(
⊔′

Y) x =
⊔

{f x | f ∈ Y }

so that least upper bounds are determined pointwise.

148 7. Program Analysis

Proof: It is straightforward to verify that �′ is a partial order, so we omit the
details. We shall first prove the lemma in the case where D is a complete lattice,
so let Y be a subset of S → D. Then the formula

(
⊔′

Y) x =
⊔

{f x | f ∈ Y }
defines an element

⊔′
Y of S → D because D being a complete lattice means

that
⊔

{f x | f ∈ Y } exists for all x of S. This shows that
⊔′

Y is a well-defined
element of S → D. To see that

⊔′
Y is an upper bound of Y , let f0 ∈ Y , and

we shall show that f0 �′ ⊔′
Y . This amounts to considering an arbitrary x in

S and showing

f0 x �
⊔

{f x | f ∈ Y }
and this is immediate because

⊔

is the least upper bound operation in D. To
see that

⊔′
Y is the least upper bound of Y , let f1 be an upper bound of Y ,

and we shall show that
⊔′

Y �′ f1. This amounts to showing
⊔

{f x | f ∈ Y } � f1 x

for an arbitrary x ∈ S. However, this is immediate because f1 x must be an
upper bound of {f x | f ∈ Y } and because

⊔

is the least upper bound operation
in D.

To prove the other part of the lemma, assume that D is a ccpo and that Y

is a chain in S → D. The formula

(
⊔′

Y) x =
⊔

{f x | f ∈ Y }
defines an element

⊔′
Y of S → D: each {f x | f ∈ Y } will be a chain in D

because Y is a chain, and hence each
⊔

{f x | f ∈ Y } exists because D is a
ccpo. That

⊔′
Y is the least upper bound of Y in S → D is as above.

Side-stepping the Halting Problem

It is important to realize that exact answers to many of the program analyses
we have mentioned above involve solving the Halting Problem! As an example,
consider the program fragment

(if · · · then x := 1 else (S; x := 2)); y := x

and the constant propagation analysis: does x always evaluate to the constant
1 in the assignment to y? This is the case if and only if S never terminates (or if
S ends with a run-time error). To allow for an implementable analysis, we allow
constant propagation to provide safe approximations to the exact answers: in
the example, we always deem that x does not evaluate to a constant at the
assignment to y. In this way, the possible outcomes of the analysis are

7.1 Detection of Signs Analysis: Specification 149

�
�
�
�
�
�
�
�
�
��

YES
︷ ︸︸ ︷

NO
︷ ︸︸ ︷

exact answers

��

��

��

��

��

YES!
︸ ︷︷ ︸

NO?
︸ ︷︷ ︸

analysis

Figure 7.1 Safe approximations to exact answers

– YES!: the expression E always evaluates to the constant c or

– NO?: the expression E might not always evaluate to a constant

and where the second answer is not equivalent to saying that “the expression E

does not always evaluate to a constant”. To be useful, the second answer should
not be produced too often: a useless but correct analysis is obtained by always
producing the second answer. We shall see that this is a general phenomenon:
one answer of the analysis will imply the exact answer, but the other answer
will not; this is illustrated in Figure 7.1, and we say that the analysis errs on
the safe side. To be more precise about this requires a study of the concrete
analysis and the use to which we intend to put it. We thus return to the issue
when dealing with the correctness of a given analysis.

7.1 Detection of Signs Analysis: Specification

The rules for computation with signs are well-known and the idea is now to turn
them into an analysis of programs in the While language. The specification
of the analysis falls into two parts. First we have to specify the properties
with which we compute: in this case, properties of numbers and truth values.
Next we specify the analysis itself for the three syntactic categories: arithmetic
expressions, boolean expressions, and statements.

150 7. Program Analysis

The detection of signs analysis is based on three basic properties of numbers:

– pos: the number is positive,

– zero: the number is zero, and

– neg: the number is negative.

Although a given number will have one (and only one) of these properties it
is obvious that we easily lose precision when calculating with signs: the sub-
traction of two positive numbers may give any number so the sign of the result
cannot be described by one of the three basic properties. This is a common
situation in program analysis, and the solution is to introduce extra properties
that express combinations of the basic properties. For the detection of signs
analysis, we may add the following properties:

– non-neg: the number is not negative,

– non-zero: the number is not zero,

– non-pos: the number is not positive, and

– any: the number can have any sign.

For each property, we can determine a set of numbers that are described by that
property. When formulating the analysis, it is convenient to have a property
corresponding to the empty set of numbers as well, and we therefore introduce
the property

– none: the number belongs to ∅.

Now let Sign be the set

{neg, zero, pos, non-pos, non-zero, non-neg, any, none}
We shall equip Sign with a partial ordering �S reflecting the subset ordering
on the underlying sets of numbers. The ordering is depicted by means of the
Hasse diagram of Figure 7.2. So, for example, pos �S non-zero holds because
{z ∈ Z | z > 0} ⊆ {z ∈ Z | z �= 0} and none �S neg holds because we have
∅ ⊆ {z ∈ Z | z < 0}.

Exercise 7.2 (Essential)

Show that (Sign, �S) is a complete lattice, and let
⊔

S be the associated least
upper bound operation. For each pair p1 and p2 of elements from Sign, specify
p1 �S p2. �

Clearly we can associate a “best” property with each number. To formalise
this, we define a function

7.1 Detection of Signs Analysis: Specification 151

• any

• non-pos • non-zero • non-neg

• neg • zero • pos

• none
��������
��������

��������
��������

��������
��������

��������
��������

Figure 7.2 The complete lattice of signs (Sign, �S)

absZ : Z → Sign

that will abstract a number into its sign:

absZ z =

⎧

⎨

⎩

neg if z < 0
zero if z = 0
pos if z > 0

In the detection of signs analysis, we define the set PState of property states
by

PState = Var → Sign

and we shall use the meta-variable ps to range over PState. The operation
absZ is lifted to states

abs: State → PState

by defining it in a componentwise manner: (abs s) x = absZ (s x) for all variables
x.

Corollary 7.3

Let �PS be the ordering on PState defined by

ps1 �PS ps2 if and only if ps1 x �S ps2 x for all x ∈ Var.

Then (PState, �PS) is a complete lattice. In particular, the least upper bound
⊔

PS Y of a subset Y of PState is characterized by

(
⊔

PS Y) x =
⊔

S {ps x | ps ∈ Y }

and is thus defined in a componentwise manner.

152 7. Program Analysis

• any

• tt • ff

• none

����

����

����

����

Figure 7.3 The complete lattice (TT, �T)

Proof: An immediate consequence of Lemma 7.1.

We shall write init for the least element of PState; that is, for the property
state that maps all variables to none.

In the analysis, we compute with the properties of Sign rather than the
numbers of Z. Similarly, we will have to replace the truth values T with some
set of properties: although knowledge about the signs may enable us to predict
the truth value of certain boolean expressions this need not always be the case.
We shall therefore introduce four properties corresponding to the four subsets
of the truth values:

– tt: corresponding to the set {tt},

– ff: corresponding to the set {ff},

– any: corresponding to the set {tt, ff}, and

– none: corresponding to the set ∅.

The set is equipped with an ordering �T reflecting the subset ordering on the
sets of truth values. This is depicted in Figure 7.3.

Exercise 7.4 (Essential)

Show that (TT, �T) is a complete lattice, and let
⊔

T be the associated least
upper bound operation. For each pair p1 and p2 of elements from TT, specify
p1 �T p2. �

We shall also introduce an abstraction function for truth values. It has the
functionality

absT : T → TT

and is defined by absT tt = tt and absT ff = ff.

7.1 Detection of Signs Analysis: Specification 153

DA[[n]]ps = absZ(N [[n]])

DA[[x]]ps = ps x

DA[[a1 + a2]]ps = DA[[a1]]ps +S DA[[a2]]ps

DA[[a1 � a2]]ps = DA[[a1]]ps �S DA[[a2]]ps

DA[[a1 − a2]]ps = DA[[a1]]ps −S DA[[a2]]ps

Table 7.1 Detection of signs analysis of arithmetic expressions

Analysis of Expressions

Recall that the semantics of arithmetic expressions is given by a function

A: Aexp → State → Z

In the analysis, we do not know the exact value of the variables but only their
properties, and consequently we can only compute a property of the arithmetic
expression. So the analysis will be given by a function

DA: Aexp → PState → Sign

whose defining clauses are given in Table 7.1.
In the clause for n, we use the function absZ to determine the property of

the corresponding number. For variables, we simply consult the property state.
For the composite constructs, we proceed in a compositional manner and rely
on addition, multiplication, and subtraction operations defined on Sign. For
addition, the operation +S is written in detail in Table 7.2. The multiplication
and subtraction operations �S and −S are only partly specified in that table.

The semantics of boolean expressions is given by a function

B : Bexp → State → T

As in the case of arithmetic expressions, the analysis will use property states
rather than states. The truth values will be replaced by the set TT of properties
of truth values so the analysis will be given by a function

DB : Bexp → PState → TT

whose defining clauses are given in Table 7.3.
The clauses for true and false should be straightforward. For the tests on

arithmetic expressions, we rely on operations defined on the lattice Sign and
giving results in TT; these operations are partly specified in Table 7.4. In the
case of negation and conjunction, we need similar operations defined on TT
and these are also specified in Table 7.4.

154 7. Program Analysis

+S none neg zero pos

non-

pos

non-

zero

non-

neg any

none none none none none none none none none

neg none neg neg any neg any any any

zero none pos zero pos

non-

pos

non-

zero

non-

neg any

pos none any pos pos any any pos any

non-

pos none neg

non-

pos any

non-

pos any any any

non-

zero none any

non-

zero any any any any any

non-

neg none any

non-

neg pos any any

non-

neg any

any none any any any any any any any

�S neg zero pos

neg pos zero neg

zero zero zero zero

pos neg zero pos

−S neg zero pos

neg any neg neg

zero pos zero neg

pos pos pos any

Table 7.2 Operations on Sign

DB[[true]]ps = tt

DB[[false]]ps = ff

DB[[a1 = a2]]ps = DA[[a1]]ps =S DA[[a2]]ps

DB[[a1 ≤ a2]]ps = DA[[a1]]ps ≤S DA[[a2]]ps

DB[[¬b]]ps = ¬T (DB[[b]]ps)

DB[[b1 ∧ b2]]ps = DB[[b1]]ps ∧T DB[[b2]]ps

Table 7.3 Detection of signs analysis of boolean expressions

Example 7.5

We have DB[[¬(x = 1)]]ps = ¬T (ps x =S pos), which can be represented by
the following table:

ps x none neg zero pos

non-

pos

non-

zero

non-

neg any

DB[[¬(x = 1)]]ps none tt tt any tt any any any

Thus, if x is positive, we cannot deduce anything about the outcome of the test,
whereas if x is negative, then the test will always give true. �

7.1 Detection of Signs Analysis: Specification 155

=S neg zero pos

neg any ff ff

zero ff tt ff

pos ff ff any

≤S neg zero pos

neg any tt tt

zero ff tt tt

pos ff ff any

¬T

none none

tt ff

ff tt

any any

∧T none tt ff any

none none none none none

tt none tt ff any

ff none ff ff ff

any none any ff any

Table 7.4 Operations on Sign and TT

DS[[x := a]]ps = ps[x �→ DA[[a]]ps]

DS[[skip]] = id

DS[[S1; S2]] = DS[[S2]] ◦ DS[[S1]]

DS[[if b then S1 else S2]] = condD(DB[[b]],DS[[S1]],DS[[S2]])

DS[[while b do S]] = FIX H

where H h = condD(DB[[b]], h ◦ DS[[S]], id)

Table 7.5 Detection of signs analysis of statements

Analysis of Statements

In the denotational semantics, the meaning of statements is given by a function

Sds: Stm → (State ↪→ State)

In the analysis, we perform two changes. First, we replace the states by prop-
erty states so that given information about the signs of the variables before the
statement is executed, we will obtain information about the signs of the vari-
ables after the execution has (possibly) terminated. Second, we replace partial
functions by total functions; this is a crucial change in that the whole point
of performing a program analysis is to trade precision for termination. So the
analysis will be specified by a function

DS: Stm → PState → PState

whose clauses are given in Table 7.5.
At the surface, these clauses are exactly like those of the direct style de-

notational semantics in Chapter 5. However, the auxiliary function condD is

156 7. Program Analysis

different in that it has to take into account that the outcome of the test can
be any of the four properties of TT. We shall define it by

condD(f, h1, h2)ps =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

init if f ps = none

h1 ps if f ps = tt

h2 ps if f ps = ff

(h1 ps) �PS (h2 ps) if f ps = any

Here the operation �PS is the binary least upper bound operation of PState:

ps1 �PS ps2 =
⊔

PS{ps1, ps2}

Since (PState, �PS) is a complete lattice (Corollary 7.3), this is a well-defined
operation. The idea behind the definition of condD is that if the outcome of
the test is tt or ff, then we know exactly which branch will be taken when
executing the statement. So we select the analysis of that branch to be the
result of analysing the conditional. If the outcome of the test is any, then the
execution of the conditional might result in tt as well as ff, so in the analysis
we have to combine the results of the two branches. So if one branch says that
x has the property pos and the other says that it has the property neg, then
we can only deduce that after execution of the conditional x will be either
positive or negative, and this is exactly what is achieved by using the least
upper bound operation. The case where the test gives none should only be
possible in unreachable code, so in this case we return the property state init

that does not describe any states.
In the clause for the while-loop we also use the function condD, and other-

wise the clause is as in the direct style denotational semantics. In particular, we
use the fixed point operation FIX as it corresponds to unfolding the while-loop
a number of times — once for each time the analysis traverses the loop. As in
Chapter 5, the fixed point is defined by

FIX H =
⊔

{Hn⊥ | n ≥ 0}

where the functionality of H is

H: (PState → PState) → (PState → PState)

and where PState → PState is the set of total functions from PState to
PState. In order for this to make sense, H must be a continuous function on a
ccpo with least element ⊥. We shall shortly verify that this is indeed the case.

Example 7.6

We are now in a position, where we can attempt the application of the analysis
to the factorial statement

DS[[y := 1; while ¬(x = 1) doy := y � x; x := x− 1)]]

7.1 Detection of Signs Analysis: Specification 157

We shall apply this function to the property state ps0 that maps x to pos and
all other variables (including y) to any. So we are interested in

(FIX H) (ps0[y �→ pos])

where

H h = condD(DB[[¬(x = 1)]], h ◦ hfac, id)

and

hfac = DS[[y := y � x; x := x − 1]]

Thus we have to compute the approximations H0 ⊥, H1 ⊥, H2 ⊥ · · ·. Below
we shall show that

H3 ⊥(ps0[y �→ pos])y = any.

Since H3 ⊥ � FIX H, we have

H3 ⊥(ps0[y �→ pos]) �PS (FIX H)(ps0[y �→ pos])

and thereby

H3 ⊥(ps0[y �→ pos])y �P (FIX H)(ps0[y �→ pos])y

Thus (FIX H)(ps0[y �→ pos])y = any must be the case. Thus, even though we
start with the assumption that x is positive, the analysis cannot deduce that
the factorial of x is positive. We shall remedy this shortly.

Using the definition of hfac and DB[[¬(x = 1)]] (as tabulated in Example
7.5), we get

H3 ⊥ (ps0[y �→ pos])

= H(H2 ⊥) (ps0[y �→ pos])

= (H2 ⊥) (hfac(ps0[y �→ pos]))
�PS id (ps0[y �→ pos])

= H(H1 ⊥) (ps0[x �→ any][y �→ pos])
�PS (ps0[y �→ pos])

= (H1 ⊥) (hfac (ps0[x �→ any][y �→ pos]))
�PS id (ps0[x �→ any][y �→ pos]) �PS (ps0[y �→ pos])

= H(H0 ⊥) (ps0[x �→ any][y �→ any])
�PS (ps0[x �→ any][y �→ pos])

= (H0 ⊥) (hfac (ps0[x �→ any][y �→ any]))
�PS id(ps0[x �→ any][y �→ any]) �PS (ps0[x �→ any][y �→ pos])

= init �PS (ps0[x �→ any][y �→ any])

= ps0[x �→ any][y �→ any]

158 7. Program Analysis

Thus we see that the “mistake” was made when we applied hfac to the property
state ps0[x �→ any][y �→ pos]. �

Remark A more precise analysis may be performed if we change the definition
of condD(f, h1, h2) in the case where f ps = any. To do so, we first fix a set
X ⊆ Var of variables and introduce the notion of an X-atomic property state:
ps is X-atomic if

∀x ∈ X : ps x ∈ {neg, zero,pos}

Next we introduce the notion of an X-proper property state: ps is X-proper if

∀x1, x2 ∈ X : (ps x1 = none ⇔ ps x2 = none)

Clearly, a property state need not be X-atomic nor X-proper, but all X-proper
property states can be described as the least upper bound of a set of X-atomic
property states:

ps =
⊔

PS{ps′ | ps′ �PS ps and ps′ is X-atomic}

holds for all X-proper property states ps. Throughout the remainder of this
remark, we shall restrict our attention to X-proper property states.

Returning to the definition of condD(f, h1, h2) ps, if f ps = tt, then we
know that only the true branch may be taken; if f ps = ff, then only the false
branch may be taken; and only in the case where f ps = any do we need to
take both possibilities into account. So we define the two sets filterXT (f, ps) and
filterXF (f, ps) by

filterXT (f, ps) = {ps′ | ps′ �PS ps, ps′ is X-atomic, tt �T f ps′}

and

filterXF (f, ps) = {ps′ | ps′ �PS ps, ps′ is X-atomic, ff �T f ps′}

We can now define condX
D(f, h1, h2) ps analogously to condD(f, h1, h2) ps except

that we replace (h1 ps) �PS (h2 ps) by

(h1 (
⊔

PS filterXT (f, ps))) �PS(h2 (
⊔

PS filterXF (f, ps)))

Here
⊔

PS is used to combine the set of property states into a single property
state before applying the analysis of the particular branch to it. The correctness
of this definition is due to the restriction to X-proper property states.

We note in passing that an even more precise analysis might result if the
use of

⊔

PS was postponed until after hi had been applied pointwise to the
property states in the corresponding set.

7.1 Detection of Signs Analysis: Specification 159

Example 7.7

To be able to obtain useful information from the analysis of the factorial state-
ment, we need to do two things:

– replace condD by cond
{x,y}
D as given in the previous remark, and

– rewrite the test of the factorial statement to use ¬(x ≤ 1) instead of ¬(x = 1).

With these amendments, we are interested in

DS[[y := 1; while¬(x≤1)do(y := y�x; x := x− 1)]] ps0

where ps0 x = pos and ps0 maps all other variables to any. So we are interested
in

(FIX H) (ps0[y �→ pos])

where

H h = cond
{x,y}
D (DB[[¬(x ≤ 1)]], h ◦ hfac, id)

and

hfac = DS[[y := y�x; x := x− 1]]

In the case where ps x = p ∈ {pos, any} and ps y = pos, we have

H h ps = (h ◦ hfac)(
⊔

PS filter
{x,y}
T (DB[[¬(x ≤ 1)]], ps))

�PS id(
⊔

PS filter
{x,y}
F (DB[[¬(x ≤ 1)]], ps))

= (h ◦ hfac)(ps[x �→ pos])
�PS(ps[x �→ p])

= h(ps[x �→ any]) �PS ps

We can now compute the iterands Hn ⊥ ps as follows when ps x = p ∈ {pos,
any} and ps y = pos:

H0 ⊥ ps = init

H1 ⊥ ps = H0 ⊥ (ps[x �→ any]) �PS (ps[x �→ p])
= ps

H2 ⊥ ps = H1 ⊥ (ps[x �→ any]) �PS (ps[x �→ p])
= ps[x �→ any]

H3 ⊥ ps = H2 ⊥ (ps[x �→ any]) �PS (ps[x �→ p])
= ps[x �→ any]

One can show that for all n ≥ 2

Hn ⊥ ps = ps[x �→ any]

160 7. Program Analysis

when ps x ∈ {pos, any} and ps y = pos. It then follows that

(FIX H)(ps0[y �→ pos]) = ps0[x �→ any][y �→ pos]

So the analysis tells us that if x is positive in the initial state, then y will be
positive in the final state (provided that the program terminates). �

Exercise 7.8 (Essential)

Show that if H: (PState → PState) → (PState → PState) is continuous
(or just monotone) and

Hn ⊥ = Hn+1 ⊥

for some n, then Hn+m ⊥ = H1+m ⊥ for all m > 0. Conclude that

Hn ⊥ = Hm ⊥

for m ≥ n and therefore FIX H = Hn ⊥.
Show by means of an example that Hn ⊥ ps0 = Hn+1 ⊥ ps0 for some

ps0 ∈ PState does not necessarily imply that FIX H ps0 = Hn ⊥ ps0. �

Exercise 7.9

A constant propagation analysis attempts to predict whether arithmetic and
boolean expressions always evaluate to constant values. For natural numbers,
the following properties are of interest:

– any: it can be any number,

– z: it is definitely the number z ∈ Z and

– none: the number belongs to ∅

Let now Const = Z ∪ {any,none} and let �C be the ordering defined by

– none �C p for all p ∈ Const, and

– p �C any for all p ∈ Const

All other elements are incomparable. Draw the Hasse diagram for (Const, �C).
Let PState = Var → Const be the set of property states and let TT be

the properties of the truth values. Specify the constant propagation analysis
by defining the functionals

CA: Aexp → PState → Const

CB: Bexp → PState → TT

CS: Stm → PState → PState

7.2 Detection of Signs Analysis: Existence 161

Be careful to specify the auxiliary operations in detail. Give a couple of exam-
ples illustrating the power of the analysis. �

7.2 Detection of Signs Analysis: Existence

Having specified the detection of signs analysis, we shall now show that it is
indeed well-defined. We proceed in three stages:

– First we introduce a partial order on PState → PState such that it becomes
a ccpo.

– Then we show that certain auxiliary functions used in the definition of DS
are continuous.

– Finally we show that the fixed point operator is applied only to continuous
functions.

The ccpo

Our first task is to define a partial order on PState → PState, and for this
we use the approach developed in Lemma 7.1. Instantiating the non-empty set
S to the set PState and the partially ordered set (D, �) to (PState, �DS),
we get the following corollary.

Corollary 7.10

Let � be the ordering on PState → PState defined by

h1 � h2 if and only if h1 ps �PS h2 ps for all ps ∈ PState.

Then (PState → PState, �) is a complete lattice, and hence a ccpo, and the
formula for least upper bounds is

(
⊔

Y) ps =
⊔

PS {h ps | h ∈ Y }

for all subsets Y of PState → PState.

Auxiliary Functions

Our second task is to ensure that the function H used in Table 7.5 is a continu-
ous function from PState → PState to PState → PState. For this, we follow

162 7. Program Analysis

the approach of Section 5.3 and show that condD is continuous in its second
argument and later that composition is continuous in its first argument.

Lemma 7.11

Let f : PState → TT, h0: PState → PState and define

H h = condD(f , h, h0)

Then H: (PState → PState) → (PState → PState) is a continuous function.

Proof: We shall first prove that H is monotone, so let h1 and h2 be such that
h1 � h2; that is, h1 ps �PS h2 ps for all property states ps. We then have
to show that condD(f , h1, h0) ps �PS condD(f , h2, h0) ps for all property
states ps. The proof is by cases on the value of f ps. If f ps = none, then the
result trivially holds. If f ps = tt, then the result follows from the assumption

h1 ps �PS h2 ps

If f ps = ff, then the result trivially holds. If f ps = any, then the result
follows from

(h1 ps �PS h0 ps) �PS (h2 ps �PS h0 ps)

which again follows from the assumption h1 ps �PS h2 ps.
To see that H is continuous, let Y be a non-empty chain in PState →

PState. Using the characterization of least upper bounds in PState given in
Corollary 7.10, we see that we must show that

(H(
⊔

Y)) ps =
⊔

PS {(H h)ps | h ∈ Y }

for all property states ps in PState. The proof is by cases on the value of f ps.
If f ps = none, then we have (H (

⊔

Y)) ps = init and
⊔

PS {(H h)ps | h ∈ Y } =
⊔

PS {init | h ∈ Y }

= init

Thus we have proved the required result in this case. If f ps = tt, then we
have

(H(
⊔

Y))ps = (
⊔

Y)ps

= (
⊔

PS{h ps | h ∈ Y })
using the characterization of least upper bounds and furthermore

⊔

PS{(H h)ps | h ∈ Y } =
⊔

PS{h ps | h ∈ Y }

and the result follows. If f ps = ff, then we have

7.2 Detection of Signs Analysis: Existence 163

(H(
⊔

Y))ps = h0 ps

and
⊔

PS{(H h)ps | h ∈ Y } =
⊔

PS{h0 ps | h ∈ Y }

= h0 ps

where the last equality follows because Y is non-empty. If f ps = any, then
the characterization of least upper bounds in PState gives

(H(
⊔

Y))ps = ((
⊔

Y)ps) �PS (h0 ps)

= (
⊔

PS{h ps | h ∈ Y }) �PS (h0 ps)

=
⊔

PS{h ps | h ∈ Y ∪ {h0}}
and

⊔

PS{(H h)ps | h ∈ Y } =
⊔

PS{(h ps) �PS (h0 ps) | h ∈ Y }

=
⊔

PS{h ps | h ∈ Y ∪ {h0}}
where the last equality follows because Y is non-empty. Thus we have estab-
lished that H is continuous.

