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Chapter 1: Response 1

Chapter 1

Response

In the preceding chapters we discussed methods for proving safety properties.

While the class of safety properties is very important, and normally occupies a

large portion of a speci�cation, it must be complemented by properties in the

other classes.

It is interesting to note that the expression of safety properties and their ver-

i�cation use relatively little temporal logic. The main emphasis there is directed

towards �nding assertions that are invariant over the computation of a program.

Most of the veri�cation e�orts are concentrated on showing that the assertions

are inductive. This requires proving a set of veri�cation conditions, which are ex-

pressed by nontemporal state formulas. Temporal logic is used mainly for stating

the �nal result of invariance of the assertion. It is true that, when considering

precedence properties, we extensively use the past part of temporal logic. But as

we commented there, an equivalent, though sometimes less elegant, state formu-

lation of these properties can be managed through auxiliary or history variables.

It is only when we enter the realm of more general properties, that temporal

logic becomes an essential and irreplaceable tool. Thus if, for some reason, one is

willing to restrict himself to the study of safety properties of reactive programs,

he does not need the full power of temporal logic.

A related observation is that, only when we go beyond safety properties does

fairness become meaningful. Recall the de�nition of a run as a state sequence

that satis�es the requirements of initiation and consecution but not necessarily

any of the fairness requirements. It can be shown that a safety formula holds over

all runs of a program if and only if it holds over all computations, i.e., fair runs.

Thus, safety properties cannot distinguish between fair and unfair runs.

This is no longer the case with progress (nonsafety) properties. Note, for

example, that the in�nite sequence s

0

; s

0

; : : : is a legal run of any program P ,

provided s

0

q �. This run is generated by continuously taking the idling transition

�

I

. There are very few progress properties that hold over this run.
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Consequently, while safety properties do not depend on the fairness require-

ments for their validity, progress properties do. In Chapters 1{3 we concentrate

on the important class of response properties, which is one of the progress classes.

This class contains properties that can be expressed by a formula of the form

0 1 p,

for a past formula p. In these chapters, we introduce a family of rules for response

properties that rely on the di�erent fairness requirements. Chapters 1{2 present

rules that rely on justice, while Chapter 3 presents rules that rely on (justice and)

compassion.

Chapter 4 completes the picture by presenting rules for the highest progress

class, that of reactivity.

Chapter 1 deals with response properties that rely on the just transitions of

the system for their validity. Chapter 3 generalizes the treatment to properties

that rely on both justice and compassion for their validity.

In Section 1.1 we consider a single-step rule that relies on the activation of a

single just transition.

Section 1.2 shows how to combine several applications of the single-step rule

into a rule that relies on a �xed number of activations of just transitions.

Section 1.3 generalizes the rule to the case that the number of just activations

necessary to achieve the goal is not �xed and may depend, for example, on an

input parameter.

In Section 1.4, we extend all the above methods to prove properties expressed

by response formulas that contain past subformulas.

Section 1.5 deals with the class of guarantee formulas, treating them as a

special case of response properties.

In a similar way, Section 1.6 considers the class of obligation properties.

Again, their veri�cation is based on their consideration as a special case of the

response class.

1.1 Response Rule

Even though there are several di�erent classes of progress properties, their veri-

�cation is almost always based on the establishment of a single construct | the

response formula

p ) 1 q,

for past formulas p and q. This formula states that any position in the computa-

tion which satis�es p must be followed by a later position which satis�es q. Since
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the canonical response formula 0 1 q is equivalent to T ) 1 q, it follows that

every response property can be expressed by a formula of the form p) 1 q.

A general response property allows p and q to be general past formulas. In

Sections 1.1{1.3 we consider the simpler case that p and q are assertions. In

Section 1.4 we will generalize the treatment to the case that p and q are past

formulas.

A Single-Step Rule

A single-step rule, relying on justice, is provided by rule RESP-J presented in

Fig. 1.1.

For assertions p, q, ', and transition �

h

2 J ,

J1. p ! q _ '

J2. f'g T fq _ 'g

J3. f'g �

h

fqg

J4. ' ! En(�

h

)

p ) 1 q

Fig. 1.1. Rule RESP-J (single-step response under justice).

The rule calls for the identi�cation of an intermediate assertion ' and a just

transition �

h

2 J , to which we refer as the helpful transition.

Premise J1 of the rule states that, in any position satisfying p, either the goal

formula q already holds, or the intermediate formula ', bridging the passage from

p to q, holds. The q-disjunct of this premise covers the case that the distance

between the p-position and the q-position is 0. The '-disjunct and the other

premises cover the case that the distance between these two positions is positive.

Premise J2 requires that every transition leads from a '-position to a position

that satis�es q _ '. That is, either a position satisfying the goal formula q is

attained or, if not, then at least the intermediate ' is maintained.

Premise J3 requires that the helpful transition �

h

always leads from a '-

position to a q-position.

Premise J4 requires that the helpful transition �

h

is enabled at every '-

position.
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Justi�cation To justify the rule, consider a computation � which satis�es the

four premises of the rule. Assume that p holds at position k, k � 0. We wish to

show that q holds at some position i, i � k. Assume, to the contrary, that it does

not. That means that for all i, i � k, q does not hold at i. By J1, ' holds at

position k. By J2, every successor of a '-state is a (q _ ')-state.

Since we assumed that q never occurs beyond k, it follows that ' holds con-

tinuously beyond k. By J4, the just transition �

h

must be continuously enabled.

However, �

h

is never taken beyond k. This is because if �

h

were taken, it would

have been taken from a '-position, and by J3 the next position would have sat-

is�ed q. Thus we have that �

h

is continuously enabled, but never taken beyond

k. It follows that the sequence � is not just with respect to �

h

, and is, therefore,

not a computation.

This shows that, for all computations, there must exist an i, i � k such that

q holds at i.

In applications of the rule, it is su�cient to establish premise J2 for all � 6= �

h

,

since J2 for � = �

h

is implied by J3. It is also unnecessary to check premise J2

for � = �

I

, the idling transition, since f'g �

I

f'g is trivially state valid.

Example (program ANY-Y)

Program ANY-Y of Fig. 1.2 illustrates a simple program consisting of two processes

communicating by the shared variable x, initially set to 0. Process P

1

keeps

incrementing variable y as long as x = 0. Process P

2

has only one statement,

which sets x to 1. Obviously, once x is set to 1, process P

2

terminates, and some

time later so does P

1

, as soon as it observes that x 6= 0.

local x; y: integer where x = y = 0

P

1

::

2

6

4

`

0

: while x = 0 do

`

1

: y := y + 1

`

2

:

3

7

5

P

2

::

�

m

0

: x := 1

m

1

:

�

Fig. 1.2. Program ANY-Y.

We illustrate the use of rule RESP-J for proving the response property

at

�

m

0

) 1 (x = 1)

for program ANY-Y.
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As the helpful transition �

h

we take m

0

. As the intermediate assertion ' we

take p: at

�

m

0

. Premise J1 assumes the form

at

�

m

0

| {z }

p

! � � �

|{z}

q

_ at

�

m

0

| {z }

'

;

which is obviously valid. Premise J2 is established by showing that all transitions,

excluding m

0

, preserve ': at

�

m

0

, which is clearly the case.

Premise J3 requires showing that m

0

leads from any '-state to a q-state,

expressed by

� � � ^ x

0

= 1

| {z }

�

m

0

^ � � �

|{z}

'

! x

0

= 1

| {z }

q

0

;

which is obviously valid. Finally, J4 requires

at

�

m

0

| {z }

'

! at

�

m

0

| {z }

En(m

0

)

;

which is also valid. This establishes that the property speci�ed by the response

formula at

�

m

0

) 1 (x = 1) is valid over program ANY-Y.

Combining Response Properties

Rule RESP-J by itself is not a very strong rule, and is su�cient only for proving one-

step response properties, i.e., properties that can be achieved by a single activation

of a helpful transition. For example, while program ANY-Y always terminates, its

termination cannot be proven by a single aplication of rule RESP-J.

In general, most response properties of the form p ) 1 q require several

helpful steps in order to get from a p-position to a q-position.

To establish such properties we may use several rules that enable us to com-

bine response properties, each established by a single application of rule RESP-J.

These rules are based on general properties of response formulas that allow us

to form these combinations. We list some of these properties as proof rules. All

of these rules can be established as derived rules, using the standard deductive

system for temporal logic

1

.

Monotonicity

An important property of response formulas is the monotonicity of both the an-

tecedent and the consequent. This can be summarized in the form of the (mono-

tonicity) rule MON-R, presented in Fig. 1.3.

1

For example, the one presented in Chapter 3 of Volume I.
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p ) q q ) 1 r r ) t

p ) 1 t

Fig. 1.3. Rule MON-R (monotonicity of response)

Rule MON-R enables us to strengthen the antecedent and weaken the conse-

quent. Thus, if we managed to prove the response formula

at

�

`

0

) 1 (x = 1),

we can infer from it, using rule MON-R, the formula

at

�

`

0

) 1 (x > 0).

Re
exivity

Property RFLX-R of Fig. 1.4 states that the 1 operator is re
exive.

p ) 1 p

Fig. 1.4. Property RFLX-R (re
exivity of response)

We may use this property to prove simple response formulas such as

x = 0 ) 1 (x = 0).

Transitivity

The transitivity property of response formulas is expressed by the (transitivity)

rule TRNS-R, presented in Fig. 1.5.

p ) 1 q q ) 1 r

p ) 1 r

Fig. 1.5. Rule TRNS-R (transitivity of response)
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Thus, if we managed to prove for program ANY-Y the two response formulas

at

�

`

1

^ at

�

m

1

^ x = 1 ) 1 (at

�

`

0

^ at

�

m

1

^ x = 1)

at

�

`

0

^ at

�

m

1

^ x = 1 ) 1 (at

�

`

2

^ at

�

m

1

);

we may use rule TRNS-R to conclude

at

�

`

1

^ at

�

m

1

^ x = 1 ) 1 (at

�

`

2

^ at

�

m

1

):

The soundness of rule TRNS-R is obvious. Consider a computation � such that

the �rst two premises are valid over �. Let i be a position satisfying p. By the

�rst premise, there exists a position j, j � i, satisfying q. By the second premise,

there exists a position k, k � j, satisfying r. Thus, we are ensured of a position

k, k � i, satisfying r, which establishes p) 1 r.

Proof by Cases

Another useful property of response formulas is that it is amenable to proof by

cases. This possibility is presented by rule CASES-R of Fig. 1.6.

p ) 1 r q ) 1 r

(p _ q) ) 1 r

Fig. 1.6. Rule CASES-R (case analysis for response)

Assume, for example, that we have proved for program ANY-Y the two fol-

lowing reponse formulas.

at

�

`

0

^ at

�

m

1

^ x = 1 ) 1 (at

�

`

2

^ at

�

m

1

)

at

�

`

1

^ at

�

m

1

^ x = 1 ) 1 (at

�

`

2

^ at

�

m

1

).

Then, we may use rule CASES-R to conclude

(at

�

`

0

^ at

�

m

1

^ x = 1) _ (at

�

`

1

^ at

�

m

1

^ x = 1) )

1 (at

�

`

2

^ at

�

m

1

),

from which, by rule MON-R, we can infer

at

�

`

0;1

^ at

�

m

1

^ x = 1 ) 1 (at

�

`

2

^ at

�

m

1

):

Example (program ANY-Y)

We will illustrate the use of these rules by proving termination of program ANY-Y.

This property can be expressed by the response formula
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� ) 1 (at

�

`

2

^ at

�

m

1

);

where

�: � = f`

0

;m

0

g ^ x = 0 ^ y = 0

is the initial condition of program ANY-Y.

The proof consists of the following steps:

1. at

�

`

0

^ at

�

m

0

^ x = 0 ) 1 (at

�

`

0;1

^ at

�

m

1

^ x = 1)

by rule RESP-J, taking �

h

: m

0

and ': at

�

`

0;1

^ at

�

m

0

^ x = 0

2. at

�

`

0

^ at

�

m

1

^ x = 1 ) 1 (at

�

`

2

^ at

�

m

1

)

by rule RESP-J, taking �

h

: `

0

and ': at

�

`

0

^ at

�

m

1

^ x = 1

3. at

�

`

1

^ at

�

m

1

^ x = 1 ) 1 (at

�

`

0

^ at

�

m

1

^ x = 1)

by rule RESP-J, taking �

h

: `

1

and ': at

�

`

1

^ at

�

m

1

^ x = 1

4. at

�

`

1

^ at

�

m

1

^ x = 1 ) 1 (at

�

`

2

^ at

�

m

1

)

by rule TRNS-R, applied to 3 and 2

5. (at

�

`

0

^ at

�

m

1

^ x = 1) _ (at

�

`

1

^ at

�

m

1

^ x = 1) )

1 (at

�

`

2

^ at

�

m

1

)

by rule CASES-R, applied to 2 and 4

6. at

�

`

0;1

^ at

�

m

1

^ x = 1 !

(at

�

`

0

^ at

�

m

1

^ x = 1) _ (at

�

`

1

^ at

�

m

1

^ x = 1)

an assertional validity

7. at

�

`

0;1

^ at

�

m

1

^ x = 1 ) 1 (at

�

`

2

^ at

�

m

1

)

by rule MON-R, using 5 and 6

8. at

�

`

0

^ at

�

m

0

^ x = 0 ) 1 (at

�

`

2

^ at

�

m

1

)

by rule TRNS-R, applied to 1 and 7

9. � ! at

�

`

0

^ at

�

m

0

^ x = 0 an assertional validity

10. � ) 1 (at

�

`

2

^ at

�

m

1

) by rule MON-R, applied to 8 and 9.

1.2 Chain Rule

The proof of the last example follows a very speci�c pattern that occurs often

in proofs of response properties. According to this pattern, to establish p )

1 q, we identify a sequence of intermediate situations described by assertions

'

m

; '

m�1

; : : : ; '

0

such that p implies one of '

m

; : : : ; '

0

, and q is identical with
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'

0

(or is implied by '

0

). We then show that for every i > 0, being at '

i

implies

that eventually we must reach '

j

for some j < i.

We can interpret the index i of the intermediate formula '

i

as a measure of

the distance of the current state from a state that satis�es the goal q. Thus, the

lower the index, the closer we are to achieving the goal q. For a position j, let '

i

be the intermediate formula with the smallest i s.t. '

i

holds at j. We refer to the

index i as the rank of position j.

This proof pattern is summarized in rule CHAIN-J (Fig. 1.7).

For assertions p and q = '

0

; '

1

; : : : ; '

m

and

transitions �

1

; : : : ; �

m

2 J

J1. p !

m

_

j=0

'

j

J2. f'

i

g T

�

_

j�i

'

j

�

J3. f'

i

g �

i

�

_

j<i

'

j

�

J4. '

i

! En(�

i

)

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

for i = 1; : : : ;m

p ) 1 q

Fig. 1.7. Rule CHAIN-J (chain rule under justice).

According to premise J1, p implies that one of the intermediate formulas '

i

(possibly '

0

implying q) holds. Premise J2 requires that taking any transition

from a '

i

-position results in a next position which satis�es '

j

, for some j � i.

Premise J3 requires that taking the helpful transition �

i

from a '

i

-position results

in a next position which satis�es '

j

for j < i. We can view premise J2 as stating

that the rank never increases, while premise J3 states that the helpful transition

guarantees that the rank decreases. Premise J4 claims that the helpful transition

�

i

is enabled at every '

i

-position.

Justi�cation Assume that all four premises are P -state valid. Consider a

P -computation � and a position t that satis�es p. We wish to prove that some
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later position satis�es q. Assume to the contrary that all positions later than t

(including t itself) do not satisfy q. By J1, position t satis�es '

j

for some j � 0.

Index j cannot be 0 because '

0

= q and we assumed that no position beyond t

satis�es q. Thus, position t satis�es '

j

, for some j > 0. By J2, position t + 1

satis�es some '

k

, k � j. Again, k > 0 due to '

0

= q. Continuing in this manner,

it follows that every position beyond t satis�es some '

j

for j > 0, to which we

refer as the rank of the position.

By J2, the rank of the position can either decrease or remain the same. It

follows that there must exist some position k � t, beyond which the rank never

decreases.

Assume that i is the rank of the state at position k. Since q is never satis�ed

and the rank never decreases beyond position k, it follows (by J2) that '

i

holds

continually beyond k. By J3, �

i

cannot be taken beyond k, because that would

have led to a rank decrease. By J4, �

i

is continually enabled beyond k yet, by the

argument above, it is never taken. This violates the requirement of justice for �

i

.

It follows that if all the premises of the rule are P -state valid then the con-

clusion p) 1 q is P -valid.

Note that since premise J3 implies premise J2 for � = �

i

, it is su�cient to

check premise J2 for a given i = 1; : : : ;m, only for � 6= �

i

. Also, it is unnecessary

to check premise J2 for � = �

I

, since f'

i

g �

I

f'

i

g trivially holds.

Example (Reproving termination of program ANY-Y)

Let us show how termination of program ANY-Y can be proved (again) by a single

application of rule CHAIN-J.

The property we wish to prove is

at

�

`

0

^ at

�

m

0

^ x = 0 ^ y = 0

| {z }

p=�

) 1 at

�

`

2

^ at

�

m

1

| {z }

q

:

Inspired by our previous proof of this property, we choose four assertions and

corresponding helpful transitions as follows:

'

3

: at

�

`

0;1

^ at

�

m

0

^ x = 0 �

3

: m

0

'

2

: at

�

`

1

^ at

�

m

1

^ x = 1 �

2

: `

1

'

1

: at

�

`

0

^ at

�

m

1

^ x = 1 �

1

: `

0

'

0

= q: at

�

`

2

^ at

�

m

1

:

Let us consider each of the premises of rule CHAIN-J.

� Premise J1

This premise calls for proving
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p !

3

_

j=0

'

j

.

We will prove p! '

3

, which amounts to

at

�

`

0

^ at

�

m

0

^ x = 0 ^ y = 0

| {z }

p

! at

�

`

0;1

^ at

�

m

0

^ x = 0

| {z }

'

3

which obviously holds.

� Premises J2{J4 for i = 3; 2; 1

We list below the premises that are proven for each i, i = 3; 2; 1.

Assertion '

3

: at

�

`

0;1

^ at

�

m

0

^ x = 0

n

at

�

`

0;1

^ at

�

m

0

^ x = 0

| {z }

'

3

o

�

n

at

�

`

0;1

^ at

�

m

0

^ x = 0

| {z }

'

3

o

for each � 6= m

0

n

at

�

`

0;1

^ at

�

m

0

^ x = 0

| {z }

'

3

o

m

0

8

>

>

>

<

>

>

>

:

at

�

`

1

^ at

�

m

1

^ x = 1

| {z }

'

2

_

at

�

`

0

^ at

�

m

1

^ x = 1

| {z }

'

1

9

>

>

>

=

>

>

>

;

at

�

`

0;1

^ at

�

m

0

^ x = 0

| {z }

'

3

! at

�

m

0

| {z }

En(m

0

)

:

Assertion '

2

: at

�

`

1

^ at

�

m

1

^ x = 1

n

at

�

`

1

^ at

�

m

1

^ x = 1

| {z }

'

2

o

�

n

at

�

`

1

^ at

�

m

1

^ x = 1

| {z }

'

2

o

for every � 6= `

1

n

at

�

`

1

^ at

�

m

1

^ x = 1

| {z }

'

2

o

`

1

n

at

�

`

0

^ at

�

m

1

^ x = 1

| {z }

'

1

o

h

at

�

`

1

^ at

�

m

1

^ x = 1

| {z }

'

2

i

! at

�

`

1

| {z }

En(`

1

)

:

Assertion '

1

: at

�

`

0

^ at

�

m

1

^ x = 1

n

at

�

`

0

^ at

�

m

1

^ x = 1

| {z }

'

1

o

�

n

at

�

`

0

^ at

�

m

1

^ x = 1

| {z }

'

1

o

for every � 6= `

0
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n

at

�

`

0

^ at

�

m

1

^ x = 1

| {z }

'

1

o

`

0

n

at

�

`

2

^ at

�

m

1

| {z }

'

0

o

at

�

`

0

^ at

�

m

1

^ x = 1

| {z }

'

1

! at

�

`

0

| {z }

En(`

0

)

:

All of these implications and veri�cation conditions are obviously state valid,

which establishes the conclusion

� ) 1 (at

�

`

2

^ at

�

m

1

).

Relation to rule NWAIT

There is a strong resemblance between the premises of rule CHAIN-J and those of

rule NWAIT (Fig. 3.6 on page 267 of the SAFETY book). This is not surprising,

since in both cases we wish to establish the evolution from p to q (q

0

in the case

of NWAIT) by successively passing through '

m

; '

m�1

; : : : ; '

1

; '

0

.

The main di�erence is that, in rule NWAIT, we are quite satis�ed if, from a

certain point on, we stay forever within '

j

for some j > 0. This is unacceptable

in a response rule, where we are anxious to establish eventual arrival at '

0

. This

di�erence is expressed in premise J3 which requires that activation of the helpful

transition �

i

takes us out of a '

i

-state, and premise J4 which requires that �

i

is

enabled on all '

i

-states. These premises have no counterparts in rule NWAIT. This

excludes computations that consist of states whose rank, from a certain point on,

never decreases below some j > 0.

Another di�erence is that, in rule NWAIT, we allow a transition to lead from

'

i

, i > 0, back to '

i

. This is expressed by the disjunction,

_

j�i

'

j

, appearing in

the postcondition of premise N3. Rule CHAIN-J allows this in premise J2 for all

but the helpful transition, which is required in J3 to lead to a position with a

strictly lower rank.

In spite of these di�erences, many of the approaches used in the study of

precedence properties are also applicable to the analysis of response properties.

One of these useful approaches is that of veri�cation diagrams introduced in

Section 3.3 of the SAFETY book.

1.3 Chain Diagrams

As observed in the previous example (program ANY-Y), in many cases it su�ces

to specify the intermediate assertions '

0

; '

1

; : : : ; '

m

and to identify the helpful

transitions �

1

; : : : ; �

m

. The proofs of the actual veri�cation conditions is a detail
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that can be left to skeptical readers, and eventually to an automated system.

Only some of the veri�cation conditions raise interesting questions, and those are

usually elaborated in a presentation of a proof. However, the main structure of the

proof is adequately represented by the list of assertions and their corresponding

helpful transitions.

A concise visual summary of this information, and some additional details, is

provided by veri�cation diagrams. Veri�cation diagrams were already introduced

in Section 3.3 of the SAFETY book to represent proofs using rule NWAIT. However,

we give here an independent description of the diagrams that support proofs of

response properties by rule CHAIN-J.

Veri�cation Diagrams

A veri�cation diagram is a directed labeled graph constructed as follows:

� Nodes in the graph are labeled by assertions. We will often refer to a node

by the assertion labeling it.

� Edges in the graph represent transitions between assertions. The diagrams

presenting proofs by rule CHAIN-J allow edges of two types, represented graph-

ically by single (-lined) and double (-lined) arrows. Each edge of either type

departs from one assertion, connects to another, and is labeled by the name

of a transition. We refer to an edge labeled by � as a � -edge.

� One of the nodes may be designated as a terminal node (\goal" node). In

the graphical representation, this node is distinguished by having a boldface

boundary. No edges depart from a terminal node. Terminal nodes correspond

to \goal" assertions such as '

0

in rule CHAIN-J.

Chain Diagrams

A veri�cation diagram is said to be a chain diagram if its nodes are labeled by

assertions '

0

; : : : ; '

m

, with '

0

being the terminal node, and if it satis�es the

following requirements:

� If a single (-line) edge connects node '

i

to node '

j

, then i � j.

� If a double (-line) edge connects node '

i

to node '

j

, then i > j.

� Every node '

i

, i > 0, has a double edge departing from it. This identi�es

the transition labeling such an edge as helpful for assertion '

i

. All helpful

transitions must be just.

The �rst two requirements ensure that the diagram is weakly acyclic in the sense

de�ned in Section 3.3 of the SAFETY book for WAIT diagrams. That is, the terminal

node is labeled by '

0

and whenever node '

i

is connected by an edge (single or

double) to node '

j

, then j � i. The stronger second requirement ensures that

the subgraph based on the double edges is acyclic, forbidding self-connections by
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double edges. The third requirement demands that every nonterminal assertion

(i.e., '

i

for i > 0) has at least one helpful transition associated with it.

Veri�cation Conditions for CHAIN Diagrams

The assertions labeling nodes in a diagram are intended to represent the inter-

mediate assertions appearing in a CHAIN-J proof. A � -labeled edge connecting

node '

i

to node '

j

implies that it is possible for a '

i

-state to have a � -successor

satisfying '

j

. A double edge departing from node ' and labeled by transition

� identi�es � as helpful for assertion '. Consequently, we associate veri�cation

conditions with nodes and the edges departing from them. These conditions,

expressed by implications, represent premises J2{J4 of rule CHAIN-J.

For a node '

i

and transition � , connecting '

i

to '

j

, we say that '

j

is a

� -successor of '

i

. Let ' be a nonterminal node and '

1

; : : : ; '

k

, k � 0, be the

� -successors of '.

V1. If all the edges connecting ' to its � -successors are single (-lined), then we

associate with ' and � the veri�cation condition

f'g � f' _ '

1

_ � � � _ '

k

g.

Transition � , labeling only single edges, is identi�ed as unhelpful for '. This

condition, similar to premise J2, allows � to lead from a '-state back to a

'-state, recording no progress.

The case of a transition � that does not label any edges departing from '

is interpreted as though � labels k = 0 single-lined edges departing from '.

That is, with such a transition we associate the veri�cation condition

f'g � f'g.

V2. If some edge departing from ' is double (hence k > 0), we associate with '

and � the veri�cation condition

f'g � f'

1

_ � � � _ '

k

g.

This condition corresponds to premise J3, requiring a transition � , identi�ed

as helpful, to lead away from '.

V3. If � labels some double edge departing from ', we require

' ! En(� ).

This condition corresponds to premise J4, requiring that a transition helpful

for ' is enabled on all '-states. We refer to this requirement as the enabling

requirement .

Valid CHAIN Diagrams

A CHAIN diagram is said to be valid over a program P (P -valid for short) if all

the veri�cation conditions associated with nodes of the diagram are P -state valid.
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The consequences of having a P -valid CHAIN diagram are stated by the fol-

lowing claim:

Claim 1.1 (CHAIN diagrams)

A P -valid CHAIN diagram establishes that the response formula

m

_

j=0

'

j

) 1 '

0

is P -valid.

If, in addition, we can establish the P -state validity of the following implica-

tions:

(J1) p !

m

_

j=0

'

j

and (J0) '

0

! q

then, we can conclude the P -validity of

p ) 1 q.

Justi�cation First, we show the �rst part of the claim, stating the P -validity

of

m

_

j=0

'

j

) 1 '

0

.

We use rule CHAIN-J with p:

W

m

j=0

'

j

, q = '

0

and, for each i = 1; : : : ;m, we

take �

i

(the helpful transition for '

i

) to be the transition labeling the double edge

departing from '

i

.

For our choice of p and q, premise J1 of rule CHAIN-J assumes the form

(J1)

m

_

j=0

'

j

!

m

_

j=0

'

j

,

which is trivially state-valid. We proceed to show that the P -state validity of

premises J2{J4 follows from the P -validity of the diagram, for each i = 1; : : : ;m.

Premise J2 requires showing

(J2) �

�

^ '

i

! '

0

0

_ '

0

1

_ � � � _ '

0

i

,

for each � 2 T . Let '

i

1

; : : : ; '

i

k

be the � -successors of '

i

in the P -valid diagram,

for � 2 T � f�

i

; �

I

g. By the requirement of weak acyclicity i

1

� i; : : : ; i

k

� i.

Since � 6= �

i

, all the � -edges departing from node ' are single-line edges and the

following veri�cation condition holds:

V1. �

�

^ '

i

! '

0

i

_ '

0

i

1

_ � � � _ '

0

i

k

.
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Since i

j

� i for each j = 1; : : : ; k, the disjunction on the right-hand side of V1 is

taken over a subset of the assertions appearing on the right-hand side of premise

J2. It follow that J2 is state-valid for assertion '

i

and transition � . For � = �

I

,

premise J2 holds trivially since �

�

I

implies '

0

i

= '

i

. For � = �

i

, premise J2 is

implied by J3.

Premise J3 requires

(J3) �

�

i

^ '

i

! '

0

0

_ '

0

1

_ � � � _ '

0

i�1

.

Let '

i

1

; : : : ; '

i

k

be the �

i

-successors of '

i

in the P -valid diagram. Since all �

i

-

edges departing from '

i

are double, i

j

< i for j = 1; : : : ; k and the following

veri�cation condition holds:

V2. �

�

^ '

i

! '

0

i

1

_ � � � _ '

0

i

k

.

Repeating the subset argument, this implies the state validity of premise J3.

Premise J4 is identical to condition V3 for every '

i

and �

i

, i = 1; : : : ;m.

Next, we consider the more general case of p and q which are not identical to

W

m

j=0

'

j

and '

0

, respectively, but satisfy the implications J1 and J0. Applying

rule MON-R to p,

W

m

j=0

'

j

, '

0

, and q (standing for p, q, r, and t in MON-R), we

obtain the conclusion p ) 1 q.

Note that chain diagrams and their notion of validity are a conservative

extension of the WAIT diagrams, introduced in Section 3.3 of the SAFETY book.

The additional requirements that disallow a self-connecting edge all refer to double

edges which are not present in WAIT diagrams. It follows that a P -valid CHAIN

diagram is also P -valid for proving the nested waiting-for formula

m

_

j=0

'

j

) '

m

W '

m�1

� � �'

1

W '

0

.

Example (program ANY-Y)

Consider again program ANY-Y (Fig. 1.2). The CHAIN diagram of Fig. 1.8 provides

a graphical representation for the proof of the response property

at

�

`

0

^ at

�

m

0

^ x = 0

| {z }

p=�

) 1

�

at

�

`

2

^ at

�

m

1

| {z }

q='

0

�

;

for program ANY-Y.

The diagram identi�es '

3

; : : : ; '

0

as the intermediate assertions andm

0

; `

1

; `

0

as their corresponding helpful transitions. This CHAIN diagram is valid over pro-

gram ANY-Y, which establishes the P -validity of
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�

�

�

�

'

3

: at

�

`

0;1

^ at

�

m

0

^ x = 0

m

0

�

m

0

�

�

�

�

�

�

�

'

2

: at

�

`

1

^ at

�

m

1

^ x = 1

`

1

�
�

�

�

�

'

1

: at

�

`

0

^ at

�

m

1

^ x = 1

`

0

�

�

�

�

�

'

0

: at

�

`

2

^ at

�

m

1

Fig. 1.8. CHAIN diagram for termination.

3

_

j=0

'

j

) 1 (at

�

`

2

^ at

�

m

1

)

over this program. Since (as shown above) �! '

3

, the second part of Claim 1.1

establishes the P -validity of the termination property

� ) 1 (at

�

`

2

^ at

�

m

1

).

The Advantages of Diagrams

One of the advantages of the presentation of a CHAIN-J proof sketch by a CHAIN

diagram, over its presentation by a list of assertions and their corresponding

helpful transitions is that the diagram provides a stronger (and more detailed)

version of premises J2 and J3 than is standardly provided by rule CHAIN-J and a

list of the assertions and helpful transitions.

Consider, for example, the proof presented in Fig. 1.8. Both the diagram

and the textual proof identify '

2

as at

�

`

1

^ at

�

m

1

^ x = 1 and `

1

as its helpful

transition.

However, while rule CHAIN-J suggests that we prove for premise J3 the veri-

�cation condition

f'

2

g `

1

f'

0

_ '

1

g,

the diagram claims that the even stronger condition

f'

2

g `

1

f'

1

g
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is P -state valid. This results from the fact that there is no `

1

-edge connecting '

2

to '

0

.

Encapsulation Conventions

There are several encapsulation conventions that lead to more structured hierar-

chical diagrams and improve the readability and manageability of large complex

diagrams. These conventions were introduced in Section 3.3 of the SAFETY book

and we reproduce them here brie
y, to make the presentation self contained. The

basic construct of encapsulation is that of a compound node that may contain

several internal nodes. The encapsulation conventions attribute to a compound

node aspects and relations that are common to all of their contained nodes. We

refer to the contained nodes as descendants of the compound node. Nodes that

are not compound are called basic nodes. We use three encapsulation conventions.

� Departing edges

An edge departing from a compound node is interpreted as though it departed

from each of its descendants. This is represented by the graphical equivalence

of Fig. 1.9.

�

��

��

'

2

��

��

'

1

C

DE

F

�

-

��

��

 

��

��

'

2

��

��

'

1

C

DE

F

��

��

 

*

�

j

�

Fig. 1.9. Departing edges.

� Arriving edges

In a similarway, an edge arriving at a compound node is interpreted as though

it arrived at each of its descendants. This is represented in the graphical

equivalence of Fig. 1.10.

� Common factors

An assertion ' labeling a compound node is interpreted as though it were a

conjunct added to each of the labels of its descendants. This is represented

by the graphical equivalence of Fig. 1.11. We refer to ' as a common factor

of the two nodes.
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�

��

��

 

2

��

��

 

1

C

DE

F

�

-

��

��

'

��

��

 

2

��

��

 

1

C

DE

F

��

��

'

1

�

q

�

Fig. 1.10. Arriving edges.

�

�

�

�

�

' ^  

2

�

�

�

�

' ^  

1

C

DE

F

��

��

 

2

��

��

 

1

C

DE

F

'

Fig. 1.11. Common factors.

Example In Fig. 1.12 we present a veri�cation diagram which is the encapsu-

lated version of the veri�cation diagram of Fig. 1.8.

This encapsulation uses the arriving edge convention to denote by a single

arrow the two edges connecting '

3

to '

2

and to '

1

. It uses the common factor

convention to simplify the presentation of '

1

and '

2

.

Additional Examples

Let us consider a few more examples for the application of rule CHAIN-J and CHAIN

diagrams, illustrating the encapsulation conventions.

Example (Peterson's Algorithm | version 1)

For the next example, we return to program MUX-PET1, Peterson's algorithm for

mutual exclusion (Fig. 1.13). This program was previously studied in Section 1.4

of the SAFETY book, where we established for it the following invariants:

 

0

: s = 1 _ s = 2

 

1

: y

1

$ at

�

`

3::5
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�

�

�

�

'

3

: at

�

`

0;1

^ at

�

m

0

^ x = 0

m

0

�

C

DE

F
at

�

m

1

^ x = 1

�

�

�

�

'

2

: at

�

`

1

`

1

�

�

�

�

�

'

1

: at

�

`

0

`

0

�

�


 	

�

'

0

: at

�

`

2

^ at

�

m

1

Fig. 1.12. Encapsulated version of CHAIN diagram for termination.

 

2

: y

2

$ at

�

m

3::5

.

We wish to prove for this program the response property of accessibility,

given by

at

�

`

2

| {z }

p

) 1 at

�

`

4

| {z }

q

:

To use rule CHAIN-J or its diagram representation, we have to identify in-

termediate assertions that characterize the intermediate situations between the

starting assertion p: at

�

`

2

and the goal assertion q: at

�

`

4

. It is obvious that the

�rst helpful step in the progress from `

2

to `

4

is process P

1

moving from `

2

to

`

3

. Consequently, we can safely take '

m

to be at

�

`

2

and the helpful transition

�

m

to be `

2

. We cannot yet determine the value of m because it depends on the

number of helpful steps necessary to get from `

3

to `

4

. We can now concentrate

on showing how to get from `

3

to `

4

.

Similar to the heuristics employed in the application of rule NWAIT (Sec-

tion 3.3 of the SAFETY book), it is often useful to work backwards from the goal

assertion at

�

`

4

. Consequently, we take '

0

to be at

�

`

4

.

For the previous intermediate assertion '

1

, we look for situations that are

only one helpful step away from '

0

. Clearly, the only transition that can accom-

plish '

0

in one step is `

3

. If we choose the helpful transition �

1

to be `

3

, then
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local y

1

; y

2

: boolean where y

1

= y

2

= F

s : integer where s = 1

P

1

::

2

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

4

`

1

: noncritical

`

2

: (y

1

; s) := (T; 1)

`

3

: await :y

2

_ s 6= 1

`

4

: critical

`

5

: y

1

:= F

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

5

P

2

::

2

6

6

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

6

6

4

m

1

: noncritical

m

2

: (y

2

; s) := (T; 2)

m

3

: await :y

1

_ s 6= 2

m

4

: critical

m

5

: y

2

:= F

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

5

Fig. 1.13. Program MUX-PET1 (Peterson's algorithm) | version 1.

the appropriate '

1

is the assertion characterizing all the states on which `

3

is

enabled. Therefore, as '

1

we take the enabling condition of `

3

'

1

: at

�

`

3

^ (:y

2

_ s 6= 1).

