
http://www.cambridge.org/9780521490306

This page intentionally left blank

THE SPACE AND MOTION OF
COMMUNICATING AGENTS

The world is increasingly populated with interactive agents distributed in space, real
or abstract. These agents can be artificial, as in computing systems that manage
and monitor traffic or health; or they can be natural, e.g. communicating humans,
or biological cells. It is important to be able to model networks of agents in order
to understand and optimise their behaviour. Robin Milner’s purpose is to describe
in this book just such a model, and he does so by presenting a unified and rigorous
structural theory, based on bigraphs, for systems of interacting agents. This theory
is a bridge between the existing theories of concurrent processes and the aspirations
for ubiquitous systems, whose enormous size challenges our understanding.

The book begins with an assessment of the problems that a structural model for
distributed communicating systems must address. Bigraphs are introduced first
informally, then rigorously, before being used to describe the configuration of com-
ponent agents. The static theory of Part I gives way in Part II to examining the
dynamics of interactions, leading to the notion of behavioural equivalence and its
consequences.

The final Part explores a number of developments, in particular with regard
to ubiquitous computing and biological systems. Ideas for future research and
applications are presented. The book is reasonably self-contained mathematically,
and is designed to be learned from: examples and exercises abound, solutions for
the latter are provided.

Like Milner’s other work, this is destined to have far-reaching and profound
significance.

THE SPACE AND MOTION OF
COMMUNICATING AGENTS

ROBIN MILNER
University of Cambridge

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-49030-6

ISBN-13 978-0-521-73833-0

ISBN-13 978-0-511-51679-5

© Cambridge University Press 2009

2009

Information on this title: www.cambridge.org/9780521490306

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

paperback

eBook (EBL)

hardback

http://www.cambridge.org/9780521490306
http://www.cambridge.org

to My Family:
Lucy, Barney, Chloë,

and in Memory of Gabriel

Contents

Prologue page ix
Acknowledgements xxi

Part I : Space 1

1 The idea of bigraphs 3

2 Defining bigraphs 14
2.1 Bigraphs and their assembly 14
2.2 Mathematical framework 18
2.3 Bigraphical categories 25

3 Algebra for bigraphs 28
3.1 Elementary bigraphs and normal forms 28
3.2 Derived operations 33

4 Relative and minimal bounds 39

5 Bigraphical structure 46
5.1 RPOs for bigraphs 46
5.2 IPOs in bigraphs 52
5.3 Abstract bigraphs lack RPOs 57

6 Sorting 59
6.1 Place sorting and CCS 59
6.2 Link sorting, arithmetic nets and Petri nets 64
6.3 The impact of sorting 69

Part II : Motion 71

7 Reactions and transitions 73
7.1 Reactive systems 74
7.2 Transition systems 77
7.3 Sub transition systems 84

vii

viii Contents

7.4 Abstract transition systems 85

8 Bigraphical reactive systems 88
8.1 Dynamics for a BRS 89
8.2 Dynamics for a nice BRS 94

9 Behaviour in link graphs 100
9.1 Arithmetic nets 100
9.2 Condition–event nets 103

10 Behavioural theory for CCS 110
10.1 Syntax and reactions for CCS in bigraphs 110
10.2 Transitions for CCS in bigraphs 114

Part III : Development 121

11 Further topics 123
11.1 Tracking 123
11.2 Growth 125
11.3 Binding 130
11.4 Stochastics 137

12 Background, development and related work 139

Appendices 146

Appendix A Technical detail 147

Appendix B Solutions to exercises 162

Glossary of terms and symbols 177
References 180
Index 185

Prologue

The informatic challenge

Computing is transforming our environment. Indeed, the term ‘computing’ de-
scribes this transformation too narrowly, because traditionally it means little more
than ‘calculation’. Nowadays, artifacts that both calculate and communicate per-
vade our lives. It is better to describe this combination as ‘informatics’, connoting
not only the passive stuff (numbers, documents, …) with which we compute, but
also the activity of informing, or interacting, or communicating.

The stored-program computer, which sowed the seeds of this transformation 60
years ago, is itself a highly organised informatic engine specialised to the task of
calculation. Computers work by internal communication among their parts; no-
one expected that, within half a century, most of their work – bar highly specialised
applications – would involve external communication. But within 25 years arose
networks of interacting computers; the control of interaction then became a prime
concern. Interacting systems, such as the worldwide web or networks of people with
phones, are now commonplace; software takes part in them, but most prominent is
communication, not calculation.

These artifacts will be everywhere. They will control driverless motorway traf-
fic, via communication among sensors and effectors at the roadside and in vehicles;
they will monitor and treat our health via communication between devices installed
in the human body and software in hospitals. Thus the term ‘ubiquitous computing’
represents a vision that is being realised.1 In 1994 Mark Weiser, a pioneer of this
vision, wrote2

Populations of computing entities will be a significant part of our environment, performing
tasks that support us, and we shall be largely unaware of them.

1 The terms ‘ubiquitous’ and ‘pervasive’ mean roughly the same when applied to computing. I shall only use
‘ubiquitous’.

2 Citations of related work will be found in Chapter 12.

ix

x Prologue

This suggests that informatic behaviour is just one of the kinds of phenomena that
impinge upon us. Other kinds are physical, chemical, meteorological, biological,
…, and we have a good understanding of them, thanks to an evolved culture of
scientific concepts and engineering principles. But understanding still has to evolve
for the behaviour of a population of informatic entities; we have not the wisdom to
dictate the appropriate concepts and principles once and for all, however well we
understand the individual artifacts that make up the population.

This understanding is unlikely to evolve in large steps. The qualities we shall
attribute to ubiquitous systems are extraordinarily various and complex. Such a
system, or its component agents, will be self-aware, possess beliefs about their en-
vironments, possess goals, enter negotiation to achieve goals, and be able to adapt
to changing circumstances without human intervention. Here is an incomplete list
(in alphabetical order) of concepts or qualities, all of which will be used to specify
and analyse the behaviour of ubiquitous systems:

agent, authenticity, belief, connectivity, continuous space, data protection, delegation, duty,
encapsulation, failure management, game theory, history, knowledge, intelligence, inten-
tion, interaction, latency, locality, motion, negotiation, protocol, provenance, route, secu-
rity, self-management, specification, transaction, trust, verification, workflow.

Much has been written about principles and methods of system design that can
realise these qualities, and much experimental work done in that direction. That
body of work is one part of the background for this book, and is discussed in greater
detail – with citations – in Chapter 12.

The design task for ubiquitous systems is all the harder because they will be
at least an order of magnitude larger than present-day software systems, and even
these have often been rendered inscrutable by repeated ad hoc adaptation. Yet ubiq-
uitous systems are expected to adapt themselves without going offline (since we
shall depend upon their continuous operation). It is therefore a compelling scientific
challenge to understand them well enough to gain confidence in their performance.
This has been adopted as one of the Grand Challenges for Computing Research by
the UK Computing Research Committee.

Looking at our list of system qualities in greater detail, we notice that some
are more sophisticated, or ‘higher-level’, than others. Some, such as trust, are
properties normally attributed to humans, not to artifacts. But when an assertion
such as ‘A trusts B’ is made at a high level of modelling, we expect it to be realised
at a lower level by A’s behaviour; for example, A may grant B’s requests on the basis
of evidence of B’s past behaviour.3 If a stratification of modelling can be achieved
by such realisations, then the task of description and design of ubiquitous systems
will become tractable.
3 A behaviourist philosopher might insist that this is the meaning of ‘A trusts B’, even for humans.

Prologue xi

To model ubiquitous systems of artifacts will be hard enough. But, as the
reader may already be thinking, such systems will also contain natural organisms.
They will occur at dramatically different levels; we already mentioned people with
phones, and we should also include more elementary biological entities. We should
seek to model not only interactive behaviour among artificial agents, but also inter-
action with and among natural agents. Ultimately our informatic modelling should
merge with, and enrich, natural science.

Space

Where can we start, in building a stratified model of ubiquitous systems? The key
term here is ‘stratified’. The agents of a ubiquitous system stand to it in the same re-
lation as musical instruments stand to an orchestra. Instruments existed long before
orchestras; how to combine them in groups and then into the whole would have
puzzled the early virtuosi of each instrument. It would have gradually emerged
how the physical qualities of each instrument would combine to realise qualities of
the group; for example, how the tone-colours of different wind instruments would
yield the more abstract quality of tenderness, or of humour, in a wind quartet. Thus
gradually emerges the huge spectrum of qualities of a whole orchestra.

Where this analogy becomes strained is in the brute fact of size; a ubiquitous
system will involve millions of agents, whereas an orchestra has a mere hundred
instruments.

Let us return to stratification. In a ubiquitous system, a quality attributed to a
larger subsystem must be realised by simpler properties of smaller subsystems or
of individual components. This realisation, in turn, surely depends on how the
system and its subsystems are constructed. So, to realise system qualities, we must
first understand possible structures for ubiquitous systems. We may be grateful for
this conclusion; it poses a challenge more accessible than that of realising human-
like qualities in a machine. Structure is itself difficult, especially for systems that
will reorganise their own structure. But one can at least make proposals about the
possible ingredients of structure, without being bewildered by the immense range
of behavioural qualities that it will support.

This book works out such a proposal. It starts from the recognition that a no-
tion of discrete space is shared by existing informatic science on the one hand
and imminent ubiquitous systems on the other. This space involves just three of
the concepts listed above: agent, locality and connectivity. When we come to
reconfiguration of the space we must consider two more of those concepts: motion
and interaction.

At this point, the reader may object: ‘How can you be sure that we can base our
understanding of system behaviour on these concepts? You aim to explain systems

xii Prologue

that have some of the intelligence of humans, and these chosen concepts are at the
level of the basic structure of matter! Your proposal is analogous to claiming that
we can base our understanding of the brain on chemistry.’ The simple answer is:
I am not sure that these concepts are sufficient; but I do claim they are necessary.
Brain researchers are faced with a task harder than ours in many ways; but they are
fortunate that much chemistry was known before brain research began. We, on the
other hand, have work to do to formulate the analogue of chemistry for ubiquitous
systems.

Let us now turn to discussing a space of agents, based upon locality and con-
nectivity. Since these ideas pervade the whole book, we shall denote them by the
simpler words placing and linking. It is instructive to reflect how placing and link-
ing run through existing informatics. Even before the stored-program computer,
calculation depended on ways to organise space – not the space of Euclidean ge-
ometry, but a discrete space involving properties like adjacency and containment.
Arabic numerals use one-dimensional placing to represent the power of digits; this
allows two-dimensional placing to be used to arrange data in the basic numerical
algorithms – addition, multiplication, and so on. Algorithms for solving differen-
tial equations with a manual calculator deployed the use of placing for data and
calculation in sophisticated ways.

In stored-program computers the space became more refined. Programs use one
storage register to ‘point at’ another; that is, an integer variable is used to index
through a sequence of elements (where previously a human calculator would run
his or her finger through the sequence). Thus linking became distinct from simple
properties of placing, such as adjacency or containment. Placing and linking became
independent; for example, an element placed within an array can be linked to
something else occupying a distant place.

It is striking that wireless networks allow us similarly to think of linking as
independent of physical placing in ubiquitous systems. We assume this indepen-
dence when we describe the internet. Moreover placing and linking can be either
physical or virtual; we even mix the two within a single system, using the re-
lationships of physical entities as metaphors for relating the virtual ones. These
metaphors abound in our vocabulary for software: flow chart, location, send and
fetch, pointer, nesting, tree, etc. Concurrent computing expands the vocabulary
further: distributed system, remote procedure call, network, routing, etc.

Motion

Any model of ubiquitous systems based on placing and linking, whether of physical
or virtual entities or both, must accommodate motion and interaction. In fact it
is unsatisfactory to separate these two concepts, so I tend to conflate them. (In

Prologue xiii

moving into a room, I can be said to interact with the room.) The picture below
illustrates a mixture of the physical with the virtual; it also shows how a system
may reconfigure itself.

It represents a change of state in which a message M moves one step closer to
its destination. The three largest nodes may represent countries, or buildings, or
software agents. In each case the sender S of the message is in one, and the receiver
R in another. The message is en route; the link from M back to S indicates that
the message carries the sender’s address. M handles a key K that unlocks a lock
L, reaching an agent A that will forward the message to R. This unlocking can
be represented by a reaction rule; such rules define how a part of the system may
change both its placing and its linking. A rule that defines the above reconfiguration
is as follows:

Here, both key and lock are virtual; but of course physical reconfiguration can
happen in the same system. For example, at any time the (physical) receiver R may
move away from her location. Can the message chase R and catch her up? Perhaps
some interaction between her and the forwarding agent A makes this possible. In-
deed, as she goes, R may construct an informatic record of her (physical) journey,
and send it back to assist the forwarding agent. So there is no doubt that a model
of space and interaction has to coordinate informatic and physical entities.

I shall show that these diagrams, and their reconfiguration, are a presentation
of a rigorous theory. I aim to develop that theory to the point that it can begin to
underlie experiments with real systems, and so form the basis for theories that deal
with the more subtle notions mentioned above, such as beliefs, self-awareness and
adaptability.

xiv Prologue

The bigraph model

The graphical structures we have just illustrated will be called bigraphs. Like an
ordinary graph, a bigraph has nodes and edges, and the edges link the nodes. But
unlike an ordinary graph, the nodes can be nested inside one another. So a bigraph
has link structure and place structure; hence the prefix ‘bi’ in bigraph.4 Bigraphs
will be introduced with more detail in Chapter 1, but a few comments will be helpful
here:

(i) The two structures – placing and linking – will be treated independently
in the basic theory of bigraphs. This accords with our observation that
both pointers in computer programs and wireless links in the real world can
arbitrarily cross place boundaries. This independence property has another
benefit; when first introduced, it was found to simplify the theory of bigraphs
dramatically.

(ii) The reader may ask ‘What is the space in which bigraphs live and move?’
The answer is that bigraphs themselves are the space of the model. My
proposal is that this notion of space is enough to represent an enormous
range of structures. Experiment with this simple space will reveal whether
and when a more complex space is required.

(iii) A single bigraph may represent both virtual and physical entities (a country,
a message, …). This may seem surprising, but creates no difficulty; indeed,
it is very convenient. To push our example a little further, imagine that the
receiver R is a traveller who carries a laptop in which she makes a schematic
map of the places she visits. This physical laptop is then represented by a
node in the bigraph, and the virtual structure (the map) it contains may be
represented by the contents of that node.

Generality

Let us now discuss the degree of generality achieved by bigraphs. Will they serve
as a platform for building ubiquitous systems? To answer this we must present
the bigraph model as a design tool, to be used not only for analysis but even as
a programming language; then experiments can be done to reveal its power and
generality.

But to establish the model as a candidate for this long-term role, we must first
make sure that it accommodates, or generalises, already existing theories of inter-
active agents. This shorter-term challenge is more well-defined. We must encode
4 The term ‘bigraph’, as used here, was introduced in 2001. I recently found that the term was already used then

as a synonym for ‘bipartite graph’, a well-established notion in graph theory. The meanings differ, but the use
of the same term is unlikely to cause confusion.

Prologue xv

each previous model – including its rules of interaction – into bigraphs. Indeed
bigraphs should not only represent the agents and reactions of previous models;
they should also provide theory that applies uniformly to those models. In other
words, bigraphs should tend to unify theories of processes.

This book gives priority to the latter challenge: to generalise existing process
models. Therefore in Chapter 12, the final chapter, I explain how bigraphs have
drawn ideas from preceding models, and were developed in order to strengthen and
generalise their theory. The result has been positive. To give perspective, I give a
brief summary here. (A little familiarity with process models will be helpful in the
next paragraph, but it can be skipped.)

Each process model (for example Petri nets, CSP, mobile ambients, π-calculus)
defines processes syntactically, and then presents its rules of interaction. Thus each
model is represented in bigraphs by two parameters: a sorting discipline – which
includes a signature – that makes the bigraphs represent the model’s formal entities,
and a set of reaction rules to represent their behaviour. These two parameters yield
a bigraphical reactive system (BRS) that is specific to the model. BRSs for several
process models are presented in the book. Often the agreement with the model is
exact; in other cases nearly exact. It is worth making specific points:

(i) For the purpose of both analysis and programming, many existing models
have a convenient algebraic (i.e. modular) representation of processes. In
bigraphs there is a uniform algebraic presentation, and this bears a close
relation to that of existing models. Thus bigraphs contribute uniformity of
expression.

(ii) Some calculi, including CCS and the π-calculus, define what it means for
two processes to behave alike. This is called behavioural equivalence. A
typical example is bisimilarity. Such an equivalence is usually a congruence
– i.e. it is preserved by insertion of the processes into any environment. The
proof of congruence has typically been somewhat ad hoc. Bigraphs provide
a degree of uniformity here; in bigraphs not only do we treat bisimilarity
uniformly across process calculi, but we also provide a uniform proof of
congruence.

(iii) For most of the book we retain the full independence of placing and linking;
this yields most of the results. However Section 11.3 defines uniformly a
way to relax this independence; it defines how to localise a link and thereby to
represent the binding of a name; this has allowed us to handle (for example)
the π-calculus.

Thus the aim to generalise or subsume existing process calculi serves as a fo-
cus for developing our model. But these very calculi not only aspire to an engi-
neering role, as a means to express and analyse the design of complex systems;

xvi Prologue

they also aspire to advance the fundamental science of informatics. They repre-
sent a challenge to the models of computation that were dominant in the twentieth
century. By exposing computation as an especially disciplined form of informatic
behaviour, they have opened the way to a science of such behaviour in which the
determinacy and hierarchy found in traditional computing are the exception, not the
rule. They replace calculational structure with communicational structure.

This book can therefore be seen as advancing the science of communicational
structures. By working in the explicit model of bigraphs, I also attempt to bridge
between this science and the engineering of large future informatic systems. My
hope is that, with this foundation, models of such future systems can be built in
a principled way. To tackle substantial examples of these models in detail would
have expanded the present book unreasonably. Furthermore, to submit such models
to analysis and experiment will demand a variety of software tools based upon our
theory. Such tools are already being developed – see below under ‘Deployment’ –
and their existence will create a strong incentive to build large experimental models;
these will, in turn, subject our theory to severe test.

Modelling of the present kind aspires to build a bridge from informatic science
not only to the engineering of new artifacts, but to the study of natural systems.
In other words, it extends the repertoire of models available to natural scientists.
For example, with the help of a stochastic treatment of interaction we are able to
apply the bigraphical model to the predictive analysis of biological systems. This
application is explained a little more in Section 11.4.

Rigour

Working at a broad frontier of informatics, spanning science and engineering, de-
mands prioritisation; as I have already stated, it lies beyond the scope of a single
book both to explore all possible applications (natural and artificial) and to estab-
lish a model in full detail. I have chosen to do the latter because, as we saw in the
preceding section, there already exist many precise models in the form of process
calculi, and they pose an accessible challenge – to recover them as instances of
a more impartial study. This challenge, to establish commonality among existing
formal models, must itself be addressed formally if we are to make it a firm platform
on which to tackle a still wider range of applications. But I have interleaved formal
development with discussion, and have not relied on previous knowledge of any
particular mathematical theory.

I use the medium of category theory, but the level at which I use it is elemen-
tary, and I define every categorical concept that I use. Large informatic systems
are complex, and any rigorous model must control this complexity by means of
adequate structure. After many years seeking such models, I am convinced that

Prologue xvii

categories provide this structure most convincingly. It is true that they can also
express deep mathematical abstractions, many of which at present lie beyond the
interest of informatic scientists. But there is a sharp division of motive between
pursuing these abstractions per se and using categorical primitives as a means to
understand informatic structure. The work in this book is of the latter kind. Read-
ers familiar with categories will follow their use here without difficulty; others who
wish to tame informatic structure may find this work a pleasant way to learn some
mathematics suited to that purpose.

Models are built to aid people’s understanding, and different people seek differ-
ent levels of understanding. Engineering scientists seek a rigorous model; software
designers seek something softer, but with equal intuitions, and this is even more
true for their client companies and for end-users. So we would like to know that
softer models of communicating agents can arise from our rigorous model. For-
tunately, by their very nature these systems involve a concept of space, which is
reflected in the idea of bigraphs and lends itself to informal understanding based
upon diagrams. Throughout the book I work as much as possible with bigraphical
diagrams; they express the rigorous ideas but do not replace them.

Deployment

It is one thing to develop a rigorous model; quite another thing to bring it into use
by those concerned mainly with applications. But this usage is a primary goal for
our model; moreover, it is only by deploying the model in applications that we can
subject it to stringent testing.

Even protypical applications tend to be complex; one need only think of phe-
nomena in ubiquitous computing and in biology. It follows that software tools are
essential for exploring the efficacy of the model, both for scientific analysis and
for advanced software engineering. Such tools have several roles: in programming
and specifying complex systems; in simulating them, with the help of stochastic
dynamics; and in visualising them at various levels of abstraction, exploiting the
graphical presentation inherent in the model.

Work in these directions is under way at the IT University (ITU) in Copenhagen,
as outlined in Chapter 12. A strategy exists for modular tool development, which
can proceed in collaboration among different institutions. I would be glad to hear
from anyone willing to contribute seriously to this development.

Outline of the book

Bigraphs are developing in various ways. All these developments are based upon
pure bigraphs: those in which the independence of placing and linking is strictly

xviii Prologue

maintained. So most of the book is devoted to pure bigraphs, whose theory is more
or less settled. Part I presents their structure; Part II handles their behaviour; and
Part III deals with their development, past and future.

In Part I, Chapter 1 introduces bigraphs starting from standard notions in graph
theory. The main idea of bigraphs is to treat the placing and the linking of their
nodes as independently as possible. Chapter 2 defines bigraphs formally, together
with the operations that build them; it then introduces various kinds of category
that will help to develop their theory. Chapter 3 develops the algebra of bigraphs,
with operations for both placing and linking; it also derives operations familiar
from process calculi. Chapter 4 defines relative pushouts, a categorical tool for
structural analysis. Chapter 5 applies this tool to bigraphs, preparing for the later
derivation of transitions. Chapter 6 develops a sorting discipline for bigraphs that
is reminiscent of many-sorted algebra.

In Part II, Chapter 7 defines the notion of a wide reactive system (WRS), more
general than bigraphs. For such systems it defines reaction rules and derives (la-
belled) transition systems; it then obtains important results such as the congruence
of bisimilarity. WRSs have an abstract notion of space, enough to allow reaction to
be confined to certain places. Chapter 8 specialises this work to bigraphs, yielding
the more refined notions of a bigraphical reactive system (BRS) and its transition
systems; it also identifies certain well-behaved kinds of BRS. Chapter 9 uses link
graphs, a simplified version of the theory, to analyse behaviour in arithmetic nets
and Petri nets. Chapter 10 applies bigraphs to CCS, and recovers its original theory.

In Part III, Chapter 11 discusses several developments beyond pure bigraphs.
First, it examines how to track the identity of agents through interaction; this would
allow one to express, and to verify, assertions about a BRS such as ‘Each agent
receives each message at most once’ or ‘Mary has visited three rooms since she
entered the building’. Second, it proposes a generic way to represent agents with
infinite behaviour using finite bigraphs, with the help of rules for structural growth.
Third, it discusses how to constrain placing and linking so that certain links have
scope, or are bound, in the familiar way that variables in a programming language
have scope or are bound as formal parameters of a procedure. Finally, it summarises
recent work on the stochastic interpretation of bigraphical systems; this is essential
for simulating nondeterministic systems, in particular in biological applications,
where the more likely of two possible reactions is that which is attributed the higher
rate in an exponential distribution.

Chapter 12 outlines how bigraphs have developed, and discusses related work
with full citations. These show how much the work of this book owes to my close
colleagues, as well as to influences from other research initiatives.

Prologue xix

3. Algebra for bigraphs 4. Relative pushouts

9. Behaviour in link graphs 10. Behavioural theory for CCS

8. Bigraphical reactive systems

6. Sorting5. Bigraphical structure 7. Reactive systems

2. Categorical framework

11. Further topics 12. Development and related work

1. The idea of bigraphs

Fig. 0.1. Dependency among the chapters

Using the book

The chapters need not be read in strict sequence. Mostly, later chapters point back
to what they need from earlier ones. Figure 0.1 gives a guide to the dependency
among chapters. For example if you reach Chapter 8 by going down the left side, you
read about bigraphs and then get the theory when you need it; if you reach it down
the right side you stay at the general level of reactive systems as long as possible.
Leaping ahead may also be useful; for example, those who know something of
process calculi may leap from Chapter 1 to Chapter 10, to gain motivation for
returning to the intervening chapters.

The book is suitable for teaching yourself; there are many exercises, and solu-
tions to all of them. It can also be used for a Masters’ course, where the amount of
theory included can be adapted to the students’ knowledge. Parts are appropriate
for an optional final year Undergraduate course.

The book can also serve as the foundation for a lecture course that concen-
trates upon the intuition of bigraphs and upon exploring their application. I have
designed such a course; from my website, http://www.cl.cam.ac.uk/∼rm135, the
reader may download a sequence of 70 or more slides that I have used. Ac-
companying them is (or, at the time of writing, will soon be) a slide-by-slide
narrative, linking the slides together and making copious reference to this book
– especially for locating the underlying rigorous development. This combina-
tion of slides and narrative will evolve in response to my own experience,

xx Prologue

and to the experience of others who use them. I shall be delighted to receive
comments by email (rm135@cam.ac.uk) from anyone, based on such experience;
thus I hope to improve the slides, the book and ultimately the theory itself.

Acknowledgements

I owe much to early collaboration on bigraphs with Jamey Leifer and Ole Høgh
Jensen. I am most grateful for their creative insights. I thank Philippa Gardner
and Peter Sewell for important contributions in work that led from action structures
(a previous model) to bigraphs. Several people have generously given time to
careful reading, helping me to express things better: Samson Abramsky, Mikkel
Bundgaard, Troels Damgaard, Marcelo Fiore, Sam Staton and David Tranah.

I also thank warmly all those I have worked with, or learnt from, in this sub-
ject over nearly 30 years, in particular: Martín Abadi, Samson Abramsky, Jos
Baeten, Martin Berger, Jan Bergstra, Gérard Berry, Lars Birkedal, Clive Black-
well, Gérard Boudol, Mikkel Bundgaard, Ilaria Castellani, Luca Cardelli, Adriana
Compagnoni, Troels Damgaard, Rocco De Nicola, Hartmut Ehrig, Marcelo Fiore,
Philippa Gardner, Arne Glenstrup, Andy Gordon, Matthew Hennessy, Thomas
Hildebrandt, Jane Hillston, Yoram Hirshfeld, Tony Hoare, Kohei Honda, Alan
Jeffrey, Ole Høgh Jensen, Jan-Willem Klop, Jean Krivine, Cosimo Laneve, Kim
Larsen, Jamey Leifer, Alex Mifsud, George Milne, Kevin Mitchell, Faron Moller,
Ugo Montanari, Uwe Nestmann, Mogens Nielsen, Catuscia Palamidessi, David
Park, Joachim Parrow, Carl-Adam Petri, Benjamin Pierce, Gordon Plotkin, John
Power, Sylvain Pradalier, K.V.S. Prasad, Corrado Priami, Michael Sanderson, Da-
vide Sangiorgi, Vladi Sassone, Peter Sewell, Mike Shields, Sam Staton, Bern-
hard Steffen, Colin Stirling, Chris Tofts, Angelo Troina, David Turner, Rob Van
Glabbeek, Bjorn Victor, David Walker, Glynn Winskel, Nobuko Yoshida.

I acknowledge the Préfecture of the Île-de-France Region for the award of a
Blaise Pascal International Research Chair, which enabled me to advance this work
during a recent year in Paris. I warmly thank Jean-Pierre Jouannaud and Catuscia
Palamidessi, who were my welcoming hosts at École Polytechique at Saclay during
this period.

xxi

Part I : Space

1

The idea of bigraphs

In this chapter we develop the notion of a bigraph from the simple idea that it
consists of two independent structures on the same set of nodes.

To prepare for the formal Definitions 1.1–2.7, we start informally from two well-
known concepts: a forest is a set of rooted trees; and a hypergraph consists of a set
of nodes, together with a set of edges each linking any number of nodes.

Idea A bigraph with nodes V and edges E has a forest whose nodes are V ; it also
has a hypergraph with nodes V and edges E.

Let us call an entity with this structure a bare bigraph. We shall use F̆ , Ğ to stand
for bare bigraphs. Here is a bare bigraph Ğ having nodes V = {v0, . . . , v5} and
edges E = {e0, e1, e2}, with its forest and hypergraph:

The upper diagram presents both the forest and the hypergraph; it depicts the forest
by nesting. The lower two diagrams represent the two structures separately, in a
conventional manner. The children of each node are the nodes immediately below

3

4 1 The idea of bigraphs

it in the forest (i.e. immediately within it, in the upper diagram). Thus v1 and v2

are children of v0, which is their parent.

An edge is represented by connected thin lines; Ğ has two edges that each connect
three nodes, and one that connects two nodes. The points at which an edge impinges
on its nodes are called ports, shown as black blobs.1

We now add further structure to a bare bigraph. It will allow bigraphs to be
composed, and will allow one bigraph to be considered as a component of another.
Here is F̆ , informally a ‘part’ of Ğ, having only some of its nodes and with one
hyperlink broken. Can we call it a component of Ğ ?

To make it so, we add interfaces to bare bigraphs, thus extending F̆ and Ğ into
bigraphs F and G. This will allow us to represent the occurrence of F as a com-
ponent of G by an equation G = H ◦F , where H is some ‘host’ or contextual
bigraph. We do this extension independently for forests and hypergraphs; a forest
with interfaces will be called a place graph, and a hypergraph with interfaces will
be called a link graph.

Let us illustrate with the bare bigraph F̆ . A place graph interface will be a natural
number n, which we shall treat as a finite ordinal, the set n = {0, 1, . . . , n−1}whose
members are all preceding ordinals. A place graph’s outer and inner interfaces – or
faces as we shall call them – index respectively its roots and its sites. For the forest
of F̆ we choose the outer face 3 = {0, 1, 2}, providing distinct roots as parents for
the nodes v1, v3 and v4. For the inner face of F̆ we choose 0, i.e. it has no sites. This
extends the forest to a place graph F P : 0→ 3, an arrow in a precategory2 whose
objects are natural numbers. It is shown at the left of the diagram below.

1 By making ports explicit we permit distinct roles to be played by the edges impinging on a given node, just as
each argument of a given mathematical function plays a distinct role.

2 We shall define precategories in Chapter 2. For now, it is enough to know that a precategory has two kinds of
entity, objects and arrows; that each arrow goes from a tail to a head, both of which are objects; and that these
entities behave nicely together. Both objects and arrows may have all kinds of structure.

The idea of bigraphs 5

The outer and inner faces of a link graph are name-sets: respectively, its outer and
inner names. For the hypergraph of F̆ we choose outer face {xy}, thus naming
the parts of the broken hyperlink, and inner face ∅.3 This extends the hypergraph
to a link graph F L : ∅→{xy}, an arrow in a precategory whose objects are finite
name-sets. Names are drawn from a countably infinite vocabulary X .

Finally, a bigraph is a pair B = 〈BP, BL〉 of a place graph and a link graph;
these are its constituents. Its outer face is a pair 〈n, Y 〉, where n and Y are the
outer faces of BP and BL respectively. Similarly for its inner face 〈m, X〉. For
our example F = 〈F P, F L〉 these pairs are 〈3, {xy}〉 and 〈0, ∅〉 respectively. We
call the trivial interface ε

def= 〈0, ∅〉 the origin. Thus F̆ is extended to an arrow
F : ε→〈3, {xy}〉 in a precategory whose objects are such paired interfaces. F will
be drawn as follows:

The rectangles in F – sometimes called regions – are just a way of drawing its roots,
seen also in F P. The link graph F L has four links. Two of these are the edges e1

and e2, also called closed links; the other two are named x and y, and are called
open links.

Let us now add interfaces to the bare bigraph Ğ, extending it into a bigraph G. It
has no open links, i.e. all its links are edges, so the name-set in its outer face will be
empty. Let us give it two roots; then, if G is placed in some larger context, v0 and
v4 may be in distinct places – i.e. may have distinct parents. The diagram below
shows G and its constituents. Note that there is no significance in where a link
‘crosses’ the boundary of a node or region in a bigraph; this is because the forest
and hypergraph structures are independent.

3 We use single letters for names, so we shall often write a set {x, y, . . .} of names as {xy · · · }, or even as
xy · · · , when there is no ambiguity.

6 1 The idea of bigraphs

We are now ready to construct a bigraph H such that G = H ◦F , illustrating
composition, which will later be defined formally. The inner face of H must be
〈3, {xy}〉, the outer face of F ; to achieve this, H must have three sites 0, 1 and
2, and inner names x and y. Here are H and its constituents, with sites shown as
shaded rectangles:

In the place graph, each site and node has a parent, a node or root; in the link graph,
each inner name and port belongs to a link, closed or open. Just as it is insignificant
where links ‘cross’ node or root boundaries, so it is insignificant where they ‘cross’
a site. We draw inner names below the bigraph and outer names above it; this is
merely a convention to indicate their status as inner or outer. A name may be both
inner and outer, whether or not in the same link.

The idea of bigraphs 7

In general, let F : I→ J and H :J→K be two bigraphs with disjoint nodes and
edges, where I = 〈k, X〉, J = 〈m, Y 〉 and K = 〈n, Z〉. Then the composite
bigraph H ◦F : I→K is just the pair of composites 〈HP ◦F P, HL ◦F L〉, whose
constituents are constructed as follows (informally):

(i) To form the place graph HP ◦F P : k→n, for each i ∈ m join the ith root
of F P with the ith site of HP;

(ii) To form the link graph HL ◦F L :X→Z, for each y ∈ Y join the link of
F L having the outer name y with the link of HL having the inner name y.

Thus H and F are joined at every place or link in their common face J , which
ceases to exist. The reader may like to check these constructions for H and F as
in our example.

In our formal treatment, operations on bigraphs will be defined in terms of their
constituent place and link graphs. But it is convenient, and even necessary for prac-
tical purposes, to have diagrams not only for the constituents but for the bigraphs
themselves, such as for F , G and H in the example above. Such a diagram must
be to some extent arbitrary, because we are trying to represent placing and linking,
which are independent, in two dimensions! In particular, note that we have drawn
outer names above the picture (in F and G for example), and we have drawn inner
names below the picture (in H for example). Other conventions are possible.

It will be helpful to look now at Figure 1.2, at the end of this chapter, showing the
anatomical elements of bigraphs that will later be defined formally. In the present
chapter we give only one formal definition, which determines how to introduce
different kinds of node for different applications.

Definition 1.1 (basic signature) A basic signature takes the form (K, ar). It has
a set K whose elements are kinds of node called controls, and a map ar :K→N

assigning an arity, a natural number, to each control. The signature is denoted by
K when the arity is understood. A bigraph over K assigns to each node a control,
whose arity indexes the ports of a node, where links may be connected. �

A signature suitable for our example is K = {K : 2, L : 0, M : 1}. (Thus arities are
made explicit.) Here is our bigraph G : ε→〈2, ∅〉, with controls assigned to the
nodes:

8 1 The idea of bigraphs

We have omitted node- and edge-identifiers, as we often shall when they are irrel-
evant. To end this chapter, let us look at a realistic (but simplified) example, which
indicates that bigraphs can go beyond the usual topics for process calculi.

Example 1.2 (a built environment) The next diagram shows a bare bigraph Ĕ

over the signatureK = {A : 2, B : 1, C : 2, R : 0}, which classifies nodes as agents,
buildings, computers and rooms. The node-shapes are not significant, except to
indicate the purpose of each port. The figure represents a state which may change
because of the movement of agents, and perhaps other movements. Think of the
five agents as conducting a conference call (the long link). An agent in a room may
also be logged in (the short links) to a computer in the room, and the computers in
a building are linked to form a local area network. �

Bearing in mind our earlier example, the following exercise will be instructive.

EXERCISE 1.1

(1) Draw a bare bigraph D̆ representing the three agents that are inside rooms.
Make this into a bigraph D by defining its outer face.

(2) Propose an outer face that makes Ĕ into a bigraph E, allowing the possi-
bility that the two buildings may be situated in different cities. Draw the
bigraph C, with sites, such that C ◦D = E. �

Although the detailed study of dynamics is deferred to Part II, let us now illustrate
how bigraphs can reconfigure themselves. We are free to define different reconfig-
urations for each application. This is done by reaction rules each consisting of a
redex (the pattern to be changed) and a reactum (the changed pattern). Part of the
idea of bigraphs is that these changes may involve both placing and linking.

The redex and reactum of a rule are themselves bigraphs, and may match any
part of a larger bigraph. (This remark will be made precise in Part II.) Here are
three possible rules for built environments, such as the system E:

The idea of bigraphs 9

Rule B1 is the simplest: an agent can leave a conference call. The redex – the
left-hand pattern – can match any agent; the out-pointing links mean that either of
her ports may at first be linked to zero or more other ports, in the same place or
elsewhere. If she is linked in a conference call to other agents, perhaps in other
buildings, the reaction by B1 will unlink her; any link to a computer is retained.

Rule B2 shows a computer connecting to an agent in the same place (presumably
a room). The redex insists that at first the agent is linked to no computer and the
computer is linked to no agent. Rules B1 and B2 change only the linking – not the
placing – in a bigraph, though the redex of B2 does insist on juxtaposition.

Rule B3, by contrast, changes the placing; an agent enters a room. Again, the
rule requires the agent and the room to be in the same place (presumably a build-
ing). The site (shaded) allows the room to contain other occupants, e.g. a computer
and other agents. The matching discipline allows these occupants to be linked
anywhere, either to each other or to nodes lying outside the room.

Another feature of B3 is that its redex allows the lower port of the agent to be
already linked to a computer somewhere, perhaps in another room. B3 retains any
such link. Equally, there may be no such link – the context in which the rule is
applied may close it off. Thus B3 can be applied to the system represented by Ĕ,
or E, allowing an agent in the right-hand building to enter a room.

Taking this a step further, observe that in E an agent and a computer are linked
only when they occupy the same room. Moreover, starting from E, our rules B1–
B3 will preserve this property, since only B3 creates such links, and only within
a room. We therefore call the property an invariant for E in the system with this
rule-set. We now briefly discuss invariants.

Given a rule-set, we refer to the configurations that a system may adopt as states.
The rule-set determines a reaction relation � between states. The diagram below
shows the state E3 adopted by E after three reactions

E � E1 � E2 � E3 ;

in the first, B1 is applied to the third agent from the left; in the second, B3 is

10 1 The idea of bigraphs

applied to the fourth agent; this enables B2 to be applied to that agent in the third
reaction.

We say that a property of states is (an) invariant for E (under a given rule-set) if
it holds for all states reachable from E via reactions permitted by the rule-set, i.e.
it holds for all E′ such that E � · · · � E′. For example, under the rule-set
B1–B3, the property ‘there are exactly five agents’ is invariant for E.

Of course, our present rule-set is very limited. The following exercise suggests
how to enrich this rule-set a little, and explores what invariants may then hold.

EXERCISE 1.2

(1) Add a rule B4 to enable an agent linked with a computer to sever this link,
and another rule B5 to allow an agent unlinked to a computer to leave a
room. Give a few examples of invariants for E under the rule-set B1–B5.

(2) Instead of B4 and B5, design a single rule B6 that allows an agent to leave
a room, simultaneously severing any link with the computer. How does this
change affect your invariants? �

Our behavioural model of the occupants of a building is crude, of course. But
reaction rules of this kind, hardly more complex, are beginning to find realistic
application in biological modelling. A crucial refinement is to add stochastic in-
formation that determines which reactions are more likely to occur, and therefore
to preempt others. In the built environment, an interesting refinement is to allow
agents to discover who is where, and record this information via the computers;
these stories can then be combined so that the system becomes reflective, meaning
that it can represent (part of) itself, and answer questions such as ‘where is agent
X?’.4

In another direction, bigraphs can model process calculi. In this case, the con-
trols of a bigraph represent the constructors of the calculus. As an example, we

4 These experimental applications are discussed, with citations, in Chapter 12.

The idea of bigraphs 11

take the calculus of mobile ambients, which partly inspired the bigraph model. In
mobile ambients the main constructor is ‘amb’ with arity 1, representing an ambi-
ent – a region within which activity may occur; its single port allows an ambient to
be named. Other constructors represent commands, or capabilities.

The above diagram shows two ambients, each with arbitrary content represented
by the sites; one ambient also contains an ‘in’ capability, which refers to the other
ambient by name. Let us use this example to illustrate the algebraic language for
bigraphs, which we shall develop in later chapters. Here is the algebraic term for
the above system:

ambx.(iny.d0 | d1) | amby.d2 .

The combinator ‘|’ represents juxtaposition, and is commutative and associative;
the combinator ‘.’ denotes nesting. We shall see in Chapter 3 that both combinators
are derived from the categorical operations of composition and tensor product. The
metavariables d0, d1 and d2 stand for parameters, i.e. arbitrary occupants of the
sites.

Let us now look at the dynamics of ambients. The above bigraph is, in fact, the
redex of one of the reaction rules for mobile ambients, three of which are shown in
Figure 1.1. In the first rule, the ‘in’ command causes its parent ambient named x,
together with all its other contents, to move inside the ambient named y. The ‘in’
command, having done its job, vanishes; this exposes its contents to reactions with
the ambient’s other occupants. Note that reconfiguration is permitted within an
‘amb’ node, but not within an ‘in’ node; the occupant of an ‘in’ node has a potential
for interaction, which becomes actual only when the node itself has vanished.

In the second rule, conversely, the ‘out’ command causes the exit of its parent
ambient from its own parent. These two rules provide our first example of moving
sub-bigraphs from one region to another.

Finally, in the third rule the ‘open’ command causes an ambient node to vanish,
exposing its contents to interactions in a wider region.

EXERCISE 1.3 Modify rule A3 to use a ‘send’ command instead of ‘open’. It

12 1 The idea of bigraphs

Fig. 1.1. Reaction rules for mobile ambients

should send its contents into the ambient with which it is linked, and then van-
ish. Also modify the rule so that this occurs even when the send command is not ad-
jacent to the ambient, but may be anywhere outside it. Hint: Use two regions,
as in the bigraph G at the start of the chapter. To juxtapose two regions but keep
them distinct, use ‘ ‖ ’ instead of ‘ | ’. Use ‘1’ to denote the empty bigraph with one
region. �

This concludes our informal introduction to both the structure and the recon-
figuration of bigraphs. Our notion of reaction is not complex; nevertheless it can

The idea of bigraphs 13

Fig. 1.2. Anatomy of bigraphs

represent process calculi such as CCS, mobile ambients and Petri nets. The repre-
sentation of CCS will be analysed in Chapter 10. Also, with the help of stochastic
rates, rules nearly as simple as ours are proving to be useful in modelling biological
processes.

Our next task is to define bigraphical structure formally, in the following chapter.
It will make precise the anatomy illustrated in Figure 1.2.

2

Defining bigraphs

In Section 2.1 we define bigraphs formally, together with fundamental ways to
build with them.

In Section 2.2, using some elementary category theory, we introduce a broader
mathematical framework in which bigraphs and their operations can be expressed.
The reader can often ignore this generality, but it will yield results which do not
depend on the specific details of bigraphs.

In Section 2.3 we explain how the concrete place graphs, link graphs and bi-
graphs over a basic signature each form a category of a certain kind. We then use
the tools of the mathematical framework to introduce abstract bigraphs; they are
obtained from the concrete ones of Section 2.1 by forgetting the identity of nodes
and edges.

Throughout this chapter, when dealing with bigraphs we presume an arbitrary
basic signature K.

2.1 Bigraphs and their assembly

Notation and terminology We frequently treat a natural number as a finite ordi-
nal, the set of all preceding ordinals: m = {0, 1, . . . , m−1}. We write S # T to
mean that two sets S and T are disjoint, i.e. S ∩ T = ∅. We write S � T for the
union of sets known or assumed to be disjoint. If f has domain S and S′ ⊆ S, then
f � S′ denotes the restriction of f to S′. For two functions f and g with disjoint
domains S and T we write f � g for the function with domain S � T such that
(f � g)�S = f and (f � g)�T = g. We write IdS for the identity function on the
set S.

In defining bigraphs we assume that names, node-identifiers and edge-identifiers
are drawn from three infinite sets, respectivelyX , V and E , disjoint from each other.

We denote the interfaces, or faces, of bigraphs by I, J,K. Every bigraph will be

14

2.1 Bigraphs and their assembly 15

a pair of a place graph and a link graph, which will be called its constituents. We
denote bigraphs and their constituents by upper case letters A, . . . , H . �

We begin by defining place graphs and link graphs independently.

Definition 2.1 (concrete place graph) A concrete place graph

F = (VF , ctrlF , prntF) : m→n

is a triple having an inner face m and an outer face n, both finite ordinals. These
index respectively the sites and roots of the place graph. F has a finite set VF ⊂ V
of nodes, a control map ctrlF :VF →K and a parent map

prntF :m � VF →VF � n

which is acyclic, i.e. if prnt i
F (v) = v for some v ∈ VF then i = 0. �

Definition 2.2 (concrete link graph) A concrete link graph

F = (VF , EF , ctrlF , linkF) : X→Y

is a quadruple having an inner face X and an outer face Y , both finite subsets of X ,
called respectively the inner and outer names of the link graph.1 F has finite sets
VF ⊂ V of nodes and EF ⊂ E of edges, a control map ctrlF :VF →K and a link
map

linkF :X � PF →EF � Y

where PF
def= {(v, i) | i ∈ ar(ctrlF (v))} is the set of ports of F . Thus (v, i) is the

ith port of node v. We shall call X � PF the points of F , and EF � Y its links. �

A bigraph is simply the pair of its constituents, a place graph and a link graph:

Definition 2.3 (concrete bigraph) An interface for bigraphs is a pair I = 〈m, X〉
of a place graph interface and a link graph interface. We call m the width of I , and
we say that I is nullary, unary or multiary according as m is 0, 1 or >1. A concrete
bigraph

F = (VF , EF , ctrlF , prntF , linkF) : 〈k,X〉→〈m, Y 〉
consists of a concrete place graph F P = (VF , ctrlF , prntF) : k→m and a concrete
link graph F L = (VF , EF , ctrlF , linkF) : X→Y . We write the concrete bigraph
as F = 〈F P, F L〉. �

1 An alternative would be to define a link graph interface as an ordinal number k, just like a place graph interface.
Thus, instead of alphabetic names, we would represent each name by an ordinal i ∈ k. Our choice to use
a special repertoire X of names is not arbitrary; as explained in Appendix A.2, it yields a distinct technical
advantage.

16 2 Defining bigraphs

We have now defined all the anatomy of bigraphs, as illustrated in Figure 1.2 at the
end of Chapter 1.

We have called our three graphical structures concrete; this refers to the fact that
their nodes and edges are identified by members of V and E . We have already used
these identifiers in defining a bigraph, to ensure that its place graph and link graph
have the same node set and the same control map.

We now define these identifiers to be the support of a graphical structure, and we
explain how it can be varied in a disciplined way.

Definition 2.4 (support for bigraphs) To each place graph, link graph or bigraph
F is assigned a finite set |F |, its support. For a place graph we define |F | = VF ,
and for a link graph or bigraph we define |F | = VF � EF .

For two bigraphs F and G in the same homset, a support translation ρ : |F |→ |G|
from F to G consists of a pair of bijections ρV :VF →VG and ρE :EF →EG that
respect structure, in the following sense:

(i) ρ preserves controls, i.e. ctrlG ◦ρV = ctrlF . It follows that ρ induces a
bijection ρP :PF →PG on ports, defined by ρP ((v, i)) def= (ρV (v), i).

(ii) ρ commutes with the structural maps as follows:

prntG ◦ (Idm � ρV) = (Idn � ρV) ◦prntF

linkG ◦ (IdX � ρP) = (IdY � ρE) ◦ linkF .

Given F and the bijection ρ, these conditions uniquely determine G. We therefore
denote G by ρ �F , and call it the support translation of F by ρ. We call F and G

support equivalent, and we write F � G, if such a support translation exists.
Support translation is defined similarly for place graphs and link graphs. �

The purpose of interfaces is to enable bigraphs to be composed ; for this we
require the outer face of one to equal the inner face of the other. Examples of
composition were shown in Chapter 1; we think of it as placing one bigraph in the
context represented by another.

Definition 2.5 (composition and identities) We define composition for place
graphs and link graphs separately, and then combine them for the composition
of bigraphs.

• If F : k→m and G :m→n are two place graphs with |F |# |G|, their com-
posite

G ◦F = (V, ctrl , prnt) : k→n

has nodes V = VF � VG and control map ctrl = ctrlF � ctrlG. Its parent map

2.1 Bigraphs and their assembly 17

prnt is defined as follows: If w ∈ k � VF � VG is a site or node of G ◦F then

prnt(w) def=




prntF (w) if w ∈ k � VF and prntF (w) ∈ VF

prntG(j) if w ∈ k � VF and prntF (w) = j ∈ m

prntG(w) if w ∈ VG .