Exercise 7.12

Let f : PState → TT, h0: PState → PState, and define

H h = condD(f , h0, h)

Show that H: (PState → PState) → (PState → PState) is a continuous
function. �

Lemma 7.13

Let h0: PState → PState and define

H h = h ◦ h0

Then H: (PState → PState) → (PState → PState) is a continuous function.

Proof: We shall first show that H is monotone, so let h1 and h2 be such that
h1 � h2; that is, h1 ps �PS h2 ps for all property states ps. Clearly we then
have h1(h0 ps) �PS h2(h0 ps) for all property states ps and thereby we have
proved the monotonicity of H.

To prove the continuity of H, let Y be a non-empty chain in PState →
PState. We must show that

164 7. Program Analysis

(H(
⊔

Y))ps = (
⊔

{H h | h ∈ Y })ps

for all property states ps. Using the characterization of least upper bounds
given in Corollary 7.10, we get

(H(
⊔

Y))ps = ((
⊔

Y) ◦ h0)ps

= (
⊔

Y)(h0 ps)

=
⊔

PS{h(h0 ps) | h ∈ Y }
and

(
⊔

{H h | h ∈ Y })ps =
⊔

PS{(H h)ps | h ∈ Y }

=
⊔

PS{(h ◦ h0)ps | h ∈ Y }
Hence the result follows.

Exercise 7.14

Show that there exists h0: PState → PState such that H defined by H h =
h0 ◦ h is not even a monotone function from PState → PState to PState
→ PState. �

Remark The example of the exercise above indicates a major departure from
the secure world of Chapter 5. Luckily an insurance policy can be arranged.
The premium is to replace all occurrences of

PState → PState, PState → Sign, and PState → TT

by

[PState → PState], [PState → Sign], and [PState → TT]

where [D → E] = {f : D → E | f is continuous}. One can then show that
[D → E] is a ccpo if D and E are and that the characterization of least upper
bounds given in Lemma 7.1 still holds. Furthermore, the entire development in
this section still carries through although there are additional proof obligations
to be carried out. In this setting, one gets that if h0: [PState → PState],
then H defined by H h = h0 ◦ h is a continuous function from [PState →
PState] to [PState → PState].

Well-definedness

First we note that the equations of Tables 7.1 and 7.3 define total functions
DA and DB in Aexp → PState → Sign and Bexp → PState → TT,
respectively. For the well-definedness of DS, we have the following proposition.

7.2 Detection of Signs Analysis: Existence 165

Proposition 7.15

The function DS: Stm → PState → PState of Table 7.5 is a well-defined
function.

Proof: We prove by structural induction on S that DS[[S]] is well-defined and
only the case of the while-loop is interesting. We note that the function H

used in Table 7.5 is given by

H = H1 ◦ H2

where

H1 h = condD(DB[[b]], h, id)

and

H2 h = h ◦ DS[[S]]

Since H1 and H2 are continuous functions by Lemmas 7.11 and 7.13, we have
that H is a continuous function by Lemma 5.35. Hence FIX H is well-defined
and this completes the proof.

To summarize, the well-definedness of DS relies on the following results
established above:

Proof Summary for While:

Well-definedness of Program Analysis

1: The set PState → PState equipped with an appropriate ordering �
is a ccpo (Corollary 7.10).

2: Certain functions Ψ : (PState → PState) → (PState → PState)
are continuous (Lemmas 7.11 and 7.13).

3: In the definition of DS, we only apply the fixed point operation to
continuous functions (Proposition 7.15).

Exercise 7.16

Extend While with the statement repeat S until b and give the new (com-
positional) clause for DS. Validate the well-definedness of the extended version
of DS. �

166 7. Program Analysis

Exercise 7.17

Show that the constant propagation analysis specified in Exercise 7.9 is indeed
well-defined. �

7.3 Safety of the Analysis

In this section, we shall show that the analysis functions DA, DB, and DS are
safe with respect to the semantic functions A, B, and Sds. We begin with the
rather simple case of expressions.

Expressions

Let g: State → Z be a function, perhaps of the form A[[a]] for some arithmetic
expression a ∈ Aexp, and let h: PState → Sign be another function, perhaps
of the form DA[[a]] for some arithmetic expression a ∈ Aexp. We shall introduce
a relation

g safeA h

for expressing when the analysis h is safe with respect to the semantics g. It is
defined by

abs(s) �PS ps implies absZ(g s) �S h ps

for all states s and property states ps. Thus the predicate says that if ps de-
scribes the sign of the variables of s, then the sign of g s will be described by
h ps.

Exercise 7.18 (Essential)

Prove that for all a ∈ Aexp we have A[[a]] safeADA[[a]]. �

To express the safety of the analysis of boolean expressions, we shall intro-
duce a relation

g safeB h

for expressing when the analysis h: PState → TT is safe with respect to the
semantics g: State → T. It is defined by

abs(s) �PS ps implies absT (g s) �T h ps

7.3 Safety of the Analysis 167

for all states s and property states ps. We have the following exercise.

Exercise 7.19 (Essential)

Prove that for all b ∈ Bexp we have B[[b]] safeB DB[[b]]. �

Statements

The safety of the analysis of statements will express that if the signs of the
initial state are described by some property state, then the signs of the final
state (if ever reached) will be described by the property state obtained by
applying the analysis to the initial property state. We shall formalize this by
defining a relation

g safeS h

between a function g: State ↪→ State, perhaps of the form Sds[[S]] for some
S ∈ Stm, and another function h: PState → PState, perhaps of the form
DS[[S]] for some S ∈ Stm. The formal definition amounts to

abs(s) �PS ps and g s �= undef imply abs(g s) �PS h ps

for all states s ∈ State and all property states ps ∈ PState.
We may then formulate the desired relationship between the semantics and

the analysis as follows.

Theorem 7.20

For all statements S of While: Sds[[S]] safeS DS[[S]].

Before conducting the proof, we need to establish some properties of the
auxiliary operations composition and conditional.

Lemma 7.21

Let g1, g2: State ↪→ State and h1, h2: PState → PState. Then

g1 safeS h1 and g2 safeS h2 imply g2 ◦ g1 safeS h2 ◦ h1

Proof: Let s and ps be such that

abs(s) �PS ps and (g2 ◦ g1)s �= undef

168 7. Program Analysis

Then g1 s �= undef must be the case and from the assumption g1 safeS h1 we
then get

abs(g1 s) �PS h1 ps

Since g2 (g1 s) �= undef, we use the assumption g2 safeS h2 to get

abs(g2 (g1 s)) �PS h2(h1 ps)

and we have completed the proof.

Lemma 7.22

Assume that g1, g2: State ↪→ State and g: State → T, and that h1, h2:
PState → PState and f : PState → TT. Then

g safeB f , g1 safeS h1 and g2 safeS h2 imply

cond(g, g1, g2) safeS condD(f , h1, h2)

Proof: Let s and ps be such that

abs(s) �PS ps and cond(g, g1, g2) s �= undef

We shall now proceed by a case analysis on g s. First assume that g s = tt. It
must be the case that g1 s �= undef, so from g1 safeS h1 we get

abs(g1 s) �PS h1 ps

From g safeB f , we get that

absT (g s) �T f ps

and thereby tt �T f ps. Since h1 ps �PS h1 ps�PS h2 ps, we get the required
result both when f ps = tt and when f ps = any. The case where g s = ff is
similar.

We now have the apparatus needed to show the safety of DS.

Proof of Theorem 7.20: We shall show that Sds[[S]] safeS DS[[S]], and we proceed
by structural induction on the statement S.

The case x := a: Let s and ps be such that

abs(s) �PS ps and Sds[[x := a]]s �= undef

We have to show that

abs(Sds[[x := a]]s) �PS DS[[x := a]]ps

that is,

7.3 Safety of the Analysis 169

absZ((Sds[[x := a]]s)y) �S (DS[[x := a]]ps)y

for all y ∈ Var. If y �= x, then it is immediate from the assumption abs(s) �PS

ps. If y = x, then we use that Exercise 7.18 gives

abs(A[[a]]s) �S DA[[a]]ps

Hence we have the required relationship.
The case skip: Straightforward.
The case S1;S2: The induction hypothesis applied to S1 and S2 gives

Sds[[S1]] safeS DS[[S1]]

and

Sds[[S2]] safeS DS[[S2]]

The desired result

Sds[[S2]] ◦ Sds[[S1]] safeS DS[[S2]] ◦ DS[[S1]]

follows directly from Lemma 7.21.
The case if b then S1 else S2: From Exercise 7.19, we have

B[[b]] safeB DB[[b]]

and the induction hypothesis applied to S1 and S2 gives

Sds[[S1]] safeS DS[[S1]]

and

Sds[[S2]] safeS DS[[S2]]

The desired result

cond(B[[b]],Sds[[S1]],Sds[[S2]]) safeS condD(DB[[b]],DS[[S1]],DS[[S2]])

then follows directly from Lemma 7.22.
The case while b do S: We must prove that

FIX(G) safeS FIX(H)

where

G g = cond(B[[b]], g ◦ Sds[[S]], id)

and

H h = condD(DB[[b]], h ◦ DS[[S]], id)

To do this, we recall from Chapter 5 the definition of the least fixed points:

FIX G =
⊔

{Gn g0 | n ≥ 0} where g0 s = undef for all s

170 7. Program Analysis

and

FIX H =
⊔

{Hn h0 | n ≥ 0} where h0 ps = init for all ps

The proof proceeds in two stages. We begin by proving that

Gn g0 safeS FIX H for all n (*)

and then continue by proving that

FIX G safeS FIX H (**)

We prove (*) by induction on n. For the base case, we observe that

g0 safeS FIX H

holds trivially since g0 s = undef for all states s. For the induction step, we
assume that

Gn g0 safeS FIX H

and we shall prove the result for n + 1. We have

B[[b]] safeB DB[[b]]

from Exercise 7.19 and

Sds[[S]] safeS DS[[S]]

from the induction hypothesis applied to the body of the while-loop, and it is
clear that

id safeS id

We then obtain

cond(B[[b]], (Gn g0) ◦ Sds[[S]], id) safeS condD(DB[[b]], (FIX H) ◦ DS[[S]], id)

from Lemmas 7.21 and 7.22, and this is indeed the desired result since the
right-hand side amounts to H (FIX H), which equals FIX H.

Finally, we must show (**). This amounts to showing

(
⊔

Y) safeS FIX H

where Y = {Gng0 | n ≥ 0}. So assume that

abs(s) �PS ps and (
⊔

Y) s �= undef

By Lemma 5.25, we have

graph(
⊔

Y) =
⋃

{ graph g | g ∈ Y }

and (
⊔

Y) s �= undef therefore shows the existence of an element g in Y such
that g s �= undef and (

⊔

Y)s = g s. Since g safeS FIX H holds for all g ∈ Y ,
by (*) we get that

7.4 Program Transformation 171

abs(g s) �PS (FIX H) ps

and therefore abs((
⊔

Y)s) �PS (FIX H) ps as required. �
The proof of safety of the analysis can be summarized as follows:

Proof Summary for While:

Safety of Program Analysis

1: Define a relation safeS expressing the relationship between the func-
tions of State ↪→ State and PState → PState.

2: Show that the relation is preserved by certain pairs of auxiliary func-
tions used in the denotational semantics and the static analysis (Lem-
mas 7.21 and 7.22).

3: Use structural induction on the statements S to show that the relation
holds between the semantics and the analysis of S .

Exercise 7.23

Extend the proof of Theorem 7.20 to incorporate the safety of the analysis
developed for repeat S until b in Exercise 7.16. �

Exercise 7.24

Prove that the constant propagation analysis specified in Exercise 7.9 is safe.
That is, show that

A[[a]] safeA CA[[a]]

B[[b]] safeB CB[[b]]

Sds[[a]] safeS CS[[S]]

for appropriately defined predicates safeA, safeB , and safeS . �

7.4 Program Transformation

The detection of signs analysis can be used to predict the values of tests in
conditionals and loops and thereby may be used to facilitate certain program
transformations. An example program transformation is

172 7. Program Analysis

Replace if b then S1 else S2

by S1

when DB[[b]] top = tt

where we have written top for the property state that maps all variables to
any. The condition DB[[b]] top = tt will only be satisfied when B[[b]]s =
tt for all states s, so the transformation can be used rather seldom. Other
transformations take the context into account, and we may use the property
states to describe the contexts. So we may extend the format above to:

In context ps

replace if b then S1 else S2

by S1

when DB[[b]]ps = tt

We shall formalise these transformations as a transition system. The tran-
sitions have the form

ps � S � S′

meaning that in the context described by ps the statement S can be replaced
by S′. So the transformation above can be formulated as

ps �if b then S1 else S2 � S1, if DB[[b]]ps = tt

where the side condition expresses when the transformation is applicable. The
dual transformation is

ps �if b then S1 else S2 � S2, if DB[[b]]ps = ff

We might also want to transform inside composite statements such as S1;S2.
This is expressed by the rule

ps � S1 � S′
1, (DS[[S1]]ps) � S2 � S′

2

ps � S1;S2 � S′
1;S

′
2

Combined with the trivial transformation

ps � S � S

this opens up for the possibility of only transforming parts of the statement.
In general, a transformation ps �S � S′ is (weakly) valid if

abs(s) �PS ps and Sds[[S]]s �= undef imply Sds[[S]]s = Sds[[S′]]s

for all states s. This is a weak notion of validity because a transformation such
as

top � while true do skip � skip

7.4 Program Transformation 173

is valid even though it allows us to replace a looping statement with one that
always terminates.

Lemma 7.25

The transformation

ps �if b then S1 else S2 � S1

is valid provided that DB[[b]]ps = tt.

Proof

Assume that

abs(s) �PS ps and Sds[[if b then S1 else S2]]s �= undef.

From DB[[b]]ps = tt, abs(s) �PS ps, and Exercise 7.19, we get that

absT (B[[b]]s) �T tt

and thereby B[[b]]s = tt since B[[b]] is a total function. From the definition of
Sds in Chapter 5, we get

Sds[[if b then S1 else S2]]s = Sds[[S1]]s

and this is the required result.

Exercise 7.26

Prove that the transformation rule for S1;S2 is valid. �

Exercise 7.27

Prove that the transformation rule

ps � S1 � S′
1, (DS[[S′

1]]ps) � S2 � S′
2

ps �S1;S2 � S′
1;S

′
2

is valid. Note that it differs from the rule given earlier in the second premise,
where the transformed statement is analysed rather than the original. �

Exercise 7.28

Suggest a transformation for assignment and prove it is valid. �

174 7. Program Analysis

Exercise 7.29

Suggest a transformation rule that allows transformations inside the branches
of a conditional and prove that it is valid. �

Exercise 7.30 (**)

Try to develop a transformation rule that allows transformations inside the
body of a while-loop. �

8
More on Program Analysis

Program analyses are often classified in two respects:

– what kind of properties do they compute with, and

– how do they compute with them.

Basically, there are two kinds of properties:

– properties of values and

– properties of relationships between values.

The first class of analyses is often called first-order analyses, as they com-
pute with direct properties of the values. The second class of analyses is called
second-order analyses, as they compute with properties derived from relation-
ships between values.

The detection of signs analysis of Chapter 7 is a first-order analysis. The
properties of interest are the signs of values, so rather than computing with
numbers, we compute with the sign properties pos, zero, neg, etc. Constant
propagation and interval analysis are also first-order analyses.

A live variables analysis (see Chapter 7) is a second-order analysis. Here
the properties associated with the variables are live and dead, and obviously
this does not say much about the “real” value of the variables. However, it
expresses a property of the relationship between “real” values: if the property
is dead, then the variable could have any value whatsoever — the result of
the computation would be the same since the value will never be used. On
the other hand, if the property is live, then the “real” value of the variable

176 8. More on Program Analysis

might influence the final outcome of the computation. Detection of common
subexpressions, available subexpression analysis, and the security analysis of
Section 8.2 are other second-order analyses.

The other classification is concerned with how the analyses compute with
the properties. Again there are basically two approaches (although mixtures
exist):

– forward analyses and

– backward analyses.

In a forward analysis, the computation proceeds much as in the direct style
denotational semantics: given the properties of the input, the analysis will
compute properties of the output. Clearly the detection of signs analysis of
Chapter 7 proceeds in this way.

As the name suggests, a backward analysis performs the computation the
other way around: given properties of the output of the computation, it will
predict the properties that the input should have. Here live variable analysis
is a classical example: the output certainly should have the property live, and
the idea is then to calculate backward to see which parts of the input (and
which parts of the intermediate results) really are needed in order to compute
the output.

The two classifications can be freely mixed so, for example, the detection of
signs analysis is a forward first-order analysis and live variables analysis is a
backward second-order analysis. An example of a backward first-order analysis
is an error detection analysis: we might want to ensure that the program does
not result in an error (say, from an attempt to divide by zero), and the analysis
could then provide information about inputs that definitely would prevent this
from happening. This kind of information will be crucial for the design of safety-
critical systems. An example of a forward second-order analysis is the security
analysis to be developed in Section 8.2. Properties low and high indicate
whether data should be regarded as public (i.e., having low confidentiality) or
private (i.e., having high confidentiality). The aim of the analysis is to ensure
that the computation of public data does not (either directly or indirectly)
depend on private data; if this were to be the case, the program would exhibit
a “covert channel” and should be considered insecure. This kind of information
will be crucial for the design of secure systems.

8.1 Data Flow Frameworks 177

8.1 Data Flow Frameworks

Many forward program analyses can be seen as a slight variation of the detec-
tion of signs analysis: the properties and the way we compute with them may
be different but the overall approach will be the same. In this section, we shall
extract the overall approach and present it as a general framework where only
a few parameters need to be specified in order to obtain the desired analysis.
Similar remarks apply to backward analyses.

In general, the specification of a program analysis falls into two parts. First
we introduce the properties with which the analysis computes, and next we
specify the actual analysis for the three syntactic categories of While.

Properties and Property States

The basic properties are those of the numbers and the truth values. So the first
step in specifying an analysis will be to define

– P1: a complete lattice of properties of Z: (PZ , �Z)

– P2: a complete lattice of properties of T: (PT , �T)

Example 8.1

In the case of the detection of signs analysis, we have PZ = Sign and PT =
TT.

The property states will then be defined as

PState = Var → PZ

independently of the choice of PZ . The property states inherit the ordering
of PZ as indicated in Lemma 7.1 and will thus form a complete lattice. In
particular, PState will have a least element, which we call init.

Forward Analysis

In a forward analysis, the computation proceeds much as in the direct style
denotational semantics: given properties of the input, the analysis will compute
properties of the output. Thus the idea will be to replace the semantic functions

178 8. More on Program Analysis

FA[[n]]ps = FZ[[n]]ps

FA[[x]]ps = ps x

FA[[a1 + a2]]ps = addF (FA[[a1]]ps,FA[[a2]]ps)

FA[[a1 � a2]]ps = multF (FA[[a1]]ps,FA[[a2]]ps)

FA[[a1 − a2]]ps = subF (FA[[a1]]ps,FA[[a2]]ps)

FB[[true]]ps = FT [[true]]ps

FB[[false]]ps = FT [[false]]ps

FB[[a1 = a2]]ps = eqF (FA[[a1]]ps,FA[[a2]]ps)

FB[[a1 ≤ a2]]ps = leqF (FA[[a1]]ps,FA[[a2]]ps)

FB[[¬b]]ps = negF (FB[[b]]ps)

FB[[b1 ∧ b2]]ps = andF (FB[[b1]]ps,FB[[b2]]ps)

Table 8.1 Forward analysis of expressions

A : Aexp → State → Z

B : Bexp → State → T

Sds : Stm → State ↪→ State

with semantic functions that compute with properties rather than values:

FA : Aexp → PState → PZ

FB : Bexp → PState → PT

FS : Stm → PState → PState

The semantic functions FA and FB are defined in Table 8.1. Whenever the di-
rect style semantics performs computations involving numbers or truth values,
the analysis has to do something analogous depending on the actual choice of
properties. We shall therefore assume that we have functions

– F1: addF : PZ × PZ → PZ

– F2: multF : PZ × PZ → PZ

– F3: subF : PZ × PZ → PZ

– F4: eqF : PZ × PZ → PT

– F5: leqF : PZ × PZ → PT

– F6: negF : PT → PT

8.1 Data Flow Frameworks 179

– F7: andF : PT × PT → PT

describing how the analysis proceeds for the operators of arithmetic and
boolean operators. Furthermore, we need a way of turning numbers and truth
values into properties:

– F8: FZ: Num → PState → PZ

– F9: FT : {true, false} → PState → PT

Example 8.2

For the detection of signs analysis we have

addF (p1, p2) = p1 +S p2

multF (p1, p2) = p1 �S p2

subF (p1, p2) = p1 −S p2

eqF (p1, p2) = p1 =S p2

leqF (p1, p2) = p1 ≤S p2

negF p = ¬T p

andF (p1, p2) = p1 ∧T p2

where +S , �S , −S , −S , =S , ≤S , ¬T , and ∧T are defined in Tables 7.2 and 7.4.
Furthermore, we have

FZ[[n]] ps = absZ(N [[n]])

FT [[true]] ps = tt

and FT [[false]] ps = ff

so the property states are ignored when determining the properties of numbers
and truth values.

The forward analysis of a statement will be defined by a function FS of
functionality:

FS: Stm → PState → PState

The idea is that if ps is a property of the initial state of S, then FS[[S]] ps

is a property of the final state obtained by executing S from the initial state.
The totality of FS[[S]] reflects that we shall be able to analyse all statements
of While, including statements that loop in the direct style semantics. The
definition of FS is given by the clauses of Table 8.2, and they are parameterised
on the definition of condF :

180 8. More on Program Analysis

FS[[x := a]]ps = ps[x �→ FA[[a]]ps]

FS[[skip]] = id

FS[[S1;S2]] = FS[[S2]] ◦ FS[[S1]]

FS[[if b then S1 else S2]] = = condF (FB[[b]],FS[[S1]],FS[[S2]])

FS[[while b do S]] = FIX H

where H h = condF (FB[[b]], h ◦ FS[[S]], id)

Table 8.2 Forward analysis of statements

– F10: condF : ((PState → PT) × (PState → PState) × (PState →
PState)) → (PState → PState)

specifying how to analyse the conditional.

Example 8.3

For the detection of signs analysis, we have

condF (f, h1, h2)ps =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

init if f ps = none

h1 ps if f ps = tt

h2 ps if f ps = ff

(h1 ps) �PS (h2 ps) if f ps = any

In summary, to specify a forward program analysis of While, we only have
to provide definitions of the lattices of P1 and P2 and to define the functions
of F1 – F10.

Backward Analysis

In a backward analysis, the computation is performed in the opposite direction
of the direct style semantics: given properties of the output of the computation,
the analysis will predict the properties the input should have. Thus the idea
will be to replace the semantics functions

A: Aexp → State → Z

B: Bexp → State → T

Sds: Stm → State ↪→ State

8.1 Data Flow Frameworks 181

BA[[n]]p = BZ[[n]]p

BA[[x]]p = init[x �→ p]

BA[[a1 + a2]]p = join(BA[[a1]],BA[[a2]])(addBp)

BA[[a1 � a2]]p = join(BA[[a1]],BA[[a2]])(multBp)

BA[[a1 − a2]]p = join(BA[[a1]],BA[[a2]])(subBp)

BB[[true]]p = BT [[true]]p

BB[[false]]p = BT [[false]]p

BB[[a1 = a2]]p = join(BA[[a1]],BA[[a2]])(eqBp)

BB[[a1 ≤ a2]]p = join(BA[[a1]],BA[[a2]])(leqBp)

BB[[¬b]]p = BB[[b]](negBp)

BB[[b1 ∧ b2]]p = join(BB[[b1]],BB[[b2]])(andBp)

Table 8.3 Backward analysis of expressions

with semantic functions that not only compute with properties rather than
values but also invert the function arrows:

BA: Aexp → PZ → PState

BB: Bexp → PT → PState

BS: Stm → PState → PState

For an arithmetic expression a, the idea is that given a property p of the
result of computing a, BA[[a]]p will be a property state telling which properties
the variables of a should have in order for the result of computing a to have
property p. So, for the result of evaluating a variable x to have property p, we
simply assume that the variable has that property and we have no assumptions
about the other variables. As another example, consider the analysis of the
expression a1 + a2 and assume that the result of evaluating it should be p; we
will then determine which properties the variables of a1 + a2 should have in
order for this to be the case. The first step of the analysis will be to determine
which properties the result of evaluating the subexpressions a1 and a2 should
have in order for the result of a1 + a2 to be p. Let them be p1 and p2. We can
now analyse the subexpressions: the analysis of ai from pi will find out which
properties the variables of ai should have initially in order for the result of ai

to have property pi. The last step will be to combine the information from the
two subexpressions, and this will often be a least upper bound operation. Thus
the analysis can be specified as

182 8. More on Program Analysis

BA[[a1 + a2]]p = join(BA[[a1]],BA[[a2]])(addBp)

where

join(h1, h2)(p1, p2) = (h1 p2) �PS (h2 p2)

and �PS is the least upper bound on property states.
Similar remarks hold for the backward analysis of booleans expressions. The

clauses are given in Table 8.3, and as was the case for the forward analysis, they
are parameterised on the auxiliary functions specifying how the arithmetic and
boolean operators should be analysed:

– B1: addB : PZ → PZ × PZ

– B2: multB : PZ → PZ × PZ

– B3: subB : PZ → PZ × PZ

– B4: eqB : PT → PZ × PZ

– B5: leqB : PT → PZ × PZ

– B6: negB : PT → PT

– B7: andB : PT → PT × PT

We need a way of turning numbers and truth values into property states.
Given a number n and a property p, the analysis BA has to determine a prop-
erty state that will ensure that the result of evaluating n will have property
p. However, it might be the case that n cannot have the property p at all and
in this case the property state returned by BA[[n]]p should differ from that re-
turned if n can have the property p. Therefore we shall assume that we have
functions

– B8: BZ: Num → PZ → PState

– B9: BT : {true, false} → PT → PState

that take the actual property into account when turning numbers and truth
values into property states.