Assertion '

1

does not yet cover all the accessible states satsifying at

�

`

3

.

Consequently, we cannot takem to be 2, and must search for additional assertions,

characterizing states that satisfy at

�

`

3

and that are one helpful step away from

'

1

. Therefore, we look for transitions of P

2

that may change the disjunction

:y

2

_ s = 2 from F to T. The only candidate transition is m

5

, which sets y

2

to F.

Consequently, we take

'

2

: at

�

`

3

^ at

�

m

5

^ y

2

^ s = 1.

The conjunct y

2

^ s = 1 can be safely added to '

2

since all the states satisfying

at

�

`

3

^ (:y

2

_ s 6= 1) are already covered by '

1

.

Looking for (at

�

`

3

^ y

2

^ s = 1)-states that are one helpful step away from

'

2

, we easily identify

'

3

: at

�

`

3

^ at

�

m

4

^ y

2

^ s = 1.
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In a similar way, we can identify the preceding assertion as

'

4

: at

�

`

3

^ at

�

m

3

^ y

2

^ s = 1.

Note that m

3

, which is the helpful transition for '

4

, is enabled on all states

satisfying '

4

.

At this point, we �nd out that the disjunction '

1

_ � � �_'

4

covers the range

of all accessible (at

�

`

3

)-states. This is because P

2

must be in one of the locations

m

0

; : : : ;m

4

. Due to  

2

, the range m

0::2

is covered by '

1

under the :y

2

disjunct.

Locations m

3

: : : ;m

5

for s 6= 1 are covered by '

1

under the disjunct s 6= 1, while

the same locations for the case that s = 1 are covered by assertions '

4

; '

3

; '

2

,

respectively.

In Fig. 1.14 we present a CHAIN diagram using the intermediate assertions

constructed through the preceding analysis.

Note that we have grouped under '

1

many possible states of P

2

, and have

not represented the movement of P

2

through them. This is justi�ed by the fact

that `

3

is enabled on all of these states and is the transition declared as helpful

for '

1

. In contrast, we separated m

3

, m

4

, and m

5

, because the helpful transitions

there changed from one of these states to the next.

In Problem 1.1, the reader is requested to establish accessibility for another

algorithm for mutual exclusion.

Example (Peterson's Algorithm | Version 2)

Consider the re�ned program MUX-PET2, version 2 of Peterson's algorithm, pre-

sented in Fig. 1.15.

In Section 1.4 of the SAFETY book, we established the following invariants for

this program:

�

0

: s = 1 _ s = 2

�

1

: y

1

$ at

�

`

3::6

�

2

: y

2

$ at

�

m

3::6

.

We intend to verify the property of accessibility for programMUX-PET2, which

can be expressed by the response formula

at

�

`

2

| {z }

p

) 1 at

�

`

5

| {z }

q

:

The construction of the appropriate veri�cation diagram starts in a similar

way to the diagram for program MUX-PET1 of the previous example. We take '

m

to be at

�

`

2

. From `

2

, process P

1

can proceed at its own pace to `

3

, which we

take as '

m�1

. The next step taken by P

1

leads into `

4

where a more detailed

analysis is necessary.
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�

�

�

�

'

5

: at

�

`

2

`

2

�

C

DE

F

at

�

`

3

; y

1

C

DE

F

y

2

; s = 1

�

�

�

�

'

4

: at

�

m

3

m

3

�
�

�

�

�

'

3

: at

�

m

4

m

4

�
�

�

�

�

'

2

: at

�

m

5

m

5

�
�

�

�

�

'

1

: :y

2

_ s 6= 1

`

3

�

�


 	

�

'

0

: at

�

`

4

Fig. 1.14. CHAIN diagram for program MUX-PET1.

To perform this detailed analysis we take '

0

to be the goal assertion at

�

`

5

.

What should we take as '

1

? In the preceding case, we characterized '

1

as being

one helpful step away from '

0

. This characterization is not su�cient here. An-

other requirement is that if s

0

is a successor of a '

1

-state, then s

0

should satisfy

either '

1

or '

0

: at

�

`

5

. This shows that we cannot take '

1

to be, as before, the

assertion at

�

`

4

^ (:y

2

_ s 6= 1). This is because the accessible state

s:




�: f`

4

;m

2

g; y

1

:T; y

2

: F; s: 1

�

satis�es the candidate assertion at

�

`

4

^ (:y

2

_ s 6= 1) but has an m

2

-successor
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local y

1

; y

2

: boolean where y

1

= y

2

= F

s : integer where s = 1

P

1

::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: y

1

:= T

`

3

: s := 1

`

4

:

2

6

4

`

a

4

: await :y

2

or

`

b

4

: await s 6= 1

3

7

5

`

5

: critical

`

6

: y

1

:= F

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

P

2

::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

1

: noncritical

m

2

: y

2

:= T

m

3

: s := 2

m

4

:

2

6

4

m

a

4

: await :y

1

or

m

b

4

: await s 6= 2

3

7

5

m

5

: critical

m

6

: y

2

:= F

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 1.15. Program MUX-PET2 (Peterson's algorithm) | version 2.

given by

s

0

:




�: f`

4

;m

3

g; y

1

:T; y

2

:T; s: 1

�

which satis�es neither the candidate assertion nor '

0

.

We observe that the cause for this problem is the disjunct :y

2

which can be

falsi�ed (changed from T to F) by transition m

2

of P

2

. There is no such problem

with the disjunct s 6= 1 which cannot be falsi�ed by P

2

. Consequently, we take

'

1

: at

�

`

4

^ s 6= 1.
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The only transition that can lead from a :'

1

-state to a '

1

-state is m

3

.

Therefore, we take '

2

to be

'

2

: at

�

`

4

^ at

�

m

3

^ s = 1.

We also realize that the transition leading into '

2

is m

2

which changes y

2

from F to T and preserves the value of s. Consequently, we take '

3

to be

'

3

: at

�

m

0::2

^ :y

2

^ s = 1.

By now, we have covered all the states satisfying at

�

`

4

^ (:y

2

_s 6= 1). From

now on, the analysis proceeds as it did for program MUX-PET1. The �nal CHAIN

diagram is presented in Fig. 1.16.

This diagram partitions the range m

0::4

into three regions. The region m

0::2

,

represented by '

3

, guarantees the enableness of `

a

4

(but not the enableness of

m

2

which is therefore drawn as a single edge). However it may evolve into '

2

,

where no transition of P

1

is guaranteed to be enabled. Being at '

2

, m

3

is the

helpful transition which eventually leads into '

1

. In '

1

, `

b

4

is enabled, and since

P

2

cannot falsify s 6= 1, eventually `

b

4

is taken and leads to '

0

.

The edge labeled `

a

4

connecting node '

1

to node '

0

represents the possibility

that `

a

4

may be enabled on a state satisfying s 6= 1. A more careful analysis shows

that '

1

in this diagram can be strenghened to the assertion

b'

1

: at

�

m

4

^ s 6= 1 ^ y

2

,

and then this edge is unnecessary.

In Problem 1.2, the reader is requested to verify accessibility for a family

of mutual exclusion algorithms, known as the bakery algorithms.

Example (Dekker's algorithm)

Dekker's algorithm for solving the mutual exclusion problem is presented in pro-

gram MUX-DEK of Fig. 1.17.

In comparison to Peterson's algorithm, Dekker's algorithm has a relatively

simple safety proof but rather elaborate proof of accessibility.

� Invariants

In Section 1.4 of the SAFETY book we derived the following invariants for

program MUX-DEK:

�

1

: t = 1 _ t = 2

�

2

: y

1

$ (at

�

`

3::5;8::10

)

�

3

: y

2

$ (at

�

m

3::5;8::10

)

These are the invariants we needed to prove the mutual exclusion property, i.e.,

the invariance of
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�

�

�

�

'

8

: at

�

`

2

`

2

�
�

�

�

�

'

7

: at

�

`

3

`

3

�

C

DE

F

at

�

`

4

; y

1

C

DE

F

y

2

; s = 1

�

�

�

�

'

6

: at

�

m

4

m

b

4

�

�

�

�

�

'

5

: at

�

m

5

m

5

�

�

�

�

�

'

4

: at

�

m

6

m

6

�

�

�

�

�

'

3

: at

�

m

0::2

^ :y

2

^ s = 1

m

2

?

`

a

4

�

�




�

�

�

�

'

2

: at

�

m

3

^ s = 1

m

3

�
�

�

�

�

'

1

: s 6= 1

`

b

4

�

`

a

4

�

�

�

�


 	

�

'

0

: at

�

`

5

Fig. 1.16. CHAIN diagram for program MUX-PET2.
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local y

1

; y

2

: boolean where y

1

= F; y

2

= F

t : integer where t = 1

P

1

::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: y

1

:= T

`

3

: while y

2

do

`

4

: if t = 2

then

2

4

`

5

: y

1

:= F

`

6

: await t = 1

`

7

: y

1

:= T

3

5

`

8

: critical

`

9

: t := 2

`

10

: y

1

:= F

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

P

2

::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

1

: noncritical

m

2

: y

2

:= T

m

3

: while y

1

do

m

4

: if t = 1

then

2

4

m

5

: y

2

:= F

m

6

: await t = 2

m

7

: y

2

:= T

3

5

m

8

: critical

m

9

: t := 1

m

10

: y

2

:= F

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 1.17. Program MUX-DEK (Dekker's algorithm

for mutual exclusion).

�

4

: :(at

�

`

8::10

^ at

�

m

8::10

).

As we will see, additional invariants are needed for the support of the response

property. We will develop them as they are needed.

� Response
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The main response property of this algorithm is, of course, that of accessi-

bility. It is stated by

 : at

�

`

2

) 1 at

�

`

8

.

We partition the proof of the accessibility property into three lemmas, proving

respectively.

Lemma A at

�

`

2

) 1

�

(at

�

`

4

^ t = 2) _ (at

�

`

3::7

^ t = 1) _ at

�

`

8

�

Lemma B at

�

`

4

^ t = 2 ) 1 (at

�

`

3::7

^ t = 1)

Lemma C at

�

`

3::7

^ t = 1 ) 1 at

�

`

8

.

Obviously, the di�cult part of the protocol is the loop at `

3::7

. Being within

this loop, P

1

is considered to have a higher priority when t = 1. Lemma A claims

that if P

1

is just starting its journey towards the critical section, then it will either

reach `

4

with a lower priority, or get to `

3::7

with a higher priority, or reach `

8

.

Lemma B claims that if P

1

is at `

4

with a low priority it will stay within the loop

and eventually gain a high priority. Lemma C shows that if P

1

is within this loop

and has a higher priority, then it will eventually get to `

8

.

Clearly, by combining these three response properties, using the transitivity

of response rule TRNS-R we obtain the required accessibility property.

Proof of Lemma A

The proof of the response property

at

�

`

2

) 1

�

(at

�

`

4

^ t = 2) _ (at

�

`

3::7

^ t = 1) _ at

�

`

8

�

is presented in the CHAIN diagram of Fig. 1.18.

It is easy to follow P

1

from `

2

to `

3

. If t = 1 on entry to `

3

, then we are

already at the goal at

�

`

3::7

^ t = 1. Otherwise, we enter `

3

with t = 2, setting

y

1

to T. Here we examine the possible locations of P

2

. Assertions '

1

, '

2

, and '

3

cover all the possibilities. The possible motions of P

2

within these three assertions

consist of taking m

9

, setting t to 1, which raises the priority of P

1

and attains

the goal at

�

`

3::7

^ t = 1. The other possible movements are from '

3

to '

2

, and

then to '

1

. Being at m

3;4

with y

1

= T and t = 2, P

2

cannot move elsewhere.

Transition mode `

T

3

is enabled on '

1

and '

3

states, while mode `

F

3

is enabled on

'

2

. Both are helpful since they lead to at

�

`

4

^ t = 2 and at

�

`

8

, respectively.

Proof of Lemma B

The proof of the response property

at

�

`

4

^ t = 2 ) 1 (at

�

`

3::7

^ t = 1)
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�

�

�

�

'

4

: at

�

`

2

`

2

�

`

2

�

�

C

DE

F

at

�

`

3

; y

1

; t = 2

�

�

�

�

'

3

: at

�

m

5;8::10

^ y

2

`

T

3

�

�

m

5

;m

10

?

m

9

�

?

�

�

�

�

'

2

: at

�

m

0::2;6;7

^ :y

2

`

F

3

�

�

�

m

2

;m

7

?

�

�

�

�

'

1

: at

�

m

3;4

^ y

2

`

T

3

�

�

�

	


�

'

0

:

�

�

�

�

at

�

`

4

^ t = 2

�

�

�

�

at

�

`

8

�

�

�

�

at

�

`

3::7

^ t = 1

Fig. 1.18. CHAIN diagram for Lemma A.

is presented in the CHAIN diagram of Fig. 1.19.

From `

4

, P

1

proceeds to `

5

since t = 2, and then to `

6

while resetting y

1

to

F. While being at `

4;5

, P

2

may still set t to 1 by performing m

9

, which leads to

the goal at

�

`

3::7

^ t = 1.

However, once P

1

enters `

6

, it stays at `

6

waiting for t to change to 1. At

that point we have to inspect where P

2

may currently be. We consider as possible

locations of P

2

all ofm

2

{m

9

, tracing their possible 
ow under the relatively stable

situation of t = 2, y

1

= F. We see that all transitions are enabled and lead to m

9

which eventually sets t to 1 as required.

A tacit assumption made in this diagram is the exclusion of m

10

, m

0

, and

m

1

, as possible locations while P

1

is at `

6

with y

1

= F and t = 2. This assumption

must hold for the program, if we believe Lemma B to be valid. Indeed, consider

the situation that P

1

is waiting at `

6

with y

1

= F and t = 2, while P

2

is at m

1

.
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C

DE

F

t = 2

C

DE

F

y

1

�

�

�

�

'

10

: at

�

`

4

`

4

�

�

�

�

�

'

9

: at

�

`

5

`

5

�

m

9

�

�

-

C

DE

F

at

�

`

6

; :y

1

�

�

�

�

'

8

: at

�

m

5

m

5

�
�

�

�

�

'

7
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�

m

6

m

6

�

�

�

�

�

'

4

: at

�

m

7

m

7

�

�

�

�

�

'

6

: at

�

m

2

m

2

�

�

�

�

�

'

5

: at

�

m

4

m

4

�




�

�

�

�

'

3

: at

�

m

3

m

3

�

�

�

�

�

'

2

: at

�

m

8

m

8

�

�

�

�

�

'

1

: at

�

m

9

m

9

�

�


 	

�

'

0

: at

�

`

3::7

^ t = 1

Fig. 1.19. CHAIN diagram for Lemma B.

Since P

2

is allowed to stay at the noncritical section forever, this would lead to a

deadlock, denying accessibility from P

1

.

We must therefore conclude that if the algorithm is correct, and guarantees

accessibility to both processes, then the following assertion must be invariant
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at

�

`

6

^ t = 2 ! at

�

m

2::9

.

This invariance follows from the stronger invariant

�

5

: at

�

`

4::6

^ t = 2 ! at

�

m

2::9

which we will prove.

By symmetry one can also require the invariance of

�

6

: at

�

m

4::6

^ t = 1 ! at

�

`

2::9

.

Proof of invariant

�

5

hh Exercise? ii

Clearly,

� � � ^ at

�

`

0

^ � � �

| {z }

�

! at

�

`

4::6

^ t = 2 ! at

�

m

2::9

| {z }

�

5

holds.

Let us check the veri�cation conditions for assertion

�

5

, which are of the

form

at

�

`

0

^ at

�

m

0

^ :y

1

^ :y

2

^ t = 1

| {z }

�

^ at

�

`

4::6

^ t = 2 ! at

�

m

2::9

| {z }

�

5

!

at

0

�

`

4::6

^ t

0

= 2 ! at

0

�

m

2::9

| {z }

�

0

5

:

There are three transitions that may potentially falsify assertion

�

5

.

Transition m

9

Sets t to 1 which makes t

0

= 2 false and hence preserves the assertion.

Transition `

9

Leads to at

�

`

10

which makes at

0

�

`

4::6

false.

`

T

3

while t = 2

This is possible only if y

2

= T which, by

�

3

, implies at

�

m

3::5

_ at

�

m

8::10

,

and therefore at

�

m

2::10

. This almost gives us at

�

m

2::9

, with the exception

of m

10

. We thus need additional information that will exclude the possibility

of P

2

being at m

10

while t = 2.

Clearly, while entering m

10

from m

9

, P

2

sets t to 1. Can P

1

change it back to 2,

while P

2

is still at m

10

? The answer is no, because m

10

, as we see in

�

4

, is still

a part of the critical section and is therefore exclusive of `

9

, the only statement

capable of changing t to 2.

This suggests the invariant

�

7

: at

�

m

10

! t = 1
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and its symmetric counterpart

�

8

: at

�

`

10

! t = 2.

To prove

�

7

, we should inspect two transitions:

Transition m

9

Sets t to 1.

`

9

while at

�

m

10

Impossible due to

�

4

.

This establishes

�

7

and similarly

�

8

. Having

�

7

we can use it to show that the last

transition considered in the proof of

�

5

, namely `

T

3

while t = 2, implies at

�

m

2::9

,

which establishes

�

5

.

Proof of Lemma C

LemmaC states that if P

1

is within the waiting loop `

3::7

with higher priority,

i.e., t = 1, then eventually it will reach `

8

. It is stated by

at

�

`

3::7

^ t = 1 ) 1 at

�

`

8

.

The proof is presented in the CHAIN diagram of Fig. 1.20.

Note our e�orts to minimize the number of assertions by grouping together

situations with di�erent control con�gurations, wherever possible. Thus for all the

states where y

1

= T and P

1

is either at `

3

or at `

4

, we do not distinguish between

these two possibilities, but partition the diagram according to the location of P

2

.

This is because, in this general situation, it is P

2

which is the helpful process and

we have to trace its progress. On the other hand, when y

2

= F, P

1

becomes the

helpful process and we start distinguishing between the cases of at

�

`

3

and at

�

`

4

,

while lumping together the locations of P

2

into two groups: m

0::2;7

andm

6

. These

two groups must be distinguished because it is possible (though not guaranteed)

to exit the �rst group into a situation where y

2

= T, but it is impossible to exit

m

6

into such a situation. This is because when P

2

is at m

6

with t = 1, it cannot

progress until t is changed to 2.

InProblem 1.3, the reader is requested to prove accessibility for two variants

of Dekker's algorithm.

Case Splitting According to the Helpful Transitions

In the preceding examples, the main reason for using rule CHAIN-J with m > 1

intermediate assertions has been that the program requires m helpful steps to

reach the goal. In most of these applications there always was a worst case

computation that actually visited each of the assertions, starting with '

m

and

proceeding through '

m�1

; '

m�2

; : : : up to '

0

= q.
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C

DE

F

t = 1

�

�

�




'

13

: at

�

`

5

`

5




�

�

�




'

12

: at

�

`

6

`

6




�

�

�




'

11

: at

�

`

7

`

7

�

C

DE

F

at

�

`

3;4

; y

1

C

DE

F

y

2

�

�

�




'

10

: at

�

m

8

m

8




�

�

�




'

9

: at

�

m

9

m

9




�

�

�




'

8

: at

�

m

10

m

10

�

C

DE

F
at

�

m

0::2;7

; :y

2

�

�

�




'

7

: at

�

`

4

`

4




�

�

�




'

6

: at

�

`

3

`

3

�

�

�

m

2

;m

7

?

C

DE

F

y

2

�

�

�




'

5

: at

�

m

3

m

3




�

�

�




'

4

: at

�

m

4

m

4




�

�

�




'

3

: at

�

m

5

m

5

�

C

DE

Fat

�

m

6

; :y

2

�

�

�




'

2

: at

�

`

4

`

4




�

�

�




'

1

: at

�

`

3

`

3

�

�
 	�

'

0

: at

�

`

8

Fig. 1.20. CHAIN diagram for Lemma C.
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This is not the only motivation for using several intermediate assertions.

Another good reason for wishing to partition the state space lying between p and

q into several assertions is that di�erent states in that space may require di�erent

helpful transitions for getting them closer to the goal.

Example (maximum)

Consider, for example, program MAX presented in Fig. 1.21. This program places

in output variable z the maximum of inputs x and y. The program consists of

two parallel statements that compare the values of x and y.

in x; y: integer

out z : integer

2

4

`

0

: if x � y then

`

1

: z := x

`

2

:

3

5

2

4

m

0

: if x � y then

m

1

: z := y

m

2

:

3

5

Fig. 1.21. Program MAX (maximum).

The response statement we would like to prove for this program is

at

�

`

0

^ at

�

m

0

| {z }

p

) 1 maximal(z; x; y)

| {z }

q

;

where maximal(z; x; y) stands for the formula

maximal(z; x; y): (z = x _ z = y) ^ z � x ^ z � y,

claiming that z is the maximum of x and y.

Clearly, the goal of this response property is achieved in the helpful steps

which are either `

0

and `

1

or m

0

and m

1

. Perhaps one would expect a proof of

this property by rule RESP-J that only uses one intermediate assertion '.

However, no such proof exists. The reason for this is that we cannot identify

a single transition that is helpful for all the states satisfying p: at

�

`

0

^ at

�

m

0

.

Clearly, for all states satisfying p ^ x � y, `

0

is the helpful transition, while for

states satisfying p^x � y, m

0

is the helpful transition. Consequently, we need at

least four intermediate assertions in a proof of this property by rule CHAIN-J.

We choose the following assertions and helpful transitions

'

4

: at

�

m

0

^ x � y �

4

: m

0

'

3

: at

�

`

0

^ x � y �

3

: `

0
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'

2

: at

�

m

1

^ x � y �

2

: m

1

'

1

: at

�

`

1

^ x � y �

1

: `

1

'

0

: q:

It is straightforward to verify that all the premises of rule CHAIN-J are satis�ed by

this choice.

In Fig. 1.22, we present a CHAIN diagram for the proof of the considered

response property.

C

DE

F
x � y

�

�

�

�

'

3

: at

�

`

0

`

0

�

�

�

�

�

'

1

: at

�

`

1

`

1

�




C

DE

F
x � y

�

�

�

�

'

4

: at

�

m

0

m

0

�

�

�

�

�

'

2

: at

�

m

1

m

1

�

�

�


 	

�

'

0

: maximal (z; x; y)

Fig. 1.22. CHAIN diagram for program MAX.

Assertions '

3

and '

4

partition (non-exclusively) the situation at

�

`

0

^at

�

m

0

into states for which `

0

is helpful and has not been taken yet, and states for which

m

0

is helpful and has not been taken yet.

It is not di�cult to verify that taking `

0

from a '

3

-state, as well as taking

m

0

from a '

4

-state, leads to '

1

and '

2

, respectively. Choosing '

4

to rank above

'

3

is quite arbitrary. In particular, we do not have a computation that goes from

'

4

-states to '

3

-states. Every computation follows either the '

3

, '

1

route or the

'

4

, '

2

route.

1.4 Well-Founded Rule

In rule CHAIN-J we treated each of the participating assertions '

0

; : : : ; '

m

as

separate entities, and made no attempt to �nd a uniform representation for '

j

as



c

 Z. Manna and A. Pnueli, 28 Aug. 96. Not for Distribution

36 Chapter 1: Response

a single formula involving j. This approach is adequate for response properties

which require a bounded number of steps for their achievement, e.g., at most �ve

in the case of program MUX-PET1 (Fig. 1.14). The bound must be uniform and

independent of the initial state.

There are many cases, however, in which no such bound can be given a

priori. To deal with these cases, we must generalize the induction over a �xed

�nite subrange of the integers, such as 0; 1; : : : ;m in rule CHAIN-J, into an explicit

induction over an arbitrary well-founded relation.

Well-Founded Domains

We de�ne a well-founded domain (A;�) to consist of a set A and a well-founded

order relation � on A. A binary relation � is called an order if it is

� transitive: a � b and b � c imply a � c, and

� irre
exive: a � a for no a 2 A.

The relation� is called well-founded if there does not exist an in�nitely descending

sequence a

0

; a

1

; : : : of elements of A such that

a

0

� a

1

� � � � .

A typical example of a well-founded domain is (N; >), where N are the nat-

ural numbers (including 0) and > is the greater-than relation. Clearly, > is

well-founded over the natural numbers, because there cannot exist an in�nitely

descending sequence of natural numbers

n

0

> n

1

> n

2

> : : : .

For an arbitrary order relation � on A, we de�ne its re
exive extension <

to hold between a, a

0

2 A, written a< a

0

, if either a � a

0

or a = a

0

.

The Lexicographic Product

Given two well-founded domains, (A

1

;�

1

) and (A

2

;�

2

), we can form their lexi-

cographical product (A;�), where

A is de�ned as A

1

�A

2

, i.e., the set of all pairs (a

1

; a

2

), such that a

1

2 A

1

and a

2

2 A

2

.

� is an order de�ned for (a

1

; a

2

); (b

1

; b

2

) 2 A by

(a

1

; a

2

) � (b

1

; b

2

) i� a

1

�

1

b

1

or a

1

= b

1

^ a

2

�

2

b

2

.

Thus, in comparing the two pairs (a

1

; a

2

) and (b

1

; b

2

), we �rst compare a

1

against

b

1

. If a

1

�

1

b

1

, then this determines the relation between the pairs to be (a

1

; a

2

) �

(b

1

; b

2

). If a

1

= b

1

, we compare a

2

with b

2

, and the result of this comparison

determines the relation between the pairs.



c

 Z. Manna and A. Pnueli, 28 Aug. 96. Not for Distribution

1.4 Well-Founded Rule 37

The order � is called lexicographic, which implies that, as when searching

in a dictionary, we locate the position of a word by checking the �rst letter �rst

and only after locating the place where the �rst letter matches, do we continue

matching the subsequent letters.

The importance of the lexicographic product follows from the following claim:

Claim (lexicographic product)

If the domains (A

1

;�

1

) and (A

2

;�

2

) are well-founded, then so is their lexi-

cographic product (A;�).

Clearly, by the above, the domain (N

2

;�), where � is the lexicographic order

between pairs of natural numbers, is well-founded. This order is de�ned by

(n

1

; n

2

) � (m

1

;m

2

) i� n

1

> m

1

or n

1

= m

1

^ n

2

> m

2

:

According to this de�nition

(10; 20) � (5; 15) (1; 0) � (0; 100) (1; 5) � (1; 3).

New well-founded domains can be constructed by taking lexicographic prod-

ucts of more than two well-founded domains. Applying this construction to the

domain (N; >) of natural numbers, we obtain the domain (N

k

;�), for k � 2,

where � is the lexicographic order between k-tuples of natural numbers. The

order � is de�ned by

(n

1

; : : : ; n

k

) � (m

1

; : : : ;m

k

) i� n

1

= m

1

; : : : ; n

i�1

= m

i�1

; n

i

> m

i

for some i; 1 � i � k.

For example, for k = 3

(7; 2; 1) � (7; 0; 45).

It is easy to show that the domain (N

k

;�) is well-founded.

The Rule

Let (A;�) be a well-founded domain. As in rule CHAIN-J, we use several inter-

mediate assertions '

1

; : : : ; '

m

to describe the evolution from p to q = '

0

. Rule

CHAIN-J uses the index of the assertion as a measure of the distance from the

goal q. The rule presented here associates an explicit ranking function �

i

with

each assertion '

i

, i = 0; : : : ; k. The function �

i

maps states into the set A and

is intended to measure the distance of the current state to a state satisfying the

goal q.

We refer to the value of �

i

in a '

i

-state as a rank of the state. The well-

founded rule WELL for response properties is given in Fig. 1.23. Premise W1 states
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that every p-position satis�es one of '

0

; : : : ; '

m

. Premise W2 states that every

'

i

-position with positive i and rank u is eventually followed by a position which

satis�es some '

j

, with a rank lower than u.

For assertions p and q = '

0

; '

1

; : : : ; '

m

,

a well-founded domain (A;�), and

ranking functions �

0

; : : : ; �

m

: � 7! A

W1. p !

m

_

i=0

'

i

W2. '

i

^ �

i

= u ) 1

�

m

_

j=0

�

'

j

^ u � �

j

�

�

for i = 1; : : : ;m

p ) 1 q

Fig. 1.23. Rule WELL (well-founded response).

Justi�cation It is straightforward to justify rule WELL. Consider a computation

� that satis�es premises W1, W2, and let t

1

be a position in � which satis�es p.

By W1, some '

i

is satis�ed at t

1

. If it is '

0

= q, we are done. Otherwise, let '

i

1

,

i

1

> 0, be the assertion holding at t

1

and let u

1

denote the rank of the state at

position t

1

. By W2, there exists a position t

2

, t

2

� t

1

, such that some '

j

holds

at t

2

with a rank u

2

2 A, such that u

1

� u

2

. If j = 0, we are done. Otherwise,

we proceed to locate a position t

3

� t

2

.

In this way we construct a sequence of positions

t

1

� t

2

� t

3

� : : : ,

and a corresponding sequence of elements from A (ranks)

u

1

� u

2

� u

3

� : : : ,

such that either the sequence is of length k and q = '

0

holds at the position

t

k

, or the sequence is in�nite and some '

j

, j > 0, holds at each t

i

with rank

�

j

= u

i

there. The later case is impossible since that would lead to an in�nitely

descending sequence of elements of A, in contrast to the well-foundedness of �

over A. It follows that for some t

k

� t

1

, q = '

0

holds at t

k

, which shows that

1 q holds at t

1

.

Example (factorial)
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Consider program FACT of Fig. 1.24. This program computes in z the factorial of

a nonnegative integer x. We wish to prove for this program the response property

at

�

`

0

^ x � 0 ^ y = x ^ z = 1

| {z }

p

) 1 at

�

`

2

^ z = x!

| {z }

q='

0

:

in x: integer where x � 0

local y : integer where y = x

out z : integer where z = 1

2

6

4

`

0

: while y > 0 do

`

1

: (y; z) := (y � 1; z � y)

`

2

:

3

7

5

Fig. 1.24. Program FACT (factorial).

Intending to use rule WELL withm = 1, it only remains to choose the assertion

'

1

, and the ranking functions �

0

and �

1

. This necessitates the identi�cation of

a well-founded domain (A;�), where A serves as the range of �

i

. Obviously, '

1

should describe the intermediate stage in the process of getting from p to q, and

�

1

should measure the distance of this intermediate stage from the goal q = '

0

.

Premise W2 ensures that steps in the computation always bring us closer to the

goal.

For program FACT, a good measure of the distance from termination is the

value of y. This is because when we are at `

0

, there are y more iterations of

the while loop before the program terminates. We therefore choose (N; >) as our

well-founded domain and jyj as the ranking function. Thus,

(A; �) = (N; >), �

0

: 0, and �

1

: jyj+ 1.

The choice of �

0

= 0 is natural because, being at a '

0

-state, we are already

at the goal, and the distance to the goal can therefore be taken as 0.

The intermediate assertion '

1

should represent the progress the computation

has made, so that when y = 0, we can infer that z = x!. Clearly, the way the

program operates is that it accumulates in z the product of the terms x�(x�1) � � � .

In an intermediate stage, z contains the product x � (x� 1) � � � (y + 1), which can

also be expressed as x!=y!, provided 0 � y � x.

We thus arrive at the intermediate assertion

': at

�

`

0

^ 0 � y � x ^ z = x!=y! .
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It only remains to show that premises W1,W2 are satis�ed by these choices.

Premise W1

This premise requires

at

�

`

0

^ x � 0 ^ y = x ^ z = 1

| {z }

p

!

� � �

|{z}

'

0

_ at

�

`

0

^ 0 � y � x ^ z = x!=y!

| {z }

'

1

.

This implication is obviously valid.

Premise W2

This premise requires showing

at

�

`

0

^ 0 � y � x ^ z = x!=y!

| {z }

'

1

^ jyj+ 1 = n )

1

0

B

B

B

B

B

B

@

at

�

`

2

^ z = x!

| {z }

'

0

^ n > 0

|{z}

�

0

_

at

�

`

0

^ 0 � y � x ^ z = x!=y!

| {z }

'

1

^ n > jyj+ 1

| {z }

�

1

1

C

C

C

C

C

C

A

:

Since '

1

^ jyj + 1 = n implies that n > 0, it is su�cient to prove this

implication for every n > 0. As '

1

implies y � 0, we may replace jyj by y.

Case n = 1:

For this value of n, we prove

at

�

`

0

^ 0 � y � x ^ z = x!=y!

| {z }

'

1

^ y + 1 = 1 )

1

�

at

�

`

2

^ z = x!

| {z }

'

0

^ 1 > 0

�

;

which simpli�es to

at

�

`

0

^ z = x! ^ y = 0 ) 1 (at

�

`

2

^ z = x!) .

This, of course, can be proven by a single application of rule RESP-J, observing

that, under the situation described by the antecedent, only transition `

0

is

enabled, and taking it leads to at

�

`

2

^ z = x! .

Case n > 1:

In this case, we will prove
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at

�

`

0

^ 0 � y � x ^ z = x!=y!

| {z }

'

1

^ y + 1 = n > 1 )

1

�

at

�

`

0

^ 0 � y � x ^ z = x!=y!

| {z }

'

1

^ n > y + 1

�

:

This can be proven by rule CHAIN-J using three assertions,  

0

,  

1

, and  

2

.

The top assertion  

2

corresponds to '

1

^ y + 1 = n. Assertion  

1

describes

the intermediate state, after passing the test of the while statement, and

being at `

1

. The �nal assertion  

0

implies '

1

^ y + 1 = n � 1 < n, and

describes the situation after performing the assignment `

1

and arriving back

at `

0

. The veri�cation diagram in Fig. 1.25 describes this proof.

C

DE

F

0 � y � x; z = x!=y!

C

DE

F

y + 1 = n > 1�

�

�

�

 

2

: at

�

`

0

`

0

�

�

�

�

�

 

1

: at

�

`

1

`

1

�

�


 	

�

 

0

: at

�

`

0

^ y + 1 = n � 1

Fig. 1.25. Veri�cation diagram for case n > 1.

Thus, by treating separately the cases n = 1 and n > 1, we conclude that premise

W2 holds for every n � 1. This establishes that the conclusion

at

�

`

0

^ x � 0 ^ y = x ^ z = 1

| {z }

p

) 1 at

�

`

2

^ z = x!

| {z }

q

of rule WELL is valid.

A Rule with Nontemporal Premises
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Rule WELL, used for proving response formulas, has as its premise W2, another

response formula. This allows a recursive use of the rule, by which the temporal

premise W2 is proved either by the simpler rule RESP-J, or by rule WELL again,

only applied to simpler assertions. As a matter of fact, if we closely examine the

proof of the previous example, we can identify there the use of those two options.

For proving W2 for n = 1, we used rule RESP-J, since the response property for

this case is accomplished in one step. On the other hand, the case of n > 1

accomplishes W2 in two steps, and we therefore had to use rule CHAIN-J.

However, in many cases, we do not need the recursive application of the rule,

which means that premise W2 is proved directly by rule RESP-J. In these cases it

is advantageous to replace the temporal premise W2 by the nontemporal premises

of rule RESP-J, which are necessary for its derivation. This leads to a (combined)

form of the rule in which all premises are nontemporal. Such a form is often

more satisfactory because it explicitly manifests the power of the rule to derive

temporal statements from nontemporal ones.

This leads to rule WELL-J (Fig. 1.26).

For assertions p and q = '

0

; '

1

; : : : ; '

m

,

transitions �

1

; : : : ; �

m

2 J ,

a well-founded domain (A;�), and

ranking functions �

0

; : : : ; �

m

: � 7! A

JW1. p !

m

_

j=0

'

j

JW2. �

�

^ '

i

!