The identity place graph at m is idm
def= (∅, ∅K, Idm) : m→m.2

• If F :X→Y and G :Y →Z are two link graphs with |F |# |G|, their composite

G ◦F = (V, E, ctrl , link) : X→Z

has V = VF � VG, E = EF � EG, ctrl = ctrlF � ctrlG, and its link map link is
defined as follows: If q ∈ X � PF � PG is a point of G ◦F then

link(q) def=




linkF (q) if q ∈ X � PF and linkF (q) ∈ EF

linkG(y) if q ∈ X � PF and linkF (q) = y ∈ Y

linkG(q) if q ∈ PG .

The identity link graph at X is idX
def= (∅, ∅, ∅K, IdX) : X→X .

• If F : I→ J and G :J→K are two bigraphs with |F |# |G|, their composite
is

G ◦F
def= 〈GP ◦F P, GL ◦F L〉 : I→K

and the identity bigraph at I = 〈m, X〉 is 〈idm, idX〉. �

EXERCISE 2.1 Prove for bigraphs that C ◦ (B ◦A) = (C ◦B) ◦A when either side
is defined. Hint: Prove it separately for place graphs and for link graphs, then pair
the results. �

We now turn to the second principal way to make larger bigraphs from smaller
ones. We can think of composition as putting one bigraph on top of another. We can
also put two bigraphs side-by-side. We define this operation, called juxtaposition,
only when they are disjoint. To be precise:

Definition 2.6 (disjoint graphical structures) Two place graphs Fi (i = 0, 1)
are disjoint if |F0|# |F1|. Two link graphs Fi : Xi→Yi are disjoint if X0 # X1,
Y0 # Y1 and |F0|# |F1|. Two bigraphs Fi are disjoint if F P

0 # F P
1 and F L

0 # F L
1 .

In each of the three cases we write F0 # F1. �

We now define the juxtaposition of disjoint interfaces and disjoint bigraphs. Jux-
taposition is monoidal, i.e. it is associative and has a unit.

2 In contrast to Id, we write id to denote the identity for composition of graphical structures, and more generally
for composition of arrows in any kind of category (see Section 2.2).

18 2 Defining bigraphs

Definition 2.7 (juxtaposition and units) We define juxtaposition for place graphs
and link graphs separately, and then combine them in order to juxtapose bigraphs.
In each case we indicate the obvious unit for juxtaposition.

• For place graphs, the juxtaposition of two interfaces mi (i = 0, 1) is m0+m1

and the unit is 0. If Fi = (Vi, ctrl i, prnt i) : mi→ni are disjoint place graphs
(i = 0, 1), their juxtaposition F0 ⊗ F1 :m0+m1→n0+n1 is given by

F0 ⊗ F1
def= (V0 � V1, ctrl0 � ctrl1, prnt0 � prnt ′

1) ,

where prnt ′
1(m0+i) = n0+j whenever prnt1(i) = j .

• For link graphs, the juxtaposition of two disjoint link graph interfaces is X0�X1

and the unit is ∅. If Fi = (Vi, Ei, ctrl i, prnt i) : Xi→Yi are disjoint link graphs
(i = 0, 1), their juxtaposition F0 ⊗ F1 :X0 �X1→Y0 � Y1 is given by

F0 ⊗ F1
def= (V0 � V1, E0 � E1, ctrl0 � ctrl1, link0 � link1) .

• For bigraphs, the juxtaposition of two disjoint interfaces Ii = 〈mi, Xi〉 (i =
0, 1) is 〈mo + m1, X0 �X1〉 and the unit is ε = 〈0, ∅〉. If Fi : Ii→ Ji are disjoint
bigraphs (i = 0, 1), their juxtaposition F0 ⊗ F1 : I0 ⊗ I1→ J0 ⊗ J1 is given by

F0 ⊗ F1
def= 〈F P

0 ⊗ F P
1 , F L

0 ⊗ F L
1 〉 . �

This completes our definition of the graphical structures that concern us, together
with the fundamental operations upon them.

2.2 Mathematical framework

This section introduces certain kinds of category, which serve to classify bigraphs
and to develop some of their theory. We assume no previous knowledge of category
theory; we shall only use its elementary concepts, explaining them as we introduce
them.

Any kind of category deals with two main kinds of entity: objects and arrows.
For example, in the category Set the objects are sets S1, S2, S3, . . . and the arrows
are functions f, g, . . . between sets. If a function f takes members of set S1 to
members of set S2 then one writes f :S1→S2, as in normal mathematical prac-
tice. In categories this practice is generalised; each arrow f – which may be quite
different from a function – has a domain I and a codomain J , both objects, and
again we write f : I→ J . The main categories deployed in this book have objects
that are interfaces (of different kinds) and arrows that are graphical structures.

Any kind of category is concerned with the composition of two arrows f : I→ J

and h :J→K to produce a third arrow g = h ◦f : I→K. This equation is drawn
as a diagram:

2.2 Mathematical framework 19

K

h

g

Jf

I

which is said to commute, because the two ways of going from I to K mean the
same. For example, in Chapter 1 we composed two bigraphs F : ε→〈3, {xy}〉 and
H : 〈3, {xy}〉→〈2, 0〉 to yield G = H ◦F : ε→〈2, 0〉.

Different kinds of category may have other operations besides composition, and
may have different properties. We shall be concerned with four kinds, which can
be arranged in a hierarchy as follows:

category

spm category

precategory

s-category

Of these kinds, s-categories are new; the other three are standard. Moving upward
to the left (↖) in the hierarchy gains more operations on arrows; moving upward
to the right (↗) changes composition from a partial to a total operation.

Our work will be mainly with two of these kinds. We shall often be concerned
with concrete bigraphs, whose explicit support allows us to determine when one
bigraph shares nodes and/or edges with another. For this purpose we work mainly
in s-categories. On the other hand, for abstract bigraphs, where support is absent,
we work mainly in symmetric partial monoidal (or spm) categories.

Using the hierarchy, we now introduce the features of both spm categories and
s-categories, one by one. We begin with categories (Definition 2.8), which lead to
spm categories (Definition 2.11); then we introduce precategories (Definition 2.12),
which lead to s-categories (Definition 2.13).

Definition 2.8 (category) A category C has a set of objects and a set of arrows.
We shall often denote objects by I, J,K and arrows by f, g, h. Each arrow f has a
domain and codomain, both objects; if these are I and J then we write f : I→ J ,
I = dom(f) and J = cod(f). We write C(I→ J), or just (I→ J), for the homset
of I and J , the set of arrows f : I→ J .

For each object I there is an identity arrow idI : I→ I; we write just id when I

20 2 Defining bigraphs

is understood. The composition g ◦f of f and g satisfies the following:

(C1) g ◦f is defined iff cod(f) = dom(g)
(C2) h ◦ (g ◦f) = (h ◦g) ◦f when either is defined
(C3) id ◦f = f and f = f ◦ id . �

Terminology We shall often say that g is a context for f , meaning that g ◦f is
defined.

We often need to move from one category to another, preserving some structure.
Hence the following important notion.

Definition 2.9 (functor) A functor F : C→D between two categories is a func-
tion taking objects to objects and arrows to arrows; it takes the arrow f : I→ J in
C to the arrow F(f) :F(I)→F(J) in D.

More generally, let φ be an n-ary partial operation on objects and/or arrows in
both C and D. Then F preserves φ if F(φ(x1, . . . , xn)) = φ(F(x1), . . . ,F(xn)),
meaning that if the left-hand side is defined then so is the right-hand side.

Similarly, if R is a relation on objects and/or arrows in C, and also in D, then F
preserves R if R(x1, . . . , xn)⇒ R(F(x1), . . . ,F(xn)).

Every functor must preserve both composition and identities. �

The initial requirement simply says that F preserves the domain and codomain
operations, dom and cod. In the case n = 0 of ‘preserves’, φ is a single object or
arrow in each category, i.e. an identity.

We now proceed in two steps to an spm category, an enriched kind of category
possessing a form of product. A special case of this product is the juxtaposition of
bigraphs, as defined in Section 2.1.

Definition 2.10 (partial monoidal category) A category is said to be partial
monoidal when it has a partial tensor product ⊗ both on objects and on arrows
satisfying the following conditions.

On objects, I⊗J and J⊗I are either both defined or both undefined.3 The same
holds for I ⊗ (J ⊗K) and (I ⊗ J)⊗K; moreover, they are equal when defined.
There is a unit object ε, often called the origin, for which ε⊗ I = I ⊗ ε = I for all
I .

On arrows, the tensor product of f : I0→ I1 and g :J0→ J1 is defined iff I0⊗J0

3 This is a variant of the standard definition, which requires that I ⊗J is always defined. We relax this condition
because, in bigraphs, we have chosen to represent open links by names drawn from an infinite alphabet, rather
than by ordinal numbers, yielding a much smoother representation of process calculi. Appendix A.2 explains
the choice in more detail. We have adopted the strict form of ‘monoidal’, i.e. the equations are required to
hold exactly, not merely up to isomorphism.

2.2 Mathematical framework 21

and I1⊗J1 are both defined. The following must hold when both sides are defined:

(M1) f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h

(M2) idε ⊗ f = f ⊗ idε = f

(M3) (f1 ⊗ g1) ◦ (f0 ⊗ g0) = (f1 ◦f0)⊗ (g1 ◦g0) .

A functor of partial monoidal categories preserves unit and tensor product. �

In (M1), from the conditions stated, either both sides are defined or both are un-
defined. In (M2) both products are defined. Equation (M3) is best explained by a
diagram showing composition as vertical connection, and tensor product as hori-
zontal juxtaposition:

(M3)

g0

f1

f0

g1g1f1

f0 g0

=

This says that tensor product commutes with composition.
Henceforth we shall use the term ‘product’ to mean ‘tensor product’ unless other-

wise qualified. We now enrich a partial monoidal category by adding arrows called
symmetries, which allow the factors in a product to be re-ordered. They obey four
laws, explaining how they relate to composition, product and the identities.

Definition 2.11 (spm category) A partial monoidal category is symmetric (spm)4

if, whenever I ⊗ J is defined, there is an arrow γI,J : I ⊗ J→ J ⊗ I called a
symmetry, satisfying the following equations – illustrated in the diagram below –
when the compositions and products are defined:

(S1) γI,ε = idI

(S2) γJ,I ◦γI,J = idI⊗J

(S3) γI1,J1 ◦ (f ⊗ g) = (g ⊗ f) ◦γI0,J0 (for f : I0→ I1, g :J0→ J1)
(S4) γI⊗J,K = (γI,K ⊗ idJ) ◦ (idI ⊗ γJ,K) .

A functor between spm categories preserves unit, product and symmetries. �

4 In a previous paper [65] the name ‘ssm’ was used, connoting symmetric and strict. Here we replace ‘ss’ by
‘sp’, for ‘symmetric partial’, leaving ‘strict’ to be understood.

22 2 Defining bigraphs

(S3)(S2) (S4)

gf

γ

I0 J0

J1 I1

fg

γ

I1J1

J0

=
γ

γ

JI

I J
γ

γ
γ

I

I I

IJ J

I0

K KJ J

= =

K

J

I J

I

K

EXERCISE 2.2 In an spm category an arrow is ground, or an agent, if its domain
is the origin ε. Define context expressions C to build one agent from another, as
follows:

C ::= [·] | (g ⊗ C) | (C ⊗ g) | (h ◦C)

where g is ground and the products and compositions are well-formed, i.e. their
operands are in appropriate homsets. This syntax ensures that every context ex-
pression C contains exactly one occurrence of the ‘hole’ [·]. Let C[a] denote the
ground bigraph built by C from any ground a: thus [a] = a. The homset of a must
ensure that C[a] is well-formed.

A particular form of context expression is just f ◦ [·]. Prove that these particular
context expressions are fully general; that is, for every C there exists an arrow f

such that f ◦a = C[a] for all a. Hint: Use induction on the structure of C.

Which laws of an spm category are needed in the proof? �

We now introduce the notions of precategory and s-category. We can adapt most
details from the notions of category and spm category. The main difference is that
composition of two arrows f : I→ J and g :J→K is not always defined. As we
shall see later, this limitation is a price we pay for dealing with the occurrences
of one bigraph within another. This handling is smooth; at the level of our work,
s-categories lose little of the character of an spm category, and the s-category of
concrete bigraphs has useful properties not present in the corresponding spm cate-
gory.

Definition 2.12 (precategory) A precategory `C is like a category except that
composition of f and g may be undefined even when cod(f) = dom(g). We use
a tag, as in `C, to distinguish precategories. Composition satisfies the following
conditions (the first being weaker than for a category):

(C1′) if g ◦f is defined then cod(f) = dom(g)
(C2) h ◦ (g ◦f) = (h ◦g) ◦f when either is defined
(C3) id ◦f = f and f = f ◦ id .

2.2 Mathematical framework 23

We understand C3 to imply that composition of an arrow f with the identities on
its domain and codomain is always defined.

A functor between precategories is exactly as a functor between categories. �

Now, an s-category enriches a precategory by adding a partial tensor product and
symmetries, just as an spm category enriches a category. It also imposes sharper
conditions under which composition and tensor product are defined.

For this purpose we introduce the notion of a set of support, generalising the
support of bigraphs introduced in Section 2.1. We presuppose an infinite vocabu-
lary S of support elements; then we shall associate a finite set of support elements
with each arrow. This association will be arbitrary, subject to simple constraints
detailed in the following definition.

Definition 2.13 (s-category) An s-category `C is a precategory in which each
arrow f is assigned a finite support |f | ⊂ S. Further, `C possesses a partial
tensor product, unit and symmetries, as in an spm category. The identities idI and
symmetries γI,J are assigned empty support. In addition:

(i) For f : I→ J and g :J ′→K, the composition g ◦f is defined iff J = J ′

and |f |# |g|; then |g ◦f | = |f | � |g|.
(ii) For f : I0→ I1 and g :J0→ J1, the tensor product f⊗g is defined iff Ii⊗Ji

is defined (i = 0, 1) and |f |# |g|; then |f ⊗ g| = |f | � |g|.
The equations (M1)–(M3) and (S1)–(S4) from Definitions 2.10 and 2.11 are required
to hold when both sides are defined.

Arrows f and g in the same homset are said to be support-equivalent, and we
write f � g, if there is a bijection ρ : |f |→ |g|, called a support translation, that re-
spects the structure of f . A functor between s-categories preserves tensor product,
unit, symmetries and support equivalence. �

Appendix A.1 shows the ‘structure-respecting’ conditions that must be satisfied by
any support translation in an s-category. We shall not refer to these conditions
explicitly; we shall mainly be concerned with them in the specific case of bigraphs,
for which the conditions are stated explicitly in Definition 2.4.

We shall soon see that bigraphs over a given basic signature form an s-category.
Of course, they have detailed structure (nodes, etc.) not present in an arbitrary
s-category, and this admits new features. But there is one important feature that we
can capture at the general level of s-categories, and that will be useful for under-
standing the dynamics of reactive systems in general. It represents one way in
which the behaviour of such systems depends upon its spatial configuration. We
express it in terms of Nat, the spm category whose objects are natural numbers
(considered here as finite ordinals) and whose arrows are functions between them.
In Nat we take the tensor product to be addition, with unit 0.

24 2 Defining bigraphs

Definition 2.14 (wide s-category) An s-category `C is wide if it is equipped with
a functor width : `C→Nat. �

Note that this is really a functor between s-categories, because any spm category
is also an s-category with empty supports. The intuition of the width functor is
that, for an object I , the ordinal width(I) indexes the ‘regions’ of I , while for an
arrow f : I→ J the function width(f) tells us the unique region of J in which each
region of I lies. The width functor tells us no more about the spatial structure of
objects and arrows; but as we have seen, bigraphs have a detailed spatial structure
defined by their nodes, and this structure certainly yields a width functor.

Some of the work of this book is done at the general level of wide s-categories,
and is thus independent of possible variations of the notion of bigraph. In particular
they lead in Chapter 7 to a general theory of wide reactive systems (WRSs), includ-
ing a crucial theorem concerning the congruence of behavioural equivalence. In
Section 2.3 we shall see that the width functor for bigraphs allows us to express
the locality of any potential reaction of a bigraph g, and thereby to determine the
contexts in which that reaction can occur.

Let us now relate s-categories with spm categories. As already mentioned, every
spm category can be seen immediately as an s-category: one whose supports are all
empty. Conversely, from any s-category we obtain an spm category, just by hiding
the support. To be precise:

Definition 2.15 (support quotient) For any s-category `C, its support quotient

C def= `C/�

is the spm category whose objects are those of `C, and whose arrows [f] : I→ J

are support-equivalence classes of the homset `C(I→ J). The composition of
[f] : I→ J with [g] : J→K is defined as [g] ◦ [f] def= [g′ ◦f ′], where f ′ ∈ [f] and
g′ ∈ [g] are chosen with disjoint supports.

The tensor product is defined analogously. The identities and symmetries of C
are singleton equivalence classes since they have empty support. �

This definition is unambiguous, since the properties of support translation ensure
that the construction of a composite or product in C does not depend upon the
choice of representative arrows in `C. We now justify the definition by a theorem.

Theorem 2.16 (support quotient) The support quotient C = `C/� is an spm
category. Its construction defines a functor of s-categories

[·] : `C→C

called the support quotient functor. If `C is wide, with width functor width, then C

2.3 Bigraphical categories 25

can be enriched to a wide spm category by equipping it with the functor
width : C→Nat defined on objects as in `C and on arrows by width([f]) def=
width(f).

This completes our mathematical framework. We are now ready to assert that
concrete place graphs, link graphs and bigraphs all form s-categories, the latter
being a wide s-category.

2.3 Bigraphical categories

In this section we cast concrete bigraphs and their constituent place graphs and link
graphs as s-categories. We also cast their corresponding abstract structures as spm
categories.

Definition 2.17 (graphical s-categories) A basic signatureK was defined in Def-
inition 1.1. Concrete place graphs, link graphs and bigraphs over an arbitrary
signature were defined in Definitions 2.1, 2.2 and 2.3. We now cast each of these
kinds of graph as arrows in an s-category, denoted respectively by `Pg(K), `Lg(K)
and `Bg(K).

The objects in these three s-categories are called interfaces, or faces. For place
graphs they are natural numbers, for link graphs they are a finite name-sets, and for
bigraphs they are pairs of a natural number m and a finite name-set.

Support for the three kinds of graph was defined in Definition 2.4, with support
elements V � E . Composition and identities were set out in Definition 2.5, and
juxtaposition and units in Definition 2.7, determining tensor product.

To complete our definition it remains to define symmetries γI,J as follows:

in `Pg : γm,n
def= (∅, ∅, prnt), where prnt(i) = n+i (i ∈ m)

and prnt(m+j) = j (j ∈ n)
in `Lg : γX,Y

def= idX�Y

in `Bg : γ〈m,X〉,〈n,Y 〉
def= 〈γm,n, γX,Y 〉 . �

Thus, if γ is a symmetry of bigraphs, then γ ◦G just re-orders the regions of G but
leaves its names unchanged.

It is a routine matter to prove that this data defines three s-categories. Moreover,
the s-category of bigraphs is easily seen to be wide; this is due to the spatial nature
of place graphs, which yields an obvious width functor. We wrap these important
results together as a theorem:

Theorem 2.18 (graphical s-categories) `Pg(K), `Lg(K) and `Bg(K), as defined
in Definition 2.17, are all s-categories.

Further, we may equip `Bg(K) with a width functor, as follows. For each interface
I = 〈m, X〉, define width(I) = m, and for each bigraph F and any site i of F ,

26 2 Defining bigraphs

define width(F)(i) to be the unique root that is an ancestor of i in F . Then `Bg(K),
so equipped, is a wide s-category.

EXERCISE 2.3 What bigraphs exist in a homset of `Bg(K) of the form (I→ ε) ?
Which of these have empty support? �

Our final task in this chapter is to define the spm category of abstract bigraphs.
But we need first to consider a technical point concerning idle links: those links
to which no points are mapped. Recall that a link is either an outer name or an edge.
The reader may think that idle links are useless, but they arise inevitably in our
framework.

To see how an idle (outer) name may arise, consider the reaction rules illustrated
in Chapter 1. Each reaction rule may be written r � r′, where r is the redex and
r′ the reactum. We need r and r′ to have the same outer face, because reactions
by this rule take the form C ◦r � C ◦r′, where C is a context for both r and
r′. But the points linked to a name x in r may no longer exist in r′, because the
reaction discards the nodes of r to which they belong. Examples of this are the rule
B1 for built environments, or the rule A3 for mobile ambients, both illustrated in
Chapter 1. Then idle edges also arise; for in the reaction C ◦r � C ◦r′ the context
C may have an edge e containing only the point x; then e will be an idle edge of
C ◦r′.

We are now ready to define the wide spm category of abstract bigraphs. In
forming these from the concrete ones `Bg(K) we wish to forget support; we also
wish to forget idle edges. So it is not quite enough to quotient the concrete bigraphs
by support equivalence. For suppose F and G are identical except that F has idle
edges, but G has none. Then they are not support-equivalent; the support quotient
[F] still has idle edges, although they are unidentified, while [G] has none. We
therefore need to quotient by a slightly larger equivalence, as follows:

Definition 2.19 (lean, lean-support quotient) A bigraph is lean if it has no idle
edges. Two bigraphs F and G are lean-support equivalent, written F � G, if
they are support-equivalent ignoring their idle edges. It is easily seen that both
composition and tensor product preserve this equivalence.

For the bigraphical s-category `Bg(K), its lean-support quotient

Bg(K) def= `Bg(K)/�

is the spm category whose objects are those of `Bg(K) and whose arrows
[[G]] : I→ J , called abstract bigraphs, are lean-support equivalence classes of the
homset (I→ J) in `Bg(K). Composition, tensor product, identities and symme-
tries for the lean-support quotient are defined just as for support quotient in Defini-
tion 2.15.

2.3 Bigraphical categories 27

The spm categories Pg(K) of abstract place graphs and Lg(K) of abstract link
graphs are constructed similarly. �

We now justify the definition by a theorem.

Theorem 2.20 (abstract bigraphs) The lean-support quotient Bg(K) =
`Bg(K)/ � is an spm category. Its construction defines a functor of spm cate-
gories

[[·]] : `Bg(K)→Bg(K)

called the lean-support quotient functor. There are similar lean-support quotient
functors for place graphs and link graphs, yielding spm categories Pg(K) and
Lg(K).

Finally, Bg(K) equipped with essentially the same width functor as `Bg(K) forms
a wide spm category.

This quotient is essential for our theory. In later chapters we shall move back and
forth between concrete and abstract bigraphs, according to whether or not we need
to identify support elements. For example, Chapter 3 is concerned with the algebra
of abstract bigraphs, which does not depend upon support; on the other hand Chap-
ter 5 is concerned with a form of least upper bound for a pair of concrete bigraphs,
and this notion is absent for abstract bigraphs because it depends critically upon
support.

3

Algebra for bigraphs

In this chapter we show how bigraphs can be built from smaller ones by composi-
tion, product and identities. In this we follow process algebra, where the idea is
first to determine how distributed systems are assembled structurally, and then on
this basis to develop their dynamic theory, deriving the behaviour of an assembly
from the behaviours of its components.

This contrasts with our definition of a bigraph as the pair of a place graph and a
link graph. This pairing is important for bigraphical theory, as we shall see later;
but it may not reflect how a system designer thinks about a system. The algebra of
this chapter, allowing bigraphs to be built from elementary bigraphs, is a basis for
the synthetic approach of the system-builder.

Our algebraic structure pertains naturally to the abstract bigraphs Bg(K). Much
of it pertains equally to concrete bigraphs. Properties enjoyed exclusively by con-
crete bigraphs are postponed until Chapter 5.

3.1 Elementary bigraphs and normal forms

Notation and convention The places of G : 〈m, X〉→〈n, Y 〉 are its sites m, its
nodes and its roots n. The points of G are its ports and inner names X . The links
of G are its edges and outer names Y ; the edges are closed links, and the outer
names are open links. A point is said to be open if its link is open, otherwise it is
closed. G is said to be open if all its links are open (i.e. it has no edges).

A place with no children, or a link with no points, is called idle. Two places with
the same parent, or two points with the same link, are called siblings.

If an interface I = 〈m, X〉 has X = ∅ we may write I as m; if m = 0 or
m = 1 we may write it as X or as 〈X〉 respectively. When there is no ambiguity,
especially in interfaces, we shall often write a name-set {x, y, z, . . .} as {xyz · · · }.

The unique bigraph with empty support in ε→ I is often written I .

28

3.1 Elementary bigraphs and normal forms 29

A bigraph g : ε→ I , with domain ε, is called ground ; we use lower case letters
for ground bigraphs, and write g : I . �

We now describe the elementary node-free bigraphs. For each kind we mention
in parentheses the Greek letter we shall use most often to denote them, e.g. φ for
placings.

Definition 3.1 (placing, permutation, merge) A node-free bigraph with no links
is a placing (φ). A placing that is bijective from sites to roots is a permutation (π).
A placing with one root and n sites is denoted by mergen. �

elementary placings:

0

join : 2→ 1

0 1

1

0

0

1

0

1 : 0→ 1γ1,1 : 2→ 2

All permutations can be built (using composition, product and identities) from the
elementary symmetry γ1,1. All placings can be built from γ1,1, 1 and join . For
example, merge0 = 1 and mergen+1 = join ◦ (id1 ⊗mergen).

Definition 3.2 (linking, substitution, closure) Anode-free bigraph with no places
is a linking (λ). Linkings are generated by composition, product and identities from
two basic forms: elementary substitutions y/X, and elementary closures /x : x→ ε,
as shown in the diagram.

A substitution (σ) is a product of elementary substitutions; a closure is a product of
elementary closures. A bijective substitution is called a renaming (α). We denote
the empty substitution from ε to x by x : ε→x. �

Note that a closure /x ◦G may create an idle edge, if x is an idle name of G.
Intuitively idle edges are ‘invisible’, and indeed we shall see later how to ignore
them.

EXERCISE 3.1 Show that every linking can be built from elementary linkings
using identities, composition and product. Is composition necessary for this? �

30 3 Algebra for bigraphs

In any (pre)category an isomorphism or iso is an arrow ι : I→ J that has an inverse
ι−1 :J→ I; that is, ι−1 ◦ ι = idI and ι ◦ ι−1 = idJ . Isos are an important class of
node-free bigraphs, characterised as follows:

Proposition 3.3 (isomorphism) Place graph and link graph isos are respectively
permutations π and renamings α. Bigraph isos are pairs 〈π, α〉.

There is only one kind of elementary bigraph that introduces nodes:

Definition 3.4 (ion) For each control K :n, the bigraph K�x : 1→〈1, {
x}〉 having
a single K-node with ports linked bijectively to n distinct names
x is called a
discrete ion. �

Definition 3.5 (atom, molecule) If the site of a discrete K-ion is filled by 1 : 0→ 1
(see Definition 3.1), the result is a discrete atom, K�x ◦1; if it is filled by a discrete
bigraph (see Definition 3.8 below) G : I→〈1, Y 〉, then it is a discrete molecule,
(K�x ⊗ idY) ◦G. �

The diagram shows examples. Note how Kxyz ⊗ idpq exports names from the
molecule. We shall shortly discuss non-discrete constructions, in which points
may be linked.

We can express all bigraphs algebraically in terms of elementary placings, link-
ings and ions, using composition, product and identities. This applies to both
`Bg(K) and Bg(K), but in `Bg(K) we may wish to make support explicit in the
algebraic expression of a bigraph. This is easy, because nodes are created only by
ions, and edges only by closure. So we need only annotate ions and closures with
node- and edge-identifiers respectively, thus: vK�x and e/x.

Given the elements and operations of our algebra, what is its theory? When do

3.1 Elementary bigraphs and normal forms 31

two expressions denote the same bigraph? This question has been answered, at
least for abstract bigraphs. We omit the proof, but it is worth recording the result
here:

Theorem 3.6 (axioms for bigraphs) Two bigraphical expressions denote the same
abstract bigraph if and only if they can be proved equal by the equations of an spm
category (Definitions 2.8–2.11), together with the axioms tabulated below.

In other words, the axioms are both sound and complete. They say simple things:
The place axioms say that join is commutative, has a unit and is associative; the
link axioms say that the formation of links obeys obvious rules; the node axiom
says that we can name ports arbitrarily. Since the ssm axioms are not at all specific
to bigraphs, this result means that the structure of bigraphs is straightforward, as
it should be; we should expect the subtlety of a behavioural model to lie in its
dynamics.

Symmetry axiom: γ〈m,X〉,〈n,Y 〉 = γm,n ⊗ idX�Y

Place axioms: join ◦γ1,1 = join
join ◦ (1⊗ id1) = id1

join ◦ (join ⊗ id1) = join ◦ (id1 ⊗ join)

Link axioms: x/x = idx

/x ◦x = idε

/y ◦y/x = /x
z/(Y � y) ◦ (idY ⊗ y/X) = z/(Y �X)

Node axiom: (id1 ⊗ α) ◦K�x = Kα(�x)

Axioms for bigraphical structure

Let us now return to properties of bigraphs that can be expressed algebraically.
We begin with the occurrence of one bigraph within another. We adopt the follow-
ing definition, which applies to both concrete and abstract bigraphs:

Definition 3.7 (occurrence) A bigraph F occurs in a bigraph G if the equation
G = C1 ◦ (F ⊗ idI) ◦C0 holds for some interface I and bigraphs C0 and C1. �

The identity idI is important here: it allows nodes of C1 to have children in C0 as

32 3 Algebra for bigraphs

well as in F , and allows C1 and C0 to share links that do not involve F . It appears
to be the natural way to define occurrence, as the following exercise suggests.

EXERCISE 3.2 Make sure that the definition implies the right thing, in simple
cases: i.e. that F occurs in F ◦C, C ◦F , F ⊗ C and C ⊗ F . Less trivially, show
that a ground bigraph a occurs in a ground bigraph g iff g = C ◦a for some C.
Also prove that occurrence is transitive, i.e. if E occurs in F and F occurs in G

then E occurs in G. �

We now come to two kinds of bigraph, prime and discrete, which are important
both for the algebraic structure of bigraphs (Proposition 3.9) and for their dynamics
(Definition 8.5). In both cases we are concerned with breaking down a bigraph into
parts; for example, Proposition 3.9 shows that every bigraph is the composition of
a linking with a discrete bigraph.

Definition 3.8 (prime, discrete) A prime bigraph has no inner names and a unary
outer face; its homset takes the form m→〈X〉.

A link graph or bigraph is discrete if it has no closed links, and its link map is
bijective. Thus it is open, no two points are siblings, and no name is idle. �

An important prime is mergen : n→ 1, where n ≥ 0; see Definition 3.1. It has no
nodes, and maps n sites to a single root. A bigraph G : m→〈n, X〉 with no inner
names can be merged into a prime (merge ⊗ idX) ◦G. As here, we shall usually
omit the subscript n from merge.

Note the absence of inner names in a prime bigraph. This ensures the unique
decomposition of a bigraph into a linking and discrete primes, as follows:

Proposition 3.9 (discrete normal form) Every bigraph G : 〈m, X〉→〈n, Z〉 can
be expressed uniquely, up to a renaming on Y , as

G = (idn ⊗ λ) ◦D

where λ :Y →Z is a linking and D : 〈m, X〉→〈n, Y 〉 is discrete. Further, every
discrete D may be factored uniquely, up to permutation of the sites of each factor,
as

D = α⊗ ((P0 ⊗ · · · ⊗ Pn−1) ◦π)

with α a renaming, each Pi prime and discrete, and π a permutation of all the sites.

Note that a renaming α is discrete but not prime, since it has zero width and also
has inner names; this explains why a renaming is needed in the prime factorisation.
In the special case that D is ground, the result simplifies as follows:

3.2 Derived operations 33

Corollary 3.10 (ground discrete normal form) A ground bigraph g : 〈n, Z〉 can
be expressed uniquely, up to renaming on Y , as g = (idn ⊗ λ) ◦ (d0 ⊗ · · · ⊗ dn−1),
where λ :Y →Z is a linking and the di are discrete primes.

This analysis of a bigraph into smaller discrete ones is crucial for the proof that
our algebraic theory is complete (Theorem 3.6). It can be seen as extracting all
non-trivial linking from a bigraph G at the very first step. But it may not be how a
designer would wish to build a bigraph from smaller ones. Instead, she may prefer
to push all linking – both substitutions and closures – inwards as far as possible.
We shall shortly see how to break down a bigraph in this alternative way.

3.2 Derived operations

Notation We often omit ‘. . . ⊗ idI ’ in a composition (F ⊗ idI) ◦G when there is
no ambiguity; for example we write merge ◦G for (merge ⊗ idX) ◦G.

Given a linking λ : Y →Z, we may wish to apply it to a bigraph G : I→〈m, X〉
with fewer names, i.e. Y = X �X ′. Then we may write λ ◦G for (idm⊗λ) ◦ (G⊗
X ′) when m and X ′ can be understood from the context. �

If X = {x1, . . . , xn} we shall write /X to mean /x1 ⊗ · · · ⊗ /xn.
We now generalise the tensor product. We define an operation that comes closer

to the ‘parallel composition’ of process calculi by allowing names to be shared.

Definition 3.11 (parallel product) The parallel product ‖ is given on interfaces
by

〈m, X〉 ‖ 〈n, Y 〉 def= 〈m + n, X ∪ Y 〉 .
Now let Gi : Ii→ Ji (i = 0, 1) be two bigraphs with disjoint supports. Denote
the link map of Gi by link i (i = 0, 1), and assume further that link0 ∪ link1 is a
function. Then the parallel product

G0 ‖G1 : I0 ‖ I1→ J0 ‖ J1

is defined just as tensor product, except that its link map allows name-sharing. �

Let Xi, Yi be the names of Ii, Ji respectively (i = 0, 1). Because the supports of
Gi are disjoint, the condition that link0 ∪ link1 is a function amounts to requiring
that, for every inner name x ∈ X0 ∩X1, there exists an outer name y ∈ Y0 ∩ Y1

such that link0(x) = link1(x) = y. Thus tensor product is the special case in
which X0 ∩X1 = Y0 ∩ Y1 = ∅.

Proposition 3.12 (parallel product) The parallel product of bigraphs is associa-
tive; that is, F ‖ (G ‖H) = (F ‖G) ‖H when either side is defined. It also has

34 3 Algebra for bigraphs

idε as unit. Furthermore it satisfies the ‘bifunctorial’ property when both sides are
defined:

(F1 ‖G1) ◦ (F0 ‖G0) = (F1 ◦F0) ‖ (G1 ◦G0) .

Proof Straightforward from the definition, noting that the condition on link maps
is satisfied on one side iff it is satisfied on the other side. �

The reader may be concerned that F ‖G is only defined when linkF ∪ linkG is a
function. Indeed, in previous work F ‖G was permitted only when the inner faces
of F and G are disjoint, ensuring linkF #linkG and thus implying our constraint.
However, the useful bifunctorial property is then lost.

From another point of view, the present definition is natural; for it can be shown
that the constraint on link maps holds if and only if there are bigraphs F ′ and G′

and a substitution σ, with all three inner faces disjoint, such that F = F ′ ‖σ,
G = σ ‖G′, and F ‖G = F ′ ‖σ ‖G′. Thus, given the disjointness of supports,
F ‖G is defined iff the two bigraphs treat their open inner names the same.

Notation Parallel product allows further convenient abbreviations. For example, if
X = {x1, . . . , xn} we define y/X

def= y/x1 ‖ · · · ‖ y/xn. Also, if G has outer face
〈n, X � Z〉, we shall write y/X ◦G to mean (y/X ‖ idI) ◦G, where I = 〈n, Z〉.
This makes sense even if y ∈ X � Z. �

It is common to nest, inside an ion, a bigraph of width 1 that shares names with the
ion. We therefore define a nesting operation as follows:

Definition 3.13 (nesting) Let F : I→〈m, X〉 and G :m→〈n, Y 〉 be bigraphs.
Define the nesting G.F : I→〈n, X ∪ Y 〉 by:

G.F def= (idX ‖G) ◦F . �

Example 3.14 (nesting) The figure below uses nesting to describe a non-discrete
version of the discrete molecule shown earlier. It can be written (Kxyz ‖ idyz) ◦Lyz ,
using parallel product to create the sharing of names. With the nesting operation
we can also write it as Kxyz.Lyz . �

Nesting will be found to express the prefixing operation of CCS.

3.2 Derived operations 35

Notation If A is an atomic control then we may abbreviate the atom A.1 to just A;
this is justified because an atomic node can only contain 1. �

EXERCISE 3.3 Prove that nesting is associative; that is, H.(G.F) = (H.G).F for
F : I→〈k, X〉, G : k→〈m, Y 〉 and H :m→〈n, Z〉. Hint: Expand the definition of
nesting, then use associativity of parallel product and the bifunctorial property. �

We now derive a form of parallel product that produces bigraphs of unit width:

Definition 3.15 (merge product) The merge product | is defined on interfaces by
〈m, X〉 | 〈n, Y 〉 def= 〈X ∪ Y 〉. On bigraphs, under the same condition as for parallel
product, it is defined by

G0 |G1
def= merge ◦ (G0 ‖G1) : I0 ‖ I1→ J0 |J1 . �

Proposition 3.16 (merge product) Merge product is associative, and (on bigraphs
of unit width) it has 1 as unit.

By introducing derived products and nesting, we have clothed the categorical
operations – composition and tensor product – in a way that yields convenient
algebraic expression. As we shall soon see, this brings us closer to the form of
expression found in process calculi. Thus we have exposed spm categories as
a foundation for these calculi. One advantage, already mentioned, has been the
existence of a normal form (Proposition 3.9) that enables the proof of algebraic
completeness (Theorem 3.6).

However, we can now show that our derived operations – though they may not
support a completeness theorem – allow us to break down a bigraph in the alternative
way we mentioned, pushing linking inwards. It works for arbitrary bigraphs, but
here we shall give it just for ground bigraphs, as another corollary of Proposition 3.9:

Corollary 3.17 (ground connected normal form) A ground bigraph g : 〈n, Z〉
can be expressed uniquely, up to renaming on Y , as g = (id〈n,Z〉 ⊗ /Y) ◦ (p0 ‖ · · ·
‖ pn−1), where the pi are prime and each closed link y ∈ Y has ports in more than
one pi.

This form of factorisation – sharing names as deeply as possible – can be continued
into the primes pi by means of merge product and nesting. Here is an example, for
a ground bigraph used in Chapter 1; we assume that K is atomic.

36 3 Algebra for bigraphs

You may check that p0 = My.(/x ◦ (Kyx.1 | L.(Kxz.1))) and p1 = Kzy.(Mz.1).1

Example 3.18 (CCS redexes) We shall use the process calculus CCS as a running
example throughout this work. We begin with the redex of the usual CCS reaction
rule, which we shall study in detail in Chapter 8, as a good example of an algebraic
expression. In the notation of CCS, the reaction rule takes the form

(x.P + A) | (x.Q + B) � P |Q
where P, Q, A, B are parameters, i.e. arbitrary CCS expressions. This parametric-
ity will be represented as four sites in a non-ground bigraph R; see the diagram
below. The meaning of the rule is that an interaction between x and x can occur,
and if so then the alternatives A and B will be discarded.

Note that ‘send’ (sending) and ‘get’ (receiving) are controls of arity 1, and ‘alt’
representing summation has arity 0. The algebraic expression of R, as shown,
makes good use of the nesting operation. Note that the redex R is prime. It may
be surprising that merge product not only represents what is called ‘parallel com-
position’ in CCS, but also (together with alt) represents summation. In Chapter 10
we shall see how this works; essentially, the reaction rule provides the difference
in meaning between these two operations.
1 These expressions contain ‘.1’ many times. This is necessary when an empty node has non-atomic control,

such as K or M here.

3.2 Derived operations 37

The parametric rule generates an infinite family of ground redexes, once the
parameters are supplied as ground bigraphs. It turns out that it is enough to assume
these parameters to be discrete; so, since the inner width (i.e. width of inner face)
of R is 4, these parameters form a single parameter d : 〈4, Y 〉 = d0⊗ d1⊗ d2⊗ d3,
with di : 〈Yi〉, where Y =

⊎
i Yi. Thus each ground redex can be expressed as

R.d = alt.(sendx.d0 | d1) | alt.(getx.d2 | d3) . �

To end this chapter, let us use the CCS redex R = alt.(sendx | id) | alt.(getx | id)
to illustrate another phenomenon. We shall meet it in Definition 8.6 and Proposi-
tion 8.14 to characterise certain well-behaved transition systems, including the one
we derive for CCS. The reader may safely ignore it until then, but we analyse it
here because it is a structural property with some intrinsic interest.

We shall need to deal with cases in which a bigraph R – especially a redex –
occurs in the composition G = B ◦A of two bigraphs, but not in either A or B

alone. Indeed, this is exactly what gives rise to communication in CCS; for if p and
q are (bigraphs representing) CCS processes, then p may contain alt.(sendx | id)
while q contains alt.(getx | id). In this case we have G = p | q, A = p and B =
id1 | q, so the interface between A and B is unary.

But there are other ways to decompose the CCS redex R. For example, we
have R = Q ◦P where P = sendx ‖ getx and Q = alt | alt | idx, so the interface
between P and Q may be multiary. In this case, it turns out that if R occurs in
G = B ◦A, where A has a unary outer face, then this occurrence cannot arise from
an occurrence of P in A and Q in B.

This phenomenon will affect how we derive transition systems, e.g. for CCS, so
we need to treat it more formally.

Definition 3.19 (split, tight) A split for F is a pair A, B such that F occurs in
B ◦A and both |A| ∩ |F | and |B| ∩ |F | are non-empty. The split is m-ary if A has
an m-ary outer face. The split is tight if some port in |A| ∩ |F | is linked to a port
in |B| ∩ |F |.

Finally, F is tight if every unary split for F is tight. �

The notion of a split helps to address the question: If a bigraph F can be split
into two parts across the boundary of a composition, then how are the two parts
of F related? It depends upon the interface of the composition. Our definition
of tightness is a little arbitrary, but will help to measure how ‘tightly knit’ is each
redex in a bigraphical reactive system.

For example, consider any split A, B for R, the CCS redex. In general there need
be no link between the two parts; we may have R = B ◦A where A = sendx ‖ getx
and B = alt | alt | idx, and no port of A is linked to a port of B (indeed B has no

38 3 Algebra for bigraphs

ports). But note that the interface of the split is not unary. If we consider only
unary splits, we find that there is always a linked pair of ports of R in opposite
parts of the composition. So R is tight.

EXERCISE 3.4 Prove that the CCS redex is tight.
Rules A1–A3 for mobile ambients and B1–B3 for the built environment are

given in Chapter 1; which of their redexes are tight? �

4

Relative and minimal bounds

This chapter introduces an important structural notion at the general1 level of a
precategory. We begin with some motivation from bigraphs.

Structural analysis for bigraphs is more challenging than it is for algebraic terms.
Terms are tree-like, and trees enjoy the property that, for two subtrees of a larger
tree, either they are disjoint or one is contained in the other. This is not the case with
bigraphs. For example, consider the built environment of Example 1.2; one may
consider one subsystem consisting of the agents and the computers, and another
consisting of the rooms and the agents. They have a non-trivial intersection: the
agents.

This situation can be represented generally in a category or precategory, but let
us restrict attention to bigraphs. A bigraph, even a ground bigraph, can often be
decomposed in two ways; for example g = C0 ◦f0 = C1 ◦f1. We say that f0 and
f1 both occur in g. Do these occurrences overlap? What, if any, is the smallest part
h of g that contains them both, i.e. g = D ◦h, with h = Di ◦fi and Ci = D ◦Di

(i = 0, 1)?

f1f0

C0 C1

D1D0

D

In abstract graphs this question has no definite answer. But in the dynamic theory of
bigraphs we shall need answers to such questions. They arise in two distinct ways.

1 The words ‘abstract’ and ‘general’ can be confused. They are often used as synonyms, but in this work
‘abstract/concrete’ distinguishes only between graphs in which the nodes and edges are unidentified and those
in which they are identified. On the other hand ‘general/specific’ represents a spectrum from lesser to greater
definition; for example, it proceeds from ‘precategory’ through ‘s-category’, then through the class of all
bigraphical s-categories, then to any specific bigraphical s-category such as Bgccs or `Bgccs.

39

40 4 Relative and minimal bounds

First, two reconfigurations – or reactions as we shall call them – of a bigraph g may
be possible; this means that two different redexes – the parts to be reconfigured –
may occur in g. If they overlap, then one reaction may preclude the other, forming
what is known as a critical pair; we have to analyse such possible conflicts. Second,
a system may be able to contribute to a reaction – it may contain part of a redex –
and we wish to know whether the environment contains the missing part, so that
they can jointly react; we have to analyse such potential reactions. We would like to
know, for a given potential reaction, what is the minimal environment that permits
it to occur.

This motivates the notion of relative pushout (RPO), which we develop here in
the general framework of an arbitrary precategory.

Notation While we are working at this general level, we revert to using lower case
letters for arrows in this chapter. We shall frequently use
f to denote a pair f0, f1

of arrows. If their domains coincide the pair is a span, if their codomains coincide
it is a cospan. If the shared domain of a span
f is H and the codomains are I0 and
I1, then we may write
f :H→
I , with a dual notation for cospans. We shall also
use
f ◦g to mean the span f0 ◦g, f1 ◦g, with a dual notation for cospans. �

Definition 4.1 (bound, consistent) If
f is a span and
g a cospan such that g0 ◦f0 =
g1 ◦f1, then we call
g a bound for
f . If
f has a bound it is said to be consistent. �

Before defining relative pushouts, we recall the standard notion of pushout:

Definition 4.2 (pushout) A pushout for a span
f is a bound
h for
f such that, for
any bound
g, there is a unique arrow h such that h ◦
h =
g. �

We are now ready for the main definition of this chapter:

Definition 4.3 (relative pushout) Let
g be a bound for
f . A bound for
f relative
to
g is a triple (
h, h) of arrows such that
h is a bound for
f and h ◦
h =
g. We may
call the triple a relative bound when
g is understood.

A relative pushout (RPO) for
f relative to
g is a relative bound (
h, h) such that
for any relative bound (
k, k) there is a unique arrow j for which j ◦
h =
k and
k ◦ j = h. (See the right-hand diagram.)

We say that a precategory has RPOs if, whenever a span has a bound, it also has
an RPO relative to that bound. �

Relative and minimal bounds 41

f0 f1 f0 f1

h0 h1

k0
k1

g0 g1h

j

k
h

g1g0

h0 h1I0 I0 I1I1

K

H

H

We shall often omit the word ‘relative’; for example we may call (
h, h) a bound
(or RPO) for
f to
g.

The more familiar notion, a pushout, is a bound
h for
f such that for any bound

g there exists an h which makes the left-hand diagram commute. Thus a pushout
is a least bound, while an RPO provides a minimal bound relative to a given bound

g.

Suppose that we can construct an RPO (
h, h) for
f to
g; what happens if we try
to iterate the construction? More precisely, is there an RPO for
f to
h? The answer
lies in the following important concept:

Definition 4.4 (idem pushout) If
f :H→
I is a span, then a cospan
g :
I→ J is
an idem pushout (IPO) for
f if (
g, idJ) is an RPO for
f to
g. �

The attempt to iterate the RPO construction will yield the same bound (up to iso-
morphism); the minimal bound for
f to any bound
g is reached in just one step.
This is assured by the first two parts of the following proposition, which sum-
marises the essential properties of RPOs and IPOs on which our work relies.

Proposition 4.5 (properties of RPOs) In any precategory `C:

(1) If an RPO for
f to
g exists, then it is unique up to isomorphism.

(2) If (
h, h) is an RPO for
f to
g, then
h is an IPO for
f .

(3) If
h is an IPO for
f , and an RPO exists for
f to h ◦
h, then the triple (
h, h)
is such an RPO.

(4) Suppose that the diagram below commutes, and that f0, g0 has an RPO to
the pair h1 ◦h0, f2 ◦g1. Then

(a) if the two squares are IPOs, so is the rectangle;
(b) if the rectangle and left square are IPOs, so is

the right square.

f0 f1

g0 g1

h0 h1

f2

(5) If `C is an s-category, then any support translation of an RPO is an RPO.

(6) Every pushout is an IPO.

42 4 Relative and minimal bounds

Proof (partial) We prove (1) here. We pose (2) and (3) as Exercises 4.1 and 4.2.
For (1), assume that (
h, h) is an RPO for
f to
g, with mediating object H . We

must show that (
k, k), with mediating object K, is also an RPO iff there is an iso
ι :H→K such that k ◦ ι = h and
k = ι ◦
h.

(⇒) Assume that (
k, k) is also an RPO. Each of the two RPOs is a relative bound;
by comparing each with the other, or with itself, we first deduce three properties:

there exists unique x :H→K such that
k = x ◦
h and k ◦x = h ; (a)
there exists unique y :K→H such that
h = y ◦
k and h ◦y = k ; (b)
there exists unique z :H→H such that
h = z ◦
h and h ◦z = h . (c)

It then follows that y ◦x = id, since both satisfy the equations of (c). Similarly we
find x ◦y = id. Hence x is an iso, readily seen to have the required property.

(⇐) Assume an iso ι :H→K with inverse ι′, such that ι ◦
h =
k and k ◦ ι = h.
Let (
�, �) be any relative bound. Then, since (
h, h) is an RPO, there exists unique
z :H→L such that z ◦
h =
� and � ◦z = h .