Turning to statements, we shall specify their analysis by a function BS of
functionality:

BS: Stm → PState → PState

Again the totality of BS[[S]] reflects that we shall be able to analyse all state-
ments, including those that loop in the direct style semantics. Since BS is a
backward analysis, the argument ps of BS[[S]] will be a property state corre-
sponding to the result of executing S, and BS[[S]] ps will be the property state
corresponding to the initial state from which S is executed. The definition of
BS is given in Table 8.4. We shall assume that we have functions

8.2 Security Analysis 183

BS[[x := a]]ps = updateB(ps, x,BA[[a]])

BS[[skip]] = id

BS[[S1;S2]] = BS[[S1]] ◦ BS[[S2]]

BS[[if b then S1 else S2]] = condB(BB[[b]],BS[[S1]],BS[[S2]])

BS[[while b do S]] = FIX H

where Hh = condB(BB[[b]],BS[[S]] ◦ h, id)

Table 8.4 Backward analysis of statements

– B10: updateB : PState × Var × (PZ → PState) → PState

– B11: condB : ((PT → PState) × (PState → PState) × (PState →
PState)) → (PState → PState)

specifying how to analyse the assignment and the conditional.

Exercise 8.4 (**)

Extend While with division and develop a specification of an error detection
analysis. How would you prove it correct?

8.2 Security Analysis

We now present a forward second-order analysis. As already mentioned, this
takes the form of a security analysis using properties low and high. The
intention is that low describes public data that may be visible to everybody,
whereas high describes private data that may be visible only to the owner of
the program. For a computation

Sds[[S]] s1 = s2

we will classify the initial values (in s1) of program variables as public (low) or
private (high), and the security analysis should compute a similar classification
of the final values (in s2) of program variables. Intuitively, correctness of the
analysis boils down to ensuring that:

– whenever private data (high) are used for computing the new value to be
assigned to a variable, then the variable must be classified as private (high),
and

184 8. More on Program Analysis

– whenever a boolean expression in an if-construct or a while-loop involves
private data (high), then all variables assigned in the body must be classified
as private (high).

The first condition takes care of direct flows and is fairly obvious; the second
condition takes care of indirect flows and is sometimes forgotten. Failure to
deal correctly with the observations one may make upon private data gives rise
to a “covert channel”, and the resulting program should be considered insecure.

Example 8.5

Consider a user of a Microsoft Windows operating system. Occasionally pro-
grams crash and error reports are produced to be sent back to some external
company. Typically a user is asked whether or not he or she will accept that
the report be sent; to convince the user to accept, there often is a statement
saying that no private data have been included in the public error report. For
the user to trust this information, the program constructing the error report
must be validated using a security analysis like the one developed here. �

Example 8.6

As a very simple example, in the factorial program

y := 1; while ¬(x = 1) do (y := y � x; x := x − 1)

we shall classify the initial value of y as private (high) and the initial value
of x as public (low). We may then ask whether the final value of y may be
classified as public (low). This is clearly the case for the program above but
is not the case for all programs. An example is

while ¬(x = 1) do (y := y � x; x := x − 1)

where we still assume that the initial value of y is private (high) and the
initial value of x is public (low). Since the initial value of y is not overwritten
as before, the final value of y also will depend on the initial value of y. Hence,
the final value of y must be classified as private (high). �

The specification of the analysis falls into two parts. First we introduce
the properties on which the analysis operates, and next we specify the actual
analysis for the three syntactic categories.

8.2 Security Analysis 185

Properties and Property States

For the security analysis, we shall be interested in two properties of the rela-
tionship between values (numbers or truth values):

– low, meaning that the values may be classified as public, and

– high, meaning that the values must be classified as private.

We shall write

P = {low, high}

for this set of properties, and we use p as a meta-variable ranging over P. It
is less restrictive to know that an expression has the property low than high.
As a record of this, we define a partial order �P on P:

low �P high, low �P low, high �P high

which may be depicted as

• low

• high

Thus the less restrictive property is at the bottom of the ordering.

Fact 8.7

(P, �P) is a complete lattice. If Y is a subset of P, then
⊔

P Y = high if and only if high ∈ Y

Following the approach of the previous analysis, we introduce a property
state mapping variables to properties. As we shall see, this takes care of direct
flows, and in order to take care of indirect flows also we introduce a special token
history that captures the “flow of control”; it acts like an “extended program
counter”. The set PState of property states over which the meta-variable ps

ranges, is then defined by

PState = (Var ∪ {history}) → P

The idea is that if history is mapped to high, then we may be in the body of a
private (high) boolean expression; if it is mapped to low, this is guaranteed
not to be the case. For a property state ps ∈ PState, we define the set

LOW(ps) = {x ∈ Var ∪ {history} | ps x = low }

186 8. More on Program Analysis

of “variables” mapped to low and we say that

ps is proper if and only if ps(history) = low.

If ps is not proper, we shall sometimes say that it is improper.
Our next task will be to endow PState with some partially ordered struc-

ture. In Lemma 7.1, we instantiate S to be Var ∪ {history} and D to be P and
we get the following corollary.

Corollary 8.8

Let �PS be the ordering on PState defined by

ps1 �PS ps2

if and only if

ps1 x �P ps2 x for all x ∈ Var ∪ {history}
Then (PState, �PS) is a complete lattice. In particular, the least upper bound
⊔

PS Y of a subset Y of PState is characterized by

(
⊔

PS Y) x =
⊔

PS { ps x | ps ∈ Y }

We shall write lost for the property state ps that maps all variables to high

and that maps history to high. Similarly, we shall write init for the property
state that maps all variables to low and that maps history to low. Note that
init is the least element of PState.

Example 8.9

To motivate the need to keep track of the “flow of control” (that is, the need
for history), consider the statement S given by

if x = 1 then x := 1 else x := 2

Assume first that we do not keep track of the flow of control. The analysis of
each of the two branches will give rise to a function that maps ps to ps[x�→low],
so it would be natural to expect the analysis of S to do the same. However, this
will not always be correct. To see this, suppose that ps x = high, indicating
that the initial value of x is private. Then surely the resulting value of x will
convey some information about private data and hence cannot be characterised
as public (low).

The token history is used to solve this dilemma: if the analysis of the test
gives high, then history will be mapped to high in the resulting property state;
otherwise it is mapped to low. We shall return to this example in more detail
when we have specified the analysis for statements. �

8.2 Security Analysis 187

Exercise 8.10 (Essential)

Show that

ps1 �PS ps2 if and only if LOW(ps1) ⊇ LOW(ps2)

Next show that

LOW(
⊔

PS Y) =
⋂

{LOW(ps) | ps ∈ Y }

whenever Y is a non-empty subset of PState. �

Analysis of Expressions

The analysis of an arithmetic expression a will be specified by a (total) function
SA[[a]] from property states to properties:

SA: Aexp → PState → P

Similarly, the analysis of a boolean expression b will be defined by a (total)
function SB[[b]] from property states to properties:

SB: Bexp → PState → P

The defining clauses are given in Table 8.5.
The overall idea is that once ps history has the value high, then all results

produced should be high. This is reflected directly in the clauses for the basic
constructs n, x, true, and false. For the composite expression, such as for
example a1 + a2, the idea is that it can only have the property low if both
subexpressions have that property. This is ensured by the binary operation �P .

The functions SA[[a]] and SB[[b]] are closely connected with the sets of free
variables defined in Chapter 1.

Exercise 8.11 (Essential)

Prove that, for every arithmetic expression a, we have

SA[[a]]ps = low if and only if FV(a) ∪ {history} ⊆ LOW(ps)

Formulate and prove a similar result for boolean expressions. Deduce that for
all a of Aexp we get SA[[a]]ps = high if ps is improper, and that for all b of
Bexp we get SB[[b]]ps = high if ps is improper. �

188 8. More on Program Analysis

SA[[n]]ps =

{

low if ps history = low

high otherwise

SA[[x]]ps =

{

ps x if ps history = low

high otherwise

SA[[a1 + a2]]ps = (SA[[a1]]ps) �P (SA[[a2]]ps)

SA[[a1 � a2]]ps = (SA[[a1]]ps) �P (SA[[a2]]ps)

SA[[a1 − a2]]ps = (SA[[a1]]ps) �P (SA[[a2]]ps)

SB[[true]]ps =

{

low if ps history = low

high otherwise

SB[[false]]ps =

{

low if ps history = low

high otherwise

SB[[a1 = a2]]ps = (SA[[a1]]ps) �P (SA[[a2]]ps)

SB[[a1 ≤ a2]]ps = (SA[[a1]]ps) �P (SA[[a2]]ps)

SB[[¬b]]ps = SB[[b]]ps

SB[[b1 ∧ b2]]ps = (SB[[b1]]ps) �P (SB[[b2]]ps)

Table 8.5 Security analysis of expressions

Analysis of Statements

Turning to statements, we shall specify their analysis by a function SS of
functionality:

SS: Stm → PState → PState

The totality of SS[[S]] reflects that we shall be able to analyse all statements,
including a statement such as while true do skip that loops. The definition
of SS is given in Table 8.6.

The clauses for assignment, skip, and composition are much as in the direct
style denotational semantics of Chapter 5. In the clause for if b then S1 else

S2 we use the auxiliary function condS defined by

condS(f , h1, h2) ps =

{

(h1 ps) �PS (h2 ps) if f ps = low

lost if f ps = high

8.2 Security Analysis 189

SS[[x := a]]ps = ps[x �→ SA[[a]]ps]

SS[[skip]] = id

SS[[S1;S2]] = SS[[S2]] ◦ SS[[S1]]

SS[[if b then S1 else Ss]] = condS(SB[[b]],SS[[S1]],SS[[S2]])

SS[[while b do S]] = FIX H

where H h = condS(SB[[b]], h ◦ SS[[S]], id)

Table 8.6 Security analysis of statements

First consider the case where the condition depends on public data only; that
is, where f ps = low. For each variable x, we can determine the result of
analysing each of the branches, namely (h1 ps) x for the true branch and (h2

ps) x for the false branch. The least upper bound of these two results will be
the new property bound to x; that is, the new property state will map x to

((h1 ps) x) �P ((h2 ps) x)

If the condition depends on private data (that is, f ps = high), then the
analysis of the conditional will have to produce an improper property state
and we shall therefore use the property state lost.

Example 8.12

Returning to Example 8.9 we see that if ps x = high then

SB[[x = 1]]ps = high

We therefore get

SS[[if x = 1 then x := 1 else x := 2]]ps = lost

using the definition of condS above. �

Example 8.13

Consider now the statement

if x = x then x := 1 else x := y

First assume that ps x = low, ps y = high, and ps history = low. Then
SA[[x = x]]ps = low and we get

190 8. More on Program Analysis

SS[[if x = x then x := 1 else x := y]]ps x

= condS(SB[[x = x]],SS[[x := 1]],SS[[x := y]])ps x

= (SS[[x := 1]]ps �PS SS[[x := y]]ps) x

= high

because SB[[x = x]]ps = low, (SS[[x := 1]]ps) x = low but (SS[[x := y]]ps) x =
high. So even though the false branch never will be executed, it will influence
the result obtained by the analysis.

Next assume that ps x = high, ps y = low, and ps history = low. Then
SA[[x = x]]ps = high and we get

SS[[if x = x then x := 1 else x := y]]ps

= condS(SB[[x = x]],SS[[x := 1]],SS[[x := y]])ps

= lost

because SB[[x = x]]ps = high. So even though the test always evaluates to true
for all states, this is not captured by the analysis. More complex analyses could
do better (for example by trying to predict the outcome of tests). �

In the clause for the while-loop, we also use the function condS and other-
wise the clause is as in the direct style denotational semantics of Chapter 5. In
particular, we use the fixed point operation FIX as it corresponds to unfolding
the while-loop any number of times. As in Chapter 5, the fixed point is defined
by

FIX H =
⊔

{ Hn ⊥ | n ≥ 0 }

where the functionality of H is

H: (PState → PState) → (PState → PState)

and where PState → PState is the set of total functions from PState to
PState. In order for this to make sense H must be a continuous function on a
ccpo with least element ⊥.

We may summarise how to use the security analysis as follows:

INPUT: a statement S of While

a set LI ⊆ Var of (input) variables whose initial values are
regarded as public

a set LO ⊆ Var of (output) variables whose final values should
be regarded as public

8.2 Security Analysis 191

OUTPUT: YES!, if we can prove this to be safe

NO?, if we cannot prove this to be safe

METHOD: let psI be determined by LOW(psI) = LI ∪ {history}

let psO = SS[[S]] psI

output YES! if LOW(psO) ⊇ LO ∪ {history}

output NO? otherwise

Example 8.14

We are now in a position where we can attempt the application of the analysis
to the factorial statement:

SS[[y := 1; while ¬(x = 1) do (y := y � x; x := x− 1)]]

We shall apply this function to the proper property state ps0 that maps x

to low and all other variables (including y) to high, as this corresponds to
viewing x as a public input variable of the statement.

To do so, we use the clauses of Tables 8.5 and 8.6 and get

SS[[y := 1; while ¬(x = 1) do (y := y � x; x := x− 1)]]ps0

= (FIX H) (ps0[y �→ low])

where

H h = condS(SB[[¬(x = 1)]], h ◦ SS[[y := y � x; x := x− 1]], id)

We first simplify H and obtain

(H h) ps =

{

lost if ps history =high or ps x=high

(h ps) �PS ps if ps history = low and ps x= low

At this point, we shall exploit the result of Exercise 7.8:

if Hn ⊥ = Hn+1 ⊥ for some n

then FIX H = Hn ⊥
where ⊥ is the function ⊥ ps = init for all ps. We can now calculate the
iterands H0 ⊥, H1 ⊥, H2 ⊥, · · ·. We obtain

(H0 ⊥) ps = init

(H1 ⊥) ps =

{

lost if ps x = high or ps not proper

ps if ps x = low and ps proper

(H2 ⊥) ps =

{

lost if ps x = high or ps not proper

ps if ps x = low and ps proper

192 8. More on Program Analysis

where ps is an arbitrary property state. Since H1 ⊥ = H2 ⊥, our assumption
above ensures that we have found the least fixed point for H:

(FIX H) ps =

{

lost if ps x = high or ps not proper

ps if ps x = low and ps proper

It is now straightforward to verify that (FIX H) (ps0[y�→low]) y = low and
that (FIX H)(ps0[y�→low]) is proper. We conclude that the statement imple-
ments a service y:= · · · x · · · (actually y:= x!) that maps public data to pub-
lic data and hence can be considered secure. �

Exercise 8.15

Extend While with the statement repeat S until b and give the new (com-
positional) clause for SS. Motivate your extension. �

Exercise 8.16

Prove that the security analysis as specified by SA, SB, and SS does indeed
exist. �

Exercise 8.17 (Essential)

Show that for every statement S

ps history � (SS[[S]]ps) history

so that ps must be proper if SS[[S]]ps is. In the case of while b do S , you
should first prove that for all n ≥ 1

ps history � ((H n ⊥) ps) history

where ⊥ ps ′ = init for all ps ′ and H h = condS(SB[[b]], h ◦ SS[[S]], id).

Exercise 8.18 (**)

The results developed in Appendix B for computing fixed points are applicable
to a minor variation of the security analysis:

– show that the analysis is in the completely additive framework (that is, that
the functions SS[[S]] are strict and additive for all statements S of While),
and

– show that the functionals H obtained for while-loops can be written in
iterative form (provided that a minor modification is made in the definition
of condS).

8.3 Safety of the Analysis 193

Conclude, using Theorem B.14, that in a program with p variables at most
p+1 iterations are needed to compute the fixed point. �

Exercise 8.19 (*)

Formulate a dependency analysis as follows. Given a statement, you should
designate a subset of the variables as input variables and another subset as
output variables. Then the statement is intended to compute an output (being
the final values of the output variables) only depending on the input (being the
initial values of the input variables). Introduce properties OK for indicating
that variables only depend on the input and D? for indicating that values may
depend on more than the input and develop the corresponding dependency
analysis. (Hint: Consider how OK and D? should be compared with low and
high. Will there be any major differences between the analyses?) �

8.3 Safety of the Analysis

In this section, we prove the safety of the security analysis with respect to
the denotational semantics. Since it is a second-order analysis, the properties
of interest do not directly describe values. Instead we employ a simulation
approach where we view properties as describing relationships between values.
The main idea will be that low demands the values to be equal, whereas high

places no demands on the values.

Second-Order Properties

As a first step, we shall define parameterized relations for arithmetic and
boolean values:

relA: P → (Z × Z → T)

relB : P → (T × T → T)

For arithmetic values, the relation is defined by

relA(p)(v1, v2) =

{

tt p = high or v1 = v2

ff otherwise

and similarly for boolean values:

194 8. More on Program Analysis

relB(p)(v1, v2) =

{

tt p = high or v1 = v2

ff otherwise

We shall often omit the subscript when no confusion is likely to result. Each
of the relations takes a property and two values as parameters. Intuitively, the
property expresses how much the two values are allowed to differ. Thus high

puts no requirements on the values, whereas low requires that the two values
be equal. As an aid to readability, we shall often write

v1 ≡ v2 rel p

instead of rel(p)(v1, v2) and we shall say that v1 and v2 are equal as far as p
is concerned (or relative to p).

The next step is to introduce a parameterized relation for states:

relS : PState → (State × State → T)

It is defined by

relS(ps)(s1, s2) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

tt if ps history = high

or ∀x ∈ Var ∩ LOW(ps) : s1 x = s2 x

ff otherwise

and again we may omit the subscript when no confusion is likely to occur. The
relation expresses the extent to which two states are allowed to differ as far
as a given property state is concerned. If ps is not proper, then rel(ps) will
hold on any two states. However, if ps is proper then, rel(ps) will hold on two
states if they are equal on the variables in LOW(ps). Phrased differently, we
may view ps as a pair of glasses that only allows us to see part of the states,
and rel(ps)(s1, s2) means that s1 and s2 look the same when viewed through
that pair of glasses. Again we shall write

s1 ≡ s2 rel ps

for rel(ps)(s1, s2).

Example 8.20

Let s1, s2, and ps be given by

s1 x = 1 and s1 y = 0 for y ∈ Var\{x}

s2 x = 2 and s2 y = 0 for y ∈ Var\{x}

ps x = high and ps y = low for y ∈ (Var∪{history})\{x}
Then s1 ≡ s2 rel ps.

8.3 Safety of the Analysis 195

Example 8.21

It is instructive to reconsider the need for keeping track of the “flow of control”
as discussed in Examples 8.9 and 8.12. Consider the following statements:

S 1 ≡ x := 1

S 2 ≡ x := 2

It would be natural to expect that the analysis of S 1 will map any property
state ps to the property state ps[x�→low] since a constant value cannot convey
any information about private data. A similar argument holds for S 2. Now
consider the statements

S 11 ≡ if x = 1 then S 1 else S 1

S 12 ≡ if x = 1 then S 1 else S 2

Again we may expect that the analysis of S 11 will map any property state ps
to the property state ps[x�→low] since S 11 is semantically equivalent to S 1.

Concerning S 12, it will not always be correct for the analysis to map a
property state ps to ps[x�→low]. For an example, suppose that ps, s1, and s2

are such that

ps x = high and ps y = low for y ∈ (Var∪{history})\{x}

s1 x = 1 and s1 y = 0 for y ∈ Var\{x}

s2 x = 2 and s2 y = 0 for y ∈ Var\{x}
Then Example 8.20 gives

s1 ≡ s2 rel ps

but Sds[[S 12]]s1 ≡ Sds[[S 12]]s2 rel ps[x�→low] fails because Sds[[S 12]]s1 = s1 and
Sds[[S 12]]s2 = s2 and s1 x �= s2 x.

However, from the point of view of the analysis, there is no difference be-
tween S 1 and S 2 because neither value 1 nor 2 conveys information about
private data. Since the analysis is compositionally defined, this means that
there can be no difference between S 11 and S 12 from the point of view of the
analysis. Therefore we have to accept that the analysis of S 11 also should not
allow mapping of an arbitrary property state ps to ps[x�→low].

The difference between S 1 and S 2 arises when the “flow of control” depends
on private data, and it is for this that we need the special token history. We
shall transform a property state into an improper one, by mapping history to
high, whenever the “flow of control” depends on private data. Thus, if ps x

= high, then it is the test, x = 1, in S 11 and S 12 that will be responsible
for mapping ps into the improper property state lost, and then the effect of

196 8. More on Program Analysis

analysing S 1 and S 2 does not matter (provided, of course, that no improper
property state is mapped into a proper property state).

Properties of rel

To study the properties of the parameterized relation rel, we need a notion of
an equivalence relation. A relation

R: E × E → T

is an equivalence relation on a set E if and only if

R(e1, e1) (reflexivity)

R(e1, e2) and R(e2, e3) imply R(e1, e3) (transitivity)

R(e1, e2) implies R(e2, e1) (symmetry)

for all e1, e2, and e3 of E .

Exercise 8.22 (Essential)

Show that relA(p), relB(p) and relS(ps) are equivalence relations for all choices
of p ∈ P and ps ∈ PState.

Each of relA, relB , and relS are examples of parameterized (equivalence)
relations. In general, a parameterized relation is of the form

R: D → (E × E → T)

where (D , �) is a partially ordered set, E is a set, and each R(d) is a relation.
We shall say that a parameterized relation R is a Kripke relation if

d1 � d2 implies that for all e1, e2 ∈ E :

if R(d1)(e1, e2) then R(d2)(e1, e2)

Note that this is a kind of monotonicity property.

Lemma 8.23

relS is a Kripke relation.

Proof: Let ps1 and ps2 be such that ps1 �PS ps2, and assume that

s1 ≡ s2 rel ps1

holds for all states s1 and s2. We must show

8.3 Safety of the Analysis 197

s1 ≡ s2 rel ps2

If ps2 history = high, this is immediate from the definition of relS . So assume
that ps2 history = low. In this case, we must show

∀x ∈ LOW(ps2) ∩ Var: s1 x = s2 x

Since ps1 �PS ps2 and ps2 history = low, it must be the case that ps1 history

is low. From s1 ≡ s2 rel ps1, we therefore get

∀x ∈ LOW(ps1) ∩ Var: s1 x = s2 x

From Exercise 8.10 and the assumption ps1 �PS ps2, we get LOW(ps1) ⊇
LOW(ps2) and thereby we get the desired result.

Exercise 8.24 (Essential)

Show that relA and relB are Kripke relations.

Safety of Expressions

Let g : State → Z be a function, perhaps of the form A[[a]] for some arithmetic
expression a ∈ Aexp, and let h: PState → P be another function, perhaps of
the form SA[[a]] for some arithmetic expression a ∈ Aexp. We shall introduce
a relation

g safeA h

for expressing when the analysis h is correct with respect to the semantics g .
It is defined by

s1 ≡ s2 relS ps implies g s1 ≡ g s2 relA h ps

for all states s1 and s2 and property states ps. This condition says that the
results of g will be suitably related provided that the arguments are. It is
perhaps more intuitive when rephrased as

(s1 ≡ s2 relS ps) and (h ps = low) imply g s1 = g s2

The safety of the analysis SA is then expressed by the following fact.

Fact 8.25

For all arithmetic expressions a ∈ Aexp, we have

A[[a]] safeA SA[[a]]

198 8. More on Program Analysis

Proof: This is a consequence of Lemma 1.12 and Exercise 8.11.

The analysis SB of boolean expressions is safe in the following sense.

Exercise 8.26 (Essential)

Repeat the development for boolean expressions; that is, define a relation safeB

and show that

B[[b]] safeB SB[[b]]

for all boolean expressions b ∈ Bexp.

Safety of Statements

Our key tool will be the relation s1 ≡ s2 rel ps, and we shall show that if
this relationship holds before the statement is executed and analysed, then
either the statement will loop on both states or the same relationship will hold
between the final states and the final property state (provided that the analysis
does not get “lost”). We shall formalize this by defining a relation

g safeS h

between a function g : State ↪→ State, perhaps of the form Sds[[S]] for some
S in Stm, and another function h: PState → PState, perhaps of the form
SS[[S]] for some S in Stm. The formal definition is

(s1 ≡ s2 rel ps) and (h ps is proper) imply

(g s1 = undef and g s2 = undef) or

(g s1 �= undef and g s2 �= undef and g s1 ≡ g s2 rel h ps)

for all states s1, s2 ∈ State and all property states ps ∈ PState. To explain
this definition, consider two states s1 and s2 that are equal relative to ps. If
ps is proper, this means that s1 x = s2 x for all variables x in LOW(ps). The
analysis of the statement may get “lost”, in which case h ps is not proper and we
cannot deduce anything about the behaviour of the statement. Alternatively,
it may be the case that h ps is proper, and in that case the statement must
behave in the same way whether executed from s1 or from s2. In particular

– the statement may enter a loop when executed from s1 and s2 (that is,
g s1 = undef and g s2 = undef) or

– the statement does not enter a loop when executed from s1 and s2 (that is,
g s1 �= undef and g s2 �= undef).