2

6

6

4

m

_

j=0

('

0

j

^ �

i

� �

0

j

)

_ ('

0

i

^ �

i

= �

0

i

)

3

7

7

5

for every � 2 T

JW3. �

�

i

^ '

i

!

m

_

j=0

('

0

j

^ �

i

� �

0

j

)

JW4. '

i

! En(�

i

)

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

for i = 1; : : : ;m

p ) 1 q

Fig. 1.26. Rule WELL-J (well-founded response under justice).
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The rule requires �nding auxiliary assertions '

i

and transitions �

i

, i =

1; : : : ;m, a well-founded domain (A;�), and ranking functions �

i

: � 7! A. Each

assertion '

i

, i > 1, is associated with the transition �

i

that is helpful at positions

satisfying '

i

, and with its own ranking function �

i

.

Premise JW1 requires that every p-position satis�es one of '

0

; : : : ; '

m

.

Premises JW2{JW4 impose three requirements for each i = 1; : : : ;m.

Premise JW2 requires that, taking any transition from a '

i

-position k, always

leads to a successor position k

0

= k + 1, such that

� either some '

j

, j = 0; : : : ;m, holds at k

0

with a rank �

0

j

lower than �

i

at k,

or

� '

i

holds at k

0

with a rank �

0

i

equal to the rank �

i

at k.

The main implication of premise JW2 is that if the situation has not improved

in any noticeable way in going from k to k

0

, i.e., the new rank still equals the

old rank, at least we have not lost the identity of the helpful transition and the

transition that was helpful in k is also helpful at k

0

.

Premise JW3 requires that transition �

i

, which is helpful for '

i

, always leads

from a '

i

-position k to a next position which satis�es some '

j

and has a rank

lower than that of k, i.e., �

i

� �

0

j

.

Premise JW4 requires that the helpful transition �

i

is enabled at every '

i

-

position.

Justi�cation To justify the rule, assume a computation such that p holds at

position k, and no later position i � k, satis�es q = '

0

. By this assumption and

JW1, some '

j

, j > 0, must hold at position k. Let '

i

1

be the formula holding

at k, and denote the rank �

i

1

at k by u

1

. By JW4, transition �

i

1

is enabled at

position k.

Consider the transition � taken at position k, leading into position k+1. By

JW2 and JW3, either position k + 1 has a lower rank u

2

, u

2

�u

1

, or it has the

same rank, but then �

i

1

is still the helpful transition at k+1 and is enabled there.

In the case that the rank is still u

1

, we can continue the argument from k + 1

to k + 2, k + 3, etc. However, we cannot have all positions i > k with the same

rank. To see this, assume that all positions beyond k do have the same rank.

By JW2 and JW4, this implies that �

i

1

is continuously helpful and enabled. By

JW3, �

i

1

is not taken beyond k because taking it would have led to a state with

a rank lower than u

1

. Thus, our assumption that all positions beyond k have the

same rank leads to the situation that �

i

1

is continuously enabled and not taken,

violating the justice requirement for �

i

1

.

Thus, eventually, we must reach a position k

2

, k

2

> k, with lower rank u

2

,

where u

2

�u

1

. In a similar way we can establish the existence of a position

k

3

> k

2

, with rank u

3

where u

3

� u

2

. Continuing in this manner, we construct
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an in�nitely descending sequence u

1

� u

2

� u

3

� � � � of elements of A. This is

impossible, due to the well-foundedness of � on A.

We conclude that every p-position must be followed by a q-position, estab-

lishing the consequence of the rule.

Note that since premise JW3 implies premise JW2 for � = �

i

, it is su�cient

to check premise JW2 only for � 6= �

i

.

Rule CHAIN-J can be viewed as a special case of rule WELL-J which uses �

i

= i,

for i = 0; : : : ;m, as ranking functions. It is not di�cult to see that the premises

J2, J3, and J4 of rule CHAIN-J correspond precisely to premises JW2, JW3, and

JW4 of rule WELL-J. The well-founded domain used in this special case is the

�nite segment [0::m] of the natural numbers ordered by >.

Example (factorial)

We use rule WELL-J to prove that program FACT of Fig. 1.24 satis�es the response

property of total correctness

at

�

`

0

^ x � 0 ^ y = x ^ z = 1

| {z }

p

) 1 at

�

`

2

^ z = x!

| {z }

q='

0

:

Obviously, except for the terminating state, execution of program FACT al-

ternates between states satisfying at

�

`

0

in which `

0

is the helpful transition, and

states satisfying at

�

`

1

in which `

1

is helpful.

Consequently, we take m = 2 and use the following intermediate assertions.

'

2

: at

�

`

0

^ 0 � y � x ^ z = x!=y!

'

1

: at

�

`

1

^ 1 � y � x ^ z = x!=y!

'

0

: at

�

`

2

^ z = x! .

Note that when control is at `

1

, y is required to be greater than or equal to 1.

It remains to determine the ranking functions �

i

, i = 0; 1; 2. Our previous

analysis of the considered response property for program FACT (using rule WELL)

identi�ed jyj as a good measure of progress over (N; >). Variable y keeps decreas-

ing as the program gets closer to termination. Unfortunately, premise JW3 of rule

WELL-J requires that � decreases on each activation of a helpful transition. As we

see, not every helpful transition causes jyj to decrease. In particular, `

0

does not

change jyj. Consequently, we have to supplement jyj by an additional component

that will decrease when jyj stays the same. This leads to the following choice:

�

2

:

�

jyj; 2

�

�

1

:

�

jyj; 1

�

�

0

:

�

0; 0

�

:



c

 Z. Manna and A. Pnueli, 28 Aug. 96. Not for Distribution

1.4 Well-Founded Rule 45

The corresponding well-founded domain is

�

N�f1; 2g; �

�

, where � is the lexico-

graphical order between pairs of integers.

In the previous proof of this property, we used the measure jyj+ 1 to ensure

that the rank decreases also on the transition from `

0

to `

2

. Since the use of pairs

guarantees such a decrease by a decreasing second component, we can omit the

+1 increment and take the �rst component to be simply jyj.

We may view the ranking function �

i

: (jyj; i) as consisting of a major and a

minor measures of progress. Function jyj measures large steps of progress, such

as one full iteration of the loop at `

0

. The minor component i measures smaller

steps of progress. Observe that transition `

1

actually causes the minor measure i

to increase from 1 to 2, but at the same time it decreases the major measure jyj.

Let us consider the premises of rule WELL-J. Since both '

i

's imply y � 0, we

may replace jyj by y.

� Premise JW1

We prove JW1 by showing

at

�

`

0

^ x � 0 ^ y = x ^ z = 1

| {z }

p

!

� � � _ at

�

`

0

^ 0 � y � x ^ z = x!=y!

| {z }

'

2

;

which is obviously valid.

� Premises JW2, JW3 for i = 2

For i = 2 we will show

�

�

^ at

�

`

0

^ 0 � y � x ^ z = x!=y!

| {z }

'

2

!

0

B

B

B

B

B

B

B

@

at

0

�

`

2

^ z = x!

| {z }

'

0

0

^ (y; 2)

| {z }

�

2

� (y

0

; 0)

| {z }

�

0

0

_

at

0

�

`

1

^ 1 � y

0

� x ^ z

0

= x!=y

0

!

| {z }

'

0

1

^ (y; 2)

| {z }

�

2

� (y

0

; 1)

| {z }

�

0

1

1

C

C

C

C

C

C

C

A

;

for each transition � 2 f`

0

; `

1

g, not necessarily the helpful one. Obviously, this will

satisfy both JW2 and JW3. Since at

�

`

0

implies that transition `

1

is disabled, the

left-hand side of the implication for � = `

1

is false and the implication is trivially

true.

For � = `

0

, we prove the implication by separately considering the cases

y = 0 and y 6= 0.
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Case y = 0:

In this case �

`

0

implies at

0

�

`

2

, y

0

= y = 0, and z

0

= z. Since z = x!=y! and

y = 0 imply z = x!, it follows that the left-hand side implies '

0

0

^ (0; 2) �

(0; 0).

Case y 6= 0:

In this case '

2

implies that y > 0, which together with �

`

0

, implies at

0

�

`

1

,

y

0

= y, and z

0

= z. Assertion '

2

implies y � x ^ z = x!=y! which together

with y > 0 establishes '

0

1

. The rank decrease (y; 2) � (y; 1) is obvious.

� Premises JW2, JW3 for i = 1

For i = 1 we will show

�

�

^ at

�

`

1

^ 1 � y � x ^ z = x!=y!

| {z }

'

1

!

� � � _

�

at

0

�

`

0

^ 0 � y

0

� x ^ z

0

= x!=y

0

!

| {z }

'

0

2

^ (y; 1)

| {z }

�

1

� (y

0

; 2)

| {z }

�

0

2

�

;

for each transition � 2 f`

0

; `

1

g, not necessarily the helpful one. Obviously, this will

satisfy both JW2 and JW3. Since at

�

`

1

implies that transition `

0

is disabled, the

left-hand side of the implication for � = `

0

is false and the implication is trivially

true.

For � = `

1

, we observe that �

`

1

implies at

0

�

`

0

, y

0

= y � 1, and z

0

= z � y.

Substituting these expressions in the right-hand side of the implication reduces

the conjunction to

0 � y � 1 � x ^ z � y = x!=(y � 1)! ^ (y; 1) � (y � 1; 2),

all of which are either obviously valid or are implied by '

1

.

� Premises JW4

The helpful transitions for '

1

and '

2

are `

1

and `

0

, with enabling conditions

at

�

`

1

and at

�

`

0

, respectively. Obviously, they satisfy

at

�

`

1

^ � � �

| {z }

'

1

! at

�

`

1

| {z }

En(�

1

)

at

�

`

0

^ � � �

| {z }

'

2

! at

�

`

0

| {z }

En(�

2

)

as required by premise JW4.

This establishes the four premises of rule WELL-J, proving the response prop-

erty of total correctness for program FACT

at

�

`

0

^ x � 0 ^ y = x ^ z = 1 ) 1 (at

�

`

2

^ z = x!).
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A Condensed Representation of Ranking Functions

Many of our proofs consider ranking functions that consist of lexicographic pairs

of natural numbers, i.e.,

� = (d

1

; d

2

).

Such a function decreases over a transition even if d

2

increases, provided d

1

de-

creases at the same time. Lexicographic order implies that even a small decrease

in d

1

outweights an arbitrarily large increase in d

2

. In some cases there exists a

bound M , M > 0, which is larger than any possible increase in d

2

. In these cases

we may use the ranking function

b

� = M � d

1

+ d

2

,

which ranges over N, instead of the original � = (d

1

; d

2

) which ranges over N�N.

We refer to

b

� as a condensed representation ranking function.

In Problem 1.4 the reader is requested to prove that in such cases,

b

� = M � d

1

+ d

2

>

b

�

0

= M � d

0

1

+ d

0

2

i� �: (d

1

; d

2

) � �

0

: (d

0

1

; d

0

2

).

For example, in the above proof of program FACT, we used the ranking func-

tions

�

i

: (jyj; i).

Since the maximal increase in the value of i is 1 which is smaller than 2, we could

have used instead the condensed ranking function

b

�

i

: 2 � jyj + i.

Example (up down)

Consider program UP-DOWN presented in Fig. 1.27. This program can be viewed

as an extension of program ANY-Y of Fig. 1.2. Process P

1

increments y, counting

up in `

0

, `

1

, as long as x = 0. Once P

1

�nds that x is di�erent from 0, it proceeds

to `

2

; `

3

, where y is decremented until it becomes 0. Process P

2

's single action is

to set x to 1. Obviously, due to justice, x will eventually be set to 1. However,

one cannot predict the number of helpful steps required for P

1

to terminate. The

longer P

2

waits before performing m

0

, the higher the value y will attain on the

move to `

2

. It is this value of y which determines the number of remaining steps

to termination.

In fact, for every n > 0, we can construct a computation requiring more than

4n helpful steps to achieve y = 0. This computation allows P

1

to increase y up

to n, and only then activates m

0

. At least 2n more steps of P

1

are needed to

decrement y back to 0.

Consequently, we need rule WELL-J to prove the response property
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local x; y: integer where x = y = 0

P

1

::

2

6

6

6

6

6

4

`

0

: while x = 0 do

`

1

: y := y + 1

`

2

: while y > 0 do

`

3

: y := y � 1

`

4

:

3

7

7

7

7

7

5

P

2

::

�

m

0

: x := 1

m

1

:

�

Fig. 1.27. Program UP-DOWN.

at

�

`

0

^ at

�

m

0

^ x = y = 0

| {z }

p=�

) 1 at

�

`

4

^ at

�

m

1

| {z }

q

for program UP-DOWN.

In order to construct the intermediate assertions and the ranking functions

�

i

, we observe that there are three distinct phases in the achievement of at

�

`

4

^

at

�

m

1

. The �rst phase waits for P

2

to perform m

0

. This phase terminates when

m

0

is executed. In the second phase, P

1

senses that x has been set to 1 and moves

to `

2

. In the third phase, P

1

is within `

2;3

and decrements y until y reaches 0 and

P

1

moves to `

4

.

Consequently, it seems advisable to use the well-founded domain (N

3

;�) of

lexicographic triples (n

1

; n

2

; n

3

), whose �rst element n

1

identi�es the phase, and

whose remaining elements, n

2

and n

3

, identify progress within the phase. Recall

that lexicographic ordering on triples of natural numbers is de�ned by

(n

1

; n

2

; n

3

) � (m

1

; m

2

; m

3

) i�

8

>

<

>

:

n

1

> m

1

or

n

1

= m

1

; n

2

> m

2

or

n

1

= m

1

; n

2

= m

2

; n

3

> m

3

:

Obviously, this ordering is a well-founded relation on N

3

.

Consider the remaining elements needed to measure progress within a phase.

The �rst phase terminates after one helpful step, m

0

. The second phase terminates

in two helpful steps, `

1

followed by `

0

. The last phase has y measuring coarse

progress, and it takes two steps to decrement y, `

2

followed by `

3

.

Consequently, we de�ne the following assertions, helpful transitions and rank-

ing functions,

'

5

: at

�

`

0;1

^ at

�

m

0

^ x = 0 ^ y � 0 �

5

: m

0

�

5

: (2; 0; 0)

'

4

: at

�

`

1

^ at

�

m

1

^ x = 1 ^ y � 0 �

4

: `

1

�

4

: (1; 0; 1)
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'

3

: at

�

`

0

^ at

�

m

1

^ x = 1 ^ y � 0 �

3

: `

0

�

3

: (1; 0; 0)

'

2

: at

�

`

2

^ at

�

m

1

^ x = 1 ^ y � 0 �

2

: `

2

�

2

: (0; jyj; 2)

'

1

: at

�

`

3

^ at

�

m

1

^ x = 1 ^ y > 0 �

1

: `

3

�

1

: (0; jyj; 1)

'

0

: at

�

`

4

^ at

�

m

1

�

0

: (0; 0; 0):

Note that progress within the second phase is measured by the third component,

which moves from 1 to 0 on execution of `

1

. Progress within the third phase is

measured by the pair (y; 1 + at

�

`

2

) which decreases on execution of both `

3

and

`

2

.

hh Exercise?ii

Let us show that all premises of rule WELL-J are satis�ed by these choices.

� Premise JW1

For this premise we have to show the implication

at

�

`

0

^ at

�

m

0

^ x = y = 0

| {z }

p

!

� � � _ at

�

`

0;1

^ at

�

m

0

^ x = 0 ^ y � 0

| {z }

'

5

,

which is obvious.

� Premise JW2 for '

5

It is su�cient to show the following for each � 6= m

0

�

�

^ at

�

`

0;1

^ at

�

m

0

^ x = 0 ^ y � 0

| {z }

'

5

!

� � � _

�

at

0

�

`

0;1

^ at

0

�

m

0

^ x

0

= 0 ^ y

0

� 0

| {z }

'

0

5

^ (2; 0; 0)

| {z }

�

5

= (2; 0; 0)

| {z }

�

0

5

�

:

The only transitions � 6= m

0

enabled on '

5

-states are `

0

and `

1

. For each of them,

�

�

implies at

0

�

`

0;1

, x

0

= x = 0, and y

0

� y � 0. Consequently, the implication is

valid.

� Premise JW3 for '

5

We show

�

m

0

^ at

�

`

0;1

^ at

�

m

0

^ x = 0 ^ y � 0

| {z }

'

5

!
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2

6

6

6

6

6

6

6

4

at

0

�

`

1

^ at

0

�

m

1

^ x

0

= 1 ^ y

0

� 0

| {z }

'

0

4

^ (2; 0; 0)

| {z }

�

5

� (1; 0; 1)

| {z }

�

0

4

_

at

0

�

`

0

^ at

0

�

m

1

^ x

0

= 1 ^ y

0

� 0

| {z }

'

0

3

^ (2; 0; 0)

| {z }

�

5

� (1; 0; 0)

| {z }

�

0

3

3

7

7

7

7

7

7

7

5

:

Clearly, �

m

0

implies x

0

= 1, y

0

= y, at

0

�

m

1

and at

0

�

`

i

= at

�

`

i

for i = 0; 1. By

'

5

, either at

�

`

0

or at

�

`

1

holds. In the case that at

�

`

0

= T, the second disjunct

is implied. In the case that at

�

`

1

= T, the �rst disjunct is implied. The decrease

in rank is obvious in both cases.

� Premises JW2, JW3 for '

4

Since `

1

is the only transition enabled on '

4

-states, the following implication

establishes both JW2 and JW3 for '

4

:

�

`

1

^ at

�

`

1

^ at

�

m

1

^ x = 1 ^ y � 0

| {z }

'

4

!

� � � _

�

at

0

�

`

0

^ at

0

�

m

1

^ x

0

= 1 ^ y

0

� 0

| {z }

'

0

3

^ (1; 0; 1)

| {z }

�

4

� (1; 0; 0)

| {z }

�

0

3

�

:

Transition relation �

`

1

implies at

0

�

`

0

, at

0

�

m

1

= at

�

m

1

, x

0

= x, and y

0

� y. By

'

4

, it follows that '

0

3

holds, and the decrease in rank is obvious.

� Premises JW2, JW3 for '

3

Since `

0

is the only transition enabled on '

3

-states, the following implication

establishes both JW2 and JW3 for '

3

�

`

0

^ at

�

`

0

^ at

�

m

1

^ x = 1 ^ y � 0

| {z }

'

3

!

� � � _

�

at

0

�

`

2

^ at

0

�

m

1

^ x

0

= 1 ^ y

0

� 0

| {z }

'

0

2

^ (1; 0; 0)

| {z }

�

3

� (0; jy

0

j; 2)

| {z }

�

0

2

�

Transition relation �

`

0

under x = 1 implies at

0

�

`

2

and at

0

�

m

1

= at

�

m

1

. It also

implies x

0

= x and y

0

= y. The rank decrease (1; 0; 0) � (0; jy

0

j; 2) is obvious, since

1, the �rst component of the left-hand side, is larger than 0, the �rst component

of the right-hand side.

� Premises JW2, JW3 for '

2

Since `

2

is the only transition enabled on '

2

-states, the following implication

establishes both JW2 and JW3 for '

2
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�

`

2

^ at

�

`

2

^ at

�

m

1

^ x = 1 ^ y � 0

| {z }

'

2

!

0

B

B

B

B

B

B

B

@

at

0

�

`

4

^ at

0

�

m

1

| {z }

'

0

0

^ (0; jyj; 2)

| {z }

�

2

� (0; 0; 0)

| {z }

�

0

0

_

at

0

�

`

3

^ at

0

�

m

1

^ x

0

= 1 ^ y

0

> 0

| {z }

'

0

1

^ (0; jyj; 2)

| {z }

�

2

� (0; jy

0

j; 1)

| {z }

�

0

1

1

C

C

C

C

C

C

C

A

:

We distinguish between two cases.

Case y = 0:

In this case, �

`

2

implies at

0

�

`

4

, y

0

= y = 0, and at

0

�

m

1

= at

�

m

1

. Since '

2

implies at

�

m

1

= T, the left-hand side of this veri�cation condition implies

the right-hand side disjunct '

0

0

^ (0; jyj; 2) � (0; 0; 0).

Case y 6= 0:

By '

2

, it follows that y > 0. In this case, �

`

2

implies at

0

�

`

3

, at

0

�

m

1

= at

�

m

1

,

x

0

= x, and y

0

= y > 0. Together with '

2

, these imply '

0

1

. To show the rank

decrease, we observe that jyj = jy

0

j and 2 > 1.

� Premises JW2, JW3 for '

1

Since `

3

is the only transition enabled on '

1

-states, the following implication

establishes both JW2 and JW3 for '

1

�

`

3

^ at

�

`

3

^ at

�

m

1

^ x = 1 ^ y > 1

| {z }

'

1

!

� � � _

�

at

0

�

`

2

^ at

0

�

m

1

^ x

0

= 1 ^ y

0

� 0

| {z }

'

0

2

^ (0; jyj; 1)

| {z }

�

1

� (0; jy

0

j; 2)

| {z }

�

0

2

�

:

Transition relation �

`

3

implies at

0

�

`

2

, at

0

�

m

1

= at

�

m

1

, x

0

= x, and y

0

= y � 1.

By the clause y > 0 in '

1

we have y

0

= y � 1 � 0. The decrease in rank follows

from y > 0 and (0; jyj; 1) = (0; y; 1) � (0; y � 1; 2) = (0; jy

0

j; 2).

� Premise JW4

This premise requires showing the following implication for each i = 1; : : : ; 5.

'

i

! En(�

i

).

By inspecting '

i

for each i = 1; : : : ; 5, we see that this is indeed the case.

This concludes the proof.
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Persistence of the Helpful Transitions

Premise JW2 of rule WELL-J requires that, in the case that a transition does not

attain a lower rank in the next state, it must maintain the rank and lead to a

state that still satis�es '

i

, and therefore maintain �

i

as the helpful transition. We

refer to this clause as a requirement for the persistence of helpful transitions. One

may wonder how essential this requirement is, and whether it would be possible

to relax this requirement. In Problem 1.5, we request the reader to consider a

version of rule WELL-J in which premise JW2 has been relaxed to allow the helpful

transition to change without rank decrease. The problem shows that the resulting

rule is unsound.

1.5 Rank Diagrams

To represent by diagrams proofs of response properties that require the use of

well-founded ranking, we have to add some more components to the labels of

nodes.

A veri�cation diagram is said to be a RANK diagram if its nodes are labeled

by assertions '

0

; : : : ; '

m

, with '

0

being the terminal node, and ranking func-

tions �

0

; : : : ; �

m

, where each �

i

maps states into A, and it satis�es the following

requirement:

� Every node '

i

, i > 0, has a double edge departing from it. This identi�es

the transition labeling such an edge as helpful for assertion '

i

. All helpful

transitions must be just.

Note that, unlike CHAIN diagrams, we allow node '

i

to be connected to '

j

for

j > i.

Veri�cation and Enabling Conditions for RANK Diagrams

Consider a nonterminal node labeled by assertion ' and ranking function �, and

let '

1

; : : : ; '

k

, k � 0, be the � -successors of ' and �

1

; : : : ; �

k

be their respective

ranking functions.

� If transition � is unhelpful for ', i.e., labels only single edges departing from

the node, then we associate with ' and � the following veri�cation condition

n

' ^ � = u

o

�

n

(' ^ u< �) _ ('

1

^ u � �

1

) _ � � � _ ('

k

^ u � �

k

)

o

:

� If � is helpful for ' (labels double edges), we associate with ' and � the

following veri�cation condition

n

' ^ � = u

o

�

n

('

1

^ u � �

1

) _ � � � _ ('

k

^ u � �

k

)

o

:



c

 Z. Manna and A. Pnueli, 28 Aug. 96. Not for Distribution

1.5 Rank Diagrams 53

� For every nonterminal node ' and a transition � labeling a double edge

departing from ', we require

' ! En(� ).

Note that in the case of an unhelpful transition, we allow a � -successor with a

rank equal to that of ', provided it satis�es the same assertion '.

Valid RANK Diagrams

A RANK diagram is said to be valid over program P (P -valid for short) if all

the veri�cation and enabling conditions associated with the diagram are P -state

valid.

The consequences of having a valid RANK diagram are stated in the following

claim.

Claim 1.2 (RANK diagrams)

A P -valid RANK diagram establishes that the response formula

m

_

j=0

'

j

) 1 '

0

is P -valid.

If, in addition, we can establish the P -state validity of the following implica-

tions:

p !

m

_

j=0

'

j

and '

0

! q

then, we can conclude the validity of

p ) 1 q.

Justi�cation It is not di�cult to see that a valid RANK diagram establishes the

premises of rule WELL-J with p:

W

m

j=0

'

j

, q: '

0

, and �

i

the transition helpful for

'

i

being the transition labeling the double edge departing from '

i

in the diagram.

This establishes the P -validity of

m

_

j=0

'

j

) 1 '

0

.

Given assertions p and q, satisfying the implications

p !

m

_

j=0

'

j

and '

0

! q,

we can use rule MON-R of Fig. 1.3 to infer
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p ) 1 q.

Example (factorial)

The diagram of Fig. 1.28 presents a valid RANK diagram that establishes total

correctness for program FACT (Fig. 1.24).

C

DE

F

y � x; z = x!=y!

#

"

 

!

'

2

: at

�

`

0

^ 0 � y

�

2

: (jyj; 2)

`

0

�

`

0

�

�




#

"

 

!

'

1

: at

�

`

1

^ 1 � y

�

1

: (jyj; 1)

`

1

�

�

�

�


 	

�

'

0

: at

�

`

2

^ z = x!=y!

�

0

: (jyj; 0)

Fig. 1.28. RANK diagram for total correctness of program FACT.

This diagram contains a connection from'

1

to '

2

which is disallowed in chain

diagrams. However, the validity of the implied veri�cation conditions ensures

that, whenever a transition is taken from a '

2

-state s

2

to a '

1

-state s

1

, the rank

decreases, i.e., �

2

(s

2

) � �

1

(s

1

).

Distributing the Ranking Functions

To make RANK diagrams more readable, we introduce additional encapsulation

conventions.

One of the useful conventions is that compound nodes may be labeled by a

list of assertions. Such labeling indicates that the full assertion associated with a

basic (noncompound) node n

i

is a conjunction of the assertion labeling the node

itself and all the assertions labeling compound nodes that contain n

i

.
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Thus, while the label of node '

2

in the diagram of Fig. 1.28 is at

�

`

0

^ 0 � y,

the full assertion associated with this node is

at

�

`

0

^ 0 � y ^ y � x ^ z = x!=y! .

We can view this representation as distribution of the full assertion into the part

at

�

`

0

^ 0 � y labeling the node itself and the part y � x^ z = x!=y! labeling the

enclosing node, which is common to both '

1

and '

2

.

In a similar way, we introduce a convention for distribution of ranking func-

tions. The convention allows us to label a compound node by

�: f ,

where f is some ranking function mapping states into a well-founded domain A.

In most of our examples, the domains are either (N; >) or lexicographic products

of this domain.

Consider a basic node n

i

labeled by assertion '

i

and local ranking function

f

b

. Assume that node n

i

is contained in a nested sequence of compound nodes

that are labeled by ranking labels �: f

1

; : : : ; �: f

m

, as we go from the outermost

compound node towards n

i

. This situation is depicted in Fig. 1.29. Then the full

ranking function associated with the node '

i

is given by the tuple

�

i

= (f

1

; : : : ; f

m

; f

b

).

That is, we consider the outermost ranking f

1

to be the most signi�cant compo-

nent in �

i

, and the local ranking f

b

to be the least signi�cant component.

C

DE

F

�: f

1

r

r

r

C

DE

F

�: f

m

r

r

r

�

�

�

�

'

i

: � � �

�: f

b

n

i

r

r

r

r

r

r

Fig. 1.29. Encapsulated sequence of nodes.
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Example (factorial)

In Fig. 1.30, we present a version of the RANK diagram of Fig. 1.28, in which

a common component of the ranking function appears as a ranking label of the

enclosing compound state.

C

DE

F

y � x; z = x!=y!

�: jyj

#

"

 

!

'

2

: at

�

`

0

^ 0 � y

�: 2

`

0

�

`

0

�

�




#

"

 

!

'

1

: at

�

`

1

^ 1 � y

�: 1

`

1

�

�

�

�


 	

�

'

0

: at

�

`

2

^ z = x!=y!

�: (jyj; 0)

Fig. 1.30. RANK diagram with distributed ranking functions.

The full ranking functions associated with the nodes in the RANK diagram of

Fig. 1.30 are identical to those appearing in Fig. 1.28.

Another rank distribution convention allows one to omit the local rank label-

ing a node '

i

altogether. This is interpreted as if the node were labeled with the

ranking function �: i, where i is the index of the node (and the assertion labeling

it). In Fig. 1.31, we present another version of the RANK diagram for program

FACT, using this convention.

The full ranking functions associated with the nodes in this diagram are:

�

2

: (jyj; 2), �

1

: (jyj; 1), and �

0

: 0.

This raises the question of how to compare lexicographic tuples of unequal

lengths such as �

2

: (jyj; 2) and �

0

: 0.

Since all our examples will be based on tuples of non-negative integers, we

agree that the relation holding between (a

1

; : : : ; a

i

) and (b

1

; : : : ; b

k

) for i < k is de-

termined by lexicographically comparing (a

1

; : : : ; a

i

; 0; : : : ; 0) to (b

1

; : : : ; b

i

; b

i+1

;
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C

DE

F

y � x; z = x!=y!

�: jyj

#

"

 

!

'

2

: at

�

`

0

^ 0 � y

`

0

�

`

0

�

�




#

"

 

!

'

1

: at

�

`

1

^ 1 � y

`

1

�

�

�

�


 	

�

'

0

: at

�

`

2

^ z = x!=y!

Fig. 1.31. RANK diagram with default local ranking.

: : : ; b

k

). That is, we pad the shorter tuple by zeros on the right until it assumes

the length of the longer tuple.

According to this de�nition, (jyj; 2) � 0, since (jyj; 2) � (0; 0).

Example (up-down)

In Fig. 1.32 we present a valid RANK diagram which implies, by monotonicity, the

property of termination for program UP-DOWN (Fig. 1.27).

at

�

`

0

^ at

�

m

0

^ x = y = 0

| {z }

p=�

) 1 at

�

`

4

^ at

�

m

1

| {z }

'

0

:

The diagram provides a detailed description of the progress of the computa-

tion from '

5

to '

0

. It shows that progress from '

5

to '

2

is due to a CHAIN-like

reasoning. Then, the progress from '

2

and '

1

to '

0

requires a well-founded ar-

gument with the measure jyj for coarse progress, and the index j = 1; 2 of '

j

for

measuring �ne progress.

The ranking functions appearing in this diagram are somewhat di�erent from

the ones used originally. When padded to the maximumlength of 3, they are given

by

�

5

: (5; 0; 0)

�

4

: (4; 0; 0)
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C

DE

F

y � 0

�

�

�

�

'

5

: at

�

`

0;1

^ at

�

m

0

^ x = 0

m

0

�

| | (5; 0; 0)

C

DE

F

at

�

m

1

; x = 1

�

�

�

�

'

4

: at

�

`

1

`

1

�

| | (4; 0; 0)

�

�

�

�

'

3

: at

�

`

0

`

0

�

| | (3; 0; 0)

C

DE

F

at

�

m

1

; x = 1

�:

�

2; jyj

�

�

�

�

�

'

2

: at

�

`

2

`

2

�

`

2

�

�




| | (2; jyj; 2)

�

�

�

�

'

1

: at

�

`

3

^ y > 0

`

3

�

�

�

| | (2; jyj; 1)

�


 	

�

'

0

: at

�

`

4

^ at

�

m

1

| | (0; 0; 0)

Fig. 1.32. RANK diagram for termination of UP-DOWN.

�

3

: (3; 0; 0)

�

2

: (2; jyj; 2)

�

1

: (2; jyj; 1)

�

0

: (0; 0; 0).

Note that the diagram contains a connection from '

1

to '

2

. This is allowed

because `

3

decrements y and leads to a decrease in rank, stated by
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(2; jyj; 1) � (2; jy � 1j; 2).

In Problems 1.6{1.9, the reader is requested to prove total correctness of

several programs.

1.6 Response with Past Subformulas

In this section we generalize the methods and proof rules presented in the pre-

ceding sections to handle response formulas p ) 1 q, where p and q are past

formulas.

The generalization is straightforward. It involves the following systematic

modi�cations and replacements.

� Wherever a rule calls for one or more intermediate assertions, the past-version

of the rule requires �nding past formulas.

� Each premise of the form ' !  , for assertions ' and  , is replaced by an

entailment b')

b

 for corresponding past formulas b' and

b

 .

� A veri�cation condition fpg � fqg, for past formulas p and q and transition

� , is interpreted as the entailment �

�

^ p ) q

0

, where the primed version of

a past formula is calculated as in Section 4.1 of the SAFETY book.

For example, in Fig. 1.33, we present the past version of rule WELL-J.

Similar past versions can be derived for rules RESP-J and CHAIN-J.

Example Let us illustrate the use of the past version of rule WELL-J for proving

the response property

0 � n � y ) 1

�

y = n ^ Q (at

�

`

0

^ y = n)

�

for program UP-DOWN of Fig. 1.27.

This property states that any position i at which y is greater or equal to some

n � 0, is followed by a position j at which y = n and such that, at a preceding

position k � j, y equaled n while control was at `

0

. This property characterizes

a feature of program UP-DOWN by which a computation that achieves y � n at

some state, has at least two occurrences of states in which y = n. One occurrence

has control at `

0

while the other occurrence has control at `

2

.

In our proof, we use the following invariants for program UP-DOWN

�

0

: y � 0

�

1

: (at

�

`

0;1

^ at

�

m

0

^ x = 0) _ (at

�

`

0::4

^ at

�

m

1

^ x = 1)

�

2

: at

�

`

4

! y = 0

�

3

: y < n _ Q (at

�

`

0

^ y = n).



c

 Z. Manna and A. Pnueli, 28 Aug. 96. Not for Distribution

60 Chapter 1: Response

For past formulas p and q = '

0

; '

1

; : : : ; '

m

,

transitions �

1

; : : : ; �

m

2 J ,

a well-founded domain (A;�), and

ranking functions �

0

; : : : ; �

m

: � 7! A

JW1. p )

m

_

j=0

'

j

JW2. �

�

^ '

i

)

2

6

6

4

m

_

j=0

('

0

j

^ �

i

� �

0

j

)

_ ('

0

i

^ �

i

= �

0

i

)

3

7

7

5

for every � 2 T

JW3. �

�

i

^ '

i

)

m

_

j=0

('

0

j

^ �

j

� �

0

j

)

JW4. '

i

) En(�

i

)

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

for i = 1; : : : ;m

p ) 1 q

Fig. 1.33. Past version of rule WELL-J.

State invariants

�

0

,

�

1

, and

�

2

are derived and proven in the usual way.

Proving the Invariance of

�

3

Formula

�

3

is a past invariant, and can be proven by rule P-INV, taking

' =  : y < n _ Q (at

�

`

0

^ y = n). Premise P1 of rule P-INV is trivial since

' =  . Premise P2 requires

� � �at

�

`

0

^ y = 0 ^ � � �

| {z }

�

! y < n _ (at

�

`

0

^ y = n)

| {z }

'

0

:

As n � 0, we consider two cases. If n > 0 then y = 0 implies y < n. If n = 0

then at

�

`

0

^ y = 0 implies at

�

`

0

^ y = n.

Finally, premise P2 requires showing

�

�

^ y < n _ Q (at

�

`

0

^ y = n)

| {z }

'

)
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y

0

< n _ (at

0

�

`

0

^ y

0

= n) _ Q (at

�

`

0

^ y = n)

| {z }

'

0

:

This can be shown by temporal instantiation of the implication

�

�

^ (y < n _ p) !

�

y

0

< n _ (at

0

�

`

0

^ y

0

= n) _ p

�

:

Obviously if p = T the implication is trivially valid. It therefore remains to show

that the following holds:

�

�

^ y < n ! y

0

< n _ (at

0

�

`

0

^ y

0

= n).

This implication can be potentially falsi�ed only by a transition that can

transform a state satisfying y < n into a next state satisfying :(y

0

< n), i.e.,

y

0

� n. The only candidate transition is `

1

. Therefore, we consider

� � � ^ at

0

�

`

0

^ y

0

= y + 1

| {z }

�

�

^ y < n ! y

0

< n _ (at

0

�

`

0

^ y

0

= n).

As y < n, we consider two cases. If y < n � 1 then y

0

= y + 1 < n. If y = n � 1

then at

0

�

`

0

^ y

0

= y + 1 implies at

0

�

`

0

^ y

0

= n.