To prove (
k, k) an RPO we require a unique w :K→L satisfying the equations

� = w ◦
k and l ◦w = k. Now
� = (z ◦ ι′) ◦
k and � ◦ (z ◦ ι′) = k; thus w = z ◦ ι′

satisfies the equations. Moreover, for any w′ satisfying the equations we find
� =
(w′ ◦ ι) ◦
h and � ◦ (w′ ◦ ι) = h, hence by the unicity of z we have (w′ ◦ ι) = z.
Therefore w = w′, ensuring unicity of w. �

EXERCISE 4.1 Prove (2) in Proposition 4.5. That is, assume that (
h, h) is an RPO
for
f relative to
g, and prove that
h is an IPO for
f . �

EXERCISE 4.2 Prove (3) in Proposition 4.5. That is, assume that
h is an IPO for

f , and that an RPO exists for
f relative to h ◦h0, h ◦h1; then prove that (
h, h) is
such an RPO. �

These properties are powerful; for example, they will enable us to define be-
havioural equivalences which are congruences, i.e. they are preserved by compo-
sition and tensor product, and hence by all derived operations such as parallel and
merge products, nesting, substitution and merging. Thus, if a subsystem is replaced
by a congruent subsystem, then the behaviour of the whole system is unchanged.
This will be illustrated for both Petri nets in Chapter 9 and CCS in Chapter 10, thus
confirming existing theory for these process models.

These benefits only fully accrue in a precategory that has RPOs, i.e. it has an
RPO for every bounded span. In Chapter 5 we shall show that the s-category of
concrete bigraphs over any basic signature has RPOs.

However, we need more than this. In Chapter 6 we shall define s-categories
of bigraphs that obey a wide range of so-called sorting disciplines; these often

Relative and minimal bounds 43

impose structural constraints, which may preclude the existence of (some or all)
RPOs. Such a discipline À typically consists of an s-category of bigraphs whose
places – or whose points and links – have been assigned certain sorts, and the only
bigraphs permitted are those that satisfy a structural constraint expressed in terms
of the sorts. A simple example is when each place is assigned one of the sorts ‘red’
or ‘blue’, and the admissible bigraphs are those in which the parent of each node
v has a different colour from v, while the parent of each site s has the same colour
as s.

As we shall see in Chapter 6, every sorted bigraphical s-category À is built on a
basic signature K, and has a functor

`U : À→ `Bg(K)

called a forgetful functor, because it forgets the sorts of À.2 We want À to be
well-behaved; in particular, to have RPOs. A sufficient condition for this is that the
functor `U is safe, according to the following general definition:

Definition 4.6 (safe functors and sorting) A functor F : À→ `B of s-categories
is safe if it creates RPOs and isomorphisms, and also reflects identities, products
and pushouts. These properties are defined as follows, where we write F(
f) to
mean F(f0),F(f1):

• F creates RPOs if, given a span
f bounded by
h in À, any RPO in `B for
F(
f) relative toF(
h) has anF-preimage that is an RPO for
f relative to
h.3

• F creates isomorphisms if, for any object I0 in À and isomorphism
κ :F(I0)→K1 in `B, there is a unique object I1 and isomorphism
ι : I0→ I1 in À such that F(ι, I1) = (κ, K1).

• F reflects identities if, whenever f is an arrow in À such that F(f) is an
identity, then f is itself an identity.

• F reflects products if, whenever F(g) = F(f0) ⊗ F(f1), then also g =
f0 ⊗ f1.

• F reflects pushouts if, for
f bounded by
g in À, whenever F(
g) is a pushout
for F(
f) then
g is a pushout for
f .

A sorting discipline is safe if its forgetful functor is safe. �

These conditions are not necessarily independent. They are chosen with a view
to deriving transition systems. At least one of the conditions is implied by one or
more of the others; the reader may enjoy the puzzle of verifying this.

2 A similar functor U :A→ Bg(K) of spm categories exists for abstract bigraphs, where A is the lean-support
quotient of À.

3 This RPO-preimage may not be unique; it may vary by an iso at the mediating object.

44 4 Relative and minimal bounds

The following is important for deriving transition systems for sorted bigraphs:

Proposition 4.7 (transferring RPOs) Let F : À→ `B create RPOs, and assume
that `B has RPOs. Then

(1) À has RPOs.
(2) F preserves RPOs; that is, if (
g, g) is an RPO in À for
f relative to
h, then
F(
g, g) is an RPO in `B for F(
f) relative to F(
h).

Proof (outline) The first part is immediate from the definition. For the second
part, first construct an RPO (
k′, k′) in `B for F(
f) relative to F(
h). Then F cre-
ates from this an RPO (
k, k) in À for
f relative to
h. By Proposition 4.5(1), this
RPO coincides with the given RPO (
g, g) up to an isomorphism between their me-
diating interfaces. Hence, since functors preserve isomorphism, (
k′, k′) coincides
similarly with F(
g, g), and the latter is therefore itself an RPO in `B. �

The last four conditions for safety, when satisfied by a sorting discipline (Chap-
ter 6) will allow us to make its derived transition system more tractable. It will
turn out that a quite wide class of sorting disciplines satisfy the five conditions,
including our formulation of both Petri nets and CCS in bigraphs.

Here is another property that will be useful later:

Proposition 4.8 (creating IPOs) If a functor F is safe then it creates IPOs; that
is, if
g bounds
f , and F(
g) is an IPO for F(
f), then
g is an IPO for
f .

Proof We have that (F(
g), id) is an RPO for F(
f) to F(
g). Since F creates
RPOs, there is an RPO (
h, h) for
f to
g, and this RPO is a preimage of the RPO
(F(
g), id).

But F reflects identities, and F(h) = id, so h is an identity. It follows that

h =
g, and hence
g is an IPO as required. �

It will be useful to have a sufficient condition for a functor to reflect pushouts.
For this we need a standard categorical notion:

Definition 4.9 (op-cartesian)

Let F : À→ `B be a functor. An arrow f : I→ J

in À is said to be op-cartesian for F if, for all
h : I→K and g′ such that F(h) = g′ ◦F(f), there
exists unique g such that F(g) = g′ and h = g ◦f .

�

g′h

f

F(h)g

F(f)

Proposition 4.10 (reflecting pushouts) If every arrow in the domain of a functor
F is op-cartesian then F reflects pushouts.

Relative and minimal bounds 45

EXERCISE 4.3 Prove Proposition 4.10. Hint: You need to use the op-cartesian
property more than once. �

We are now ready to apply these general notions, first to unsorted bigraphs in
Chapter 5 and then to sorted bigraphs in Chapter 6.

5

Bigraphical structure

This chapter refines the structural analysis of concrete bigraphs. In Section 5.1 we
establish some properties for concrete bigraphs, including RPOs. In Section 5.2
we enumerate all IPOs for a given span. Finally, in Section 5.3 we show that RPOs
do not exist in general for abstract bigraphs.

5.1 RPOs for bigraphs

We begin with a characterisation of epimorphisms (epis) and monomorphisms
(monos) in bigraphs. These notions are defined in a precategory just as in a cate-
gory, as follows:

Definition 5.1 (epi, mono) An arrow f in a precategory is epi if g ◦f = h ◦f

implies g = h. It is mono if f ◦g = f ◦h implies g = h. �

Proposition 5.2 (epis and monos in concrete bigraphs) A concrete place graph
is epi iff no root is idle; it is mono iff no two sites are siblings. A concrete link graph
is epi iff no outer name is idle; it is mono iff no two inner names are siblings.

A concrete bigraph G is an epi (resp. mono) iff its place graph GP and its link
graph GL are so.

EXERCISE 5.1 Prove the above proposition, at least for the case of epi link
graphs. Hint: Make the following intuition precise: if G and H differ then, when
composed with F , the difference can be hidden if and only if F has an idle name.

�

The proposition fails for abstract bigraphs, suggesting that concrete bigraphs have
more tractable structure. We shall now provide further evidence for this by con-
structing RPOs for them.

46

5.1 RPOs for bigraphs 47

The construction of RPOs in `Bg is made easier by the fact that we can construct
them separately for `Pg and `Lg and then pair them. Moreover the constructions
for place graphs and link graphs have much in common. We shall first discuss
informally, with examples, how it works for link graphs. Then we shall present
the formal construction for both link graphs and place graphs without further dis-
cussion. We prove the validity of the link graph construction; the proof for place
graphs is similar.

Pushouts were defined in Definition 4.2. Our construction of RPOs in bigraphs
adapts the standard construction of pushouts in the category of sets and functions,
which we now recall.

Example 5.3 (pushouts for functions) Let
f :R→
S be a span of functions be-
tween sets. What cospan
g :
S→T is a pushout? (For simplicity, assume S0 # S1.)
To ensure g0 ◦f0 = g1 ◦f1 we must equate g0(y0) and g1(y1) whenever, for some
x ∈ R, f0(x) = y0 and f1(x) = y1. To ensure a pushout, we must equate no more
than these.

To make this precise, define the least equivalence relation ≡ on S0 � S1 such
that y0 ≡ y1 whenever, for some x, we have fi(x) = yi (i = 0, 1). Then for each
y ∈ S0 define g0(y) def= [y]≡, the equivalence class of y; similarly for g1(y) when
y ∈ S1. This completes the pushout construction. �

A similar equivalence relation arises in the more complex setting of RPOs for con-
crete bigraphs, which is the main topic of this chapter. We therefore switch back
to our convention of using upper case letters, usually A–H , for bigraphs and their
constituents.

Example 5.4 (RPOs for link graphs) We shall now illustrate the RPO construc-
tion for link graphs with the example in Figure 5.1, showing a span
A bounded
by a cospan
D :
X→Z. We assume the interfaces X0 = {x0, y0, z0} and X1 =
{x1, y1, z1, w1} to be disjoint as in the previous example, to ease the discussion.
We wish to form an RPO (
B,B), where
B :
X→ X̂ and B : X̂→Z.

nodes and edges: We assign to B0 and B1 as few nodes and edges as possible to
achieve a bound. Assign to B0 all those in A1 but not in A0, and similarly
for B1. B gets all those in
D but not in
A. Thus B0 gets v4, B1 gets v3

and e0, and B gets v5 and e1. The shapes of nodes reflect this assignment;
for example round nodes are shared by A0 and A1.

interface: We have to decide, for i ∈ {0, 1}, which members of Xi will be linked
in Bi to an outer name in X̂ . We cannot export z1, w1 ∈ X1 in this way,
since their links each contain a port that is closed in A0, so we would lose

48 5 Bigraphical structure

Fig. 5.1. A bounded span
D for
A

Fig. 5.2. An RPO (
B,B) for
A to
D

the commutation B0 ◦A0 = B1 ◦A1. But {x0, y0, z0, x1, y1} can all be
exported to X̂ .

We then have to decide which of these five should share links in X̂ . In the
jargon of Example 5.3, we look for the smallest equivalence that equates
any pair of these names sharing a point in
A; commutation requires us to

5.1 RPOs for bigraphs 49

give such a pair the same link in X̂ . Readers can check that {x0, y0, x1, y1}
must share a link, but z0 should have a separate link. We choose x, z as
names for these links.

links: It remains only to assign links to the ports in
B and all the points in B.
This assignment is dictated uniquely by the commutation equations.

The completed RPO is shown in Figure 5.2. �

EXERCISE 5.2 Suppose that, in Figure 5.1, the link from v2 to y0 is replaced by a
link from v2 to some new outer name y, and that we declare linkD0(y) = x. From
the informal construction in Example 5.4, determine how the RPO (
B,B) should
change, if at all. �

Notation When considering a span
A :W →
X of link graphs we shall adopt a
naming convention for nodes, ports and edges. We denote the node set of Ai

(i = 0, 1) by Vi, and denote V0 ∩ V1 by V2. We shall use vi, v
′
i, . . . to range over Vi

(i = 0, 1, 2). Similarly we use pi ∈ Pi and ei ∈ Ei for ports and edges (i = 0, 1, 2).
We use qi for points, i.e. qi ∈W � Pi. When there is no ambiguity we write A(q)
instead of linkA(q). We use ı to mean 1− i for i ∈ {0, 1}.

We define X0 +X1
def= {(i, x) | x ∈ Xi, i ∈ {0, 1}}, the disjoint sum of two sets.

This differs from X0 �X1, which asserts that X0 and X1 are already disjoint. By
X \ Y we denote the elements of X not in Y . �

Before giving the formal RPO construction, let us summarise the intuition gained
from Example 5.4. To construct an RPO (
B,B) for
A relative to a bound
D, we
first truncate
D by removing its outer names, and all nodes and edges not present
in
A. (Support is essential for this purpose, in order to identify nodes and edges.)
Then for the outer names of
B, we create a name for each link severed by the
truncation, equating these new names only when required to ensure that B0 ◦A0 =
B1 ◦A1.

Construction 5.5 (RPOs in link graphs) Let the span
A : W →
X be bounded
by
D :
X→Z. We construct an RPO (
B :
X→ X̂, B : X̂→Z) for
A relative to

D in three stages, using the notational conventions introduced above.

nodes and edges: If Vi are the nodes of Ai (i = 0, 1) then the nodes of Di are
(Vı \ V2)� V3 for unique V3. Define the nodes of Bi and B to be Vı \ V2 (i = 0, 1)
and V3 respectively. Edges are treated exactly analogously, and ports inherit the
analogous treatment from nodes.

interface: Construct the outer names X̂ of
B as follows. First, define the names

50 5 Bigraphical structure

in each Xi that must be mapped into X̂:

X ′
i

def= {x ∈ Xi | Di(x) ∈ E3 � Z} .

Next, on the disjoint sum X ′
0 + X ′

1, define ∼= to be the smallest equivalence for
which (0, x0) ∼= (1, x1) whenever A0(q) = x0 and A1(q) = x1 for some point
q ∈W � P2. Then define X̂ up to isomorphism as follows:

X̂
def= (X ′

0 + X ′
1)/∼= .

For each x ∈ X ′
i we denote by î, x the name in X̂ corresponding to the ∼=-

equivalence class of (i, x).

links: Define B0 to simulate D0 as far as possible (B1 is similar):

For x ∈ X0 : B0(x) def=
{

0̂, x if x ∈ X ′
0

D0(x) if x /∈ X ′
0

For p ∈ P1 \ P2 : B0(p) def=
{

1̂, x if A1(p) = x ∈ X1

D0(p) if A1(p) /∈ X1 .

Finally define B, to simulate the common part of D0 and D1:

For x̂ ∈ X̂ : B(x̂) def= Di(x) where x ∈ Xi and î, x = x̂

For p ∈ P3 : B(p) def= Di(p) . �

To prove this definition sound we have to show that the right-hand sides in the
clauses defining link maps Bi and B are well-defined links in Bi and B respectively:

Lemma 5.6 The definition in Construction 5.5 is sound.

Proof The second clause defining B0(x) is sound, since if x �∈ X ′
0 then by

definition D0(x) ∈ E1 \E2, which is indeed the port set of B0. Similar reasoning
applies to the second clause defining B0(p).

The first clause defining B0(p) is sound, since if A1(p) = x with p ∈ P1 \ P2

then we have x ∈ X ′
1; for if not, then D1(x) ∈ E0 \E2, which is impossible since

D1 ◦A1 = D0 ◦A0.
Finally, the clauses defining B are sound because the right-hand sides are inde-

pendent of the choice of i and of x; this is seen by appeal to the definition of∼= and
the equation D1 ◦A1 = D0 ◦A0. �

The full justification of our construction lies in the following lemma and theorem,
both of which are proved in Appendix A.3:

Lemma 5.7 As defined in Construction 5.5, (
B,B) is a bound for
A relative to
D.

5.1 RPOs for bigraphs 51

Theorem 5.8 (RPOs in link graphs) `Lg(K) has RPOs; that is, whenever a span

A of link graphs has a bound
D, there exists an RPO for
A to
D. Moreover
Construction 5.5 yields such an RPO.

We now proceed to the analogous construction of an RPO for a span
A : h→
m of
place graphs. It closely resembles the one for link graphs, though is a little simpler,
so we present it without introductory discussion.

Notation We name nodes just as we did for link graphs. We use ri, r
′
i to range over

the roots mi of Ai (i = 0, 1). We shall also use w, w′, . . . to range over h � V2,
where h is the domain of each Ai, because shared sites behave just like shared
nodes. When there is no ambiguity we write A(w) instead of prntA(w). �

Construction 5.9 (RPOs in place graphs) An RPO (
B :
m→ m̂, B : m̂→ p),
for a span
A : h→
m in `Pg relative to a bound
D :
m→ p, will be built in three
stages.

nodes: If Vi are the nodes of Ai (i = 0, 1) then the nodes of Di are Vı \ V2 � V3

for unique V3. Define the nodes of Bi and B to be Vı \ V2 (i = 0, 1) and V3

respectively.

interface: Construct the shared codomain m̂ of
B as follows. First, define the
roots in each mi that must be mapped into m̂:

m′
i

def= {r ∈ mi | Di(r) ∈ V3 � p} .

Now on the disjoint sum m′
0 + m′

1, define ∼= as the smallest equivalence for
which (0, r0) ∼= (1, r1) whenever A0(w) = r0 and A1(w) = r1 for some shared
place w ∈ h� V2. Then define m̂ up to isomorphism by m̂

def= (m′
0 + m′

1)/∼= . For
each r ∈ m′

i we denote the ∼=-equivalence class of (i, r) by î, r.

parents: Define B0 to simulate D0 as far as possible (B1 is similar):

For r ∈ m0 : B0(r)
def=

{
0̂, r if r ∈ m′

0
D0(r) if r /∈ m′

0

For v ∈ V1 \ V2 : B0(v) def=
{

1̂, r if A1(v) = r ∈ m1

D0(v) if A1(v) /∈ m1 .

Finally define B, to simulate the common part of D0 and D1:

For r̂ ∈ m̂ : B(r̂) def= Di(r) where î, r = r̂

For v ∈ V3 : B(v) def= Di(v) . �

52 5 Bigraphical structure

Much as for link graphs, one must check that this definition is sound, i.e. that the
right-hand sides in the clauses defining the parent maps B0 and B are well-defined
places in B0 and B respectively. The following is proved just like Theorem 5.8:

Theorem 5.10 (RPOs in place graphs) `Pg(K) has RPOs; that is, whenever a
span
A of place graphs has a bound
D, there exists an RPO (
B,B) for
A to
D.
Moreover Construction 5.9 yields such an RPO.

Finally, we combine our two constructions by pairing:

Corollary 5.11 (RPOs in bigraphs) `Bg(K) has RPOs. In fact, if a span
A of
bigraphs has a bound
D, then the following is an RPO for
A to
D:

(
B,B) def= (〈BP
0 , BL

0 〉, 〈BP
1 , BL

1 〉, 〈BP, BL〉)
where (
BP, BP) is an RPO for
AP to
DP and (
BL, BL) is an RPO for
AL to
DL.

Proof It is only necessary to manipulate pairings of place graphs and link graphs.
It is crucial that the node sets in the components of (
BP, BP) are identical with

those in (
BL, BL), and hence the pairing of RPOs is defined. �

5.2 IPOs in bigraphs

To prepare for the derivation of labelled transition systems, we have to characterise
all the IPOs for a given span
A of bigraphs.

Although IPOs are defined as a special case of RPOs, their construction is more
complex than that for RPOs. For RPOs, we had only to construct a single RPO for

A relative to a given bound
D; in contrast, for IPOs we want to enumerate a family,
consisting of the lower squares of all the RPOs for
A as its bound
D varies.

The reader may safely omit this section at first reading. When we need specific
IPOs later we shall present them explicitly. Readers may then check that they are
instances of the present general construction. We shall only give the construction
for link graphs; it can be easily adapted to place graphs.

How does a link graph RPO (
B,B) vary, for a fixed span
A relative to a varying
bound
D? It turns out that there are conditions under which
B remains fixed and
only B varies, so that in this case
B is a pushout.1 Since our applications in later
chapters will satisfy these conditions, we shall be content here to derive a single
distinguished IPO for a given span; but we shall indicate when others exist, and
how to construct them from the distinguished one.

The first step is to establish when a span is consistent, i.e. has any bound at all.

1 It is not true in every precategory, or even every category, that a unique IPO is a pushout. But the implication
does hold in link graphs, and indeed in bigraphs.

5.2 IPOs in bigraphs 53

Definition 5.12 (consistency conditions) We define three consistency conditions
on a span
A :W →
X . We use q to range over arbitrary points and q2 to range over
W � P2, the shared points.

cl0 If v ∈ V2 then ctrl0(v) = ctrl1(v) .

cl1 If Ai(q) ∈ E2 then q ∈W � P2 and Aı(q) = Ai(q) .

cl2 If Ai(q2) ∈ Ei \ E2 then Aı(q2) ∈ Xı, and if also Aı(q) = Aı(q2)
then q ∈W � P2 and Ai(q) = Ai(q2) . �

Let us express cl1 and cl2 in words. If i = 0, cl1 says that if the link of any
point q in A0 is closed and shared with A1, then q is also shared and has the same
link in A1. cl2 says, on the other hand, that if the link of a shared point q2 in A0

is closed and unshared, then its link in A1 must be open, and further that any peer
of q2 in A1 must also be its peer in A0.

We shall find that the consistency conditions are necessary and sufficient for at
least one IPO to exist. Necessity is straightforward:

Proposition 5.13 (consistency in link graphs) If the span
A has a bound, then
the consistency conditions hold.

Before going further, it will be helpful to look at simple examples.

Example 5.14 (consistent link graphs) Figure 5.1 shows a span
A bounded by a
cospan
D. Nodes v0, v1 and v2 are shared.

Another example is the span
A : ∅→
X with bound
B as shown in Figure 5.3,
where X0 = {x0, y0, z0} and X1 = {x1, y1}. Nodes and edges with subscript 2
are shared; round nodes are unshared.

Controls are not shown in either example. �

EXERCISE 5.3 Prove Proposition 5.13, and check the consistency conditions for

A in Figure 5.3. �

We shall now construct a distinguished IPO for any span
A satisfying the consis-
tency conditions of Definition 5.12.

Construction 5.15 (an IPO in link graphs) Assume the consistency conditions
for the span
A :W →
X . We define an IPO
C :
X→Y for
A as follows.

nodes and edges: Take the nodes and edges of Ci to be Vı \ V2 and Eı \ E2.

interface: For i = 0, 1, define X ′
i ⊆ Xi, the names to be mapped to the codomain

Y , by

X ′
i

def= {xi ∈ Xi | ∀q ∈W � P2. Ai(q) = xi ⇒ Aı(q) ∈ Xı} .

54 5 Bigraphical structure

Fig. 5.3. A consistent span
A of link graphs, with bound
B

Now on the disjoint sum X ′
0 + X ′

1, define � as the smallest equivalence such that
(0, x0) � (1, x1) whenever A0(q) = x0 and A1(q) = x1 for some q ∈ W � P2.
Then define Y up to isomorphism by Y

def= (X ′
0 + X ′

1)/�. For each x ∈ X ′
i we

denote the �-equivalence class of (i, x) by î, x.

links: Define the link maps C0 :X0→Y as follows (C1 is similar):

For x ∈ X0 :

C0(x) def=
{

0̂, x if x ∈ X ′
0

A1(q) if x ∈ X0 \X ′
0, for q ∈W � P2 with A0(q) = x

For p ∈ P1 \ P2 :

C0(p) def=
{

1̂, x if A1(p) = x ∈ X1

A1(p) if A1(p) /∈ X1 .
�

This is a distinguished IPO, but in general there are others for a given span. We
shall not need them, but it is interesting (and not obvious!) that they can all be
obtained from the distinguished one, as follows. Suppose
C is constructed as above
for the span
A, and suppose A0 has an idle name x. You can easily check that x

5.2 IPOs in bigraphs 55

is open in C0, i.e. C0(x) = y ∈ Y . Suppose also that C0 has an edge e. Then
if instead we set C0(x) = e, and remove y from Y , it can be shown that we
still have an IPO. This variation is called the elision of x into C0. Elision can be
performed independently for each idle name x in A0, choosing an arbitrary edge in
C0; similarly in A1 and C1. This can yield a lot of IPOs! But the number is finite,
and usually very small.

Indeed, there are two cases when the span
A has a unique IPO. The first is when
both members are epi (no idle names). The second is when one member – say
A0 – is both epi and open. For then, as in the first case, there can be no variation for
a name of A0. Also, since A0 is open it follows that C1 is also open (see below),
so it has no edges to permit elision of any idle name of A1.

EXERCISE 5.4 If
C is an IPO for
A and A0 is open, then prove that C1 is also
open. Hint: Consider how any edge e in C1 arises from the IPO construction. �

After this brief tour of undistinguished IPOs, let us prove that our construction
of the distinguished one is valid.

Theorem 5.16 (characterising IPOs for link graphs) Assume that
A obeys the
consistency conditions. Then Construction 5.15 is sound and yields an IPO for
A.

Proof (outline) For soundness, in the second clause for C0(x) we must ensure
that q ∈ W � P2 exists such that A0(q) = x, and that each such q yields the same
value A1(q) in P1\P2; also in the first clause for C0(q) we must ensure that x ∈ X ′

1.
The consistency conditions do ensure this, and also that C0 ◦A0 = C1 ◦A1.

Now recall that a bound
B for
A is an IPO iff it forms the legs of an RPO
relative to some bound
D. Since
C is such a bound, take
D =
C and apply
Construction 5.5, to construct the RPO (
B,B) relative to
C. To complete the
proof, show that
B =
C up to isomorphism. �

The reader may like to check the IPO construction by confirming that the bound
illustrated in Figure 5.3 is in fact an IPO.

Corollary 5.17 (consistency) The consistency conditions are necessary and suffi-
cient for consistency.

Proof Proposition 5.13 already ensured necessity; sufficiency follows from the
theorem, since an IPO is a bound. �

We shall not give details of IPOs for place graphs. The construction of distin-
guished IPOs is entirely analogous. Also, elisions are analogous; just as in link

56 5 Bigraphical structure

graphs we get other IPOs by eliding idle names into edges, so in place graphs we
get other IPOs by eliding idle roots into nodes.

We can now assert the result for bigraphs that we would expect:

Proposition 5.18 (IPOs for bigraphs) A bound
C for a span
A is an IPO in

`Bg(K) if and only if
CP is an IPO for
AP in `Pg(K) and
CL is an IPO for
AL in
`Lg(K).

We end this section with five important properties of IPOs that we shall need
later. The first is that several qualities of a span are inherited by a cospan which is
an IPO. We omit the proof, which is by routine inspection of the IPO constructions.
We say A is ‘place-epi’ if its place graph is epi, etc.

Proposition 5.19 (IPOs inherit qualities) Let
A have an IPO
B. If A0 is node-
free, or place-epi, or link-epi, or discrete, or open, then B1 has the same quality.

The second property is that tensor product preserves IPOs.

Proposition 5.20 (tensor IPO) In `Bg(K), let
C be an IPO for
A and
D be an
IPO for
B, with
A #
B. Then, provided the products exist, the cospan (C0 ⊗
D0, C1 ⊗D1) is an IPO for the span (A0 ⊗B0, A1 ⊗B1).

An important corollary is:

Corollary 5.21 (tensor IPOs with identities) Let A : I ′→ I and B :J ′→ J ,
where A#B and also {I, I ′}#{J, J ′}. Then the cospan (idI ⊗ B,A ⊗ idJ) is
an IPO for the span (A⊗ idJ ′ , idI′ ⊗B). See diagram (1).

a⊗ id

id⊗B(1)

A⊗ id
id⊗B

A⊗ id

I ′⊗J

I⊗JI⊗J ′

I ′⊗J ′

(2)

J
b

a

id⊗ b
I

ε

I⊗J

In particular if I ′ = J ′ = ε then A = a and B = b are ground, and the IPO is as in
diagram (2).

Our third property is that support equivalence preserves IPOs. The proof is
straightforward, capturing the idea that the definition of IPO exploits no property
of supports except their disjointness.

Proposition 5.22 (support translation of IPOs) Let
A and
B be a span and co-
span whose support is in the domain of a support translation ρ. Then ρ �
B is an
IPO for ρ�
A iff
B is an IPO for
A.

5.3 Abstract bigraphs lack RPOs 57

The fourth property is:

Proposition 5.23 (unique IPOs are pushouts) If a span
A has exactly one IPO
up to isomorphism, then this IPO is a pushout.

One might expect this property to hold in any precategory, but in fact it does not.
The interested reader may enjoy trying to find a counter-example. This is not so
easy, and fortunately we do not need that negative result.

EXERCISE 5.5 Show that (A, A) has a unique IPO up to isomorphism, and that it
takes the form (id, id) if and only if A is epi. �

For our fifth property, first recall from Definition 2.19 the notion of leanness,
and the lean-support quotient functor [[·]] established in Theorem 2.20. To prepare
for transferring transitions from concrete to abstract bigraphs via this functor we
assert a simple relation between IPOs and leanness. Let us write AE for the result
of adding a set E of fresh idle edges to a bigraph A. Then

Proposition 5.24 (IPOs, idle edges and leanness) For any span
A and cospan
B

of concrete bigraphs:

(1) If
B is an IPO for
A, and A1 is lean, then B0 is lean.
(2) For any fresh set E of edges,
B is an IPO for
A iff (B0, B

E
1) is an IPO for

(AE
0 , A1).

5.3 Abstract bigraphs lack RPOs

We end this chapter by showing that we cannot rely on the existence of RPOs in
abstract bigraphs, where support is forgotten. We give here a counter-example for
abstract link graphs; it easily extends to bigraphs.

Example 5.25 (abstract link graphs lack RPOs) Figure 5.4 shows a span (a, a)
of ground link graphs, bounded by a cospan (G, G). Note that G ◦a consists of
two L-nodes each joined by a closed link to a K node. The diagram also shows two
relative bounds for the span relative to the cospan; these are (
C, C) and (
D, D).

Ignoring the dashed arrows, the diagram is easily seen to commute. It shows
the legs
B of an assumed RPO (
B,B) for the span relative to the cospan (B is not
shown). For this RPO to exist there must be mediating arrows Ĉ and D̂ to the two
relative bounds. But these cannot both exist. For if D̂ ◦
B =
D then the Bi contain
no nodes, and in that case no value of Ĉ can achieve Ĉ ◦
B =
C, since the K-nodes
in the Ci have different names. �

Thus, by taking
A = (a, a) and
G = (G, G) as in the example, we have proved:

58 5 Bigraphical structure

Fig. 5.4. A bounded span of abstract link graphs with no RPO

Proposition 5.26 (abstract link graphs lack RPOs) In `Lg(K) there is a span
A

of abstract link graphs, and a bound
G for it, such that no RPO exists from
A to
G.

EXERCISE 5.6 (1) Amplify the final sentence in Example 5.25: Why can no value
of Ĉ achieve the equations Ĉ ◦
B =
C?

(2) What goes wrong if we try to use this counter-example to refute the existence
of RPOs in concrete link graphs? �

6

Sorting

Just as in universal algebra, different signatures will be used for different applica-
tions of bigraphs. So far our signatures are basic; they assign only an arity to each
control. By analogy with the constructors of many-sorted algebra, we can also clas-
sify our controls by means of sorts. But the analogy is not exact, because bigraphs
have two degrees of freedom: we can classify places or we can classify links.

6.1 Place sorting and CCS

Let us begin with the classification of places.

Definition 6.1 (place sorting) A place sorting

Σ = (Θ,K,Φ)

has a non-empty set Θ of sorts, and a signature K place-sorted over Θ, i.e. assign-
ing a sort to each control. An interface is Σ-sorted if each of its places is assigned
a sort in Θ.

UsingK, a bigraph over Σ may be augmented by sorts assigned to its nodes. The
third component Φ of Σ, a formation rule, is a property of such augmented bigraphs
that is satisfied by the identities and symmetries and preserved by composition and
product. The augmented bigraphs satisfying Φ are called Σ-sorted ; they constitute
the s-category `Bg(Σ) and the spm category Bg(Σ) of, respectively, concrete and
abstract Σ-sorted bigraphs. �

We write a Σ-sorted interface of width n as 〈
θ, X〉, where
θ = θ0 · · · θn−1 lists the
sorts θi assigned to each i ∈ n. When Σ is understood, the Σ-sorted bigraphs are
often called place-sorted. Note that the case Θ = {θ}, a singleton, with Φ vacuous,
exactly represents the unsorted bigraphical s-category over K. This corresponds
exactly to the situation in many-sorted algebra, in which a single-sorted algebra is
effectively unsorted.

59

60 6 Sorting

Let us now look at functors that relate sorted to unsorted bigraphs, and concrete
to abstract bigraphs. These remarks apply equally to link sorting, which is the
subject of Section 6.2. Let K be the basic signature underlying a place sorting Σ.
There is clearly a forgetful functor

`U : `Bg(Σ)→ `Bg(K)

which deletes place sorts from the places in both interfaces and bigraphs. In this
book we are only concerned with the case in which `Bg(Σ) has RPOs. This will be
ensured by Proposition 4.7, provided that we can prove thatΣ is safe (Definition 4.6).

Now recall from Definition 2.19 and Theorem 2.20 the lean-support quotient
functor

[[·]] : `Bg(Σ)→Bg(Σ)

that forgets the identity of nodes and discards idle edges in unsorted bigraphs.
There is clearly a similar quotient functor for sorted ones. There is also an obvi-
ous functor U : Bg(Σ)→Bg(K) that forgets sorting for abstract bigraphs. Indeed,
with the help of Definition 2.4 it can be shown that the following diagram of func-
tors commutes:

`Bg(K)

Bg(K)

`Bg(Σ)

Bg(Σ)

[[·]]
U

`U

[[·]]

Returning now to place sorting, there is a wide range of possibilities for the
formation rule Φ. There are non-trivial sortings even when Θ is a singleton (i.e.
places are effectively unsorted), because Φ may restrict bigraphs to an arbitrary
sub-(s-)category. For this chapter we shall be concerned with abstract bigraphs,
except when we discuss the safety of sortings.

There is one useful constraint that Φ can impose, even when Θ is a singleton:

Definition 6.2 (hardness) A sort θ in a sorting Σ is hard if Σ requires that no
root with sort θ is idle. An agent a : I is hard if all sorts in I are hard – and hence
a has no idle roots. �

Hardness makes transition systems simpler, as we shall see later. It has been useful
for the modelling of process calculi in bigraphs.

The translation of CCS into bigraphs provides a non-trivial example of place
sorting. Let us first recall CCS processes:

6.1 Place sorting and CCS 61

Definition 6.3 (syntax for finite CCS) We shall let P, Q range over processes
and A, B over alternations (sums); each alternate (or summand) of an alternation
is a process guarded by an action µ of the form x or x, where x names a channel.
The syntax is:

P ::= A
∣∣ νxP

∣∣ P |P
A ::= 0

∣∣ µ.P
∣∣ A+A

µ ::= x
∣∣ x .

The restriction νxP defines P as the scope of the name x; a name-occurrence in
a process is free iff it is not scoped by ν. We say P and Q are alpha-equivalent,
written P ≡α Q, if they differ only in a change of their restricted names. �

Our treatment of CCS here will be confined to finite processes. Infinite processes
are typically introduced by a set {Di

def= Pi | i ∈ I} of process definitions, where
the process identifiers Di may appear in any of the defining expressions Pi. There
is more than one way to handle these in bigraphs; one proposal is described in
Section 11.2.

As usual, we define a structural congruence over CCS terms:

Definition 6.4 (structural congruence) Structural congruence over CCS terms
is the smallest equivalence ≡ preserved by all term constructions, and such that

(1) P ≡α Q implies P ≡ Q, and A ≡α B implies A ≡ B;
(2) ‘ | ’ and ‘+’ are associative and commutative under ≡, and A + 0 ≡ A;
(3) νxνyP ≡ νyνxP ;
(4) νxP ≡ P and νx (P |Q) ≡ P | νxQ for any x not free in P ;
(5) νx (A+µ.P) ≡ A + µ.νxP for any x not free in A or µ.

�

This is standard, except for two things. First, we do not have P |0 ≡ P ; but we
shall find that these two terms translate into bisimilar bigraphs. Second, equation
(5) is not standard for CCS structural congruence; but the processes have identical
transitions, and indeed we shall translate them into the same bigraph.

To prepare for translating CCS into bigraphs, we first define a class of place
sortings suggested by the two-sorted syntax of CCS itself.

Definition 6.5 (stratified place sorting) A place sorting Σ = (Θ,K,Φ) is strati-
fied if, for some function φ : Θ→Θ, the formation rule Φ requires that

all children of a root r : θ have sort θ ;
all children of a node v : θ have sort φ(θ) .

62 6 Sorting

The CCS stratified sorting Σccs has Θ = {p, a} (for processes and alternations),
with φ(p) = a and φ(a) = p; it is also hard for sort p. �

EXERCISE 6.1 Check that the formation rule for stratified sorting is preserved by
composition and tensor product, and satisfied by identities. �

We are now ready for the translation of CCS into the two-sorted category
Bg(Σccs). The idle prime 1 : a has a special role; it will represent the empty alter-
nation. Then the atom nil def= alt.1 will represent the null process. We shall map
CCS processes and alternations respectively into ground homsets ε→〈p, X〉 and
ε→〈a, X〉. For this purpose we define two families of translation maps PX [·] and
AX [·], each indexed by finite name-sets X . These maps are defined for all argu-
ments whose free names are in X , so each process or alternation has an image in
many unary ground homsets.

Definition 6.6 (translation of finite CCS) The translations PX [·] for processes
and AX [·] for alternations are defined by mutual recursion:

AX [0] = X | 1
PX [A] = alt.AX [A] AX [x.P] = sendx.PX [P] (x ∈ X)

PX [νxP] = /y ◦Py�X [{y/x}P] AX [x.P] = getx.PX [P] (x ∈ X)
PX [P |Q] = PX [P] | PX [Q] AX [A+B] = AX [A] | AX [B] . �

In translating the prefix forms for input and output we have used the nesting oper-
ator K�x.G introduced in Chapter 3, permitting names to be shared between an ion
and its contents. The term νxP is first varied by alpha-equivalence, replacing x by
some y �∈ X . A substitution {y/x} on CCS terms is metasyntactic, and not to be
confused with the bigraph y/x.

Note that restriction and parallel composition are modelled directly by closure
and merge product, and need no extra controls. It is perhaps surprising that summa-
tion ‘+’ of CCS is also expressed as merge product. But merge product is a purely
structural or static operation, with no commitment to any dynamic interpretation;
the distinction between parallel composition and summation in our bigraphical en-
coding of CCS is achieved by its reaction rule, as we shall see in Chapter 10.

Our translation maps are surjective on unary ground homsets; that is, our place
sorting excludes from Bg(Σccs) every bigraph that is not in the image of a translation
map. They are not injective; instead, they induce upon CCS an equivalence ≡
that corresponds exactly to our structural congruence, justifying the latter. We now
express these results precisely; the proofs are the subject of Exercise 10.1.

Theorem 6.7 (bijective translation)

(1) The translations PX [·] and AX [·] are surjective on unary ground homsets.

6.1 Place sorting and CCS 63

(2) P ≡ Q iff PX [P] = PX [Q], and A ≡ B iff AX [A] = AX [B].

We shall take up the dynamics of CCS when we have introduced bigraphical
reactive systems (BRSs) in general. For now, we wish to confirm that our sorting
will be amenable to that general theory, so we shall prove our sorting to be safe. Let
U : `Bg(Σccs)→ `Bg(Kccs) be its forgetful functor. Recall from Definition 4.6 that
a sorting is safe if its forgetful functor U is safe, i.e. in particular it creates RPOs
and reflects pushouts. Also recall from Proposition 4.10 that U reflects pushouts if
every arrow in its domain is op-cartesian. So we first prove:

Lemma 6.8 If Σ is a stratified sorting with forgetful functor U , then every bigraph
in `Bg(Σ) is op-cartesian for U .

Proof Let F : I→ J and H : I→K be Σ-sorted, with U-images F ′ : I ′→ J ′ and
H ′ : I ′→K ′ such that H ′ = G′ ◦F ′ for some G′ :J ′→K ′. (Refer to the diagram
of Definition 4.9.) There can exist only one sorted G :J→K such that H ◦G = F ,
since its interfaces are already sorted and the sorts of its nodes in G are determined
by those in H . It is routine to confirm that G is indeed well-sorted, with U(G) = G′

and G ◦F = H . This completes the proof of the lemma. �

We now claim:

Proposition 6.9 (safe stratified sorting) Every stratified sorting is safe.

Proof Let Σ be stratified, with underlying basic signatureK and forgetful functor
U . First we require that U creates RPOs. So let
D be a bound for
A in `Bg(Σ),
with U-images
D′ and
A′. Let (
B′, B′) be an RPO for
A′ to
D′ in `Bg(K). We
seek first a preimage (
B,B) which is a sorted bound for
A to
D. There is only one
possibility, since the sorts of the mediating interface of the triple and of its nodes
are uniquely determined by stratified sorting, and it is easily shown to be a relative
bound. Furthermore, by using the op-cartesian property of the existing arrows, we
ensure a unique mediating arrow to any other sorted relative bound (
C, C), thus
establishing (
B,B) as a sorted RPO.

Next, we require that U reflects pushouts; this follows by Proposition 4.10.
Finally, the remaining three safety conditions are easily established. �

EXERCISE 6.2 For the built environment of Chapter 1, design a place sorting that
excludes control nestings not already used in the bigraph E. Hint: You probably
need disjunctive sorts, e.g. âr, allowing a building to contain both agents (a) and
rooms (r).

What are the sorted interfaces of the bigraphs C, D and E, and of the redexes
in rules B1–B3? �

64 6 Sorting

Before leaving place sorting, let us consider how it can be used to introduce
controls of arbitrary rank k, a natural number. At present our atomic controls have
rank 0, and the others have rank 1, i.e. their ions have a single site. We did not
introduce controls with larger rank, since they can be encoded with the help of
sorting. The diagram indicates, in terms of ions, how to encode a control M with
rank k, using controls of rank 1.

The encoding works by extending an existing Σ = (Θ,K,Φ) to Σ∗, as follows:

(i) Add a special sort ‘cell’ to Θ. Then, for each finite ordinal j, add toK a new
non-atomic control j with sort ‘cell’. Call a node with control j a j-cell.

(ii) For each control M of rank k, extendK by assigning M an arity, its rank, and
a sort from Θ. Then refine Φ by requiring that if M has rank k then each
M-node has exactly k children, namely a j-cell for each j ∈ {1, . . . , k};
conversely, require that the parent of every cell is a node with ranked control.

(iii) Further refine Φ by imposing any required relationship between the sort
assigned to a cell’s parent and the sorts assigned to its children.

This characterises Σ∗ in terms of Σ, allowing freedom for extra sorting constraints
on ranked controls. Note that the refined sorting condition ensures that the sort
‘cell’ does not occur in interfaces; the encoding of a node with ranked control is
never split by composition. We can see that the degenerate cases k = 0 and k = 1
correspond accurately to our present atomic and non-atomic controls. We may thus
regard all controls as ranked.

This concludes the presentation of place sorting. It could have been done at first
for place graphs only, and then extended to bigraphs. We were led to do it directly
for bigraphs because our example, CCS, requires linking as well as placing.

6.2 Link sorting, arithmetic nets and Petri nets

We now turn to the classification of links. We start with the simple example of
arithmetic nets, and continue by defining a particular class of link sortings illus-
trated by these nets. We then apply this class of sortings to Petri nets. We treat both
examples using link graphs alone; the extension to bigraphs is trivial.

6.2 Link sorting, arithmetic nets and Petri nets 65

Since link graphs have no regions, their diagrams have no enclosing rectangles;
port-blobs can also be omitted from these diagrams without risk of confusion.

Definition 6.10 (link sorting) A link-sorting (discipline) is a triple Σ = (Θ,K,Φ)
where Θ is a non-empty set of sorts, and K is a link-sorted signature, a basic sig-
nature enriched with a sort assigned to each member of the arity of each control.
Thus each port in a (link)-sorted link graph gets a sort. Furthermore, each link
is given a sort. For an open link, this appears in an interface, taking the form
{x0 : θ0, . . . , xn−1 : θn−1}; also each edge (closed link) in a bigraph is given a
sort.1

Finally, Φ is a rule on such enriched bigraphs that is satisfied by the identities
and symmetries and preserved by composition and product.

The s-category and category of, respectively, concrete and abstract Σ-sorted link
graphs are written `Lg(Σ) and Lg(Σ). When Σ is understood, these link graphs
are often called well-sorted. �

Just as for place sorting, there is a forgetful functor for link sorting; it deletes
link sorts from the points and links of both interfaces and bigraphs. And again, it
commutes with the lean-support quotient functor. We need not repeat the details.

We are now ready to illustrate link sorting.

Example 6.11 (arithmetic nets) Adopt the basic signature

Karith
def= {0 : 1, S : 2, + : 3, → : 2}

representing zero, successor, plus and forwarding. Here are the corresponding
atoms, together with an example of an arithmetic net as a link graph in Lg(Karith):

The nets resemble Lafont’s interaction nets, but allow sharing of subexpressions.
Their dynamics can be defined naturally in bigraphs, but here we confine ourselves
to sorting. We can illustrate the need for sorting in terms of our example. The

1 In previous work sorts were not assigned to edges; that is, they were assigned to open links but not to closed
links. In examples it seems that assigning sorts to edges is often redundant; nonetheless, it may be necessary
sometimes and it is also convenient for the theory. I am grateful to Mikkel Bundgaard for pointing this out.

66 6 Sorting

illustrated net makes sense according to the interpretation suggested by the node-
shapes: the ‘output’of each constructor is fed into any number of other constructors
as input. But some nets in Lg(Karith) make no sense; for example, there is nothing
to exclude a net in which an input port receives input from no sources, or from two
or more sources. As a first step towards a sorting to exclude such nets, we define
the following class of link sortings:

Definition 6.12 (many–one sorting) A many–one sorting Σ = (Θ,K,Φ) has two
sorts, i.e. Θ = {s, t}. The signature K assigns sorts to control arities in some
arbitrary way. The formation rule Φ is as follows:

no link has more than one s-point;
a link has sort s iff it has an s-point;
every closed link has sort s.

There is no constraint on the number of t-points in a link. �

It is helpful to think of s and t as standing for ‘source’ and ‘target’. Many–one
sortings vary in their signature. Let us now define Σarith to be a many–one sorting
whose link-sorted signature is Karith extended by a sort-assignment as follows:

Karith
def= {0 : s, S : ts, + : tts, → : ts} ,

i.e. arities are refined to sort-sequences, with the convention that the last in each
sequence pertains to ‘output’ports. Taking into account also the sorting of interfaces,
here are the sorts assigned to our illustrated net:

The sorts of edges are not shown; they are implied by the sorts of ports.

The reader can see that, in the link-sorted s-category Lg(Σarith), many senseless
nets have been excluded. It is an interesting exercise to check whether the sort-
ing can be extended to exclude other doubtful nets; for example, nets with certain
cycles. (The challenge is to find a sorting discipline that is preserved by the cat-
egorical operations.) At the end of this chapter we consider safety of many–one
sorting. �

6.2 Link sorting, arithmetic nets and Petri nets 67

Let us now turn to Petri nets. Recall that a Petri net has two kinds of node,
usually called places and transitions, forming a directed bipartite graph. For each
transition t, the places from which an arc enters t are its pre-conditions, and the
places entered by an arc from t are its post-conditions. Places may hold tokens; if
all the pre-conditions of t have a token then t can fire – meaning that each of its
pre-conditions loses a token and each of its post-conditions gains one. Thus the net
remains constant; only the tokens move.

We look at a particular Petri net regime, called condition–event nets. Their places
are called conditions, and their transitions are called events. (This conveniently
avoids a clash with bigraph terminology, where the terms ‘place’ and ‘transition’
are already in use!) In these nets a condition may hold at most a single token; thus
we can represent conditions by two controls, one (‘marked’) for holding a token,
the other (‘unmarked’) for holding no token. As with arithmetic nets, the dynamics
of Petri nets can be well represented in bigraphs, and this has been studied in detail
elsewhere. Here we consider only the sorting of condition–event nets.

Example 6.13 (condition–event Petri nets) Adopt the basic signature

Kpetri
def= {M : 1, U : 1, Ehk :h+k}

representing a marked condition, an unmarked condition, and an event with h pre-
conditions and k post-conditions (h, k ≥ 0). Here are the corresponding atoms,
together with an example of a condition–event (c/e) net:

We depict the only port of a condition node as lying at its centre; thus the net has
just three closed links (edges) and two open links. The marked condition node
represents the presence of a token on the node, saying that this condition ‘holds’; an
unmarked condition node has no token, so it does not ‘hold’. Two conditions have
been made accessible by the names x and y, allowing the environment to ‘observe’
the net.

Our illustrated net makes sense; but, as with arithmetic nets, certain link graphs
in Lg(Kpetri) make no sense. For example, two event nodes should not be linked

68 6 Sorting

by an edge that contains no condition. To exclude senseless nets, we can again use
a many–one sorting Σpetri. But when we modify Kpetri to assign sorts to control
arities we see a striking difference from Karith:

Kpetri
def= {M : s, U : s, Ehk : th+k} .

That is, we assign t to all event ports and s to all condition ports. Taking into account
also the sorting of interfaces, here are the sorts assigned to our illustrated net:

Again, the sorts of edges are not shown, but can be deduced. The reader may like
to identify which senseless configurations have been excluded by the sorting. �

Having used two members of the family of many–one link sortings, we now
establish that these sortings are all safe, in the sense of Definition 4.6.