8.3 Safety of the Analysis 199

In the latter case, the two final states g s1 and g s2 must be equal relative to
the resulting property state h ps; that is, (g s1) x = (g s2) x for all variables
x in LOW(h ps). We may then formulate the desired relationship between the
semantics and the analysis as follows.

Theorem 8.27

For all statements S of While, we have Sds[[S]] safeS SS[[S]].

For the proof we need some properties of the auxiliary operations.

Lemma 8.28

Let g1, g2: State ↪→ State and h1, h2: PState → PState and assume that

ps history �P (h2 ps) history (*)

holds for all ps ∈ PState. Then

g1 safeS h1 and g2 safeS h2 imply g2 ◦ g1 safeS h2 ◦ h1

Proof: Let s1, s2, and ps be such that

s1 ≡ s2 rel ps and (h2 ◦ h1) ps is proper

Using that h2 (h1 ps) is proper, we get from (*) that h1 ps must be proper as
well (by taking ps to be h1 ps). So, from the assumption g1 safeS h1, we get

g1 s1 = undef and g1 s2 = undef

or

g1 s1 �= undef and g1 s2 �= undef and g1 s1 ≡ g1 s2 rel h1 ps

In the first case, we are finished since it follows that (g2 ◦ g1) s1 = undef and
that (g2 ◦ g1) s2 = undef. In the second case, we use that

g1 s1 ≡ g1 s2 rel h1 ps and h2(h1 ps) is proper

The assumption g2 safeS h2 then gives

g2 (g1 s1) = undef and g2 (g1 s2) = undef

or

g2 (g1 s1) �= undef and g2 (g1 s2) �= undef and

g2(g1 s1) ≡ g2(g1 s2) rel h2(h1 ps)

In both cases we have completed the proof.

200 8. More on Program Analysis

Lemma 8.29

Assume that g1, g2: State ↪→ State and g : State → T, and that h1, h2:
PState → PState and f : PState → P. Then

g safeB f , g1 safeS h1 and g2 safeS h2 imply

cond(g , g1, g2) safeS condS(f , h1, h2)

Proof: Let s1, s2, and ps be such that

s1 ≡ s2 rel ps and condS(f , h1, h2) ps is proper

First assume that f ps = high. This case turns out to be impossible since then
condS(f , h1, h2) ps = lost so condS(f , h1, h2) ps cannot be proper.

So we know that f ps = low. From g safeB f, we then get g s1 = g s2. We
also get that condS(f , h1, h2) ps = (h1 ps) �PS (h2 ps). Thus h1 ps as well
as h2 ps must be proper since otherwise condS(f , h1, h2) ps cannot be proper.
Now let ‘i’ denote the branch chosen by the test g . We then have

s1 ≡ s2 rel ps and h i ps is proper

From the assumption g i safeS h i, we therefore get

g i s1 = undef and g i s2 = undef

or

g i s1 �= undef and g i s2 �= undef and g i s1 ≡ g i s2 rel h i ps

In the first case, we get

cond(g , g1, g2) s1 = undef and cond(g , g1, g2) s2 = undef

and we are finished. In the second case, we get

cond(g , g1, g2) s1 �= undef and cond(g , g1, g2) s2 �= undef

Furthermore, we have

cond(g , g1, g2) s1 ≡ cond(g , g1, g2) s2 rel h i ps

Clearly h i ps � h1 ps �PS h2 ps, and using the definition of condS and Lemma
8.23 we get

cond(g , g1, g2) s1 ≡ cond(g , g1, g2) s2 rel condS(f , h1, h2) ps

as required.

We now have the apparatus needed to show the safety of SS as expressed
in Theorem 8.27.

Proof: We shall show that Sds[[S]] safeS SS[[S]], and we proceed by structural

8.3 Safety of the Analysis 201

induction on the statement S .

The case x := a: Let s1, s2, and ps be given such that

s1 ≡ s2 rel ps and SS[[x := a]]ps is proper

It then follows from Exercise 8.17 that ps is proper because SS[[x := a]]ps is.
Also, both Sds[[x := a]]s1 and Sds[[x := a]]s2 will be defined so we only have to
show that

(Sds[[x := a]]s1) y = (Sds[[x := a]]s2) y

for all y ∈ Var ∩ LOW(SS[[x := a]]ps). Suppose first that y �= x and y is
in LOW(SS[[x := a]]ps). Then y ∈ LOW(ps) and it is immediate from the
definition of Sds that (Sds[[x := a]]s1) y = (Sds[[x := a]]s2) y . Suppose next
that y = x and x is in LOW(SS[[x := a]]ps). Then we use the assumption
s1 ≡ s2 rel ps together with (SS[[x := a]]ps) x = low to get

A[[a]]s1 = A[[a]]s2

by Fact 8.25. Hence (Sds[[x := a]]s1) y = (Sds[[x := a]]s2) y follows also in this
case. This proves the required relationship.

The case skip: Straightforward.

The case S 1;S 2: The induction hypothesis applied to S 1 and S 2 gives

Sds[[S 1]] safeS SS[[S 1]] and Sds[[S 2]] safeS SS[[S 2]]

It follows from Exercise 8.17 that ps history �P (SS[[S 2]]ps) history holds for
all property states ps. The desired result

Sds[[S 2]] ◦ Sds[[S 1]] safeS SS[[S 2]] ◦ SS[[S 1]]

then follows from Lemma 8.28.

The case if b then S 1 else S 2: From Exercise 8.26, we have

B[[b]] safeB SB[[b]]

and the induction hypothesis applied to S 1 and S 2 gives

Sds[[S 1]] safeS SS[[S 1]]

and

Sds[[S 2]] safeS SS[[S 2]]

The desired result

cond(B[[b]], Sds[[S 1]], Sds[[S 2]]) safeS condS(SB[[b]], SS[[S 1]], SS[[S 2]])

then follows from Lemma 8.29.

The case while b do S : We must prove that

202 8. More on Program Analysis

FIX G safeS FIX H

where

G g = cond(B[[b]], g ◦ Sds[[S]], id)

and

H h = condS(SB[[b]], h ◦ SS[[S]], id)

To do this, we recall the definition of the least fixed points:

FIX G =
⊔

{Gn g0 | n ≥ 0} where g0 s = undef for all s

and

FIX H =
⊔

{H n h0 | n ≥ 0} where h0 ps = init for all ps

The proof proceeds in two stages. We begin by proving that

Gn g0 safeS FIX H for all n (*)

and then

FIX G safeS FIX H (**)

We prove (*) by induction on n. For the base case, we observe that

g0 safeS FIX H

holds trivially since g0 s = undef for all states s. For the induction step, we
assume that

Gn g0 safeS FIX H

and we shall prove the result for n+1. We have

B[[b]] safeB SB[[b]]

from Exercise 8.26,

Sds[[S]] safeS SS[[S]]

from the induction hypothesis applied to the body of the while-loop, and it is
clear that

id safeS id

By Exercise 8.17, we also have

ps history �P ((FIX H) ps) history

8.3 Safety of the Analysis 203

for all property states ps. We then obtain

cond(B[[b]], (Gn g0)◦Sds[[S]], id) safeS condS(SB[[b]], (FIX H)◦SS[[S]], id)

from Lemmas 8.28 and 8.29, and this is indeed the desired result since the right-
hand side amounts to H (FIX H), which equals FIX H .

Finally, we must show (**). This amounts to showing
⊔

Y safeS FIX H

where Y = {Gn g0 | n ≥ 0}. So assume that

s1 ≡ s2 rel ps and (FIX H) ps is proper

Since g safeS FIX H holds for all g ∈ Y by (*), we get that either

g s1 = undef and g s2 = undef

or

g s1 �= undef and g s2 �= undef and g s1 ≡ g s2 rel (FIX H) ps

If (
⊔

Y) s1 = undef, then g s1 = undef for all g ∈ Y and thereby g s2 = undef
for all g ∈ Y so that (

⊔

Y) s2 = undef. Similarly, (
⊔

Y) s2 = undef will imply
that (

⊔

Y) s1 = undef. So consider now the case where (
⊔

Y) s1 �= undef as
well as (

⊔

Y) s2 �= undef, and let x ∈ Var ∩ LOW((FIX H) ps). By Lemma
5.25, we have

graph(
⊔

Y) =
⋃

{ graph g | g ∈ Y }

and (
⊔

Y) s i �= undef therefore shows the existence of an element g i in Y such
that g i s i �= undef and (

⊔

Y) s i = g i s i (for i = 1, 2). Since Y is a chain, either
g1 � g2 or g2 � g1, so let g be the larger of the two. We then have

((
⊔

Y) s1) x = (g1 s1) x as (
⊔

Y) s1 = g1 s1

= (g s1) x as g1 � g and g1 s1 �= undef

= (g s2) x as g s1 ≡ g s2 rel (FIX H) ps

= (g2 s2) x as g2 � g and g2 s2 �= undef

= ((
⊔

Y) s2) x as (
⊔

Y) s2 = g2 s2

as required. This finishes the proof of the theorem.

Exercise 8.30

Extend the proof of the theorem to incorporate the analysis developed for
repeat S until b in Exercise 8.15.

204 8. More on Program Analysis

Exercise 8.31

When specifying SS in the previous section, we rejected the possibility of using

cond′S(f , h1, h2) ps = (h1 ps) �PS (h2 ps)

rather than condS . Formally show that the analysis obtained by using cond′S
rather than condS cannot be correct in the sense of Theorem 8.27. Hint: Con-
sider the statement S 12 of Example 8.9.

Exercise 8.32

In the exercise above we saw that condS could not be simplified so as to ignore
the test for whether the condition is dubious or not. Now consider the following
remedy:

cond′S(f , h1, h2) ps

=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(h1 ps) �PS (h2 ps) if f ps = low

((h1 ps [history�→high]) �PS (h2 ps[history�→high]))[history�→ps history]

if f ps = high

Give an example statement where cond′S is preferable to condS . Does the safety
proof carry through when condS is replaced by cond′S? If not, suggest how to
weaken the safety predicate such that another safety result can be proved to
hold.

Exercise 8.33 (*)

Prove the correctness of the dependency analysis of Exercise 8.19.

Exercise 8.34 (**)

Write down a specification of a live variables analysis and prove it correct.

9
Axiomatic Program Verification

The kinds of semantics we have seen so far specify the meaning of programs,
although they may also be used to prove that given programs possess cer-
tain properties. We may distinguish among several classes of properties: partial
correctness properties are properties expressing that if a given program termi-
nates, then there will be a certain relationship between the initial and the final
values of the variables. Thus a partial correctness property of a program need
not ensure that it terminates. This is contrary to total correctness properties,
which express that the program will terminate and that there will be a certain
relationship between the initial and the final values of the variables. Thus we
have

partial correctness + termination = total correctness

Yet another class of properties is concerned with the resources used when ex-
ecuting the program; an example is the time used to execute the program on
a particular machine. In this chapter, we shall focus on the partial correct-
ness properties; the following chapter will return to the properties that take
resources into account.

9.1 Direct Proofs of Program Correctness

In this section, we shall give some examples that prove partial correctness of
statements based directly on the operational and denotational semantics. We

206 9. Axiomatic Program Verification

shall prove that the factorial statement

y := 1; while ¬(x=1) do (y := y�x; x := x−1)

is partially correct; that is, if the statement terminates, then the final value of
y will be the factorial of the initial value of x.

Natural Semantics

Using natural semantics of Section 2.1, the partial correctness of the factorial
statement can be formalized as follows:

For all states s and s ′, if

〈y := 1; while ¬(x=1) do (y := y�x; x := x−1), s〉 → s ′

then s ′ y = (s x)! and s x > 0

This is indeed a partial correctness property because the statement does not
terminate if the initial value s x of x is non-positive.

The proof proceeds in three stages:

Stage 1: We prove that the body of the while loop satisfies:

if 〈y := y�x; x := x−1, s〉 → s ′′ and s ′′ x > 0

then (s y) � (s x)! = (s ′′ y) � (s ′′ x)! and s x > 0
(*)

Stage 2: We prove that the while loop satisfies:

if 〈while ¬(x=1) do (y := y�x; x := x−1), s〉 → s ′′

then (s y) � (s x)! = s ′′ y and s ′′ x = 1 and s x > 0
(**)

Stage 3: We prove the partial correctness property for the complete program:

if 〈y := 1; while ¬(x=1) do (y := y�x; x := x−1), s〉 → s ′

then s ′ y = (s x)! and s x > 0
(***)

In each of the three stages, the derivation tree of the given transition is in-
spected in order to prove the property.

In the first stage, we consider the transition

〈y := y�x; x := x−1, s〉 → s ′′

According to [compns], there will be transitions

〈y := y�x, s〉 → s ′ and 〈x := x−1, s ′〉 → s ′′

for some s ′. From the axiom [assns], we then get that s ′ = s[y�→A[[y�x]]s] and
that s ′′ = s ′[x�→A[[x−1]]s ′]. Combining these results, we have

9.1 Direct Proofs of Program Correctness 207

s ′′ = s[y�→(s y)�(s x)][x�→(s x)−1]

Assuming that s ′′ x > 0, we can then calculate

(s ′′ y) � (s ′′ x)! = ((s y) � (s x)) � ((s x)−1)! = (s y) � (s x)!

and since s x = (s ′′ x) + 1 this shows that (*) does indeed hold.
In the second stage, we proceed by induction on the shape of the derivation

tree for

〈while ¬(x=1) do (y := y�x; x := x−1), s〉 → s ′

One of two axioms and rules could have been used to construct this derivation.
If [whileff

ns] has been used, then s ′ = s and B[[¬(x=1)]]s = ff. This means that
s ′ x = 1, and since 1! = 1 we get the required (s y) � (s x)! = s y and s x >

0. This proves (**).
Next assume that [whilett

ns] is used to construct the derivation. Then it must
be the case that B[[¬(x=1)]]s = tt and

〈y := y�x; x := x−1, s〉 → s ′′

and

〈while ¬(x=1) do (y := y�x; x := x−1), s ′′〉 → s ′

for some state s ′′. The induction hypothesis applied to the latter derivation
gives that

(s ′′ y) � (s ′′ x)! = s ′ y and s ′ x = 1 and s ′′ x > 0

From (*) we get that

(s y) � (s x)! = (s ′′ y) � (s ′′ x)! and s x > 0

Putting these results together, we get

(s y) � (s x)! = s ′ y and s ′ x = 1 and s x > 0

This proves (**) and thereby the second stage of the proof is completed.
Finally, consider the third stage of the proof and the derivation

〈y := 1; while ¬(x=1) do (y := y�x; x := x−1), s〉 → s ′

According to [compns], there will be a state s ′′ such that

〈y := 1, s〉 → s ′′

and

〈while ¬(x=1) do (y := y�x; x := x−1), s ′′〉 → s ′

From axiom [assns], we see that s ′′ = s[y�→1], and from (**) we get that s ′′ x
> 0 and therefore s x > 0. Hence (s x)! = (s ′′ y) � (s ′′ x)! holds, and using
(**) we get

208 9. Axiomatic Program Verification

(s x)! = (s ′′ y) � (s ′′ x)! = s ′ y

as required. This proves the partial correctness of the factorial statement.

Exercise 9.1

Use the natural semantics to prove the partial correctness of the statement

z := 0; while y≤x do (z := z+1; x := x−y)

That is, prove that

if the statement terminates in s ′ when executed from a state s
with s x > 0 and s y > 0,

then s ′ z = (s x) div (s y) and s ′ x = (s x) mod (s y)

where div is integer division and mod is the modulo operation.

Exercise 9.2

Use the natural semantics to prove the following total correctness property for
the factorial program: for all states s

if s x > 0 then there exists a state s ′ such that

s ′ y = (s x)! and

〈y := 1; while ¬(x=1) do (y := y�x; x := x−1), s〉 → s ′

Structural Operational Semantics

The partial correctness of the factorial statement can also be established us-
ing the structural operational semantics of Section 2.2. The property is then
reformulated as:

For all states s and s ′, if

〈y := 1; while ¬(x=1) do (y := y�x; x := x−1), s〉 ⇒∗ s ′

then s ′ y = (s x)! and s x > 0

Again it is worthwhile to approach the proof in stages:

Stage 1: We prove by induction on the length of derivation sequences that

if 〈while ¬(x=1) do (y := y�x; x := x−1), s〉 ⇒k s ′

then s ′ y = (s y) � (s x)! and s ′ x = 1 and s x > 0

9.1 Direct Proofs of Program Correctness 209

Stage 2: We prove that

if 〈y := 1; while ¬(x=1) do (y := y�x; x := x−1), s〉 ⇒∗ s ′

then s ′ y = (s x)! and s x > 0

Exercise 9.3

Complete the proof of stages 1 and 2.

Denotational Semantics

We shall now use the denotational semantics of Chapter 5 to prove partial
correctness properties of statements. The idea is to formulate the property as
a predicate ψ on the ccpo (State ↪→ State, �); that is,

ψ: (State ↪→ State) → T

As an example, the partial correctness of the factorial statement will be written
as

ψfac(Sds[[y := 1; while ¬(x=1) do (y := y�x; x := x−1)]]) = tt

where the predicate ψfac is defined by

ψfac(g) = tt if and only if for all states s and s ′,
if g s = s ′

then s ′ y = (s x)! and s x > 0

A predicate ψ: D → T defined on a ccpo (D ,�) is called an admissible
predicate if and only if we have

if ψ d = tt for all d ∈ Y then ψ(
⊔

Y) = tt

for every chain Y in D . Thus, if ψ holds on all the elements of the chain, then
it also holds on the least upper bound of the chain.

Example 9.4

Consider the predicate ψ′
fac defined on State ↪→ State by

ψ′
fac(g) = tt if and only if for all states s and s ′,

if g s = s ′

then s ′ y = (s y) � (s x)! and s x > 0

Then ψ′
fac is an admissible predicate. To see this assume that Y is a chain in

State ↪→ State and assume that ψ′
fac g = tt for all g ∈ Y . We shall then

prove that ψ′
fac(

⊔

Y) = tt; that is,

210 9. Axiomatic Program Verification

(
⊔

Y) s = s ′ implies s ′ y = (s y) � (s x)! and s x > 0

From Lemma 5.25, we have graph(
⊔

Y) =
⋃

{ graph(g) | g ∈ Y }. We have
assumed that (

⊔

Y) s = s ′ so Y cannot be empty and 〈s, s ′〉 ∈ graph(g) for
some g ∈ Y . But then

s ′ y = (s y) � (s x)! and s x > 0

as ψ′
fac g = tt for all g ∈ Y . This proves that ψ′

fac is indeed an admissible
predicate.

For admissible predicates, we have the following induction principle, called
fixed point induction.

Theorem 9.5

Let (D ,�) be a ccpo, let f : D → D be a continuous function, and let ψ be an
admissible predicate on D . If for all d ∈ D

ψ d = tt implies ψ(f d) = tt

then ψ(FIX f) = tt.

Proof: We shall first note that

ψ ⊥ = tt

holds by admissibility of ψ (applied to the chain Y = ∅). By induction on n
we can then show that

ψ(f n ⊥) = tt

using the assumptions of the theorem. By admissibility of ψ (applied to the
chain Y = { f n ⊥ | n ≥ 0 }), we then have

ψ(FIX f) = tt

This completes the proof.

We are now in a position where we can prove the partial correctness of the
factorial statement. The first observation is that

Sds[[y := 1; while ¬(x=1) do (y := y�x; x := x−1)]]s = s ′

if and only if

Sds[[while ¬(x=1) do (y := y�x; x := x−1)]](s[y�→1]) = s ′

9.1 Direct Proofs of Program Correctness 211

Thus it is sufficient to prove that

ψ′
fac(Sds[[while ¬(x=1) do (y := y�x; x := x−1)]]) = tt (*)

(where ψ′
fac is defined in Example 9.4) as this will imply that

ψfac(Sds[[y := 1; while ¬(x=1) do (y := y�x; x := x−1)]]) = tt

We shall now reformulate (*) slightly to bring ourselves to a position where
we can use fixed point induction. Using the definition of Sds in Table 5.1, we
have

Sds[[while ¬(x=1) do (y := y�x; x := x−1)]] = FIX F

where the functional F is defined by

F g = cond(B[[¬(x=1)]], g ◦ Sds[[y := y�x; x := x−1]], id)

Using the semantic equations defining Sds, we can rewrite this definition as

(F g) s =

{

s if s x = 1

g(s[y�→(s y)�(s x)][x�→(s x)−1]) otherwise

We have already seen that F is a continuous function (for example, in
the proof of Proposition 5.47), and from Example 9.4 we have that ψ′

fac is an
admissible predicate. Thus we see from Theorem 9.5 that (*) follows if we show
that

ψ′
fac g = tt implies ψ′

fac(F g) = tt

To prove this implication, assume that ψ′
fac g = tt; that is, for all s and s ′

if g s = s ′ then s ′ y = (s y) � (s x)! and s x > 0

We shall prove that ψ′
fac(F g) = tt, that is for all states s and s ′

if (F g) s = s ′ then s ′ y = (s y) � (s x)! and s x > 0

Inspecting the definition of F, we see that there are two cases. First assume
that s x = 1. Then (F g) s = s and clearly s y = (s y) � (s x)! and s x > 0.
Next assume that s x �= 1. Then

(F g) s = g(s[y�→(s y)�(s x)][x�→(s x)−1])

From the assumptions about g, we then get that

s ′ y = ((s y)�(s x)) � ((s x)−1)! and (s x)−1 > 0

so that the desired result

s ′ y = (s y) � (s x)! and s x > 0

follows.

212 9. Axiomatic Program Verification

Exercise 9.6

Repeat Exercise 9.1 using the denotational semantics.

9.2 Partial Correctness Assertions

One may argue that the proofs above are too detailed to be practically useful;
the reason is that they are too closely connected with the semantics of the
programming language. One may therefore want to capture the essential prop-
erties of the various constructs so that it would be less demanding to conduct
proofs about given programs. Of course, the choice of “essential properties”
will determine the sort of properties that we may accomplish proving. In this
section, we shall be interested in partial correctness properties, and therefore
the “essential properties” of the various constructs will not include termination.

The idea is to specify properties of programs as assertions, or claims, about
them. An assertion is a triple of the form

{ P } S { Q }

where S is a statement and P and Q are predicates. Here P is called the
precondition and Q is called the postcondition. Intuitively, the meaning of
{ P } S { Q } is that

if P holds in the initial state, and

if the execution of S terminates when started in that state,

then Q will hold in the state in which S halts

Note that for { P } S { Q } to hold we do not require that S halt when started
in states satisfying P — merely that if it does halt, then Q holds in the final
state.

Logical Variables

As an example, we may write

{ x=n } y := 1; while ¬(x=1) do (y := x�y; x := x−1) { y=n! ∧ n>0 }

to express that if the value of x is equal to the value of n before the factorial
program is executed, then the value of y will be equal to the factorial of the value
of n after the execution of the program has terminated (if indeed it terminates).
Here n is a special variable called a logical variable, and these logical variables

9.2 Partial Correctness Assertions 213

must not appear in any statement considered. The role of these variables is to
“remember” the initial values of the program variables. Note that if we replace
the postcondition y=n! ∧ n>0 by the new postcondition y=x! ∧ x>0, then the
assertion above will express a relationship between the final value of y and the
final value of x, and this is not what we want. The use of logical variables solves
the problem because it allows us to refer to initial values of variables.

We shall thus distinguish between two kinds of variables:

– program variables and

– logical variables.

The states will determine the values of both kinds of variables, and since logical
variables do not occur in programs, their values will always be the same. In
the case of the factorial program, we know that the value of n is the same in
the initial state as in the final state. The precondition x = n expresses that n

has the same value as x in the initial state. Since the program will not change
the value of n, the postcondition y = n! will express that the final value of y is
equal to the factorial of the initial value of x.

The Assertion Language

There are two approaches concerning how to specify the preconditions and
postconditions of the assertions:

– the intensional approach versus

– the extensional approach.

In the intensional approach, the idea is to introduce an explicit language called
an assertion language and then the conditions will be formulae of that language.
This assertion language is in general much more powerful than the boolean
expressions, Bexp, introduced in Chapter 1. In fact, the assertion language has
to be very powerful indeed in order to be able to express all the preconditions
and postconditions that may interest us; we shall return to this in the next
section. The approach we shall follow is the extensional approach, and it is a
kind of shortcut. The idea is that the conditions are predicates; that is, functions
in State → T. Thus the meaning of { P } S { Q } may be reformulated as
saying that if P holds on a state s and if S executed from state s results in the
state s ′ then Q holds on s ′. We can write any predicates we like and therefore
the expressiveness problem mentioned above does not arise.

Each boolean expression b defines a predicate B[[b]]. We shall feel free to
let b include logical variables as well as program variables, so the precondition

214 9. Axiomatic Program Verification

x = n used above is an example of a boolean expression. To ease the readability,
we introduce the following notation:

P1 ∧ P2 for P where P s = (P1 s) and (P2 s)

P1 ∨ P2 for P where P s = (P1 s) or (P2 s)

¬P for P ′ where P ′ s = ¬(P s)

P [x �→A[[a]]] for P ′ where P ′ s = P (s[x �→A[[a]]s])

P1 ⇒ P2 for ∀s ∈ State: P1 s implies P2 s

When it is convenient, but not when defining formal inference rules, we shall
dispense with B[[· · ·]] and A[[· · ·]] inside square brackets as well as within pre-
conditions and postconditions.