This concludes the proof of past invariant

�

3

.

Proving the Response Formula

To prove the response formula

0 � n � y

| {z }

p

) 1 y = n ^ Q (at

�

`

0

^ y = n)

| {z }

q

;

we use the past version of rule WELL-J as presented in Fig. 1.33.

The choice of intermediate past formulas'

1

{'

5

, helpful transitions and rank-

ing functions is presented in the veri�cation diagram of Fig. 1.34.

Note that each of '

0

; : : : ; '

5

is a past formula. For example, the full formula

'

4

is given by

'

4

: at

�

`

1

^ at

�

m

1

^ x = 1 ^ y > n � 0 ^ Q (at

�

`

0

^ y = n).

Let us consider some of the premises required by rule WELL-J. Premise JW1

requires the following implication

0 � n � y )

Q (at

�

`

0

^ y = n) ^

�

y = n _ y > n ^

0

B

@

at

�

`

0;1

^ at

�

m

0

^ x = 0

_

at

�

`

0::3

^ at

�

m

1

^ x = 1

1

C

A

�

| {z }

'

0

_ ��� _ '

5

:
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C

DE

F

y > n � 0; Q (at

�

`

0

^ y = n)

�

�

�

�

'

5

: at

�

`

0;1

^ at

�

m

0

^ x = 0

m

0

�

C

DE

F

at

�

m

1

; x = 1

�

�

�

�

'

4

: at

�

`

1

`

1

�

�

�

�

�

'

3

: at

�

`

0

`

0

�

C

DE

F

at

�

m

1

; x = 1

�:

�

2; jyj

�

�

�

�

�

'

2

: at

�

`

2

`

2

�

`

2

�

�

�

�

�

�

'

1

: at

�

`

3

^ y > 0

`

3

�

�

�

�


 	

�

'

0

: y = n ^ Q (at

�

`

0

^ y = n)

Fig. 1.34. RANK diagram for (0 � n � y) ) 1

�

y = n ^ Q (at

�

`

0

^ y = n)

�

.

It is not di�cult to see that this entailment follows from invariants

�

0

{

�

3

.

Observe that each '

i

, i = 0; : : : ; 5 can be written in the form

'

i

= Q (at

�

`

0

^ y = n) ^ b'

i

,

where b'

i

is a state formula.

Consequently, premise JW2 can be written as follows

�

�

^ b'

i

^ Q (at

�

`

0

^ y = n) )
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�

Q (at

�

`

0

^ y = n)

�

0

^

�

b'

0

0

_

5

_

j=1

(b'

0

j

^ �

i

� �

0

j

) _ (b'

i

^ �

i

= �

0

i

)

�

:

Since Q (at

�

`

0

^ y = n) entails

�

Q (at

�

`

0

^ y = n)

�

0

, which expands to the

disjunction

�

Q (at

�

`

0

^ y = n)

�

0

: (at

0

�

`

0

^ y

0

= n) _ Q (at

�

`

0

^ y = n),

it only remains to establish the following state entailment

�

�

^ b'

i

) b'

0

0

_

5

_

j=1

(b'

0

j

^ �

i

� �

0

j

) _ (b'

i

^ �

i

= �

0

i

).

This entailment can be proven in a way similar to the proof of the veri�cation

conditions in the RANK diagram of Fig. 1.32, whose ranking functions are identical

to those of Fig. 1.34.

The past conjunct Q (at

�

`

0

^ y = n) can be similarly factored out also for

premise JW3.

This concludes the proof that property

0 � n � y ) 1

�

n = y ^ Q (at

�

`

0

^ y = n)

�

for program UP-DOWN.

1.7 Compositional Veri�cation of Response

Properties

Compositional veri�cation is a method intended to reduce the complexity of ver-

ifying properties of large programs. The method infers properties of the whole

system from properties of its components, which are proven separately for each

component.

We apply compositional veri�cation to programs that can be decomposed

into several top-level processes, called components, which communicate by shared

variables and such that every variable of the program can be modi�ed by at most

one of these components. A variable which is modi�ed by component P

i

is said

to be owned by P

i

.

Modular Computations

Let P ::

�

declarations;

�

P

1

:: [`

1

0

: S

1

]k � � �kP

k

:: [`

k

0

: S

k

]

��

be a program, and

P

i

be a component of P . Denote by V = f�g [ Y the set of system variables of

P , and let Y

i

� Y be the set of variables owned by P

i

. Let L

i

denote the set of

locations of process P

i

.
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Assume that we have constructed the fair transition system (FTS) S

P

: hV;�;

T ;J ; Ci corresponding to P . We assume that the initial condition has the form

�: � = f`

1

0

; : : : ; `

k

0

g ^

^

y2Y

p

y

(y),

where, for each y 2 Y , p

y

(y) is an assertion constraining the initial values of

variable y. Obviously, p

y

(y) is derived from one of the where clauses in the

declarations of variables in P . If there is no where clause constaining y, then

p

y

(y) = T. Let T

i

denote the transitions of S

P

associated with the statements of

P

i

.

Based on the FTS S

P

and process P

i

, we construct a new FTS S

M

P

i

: hV

i

;�

i

; T

i

;

J

i

; C

i

i called the modular FTS corresponding to P

i

. The FTS S

M

P

i

is intended to

capture the possible behavior of process P

i

in any context (not necessarily that

of P ) which respects the ownership of Y

i

by P

i

. That is, we are ready to consider

any context whose only restriction is that it cannot modify any variable owned

by P

i

. The constituents of S

M

P

i

ar given by:

� V

i

: V

The system variables of S

M

P

i

are identical to the system variables of the com-

plete FTS S

P

.

� �

i

:

�

� \ L

i

= f`

i

0

g

�

^

^

y2Y

i

p

y

(y)

The initial condition of S

M

P

i

requires that, initially, the only L

i

-location con-

tained in � is `

i

0

and all the variables owned by P

i

satisfy their initial con-

straints as speci�ed in the where clauses of the program declarations. Except

for �, nothing is required by �

i

concerning the system variables not owned

by P

i

.

� T

i

= T

i

[ f�

E

g

The transitions of S

M

P

i

include all transitions associated with statements of

P

i

(T

i

) and a special environment transition �

E

. Transition �

E

is intended

to represent the actions of an arbitrary context which respects the ownership

of Y

i

by P

i

. For each � 2 T

i

, the transition relation S

M

P

i

associates with � is

�

�

, the transition relation S

P

associates with � . The transition relation for

�

E

is given by

�

E

: (�

0

\ L

i

= � \ L

i

) ^ press(Y

i

).

This transition relation guarantees the preservation of the L

i

-part of � and

preservation of the values of all variables owned by P

i

. The special treatment

of � can be described by saying that, in addition to owning the variables in

Y

i

, P

i

also owns the L

i

-part of � (projection of � on L

i

).
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� J

i

= J \ T

i

The just transitions of S

M

P

i

are the just transitions among T

i

.

� C

i

= C \ T

i

The compassionate transitions of S

M

P

i

are the compassionate transitions

among T

i

.

There is no need to include the idling transition �

I

in T

i

because the e�ect of �

I

,

a transition that changes no system variable, can be obtained as a special case of

�

E

.

We refer to each computation of FTS S

M

P

i

as amodular computation of process

P

i

. As previously explained, any such computation represents a possible behavior

of process P

i

when put in an arbitrary context which is only required to respect

the ownership rights of P

i

.

Example (program KEEPING-UP)

Consider program KEEPING-UP presented in Fig. 1.35. Top-level process P

1

owns

variable x and the `

0::2

-part of �. We use `

0::2

as abbreviation for f`

0

; `

1

; `

2

g. We

can construct S

M

P

1

, the modular FTS corresponding to process P

1

as follows:

local x; y: integer where x = y = 0

P

1

::

2

6

6

4

`

0

: loop forever do

"

`

1

: await x < y + 1

`

2

: x := x+ 1

#

3

7

7

5

P

2

::

2

6

6

4

m

0

: loop forever do

"

m

1

: await y < x+ 1

m

2

: y := y + 1

#

3

7

7

5

Fig. 1.35. Program KEEPING-UP.

� V

1

: f�; x; yg

� �

1

:

�

� \ `

0::2

= f`

0

g

�

^ x = 0

� T

1

: f�

`

0

; �

`

1

; �

`

2

; �

E

g

with the following transition relations (after some simpli�cations):

�

`

0

: move(`

0

; `

1

) ^ pres(x; y)

�

`

1

: move(`

1

; `

2

) ^ x < y + 1 ^ pres(x; y)

�

`

2

: move(`

2

; `

0

) ^ x

0

= x+ 1 ^ pres(y)
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�

E

: (�

0

\ `

0::2

= � \ `

0::2

) ^ pres(x)

In this relations, we used the following abbreviation:

move(`

i

; `

j

): at

�

`

i

^ �

0

=

�

� � f`

i

g

�

[ f`

j

g

� J

1

: f�

`

0

; �

`

1

; �

`

2

g

� C

1

: ;

The following is a modular computation of process P

1

:

b�:




�: f`

0

;m

0

g; x: 0; y: 0

�

`

0

�!




�: f`

1

;m

0

g; x: 0; y: 0

�

`

1

�!




�: f`

2

;m

0

g; x: 0; y: 0

�
�

E

�!




�: f`

2

;m

0

g; x: 0; y:�1

�

`

2

�!




�: f`

0

;m

0

g; x: 1; y:�1

�

� � � :

In a similar way, we can construct S

M

P

2

, the modular FTS corresponding to

process P

2

.

The following claim establishes a connection between computations of the

entire program and modular computations of its processes.

Claim 1.3 (computations of programs and modular computations)

Every computation of a program is a modular computation of each of its

top-level processes.

Thus, the set of computations of the entire program is a subset of the set of

modular computations of each of its top-level processes.

Example Consider, for example, the following computation of program KEE-

PING-UP

�:




�: f`

0

;m

0

g; x: 0; y: 0

�

`

0

�!




�: f`

1

;m

0

g; x: 0; y: 0

�

`

1

�!




�: f`

2

;m

0

g; x: 0; y: 0

�

m

0

�!




�: f`

2

;m

1

g; x: 0; y: 0

�

`

2

�!




�: f`

0

;m

1

g; x: 1; y: 0

�

m

1

�!




�: f`

0

;m

2

g; x: 1; y: 0

�

m

2

�!




�: f`

0

;m

0

g; x: 1; y: 1

�

`

0

�!




�: f`

1

;m

0

g; x: 1; y: 1

�

� � � :

Viewed as a modular computation of process P

1

, this computation can be pre-

sented as:
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�

1

:




�: f`

0

;m

0

g; x: 0; y: 0

�

`

0

�!




�: f`

1

;m

0

g; x: 0; y: 0

�

`

1

�!




�: f`

2

;m

0

g; x: 0; y: 0

�
�

E

�!




�: f`

2

;m

1

g; x: 0; y: 0

�

`

2

�!




�: f`

0

;m

1

g; x: 1; y: 0

�
�

E

�!




�: f`

0

;m

2

g; x: 1; y: 0

�
�

E

�!




�: f`

0

;m

0

g; x: 1; y: 1

�

`

0

�!




�: f`

1

;m

0

g; x: 1; y: 1

�

� � � :

Viewed as a modular computation of process P

2

, this computation can be pre-

sented as:

�

2

:




�: f`

0

;m

0

g; x: 0; y: 0

�
�

E

�!




�: f`

1

;m

0

g; x: 0; y: 0

�
�

E

�!




�: f`

2

;m

0

g; x: 0; y: 0

�

m

0

�!




�: f`

2

;m

1

g; x: 0; y: 0

�
�

E

�!




�: f`

0

;m

1

g; x: 1; y: 0

�

m

1

�!




�: f`

0

;m

2

g; x: 1; y: 0

�

m

2

�!




�: f`

0

;m

0

g; x: 1; y: 1

�
�

E

�!




�: f`

1

;m

0

g; x: 1; y: 1

�

� � � :

This illustrates that a computation of a program is a modular computation

of each of its top-level processes.

The weak converse of Claim 1.3 is not true. There are modular computations

of process P

i

which do not correspond to computations of the entire program. This

is illustrated by b� the previously presented modular computation of process P

1

in program KEEPING-UP. This computation contains a state with y = �1 as a

�

E

-successor of a state with y = 0. No such state can occur in a computation of

KEEPING-UP. This shows that the de�nition of modular computations of process

P

i

allows more general contexts than the actual context provided by the program

containing P

i

. The actual context of P

1

within program KEEPING-UP is process

P

2

which can never change y from a value of 0 to a value of �1.

On the other hand, the strong converse of Claim 1.3 is true. Let � be a

model (in�nite state sequence) such that the interpretation of � is a subset of the

locations of P . The valid converse of Claim 1.3 states that if � is simultaneously

a modular computation of every top-level process of P then � is a computation

of P . In Problem 1.10, we request the reader to prove this fact.

Modular Validity and a Basic Compositionality Rule

For a top-level process P

i

within program P , we say that formula ' is modularly

valid over P

i

, denoted

P

i

q

m

',

if ' holds over all modular computations of P

i

. For example, the formula 0 (x �

x

�

), stating that x never decreases, is modularly valid over process P

1

of program

KEEPING-UP (Fig. 1.42), while 0 (y � y

�

) is modularly valid over process P

2

of

the same program

2

.

2

x

�

and y

�

denote the values of x and y in the preceding state.
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Rule COMP-B, presented in Fig. 1.36, infers the P -validity of a formula ' from

the premise that ' is modularly valid over some top-level process of P .

For a program p, P

i

a top-level process of P , and ' a tempo-

ral formula

P

i

q

m

'

P q '

Fig. 1.36. Rule COMP-B (basic compositionality).

Soundness

Let P be a program and P

i

be a top-level process of P . Assume that formula '

is modularly valid over P

i

, i.e. P

i

q

m

'. This means that ' holds over all modular

computations of P

i

. By Claim 1.3, every computation of P is also a modular

computation of P

i

. It follows that all computations of P satisfy ' and, hence, '

is P -valid.

Rule COMP-B can be used to reduce the goal of establishing P q ' into the

subgoals of establishing several modular validities (not necessarily of the same

formula '. In Problem 1.11 the reader is requested to establish this fact.

A Compositional Rule for Safety Properties

In theory, rule COMP-B is adequate for compositional veri�cation of any temporal

formula. In practice, however, its application often proves inconvenient and calls

for additional temporal reasoning. Therefore, it is advantageous to derive more

speci�c rules, each of which is tailored to deal with temporal formulas of particular

classes.

In Fig. 1.37 we present rule COMP-S which can be used for compositional

veri�cation of safety formulas.

Premise CS1 states that

�

is an invariant of the entire program P . Premise

CS2 states that the entailment `

�

) p is modularly valid over some top-level

process P

i

. From these two assumptions, the rule infers that p is an invariant of

P .

Justi�cation Assume that premises CS1 and CS2 hold and let � be a compu-

tation of program P . By premise CS1, formula

�

holds at all positions of �. Since



c

 Z. Manna and A. Pnueli, 28 Aug. 96. Not for Distribution

1.7 Compositional Veri�cation of Response Properties 69

For P

i

, a top-level process of program P , and past formulas

�

, p,

CS1. P q 0

�

CS2. P

i

q

m

`

�

) p

P q 0 p

Fig. 1.37. Rule COMP-S (compositional veri�cation of safety properties).

every computation of P is also a modular computation of P

i

, premise CS2 implies

that the formula `

�

! p holds at all positions of �.

Consider an arbitrary position j � 0 of �. By D1,

�

holds at all positions

k � j and, therefore `

�

holds at j. By CS2, `

�

! p holds at j and, therefore,

so does p.

We conclude that p holds at all positions of �.

Rule COMP-S is often used in an incremental style. As a �rst step we take

�

= T and prove P

i

q

m

0 p

1

. From this the rule infers

P q 0 p

1

.

Next, we take

�

= p

1

and prove P

i

q

m

` p

1

) p

2

. This leads to

P q 0 p

2

,

which may be followed by additional steps.

The advantage of this proof pattern is that in each step we concentrate on

proving a modular validity over a single process P

i

. If P

i

is only a small part

of the program, each compositional veri�cation step has to consider only a small

fraction of the transitions in the complete program.

We illustrate the use of rule COMP-S on a simple example.

Example (program KEEPING-UP)

Consider program KEEPING-UP presented in Fig. 1.35. Process P

1

in this program

repeatedly increments x, provided x does not exceed y + 1. In a symmetric way,

process P

2

repeatedly increments y, provided y does not exceed x+ 1.

We wish to prove for this program the invariance of the assertion jx�yj � 1,

i.e.,

0 jx� yj � 1

| {z }

p

;
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claiming that the di�erence between x and y never exceeds 1 in absolute value.

We prove this property by compositional veri�cation, using rules INV-P and

COMP-S. We �rst show the P -validities

P q 0 (x � x

�

) and P q 0 (y � y

�

),

and then the P -validities

P q 0 (x � y + 1) and P q 0 (y � x+ 1).

The invariants x � y + 1 and y � x+ 1 imply the desired P -validity

P q 0 (jx� yj � 1).

For more details of this proof, we refer the reader to Section 4.3 of the SAFETY

book.

A Compositional Rule for Response Properties

Next, we present a rule that can support compositional veri�cation of response

properties and illustrate its use. This is rule COMP-R, presented in Fig. 1.38.

For P

i

, a top-level process of program P , and past formulas

�

, p, and q,

CR1. P q 0

�

CR2. P

i

q

m

p ) 1 (q _ :

�

)

P q p ) 1 q

Fig. 1.38. Rule COMP-R (compositional veri�cation of response properties).

Justi�cation Assume that premises CR1 and CR2 hold and let � be a com-

putation of program P . By premise CR1, formula

�

holds at all positions of �.

Since every computation of P is also a modular computation of P

i

, premise MR2

implies that the formula p ! 1 (q _ :

�

) holds at all positions of �. Let j be a

p-position of �. By MR2, there exists a position k � j such that either q holds

at k or

�

is false at k. The second alternative is impossible, due to CR1. We

conclude that every p-position is followed by a q-position and, therefore, p) 1 q

is valid over P .

Example (program PING-PONG)
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local x; y; z: integer where x = y = z = 0

P

1

::

2

6

6

6

6

6

4

own out x; z

`

0

: x := 1

`

1

: await y > 0

`

2

: z := 1

`

3

:

3

7

7

7

7

7

5

P

2

::

2

6

6

6

4

own out y

m

0

: await x > 0

m

1

: y := 1

m

2

:

3

7

7

7

5

Fig. 1.39. Program PING-PONG.

We illustrate the use of rule COMP-R for compositional veri�cation of response

properties on an example. In Fig. 1.39, we present program PING-PONG.

The two processes of this program maintain a coordination protocol. The

protocol starts by P

1

setting x to 1 at statement `

0

. This is sensed by P

2

at m

0

,

and is responded to by setting y to 1 at statement m

1

. This is sensed by P

1

at

`

1

, and is responded to by setting z to 1 at `

2

.

We wish to establish for this program the response property

� ) 1 (z = 1).

We start by proving, using rule P-INV, the modular invariance

P

1

q

m

0 (x � x

�

).

This is easy to prove since the local formula x � x

�

is inductive over the

modular FTS corresponding to process P

1

.

By rule COMP-B we can infer

P q 0 (x � x

�

).

In a similar way, we establish P

2

q

m

0 (y � y

�

), leading to

P q 0 (y � y

�

).

Now, we use rule RESP-J to prove

P

1

q

m

�

|{z}

p

) 1 x > 0

| {z }

q

:

As the intermediate assertion and helpful transition, we take ': at

�

`

0

and

�

h

: `

0

.

Using rule COMP-R with

�

: T, we conclude

P q � ) 1 (x > 0).
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Next, we intend to establish

P

2

q

m

x > 0 ) 1 (y > 0 _ x < x

�

).

As a �rst step, we use rule INV to prove

P

2

q

m

0 at

�

m

0;1

_ y > 0

| {z }

'

2

:

Having established the modular invariance of '

2

over P

2

, the following veri�cation

diagram proves that x > 0) 1 (y > 0 _ x < x

�

) is modularly valid over P

2

.

�

�

�

�

at

�

m

0

m

0




�

�

�

�

at

�

m

1

m

1




�

��

�

x > 0

�

E

�

?

�


 	

�

y > 0 _ x < x

�

Note that the diagram allows the possibility that the environment changes

x from a positive value to a nonpositive one. However, such a change leads to a

position satisfying x < x

�

.

Now, use rule COMP-R with

�

: x � x

�

, p: x > 0, and q: y > 0, to conclude

P q x > 0 ) 1 (y > 0).

Next, we plan to establish

P

1

q

m

y > 0 ) 1 (z = 1 _ y < y

�

).

As a �rst step, we use rule INV to prove

P

1

q

m

0 (at

�

`

0::2

_ z = 1).

Having established this modular invariant, the following veri�cation diagram

proves that y > 0) 1 (z = 1 _ y < y

�

) is modularly valid over P

1

.

�

�

�

�

at

�

`

0

`

0




�

�

�

�

at

�

`

1

`

1




�

�

�

�

at

�

`

2

`

2




�

��

�
y > 0

�

E

�

?

�


 	

�

z = 1 _ y < y

0

Now, use rule COMP-R with

�

: y � y

�

, p: y > 0, and q: z = 1, to conclude

P q y > 0 ) 1 (z = 1).

Thus, we have shown that the three response properties � ) 1 (x > 0),

x > 0) 1 (y > 0), and y > 0) 1 (z = 1) are all valid over program PING-PONG.

Using rule TRNS-R, we conclude
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� ) 1 (z = 1).

1.8 Guarantee Properties

In this and the following section we consider methods for proving properties be-

longing to the guarantee and obligation classes. Our approach to these classes is

to consider them as special cases of the response class, and to use response rules

with some simpli�cations for their veri�cation.

As de�ned in Section 0.5 of the SAFETY book, guarantee properties are prop-

erties that can be speci�ed by a formula of the form

1 r

for some past formula r.

Clearly, guarantee properties are a special case of response properties, p )

1 r, where the antecedent p refers to the beginning of the computation. Conse-

quently, an obvious rule for proving guarantee properties, is rule GUAR (Fig. 1.40).

For past formula r

�rst ^ � ) 1 r

1 r

Fig. 1.40. Rule GUAR (proving guarantee properties).

The rule requires as a premise a response property by which the initial con-

dition of the program guarantees the eventual realization of r.

Example Consider system INC2, presented in Fig. 1.41.

We wish to establish the guarantee property

1

�

x � 20 ^ Q (x = 10)

�

for system INC2, using rule GUAR. The premise of rule GUAR requires the response

property

p

z }| {

�rst ^ x = 0

| {z }

�

) 1

�

x � 20 ^ Q (x = 10)

| {z }

r

�

:

This response property can be proven by rule WELL-J, using the intermediate

past formula
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V : fx: integerg

�: x = 0

T : f�

I

; �g where �

�

: x

0

= x+ 2

J : f�g

C: ;

Fig. 1.41. System INC2.

': even(x) ^ 0 � x � 18 ^

�

x � 10 ! Q (x = 10)

�

;

the helpful transition � , and the ranking function �: j20� xj.

Let us establish premise JW1 of rule WELL-J. It requires showing

� � � ^ x = 0

| {z }

p

) � � � _ even(x) ^ 0 � x � 18 ^

�

x � 10 ! Q (x = 10)

�

| {z }

'

:

Clearly, x = 0 entails all three conjuncts comprising '. Note that, in this case,

we do not use the conjunct �rst which is part of p.

By rule GUAR, we conclude that property

1

�

x � 20 ^ Q (x = 10)

�

is valid over system INC2.

The premise of rule GUAR contains �rst as part of the antecedent. Its purpose

is to ensure that we only consider � at the beginning of the computation. As

illustrated in the last example, in many cases we do not use this conjunct and

simply prove �) 1 p. There are, however, some cases in which this conjunct is

necessary, as illustrated below.

Example Consider the simple program

local x: integer where x = 1

`

0

: loop forever do [`

1

: skip; `

2

: x := �x].

We consider the guarantee property

 : 1

�

at

�

`

2

^ ` (x = 1)

�

:

This property states that every computation of the program contains a posi-

tion j satisfying at

�

`

2

, and such that x = 1 at all positions i � j.
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This property is certainly valid for the program. To prove it, we have to

establish the response property

�rst ^ at

�

`

0

^ x = 1 ) 1

�

at

�

`

2

^ ` (x = 1)

�

:

Note, however, that the �rst conjunct is essential in this case, since the formula

at

�

`

0

^ x = 1 ) 1

�

at

�

`

2

^ ` (x = 1)

�

is not valid over the program.

Consider position i in the computation, corresponding to the third visit to

`

2

. At this position x = 1, but there exist earlier positions in which x = �1.

Therefore, there exists no position later than i, at which at

�

`

2

^` (x = 1) holds.

It follows that the implication at

�

`

0

^ x = 1! 1

�

at

�

`

2

^ ` (x = 1)

�

does not

hold at i.

To prove that the full premise

�rst ^ at

�

`

0

^ x = 1

| {z }

p

) 1

�

at

�

`

2

^ ` (x = 1)

| {z }

r

�

;

is valid, we may use rule CHAIN-J (Fig. 1.7) with the following intermediate past

formulas and helpful transitions:

'

2

: at

�

`

0

^ ` (x = 1) �

2

: `

0

'

1

: at

�

`

1

^ ` (x = 1) �

1

: `

1

'

0

= r: at

�

`

2

^ ` (x = 1) �

0

: `

2

:

Premise J1 requires showing

�rst ^ at

�

`

0

^ x = 1

| {z }

p

) � � � _ at

�

`

0

^ ` (x = 1)

| {z }

'

2

:

Clearly, the antecedent implies at

�

`

0

. To see that it also implies ` (x = 1),

we observe that under �rst , any past formula p is congruent to (p)

0

, the initial

version of p. Since the initial version of ` (x = 1) is

�

` (x = 1)

�

0

= (x = 1),

the right-hand side simpli�es to at

�

`

0

^ x = 1 which is entailed by the left-hand

side.

Another premise that has to be checked is J3 for transition `

0

,

�

`

0

^ at

�

`

0

^ ` (x = 1)

| {z }

'

2

) � � � _ at

0

�

`

1

^ x

0

= 1 ^ ` (x = 1)

| {z }

'

0

1

:

Since �

`

0

implies at

0

�

`

1

and x

0

= x, and ` (x = 1) implies x = 1, the entailment

is valid.



c

 Z. Manna and A. Pnueli, 28 Aug. 96. Not for Distribution

76 Chapter 1: Response

The rest of the premises are proven in a similar way. This establishes the

validity of 1

�

at

�

`

2

^` (x = 1)

�

:

Completeness of Rule GUAR

Rule GUAR is obviously sound, which means that the P -validity of the premise

�rst ^�) 1 r implies the P -validity of the conclusion 1 r.

The rule is also complete, which means that the P -validity of the conclusion

implies the P -validity of the premise. Consider �, an arbitrary computation of

program P . By the assumption that 1 r is P -valid, there exists a position k at

which r holds. For � to satisfy the premise we have to show that every position

i � 0, satisfying �rst ^�, is followed by a position j, j � i, satisfying r. Since 0

is the only position satisfying �rst ^�, we can take j to be k.

Completeness of rule GUAR is important because it tells us that the rule is

adequate for proving all P -valid guarantee formulas.

1.9 Obligation Properties

Before studying the class of obligation properties, we introduce a special class of

response formulas.

Escape Formulas

Some response properties are naturally expressed by formulas of the form

p ) 0 q _ 1 r,

for past formulas p, q, and r.

This formula claims that, following a p-state, either q will hold forever or r

eventually occurs. We may view such a formula as stating that, following p, q

should hold continually unless we escape to a state that eventually leads to r.

Consequently, we refer to formulas of this form as escape formulas.

To see that this formula speci�es a response property, observe that it is

equivalent to

:q ^ (:r) � (p ^ :r) ) 1 r.

In this form, the formula states that every :q-position preceded by a p-position

such that no r has occured since, must be followed by an r-position.

While, in principle, it is possible to use the general response rules to establish

escape formulas, it is more convenient to use a special rule, presented in Fig. 1.42.
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For past formulas p, q, r, and '

E1. p ) q W '

E2. ' ) 1 r

p ) 0 q _ 1 r

Fig. 1.42. Rule ESC (escape).

Rule ESC uses an auxiliary past formula '. Premise E1 requires that, follow-

ing a p-position, either q will hold forever or q will hold until an occurrence of '.

Premise E2 requires that every '-position is followed by an r-position. Typically,

we prove E1 by rule P-WAIT, a past version of rule WAIT (Fig. 3.3 of the SAFETY

book), and E2 by appropriate response rules.

Example Consider program MAY-HALT of Fig. 1.43. This trivial program has

a nondeterministic choice at `

1

between getting deadlocked at `

2

or, taking the

`

a

1

branch, proceeding to `

3

. Consequently, the program has some computations

that reach `

2

and stay there forever, and some computations that never halt.

`

0

: loop forever do

2

6

6

6

6

6

6

4

`

1

:

2

6

4

`

a

1

: skip

or

`

b

1

: skip; `

2

: halt

3

7

5

`

3

: skip

`

4

: skip

3

7

7

7

7

7

7

5

Fig. 1.43. Program MAY-HALT (possible deadlock).

We use rule ESC to prove the property

 

1

: at

�

`

0;1

| {z }

p

) 0 at

�

`

0::2

| {z }

q

_ 1 at

�

`

4

| {z }

r

for this program.

Take
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': at

�

`

3

.

Consider the two premises of rule ESC.

� Premise E1

This premise requires

at

�

`

0;1

| {z }

p

) at

�

`

0::2

| {z }

q

W at

�

`

3

| {z }

'

:

It is straightforward to derive this property by rule WAIT.

� Premise E2

at

�

`

3

| {z }

'

) 1 at

�

`

4

| {z }

r

:

A single application of rule RESP-J establishes this property.

This establishes the considered escape property.

From Escape to Obligation

The (simple) obligation class includes all the properties that can be speci�ed by

a formula of the form

0 q _ 1 r,

for past formulas q and r.

We observe that such a formula can be rewritten as

�rst ^ �

| {z }

p

) 0 q _ 1 r,

which represents it as a special case of an escape formula.

This observation inspires rule OBL (Fig. 1.44) for proving obligation proper-
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For past formulas q, r, and ',

O1. �rst ^ � ) q W '

O2. ' ) 1 r

0 q _ 1 r

Fig. 1.44. Rule OBL (proving obligation properties).

ties.

Premise O1 requires that, from the beginning of the computation, q holds

continuously and can be interrupted only at a position satisfying '. Premise O2

states that ' guarantees an eventual r. Consequently, q can be interrupted only

when r is guaranteed. It follows that qW (1 r) is valid. By properties of the

waiting-for operator, we may deduce 0 q _ 1 r.

Example (incrementor-decrementor)

Consider Program INC-DEC presented in Fig. 1.45, which nondeterministically in-

crements or decrements an integer variable y.

local x: boolean where x = T

y : integer where y = 10

`

0

: loop forever do

`

1

:

2

6

6

6

6

6

4

`

a

1

: hwhen x do y := y + 1i

or

`

b

1

: hwhen x do x := Fi

or

`

c

1

: hwhen :x do y := y � 1i

3

7

7

7

7

7

5

Fig. 1.45. Program INC-DEC (nondeterministic

incrementor-decrementor).

We wish to prove for this program the obligation property

0 y � 10

| {z }

q

_ 1 y = 0

| {z }

r

:
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Intending to apply rule OBL, it only remains to identify the intermediate formula

'. The main characterization of ' is that it describes the event whose occurrence

guarantees the eventual realization of r.

Examining the program, we see that the �rst moment we realize that y = 0

is going to happen is when x becomes false. Consequently we take

': :x ^ y > 0.

The premises that have to be veri�ed are as follows:

Premise O1

To establish this premise it su�ces to prove

� � � ^ �

| {z }

bp

) y � 10

| {z }

bq=q

W :x ^ y > 0

| {z }

br='

:

To prove this we use rule WAIT (Fig. 3.3 of the SAFETY book) with the intermediate

assertion

b': x ^ y � 10.

The three premises of rule WAIT require

W1. at

�

`

0

^ x ^ y = 10

| {z }

bp

! x ^ y � 10

| {z }

b'

_ � � � ;

which is obviously state valid.

W2. x ^ y � 10

| {z }

b'

! y � 10

| {z }

bq

;

which is trivially state valid.

W3. �

�

^ x ^ y � 10

| {z }

b'

! x

0

^ y

0

� 10

| {z }

b'

0

_ :x

0

^ y

0

> 0

| {z }

br

0

;

for all transitions � in the program. It is not di�cult to see that all three require-

ments are valid.

Premise O2

To establish this premise we have to prove

:x ^ y > 0

| {z }

'

) 1 y = 0

| {z }

r

:

This is proven by the RANK veri�cation diagram presented in Fig. 1.46.

This concludes the proof of

0 (y � 10) _ 1 (y = 0).
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�

�

�

�

'

2

: at

�

`

0

`

0

�

�

�

�

�

'

1

: at

�

`

1

`

c

1

�

`

c

1

�

�

�

�

��

�

:x; y > 0

�: y

�

�

�

�

'

0

: y = 0

Fig. 1.46. Veri�cation diagram for :x ^ y > 0) 1 (y = 0).

A general obligation property is a conjunction of the form

n

^

i=1

(0 q

i

_ 1 r

i

).

Consequently, to prove the validity of such a formula, it is su�cient (and neces-

sary) to prove the validity of each conjunct, which is a simple obligation property.

Completeness of rule OBL

Rule OBL is complete for proving (simple) obligation properties. This means that,

whenever 0 q_1 r is P -valid, we can �nd a past formula ', such that premises

O1 and O2 are also P -valid. The choice we can always make is taking

': r _ (:q ^ ` :r).

We will show that, if the property 0 q _ 1 r is P -valid, then the two premises

of rule OBL are also P -valid for this choice of '.

Premise O1

For premise O1 it su�ces to show that

q W r _ (:q ^ ` :r)

| {z }

'

is P -valid.

This formula states that either q holds forever, or it is interrupted by an r, or
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it is interrupted by a :q-position which is not preceded by any r-position. This

formula is valid in general so, in particular, it holds over all computations.

Premise O2

This premise requires

r _ (:q ^ ` :r)

| {z }

'

) 1 r,

for which it is su�cient to show

:q ^ ` :r ) 1 r.

Assume to the contrary, that there exists a computation � and a position i such

that :q ^ ` :r holds at i, but r does not hold at any position j � i. Since

:q ^` r holds at i, r does not occur at any position j < i. Therefore � does not

satisfy 1 r. On the other hand, since :q at i, � also does not satisfy 0 q. This

contradicts our assumption that 0 q _ 1 r is P -valid.

Consequently, premise O2 is also P -valid.

As we continuously remind the reader, the auxiliary formula ' constructed

during a proof of completeness is not necessarily the one we recommend for actual

use. In practice, we can almost always �nd better assertions.

Problems

Problem 1.1 (three values) page 22

Prove accessibility for process P

1

of programMUX-VAL-3 of Fig. 1.47. This program

uses the shared integer variables y

1

and y

2

. Obviously, these variables can only

assume one of the values f�1; 0; 1g.

Accessibility for P

1

is stated by the response formula

at

�

`

2

) 1 at

�

`

4

.

Problem 1.2 (bakery algorithms) page 25

(a) Prove accessibility for process P

1

of program MUX-BAK-A of Fig. 1.48. Note

that the two processes are not exactly symmetric due to the di�erence between

statements `

b

3

and m

b

3

.

The algorithm is called the bakery algorithm, since it is based on the idea

that customers, as they enter, pick numbers which form an ascending sequence.

Then, a customer with a lower number has higher priority in accessing its critical

section. Statements `

2

and m

2

ensure that the number assigned to y

i

, i = 1; 2, is

greater than the current value of y

j

, j 6= i.
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local y

1

; y

2

: integer where y

1

= y

2

= 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

:

*

if y

2

= �1

then y

1

:= �1

else y

1

:= 1

+

`

3

: await y

2

6= y

1

`

4

: critical

`

5

: y

1

:= 0

3

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

4

m

1

: noncritical

m

2

:

*

if y

1

= �1

then y

2

:= 1

else y

2

:= �1

+

m

3

: await y

1

6= �y

2

m

4

: critical

m

5

: y

2

:= 0

3

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 1.47. Program MUX-VAL-3.

local y

1

; y

2

: integer where y

1

= y

2

= 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: y

1

:= y

2

+ 1

`

3

:

2

6

4

`

a

3

: await y

2

= 0

or

`

b

3

: await y

1

� y

2

3

7

5

`

4

: critical

`

5

: y

1

:= 0

3

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

4

m

1

: noncritical

m

2

: y

2

:= y

1

+ 1

m

3

:

2

6

4

m

a

3

: await y

1

= 0

or

m

b

3

: await y

2

< y

1

3

7

5

m

4

: critical

m

5

: y

2

:= 0

3

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 1.48. Program MUX-BAK-A.