Lemma 6.14 Let U : Lg(Σ)→Lg(K) be the forgetful functor for link graphs with
a many–one sorting Σ; similarly for bigraphs. Then every link graph in Lg(Σ) and
bigraph in Bg(Σ) is op-cartesian for U .

Proof Consult the diagram of Definition 4.9, with U for F , and use capital
letters for arrows (since we are dealing with link graphs). Assume F : I→ J and
H : I→K to be many–one sorted; assume F ′ and G′ unsorted such that U(F) =
F ′ and U(H) = G′ ◦F ′. We require unique G such that U(G) = G′ and H =
G ◦F .

Since the interfaces for G are fixed, and sorts of ports are determined by the
sorted signature, there is exactly one G :J→K such that U(G) = G′. It is then
routine to check that G is well-sorted, and that G ◦F = H . �

We are now ready to prove

Theorem 6.15 (many–one sorting is safe) Every many–one link sorting is safe.

Proof It will be enough to prove this for link graphs. First, we establish that

6.3 The impact of sorting 69

the forgetful functor U : Lg(Σ)→Lg(K) of the sorting Σ creates RPOs. Let

D bound
A in Lg(K), and let
D′ and
A′ be their unsorted images. Consider
the construction of an unsorted RPO (
B′, B′), with mediating interface I ′, for

A′ to
D′. Assign sorts to its ports and edges as dictated by the sorted signa-
ture of Σ. It can then be found that sorts can be assigned also to the names in
I ′, creating a sorted interface I for a triple (
B,B) that makes it a relative bound for

A to
D.

To establish this as an RPO, consider any other sorted relative bound (
C,C). Its
U-image (
C ′, C ′) is a relative bound also for
A′ to
D′; so there is a unique me-
diating arrow from (
B′, B′) to (
C ′, C ′). Now, by the lemma, use the op-cartesian
property of sorted link graphs such as B0 ◦A0 to ensure that a unique mediating
arrow exists from (
B,B) to (
C,C). This establishes (
B,B) as an RPO, as required.

Next, we have to show that U reflects pushouts. But this is immediate from the
lemma combined with Proposition 4.10. Finally, as with stratified sorting, it is easy
to establish the three remaining conditions of safety. �

Let us look briefly at another simple case of link sorting.

Definition 6.16 (plain sorting) Call a link sorting plain if its formation rule im-
poses only one constraint: namely, that all points in a link have the same sort as the
link. �

For example, this provides a sorting to represent a version of CCS with several sorts
of channel. Each channel may be shared by many senders and many receivers. To
make communications respect the sorting, we represent the channel by a link of sort
θ, say, and require all points in this link (e.g. ‘send’and ‘get’nodes) also to have sort
θ. This example gets more interesting in the π-calculus, where such nodes have
extra ports used to pass links as messages.

EXERCISE 6.3 (1) Show that the forgetful functor U for plain sorting is in general
not op-cartesian. Hint: Consider two sorts θ, θ′. In the notation of Definition 4.9,
show how f may have an idle name x : θ preventing the existence of a suitable g.

(2) In contrast, prove that every plain sorting is safe (see Definition 4.6). Hint:
If
B is an IPO for
A, then no name in the codomain of
B is idle in both B0 and
B1. �

6.3 The impact of sorting

To a considerable extent, the power of sorting lies in the variety of possible forma-
tion rules. This is true even for place sorting and link sorting independently, and
doubly true when they are combined. We illustrated this combination when we

70 6 Sorting

considered adding plain link sorting to CCS, which is already place sorted. It is
remarkable that the notion of binding or locality of links can be expressed by such
a combination; the formation rule naturally involves both places and links. One
approach to binding is outlined in Section 11.3. It has been adopted to encode the
π-calculus in bigraphs.

There is a price to pay; we must be sure that other features harmonise with sort-
ing. We have already insisted that composition and tensor product respect sorting.
Now let us look briefly at the derived products and nesting. First, for the parallel
product F0 ‖F1 and merge product F0 |F1 with Fi : Ii→ Ji, we insist that when-
ever a name x is shared between I0 and I1 then it has the same link sort in both;
similarly for J0 and J1. In addition, for merge product we insist that all roots of F0

and F1 have the same place sort. Next, for the nesting F .G with F : I→〈m, X〉
and G :m→〈n, Y 〉, we insist that each place in m has the same place sort in the
outer face of F as in the inner face of G, and that a name x shared between X and
Y has the same sort in each.

Even when these conditions are met, the product F0 ‖F1 may violate the forma-
tion rule. For example, with many–one sorting, if x : s is a shared outer name then
the link x in the product may have two s-points, which is not allowed.

In what follows, whenever we use these derived operators, we assume that the
relevant formation rule is indeed respected.

Part II : Motion

7

Reactions and transitions

In this chapter we study dynamics at the general level of s-categories. It is based
upon Section 2.2 and Chapter 4, and is independent of the intervening work on
bigraphs.

Recall from Chapter 2 the distinction between concrete and abstract bigraphs;
the former have their nodes and edges as support, while the latter have no support.
In s-categories, this distinction is less sharp; an spm category is just an s-category
with empty supports. Much of the work of this chapter therefore applies to both.
However, when we introduce behavioural equivalence in Section 7.2, we first make
sure it is robust (i.e. that the equivalence is preserved by context) in the case where
the s-category possesses RPOs; we are then able to retain this robust quality when
the s-category is quotiented, or abstracted, in a certain way – even if RPOs are
thereby lost.

We begin in Section 7.1 with a notion of a basic reactive system, based upon an
s-category equipped with reaction rules. This determines a basic reaction relation
which describes how agents may reconfigure themselves. We refine this definition
to a wide reactive system, with a notion of locality based on the width of objects
in a wide s-category, introduced in Definition 2.14. We are then able to describe
where each reaction occurs in an agent, and thus to define a wide reaction relation
that permits reactions to occur only in certain places.

In Section 7.2 we introduce labelled transition systems, which refine reactive
systems by describing the reactions that an agent may perform, possibly with as-
sistance from its environment. These potential reactions are called (labelled) tran-
sitions; the label of a transition indicates how the environment contributes to it. In
terms of them we define bisimilarity, a behavioural equivalence which captures the
idea that two agents behave the same if and only if they ‘react alike in all contexts’,
i.e. they have the same transitions. In a basic reactive system, bisimilarity may not
be a congruence, i.e. it may not be preserved by context; but we show that it is so in

73

74 7 Reactions and transitions

a wide reactive system, for a tractable notion of transition system based upon RPOs
(Definition 4.3). This prepares for the dynamic theory of bigraphs in Chapter 8.

In Section 7.3 we introduce a natural notion of sub transition system, in which
the set of labels is reduced. Under certain conditions we show that this can only
increase the bisimilarity relation between agents in the smaller system. We also
recognise the possibility that it preserves the relation exactly. This indeed occurs,
as we illustrate in terms of CCS in a later chapter.

In Section 7.4, via a quotient functor, we transfer transition systems and their
bisimilarities to abstract reactive systems. Finally, on this basis, we outline the
general procedure by which we shall derive a robust behavioural theory for abstract
bigraphs from concrete ones.

Notation We here revert to the convention of Section 2.2 and Chapter 4, in using
lower case letters to denote arrows in an s-category. Recall that a ground arrow or
agent is one with domain ε, the origin. The letters a, b will always denote agents,
and r, s will always denote agents that are redexes or reacta of reaction rules (Defi-
nition 7.1). We often call an arrow c a context if it is used in composition c ◦a with
an agent. �

7.1 Reactive systems

In process calculi it is common to present the dynamics of processes by means of
reactions of the form a � a′, where a and a′ are agents. These reactions define
all the possible changes of state. We generalise this to s-categories, as follows:

Definition 7.1 (basic reactive system) A basic reactive system, written `C(`R),
consists of an s-category `C equipped with a set `R of reaction rules. An arrow
a : ε→ I in `C with domain ε is a ground arrow or agent, often written a : I .

Each reaction rule consists of a pair (r : I, r′ : I) of ground arrows, a redex and
a reactum. The set `R must be closed under support translation, i.e. if (r, r′) is a
rule then so is (s, s′) whenever r � s and r′ � s′.1

The reaction relation � over agents is the smallest such that a � a′ when-
ever a � c ◦r and a′ � c ◦r′ for some reaction rule (r, r′) and context c for r and
r′. �

1 A stricter requirement would be: if (r, r′) is a rule then so is (ρ � r, ρ � r′), for any support translation ρ.
This prevents the redex and reactum from being support-translated independently; thus it allows us to track
the identity of nodes through reaction, and thereby get a grip on causality in a bigraphical reactive system.
This stricter approach is examined in Section 11.1, and is a promising topic for further research. We have not
pursued it far in this book, since our more liberal approach still yields enough control of identity to recover
theory for existing process models.

7.1 Reactive systems 75

In Chapter 8 we shall work with reactions in bigraphs, which possess a strong
notion of place, allowing us to describe where a reaction occurs. Basic reactive
systems have no notion of place. In Definition 2.14 we introduced it with the
concept of width; recall that an s-category `C is wide if it is equipped with a functor
width : `C→Nat. We now exploit that definition to define a notion of activity,
which describes the places in a wide agent where reactions are permitted.

Definition 7.2 (wide reactive system (WRS)) We define a wide reactive system
(WRS) `C(`R) to be a wide s-category `C equipped with a set `R of reaction rules,
and also an activity relation

act ⊆ `C(I→ J)× width(I)

for each homset. If f has domain I and (f, i) ∈ act then we say f is active at i; if
this holds for all i ∈ width(I) then f is active. We impose conditions on activity
as follows, denoting the widths of the domains of f and g by m and n:

− the identities and symmetries are active;
− g ◦f is active at i ∈ m iff f is active at i and g is active at width(f)(i) ∈ n;
− f ⊗ g is active at i ∈ m+n iff f is active at i ∈ m or g is active at i−m ∈ n;
− if f � f ′ and f is active at i then f ′ is active at i .

Now define a location ı̃ of an object I to be a subset of width(I). The reaction
relation �̃ between agents is defined as follows: a �̃ a′ whenever a � c ◦r

and a′ � c ◦r′ for some reaction rule (r, r′) and active context c : I→ J such that
̃ ⊆ width(J) is the location given by ̃ = {width(c)(i) | i ∈ width(I)}. �

Thus ̃ records the regions of d ◦r where the reaction occurs.
To test this definition, let us anticipate what activity will mean in bigraphs. There

we shall designate certain controls as active, and ‘f is active at i’ will mean that
every ancestor-node of the site i of f has an active control. With this interpretation,
it is easy to check that the four conditions hold.

EXERCISE 7.1 In bigraphs, a non-atomic control can be either active or passive.
We say that a node is active iff its control is active. Check that, with the above
interpretation, bigraphs satisfy the condition on g ◦f stated in Definition 7.2. You
need only consider place graphs.

Suppose A is an active control and B passive, both with arity 0. Thus A,B : 1→ 1
are ions, with only A active. Using these, give an example of two bigraphs f and
g such that g ◦f is active but g is not active at every site. �

The notion of WRS, which enriches a basic reactive system with a width functor
and an activity relation, allows us to develop a dynamic theory at the general level

76 7 Reactions and transitions

of s-categories. In general a WRS is concrete, since s-categories have support. A
special case of a WRS is an abstract one based upon an spm category, since this is
just an s-category with empty supports.

Definition 7.3 (abstract WRS) A WRS is abstract if its underlying s-category is
an spm category. �

We created an spm category of abstract bigraphs in Definition 2.20, by means
of the lean-support quotient functor [[·]] which forgets both supports and idle edges.
This functor was the quotient of a bigraphical s-category by lean-support equiva-
lence � (Definition 2.19), which includes support equivalence �.

We wish similarly to quotient a concrete WRS to form an abstract one. At this
general level we have no notion of leanness, so there is no lean-support quotient
functor. We can indeed quotient by support equivalence �, but we can do better,
and find a family of quotients of which lean-support equivalence is an instance
specific to bigraphs.

Definition 7.4 (structural congruence) An equivalence relation≡ on each hom-
set of a wide s-category `C is a structural congruence if it is preserved by com-
position and tensor product and preserves width, i.e. if f ≡ g then width(f) =
width(g). It is called an abstraction if it includes support equivalence. We denote
the ≡-equivalence class of f by [[f]].

In a WRS `C(`R) an abstraction is dynamic if in addition it respects reaction and
activity; that is,

− if f �ı̃ f
′ and g ≡ f then g �ı̃ g

′ for some g′ ≡ f ′;
− if f is active at i and f ≡ g then g is active at i. �

Structural congruences should not be confused with behavioural congruences such
as bisimilarity; in particular, we define the latter only over ground arrows, while
structural congruences apply to all arrows.

EXERCISE 7.2 Check that, in bigraphs, both � and � are abstractions. �

Definition 7.5 (quotient wide s-category) Let `C be a wide s-category, and let≡
be an abstraction on `C. Then

C def= `C/ ≡
is the wide spm category whose objects are those of C, and whose arrows [[f]] : I→
J are ≡-equivalence classes of the homset I→ J in C. Composition, tensor prod-
uct, identities and symmetries are defined just as for support quotient in Defini-
tion 2.15, and in C we define width([[f]]) def= width(f). �

7.2 Transition systems 77

To form an abstract WRS we can quotient a concrete WRS by a dynamic abstrac-
tion:

Definition 7.6 (quotient WRS) Let `C(`R) be a WRS, and ≡ a dynamic abstrac-
tion on `C. Then define C(R), the quotient of `C(`R) by ≡, as follows:

− C = `C/≡, andR = {([[r]], [[r′]]) | (r, r′) ∈ `R};
− [[f]] is active at i iff f is active at i. �

An abstract WRS has its own reaction relation � ı̃ indexed by locations. How
does the reaction relation in a concrete WRS relate to that of its abstract quotient?
The answer is simple, and included in the following theorem that justifies the above
constructions.

Theorem 7.7 (abstract WRS) The construction of Definitions 7.5 and 7.6, ap-
plied to a concrete WRS `C(`R), yields an abstract WRS C(R), whose underlying
wide spm category C is the codomain of a functor of wide s-categories

[[·]] : `C→C .

Moreover the construction preserves the reaction relation, in the following sense:

(1) if f �̃ı f
′ in `C(`R) then [[f]] �̃ı [[f ′]] in C(R)

(2) if [[f]] �̃ı g
′ in C(R) then f �̃ı f

′ in `C(`R) for some f ′ with [[f ′]] = g′.

In this sense, abstraction of a WRS preserves its behaviour. We now turn to
a more refined notion of behaviour, and we shall find that it, too, is preserved
by abstraction.

7.2 Transition systems

As we have seen, neither the basic nor the wide reaction relation, i.e. neither �

nor �ı̃, takes account of the reactions arising from cooperation between an agent
and its environment. For this purpose we introduce labelled transition systems.

A labelled transition between agents takes the form a �
� a′, where the label

� is drawn from some vocabulary expressing the possible interactions between an
agent and its environment. This is more refined than a reactive system, since � can
witness the possibility that a contains only part of a redex, relying on the context
or environment to supply the rest. Thus a may have exactly the same unaided
reactions as another agent b, but may contain a part of a redex that b does not; then,
when we place it in a context, a may behave differently from b.

Henceforward we shall use ‘transition’ to mean ‘labelled transition’. In general,
transitions do not presuppose reaction rules; it is possible to define the dynamics

78 7 Reactions and transitions

of bigraphs by transitions, as indeed has been done for various process calculi. But
later we shall find that we can derive transitions from reaction rules.

We seek notions of behavioural equivalence of agents such that, whenever a and
b are equivalent, they are also equivalent in all contexts; that is, c ◦a and c ◦ b are
equivalent for all contexts c. Transitions are important for this purpose, since they
represent not only the actual behaviour of agents, but also their potential behaviour
in collaboration with a context.

We now define transition systems formally.

Definition 7.8 (transition system) A transition system (TS) for a wide s-category
is a quadruple2

L = (Agt, Lab,Apl,Tra)

where Agt is a set of agents, Lab is a set of labels, Apl ⊆ Agt × Lab is the
applicability relation, and Tra ⊆ Apl× Agt is the transition relation.

When (a, �) ∈ Apl we say that � applies to a. A triple (a, �, a′) ∈ Tra is called a

transition; we write it a �
� a′. We sometimes call a the source and a′ the target

of the transition. If c is an arrow such that a ∈ Agt implies c ◦a ∈ Agt whenever
defined, then we call c an L-context.

A transition system is raw if its labels contain no graphical structure. �

Many behavioural equivalences or preorders can be built upon transition systems.
For example, two agents are said to be trace equivalent if, starting from each one,
the same sequences of transition labels can be observed. Another example is the
failures ordering of CSP; an agent a is said to refine another, b, if the ‘failures’ of
a are included in those of b. The theory of these can be developed in the same way
as that of bisimilarity, which we now define:

Definition 7.9 (bisimilarity, congruence) Let `C be equipped with a transition
system L. A simulation for L is a binary relation S between agents such that if
aSb and a �

� a′, and also � applies to b, then there exists b′ such that b �
� b′ and

a′Sb′. A bisimulation is a symmetric simulation.
Bisimilarity for L, denoted by∼L, is the largest bisimulation. It is a congruence

if a ∼L b implies c ◦a ∼L c ◦ b for every L-context c. �

When the transition system L is understood we shall often write ∼ instead of ∼L.
The above definition is standard, except for the extra condition that � applies to

b. Note that the largest bisimulation is well-defined; it is simply the union of all
bisimulations. So another way to describe bisimilarity is to say that a and b are
bisimilar, a ∼L b, if there exists a bisimulation containing the pair (a, b).
2 This formulation of transition systems is due to O.H. Jensen [46].

7.2 Transition systems 79

Our definition of a transition system constrains neither its labels nor its tran-
sitions. In particular, it leaves open whether these are raw or not. For example,
in the π-calculus a raw TS was defined first, and later a reactive system was de-
fined and shown consistent with it. The TS was also found to yield a congruential
bisimilarity.

Here, by contrast, we have two aims. First, we wish to derive a TS from a
given set of reaction rules, since we wish to have only a single notion of dynamics
for a reactive system. Second, we wish to prove the bisimilarity of this derived
TS to be a congruence. We first achieve these aims in a way that is simple and
informative, though unsatisfactory. It relies on declaring the label of a transition
to be a bigraphical context for its source agent. Later we shall need to refine this
approach.

Definition 7.10 (full transition system) In a WRS with rules `R, a transition
system is full if each label f is a bigraph, and f applies to an agent a iff it is a

context for a. Moreover, each transition a
f

� a′ is such that, for some reaction
rule (r, r′) ∈ `R and active context d for r and r′, the following diagram commutes
and a′ � d ◦r′.

r
a

f

d

The full transition system ft has all ground arrows as agents, all arrows as labels,

and all transitions a
f

� a′ that satisfy the above conditions for some rule (r, r′) ∈
`R. �

In the diagram we may think of a containing part of a redex r, and f supplying the
remainder of that redex.

We now give the simple proof that bisimilarity for ft is a congruence. This is
hardly surprising, because by allowing any context to be a label we have allowed
our transitions to ‘observe’ an agent in any context.

Proposition 7.11 (congruence of full bisimilarity) In any WRS, bisimilarity for
ft is a congruence.

Proof Assuming that a ∼
ft

b, we wish to show that c ◦a ∼
ft

c ◦ b, where c is any

context for a and b. For this purpose, suppose that c ◦a
f

� a′; then we seek b′ such

that c ◦ b
f

� b′ and a′ ∼
ft

b′.

80 7 Reactions and transitions

(1) (2) (3) (4)

r

f

c ◦a d

f ◦c

r
d

s
e

f ◦c

s
e

f

a b c ◦ b

For some reaction rule (r, r′) the diagram (1) commutes, d is active and a′ � d ◦r′.
Then (2) also commutes; hence there is a transition a

f ◦ c
� a′. Since a ∼

ft
b,

for some b′ we have the transition b
f ◦ c

� b′ and a′ ∼
ft

b′. So, for some rule
(s, s′) and active context e, (3) commutes and b′ � e ◦s′. Then (4) commutes, so

c ◦ b
f

� b′ and we are done. �

This result is pleasant, but needs to be refined. The defect of ft is that it allows
arbitrary contexts as labels. Labels will be arbitrarily large – much larger than
needed to represent the cooperation between an agent and its environment in cre-
ating a redex. Furthermore, since f ◦a = d ◦r, the context d may contain much of
this environment; it follows that the target a′ � d ◦r′ of the transition will also be
large. If labels are to be contexts, then we would like to restrict them to be small in
some sense. We shall shortly define a notion of minimal label. But there is another
difficulty, as follows.

A weakness of taking labels to be contexts is that such a label f in a transition

a
f

� a′ does not record where, within f ◦a, the redex of a possible reaction occurs.
It then turns out that, if we limit the class of contexts permitted as labels, we lose the
congruence of bisimilarity. This is best seen with the help of an example, showing
that if we limit label contexts to those that are minimal (to be defined shortly) then
two agents that have the same transitions – and are therefore bisimilar – can be
distinguished by placing them in a larger context which only permits reaction in
certain places.

Example 7.12 (non-congruence) This example shows that bisimilarity based upon
unlocated transitions is not in general a congruence for bigraphs. Take the basic
signature K = {K, L,M}, each with arity zero, and declare K and L to be atomic,
and M to be passive – i.e. it can contain no reaction. Let (K, L) be the only reaction
rule, where K means the atom K.1. It can then be shown that a ∼ b in the TS which
has only minimal contexts as labels, where a = K⊗ L and b = L⊗ K.

L
M

KL L∼
M

K K

a ∼ b c
def= M | id1

M
K L �∼

c ◦a �∼ c ◦ b

7.2 Transition systems 81

But for the context c as shown we have c ◦a �∼ c ◦ b. For in b the redex K lies
in an active context, so there is a transition c ◦ b id

� ; but c ◦a has no id-labelled
transition, since its redex K lies in a passive context, the M-ion. �

Returning now to WRSs with their wide reaction relations �ı̃, we shall refine
the notion of contexts-as-labels to take account of location of the underlying re-
action, and thus refine bisimilarity so as to make it a congruence. If we add this
quantum of information to a transition, then we are able to limit the transitions of
a TS to those that are minimal in a precise sense.

Definition 7.13 (contextual transition) In a WRS, a transition a �
� a′ is contex-

tual if its label � takes the form (f, ̃), where f : I→ J is a context for a and ̃ a
location of J . The label applies to an agent a iff f ◦a is defined.

A contextual transition (a, (f, ̃), a′) is written a
f

�̃ a′. It
has an underlying reaction rule (r, r′) with width m such
that for some active d : I→ J the diagram commutes, ̃ =
{width(d)(i) | i ∈ width(I)} and a′ � d ◦r′. A contextual

transition a
f

�̃ a′ is minimal if its diagram is an IPO.

r

f

da

A transition system is contextual if its transitions are contextual, and its agents and
labels are closed under �. It is minimal if its transitions are minimal. �

In the transition a
f

�̃ a′ we are justified in calling the label (f, ̃) contextual, not
only because f is a context for a, but also because ̃ is the range of width(d),
where d is the context in which the underlying redex lies. Note that this redex itself
cannot be recovered from the information recorded in the transition; this opens
the possibility that two agents may be behaviourally equivalent even though their
transitions are based upon different reaction rules.

There are many minimal TSs. (The term ‘minimal’ applies to the transitions, not
to the system.) We now distinguish a family of them.

Definition 7.14 (largest minimal TS) Given a WRS and a set I of its objects, the
minimal TS mtI = (Agt, Lab,Apl,Tra) is defined as follows:

− Agt has all agents a : I for I ∈ I;
− Lab has all labels occurring in Tra;
− Apl has all pairs (a, �) where � = (f, ı̃) is a transition label with f ◦a defined;

− Tra has all minimal transitions a
f

�ı̃ a
′ for a, a′ ∈ Agt.

We shall write mt for mtI when I is understood. �

Thus we are mainly interested in two species of transition system: raw and mini-
mal. Minimal TSs are the ones that we shall derive uniformly for any WRS. But we

82 7 Reactions and transitions

shall also consider raw TSs that are specific to particular process calculi, including
some that have been studied in depth, in order that the bisimilarities they induce
can be compared with those induced by derived TSs.

To clarify the relationship between reactions and contextual transitions, it is
helpful to compare them with diagrams. Here are the reaction a �̃ a′ and the

transition a
f

�̃ a′, both based upon a reaction rule (r, r′). Like-named entities in
the two diagrams are unrelated. In each case d is active, and ̃ ⊆ width(J) is given
by ̃ = {width(d)(i) | i ∈ width(I)}. The reaction can also be seen as a contextual

transition a idJ �̃ a′ whose label has an identity context. Conversely, underlying the
transition there is a reaction f ◦a �̃ a′. The transition is minimal if its square is
an IPO.

a�
a′

r′r
I

d
a

J f

r
d

a′
�
r′

J

I

a contextual transition a
f

�̃ a′a reaction a �̃ a′

Width plays two roles in Definition 7.13. It takes part in the assertion that d is
active, i.e. active everywhere in the width m of its domain; it also defines the
location ̃ in terms of m. Note that, since ̃ is a location in the codomain of f ,

another transition b
f

�̃ b′ may have the same label (f, ̃), even if its underlying
reaction rule has width different from m.

EXERCISE 7.3 Prove that in a concrete WRS the transition relation is consistent
with reaction, i.e. that a

f
�ı̃ a

′ implies f ◦a �ı̃ a
′. Hint: Very easy! �

Let us revisit Example 7.12, to see why it does not contradict the congruence
of bisimilarity for mt. The reason is that we no longer have a ∼ b, since their
transitions have different locations; in fact, a id

�ı̃ a
′ and b id

�̃ b′, where ı̃ = {0}
and ̃ = {1}.

We are now ready for our main result that applies to all wide reactive systems:
that bisimilarity for mt is indeed a congruence. The importance of this is that the
labels of this TS are tractable, since each one is part of the cospan of an IPO.

We begin by recalling the standard technique of ‘bisimulation up to …’. It is
well known3 that if an equivalence ≡ is included in bisimilarity, then to establish
bisimilarity it is enough to exhibit a bisimulation up to ≡ ; that is, a symmetric
relation S such that whenever aSb then each transition of a is matched by b in S≡,
the closure of S under ≡. It is easy now to prove the following:

3 This property is valid for strong bisimilarity, which is what concerns us here.

7.2 Transition systems 83

Proposition 7.15 (bisimulation up to support equivalence)

(1) Support equivalence � is a bisimulation for mt.
(2) To prove a ∼M b it is enough to show that (a, b) ∈ S for some S which is a

bisimulation up to �.

EXERCISE 7.4 Prove this. Hint: For the first part, use Proposition 4.5(5), con-
cerning support translation of RPOs (and hence for IPOs). �

We may now prove the congruence theorem.4

Theorem 7.16 (congruence of minimal bisimilarity) In a wide reactive system
with RPOs, equipped with mt, bisimilarity of agents is a congruence; that is, if
a0 ∼ a1 then c ◦a0 ∼ c ◦a1, where c is any context for a0 and a1.

Proof We establish the following as a bisimulation up to �:

S def= {(c ◦a0, c ◦a1) | a0 ∼ a1, c any context} .

(1) (2) (3) (4)

e0
f

r1

g

r0

c ◦a0

gg

c′ c′
f f

a0 d0
r0

a1 d1 d1
r1

a1

e1e0

c c

Suppose that a0 ∼ a1, and that c ◦a0
g

�̃ b′
0, for some label g that applies to c ◦a1.

It is enough to find b′
1 such that c ◦a1

g
�̃ b′

1 and (b′
0, b

′
1) ∈ S�.

There exist a ground reaction rule (r0, r
′
0) with codomain H0, and an active

context e0 such that b′
0 � e0 ◦r′

0 and ̃ = {width(e0)(h) | h ∈ width(H0)}, and
moreover diagram (1) is an IPO. There exists an RPO (f, d0, c

′) for (a0, r0) relative
to the bound (g ◦c, e0), so by RPO theory each square in diagram (2) is an IPO,
with d0 active, and c′ active at ı̃ = {width(d0)(h) | h ∈ width(H0)}.

So the lower square underlies a transition a0
f

�ı̃ a
′
0, where a′

0 = d0 ◦r′
0. Now

f ◦a1 is defined (since g ◦c ◦a1 is defined and g ◦c = c′ ◦f) and a0 ∼ a1, so there

is a transition a1
f

�ı̃ a
′
1 with a′

0 ∼ a′
1. But support translation of a′

1 preserves both
of these properties; so we may assume a rule (r1, r

′
1) with codomain H1 and an active

d1 such that a′
1 = d1 ◦r′

1, |c′|∩ |a′
1| = ∅ and ı̃ = {width(d1)(h) | h ∈ width(H1)},

and moreover diagram (3) is an IPO.
Now replace the lower square of (2) by diagram (3), obtaining diagram (4) in

which, by RPO theory, the large rectangle is an IPO. Moreover e1
def= c′ ◦d1 is

4 There are many behavioural equivalences for transition systems other than bisimilarity. It has been shown [54]
that some of them, e.g. the failures equivalence [44], are also congruences for derived TSs.

84 7 Reactions and transitions

active, since c′ is active at ı̃. Hence c ◦a1
g

�̃ b′
1 where b′

1
def= e1 ◦r′

1. Finally
(b′

0, b
′
1) ∈ S� as required, because b′

0 � c′ ◦a′
0 and b′

1 � c′ ◦a′
1 with a′

0 ∼ a′
1. �

Having understood how a contextual transition system can be derived for a WRS,
and in particular how its bisimilarity may be a congruence, we can consider the TS
as weaned from the reaction rules that gave birth to it. But the reaction rules remain
important for many applications.

7.3 Sub transition systems

Consider a wide s-category equipped with a TS, either raw or contextual. It can
happen that bisimilarity is unaffected if we reduce the transition system itself, i.e.
discard some of the transitions. To set the scene, let us define what it means to
reduce an arbitrary transition system.

Definition 7.17 (sub transition system) A transition systemM is a sub transition
system of L, writtenM ≺ L, if each of the four components ofM is a subset of
the corresponding component of L. �

In general, the bisimilarity of the sub-TSM is incomparable with that of L. For
example, ifM has no labels then all its agents are bisimilar; on the other hand if
a ∼ b in L, and each has transitions in L, then by keeping inM the transitions of
a but omitting those of b we find that a �∼ b inM.

Let us now consider a natural class of sub-TSs:

Definition 7.18 (definite sub transition system) Let M ≺ L. Then M is a
definite sub transition system if AgtM and LabM define the other two components
ofM, in this sense: for all a, a′ ∈ AgtM and � ∈ LabM

− if � applies to a in L then it applies to a inM;

− if a �
�ı̃ a

′ is a transition in L then it is a transition inM. �

Proposition 7.19 (definite sub-TS) LetM be a definite sub-TS of L, and let a ∼L
b. Then also a ∼M b.

Proof It is easy to show that ∼L is a bisimulation forM. �

So by restricting attention to a definite sub transition system we can only increase
its bisimilarity relation. This raises an important question: are there situations in
which the relation remains unchanged? For now, let us only make a definition:

Definition 7.20 (faithful sub transition system) M is a faithful sub transition
system of L if, restricted to the agents ofM, we have ∼M = ∼L . �

7.4 Abstract transition systems 85

Thus, by reducing L to a definite and faithful sub transition system, we show that
the omitted labels contribute nothing to distinguishing agents by their behaviour.
This both clarifies our understanding and lightens the task of establishing bisimi-
larity. In Chapter 8 we shall achieve this for bigraphs under certain conditions.

7.4 Abstract transition systems

We now wish to see how both raw and contextual transition systems behave under
a quotient of a wide s-category that yields a wide spm category equipped with an
abstract TS. We shall be interested in TSs that harmonise with a structural congru-
ence, in this sense:

Definition 7.21 (respect) A dynamic abstraction ≡ respects a raw transition sys-
tem if, whenever a �

� a′ and b ≡ a, then b �
� b′ for some b′ ≡ a′.

It respects a contextual transition system L if, whenever a
f

�ı̃ a
′ and b ≡ a and

g ≡ f , where (g, ı̃) ∈ LabL with g ◦ b defined, then b
g

�ı̃ b
′ for some b′ ≡ a′. �

There are many possible dynamic abstractions on bigraphs. They do not neces-
sarily respect a transition system.

EXERCISE 7.5 Answer the following informally for bigraphs:

(1) Let A : 1 and B : 1 be atomic controls. For two arbitrary bigraphs F and G in
the same homset, define F ≡ G to mean that they are identical when every B-node
linked to an A-node is deleted. Let F denote the result of deleting every B-node
linked to an A-node. Is it true that G ◦F = G ◦F ? Is ≡ a structural congruence,
or even an abstraction? Does it respect mt?

(2) Let A and B be non-atomic controls with equal arity. Define F ≡ G to mean
that they are identical when every B-node is replaced by an A-node. Is ≡ a struc-
tural congruence, or even an abstraction? Does it respect mt, provided that no
parametric redex contains an A- or B-node? �

Let us now return to the transition systems induced by quotient. Given a tran-
sition system L and an abstraction ≡ for a concrete WRS, the ≡-quotient functor
induces a TS for the quotient abstract WRS by simply applying the functor to every
bigraph in each of the four components of L. The main difference between raw and
contextual TSs is that, in the former, the labels are left unchanged. To be precise:

Definition 7.22 (transitions for a quotient) Let `C be a wide s-category equipped
with a raw or contextual transition system L = (Agt, Lab,Apl,Tra), and let ≡ be
an abstraction on `C. Denote the ≡-quotient of `C by C, an spm category. Then

86 7 Reactions and transitions

the contextual transition system [[L]] = (Agt′, Lab′,Apl′,Tra′) induced by ≡ on C
has components generated as follows:

For L raw:
− if a ∈ Agt then [[a]] ∈ Agt′

− Lab′ = Lab
− if (a, �) ∈ Apl then ([[a]], �) ∈ Apl′

− if a �
� a′ in Tra then [[a]] �

� [[a′]] in Tra′ .

For L contextual:
− if a ∈ Agt then [[a]] ∈ Agt′

− if (f, ı̃) ∈ Lab then ([[f]], ı̃) ∈ Lab′

− if (a, (f, ı̃)) ∈ Apl then ([[a]], ([[f]], ı̃)) ∈ Apl′

− if a
f

�ı̃ a
′ in Tra then [[a]] [[f]]

�ı̃ [[a′]] in Tra′ . �

This may not make bisimilarity a congruence in C, even if it is so in `C. However
the next theorem, proved in Appendix A.4, ensures this in the presence of respect.

Theorem 7.23 (bisimilarity induced by quotient) Let `C be a wide s-category
that is equipped with a raw or contextual transition system L. Let≡ be an abstrac-
tion on `C that respects L. Denote the ≡-quotient of `C by C, an spm category.
Then the following hold for [[L]]:

(1) a ∼ b in `C iff [[a]] ∼ [[b]] in C.
(2) If bisimilarity is a congruence in `C then it is a congruence in C.

Thus, a transition system and its bisimilarity are treated well by a suitable quo-
tient of a wide s-category. We can harmonise this treatment with a suitable quotient
of a WRS `C(`R) (Definition 7.6), as follows:

Proposition 7.24 (quotient reaction and transition) Let `C(`R) be a concrete
WRS equipped with a contextual TS L based upon `R, and let ≡ be a dynamic
abstraction for the WRS.

Then in the quotient WRS (Definition 7.6), equipped with the transition system
induced from L as in Definition 7.22, transition is consistent with reaction:

p
g

�̃ı p
′ implies g ◦p �̃ı p

′ .

EXERCISE 7.6 Prove this. Hint: You need Exercise 7.3 and Theorem 7.7. �

These results prepare for a uniform procedure that yields a behavioural congru-
ence for an abstract WRS. The procedure moves to a concrete WRS and back again.
It is justified because support is necessary for deriving a tractable behaviour model
based upon a transition system. Given an abstract WRS C(R), the procedure has

7.4 Abstract transition systems 87

three steps: move to a concrete WRS; construct a concrete transition system there;
then bring it back to the abstract WRS. Here are the steps in more detail:

(A) Define a concrete WRS `C(`R) such that C and R are the quotients of `C
and `R by some dynamic abstraction ≡.

(B) Derive a contextual transition system L for `C(`R) with an associated be-
havioural congruence ∼L, and ensure that ≡ respects L.

(C) Use Definition 7.22 to transfer L to the abstract WRS C(R), and Theo-
rem 7.23 to ensure a behavioural congruence in C(R).

In Chapter 8 we shall find that this can be done for any bigraphical reactive system
(BRS), as defined in Definition 8.6, satisfying very general conditions. In that case
the chosen abstraction ≡ will be lean-support equivalence, the transition system L
will be derived using the RPOs of Chapter 4, and the behavioural congruence ∼L
will be bisimilarity (though other behavioural congruences are likely to work also).

Thus contextual reactive systems yield a generic behavioural theory. Its impor-
tance is not only that it specialises to bigraphs, but also that it provides insight for
reactive systems in general. Indeed the special case of bigraphs is itself generic,
since – as cited in Chapter 12 – many different process calculi can be faithfully en-
coded in bigraphs. Our three-step procedure will be illustrated for a class of Petri
nets in Chapter 9 and for finite CCS in Chapter 10.

8

Bigraphical reactive systems

As a first step in defining the dynamics of bigraphs, we refine the notion of a reac-
tion rule to make it parametric. This leads to the formal definition of a bigraphical
reactive system (BRS), and then to a taxonomy of BRSs, followed by their be-
havioural theory.

We begin by illustrating the notion of parametric reaction:

Example 8.1 (CCS reaction in bigraphs) In Example 3.18 we gave the redex of
the usual CCS reaction rule as an example of a bigraphical algebraic expression;
we now look at the whole rule.

The rule is parametric. The parametric redex R = alt. (sendx | id) | alt. (getx | id)
has four sites, to be filled by arbitrary parameters d0, . . . , d3. Sites 0 and 2 are for
processes, and sites 1 and 3 are for alternations (summations). The reactum R′ =
x | id | id has two sites, to be filled by parameters as indicated by the back-pointing
arrows. The placing of parameters is also shown by the algebraic expression. This
rule discards parameters 1 and 3.

Recall that in CCS the input and output prefixes are guarding; they prevent inter-
nal reaction. To capture this we have to define activity for bigraphs, and to declare
all CCS controls passive, in the sense that we now define. �

88

8.1 Dynamics for a BRS 89

Definition 8.2 (dynamic signature, activity) A signature is dynamic if it assigns
to each control K a status in the set {atomic, passive, active}. We say that a K-node
is atomic if its control is assigned the status atomic, and so on.

A bigraph G : 〈m, X〉→〈n, Y 〉 is active at a site at i ∈ m if every ancestor node
of site i is active. G is active if it is active at every site (see Definition 7.2). �

In the CCS signature we declare the controls ‘alt’, ‘send’ and ‘get’ all to be passive,
ensuring that reaction only occurs at the top level. In contrast, for the calculus of
mobile ambients (see Figure 1.1) we declare the ambient control ‘amb’ to be active,
to allow reactions inside an ambient.

The initial purpose of this chapter is to explain how parametric reaction rules
generate the reaction relation of a BRS, as the basis for the dynamic theory of
BRSs. We then specialise to BRSs the theory of transition systems and behavioural
equivalence developed for WRSs in Chapter 7. That theory was first developed for
a concrete WRS, based upon an s-category, and transferred at the end to its quotient
abstract WRSs based upon an spm category. Similarly, much of the present chapter
is devoted to answering the question: What conditions on a concrete BRS allow us
to obtain a tractable minimal TS whose behavioural equivalence is a congruence?
Recall that in a minimal TS every transition is based upon an IPO, and that mt is
the largest such TS, having all possible agents and all possible minimal transitions
between them.

In Section 8.1 we define parametric reaction formally, and then deduce from
Chapter 7 that, in a safe concrete BRS equipped with the minimal transition system
mt, bisimilarity is always a congruence; this is because safeness ensures that RPOs
exist. In Section 8.2 we identify conditions under which mt can be reduced to more
tractable transition systems, while preserving the bisimilarity equivalence – hence
also preserving its congruence.

Finally, we transfer this transition system to the quotient abstract BRS, via the
lean-support quotient functor. It turns out that the same conditions ensure that the
behavioural congruence is preserved for this abstract BRS.

Notation We now resume the convention that arbitrary bigraphs are denoted by
upper case italic letters, and ground bigraphs by lower case. However, I, J,K de-
note interfaces, and X, Y, Z denote name-sets. We use sans-serif letters A, B, C, K,
L, M, N for arbitrary controls. We use R, S for parametric redexes (Definition 8.5),
r, s for ground redexes, and L, M for arbitrary contexts used as labels. �

8.1 Dynamics for a BRS

The CCS rule shown above illustrates how the parameter of a redex R is instanti-
ated for the reactum R′. In general we shall have a redex R :m→ J and reactum

90 8 Bigraphical reactive systems

R′ :m′→ J , both parametric, and the reaction rule will specify an instantiation
map η :m′→m which determines, for each j ∈ m′, which factor of the parame-
ter of R should occupy the jth site of R′. Care is needed to define instantiation
precisely. Consider a simple example that duplicates its parameter:

We might expect this rule to generate reactions of the form double.a � a | a,
where a is any ground prime. So if a has a closed link, say a = /x ◦Ax (with
A atomic), there would be a reaction

a � (/x ◦Ax) | (/x ◦Ax) .

But we have double.a = /x ◦ (double.Ax), so there exists also a reaction

a � /x ◦ (Ax |Ax) .

This shows that – since closure is not located – it is unclear whether or not the
closed link is itself duplicated.

To settle this issue, we shall define instantiation of a parameter in terms of its
discrete normal form, established uniquely in Definition 3.10. The effect is that
all replicated closed links will be shared, as in the second alternative above. To
avoid sharing such a link, under a replicating reaction, one must express it instead
as a bound link as explored in Section 11.3. This has already been carried out in
a translation of the π-calculus into bigraphs,1 but it lies beyond the main scope of
this book.

Definition 8.3 (instantiation) In a bigraphical s-category `C = `Bg(Σ), let 〈m, X〉
and 〈n, X〉 be two sorted interfaces (sorts not shown), and let η :n→m be a
map of finite ordinals that preserves place sorts. Define the instance function
η : `C〈m, X〉→ `C〈n, X〉 on agents as follows: Given an agent g : 〈m, X〉, find
its DNF g = λ ◦ (d0 ⊗ · · · ⊗ dm−1) (Proposition 3.9). Then

η(g) def= λ ◦ (d′
0 ‖ · · · ‖ d′

n−1),

where d′
j � dη(j) for each j ∈ n. The function is defined up to �. �

1 See [47].

8.1 Dynamics for a BRS 91

We use the parallel product d′
0 ‖ · · · ‖ d′

n−1, rather than the tensor product, because
any replicated factors in the product – as will occur if η is non-injective – will share
names. Note also that η(g) has the same outer names X as g.2

Linking commutes with instantiation. For if g = λ ◦d and we wish to instantiate
f = µ ◦g, then we first find the DNF f = µ ◦λ ◦d; so we may apply µ before or
after instantiation, with no difference of result. Formally:

Proposition 8.4 (linking an instance) Linking commutes with instantiation; that
is, µ ◦η(g) � η(µ ◦g) .

Proof Let g : 〈m, X〉, with η :m′→m. Take the DNF g = λ ◦d, where λ :Y →X .
Then η(g) = λ ◦d′, where d′ = d′

0 ‖ · · · ‖ d′
m′−1 with each d′

i � dη(i). So

η(µ ◦g) = η(µ ◦ (λ ◦d)) = η((µ ◦λ) ◦d)
� (µ ◦λ) ◦d′ = µ ◦ (λ ◦d′) � µ ◦η(g) . �

Before going further, we must take account of the fact that we are working in
`Bg(Σ), where Σ is an arbitrary sorting. Although `Bg(Σ) is required to be an
s-category (Definitions 6.1 and 6.10), it does not require all our elements – in
particular join , substitution and closure – and the derived operators of parallel and
merge product and nesting to exist at all sorts. For example, many–one sorting
demands that each s-link contain exactly one s-point, and this excludes non-trivial
substitution at sort s (though it admits them at sort t). This also means that some
uses of parallel product (‖) violate many–one sorting.

Since we are developing a dynamical theory based upon reaction rules we shall
make the following assumption: if, in a BRS, a reaction rule allows a parameter to
have a name of sort θ, then the BRS must admit substitutions and closures at sort
θ.3

From now on in this chapter we are involved with an arbitrary sorting, possibly
under some constraints. To avoid heavy notation we continue to write an interface
as 〈m, X〉, even though the roots in m and the names in X may carry place sorts
or link sorts respectively.

We are now able to define the dynamics of bigraphs, relying on Definition 7.1
for the way the reaction relation is determined by a set of ground reaction rules.

Definition 8.5 (parametric reaction rules) A parametric reaction rule for bi-
graphs is a triple of the form

(R :m→ J, R′ :m′→ J, η)
2 This is implied by the convention stated at the start of Section 3.2: for λ : Y → X , the composition λ ◦ f still

has outer names X (though some may be idle) even when f has fewer outer names than Y .
3 This question does not arise for our application of many–one sorting to Petri nets, since its reaction rules are

not parametric.

92 8 Bigraphical reactive systems

where R is the parametric redex, R′ the parametric reactum, and η :m′→m a map
of finite ordinals. R and R′ must be lean, and R must have no idle roots or names.
The rule generates all ground reaction rules (r, r′), where

r � R.d , r′ � R′.η(d)

and d : 〈m, Y 〉 is discrete. �

In Example 8.1 we may think of R either as taking a parameter of width 4, or
as taking four prime parameters. The definition of ground rules, using nesting,
ensures that the names of the parameter are exported to the context in which the
redex resides.

EXERCISE 8.1 Assume the place sorting for CCS introduced in Definition 6.5.
In the parameter d = d0⊗· · ·⊗d3 shown in Example 8.1, assume that di has outer
names Yi (i ∈ 4) and Y =

⊎
i Yi. Write down the sorted interfaces of R, R′, r, r′

and each di. �

Our present definition of parametric rules is rather simple, but the reader may
think of ways to vary it. Here are two features that could be varied:

(i) Why do we make parameters discrete? In fact the reaction relation would
be unchanged if we allowed arbitrary agents as parameters, since instantia-
tion of an agent is defined in terms of its underlying discrete bigraph. But
discrete parameters simplify analysis, especially for transitions and bisimi-
larity.

(ii) Can we track the identity of nodes through a reaction? Our definition does
not allow this, but it would be useful in some applications. Look again at
the rules B1–B3 for the built environment in Chapter 1; we may well wish
to stipulate that the agent involved is the same, before and after the reaction.
It is not difficult to alter the definition to admit such tracking, by means of
support; this allows properties of a system’s history to be expressed, such
as ‘agent u has never visited room v’. Thus support has broader usage
than ensuring the existence of RPOs (and hence the derivation of transition
systems). Tracking is examined further in Section 11.1.

We are now ready to define our central concept:

Definition 8.6 (bigraphical reactive system (BRS)) A (concrete) bigraphical
reactive system (BRS) over Σ consists of `Bg(Σ) equipped with a set `R of para-
metric reaction rules closed under support equivalence; that is, if R � S and
R′ � S′ and `R contains (R, R′, η), then it also contains (S, S′, η). We denote
the BRS by `Bg(Σ, `R). It is safe if its sorting Σ is safe. �

8.1 Dynamics for a BRS 93

Having seen how parametric rules generate ground rules, it is easy to check that
each BRS is a reactive system. Moreover there is an obvious width functor for
bigraphs; for an interface I = 〈m, X〉 define width(I) to be m, and for a bigraph
G : I→ J define width(G)(i), for all i ∈ width(I), to be the unique j ∈ width(J)
such that j = prntk

G(i) for some k. Without further proof we can now assert:

Proposition 8.7 (BRSs are wide) Every BRS is a wide reactive system.

Recall that in Chapter 7 we equipped a WRS only with ground reaction rules, not
with parametric rules. We could indeed have defined parametric rules for a WRS,
but we have more reason to do so for a BRS. This is because bigraphs have a rich
structure that permits us to classify BRSs according to the structural properties of
their parametric rules, such as those mentioned at the end of Definition 8.6.

All the work in Chapter 7 on transition systems and bisimilarity – especially
on contextual transition systems – can be applied to BRSs, provided they are safe
(ensuring RPOs). Most importantly, from Theorem 7.16 we deduce:

Corollary 8.8 (congruence of bisimilarity) In any safe concrete BRS equipped
with mt, the transition system with all minimal transitions, bisimilarity ∼ is a
congruence.

Now let us transfer this congruence to an abstract BRS Bg(Σ,R), where Bg(Σ)
and R are obtained by the lean-support quotient functor [[·]] of Definition 2.19 and
Theorem 2.20. We must first prove that the minimal transition system mt respects
�:

Proposition 8.9 (abstraction respects transitions) In a concrete BRS with mt:

(1) Every label context is lean.
(2) Lean-support equivalence respects the transitions. In other words, when-

ever a L
�̃ı a

′, if a � b and L � M where (M, ı̃) is a label with M ◦ b

defined, then b M
�̃ı b

′ for some b′ such that a′ � b′.
(3) Lean-support equivalence is a bisimulation.