Exercise 9.7

Show that

– B[[b[x �→a]]] = B[[b]][x �→A[[a]]] for all b and a,

– B[[b1 ∧ b2]] = B[[b1]] ∧ B[[b2]] for all b1 and b2, and

– B[[¬b]] = ¬B[[b]] for all b. �

The Inference System

The partial correctness assertions will be specified by an inference system con-
sisting of a set of axioms and rules. The formulae of the inference system have
the form

{ P } S { Q }

where S is a statement in the language While and P and Q are predicates.
The axioms and rules are summarized in Table 9.1 and will be explained below.
The inference system specifies an axiomatic semantics for While.

The axiom for assignment statements is

{ P [x �→A[[a]]] } x := a { P }

This axiom assumes that the execution of x := a starts in a state s that
satisfies P [x �→A[[a]]]; that is, in a state s, where s[x �→A[[a]]s] satisfies P . The
axiom expresses that if the execution of x := a terminates (which will always
be the case), then the final state will satisfy P . From the earlier definitions of
the semantics of While, we know that the final state will be s[x �→A[[a]]s] so it
is easy to see that the axiom is plausible.

9.2 Partial Correctness Assertions 215

[assp] { P [x �→A[[a]]] } x := a { P }

[skipp] { P } skip { P }

[compp]
{ P } S 1 { Q }, { Q } S 2 { R }

{ P } S 1; S 2 { R }

[ifp]
{ B[[b]] ∧ P } S 1 { Q }, { ¬B[[b]] ∧ P } S 2 { Q }

{ P } if b then S 1 else S 2 { Q }

[whilep]
{ B[[b]] ∧ P } S { P }

{ P } while b do S { ¬B[[b]] ∧ P }

[consp]
{ P ′ } S { Q ′ }
{ P } S { Q }

if P ⇒ P ′ and Q ′ ⇒ Q

Table 9.1 Axiomatic system for partial correctness

For skip, the axiom is

{ P } skip { P }

Thus, if P holds before skip is executed, then it also holds afterwards. This is
clearly plausible, as skip does nothing.

Axioms [assp] and [skipp] are really axiom schemes generating separate
axioms for each choice of predicate P . The meaning of the remaining constructs
is given by rules of inference rather than axiom schemes. Each such rule specifies
a way of deducing an assertion about a compound construct from assertions
about its constituents. For composition, the rule is

{ P } S 1 { Q }, { Q } S 2 { R }
{ P } S 1; S 2 { R }

This says that if P holds prior to the execution of S 1; S 2 and if the execution
terminates, then we can conclude that R holds in the final state provided that
there is a predicate Q for which we can deduce that

– if S 1 is executed from a state where P holds and if it terminates, then Q will
hold for the final state, and that

– if S 2 is executed from a state where Q holds and if it terminates, then R will
hold for the final state.

The rule for the conditional is
{ B[[b]] ∧ P } S 1 { Q }, { ¬B[[b]] ∧ P } S 2 { Q }

{ P } if b then S 1 else S 2 { Q }

216 9. Axiomatic Program Verification

The rule says that if if b then S 1 else S 2 is executed from a state where P
holds and if it terminates, then Q will hold for the final state provided that we
can deduce that

– if S 1 is executed from a state where P and b hold and if it terminates, then
Q holds on the final state, and that

– if S 2 is executed from a state where P and ¬b hold and if it terminates, then
Q holds on the final state.

The rule for the iterative statement is
{ B[[b]] ∧ P } S { P }

{ P } while b do S { ¬B[[b]] ∧ P }
The predicate P is called an invariant for the while-loop, and the idea is that
it will hold before and after each execution of the body S of the loop. The rule
says that if additionally b is true before each execution of the body of the loop,
then ¬b will be true when the execution of the while-loop has terminated.

To complete the inference system, we need one more rule of inference

{ P ′ } S { Q ′ }
{ P } S { Q }

if P ⇒ P ′ and Q ′ ⇒ Q

This rule says that we can strengthen the precondition P ′ and weaken the
postcondition Q ′. This rule is often called the rule of consequence.

Note that Table 9.1 specifies a set of axioms and rules just like the tables
defining the operational semantics in Chapter 2. The analogue of a derivation
tree will now be called an inference tree since it shows how to infer that a
certain property holds. Thus the leaves of an inference tree will be instances of
axioms and the internal nodes will correspond to instances of rules. We shall
say that the inference tree gives a proof of the property expressed by its root.
We shall write

�p { P } S { Q }

for the provability of the assertion { P } S { Q }. An inference tree is called
simple if it is an instance of one of the axioms and otherwise it is called com-
posite.

Example 9.8

Consider the statement while true do skip. From [skipp] we have (omitting
the B[[· · ·]])

�p { true } skip { true }

9.2 Partial Correctness Assertions 217

Since (true ∧ true) ⇒ true, we can apply the rule of consequence [consp] and
get

�p { true ∧ true } skip { true }

Hence, by the rule [whilep], we get

�p { true } while true do skip { ¬true ∧ true }

We have that ¬true ∧ true ⇒ true, so by applying [consp] once more we get

�p { true } while true do skip { true }

The inference above can be summarized by the following inference tree:

{ true } skip { true }

{ true ∧ true } skip { true }

{ true } while true do skip { ¬true ∧ true }

{ true } while true do skip { true }

It is now easy to see that we cannot claim that { P } S { Q } means that S will
terminate in a state satisfying Q when it is started in a state satisfying P . For
the assertion { true } while true do skip { true } this reading would mean
that the program would always terminate, and clearly this is not the case.

Example 9.9

To illustrate the use of the axiomatic semantics for verification, we shall prove
the assertion

{ x = n } y := 1; while ¬(x=1) do (y := y�x; x := x−1) { y = n! ∧ n > 0 }

where, for the sake of readability, we write y = n! ∧ n > 0 for the predicate P
given by

P s = (s y = (s n)! ∧ s n > 0)

The inference of this assertion proceeds in a number of stages. First we define
the predicate INV that is going to be the invariant of the while-loop:

INV s = (s x > 0 implies ((s y) � (s x)! = (s n)! and s n ≥ s x))

We shall then consider the body of the loop. Using [assp] we get

�p { INV [x�→x−1] } x := x−1 { INV }

Similarly, we get

218 9. Axiomatic Program Verification

�p { (INV [x�→x−1])[y�→y�x] } y := y � x { INV [x�→x−1] }
We can now apply the rule [compp] to the two assertions above and get

�p { (INV [x�→x−1])[y�→y�x] } y := y � x; x := x−1 { INV }
It is easy to verify that

(¬(x=1) ∧ INV) ⇒ (INV [x�→x−1])[y�→y�x]

so using the rule [consp] we get

�p { ¬(x = 1) ∧ INV } y := y � x; x := x−1 { INV }
We are now in a position to use the rule [whilep] and get

�p {̄ INV } while ¬(x=1) do (y := y�x; x := x−1) {¬(¬(x = 1)) ∧ INV }
Clearly we have

¬(¬(x = 1)) ∧ INV ⇒ y = n! ∧ n > 0

so applying rule [consp] we get

�p { INV } while ¬(x=1) do (y := y�x; x := x−1) { y = n! ∧ n > 0 }

We shall now apply the axiom [assp] to the statement y := 1 and get

�p { INV [y�→1] } y := 1 { INV }
Using that

x = n ⇒ INV [y�→1]

together with [consp], we get

�p { x = n } y := 1 { INV }
Finally, we can use the rule [compp] and get

�p {̄ x = n } y := 1; while ¬(x=1) do (y := y�x; x := x−1) { y = n! ∧ n > 0 }
as required.

Exercise 9.10

Specify a formula expressing the partial correctness property of the program of
Exercise 9.1. Construct an inference tree giving a proof of this property using
the inference system of Table 9.1.

Exercise 9.11

Suggest an inference rule for repeat S until b. You are not allowed to rely on
the existence of a while-construct in the language.

9.2 Partial Correctness Assertions 219

Exercise 9.12

Suggest an inference rule for for x := a1 to a2 do S . You are not allowed to
rely on the existence of a while-construct in the language.

Properties of the Semantics

In the operational and denotational semantics, we defined a notion of two
programs being semantically equivalent. We can define a similar notion for
the axiomatic semantics: two programs S 1 and S 2 are provably equivalent ac-
cording to the axiomatic semantics of Table 9.1 if for all preconditions P and
postconditions Q we have

�p { P } S 1 { Q } if and only if �p { P } S 2 { Q }

Exercise 9.13

Show that the following statements of While are provably equivalent in the
sense above:

– S ; skip and S

– S 1; (S 2; S 3) and (S 1; S 2); S 3 �

Proofs of properties of the axiomatic semantics will often proceed by induc-
tion on the shape of the inference tree:

Induction on the Shape of Inference Trees

1: Prove that the property holds for all the simple inference trees by
showing that it holds for the axioms of the inference system.

2: Prove that the property holds for all composite inference trees: For
each rule assume that the property holds for its premises (this is
called the induction hypothesis) and that the conditions of the rule
are satisfied and then prove that it also holds for the conclusion of the
rule.

Exercise 9.14 (**)

Using the inference rule for repeat S until b given in Exercise 9.11, show

220 9. Axiomatic Program Verification

that repeat S until b is provably equivalent to S ; while ¬b do S . Hint: It
is not too hard to show that what is provable about repeat S until b is also
provable about S ; while ¬b do S .

Exercise 9.15

Show that �p { P } S { true } for all statements S and properties P .

9.3 Soundness and Completeness

We shall now address the relationship between the inference system of Table
9.1 and the operational and denotational semantics of the previous chapters.
We shall prove the following.

– The inference system is sound: if some partial correctness property can be
proved using the inference system, then it does indeed hold according to the
semantics.

– The inference system is complete: if some partial correctness property does
hold according to the semantics, then we can also find a proof for it using
the inference system.

The completeness result can only be proved because we use the extensional
approach, where preconditions and postconditions are arbitrary predicates. In
the intensional approach, we only have a weaker result; we shall return to this
later in this section.

As the operational and denotational semantics are equivalent, we only need
to consider one of them here and we shall choose the natural semantics. The
partial correctness assertion { P } S { Q } is said to be valid if and only if

for all states s, if P s = tt and 〈S ,s〉 → s ′ for some s ′ then Q s ′ = tt

and we shall write this as

|=p { P } S { Q }

The soundness property is then expressed by

�p { P } S { Q } implies |=p { P } S { Q }

and the completeness property is expressed by

|=p { P } S { Q } implies �p { P } S { Q }

We have the following theorem.

9.3 Soundness and Completeness 221

Theorem 9.16

For all partial correctness assertions { P } S { Q }, we have

|=p { P } S { Q } if and only if �p { P } S { Q }

It is customary to prove the soundness and completeness results separately.

Soundness

Lemma 9.17

The inference system of Table 9.1 is sound; that is, for every partial correctness
formula { P } S { Q }, we have

�p { P } S { Q } implies |=p { P } S { Q }

Proof: The proof is by induction on the shape of the inference tree used to
infer �p { P } S { Q }. This amounts to nothing but a formalization of the
intuitions we gave when introducing the axioms and rules.

The case [assp]: We shall prove that the axiom is valid, so suppose that

〈x := a, s〉 → s ′

and (P [x �→A[[a]]]) s = tt. We shall then prove that P s ′ = tt. From [assns]
we get that s ′ = s[x �→A[[a]]s], and from (P [x �→A[[a]]]) s = tt we get that P
(s[x �→A[[a]]s]) = tt. Thus P s ′ = tt, as was to be shown.

The case [skipp]: This case is immediate using the clause [skipns].

The case [compp]: We assume that

|=p { P } S 1 { Q } and |=p { Q } S 2 { R }

and we have to prove that |=p { P } S 1; S 2 { R }. So consider arbitrary states
s and s ′′ such that P s = tt and

〈S 1;S 2, s〉 → s ′′

From [compns], we get that there is a state s ′ such that

〈S 1, s〉 → s ′ and 〈S 2, s ′〉 → s ′′

From 〈S 1, s〉 → s ′, P s = tt, and |=p { P } S 1 { Q }, we get Q s ′ = tt. From
〈S 2, s ′〉 → s ′′, Q s ′ = tt, and |=p { Q } S 2 { R }, it follows that R s ′′ = tt as
was to be shown.

The case [ifp]: Assume that

222 9. Axiomatic Program Verification

|=p { B[[b]] ∧ P } S 1 { Q } and |=p { ¬B[[b]] ∧ P } S 2 { Q }

To prove |=p { P } if b then S 1 else S 2 { Q }, consider arbitrary states s
and s ′ such that P s = tt and

〈if b then S 1 else S 2, s〉 → s ′

There are two cases. If B[[b]]s = tt, then we get (B[[b]] ∧ P) s = tt, and from
[ifns] we have

〈S 1, s〉 → s ′

From the first assumption, we therefore get Q s ′ = tt. If B[[b]]s = ff, the result
follows in a similar way from the second assumption.

The case [whilep]: Assume that

|=p { B[[b]] ∧ P } S { P }

To prove |=p { P } while b do S { ¬B[[b]] ∧ P }, consider arbitrary states s
and s ′′ such that P s = tt and

〈while b do S , s〉 → s ′′

and we shall show that (¬B[[b]]∧P) s ′′ = tt. We shall now proceed by induction
on the shape of the derivation tree in the natural semantics. One of two cases
applies. If B[[b]]s = ff, then s ′′ = s according to [whileff

ns] and clearly (¬B[[b]] ∧
P) s ′′ = tt as required. Next consider the case where B[[b]]s = tt and

〈S , s〉 → s ′ and 〈while b do S , s ′〉 → s ′′

for some state s ′. Thus (B[[b]] ∧ P) s = tt and we can then apply the assumption
|=p { B[[b]] ∧ P } S { P } and get that P s ′ = tt. The induction hypothesis
can now be applied to the derivation 〈while b do S , s ′〉 → s ′′ and gives that
(¬B[[b]] ∧ P) s ′′ = tt. This completes the proof of this case.

The case [consp]: Suppose that

|=p { P ′ } S { Q ′ } and P ⇒ P ′ and Q ′ ⇒ Q

To prove |=p { P } S { Q }, consider states s and s ′ such that P s = tt and

〈S , s〉 → s ′

Since P s = tt and P ⇒ P ′ we also have P ′ s = tt and the assumption then
gives us that Q ′ s ′ = tt. From Q ′ ⇒ Q, we therefore get Q s ′ = tt, as was
required.

9.3 Soundness and Completeness 223

Exercise 9.18

Show that the inference rule for repeat S until b suggested in Exercise 9.11
preserves validity. Argue that this means that the entire proof system consisting
of the axioms and rules of Table 9.1 together with the rule of Exercise 9.11 is
sound.

Exercise 9.19

Define |=′ { P } S { Q } to mean that

for all states s such that P s = tt there exists a state s ′

such that Q s ′ = tt and 〈S , s〉 → s ′

Show that it is not the case that �p { P } S { Q } implies |=′ { P } S { Q }
and conclude that the proof system of Table 9.1 cannot be sound with respect
to this definition of validity.

Completeness (in the Extensional Approach)

Before turning to the proof of the completeness result, we shall consider a
special predicate wlp(S , Q) defined for each statement S and predicate Q :

wlp(S , Q) s = tt

if and only if

for all states s ′: if 〈S , s〉 → s ′ then Q s ′ = tt

The predicate is called the weakest liberal precondition for Q and it satisfies
the following fact.

Fact 9.20

For every statement S and predicate Q, we have

– |=p { wlp(S , Q) } S { Q } (*)

– if |=p { P } S { Q } then P ⇒ wlp(S , Q) (**)

meaning that wlp(S , Q) is the weakest possible precondition for S and Q .

Proof: To verify that (*) holds, let s and s ′ be states such that 〈S , s〉 → s ′

and wlp(S , Q) s = tt. From the definition of wlp(S , Q), we get that Q s ′ =
tt as required. To verify that (**) holds, assume that |=p { P } S { Q } and

224 9. Axiomatic Program Verification

let P s = tt. If 〈S , s〉 → s ′ then Q s ′ = tt (because |=p { P } S { Q }) so
clearly wlp(S ,Q) s = tt.

Exercise 9.21

Prove that the predicate INV of Example 9.9 satisfies

INV = wlp(while ¬(x=1) do (y := y�x; x := x−1), y = n! ∧ n > 0)

Exercise 9.22

Another interesting predicate called the strongest postcondition for S and P
can be defined by

sp(P , S) s ′ = tt

if and only if

there exists s such that 〈S , s〉 → s ′ and P s = tt

Prove that

– |=p { P } S { sp(P , S) }

– if |=p { P } S { Q } then sp(P , S) ⇒ Q

Thus sp(P , S) is the strongest possible postcondition for P and S .

Lemma 9.23

The inference system of Table 9.1 is complete; that is, for every partial correct-
ness formula { P } S { Q } we have

|=p { P } S { Q } implies �p { P } S { Q }

Proof: The completeness result follows if we can infer

�p { wlp(S , Q) } S { Q } (*)

for all statements S and predicates Q . To see this, suppose that

|=p { P } S { Q }

Then Fact 9.20 gives that

P ⇒ wlp(S ,Q)

so that (*) and [consp] give

9.3 Soundness and Completeness 225

�p { P } S { Q }

as required.
To prove (*), we proceed by structural induction on the statement S .

The case x := a: Based on the natural semantics, it is easy to verify that

wlp(x := a, Q) = Q [x �→A[[a]]]

so the result follows directly from [assp].

The case skip: Since wlp(skip, Q) = Q, the result follows from [skipp].

The case S 1;S 2: The induction hypothesis applied to S 1 and S 2 gives

�p { wlp(S 2, Q) } S 2 { Q }

and

�p { wlp(S 1, wlp(S 2, Q)) } S 1 { wlp(S 2, Q) }

so that [compp] gives

�p { wlp(S 1, wlp(S 2, Q)) } S 1;S 2 { Q }

We shall now prove that

wlp(S 1;S 2, Q) ⇒ wlp(S 1, wlp(S 2, Q))

as then [consp] will give the required proof in the inference system. So assume
that wlp(S 1;S 2, Q) s = tt and we shall show that wlp(S 1, wlp(S 2, Q)) s = tt.
This is obvious unless there is a state s ′ such that 〈S 1, s〉 → s ′ and then we
must prove that wlp(S 2, Q) s ′ = tt. However, this is obvious, too, unless there
is a state s ′′ such that 〈S 2, s ′〉 → s ′′ and then we must prove that Q s ′′ =
tt. But by [compns] we have 〈S 1;S 2, s〉 → s ′′ so that Q s ′′ = tt follows from
wlp(S 1;S 2, Q) s = tt.

The case if b then S 1 else S 2: The induction hypothesis applied to S 1 and
S 2 gives

�p { wlp(S 1, Q) } S 1 { Q } and �p { wlp(S 2, Q) } S 2 { Q }

Define the predicate P by

P = (B[[b]] ∧ wlp(S 1, Q)) ∨ (¬B[[b]] ∧ wlp(S 2, Q))

Then we have

(B[[b]] ∧ P) ⇒ wlp(S 1, Q) and (¬B[[b]] ∧ P) ⇒ wlp(S 2, Q)

so [consp] can be applied twice and gives

�p { B[[b]] ∧ P } S 1 { Q } and �p { ¬B[[b]] ∧ P } S 2 { Q }

226 9. Axiomatic Program Verification

Using [ifp], we therefore get

�p { P } if b then S 1 else S 2 { Q }
To see that this is the desired result, it suffices to show that

wlp(if b then S 1 else S 2, Q) ⇒ P

and this is straightforward by cases on the value of b.

The case while b do S : Define the predicate P by

P = wlp(while b do S , Q)

We first show that

(¬B[[b]] ∧ P) ⇒ Q (**)

(B[[b]] ∧ P) ⇒ wlp(S ,P) (***)

To verify (**), let s be such that (¬B[[b]] ∧ P) s = tt. Then it must be the case
that 〈while b do S , s〉 → s so we have Q s = tt. To verify (***), let s be such
that (B[[b]] ∧ P) s = tt and we shall show that wlp(S ,P) s = tt. This is obvious
unless there is a state s ′ such that 〈S , s〉 → s ′ in which case we shall prove that
P s ′ = tt. We have two cases. First we assume that 〈while b do S , s ′〉 → s ′′

for some s ′′. Then [whilett
ns] gives us that 〈while b do S , s〉 → s ′′ and since P

s = tt we get that Q s ′′ = tt using Fact 9.20. But this means that P s ′ = tt
as was required. In the second case, we assume that 〈while b do S , s ′〉 → s ′′

does not hold for any state s ′′. But this means that P s ′ = tt holds vacuously
and we have finished the proof of (***).

The induction hypothesis applied to the body S of the while-loop gives

�p { wlp(S ,P) } S { P }
and using (***) together with [consp] we get

�p { B[[b]] ∧ P } S { P }
We can now apply the rule [whilep] and get

�p { P } while b do S { ¬B[[b]] ∧ P }
Finally, we use (**) together with [consp] and get

�p { P } while b do S { Q }
as required.

Exercise 9.24

Prove that the inference system for While extended with repeat S until b
as in Exercise 9.11 is complete.

9.3 Soundness and Completeness 227

Exercise 9.25 (*)

Prove the completeness of the inference system of Table 9.1 using the strongest
postconditions of Exercise 9.22 rather than the weakest liberal preconditions as
used in the proof of Lemma 9.23.

Exercise 9.26

Define a notion of validity based on the denotational semantics of Chapter 5.
Then prove the soundness of the inference system of Table 9.1 using this defini-
tion; that is, without using the equivalence between the denotational semantics
and the operational semantics.

Exercise 9.27

Use the definition of validity of Exercise 9.26 to prove the completeness of the
inference system of Table 9.1.

Expressiveness Problems (in the Intensional Approach)

So far we have only considered the extensional approach, where the precon-
ditions and postconditions of the formulae are predicates. In the intensional
approach, they are formulae of some assertion language L. The axioms and
rules of the inference system will be as in Table 9.1, the only difference being
that the preconditions and postconditions are formulae of L and that opera-
tions such as P [x �→A[[a]]], P1 ∧ P2, and P1 ⇒ P2 are operations on formulae
of L.

It will be natural to let L include the boolean expressions of While. The
soundness proof of Lemma 9.17 then carries directly over to the intensional
approach. Unfortunately, this is not the case for the completeness proof of
Lemma 9.23. The reason is that the predicates wlp(S , Q) used as preconditions
now have to be represented as formulae of L and this may not be possible.

To illustrate the problems, let S be a statement, for example a universal
program in the sense of recursion theory, that has an undecidable Halting
problem. Further, suppose that L only contains the boolean expressions of
While. Finally, assume that there is a formula bS of L such that for all states
s we have

B[[bS]] s = tt if and only if wlp(S , false) s = tt

Then also ¬bS is a formula of L. We have

228 9. Axiomatic Program Verification

B[[bS]] s = tt if and only if the computation of S on s loops

and hence

B[[¬bS]] s = tt if and only if the computation of S on s terminates

We now have a contradiction: the assumptions about S ensure that B[[¬bS]]
must be an undecidable function; on the other hand, Table 1.2 suggests an
obvious algorithm for evaluating B[[¬bS]]. Hence our assumption about the
existence of bS must be mistaken. Consequently, we cannot mimic the proof of
Lemma 9.23.

The obvious remedy is to extend L to be a much more powerful language
that allows quantification as well. A central concept is that L must be expressive
with respect to While and its semantics, and one then shows that Table 9.1 is
relatively complete (in the sense of Cook). It is beyond the scope of this book
to go deeper into these matters, but we provide references in Chapter 11.

10
More on Axiomatic Program Verification

Having introduced the axiomatic approach to proving partial correctness prop-
erties in the previous chapter, we now turn to the more demanding situation
where termination guarantees need to be established as well. In the first part of
the chapter, we present an axiomatic system for proving total correctness prop-
erties; that is, properties that in addition to partial correctness also guarantee
termination of the program of interest.

In the second part of the chapter, we study the more demanding scenario
where we want to reason about the execution time of programs. To do so, we
first extend the natural semantics of Chapter 2 with a notion of time and then
we further develop the total correctness axiomatic system to reason about time:
the resulting axiomatic system can be used to prove the order of magnitude of
the execution time of programs.

10.1 Total Correctness Assertions

In this section, we shall modify the partial correctness axiomatic system to
prove total correctness assertions, thereby allowing us to reason about termi-
nation properties. At the end of the section, we shall discuss extensions of the
partial correctness and the total correctness axiomatic systems to handle more
language constructs, in particular recursive procedures.

For the total correctness properties, we shall now consider formulae of the
form

230 10. More on Axiomatic Program Verification

{ P } S { ⇓ Q }

The idea is that

if the precondition P is fulfilled

then S is guaranteed to terminate (as recorded by the symbol ⇓)

and the final state will satisfy the postcondition Q .

This is formalized by defining validity of { P } S { ⇓ Q } by

|=t { P } S { ⇓ Q }

if and only if

for all states s, if P s = tt then there exists s ′ such that

Q s ′ = tt and 〈S , s〉 → s ′

The inference system for total correctness assertions is very similar to that for
partial correctness assertions, the only difference being that the rule for the
while-construct has changed. The complete set of axioms and rules is given in
Table 10.1. We shall write

�t { P } S { ⇓ Q }

if there exists an inference tree with the formula { P } S { ⇓ Q } as root; that
is, if the formula is provably in the inference system.