(b) Program MUX-BAK-A does not obey the LCR restriction. In particular, state-

ments `

2

and m

2

each contain two critical references: to y

1

and to y

2

. To correct

this situation, we propose program MUX-BAK-C of Fig. 1.49. This LCR-program

contains two additional await statements that ensure that processes do not wait

too long at locations `

3

or m

3

. Show that program MUX-BAK-C guarantees acces-

sibility for process P

1

.

Problem 1.3 (variants of Dekker's algorithm)) page 32
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84 Chapter 1: Response

local y

1

; y

2

; t

1

; t

2

: integer where y

1

= y

2

= 0

x

1

; x

2

: integer where x

1

= x

2

= 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: x

1

:= 1

`

3

: t

1

:= y

2

+ 1

`

4

: y

1

:= t

1

`

5

: x

1

:= 0

`

6

: await x

2

= 0

`

7

:

2

6

4

await y

2

= 0

or

await y

1

� y

2

3

7

5

`

8

: critical

`

9

: y

1

:= 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

1

: noncritical

m

2

: x

2

:= 1

m

3

: t

2

:= y

1

+ 1

m

4

: y

2

:= t

2

m

5

: x

2

:= 0

m

6

: await x

1

= 0

m

7

:

2

6

4

await y

1

= 0

or

await y

2

< y

1

3

7

5

m

8

: critical

m

9

: y

2

:= 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 1.49. Program MUX-BAK-C.

(a) Prove accessibility for process P

1

of program MUX-DEK-A of Fig. 1.50. That

is, show that the response formula

at

�

`

2

) 1 at

�

`

7

is valid over MUX-DEK-A.

(b) Prove accessibility for process P

1

of program MUX-DEK-B of Fig. 1.51. That

is, show that the response formula

at

�

`

2

) 1 at

�

`

7

is valid over MUX-DEK-B.

Problem 1.4 (condensed form of ranking functions) page 47

In the text, it was suggested that a ranking function � = (d

1

; d

2

), where d

1

and

d

2

< M are natural numbers, can always be replaced by the ranking function

b

� =M � d

1

+ d

2

. Show that if both d

2

< M and d

0

2

< M , then

b

� = M � d

1

+ d

2

>

b

�

0

= M � d

0

1

+ d

0

2

i� �: (d

1

; d

2

) � �

0

: (d

0

1

; d

0

2

).

Problem 1.5 (rule with relaxed premise JW2) page 52
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Problems 85

local y

1

; y

2

; t: integer where y

1

= y

2

= 0; t = 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: y

1

:= 2

`

3

: while y

2

= 2 do

2

6

6

6

6

6

6

4

`

4

: y

1

:= 1

`

5

:

2

6

4

await t = 1

or

await y

2

= 0

3

7

5

`

6

: y

1

:= 2

3

7

7

7

7

7

7

5

`

7

: critical

`

8

: t := 2

`

9

: y

1

:= 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

1

: noncritical

m

2

: y

2

:= 2

m

3

: while y

1

= 2 do

2

6

6

6

6

6

6

4

m

4

: y

2

:= 1

m

5

:

2

6

4

await t = 2

or

await y

1

= 0

3

7

5

m

6

: y

2

:= 2

3

7

7

7

7

7

7

5

m

7

: critical

m

8

: t := 1

m

9

: y

2

:= 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 1.50. Program MUX-DEK-A (a variant of Dekker's algorithm).

Consider a version of rule WELL-J in which premise JW2 has been replaced by the

weaker premise

d

JW2. �

�

^ '

i

! q

0

_

k

_

j=1

('

0

j

^ �

i

< �

0

j

),

where �

i

< �

0

j

stands for (�

i

� �

0

j

) _ (�

i

= �

0

j

). This premise requires that either

q is achieved by � , or the rank does not increase and some assertion '

j

(not

necessarily '

i

) holds after the transition.

Show that the resulting rule is unsound. That is, show a property that

satis�es premises JW1,

d

JW2, JW3, and JW4, over a given program, and yet is

invalid. This will show that persistence of helpful transitions is essential.

Problem 1.6 (integer division) page 59

Program IDIV of Fig. 1.52 accepts two positive integers in variables x and y and

places in variable z their integer quotient x div y, and in variable w the remainder

of their division xmod y. Prove total correctness of program IDIV, which can be

speci�ed by the response formula

� ) 1 (at

�

`

5

^ x = z � y +w ^ 0 � w < y).
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86 Chapter 1: Response

local y

1

; y

2

; t: integer where y

1

= 0; y

2

= 0; t = 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: y

1

:= 2

`

3

: while y

2

= 2 do

2

6

6

6

6

4

`

4

: if t = 2 then

2

6

4

`

5

: y

1

:= 1

`

6

: await t = 1

`

7

: y

1

:= 2

3

7

5

3

7

7

7

7

5

`

8

: critical

`

9

: t := 2

`

10

: await y

2

6= 1

`

11

: y

1

:= 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

1

: noncritical

m

2

: y

2

:= 2

m

3

: while y

1

= 2 do

2

6

6

6

6

4

m

4

: if t = 1 then

2

6

4

m

5

: y

2

:= 1

m

6

: await t = 2

m

7

: y

2

:= 2

3

7

5

3

7

7

7

7

5

m

8

: critical

m

9

: t := 1

m

10

: await y

1

6= 1

m

11

: y

2

:= 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 1.51. Program MUX-DEK-B.

This formula states that every computation of program IDIV terminates (i.e.,

reaches the terminal location `

5

) with values of z, w satisfying x = z � y + w

and 0 � w < y.

in x; y : integer where x > 0; y > 0

local t : integer

out z; w : integer where z = w = 0

`

0

: t := x

`

1

: while t > 0 do

`

2

: if w + 1 = y

then `

3

: (z; w; t) := (z + 1; 0; t� 1)

else `

4

: (z; w; t) := (z; w + 1; t � 1)

`

5

:

Fig. 1.52. Program IDIV (integer division).
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Problems 87

Problem 1.7 (greatest common divisor) page 59

Program GCDM of Fig. 1.53 accepts two positive integers in variables x

1

and x

2

.

It computes in z the greatest common divisor (gcd ) of x

1

and x

2

, and in variables

w

1

and w

2

two integers which express z as a linear combination of the inputs x

1

and x

2

. Prove total correctness of program GCDM, which can be stated by the

response formula

� ) 1

�

at

�

`

6

^ z = gcd(x

1

; x

2

) ^ z = w

1

� x

1

+ w

2

� x

2

�

:

in x

1

; x

2

: integer where x

1

> 0; x

2

> 0

local y

1

; y

2

; t

1

; t

2

; t

3

; t

4

; u : integer

out z; w : integer

`

0

: (y

1

; y

2

; t

1

; t

2

; t

3

; t

4

) := (x

1

; x

2

; 1; 0; 0; 1)

`

1

: (y

1

; y

2

; u) := (y

2

mod y

1

; y

1

; y

2

div y

1

)

`

2

: while y

1

6= 0 do

"

`

3

: (t

1

; t

2

; t

3

; t

4

) := (t

2

� u � t

1

; t

1

; t

4

� u � t

3

; t

3

)

`

4

: (y

1

; y

2

; u) := (y

2

mod y

1

; y

1

; y

2

div y

1

)

#

`

5

: (z; w

1

; w

2

) := (y

2

; t

2

; t

3

)

`

6

:

Fig. 1.53. Program GCDM(greatest common divisor with multipliers).

The program uses the operation div of integer division and the operationmod

which computes the remainder of an integer division. In your proof you may use

the following properties of the gcd function which hold for every nonzero integers

m and n (possibly negative):

gcd(m;n) = gcd (m � n; n) for every m 6= n

gcd(m;m) = jmj.

Problem 1.8 (computing the gcd and lcm) page 59

Program GCDLCM of Fig. 1.54 accepts two positive integers in variables x

1

and

x

2

. It computes in variable z their greatest common divisor and in variable w

their least common multiple. Prove total correctness of program GCDLCM, which

can be stated by the response formula

� ) 1

�

at

�

`

7

^ z = gcd(x

1

; x

2

) ^ w = lcm(x

1

; x

2

)

�

:
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88 Chapter 1: Response

in x

1

; x

2

: integer where x

1

> 0; x

2

> 0

local y

1

; y

2

; y

3

; y

4

: integer

out z; w : integer

`

0

: (y

1

; y

2

; y

3

; y

4

) := (x

1

; x

2

; x

2

; 0)

`

1

: while y

1

6= y

2

do

2

6

6

6

4

`

2

: if y

1

> y

2

then

`

3

: (y

1

; y

4

) := (y

1

� y

2

; y

3

+ y

4

)

`

4

: if y

1

< y

2

then

`

5

: (y

2

; y

3

) := (y

2

� y

1

; y

3

+ y

4

)

3

7

7

7

5

`

6

: (z; w) := (y

1

; y

3

+ y

4

)

`

7

:

Fig. 1.54. Program GCDLCM (computing the gcd and lcm).

In your proof you may use the properties of the gcd function listed in Prob-

lem 1.7, and the following property of the lcm function:

lcm(m;n) = m � n=gcd(m;n).

Problem 1.9 (set partitioning) page 59

Consider program EXCH presented in Fig. 1.55. The program accepts as input two

sets of natural numbers S and T , whose initial values are S

0

and T

0

, respectively.

Process P

1

repeatedly identi�es and removes the maximal element in S and

sends it to P

2

which places it in T . Symmetrically, P

2

identi�es and removes the

minimal element in T and sends it to P

1

which places it in S. The processes use

the operations max(S) and min(T ) which �nd, respectively, the maximal element

in the set S and the minimal element in the set T . Show total correctness of

program EXCH, which can be speci�ed by the response formula

� ) 1 (at

�

`

9

^ at

�

m

7

^ jSj = jS

0

j ^ jT j = jT

0

j ^ S � T ).

This formula states that the program terminates and on termination, sets S and

T have preserved their initial sizes and that every element in S is smaller than or

equal to every element in T .

Problem 1.10 (converse of Claim 1.3) page 67

Let P :: [P

1

:: S

1

k � � �kP

k

:: S

k

] be a program whose top-level processes commu-

nicate by shared variables and such that every program variable is owned by one
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Problems 89

in S

0

; T

0

: set of natural where S

0

6= ;; T

0

6= ;

out S; T : set of natural where S = S

0

; T = T

0

local �; � : channel of integer

P

1

::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

local x; mx: integer

`

0

: x := �1

`

1

: mx := max(S)

`

2

: while x < mx do

2

6

6

6

6

6

4

`

3

: �( mx

`

4

: S := S � fmxg

`

5

: � ) x

`

6

: S := S [ fxg

`

7

: mx := max(S)

3

7

7

7

7

7

5

`

8

: �(�1

`

9

:

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

P

2

::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

local y; mn: integer

m

0

: �) y

m

1

: while y � 0 do

2

6

6

6

6

6

4

m

2

: T := T [ fyg

m

3

: mn := min(T )

m

4

: � ( mn

m

5

: T := T � fmng

m

6

: �) y

3

7

7

7

7

7

5

m

7

:

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 1.55. Program EXCH (partitioning two sets).

of the top-level processes. Let � be a model such that the interpretation of � is

a subset of the locations of P and � is simultaneously a modular computation of

every P

i

, i = 1; : : : ; k. Show that � is a computation of P .

Problem 1.11 (completeness of rule COMP-B) page 68

Let P :: [P

1

:: S

1

k � � �kP

k

:: S

k

] be a program whose top-level processes

communicate by shared variables and such that every program variable is owned

by one of the top-level processes. Let ' be a P -valid formula. Show that the

P -validity of ' can be compositionally inferred from modular validities, using

rule COMP-B and temporal reasoning. This establishes the completeness of rule

COMP-B for compositional veri�cation.

A solution to this problem can be organized as follows.

� For each top-level process P

i

, i = 1; : : : ; k, construct a formula  

i

capturing

the temporal modular semantics of P

i

. That is, a model � satis�es  

i

i� �

is a modular computation of P

i

. Argue semantically that

P

i

q

m

 

i

,

for each i = 1; : : : ; k.

� Use rule COMP-B and temporal reasoning to infer
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P q  

1

^ � � � ^  

k

.

� Argue semantically that a model � satis�es  

1

^� � �^ 

k

i� � is a computation

of the entire program P . Therefore, if ' is P -valid, then the following general

validity holds:

q  

1

^ � � � ^  

k

! '.

� Apply temporal reasoning to P q  

1

^ � � � ^  

k

and q  

1

^ � � � ^  

k

! ' to

infer

P q '.
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Chapter 3

Response Under Fairness

Chapters 1 and 2 considered proof rules for response properties that depend on

justice for their validity. While justice is an important fairness requirement, it is

only one of the two fairness requirements listed in a general fair transition system.

In this chapter we consider proof rules for response properties that depend on the

two fairness requirements, i.e., justice and compassion, for their validity.

In a way similar to Chapter 1, we �rst introduce a single-step rule for response

under compassion, and then introduce the fair versions of CHAIN and WELL.

Let us review the basic phenomena that are modeled by the requirements of

justice and compassion.

Justice

Justice represents a natural property of multi-processor systems. It represents

the obvious intuition that parallel processes, implemented on separate processors,

should progress independently as long as they do not need to synchronize with

other processes. This intuitively obvious fact for multi-processor systems must

be represented explicitly by justice in our model, due to the artifact of modeling

concurrency by interleaving.

Justice excludes from the set of computations runs in which an enabled pro-

cess does not progress beyond some point. Consequently, justice represents in our

model the natural phenomena of independent progress in parallel components of

a multi-processor system.

Since justice is associated with the general phenomenon of parallelism, it is

not restricted to particular statements. In the computational model we consider

here, all transitions, with two exceptions, are required to be just, i.e., are members

of the justice set J . The exceptions are the idling transition �

I

and the transition

associated with the schematic noncritical statement.

Compassion
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Compassion excludes from the set of computations runs in which one of the com-

passionate transitions is enabled in�nitely many times but taken only �nitely

many times.

In comparison with justice, compassion has a much narrower scope and is

associated with only a small subset of statements and their corresponding transi-

tions. A case in point is the semaphore request statement.

We should bear in mind that a correct implementation of a semaphore which

ensures the required compassion property must be based on either a nontrivial

software protocol or a special hardware arbiter. For example, a protocol for

semaphore services may place all requests in an internal queue, and allocate the

semaphore on a �rst-come-�rst-serve basis.

In our high-level programming language, all these low-level details are ab-

stracted away and the whole transaction between customer and server is rep-

resented by the single statement request y. The compassion requirement as-

sociated with this statement provides an abstract representation of the internal

queing mechanism, replacing the �rst-come-�rst-serve guarantee by the weaker

in�nitely-often-requested-eventually-served guarantee.

We can view our extensive study of mutual exclusion algorithms that do not

use semaphores as an investigation of ways to implement compassion using only

justice. In fact, each of these algorithms can be used to implement a semaphore,

which is the simplest manifestation of compassion.

Another class of statements associated with compassion requirements are

the communication statements. As in the case of semaphores, the compassion

assumption provides a useful abstraction that hides a more involved low-level

protocol that ensures fair arbitration between processes that compete for an access

to a common channel.

Compassion can also be used to model probabilistic behavior. Consider a

program consisting of two processes that communicate over an unreliable channel.

A probabilistic characterization of such a channel may specify, for example, that

on the average it loses one message out of ten. This assigns a probability of 0.9

that a message sent will arrive on the other side. Assume that we have a protocol

that overcomes the unreliability of the channel by repeatedly sending a message

until it is acknowledged. To verify the correctness of such a protocol by the tools

presented in this book, we replace the quantitative characterization

A message submitted will get across with probability 0.9

by the compassion requirement

A message submitted in�nitely many times will eventually get across.

Some examples presented in this chapter illustrate the use of compassion for

modeling probabilistic behavior.
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In most of the chapter, we consider the simpler case of response formulas

p) 1 q, where p and q are assertions. In the last subsection of Section 3.7, we

discuss the generalization to the case that p and q are arbitrary past formulas.

In Section 3.1 we present a single-step rule that relies on the activation of a

single compassionate transition.

Section 3.2 shows how to combine several applications of the just and compas-

sionate single-step rules into a chain rule that relies on a �xed number of helpful

transitions. We also introduce veri�cation diagrams which provide a graphical

representation of the chain rule.

Section 3.3 illustrates applications of the chain rule under general fairness to

example programs that involve message passing.

Section 3.4 explores the use of compassion to model channels which are only

eventually reliable, i.e., can only guarantee that a message that is repeatedly

transmitted eventually gets through.

Section 3.5 presents a well-founded rule for response under general fairness.

Section 3.6 considers di�erent proposed solutions to the dining philosophers

problem. In the SAFETY book, we established the safety properties of these solu-

tions. Here, we complete their formal veri�cation by proving that most of those

solutions satisfy the progress property of accessibility.

In Section 3.7 we complete the formal veri�cation of several resource-allocation

programs considered in the SAFETY book, by establishing their response proper-

ties.

Section 3.8 establishes the (relative) completeness of the well-founded rule

introduced in Section 3.5 for proving all response properties of a given program.

This section considers the special (but most prevalent) case of a formula p) 1 q

where p and q are state formulas.

Section 3.9 extends the completeness proof to the general case of a response

formula p) 1 q where p and q are past formulas.

Section 3.10 presents algorithms for automatic veri�cation of response for-

mulas p ) 1 q over �nite-state systems, for the case that p and q are state

formulas.

Finally, Section 3.11 completes the discussion of algorithmic veri�cation of

response properties by considering the general case where p and q are past for-

mulas.

3.1 A Single-Step Rule
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The rules based on justice, considered in Chapters 1 and 2, are not powerful

enough to prove response properties based on compassion. To see this, consider

the standard semaphore program for mutual exclusion, presented in Fig. 3.1. This

program was �rst introduced in Fig. 1.6 of the SAFETY book.

local y: integer where y = 1

P

1

::

2

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

4

`

1

: noncritical

`

2

: request y

`

3

: critical

`

4

: release y

3

7

7

7

5

3

7

7

7

7

7

7

5

P

2

::

2

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

4

m

1

: noncritical

m

2

: request y

m

3

: critical

m

4

: release y

3

7

7

7

5

3

7

7

7

7

7

7

5

Fig. 3.1. Program MUX-SEM (mutual exclusion by semaphores).

The main response property associated with this program is individual ac-

cessibility. Stated for process P

1

, it is given by

at

�

`

2

| {z }

p

) 1 at

�

`

3

| {z }

q

:

The situation is very easy to analyze. Clearly, we can identify `

2

as a helpful

transition in this case, which obviously needs only one helpful step to achieve the

goal at

�

`

3

.

Let us consult rule RESP-J (Fig. 1.1), which is the strongest rule for single-step

response properties we have. Premises J1{J3 of this rule are satis�ed for

' = p: at

�

`

2

� : `

2

.

That is, the helpful transition `

2

leads from at

�

`

2

to at

�

`

3

, while all other tran-

sitions preserve at

�

`

2

. The premise we fail to prove is J4, which requires

at

�

`

2

! En(`

2

),

or equivalently

at

�

`

2

! at

�

`

2

^ y > 0.

This, of course, is not a valid invariant for program MUX-SEM.

Let us recall the reasons for including premise J4 in rule RESP-J. While

premises J2 and J3 ensure that ' is preserved until q is achieved, and that the next

� -transition taken from a '-state achieves q, premise J4 forces, through justice,
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that transition � eventually will be taken. Justice guarantees the activation of �

only if � is continuously enabled beyond some point. Since ' holds continuously

until q is achieved, premise J4 ties the enableness of � with ', ensuring that �

will be continuously enabled until q is achieved. If q is not achieved, � will be

continuously enabled and never taken, violating justice with respect to � .

Compassion is less demanding about the degree of enableness of � that is

required to ensure activation. For a compassionate transition � , it is only neces-

sary that � be in�nitely often enabled to guarantee its activation. Consequently,

we may relax the tie between ' and the enableness of � and, instead of requiring

that � is enabled whenever ' holds, only require that if ' holds then eventually

� should be enabled.

The Single-Step Rule

Relaxation of the last premise leads to rule RESP-C for proving single-step response

under compassion (Fig. 3.2).

For assertions p, q, ', and transition �

h

2 C

C1. p ! q _ '

C2. f'g T fq _ 'g

C3. f'g �

h

fqg

C4. ' ) 1

�

:' _ En(�

h

)

�

p ) 1 q

Fig. 3.2. Rule RESP-C (single-step response under compassion).

Premise C1 requires that any p-position, that does not already satisfy q

satis�es the intermediate assertion '. Premise C2 requires that the application

of any transition to a '-state yields a state satisfying q or '. Premise C3 requires

that the application of the helpful transition �

h

to a '-position yields a q-position.

Premise C4, which distinguishes RESP-C from RESP-J, requires that if ' holds then

eventually either ' will stop holding, or the helpful transition �

h

will become

enabled. Note that, due to C2 and C3, the �rst transition that falsi�es ' leads

to a q-position. Consequently, C4 can also be written as

' ) 1

�

q _ En(�

h

)

�

:
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Justi�cation To justify the rule, consider a computation � satisfying the four

premises of the rule. Assume that p holds at some position k � 0. We wish to

show that q holds at some later position j � k.

Assume, to the contrary, that q never holds beyond k. By C1, ' also holds at

k. By C2 and the assumption that q does not hold beyond k, ' holds continuously

beyond k.

Consider position i

1

= k, at which ' holds. By C4, there exists a position j

1

,

j

1

� i

1

, at which either ' is false or �

h

is enabled. Since ' is true at all positions

beyond k, �

h

is enabled at j

1

. Take i

2

= j

1

+ 1. By C4, since ' also holds at i

2

,

there exists a position j

2

, j

2

� i

2

, at which, again, �

h

is enabled. By repeating

the argument we construct an in�nite sequence of positions j

1

< j

2

< � � �, at all

of which �

h

is enabled.

Thus, �

h

is enabled at in�nitely many positions in �. Transition �

h

is not

taken beyond k since, by C3, any application of �

h

to a '-position results in a

q-position, and by our assumption, there are no q-states beyond k. This violates

the requirement of compassion with respect to �

h

. Thus, q must hold at some

position beyond k.

In applications of the rule, it is su�cient to check premise C2 for � 6= �

h

,

since C2 for � = �

h

is implied by C3.

It is easy to see that, for a transition �

h

that is both just and compassionate,

rule RESP-C is stronger than rule RESP-J. This means that the premises of rule

RESP-J imply the premises of rule RESP-C. This is because the �rst three premises

of the two rules are identical, and due to the re
exivity and monotonicity of the

1 operator,

J4. ' ! En(�

h

)

implies

C4. ' ) 1

�

:' _ En(�

h

)

�

:

On the other hand, rule RESP-C has a more limited applicability than rule

RESP-J. In rule RESP-J we may choose any just transition to be the helpful one.

Rule RESP-C is restricted to use only compassionate transitions, which form a

much smaller set than that of the just transitions.

In most applications of rule RESP-C premise C4 is established by proving the

stronger statement

c

C4: ' ) 1 En(�

h

),

which obviously implies C4.

Rule RESP-C appears to be recursive. To prove one response property, it

uses as one of its premises another response property. How is this premise to be
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proven? We will give several answers to this puzzling question, showing that such

recursive rules do not necessarily lead to circular reasoning.

Example Let us use rule RESP-C to prove the accessibility property

at

�

`

2

| {z }

p

) 1 at

�

`

3

| {z }

q

for program MUX-SEM of Fig. 3.1.

Take

' = p: at

�

`

2

�

h

: `

2

.

This choice identi�es `

2

as the helpful compassionate transition.

� Premise C1

This premise requires

at

�

`

2

| {z }

p

! � � � _ at

�

`

2

| {z }

'

;

which is clearly valid.

� Premise C2

This premise is proven by showing

�

�

^ at

�

`

2

| {z }

'

! � � � _ at

0

�

`

2

| {z }

'

0

for any � 6= `

2

. Since while P

1

is at `

2

no other transition of P

1

is enabled and

no transition of P

2

can a�ect at

�

`

2

, the premise follows.

� Premise C3

This premise requires

� � � ^ at

0

�

`

3

| {z }

�

`

2

^ at

�

`

2

| {z }

'

! at

0

�

`

3

| {z }

q

0

which is obviously valid.

� Premise C4

This premise is established by proving

at

�

`

2

| {z }

'

) 1

�

� � � _ at

�

`

2

^ y > 0

| {z }

En(`

2

)

�

:

The proof of this response property using rule CHAIN-J is presented in the veri�-

cation diagram of Fig. 3.3. In the proof we are aided by the invariant
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C

DE

F

at

�

`

2

; y = 0

�

�

�

�

at

�

m

3

m

3

�
�

�

�

�

at

�

m

4

m

4

�

�


 	

�

at

�

`

2

^ y > 0

Fig. 3.3. Veri�cation diagram for premise C4.

�

1

: at

�

`

3;4

+ at

�

m

3;4

+ y = 1.

Due to invariant �

1

, if at

�

`

2

holds but y � 0, then y = 0 and P

2

must be at m

3

or m

4

.

This concludes the proof of accessibility for program MUX-SEM.

The example above provides a �rst answer to the problem of recursiveness of

rule RESP-C. In some cases, the temporal premise C4 can be proven by using the

J-rules.

3.2 Chain Rule

Naturally, after presenting a single-step rule for response under compassion, we

should consider the compassionate version of rule CHAIN. Such a version can be

obtained in the standard way, by considering a sequence of assertions '

0

; : : : ; '

m

such that '

i

) 1

�

_

j<i

'

j

�

can be proven using rule RESP-C for each i = 1; : : : ;m.

The conclusion of such a rule is

�

m

_

i=0

'

i

�

) 1 '

0

.

However, this version is not very useful. When tracing a chain of helpful steps,

it is rarely the case that all of them are associated with compassionate transitions.

The typical case is that most of the helpful steps are due to just transitions while
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only one or two are due to compassionate transitions. Consequently, rule CHAIN-F

presented in Fig. 3.4 allows both just and compassionate helpful transitions.

For assertions p and q = '

0

; : : : ; '

m

and

transitions �

1

; : : : ; �

m

2 J [ C

F1. p !

m

_

j=0

'

j

F2. f'

i

g T

�

_

j�i

'

j

�

F3. f'

i

g �

i

�

_

j<i

'

j

�

F4. If �

i

2 C, then

C4. '

i

) 1

�

:'

i

_ En(�

i

)

�

Otherwise

J4. '

i

! En(�

i

)

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

for i = 1; : : : ;m

p ) 1 q

Fig. 3.4. Rule CHAIN-F (chain under fairness).

Premises F1{F3 of rule CHAIN-F are identical to the corresponding premises

J1{J3 of rule CHAIN-J (Fig. 1.7).

Premise F4 of rule CHAIN-F requires either eventual or immediate enable-

ness, according to whether �

i

is compassionate or only just. Note that if �

i

is

compassionate, we may still attempt to prove for it the simpler (and stronger)

version of F4, i.e., '

i

! En(�

i

), because this implication obviously implies

'

i

) 1

�

:'

i

_ En(�

i

)

�

. Only if we fail to prove the simpler version, should

we resort to a direct proof of the more complex version.

Justi�cation The justi�cation of rule CHAIN-F is similar to that of rule CHAIN-J.

Assume a computation � in which p holds at position k and no position beyond k

satis�es q. From premises F1{F3 it follows that there exists a position r � k and

an index i > 0 such that '

i

holds continually beyond r and no '

j

, with j < i,

holds at any such position.
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Consider two cases. If �

i

, the helpful transition for '

i

, is compassionate then

by F4, �

i

is enabled in�nitely many times. It follows that � does not ful�ll the

requirement of compassion with respect to �

i

, contradicting the assumption that

� is a computation. If �

i

is just but not compassionate, F4 implies that it is

continually enabled which shows that � violates the requirement of justice with

respect to �

i

.

We conclude that the described situation is impossible, and every p-position

must be followed by a q-position.

In applications of the rule, it is su�cient to establish premise F2 for all � 6= �

i

,

since F2 for � = �

i

is implied by premise F3.

Example (producer-consumer)

We illustrate rule CHAIN-F on program PROD-CONS, presented in Fig. 3.5. This

program was �rst introduced in Fig. 2.23 of the SAFETY book.

The response property we wish to establish for this program is accessibility,

which for process Prod is given by

at

�

`

2

| {z }

p

) 1 at

�

`

4

| {z }

q

:

In the proof, we are aided by the following invariants

�

0

: r � 0 ^ ne � 0 ^ nf � 0

�

1

: r + at

�

`

4;5

+ at

�

m

3;4

= 1

�

2

: ne + nf + at

�

`

3::6

+ at

�

m

2::5

= N .

To prove the accessibility property we use rule CHAIN-F. Inspecting the pro-

gram, it is easy to identify the intermediate stages in the progress from `

2

to `

4

.

We choose

'

2

: at

�

`

2

�

2

: `

2

'

1

: at

�

`

3

�

1

: `

3

'

0

: at

�

`

4

:

It is straightforward to verify that each �

i

, i = 1; 2, leads from '

i

to '

i�1

,

and that being at '

i

, each transition � , � 6= �

i

preserves '

i

.

The only nontrivial premises to verify are the enableness premises F4 for

i = 1; 2. In this case both �

1

and �

2

are compassionate transitions, so we should

prove eventual enableness.

� Premise F4 for i = 2

For this premise it su�ces to prove
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local r; ne; nf : integer where r = 1; ne = N; nf = 0

b : list of integer where b = �

Prod ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

local x: integer

`

0

: loop forever do

2

6

6

6

6

6

6

6

4

`

1

: produce x

`

2

: request ne

`

3

: request r

`

4

: b := b � x

`

5

: release r

`

6

: release nf

3

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Cons ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

local y: integer

m

0

: loop forever do

2

6

6

6

6

6

6

6

4

m

1

: request nf

m

2

: request r

m

3

: (y; b) :=

�

hd(b); tl(b)

�

m

4

: release r

m

5

: release ne

m

6

: consume y

3

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 3.5. Program PROD-CONS (producer-consumer).

at

�

`

2

| {z }

'

2

) 1

�

� � � _ at

�

`

2

^ ne > 0

| {z }

En(`

2

)

�

:

To prove this response property we use rule CHAIN-J. The proof is presented in

the CHAIN diagram of Fig. 3.6(a). Note that we use the invariant ne � 0 to infer

that if ne � 0 then in fact ne = 0. Invariant �

2

is used to deduce that, when

ne = 0 and at

�

`

2

^ at

�

m

1

holds, then nf = N > 0. Invariant �

1

is used to

deduce that, when at

�

`

2

^ at

�

m

2

holds, then r = 1 > 0.

An interesting point is that, even though m

1

and m

2

are compassionate tran-

sitions, we included them in a proof by rule CHAIN-J. This is possible because,

under the assumption that P

1

is frozen at `

2

and ne = 0, these transitions are

immediately enabled when control is at their respective locations.
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�

�

�

�

at

�

m

6

m

6

�

�

�

�

�

at

�

m

0

m

0

�
�

�

�

�

at

�

m

1

^ nf > 0

m

1

�

�

�

�

�

at

�

m

2

^ r > 0

m

2

�

�

�

�

�

at

�

m

3

m

3

�

�

�

�

�

at

�

m

4

m

4

�
�

�

�

�

at

�

m

5

m

5

�

C

DE

F

at

�

`

2

; ne = 0

�


 	

�

at

�

`

2

^ ne > 0

(a) Proof of premise F4 for i = 2.

�

�

�

�

at

�

m

3

m

3

�
�

�

�

�

at

�

m

4

m

4

�

C

DE

F

at

�

`

3

; r = 0

�


 	

�

at

�

`

3

^ r > 0

(b) Proof of premise F4 for i = 1.

Fig. 3.6. CHAIN diagrams.

� Premise F4 for i = 1

This premise is proven by showing
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at

�

`

3

| {z }

'

1

) 1

�

� � � _ at

�

`

3

^ r > 0

| {z }

En(`

3

)

�

:

The proof is based again on an application of rule CHAIN-J, and is presented in

the CHAIN diagram of Fig. 3.6(b). We use the invariant r � 0 to infer that if r � 0

then r = 0. Then, we use �

1

to deduce that if r = 0 and P

1

is at `

3

, then P

2

can

only be at m

3

or at m

4

.

This concludes the proof of the accessibility property

at

�

`

2

) 1 at

�

`

4

.

In Problem 3.2, we request the reader to prove that the accessibility prop-

erty is valid even over a weaker version of the program, in which the transitions

corresponding to the semaphore request statements, are taken to be just, rather

than compassionate.

CHAIN-F Diagrams

Diagrams can also be used to provide a concise representation of a proof by

rule CHAIN-F. The main extension over CHAIN diagrams is the introduction of a

third type of an edge | a solid edge, where a solid edge will correspond to a

helpful transition which is compassionate. Consequently, edges connecting nodes

(assertions) in a diagram can be single (-line), double, or solid.

CHAIN-F Diagrams

A veri�cation diagram is said to be an CHAIN-F diagram if its nodes are labeled

by assertions '

0

; : : : ; '

m

with '

0

being the terminal node, and if it satis�es the

following requirement:

� If a single edge connects node '

i

to node '

j

, then i � j.

� If a double or a solid edge connects '

i

to '

j

, then i > j.

� Every node '

i

, i > 0, has at least one departing edge which is either double

or solid. The transition labeling this edge is identi�ed as helpful for assertion

'

i

.

Veri�cation Conditions for CHAIN-F Diagrams

Let ' be a nonterminal node and '

1

; : : : ; '

k

, k � 0, be the � -successors of '.

� If � labels a single edge, we associate with ' and � the veri�cation condition

f'g � f' _ '

1

_ � � � _ '

k

g.

� If � labels a double or solid edge, we associate with ' and � the veri�cation

condition
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f'g � f'

1

_ � � � _ '

k

g.

� If � labels a double edge departing from ', we associate with ' and � the

requirement

' ! En(� ).

� If � labels a solid edge departing from ', we associate with ' and � the

response formula

' ) 1

�

:' _ En(� )

�

:

We extend the notion of veri�cation conditions to include also the enabling re-

quirement associated with double edges and the response formulas associated with

solid edges.

Valid CHAIN-F Diagrams

A CHAIN-F diagram is said to be P -valid if the �rst three types of veri�cation

conditions associated with its nodes and transitions are P -state valid, and the

response formula conditions, associated with solid edges, are P -valid.

The consequences of having a valid CHAIN-F diagram are stated in the follow-

ing claim.

Claim 3.1 (fair chain)

A P -valid CHAIN-F diagram establishes that the response formula

m

_

j=0

'

j

) 1 '

0

is P -valid.

If, in addition, we can establish the following implication:

p !

m

_

j=0

'

j

and '

0

! q

then we can conclude the P -validity of

p ) 1 q.

Example (producer consumer)

The proof of the accessibility property of program PROD-CONS (Fig. 3.5) can be

represented by the CHAIN-F diagram

�

�

�

�

at

�

`

2

-

`

2

7.6(a)

�

�

�

�

at

�

`

3

-

`

3

7.6(b)

�


 	

�

at

�

`

4
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Since each transition labeling a solid edge needs a subproof that establishes

the validity of the compassionate version of premise F5, we often attach a ref-

erence to such edges, which points to the diagram for the subproof. Thus, in

the above diagram, we referred to CHAIN diagram 3.6(a) as establishing the even-

tual enableness of `

2

, and to CHAIN diagram 3.6(b) as establishing the eventual

enableness of `

3

.