Proof For (1), use Proposition 5.24(1) and the fact that every discrete agent is
lean. For (2), use Proposition 5.24(2); the fact that each redex is lean ensures that
it cannot share an idle edge with the agent a. Then (3) follows directly from (2). �

We are now ready to transfer the congruence results of Corollary 8.8 from con-
crete to abstract BRSs. The following is immediate from Theorem 7.23:

Corollary 8.10 (behavioural congruence in a safe abstract BRS) Assume that
`Bg(Σ,`R) is a safe concrete BRS, and let Bg(Σ,R) be its lean-support quotient.

94 8 Bigraphical reactive systems

Let ∼ denote bisimilarity both for the transition system mt in `Bg(Σ,`R) and for
the transition system it induces in Bg(Σ,R). Then

(1) a ∼ b iff [[a]] ∼ [[b]].
(2) Bisimilarity ∼ is a congruence in Bg(Σ,R).

Thus we have assured a congruential behavioural equivalence for a broad class of
BRSs characterised by only one condition: that they are safe. But the results of
this section apply more widely; they apply to any BRS that has RPOs. As we have
seen, safeness is an easily-checked sufficient condition for RPOs to exist.

Let us now see how this enables us to specialise the three-step procedure defined
at the end of Chapter 7, in order to develop the behavioural theory of a given safe
abstract BRS Bg(Σ,R), as follows:

(A) Take the structural congruence ≡ to be lean-support equivalence �. Equip
the (concrete) bigraphical s-category `Bg(Σ) with concrete reaction rules
`R which consists of all lean preimages of R by the lean-support quotient
functor [[·]], yielding the concrete BRS `Bg(Σ,`R). This automatically sat-
isfies the sorting discipline of Σ, and also the constraints (no idle names or
roots) on redexes, since these conditions are unaffected by the lean-support
quotient.

(B) Since the concrete BRS is safe, it has RPOs; hence we can equip it with
the minimal transition system mt, and this yields a congruential bisimilarity
∼mt, which is respected by �.

(C) Finally, taking the quotient of the transition system mt by [[·]], we arrive
back in the abstract BRS Bg(Σ,R) equipped with a transition system [[mt]]
having a congruential bisimilarity.

We now turn to additional conditions that can make a BRS easier to handle. The
most prominent of these are conditions on the rule-set R; they have the effect of
further reducing the transition system mt, making it more tractable. Apart from this,
the three-step procedure remains unchanged; the reader will find it helpful to bear
this procedure in mind as a background for understanding the behavioural theories of
Petri nets and CCS, developed in Section 9.2 and Chapter 10 respectively.

8.2 Dynamics for a nice BRS

The minimal transition system is quite tractable, since each support element of a
label lies either in the agent or in the underlying redex. As we shall now see, for
certain classes of BRS our derived transition systems become still more tractable,
and indeed – for BRSs that encode known process models such as Petri nets –
closer to known semantic treatments. In Definition 8.18 we shall use the adjective

8.2 Dynamics for a nice BRS 95

‘nice’ to denote a class of BRSs with several pleasant attributes, and then prove a
theorem to show how this eases the theory of their transition systems.

We begin by asking: Having limited mt to contain only minimal transitions, can
we even remove some of these without affecting bisimilarity – and hence without
losing behavioural congruence? We may try including only those transitions whose
agents make a non-trivial contribution to the underlying reaction. Also the agents
that arise in our applications are often prime – indeed this will be true for CCS – so
we may try restricting ourselves to prime agents. To be precise:

Definition 8.11 (engaged transition, prime transition) A transition a L
�ı̃ a

′

based on a reaction with parametric redex R is engaged if |a| ∩ |R| �= ∅. A
transition is prime if both a and a′ are prime. �

We might expect a disengaged transition a L
�ı̃ a

′ to be redundant. If the agent a

shares no node or edge with the parametric redex R then surely any other agent b

should be able to make a transition with the same label, to some suitable b′? If so,
then we could ignore such transitions without affecting the bisimilarity. But this
argument needs to be made precise, and depends upon constraints that we define
below.

Another incentive to include only the engaged transitions is that we are more
likely to be able to confine attention to prime transitions. For suppose that an agent
a is prime, and also that a parametric redex R has prime outer face; then in an
engaged transition a L

�ı̃ a
′ based on R, the ground redex r will also be prime,

with |a| ∩ |r| �= ∅. It follows that any IPO (L, D) for the span (a, r) will have
prime outer face, hence a′ – and indeed the transition – will be prime. On the other
hand, if the transition is disengaged then – by Corollary 5.21 – even if a is prime
a′ will not be so.

Note that if a transition a L
�ı̃ a

′ is prime then its location ı̃ must be the singleton
{0}; we therefore write simply a L

� a′.
It will turn out that we can often exclude disengaged transitions without affecting

bisimilarity. We shall show this for any BRS that is simple, unary, unambiguous
and affine. We now define the first three of these properties (we come to ‘affine’
later); they are satisfied by a wide range of BRSs, including finite CCS.

Recall that a link is open if it is a name, otherwise closed. Also recall from
Definition 8.5 that a parametric redex is lean and has no idle names or roots. We
now submit it to further constraints:

Definition 8.12 (simple, unary) A parametric redex is simple if it is

96 8 Bigraphical reactive systems

− open: every link is open
− guarding: no site has a root as parent
− inner-injective: no two sites are siblings.

A parametric redex is unary if its outer face is. A reaction rule is simple, or unary,
if its redex is so. A BRS is simple, or unary, if all its reaction rules are so. �

Simpleness is not a severe constraint. For ‘guarding’ and ‘inner-injective’ one can
argue convincingly that they only exclude redexes that are either unnecessary be-
cause their work can be done by other rules, or over-permissive because they allow
wild reconfigurations. The ‘open’ constraint limits expressive power somewhat,
but greatly eases analysis; and it is remarkable that the rules required to model
CSP, CCS, π-calculus, Petri nets and mobile ambients are all open.

All the conditions in Definition 8.12 pertain to individual reaction rules. But
there is an important condition that pertains to a set `R of rules, and is concerned
with how they relate to each other. Recall that an engaged transition a L

�ı̃ a
′

based on a parametric redex R is one in which |a| ∩ |R| �= ∅. Thus ‘engaged’ is
a property of a transition together with its underlying redex. Indeed, a transition
may be engaged if it arises from a redex R, but disengaged if it arises from another
redex S:

Definition 8.13 (ambiguity) A label of a transition system L is ambiguous if it
occurs both in an engaged and in a disengaged transition. A transition system is
ambiguous if it has an ambiguous label. �

EXERCISE 8.2 This exercise deals with place graphs. Take two controls A,B : 0,
with B atomic. Let R = A ◦ (id1 |B) and R′ = B be the redex and reactum of a
parametric rule. Note that R has one site; R′ has none.

Prove that the prime transition a L
� a′ is ambiguous, where a = a′ = Bv and

L = Aw ◦ (id1 |Bu). (The superscripts on ions denote their nodes.) �

Under certain conditions, one of which excludes ambiguity, we shall be able to
reduce the transition system mt to one containing only engaged transitions. Our
sub-TS will be restricted to prime agents, and we constrain every label L in a
prime transition to be unambiguous, i.e. the L-transitions are either all engaged or
all disengaged.

Recall from Definition 3.19 the notion of a tight bigraph. Roughly speaking (the
definition is precise) a bigraph R is tight if, when it occurs within some prime agent
g, and g is ‘split’into two parts each containing a non-empty part of R, then these two
parts must be non-trivially linked. The instance that concerns us is when g = L ◦a,
where a and L are the source and label of a transition, and R is a parametric redex.
The following is proved in Appendix A.5:

8.2 Dynamics for a nice BRS 97

Proposition 8.14 (unambiguous label) Let L be the label of a prime transition in
mt, in a safe BRS where every redex is simple, unary and tight. Then the label L is
unambiguous.

We now define a sub transition system of mt with unambiguous labels and en-
gaged transitions:

Definition 8.15 (prime engaged transition system) In a safe concrete BRS, as-
sume that every parametric redex is simple, unary and tight. Let pe be the sub-TS
of mt consisting of

Agt
pe

– all prime agents at certain interfaces
Labpe – the labels of all prime engaged transitions with a, a′ ∈ Agt

pe

Apl
pe

– the restriction of Apl
mt

to Agt
pe
× Labpe

Trape – the restriction of Tramt to Apl
pe
× Agt

pe
. �

The agent interfaces are typically determined in terms of the sorting of the BRS.
We now summarise as a theorem what we have established so far. The main result

is that, under certain conditions, tightness ensures that pe is definite.4 It appears
that tightness holds for a wide range of calculi, including CCS, Petri nets and the
calculus of mobile ambients.5

Theorem 8.16 (prime engaged transitions are definite) In a safe concrete BRS
where every parametric redex is simple, unary and tight:

(1) Every label of pe is unambiguous.
(2) Every transition of pe is engaged.
(3) pe is a definite sub transition system of mt.
(4) ∼mt ⊆ ∼pe restricted to prime agents.

Proof (1) follows from Proposition 8.14, since for every L ∈ Labpe there is
some engaged L-transition in Trape. (2) follows directly from the definition of pe,
Definition 8.15. (3) follows from the definition of ‘definite’, Definition 7.18. (4) is
a direct corollary of Proposition 7.19. �

Clause (4) of the theorem prompts us to ask whether pe is faithful to mt, i.e.
whether the bisimilarities coincide on the agents of pe. The following example, due
to Ole Jensen, shows that sometimes they do not:

4 In [65], Corollary 9.14, it was wrongly stated that another condition fulfils this purpose – namely that the BRS
should lack subsumption, in a precise sense. The theory was applied there only to CCS and to a class of Petri
nets, whose rules are in fact tight, so nothing false was deduced.
It must be emphasised that tightness is just one condition that excludes ambiguity, and suffices for our present
purpose. Other conditions, possibly weaker, may well exist.

5 See Jensen [46].

98 8 Bigraphical reactive systems

Example 8.17 (unfaithful engaged transitions) Let L : 0 be a non-atomic control,
and let M : 1 and N : 0 be atomic. For the atomic controls, adopt the convention that
Mx means Mx.1 and N means N.1. Consider the following two reaction rules:

L. d � d | d
Mx |Mx � Mx .

This defines a BRS that is safe, simple and unary. However, we can exhibit two
agents a and b such that a ∼pe b but a �∼mt b. Let a = /x ◦Mx and b = N.
Neither has an engaged transition, hence /x ◦Mx ∼pe N. (The closure /x prevents
an engaged transition by a.) But each can do a unique L-transition, distinguishing
them as follows:

/x ◦Mx
L

� /x ◦ (Mx |Mx) id
� /x ◦Mx

N L
� N |N � id � .

Thus pe is not faithful to mt. �

The unfaithfulness in this example depends upon the interaction between closure
and the replication caused by the rule L.d � d | d. We shall therefore be content
to prove faithfulness of prime engaged transitions for BRSs that lack replication,
i.e. the instantiation map η in every reaction rule is injective.

Definition 8.18 (affine, tight, nice) A reaction rule is affine if its instantiation
map η is injective, and tight if its redex is tight (see Definition 3.19).

A reaction rule is nice if it is safe, simple, unary, affine and tight. A BRS
`Bg(Σ,`R) is nice if all its reaction rules are nice. Similarly for an abstract BRS
Bg(Σ,R). �

We have adopted the term ‘nice’ to avoid repeated adjectives. The following results
are for nice BRSs, though they may well hold under more relaxed conditions.

We now assert the faithfulness theorem. It depends on one further condition,
namely that the interfaces of prime agents are chosen so that they are all hard, as
defined in Definition 6.2. The full proof is in Appendix A.6.

Theorem 8.19 (engaged transitions are faithful) In a nice BRS, let pe be a prime
engaged transition system whose agents are hard. Then

(1) pe is faithful to the minimal transition system mt.
(2) ∼pe is a congruence.

We are now ready to transfer the congruence results of Corollary 8.8 to nice
abstract BRSs, just as we did for safe abstract BRSs in the previous section. Note
that niceness is independent of the concrete/abstract distinction; a concrete BRS is
nice if and only if its lean-support quotient is nice.

8.2 Dynamics for a nice BRS 99

Corollary 8.20 (behavioural congruence in a nice abstract BRS) Assume that
`Bg(Σ,`R) is a nice concrete BRS, and let Bg(Σ,R) be its lean-support quotient.
Assume that the agents of the prime engaged transition system pe are hard. Let∼pe

denote bisimilarity both for pe in `Bg(Σ,`R) and for the corresponding bisimilarity
induced in C. Then

(1) a ∼pe b iff [[a]] ∼pe [[b]].
(2) Bisimilarity ∼pe is a congruence in Bg(Σ,R).

Proof It is routine to check that pe respects lean-support equivalence. The
result then follows from the faithfulness theorem, Theorem 8.19, together with
Theorem 7.23. �

The reader’s patience may be taxed by the various conditions we have imposed
in this chapter, to achieve reasonable properties of behaviour. The bigraph model
may be considered too permissive! But a broad framework has seemed necessary,
to embrace a variety of existing process calculi; and something is learned from
discovering, within such a framework, properties which those calculi share and
which explain why they work well. This knowledge will be useful for the invention
of new specific calculi.

On a broader frontier, there are applications whose structure and reactions can
be formulated as BRSs, but where the concepts of labelled transition systems and
behavioural equivalence are less relevant. Such applications are likely to arise in
biological systems and in ubiquitous computing.

9

Behaviour in link graphs

In this chapter we explore the behaviour of our two examples in link graphs: arith-
metic nets and Petri nets. These were both introduced in Chapter 6, as applications
of many–one sorting. The simple algebraic manipulations of link graphs in this
chapter are analogous to the algebra developed for bigraphs in Chapter 3.1

9.1 Arithmetic nets

In Example 6.11 we introduced arithmetic nets as a simple example of link graphs.
With the many–one sorting discipline they constitute Lg(Σarith), with signature

Karith
def= {0 : s, S : ts, + : tts, → : ts} .

Here again are the atoms, and the typical net, that were shown in Example 6.11:

The net represents the equations y = S0 + (0 + x) and z = S0 + (S0 + (0 + x)),
with many shared subexpressions. Here we bring Lg(Σarith) to life with a setRarith

of reaction rules, shown in the following diagrams. They use the forwarder ‘→’ to
avoid links containing more than one outer name. The question mark ‘?’ denotes
any node (with zero or more target ports). The rules define a link-graphical reactive
system Lg(Σarith,Rarith).

1 See [55] for work that covers both the theory of link graphs and the applications treated here.

100

9.1 Arithmetic nets 101

As these pictures show, link graph diagrams are simpler than those for bigraphs.
Since there are no places, there is no role for dotted rectangles representing roots
or sites. A node is no longer a place, so the nodes can contain nothing, therefore
links never cross boundaries; this removes the need for blobs to represent ports,
since their purpose in bigraphs is to distinguish ports from crossing-points.

EXERCISE 9.1 Apply the three rules as far as possible to the typical net previously
shown. You should obtain a net which represents the equations y = S0 + x and
z = SS0 + x. Propose some extra rules, besides rule (3), for tidying up a net. �

If a net has cycles then our evaluation rules will not ‘solve’ it, in the sense that
they solve the typical net by ‘expressing’ y and z in terms of x. However, reaction
is well-behaved. To establish this, we shall first show that reaction for arithmetic
nets is strongly confluent; that is, if g � g0 and g � g1 then there exists g′ such
that g0 � g′ and g1 � g′. Given g, define a critical pair to be a pair r0, r1

of distinct redexes occurring in g and sharing at least one node. For example, g

may contain a critical pair, represented by f , consisting of two redexes of rule (1)
sharing an S-node.

You may check that if either redex is applied first, then the other still exists; more-
over, the result f ′ of applying both is the same, independently of the order.

102 9 Behaviour in link graphs

Proposition 9.1 (confluence) With the rules (1), (2) and (3) as defined, arithmetic
nets are strongly confluent.

EXERCISE 9.2 Prove this. Hint: First show the confluence property for disjoint
redexes; then enumerate and examine every possible critical pair. �

Let us now confine attention to what we may call explicit nets: those which have
no cycles (as defined in the next paragraph), no inner names, and outer names all
with sort s. The latter condition excludes x in the typical net shown at the start of
this section, since it has sort t. It is clear that if g � g′ and g is an explicit net, then
so is g′. Then our rules will evaluate every explicit net to a unique normal form – a
net to which no rule applies – representing equations that express each outer name
as a numeral of the form S · · ·S0.

To justify this claim we should define a well-founded measure of explicit nets
that is decreased by every reaction. This is not so easy; it is not enough to measure
a net simply by its number of nodes, because rule (1) increases this quantity. The
following is helpful: Define a path to be a sequence v0, k1, v1, k2, v2, . . . of nodes
vi and natural numbers ki, where for each contiguous triple v, k, v′ there is a link
from the s-port of node v to the kth t-port of node v′. A path may be either infinite,
or finite – of length n – ending in some vn. A cycle is a path with vn = v0; it
generates an infinite path. With the help of the notion of path one can prove

Proposition 9.2 (termination) Every reaction sequence of an explicit net is finite.

EXERCISE 9.3 Prove this. Hint: What quantity, in terms of paths, is decreased
by every reaction by rule (1)? Using this, construct a well-founded linear ordering
that is reduced by every reaction of an explicit net. �

From Propositions 9.1 and 9.2 we finally deduce

Theorem 9.3 (normalisation) Every reaction sequence for an explicit net with
outer names
y terminates in a unique normal form, representing the expression of
each yi as a numeral of the form S · · ·S0.

We leave the theory of arithmetic nets at this point. It can be extended to the
derivation of transition systems, but our main aim has been to show that the graphical
representation is at least convenient, and even helpful, in analysing a reactive system
other than a process calculus.

9.2 Condition–event nets 103

9.2 Condition–event nets

In Example 6.13 we introduced a class of Petri nets called condition–event nets, or
c/e nets. We defined a many–one sorting discipline Σpetri for them, and we now
recall that such sortings are always safe. Here again is our example, with sorts, of
a typical c/e net:

These nets form a link-graphical s-category `Lg(Σpetri), where names have two
roles. First, they provide the interfaces through which nets are composed; second,
they provide a means to observe the behaviour of nets. So we now proceed to define
what an observation is, and when two nets are behaviourally equivalent. Since c/e
nets are modelled in link graphs, our results depend on a behavioural theory for
link graphs analogous to the theory for bigraphs. We shall not give details of this
theory, which is fully developed elsewhere. The reader can rest assured that all the
relevant concepts and properties are analogous to, though often simpler than, those
in bigraphs.

Several ways to compose nets have been defined in the Petri-net literature, and
they typically lead to a notion of behavioural equivalence. It is interesting to see
how such notions compare with ours, which is based upon derived transitions. To
make such a comparison we here define behaviour in two independent ways. The
first is by a raw transition system, whose bisimilarity requires no link-graph theory;
the second is by the derived system of engaged transitions, and on the characteri-
sation of derived transitions in terms of RPOs.

We are able to prove that the two bisimilarites coincide. It follows that the raw
bisimilarity is a congruence, since the derived one is known to be so. We omit here
two important steps in the published proof:2 first that the engaged transitions are
indeed faithful to the minimal transition system, and second that the congruence of
the resulting bisimilarity is transferred from concrete to abstract link graphs. The
conditions for these two results in link graphs – analogous to our Theorem 8.19
and Corollary 8.20 – are simpler in link graphs than in bigraphs.

2 See [55].

104 9 Behaviour in link graphs

We shall therefore work in concrete link graphs; at the end we shall transfer our
results to abstract link graphs. As a first step we define a reactive system `CE
= `Lg(Σpetri,`Rpetri), by adding reaction rules `Rpetri to `Lg(Σpetri). These rules
must be based upon the usual firing rule for c/e nets, namely:

an event with all pre-conditions and no post-conditions marked may ‘fire’, thus unmarking
its pre-conditions and marking its post-conditions.

Since we have indexed our event controls by the number of pre-conditions and
post-conditions, `Rpetri will contain one reaction rule for each event control Ehk.
For h = 1 and k = 2 the rule is drawn as follows (the diagram can be interpreted
either as concrete or as abstract):

How may we conduct experiments, or observations, on a condition–event net?
To simplify matters, let us assume that we are concerned only with the behaviour
of s-nets – those nets whose interfaces contain only s-names. Thus every outer
name is the name of a condition. We shall adopt the following form of experiment:
the observer can detect and change the state (marked or unmarked) of any named
condition. For example, our illustrated net can do nothing by itself (no event can
‘fire’), but if the observer gives it a token at x then the E21 event can fire, followed
by either the middle event or the E12 event; after the latter the observer can remove
a token at y, and so on.

So we capture behaviour in the form of a raw transition system Lr, whose agents
are the ground s-nets in `CE. Its transitions are of three kinds:

a +x
� a add a token at x

a −x
� a remove a token at x

a τ
� a an event within a fires.

A condition holds at most one token, so for each named condition x exactly one of
the first two transitions can occur.3 Thus the labels � in Lr take the form +x,−x or
τ , and they are applicable to all the agents. We denote the bisimilarity of Lr by∼r.

3 A τ -transition is not really an observation, as it occurs without the observer’s participation. We have defined
what is called a strong bisimilarity. To avoid giving τ -transitions the same status as others, it is standard
practice to adopt weak bisimilarity instead.

9.2 Condition–event nets 105

We now turn to derived transitions. Because many–one sorting is safe, `CE has
RPOS; hence the minimal transition system mt exists. Furthermore, the rules `R
are such that the engaged transitions are faithful to mt; hence they generate the
same bisimilarity as mt. Let us denote the engaged transition system by Lg, and
its bisimilarity – which is a congruence – by ∼g. We now proceed to characterise
Lg; it corresponds to the prime engaged TS in a WRS, but that notion of prime is
absent in link graphs. Thereafter we shall prove that ∼g coincides with ∼r.

A label L in Lg takes two forms; up to isomorphism, either it is just an identity,
or it is the product of an identity with an open s-net having exactly one Ehk-node,
linked to zero or more M-nodes as pre-conditions and U-nodes as post-conditions.
Since transitions are engaged, it contains strictly fewer than h+k such conditions
(because the agent must supply at least one). A label L applies to an agent a iff the
composition L ◦a exists.

For the identity labels, we note that a id
� a′ iff a � a′;

an identity label signifies a transition with no help from
the context. A typical non-identity label for the case E21

is shown here. It lacks one pre-condition and one post-
condition, to be supplied by the agent. The dashed link
indicates an identity on zero or more names.

The diagram below shows the anatomy of a transition a L
� a′ with this label.

Note that a′ takes the form L ◦a. In what follows we shall often write a for a s-net
that differs from a only by the marking or unmarking of some conditions; we call it
a residual of a. We see that a single transition may change the marking of several
named conditions of a. Any other agent b with the same interface as a will have
a similar transition, provided only that it has the same initial marking of its named
conditions.

The two TSs Lr and Lg are significantly different, so it is not clear that they will
induce the same bisimilarity. We shall now prove that they do so. We shall first

106 9 Behaviour in link graphs

show that ∼g ⊆ ∼r in `CE. This asserts that if we can distinguish two s-nets a

and b by using ‘experiments’ that are labels in Lr of the form +x, −x or τ , then
we can also do so using ‘experiments’ that are labels in Lg, i.e. certain link graph
contexts. So among these contextual labels we look for those that can do the job of
the experiments +x, −x and τ .

It turns out that the contextual label to mimic an experiment +x or−x need only
involve a single E11 event; it takes the form P ⊗ id, where P is respectively an
input or output probe. The probes are denoted by inxz and outxz , and are shown
in the first column of this diagram:

The second column shows the spent probes P , residuals of the probes that result
from firing their events. The third column shows the spent probes with their post-
conditions closed; they are defined by in¬

x
def= /z ◦ inxz and out¬x

def= /z ◦outxz . In
these expressions we have omitted identities; for example /z ◦ inxz abbreviates (/z⊗
idx) ◦ inxz . We use the term ‘twig’ for these closed spent probes, because, up to the
equivalence ∼g, they can be ‘broken off’. The intuition is simply that a twig
occurring anywhere in a net can never fire. We express this formally as follows:

Lemma 9.4 For any agent a with x as an outer name, in¬
x ◦a ∼g out¬x ◦a ∼g a .

Again we have abbreviated (in¬
x ⊗ idY) ◦a to in¬

x ◦a, where Y are the names of a.
We shall use such abbreviations in what follows, but only in a composition which
determines the omitted identity id.

9.2 Condition–event nets 107

EXERCISE 9.4 Prove this lemma. Hint: Prove that {(a, in¬x ◦a) | a any agent} is
a bisimulation. �

Now to prove that ∼g ⊆ ∼r it is enough to show that∼g is an Lr-bisimulation.

For this, suppose that a ∼g b, and let a �
� a in Lr. We must find b such that

b �
� b and a ∼g b. If � = τ this is easy, because then our assumption implies the

reaction a � a, and hence a id
� a in Lg; but then by bisimilarity in Lg we have

b id
� b ∼g a, and by reversing the reasoning for a we get that b τ

� b and we are
done.

Now let � = +x (the case for −x is similar), so that a +x
� a. This means that a

has an unmarked condition named x, so that in Lg we have

a inxz⊗id
� a′ = inxz ◦a .

Hence by bisimilarity in Lg we have

b inxz⊗id
� b′ = inxz ◦ b

where a′ ∼g b′ and b is the residual of b under the transition. This residual b differs
from b only in having a marked condition named x that was unmarked in b, and
hence we also have b +x

� b in Lr. It remains only to show that a ∼g b. We deduce
this using the congruence of ∼g and Lemma 9.4:

a ∼g in¬
x ◦a = /z ◦ inxz ◦a = /z ◦a′

∼g /z ◦ b′ = /z ◦ inxz ◦ b = in¬
x ◦ b ∼g b .

Therefore we have proved what we wished:

Lemma 9.5 ∼g ⊆ ∼r in `CE.

It remains to prove the converse, ∼r ⊆ ∼g . It will be enough to prove that

S def= { (C ◦a, C ◦ b) | a ∼r b }
is a bisimulation up to �. We get the required result by considering the case C = id.4

So let us assume that a ∼r b, and that C ◦a M
� a′′ in Lg. (This includes the case

that M = id.) Then there is a reaction rule r and context D such that (M, D) forms
an IPO for (C ◦a, r), as shown in the left-hand diagram, and a′′ � D ◦r′.

We now take the IPO (L, A) for (a, r) relative to (M ◦C, D), and properties of
IPOs yield the right-hand diagram, in which the upper square is also an IPO:

4 The proof outlined here resembles that of Theorem 7.16, the congruence theorem. The replacement of one
IPO by another relies, as in that proof, on the fact that support translation preserves IPOs; here we omit that
argument. The present proof is simpler; there is no notion of either width or active control in link graphs, so
the location index in transitions and the argument about activity can both be omitted here.

108 9 Behaviour in link graphs

C

a

L

r

M

D

A

C ′

DC ◦a

M

r

IPOs underlying transitions of C ◦a and a

So there is a transition a L
� a′, where a′ � A ◦r′; note also that a′′ � C ′ ◦a′. Up

to isomorphism, either L is an identity or it has a single event node.
If L = id then a � a′, hence a τ

� a′ in Lr. Since a ∼r a′ we have b τ
� b′

with a′ ∼r b′. Then also b L
� b′, with underlying IPO as in the left-hand diagram

below:

C
L

s

M

E

B

C ′

s

L

b bB

IPOs underlying transitions of b and C ◦ b

. We then proceed, as in the non-identity case below, to construct the right-hand
diagram and to find b′′ with C ◦ b M

� b′′ and (a′′, b′′) ∈ S�.

If L has an event node then we consider the anatomy of the transition a L
� a′, as

exemplified in an earlier diagram. We know that the residual a differs from a only
in the changed marking of zero or more named conditions. It follows therefore that
in Lr there is a sequence of transitions

a �1 � a1 . . . �n � an = a (n ≥ 0)

where �i ∈ {+xi,−xi}; each transition marks or unmarks a single named condition.
Moreover a′ = L ◦a. Since a ∼r b there exists a similar sequence

b �1 � b1 . . . �n � bn = b

with a ∼r b. This implies that b has the same initial marking as a for the named
conditions involved in the transitions. But we know that L ◦ b is defined (since
we assumed M ◦C ◦ b = C ′ ◦L ◦ b to be defined), so in Lg there is a transition

b L
� b′ = L ◦ b. Its underlying IPO is shown in the left-hand diagram above. Also

it has an underlying reaction rule (s, s′), with b′ � B ◦s′. Now we form the right-
hand diagram by replacing this IPO for the lower square in the previous right-hand

9.2 Condition–event nets 109

diagram. Since both small squares are IPOs, so is the large square; therefore it
underlies an Lg-transition

C ◦ b M
� b′′ def= E ◦s′ .

To complete our proof we need only show that the pair (a′′, b′′) lies in S�. We
already know that a′′ � C ′ ◦a′ = C ′ ◦L ◦a. We can now compute

b′′ = E ◦s′ = C ′ ◦B ◦s′ � C ′ ◦ b′ = C ′ ◦L ◦ b ,

and hence (a′′, b′′) ∈ S� since a ∼r b. It follows that ∼r ⊆ ∼g.
So we have proved the coincidence of our two bisimilarities:

Theorem 9.6 (coincidence of concrete bisimilarities) In `CE the two bisimilari-
ties∼g and∼r for concrete s-nets coincide. Hence, since∼g a congruence, so also
is ∼r a congruence.

We now transfer this result to abstract s-nets. We may regard the creation of an
abstract contextual TS Lr as an instance of the three-step procedure defined at the
end of Chapter 7. The starting point is an abstract reactive system CE = Lg(Rpetri),
whereRpetri are the reaction rules depicted earlier, regarded as abstract rules. The
three steps are

(A) Create the concrete reactive system `CE, whose reaction rules `Rpetri are
lean preimages ofRpetri under the lean-support quotient functor [[·]].

(B) Derive the minimal transition system Lr = mt in `CE, and use the analogue
of Proposition 8.9 to ensure that it respects lean-support equivalence �.

(C) Transfer Lr to CE by Definition 7.22, which applies the functor [[·]] to every
link graph in every concrete transition.

At the conclusion of the process, Theorem 7.23 ensures that ∼r is a congruence in
CE, and characterised by a ∼r b in `CE iff [[a]] ∼r [[b]] in CE.

Finally, it is clear that the raw transition system Lg also respects �, so Theo-
rem 7.23 also ensures that a ∼g b in `CE iff [[a]] ∼g [[b]] in CE. Putting these facts
together with Theorem 9.6 we arrive at

Corollary 9.7 (coincidence of abstract bisimilarities) In CE the two bisimilari-
ties ∼g and ∼r for abstract s-nets coincide, and are congruences.

This result provides evidence that the general notion of behavioural theory in
bigraphs and link graphs is compatible with a notion specific to a particular model:
condition–event nets. Further evidence is provided by our study of CCS in Chap-
ter 10.

This concludes our study of behaviour in link graphs.

10

Behavioural theory for CCS

In this chapter we shall see how our dynamic theory for a nice BRS can be applied
to recover the standard dynamic theory of CCS.

Section 10.1 deals mainly with the translation of finite CCS into bigraphs, cov-
ering both syntactic structure and the basic features of reaction. It begins with
a summary of all work done on CCS in previous chapters, in order to gather the
whole application of bigraphs to CCS in one chapter. It then presents the transla-
tion into bigraphs, which encodes each structural congruence class of CCS into a
single bigraph. It ends with the simple result that reaction as defined in CCS terms
correponds exactly to reaction as defined by bigraphical rules.

Based upon this summary, Section 10.2 lays out the contextual transition system
derived for finite CCS by the method of Chapter 8, recalling that its bisimilarity is
guaranteed to be a congruence. This congruence is finer than the original bisimi-
larity of CCS. This is because the original is not preserved by substitution; on the
other hand, our derived contextual TS contains transitions that observe the effect
of substitution on an agent, and this yields a finer bisimilarity that is indeed a con-
gruence. By omitting the substitutional transitions from the contextual TS, we then
obtain a bisimilarity that coincides with the original.

This contextual TS is more complex than the original raw one, since its labels
are parametric. But we are able to reduce it to a smaller faithful contextual TS
whose labels are no longer parametric, and this corresponds almost exactly with the
original raw TS for CCS.

Section 10.2 ends with a brief analysis of the strength of the congruence for the
derived system, including its substitutional transitions.

10.1 Syntax and reactions for CCS in bigraphs

We begin this section with a summary of what has been done on finite CCS in
previous chapters. The summary takes us as far as reaction for CCS. The sorting

110

10.1 Syntax and reactions for CCS in bigraphs 111

discipline Σccs was given in Definition 6.5, and the rule-set Rccs consists of the
single rule given in Example 8.1. Together, these define the abstract BRS

Bgccs
def= Bg(Σccs,Rccs) .

We then amplify the summary, by proving that the translation of CCS into bigraphs
is completely accurate; in particular, that it respects structural congruence.

Syntax for finite CCS (Definition 6.3)
P, Q range over processes and A, B over alternations (sums).

processes P ::= A
∣∣ νxP

∣∣ P |P
alternations A ::= 0

∣∣ µ.P
∣∣ A+A

actions µ ::= x
∣∣ x .

Structural congruence (Definition 6.4)
Structural congruence is the largest equivalence ≡ preserved by all term construc-
tions, and such that

(1) P ≡α Q implies P ≡ Q, and A ≡α B implies A ≡ B;
(2) | and + are associative and commutative under ≡, and A + 0 ≡ A;
(3) νxνyP ≡ νyνxP ;
(4) νxP ≡ P and νx (P |Q) ≡ P | νxQ for any x not free in P ;
(5) νx (A+µ.P) ≡ A + µ.νxP for any x not free in A or µ.

Sorting discipline (Definition 6.5)
The CCS place sorting Σccs has sorts Θccs = {p, a} and signature

Kccs = {alt : (p, 0), send : (a, 1), get : (a, 1)} .

Σccs is hard for sort p (Definition 6.2), and also requires that

all children of a root r : θ have sort θ, and
all children of a node v : θ have sort opposite to θ.

Translation to bigraphs (Definition 6.6)
The translation of finite CCS into Bgccs maps processes and alternations respec-
tively into ground homsets with unary interfaces of the form 〈p, X〉 and 〈a, X〉.
The maps PX [·] and AX [·] are defined for arguments whose free names are in-
cluded in X:

AX [0] = X | 1
PX [A] = alt.AX [A] AX [x.P] = sendx.PX [P] (x ∈ X)

PX [νxP] = /y ◦Py�X [{y/x}P] AX [x.P] = getx.PX [P] (x ∈ X)
PX [P |Q] = PX [P] | PX [Q] AX [A+B] = AX [A] | AX [B] .

112 10 Behavioural theory for CCS

Bijection of the translation (Theorem 6.7)

(1) The translations PX [·] and AX [·] are surjective on prime ground homsets.
(2) P ≡ Q iff PX [P] = PX [Q], and A ≡ B iff AX [A] = AX [B].

Safeness of CCS sorting (Proposition 6.9)
Σccs is a safe sorting.

Parametric reaction for CCS (Example 8.1)

This parametric reaction rule (R, R′, η) is the only reaction rule for CCS in bi-
graphs. The controls ‘alt’, ‘send’ and ‘get’ are all declared to be passive. The
parametric redex R = alt. (sendx | id) | alt. (getx | id) has four sites, to be filled by
arbitrary parameters d0, . . . , d3. Sites 0 and 2 are for processes, and sites 1 and
3 are for alternations (summations). The reactum R′ = x | id | id has two sites,
to be filled by parameters as dictated by the instantiation map η, represented by
back-pointing arrows. The placing of parameters is also shown by the algebraic
expression. Parameters 1 and 3 of R are discarded by the rule.

This concludes our summary of work from previous chapters. We now amplify it
by proving the structural accuracy of the CCS translation, claimed in Theorem 6.7.

Let us first give more detail of the proof of the theorem. Concerning the struc-
tural congruence laws note that clauses 4 and 5, taken in reverse, allow a restriction
νx to be pulled outwards from any parallel component and any summand respec-
tively. This gives rise to the following:

Proposition 10.1 (CCS normal form) Every CCS process is structurally congru-
ent to a normal form νx1 · · · νxk P (k ≥ 0), where P is an open process form
containing each name xi free. Open process forms are defined recursively as fol-
lows:

(i) An open process form is a process term P1 | · · · |Pm (m > 0), where each
Pj is an open sum form.

(ii) An open sum form is a summation term A1+· · ·+An (n ≥ 0), where each
Ak takes the form µ.P for some open process form P .

10.1 Syntax and reactions for CCS in bigraphs 113

Normal forms are helpful in the following:

EXERCISE 10.1 (not needed for what follows) Prove Theorem 6.7. Here is an
outline, with suggestions on how to complete it.

(1) We must prove that the translation PX [·] is surjective on the homset ε→〈p, X〉,
and that AX [·] is surjective on ε→〈a, X〉. Every well-sorted agent in these hom-
sets can be built from smaller ones. (For example, a non-basic agent of sort a
is built either from two others by merge product, or from an agent of sort p by
nesting.) This allows one to prove, by induction on the size (number of nodes) of
an agent, that there is always a CCS process or alternation that translates into it.
More specifically, one first proves the following for all open agents, by induction:

for all open agents g : ε→〈p, X〉 there exists P for which PX [P] = g, and
for all open agents f : ε→〈a, X〉 there exists A for which AX [A] = f.

The basis of the inductive proof is that there exists a CCS alternation (which one?)
that translates into the unit 1 : ε→〈a, X〉. The inductive step is that, as you make a
bigger agent (of sort p or a) either by adding a single node or by forming a merge
product, you can each time find a CCS process or alternation that translates into it.

Having done this proof for open agents, finish by showing that every agent with
closed links (formed by closure, of course) is also the translation of a CCS agent.

(2) The forward implication needs a lemma which can be proved by induction on
the structure of process normal forms:

Lemma P ≡α Q implies PX [P] = PX [Q] , and
M ≡α N implies AX [M] = AX [N] .

Then the main property can be proved by a similar induction. You may wish to
prove the main property first, assuming the Lemma (which is harder).

For the reverse implication the task can be reduced to proving the property
by induction on the structure of ground bigraphs. An important step is to show
in bigraphs that if ai (i ∈ m) and bj (j ∈ n) are ground molecules such that
a1 | · · · | am = b1 | · · · | bn, then m = n, and ai = bπ(i) for some permutation π

on m. �

Having established the structural accuracy of the translation, we turn to dynamics.
Finite CCS has the single reaction rule

(x.P + A) | (x.Q + B) −→ P |Q ,

which may be applied anywhere not under an action prefix. On the other hand in
Bgccs we have the single reaction rule from Example 8.1. It is easy to demonstrate

114 10 Behavioural theory for CCS

that there is an exact match between the reaction relations generated in CCS and in
Bgccs, in the following sense:

Proposition 10.2 (comparing reaction) P −→ P ′ iff PX [P] �PX [P ′] .

10.2 Transitions for CCS in bigraphs

So far all our work has been done in the abstract BRS Bgccs, especially in charac-
terising its reactions. We are now ready to conduct the three-step procedure defined
at the end of Chapter 7, in order to develop the behavioural theory of Bgccs.

For step (A) we define the concrete BRS

`Bgccs
def= `Bg(Σccs, `Rccs) ;

this is just the s-category `Bg(Σccs) equipped with the reaction rules `Rccs, which
are all lean preimages of the single abstract rule of Rccs under the lean-support
quotient functor [[·]].

As step (B) of the procedure we define pe the prime engaged contextual transition
system (Definition 8.15), and assert that:

Corollary 10.3 (concrete bigraphical bisimilarity for CCS) The bisimilarity∼pe

in `Bgccs is a congruence.

Proof The result depends on the proof that the CCS redex is tight; see Exer-
cise 3.4. After that it is straightforward to check that `Bgccs is nice (Definition 8.18),
and that the agents of pe are hard; Σccs ensures the latter. The result then follows
from the faithfulness theorem, Theorem 8.19. �

This completes step (B). For the final step (C) we transfer the transition sys-
tem pe to the abstract BRS Bgccs, as dictated by Definition 7.22. We would like
to know that this yields a transition system whose bisimilarity is again a congru-
ence. Let us use the term pe both for the concrete transition system and for its
abstract image under the quotient by [[·]], and let∼pe denote the bisimilarity in both
cases. Then, because of niceness, finally by Corollary 8.20 we deduce congruential
bisimilarity in our bigraphical representation of CCS:

Corollary 10.4 (abstract bigraphical congruence for CCS)

(1) Two processes are bisimilar (∼pe) in Bgccs iff their concrete preimages are
bisimilar in `Bgccs.

(2) ∼pe is a congruence in Bgccs.

This completes our procedure for deriving a transition system and behavioural

10.2 Transitions for CCS in bigraphs 115

congruence for CCS. We devote the rest of the chapter to an analysis of this con-
gruence. This is necessary partly because the original bisimilarity for CCS was a
congruence in a weaker sense than ours, and partly because we wish to refine our
derived transition system, to make it more economical without losing its bisimilarity.

We begin with a structural analysis of the transitions in pe, recalling that – in
their concrete form in `Bgccs – they are engaged.

Notation Hitherto we have written λ ◦G in applying a linking to a bigraph, thus
emphasising that linkings are bigraphs in their own right. From now on in this
chapter we shall abbreviate this composition to λG. For example, the reactum in
case 4 of Figure 10.1 is /Z ◦y/x ◦ · · · . To save parentheses we also assume such
compositions bind more tightly than a product; thus λG |F means (λ ◦G) |F . �

The transitions of pe are tabulated in Figure 10.1, and we now explain them.
The algebraic expressions can be interpreted either in the abstract BRS or (with
support understood) in the concrete one. Every prime transition p L

� p′ arises
from a ground rule (r, r′) with redex

r = alt. (sendx.d · ·) | alt. (getx.e · ·)

where ‘· ·’ stands for any further factors in a discrete merge product, and the pair
(p, r) has (L, D) as an IPO, with D active. Also p shares at least one of the nodes
of the underlying parametric redex R – the two alt-nodes, the send-node and the
get-node. Since p has sort p, if it shares the send-node then it must also share
the parent alt-node; similarly if it shares the get-node. So there are two sharing
possibilities:

(i) p shares both nodes in one factor of R but none in the other;

(ii) p shares all four nodes of R.

The former divides clearly into two symmetric cases. The latter also divides into
two cases; either the send- and get-ports are joined by a closed link x, or they belong
to different open links. This explains why the figure has four cases.

We show the structure of p, L and p′ in each case, taking account of the fact that
any alt-node shared with R must occur actively in p. In Table 10.1, a, b, c, . . . stand
for any processes (c discrete), and ‘· ·’ stands for zero or more factors in a merge
product; in the labels of cases 1 and 2 this product must be discrete. In each rule,
the factor | b may also be absent. According to our convention for substitutions,
y/x here is in the homset 〈p, X〉→〈p, Y 〉, where Y = (X \ x) ∪ y; its link map
sends x to y and is otherwise the identity.

The reader will note that the expressions for labels in our table are parametric.

116 10 Behavioural theory for CCS

p : I L : I→ J p′ :J condition
1 /Z(alt.(sendx.a · ·) | b) idI | alt.(getx.c · ·) /Z(a | b) | c x /∈ Z

2 /Z(alt.(getx.a · ·) | b) idI | alt.(sendx.c · ·) /Z(a | b) | c x /∈ Z

3 /Z(alt.(sendx.a0 · ·)
| alt.(getx.a1 · ·) | b) idI /Z(a0 | a1 | b) none

4 /Z(alt.(sendx.a0 · ·)
| alt.(gety.a1 · ·) | b)

y/x
/Z y/x

(a0 | a1 | b)
x �= y;
x, y /∈ Z

Fig. 10.1. The four forms for a transition p L � p′ in pe

For example in case 1, even for fixed p, there is a family of labels L, according
as c and the unspecified factors ‘· ·’ vary. Moreover c reappears in the reactum p′,
whereas the factors ‘· ·’ are discarded. Parametric labels arise naturally when labels
are contexts. But as we shall see shortly, in this case the transition system pe can
be further reduced to a faithful one whose labels are not parametric.

We now embark on an analysis of these transitions. We shall need to establish a
promised property. Recall from Definition 6.5 that nil def= alt.1.

Proposition 10.5 (unit for merge product) p ∼pe p | nil .

Proof We shall prove the following relation to be a bisimulation:

S def= {(p, p | nil) | p an agent} .

Assume the transition p L
� p′. Then the pair (p, p′) matches the forms in one of

the four cases of the figure. In each case, if we replace b by b | nil then we obtain a
transition p | nil � p′ | nil, and we also have (p′, p′ | nil) ∈ S so we have matched
the assumed transition while remaining in S.

In the other direction, assume the transition p | nil L
� p′′. Then, in all four cases

of the figure, we find that b takes the form b′ | nil and p′′ takes the form p′ | nil. Then

by replacing b by b′ we find that p L
� p′; again we have matched the assumed

transition while remaining in S. This completes the proof. �

We are now ready to compare our derived transition system with the original
CCS transitions. They are raw transitions, using the non-contextual labels

� ::= x
∣∣ x

∣∣ τ

where the first two represent sending and receiving a message, and τ represents a

10.2 Transitions for CCS in bigraphs 117

communication within the agent. Rather than reverting to CCS syntax, we set up

the transitions p
�−→ p′ of this raw system directly in Bgccs; this will ease our com-

parison. The agents and label of each transition are characterised in Figure 10.2.
This raw system determines a bisimilarity which we shall denote by ∼ccs.

p � p′ condition
1 /Z(alt.(sendx.a · ·) | b) x /Z(a | b) x /∈ Z

2 /Z(alt.(getx.a · ·) | b) x /Z(a | b) x /∈ Z

3 /Z(alt.(sendx.a0 · ·)
| alt.(getx.a1 · ·) | b) τ /Z(a0 | a1 | b) none

Fig. 10.2. The three forms for a raw CCS transition p
�−→ p′

EXERCISE 10.2 Prove that p ∼ccs p | nil. Hint: As in Proposition 10.5, show that
S def= {(p, p | nil) | p an agent} is a bisimulation for the raw transition system. �

It can be seen that the raw transitions of Figure 10.2 correspond closely to the
first three forms shown in Figure 10.1; the notable difference is that, in the first two
forms, the contextual label L is composed with the agent p, and the result p′ of the
transition is therefore larger than for the raw transitions.

However, no raw transition corresponds to the fourth (substitution) form of Fig-
ure 10.1. This relates to the fact that the original CCS bisimilarity is not preserved
by substitution. Let us define pem to be pe (Figure 10.1) without the substitution
labels. The subscript m stands for ‘mono’, because all the labels except the sub-
stitution label are mono. Call the weaker bisimilarity for pem mono bisimilarity,
and denote it by∼m. The above remarks suggest that∼m should coincide with the
original CCS bisimilarity. We now verify this claim; the proof is in Appendix A.7.

Theorem 10.6 (recovering CCS) Mono bisimilarity recovers CCS, i.e. ∼m =
∼ccs.

The proof of this theorem can be interpreted either in the concrete `Bgccs or in the
abstract Bgccs. This is natural in view of Theorem 7.23, which relates the con-
crete and abstract bisimilarities closely. The same holds for Theorem 10.7 below,
which asserts another coincidence of bisimilarities. In general, we have worked in
a concrete BRS to establish behavioural equivalence as a congruence, which we
have transferred to the abstract BRS by Theorem 7.23 under the stated conditions.

Let us examine the contextual transition system pe more closely. The raw CCS

118 10 Behavioural theory for CCS

transition system is simple by comparison; a raw label such as x is much less
cumbersome than the corresponding contextual label idI | alt.(getx.c · ·). The latter
involves categorical notation, but more seriously it is doubly parametric – both c

and ·· are parameters. Can this parametric family of labels be replaced by a single
contextual label, while remaining faithful to pe?

p : I L : I→ J p′ :J condition
1 /Z(alt.(sendx.a · ·) | b) idI | alt.getx.nil /Z(a | b | nil) x /∈ Z

2 /Z(alt.(getx.a · ·) | b) idI | alt.sendx.nil /Z(a | b | nil) x /∈ Z

3 /Z(alt.(sendx.a0 · ·)
| alt.(getx.a1 · ·) | b) idI /Z(a0 | a1 | b) none

4 /Z(alt.(sendx.a0 · ·)
| alt.(gety.a1 · ·) | b)

y/x
/Z y/x

(a0 | a1 | b)
x �= y;
x, y /∈ Z

Fig. 10.3. The four forms for a transition p L � p′ in pe

This is indeed possible. We define the contextual transition system pe as shown
in Figure 10.3. The only differences from Figure 10.1 are the simpler labels in cases
1 and 2, and the corresponding omission of c from p′. The corresponding system
without the fourth case is pem. Let us denote the bisimilarities for pe and pem by�
and �m respectively.

We shall now show that pem is faithful to pe, i.e. that�m = ∼m. (The proof can
easily be extended to show pem faithful to pe.) Although pe is faithful to mt, the
reduction of transitions in the two cases is different. In moving from mt to pe we
omit certain transitions (the disengaged ones) each of which is redundant in itself;
in moving from pe to pe we replace a uniformly defined family of transitions by a
single one.

Theorem 10.7 (non-parametric transitions are faithful) �m = ∼m.