In the rule [whilet], we use a parameterized family P(z) of predicates for
the invariant. The idea is that z is the number of unfoldings of the while-loop
that will be necessary. So if the while-loop does not have to be unfolded at all,
then P(0) holds and it must imply that b is false. If the while-loop has to be
unfolded z+1 times, then P(z+1) holds and b must hold before the body of
the loop is executed; then P(z) will hold afterwards so that we have decreased
the total number of times the loop remains to be unfolded. The precondition of
the conclusion of the rule expresses that there exists a bound on the number of
times the loop has to be unfolded and the postcondition expresses that when
the while-loop has terminated then no more unfoldings are necessary.

Example 10.1

The total correctness of the factorial statement can be expressed by the asser-
tion

{ x > 0 ∧ x = n } y := 1; while ¬(x=1) do (y := y�x; x := x−1) { ⇓ y = n! }

where y = n! is an abbreviation for the predicate

P where P s = (s y = (s n)!)

10.1 Total Correctness Assertions 231

[asst] { P [x �→A[[a]]] } x := a { ⇓ P }

[skipt] { P } skip { ⇓ P }

[compt]
{ P } S 1 { ⇓ Q }, { Q } S 2 { ⇓ R }

{ P } S 1; S 2 { ⇓ R }

[ift]
{ B[[b]] ∧ P } S 1 { ⇓ Q }, { ¬B[[b]] ∧ P } S 2 { ⇓ Q }

{ P } if b then S 1 else S 2 { ⇓ Q }

[whilet]
{ P(z+1) } S { ⇓ P(z) }

{ ∃z.P(z) } while b do S { ⇓ P(0) }
where P(z+1) ⇒ B[[b]], P(0) ⇒ ¬B[[b]]

and z ranges over natural numbers (that is, z≥0)

[const]
{ P ′ } S { ⇓ Q ′ }
{ P } S { ⇓ Q }

where P ⇒ P ′ and Q ′ ⇒ Q

Table 10.1 Axiomatic system for total correctness

In addition to expressing that the final value of y is the factorial of the initial
value of x, the assertion also expresses that the program does indeed terminate
on all states satisfying the precondition. The inference of this assertion proceeds
in a number of stages. First we define the predicate INV (z) that is going to be
the invariant of the while-loop

INV (z) s = (s x > 0 and (s y) � (s x)! = (s n)! and s x = z + 1)

We shall first consider the body of the loop. Using [asst] we get

�t { INV (z)[x�→x−1] } x := x−1 { ⇓ INV (z) }

Similarly, we get

�t { (INV (z)[x�→x−1])[y�→y�x] } y := y � x { ⇓ INV (z)[x�→x−1] }

We can now apply the rule [compt] to the two assertions above and get

�t { (INV (z)[x�→x−1])[y�→y�x] } y := y � x; x := x−1 { ⇓ INV (z) }

It is easy to verify that

INV (z+1) ⇒ (INV (z)[x�→x−1])[y�→y�x]

so using the rule [const] we get

�t { INV (z+1) } y := y � x; x := x−1 { ⇓ INV (z) }

232 10. More on Axiomatic Program Verification

It is straightforward to verify that

INV (0) ⇒ ¬(¬(x=1))

and

INV (z+1) ⇒ ¬(x=1)

Therefore we can use the rule [whilet] and get

�t { ∃z.INV (z) } while ¬(x=1) do (y := y�x; x := x−1) { ⇓ INV (0) }

We shall now apply the axiom [asst] to the statement y := 1 and get

�t { (∃z.INV (z))[y�→1] } y := 1 { ⇓ ∃z.INV (z) }

so using [compt] we get

�t{ (∃z.INV(z))[y�→1] } y:=1; while¬(x=1) do (y:=y�x; x:=x−1) { ⇓INV(0) }

Clearly we have

x > 0 ∧ x = n ⇒ (∃z.INV (z))[y�→1]

and

INV (0) ⇒ y = n!

so applying rule [const] we get

�t{x> 0 ∧ x= n } y := 1; while ¬(x=1) do (y := y�x; x := x−1) { ⇓ y = n! }

as required.

Exercise 10.2

Suggest a total correctness inference rule for repeat S until b. You are not
allowed to rely on the existence of a while-construct in the programming lan-
guage.

Lemma 10.3

The total correctness system of Table 10.1 is sound; that is, for every total
correctness formula { P } S { ⇓ Q } we have

�t { P } S { ⇓ Q } implies |=t { P } S { ⇓ Q }

Proof: The proof proceeds by induction on the shape of the inference tree just
as in the proof of Lemma 9.17.

The case [asst]: We shall prove that the axiom is valid, so assume that s is
such that (P [x �→A[[a]]]) s = tt and let s ′ = s[x �→A[[a]]s]. Then [assns] gives

10.1 Total Correctness Assertions 233

〈x := a, s〉 → s ′

and from (P [x �→A[[a]]]) s = tt we get P s ′ = tt as was to be shown.

The case [skipt]: This case is immediate.

The case [compt]: We assume that

|=t { P } S 1 { ⇓ Q } (*)

and

|=t { Q } S 2 { ⇓ R } (**)

and we have to prove that |=t { P } S 1; S 2 { ⇓ R }. So let s be such that
P s = tt. From (*) we get that there exists a state s ′ such that Q s ′ = tt and

〈S 1, s〉 → s ′

Since Q s ′ = tt, we get from (**) that there exists a state s ′′ such that R s ′′

= tt and

〈S 2, s ′〉 → s ′′

Using [compns, we therefore get

〈S 1; S 2, s〉 → s ′′

and since R s ′′ = tt we have finished this case.

The case [ift]: Assume that

|=t { B[[b]] ∧ P } S 1 { ⇓ Q } (*)

and

|=t { ¬B[[b]] ∧ P } S 2 { ⇓ Q }

To prove |=t { P } if b then S 1 else S 2 { ⇓ Q }, consider a state s such that
P s = tt. We have two cases. If B[[b]]s = tt, then (B[[b]] ∧ P) s = tt and from
(*) we get that there is a state s ′ such that Q s ′ = tt and

〈S 1, s〉 → s ′

From [ifns] we then get

〈if b then S 1 else S 2, s〉 → s ′

as was to be proved. If B[[b]]s = ff the result follows in a similar way from the
second assumption.

The case [whilet]: Assume that

|=t { P(z+1) } S { ⇓ P(z) } (*)

234 10. More on Axiomatic Program Verification

and

P(z+1) ⇒ B[[b]]

and

P(0) ⇒ ¬B[[b]]

To prove |=t { ∃z.P(z) } while b do S { ⇓ P(0) }, it is sufficient to prove that
for all natural numbers z

if P(z) s = tt then there exists a state s ′ such that

P(0) s ′ = tt and 〈while b do S , s〉 → s ′
(**)

So consider a state s such that P(z) s = tt. The proof is now by numerical
induction on z.

First assume that z = 0. The assumption P(0) ⇒ ¬B[[b]] gives that B[[b]]s
= ff and from [whileff

ns] we get

〈while b do S , s〉 → s

Since P(0) s = tt, this proves the base case.
For the induction step assume that (**) holds for all states satisfying P(z)

and that P(z+1) s = tt. From (*), we get that there is a state s ′ such that
P(z) s ′ = tt and

〈S , s〉 → s ′

The numerical induction hypothesis applied to s ′ gives that there is some state
s ′′ such that P(0) s ′′ = tt and

〈while b do S , s ′〉 → s ′′

Furthermore, the assumption P(z+1) ⇒ B[[b]] gives B[[b]]s = tt. We can there-
fore apply [whilett

ns] and get that

〈while b do S , s〉 → s ′′

Since P(0) s ′′ = tt, this completes the proof of (**).

The case [const]: Suppose that

|=t { P ′ } S { ⇓ Q ′ }

and

P ⇒ P ′ and Q ′ ⇒ Q

To prove |=t { P } S { ⇓ Q }, consider a state s such that P s = tt. Then P ′

s = tt and there is a state s ′ such that Q ′ s ′ = tt and

〈S , s〉 → s ′

10.1 Total Correctness Assertions 235

However, we also have that Q s ′ = tt and this proves the result.

Exercise 10.4

Show that the inference rule for repeat S until b suggested in Exercise 10.2
preserves validity. Argue that this means that the entire proof system consisting
of the axioms and rules of Table 10.1 together with the rule of Exercise 10.2 is
sound.

Exercise 10.5 (*)

Prove that the inference system of Table 10.1 is complete, that is

|=t { P } S { ⇓ Q } implies �t { P } S { ⇓ Q }

Exercise 10.6 (*)

Prove that

if �t { P } S { ⇓ Q } then �p { P } S { Q }

Does the converse result hold?

Extensions of While

We conclude this section by considering an extension of While with non-
determinism and (parameterless) procedures. The syntax of the extended lan-
guage is given by

S ::= x := a | skip | S 1 ; S 2 | if b then S 1 else S 2

| while b do S | S 1 or S 2

| begin proc p is S 1; S 2 end | call p

Note that in begin proc p is S 1; S 2 end the body of p is S 1 and the body of
the construct itself is S 2.

Non-determinism. It is straightforward to handle non-determinism (in the
sense of Section 3.1) in the axiomatic approach. The idea is that an assertion
holds for S 1 or S 2 if the similar assertion holds for S 1 as well as for S 2. The
motivation for this is that when reasoning about the statement we have no

236 10. More on Axiomatic Program Verification

way of influencing whether S 1 or S 2 is chosen. For partial correctness, we thus
extend Table 9.1 with the rule

[orp]
{ P } S 1 { Q }, { P } S 2 { Q }

{ P } S 1 or S 2 { Q }
For total correctness, we extend Table 10.1 with the rule

[ort]
{ P } S 1 { ⇓ Q }, { P } S 2 { ⇓ Q }

{ P } S 1 or S 2 { ⇓ Q }
When dealing with soundness and completeness of these rules, one must be
careful to use a semantics that models “non-deterministic choice” in the proper
manner. We saw in Section 3.1 that this is the case for structural operational
semantics but not for natural semantics. With respect to the structural oper-
ational semantics, one can show that the rules above are sound and that the
resulting inference systems are complete. If one insists on using the natural
semantics, the or-construct would model a kind of “angelic choice” and both
rules would be sound. However, only the partial correctness inference system
will be complete.

Non-recursive procedures. For the sake of simplicity, we shall restrict our at-
tention to statements with at most one procedure declaration. For non-recursive
procedures the idea is that an assertion that holds for the body of the procedure
also holds for the calls of the procedure. This motivates extending the partial
correctness inference system of Table 9.1 with the rule

[callp]
{ P } S { Q }

{ P } call p { Q }
where p is defined by proc p is S

Similarly, the inference system for total correctness in Table 10.1 can be ex-
tended with the rule

[callt]
{ P } S { ⇓ Q }

{ P } call p { ⇓ Q }
where p is defined by proc p is S

In both cases, the resulting inference system can be proved sound and complete.

Recursive procedures. The rules above turn out to be insufficient when pro-
cedures are allowed to be recursive: in order to prove an assertion for call p,
one has to prove the assertion for the body of the procedure, and this implies
that one has to prove an assertion about each occurrence of call p inside the
body and so on.

Consider first the case of partial correctness assertions. In order to prove
some property { P } call p { Q }, we shall prove the similar property for the

10.1 Total Correctness Assertions 237

body of the procedure but under the assumption that { P } call p { Q } holds
for the recursive calls of p. Often this is expressed by a rule of the form

[callrecp]
{ P } call p { Q } �p { P } S { Q }

{ P } call p { Q }
where p is defined by proc p is S

The premise of the rule expresses that { P } S { Q } is provable under the
assumption that { P } call p { Q } can be proved for the recursive calls
present in S . The conclusion expresses that { P } call p { Q } holds for all
calls of p.

Example 10.7

Consider the statement

begin proc fac is (if x = 1 then skip

else (y := x�y; x := x−1; call fac));
y := 1; call fac

end

We want to prove that the final value of y is the factorial of the initial value of
x. We shall prove that

{ x > 0 ∧ n = y � x! } call fac { y = n }

where x > 0 ∧ n = y � x! is an abbreviation for the predicate P defined by

P s = (s x > 0 and s n = s y � (s x)!)

We assume that

�p { x > 0 ∧ n = y � x! } call fac { y = n } (*)

holds for the recursive calls of fac. We shall then construct a proof of

{ x > 0 ∧ n = y � x! }

if x = 1 then skip else (y := x�y; x := x−1; call fac)

{ y = n }

(**)

and, using [callrecp], we obtain a proof of (*) for all occurrences of call fac. To
prove (**), we first use the assumption (*) to get

�p { x > 0 ∧ n = y � x! } call fac { y = n }

Then we apply [assp] and [compp] twice and get

238 10. More on Axiomatic Program Verification

�p { ((x > 0 ∧ n = y � x!)[x�→x−1])[y�→x�y] }

y := x�y; x := x−1; call fac

{ y = n }
We have

¬(x=1) ∧ (x > 0 ∧ n = y � x!) ⇒ ((x > 0 ∧ n = y � x!)[x�→x−1])[y�→x�y]

so using [consp] we get

�p { ¬(x=1) ∧ (x > 0 ∧ n = y � x!) }

y := x�y; x := x−1; call fac

{ y = n }
Using that

x=1 ∧ x > 0 ∧ n = y � x! ⇒ y = n

it is easy to prove

�p { x=1 ∧ x > 0 ∧ n = y � x! } skip { y = n }

so [ifp] can be applied and gives a proof of (**).

Table 9.1 extended with the rule [callrecp] can be proved to be sound. How-
ever, in order to get a completeness result, the inference system has to be
extended with additional rules. To illustrate why this is necessary, consider the
following version of the factorial program:

begin proc fac is if x=1 then y := 1

else (x := x−1; call fac; x := x+1; y := x�y);
call fac

end

Assume that we want to prove that this program does not change the value of
x; that is,

{ x = n } call fac { x = n } (*)

In order to do that, we assume that we have a proof of (*) for the recursive
call of fac and we have to construct a proof of the property for the body of
the procedure. It seems that in order to do so, we must construct a proof of

{ x = n−1 } call fac { x = n−1 }

and there are no axioms and rules that allow us to obtain such a proof from
(*). We shall not go further into this, but Chapter 11 will provide appropriate
references.

10.2 Assertions for Execution Time 239

The case of total correctness is slightly more complicated because we have
to bound the number of recursive calls. The rule adopted is

[callrect]
{ P(z) } call p { ⇓ Q } �t { P(z+1) } S { ⇓ Q }

{ ∃z.P(z) } call p { ⇓ Q }

where ¬P(0) holds
and z ranges over the natural numbers (that is, z≥0)
and where p is defined by proc p is S

The premise of this rule expresses that if we assume that we have a proof of
{ P(z) } call p { ⇓ Q } for all recursive calls of p of depth at most z, then we
can prove { P(z+1) } S { ⇓ Q }. The conclusion expresses that for any depth
of recursive calls we have a proof of { ∃z.P(z) } call p { ⇓ Q }.

The inference system of Table 10.1 extended with the rule [callrect] can be
proved to be sound. If it is extended with additional rules (as discussed above),
it can also be proved to be complete.

10.2 Assertions for Execution Time

A proof system for total correctness can be used to prove that a program does
indeed terminate, but it does not say how many resources it needs in order
to terminate. We shall now show how to extend the total correctness proof
system of Table 10.1 to prove the order of magnitude of the execution time of
a statement.

It is easy to give some informal guidelines for how to determine the order
of magnitude of the execution time:

– assignment: the execution time is O(1) (that is, it is bounded by a constant),

– skip: the execution time is O(1),

– composition: the execution time is, to within a constant factor, the sum of
the execution times of each of the statements,

– conditional: the execution time is, to within a constant factor, the largest of
the execution times of the two branches, and

– iteration: the execution time of the loop is, to within a constant factor, the
sum, over all iterations around the loop, of the time to execute the body.

The idea now is to formalize these rules by giving an inference system for
reasoning about execution times. To do so, we shall proceed in three stages:

240 10. More on Axiomatic Program Verification

– first we specify the exact time needed to evaluate arithmetic and boolean
expressions,

– next we extend the natural semantics of Chapter 2 to count the exact exe-
cution time, and

– finally we extend the total correctness proof system to prove the order of
magnitude of the execution time of statements.

However, before addressing these issues, we have to fix a cost model; that is, we
have to determine how to count the cost of the various operations. The actual
choice is not so important, but for the sake of simplicity we have based it upon
the abstract machine of Chapter 4. The idea is that each instruction of the
machine takes one time unit and the time required to execute an arithmetic
expression, a boolean expression, or a statement will be the time required to
execute the generated code. However, no knowledge of Chapter 4 is required in
the sequel.

Exact Execution Times for Expressions

The time needed to evaluate an arithmetic expression is given by a function

T A: Aexp → Z

so T A[[a]] is the number of time units required to evaluate a in any state.
Similarly, the function

T B: Bexp → Z

determines the number of time units required to evaluate a boolean expression.
These functions are defined in Table 10.2.

Exact Execution Times for Statements

Turning to the execution time for statements, we shall extend the natural se-
mantics of Table 2.1 to specify the time requirements. This is done by extending
the transitions to have the form

〈S , s〉 →t s ′

meaning that if S is executed from state s, then it will terminate in state s ′

and exactly t time units will be required for this. The extension of Table 2.1 is
fairly straightforward and is given in Table 10.3.

10.2 Assertions for Execution Time 241

T A[[n]] = 1

T A[[x]] = 1

T A[[a1 + a2]] = T A[[a1]] + T A[[a2]] + 1

T A[[a1 � a2]] = T A[[a1]] + T A[[a2]] + 1

T A[[a1 − a2]] = T A[[a1]] + T A[[a2]] + 1

T B[[true]] = 1

T B[[false]] = 1

T B[[a1 = a2]] = T A[[a1]] + T A[[a2]] + 1

T B[[a1 ≤ a2]] = T A[[a1]] + T A[[a2]] + 1

T B[[¬b]] = T B[[b]] + 1

T B[[b1 ∧ b2]] = T B[[b1]] + T B[[b2]] + 1

Table 10.2 Exact execution times for expressions

The Inference System

The inference system for proving the order of magnitude of the execution time
of statements will have assertions of the form

{ P } S { e ⇓ Q }

where P and Q are predicates as in the previous inference systems and e is an
arithmetic expression (that is, e ∈ Aexp). The idea is that

if the execution of S is started in a state satisfying P

then it terminates in a state satisfying Q

and the required execution time is O(e) (i.e., has order of magnitude e).

So, for example,

{ x = 3 } y := 1; while ¬(x=1) do (y := y�x; x := x−1) { 1 ⇓ true }

expresses that the execution of the factorial statement from a state where x

has the value 3 has order of magnitude 1; that is, it is bounded by a constant.
Similarly,

{ x > 0 } y := 1; while ¬(x=1) do (y := y�x; x := x−1) { x ⇓ true }

expresses that the execution of the factorial statement on a state where x is
positive has order of magnitude x.

242 10. More on Axiomatic Program Verification

[asstns] 〈x := a, s〉 →T A[[a]]+1 s[x �→A[[a]]s]

[skiptns] 〈skip, s〉 →1 s

[comptns]
〈S 1,s〉 →t1 s ′, 〈S 2,s ′〉 →t2 s ′′

〈S 1;S 2, s〉 →t1+t2 s ′′

[if tt
tns]

〈S 1,s〉 →t s ′

〈if b then S 1 else S 2, s〉 →T B[[b]]+t+1 s ′
if B[[b]]s = tt

[ifff
tns]

〈S 2,s〉 →t s ′

〈if b then S 1 else S 2, s〉 →T B[[b]]+t+1 s ′
if B[[b]]s = ff

[while tt
tns]

〈S ,s〉 →t s ′, 〈while b do S , s ′〉 →t′ s ′′

〈while b do S , s〉 →T B[[b]]+t+t′+2 s ′′
if B[[b]]s = tt

[whileff
tns] 〈while b do S , s〉 →T B[[b]]+3 s if B[[b]]s = ff

Table 10.3 Natural semantics for While with exact execution times

Formally, validity of the formula { P } S { e ⇓ Q } is defined by

|=e { P } S { e ⇓ Q }

if and only if

there exists a natural number k such that for all states s,

if P s = tt then there exists a state s ′ and a number t such that

Q s ′ = tt, 〈S , s〉 →t s ′, and t ≤ k � (A[[e]]s)

Note that the expression e is evaluated in the initial state rather than the final
state.

The axioms and rules of the inference system are given in Table 10.4. Prov-
ability of the assertion { P } S { e ⇓ Q } in the inference system is written

�e { P } S { e ⇓ Q }

The assignment statement and the skip statement can be executed in constant
time and therefore we use the arithmetic expression 1.

The rule [compe] assumes that we have proofs showing that e1 and e2 are
the orders of magnitude of the execution times for the two statements. However,
e1 expresses the time requirements of S 1 relative to the initial state of S 1 and
e2 expresses the time requirements relative to the initial state of S 2. This means
that we cannot simply use e1 + e2 as the time requirement for S 1; S 2. We have

10.2 Assertions for Execution Time 243

[asse] { P [x �→A[[a]]] } x := a { 1 ⇓ P }

[skipe] { P } skip { 1 ⇓ P }

[compe]
{ P ∧ B[[e ′

2=u]] } S1 { e1 ⇓ Q ∧ B[[e2≤u]] }, { Q } S2 { e2 ⇓ R }
{ P } S1; S2 { e1+e ′

2 ⇓ R }
where u is an unused logical variable

[ife]
{ B[[b]] ∧ P } S1 { e ⇓ Q }, { ¬B[[b]] ∧ P } S2 { e ⇓ Q }

{ P } if b then S1 else S2 { e ⇓ Q }

[whilee]
{ P(z+1) ∧ B[[e ′ =u]] } S { e1 ⇓ P(z) ∧ B[[e≤u]] }

{ ∃z.P(z) } while b do S { e ⇓ P(0) }
where P(z+1) ⇒ B[[b]] ∧ B[[e≥e1+e ′]], P(0) ⇒ ¬B[[b]] ∧ B[[1≤e]]

and u is an unused logical variable

and z ranges over natural numbers (that is, z≥0)

[conse]
{ P ′ } S { e ′ ⇓ Q ′ }
{ P } S { e ⇓ Q }

where (for some natural number k) P ⇒ P ′ ∧ B[[e ′≤k�e]]

and Q ′ ⇒ Q

Table 10.4 Axiomatic system for order of magnitude of execution time

to replace e2 with an expression e ′
2 such that e ′

2 evaluated in the initial state
of S 1 will bound the value of e2 in the initial state of S 2 (which is the final
state of S 1). This is expressed by the extended precondition and postcondition
of S 1 using the logical variable u.

The rule [ife] is fairly straightforward since the time required for the test is
constant.

In the rule for the while-construct we assume that the execution time is
e1 for the body and is e for the loop itself. As in the rule [compe], we cannot
just use e1 + e as the total time required because e1 refers to the state before
the body of the loop is executed and e to the state after the body is executed
once. We shall therefore require that there be an expression e ′ such that e ′

evaluated before the body will bound e evaluated after the body. Then it must
be the case that e satisfies e ≥ e1 + e ′ because e has to bound the time for
executing the while-loop independently of the number of times it is unfolded.
As we shall see in Example 10.9, this corresponds to the recurrence equations
that often have to be solved when analysing the execution time of a program.
Finally, the rule [conse] should be straightforward.

244 10. More on Axiomatic Program Verification

Example 10.8

We shall now prove that the execution time of the factorial statement has order
of magnitude x. This can be expressed by the following assertion:

{ x > 0 } y := 1; while ¬(x=1) do (y := y�x; x := x−1) { x ⇓ true }

The inference of this assertion proceeds in a number of stages. First we define
the predicate INV (z); that is, to be the invariant of the while-loop

INV (z) s = (s x > 0 and s x = z + 1)

The logical variables u1 and u2 are used for the while-loop and the body of
the while-loop, respectively. We shall first consider the body of the loop. Using
[asse], we get

�e { (INV (z) ∧ x≤u1)[x�→x−1] } x := x − 1 { 1 ⇓ INV (z) ∧ x≤u1 }

Similarly, we get

�e { ((INV (z) ∧ x≤u1)[x�→x−1] ∧ 1≤u2)[y�→y�x] }

y := y � x

{ 1 ⇓ (INV (z) ∧ x≤u1)[x�→x−1] ∧ 1≤u2 }
Before applying the rule [compe], we have to modify the precondition of the
assertion above. We have

INV (z+1) ∧ x−1=u1 ∧ 1=u2

⇒ ((INV (z) ∧ x≤u1)[x�→x−1] ∧ 1≤u2)[y�→y�x]

so using [conse] we get

�e { INV (z+1) ∧ x−1=u1 ∧ 1=u2 }

y := y � x

{ 1 ⇓ (INV (z) ∧ x≤u1)[x�→x−1] ∧ 1≤u2 }
We can now apply [compe] and get

�e { INV (z+1) ∧ x−1=u1 }

y := y � x; x := x−1

{ 1+1 ⇓ INV (z) ∧ x≤u1 }
and using [conse] we get

�e { INV (z+1) ∧ x−1=u1 }

y := y � x; x := x−1

{ 1 ⇓ INV (z) ∧ x≤u1 }

10.2 Assertions for Execution Time 245

It is easy to verify that

INV (z+1) ⇒ ¬(x = 1) ∧ x≥1+(x−1)

and

INV (0) ⇒ ¬(¬(x = 1)) ∧ 1≤x

Therefore we can use the rule [whilee] and get

�e {∃z.INV (z)} while ¬(x=1) do (y := y�x; x := x−1) { x ⇓ INV (0)}

We shall now apply the axiom [asse] to the statement y := 1 and get

�e { (∃z.INV (z) ∧ 1≤u3)[y�→1] } y := 1 { 1 ⇓ ∃z.INV (z) ∧ 1≤u3 }

We have

x>0 ∧ 1=u3 ⇒ (∃z.INV (z) ∧ 1≤u3)[y�→1]

so using [conse] we get

�e { x>0 ∧ 1=u3 } y := 1 { 1 ⇓ ∃z.INV (z) ∧ 1≤u3 }

The rule [compe] now gives

�e { x>0 }

y := 1; while ¬(x=1) do (y := y�x; x := x−1)

{ 1+x ⇓ INV (0) }

Clearly we have x>0 ⇒ 1+x ≤ 2�x, and INV (0) ⇒ true, so applying rule
[conse] we get

�e { x > 0 }

y := 1; while ¬(x=1) do (y := y�x; x := x−1)

{ x ⇓ true }
as required.