Example (multiple resource acquisition)

In Fig. 2.12 of the SAFETY book we introduced program RES-3 as an example of

a program consisting of several processes that need several resources in order to

perform their critical activity. We reproduce this program in Fig. 3.7.

local r

1

; r

2

; r

3

: integer where r

1

= r

2

= r

3

= 1

P

1

::

2

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

4

`

1

: noncritical

`

2

: request (r

2

; `

3

): request r

3

`

4

: critical

`

5

: release (r

2

; `

6

): release r

3

3

7

7

7

5

3

7

7

7

7

7

7

5

P

2

::

2

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

4

m

1

: noncritical

m

2

: request (r

1

; m

3

): request r

3

m

4

: critical

m

5

: release (r

1

; m

6

): release r

3

3

7

7

7

5

3

7

7

7

7

7

7

5

P

3

::

2

6

6

6

6

6

6

4

k

0

: loop forever do

2

6

6

6

4

k

1

: noncritical

k

2

: request (r

1

; k

3

): request r

2

k

4

: critical

k

5

: release (r

1

; k

6

): release r

2

3

7

7

7

5

3

7

7

7

7

7

7

5

Fig. 3.7. Program RES-3 | three processes needing three resources.
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In Section 2.3 of the SAFETY book, we established the safety property of mu-

tual exclusion for program RES-3. The proof was based on the following invariants

�

0

: r

1

� 0 ^ r

2

� 0 ^ r

3

� 0

�

1

: r

1

+ at

�

m

3::5

+ at

�

k

3::5

= 1

�

2

: r

2

+ at

�

`

3::5

+ at

�

k

4::6

= 1

�

3

: r

3

+ at

�

`

4::6

+ at

�

m

4::6

= 1.

It is easy to see that these invariants ensure pairwise exclusion between the

processes. For example, to show exclusion between P

1

and P

3

, we examine the

invariant �

2

, corresponding to the resource r

2

common to P

1

and P

3

. From �

0

and �

2

we obtain

at

�

`

4

+ at

�

k

4

� at

�

`

3::5

+ at

�

k

4::6

� 1,

which shows that P

1

and P

3

cannot be at their critical sections at the same time.

Here we prove the response property of accessibility. Stated for P

2

, it is given

by

at

�

m

2

) 1 at

�

m

4

A proof of this property by rule CHAIN-F is presented in the following diagram

�

�

�

�

at

�

m

2

-

m

2

Lemma 1

�

�

�

�

at

�

m

3

-

m

3

Lemma 2

�


 	

�

at

�

m

4

To complete the proof we need to show the enableness premise for m

2

and

m

3

, which is done in Lemmas 1 and 2.

Lemma 1 at

�

m

2

) 1 (at

�

m

2

^ r

1

> 0)

Examining invariant �

1

we see that, with P

2

being at m

2

, the only way for r

1

to be nonpositive is that r

1

= 0 and P

3

is at k

3::5

. We therefore have to follow

P

3

until it exits k

3::5

, at which point k

5

sets r

1

back to 1. This development is

shown in the CHAIN-F diagram of Fig. 3.8.

Of the three helpful transitions identi�ed in this diagram, immediate enableness of

k

4

and k

5

follows from assertions at

�

k

4

and at

�

k

5

respectively. The situation is

di�erent with k

3

which also needs r

2

> 0 to proceed. Since k

3

is a compassionate

transition, it is su�cient to prove eventual enableness, which is proven in Lemma

1.1.

Lemma 1.1 at

�

m

2

^ at

�

k

3

^ r

1

= 0 ) 1 (at

�

k

3

^ r

2

> 0)

Examining invariant �

2

, we see that with P

3

at k

3

, the only way for r

2

to be

nonpositive is that r

2

= 0 and P

1

is at `

3::5

. The diagram of Fig. 3.9 follows P

1
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�

�

�

�

at

�

k

3

-

k

3

Lemma 1.1

�

�

�

�

at

�

k

4




k

4

�

�

�

�

at

�

k

5

k

5

�

C

DE

F

at

�

m

2

; r

1

= 0

�


 	

�

at

�

m

2

; r

1

> 0

Fig. 3.8. CHAIN-F diagram for Lemma 1.

until it executes `

5

, at which point r

2

becomes positive. Notice that since P

2

is

waiting at m

2

with r

1

= 0, and P

3

is waiting at k

3

with r

2

= 0, they are both

disabled, and the only process that can save the day is P

1

. The CHAIN diagram

of Fig. 3.9 shows that indeed it does.

�

�

�

�

at

�

`

3

; r

3

> 0




`

3

�

�

�

�

at

�

`

4




`

4

�

�

�

�

at

�

`

5

`

5

�

C

DE

F

at

�

m

2

; at

�

k

3

; r

1

= r

2

= 0

�


 	

�

at

�

k

3

; r

2

> 0

Fig. 3.9. CHAIN diagram for Lemma 1.1.

Note that due to �

3

, while P

1

is at `

3

and P

2

is at m

2

, r

3

is positive, which makes

`

3

immediately enabled. Thus, even though `

3

is a compassionate transition we

can prove for it immediate enableness.

Lemma 2 at

�

m

3

) 1 (at

�

m

3

^ r

3

> 0)

This lemma proves the second enableness premise for the accessibility property.

While P

2

is at m

3

, the only way for r

3

to be nonpositive, according to �

3

, is that

r

3

= 0, and P

1

is at `

4::6

. The CHAIN diagram of Fig. 3.10 traces the progress of

P

1

through `

4::6

until transition `

6

increases r

3

to 1.
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�

�

�

�

at

�

`

4




`

4

�

�

�

�

at

�

`

5




`

5

�

�

�

�

at

�

`

6

`

6

�

C

DE

F
at

�

m

3

; r

3

= 0

�


 	

�

at

�

m

3

; r

3

> 0

Fig. 3.10. CHAIN diagram for Lemma 2.

This concludes the proof of the lemmas, and establishes accessibility for P

2

.

Similarly, we can establish accessibility for P

1

and P

3

.

Recursiveness of the Fair Rules

The proof of accessibility for P

2

in the example above provides a second answer

to the problem of recursiveness of the F-family of rules.

The recursiveness problem is that the enableness premise of the F-rules is a

response formula, similar to the conclusions of these rules. The question, there-

fore, is how we escape circular reasoning trying to prove a formula using a rule in

which one of the premises is not simpler than the conclusion.

The �rst answer we gave, which is also illustrated in the proof of Lemma 1,

is that to prove a property by an F-rule, it is often possible to prove its eventual

enableness premise F4 by J-rules. For example, the enableness premise for k

3

,

needed in the proof of Lemma1, is proven in Lemma1.1 by rule CHAIN-J (Fig. 3.9).

The second answer, which is illustrated in the complete proof of the acces-

sibility property, is that even if we need to pursue several levels of proof, all of

which use an F-rule, we are guaranteed that on each level we have to consider one

process less than on the previous level.

Consider the proof of the accessibility property for program RES-3. It is mainly

based on the progress of P

2

fromm

2

to m

4

. To complete the proof we need at m

2

an enableness premise that guarantees that the transition m

2

eventually becomes

enabled. If it happens to be currently enabled, all the better. So the di�cult case

is to show that if P

2

is at m

2

and the transition at m

2

is currently disabled , it

eventually becomes enabled. For that we use Lemma 1.

However, note that in all the subsequent situations considered in Lemma 1

or any of its subproofs, P

2

is disabled. This implies that, when dealing with this



c

 Z. Manna and A. Pnueli, 10 November 1996. Not for Distribution

3.3 Compassion in Message Passing 165

case, we have one less process to consider. Lemma 1, recursively, uses an F-rule

to follow the progress of P

3

from k

3

to k

6

. In all situations arising throughout

this progress, P

2

is continuously neutralized (frozen). Considering the situation

of P

3

at k

3

, we realize that the proof of another eventual enableness is called for,

namely the eventual enableness of k

3

. For that we use Lemma 1.1.

Since the interesting case for Lemma 1.1 is when k

3

is disabled, we enter this

lemma with the assumption that two processes, P

2

and P

3

are disabled. Thus,

Lemma 1.1 has only process P

1

to work with. And P

1

better help itself for all

the enableness properties it needs, since P

2

and P

3

are paralyzed and cannot o�er

any help.

In general, a recursive rule or procedure is acceptable if we can identify a

well-founded measure that decreases on any recursive invocation. The discussion

above identi�es this measure, in our case, as the number of processes which are

still potentially enabled, since any additional level in the proof tree freezes an

additional process. It is obvious that, when we reach a single remaining process,

the property is valid only if it can be proven by the J-rules, since no other process

is available to eventually improve the enableness status of transitions.

3.3 Compassion in Message Passing

The previous section considered compassionate transitions associated with sema-

phore statements. Here we consider communication statements, which are the

other statements associated with compassion requirements. We present several

examples of programs that use message passing and analyze their response prop-

erties, using rules RESP-C and CHAIN-F.

As examples, we present two algorithms for coordinating mutual exclusion

by message passing which are based on compassion. We analyze these algorithms,

and verify that they guarantee exclusion and individual accessibility.

Synchronous Message Passing

The �rst algorithm we consider is program MUX-SYNCH of Fig. 3.11. The pro-

gram consists of two customer processes P

1

, P

2

, and an arbiter process A. The

arbiter process accepts requests for entering the critical section from both pro-

cesses. These requests are represented by T-messages on channels �

1

, �

2

. The

arbiter chooses nondeterministically to communicate with one of them. This com-

munication grants the selected customer process a permission to enter its critical

section. After the customer exits from its critical section it returns this permission

by sending an F-message on its �-channel to the arbiter that keeps waiting at k

2

or k

3

, respectively, for this releasing communication.

We start by considering mutual exclusion. This can be established by the
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local �

1

; �

2

: channel of boolean

P

1

::

2

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

4

`

1

: noncritical

`

2

: �

1

( T

`

3

: critical

`

4

: �

1

( F

3

7

7

7

5

3

7

7

7

7

7

7

5

A ::

2

6

6

6

6

6

6

4

local y: boolean

k

0

: loop forever do

k

1

:

2

6

4

k

a

1

: �

1

) y; k

2

: �

1

) y

or

k

b

1

: �

2

) y; k

3

: �

2

) y

3

7

5

3

7

7

7

7

7

7

5

P

2

::

2

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

4

m

1

: noncritical

m

2

: �

2

( T

m

3

: critical

m

4

: �

2

( F

3

7

7

7

5

3

7

7

7

7

7

7

5

Fig. 3.11. Program MUX-SYNCH (mutual exclusion

by synchronous communication).

following invariants

�

1

: at

�

`

3;4

$ at

�

k

2

�

2

: at

�

m

3;4

$ at

�

k

3

.

From �

1

and �

2

we can infer the invariant

:(at

�

`

3;4

^ at

�

m

3;4

),

based on process A's inability to be simultaneously at k

2

and at k

3

.

Next, we prove accessibility for P

1

. Accessibility for P

1

is stated by
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at

�

`

2

| {z }

p

) 1 at

�

`

3

| {z }

q

:

It calls for a single application of rule RESP-C with

' = p: at

�

`

2

�

h

: h`

2

; k

a

1

i.

It is obvious that premises C1, C2, and C3 hold for this choice. Needing more

attention is premise C4 requiring

 

1

: at

�

`

2

| {z }

'

) 1

�

� � � _ at

�

`

2

^ at

�

k

1

| {z }

En(h`

2

;k

a

1

i)

�

:

This property is proved by rule CHAIN-J as shown in the CHAIN diagramof Fig. 3.12.

�

�

�

�

at

�

m

3

m

3




�

�

�

�

at

�

m

4

hm

4

; k

3

i




�

�

�

�

at

�

k

0

k

0

�

�


 	

�

at

�

`

2

^ at

�

k

1

C

DE

F

at

�

k

3

C

DE

F

at

�

`

2

Fig. 3.12. CHAIN diagram for  

1

.

The proof uses invariant �

1

to infer that when P

1

is at `

2

, A cannot be at

k

2

, and invariant �

2

to infer that when A is at k

3

, P

2

can only be at m

3

or at

m

4

.

Accessibility for P

2

is proven in a completely symmetric way.

Asynchronous Message Passing

Program MUX-ASYNCH of Fig. 3.13 coordinates mutual exclusion by using asyn-

chronous communication. The program uses channels which allow many readers

but only one writer.

The arbiter process A starts by loading channel � with a single message,

representing a permission to enter the critical section. The customer processes

P

1

and P

2

compete on this single permission at locations `

2

and m

2

, respectively.
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local �; �

1

; �

2

: channel [::] of boolean

P

1

::

2

6

6

6

6

6

6

6

6

4

local x

1

: boolean

`

0

: loop forever do

2

6

6

6

4

`

1

: noncritical

`

2

: �) x

1

`

3

: critical

`

4

: �

1

( T

3

7

7

7

5

3

7

7

7

7

7

7

7

7

5

A ::

2

6

6

6

6

6

6

6

6

6

4

local y: boolean

k

0

: loop forever do

2

6

6

6

6

4

k

1

: �( T

k

2

:

2

6

4

k

a

2

: �

1

) y

or

k

b

2

: �

2

) y

3

7

5

3

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

5

P

2

::

2

6

6

6

6

6

6

6

6

4

local x

2

: boolean

m

0

: loop forever do

2

6

6

6

4

m

1

: noncritical

m

2

: �) x

2

m

3

: critical

m

4

: �

2

( T

3

7

7

7

5

3

7

7

7

7

7

7

7

7

5

Fig. 3.13. Program MUX-ASYNCH (mutual exclusion

by asynchronous communication).

Whoever succeeds in reading the message from channel � proceeds to enter the

critical section. On �nishing, this process sends back a release message via �

1

or

�

2

, respectively. Meanwhile, process A keeps waiting at k

2

to collect this release

message. On receiving the message, process A loops back and reloads channel �

with a new permission.

To prove exclusion, we establish the invariant
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�

1

: at

�

k

0;1

+ j�j + at

�

`

3;4

+ at

�

m

3;4

+ j�

1

j + j�

2

j = 1.

Clearly, this invariant implies that at

�

`

3;4

+ at

�

m

3;4

� 1.

Accessibility for P

1

is expressed by

at

�

`

2

| {z }

p

) 1 at

�

`

3

| {z }

q

:

This can be proven by rule RESP-C, taking

' = p: at

�

`

2

�

h

: `

2

.

The �rst three premises C1{C3 obviously hold. It only remains to show

premise C4, the eventual enableness of `

2

. This is expressed by

 

2

: at

�

`

2

| {z }

'

) 1

�

� � � _ at

�

`

2

^ j�j > 0

| {z }

En(`

2

)

�

:

A CHAIN-J proof of this property is presented in the CHAIN diagram of Fig. 3.14.

The proof uses invariant �

1

to infer that when j�j = 0 then either A is at k

0;1

, or

it is at k

2

with j�

2

j = 1, or at k

2

with j�

2

j = 0 and P

2

at m

3;4

.

C

DE

F

at

�

`

2

; j�j = 0

C

DE

F

at

�

k

2

; j�

2

j = 0

�

�

�

�

at

�

m

3

m

3




�

�

�

�

at

�

m

4

m

4

�

#

"

 

!

at

�

k

2

^

j�

2

j = 1

k

b

2




�

�

�

�

at

�

k

0

k

0




�

�

�

�

at

�

k

1

k

1

�

�


 	

�

at

�

`

2

^

j�j > 0

Fig. 3.14. CHAIN diagram for  

2

.
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3.4 Modeling Eventual Reliability

The preceding sections used compassion as an abstraction for a protocol that is

implemented either by special hardware or by a software procedure. Our two

main examples were semaphore and communication statements.

There are additional contexts and applications where compassion provides a

useful abstraction. We introduce here one such application, in which compassion

is used to model eventual reliability of a hardware component of the system.

Modeling Faulty Channels

Consider program REL-TRANS of Fig. 3.15. This program consists of process P

1

that sends messages 1; 2; : : : on channel �, and process P

2

that reads these mes-

sages from channel � into y.

local �: channel [1::] of integer

P

1

::

2

6

6

6

6

4

local x: integer where x = 0

`

0

: loop forever do

"

`

1

: x := x+ 1

`

2

: �( x

#

3

7

7

7

7

5

P

2

::

2

6

4

local integer y

m

0

: loop forever do

m

1

: �) y

3

7

5

Fig. 3.15. Program REL-TRANS (reliable transmission).

It is a simple matter to verify that y assumes the values 1; 2; : : : .

Such veri�cation depends, however, on the implicit assumption that channel

� is reliable. This assumption is re
ected in the de�nition of the transitions

associated with the communication statements. For program REL-TRANS, these

de�nitions imply that execution of `

2

: �( x appends x to the end of list �, and

the message remains in � until removed by execution of m

1

: �) y.

In some cases, we may wish to study situations in which channel � is not

reliable and may either lose some messages or transmit them with corrupted

values. There are two possible approaches to modeling such faulty channels.

The �rst approach associates with communication statements over faulty

channels di�erent types of transitions. These transitions should represent the

potentially faulty behavior of such channels.

Another approach, which is the one adopted here, is not to change the asso-

ciation of transitions to communication statements but to modify the program,
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replacing each send statement by an appropriate selection statements. We will

illustrate this approach for two types of faults.

Modeling Lossy Channels

The �rst fault we model is that of a channel that may lose some of its mes-

sages. Program LOSSY-TRANS of Fig. 3.16 represents a modi�ed version of program

REL-TRANS, which takes into account the possibility of lost messages.

local �: channel [1::] of integer

P

1

::

2

6

6

6

6

6

6

6

6

6

4

local x: integer where x = 0

`

0

: loop forever do

2

6

6

6

6

4

`

1

: x := x+ 1

`

2

:

2

6

4

`

g

2

: �( x

or

`

s

2

: skip

3

7

5

3

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

5

P

2

::

2

6

4

local integer y

m

0

: loop forever do

m

1

: �) y

3

7

5

Fig. 3.16. Program LOSSY-TRANS (transmission with lossy channels).

Program LOSSY-TRANS is obtained by replacing statement `

2

: �( x of pro-

gram REL-TRANS by the selection statement

[`

g

2

: �( x] or [`

s

2

: skip].

This implies that, whenever process P

1

is ready to send x over channel �, there

is a nondeterministic choice between taking the good transition `

g

2

which actually

sends x on �, or taking the skip transition `

s

2

which does nothing and models

a loss of the message. Thus, computations of program LOSSY-TRANS faithfully

represent the situation that some messages are lost, and therefore y may assume

only a subset of the values 1; 2; : : : .

Such a transformation is intended to model operations on an abstract faulty

asynchronous channel b�. Taking either `

g

2

or `

s

2

represents sending x on b�: Taking

`

g

2

represents a successful transmission on b�, while taking `

s

2

represents a loss of

a message. Transition m

1

represents receiving a message from b�.

It is important to realize that the faulty channel b� modeled by this trans-

formation is eventually reliable. This means that, if in�nitely many messages are

sent, channel b� cannot lose all of them from a certain point on. This excludes

computations in which in�nitely many messages are sent on b� but all but �nitely

many of them are lost.
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Eventual reliability of our model follows from the requirement of compassion

for the communication statement `

g

2

: � ( x. If P

1

attempts to send a message

in�nitely many times (i.e., visits `

2

in�nitely many times), then transition `

g

2

is

enabled in�nitely many times and, by compassion, must eventually be taken. It

follows that, eventually, some x will be placed on channel �, and process P

2

will

read it.

Modeling Corrupt Channels

Another type of fault that may be displayed by unreliable (but eventually re-

liable) channels is corruption of messages. This fault transmits a sent message

but corrupts its value. In program CORR-TRANS of Fig. 3.17 we model a channel

that may lose some messages and corrupt some of the others but eventually also

transmits some correct messages. The selection statement in `

2

contains three

substatements. Statement `

g

2

represents faithful transmission; `

s

2

represents a loss

of a message; and statement `

c

2

represents transmission of a corrupted value: 0

instead of x.

local �: channel [1::] of integer

P

1

::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

local x: integer

where x = 0

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

4

`

1

: x := x+ 1

`

2

:

2

6

6

6

6

6

6

4

`

g

2

: �( x

or

`

s

2

: skip

or

`

c

2

: �( 0

3

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

P

2

::

2

6

6

6

6

6

6

4

local integer y

m

0

: loop forever do

2

6

4

m

1

: y := 0

m

2

: while y = 0 do

m

3

: �) y

3

7

5

3

7

7

7

7

7

7

5

Fig. 3.17. Program CORR-TRANS (transmission with corrupting channels).

The receiving process P

2

in this program is aware of the possibility of cor-

ruption, and is programmed to keep receiving until it gets a nonzero message.

Again, due to compassion, the modeled channel is eventually reliable, exclud-

ing computations in which, from a certain point on, all messages are either lost

or corrupted. Note, that a side e�ect of this modeling is that it also implies that

some messages must eventually be correpted.
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This approach to modeling faulty channels is also applicable to synchronous

communication, using the same transformations.

Example (alternating bit protocol)

Consider program ALTER of Fig. 3.18. This program is designed to ensure reli-

able communication over a faulty channel. We assume a particular type of fault,

by which each message is either transmitted intact or corrupted in a noticeable

way, i.e., no messages are lost. The program uses synchronous channel trans to

transmit messages from P

1

to P

2

, and synchronous channel ack to send acknowl-

edgements from P

2

to P

1

.

Each message sent over channel trans is a record with three components: pt ,

d, and ct . As we will see, pt serves as an identi�cation of the message, d is the data

that should be reliably transmitted from P

1

to P

2

, and ct is a boolean �eld indi-

cating whether the message has been transmitted correctly (correct transmission)

or corrupted by the faulty channel.

A message sent over channel ack is also a record with the two components

pa and ca. Field pa identi�es the message that is acknowledged. Boolean �eld ca

indicates whether the message is transmitted correctly (correct acknowledgement)

or corrupted.

The possibility of corruption of a transmitted message is represented in

Fig. 3.18 as a nondeterministic but fair (due to compassion) choice of trans-

mitting the intended message with an additional bit of either T or F value. The

choice of T for the additional bit represents a successful transmission, and then

the other �elds of the message are reliably valid. The case of F for the added

bit, represents a failed transmission, in which the other �elds of the message are

unreliable, except for the F bit which identi�es the message as a corrupt one.

It is important to realize that Fig. 3.18 contains a mixture of a program

for the protocol and additional transitions such as `

c

1

and m

c

4

, which model the

potentially erratic behavior of the eventually reliable channels. The protocol,

which is the program that will run in an actual application, has the statements

`

1

: trans (




S; X[i]; T

�

m

4

: ack ( hR; Ti

at locations `

1

and m

4

. The selection statements appearing at these locations

in Fig. 3.18 are intended to model the behavior of trans and ack as eventually

reliable channels.

� The Protocol

The main idea in the protocol is that it maintains an acknowledgement chan-

nel, called ack , in which the receiver reports whether the message has arrived

correctly, or has been corrupted. In both cases, the message in the ack channel

is a request for a next transmission. In the case that the last message has been

correctly received, the request is for the next message. In the case that the last
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in X : array [1::] of integer

local i; j : integer where i = j = 1

s; r; S; R; gt; ga: boolean where S = R = T

trans: channel of hpt : boolean; d: integer; ct : booleani

ack : channel of hpa: boolean; ca: booleani

out Y : array [1::] of integer

P

1

::

2

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

4

`

1

:

2

6

4

`

g

1

: trans (




S; X[i]; T

�

or

`

c

1

: trans ( h�; �; Fi

3

7

5

`

2

: ack ) hr; gai

`

3

: if ga ^ r 6= S then

`

4

: (i; S) := (i + 1; :S)

3

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

5

P

2

::

2

6

6

6

6

6

6

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

4

m

1

: trans )




s; Y [j]; gt

�

m

2

: if gt ^ s = R then

m

3

: (j; R) := (j + 1; :R)

m

4

:

2

6

4

m

g

4

: ack ( hR; Ti

or

m

c

4

: ack ( h�; Fi

3

7

5

3

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 3.18. Program ALTER (alternating bit protocol

with synchronous communication).

message has been incorrectly received, the request is for a retransmission of the

last message. Corruption is also possible in the acknowledgement message. Con-

sequently, it can be that the last message has been correctly received, but the

sender is unaware of this fact, and keeps retransmitting the old message until a

correct acknowledgement arrives. This possibility is also handled by the protocol.

The interesting point about this protocol is that, under the above assump-

tions about the characteristics of the fault, only one bit of information, represented

by a boolean value, is necessary to identify whether the sender is transmitting the
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old message or a new message, and whether the receiver is asking for a transmis-

sion of a new message or for retransmission of an old one.

� The Parity Bit

It is possible to consider a simpler but less space-e�cient algorithm in which

�elds pt and pa contain the full sequence number of the message with each message

and each acknowledgement, i.e., i and j, respectively. In this simpler algorithm,

the receiver knows immediately which message it is receiving, and the sender

immediately recognizes which message is being acknowledged.

However, since messages are transmitted and acknowledged in sequence, and

none are lost (by assumption), it is clear that the possibilities for confusion about

which message is being transmitted or acknowledged are limited and can be re-

solved by one bit. When P

2

is awaiting message X[j], and some message is suc-

cessfully received, it can either be X[j] or X[j�1]. Similarly, when P

1

is awaiting

a request for i + 1 (which indirectly acknowledges message i), it can receive a

request either for i+ 1 or for i. The latter is a request for a retransmission of the

old message.

Therefore, it is su�cient to enclose with each message the parity bit of the

full sequence number (T for odd numbers, F for even ones). This will resolve the

ambiguity between j and j�1, and between i + 1 and i.

Indeed, initially i = j = 1 and the corresponding parity bits, S in P

1

(the

sender parity bit) and R in P

2

(the receiver parity bit) are both T. Process P

1

,

when sending X[i], includes S with it, which is the parity bit of i. When P

2

re-

ceives a message in m

1

, it checks at m

2

for corruption and whether the sequence

number of the received message, represented by its parity bit, matches P

2

's expec-

tations of receiving X[j]. If the message is not corrupt (gt = T) and the received

parity bit matches R, then this is the expected message.

Consequently, both j and R are advanced inm

3

to the next sequence number

and its corresponding parity bit. Otherwise j and R retain their old values.

Next, P

2

sends in m

4

a request for the next transmission which names X[j]

as the requested message. This is represented by sending R, the parity bit of j.

In the case j has not been advanced, this is a request for retransmission of X[j].

In case j has been advanced, this is a request for the next message.

In `

2

, P

1

reads this request. In `

3

it checks for a correct reception of the

request message, and whether the request is for the next message, tested by

r 6= S. If it is a request for a new message, then both i and S are advanced in `

4

.

Otherwise they stay the same.

� A Safety Property

An appropriate safety property we wish to establish is that

Messages approved by the receiver are identical to the original mes-
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sages sent by the sender.

For convenience, we have represented the list of messages transmitted by the

sender as an input array X, and the list of messages approved by the receiver as

an output array Y . These arrays are not an integral part of the algorithm, and

are only used for the purpose of the speci�cation and veri�cation of the program.

The main assertion, whose invariance implies the safety property described

above, is

 

1

: Y [1::j�1] = X[1::j�1].

This assertion states that the segment of the array Y consisting of positions

1; : : : ; j�1 is identical to the corresponding segment of the array X. Since at

any point in the program for P

2

, j denotes the sequence number of the message

that P

2

attempts to receive, we can assume that it has already approved all the

preceding messages, currently stored in Y [1::j�1].

The proof of invariant  

1

uses the following auxiliary invariants:

I

1

: (S = R ^ i = j) _ (S 6= R ^ i + 1 = j)

I

2

: at

�

`

3

^ ga ! r = R

I

3

: at

�

m

2

^ gt ! s = S

I

4

: at

�

`

4

! S 6= R

I

5

: at

�

m

3

! S = R

I

6

: at

�

`

2

$ at

�

m

2::4

.

In Problem 3.1, the reader is requested to prove the invariant  

1

.

An alternative proof of invariant  

1

may be based on the assertion diagram

of Fig. 3.19 which summarizes the states that may appear in a computation of

program ALTER.

� Proving Progress

As previously explained, the nondeterministic selections at `

1

and m

4

are not

statements that actually exist in the protocol, but are intended to represent the

unreliability of channels trans and ack . They present the possibility that instead

of receiving a good record, containing hS;X[i];Ti as prepared by P

1

, process P

2

may receive a faulty record with unpredictable values for the �rst two �elds.

The only alleviating assumption we make is that P

2

can recognize whether it

has received a valid or faulty message. This is represented by the last �eld in

the message, which is T for a valid message and F for a faulty one. The same

assumptions are made about channel ack , which explains the nondeterministic

selection at m

4

.

The main response property that is natural for this problem is that any

message that P

1

attempts to send is eventually correctly received by P

2

. In view
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�

�

�
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2

^ (:gt _ s 6= R)

m

2

6

�

�

�

�

'

3

: at

�

`

2

^ at

�

m

4

h`

2

; m

g

4

i

?

h`

2

; m

c

4

i

� �

?

�

�

�

�

'

4

: at

�

`

3;0;1

^ at

�

m

0;1

^ :ga

h`

g

1

; m

1

i

h`

c

1

; m

1

i

?

Fig. 3.19. Possible states of program ALTER.
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of the safety property proved above, it is su�cient to show that j eventually

increases. This can be expressed by the response property

 

2

: j = u ) 1 (j = u+ 1),

using rigid variable u to record the current value of j.

By invariant I

1

, either j = i or j = i + 1. Considering the two cases, it is

possible to decompose  

2

into the two response properties

 

3

: i = j = u ) 1 (i + 1 = j = u+ 1)

 

4

: i + 1 = j = u ) 1 (i = j = u)

and prove them separately.

Consulting Fig. 3.19, we see that the behavior of the program is partitioned

into two alternating phases. The �rst phase, occupying the top of the diagram,

is characterized by j = i. In this phase process P

1

repeatedly attempts to send

message X[i] to P

2

. A successful attempt will lead to '

5

, which some steps later

terminates the phase. Any failed attempt causes the system to traverse the cycle

'

7

, '

8

, and '

6

and return to '

7

. This cycle cannot repeat inde�nitely since

each visit to '

7

involves a state in which the compassionate transition h`

g

1

;m

1

i is

enabled. By compassion, the system must eventually get to '

5

and then proceed

to '

3

. Response formula  

3

states the termination of the upper phase.

The second phase, occupying the bottom half of the diagram, is characterized

by j = i+1. In this phase, process P

2

attempts to acknowledge correct reception

of message X[j] = X[i + 1]. Each failed attempt traverses the cycle '

3

, '

4

, '

2

,

returning to '

3

once. By compassion, eventually h`

2

;m

g

4

i must be taken, leading

to '

1

and the eventual termination of this phase, as required by  

1

.

To summarize, it cannot be that one of the processes sends in�nitely many

messages and all of them, from a certain point, arrive corrupted. This implies that,

since P

1

persistently sends message m[u] until correctly acknowledged, eventually

this message will arrive uncorrupted and P

2

will increase j to u + 1. Following

this correct arrival, process P

2

persistently sends an acknowledgement for m[u]

(requesting m[i + 1]) until a correct m[u + 1] arrives. Eventually, one of these

acknowledgements will arrive correctly and P

1

will increase i to u+ 1.

We proceed to substantiate this intuition by formally proving  

2

. As sug-

gested, we �rst establish

 

3

: (i = j = u) ) 1 (i + 1 = j = u+ 1).

The proof of this property, using rule CHAIN-F, is presented in the CHAIN-F

diagram of Fig. 3.20.

It is easy to verify premises F1{F4 of rule CHAIN-F for assertions '

1

and '

2

,

appearing in Fig. 3.20.

It only remains to check eventual enableness of h`

g

1

;m

1

i from '

3

-states.
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C

DE

F

i = j = u; R = S

'

&

$

%

'

3

:

"

at

�

m

0;1;4

_

at

�

m

2

^ :gt

#

3.21

h`

g

1

;m

1

i

?
�

�

�

�

'

2

: at

�

m

2

^ gt ^ s = R

m

2

�

�

�

�

�

'

1

: at

�

m

3

m

3

�

�


 	

�

'

0

: i + 1 = j = u+ 1

Fig. 3.20. Top-level CHAIN-F diagram for  

3

.

This means that we have to show

at

�

m

0;1;4

_ (at

�

m

2

^ :gt) ) 1 (at

�

`

1

^ at

�

m

1

).

This is proven by CHAIN-J as presented in the CHAIN diagram of Fig. 3.21. The

proof uses I

6

to infer that when P

2

is at m

2

or at m

4

, P

1

must be at `

2

. It also

uses I

2

and I

3

to infer that, while P

2

is at m

1

and S = R, P

1

can be only at `

0

,

at `

1

, or at `

3

with :ga _ r = S.

This concludes the proof of the property

 

3

: i = j = u ) 1 (i+ 1 = j = u+ 1).

The second response property ensures that eventually P

1

will also increase

counter i

 

4

: i + 1 = j = u ) 1 (i = j = u).

The proof of this property is presented in the CHAIN-F diagram of Fig. 3.22.

Eventual enableness of h`

4

;m

5

i is proven by the CHAIN diagram of Fig. 3.23.

Combining properties  

3

and  

4

, we obtain the main response property of
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�

�

�

�

'

6

: at

�

m

2

^ :gt

m

2

�
�

�

�

�

'

5

: at

�

m

4

h`

2

;m

g

4

i; h`

2

;m

c

4

i

�

C

DE

F

at

�

`

2

�

�

�

�

'

4

: at

�

m

0

m

0

�

�

�

�

�

'

3

: at

�

`

3

^ (:ga _ r = S)

`

3

�

�

�

�

�

'

1

: at

�

`

0

`

0

�

�


 	

�

'

0

: at

�

`

1

C

DE

F
at

�

m

1

C

DE

F

S = R; j = i

Fig. 3.21. CHAIN diagram for eventual enableness of h`

g

1

; m

1

i.

program ALTER

 

2

: j = u ) 1 (j = u+ 1).
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C

DE

F

i + 1 = j = u; R 6= S

'

&

$

%

'

3

:

"

at

�

`

0::2

_

at

�

`

3

^ :ga

#

3.23

h`

2

;m

g

4

i

?
�

�

�

�

'

2

: at

�

`

3

^ ga ^ r 6= S

`

3

�
�

�

�

�

'

1

: at

�

`

4

`

4

�

�


 	

�

'

0

: i = j = u

Fig. 3.22. Top-level CHAIN-F diagram for  

4

.

3.5 Well-Founded Rule

The next rule we consider is the fair version of rule WELL-J (Fig. 1.26). This version

can be obtained by replacing the temporal premise W2 of rule WELL (Fig. 1.23) by

the appropriate premises of rule RESP-C for the case that �

i

is compassionate and

the appropriate premises of rule RESP-J for a just �

i

. This leads to rule WELL-F

(Fig. 3.24).

In applications of the rule, it is su�cient to establish premise FW2 for all

� 6= �

i

, since FW2 for � = �

i

is implied by FW3.

A veri�cation diagram corresponding to rule WELL-F is called a RANK-F dia-

gram.

Example (Producer Consumer)

Consider program PROD-CONS of Fig. 3.5. Using rule CHAIN-F, we proved acces-

sibility for the producer, i.e., at

�

`

2

) 1 at

�

`

4

. However, the main response

property of this program is that any value produced by the producer is eventually

consumed by the consumer. This property can be written as
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�

�

�

�

'

5

: at

�

`

3

^ :ga

`

3

�
�

�

�

�

'

4

: at

�

`

0

`

0

�

�

�

�

�

'

3

: at

�

`

1

h`

g

1

;m

1

i; h`

c

1

;m

1

i

�

�

�

�

�

'

2

: at

�

m

2

^ (:gt _ s 6= R)

m

2

�

�


 	

�

'

0

: at

�

m

4

C

DE

F

at

�

`

2

C

DE

F

S 6= R; j = i+ 1

Fig. 3.23. CHAIN diagram for eventual enableness of h`

2

;m

g

4

i.

prod(u) ) 1 cons(u),

where we de�ne

prod(u): at

�

`

2

^ x = u,

cons(u): at

�

m

6

^ y = u.

These two state formulas characterize, respectively, the situation that process

Prod has just produced the value u at statement `

1

, and the situation that pro-

cess Cons is about to consume the value u at statement m

6

. Substituting the

de�nitions for prod and cons, we obtain

at

�

`

2

^ x = u

| {z }

p

) 1 at

�

m

6

^ y = u

| {z }

q

:
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For assertions p and q = '

0

; '

1

; : : : ; '

m

,

transitions �

1

; : : : ; �

m

2 J [ C,

a well-founded domain (A;�), and

ranking functions �

0

; : : : ; �

m

: S 7! A

FW1. p !

m

_

j=0

'

j

FW2. �

�

^ '

i

!