Proof (outline) We know that∼m = ∼ccs, so it is enough (and simplest) to prove
that �m = ∼ccs. We leave this as an exercise. �

EXERCISE 10.3 Prove the theorem. As pem is almost identical with the raw CCS
system, the proof is simpler than the proof of Theorem 10.6. Hint: It may help to
prove first that p �m p | nil. �

Having successfully matched mono bisimilarity ∼m to original CCS, we

10.2 Transitions for CCS in bigraphs 119

naturally ask the question: how well does our derived congruence agree with con-
gruences previously proposed for CCS? The original proposed congruence, which
we shall call ∼c

ccs, was defined simply as the largest congruence included in ∼ccs.
Since ∼ccs is preserved by all CCS operations, ∼c

ccs was characterised as follows:

P ∼c
ccs Q

def⇐⇒ for all substitutions σ, σP ∼ccs σQ .

Another candidate is open bisimilarity, which is the smallest relation∼o
ccs such that,

for all substitutions σ,

if P ∼o
ccs Q and σP

�−→P ′, then σQ
�−→Q′ and P ′ ∼o

ccs Q′ for some Q′.

This is known to be strictly finer than ∼c
ccs. How does it compare with ∼, our

derived congruence? Both are coinductively defined, so it is easy to prove that ∼
is at least as fine as ∼o

ccs, i.e. ∼ ⊆ ∼o
ccs. In fact this inclusion is again strict. A

counter-example to equality is provided by the pair

P = νz((x + z) | (y + z)) Q = νz((x.y + y.x + z) | z)

where we abbreviate µ.0 to µ. This pair illustrates an interesting point. When
translated into Bgccs, P has a transition labelled x/y; this can be seen as an ‘ob-
servation’ by the environment of P that, by connecting the x-link with the y-link,
it enables a transition of P that was previously impossible. On the other hand, Q

has no such transition; so P �∼ Q. But the raw transition system lacks such precise
‘observations’, and indeed P ∼o

ccs Q.
This concludes our study of bigraphs applied to CCS, which has revealed con-

siderable agreement with its original theory.

Part III : Development

11

Further topics

In this chapter we suggest some natural lines of development for bigraphs. These
lines have usually been explored to some extent, without reaching a uniquely best
treatment.

11.1 Tracking

S-categories, with their notion of support, allow us to identify the elements occur-
ring in a bigraph. This has enabled us to derive labelled transitions, and thence
to define congruential behavioural relations. Hitherto we have used support only
to identify elements statically, not to track them through reaction. By closing the
reaction relation g � g′, and similarly g �ı̃ g

′, under independent support trans-
lations of g and g′, we forget the history of the elements of g′, e.g. its nodes; they
could be inherited from g or they could be newly created.

Let us now see how to track support along a sequence g1 � g2 � · · · of reac-
tions. Such tracking1 allows us to express historical properties of behaviour. For
example, consider a reaction sequence g �∗g′; if a support element of g′ can be
tracked back to g this may have significance. It means that an individual compo-
nent (a node or edge) of g still exists in g′, and may be said to be part of the cause
of a further reaction g′ � g′′. Let us look at two reaction rules that might employ
tracking.

1 The word ‘trace’ may be preferred to ‘track’, but it is already overloaded. In process theory, ‘trace’ means
something like a sequence of elementary observations, while in category theory it refers to a kind of loop-
formation in spm categories.

123

124 11 Further topics

In rule (1), which appeared in Chapter 1, we may wish to track the identity (i.e.
support node) of both the agent A and the room R. This is necessary if we wish to
express a historical statement like ‘this agent has visited this room’. We would also
like to track the parameter of the rule – i.e. whatever occupies the shaded square in
any particular application of the rule.

In the redex of rule (2), a ‘copy’ command refers to a memory register M. Pro-
vided that the register contains an N-atom, the effect of the command is to replace
itself and its current contents by a copy of the contents of the register. In this case we
‘lose track’of the copy command and all its contents (they vanish), but we may wish
to track the register, and also both copies of all its contents. This is a case where two
later support elements are tracked back to a single earlier one; this phenomenon is
called residuation in the λ-calculus and more generally in term-rewriting systems.

In these examples, the support of a node was always tracked to a node with
the same control. But this is not always what we want. A simple example is in
Petri nets, as modelled in Example 6.13; to express a historical property such as
reachability, e.g. ‘this marking is reachable from that one’, we have to track the
support of each condition node, whose control varies between M (marked) and
U (unmarked). Of course every reaction in a Petri net leaves the net unchanged,
ignoring marking; so in that case we expect the reaction rules to track each node in
the reactum to the corresponding node in the redex.

We propose a revision of the definition of reaction to express tracking. First we
adapt Definition 7.1 to admit ground tracking reaction rules over an s-category:

Definition 11.1 (ground tracking) A basic tracking reactive system `C(`R) is
an s-category `C equipped with a set `R of ground reaction rules of the form
(r : I, r′ : I, τ), where the tracking map τ : |r′| ⇀ |r| is a partial map of supports.
`R is closed under support translations on the supports of a redex and reactum, in
the following sense: For any rule of the given form, and any support relations ρ

and ρ′ on r and r′ respectively, there is also a rule (ρ�r, ρ′ �r′, ρ ◦τ ◦ (ρ′)−1) .
We define the tracking reaction relation a �σ a′ to mean that a = D ◦r and

a′ = D′ ◦r′ for some tracking rule (r, r′, τ), where D = ρ �D′ and σ = τ � ρ. If
σ(s) exists for a support element s ∈ |a′| , then we call s a residual of σ(s). �

Note that the tracking map τ in a rule is many–one; this allows for the possibility
that factors of a redex r may be replicated by the rule and other factors discarded.
Also, although we still allow arbitrary support translation of r and r′, as in Chapter 7,
the definition takes care to vary the tracking map accordingly. Finally, in defining
the tracking relation, we ensure that support in the context is tracked by a support
translation from D to D′.

11.2 Growth 125

We now adapt Definition 8.5 to parametric tracking reaction rules:

Definition 11.2 (parametric tracking) A parametric tracking reaction rule for
bigraphs is a quadruple of the form

R = (R :m→ J, R′ :m′→ J, η, τ) ,

as in Definition 8.5 but with fourth component a tracking map τ : |R′| ⇀ |R|, a
partial map of supports. The rule generates all ground tracking rules of the form

(R.d, R′.d′, τ � σ)

where d = d0 ⊗ · · · ⊗ dm−1 is a discrete parameter, d′ = d′
0 ‖ · · · ‖ dm′−1 is the

instance of d defined by ρj �d′
j = dη(j) for each j ∈ m′, and σ = ρ0 � · · · � ρm′−1 .

A tracking BRS `Bg(Σ,`R) has a set `R of tracking rules closed under support
translation as in Definition 11.1. �

In connection with tracking, let us briefly examine a refinement of reaction rules
that has been studied for many years in the graph-rewriting community, but has
so far been ignored in bigraphs. It consists in identifying a part of a parametric
redex that remains unchanged in the passage from the redex to the reactum. Let us
call it a contextual reaction rule, and represent the unchanged part by a context C.
Ignoring tracking, a simple form of contextual rule is

(C :J→K, R :m→ J, R′ :m′→ J, η) .

In generating ground reaction rules the pair (C ◦R, C ◦R′) is treated just as pre-
viously the pair (R, R′) was treated. Such explicit contexts allow a finer analysis
of the possible conflict between two rule applications within an agent g. Hitherto,
two redexes that overlap would be regarded as conflicting; but if the rules are con-
textual, and only their contextual parts overlap, then they need not be regarded as
conflicting, since one of the reactions will not preclude the other.

Now, taking tracking into account, in a reaction by a rule with context C we
would naturally track the support of C by a bijective tracking map, i.e. by a support
translation. We leave the details as an exercise.

EXERCISE 11.1 Adapt Definition 11.2 to contextual rules, ensuring that the con-
text is tracked through reaction. Express rule (1) in the preceding diagram so that
the room R is treated as context. �

11.2 Growth

So far all sets of elements in a bigraph – its nodes, edges, names, roots and sites –
are assumed to be finite. In some cases there is good reason; for example, RPOs

126 11 Further topics

do not exist if an interface may have an infinity of names or places. There is less
reason for the node-set or edge-set to be finite; but also, there is advantage in having
it finitely generated in some sense.

Consider structural congruence in CCS. A standard way to represent recursive
definition in CCS has been to introduce a set – even infinite – of process identifiers
A, B, . . ., and to define their meaning by structural congruence axioms of the form

A(x, y, . . .) ≡ PA

where x, y, . . . are name parameters and PA a process with free names among
x, y, PA may also contain ‘recursive calls’ of the processes A, B, Thus
process definitions are treated as rules of structural congruence, and understood as
defining the way a process expression may grow, or unfold, ad infinitum.

In Chapter 10 we presented all the rules for structural congruence in CCS, apart
from process definitions; under translation of finite CCS into bigraphs, these rules
turn into equalities. Taking the hint from CCS, can we then treat process definitions
by imposing structural congruence upon bigraphs themselves? And are there other
uses for the infinite bigraphs defined by unfolding these definitions? We now begin
to investigate this question. The theory appears elegant and convincing, enough to
conjecture that it will help to integrate the treatment of process calculi.

Definition 11.3 (germination) A germination rule is a pair (K�x, gK) where K�x is
a discrete atom and gK : 〈1, {
x}〉 a lean epi ground bigraph. We call K a seed.

Given a concrete BRS `C, let ∆ be a set of germination rules each with a distinct
seed not in the signature of `C. We assume ∆ to be closed under support equiv-
alence. Extend the signature of `C by the seeds, declaring them atomic. Denote
the result by `C(∆); call it a growing BRS. The same applies to an abstract BRS,
omitting closure under �.

The germination relation ↪→∆ on bigraphs is determined as follows: G ↪→∆ Ĝ

if G = C ◦ (id ⊗ K�x) and Ĝ � C ◦ (id ⊗ gK) for some (K�x, gK) ∈ ∆ and context
C. �

Thus germination replaces a seed K occurring in G by gK to form Ĝ. We shall drop
the subscript ∆ from ↪→ when it is understood. The following depends on the fact
that two germinations in G either arise from the same rule or occur disjointly:

Lemma 11.4 If G ↪→ G0 and G ↪→ G1, then either G0 � G1 or there exists Ĝ

such that G0 ↪→ Ĝ and G1 ↪→ Ĝ.

We now define an ordering and equivalence based upon germination:

Definition 11.5 (growth order, equivalence) The growth order ≤∆ and growth

11.2 Growth 127

equivalence ≡∆ are essentially the transitive reflexive closure, and the symmetric
transitive reflexive closure, of germination. To be precise:

(1) ≤∆
def= (↪→ ∪ �)∗

(2) ≡∆
def= (↪→ ∪ ←↩ ∪ �)∗ . �

Again, we shall drop the subscript ∆ when understood.
In what follows a hat – as in Â – will always mean a growth, while a prime

as in A′ will always mean the result of a reaction or transition. (F0, F1, . . .) ≤
(G0, G1, . . .) means Fi ≤ Gi for all i, and F ≤ G, H means F ≤ G and F ≤ H .

The following properties of ≤ are essential:

Proposition 11.6 (congruence, confluence, independence)

(1) Growth ≤ is congruential: if F ≤ G then F ◦H ≤ G ◦H , H ◦F ≤ H ◦G

and F ⊗H ≤ G⊗H . Similarly for the equivalence ≡.

(2) Growth is confluent: if G ≤ G0, G1 then there exists Ĝ such that G0, G1 ≤
Ĝ.

(3) The parts of a composition or product grow independently: if E ◦F ≤ G,
then G = Ê ◦ F̂ for some Ê, F̂ such that (E, F) ≤ (Ê, F̂). Similarly for
product.

We now begin to justify the claim that growth respects dynamics. We shall
therefore be concerned mainly with ground bigraphs.

Assumptions In this development we shall relax the assumption adopted in Defi-
nition 8.5 that the parameter d of a parametric reaction is discrete. For in a ground
redex r = R.d, although R cannot contain seeds, d may contain them; when one
of them is germinated we have d ↪→ e which may be non-discrete. Then r ↪→ R.e,
and we may wish R.e to be a ground redex underlying a transition.

Instead, we make the weaker assumption that a parameter d should be lean and epi;
if d ↪→ e then e will also be lean and epi, by our assumption on germination rules.
Since discreteness of parameters was useful in Chapter 8 for our dynamic theory,
we leave it open how far that theory needs revision in the presence of growth.

We also assume that reaction rules are affine; this allows us to prove Proposi-
tion 11.7, on which later results depend.2

We now assert that, under our assumptions, growth does not prevent reaction. This
is because no seed occurs in a parametric redex. Formally:

2 An alternative assumption would be that the result gK of a generation is open, i.e. contains no closed links.
In binding bigraphs, where bound links are possible in an open bigraph, this assumption will be less of a
constraint.

128 11 Further topics

Proposition 11.7 (growth preserves reaction) In a growing BRS with affine rules,
if f � f ′ and f ≤ g, then g � g′ for some g′ such that f ′ ≤ g′.

Moreover growth can enable reaction, since it can create a redex. To reflect this we
define a more permissive reaction relation:

Definition 11.8 (growing reaction) Let us use �� , with a double arrow head,
to denote growing reaction, which we define as follows:

f �� f ′ iff g � g′ for some g, g′ such that (f, f ′) ≤ (g, g′) . �

The idea is to allow f to grow in order to enable a reaction. Clearly �� ⊇ � .
Growing reaction behaves well:

Proposition 11.9 (growing affine reaction)

(1) If f �� f ′ and D is active then D ◦f �� D ◦f ′ whenever defined.

(2) If f �� f ′ and f ≤ g, then g �� g′ for some g′ such that f ′ ≤ g′.

EXERCISE 11.2 Prove this. Hint: For (2) use confluence with Proposition 11.7.
�

A good way to think of growing reaction (��) is that it represents the ordinary
reaction relation but executed on fully grown bigraphs (possibly infinite), which
contain no generators. Essentially, these represent the equivalence classes of ≡∆.

An obvious question is whether growing transitions behave well. We shall answer
this by showing that, when defined in a natural way, the minimal ones do indeed
induce a congruential bisimilarity.

Definition 11.10 (growing transition) A quadruple (f, (L, ı̃), f ′), which we write

as f L
��ı̃ f

′, is a growing transition if there exists a transition g M
�ı̃ g

′ with
(f, L, f ′) ≤ (g, M, g′). It is minimal if the transition of g is minimal.

Denote by � the bisimilarity induced by the minimal growing transitions.

How does growth relate to IPOs? It is rather easy to see that if
A ≤
B then there
may be no IPO for
A even if
B has an IPO; indeed,
A may not even have a bound.
However, crucially, IPOs are preserved by growth. We now make this precise.

Lemma 11.11 In concrete bigraphs, assume that
B is an IPO for
A, and that an
open atom a : I occurs in A0. Replace this atom in both
A and
B with an epi
ground bigraph g : I whose support is fresh. Then the result is an IPO (B0, B̂1) for
(Â0, Â1), such that (A0, A1, B1) ≤ (Â0, Â1, B̂1).

11.2 Growth 129

A0

B0 B1

id

C1

A1

C0

C0
C1id

id id

id⊗a
id⊗a

C

DB0

A1
A0

B1

id⊗a

A1⊗id id⊗a

Proof Under the assumption there are two possibilities: either a occurs in A0

and A1, or it occurs in A0 and B1. (Note that it cannot occur in B0.)
In the first case we have A0 = C0 ◦ (id ⊗ a) and A1 = C1 ◦ (id ⊗ a); in the

second case A0 = C ◦ (id ⊗ a) and B1 = D ◦ (id ⊗ a). Since a is epi, and hence
id⊗ a is epi, these decompositions are uniquely determined. Since a is also open,
by Proposition 5.19 and Corollary 5.21 the main IPO can be resolved into four and
two IPOs respectively, as in the diagrams.

Now, replace a by g in these diagrams, forming Â0, Â1 and B̂1. Since g is epi,
the squares containing a remain IPOs when g replaces a; so in each case the new
full diagram represents an IPO satisfying the required condition. �

EXERCISE 11.3 State where the assumption that a is open and epi is needed, in
building these IPO diagrams. �

Proposition 11.12 (growth preserves idem-pushouts) Let
A have an IPO
B. Let
A0 ≤ Â0 and |Â0|#|B0|. Then there exist Â1, B̂1 such that (A1, B1) ≤ (Â1, B̂1)
such that (Â0, Â1) has IPO (B0, B̂1).

Proof We know this holds when ≤ is replaced by �. So since ≤ = (↪→ ∪ �)∗,
we need only prove it for ↪→. This is immediate by Lemma 11.11, since in applying
the lemma we take a to be a seed, i.e. a discrete atom, which is both open and epi.

�

We now apply these results. The following is immediate from Proposition 11.12:

Corollary 11.13 (growth preserves transition) If f L
�̃ı f

′ and if f ≤ g with
|g|#|L|, then g L

�̃ı g
′ for some g′ such that f ′ ≤ g′.

Let us now turn to the ‘growing bisimilarity’�. It turns out that the two bisimi-
larities are incomparable, as the following shows:

Example 11.14 (incomparable bisimilarities) We consider an example in place

130 11 Further topics

graphs. Let K and L be distinct atomic controls, and M a passive control. Let
(K,M.K) be a germination rule and (M, id) a reaction rule; thus we have

K ↪→ M.K and M.e � e

for all parameters e. Then∼ and� are incomparable. For on the one hand we have
K ∼ L but K �� L; on the other hand we have K �∼ M.K but K � M.K.

This can be understood as follows. In the first case∼ allows no growth so K and
L are indistinguishable, while � allows growth of K, enabling a distinction. In the
second case, the lack of growth in ∼means that the reaction rule can apply to M.K
but not to K, while � allows growth and thus removes the distinction. �

EXERCISE 11.4 Prove these assertions, at least in terms of engaged transitions.
You may assume that non-engaged transitions play no part in the argument. �

Despite this disagreement, bisimilarity for growing transitions seems the natural
way to represent the behavioural equivalence of infinite bigraphs. To reinforce the
intuition, we now show that this bisimilarity is preserved by all contexts.

Theorem 11.15 (congruence of growing bisimilarity) Let a0 � a1. Then
C ◦a0 � C ◦a1 for all contexts C with the compositions defined.

EXERCISE 11.5 Prove the theorem. Hint: Follow the proof of Theorem 7.16 as
closely as possible, but move back and forth between growing transitions and stan-
dard ones. For this purpose you need Definition 11.10 and also Proposition 11.12.

�

It is worth noting that the proof of this theorem, just as the proof of Theorem 7.16,
uses no special features of bigraphs; it therefore holds for wide reactive systems in
general.3

Anext step is to investigate parametric germination; that is, when the seed K�x is an
ion, and germination takes the form K�x.e ↪→ g where g may contain the parameter e.
If so, it can represent not only recursive definition (e.g. in CCS), but also replication
in the π-calculus, which is often expressed as a structural congruence !P ≡ P | !P .

At this point we leave the study of growth for future work.

11.3 Binding

Hitherto we have studied only pure bigraphs, in which placing and linking are in-
dependent structures over a set of nodes. We have exploited this independence in

3 Certain assumptions are needed; for example, that growth in a composition C ◦ a occurs independently in C
and in a.

11.3 Binding 131

formal definitions and in the development of theory. But we wish also to accommo-
date useful dependencies between placing and linking. In particular we may wish
to assume, or to enforce, that certain links are confined to certain places. This is
exactly what is meant by the scope of a name in programming or process calculi.
Thus

we may wish to confine the use of a link to within a place.

This corresponds to what is usually called the binding of names. Binding has in-
deed been successfully treated in various ways for bigraphs, and has been applied to
recover the behaviour of the π-calculus, just as the behaviour of CCS is recovered
in Chapter 10 of this book, and also to encode a version of the λ-calculus. These
experiments have revealed what appears to be a unified treatment, which we now
propose.

Binding In the current notion of signature we define node controls, each with an
arity and an attribute in the set {active, passive, atomic}. Let us now define a fourth
value, ‘binding’, for this attribute. Controls with this attribute will be called binding
controls. This enriches a signature to become a binding signature.

For nodes, ‘binding’ implies ‘atomic with arity 0’. For any binding control β we
shall call a β-node a binding. But we shall also treat a binding node as a kind of
link; so it is a hybrid between a node and a link. To give it this status we extend the
range of a link map to include bindings. Thus, points can be bound.

For this purpose, we assume that bindings are drawn from an infinite set B,
disjoint from names X , nodes V and edges E . A quasi-binding bigraph over a
binding signature K takes the form

G = (V, B, E, ctrl , prnt , link) : I→ J

in which the extra component B ⊂ B is a finite set of bindings. The control map
is extended to ctrl :V �B→K, assigning controls both to nodes and to bindings.
Further, let m, X and n, Y be the widths and names of I and J , and let P be the
ports of G. Then the parent map and link map of G take the form

prnt : m � V �B→V � n

link : X � P →B � E � Y .

In diagrams we shall draw bindings as little hollow circles. If q is a point – i.e.
an inner name or port – and link(q) = b, with β = ctrl(b), then we say that β

or b binds q. We can already distinguish bindings from closed links (edges), as
illustrated here:

132 11 Further topics

In the left-hand diagram e is an edge linking two ports. It makes no difference
how we draw an edge, as long as it abuts on its ports, because an edge itself has no
location. But the right-hand diagram shows a binding control β binding the same
two ports, and the location of β matters. For if the β-binding lies inside the M-node
then it can only link ports that lie within that node. This will be enforced by our
binding discipline.

EXERCISE 11.6 Adapt the definitions of place graphs and link graphs, Defini-
tions 2.1 and 2.2, to admit the addition of a binding-set B. Then adapt Definition 2.5
which defines composition for both place graphs and link graphs, paying particular
attention to the equations defining the prnt and link maps for composite bigraphs.

�

We now turn our attention to the binding discipline. For any bigraph G (pure
or quasi-binding), let us write w inG w′ to mean w′ = prntk

G(w) for some k ≥ 0,
i.e. the place w is a descendant of the place w′ in G. We write w in w′, omitting
the subscript G, when there is no ambiguity. Then for quasi-binding bigraphs we
define localities for ports and bindings as follows.

Definition 11.16 (locality) Let G be quasi-binding, with nodes V and bindings B.
Recall that the ports Pv of a node v ∈ V take the form p = (v, i) for i ∈ ar(v).
Then the localities of ports and bindings are defined as follows:

locport def= {(prnt(v), p) | v ∈ V, p ∈ Pv}
locbind def= {(prnt(b), b) | b ∈ B} . �

Thus within G each port and binding has a unique place – a node or a root. The
scope discipline for binding controls will dictate that if b binds p then the place of
p must be a descendant of the place of b. But this is not all we need for our scope
discipline; it must also be preserved by composition and product. This implies that
our present notion of interface is too weak, as shown by the following example.

Example 11.17 (bad binding) Let F be a quasi-binding bigraph, whose inner face
is 〈1, x〉 with x bound by a binding control β. Let G have outer face 〈2, x〉, with

11.3 Binding 133

x linked to a port in each of the two regions of G. Then the bigraph (F ⊗ id1) ◦G

breaks our discipline, as shown in the diagram. �

To exclude such cases we enrich interfaces as follows.

Definition 11.18 (binding interface) A binding interface takes the form

I = 〈m, loc , X〉
where loc ⊆ m×X is a binary relation between places and names. If (i, x) ∈ loc
we say that x is local (to i in I). Otherwise x is non-local (in I). �

It is sometimes easier to write 〈m, loc , X〉 in the form 〈(X0), . . . , (Xm−1), X〉,
where Xi are the names local to the region i; thus

⋃
i Xi ⊆ X .

Before we define the scope discipline, let us describe the effect it will have on
Example 11.17. Since the β-binding binds the inner name x, it will require x to
be local to the inner face of F , so this inner face must be 〈(x), x〉 (where we omit
curly brackets around singleton sets). In diagrams, we shall write a local name in
parentheses at each interface, so F will be drawn as follows:

Thus the inner face of F ⊗ id1 will be 〈(x), (∅), x〉, locating x at only one site. But
the scope discipline will require the outer face of G to be 〈(x), (x), x〉, since x is
used in both regions of G. This difference of interfaces prevents the composition
of F ⊗ id1 with G, so it destroys our example.

We now state the scope discipline which a quasi-binding bigraph must satisfy to
qualify as a binding bigraph. Given a bigraph, let us use w to range over its places,
q over its points and � over its links. Roughly, the scope discipline demands that
descendance and linking are compatible with binding. This means that if a link is
local to a place w, then every point in the link is local to a place below w. More
formally:

134 11 Further topics

Definition 11.19 (binding bigraph) Given a quasi-binding bigraph G : I→ J ,
define the localities of its points and links as follows:

locpoint def= locI � locport , loclink def= locbind � locJ .

We say that the points in locpoint , and the links in loclink , are local (in G). Then
G is a binding bigraph if it obeys the following scope discipline:

• Whenever � = link(q) and (w, �) ∈ loclink , there exists w′ such that w′ in
w and (w′, q) ∈ locpoint . �

locpoint
qw′

link

w �
loclink

in

Composition for binding bigraphs is just as we defined it for quasi-binding bigraphs,
and the definitions of identities, unit, product and symmetries are obvious. It can
then be proved that

Theorem 11.20 (binding bigraph categories) The concrete binding bigraphs over
any binding signature form an s-category, and the abstract ones form an spm cat-
egory.

EXERCISE 11.7 Prove that in binding bigraphs the identities obey the scope dis-
cipline, and that both composition and tensor product preserve the discipline. Hint:
Pay attention to your adapted definition of composition in Exercise 11.6. �

It has also been shown that if every name in an interface I = 〈m, loc , X〉 has at
most one location, i.e. loc is a map from X to m � {⊥} (where loc(x) =⊥ means
that x is non-local), then RPOs exist in these s-categories; hence labelled transition
systems can be derived. By this means, for example, theory for the pi calculus has
been recovered.

Inward binding We have defined the scope of a β-binding to be its parent place;
we may thus call β an outward binding control. But we may need binding nodes
that bind within themselves. By a simple sorting discipline, as in Section 6.1, this
inward binding can be achieved by nesting a number of bindings inside an ordinary
node. These can be ordered by using binding controls (1), (2), If K has arity
k and we equip a K-node with h binding controls, then we have turned the K-node
into an inward binding control with a double arity h→ k. The diagram shows the
case h, k = 2, 3:

11.3 Binding 135

Let us now illustrate binding in the encoding of the finite π-calculus. The basic
signature differs slightly from the one for encoding CCS, to cater for the passage
of names as data. The ‘send’ and ‘get’ controls, previously both with arity 1, now
have dual arities written send : 0→ 2 and get : 1→ 1. Thus ‘get’becomes an inward
binding control. Recall that the reaction rule in the π-calculus is written

(xy.P + A) | (x(z).Q + B) −→ P | {y/z}Q .

The figure below represents this in binding bigraphs. Note how the meta-syntactic
substitution of π-calculus is encoded by a substitution which is itself a bigraph; it
substitutes a non-local name y for the local name z in parameter d2.

Operations The interfaces of binding bigraphs are more complex than for pure
bigraphs. This gives rise to a richer family of linkings, and we now discuss briefly
a few of the new phenomena that arise. Recall that in pure bigraphs we abbreviate
a prime interface 〈1, X〉 to 〈X〉, and that we write a singleton X = {x} as x. In
binding bigraphs we also write 〈(X)〉 for the prime binding interface whose names
X are all local.

Consider substitutions. The non-local substitution y/z : z→ y is as before, but
there are now substitutions y/(z) : 〈(z)〉→〈y〉 and (y)/(z) : 〈(z)〉→〈(y)〉. The first of
these has already been used in the reactum of the π-calculus rule above, and the
second may be required if a reaction rule has non-local outer names. However the
fourth possibility (y)/z : 〈z〉→〈(y)〉 attempts to localise a non-local name, and this
violates the scope discipline.

So there is no bigraph which localises a non-local name; but we can define a
partial operation on bigraphs to do this. First, if x is non-local in the interface J ,
we define (x)J to be the result of making the x local to every place in J . We call

136 11 Further topics

this the localisation of x in J . Now suppose that G : I→ J where I is local, i.e.
all its names are local. In this case to make x local in J does not violate the scope
discipline, and we obtain the localisation of x in G:

(x)G : I→ (x)J (I local) .

Clearly one can then define multiple localisation (X)G, where X is a finite set of
names. An especially useful case of localisation is when I = ε, i.e. G is ground.

Substitution and localisation appear to represent the main effect of binding on
the bigraphical operations.

Reactions We also have to adjust reaction rules and the reaction relation. For
example, we wish to define a reaction rule whose redex binds its parameter, as in
the π-calculus. This raises three points:

(i) As parametric reaction rules are defined in Definition 8.5, a parameter d has
to be discrete, meaning that there are no closed links and the link map is
bijective. But this notion must be qualified so that it does not constrain the
local names of d, which are to be bound by the parametric redex R. The
non-local names Y of d can still be exported in a ground reaction whose
redex is given by r � (idY ⊗R) ◦d.

(ii) Discreteness of d should still require that it has no closed links. But it
must be permitted bound links. Then if a prime factor of d – say d0 – is
replicated by a reaction, each copy of d0 will have its own copy of any bound
link. Thus, for example, if we encode the π-calculus with replication into
bigraphs, each π-calculus restriction νxP will be faithfully modelled by a
bound link.

(iii) Some or all of the outer names of a redex R may be non-local. But we may
wish to allow reactions in a context in which the links involved will be local.
This can be achieved in two ways. We may simply define R with a local
outer name, say (z), and use a substitution like z/(z) to make it non-local
where required. Or we may define R with the outer name z non-local, and
modify the way we define the reaction relation � in Definition 7.1; define
it now to be the smallest such that a � a′ whenever a � D ◦ (X)r and
a′ � D ◦ (X)r′ for some ground reaction rule (r, r′) and context D, where
X are the non-local names of r. This use of localisation respects the scope
discipline because r is ground.

Some of the points raised above, concerning both operations and reactions, have
already been addressed in existing work. But a definitive treatment of binding is
still lacking, and is an important topic for future research.

11.4 Stochastics 137

11.4 Stochastics

As mentioned in the Prologue to this book, it is important to deploy bigraphs in
experimental applications in order to assess their modelling power. Many appli-
cations, such as ubiquitous computing, are inherently non-deterministic, at least in
the sense that in modelling them we are ignorant of precise details of timing. But
to aid experiment we must ensure that simulations are realistic; this entails some-
how attaching relative probabilities to reactions. Consider, for example, our simple
example in Chapter 1 of behaviour in a built environment; once we have defined
enough rules to express simple behaviour of people we would like to experiment
with the effect of varying the relative rates of their actions.

For this purpose we can attach a stochastic rate to each inference rule. Indeed,
in biological applications this approach may be considered essential to the model;
typically there is a large population of entities (e.g. of protein molecules), and if
each entity can perform a certain reaction then the speed of reactions may plausibly
be computed as the product of the population size and the stochastic rate assigned
to that reaction rule. This approach is adopted, for example, in the κ-calculus [27]
for biological modelling.

Taking a hint from this work, stochastic bigraphs have recently been defined [51].
In the context of bigraphs, what corresponds to population size is the number of
distinct occurrences within an agent g of a given ground redex r; to get the reaction
speed this count is multiplied by the rate attached to the given reaction rule. The
count, i.e. the number of distinct occurrences of r, is easily defined in terms of
support. (This use of support is quite distinct from its role in deriving contextual
transition rules via RPOs.) One detailed point: one must avoid double counting in
the case of support automorphisms of the redex r.

Let us give a more precise idea of the approach, omitting a few details. Assume
that we have a familyR of reaction rules, where each rule R has an associated rate
ρR. Given agents g and g′, we may wish to compute the rate of the reaction g � g′.
This reaction may occur with different underlying rules, so we sum overR:

rateR[g, g′] def=
∑
R∈R

rateR[g, g′] .

Now for a given rule R, we define µR[g, g′] to be the number of distinct ground
rules (r, r′) generated by R such that, for some active context C, C ◦r = g and
C ◦r′ � g′. Then

rateR[g, g′] def= ρR · µR[g, g′] ,

and this completes our definition of the rate of the reaction g � g′.
In previous work [42, 71] associated with process calculi, rates have been

138 11 Further topics

attached not only to reaction rules, but also to labelled transitions. In that work,
the speed of communication depends on the rate attached independently to the two
or more transitions that perform the communication. However, the theory of bi-
graphs suggests a different approach: since labelled transitions are derived from
reaction rules, rather than defined independently, one would expect to derive the
rate of a transition from the rate of its underlying reaction rule. This indeed can
be done, rather simply. It remains, however, to find criteria that determine in what
circumstances to prefer one approach to the other.

Thus work on a stochastic interpretation of bigraphs is still in progress. Much
will be learned by experiment, both in biology and in ubiquitous computing. But it
is already clear that some such interpretation is a necessity, not a luxury; it is also
encouraging that it can be done generically, not tailor-made for each application.

12

Background, development and related work

In this chapter we place the bigraph model in the broader informatic context.
The bigraph model attempts to bridge two distinct cultures. On the one hand is the

adolescent culture of ubiquitous computing; on the other hand is the more mature
theory of concurrent processes. The first two sections of this chapter describe
the two cultures in enough detail to show how the bigraph model fits into each
of them, and how together they demand the existence of some such model. In
the third section I describe how bigraphs evolved as a generic model of processes.
Finally I describe ongoing work to create software tools that will bring bigraphs to
life as a language for programming and simulation, thus admitting experiments that
will help to assess the scientific value of this model.

Background in ubiquitous computing Let us first look at the vision of ubiquitous
computing. Mark Weiser [79] is generally credited with forming this vision and
inspiring research that will bring it to reality; I quoted him briefly in the Prologue.
The vision represents one of the most ambitious aspirations of computer science,
and has been adopted as a Grand Challenge by the UK Computing Research Com-
mittee (UKCRC). The title of its manifesto [1], ‘Ubiquitous computing: experi-
ence, design and science’, reflects the insight that to realise the vision demands
collaboration among three distinct research communities: those concerned with
the human–computer interface and human behaviour, those concerned with engi-
neering principles and design patterns for large systems, and those concerned with
theoretical models and the languages that bring them to life. These three themes
cannot be addressed in isolation.

The first theme, human involvement, is well represented by a recently completed
six-year research project, the Equator project [2]. On that website can be found
citations of the work carried out. The role of humans in a ubiquitous system is
two-fold; first as users of a massive software system, and second as entities forming
part of the system, and to be modelled as such. There is a close analogy with the

139

140 12 Background, development and related work

role of humans in an economic system. The Equator project performed extensive
experiments aiming to link the human sciences with the role played in society by
informatic systems. Here is a quotation from the final project report:

Equator aimed to forge a clearer understanding of what it means to live in an age when
digital and physical activities not only coexist but cooperate. This is the age we are now
entering, and it promises radical change in how we communicate, interact, work and play;
that is, how we live. But to fulfil that promise requires more than new technology. We need
equally new ways of thinking about technology, and thus also about ourselves.

One may add that, to support new thinking about how the technology relates to
society, we also need accurate understanding of the technology in its own terms.
This is exactly how the first of the three themes depends upon the second and third.

The second theme, engineering principles and design, is well represented by a
wide range of papers, both previous to the Grand Challenge initiative and arising
from it. A few examples will illustrate the breadth of the engineering challenge.
Wooldridge [81] puts forward the concept of an intelligent agent as a model for
building self-managing and decision-taking systems. Jennings et al. [45] advocate
negotiation, underpinned by game theory, as a principle underlying the interaction
of agents in a non-hierarchical population. Sloman et al. [77], in the context of
health-care, propose a model of the ‘self-managed cell’, a generic design concept for
ubiquitous systems; notably, the model offers an explanation of how two ubiquitous
systems, conforming to this pattern, may combine organically into a single system.
Crowcroft [25] examines structural design criteria for systems to manage driverless
vehicles on the highway. Dix et al. [28] explore informally how space and locality
may be used in a semantic model of mobile systems.

Besides their engineering significance, such papers yield insight into how
models – formal or informal – of advanced software can provide systems to underpin
a highly instrumented human society.

The third theme, then, is concerned with conceptual modelling. There remains a
question: Given a variety of models for ubiquitous systems, how will the models
fit together? Each one will deal with some concepts such as those listed in the
Prologue, but a single model is unlikely to deal with all of them. So how can they
provide an integrated scientific understanding of ubiquitous computing? In a recent
paper [66] I proposed a tower of models. The idea is that, just as some models are
designed to explain reality, so a model at a higher level may explain, or may be
implemented by, a lower-level model. For example, in the Prologue I suggested
how the complex concept of trust (between informatic agents) can be implemented
at a lower level.

There is surely a precedent in natural science for this levelling of models. It

Background, development and related work 141

is crucially significant in informatics, whose ultimate realities are extraordinarily
complex artifacts, and can only be understood via many levels of abstraction.

Background in mathematical models The history of informatics is rich with
such levelling of understanding, either formal or informal. We now turn to models
that are formal, embodying some kind of mathematical theory. In contrast with
the recent surge of interest in ubiquitous systems, over the past half-century there
has been a progression of mathematical models of computation, each of which
typically deals with a well-delineated range of phenomena. Without going back to
basic models such as Turing machines and automata theory, let us confine attention
to models of interactive processes; these are the models that I have tried to draw
together in the present book.

An early theory of concurrent processes was Petri nets [70] in the 1960s; it was
perhaps the first that gave a significant mathematical structure to discrete events.
In 1979, with Milne, I explored certain aspects of algebraic structure for processes
[59, 60]. Atradition of self-contained algebraic calculi for concurrent systems began
around that time; early representatives are the Calculus of Communicating Systems
(CCS) [61], Communicating Sequential Processes (CSP) by Hoare et al. [13, 44]
and Process Algebra by Baeten, Weijland, Bergstra and Klop [3, 8].

Bigraphs have also used ideas from many other sources: the Chemical Abstract
machine (Cham) of Berry and Boudol [6], the bisimilarity of Park [68], the π-
calculus of Milner, Parrow and Walker [62a, 67] with extended theory by Sangiorgi
and Walker [73], the interaction nets of Lafont [52], the mobile ambients of Cardelli
and Gordon [18], the sharing graphs of Hasegawa [38], the distributed π-calculus
of Hennessy [39], the explicit fusions of Gardner and Wischik [34] developed from
the fusion calculus of Parrow and Victor [69], Nomadic Pict by Wojciechowski and
Sewell [80]. In each of these cases my emphasis has been not to extend the work in
its own terms, but rather to use its inspiration to find a framework that can embrace
them all. Notably helpful was a wide-ranging survey by Castellani [19] of the
notion of locality, and the many ways it has been defined and deployed in process
models. Particularly influential was the work of Meseguer and Montanari [58]
explaining Petri nets in monoidal categories. More generally, the idea of using
monoidal categories for computational structure can be traced back to Benson [5].
A good textbook for basic category theory is by Barr and Wells [4].

Graphs and their transformation are often chosen as the way to model spatially-
aware systems. There is a long tradition in graph-rewriting, based upon the double
pushout (DPO) construction originated by Ehrig [29]. That work typically uses
a category with graphs as objects and embeddings as arrows. In contrast, our
s-categories have interfaces as objects and graphs as arrows. These formulations
have been linked, both via cospans by Gadducci, Heckel and Llabrés [31] and via an

142 12 Background, development and related work

isomorphism between the category of graph embeddings and a coslice of an
s-category (over its origin) by Cattani et al. [20]. Ehrig [30] investigated these links
further, after discussion with the author, and we believe that useful cross-fertilisation
is possible. Gadducci et al. [31] represent graph-rewriting by 2-categories, whose
2-cells correspond to our reactions. Several other formulations of graph-rewriting
employ hypergraphs. An example is by Hirsch and Montanari [43]; their hyper-
graphs are not nested as bigraphs are, but rewriting rules may replace a hyperedge
by an arbitrary graph.

Besides graph rewriting, there is a variety of other frameworks for modelling
concurrent interactive behaviour; for example1

(i) Term rewriting by a group of authors led by Klop [78], which can accom-
modate arbitrary equational axioms.

(ii) Rewriting logic led by Meseguer [22, 57] which includes Maude, an auto-
mated logic for rewriting.

(iii) The tile model led by Montanari [32], whose tiles represent rewriting rules
and can be composed in two dimensions, one to yield longer rewritings and
one to yield compound rules.

(iv) X-KLAIM, led by De Nicola [7], designed to program distributed systems
through multiple tuple spaces and mobile code.

Thus we are in the early days of the search for an agreed framework for the design
and analysis of spatially-aware systems. In the bigraph model most of the effort
hitherto has been devoted to integrating pre-existing theories. From now on, the
emphasis is likely to change towards case studies in different application topics,
and in the provision of computer-assisted tools for their analysis.

Development of bigraphs The bigraph model arose from action calculi [62], the
author’s first attempt at a spatial framework unifying process calculi. In action
calculi there was a technical difficulty, which was resolved by the main idea of
bigraphs: that locality (placing) and connectivity (linking) should be treated inde-
pendently. Gardner [33] contributed significantly to the emergence of this idea.
This independence also reflects a property of real-life systems; we need only think
of wireless networks.

The technical difficulty with action calculi arose as follows. One criterion for
their success was that they should recover theory for existing process calculi, in
particular their behavioural equivalences and pre-orders, which are often based
upon labelled transition systems. This recovery depends upon treating certain con-
texts as labels. How to choose these contexts remained an open problem for many

1 We use the term ‘framework’ to mean not just a single process calculus (e.g. CCS) but a method or style for
defining a family of such calculi.

Background, development and related work 143

years. As a first step, Sewell [76] was able uniformly to derive satisfactory context-
labelled transitions for parametric term-rewriting systems with parallel composition
and blocking, and showed bisimilarity to be a congruence. It remained a problem
to do it for reactive systems dealing with connectivity, such as the π-calculus, and
to do it uniformly across bigraphical calculi.

This problem was solved by Leifer and Milner [55], who defined minimal con-
textual labels in terms of the categorical notion of relative pushout (RPO), also en-
suring that behavioural equivalence is a congruence. These results were extended
and refined in Leifer’s PhD Dissertation [54], and applied by Cattani et al. [20] to
action graphs with rich connectivity. Leifer and Milner [55] showed how to derive
these transition systems in any categorical model possessing relative pushouts. The
demonstration by Leifer [54] that action calculi possess them was hard, but in bi-
graphs the independence of placing and linking rendered it tractable, as expounded
by Jensen and Milner [48]. This allowed those three authors [46–48, 56, 63, 65]
and Bundgaard and Sassone [16] to recover a significant amount of the theory of
several calculi, via their embedding in bigraphs.

S-categories appear to be well-suited to the work of this book. However, they can
be recast in the context of enriched category theory [50, 53]. Technically, they are
equivalent to categories enriched over the category of species of structures [49] with
respect to the multiplication monoidal structure.2 The notion of relative pushout has
been generalised to groupoidal 2-categories by Sassone and Sobocinski [74, 75],
thus again recasting bigraphs within a standard categorical framework.

As abstract bigraphs form a symmetric partial monoidal category, it has been
important to examine their equational theory. Milner [64] provided a sound and
complete axiomatisation of the structure of pure bigraphs; it is rather simple, due
to the independence of placing and linking. This axiomatisation has been refined
by Damgaard and Birkedal [26] for a version of the binding bigraphs outlined in
Section 11.3; it remains sound and complete. I conjecture that this result can also
be adapted to concrete bigraphs.

Hennessy and Milner [40] demonstrated in 1985 that process calculi are closely
associated with modal logics; for example, two processes are bisimilar if and only
if they satisfy the same sentences in such a logic. A first step has been taken for
bigraphs in this direction by Conforti, Macedonio and Sassone [23, 24]. For a
spatial model such as bigraphs, an attractive goal is a logic that expresses properties
such as ‘Mary has not visited this room before’, which depend upon tracking the
identity of individuals through time, as briefly discussed in Section 11.1.

Grohmann and Miculan have generalised bigraphs to directed bigraphs [37],

2 I am grateful to Marcelo Fiore for making me aware of this.

144 12 Background, development and related work

whose link graphs are self-dual; that is, their link graphs have a symmetric structure
with regard to composition. Importantly, RPOs still exist. The mild extra com-
plexity of directed bigraphs adds expressive power; indeed, the authors show how
to encode the fusion calculus of Parrow and Victor [69], which cannot be handled
directly in bigraphs.

Implementation and application The modelling of large-scale informatic sys-
tems is still at an experimental stage. Moreover, as with programming languages,
the useful experiments are those carried out with real applications, involving real
users and an assessment of their experience. With this in mind, a group [9] led by
Birkedal at the IT University (ITU) of Copenhagen has embarked on the design
and implementation of a bigraphical language for specification and programming,
and its implementation as a simulator. As with many languages, the workhorse
for the implementation is a matching algorithm, in this case for bigraphs; the
implemented algorithm is based upon specification by an inference system [12].
The first experiments with the language are being carried out in the (ITU) labora-
tory, on topics including ubiquitous computing [10], context-aware systems [11],
mobile resources [15] and business processes [17, 82]; the authors include Birkedal,
Bundgaard, Damgaard, Debois, Elsborg, Glenstrup, Hildebrandt, Niss and Olsen.

It is worth giving a little detail about one such experiment, involving location-
awareness, a special case of context-awareness. A location-aware system maintains
a record of the physical location of agents via input from hardware sensors; it is
then able to answer queries from agents such as ‘where is device X?’. This can
be regarded as a refinement of the simple example of a built environment used in
Example 1.2. The model used, called a Plato-graphical model [11], combines three
BRSs into one; the first W (‘world’) models the built environment, the second L

(‘locality’) models the information about location reported by sensors in W , and the
third A models an application that queries L about W . A large class of real location
systems and applications, such as the Lancaster tour guide [21], can be represented
and simulated. Experiments are continuing.

As explained in Chapter 6, most applications of bigraphs involve not only a
signature K, but also a sorting discipline that determines the admissible bigraphs
overK. Sorting disciplines for process calculi are given in theoretical papers already
cited [48, 56, 65], and have also been studied for polyadic π-calculus by Bundgaard
and Sassone [16] and reactive systems by Birkedal, Debois and Hildebrandt [14].

Finally, inspired by pioneering work [72] on applying process calculi to biol-
ogy, a stochastic treatment of the behaviour of bigraphs is proposed by Kriv-
ine, Milner and Troina [51], in the spirit of the stochastic κ-calculus by Danos
et al. [27]; it associates a stochastic rate to each reaction rule. This work shows
how rates for labelled transitions can be derived uniformly, and applies the model

Background, development and related work 145

to cell behaviour (membrane budding) in biology. Many applications of bigraphs,
including biology, are non-deterministic; thus the stochastic treatment has special
relevance to implementation, in order to yield useful simulation.

Conclusion It can be seen from this work that the bigraph model is being devel-
oped through a combination of mathematical intuition and experiment. The exper-
iment involves real interactive systems – both natural, as in biology, and artificial
as in ubiquitous computing and business systems. The model tests the hypothesis
that the simple ideas of placing and linking, both physical and metaphorical, unite
the mathematical foundation of interactive systems with their applications.

Appendices

Appendix A

Technical detail

A.1 Support translation

Recall that S is an infinite repertoire of support elements. This appendix comple-
ments Definition 2.13 by axiomatising the notion of support translation introduced
there.

Definition A.1 (support translation) For any arrow f : I→ J in an s-category
`C and any partial injective map ρ :S ⇀ S whose domain includes |f |, there is an
arrow ρ�f : I→ J called a support translation of f . Support translations satisfy the
following equations when both sides are defined:

(T1) ρ� idI = idI (T5) ρ�f = (ρ� |f |)�f
(T2) ρ�(g ◦f) = ρ�g ◦ρ�f (T6) |ρ�f | = ρ(|f |)
(T3) Id|f | �f = f (T7) ρ�(f ⊗ g) = ρ�f ⊗ ρ�g .

(T4) (ρ′ ◦ρ)�f = ρ′ �(ρ�f)

Two arrows f and g are support-equivalent, written f � g, if ρ �f = g for some
support translation ρ. �

Readers familiar with category theory will recognise these axioms as closely
related to the conditions governing 2-cells in a 2-category. More precisely, sup-
port translations correspond to the isomorphisms between arrows. Groupoidal
2-categories (where all 2-cells are isomorphisms) have been proposed as an al-
ternative basis for bigraphs, and that work continues. They differ from our s-
categories, since the latter associate a support set with each arrow. At the same
time, s-categories are convenient for many proofs, and support provides a direct
means of tracking the history of individual agents (Section 11.1); it plays a role
similar to labels and residuation in the λ-calculus.

147

148 A Technical detail

A.2 Public versus private names

In this appendix we explain the decision to represent names alphabetically, drawn
from an infinite alphabetX , rather than by ordinals. Let us callX the public names.

The alternative to public names is to use interfaces I = 〈k,m〉 where k indexes
places as before, and m = {0, . . . , m−1} is a finite ordinal indexing names, in-
stead of a finite set X ⊂ X of public names. These ordinal names are no longer
public. Let us call them private names; they are private to an interface I , and
therefore private to each bigraph having I as its inner or outer face.

The immediate consequence of adopting private names is that the tensor product
of two interfaces, and therefore of two abstract bigraphs, is always defined. For
such a pair of Fi : 〈ki, mi〉→〈�i, ni〉, the tensor product becomes

F0 ⊗ F1 : I→ J ,

where I = 〈k0+k1, m0+m1〉 and J = 〈�0+�1, n0+n1〉 .
This alternative has two advantages. First, there is simplicity in using the same
regime for indexing names as for indexing regions. But the major advantage is that,
by conforming exactly to the standard notion of symmetric monoidal category, it
allows the theory of the latter to be applied to bigraphs without any adaptation.