Example 10.9

Assume now that we want to determine an arithmetic expression e fac such that

�e { x > 0 }

y := 1; while ¬(x=1) do (y := y�x; x := x−1)

{ e fac ⇓ true }

246 10. More on Axiomatic Program Verification

In other words, we want to determine the order of magnitude of the time
required to execute the factorial statement. We can then attempt to construct
a proof of the assertion above using the inference system of Table 10.4 with
e fac being an unspecified arithmetic expression. The various side conditions of
the rules will then specify a set of (in)equations that have to be fulfilled by e fac

in order for the proof to exist.
We shall first consider the body of the loop. Very much as in the previous

example, we get

�e { INV(z+1) ∧ e[x�→x−1]=u1 } y:=y � x; x:=x−1 { 1 ⇓ INV(z) ∧ e≤u1}
where e is the execution time of the while-construct. We can now apply the
rule [whilee] if e fulfils the conditions

INV (z+1) ⇒ e≥1+e[x�→x−1] and INV (0) ⇒ 1≤e (*)

and we will get

�e {∃z.INV (z)} while ¬(x=1) do (y := y�x; x := x−1) {e ⇓ INV (0)}
The requirement (*) corresponds to the recurrence equation

T (x) = 1 + T (x−1) and T (1) = 1

obtained by the standard techniques from execution time analysis. If we take
e to be x, then (*) is fulfilled. The remainder of the proof is very much as in
Exercise 10.8, and we get that efac must satisfy

x > 0 ⇒ x+1 ≤ k�e fac for some constant k

so e fac may be taken to be x.

Exercise 10.10

Modify the proof of Lemma 10.3 to show that the inference system of Table
10.4 is sound.

Exercise 10.11 (**)

Suggest a rule for while b do S that expresses that its execution time, neglect-
ing constant factors, is the product of the number of times the loop is executed
and the maximal execution time for the body of the loop.

Exercise 10.12

Suggest an inference rule for repeat S until b. You are not allowed to rely on
the existence of a while-construct in the language.

11
Further Reading

In this book, we have covered the basic ingredients in three approaches to
semantics:

– operational semantics,

– denotational semantics, and

– axiomatic semantics.

We have concentrated on the rather simple language While of while-programs
in order to more clearly present the fundamental ideas behind the approaches,
to stress their relationship by formulating and proving the relevant theorems,
and to illustrate the applications of semantics in computer science. The power
of the three approaches has been briefly illustrated by various extensions of
While: non-determinism, parallelism, recursive procedures, and exceptions.

In our choice of applications, we have selected some of the historically im-
portant application areas, as well as some of the more promising candidates for
future applications:

– the use of semantics for validating prototype implementations of program-
ming languages;

– the use of semantics for verifying program analyses that are part of more
advanced implementations of programming languages;

– the use of semantics for verifying security analyses; and

– the use of semantics for verifying useful program properties, including infor-
mation about execution time.

248 11. Further Reading

Hopefully they have convinced the reader that formal semantics is an impor-
tant tool for reasoning about many aspects of the behaviour of programs and
programming languages.

In conclusion, we shall provide a few pointers to the literature where the
ideas emerged or where a more comprehensive treatment of language features
or theoretical aspects may be found.

Operational Semantics (Chapters 2 and 3)

Structural operational semantics was introduced by Gordon Plotkin [21, 23].
These are standard references and cover a number of features from imperative
and functional languages, whereas features from parallel languages are covered
in [22]. A more introductory treatment of structural operational semantics is
given in [8]. Natural semantics is derived from structural operational semantics,
and the basic ideas are presented in [3] for a functional language.

Although we have covered many of the essential ideas behind operational
semantics, we should like to mention three techniques that had to be omitted.

A technique that is often used when specifying a structural operational se-
mantics is to extend the syntactic component of the configurations with special
notation for recording partially processed constructs. The inference system will
then contain axioms and rules that handle these “extended” configurations.
This technique may be used to specify a structural operational semantics of
the languages Block and Proc in Chapter 3 and to specify a structural oper-
ational semantics of expressions.

Another technique often used to cut down on the number of inference rules
is to use evaluation contexts. They are often introduced using a simple grammar
for program constructs with “holes” in them. This usually allows the inference
rules to be written in a much more succinct manner: each fundamental com-
putational step is taken care of by one rule that can be instantiated to the
evaluation context at hand.

Both kinds of operational semantics can easily be extended to cope explicitly
with dynamic errors (e.g., division by zero). The idea is to extend the set of
configurations with special error configurations and then augment the inference
system with extra axioms and rules for how to handle these configurations.

Often programs have to fulfil certain conditions in order to be statically
well-formed and hence preclude certain dynamic errors. These conditions can
be formulated using inductively defined predicates and may be integrated with
the operational semantics.

11. Further Reading 249

Provably Correct Implementation (Chapter 4)

The correctness of the implementation of Chapter 4 was a relatively simple
proof because it was based on an abstract machine designed for the purpose.
In general, when more realistic machines or larger languages are considered,
proofs easily become unwieldy, and perhaps for this reason there is no ideal
textbook in this area. We therefore only reference [5] for an approach based on
natural semantics and [16, 19] for an approach based on denotational semantics.

Denotational Semantics (Chapters 5 and 6)

A general introduction to denotational semantics (as developed by C. Strachey
and D. Scott) may be found in [24]. It covers denotational semantics for mainly
imperative languages and covers the fundamentals of domain theory (including
reflexive domains). We should also mention a classic in the field [25] even though
the domain theory is based on the (by now obsolete) approach of complete
lattices. General background on partially ordered sets may be found in [4].

More recent books include [7], which has wide coverage of denotational and
operational semantics, including domain theory, full abstractness, parametric
polymorphism, and many other concepts.

We have restricted the treatment of domain theory to what is needed for
specifying the denotational semantics of While. The benefit of this is that we
can restrict ourselves to partial functions between states and thereby obtain
a relatively simple theoretical development. The drawback is that it becomes
rather cumbersome to verify the existence of semantic specifications for other
languages (as evidenced in Chapter 5).

The traditional solution is to develop a meta-language for expressing deno-
tational definitions. The theoretical foundation of this language will then ensure
that the semantic functions do exist as long as one only uses domains and op-
erations from the meta-language. The benefit of this is obvious; the drawback
is that one has to prove a fair amount of results but the efforts are greatly
rewarded in the long run. Both [24] and [25] contain such a development.

The denotational approach can handle abortion and non-determinism us-
ing a kind of powerset called powerdomain. Certain kinds of parallelism can
be handled as well, but for many purposes it is simpler to use a structural
operational semantics instead.

The algebraic approach to semantics shares many of the benefits of deno-
tational semantics; we refer to [6] for a recent executable approach using the
OBJ language.

250 11. Further Reading

Program Analysis (Chapters 7 and 8)

A comprehensive treatment of the four main approaches to static program
analysis may be found in [20]. It covers data flow analysis, constraint-based
analysis, abstract interpretation, and type and effect systems. Each approach is
accompanied by proofs of correctness (with respect to an operational semantics)
and the necessary algorithms for implementing the analyses.

The formulation of the detection of signs analysis in Chapter 7 is typical
of the denotational approach to abstract interpretation [10, 19]. More general
studies of program transformation are often carried out in the context of partial
evaluation [11].

The distinction between forward and backward analyses in Chapter 7 is
standard, whereas the distinction between first-order and second-order is due to
the authors [15]. The formulation of a general framework for backward analyses
is inspired by [17]. The security analysis is patterned after the dependency
analysis already present in [18], which again builds on previous work on second-
order analyses [15].

Axiomatic Program Verification (Chapters 9 and 10)

A general introduction to program verification, and in particular axiomatic
semantics as introduced by C. A. R. Hoare, may be found in [12]. The pre-
sentation covers a flowchart language, a language of while-programs and a
(first-order) functional language, and also includes a study of expressiveness
(as needed for the intensional approach to axiomatic semantics). Many books,
including [9], develop axiomatic program verification together with practically
motivated examples. Rules for procedures may be found in [2].

A good introduction to the analysis of resource requirements of programs is
[1]. The formulation of an analysis for verifying execution times in the form of
a formal inference system may be found in [14] and the extension to recursive
procedures in [13].

We should point out that we have used the extensional approach to speci-
fying the assertions of the inference systems. This allows us to concentrate on
the formulation of the inference systems without having to worry about the
existence of the assertions in an explicit assertion language. However, it is more
common to use the intensional approach as is done in [12].

A
Review of Notation

We use the following notation:

∃ there exists (e.g., ∃x : (x > 1))

∀ for all (e.g., ∀x : (x + 1 > x))

{ x | · · ·x · · · } the set of those x such that · · ·x · · · holds

x ∈ X x is a member of the set X

X ⊆ Y set X is contained in set Y (i.e., ∀x ∈ X : x ∈ Y)

X ∪ Y { z | z∈X or z∈Y } (union)

X ∩ Y { z | z∈X and z∈Y } (intersection)

X \ Y { z | z∈X and z /∈Y } (set difference)

X × Y { (x , y) | x∈X and y∈Y } (Cartesian product)

P(X) {Z | Z ⊆ X } (powerset)
⋃

Y { y | ∃Y∈Y: y∈Y } (so that
⋃

{Y1, Y 2} = Y1 ∪ Y2)

∅ the empty set

T { tt, ff } (truth values tt (true) and ff (false))

N {0, 1, 2, . . . } (natural numbers)

Z { · · ·, –2, –1, 0, 1, 2, · · · } (integers)

252 A. Review of Notation

f :X→Y f is a total function from X to Y

X→Y { f | f :X→Y }

f :X ↪→Y f is a partial function from X to Y

X ↪→Y { f | f :X ↪→Y }
In addition to this, we have special notations for functions, relations, predicates,
and transition systems.

Functions

For the application of a function f to an argument x, we generally write f x
and only occasionally f (x). The effect of a function f :X→Y is expressed by its
graph

graph(f) = { (x , y)∈X×Y | f x = y }
which is merely an element of P(X×Y). The graph of f has the following
properties

– (x , y)∈ graph(f) and (x , y ′)∈ graph(f) imply y = y ′, and

– ∀x∈X : ∃y∈Y : (x , y)∈ graph(f)

This expresses the single-valuedness of f and the totality of f . We say that f is
injective if f x = f x ′ implies that x = x ′.

A partial function g :X ↪→Y is a function from a subset X g of X to Y ; that
is, g :X g→Y . Again one may define

graph(g) = { (x , y)∈X×Y | g x = y and x∈Xg }
but now only the single-valuedness property is satisfied. We shall write g x = y
whenever (x , y)∈ graph(g) and g x = undef whenever x /∈X g; that is, whenever
¬∃y∈Y : (x , y)∈ graph(g). To distinguish between a function f and a partial
function g one often calls f a total function. We shall view the partial functions
as encompassing the total functions.

For total functions f 1 and f 2, we define their composition f 2◦f 1 by

(f 2◦f 1) x = f 2(f 1 x)

(Note that the opposite order is sometimes used in the literature.) For partial
functions g1 and g2, we define g2◦g1 similarly:

(g2◦g1) x = z if there exists y such that g1 x = y and g2 y = z

(g2◦g1) x = undef if g1 x = undef or
if there exists y such that g1 x = y
but g2 y = undef

A. Review of Notation 253

The identity function id :X→X is defined by

id x = x

Finally, if f :X→Y , x∈X, and y∈Y, then the function f [x �→y]:X→Y is defined
by

(f [x �→y]) x ′ =

{

y if x = x ′

f x ′ otherwise

A similar notation may be used when f is a partial function.
The function f from numbers to numbers is of order of magnitude g , written

O(g), if there exist natural numbers n and k such that ∀x≥n: f x ≤ k · (g x).

Relations

A relation from X to Y is a subset of X×Y (that is, an element of P(X×Y)).
A relation on X is a subset of X×X . If f :X→Y or f :X ↪→Y, then the graph of
f is a relation. (Sometimes a function is identified with its graph, but we shall
keep the distinction.) The identity relation on X is the relation

IX = { (x , x) | x∈X }
from X to X . When X is clear from the context, we shall omit the subscript
X and simply write I.

If R1 ⊆ X×Y and R2 ⊆ Y×Z, the composition of R1 followed by R2, which
we denote by R1 �R2, is defined by

R1 �R2 = { (x , z) | ∃y∈Y : (x , y)∈R1 and (y , z)∈R2 }
Note that the order of composition differs from that used for functions,

graph(f 2◦f 1) = graph(f 1) � graph(f 2)

and that we have the equation

I � R = R � I = R

If R is a relation on X, then the reflexive transitive closure is the relation
R∗ on X defined by

R∗ = { (x , x ′) | ∃n≥1: ∃x 1, . . ., xn: x = x 1 and x ′ = xn

and ∀i<n: (x i, x i+1)∈R }
Note that by taking n=1 and x=x ′=x 1, it follows that I⊆R∗. In a similar way,
it follows that R⊆R∗. Finally, we define

R+ = R � R∗

and observe that R ⊆ R+ ⊆ R∗.
Usually we write x R y as a more readable notation for (x, y) ∈ R.

254 A. Review of Notation

Predicates

A predicate on X is a function from X to T. If p:X→T is a predicate on X ,
the relation Ip on X is defined by

Ip = { (x , x) | x∈X and p x = tt }

Note that Ip ⊆ I and that

Ip � R = { (x , y) | p x = tt and (x , y)∈R }

R � Iq = { (x , y) | (x , y)∈R and q y = tt }

Transition Systems

A transition system is a triple of the form

(Γ ,T, �)

where Γ is a set of configurations, T is a subset of Γ called the terminal (or
final) configurations, and � is a relation on Γ called a transition relation. The
relation � must satisfy

∀γ∈T: ∀γ′∈Γ : ¬(γ�γ′)

Any configuration γ in Γ\T such that the transition γ�γ′ holds for no γ′ is
called stuck.

B
Implementation of Program Analysis

In this appendix, we consider the problem of computing fixed points in program
analysis. The whole purpose of program analysis is to get information about
programs without actually running, them and it is important that the analyses
always terminate. In general, the analysis of a recursive (or iterative) program
will itself be recursively defined, and it is therefore important to “solve” this
recursion such that termination is ensured.

In general, the setting is as follows. The analysis associates to each program
an element h of a complete lattice (A → B,�) of abstract values. In the case of
an iterative construct such as the while-loop, the value h is determined as the
least fixed point, FIX H, of a continuous functional H : (A → B) → (A → B).
Formally, the fixed point of H is given by

FIX H =
⊔

{Hn⊥ | n ≥ 0}

where ⊥ is the least element of A → B and
⊔

is the least upper bound operation
on A → B. The iterands {Hn⊥ | n ≥ 0} form a chain in A → B, and in Exercise
7.8 we have shown that

if Hk⊥ = Hk+1⊥ for some k ≥ 0 then FIX H = Hk⊥

So the obvious algorithm for computing FIX H will be to determine the iterands
H0⊥, H1⊥, · · · one after the other while testing for stabilization (i.e., equality
with the predecessor). When A → B is finite, this procedure is guaranteed to
terminate. The cost of this algorithm depends on

– the number k of iterations needed before stabilization,

256 B. Implementation of Program Analysis

– the cost of comparing two iterands, and

– the cost of computing a new iterand.

We shall now study how to minimize the cost of the algorithm above. Most of
our efforts are spent on minimizing the number k.

We shall assume that A and B are finite complete lattices, and we shall
consider three versions of the framework:

– In the general framework, functions of A → B only are required to be total;
this is written A →t B.

– In the monotone framework, functions of A → B must be monotone; this is
written A →m B.

– In the completely additive framework, functions of A → B must be strict
and additive; this is written A →sa B. (We shall explain strict and additive
shortly.)

We give precise bounds on the number k of iterations needed to compute the
fixed point of an arbitrary continuous functional H.

For many program analyses, including the detection of signs analysis and
the security analysis, A and B will be the same (e.g., PState). Since a given
program always mentions a finite number of variables, we can assume that Var
is finite so PState = Var → P is a function space with a finite domain. In the
more general development, we shall therefore pay special attention to the case
where A = B = S → L for some non-empty set S with p elements and some
finite complete lattice (L, �). We shall show that the number k of iterations
needed to compute the fixed point is at most

– exponential in p for the general and the monotone frameworks and

– quadratic in p for the completely additive framework.

The results above hold for arbitrary continuous functionals H. A special
case is where H is in iterative form:

H is in iterative form if it is of the form H h = f � (h ◦ g)

For strict and additive functions f and g, we then show that k is at most

– linear in p, and furthermore

– the fixed point can be computed pointwise.

This result is of particular interest for the analysis of While since the functional
obtained for the while-loop often can be written in this form.

B.1 The General and Monotone Frameworks 257

B.1 The General and Monotone Frameworks

We shall first introduce some notation. Let (D,�) be a finite complete lattice;
that is,

– � is a partial order on D, and

– each subset Y of D has a least upper bound in D denoted
⊔

Y .

When d � d′ ∧ d �= d′, we shall write d � d′. Next we write

C D : for the cardinality of D

H D : for the height (maximal length of chains) of D

where a chain {d0, d1, · · · , dk} has length k if it contains k+1 distinct elements.
For the detection of signs analysis considered in Chapter 7, we have that

Sign has cardinality 8 and height 3, whereas TT has cardinality 4 and height
2. For the security analysis considered in Chapter 8, we have that P has car-
dinality 2 and height 1.

For a complete lattice of the form S → L, we have the following fact.

Fact B.1

C(S → L) = (C L)p and H(S → L) = p · (H L) for p ≥ 1 being the cardinality
of S.

Thus, for the detection of signs analysis of the factorial program, we have
C PState = 64 and H PState = 6 because the program contains only two
variables. Similarly, for the security analysis of the factorial program, we have
C PState = 8 and H PState = 3 because the program contains only two
variables and there is the additional token called history.

In the general framework, we have the following proposition.

Proposition B.2

H(A →t B) ≤ (C A) · (H B).

Proof: Let hi : A →t B and assume that

h0 � h1 � · · · � hk

From hi � hi+1, we get that there exists w ∈ A such that hi w � hi+1 w

because the ordering on A →t B is defined componentwise. There are at most
(C A) choices of w, and each w can occur at most (H B) times. Thus

258 B. Implementation of Program Analysis

k ≤ (C A) · (H B)

as was to be shown.

Any monotone function is a total function, so Proposition B.2 yields the
following corollary.

Corollary B.3

H(A →m B) ≤ (C A) · (H B).

We shall now apply Proposition B.2 to the special chains obtained when
computing fixed points.

Theorem B.4

In the general framewor, any continuous functional

H : (A →t B) → (A →t B)

satisfies FIX H = Hk⊥ for

k = (C A) · (H B)

This result carries over to the monotone framework as well. When A = B =
S → L, we have k = (C L)p · p · (H L), where p ≥ 1 is the cardinality of S.

Proof: Consider the chain

H0⊥ � H1⊥ � · · ·
Since A →t B is a finite complete lattice, it cannot be the case that all Hi⊥
are distinct. Let k′ be the minimal index for which Hk′⊥ = Hk′+1⊥. Then

H0⊥ � H1⊥ � · · · � Hk′⊥
Using Proposition B.2, we then get that k′ ≤ (C A) · (H B) (i.e., k′ ≤ k).
Since Hk′⊥ = FIX H and Hk′⊥ � Hk⊥ � FIX H, we get FIX H = Hk⊥. This
completes the proof.

Note that, by finiteness of A and B, the continuity of H simply amounts to
monotonicity of H.

Example B.5

The detection of signs analysis of the factorial program gives rise to a continuous
functional

B.2 The Completely Additive Framework 259

H : (PState →t PState) → (PState →t PState)

Now C PState = 64 and H PState = 6 because the factorial program only
contains two variables. So, according to the theorem, at most 64 ·6 = 384 itera-
tions are needed to determine the fixed point. However, the simple calculation
of Example 7.7 shows that the fixed point is obtained already after the second
iteration! Thus our bound is very pessimistic. �

Example B.6

The security analysis of the factorial program also gives rise to a continuous
functional

H : (PState →t PState) → (PState →t PState)

Since C PState = 8 and H PState = 3, it follows from the theorem that at
most 8 · 3 = 24 iterations are needed to determine the fixed point. However,
the simple calculation of Example 8.14 shows that the fixed point is obtained
already after the first iteration! Thus our bound is once more pessimistic. �

B.2 The Completely Additive Framework

The reason why the upper bound determined in Theorem B.4 is so imprecise
is that we consider all functions in PState → PState and do not exploit any
special properties of the functions Hn⊥, such as continuity. To obtain a better
bound, we shall exploit properties of the analysis functions.

We shall assume that the functions of interest are strict and additive; by
strictness of a function h we mean that

h ⊥ = ⊥

and by additivity that

h(d1 � d2) = (h d1) � (h d2)

Since the complete lattices considered are all finite, it follows that a strict and
additive function h is also completely additive; that is,

h(
⊔

Y) =
⊔

{ h d | d ∈ Y }

for all subsets Y .

260 B. Implementation of Program Analysis

Exercise B.7

Consider the security analysis of Chapter 8 and the following claims: (1) each
SA[[a]] is strict; (2) each SB[[b]] is strict; (3) each SS[[S]] is strict; (4) each SA[[a]]
is additive; (5) each SB[[b]] is additive; (6) each SS[[S]] is additive. Determine
the truth or falsity of each of these claims. �

An element d of a complete lattice (D,�) is called join-irreducible if for all
d1, d2 ∈ D:

d = d1 � d2 implies d = d1 or d = d2

As an example Sign, has four join-irreducible elements: none, neg, zero, and
pos. The element non-pos is not join-irreducible since it is the least upper
bound of zero and neg but it is equal to neither of them.

From the definition, it follows that the least element ⊥ of D is always join-
irreducible, but we shall be more interested in the non-trivial join-irreducible
elements (i.e., those that are not ⊥). To this end, we shall write

RJC L : for the number of non-bottom join-irreducible elements of L.

We thus have RJC Sign = 3, RJC TT = 2, and RJC P = 1.

Fact B.8

RJC(S → L) = p · (RJC L) where p ≥ 1 is the cardinality of S.

Proof: The non-trivial join-irreducible elements of S → L are those functions
h that map all but one element of S to ⊥ and one element to a non-trivial
join-irreducible element of L.

Lemma B.9

If (L,�) is a finite complete lattice, we have

w =
⊔

{x | x � w, x is join-irreducible and x �= ⊥}

for all w ∈ L.

Proof: Assume by way of contradiction that the claim of the lemma is false.
Let W ⊆ L be the set of w ∈ L for which the condition fails. Since W is finite
and non-empty, it has a minimal element w. From w ∈ W it follows that w is
not join-irreducible. Hence there exist w1 and w2 such that

w = w1 � w2, w �= w1, w �= w2

B.2 The Completely Additive Framework 261

It follows that w1 � w, w2 � w, and by choice of w that w1 /∈ W and w2 /∈ W .
We may then calculate

w = w1 � w2

=
⊔

{x | x � w1, x is join-irreducible and x �= ⊥}

�
⊔

{x | x � w2, x is join-irreducible and x �= ⊥}

=
⊔

{x | (x � w1 or x � w2), x is join-irreducible and x �= ⊥}

�
⊔

{x | x � w, x is join-irreducible and x �= ⊥}

� w

This shows that

w =
⊔

{x | x � w, x is join-irreducible and x �= ⊥}

and contradicts w ∈ W . Hence W = ∅ and the claim of the lemma holds.

In the completely additive framework, we have the following proposition.

Proposition B.10

H(A →sa B) ≤ (RJC A) · (H B).

Proof: The proof is a refinement of that of Proposition B.2. So we begin by
assuming that hi ∈ A →sa B and that

h0 � h1 � · · · � hk

As in the proof of Proposition B.2, we get an element w such that hi w � hi+1 w

for each hi � hi+1. The element w is an arbitrary element of A, so in the proof
of Proposition B.2 there were (C A) choices for w. We shall now show that w

can be chosen as a non-trivial join-irreducible element of A, thereby reducing
the number of choices to (RJC A). Calculations similar to those in the proof of
Proposition B.2 will then give the required upper bound on k; i.e., k ≤ (RJC
A) · (H B).