2

6

6

4

m

_

j=0

('

0

j

^ �

i

� �

0

j

)

_ ('

0

i

^ �

i

= �

0

i

)

3

7

7

5

for every � 2 T

FW3. �

�

i

^ '

i

!

m

_

j=0

('

0

j

^ �

i

� �

0

j

)

FW4. If �

i

2 C, then

CW4. '

i

) 1

�

:'

i

_ En(�

i

)

�

Otherwise

JW4. '

i

! En(�

i

)

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

for i = 1; : : : ;m

p ) 1 q

Fig. 3.24. Rule WELL-F (well-founded rule under fairness).

We break the proof into three lemmas.

Lemma A at

�

`

2

^ x = u ) 1 (u 2 b)

This lemma states that if u is produced, it eventually will be placed in bu�er b.

The proof of this lemma closely resembles the proof of accessibility that we have

proven before, and therefore will be omitted.

Lemma B u 2 b ) 1 (at

�

m

4

^ y = u)

This lemma claims that if message u is somewhere in the bu�er, then eventually

it will be read by process Cons and placed in y. The proof of this lemma is

presented below.
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Lemma C at

�

m

4

^ y = u ) 1 (at

�

m

6

^ y = u)

This lemma completes the journey of u, by following Cons from m

4

to m

6

. It is

provable by a simple application of CHAIN-J, and the proof is omitted.

� Proof of Lemma B

The proof of Lemma B is assisted by the invariants

�

0

: r � 0 ^ ne � 0 ^ nf � 0

�

1

: r + at

�

`

4;5

+ at

�

m

3;4

= 1

�

2

: ne + nf + at

�

`

3::6

+ at

�

m

2::5

= N .

The proof is based on rule WELL-F and is presented in the RANK-F diagram of

Fig. 3.25. It uses intermediate assertions '

1

; : : : ; '

7

. As the well-founded domain

we take the lexicographic product N�[0::7]. The ranking function for assertion

'

i

, i = 1; : : : ; 7, is given by

C

DE

F

u 2 b

�: ind (u; b)

�

�

�

�

'

7

: at

�

m

4

m

4




�

�

�

�

'

6

: at

�

m

5

m

5




�

�

�

�

'

5

: at

�

m

6

m

6

�

�

�

�

�

'

4

: at

�

m

0

m

0

�

�

�

�

�

'

3

: at

�

m

1

m

1

�

Lemma B1

�

�

�

�

'

2

: at

�

m

2

m

2

�

Lemma B2

�

�

�

�

'

1

: at

�

m

3

m

3

�

m

3

�

�


 	

�

'

0

: at

�

m

4

^ y = u

Fig. 3.25. RANK-F diagram for eventual transmission of messages.

�

i

:

�

ind (u; b); i

�

;
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where ind (u; b) is de�ned as

ind(u; b) = min

�

i � 1 j b[i] = u

	

:

That is, ind (u; b) is the smallest index i, i � 1, such that b[i] = u. Clearly, the

value of ind (u; b) keeps decreasing as Cons removes elements from b. We rely on

the obvious implication

u 2 b ! 9i � 1: b[i] = u.

We adopt the convention by which if u =2 b then ind (u; b) = 0. It follows that

ind (u; b) � 0 in all cases.

It is not di�cult to see that premises FW1{FW3 are satis�ed by the as-

sertions appearing in the diagram. In particular, we observe that no transi-

tion, except for m

3

, can change the value of ind (u; b), under the assumption

of u 2 b. This also holds for `

4

. Also, it is not di�cult to see that the full rank-

ing functions �

i

:

�

ind (u; b); i

�

decrease on any helpful transition, unless the goal

'

0

: at

�

m

4

^ y = u is achieved. The transition m

3

, either achieves '

0

in the

case that ind(u; b) = 1, or maintains u 2 b, with ind(u; b

0

) < ind (u; b). All other

helpful transitions preserve ind(u; b), and lead from the rank

�

ind(u; b); i

�

to the

rank

�

ind(u; b); i� 1

�

, for some i, i > 0.

Let us consider premise FW4. Most of the helpful transitions are just transi-

tions for which we can easily establish JW4. The exceptions are the compassionate

transitions m

1

and m

2

for which we will establish CW4.

To establish CW4, it is su�cient to show the eventual enableness of m

2

and

m

3

. These are proven by the two following lemmas.

Lemma B1 at

�

m

1

) 1 (at

�

m

1

^ nf > 0)

The lemma is proven by rule CHAIN-J, as presented in the CHAIN diagram of

Fig. 3.26(a). Clearly if nf is not positive it must equal 0. We use invariant �

2

and the fact that P

2

is at m

1

and nf = 0, to deduce that while P

1

is at `

2

,

ne = N > 0. Similarly, we use �

1

to deduce that while P

1

is at `

3

and P

2

is at

m

1

, r is positive.

Lemma B2 at

�

m

2

) 1 (at

�

m

2

^ r > 0)

The lemma is proven by rule CHAIN-J, as presented in the CHAIN diagram of

Fig. 3.26(b). According to �

0

and �

1

, if r is nonpositive while P

2

is at m

2

, then

r must equal 0, and P

1

must reside at `

4

or at `

5

.

This concludes the proof of Lemma B, as well as the proof of the response

property that ensures that any value produced by Prod eventually gets consumed

by Cons.
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�

�

�

�

at

�

`
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`
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�
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�

�

at

�

`

1

`

1

�

�

�

�

�

at

�

`

2

^ ne > 0

`

2

�

�

�

�

�

at

�

`

3

^ r > 0

`

3

�

�

�

�

�

at

�

`

4

`

4

�

�

�

�

�

at

�

`

5

`

5

�

�

�

�

�

at

�

`

6

`

6

�

C

DE

F

at

�

m

1

; nf = 0

�


 	

�

at

�

m

1

^ nf > 0

(a) Proof of Lemma B1.

�

�

�

�

at

�

`

4

`

4

�

�

�

�

�

at

�

`

5

`

5

�

C

DE

F
at

�

m

2

; r = 0

�


 	

�

at

�

m

2

^ r > 0

(b) Proof of Lemma B2.

Fig. 3.26. CHAIN diagrams.
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3.6 The Dining Philosophers Problem

In Section 2.3 of the SAFETY book, we presented the dining philosophers problem

and studied three proposed solutions to the problem given by programs DINE

(Fig. 2.15), DINE-CONTR (Fig. 2.16), and DINE-EXCL (Fig. 2.17). In that section,

we established the safety property of chopstick exclusion, by which no two adjacent

processes (which share a chopstick) can reside in their critical section at the same

time.

Here, we wish to study the progress property of these solutions, which is

the property of accessibility. This property states that every philosopher who

becomes hungry (exits its noncritical section) will eventually eat (enter its critical

section).

As shown in Section 2.3 of the SAFETY book, program DINE may deadlock,

which means that no accessibility property is valid for it. It remains to consider

the two other programs: DINE-CONTR and DINE-EXCL.

Accessibility for Program DINE-CONTR

In Fig. 3.27 we reproduce program DINE-CONTR, �rst presented in Fig. 2.16 of the

SAFETY book.

For this program, we established the following invariant assertions:

'

0

[j]: c[j] � 0; for every j 2 [1::M ]

'

1

[j]: at

�

`

4::6

[j] + at

�

`

3::5

[j + 1] + c[j + 1] = 1; for every j 2 [1::M�2]

'

2

: at

�

`

4::6

[M�1] + at

�

`

4::6

[M ] + c[M ] = 1

'

3

: at

�

`

3::5

[M ] + at

�

`

3::5

[1] + c[1] = 1:

We will show that the accessibility property

A[j]: at

�

`

2

[j] ) 1 at

�

`

4

[j]

is valid over program DINE-CONTR for each j 2 [1::M ].

The accessibility property A[j] can be decomposed into the two properties:

A

2;3

[j]: at

�

`

2

[j] ) 1 at

�

`

3

[j]

A

3;4

[j]: at

�

`

3

[j] ) 1 at

�

`

4

[j].

Obviously, the validity of A

2;3

[j] and A

3;4

[j] implies the validity of A[j], over

program DINE-CONTR. We intend to establish properties A

2;3

and A

3;4

in the

following order:

� First, we will establish A

2;3

[j] for every j 2 [2::M�1].
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in M : integer where M � 2

local c : array [1::M ] of integer where c = 1

M�1

j=1

P [j] ::

2

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: request c[j]

`

3

: request c[j + 1]

`

4

: critical

`

5

: release c[j]

`

6

: release c[j + 1]

3

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

5

P [M ] ::

2

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: request c[1]

`

3

: request c[M ]

`

4

: critical

`

5

: release c[1]

`

6

: release c[M ]

3

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 3.27. Program DINE-CONTR: solution with one

contrary philosopher.

� Then, we establish by induction on decreasing j the properties A

3;4

[j] for

j = M;M�1; : : : ; 1.

� Finally, we establish A

2;3

[1] and A

2;3

[M ].

Proving A

2;3

[j] for j 2 [2::M�1]

Let j 2 [2::M�1]. The property

A

2;3

[j]: at

�

`

2

[j] ) 1 at

�

`

3

[j]

is proven by the following CHAIN-F diagram

�

�

�

�

at

�

`

2

[j]

`

2

[j]

-

E

2

[j]

�


 	

�

at

�

`

3

[j]

The proof relies on the compassionate transition `

2

[j]. As required for valid
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diagrams involving compassionate transitions, we have to establish the eventual

enableness of `

2

[j] stated by the formula

E

2

[j]: at

�

`

2

[j] ) 1 at

�

`

2

[j] ^ c[j] > 0

| {z }

En(`

2

[j])

:

Property E

2

[j] is proven by the CHAIN diagram of Fig. 3.28.

�

�

�

�

at

�

`

4

[j�1]

`

4

[j�1]




�

�

�

�

at

�

`

5

[j�1]

`

5

[j�1]




�

�

�

�

at

�

`

6

[j�1]

`

6

[j�1]

�

C

DE

F

at

�

`

2

[j]; c[j] = 0

�


 	

�

at

�

`

2

[j] ^ c[j] > 0

Fig. 3.28. CHAIN diagram for E

2

[j].

This proof relies on assertion '

0

[j]: c[j] � 0 to infer that :

�

c[j] > 0

�

implies

c[j] = 0. Then, we use assertion

'

1

[j � 1]: at

�

`

4::6

[j � 1] + at

�

`

3::5

[j] + c[j] = 1

to infer that at

�

`

2

[j] ^ c[j] = 0 implies at

�

`

4::6

[j � 1].

Proving A

3;4

[j] for j = M;M�1; : : : ; 1

Next, we establish the property

A

3;4

[j]: at

�

`

3

[j] ) 1 at

�

`

4

[j]

by induction on decreasing j = M;M�1; : : : ; 1.

� Induction Basis

For the induction basis, we prove

A

3;4

[j]: at

�

`

3

[j] ) 1 at

�

`

4

[j]

for j 2 fM�1;Mg. We can establish A

3;4

for both M�1 and M in one proof

because both processes compete on c[M ] at location `

3

and release c[M ] at location

`

6

.

Let j denote one of the indices in fM�1;Mg, and k denote the other index.

Thus, if j = M�1 then k = M and if j = M then k = M�1.
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Property A

3;4

[j] is proven by the following CHAIN-F diagram:

�

�

�

�

at

�

`

3

[j]

`

3

[j]

-

E

3

[j]

�


 	

�

at

�

`

4

[j]

The diagram requires establishing the eventual enableness of `

3

[j] given by

E

3

[j]: at

�

`

3

[j] ) 1

�

at

�

`

3

[j] ^ c[M ] > 0

�

:

This is established by the CHAIN diagram of Fig. 3.29.

�

�

�

�

at

�

`

4

[k]

`

4

[k]




�

�

�

�

at

�

`

5

[k]

`

5

[k]




�

�

�

�

at

�

`

6

[k]

`

6

[k]

�

C

DE

F

at

�

`

2

[j]; c[M ] = 0

�


 	

�

at

�

`

3

[k] ^ c[M ] > 0

Fig. 3.29. CHAIN diagram for E

3

[j].

The proof uses '

0

[M ]: c[M ] � 0 to infer c[M ] = 0 from :

�

c[M ] > 0

�

and

the invariant

'

2

: at

�

`

4::6

[M�1] + at

�

`

4::6

[M ] + c[M ] = 1

to infer at

�

`

4::6

[M�1] from at

�

`

3

[M ]^ c[M ] = 0, and to infer at

�

`

4::6

[M ] from

at

�

`

3

[M�1] ^ c[M ] = 0.

� Induction Step

We show that A

3;4

[j+1] implies A

3;4

[j] for each j 2 [1::M�2]. Assume that

A

3;4

[j + 1] has been established. Property

A

3;4

[j]: at

�

`

3

[j] ) 1 at

�

`

4

[j]

is proven by the following CHAIN-F diagram:

�

�

�

�

at

�

`

3

[j]

`

3

[j]

-

E

3

[j]

�


 	

�

at

�

`

4

[j]

The required eventual enableness condition

E

3

[j]: at

�

`

3

[j] ) 1

�

at

�

`

3

[j] ^ c[j + 1] > 0

�
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�

�

�

�

at

�

`

3

[j+1]

A

3;4

[j+1]

-

�

�

�

�

at

�

`

4

[j+1]

`

4

[j+1]




�

�

�

�

at

�

`

5

[j+1]

`

5

[j+1]

�

C

DE

F

at

�

`

3

[j]; c[j+1] = 0

�


 	

�

at

�

`

3

[j] ^ c[j+1] > 0

Fig. 3.30. CHAIN diagram for E

3

[j] (for the inductive step).

is proven by the CHAIN diagram of Fig. 3.30.

The proof uses assertion '

0

[j + 1]: c[j + 1] � 0 to infer c[j + 1] = 0 from

:

�

c[j + 1] > 0

�

and assertion

'

1

[j]: at

�

`

4::6

[j] + at

�

`

3::5

[j + 1] + c[j + 1] = 1

to infer at

�

`

3::5

[j + 1] from at

�

`

3

[j] ^ c[j + 1] = 0.

It uses the assumption A

3;4

[j + 1] to ensure that if P [j + 1] is at `

3

it will

eventually arrive to `

4

. In the diagram, this is represented by the dashed edge

labeled by A

2;3

[j].

This concludes the proof of A

3;4

[j] for all j 2 [1::M ].

Proving A

2;3

[j] for j 2 f1;Mg

Finally, we prove

A

2;3

[j]: at

�

`

2

[j] ) 1 at

�

`

3

[j]

for j 2 f1;Mg. Again, it is possible to present a single proof for these two

indices since both P [1] and P [M ] compete for c[1] at location `

2

and release c[1]

at location `

5

. As before, let j denote one of the two indices in f1;Mg and k

denote the other index.

The proof of A

2;3

[j] is established by the following diagram:

�

�

�

�

at

�

`

2

[j]

`

2

[j]

-

E

2

[j]

�


 	

�

at

�

`

3

[j]

The proof is completed by establishing the eventual enableness of `

2

[j], given

by
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E

2

[j]: at

�

`

2

[j] ) 1 at

�

`

2

[j] ^ c[1] > 0

| {z }

En(`

2

[j])

:

This property is proved by the CHAIN diagram of Fig. 3.31.

�

�

�

�

at

�

`

3

[k]

A

3;4

[k]

-

�

�

�

�

at

�

`

4

[k]

`

4

[k]




�

�

�

�

at

�

`

5

[k]

`

5

[k]

�

C

DE

F

at

�

`

2

[j]; c[1] = 0

�


 	

�

at

�

`

2

[j] ^ c[1] > 0

Fig. 3.31. CHAIN diagram for E

2

[j] for j 2 f1;Mg.

The proof uses assertion '

0

[1]: c[1] � 0 to infer c[1] = 0 from :

�

c[1] > 0

�

. It

uses assertion

'

3

: at

�

`

3::5

[M ] + at

�

`

3::5

[1] + c[1] = 1

to infer at

�

`

3::5

[M ] from at

�

`

2

[1] ^ c[1] = 0, and to infer at

�

`

3::5

[1] from

at

�

`

2

[M ] ^ c[1] = 0.

This concludes the proof of accessibility for all processes of programDINE-CONTR.

Accessibility for Program DINE-EXCL

In Fig. 3.32 we reproduce program DINE-EXCL, �rst presented in Fig. 2.17 of the

SAFETY book. In contrast to program DINE-CONTR in which process P [M ] has a

di�erent program than all other processes, processes in program DINE-EXCL have

identical programs. Symmetry is broken in program DINE-EXCL by the semaphore

r which admits at mostM�1 processes to the location range `

3::8

.

In Section 2.3 of the SAFETY book, we established for program DINE-EXCL the

following invariants

'

0

[j]: c[j] � 0 for all j 2 [1::M ]

'

1

[j]: at

�

`

5::7

[j] + at

�

`

4::6

[j �

M

1] + c[j �

M

1] = 1 for all j 2 [1::M ]

'

2

: r � 0

'

3

: N

3::8

+ r = M�1:
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in M : integer where M � 2

local c : array [1::M ] integer where c = 1

r : integer where r = M�1

M

j=1

P [j] ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: request r

`

3

: request c[j]

`

4

: request c[j �

M

1]

`

5

: critical

`

6

: release c[j]

`

7

: release c[j �

M

1]

`

8

: release r

3

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 3.32. Program DINE-EXCL: one philosopher stays out.

Here we estabish the accessibility property

A[j]: at

�

`

2

[j] ) 1 at

�

`

5

[j].

As before, we break the accessibility property into three steps

A

2;3

[j]: at

�

`

2

[j] ) 1 at

�

`

3

[j]

A

3;4

[j]: at

�

`

3

[j] ) 1 at

�

`

4

[j]

A

4;5

[j]: at

�

`

4

[j] ) 1 at

�

`

5

[j].

We establish A

3;4

[j] �rst, followed by A

4;5

[j], followed by A

2;3

[j].

Proving A

3;4

[j]

The response property

A

3;4

[j]: at

�

`

3

[j] ) 1 at

�

`

4

[j]

is proven by the following CHAIN-F diagram:

�

�

�

�

at

�

`

3

[j]

`

3

[j]

-

E

3

[j]

�


 	

�

at

�

`

4

[j]

Eventual enableness of compassionate transition `

3

[j] is stated by

E

3

[j]: at

�

`

3

[j] ) 1 at

�

`

3

[j] ^ c[j] > 0

| {z }

En(`

3

[j])
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�

�

�

�

at

�

`

5

[j �

M

1]

at

�

`

5

[j �

M

1]

�

�

�

�

�

at

�

`

6

[j �

M

1]

`

6

[j �

M

1]

�

�

�

�

�

at

�

`

7

[j �

M

1]

`

7

[j �

M

1]

�

C

DE

F

at

�

`

3

[j]; c[j] = 0

�


 	

�

at

�

`

3

[j] ^ c[j] > 0

Fig. 3.33. CHAIN diagram of E

3

[j] (for program DINE-EXCL).

and is proven in the CHAIN diagram of Fig. 3.33.

The proof uses '

0

[j]: c[j] � 0 to infer c[j] = 0 from :

�

c[j] > 0

�

and assertion

'

1

[j 	

M

1]: at

�

`

5::7

[j 	

M

1] + at

�

`

4::6

[j] + c[j] = 1

to infer at

�

`

5::7

[j 	

M

1] from at

�

`

3

[j] ^ c[j] = 0.

Proving A

4;5

[j]

Since processes in program DINE-EXCL are fully symmetric it is su�cient to prove

A

4;5

for a particular value of j, say j = 1

A

4;5

[1]: at

�

`

4

[1] ) 1 at

�

`

5

[1].

The proof of A

4;5

[1] is presented in the following CHAIN-F diagram:

�

�

�

�

at

�

`

4

[1]

`

4

[1]

-

E

4

[1]

�


 	

�

at

�

`

5

[1]

The required eventual enableness of `

4

[1] is stated by

E

4

[1]: at

�

`

4

[1] ) 1 at

�

`

4

[1] ^ c[2] > 0

| {z }

En(`

4

[1])
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�

�

�

�

at

�

`

4

[2]

`

4

[2]

-

E

4

[2; 1]

�

�

�

�

at

�

`

5

[2]

`

5

[2]




�

�

�

�

at

�

`

6

[2]

`

6

[2]

�

C

DE

F

at

�

`

4

[1]; c[2] = 0

�


 	

�

at

�

`

4

[1] ^ c[2] > 0

Fig. 3.34. CHAIN-F diagram of E

4

[1].

and can be proven by the CHAIN-F diagram of Fig. 3.34.

In this proof we use '

0

[2] and '

1

[1] to infer that at

�

`

4

[1] ^ :

�

c[2] > 0

�

implies at

�

`

4::6

[2]. The eventual enableness proof obligation for `

4

[2] is given by

E

4

[2; 1]: at

�

`

4

[1] ^ at

�

`

4

[2] ) 1 at

�

`

4

[2] ^ c[3] > 0

| {z }

En(`

4

[2])

:

We denote it by E

4

[2; 1] because it claims the eventual enableness of `

4

[2]

while P [1] is also at `

4

.

Obviously, a proof of E

4

[2; 1] will analyze the locations of process P [3] and

rely on an eventual enableness requirement given by

E

4

[3; 1; 2]: at

�

`

4

[1] ^ at

�

`

4

[2] ^ at

�

`

4

[3] ) 1 at

�

`

4

[3] ^ c[4] > 0

| {z }

En(`

4

[3])

:

Assume we constructed this sequence of veri�cation diagrams reaching pro-

cess P [M�2]. For this process, we need to establish

E

4

[M�2; 1; 2; : : : ;M�3]: at

�

`

4

[1] ^ � � � ^ at

�

`

4

[M�2] )

1 at

�

`

4

[M�2] ^ c[M�1] > 0

| {z }

En(`

4

[M�2])

:

This property can be established by the CHAIN-F diagram of Fig. 3.35.

The eventual enableness requirement is given by

E

4

[M�1; 1; : : : ;M�2]: at

�

`

4

[1] ^ � � � ^ at

�

`

4

[M�1] )

1 at

�

`

4

[M�1] ^ c[M ] > 0

| {z }

En(`

4

[M�1])

:
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�

�

�

�

at

�

`

4

[M�1]

`

4

[M�1]

?

E

4

[M�1; 1; : : : ;M�2]

�

�

�

�

at

�

`

5

[M�1]

`

5

[M�1]

�

�

�

�

�

at

�

`

6

[M�1]

`

6

[M�1]

�

C

DE

F

at

�

`

4

[1] ^ � � � ^ at

�

`

4

[M�2]

c[M�1] = 0

�


 	

�

at

�

`

4

[M�2] ^ c[M�1] > 0

Fig. 3.35. CHAIN-F diagram of E

4

[M�2; 1; 2; : : : ;M�3].

However, in view of '

2

and '

3

, N

3::8

� M�1, which means that at

�

`

4

[1]^ � � � ^

at

�

`

4

[M�1] implies at

�

`

0::2

[M ]. Considering '

1

[M�1], we see that at

�

`

4

[M�1]^

at

�

`

0::2

[M ] implies c[M ] = 1. We conclude that the implication

at

�

`

4

[1] ^ � � � ^ at

�

`

4

[M�1] ! at

�

`

4

[M�1] ^ c[M ] > 0

is P -state valid, implying the validity of E

4

[M�1; 1; : : : ;M�2].

Proving A

2;3

[j]

Finally, we prove the response property

A

2;3

[j]: at

�

`

2

[j] ) 1 at

�

`

3

[j].

This property can be proven by the CHAIN-F diagram:

�

�

�

�

at

�

`

2

[j]

`

2

[j]

-

E

2

[j]

�


 	

�

at

�

`

3

[j]

It remains to discharge the proof obligation

E

2

[j]: at

�

`

2

[j] ) 1

�

at

�

`

2

[j] ^ r > 0

�

:
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Obviously, it su�ces to prove the entailment starting from a state which satis�es

:(r > 0)

at

�

`

2

[j] ^ r = 0 ) 1

�

at

�

`

2

[j] ^ r > 0

�

:

By '

2

and '

3

, it follows that

at

�

`

2

[j] ^ r = 0 ! 9k 2 [1::M ]: at

�

`

2

[j] ^ at

�

`

3::8

[k],

stating that if r is not positive, some process P [k] must be executing at some

location in the range [`

3

::`

8

].

Therefore, it is su�cient to prove the property

at

�

`

2

[j] ^ at

�

`

3::8

[k] ) 1

�

at

�

`

2

[j] ^ r > 0

�

:

This proof is presented in the CHAIN diagram of Fig. 3.36.

�

�

�

�

at

�

`

3

[k]

A

3;4

[k]

-

�

�

�

�

at

�

`

4

[k]

A

4;5

[k]

-

�

�

�

�

at

�

`

5

[k]

`

5

�
�

�

�

�

at

�

`

6

[k]

`

6

�

�

�

�

�

at

�

`

7

[k]

`

7

�

�

�

�

�

at

�

`

8

[k]

`

8

�

C

DE

F

at

�

`

2

[j]; r = 0

f`

8

[i] j i =2 fj; kg

�

�

�


 	

�

at

�

`

2

[j] ^ r > 0

Fig. 3.36. CHAIN diagram for E

2

[j].

This concludes the proof of accessibility for program DINE-EXCL.

3.7 Allocation of Quanti�able Resources

One of the problems that requires coordination between concurrent processes is

the management of limited resources. There are di�erent types of resources in a

system. Some resources, such as the ownership of a particular printer or a shared

variable, form one indivisible unit that must be granted in its entirety to a single

process at a time. Others, such as disk or memory space, consist of a large number
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of identical units, which may be granted to several processes at the same time,

provided the sum of granted quantities never exceeds a given available total.

Typically, before entering a particular activity, to which we refer as \a critical

section," a process requests a certain quantity of units, and must wait for this

quantity to be granted before entering the critical section.

Most of our previous examples considered resources of the atomic type. We

now focus our attention on the allocation of resources of the second, quanti�able,

type. To set a general framework, we consider M > 0 processes P

1

; : : : ; P

M

, and

a single resource having N > 0 units. Assume that an array X[1::M ] represents

the needs the processes in units of the resource. That is, process P

i

needs X[i]

units of the resource in order to perform correctly its critical activity. Naturally,

we have to assume that

X[i] � N for every i = 1; : : : ;M ,

but this is the only assumption we make. This assumption states that there

are su�ciently many units of the resource to satisfy the needs of each process

separately.

In the following, we use our notation for parameterized programs, by which

L

a

denotes the set of indices of processes that currently execute at `

a

and L

a::b

denotes the set of indices of processes currently executing at any of `

a

; `

a+1

; : : : ; `

b

.

Similarly, N

a

= jL

a

j and N

a::b

= jL

a::b

j.

A First Approximation

A �rst approximation to an algorithm that manages the allocation of a quanti�able

resource is presented in parameterized program INADEQUATE of Fig. 3.37. In the

critical section of P [i], X[i] units of the resource are used. The program uses the

generalized semaphore statements

request (r; C),

whose e�ect is equivalent to

hawait r � C; r := r �Ci,

and

release (r; C),

whose e�ect is equivalent to

r := r + C.

The request (r; C) statement is associated with a compassion requirement,

prescribing that it is impossible for the statement to be enabled in�nitely many

times, but executed only �nitely many times.

� Safety
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in M; N : integer where M > 0; N > 0

X : array [1::M ] of integer where 8i 2 [1::M ]: X[i] � N

local r : integer where r = N

M

i=1

P [i] ::

2

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

4

`

1

: noncritical

`

2

: request

�

r; X[i]

�

`

3

: critical

`

4

: release

�

r; X[i]

�

3

7

7

7

5

3

7

7

7

7

7

7

5

Fig. 3.37. Program INADEQUATE (inadequate allocation of

quanti�able resource).

It is easy to see that the program of Fig. 3.37 has the right safety property

of exclusion. Exclusion in this case means that the sum of allocated units of the

resource never exceeds N . This can be expressed by

�

X

i2L

3

X[i]

�

� N .

This formula takes the sum of all X[i] for processes P [i] that are currently at `

3

,

and requires that the sum never exceeds N .

This safety property can be deduced from the two invariants

�

0

: r � 0

�

1

:

�

X

i2L

3;4

X[i]

�

+ r = N .

It is clear that execution of `

2

[i] increments the sum by X[i] and decrements r

by the same amount. Similarly, transition `

4

[i] leaving the range `

3;4

, decrements

the sum and increments r by X[i].

� Individual accessibility not guaranteed

The program of Fig. 3.37 does not ensure accessibility for each process wishing

to enter `

3

, that is, it does not satisfy

at

�

`

2

[i] ) 1 at

�

`

3

[i] for every i; 1 � i � M .

To show this, consider the particular case of three processes (M = 3), with

N = 2 and the array of resource requirements given byX[1] = X[2] = 1,X[3] = 2.

Consider the computation
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D

�:

�

`

0

[1]; `

0

[2]; `

0

[3]

	

; r: 2

E

� � �

P [1];P [2];P [3]

��������!

� � �

D

�:

�

`

2

[1]; `

2

[2]; `

2

[3]

	

; r: 2

E

� � �

P [1];P [2]

����! � � �

D

�:

�

`

3

[1]; `

3

[2]; `

2

[3]

	

; r: 0

E

� � �

P [1]

�!

� � �

D

�:

�

`

2

[1]; `

3

[2]; `

2

[3]

	

; r: 1

E

� � �

P [1]

�! � � �

D

�:

�

`

3

[1]; `

3

[2]; `

2

[3]

	

; r: 0

E

� � �

P [2]

�! � � �

D

�:

�

`

3

[1]; `

2

[2]; `

2

[3]

	

; r: 1

E

� � �

P [2]

�!

� � �

D

�:

�

`

3

[1]; `

3

[2]; `

2

[3]

	

; r: 0

E

� � � :

This computation consists of a �nite pre�x reaching the state

D

�:

�

`

3

[1]; `

3

[2]; `

2

[3]

	

; r: 0

E

;

followed by an in�nite repetition of a segment. The segment starts with both

P [1] and P [2] at `

3

. Then P [1] performs a complete cycle and ends back at `

3

,

followed by a similar cycle performed by P [2]. Throughout the segment, P [3]

waits at `

2

. The computation is compassionate with respect to P [3], even though

P [3] continuously waits at `

2

. This is because transition `

2

[3] is never enabled in

the in�nitely repeating segment, having r � 1 at all states of this segment.

This computation illustrates the possibility of P [1] and P [2] conspiring against

P [3], leaving it stranded at `

2

.

In Problem 3.3 the reader is requested to prove the weaker property of

communal accessibility N

2

> 0) 1 (N

3

> 0) for program INADEQUATE.

An Improved Solution

To remedy the fault of the previous solution, we must be able to assign priorities

to the di�erent processes. If the assignment of priorities is fair and the process

with highest priority is guaranteed to enter its critical section, then individual

accessibility will be ensured. We can look at the possession of the highest priority

as another resource, atomic this time, and implement its allocation by another

semaphore.

This leads to program Q-RES of Fig. 3.38. This program uses semaphore

variable p to grant high priority to precisely one process. The process that gains

this priority is allowed to make a request of the quanti�able resource r, and waits

until this request is granted. While this process is waiting, no other process can

make a request to r. Consequently, the only possible changes to r while this

process is waiting at `

3

are caused by processes that exit their critical section and

increment r by X[i]. Eventually r must become greater or equal to the quantity
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in M; N : integer where M > 0; N > 0

X : array [1::M ] of integer where 8i 2 [1::M ]: X[i] � N

local r; p : integer where r = N; p = 1

M

i=1

P [i] ::

2

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: request p

`

3

: request

�

r; X[i]

�

`

4

: release p

`

5

: critical

`

6

: release

�

r; X[i]

�

3

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 3.38. Program Q-RES (allocation of quanti�able resource).

requested by the waiting process. At that stage, the waiting process is granted its

request and relinquishes its high priority at `

4

on the way to the critical section.

Let us verify the correctness of program Q-RES.

� Safety

Exclusion requires the invariant

�

X

i2L

5

X[i]

�

� N .

This can be established by the invariants

�

0

: r � 0 ^ p � 0

�

1

: N

3;4

+ p = 1

�

2

:

�

X

i2L

4::6

X[i]

�

+ r = N .

In particular, exclusion is deducible from �

2

and r � 0.

� Individual accessibility

To show accessibility, we prove

at

�

`

2

[i] ) 1 at

�

`

5

[i].

The CHAIN-F diagram of Fig. 3.39 presents the proof of this property by rule

CHAIN-F.
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�

�

�

�

at

�

`

2

[i]

-

`

2

[i]

Lemma 1

�

�

�

�

at

�

`

3

[i]

-

`

3

[i]

Lemma 2

�

�

�

�

at

�

`

4

[i]

`

4

[i]

�

�


 	

�

at

�

`

5

[i]

Fig. 3.39. CHAIN-F diagram for accessibility.

The more interesting part of this diagram is the proof of eventual enableness

of transitions `

2

[i] and `

3

[i]. This is proved by Lemmas 1 and 2.

Lemma 1 at

�

`

2

[i] ) 1

�

at

�

`

2

[i] ^ p > 0

�

The nontrivial case is when p = 0 while P [i] is at `

2

[i]. Due to �

1

, this is possible

only if at

�

`

3;4

[j] for some j 2 [1::M ].

Therefore, we prove

at

�

`

2

[i] ^ at

�

`

3;4

[j] ) 1

�

at

�

`

2

[i] ^ p > 0

�

:

This is proven by the CHAIN-F diagram of Fig. 3.40.

�

�

�

�

at

�

`

3

[j]

-

`

3

[j]

Lemma 2

�

�

�

�

at

�

`

4

[j]




`

4

[j]

�


 	

�

p > 0

C

DE

F

at

�

`

2

[i]

Fig. 3.40. CHAIN-F for Lemma 1.

Note that this proof also relies on Lemma 2 to provide the eventual enableness of

`

3

[j].

Lemma 2 at

�

`

3

[i] ) 1

�

at

�

`

3

[i] ^ r � X[i]

�

The proof of this lemma requires the use of the well-founded rule. The case we

have to deal with is at

�

`

3

[i] ^ r < X[i]. Since X[i] � N , it follows that r < N .

According to �

2

, this can hold only if N

4::6

> 0. Since at

�

`

3

[i] and �

1

imply

N

4

= 0, it follows that N

5;6

> 0.
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�

�

�

�

'

2

: at

�

`

5

[k]

`

5

[k]




�

�

�

�

'

1

: at

�

`

6

[k]

`

6

[k]

��

�

`

6

[k]

�

�

C

DE

F

�k 2 [1::M ]: at

�

`

3

[i]; r < X[i]; N

4

= 0

�:L

5;6

�


 	

�

'

0

: at

�

`

3

[i] ^ r � X[i]

Fig. 3.41. CHAIN diagram for Lemma 2.

The lemma is proved by rule WELL-JP (Fig. 2.2), as shown in the CHAIN diagram

of Fig. 3.41.

The double edge connecting '

2

: at

�

`

5

[k] to '

1

: at

�

`

6

[k] represents a transition of

process P [k] from `

5

to `

6

. The two edges departing from '

1

: at

�

`

6

[k] represent a

movement of process P [k] from `

6

back to `

0

. Such movement decreases L

5;6

and

increases r. If, as a result of the increase, r becomes greater or equal to X[i], we

have reached the goal '

0

. This possibility is represented by the edge connecting

'

1

to '

0

. In the other case, r is smaller than X[i] even after the increase, and by

the previous argument r < X[i] and at

�

`

3

[i] imply L

5;6

6= ;, which means that,

for some other k 2 [1::M ], either at

�

`

5

[k] or at

�

`

6

[k] holds. This is represented

by the edge connecting '

1

to the compound node containing both '

2

and '

1

.

Note that as long as r < X[i], P [i] cannot move from `

3

to `

4

, and therefore N

4

remains zero and N

5;6

cannot increase.

This concludes the proof of accessibility. We remind the reader that most

of the solutions to the readers-writers problem (Fig. 2.26) can be viewed as a

special case of the quanti�able resource allocation. In these solutions, M = N

and X[i] = 1 for a reader, and X[i] =M for a writer.

Consequently, the program in Fig. 3.38 also provides a solution to the readers-

writers problem that ensures individual accessibility.