Why then should we adopt our present regime of a repertoireX of public names?
First, the partial definedness of tensor product complicates our theory only slightly.
For example the proof that our axiomatisation of bigraphical structure is sound and
complete [64], as asserted in Theorem 3.6, is rendered no more complex. Second –
a pragmatic advantage – the use of different indexing regimes for names and regions
adds notational clarity in technical manipulations.

Third, public names yield a major advantage in deriving operations that are stan-
dard in process calculi, especially the parallel and merge products ‘ ‖ ’ and ‘ | ’ and
the nesting operation ‘.’ as detailed in Chapter 3. For example, to juxtapose in
parallel a set a1, . . . , an of agents sharing certain channels for interaction, one re-
quires only a single derived product ‘ ‖ ’ that is commutative and associative, and
one writes

a1 ‖ · · · ‖ an .

On the other hand, if names are private then such a juxtaposition must be written

σ ◦ (a1 ⊗ · · · ⊗ an) ,

where σ is a specific substitution (a map of finite ordinals). To distribute σ over
this product requires a hierarchy of smaller substitutions. One can avoid explicit
mention of substitutions, but only by deriving a family of parallel products, each
composing different substitutions with a tensor product.

Thus, although the embedding of process calculi in bigraphs can probably be

A.3 RPOs for link graphs 149

achieved using private names, it will be less direct and may be cumbersome. It is
remarkable that, though process calculi differ in other ways, they appear to agree
in the efficacy of public names. Therefore, by adopting these also for bigraphs, we
lower the barrier between it and the existing process theories. This serves two main
purposes: first, to investigate what is fundamental to those theories, and second, to
serve as a tool based upon those theories for design, analysis and programming.

For purposes closer to categorical mathematics, it should not be hard to reformu-
late bigraph theory in terms of private names.

A.3 RPOs for link graphs

In this appendix we prove the validity of the construction of RPOs for link graphs.

Lemma 5.7 As defined in Construction 5.5, (
B,B) is a bound for
A relative to
D.

Proof To prove B0 ◦A0 = B1 ◦A1, by symmetry it will be enough to consider
cases for p ∈W � P0, and for the value of A0(p).

Case p ∈ P0 \ P2, A0(p) = e ∈ E0. Then (B1 ◦A1)(p) = B1(p) = D1(p) =
(D1 ◦A1)(p) = (D0 ◦A0)(p) = A0(p) = (B0 ◦A0)(p).

Case p ∈ P0 \ P2, A0(p) = x0 ∈ X0. Then (B1 ◦A1)(p) = B1(p) = x̂0 =
B0(x0) = (B0 ◦A0)(p).

Case q ∈ W � P2, A0(q) = e ∈ E0 \ E2. Then (B0 ◦A0)(q) = A0(q) = e. Also
(D1 ◦A1)(q) = (D0 ◦A0)(q) = e, so for some x1 ∈ X1 we have A1(q) = x1 and
D1(x1) = e, hence x1 /∈ X ′

1. Then (B1 ◦A1)(q) = B1(x1) = D1(x1) = e.

Case q ∈ W � P2, A0(q) = e ∈ E2. Then (D1 ◦A1)(q) = (D0 ◦A0)(q) = e, so
also A1(q) = e. Hence (B1 ◦A1)(q) = e = (B0 ◦A0)(q).

Case q ∈ W � P2, A0(q) = x0 ∈ X ′
0. Then D0(x0) ∈ E3 � Z, and so

(D1 ◦A1)(q) = (D0 ◦A0)(q) ∈ E3 � Z; hence for some x1 ∈ X ′
1 we have

A1(q) = x1 and D1(x1) = D0(x0). Hence (B0 ◦A0)(q) = B0(x0) = D0(x0) =
D1(x1) = B1(x1) = (B1 ◦A1)(q).

Case q ∈ W � P2, A0(q) = x0 ∈ X0 \ X ′
0. Then D0(x0) = e ∈ E1 \ E2;

hence (D1 ◦A1)(q) = (D0 ◦A0)(q) = e, so A1(q) = e. So (B1 ◦A1)(q) = e =
D0(r0) = B0(x0) = (B0 ◦A0)(q).

We now prove B ◦B0 = D0 by case analysis.

Case x ∈ X ′
0. Then (B ◦B0)(x) = B(0̂, x) = D0(x).

Case x ∈ X0\X ′
0. Then B0(x) = D0(x) ∈ E0\E2, hence (B ◦B0)(x) = D0(x).

150 A Technical detail

Case p ∈ P1\P2, D0(p) ∈ E1\E2. SinceD0 ◦A0 = D1 ◦A1 we haveA1(p) /∈ X1,
so B0(p) = D0(p) ∈ E1 \ E2; hence (B ◦B0)(p) = B0(p) = D0(p).

Case p ∈ P1 \P2, D0(p) ∈ E3 �Z. Since D0 ◦A0 = D1 ◦A1 there exists x ∈ X1

with A1(p) = x; moreover we readily deduce x ∈ X ′
1, so B0(p) = 1̂, x. Hence

(B ◦B0)(p) = B(1̂, x) = D1(x) = (D1 ◦A1)(p) = (D0 ◦A0)(p) = D0(p).

Case p ∈ P3. Then (B ◦B0)(p) = B(p) = D0(p). �

Theorem 5.8 (RPOs in link graphs) `Lg(K) has RPOs; that is, whenever a span

A of link graphs has a bound
D, there exists an RPO (
B,B) for
A to
D. Moreover
Construction 5.5 yields such an RPO.

Proof We have already proved that the triple (
B,B) built in Construction 5.5
is an RPO candidate. Now consider any other candidate (
C,C) with intervening
interface Y . Ci has nodes Vı \ V2 � V4 (i = 0, 1) and C has nodes V5, where
V4 � V5 = V3. We have to construct a unique mediating arrow Ĉ, as shown in the
diagram.

C0

Ĉ
X1X0

C1

B

B1

D0 D1

A1

Z

B0

A0

X̂

C

Y

We define Ĉ with nodes V4 as follows:

for x̂ = î, x ∈ X̂ : Ĉ(x̂) def= Ci(x)
for p ∈ P4 : Ĉ(p) def= Ci(p) .

Note that the equations Ĉ ◦Bi = Ci (i = 0, 1) determine Ĉ uniquely, since they
force the above definition. We now prove the equations (considering i = 0):

Case x ∈ X ′
0. Then (Ĉ ◦B0)(x) = Ĉ(0̂, x) = C0(x).

Case x ∈ X0 \ X ′
0. Then D0(x) ∈ E1 \ E2, so B0(x) = D0(x), hence

(Ĉ ◦B0)(x) = D0(x). Also sinceC ◦C0 = D0 ∈ E1\E2 we haveC0(x) = D0(x).

Case p ∈ P1 \ P2, D0(p) ∈ E1 \ E2. Since D0 ◦A0 = D1 ◦A1 we have A1(p) /∈

A.4 Quotient of a transition system 151

X1, so B0(p) = D0(p), hence (Ĉ ◦B0)(p) = D0(p). Also C0(p) = (C ◦C0)(p) =
D0(p).

Case p ∈ P1 \P2, D0(p) ∈ E3�Z. Then A1(v) = x ∈ X ′
1 with D1(x) = D0(p),

and B0(p) = 1̂, x. So (Ĉ ◦B0)(p) = Ĉ(1̂, x) = C1(x) = (C0 ◦A0)(p) = C0(p).

Case p ∈ P4. Then (Ĉ ◦B0)(p) = Ĉ(p) = C0(p).

It remains to prove that C ◦ Ĉ = B. The following cases suffice:

Case x̂ = 0̂, x ∈ X , B(x̂) ∈ E4. Then (C ◦ Ĉ)(x̂) = Ĉ(x̂) = C0(x) = D0(x) =
B(x̂).

Case x̂ = 0̂, x ∈ X , B(x̂) ∈ E5 � Z. Then D0(x) = B(x̂) ∈ E5 � Z, so for
some y ∈ Y we have C0(x) = y and C(y) = B(x̂). But by definition Ĉ(x̂) = y,
so (C ◦ Ĉ)(x̂) = C(y) = (C ◦C0)(x) = D0(x) = B(x̂).

Case p ∈ P4, B(v) ∈ E4. Then (C ◦ Ĉ)(p) = Ĉ(p) = C0(p) = D0(p) = B(p).

Case p ∈ P4, B(p) ∈ E5 � Z. Then B(p) = D0(p) = C(y), where C0(p) = y ∈
Y , and by definition Ĉ(p) = C0(p), so (C ◦ Ĉ)(p) = C(y) = B(p).

Case p ∈ P5. Then (C ◦ Ĉ)(p) = C(p) = D0(p) = B(p).

Hence Ĉ is the required unique mediator; so (
B,B) is an RPO. �

A.4 Quotient of a transition system

In this appendix we prove Theorem 7.23, justifying the transfer of a transition
system and its bisimilarity from a concrete WRS to its quotient abstract WRS.

Theorem 7.23 (bisimilarity induced by quotient) Let `C be equipped with a raw
or contextual transition system L that respects a structural congruence ≡. Denote
the quotient `C/≡ by C. Then the following hold for [[L]]:

(1) a ∼ b in `C iff [[a]] ∼ [[b]] in C.
(2) If bisimilarity is a congruence in `C then it is a congruence in C.

Proof We treat only the contextual case; the raw case is simpler.

(1)⇒ We establish in C the bisimulation

R = {([[a]], [[b]]) | a ∼ b} .

Let a ∼ b in `C, and let p = [[a]], q = [[b]] and p
g

�ı̃ p
′ in C. By definition of the

induced transition system, the triple (p, g, p′) has an [[·]]-preimage (a1, f1, a
′
1) such

that a1
f1 �ı̃ a

′
1 in `C. Now, since the labels in a TS are closed under �, there exists

152 A Technical detail

a label (f, ı̃) with f � f1 and both f ◦a and f ◦ b defined. Hence by respect, since

f � f1 implies f ≡ f1, there exists a′ ≡ a′
1 such that a

f
�ı̃ a

′.
Since a ∼ b and f ◦ b is defined, there exists b′ such that b

f
�ı̃ b

′ and a′ ∼ b′. It
follows that q

g
�ı̃ q

′ in C, where q′ = [[b′]] and (p′, q′) ∈ R, so we are done.

(1)⇐ We establish in `C the bisimulation

S = {(a, b) | [[a]] ∼ [[b]]} .

Let [[a]] ∼ [[b]] in C, and let p = [[a]], q = [[b]] where a
f

�ı̃ a
′ in `C with f ◦ b defined.

Then p
g

�ı̃ p
′ in C, where g = [[f]] and p′ = [[a′]]. So for some q′ we have q

g
�ı̃ q

′

with p′ ∼ q′.
This transition must arise from a transition b1

f1 �ı̃ b
′
1 in `C, where q = [[b1]],

g = [[f1]] and q′ = [[b′
1]]. But then b1 ≡ b and f1 ≡ f ; we also have f ◦ b defined,

andL respects≡, so we can find b′ for which b
f

�ı̃ b
′ and b′

1 ≡ b′. But (a′, b′) ∈ S,
so we are done.

(2) Assume that bisimilarity in `C is a congruence. In C, let p ∼ q with p, q : I , and
let r : I→ J be a context with r ◦p and r ◦q defined. Then since [[·]] is surjective
on each homset, there exist a, b : I and c : I→ J in `C with p = [[a]], q = [[b]] and
r = [[c]]; moreover, since c � c′ ⇒ [[c]] = [[c′]], c can be chosen so that c ◦a and c ◦ b

are defined.
From (1)⇐ we have a ∼ b, hence by assumption c ◦a ∼ c ◦ b. Applying the

functor [[·]] we have from (1)⇒ that r ◦p ∼ r ◦q in C, as required. �

A.5 Unambiguity of labels

In this appendix we prove that, under certain conditions, prime transition labels
are unambiguous, i.e. a label cannot belong to both an engaged and a disengaged
transition. We first need a lemma that characterises prime disengaged transitions.

Lemma A.2 Let a L
� a′ be a prime disengaged transition, based on a parametric

redex R that is simple and unary. Let a : 〈X〉, and let r = R .(d0⊗ · · · ⊗ dm−1) be
the underlying ground redex. Then

(1) The outer nodes of L are those of R.
(2) The node-set of a is non-empty and included in that of di for some i ∈ n.
(3) The single site of L is guarded.
(4) No x ∈ X is linked to any port in L.

Proof For (1), use |R| ⊆ |L| ⊆ |r|, with R guarding. For (2), recall that if
|a|∩|r| = ∅ then the IPO would be tensorial, hence a′ non-prime, contra hypothesis.

A.6 Faithfulness of engaged transitions 153

For (3), use (2) and the fact that R is guarding. For (4), appeal to the IPO
construction and each di discrete. �

Now, using the notions of split and tight redex from Definition 3.19, we prove:

Proposition 8.14 (unambiguous label) Let L be the label of a prime transition in
mt, in a safe BRS where every redex is simple, unary and tight. Then the label L is
unambiguous.

Proof Suppose to the contrary that some L-transition is disengaged, but that
b L

� b′ is engaged with underlying ground redex s = S.d such that (b, s) has IPO
(L, E). We shall derive a contradiction.

Let b : 〈X〉. Because L is the label of some prime disengaged transition, it satis-
fies the conditions in Lemma A.2; thus its node-set is non-empty. Now each node of
L is a node of s; in particular each outermost node of L must be an outermost node
of S, since L ◦ b = E ◦s and S is guarding. So |S| ∩ |L| �= ∅. Also, |S| ∩ |b| �= ∅
since the transition is engaged.

Thus (L, b) is a unary split for S. By assumption this split is tight, hence some
node of b is linked via X to some node of L. But this contradicts Lemma A.2(4),
completing our proof that the transition of b is disengaged. �

A.6 Faithfulness of engaged transitions

This appendix proves Theorem 8.19, asserting the faithfulness of engaged transi-
tions for prime agents in a nice concrete BRS `Bg(Σ,`R). Thus, in an interface the
regions and names may have place sorts and link sorts respectively. As in Chap-
ter 8, we avoid heavy notation by leaving these implicit. Occasionally we need
to pull results from the unsorted BRS to the sorted one, back along the forgetful
functor U : `Bg(Σ)→ `Bg(K), where K is the basic signature underlying Σ.

We first show that, for prime a, if we apply an affine instantiation η to G ◦a then
the result has a form independent of a.

Proposition A.3 (affine instantiation) Let G : 〈X〉→〈m, Z〉 be a context, and let
η :n→m be an injective map. Then:

either there exists C : 〈X〉→〈n, Z〉 such that η(G ◦a) � C ◦a for all a ;
or there exists a ground c : 〈n, Z〉 such that η(G ◦a) � c for all a .

Proof Since G has unary inner face, by Proposition 3.9 we can express it as

G = µ ◦ (idX ⊗ d0 ⊗ · · · ⊗ dk−1 ⊗D ⊗ dk+1 ⊗ · · · ⊗ dm−1)

for some k ∈ m and some linking µ :X � Y →Z, where di : 〈Yi〉 (i �= k) are all
discrete, D : 1→〈Yk〉 is discrete and Y =

⊎
i∈m Yi.

154 A Technical detail

Now any a : 〈X〉 can be expressed as a = λ ◦d for some linking λ :W →X and
discrete d : 〈W 〉. Then we can express the composition G ◦a as follows:

G ◦a = µ ◦ (λ⊗ idY) ◦ (d0 ⊗ · · · ⊗ dk−1 ⊗ dk ⊗ dk+1 ⊗ · · · ⊗ dm−1)

where dk
def= (idW⊗D) ◦d; its names are W�Yk. Since dk is discrete this expression

for G ◦a is a DNF, and therefore by Definition 8.3 its instance by η is

η(G ◦a) � µ ◦ (λ⊗ idY) ◦ (dη(0) ⊗ · · · ⊗ dη(n−1)) .

Since η is injective the dη(j) have disjoint name-sets, so may be combined by ⊗
rather than by ‖ as in Definition 8.3. Since η may not be surjective there are two
cases:

(1) η(�) = k for some � ∈ n. Then we may rewrite the instance as

η(G ◦a) � µ ◦ (λ⊗ idY) ◦ (dη(0) ⊗ · · · ⊗ dk ⊗ · · · ⊗ dη(n−1))
= µ ◦ (λ⊗ idY) ◦ (dη(0) ⊗ · · · ⊗ ((idW ⊗D) ◦d)⊗ · · · ⊗ dη(n−1))
= C ◦a

where C
def= µ ◦ (dη(0) ⊗ · · · ⊗ (idX ⊗D)⊗ · · · ⊗ dη(n−1)) is independent of a.

(2) η(�) �= k for all � ∈ n. Then the inner names W of λ :W →X are not among
the names of dη(0) ⊗ · · · ⊗ dη(n−1). But it is easily seen that λ ◦W � X; hence

η(G ◦a) � µ ◦ (λ⊗ idY) ◦ (dη(0) ⊗ · · · ⊗ dη(n−1))
� c

def= µ ◦ (X ⊗ idY) ◦ (dη(0) ⊗ · · · ⊗ dη(n−1))

which is independent of a as required. �

We continue with a lemma that lifts an IPO property from unsorted to sorted
bigraphs; it is that certain spans whose members have disjoint support have an IPO
that is tensorial.

Lemma A.4 In `Bg(Σ), with Σ safe, let A : I ′→ I and B :J ′→ J be both hard,
with disjoint supports, and let B be open with no idle names. Let the span (A ⊗
idJ ′ , idI′ ⊗B) have an IPO (C, D). Then, up to an iso at their common outer face
K, we have C = idI ⊗B and D = A⊗ idJ .

Proof We use many safety properties from Definition 4.6. Let U : `Bg(Σ)→
`Bg(K) be the sorting functor. Since U preserves RPOs and identities, it also
preserves IPOs. So U(C, D) is an IPO for the span U(A⊗ idJ ′ , idI′ ⊗B). Also U
preserves the properties assumed for A and B. Since bothU(A) andU(B) are hard,
no other IPO for the span can arise from place elisions, and since U(B) is open with
no idle names, none can arise from link elisions either. Hence, up to isomorphism,

A.6 Faithfulness of engaged transitions 155

the IPO is unique, and must be the tensorial IPO defined in Corollary 5.21; thus,
for some iso ι′ we have

ι′ ◦U(C) = id⊗ U(B) and ι′ ◦U(D) = U(A)⊗ id .

Now ι′ has inner face U(K), and since U creates isos there exists an iso ι with inner
face K such that U(ι) = ι′. We deduce

U(ι ◦C) = id⊗ U(B) and U(ι ◦D) = U(A)⊗ id .

But U reflects products, so ι ◦C = id⊗B and ι ◦D = A⊗ id as required. �

We next consider the IPO underlying a minimal transition a L
�ı̃ a

′ with redex
R. It can be decomposed into an IPO pair, as shown in the diagram, with R simple
and d discrete.

LredLpar

d idW⊗R

a DDpar

From now on we shall call a transition simple when its underlying redex is simple.
We need three lemmas about simple minimal transitions that are disengaged.

Lemma A.5 Let the diagram underlie a disengaged simple minimal transition.
Then Dpar = D′ ⊗ idm for some D′, up to iso, where m is the inner face of R.

Proof Since |Dpar| ⊆ |a|we also have |Dpar| ∩ |R| = ∅. Let K be the outer face
of Dpar. It is enough to prove, for each site i ∈ m, that (1) Dpar(i) = k is a root in
K, and (2) i has no siblings in Dpar.
(1) Since R is guarding, R(i) = v for some node v, hence (Lred ◦Dpar)(i) = v.
But v is not in Dpar by assumption, so Dpar(i) = k and Lred(k) = v for some root
k.
(2) Now suppose i has a sibling, i.e. Dpar(w) = k for some site or node w �= i.
Then we have (Lred ◦Dpar)(w) = v, whence also R(w) = v. If w is a site this
contradicts R inner-injective; if it is a node then it contradicts |Dpar| ∩ |R| = ∅.
Hence no such w can exist. This completes the proof. �

Lemma A.6 Let the diagram underlie a disengaged simple minimal transition
based upon (R, R′, η), where a is prime and hard with |a| ∩ |d| �= ∅. Then D

and a′ take the following form up to iso, where λ :W →W ′ is a linking:

Lred = idW ′ ⊗R , D = λ⊗ idJ and a′ = (idW ′ ⊗R′) ◦η(Lpar ◦a) .

156 A Technical detail

Proof From Lemma A.5 we find that Dpar takes the form Dpar = D′ ⊗ idm up
to iso, where D′ has domain W and m is the inner width of R.

First we claim that D′ has no nodes. For since d is discrete there exists a node
u ∈ |a| ∩ |d|. If there exists also a node v ∈ |D′| then v ∈ |a|, hence (since a is
prime) u, v would be in the same region of Lpar ◦a but different regions of Dpar ◦d,
contra the commutation of the left-hand square.

Now any root in D′ would be idle, contradicting a hard (since the left square is an
IPO). Hence D′ has no roots, so D′ = λ :W →W ′, a linking, and Dpar = λ⊗ idm.

Now consider the right-hand IPO. Dpar is hard, since a is hard, and R is hard
and open since it is a parametric redex. Thus we may apply Lemma A.4, and this
immediately yields the first two equations. For the third:

a′ = D ◦ (idW ⊗R′) ◦η(d)
= (idW ′ ⊗R′) ◦ (λ⊗ idI′) ◦η(d)

(∗) = (idW ′ ⊗R′) ◦η((λ⊗ idI) ◦d)
= (idW ′ ⊗R′) ◦η(Lpar ◦a)

where at (∗) we commute an instantiation with a linking, by Proposition 8.4. �

Lemma A.7 Let the span (a, d) have a bound (D, λ ⊗ idm), where a is hard and
d, D are discrete. Then the bound is an IPO.

λ⊗idm

D

d
a

B E

C

Proof Let (B,C,E) be an RPO for (a, d) relative to (D, λ⊗ idm). Then (B,C)
is an IPO for (a, d), so it will be enough to prove E to be an iso.

Consider place graphs: CP has no idle roots since a is hard; also EP ◦CP = id,
so EP is a place iso. Now consider link graphs: BL is discrete since dL is so, and
has the same nodes as DL; hence EL is a link iso.

It follows that E is an iso, completing the proof. �

We can now prove the faithfulness theorem.

Theorem 8.19 (engaged transitions are faithful) In a nice BRS, let pe be a prime
engaged transition system whose agents are hard. Then

(1) pe is faithful to the minimal wide transition system mt.

(2) ∼pe is a congruence.

A.6 Faithfulness of engaged transitions 157

Proof Since faithfulness means that ∼pe = ∼mt when restricted to the agents of
pe, (2) follows from (1) together with the congruence of ∼mt. It remains to prove
(1).

We know from Theorem 8.16 that pe is definite, and hence that ∼mt ⊆ ∼pe on
prime agents. For the converse, ∼pe ⊆ ∼mt, we shall show that

S = {(C ◦a0, C ◦a1) | a0 ∼pe a1} ∪�

is a bisimulation for mt up to support equivalence. We then obtain the main result
by taking C = id.

Suppose that a0 ∼pe a1. Let C ◦a0
M

�̃ b′
0 be a transition of mt with M ◦C ◦a1

defined. We must find b′
1 such that C ◦a1

M
�̃ b′

1 and (b′
0, b

′
1) ∈ S�.

There exists a ground reaction rule (r0, r
′
0) and an IPO – the large square in

diagram (a) below – underlying the given transition of C ◦a0. Moreover E0 is
active, and if width(cod(r0)) = m then width(E0)(m) = ̃ and b′

0 � E0 ◦r′
0. By

taking an RPO for (a0, r0) relative to (M ◦C, E0) we get two IPOs as shown in the
diagram. Note that a0 is prime, but C ◦a0 and b′

0 may not be.

Now D0 is active, so the lower IPO underlies a transition a0
L

�ı̃ a
′
0

def= D0 ◦r′
0,

where ı̃ = width(D0)(m0). Again, a′
0 may not be prime. Also E is active at ı̃,

and b′
0 � E ◦a′

0. Since M ◦C ◦a1 is defined we deduce that L ◦a1 is defined, and

we proceed to show in three separate cases the existence of a transition a1
L

�ı̃ a
′
1,

with underlying IPO as in diagram (b). (We cannot always infer such a transition
for which a′

0 ∼pe a′
1, even though a0 ∼pe a1, since the transition of a0 may not be

engaged.) Substituting this IPO for the lower square in (a) then yields a transition

C ◦a1
M

�̃ b′
1

def= E ◦a′
1 .

In each case we shall verify that (b′
0, b

′
1) ∈ S�, completing the proof of the theorem.

(a)
(b)

L

r0

M

a0

E

D1

L

r1
a1

D0

E0C

Case 1 The transition of a0 is engaged.
Then since r0 is prime, by considering the IPO (L, D0) and the outer face of D0

we find that a′
0 is prime, so the transition may be written a0

L
� a′

0 and lies in pe.

Since a0 ∼pe a1, there exists a transition a1
L

� a′
1 with a′

0 ∼pe a′
1. This readily

yields the required transition of C ◦a1.

158 A Technical detail

Case 2 |a0|# |r0|.
Consider the lower IPO of (a). Since a0 is hard, and r0 both hard and open (since
it is a ground redex), we may apply Lemma A.4 to obtain that up to iso

L = id⊗ r0 and D0 = a0 ⊗ id .

Then a′
0 � (id⊗ r′

0) ◦a0. Taking C ′ def= E ◦ (id⊗ r′
0) we have b′

0 � C ′ ◦a0.
Now, since L ◦a1 is defined, |a1|# |r0|. So, taking r1 = r0 and D1 = a1 ⊗ id,

we obtain again by Lemma A.4 that the diagram (b) is an IPO. Substitute it for the
lower square in (a), yielding a transition C ◦a1

M
�̃ b′

1
def= E ◦a′

1. Then b′
1 = C ′ ◦a1,

so (b′
0, b

′
1) ∈ S� as required.

Case 3 The transition of a0 is not engaged, but |a0| ∩ |r0| �= ∅.
Then there is a rule (R, R′, η) with |a0|# |R|, and a discrete parameter d0 such that

r0 = (idW0 ⊗R) ◦d0 and r′
0 = (idW0 ⊗R′) ◦η(d0) .

Assume R : m→ J . Since a0 is prime, from Lemma A.6 we find that, up to iso-
morphism, the IPO pair underlying the transition of a0 takes the form of diagram
(c) below, and moreover that a′

0 = (idW ′ ⊗R′) ◦η(Lpar ◦a0) .

(c) (d)

d0 idW0⊗R

Lpar

a0

d1 idW1⊗R

Lpar

a1

Lred = idW ′⊗R Lred = idW ′⊗R

λ1⊗idJλ1⊗idmλ0⊗idJ

We seek a similar transition for a1. First we claim that, since support equivalence
respects transition, we may assume that |a1|# |R|. For we may translate the support
of R, and hence of L, M and C, in the diagram underlying the assumed transition
C ◦a0

M
�̃ b′

0 without affecting its result b′
0, since the latter is defined only up to �.

Moreover this support translation can achieve |a1|# |R| while retaining |a0|# |R|
and |d0|# |R|.

Now consider Lpar ◦a1. By Proposition 3.9 there is a linking λ1 : W1→W ′ and
discrete d1 : W1⊗m such that Lpar ◦a1 = (λ1⊗idm) ◦d1. Also, since d0 is discrete,
we know by Proposition 5.19 that Lpar is discrete; hence (Lpar, λ1⊗ idm) is an IPO
for (a1, d1) by Lemma A.7. This is the left-hand square in diagram (d).

By Lemma A.4 the right-hand square of (d) is also an IPO. Since |Lpar|# |Lred|
and |d1|# |R|, we may paste the squares together to form a larger IPO. Therefore,
by manipulations as in Lemma A.6,

a1
L

�ı̃ a
′
1

def= (λ1 ⊗ idJ) ◦ (idW1 ⊗R′) ◦η(d1)

= (idW ′ ⊗R′) ◦η(Lpar ◦a1) .

A.7 Recovering bisimilarity for CCS 159

As in the previous case, this yields a transition C ◦a1
M

�̃ b′
1

def= E ◦a′
1. We now

have

(b′
0, b

′
1) = (F ◦η(Lpar ◦a0), F ◦η(Lpar ◦a1))

for a certain context F , where a0 ∼pe a1 (both prime). Since η is affine, we can
appeal to Proposition A.3 to find two cases. In the first case there is a context C

such that η(Lpar ◦a) � C ◦a for any a, and hence (b′
0, b

′
1) ∈ S�. In the second

case there is a ground arrow c such that η(Lpar ◦a) � c for any a, hence b′
0 � b′

1,
so (b′

0, b
′
1) ∈ S. Thus the bisimulation up to support equivalence is established.

This completes the proof of the theorem. �

As we have seen in case 1 of the proof, when a simple transition a L
�ı̃ a

′ is en-
gaged, and a is prime, then so is a′. Thus, in proving the bisimilarity of prime
agents, we can indeed confine attention to bisimulations containing only prime
agents.

A.7 Recovering bisimilarity for CCS

Theorem 10.6 (recovering CCS) Mono bisimilarity recovers CCS, i.e.∼m = ∼ccs.

Proof (⊇) To show ∼m ⊇ ∼ccs it will suffice to prove that

S def= {(p1|q, p2|q) | p1 ∼ccs p2}

is a bisimulation for pem; the result follows from Proposition 10.5 by taking q = nil.
Assume p1 ∼ccs p2, and let p1 | q L

� u1, where L is not a substitution label. We

seek a transition p2 | q L
� u2 such that (u1, u2) ∈ S. We consider the cases for L;

we need only consider cases 1 and 3 of Figure 10.1, since case 2 is like the first.

Case 1 L = id | alt.(getxc · ·). Then, from Figure 10.1, p1 | q contains an unguarded
molecule alt.(sendxa · ·), in which x is free. There are two subcases:

If the molecule lies in q, then from Figure 10.1

q = /Z(alt.(sendxa · ·) | b)
u1 = p1 | /Z(a | b) | c

where x /∈ Z and we can assume no free name of p2 lies in Z. Then, from
Figure 10.1, p2 | q L

� u2
def= p2 | /Z(a | b) | c. But (u1, u2) ∈ S, so we are done.

160 A Technical detail

On the other hand, if the molecule lies in p1 then

p1 = /Z1(alt.(sendxa1 · ·) | b1)
u1 = /Z1(a1 | b1) | q | c

where x /∈ Z1 and we can assume no free name of q lies in Z1. Then from

Figure 10.2 there is a raw transition p1
x−→ p′

1
def= /Z1(a1 | b1), so u1 = p′

1 | q | c.

But p1 ∼ccs p2, so for some p′
2 we have p2

x−→ p′
2 ∼ccs p′

1, and from Figure 10.2
we find

p2 = /Z2(alt.(sendxa2 · ·) | b2)
p′
2 = /Z2(a2 | b2)

where x /∈ Z2, and we can assume no free name of q or c lies in Z2. Then from
Figure 10.1 we find p2 | q L

� u2
def= p′

2 | q | c. But (u1, u2) ∈ S, so we are done.

Case 3 L = id. Then p1 | q has an unguarded pair of molecules, together corre-
sponding to a redex. There are four cases, depending on whether each molecule
lies in p1 or in q. If both lie in p1 or both in q the argument is easy; we therefore
consider just one of the remaining (symmetric) pair of cases.

Suppose then, consulting Figure 10.1, that

p1 = /Z1(alt.(sendx.a1 · ·) | b1)
q = /Z(alt.(getx.a · ·) | b)

u1 = /Z1(a1 | b1) | /Z(a | b)
where we can assume that no free name of one is closed in the other, and x /∈ Z1�Z.

Then we have a raw transition p1
x−→ p′

1
def= /Z1(a1 | b1). But p1 ∼ccs p2, so there

exists p′
2 with p2

x−→ p′
2 ∼ccs p′

1, and by Figure 10.2 this takes the form

p2 = /Z2(alt.(sendx.a2 · ·) | b2)
p′
2 = /Z2(a2 | b2) .

Then from Figure 10.1 we deduce p2 | q id
� u2

def= p′
2 | /Z(a | b), and (u1, u2) ∈ S,

so we are done.

(⊆) To show ∼m ⊆ ∼ccs we shall prove that ∼m is a bisimulation for ∼ccs.
Assume p ∼m q and p

α−→ p′; we seek a matching transition q
α−→ q′ such that

p′ ∼m q′.
If α = x then the structure of p and p′ is dictated by case 1 of Figure 10.2. Now,

choosing L = alt.(getx.nil), we find from case 1 of Figure 10.1 that p L
� p′ | nil.

Since p ∼m q we have q L
� q′′ with p′ | nil ∼m q′′. By case 1 of both Figures 10.1

and 10.2 there exists q′ such that q′′ = q′ | nil and q
x−→ q′. Appealing to Proposi-

tion 10.5, we then find p′ ∼m q′ as required.

A.7 Recovering bisimilarity for CCS 161

The argument for α = x is similar. The argument for α = τ is even simpler,
using case 3 of both Figures 10.1 and 10.2. This completes the proof of the theorem.

�

Appendix B

Solutions to exercises

Solutions for Chapter 1

1.1

(1)

(2) Choose interface 〈2, ∅〉; the diagram for E is similar to that for E3.

162

Solutions to exercises 163

1.2

(1) With B1–B5 there are at least the following invariants:

the structure of buildings and rooms is unchanged;
each room contains a single computer, linked to the infrastructure of its
building;
each computer is linked to at most one agent, who is in the same room;
there are exactly five agents;
there is at most one conference call in progress;
an agent who leaves a conference call never rejoins it.

(2) When B4 and B5 are replaced by B6 all the above hold, and also:

an agent cannot unlink from a computer without leaving the room.

When you have read Definition 8.5 and the remarks following it, you will see that
some of these invariants make sense only when the identity of an agent (i.e. its
support) can be tracked through a reaction.

1.3

164 B Solutions to exercises

Solutions for Chapter 2

2.1 For link graphs, suppose that A :X→Y , B :Y →Z, C :Z→W . Let link0,
link1 be the link graphs of C ◦ (B ◦A) and (C ◦B) ◦A respectively. They both take
points p ∈ X � PA � PB � PC to links in EA � EB � EC � Z.

Consider the six possible cases.

(i) p ∈ X � PA. Then link0(p) lies in EA, or in EB , or in EC �W .
(ii) p ∈ PB . Then link0(p) lies in EB or in EC �W .

(iii) p ∈ PC . Then link0(p) lies in EC �W .

In each case prove link1(p) = link0(p). It is just a matter of unpacking the defini-
tion of composition.

The argument for place graphs is similar.

2.2 For the inductive basis, with C = [·], take f = id.
For the inductive step, first suppose C′ = g ⊗ C (the case C′ = C ⊗ g is similar),

and assume there exists f such that f ◦a = C[a] for all ground a. Then take
f ′ = g ⊗ f , and prove f ′ ◦a = C′[a] as follows:

f ′ ◦a = (g ⊗ f) ◦a

= (g ⊗ f) ◦ (idε ⊗ a) by M2
= (g ◦ idε)⊗ (f ◦a) by M3
= g ⊗ (f ◦a) by C3
= g ⊗ C[a]
= C′[a] .

Now suppose C′ = h ◦C; then take f ′ = h ◦f , and justify it as follows:

f ′ ◦a = (h ◦f) ◦a

= h ◦ (f ◦a) by C2
= h ◦C[a]
= C′[a] .

2.3 Any bigraph G : I→ ε has an empty place graph, since a non-empty place graph
implies at least one root. Also, in the link graph GL :X→∅ of G, every link is
an edge. But if G has empty support then it has no edges, so X = ∅, I = ε and
G = idε.

Solutions for Chapter 3

3.1 A linking is just a map from inner names to outer names and edges. So a
substitution σ from X to Y is just a tensor product of elementary substitutions

σ
def= y0/X0 ⊗ · · · ⊗ yn−1/Xn−1, where X = X0 � · · · �Xn−1 and Y = {
y} .

Solutions to exercises 165

Now partition Y into Z = {y0 · · · yk−1} and W = {yk · · · yn−1}. We get any link
map λ by setting /W

def= /yk⊗· · ·⊗/yn−1, and forming λ
def= (idZ ⊗/W) ◦σ . This

use of composition is the only way to close a substitution.

3.2 The expression G can be specialised to the four quoted cases by setting (1)
C1 = id and I = ε, (2) I = ε and C0 = id, (3) C1 = id and C0 = idJ ⊗ C (for
F :J→K), and (4) C1 = γK,I and C0 = (idJ ⊗ C) ◦γI,J .

To show that g = C ◦a implies that a occurs in g, take F = a, I = ε, C0 = idε.
For the converse, assume that g = C ◦ (a ⊗ idI) ◦C ′; we must find D such that
g = D ◦a. Indeed, since a is ground we have g = C ◦ (a⊗ C ′); the result follows
by taking D = C ◦ (id⊗ C ′).

If E occurs in F and F occurs in G then we have

F = C1 ◦ (E ⊗ idI) ◦C0 and
G = D1 ◦ (F ⊗ idJ) ◦D0 .

So one can deduce ‘E occurs in G ’, i.e. G = B1 ◦ (E ⊗ idK) ◦B0, by setting
K = I ⊗ J , B1 = D1 ◦ (C1 ⊗ idJ) and B0 = (C0 ⊗ idJ) ◦D0.

3.3

H.(G.F) = (idX∪Y ‖H) ◦ (idX ‖G) ◦F

= (idX ‖ idY ‖H) ◦ (idX ‖G) ◦F

= ((idX ◦ idX) ‖ (idY ‖H) ◦G) ◦F

= (idX ‖ (H.G)) ◦F

= (H.G).F .

3.4 Recall that R is open, so has no edges. Consider any split A, B for R. Let
(u0, u1) be the send-node and get-node of R, and let v0, v1 be their respective
parents, the alt-nodes. Since A must have at least one node of R, at least one of
(u0, u1) must be in A.

If both (u0, u1) are in A then, since B must have at least one node of R, A can
contain at most one of (v0, v1). If it contains neither, then the A-parents of (u0, u1)
must be distinct roots of A, since their parents (v0, v1) in B ◦A are distinct. If A

contains exactly one of (v0, v1), say v0, then by a similar argument the parents of
(v0, u1) must be distinct roots of A. In both these cases the split is non-unary.

Therefore A contains exactly one of (u0, u1) and B contains the other. So the
split is tight, since these two nodes are linked.

The redexes of A1–A3 and B1 are tight (in the case of B1 there is no split); those
of B2 and B3 are not tight.

166 B Solutions to exercises

Solutions for Chapter 4

4.1 Assume that (
h, h) is an RPO for
f relative to
g. We have to prove that
h is an
IPO. So, for an arbitrary bound (
�, �) for
f relative to
g, we seek a unique y such
that

y ◦
h =
� and � ◦y = id .

First, we know that � ◦
� =
h, and also that (
�, h ◦ �) is a bound for
f relative to g,
whence there exists unique x such that

x ◦
h =
� and h ◦ � ◦x = h .

Now, as in the proof of Proposition 4.5(1), we can show that � ◦x = id; thus y = x

satisfies the required equations for y. But any y satisfying these equations also
satisfies the equations for x. This assures unicity for y, and we are done.

4.2 Assume that (
k, k) is an RPO. Since
h is an IPO, (
h, h) is a bound for
f relative
to (h ◦h0, h ◦h1); so there exists unique x such that

x ◦
k =
h and h ◦x = k .

Hence (
k, x) is a bound for
f relative to
h, which is an IPO, so if H is the codomain
of
h there exists unique y such that

y ◦
h =
k and x ◦y = idH .

Now since (
k, k) is an RPO, it follows from Proposition 4.5(2) that
k is an IPO.
Since (
h, y) is a bound for
f relative to
k, we deduce that there exists unique z such
that

z ◦
k =
h and y ◦z = idK .

From x ◦y = idH and y ◦z = idK we deduce x = z. It follows that x :K→H

is an iso with inverse y. So since (
k, k) is an RPO, from the equations for x and
Proposition 4.5(1) we deduce that (
h, h) is also an RPO, as required.

4.3 Let F : À→ `B, and assume
g bounds
f in À. So, denoting F-images by a
prime,
g ′ bounds
f ′ in `B. Assume that this is a pushout; then we want to prove
that
g is a pushout for
f in À.

Let
h bound
f in À. Denote the arrow g0 ◦f0 = g1 ◦f1 by g, and the arrow
h0 ◦f0 = h1 ◦f1 by h. We require unique k such that k ◦
g =
h. It is enough to find
some k satisfying these equations; uniqueness follows from two facts:

(i) k′ will be the unique arrow in `B such that k′ ◦
g ′ =
h′, and
(ii) g is op-cartesian, so k is the unique preimage of k′ such that k ◦g = h.

Solutions to exercises 167

Now, for each i ∈ {0, 1}, since gi is op-cartesian there exists a preimage ki of k′

such that ki ◦gi = hi. But these equations imply that ki ◦g = h, so k0 = k1 since g

is op-cartesian, and our required arrow is k
def= k0 = k1. This completes the proof.

Solutions for Chapter 5

5.1 We prove the epi case for link graphs. (The other cases are similar.)
Assume F :X→Y is epi; we prove that it has no idle names. Suppose Y =

y � Z where y is idle in F . Pick G = G ⊗ idZ and H = H ⊗ idZ as shown.
Then G �= H but G ◦F = H ◦F , contradicting F epi.

Now assume F has no idle names; we prove it to be epi. Let G ◦F = H ◦F .
Then G and H have the same nodes, edges and control map; so to prove G = H it
remains to prove that linkG = linkH . For this, let q be any point of G (and hence
of H). If q is a port, then it is a port of G ◦F , and we have

linkG(q) = linkG ◦ F (q) = linkH ◦ F (q) = linkH(q) .

On the other hand, if q is an inner name, say q = y ∈ Y , then y is not idle in F so
y = linkF (p) for some point p of F . But then

linkG(y) = linkG ◦ F (p) = linkH ◦ F (p) = linkH(y) .

This completes the proof that F is epi.

5.2 The name y should not be merged with x0 in B0; instead we add y to the outer
face of B0, defining linkB0(y) = y and linkB(y) = x. Then also y1 should not be
merged with x1 in B1; instead, define linkB1(y1) = y (thus keeping the outer faces
of B0 and B1 equal).

5.3 cl0: If v ∈ V2 then it is a node of B0 ◦A0 = B1 ◦A1, hence ctrl0(v) =
ctrlB0 ◦ A0(v) = ctrlB1 ◦ A1(v) = ctrl1(v).

cl1: Take i = 0. Since A0(p) = e ∈ E0 we have p ∈ W � P0. Also
(B0 ◦A0)(p) = e, so (B1 ◦A1)(p) = e. But e ∈ E1 by assumption, hence A1(p) =
e = A0(p) as required, hence also p ∈W � P1, hence p ∈W � P2 as required.

cl2: Take i = 0. Since A0(p2) = e ∈ E0 we have (B0 ◦A0)(p2) = e, hence
(B1 ◦A1)(p2) = e. But p2 �∈ E1, so for some x ∈ X1 we have A1(p2) = x as

168 B Solutions to exercises

required, and B1(x) = e. If also A1(p) = x then p ∈ W � P1; so (B0 ◦A0)(p) =
(B1 ◦A1)(p) = B1(x) = e. But then p is a point of A0, so A0(p) = e as required.

5.4 In Construction 5.15 the edges of C1 are defined to be E0 \E2. This holds for
all IPOs, since elisions change no edges. But E0 = ∅, hence C1 has no edges.

5.5 The distinguished IPO (id, id) is the unique IPO for (A, A) up to iso, because
id has no nodes or edges, hence permits no elisions. But if A is not epi it has an
idle name or idle root; this gives rise to an idle name or root in the IPO cospan.

5.6 (1) We have shown that there can be no K-node in B0; so to achieve Ĉ ◦B0 = C0

we need Ĉ to contain a K-node linked to z. But then Ĉ ◦B1 = C1 fails, since C1

contains no such K-node.
(2) In concrete link graphs, nodes have support. There are two cases for the K

nodes in A0 and A1. If they have the same support, i.e. A0 and A1 share a K-node,
then the RPO construction would require
C to have no nodes; hence (
C,C) would
not be an RPO. On the other hand if they have different supports, then
D would not
even be a bound for
A; hence (
D, D) would not be an RPO. In either case exactly
one of (
C, C) and (
D, D) would be a relative bound – and it would be the required
RPO.

Solutions for Chapter 6

6.1 The formation rule Φ for stratified sorting constrains only place graphs, so we
can ignore link graphs when checking it. And since a place graph is a forest of trees,
if it is augmented with sorts then the forest satisfies Φ iff each tree does.

A place interface m augmented with sorts is a sequence θ0 · · · θm−1 of sorts. So
in an identity idI augmented with sorts, each tree whose root has sort θ has just one
child with sort θ. This clearly satisfies Φ.

Now suppose that each of F and G, augmented with sorts, satisfies Φ. Each tree
of a tensor product F ⊗G is just a tree of either F or G, so clearly F ⊗G satisfies
Φ. Each tree of a composition G ◦F is a tree of G in which each site i : θ is replaced
by some tree of F whose root (with sort θ) is removed. Now every place in G ◦F

is either a root of G or a node of G or a node of F ; the appropriate condition of Φ
can be checked for each case separately.

6.2 Θ = {a, b, c, r, âc, âr}, K = {A : a, B : b, C : c, R : r}. Φ requires:

Solutions to exercises 169

an a-node or c-node has no children (i.e. A and C are atomic);
all children of an r-node or âc-root have sort a, c or âc;
all children of a b-node or âr-root have sort a, r or âr;
all children of a θ-root have sort θ, where θ ∈ {a, b, c, r}.

The interfaces are
E : ε→ J where J = 〈b b, ∅〉 ;
D : ε→ I where I = 〈a a a, {xyzw}〉 ;
C : I→ J .

Alternatively, replace a by âc in I .
The redex of rule B1 can have sort a or âc; the redex of B2 must have sort âc; the
redex of B3 must have sort âr.

6.3 (1) If x : θ, it may be that in link g′(x) = e (say) where e : θ′ in h; then
linkg(x) : θ′ is forced, preventing the well-sorting of g.
(2) Let
A be bounded by
B in a plain-sorted s-category, and let the unsorted U-
image (
A′,
B′) of this diagram be a pushout. We argue that (
A,
B) is also a
pushout.

Let
D bound
A; then its image
D′ bounds
A′. We require a unique mediating
arrow C in the left-hand diagram. A unique such arrow C ′ exists in the right-hand
diagram; so define its preimage C by ascribing to all its ports and edges the sorts
that they have in D0 and in D1. If this makes C well-sorted, then it is the unique
arrow required.

If a link of C contains no inner name in I then the link and its points are sorted
as in D0 and D1, so they obey the plain-sorting formation rule. Thus, to conclude
that C is well-sorted, we need only show that if x : θ is an arbitrary name in I then
linkC(x) : θ.

Now
B′ is a pushout, hence an IPO, so x is not idle in both B′
0 and B′

1. Without
loss of generality, x has a point p in B′

0, and hence in B0. Since B0 is well-sorted,
p : θ in B0 and also in D0. Since D0 is well-sorted, linkD0(p) has sort θ. But this
link (outer name or edge) is in C too; hence, by our construction, linkC(x) : θ as
required.

A similar argument shows that the functor creates RPOs.

170 B Solutions to exercises

Solutions for Chapter 7

7.1 In bigraphs, to say ‘G ◦F is active at i’ means that all ancestor nodes of i in
G ◦F are active. This is true iff all ancestor nodes of i in F are active, and all
ancestor nodes of j in G are active, where j is the ancestor root of i in F . But this
is the same statement as ‘F is active at i and G is active at width(F)(i)’ .

Recall that 1 : 0→ 1 is the place graph with no sites and one root. Take F =
A ⊗ 1 : 1→ 2 and G = join ◦ (A ⊗ B) : 2→ 1. Then G ◦F is active, but G is not
active at its second site.

7.2 Trivially both � and � include support equivalence (�). To see that � is
preserved by ◦ (for example), suppose F � G and F ′ � G′. Then G, G′ are
obtained from F, F ′ by support translations ρ, ρ′ respectively. But if F ◦F ′ and
G ◦G′ are both defined then ρ � ρ′ is also a support translation, and takes F ◦F ′ to
G ◦G′; hence F ◦F ′ � G ◦G′.

Now let F− mean F with idle edges removed. To check � is preserved by ◦
(for example), note that F � G means that F− � G−. The rest follows from the
fact that (F ◦F ′)− = (F− ◦ (F ′)−)−.

7.3 From the commutation of the second diagram, prove that the first diagram
commutes when a is replaced by f ◦a.

7.4 For the first part, let a
f

�ı̃ a
′ and a � b with f ◦ b defined. Then there is a

reaction rule (r, r′) and an IPO (f, d) for (a, r), such that a′ � d ◦r′. Let ρ be the
support translation such that ρ �a = b. Apply ρ, extended by the identity map, to
the whole IPO; then Proposition 4.5 yields an IPO (f, e) for (b, s), with e � d and
s � r. Pick s′ � r′ so that e ◦s′ is defined; then (s, s′) is also a reaction rule (since

these are closed under �), so if b′ def= e ◦s′ then b
f

�ı̃ b
′ with a′ � b′, as required.