The element w satisfies hi w � hi+1 w. By Lemma B.9, we have

w =
⊔

{ x | x � w, x is a join-irreducible and x �= ⊥}

From the strictness and additivity of hi and hi+1, we get

hi w =
⊔

{hi x | x � w, x is join-irreducible and x �= ⊥}

hi+1 w =
⊔

{hi+1 x | x � w, x is join-irreducible and x �= ⊥}

262 B. Implementation of Program Analysis

It cannot be the case that hi x = hi+1 x for all non-bottom join-irreducible
elements x of A since then hi w = hi+1 w. So let x be a non-bottom join-
irreducible element where hi x � hi+1 x. Then there will only be (RJC A)
choices for x and this completes the proof.

We can now apply Proposition B.10 to the special chains obtained when
computing fixed points.

Theorem B.11

In the completely additive framework, any continuous functional

H : (A →sa B) → (A →sa B)

satisfies FIX H = Hk⊥ for

k = (RJC A) · (H B)

When A = B = S → L we have k = p · (RJC L) · p · (H L), where p ≥ 1 is the
cardinality of S.

Proof: Analogous to the proof of Theorem B.4.

The equality test between the iterands H0⊥,H1⊥, · · · can be simplified in
this framework. To see this, consider two functions h1, h2 ∈ A →sa B. Then

h1 = h2

if and only if

h1 x = h2 x for all non-trivial join-irreducible elements x of A.

Example B.12

Continuing Example B.6 (and using Exercise B.7), we have RJC PState = 3
and H PState = 3. So according to the theorem, at most 3 · 3 = 9 iterations
are needed. �

B.3 Iterative Program Schemes

The upper bounds expressed by Theorems B.4 and B.11 are obtained without
any assumptions about the functional H except that it is a continuous function
over the relevant lattices. In this section, we shall restrict the form of H.

B.3 Iterative Program Schemes 263

For iterative programs such as a while-loop, the functional H will typically
have the form

H h = f � (h ◦ g)

Since our aim is to further improve the bound of the previous section, we shall
assume that f and g are strict and additive functions. Then also the iterands
Hi⊥ will be strict and additive.

Exercise B.13

The functionals obtained by analysing the while-loop in the security analysis
of Chapter 8 can be written in this form provided that a minor modification
is made in the definition of condS . To see this, define the auxiliary functions
f-func and g-func by

f-func(f)ps =

{

lost if f ps = high

ps if f ps = low

and

g-func(f, g)ps =

{

lost if f ps = high

g ps if f ps = low

Show that the functional H obtained from while b do S can be written as

H h = f-func(SB[[b]]) � g-func(SB[[b]], h ◦ SS[[S]])

and that a minor modification in the definition of condS suffices for obtaining
the desired

H h = f-func(SB[[b]]) � h ◦ g-func(SB[[b]],SS[[S]])

Discuss the implications of making these variations. �

The first part of the next theorem is a refinement of Theorem B.11.

Theorem B.14

Let f ∈ A →sa B and g ∈ A →sa A be given and define

H h = f � (h ◦ g)

Then H : (A →sa B) → (A →sa B) is a continuous functional and taking

k = (H A)

will ensure

264 B. Implementation of Program Analysis

FIX H = Hk⊥

When A = B = S → L, we have k = p · (H L), where p ≥ 1 is the cardinality
of S.

Writing H0 h = id � (h ◦ g) and taking k0 to satisfy

Hk0
0 ⊥ w = Hk0+1

0 ⊥ w

we have

FIX H w = Hk0⊥ w = f(Hk0
0 ⊥ w)

In other words, fixed points of H0 may be computed pointwise.

Basically this result says that in order to compute FIX H on a particular
value w, it is sufficient to determine the values of the iterands Hi

0⊥ at w and
then compare these values. So rather than having to test the extensional equal-
ity of two functions on a set of arguments, we only need to test the equality of
two function values. Furthermore, the theorem states that this test has to be
performed at most a linear number of times.

To prove the theorem, we need the following two lemmas.

Lemma B.15

Let H h = f � (h ◦ g) for f ∈ A →sa B and g ∈ A →sa A. Then for i ≥ 0 we
have

Hi+1⊥ =
⊔

{ f ◦ gj | 0 ≤ j ≤ i}.

Proof: We proceed by induction on i. If i = 0 then the result is immediate, as
H1⊥ = f � (⊥ ◦ g) = f =

⊔

{ f ◦ gj | 0 ≤ j ≤ 0}. For the induction step, we
calculate

Hi+2⊥ = f � (Hi+1⊥) ◦ g

= f � (
⊔

{ f ◦ gj | 0 ≤ j ≤ i}) ◦ g

=
⊔

{ f ◦ gj | 0 ≤ j ≤ i + 1}

where the last equality uses the pointwise definition of
⊔

on A →sa B.

Lemma B.16

Let H h = f � (h ◦ g) for f ∈ A →sa B and g ∈ A →sa A. Then

FIX H = f ◦ (FIX H0) and Hk⊥ = f ◦ Hk
0⊥

B.3 Iterative Program Schemes 265

where H0 h = id � (h ◦ g).

Proof: We shall first prove that

Hi⊥ = f ◦ Hi
0⊥ for i ≥ 0.

The case i = 0 is immediate because f is strict. So assume that i > 0. We shall
then apply Lemma B.15 to H and H0 and get

Hi⊥ =
⊔

{ f ◦ gj | 0 ≤ j ≤ i − 1}

Hi
0⊥ =

⊔

{ gj | 0 ≤ j ≤ i − 1}
Since f is additive, we get

Hi⊥ = f ◦
⊔

{ gj | 0 ≤ j ≤ i − 1} = f ◦ Hi
0⊥

as required.
We now have

FIX H =
⊔

{Hi⊥ | i ≥ 0}

=
⊔

{ f ◦ Hi
0⊥ | i ≥ 0}

= f ◦
⊔

{Hi
0⊥ | i ≥ 0}

= f ◦ (FIX H0)

where the third equality uses the complete additivity of f .

We now turn to the proof of Theorem B.14.

Proof: We shall first prove that if Hk0
0 ⊥ w = Hk0+1

0 ⊥ w, then FIX H w =
f(Hk0

0 ⊥ w). This is done in two stages.
First assume that k0 = 0. Then H0

0⊥ w = H1
0⊥ w amounts to ⊥ = w.

Using Lemma B.15 and the strictness of g, we get

Hi+1
0 ⊥ ⊥ =

⊔

{ gj⊥ | 0 ≤ j ≤ i} = ⊥

for i ≥ 0 and thereby FIX H0 ⊥ = ⊥. But then Lemma B.16 gives

FIX H ⊥ = f(FIX H0 ⊥) = f⊥ = f(H0
0⊥ ⊥)

as required.
Second, assume that k0 > 0. From Hk0

0 ⊥ w = Hk0+1
0 ⊥ w, we get, using

Lemma B.15, that
⊔

{ gj w | 0 ≤ j < k0} =
⊔

{ gj w | 0 ≤ j ≤ k0}

This means that

gk0 w �
⊔

{ gj w | 0 ≤ j < k0}

266 B. Implementation of Program Analysis

We shall now prove that for all l ≥ 0

gk0+l w �
⊔

{ gj w | 0 ≤ j < k0} (∗)

We have already established the basis l = 0. For the induction step, we get

gk0+l+1 w = g(gk0+l w)

� g(
⊔

{ gj w | 0 ≤ j < k0})

=
⊔

{ gj w | 1 ≤ j ≤ k0}

�
⊔

{ gj w | 0 ≤ j < k0}

where we have used the additivity of g. This proves (∗). Using Lemma B.15
and (∗), we get

Hk0+l
0 ⊥ w =

⊔

{ gj w | 0 ≤ j < k0 + l}

=
⊔

{ gj w | 0 ≤ j < k0}

= Hk0
0 ⊥ w

for all l ≥ 0. This means that FIX H0 w = Hk0
0 ⊥ w, and using Lemma B.16 we

get

FIX H w = f(Hk0
0 ⊥ w)

as required.
To complete the proof of the theorem, we have to show that one may take

k = (H A). For this it suffices to show that one cannot have a chain

H0
0⊥ w � H1

0⊥ w � · · · � Hk
0⊥ w � Hk+1

0 ⊥ w

in A. But this is immediate since k + 1 > H(A). �

Example B.17

Continuing Examples B.6, B.12 (and using Exercise B.13), we have H PState
= 3. So according to the theorem, at most 3 iterations are needed. In general,
for a statement S with p variables, we have H PState = p + 1 and hence in
the security analysis at most p + 1 iterations are needed. �

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algo-
rithms, Addison–Wesley, Reading MA (1982).

[2] K. R. Apt, Ten Years of Hoare’s Logic: A Survey — Part 1, ACM Toplas,
3 431–483 (1981).

[3] D. Clément, J. Despeyroux, T. Despeyroux, and G. Kahn, A Simple Ap-
plicative Language: Mini-ML, in Proceedings of the 1986 ACM Conference
on Lisp and Functional Programming 13–27, ACM Press, New York (1986).

[4] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cam-
bridge University Press, Cambridge (1990).

[5] J. Despeyroux, Proof of Translation in Natural Semantics, in Proceedings
of Symposium on Logic in Computer Science, 193–205, IEEE Press, Cam-
bridge, MA (1986).

[6] J. Goguen and G. Malcolm, Algebraic Semantics of Imperative Programs,
MIT Press, Cambridge, MA (1996).

[7] C. A. Gunter, Semantics of Programming Languages: Structures and Tech-
niques, MIT Press, Cambridge, MA (1992).

[8] M. Hennessy, The Semantics of Programming Languages: An Elementary
Introduction using Structural Operational Semantics, Wiley, New York
(1991).

[9] C. B. Jones, Software Development: A Rigorous Approach, Prentice-Hall,
Englewood Cliffs, NJ (1980).

[10] N. D. Jones and F. Nielson, Abstract Interpretation: a Semantics Based
Tool for Program Analysis, in Handbook of Logic in Computer Science 4,

268 Bibliography

S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum (editors), 527–636,
Oxford University Press, Oxford (1995).

[11] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Evaluation and Auto-
matic Program Generation, Prentice-Hall, Englewood Cliffs, NJ (1993).

[12] J. Loeckx and K. Sieber, The Foundations of Program Verification, Wiley–
Teubner Series in Computer Science, Wiley, New York (1984).

[13] H. Riis Nielson, Hoare Logic’s for Run-time Analysis of Programs, PhD-
thesis, Edinburgh University (1984).

[14] H. Riis Nielson, A Hoare-like Proof System for Run-time Analysis of Pro-
grams, Science of Computer Programming, 9 107–136 (1987).

[15] F. Nielson, Program Transformations in a Denotational Setting, ACM
TOPLAS, 7 359–379 (1985).

[16] F. Nielson and H. Riis Nielson, Two-level Semantics and Code Generation,
Theoretical Computer Science, 56 59–133 (1988).

[17] F. Nielson, Two-Level Semantics and Abstract Interpretation, Theoretical
Computer Science – Fundamental Studies, 69 117–242 (1989).

[18] H. Riis Nielson and F. Nielson, Semantics with Applications: A Formal
Introduction, Wiley, New York (1992).

[19] F. Nielson and H. Riis Nielson, Two-Level Functional Languages, Cam-
bridge University Press, Cambridge (1992).

[20] F. Nielson, H. Riis Nielson, and C. Hankin, Principles of Program Analysis,
Springer, New York (2005).

[21] G. D. Plotkin, A Structural Approach to Operational Semantics, lecture
notes, DAIMI FN-19, Aarhus University, Denmark (1981, reprinted 1991).

[22] G. D. Plotkin, An Operational Semantics for CSP, in Formal Description
of Programming Concepts II, Proceedings of TC-2 Working Conference,
D. Bjørner (editor), North–Holland, Amsterdam (1982).

[23] G. D. Plotkin, A Structural Approach to Operational Semantics, Journal
of Logic and Algebraic Programming, 60–61 17–139 (2004).

[24] D. A. Schmidt, Denotational Semantics: A Methodology for Language De-
velopment, Allyn & Bacon, Boston (1986).

[25] J. E. Stoy, Denotational Semantics: The Scott–Strachey Approach to Pro-
gramming Language Theory, MIT Press, Cambridge MA (1977).

Index

abort-construct, 48
abstract machine, 67
abstract properties, 146
abstract syntax, 8
additive function, 259
admissible predicate, 209
analysis
– available expressions, 146
– backward, 176, 180
– constant propagation, 145, 160, 171
– definition-use, 145
– dependency, 193
– detection of signs, 149, 175, 176
– error detection, 176
– first-order, 175
– forward, 176, 177
– interval, 145
– live variables, 146, 175, 176
– second-order, 175
– security, 176, 183
anti-symmetric, 101
arithmetic expression, 7
– execution time, 240
– semantics, 13
– translation, 75
arithmetic expressions
– natural semantics, 32
assert-construct, 49
assertion, 212
auxiliary function, 92
available expressions analysis, 146
axiom, 21
axiomatic semantics, 214

backward analysis, 176, 180
basis element, 7
begin-construct, 54, 128, 138
bisimulation relation, 88
boolean expression, 7
– execution time, 240
– natural semantics, 32
– semantics, 15
– translation, 75

call-by-value parameter, 64, 137
call-construct, 56, 128, 236
cardinality, 257
ccpo, 106
chain, 104
chain complete partially ordered set, 106
code generation, 75
complete lattice, 106
completely additive framework, 256, 259
completely additive function, 259
completeness, 220
– of partial correctness inference system,

224
– of total correctness inference system,

235
composite element, 7
compositional definition, 12
compositionality, 91
computation sequence, 70
– looping, 70
– terminating, 70
concrete syntax, 8
configuration, 254
– final, 254

270 Index

– stuck, 254
– terminal, 254
constant propagation analysis, 145, 160,

171
continuation, 138
continuation style semantics, 138
continuous function, 110
correct implementation, 78
correctness
– partial, 205
– total, 205

data flow framework, 177
declared variable, 55
definition-use analysis, 145
denotational semantics, 92
– continuation style, 138
– direct style, 92
dependency analysis, 193
derivation sequence, 34
derivation tree, 22
detection of signs analysis, 149, 175, 176
deterministic semantics, 29, 39, 73
direct flows, 184, 185
direct style semantics, 92
dynamic scope, 57

equivalence relation, 196
error detection analysis, 176
evaluation stack, 68
exception, 138
exception environment, 141
execution
– looping, 25, 37
– terminating, 25, 37
expressiveness, 228
extensional approach, 213

first-order analysis, 175
fixed point, 94
– least, 103, 112
– requirements, 99, 103
fixed point induction, 210
fixed point theory, 114
flows
– direct, 184, 185
– indirect, 184, 185
for-construct, 28, 37, 45, 77, 120, 125,

219
forward analysis, 176, 177
framework
– completely additive, 256, 259
– data flow, 177
– general, 256, 257

– monotone, 256, 257
free variable, 16, 17
function
– additive, 259
– completely additive, 259
– continuous, 110
– monotone, 108
– strict, 110, 259
function composition, 252

general framework, 256, 257
graph of a function, 252

Halting problem, 148
handle-construct, 138
height, 257

identity function, 253
identity relation, 253
improper, 186
indirect flows, 184, 185
induction, 11
– fixed point, 210
– on the length of computation

sequences, 72
– on the length of derivation sequences,

38
– on the shape of derivation trees, 29
– on the shape of inference trees, 219
– structural, 12
inference system, 214
– for execution time, 239
– for partial correctness, 214
– for total correctness, 229
inference tree, 216
injective function, 252
instructions, 68
intensional approach, 213, 227
interval analysis, 145
invariant, 216, 230
iterative form, 256

join-irreducible element, 260

Kripke relation, 196

least element, 101
least fixed point, 103, 112
least upper bound, 104
live variables analysis, 146, 175, 176
local variable, 54
location, 61, 129
logical variable, 212
looping computation sequence, 70

Index 271

looping execution, 25, 37

monotone framework, 256, 257
monotone function, 108
mutual recursive procedure, 64

natural semantics, 20
– execution time, 240
– for arithmetic expressions, 32
– for boolean expressions, 32
– for statements, 20
non-determinism, 50, 235
non-recursive procedure, 60, 132, 236
number, 10
numeral, 7, 12

or-construct, 50, 235
order of magnitude, 253
order of magnitude of execution time,

239
ordering, 99
– anti-symmetric, 101
– on State ↪→ State, 99
– reflexive, 101, 196
– symmetric, 196
– transitive, 101, 196

par-construct, 52
parallelism, 52
parameterized relation, 196
partial correctness, 205, 212
– axiomatic semantics, 214
– denotational semantics, 209
– natural semantics, 206
– structural operational semantics, 208
partial function, 252
partially ordered set, 101
– chain complete, 106
postcondition, 212
precondition, 212
predicate, 254
private, 185
proc-construct, 56, 128, 236
procedure declaration, 56, 128, 132
procedure environment, 57, 60, 62, 132
procedure name, 56, 128
program transformation, 171
program variable, 213
proper, 186
properties, 146
property state, 147
– X-atomic, 158
– X-proper, 158
– improper, 186

– proper, 186
protect-construct, 54
provability, 216
– in execution time inference system,

242
– in partial correctness inference system,

216
– in total correctness inference system,

230
provably equivalent, 219
public, 185

raise-construct, 138
random-construct, 51
recurrence equation, 243, 246
recursive procedure, 59, 60, 136, 236
reflexive, 101, 196
reflexive transitive closure, 253
relation, 253
relation composition, 253
repeat-construct, 28, 31, 37, 40, 45, 77,

87, 120, 121, 125, 141, 165, 171, 203,
218, 219, 223, 226, 232, 235, 246

rule, 20
rule of consequence, 216

safety of program analysis, 166, 171
safety of static analysis, 197
scope
– dynamic, 57
– static, 57, 128
second-order analysis, 175
security analysis, 176, 183
semantic clause, 10
semantic equation, 10
semantic equivalence, 26, 40, 120
semantic function, 9
semantics
– continuation style, 138
– deterministic, 29, 73
– natural, 20
– structural operational, 33
soundness, 220
– of execution time inference system,

246
– of partial correctness inference system,

221
– of total correctness inference system,

232
state, 13
statement, 7
– execution time, 240
– semantics, 31, 41, 92
– translation, 76

272 Index

statements
– direct style semantics, 92
static scope, 57, 128
storage, 68
store, 61, 129
strict function, 110, 259
strongest postcondition, 224, 227
structural induction, 12
structural operational semantics, 33
– statements, 33
stuck configuration, 33, 70, 254
substitution, 18, 55
symmetric ordering, 196

terminating computation sequence, 70
terminating execution, 25, 37
total correctness, 205
– axiomatic semantics, 229
total function, 252
transition relation, 254
transition system, 254
transitive, 101, 196

upper bound, 104
– least, 104

validity, 220
– in execution time inference system,

242
– in partial correctness inference system,

220
– in total correctness inference system,

230
– of program transformation, 172
var-construct, 54, 128
variable, 7
variable declaration, 54, 128, 131
variable environment, 61, 129

weakest liberal precondition, 223

↪→, 99, 252
→, 252
→m, 256
→sa, 256
→t, 256
◦, 252

, 253
∗, 253
+, 253
⊔

∅, 106
⊔

, 104
⊔

P
, 147

⊔

S
, 150

⊔

T
, 152

⊔

PS
, 186

⊥, 102
⊥D, 102

P , 147
�, 101
�D, 101
�P , 147, 185
�S , 150
�T , 152
�PS , 151, 186
�, 101
(D , �D), 101
(State ↪→ State, �), 99
undef, 252

Aexp, 7
AM, 67
Bexp, 7
Block, 54
C, 257
Code, 68
Cont, 139
DecP, 56, 128
DecV, 54, 128
EnvE, 141
EnvP, 57, 60, 62, 132
EnvV, 61, 129
Exc, 138
Exception, 138
ff, 251
H, 257
Loc, 61, 129
N, 251
Num, 7
P, 146, 185
Pname, 56, 128
Proc, 56, 127
PState, 147, 151, 177, 185
PT , 177
PZ , 177
RJC, 260
Sign, 150
Stack, 68
State, 13
Stm, 7
Store, 61, 129
T, 251
TT, 152
tt, 251
Var, 7
While, 7
Z, 251

Index 273

A, 13
B, 15
BA, 181
BB, 181
BS, 181, 182
BT , 182
BZ, 182
CA, 75
CB, 75
CS, 76
DP

ds, 132
DV

ds, 131
DA, 153
DB, 153
DS, 155
FA, 178
FB, 178
FS, 179
FS, 178
FT , 179
FZ, 179
M, 73
N , 10
O(· · ·), 253
P(· · ·), 251
S ′

cs, 139
S ′

ds, 129
Sam, 78
Scs, 141
Sds, 92, 133
Sns, 31
Ssos, 41
SA, 187
SB, 187
SS, 188
T A, 240
T B, 240

a, 7
b, 7
c, 68, 138
DP , 56, 128
DV , 54, 128
e, 68, 138
envE , 141
envP , 57, 132
envV , 61, 129
f n, 112
n, 7
p, 56, 128, 185
S , 7
s, 13
sto, 61, 129
x , 7

abs, 151
absT , 152
absZ , 151
cond, 93, 129
condX

D , 158
condD, 156
condF , 180
condS , 188
filterXF , 158
filterXT , 158
FIX, 94, 103, 112
history, 185
next, 61, 129
rel(p)(v1, v2), 194
rel(ps)(s1, s2), 194
relA, 193
relB , 193
relS , 194
safeA, 166
safeB , 166
safeS , 167
safeA, 197
safeB , 198
safeS , 198

· · · [· · · �−→ · · ·], 55
· · · [· · · �→ · · ·], 18, 214, 253
· · · � · · · � · · ·, 172
· · · � 〈· · · , · · ·〉 → · · ·, 57
· · · , · · · � 〈· · · , · · ·〉 → · · ·, 62
〈· · · , · · · , · · ·〉 � 〈· · · , · · · , · · ·〉, 68
〈· · · , · · · , · · ·〉 →D (· · · , · · ·), 62
〈· · · , · · ·〉 ⇒ · · ·, 33
〈· · · , · · ·〉 ⇒ 〈· · · , · · ·〉, 33
〈· · · , · · ·〉 → · · ·, 20
〈· · · , · · ·〉 →t · · ·, 240
〈· · · , · · ·〉 →D · · ·, 55
〈· · · , · · ·〉 →Aexp · · ·, 32
〈· · · , · · ·〉 →Bexp · · ·, 32
|=e {· · ·} · · · {· · · ⇓ · · ·}, 242
|=p {· · ·} · · · {· · ·}, 220
|=t {· · ·} · · · {⇓ · · ·}, 230
�e {· · ·} · · · {· · · ⇓ · · ·}, 242
�p {· · ·} · · · {· · ·}, 216
�t {· · ·} · · · {⇓ · · ·}, 230
{· · ·} · · · {⇓ · · ·}, 230
{· · ·} · · · {· · · ⇓ · · ·}, 241
{· · ·} · · · {· · ·}, 212
· · · ≡ · · · rel · · ·, 194

DV(· · ·), 55
FV(· · ·), 16, 17
graph(f), 252

274 Index

I, 253
Ip, 254
IX , 253
id, 253
lookup, 129
new, 61, 129
updP(DP , envP), 58, 60
updP(DP , envV , envP), 62
wlp(S , Q), 223

any, 150, 152
dead, 175
ff, 152

high, 176, 183, 185
init, 152, 177
live, 175
low, 176, 183, 185
neg, 150
none, 150, 152
non-neg, 150
non-pos, 150
non-zero, 150
pos, 150
top, 172
tt, 152
zero, 150

	Front Matter
	Title Page
	Preface
	Contents
	List of Tables

	1. Introduction
	1.1. Semantic Description Methods
	1.2. The Example Language While
	1.3. Semantics of Expressions

	2. Operational Semantics
	2.1. Natural Semantics
	2.2. Structural Operational Semantics
	2.3. An Equivalent Result

	3. More on Operational Semantics
	3.1. Non-sequential Language Constructs
	3.2. Blocks and Procedures

	4. Provably Correct Implementation
	4.1. The Abstract Machine
	4.2. Specification of the Translation
	4.3. Correctness
	4.4. An Alternative Proof Technique

	5. Denotational Semantics
	5.1. Direct Style Semantics: Specification
	5.2. Fixed Point Theory
	5.3. Direct Style Semantics: Existence
	5.4. An Equivalence Result

	6. More on Denotational Semantics
	6.1. Environments and Stores
	6.2. Continuations

	7. Program Analysis
	7.1. Detection of Signs Analysis: Specification
	7.2. Detection of Signs Analysis: Existence
	7.3. Safety of the Analysis
	7.4. Program Transformation

	8. More on Program Analysis
	8.1. Data Flow Frameworks
	8.2. Security Analysis
	8.3. Safety of the Analysis

	9. Axiomatic Program Verification
	9.1. Direct Proofs of Program Correctness
	9.2. Partial Correctness Assertions
	9.3. Soundness and Completeness

	10. More on Axiomatic Program Verification
	10.1. Total Correctness Assertions
	10.2. Assertions for Execution Time

	11. Further Reading
	A. Review of Notation
	B. Implementation of Program Analysis
	B.1. The General and Monotone Frameworks
	B.2. The Completely Additive Framework
	B.3. Iterative Program Schemes

	Bibliography
	Index