For the second part, we must show that if S is a bisimulation up to � then S ⊆ ∼.
For this, we show thatS� is a bisimulation, for thenS� ⊆ ∼, which impliesS ⊆ ∼.

For this purpose, suppose that aS�b, i.e. that a � a1Sb1 � b, and let a
f

�ı̃ a
′.

Then, since � is a bisimulation, there exist a′
1, b

′
1 and b′ such that b

f
�ı̃ b

′ and
a′ � a′

1S�b′
1 � b′. But S is closed under �, so a′S�b′. This completes the proof

that S� is a bisimulation, and hence that S ⊆ ∼, as required.

7.5 (1) G ◦F can differ from G ◦F ; in the latter, a B-node in G can still be linked to
an A-node in F . But the equivalence is a structural congruence: this can be proved
by showing that if F0 ≡ F1 then they have the same normal form, the result of
removing every B-node linked to an A-node. It is not an abstraction; we may have
F � G, but F �= G; if neither has a B-node linked to an A-node then F �≡ G.

Solutions to exercises 171

The equivalence does not necessarily respect mt; for the redex of a reaction rule
may contain a B-node; then if we drop a B-node from an agent a we may lose a
transition.

(2) As in (1) the equivalence is a structural congruence, but not an abstraction. It
may not respect mt, even if no redex contains a B- or A-node. For we may have A
passive and B active; then replacing B by A may prevent a reaction – and hence a
transition – by turning an active context into a passive one.

7.6 By the definition of induced transitions there exist a, f and a′ in C such that

p = [[a]], g = [[f]], p′ = [[a′]], with a
f

�ı̃ a
′. By Exercise 7.3 it follows that

f ◦a �ı̃ a
′. So from Theorem 7.7 we deduce that [[f ◦a]] �ı̃ [[a′]]. Since [[·]] is a

functor, we immediately deduce g ◦p � ı̃p′.

Solutions for Chapter 8

8.1 For the CCS rule:
R : 〈p a p a, ∅〉→〈p, x〉 R′ : 〈p p, ∅〉→〈p, x〉
r, r′ : 〈p, x � Y 〉
d : 〈p a p a, Y 〉 di : 〈θi, Yi〉 where θ0, θ1, θ2, θ3 = p, a, p, a .

8.2 For an engaged transition take R = Aw ◦ (id1 |Bv) , d = Bu ; for a disengaged
transition take R = Aw ◦ (id1 |Bu) , d = Bv .

Solutions for Chapter 9

9.1 The final net should be as on the left below. A clean-up rule is shown on the
right, where ‘?’ may be any control.

9.2 If two redexes are disjoint then one reaction cannot destroy either the nodes or
the linkage of the other. No critical pair can be formed from an instance of (1) with
an instance of (2). A critical pair of instances of (1) must share the S-node; a critical
pair of instances of (2) must share the 0-node; in both cases – as already seen for
(1) – confluence holds. A critical pair of (3) with any of (1)–(3) can only share the
?-node and is clearly confluent.

172 B Solutions to exercises

9.3 Let the S-measure of any net be the number of distinct finite paths leading
from an S-node to a +-node. For explicit nets this measure is finite. For each
explicit net, let its measure be the triple m = (mS, m+, m→) of its S-measure,
its number of +-nodes, and its number of →-nodes. Prove the following (the first
being crucial):

(i) Rule (1) decreases mS, while rules (2) and (3) do not increase it.
(ii) Rule (2) decreases m+, while rule (3) does not increase it.

(iii) Rule (3) decreases m→.

So the lexicographic ordering on measure is well-founded and decreased by reac-
tion.

Solutions for Chapter 10

10.1 For (1), following the hint, in the inductive step we assume the property for
agents with less than n nodes and prove it for any agent with n nodes.

One such agent has the form a = sendx.p : 〈p, X〉, where p has n− 1 nodes. So
by inductive assumption there is a CCS process P such that PX [P] = p; hence for
the CCS alternation x.P we have AX [x.P] = a.

To complete the inductive proof, apply a similar argument for all ways (there are
four or five ways) of building larger agents from smaller ones.

For (2) follow the hint. We omit the proof of the Lemma here; it is not very
instructive.

10.2 For example, suppose that p | nil x−→ p′′. Then the pair (p | nil, p′′) matches
the forms in case 2 of the figure. It follows that b takes the form b′ | nil, so that p′′

takes the form p′ | nil, where p and p′ also match that case with b′ in place of b.
We have therefore shown that the assumed transition is matched by p

x−→ p′

such that (p, p′) ∈ S. The same can be done for the other labels α in place of x.
In the other direction, starting with an assumed transition p

α−→ p′, it is even
easier to deduce p | nil α−→ p′ | nil.

10.3 Having proved p �m p | nil, use this together with Exercise 10.2 to prove that
each of �m and ∼ccs is a bisimulation for the other.

Solutions for Chapter 11

11.1 The contextual rule is

(C :J→K, S :m→ J, S′ :m′→ J, η, τ)

Solutions to exercises 173

where τ : |S|′ ⇀ |S| is a tracking map. (We use S, S′ in place of R, R′ to avoid
confusion with the room control R.) Given a parameter d, define d′ and σ as before.
Then the ground rules generated take the form

((C ◦S).d , (C ′ ◦S′).d′ , ρ � τ � σ)

where C = ρ�C ′.
For rule (1) we construct the contextual rule (with the above notation) as follows.

Let K = 〈1, xy〉 and J = 1 ⊗ K = 〈2, xy〉. Then the agent is the atom a
def=

Axy.1 : ε→K, and the room ion is R : 1→ 1. Then for the contextual rule we take

C = idI |R, S = a⊗ id1 and S′ = 1⊗ (a | id1)

where C :J→K and S, S′ : 1→ J . Also η = {1 �→ 1}, and τ = {u �→ u} if we
assume a has support {u} in both S and S′.

11.2 (1) Since f �� f ′ there exist g, g′ with g � g′ and (f, f ′) ≤ (g, g′). Hence
by congruence (C ◦f, C ◦f ′) ≤ (C ◦g, C ◦g′). But C ◦g � C ◦g′; hence by defi-
nition C ◦f �� C ◦f ′. Similarly for tensor product.

(2) Since f �� f ′, we have h � h′ where (f, f ′) ≤ (h, h′). By confluence,
there exists k with g, h ≤ k. By Proposition 11.7 there exists g′ such that k � g′

and h′ ≤ g′. Therefore by definition g �� g′; also f ′ ≤ h′ ≤ g′, so we are done.

11.3 The first step in creating the left-hand diagram is to take the RPO for (id ⊗
a, id⊗ a) relative to (B0 ◦C0, B1 ◦C1). The bottom square is then an IPO, and its
upper members are identities (up to iso) because a is epi (see Exercise 5.5). The
second step is to take an RPO for (C0, id) relative to (B0, B0 ◦C0), and a matching
IPO on the other side. (The resulting IPOs are unique up to iso since an identity is
both epi and open.)

The right-hand diagram results from taking the RPO for (id ⊗ a, A1) relative
to (B0 ◦C, B1). Since the lower square is an IPO, we know it is unique (up to
iso) because a is epi and open; hence it takes the form of the IPO defined in
Corollary 5.21.

11.4 On the one hand K ∼ L since ∼ does not allow growth, but K �� L since
K �� K and L � �� . On the other hand K �∼ M.K since M.K � K and K � � ,
but K � M.K since K ↪→ M.K.

11.5 As in the proof of Theorem 7.16, we establish the following as a bisimulation
for �, up to �:

S def= {(C ◦a0, C ◦a1) | a0 � a1, C any context} .

174 B Solutions to exercises

(Here we omit mention of activeness; it is handled just as in the cited theorem.)
Let a0 � a1, and suppose there is a grown transition C ◦a0

M
��̃ b′

0. We have to

find b′
1 such that C ◦a1

M
��̃ b′

1 and (b′
0, b

′
1) ∈ S�.

Stage 1: By definition there is a standard transition Ĉ ◦ â0
M̂

�̃ b̂′
0, where

(C, a0, M, b′
0) ≤ (Ĉ, â0, M̂ , b̂′

0) .

This depends on Proposition 11.6(3), ensuring independent growth in C ◦a0. The
transition is based on an underlying IPO, and on a ground rule (r0, r

′
0) such that

b̂′
0 � E0 ◦r′

0. Take an RPO, yielding a pair of IPOs as shown in diagram (a).

(b)(a) (c)

â1

r1

L̂

D1

r′
1

â′
1

�â0 D0

r0

L

M̂

r′
0

b̂′
0C ′

� â1 D1

L̂

̂̂
M

r1

C ′ b̂′
1

r′
1

Ĉ

E0

̂̂
C

E1

Stage 2: The lower IPO underlies a standard transition â0
L

�ı̃ a
′
0

def= D0 ◦r′
0.

Note that b̂′
0 � C ′ ◦a′

0. By definition, we then have a grown transition a0
L

��ı̃ a
′
0.

Since a0 � a1, there is a grown transition a1
L

��ı̃ a
′
1 with a′

0 � a′
1. Then, by

definition, there exists a standard transition â1
L̂

�ı̃ â
′
1 such that

(a1, L, a′
1) ≤ (â1, L̂, â′

1) ,

where the transition is based on a ground rule (r1, r
′
1) and an IPO as shown in

diagram (b), with a′ � D1 ◦r′
1. Moreover, since reaction rules and growth are

closed under �, this triple may be chosen with support disjoint from C ′.

Stage 3: We now turn attention to the upper IPO in diagram (a). Since L ≤ L̂ and

|L̂| ∩ |C ′| = ∅, by Proposition 11.12 there exist ̂̂
C,

̂̂
M such that

(Ĉ, M̂) ≤ (̂̂
C,

̂̂
M)

and (̂̂M, C ′) is an IPO for (̂̂
C, L̂). We may paste this IPO onto diagram (b), and

define b̂′
1

def= E1 ◦r′
1, where E1 = C ′ ◦D1. Thus diagram (c) represents the standard

transition ̂̂
C ◦ â1

̂̂
M

�̃ b̂′
1. Also b̂′

1 � C ′ ◦ â′
1, so we define b′

1
def= C ′ ◦a′

1. So finally,
since

(C ◦a1, M, b′
1) ≤ (̂̂

C ◦ â1,
̂̂
M, b̂′

1)

Solutions to exercises 175

we have a grown transition C ◦a1
M

��̃ b′
1. Recalling that b′

0 � C ′ ◦a′
0, we have

that (b′
0, b

′
1) ∈ S�, and the proof is complete.

11.6 In the definitions of both place graphs and link graphs, Definitions 2.1 and
2.2: (1) add to the tuple representing F an extra component BF , a finite set of
bindings; (2) extend ctrlF :VF →K to ctrlF :VF �BF →K; (3) in forming G ◦F

give it bindings B = BF � BG. In Definition 2.5, adapt the defining equations as
follows:

(i) Let w range over k � VF � VG �BF �BG, and replace the conditions w ∈
k�VF and w ∈ VG by the conditions w ∈ k�VF �BF and w ∈ VG�BG.

(ii) Replace the condition linkF (q) ∈ EF by the condition linkF (q) ∈ EF �
BF .

11.7 It is easy to prove that the identities satisfy the scoping discipline, and that
tensor product preserves it. Here we confine ourselves to proving that composition
preserves the scoping discipline.

LetF : I→ J andG :J→K satisfy the scope discipline, and defineH : I→K
def=

G ◦F . Let � = linkH(q) in H , with (w, �) ∈ loclinkH . We must find w′ such that
w′ inH w and (w′, q) ∈ locpointH . Since � is local it cannot be an edge in EH , so
it is either a name in K or a binding b ∈ BH . We divide the argument into two
cases:

Case 1 � = b ∈ BF . Then q ∈ X � PF where X are the names of I . We easily
verify that (w, b) ∈ loclinkF . Since b = linkH(q) in H and b is in F , it follows
that b = linkF (q) in F , hence by the scope discipline for F we deduce that there
exists w′ inF w with (w′, q) ∈ locpointF . Composition with G preserves these
properties, i.e. w′ inH w with (w′, q) ∈ locpointH , and we are done.

Case 2 � ∈ BG � Z, where Z are the names of K. Now since (w, �) ∈ loclinkH ,
we also have (w, �) ∈ loclinkG. Furthermore q ∈ X � PF � PG, so we treat the
two possible subcases for q:

(a) q ∈ X � PF . Then for some name y in J we have � = linkG(y) and
y = linkF (q). Now by the scope discipline for G there exists a site s in J

with s inG w and (s, y) ∈ locJ . But then (s, y) ∈ loclinkF , so by the scope
discipline for F there exists w′ inF s with (w′, q) ∈ locpointF . It readily
follows that w′ inH w with (w′, q) ∈ locpointH , and we are done.

(b) q ∈ PG. Then by the scope discipline for G we have w′ inG w with (w′, q) ∈
locpointG. It follows immediately that w′ inH w with (w′, q) ∈ locpointH ,
and we are done.

Glossary of terms and symbols

Each entry refers to the definition or construction n.m which introduces it, except
that § refers to Chapter n or Section n.m.

BIGRAPHS

F̆ , Ğ bare bigraph § 1
A, B, . . . bigraph § 1
I, J, . . . interface § 1
m, n, . . . finite ordinal § 1
x, y, . . . name § 1
v node § 1
e edge § 1
X, Y, . . . name-set § 1
〈m, X〉 interface § 1
AP, . . . place constituent § 1
AL, . . . link constituent § 1
〈AP, AL〉 combination § 1
X all names § 2.1
V all nodes § 2.1
E all edges § 2.1
B all bindings § 11.3
V node-set 2.1
E edge-set 2.2
B binding-set § 11.3
w place 2.1
p port 2.2
q point 2.2
� link 2.2
K, L,M control 1.1

β binding control § 11.3
K signature 1.1
ar arity (of control) 1.1
ctrl control map 2.1
prnt parent map 2.1
in descendance relation § 11.3
link link map 2.2
Σ sorting discipline 6.1
θ, Θ sort, set of sorts 6.1
Φ sorting formation rule 6.1
`Bg(Σ) concrete Σ-bigraphs 6.1
Bg(Σ) abstract Σ-bigraphs 6.1
U functor forgets sorts § 6.1
s, t many–one sorts 6.12

CATEGORIES, SETS

A,B, … category 2.8
À,`B, … precategory 2.12
F functor 2.8
dom(I) domain 2.8
cod(I) codomain 2.8
(I→ J) homset 2.8
I, J, . . . object 2.8
f, g, . . . arrow 2.8
id identity (arrow) 2.8

177

178 Glossary of terms and symbols

◦ composition 2.8
⊗ tensor product 2.10
ε unit, origin 2.10
γ symmetry 2.11
S support elements 2.13
| · | support 2.13
ρ� support translation 2.13
� support equivalence 2.13
Id identity (function) 2.1
disjointness § 2.1
� union of disjoint sets § 2.1
\ subtraction of sets 5.5

CATEGORIES FOR BIGRAPHS

`Pg concrete place graphs 2.1
`Lg concrete link graphs 2.2
`Bg concrete bigraphs 2.3
� lean-support

equivalence 2.19
[[·]] lean-support quotient 2.19
Pg abstract place graphs 2.19
Lg abstract link graphs 2.19
Bg abstract bigraphs 2.19

OPERATIONS

φ placing 3.1
π permutation 3.1
join join two sites 3.1
merge merge sites 3.1
1 idle prime bigraph 3.1
λ linking 3.2
σ substitution 3.2
α renaming 3.2
·/· substitution 3.2
/· closure 3.2
ι isomorphism § 3.1
K�x ion 3.4
‖ parallel product 3.11
| prime product 3.15
. nesting 3.13

GENERAL DYNAMICS

`R concrete reaction rules 7.1
r ground redex 7.1
r′ ground reactum 7.1

� reaction relation 7.1
act activity relation 7.2
L transition system 7.8
� transition label 7.8
Agt transition agents 7.8
Lab transition labels 7.8
Apl label applies to agent 7.8
Tra transition-set 7.8

�
� transition relation 7.8

∼,∼L bisimilarity 7.9
ft full transition system 7.10
ı̃, ̃ location 7.13

L
�ı̃ wide transition relation 7.13

mt minimal transition system 7.14
≺ sub transition system 7.17
R abstract reaction rules 7.6

BIGRAPH DYNAMICS

η instantiation map 8.3
η instance function 8.3
R parametric redex 8.5
R′ parametric reactum 8.5
pe prime engaged

transition system 8.15
τ tracking map 11.1
∆ germination rules 11.3
↪→∆ germination 11.3
≤∆ growth order 11.5

�� grown reaction 11.8
L

��ı̃ grown transition 11.10
� grown bisimilarity 11.10

APPLICATION TO CCS

ν, | process syntax 6.3
0,+ alternation syntax 6.3

Glossary of terms and symbols 179

µ, x, x actions 6.3
≡α alpha equivalence 6.3
≡ structural congruence 6.4
p, a sorts of bigraphs 6.5
alt alternation control 6.5
send, get action controls 6.5
nil empty process 6.5
Kccs CCS signature 6.5
Σccs CCS sorting 6.5
P[·] translation of

processes 6.6
A[·] translation of

alternations 6.6
∼ccs raw bisimilarity § 10.2 ∼r

τ raw transition label § 10.2
pem mono prime engaged

transition system § 10.2
∼m mono bisimilarity § 10.2
∼c

ccs raw congruence § 10.2
∼o

ccs open bisimilarity § 10.2

OTHER APPLICATIONS

in, out ambient controls § 1
amb, open ambient controls § 1
0,S arithmetic controls § 6.2
+, → arithmetic controls § 6.2
Karith arithmetic signature § 6.2
M,U,E Petri-net controls § 6.2
Kpetri Petri-net signature § 6.2
+x,−x, τ raw Petri-net labels § 9.2
∼r raw Petri-net

bisimilarity § 9.2

References

[1] Ubiquitous computing: experience, design and science.AGrand Challenge of UKCRC,
the UK Computing Research Committee. http://www-dse.doc.ic.ac.uk/Projects/
UbiNet/GC/Manifesto/manifesto.pdf .

[2] Equator. A 6-year Interdisciplinary Research Collaboration funded by the UK Engi-
neering and Physical Sciences Research Council. http://www.equator.ac.uk.

[3] Baeten, J. and Weijland, W. (1990), Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18, Cambridge University Press.

[4] Barr, C. and Wells, M. (1990), Category Theory for Computing Science. Prentice Hall.
[5] Benson, D. (1975), The basic algebraic structures in categories of derivations. Infor-

mation and Control 28, 1–29.
[6] Berry, G. and Boudol, G. (1992), The chemical abstract machine. Journal of Theoretical

Computer Science 96, 217–248.
[7] Bettini, L. and De Nicola, R. (2005), Mobile distributed programming in X-Klaim. In:

SFM-05:Moby, 5th International School on Formal Methods for the Design of
Computer, Communication and Software Systems: Mobile Computing, Lecture
Notes in Computer Science 3465, Springer-Verlag, 29–68.

[8] Bergstra, J. and Klop, J.-W. (1985), Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science 37, 77–121.

[9] Birkedal, L. and Hildebrandt, T. (2004), Bigraphical programming languages. Labora-
tory for Context-Dependent Mobile Communication, IT University, Denmark.
http://www.itu.dk/research/bpl/.

[10] Birkedal, L., Bundgaard, M., Damgaard, T., Debois, S., Elsborg, E., Glenstrup, A.,
Hildebrandt, T., Milner, R. and Niss, H. (2006), Bigraphical programming lan-
guages for pervasive computing. In: Proc. InternationalWorkshop on Combining
Theory and Systems Building in Pervasive Computing, 653–658.

[11] Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T. and Niss, H. (2006), Bigraphical
models of context-aware systems. In: Proc. 9th International Conference on
Foundations of Software Science and Computation Structure, Lecture Notes in
Computer Science 3921, 187–201.

[12] Birkedal, L., Damgaard, T., Glenstrup, A. and Milner, R. (2007), Matching of bi-
graphs. In: Proc. Workshop on Graph Transformation for Verification and Con-
currency, Electronic Notes in Theoretical Computer Science 175, Elsevier, 3–19.

[13] Brookes, S., Hoare, C. and Roscoe, W. (1984), A theory of communicating sequential
processes. J. ACM 31, 560–599.

[14] Birkedal, L., Debois, S. and Hildebrandt, T. (2008), On the construction of sorted re-
active systems. In: Proc. 19th International Conference on Concurrency Theory
(CONCUR), Lecture Notes in Computer Science 5201, 218–232.

180

References 181

[15] Bundgaard, M. and Hildebrandt, T. (2006), Bigraphical semantics of higher-order
mobile embedded resources with local names. In: Proc. Workshop on Graph
Transformation forVerification and Concurrency, Electronic Notes inTheoretical
Computer Science 154, Elsevier, 7–29.

[16] Bundgaard, M. and Sassone, V. (2006), Typed polyadic pi-calculus in bigraphs. In:
Proc. 8th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming, 1–12.

[17] Bundgaard, M., Glenstrup, A., Hildebrandt, T., Højsgaard, E. and Niss, H. (2008),
Formalising higher-order mobile embedded business processes with binding bi-
graphs. In: Proc. 10th International Conference on Coordination Languages,
Lecture Notes in Computer Science 5052, 83–99.

[18] Cardelli, L. and Gordon, A. D. (2000), Mobile ambients. Theoretical Computer Sci-
ence 240, 177–213.

[19] Castellani, I. (2001), Process algebras with localities. In: Handbook of Process Alge-
bra, eds Bergstra, J., Ponse, A. and Smolka, S., Elsevier, 945–1045.

[20] Cattani, G. L., Leifer, J. J. and Milner, R. (2000), Contexts and embeddings for closed
shallow action graphs. University of Cambridge Computer Laboratory, Technical
Report 496.

[21] Cheverst, K., Davies, N., Mitchell, K. and Friday, A. (2000), Experiences of develop-
ing and deploying a context-aware tourist guide: the GUIDE project. In: Proc.
Mobicom, Boston, Massachusetts, 20–31.

[22] Clavel, M., Eker, S., Lincoln, P. and Meseguer, J. (1996), Priniciples of Maude. In:
J. Meseguer (ed.) Proc. First International Workshop on Rewriting Logic and
its Applications, Electronic Notes in Theoretical Computer Science 4, Elsevier,
1–25.

[23] Conforti, G., Macedonio, D. and Sassone, V. (2005), Spatial logics for bigraphs. In:
International Conference on Automata, Languages and Programming, Lecture
Notes in Computer Science 3580, Springer-Verlag, 766–778.

[24] Conforti, G., Macedonio, D. and Sassone, V. (2005), Bigraphical Logics for XML.
In: Proc. 13th Italian Symposium on Advanced Datebase Systems (SEBD),
392–399.

[25] Crowcroft, J. (2006), The privacy and safety impact of technology choices for com-
mand, communications and control of the public highway. SIGCOMM Comput.
Commun. Rev. 36(1), 53–58.

[26] Damgaard, T. and Birkedal, L. (2006), Axiomatizing binding bigraphs. Nordic Journal
of Computing 13(1–2), 58–77.

[27] Danos, V., Feret, J., Fontana, W. and Krivine, J. (2007), Scalable modelling of bio-
logical pathways. In: Z. Shao (ed.), Proceedings of APLAS, 4807, 139–157.

[28] Dix, A. et al. (2000), Exploiting space and location as a design framework
for interactive mobile systems. ACM Trans. Comput. Human Interact 7(3),
285–321.

[29] Ehrig, H. (1979), Introduction to the algebraic theory of graph grammars. In: Graph
Grammars and their Application to Computer Science and Biology, Lecture
Notes in Computer Science 73, Springer-Verlag, 1–69.

[30] Ehrig, H. (2002), Bigraphs meet double pushouts. EATCS Bulletin 78, October 2002,
72–85.

[31] Gadducci, F., Heckel, R. and Llabrés, M. (1999), A bi-categorical axiomatisation of
concurrent graph rewriting. In: Proc. 8th Conference on Category Theory in
Computer Science (CTCS), Electronic Notes in Theoretical Computer Science
29, Elsevier Science.

182 References

[32] Gadducci, F. and Montanari, U. (2000), The tile model. In: Plotkin, G., Stirling,
C. and Tofte, M. (eds) Proof, Language and Interaction, MIT Press,
133–166.

[33] Gardner, P. (2000), From process calculi to process frameworks. In: Proc. 11th
International Conference on Concurrency Theory (CONCUR), Lecture Notes
in Computer Science 1877, Springer-Verlag, 69–88.

[34] Gardner, P. and Wischik, L. (2000), Explicit fusions. In: Proc. Mathematical Founda-
tions of Computer Science, Lecture Notes in Computer Science 1893, Springer-
Verlag, 373–382.

[35] Grohmann, D. and Miculan, M. (2007), Directed bigraphs. In: Proceedings of
23rd MFPS Conference, Electronic Notes in Computer Science 173, Elsevier,
121–137.

[36] Grohmann, D. and Miculan, M. (2007), Reactive systems over directed bigraphs. In:
Proceedings of 18th Conference on Concurrency Theory (CONCUR), Lecture
Notes in Computer Science 4703, Springer-Verlag, 380–394.

[37] Grohmann, D. and Miculan, M. (2008), An algebra for directed bigraphs. In: Proc.
4th International Workshop in Computing with Terms and Graphs, Electronic
Notes in Theoretical Computer Science 203(1), 49–63.

[38] Hasegawa, M. (1999), Models of sharing graphs. PhD Dissertation, Division of In-
formatics, University of Ednburgh. Available as Technical Report ECS–LFCS–
97–360. Also in Springer Series of Distinguished Dissertations in Computer
Science.

[39] Hennessy, M. (2007), A Distributed Pi Calculus. Cambridge University Press.
[40] Hennessy, M. and Milner, R. (1985), Algebraic laws for non-determinism and con-

currency. Journal of ACM 32, 137–161.
[41] Hildebrandt, T., Niss, H. and Olsen M. (2006), Formalising business process execution

with bigraphs and Reactive XML. In: Proc. 8th International Conference on
Coordination Models and Languages, Lecture Notes in Computer Science 4038,
Springer Verlag, 113–129.

[42] Hillston, J. (1996), A CompositionalApproach to Performance Modelling. Cambridge
University Press.

[43] Hirsch, D. and Montanari, U. (2001), Synchronised hyperedge replacement with name
mobility. In: Proc. 12th International Conference on Concurrency Theory (CON-
CUR), Lecture Notes in Computer Science 2154, Springer-Verlag, 121–136.

[44] Hoare, C.A.R. (1985), Communicating Sequential Processes. Prentice Hall.
[45] Dash, R., Parkes, D. and Jennings, N. (2003), Computational mechanism design: a

call to arms. IEEE Intell. Syst. 18(6), 40–47.
[46] Jensen, O. H. (2006), Mobile Processes in Bigraphs. Monograph available at

http://www.cl.cam.ac.uk/∼rm135/Jensen-monograph.html.
[47] Jensen, O. H. and Milner, R. (2003), Bigraphs and transitions. In: 30th SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, ACM Press,
38–49.

[48] Jensen, O. H. and Milner, R. (2004), Bigraphs and mobile processes (revised). Techni-
cal Report UCAM-CL-TR-580, University of Cambridge Computer Laboratory.

[49] Joyal, A. (1986), Foncteurs analytiques et espèces de structures. In: Proc. Colloque de
combinatoire énumérative, Lecture Notes in Mathematics 1234, Springer-Verlag,
126–159.

[50] Kelly, G. M. (1982), Basic Concepts of Enriched Category Theory. Lecture Notes in
Mathematics 64, Cambridge University Press. Republished (2005) in Theory
and Applications of Categories 10, 1–136.

References 183

[51] Krivine, J., Milner, R. and Troina, A. (2008), Stochastic bigraphs. In: Proc. 24th
International Conference on Mathematical Foundations of Programming Sys-
tems, to appear in Electronic Notes in Theoretical Computer Science.

[52] Lafont, Y. (1990), Interaction nets. In: Proc. 17th ACM Symposium on Principles of
Programming Languages, ACM Press, 95–108.

[53] Lawvere, F. W. (1973), Metric spaces, generalized logic, and closed categories.
Rendiconti del Seminario Matematico e Fisico di Milano XLII, 135–166.
Republished (2002) in Reprints in Theory and Applications of Categories, 1,
1–37.

[54] Leifer, J. J. (2001), Operational congruences for reactive systems. PhD Dissertation,
University of Cambridge Computer Laboratory. Distributed in revised form as
Technical Report 521. Available from http://pauillac.inria.fr/∼leifer.

[55] Leifer, J. J. and Milner, R. (2000), Deriving bisimulation congruences for reactive sys-
tems. In: Proc. CONCUR 2000, 11th International Conference on Concurrency
Theory, Lecture Notes in Computer Science 1877, Springer-Verlag, 243–258.
Available at http://pauillac.inria.fr/∼leifer.

[56] Leifer, J. J. and Milner, R. (2006), Transition systems, link graphs and Petri nets.
Mathematical Structures in Computer Science 16, 989–1047.

[57] Meseguer, J. (1992), Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science 96, 73–155.

[58] Meseguer, J. and Montanari, U. (1990), Petri nets are monoids. Information and
Computation 88, 105–155.

[59] Milne, G. and Milner, R. (1979), Concurrent processes and their syntax. J. ACM 26,
302–321.

[60] Milner, R. (1979), Flow graphs and flow algebras. J. ACM 26, 794–818.
[61] Milner, R. (1980),A Calculus of Communicating Systems. Lecture Notes in Computer

Science 92, Springer-Verlag.
[62] Milner, R. (1996), Calculi for interaction. Acta Informatica 33, 707–737.
[62a]Milner, R. (1999), Communicating and Mobile Systems: The π-calculus. Cambridge

University Press.
[63] Milner, R. (2001), Bigraphical reactive systems. In: Proc. 12th International Con-

ference on Concurrency Theory, Lecture Notes in Computer Science 2154,
Springer-Verlag, 16–35.

[64] Milner, R. (2005), Axioms for bigraphical structure. Mathematical Structures in Com-
puter Science 15, 1005–1032.

[65] Milner, R. (2006), Pure bigraphs: Structure and dynamics. Information and Compu-
tation 204, 60–122.

[66] Milner, R. (2006), Ubiquitous computing: Shall we understand it? The Computer
Journal 49, 383–389. (The first Computer Journal Lecture.)

[67] Milner, R., Parrow, J. and Walker D. (1992), A calculus of mobile processes, Parts I
and II. Journal of Information and Computation 100, 1–40 and 41–77.

[68] Park, D. (1981), Concurrency and automata on infinite sequences. In: Proc. 5th
GI-Conference Conference on Theoretical Computer Science, Lecture Notes
in Computer Science 104, Springer-Verlag, 167–183.

[69] Parrow, J. and Victor, B. (1998), The fusion calculus: expressiveness and symmetry
in mobile processes. In: Proceedings of Logics in Computer Science 1998, IEEE
Computer Society Press, 176–185.

[70] Petri, C. (1962), Kommunikation mit Automaten. Institut für Instrumentelle Infor-
matik, Schriften des IIM 2, 1962.

[71] Priami, C. (1995), Stochastic π-calculus. The Computer Journal 38(6), 578–589.

184 References

[72] Regev, A., Silverman, W. and Shapiro, E. (2001), Representation and simulation of
biochemical processes using the π-calculus process algebra. In: Proc. Pacific
Symposium of Biocomputing 2001 (PSB2001), Vol. 6, 459–470.

[73] Sangiorgi, D. and Walker, D. (2001), The π-calculus: A Theory of Mobile Processes.
Cambridge University Press.

[74] Sassone, V. and Sobocinski, P. (2002), Deriving bisimulation congruences: a 2-
categorical approach. Electronic Notes in Theoretical Computer Science 68(2),
105–123.

[75] Sassone, V. and Sobocinski, P. (2005), Locating reaction with 2-categories. Theoret-
ical Computer Science 333, 297–327.

[76] Sewell, P. (2002), From rewrite rules to bisimulation congruences. Theoretical Com-
puter Science 274, 183–230.

[77] Sloman, M. et al. (2007), AMUSE: Autonomic management of ubiquitous e-health
systems. In: Concurrency and Computation: Practice and Experience, John
Wiley & Sons.

[78] Terese (Bezem, M., Klop, J.-W. and de Vrijer, R. et al.) (2003) Term Rewriting
Systems. Cambridge University Press.

[79] Weiser, M. (1991), The computer for the 21st century. Sci. Am. 265(3), 94–104.
[80] Wojciechowski, P. T. and Sewell, P. (1999), Nomadic Pict: Language and infrastruc-

ture design for mobile agents. In: Proc. ASA/MA, Palm Springs, California.
[81] Wooldridge, M. (1999), Intelligent agents. In: Multi-Agent Systems, MIT Press.
[82] Zhang, M., Shi, L., Zhu, L., Wang, Y., Feng, L. and Pu, F. (2008), A bigraphical model

of WSBPEL. In: 2nd Joint IEEE/IFIP Symposium on Theoretical Aspects of
Software Engineering, IEEE Computer Society, 117–120.

Index

abstract, 39, 59
abstract bigraph, see bigraph
abstract BRS, see BRS
abstraction, 76

dynamic, 76, 85, 87
active, 75, 89, 115
active context, see context
activity, 75, 89
acyclic, 15
affine, 95, 98, 127
agent, 8, 74

prime, 97
algebra, 28

many-sorted, 59
process, 28

algebraic term, 39
alpha-equivalent, 61
alternation, 61
alternation in CCS, see CCS
ambiguous, 96
applicability, 78
arithmetic net, see net
arity, 7
arrow, 4, 19
associative, 31, 61, 111
atom, 30, 62, 65, 67

discrete, 30
atomic, 80, 89
axiom, 31

spm, 31

bare bigraph, see bigraph
bare signature, see signature

basic signature, see signature
behaviour

CCS, 103
behaviour of CCS, see CCS
behavioural congruence, see congruence
behavioural equivalence, see equivalence
bigraph, 3, 5

abstract, 19, 25, 26, 46, 57
bare, 3
binding, 131, 134

operations for, 135
concrete, 15, 19, 25, 42, 46
contextual, 4
discrete, 32
ground, 29
infinite, 130
place-sorted, 59
prime, 32
pure, xviii, 130
quasi-binding, 131
sorted, 59

bigraphical reactive system
abstract, 93, 98
concrete, 92, 93
growing, 126
nice, 94, 98
safe, 89, 92, 93

binder, 131
binding, 130, 131

inward, 134
outward, 134

binding bigraph, see bigraph
binding control, 131
binding interface, see interface

185

186 Index

bisimilarity, xv, 61, 73, 76, 78, 84
for CCS, see CCS
growing, 128, 129
mono, 117, 118
open, 119
weak, 104

bisimulation, 78, 116
up to, 82

bound, 40
least, 41
minimal, 38, 41
relative, 38, 40, 50, 149

BRS, see bigraphical reactive system
built environment, 8

c/e net, see net, condition–event
category, 18, 19

partial monoidal, 20
symmetric partial monoidal, 19, 21

CCS, 36, 60, 87, 96
alternation, 111
behaviour, 110
bijective translation, 112
bisimilarity, 117, 159
congruence, 114
finite, 111
normal form, 112
observation, 119
parameter, 112
processes, 111
reaction relation, 113
reaction rule, 113
reactum, 112
redex, 112
safe sorting, 112
sorting, 110, 111
structural congruence, 61, 62, 111, 126
syntax, 111
transition, 114
translation to bigraphs, 111

child, 3, 61, 111
closed, 28, 95
closed link, see link
closure, 29, 33, 62
codomain, 19
combination

of sortings, see sorting
commutative, 31, 61, 111
complete, 31, 33

composition, 6, 7, 16, 20
of bigraphs, 17
of link graphs, 17
of Petri nets, 103
of place graphs, 16

computer, 8
concrete, 39, 59

arrow, see arrow
bigraph, see bigraph
link graph, see link graph

condition
consistency, 52
marked, in Petri net, 67
unmarked, in Petri net, 67

condition–event net, see Petri net
conflict, 40
confluence, 127

strong, 101
congruence, xv, 42, 73, 82, 98

behavioural, 76, 78, 87, 93
for CCS, see CCS
non-, 80
of growing bisimilarity, 130
of minimal bisimilarity, 83
of wide bisimilarity, 93
structural, 76

for bigraphs, 126, 127
for CCS, see CCS

connected normal form, see normal form
connected split, see split
connectivity, see linking
consistency, 52
consistent, 40
consistent span, see span
constituent, 5, 15
constraint, 94
context, 5, 20, 78, 125

active, 115
context expression, 22
contextual

bigraph, see bigraph
label, see label
transition system, see transition system

control, 7, 59, 65, 66
control map, see map, 15
cospan, 40, 47
create, 43, 63
critical pair, 101
CSP, 96

Index 187

decomposition, 127
definite, 97, 157
derived transitions

for CCS, see CCS
for Petri nets, see Petri net

descendant, 132
diagram, 7
discrete, 32, 153

atom, see atom
bigraph, see bigraph
ion, see ion
merge product, see product
molecule, see molecule
normal form, see normal form
parameter, see parameter

disengaged transition, see transition
disjoint, 14

bigraphs, 17
DNF, see normal form, discrete
domain, 19
dynamic, 89
dynamic signature, see signature
dynamic theory, 39
dynamics, 31, 63, 73

edge, 3, 28
idle, 26, 29, 93

edge-identifier, 14
elision, 55
engaged, 96
epimorphism (epi), 46, 127
equivalence, 61, 62

behavioural, 42
lean-support, 26, 57, 93, 98

equivalence class, 47
equivalence relation, 47
event

in Petri net, 67
explicit net, see net

face, see interface, 25
factorisation

prime, 32
unique, 32

failures ordering, 78
faithful, 97–99, 114, 118
faithful sub transition system, see transition

system
finite CCS, see CCS
finite ordinal, see ordinal
forest, 3

forgetful functor, see functor, 43
formation rule, see sorting
forwarding in arithmetic net, 65
free name, 61
functions

pushout for, 47
functor, 20, 21, 44

forgetful, 69
lean-support quotient, 27, 57, 60
of s-categories, 23
support quotient, 24

generative, 126
germination, 126
ground

bigraph, see bigraph
ground arrow, 74
ground bigraph, 29
growing reaction, see reaction
grown

bigraphical reactive system, see BRS
bisimilarity, see bisimilarity
transition, see transition

growth, 125
growth equivalence, 126
growth order, 126
guarding, 96, 153

hard, 60, 98, 99, 114, 156
homset, 19

ground, 62
hypergraph, 3

idem pushout, 41, 52, 83, 129
family of, 52
distinguished, 54
preserved by growth, 128
preserved by product, 56
preserved by support equivalence, 56
support translation of, 56
tensorial, 152
unique, is pushout, 57

identifier, 8
identity, 17, 19

reflecting, 43
idle, 28, 46, 62, 95

edge, see edge
infinite bigraph, see bigraph
inner name, see name
inner-injective, 96
instance function, 90

188 Index

instantiation, 90
interaction, 71
interface, 4, 15, 25, 47, 65

binding, 133
inner, 4
outer, 4
place-sorted, 59

invariant, 9, 10
inward binding, see binding
ion, 30, 34, 62, 130

discrete, 30
IPO, see idem pushout
iso, see isomorphism
isomorphism, 30, 43

join, 29
juxtaposition, 17, 21

label, 77, 78
contextual, 80, 117, 118
minimal, 80
mono, 117
parametric, 115
unambiguous, 96, 153

labelled transition, see transition
labelled transition system, see transition

system
lean, 26, 57, 92, 93, 95, 127
lean-support equivalent, see equivalence
lean-support quotient, see functor
least bound, see bound
link, 5, 6, 15, 28

bound, 90
closed, 5, 115
open, 5, 115

link axiom, 31
link elision, see elision
link graph, 4, 47

concrete, 15
link map, see map
link sorting (discipline), 65
link-sorted signature, see signature
linking, xii, 29
localisation in binding bigraphs, 136
locality, see placing, 73, 132, 134

of interface, 133
location, 75

many-sorted algebra, see algebra
map

control, 15

link, 15
parent, 15

merge, 29, 32, 42
merge product, see product
minimal bound, see bound
minimal transition, see transition
mobile ambients, 96
molecule, 30

discrete, 30
mono bisimilarity, see bisimilarity
monomorphism (mono), 46
movement, 8
multiary, 15

name, 5
inner, 5, 6, 28, 46
local, 133
outer, 5, 28, 46
private, 148
public, 148
shared, 33

name-set, 5
nesting, 3, 34, 42, 62
net

arithmetic, 100
condition–event, 103
explicit, 102
Petri, see Petri net

nice, 94, 98, 99, 114
node, 3, 15
node axiom, 31
node shape, 8
node-free, 29
node-identifier, 14
normal form, 102

discrete, 32, 90
for CCS, see CCS
ground discrete, 32

nullary, 15

object, 4, 19
observation, 104

Petri net, 103
occurrence, 4, 22, 31, 39, 123
op-cartesian, 44, 63, 68, 69
open, 28, 95

bisimilarity, see bisimilarity
link, see link

ordinal
finite, 4, 14

Index 189

origin, 5, 20
outer name, see name
outward binding, see binding

parallel composition, 33, 36, 62
parallel product, 33
parameter, 36, 92

CCS, 88
discrete, 37, 127
for CCS, see CCS

parametric
label, see label
reaction rule, see reaction rule

parent, 4, 6, 28
parent map, see map
partial monoidal category, see category
passive, 80, 89
permutation, 29
Petri net, 87, 96, 103

condition–event, 67
derived transitions, 104
sorting, 68

pi-calculus, 96, 131, 135
place, 28
place axiom, 31
place elision, see elision
place graph, 4, 47

concrete, 15
place sorting, 59
place-sorted, 59
place-sorted bigraph, see bigraph
place-sorted interface, see interface
place-sorted signature, see signature
placing, xii, 29
plus in arithmetic net, 65
point, 15, 28
port, 4, 15, 28
post-condition in Petri net, 67
pre-condition in Petri net, 67
precategory, 4, 22, 42
prefix, 62
prefixing, 34
prime, 32, 62, 95

agent, see agent
bigraph, see bigraph
factorisation, see factorisation
split, see split

process, 61
algebra, see algebra

process definition, 61
processes in CCS, see CCS
product

discrete merge, 115
merge, 35, 42, 62
parallel, 33, 42
tensor, 20

public name, see name
pure bigraph, see bigraph
pushout, 40, 47

idem, see idem pushout
reflecting, 43, 44, 63, 69

quality
inherited in IPOs, 56

quotient
lean-support, 26, 57, 93, 98
support, 24
WRS, 85

raw transition system, see transition system
reaction, 40, 74

growing, 128
potential, 40
underlying, 95

reaction relation, 74
basic, 73
for CCS, see CCS
tracking, 124
wide, 73

reaction rule, 8, 26, 73, 74
affine, 98
CCS, 36, 88
contextual, 125
for CCS, see CCS
ground, 83, 93
nice, 98
parametric, 88, 91, 93
tracking, 125

reactive system, 23, 63
basic, 73, 74
tracking, 124
wide, 24, 73, 75

reactum, 8, 26, 74
CCS, 88
for CCS, see CCS
parametric, 92

recursion, 126, 130
recursive call, 126

190 Index

redex, 8, 26, 36, 40, 74
CCS, 88
for CCS, see CCS
ground, 37
parametric, 92, 95
split, 153
tight, 153

reflect, 43
reflecting, see pushout
region, 5
relative bound, see bound
relative pushout, 40, 46, 74, 83

construction of, 49, 51
creating, 43, 69
in bigraphs, 52, 57
in binding bigraphs, 134
in link graphs, 51, 150
in place graphs, 52
lacking in abstract bigraphs, 57
preserving, 44

renaming, 29, 32
replication, 98, 130
residual, 124
residuation, 124
respect, 85, 86, 93, 151
restriction, 61, 62
room, 8
root, 6, 15, 28, 46, 61, 111
RPO, see relative pushout
rule-set, 10

s-category, 19, 23
graphical, 25
wide, 24, 73, 75

s-net, 104
safe, 43, 60, 68
safe sorting, 43, 44, 63, 92
scope, 61
scope discipline, 133
seed, 126
shared name, see name
sharing

of nodes, 115
of nodes and sites, 51
of points, 48

sibling, 28, 46
signature

arithmetic, 100
basic, 7, 42, 59, 65, 67
binding, 131

dynamic, 88
link-sorted, 65, 66, 68
place-sorted, 59

simple, 95
simulation, 78
site, 6, 15, 28, 46
sort, 59, 65
sorted

bigraph, see bigraph
sorting, 92, 93, 100, 103

for CCS, see CCS
for Petri nets, see Petri net
formation rule, 59
link, 64
many–one, 66, 68
place, 59, 61, 62, 64
plain, 69
safe, 43, 60
stratified, 61

sorting (discipline), 42
sorting discipline, 44
sound, 31
soundness

of IPO construction, 55
of RPO construction, 50, 52

source, 66
space, xi, 1
span, 40, 42, 47

consistent, 52
split, 37

tight, 37, 153
unary, 37

spm, see category, symmetric partial
monoidal

state, 9
status, 89
structural analysis, 39
structural congruence, see congruence,

structural, 85
for CCS, see CCS

structure, 31
sub transition system, see transition system
substitution, 29, 33, 42, 62

in binding bigraphs, 135
transition, see transition

subsystem, 8
successor in arithmetic net, 65
sum, see alternation
summation, 36
support, 16, 23, 92

Index 191

empty, 23
for bigraphs, 16

support element, 23, 147
support equivalence, 23, 83, 92, 126
support equivalent, 16
support quotient, see functor
support translation, 23, 24, 41, 147

for bigraphs, 16
symmetric, see category
symmetry, 21, 23, 25, 29, 31
syntax of CCS, see CCS

target, 66
tensor product, 20, 23, 33
tensorial IPO, see idem pushout
termination, 102
tight, 37, 96
token in Petri net, 67
trace equivalence, 78
tracking, 92, 123

map, 124
parametric, 125
reaction rule, see reaction rule
reactive system, see reactive system

transition, 78
contextual, 81
disengaged, 95, 118
engaged, 95, 96, 116, 130
for CCS, see CCS
growing, 128
labelled, 77
minimal, 81, 128
prime, 95, 115
prime disengaged, 152, 153
prime engaged, 97

raw, 116
substitution, 117

transition relation, 78
transition system, 44, 78

abstract, 85
contextual, 81, 85, 117, 118
definite sub, 84, 97
derived, 116
faithful sub, 84, 98, 118
full, 79
induced, 151
labelled, 73
minimal, 81, 94, 105
prime engaged, 97, 115
raw, 78, 103, 118
sub, 74, 84

translation of CCS, see CCS

unambiguous, 95
unary, 15, 37, 62, 95
unfolding, 126
unit, 20, 23, 31

for merge product, 116
up to bisimulation, see bisimulation

weak bisimilarity, see bisimilarity
well-sorted, 65, 68
wide reactive system, 93

abstract, 76
wide s-category, see s-category
width, 15, 73, 75
WRS, see wide reactive system

zero in arithmetic net, 65

	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Prologue
	The informatic challenge
	Space
	Motion
	The bigraph model
	Generality
	Rigour
	Deployment
	Outline of the book

	Acknowledgements
	Part I: Space
	1 The idea of bigraphs
	2 Defining bigraphs
	2.1 Bigraphs and their assembly
	2.2 Mathematical framework
	2.3 Bigraphical categories

	3 Algebra for bigraphs
	3.1 Elementary bigraphs and normal forms
	3.2 Derived operations

	4 Relative and minimal bounds
	5 Bigraphical structure
	5.1 RPOs for bigraphs
	5.2 IPOs in bigraphs
	5.3 Abstract bigraphs lack RPOs

	6 Sorting
	6.1 Place sorting and CCS
	6.2 Link sorting, arithmetic nets and Petri nets
	6.3 The impact of sorting

	Part II: Motion
	7 Reactions and transitions
	7.1 Reactive systems
	7.2 Transition systems
	7.3 Sub transition systems
	7.4 Abstract transition systems

	8 Bigraphical reactive systems
	8.1 Dynamics for a BRS
	8.2 Dynamics for a nice BRS

	9 Behaviour in link graphs
	9.1 Arithmetic nets
	9.2 Condition–event nets

	10 Behavioural theory for CCS
	10.1 Syntax and reactions for CCS in bigraphs
	10.2 Transitions for CCS in bigraphs

	Part III: Development
	11 Further topics
	11.1 Tracking
	11.2 Growth
	11.3 Binding
	11.4 Stochastics

	12 Background, development and related work

	Appendices
	Appendix A Technical detail
	A.1 Support translation
	A.2 Public versus private names
	A.3 RPOs for link graphs
	A.4 Quotient of a transition system
	A.5 Unambiguity of labels
	A.6 Faithfulness of engaged transitions
	A.7 Recovering bisimilarity for CCS

	Appendix B Solutions to exercises
	Solutions for Chapter 1
	Solutions for Chapter 2
	Solutions for Chapter 3
	Solutions for Chapter 4
	Solutions for Chapter 5
	Solutions for Chapter 6
	Solutions for Chapter 7
	Solutions for Chapter 10
	Solutions for Chapter 11

	Glossary of terms and symbols
	References
	Index