Response with Past Subformulas

Up to this point, we have only considered response formulas p) 1 q, in which p

and q are assertions. The generalization to the case that p or q are past formulas is

straightforward. As indicated in Section 1.6, this generalization replaces interme-

diate assertions by intermediate past-formulas, and implications by entailments.
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In Fig. 3.42, we present the general version of rule WELL-F. The other F-rules

can be generalized in a similar way.

For past formulas p and q = '

0

; '

1

; : : : ; '

m

,

transitions �

1

; : : : ; �

m

2 J [ C,

a well-founded domain (A;�), and

ranking functions �

0

; : : : ; �

m

: S 7! A

FW1. p )

m

_

j=0

'

j

FW2. �

�

^ '

i

)

2

6

6

4

m

_

j=1

('

0

j

^ �

i

� �

0

j

)

_ ('

0

i

^ �

i

= �

0

i

)

3

7

7

5

for every � 2 T

FW3. �

�

i

^ '

i

!

m

_

j=0

('

0

j

^ �

i

� �

0

j

)

FW4. If �

i

2 C, then

CW4. '

i

) 1

�

:'

i

_ En(�

i

)

�

Otherwise

JW4. '

i

) En(�

i

)

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

for i = 1; : : : ;m

p ) 1 q

Fig. 3.42. General version of rule WELL-F.

** 3.8 Completeness: State Response

In this and the following section we will show that rule WELL-F (Fig. 3.42) is

complete for proving P -validity of a given response formula

p ) 1 q.

We follow a strategy similar to the one taken in Chapters 1 and 4 of the SAFETY
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book and divide the proof into two steps. In the �rst step, covered in this section,

we show WELL-F to be complete for state response formulas, i.e., the case that p

and q are assertions. In a second step, covered in the next section, we use the

stati�cation techniques introduced in Chapter 4 of the SAFETY book to show that

completeness for the assertional case implies completeness for the general case in

which p and q are past formulas.

The precise statement of completeness for state response formulas is given

by the following theorem.

Theorem 3.2 (completeness of rule WELL-F, state response)

For every two assertions p and q such that

p ) 1 q

is P -valid, there exist

assertions q = '

0

, '

1

; : : : ; '

m

,

transitions �

1

; : : : ; �

m

2 J [ C,

a well-founded domain fA;�g, and

ranking functions �

0

; : : : ; �

m

: S 7! A,

such that the premises of rule WELL-F (Fig. 3.24) are provable from state

validities.

We prove the theorem in this section.

Preliminaries

Let P be a fair transition system with justice set J and compassion set C. We

refer to the union of J and C as the fairness set of P and denote it by F = J [C.

Assume that F = f�

1

; : : : ; �

m

g.

For the case that p and q are assertions, we will show that for every p and

q there exist intermediate assertions '

i

, one for each fair transition �

i

2 F ,

i = 1; : : : ;m, a well-founded domain (A;�), and ranking functions �

1

; : : : ; �

m

such that premises FW1{FW3 and subpremise JW4 are satis�ed as P -state valid

implications, and subpremise CW4 is P -valid. From the corollary to the com-

pleteness theorem of state invariances (Section 2.5 of the SAFETY book) it follows

that premises FW1{FW3 and subpremise JW4 are provable from state validities.

Subpremise CW4 will be shown to be provable from state validities in the course

of the completeness proof.

An interesting conclusion of the completeness proof is that, while a �rst-order

language over the integers and additional data domains is adequate for express-

ing all the constructs required by the safety rules, it is no longer adequate for

expressing the necessary response constructs. Several extensions to the assertion
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language have been suggested. We will use the extension that allows notions such

as ordinals and �xpoints to write formulas that quantify over predicates.

In the construction of ranking functions, we intend to construct a single

ranking function �: S 7! A, and take �

1

= � � � = �

m

= �.

The Kernel of the Intermediate Assertions

The intermediate assertions '

1

; : : : ; '

m

we intend to construct have the common

form

'

i

: ' ^  

i

; for i = 1; : : : ;m.

Assertion ' is a common conjunct appearing in all '

i

's, to which we refer as the

kernel of '

1

; : : : ; '

m

.

Here, we de�ne the common assertion ' and argue that it can be expressed

in a �rst-order assertion language.

We de�ne a (P -)segment to be a �nite sequence of states [s

a

; : : : ; s

b

] such that

a � b and for every i, a � i < b, s

i+1

is a � -successor of s

i

for some transition

� of P . A segment [s

a

; : : : ; s

b

] is called (P -)accessible if state s

a

is P -accessible.

Obviously, if [s

a

; : : : ; s

b

] is accessible then there exists a P -computation containing

[s

a

; : : : ; s

b

] as a segment. A segment [s

a

; : : : ; s

b

] is called q-free if no s

i

, a � i � b,

satis�es q.

We say that [s

a

; : : : ; s

b

] is a (p; q)-segment if it is an accessible q-free segment

such that s

a

q p. Based on this notion, we de�ne an assertion Q such that

s q Q $ there exists a (p; q)-segment [s

a

; : : : ; s

b

] where s

b

= s.

Thus, Q characterizes all states that can appear as last states in a (p; q)-segment.

The de�nition implies that s satis�es Q if and only if there exists a pre�x [s

0

; : : : ; s

b

]

of a P -computation, such that s

b

= s and there exists a position a, 0 � a � b,

such that p holds at a and no position i, a � i � b, satis�es q.

Our interest in Q is motivated by the following claim.

Claim 3.3 (characterizes q-pending states)

Assume that p) 1 q is P -valid and that � is a P -computation such that Q

holds at position i � 0. Then q holds at some position k � i (in fact k > i).

Or equivalently:

if p) 1 q is P -valid then so is the response formula Q) 1 q.

Thus, Q characterizes all states that must have a following q in all computations.

Justi�cation To justify the claim, let s = s

i

be the state appearing at position

i of �. Consider the in�nite sequence s

i+1

; s

i+2

; : : : obtained by removing the
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pre�x s

0

; : : : ; s

i

from �. By de�nition of Q, there exists a pre�x bs

0

; : : : ; bs

b

such

that bs

b

= s, bs

a

q p for some a, 0 � a � b, and bs

j

q= q for all j, a � j � b. Consider

the spliced sequence

e�: bs

0

; : : : ; bs

b

; s

i+1

; s

i+2

; : : : .

Since bs

b

= s = s

i

, this sequence is obviously a computation and p holds at position

a of e�. Since p ) 1 q is P -valid there exists some position r � a such that q

holds at position r of e�. Since q cannot hold at any j, a � j � b, it follows that

r > b. It follows that q holds at position k of the original computation �, where

k = r � b+ i > i.

Using the techniques of Section 2.5 of the SAFETY book, we can write a �rst-

order formula '(V ) using dynamic arrays which expresses Q. We take ' = Q to

be the common part of the intermediate assertions.

Example Consider program UP-DOWN of Fig. 3.43 (see also Fig. 1.27). The

response property

y = 10

| {z }

p

) 1 y = 5

| {z }

q

is valid over this program.

local x; y: integer where x = y = 0

P

1

::

2

6

6

6

6

6

4

`

0

: while x = 0 do

`

1

: y := y + 1

`

2

: while y > 0 do

`

3

: y := y � 1

`

4

:

3

7

7

7

7

7

5

P

2

::

�

m

0

: x := 1

m

1

:

�

Fig. 3.43. Program UP-DOWN.

The kernel assertion Q, relative to p: y = 10 and q: y = 5, can be given by

Q: acc

P

^ y > 5,

where

acc

P

: (at

�

m

0

^ at

�

`

0;1

^ x = 0 _ at

�

m

1

^ at

�

`

0::4

^ x = 1) ^

y � at

�

`

3

^ (at

�

`

4

! y = 0)
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characterizes all the accessible states for this program.

Note that if we observe a state s in which y = 6 in a computation �, it does

not necessarily imply that a pre�x containing a (y = 10)-position is part of that

computation. The value 6 may well be the highest value attained by y in �. We

are only guaranteed that there exists some pre�x (possibly not present in �) con-

taining a (y = 10)-position and ending in our (y = 6)-state without encountering

a (y = 5)-position in between. However, the preceding claim guarantees that

every (y = 6)-position is followed by a (y = 5)-position.

We denote by kQk the set of all states satisfying Q. A segment �: [s

a

; : : : ; s

b

]

is called a Q-segment if s

i

q Q for every i 2 [a::b].

A Primary Order

The identi�cation of the ranking functions, mapping states into a well-founded

domain, is based on the identi�cation of a well-founded ordering over the states

of the program.

For a segment �: [s

a

; : : : ; s

b

], we say that � leads from s

a

to s

b

. Transition

�

i

2 F is said to be grati�ed in a segment �: [s

a

; : : : ; s

b

] if

� �

i

is taken in �, or

� �

i

2 J � C and �

i

is disabled on some s

j

, j 2 [a::b].

We denote by grat(�) the index set of the transitions that are grati�ed in �

grat(�): fi j �

i

2 F is grati�ed in �g.

A segment � is called fair if it grati�es all fair transitions, i.e., grat(�) =

[1::m]. Note that a compassionate transition � 2 C is considered to be grati�ed

in � if it is taken in �. In this, the compassionate transitions di�er from just

transitions which can be grati�ed also by being disabled somewhere in �.

Example Consider program UP-DOWN of Fig. 3.43. The set of fair transitions for

this program consists of the just transitions `

0

, `

1

, `

2

, `

3

, and m

0

. The segment

�

1

:




�: f`

0

;m

0

g; x: 0; y: 5

�

;




�: f`

1

;m

0

g; x: 0; y: 5

�

is not fair. Segment �

1

grati�es transitions `

0

, `

1

, `

2

, and `

3

but does not gratify

m

0

. Note that `

0

{`

3

are grati�ed since each has a state within �

1

on which the

transition is disabled.

On the other hand, the following extension of �

1

,

�

2

:




�: f`

0

;m

0

g; x: 0; y: 5

�

;




�: f`

1

;m

0

g; x: 0; y: 5

�

;




�: f`

1

;m

1

g; x: 1; y: 5

�

is fair since it grati�es all fair transitions.



c

 Z. Manna and A. Pnueli, 10 November 1996. Not for Distribution

3.8 Completeness: State Response 209

We de�ne a binary relation A between states in kQk as follows:

s

1

A s

2

i� there exists a fair Q-segment leading from s

1

to s

2

.

Claim 3.4 (well-foundedness of A)

The relation A is a well-founded order over kQk.

Justi�cation We start by showing that A is a well-founded relation over kQk.

Assume to the contrary, that there exists an in�nite sequence of states s

1

; s

2

; : : : 2

kQk, such that

s

1

A s

2

A � � � .

By the de�nition of Q and the meaning of A, there exists an in�nite sequence

of states as follows

q-free and fair

z }| {

�: s

0

; : : : ; s

a

; : : : ; s

1

| {z }

q-free

; : : : ; s

2

; : : : ; s

3

| {z }

q-free and fair

; : : :

where s

a

q p. This sequence satis�es the fairness requirement since in each seg-

ment [s

i

; : : : ; s

i+1

] each transition �

i

2 C is either taken at least once or is disabled

on all states in the segment, and each transition �

i

2 J � C is either taken or

disabled on some state in the segment. On the other hand, p holds at position

a of � and q does not hold at any position j � a, in violation of our assumption

that p) 1 q is P -valid.

Next, we show that A is an ordering relation over kQk. Relation A is anti-

symmetric. This is because the existence of s

1

, s

2

such that s

1

A s

2

and s

2

A s

1

gives rise to the in�nitely descending sequence

s

1

A s

2

A s

1

A s

1

A � � � ,

which violates the just-proven well-foundedness of A. Irre
exivity is proven in

the same way by taking s

1

= s

2

. Transitivity follows from the de�nition of A.

Namely, if there exists a fair Q-segment s

a

; : : : ; s

b

and a fair Q-segment s

b

; : : : ; s

c

,

then the Q-segment s

a

; : : : ; s

b

; : : : ; s

c

obtained by dove-tailing these two segments

is fair and establishes s

a

A s

c

.

Example Consider program SKIP2 presented in Fig. 3.44.

The set of fair (just) transitions for this program is:

F : f�

1

: `

1

; �

2

: `

E

2

; �

3

: `

3

; �

4

: `

4

; �

5

: `

X

2

g,

where `

E

2

and `

X

2

are the entry and exit transitions from the cooperation statement

`

2

.

The response property we investigate for program SKIP2 is
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2

6

6

4

`

1

: skip

`

2

:

h

[`

3

: skip; `

5

: ] [`

4

: skip; `

6

: ]

i

`

7

:

3

7

7

5

Fig. 3.44. Program SKIP2.

at

�

`

3

^ at

�

`

4

| {z }

p

) 1 at

�

`

7

| {z }

q

:

The corresponding assertion Q should characterize all the states which can be

reached from accessible states satisfying p: at

�

`

3

^at

�

`

4

without passing through

a state satisfying q: at

�

`

7

. Therefore, Q is given by

Q: at

�

`

3;5

^ at

�

`

4;6

.

�

�

�

�

s

5;4

: h�: f`

5

; `

4

gi

A

�

�

?

�

�

�

�

s

3;6

: h�: f`

3

; `

6

gi

A

�

�

?

�

�

�

�

s

3;4

: h�: f`

3

; `

4

gi

A

?
�

�

�

�

s

5;6

: h�: f`

5

; `

6

gi

Fig. 3.45. Q-states of program SKIP2 related by A.

In Fig. 3.45, we present the four Q-states of this program and their ordering

by relation A. For example, segment [s

5;4

; s

5;6

] is fair, i.e., grati�es all fair tran-

sitions �

1

{�

5

: it grati�es �

1

, �

2

, �

3

, and �

5

(i.e., `

1

, `

E

2

, `

3

, and `

X

2

) because they

are all disabled on s

5;4

; it grati�es �

4

: `

4

by taking this transition in the step from

s

5;4

to s

5;6

.

On the other hand, the segment [s

3;4

; s

5;4

] is not fair since it does not gratify

`

4

, which is enabled on all states in the segment but not taken there. This is

why there is no A-labeled edge connecting s

3;4

to s

5;4

in Fig. 3.45, nor is there a

A-labeled edge from s

3;4

to s

3;6

.
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The Primary Order is Too Coarse

Order A is a good �rst approximation to the order we need. It is well-founded

and measures progress in the sense that when the system moves from state s

1

to

state s

2

such that s

1

A s

2

, a progress step has been taken. This is because the

system cannot take in�nitely many such steps.

Unfortunately, the order A only provides a coarse measure of progress. Re-

consider program SKIP2 presented in Fig. 3.44 and the A-ordering of its Q-states

in Fig. 3.45.

Clearly, every step leading from one Q-state to another represents progress

towards the goal q: at

�

`

7

. However, the order A identi�es only segments leading

to s

5;6

as observable progress. In particular, it does not identify the moves from

s

3;4

to either s

5;4

or s

3;6

as observable progress. It is possible to conclude that A

successfully measures coarse progress but is insensitive to �ner progress.

As a �rst step in the re�nement of A, we �nd a ranking function into a

well-founded domain, whose ordering is compatible with A.

Mapping into the Ordinals

As a �rst approximation of the well-founded domain (A;�), we take (O; >), where

O is the domain of the ordinals and > is the natural order over the ordinals.

We remind the reader that the ordinals are obtained by extending the se-

quence of natural numbers beyond the �nite naturals. There are very few facts

about the ordinals that are required in our proof here. Following is a list of some

of these properties:

� Every natural number is an ordinal. We refer to the naturals as the �nite

ordinals.

� There is a total order < on the ordinals which generalizes the \smaller than"

ordering over the naturals.

� Some ordinals � are the immediate successors of another ordinal �, and we

write � = � + 1. Others are limit ordinals and are de�ned as the smallest

ordinal greater than (least upper bound of) all ordinals in a given set. For

example, ! is the limit ordinal obtained as the least upper bound of all �nite

ordinals, and is usually described as the �rst in�nite ordinal. The ordinal

! + 1 is a non-limit ordinal and is the immediate successor of !.

� The order > (\greater than") is well-founded over the ordinals.

� There exists an induction principle over the ordinals, called trans�nite induc-

tion, which generalizes the complete induction principle over the naturals. It

can be stated as
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8�

�

�

8� < �:'(�)

�

! '(�)

�

! 8
:'(
).

This principle claims that if we can prove the induction step then the property

' holds for every ordinal. The induction step requires showing, for every �,

that if '(�) for all � < � then ' holds for ordinal �.

Ordinals are not so mysterious as they may sometimes appear to be. In fact, we

have already introduced and extensively used structures that are isomorphic to

the low in�nite ordinals.

A lexicographic pair of natural numbers (m;n) can be faithfully considered

as an isomorphic representation of the ordinal ! �m+ n. To see this, we observe

that lexicographic pairs of the form (0; n) are isomorphic to the naturals, with

(0; n) corresponding to n. The pair (1; 0), like !, is the smallest pair which is

bigger than all the pairs in the in�nite set

�

(0; n) j n � 0

	

.

Our proof relies on the following general theorem.

Theorem 3.5 (embedding within the ordinals)

Let A be a well-founded ordering over a set S. Then, there exists a (ranking)

function �

�

: S 7! O such that:

(a) sA s

0

implies �

�

(s) > �

�

(s

0

).

(b) If �

�

(s) = � and � < �, then there exists an element s

0

such that

�

�

(s

0

) = � and sA s

0

.

(c) If s

0

A s

00

implies sA s

00

for every s

00

2 S, then �

�

(s) � �

�

(s

0

).

The theorem can be proven, using a trans�nite construction that assigns a value

�

�

(s) to an element s, based on the values �

�

(s

0

) assigned to all s

0

@ s. The

constrruction is de�ned as follows:

� �

�

(s) = 0 for all A-minimal elements of S, i.e., elements s such that there

exists no s

0

@ s.

� For all other s 2 S, �

�

(s) is the least upper bound of �

�

(s

0

) + 1 for all s

0

@ s.

Example Consider system LEX presented in Fig. 3.46. Transition �

1

of this

system sets x to zero and sets y to an arbitrary positive integer value. Transition

�

1

can be taken only once since it sets x to 0 which disables �

1

for any future

activation. Transition �

2

can be taken as long as y > 0 and always sets y to a

nonnegative value which is smaller than its value before the transition. Obviously,

any computation of this systems takes �

1

once and takes �

2

�nitely many times

until it terminates in the state hx: 0; y: 0i.

Assume we wish to prove for this system the following response property.

x = y = 1

| {z }

p=�

) 1

�

x = y = 0

| {z }

q

�

.
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V : fx; y : integerg

�: x = y = 1

T : f�

I

; �

1

; �

2

g where �

�

1

: x > 0 ^ x

0

= 0 ^ y

0

> 0

�

�

2

: x = 0 ^ y > 0 ^ x

0

= x ^ 0 � y

0

< y

J : f�

1

; �

2

g

C: ;

Fig. 3.46. System LEX.

States of this system consist of pairs of integers (m;n), where m and n are

the current values of x and y, respectively. Clearly, the set of Q-states is given by

kQk:

�

(1; 1)

	

[

�

(0; n) j n > 0

	

:

Consider the primary ordering A, holding between (m

1

; n

1

) and (m

2

; n

2

) 2

kQk if there exists a fair Q-segment connecting (m

1

; n

1

) to (m

2

; n

2

). It can be

shown that the order A is given by

(m

1

; n

1

) A (m

2

; n

2

): (m

1

; n

1

) � (m

2

; n

2

) ^ m

2

= 0 ^ n

2

> 0,

where � is the lexicographic ordering over kQk. The condition m

2

= 0 follows

from the observation that any fair segment must either take �

1

which sets x to 0,

implying m

2

= 0, or have �

1

disabled on some state of the segment, which also

implies m

2

= 0. The consequence of this condition is that any two states of the

form (1; n

1

) and (1; n

2

) are unrelated by A. The condition n

2

> 0 excludes from

consideration the state (0; 0) which satis�es q.

Applying the described bottom-up construction of the mapping �

�

, we ob-

serve the following:

� (0; 1) is the least element of kQk, hence �

�

�

(0; 1)

�

= 0.

� �

�

�

(0; 2)

�

is the least upper bound of �

�

�

(m;n)

�

+ 1 for all (m;n)�(0; 2).

Since the only element smaller than (0; 2) is (0; 1), we compute

�

�

�

(0; 2)

�

= least-upper-bound

�

f1g

�

= 1.

In a similar way, we can show that

�

�

�

(0; n+ 1)

�

= n

for every natural n.

� Next consider �

�

�

(1; 1)

�

. State (1; 1) dominates all states (0; n). Conse-

quently, denoting least-upper-bound by l.u.b, we obtain
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�

�

�

(1; 1)

�

= l.u.b

�

�

�

�

((0; n+ 1)) + 1 j n 2 N

	

�

= lubfn+ 1 j n 2 Ng = !.

Let us return to the general case of the primary order A holding between states s

and s

0

if there exists a fair Q-segment connecting s to s

0

. Applying the embedding

theorem to A, we obtain a mapping �

�

from the program states to the ordinals

O.

The following statement identi�es a property satis�ed by the mapping �

�

.

Property P0 If s 2 kQk and s

0

is a P -successor of state s, not satisfying

q, then s

0

2 kQk and �

�

(s) � �

�

(s

0

).

Justi�cation From the de�nition of Q it follows that if s

0

, a P -successor of

some s 2 kQk, does not satisfy q it is reachable by a (p; q)-pre�x and, therefore,

belongs to kQk. Let s

00

be such that s

0

A s

00

. By de�nition of A, there exists a

fair Q-segment �: [s

0

; : : : ; s

00

]. Obviously, the segment [s; s

0

; : : : ; s

00

] is also a fair

Q-segment, implying sA s

00

. Thus, s

0

A s

00

implies sA s

00

for every s

00

. By clause

(c) of the embedding theorem, it follows that �

�

(s) � �

�

(s

0

).

The Secondary Ranking

We can view the mapping �

�

as a �rst approximation to our desired ranking func-

tion. Unfortunately, it did not remedy our complaint about A being insensitive

to �ne progress. For example, the mapping �

�

, corresponding to the fundamental

order presented in Fig. 3.45, is the following.

�

�

(s

3;4

) = �

�

(s

5;4

) = �

�

(s

3;6

) = 1, �

�

(s

5;6

) = 0.

This primary rank is presented in Fig. 3.47.

As we see, there is no observable progress (according to the measure �

�

) when

the program moves from s

3;4

to s

5;4

or from s

3;4

to s

3;6

.

We proceed to de�ne a secondary ranking which, together with �

�

, will form

our �nal ranking function. Looking at the diagram of Fig. 3.47, we see that the

three states s

3;4

, s

5;4

, and s

3;6

are situated on a plateau de�ned by �

�

= 1.

However, in the order of execution, s

5;4

and s

3;6

are \closer to the edge" of the

plateau than state s

3;4

. How can we measure this closeness? A possible measure

could be the \size" of possible paths that are all located within the tableau. Thus,

s

3;4

is further away from the edge of the plateau since it has a path of length 2,

traversing states that all have �

�

= 1. States s

5;4

and s

3;6

are closer to the edge

since they only have paths of length 1.

In the simple example shown here, we could take the \size" of the path to

be simply its length. However, in many cases this is not the right measure, since
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�

�

�

�

s

3;4

: h�: f`

3

; `

4

gi

�

�

�

�

s

5;4

: h�: f`

5

; `

4

gi

�

�

�

�

s

3;6

: h�: f`

3

; `

6

gi

�

?

�

?

�

��

�

�

�

: 1

�

-

�

�

�

�

�

�

s

5;6

: h�: f`

5

; `

6

gi

�

�

: 0

Fig. 3.47. Q-states of program SKIP2 ranked by �

�

.

states may have in�nite paths all with the same value of �

�

. The relevant \size"

of a path in our case is the number of transitions it grati�es.

For a segment �, we de�ne the de�cit of �, denoted by �(�), to be the

smallest natural number i � 1 such that i =2 grat(�), i.e., �

i

is not grati�ed by �.

If � is fair we de�ne �(�) = m + 1.

We use the de�cit as the measure of the \size" of a segment. Note that it

is related to the number of transitions grati�ed by a segment, since if grat(�) �

grat(�

0

) then �(�) � �(�

0

).

A (Q-)segment �: [s

a

; : : : ; s

b

] is called leveled if �

�

(s

a

) = �

�

(s

a+1

) = � � � =

�

�

(s

b

). This corresponds to the previously discussed notion of a segment that is

fully contained in a plateau, de�ned by the value of �

�

(s

a

) which is common to

all states in the segment. We de�ne the height of a state s, denoted by h(s), by

h(s) = max

n

�

�

[s = s

a

; : : : ; s

b

]

�

j �(s

a

) = � � � = �(s

b

)

o

:

That is, h(s) is the maximal de�cit over all leveled segments originating at s. This

corresponds to the intuition of the distance from the edge of the plateau along

leveled segments.

Example Consider the ranking by �

�

on the states presented in Fig. 3.47.

Segments [s

3;4

; s

5;4

] and [s

3;4

; s

3;6

] are leveled. Segments [s

5;4

; s

5;6

] and [s

3;4

;

s

5;4

; s

5;6

] are not leveled.

There are three leveled Q-segments originating at s

3;4

: [s

3;4

]; [s

3;4

; s

5;4

], and

[s

3;4

; s

3;6

]. Segment [s

3;4

] grati�es all pair transitions except for �

3

: `

3

and �

4

: `

4

.

Consequently, its de�cit is �

�

[s

3;4

]

�

= 3. Segment [s

3;4

; s

5;4

] grati�es all fair

transitions except for �

4

: `

4

. Consequently, its de�cit is �

�

[s

3;4

; s

5;4

]

�

= 4.

Segment [s

3;4

; s

3;6

] grati�es all fair transitions except for �

3

: `

3

. Consequently
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�

�

[s

3;4

; s

3;6

]

�

= 3. Taking the maximum over f3; 4g, we obtain the height of s

3;4

as h(s

3;4

) = 4.

The only leveled Q-segment originating at s

5;4

is the singleton segment [s

5;4

]

which grati�es all fair transitions except for �

4

: `

4

and �

5

: `

X

2

. Consequently,

h(s

5;4

) = 4.

In a similar way, h(s

3;6

) = 3 and h(s

5;6

) = 5.

The Final Ranking

The �nal ranking � that is intended to satisfy premises FW2 and FW3 combines

the primary ranking �

�

with the secondary ranking induced by comparing state

heights.

As the well-founded domain, we take the lexicographic product

(A; �): (O; >) �

�

[1::m+ 1]; >

�

:

Thus, elements of A are pairs (�; k), where � 2 O is an ordinal and k 2 [1::m+1].

The ranking function, mapping states into elements of A, is given by

�(s):

�

�

�

(s); h(s)

�

:

This de�nition of �(s) applies only to states which satis�es Q. To complete

the de�nition, we de�ne

�(s) = (0; 0),

for all states that do not satisfy Q. An immediate consequence of this de�nition

is that

�(s

1

) � �(s

2

)

for every s

1

2 kQk and s

2

=2 kQk. This is because �

0

(s) � 0 and h(s) > 0 for

every s 2 kQk.

Rule WELL-F allows us to have a di�erent ranking function �

i

for each i =

0; 1; : : : ;m. However, in the proof of completeness we do not use this option, and

take �

i

= � for all i = 0; : : : ;m.

Example We return to program SKIP2. In Fig. 3.48 we present the ordering

between the states as determined by the complete rank �.

As we see in the diagram, states s

3;4

and s

5;4

have equal ranks (1; 4). This

is because they both have �

�

= 1 and have height 4. State s

3;4

is higher than

s

3;6

because �

�

(s

3;4

) = �

�

(s

3;6

) = 1 but h(s

3;4

) = 4 > 3 = h(s

3;6

). States s

5;4

and s

3;6

are higher than s

5;6

because �(s

5;4

) = (1; 4) > (0; 5) = �

�

(s

5;6

) and

�(s

3;6

) = (1; 3) � (0; 5) = �(s

5;6

).

Thus, the full ranking � identi�es the step from s

3;4

to s

3;6

as observable
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#

"

 

!

s

3;4

: h�: f`

3

; `

4

gi

R

�

#

"

 

!

s

5;4

: h�: f`

5

; `

4

gi

R

�

#

"

 

!

s

3;6

: h�: f`

3

; `

6

gi

�: (1; 3)

	

�

#

"

 

!

s

5;6

: h�: f`

5

; `

6

gi

�: (0; 5)

��

�

� : (1; 4)

Fig. 3.48. States of program SKIP2 ranked by �.

progress but not the step from s

3;4

to s

5;4

. The reason for this lack of symmetry

will become apparent later.

There are several properties that the de�ned constructs satisfy.

Property P1 If s 2 kQk then h(s) � m.

This is because h(s) = m + 1 implies the existence of a leveled Q-segment s =

s

a

; : : : ; s

b

which grati�es all the fair transitions. However, in this case, s

a

; : : : ; s

b

is

fair and therefore s

a

A s

b

, contradicting the assumption that s

a

; : : : ; s

b

is leveled.

Property P2 If s; s

0

2 kQk and s

0

is a successor of s then �(s)< �(s

0

).

Property P0 already established �

�

(s) � �

�

(s

0

). If �

�

(s) > �

�

(s

0

) we are done.

It remains to consider the case �

�

(s) = �

�

(s

0

) and show that h(s) � h(s

0

). Let

h(s

0

) = j. By de�nition of the height h, there exists a leveled Q-segment �: [s

0

::s

b

]

such that �(�) = j. The segment e�: s; s

0

; : : : ; s

b

is a leveled

�

�

�

(s) = �

�

(s

0

)

�

Q-segment originating at s. Since e� extends �, grat(e�) � grat(�) and therefore

�(e�) � �(�) = j. Since h(s) is the maximal de�cit over all leveled Q-segments

originating at s, and e� is one of them, it follows that h(s) � �(e�) � j = h(s

0

),

leading to the required inequality.
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Property P3 If s; s

0

2 kQk, h(s) = i, and s

0

is a �

i

-successor of s, then

�(s) � �(s

0

).

By P2, �(s)< �(s

0

). If �

�

(s) > �

�

(s

0

), we are done. Therefore, consider the case

�

�

(s) = �

�

(s

0

) and let h(s

0

) = j. Since �(s)< �(s

0

), it follows that i � j. It

remains to show that i 6= j. Assume, to the contrary, that i = j. As before,

let �: [s

0

; : : : ; s

b

] be a leveled Q-segment realizing the de�cit �(�) = j. This

means that � grati�es all fair transitions �

k

, k < j, but does not gratify �

j

.

Consider again the extended segment e�: [s; s

0

; : : : ; s

b

]. This segment grati�es all

the transitions grati�ed by � and, in addition, also grati�es �

i

= �

j

since �

i

is

taken in the step from s to s

0

. It follows that �(e�) > i. This contradicts the

de�nition of h(s) as being the maximalde�cit of all leveled Q-segments originating

at s.

The Intermediate Assertions

In the next step of the proof, we construct the intermediate assertions '

1

; : : : ; '

m

,

required by rule WELL-F. For each i = 1; : : : ;m, we de�ne

'

i

: Q ^ h = i.

Thus, '

i

is satis�ed by all Q-states whose height is precisely i.

To complete the de�nition, we take

'

0

: q.

The following property is a consequence of the de�nition of the intermediate

assertions.

Property P4 If s 2 kQk, then s satis�es one of '

1

; : : : ; '

m

.

To prove this statement, let s be a state satisfying Q. It has a de�ned height

h(s) = j which, by P1, is in the range j 2 [1::m]. Consequently, s satis�es

'

j

: Q ^ h = j.

Example For the response property at

�

`

3

^ at

�

`

4

) 1 at

�

`

7

of program

SKIP2, we obtain

'

0

= q : at

�

`

7

'

1

: at

�

`

3;5

^ at

�

`

4;6

| {z }

Q

^ h = 1 � F

'

2

: at

�

`

3;5

^ at

�

`

4;6

^ h = 2 � F

'

3

: at

�

`

3;5

^ at

�

`

4;6

^ h = 3 � at

�

`

3

^ at

�

`

6

'

4

: at

�

`

3;5

^ at

�

`

4;6

^ h = 4 � at

�

`

3;5

^ at

�

`

4
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'

5

: at

�

`

3;5

^ at

�

`

4;6

^ h = 5 � at

�

`

5

^ at

�

`

6

:

The assertions are simpli�ed based on the full knowledge of the four Q-states and

their heights.

Claim 3.3 implies that the response formula Q ) 1 q is P -valid. Since

'

i

: Q ^ h = i implies Q we conclude that for every i = 1; : : : ;m, the response

formula

'

i

) 1 q

is also P -valid.

Proving the Premises

The construction of '

0

; : : : ; '

m

concludes the development of all the constructs

needed for rule WELL-F.

We proceed to show that all premises are satis�ed by these constructs. All

premises, excluding CW4, are implications ' !  that have to be shown as

P -state valid. To prove this, it is su�cient to show that any P -accessible state

satisfying ' also satis�es  .

� Premise FW1. This premise requires

p !

m

_

j=0

'

j

.

Let s be an accessible state satisfying p. If s satis�es q = '

0

, we are done.

Otherwise, s satis�es assertion Q since it is reachable by the singleton (p; q)-

segment [s]. By P4, s satis�es '

j

: Q ^ h = j for some j 2 [1::m].

� Premise FW2. This premise requires

�

�

^ '

i

!

m

_

j=0

('

0

j

^ � � �

0

) _ ('

0

i

^ � = �

0

).

Let s be a state satisfying '

i

: Q ^ h = i and let s

0

be a � -successor of s. If s

0

satis�es q = '

0

, we are done. Otherwise, s

0

satis�es Q, then, by P4, '

0

j

holds for

some j 2 [1::m] and, by P2, �(s)< �(s

0

) which means that either �

�

(s) > �

�

(s

0

)

or �

�

(s) = �

�

(s

0

) and h(s) � h(s

0

). If �

�

(s) > �

�

(s

0

) or �

�

(s) = �

�

(s

0

) and

h(s) > h(s

0

), then �(s) � �(s

0

). Otherwise, �

�

(s) = �

�

(s

0

) and h(s) = h(s

0

) which

implies �(s) = �(s

0

) and that '

0

i

= '

i

(s

0

) = Q(s

0

) ^ h(s

0

) = i holds.

� Premise FW3. This premise requires

�

�

i

^ '

i

!

m

_

j=0

('

0

j

^ � � �

0

).
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Let s be a state satisfying '

i

: Q ^ h = i and s

0

a �

i

-successor of s. If s

0

satis�es

q = '

0

, we are done. Otherwise s

0

satis�es Q and, therefore, by P4, '

0

j

for some

j 2 [1::m]. Also, by P3, �(s) � �(s

0

).

Premise FW4 consists of the two subpremises: CW4 and JW4. We consider

JW4 �rst.

� Subpremise JW4. This subpremise requires

'

i

! En(�

i

).

Let s be a state satisfying '

i

: Q ^ h = i. By the de�nition of h, there exists a

leveled Q-segment �: [s; : : : ; s

b

] whose de�cit is �(�) = i. This implies that �

i

is

not grati�ed in �.

Transition �

i

must be enabled on s because otherwise, �

i

would have been grati�ed

in �.

� Subpremise CW4. This subpremise requires a proof of

'

i

) 1

�

:'

i

_ En(�

i

)

�

:

All other premises considered previously were implications of state formulas. Since

our statement of completeness is relative to state validities it was enough to show

that premises FW2, FW3, and subpremise JW4 are state valid and that premise

FW1 is P -state valid.

Subpremise CW4 is a temporal formula. Consequently, we have to show that its

proof can be syntactically reduced, perhaps using rule WELL-F again, to state and

P -state validities.

We begin by showing that '

i

) 1

�

:'

i

_ En(�

i

)

�

is P

�i

-valid where P

�i

is

the fair transition system obtained from P by removing transition �

i

from the

compassion set C

P

. This is motivated by the observation that, if we are currently

at position j where �

i

is disabled and are working towards the �rst position k > j

where �

i

becomes enabled, then �

i

cannot be taken between j and k. Therefore,

the computation segment between j and k is also a computation segment of the

simpler system P

�i

.

Assume to the contrary, that '

i

) 1

�

:'

i

_ En(�

i

)

�

is not P

�i

-valid. Then,

there exists a computation � of P

�i

and a position j � 0, such that '

i

holds and

�

i

is disabled at all positions k � j. Since �

i

is continually disabled beyond j, � is

also a computation of the complete system P . In particular, � is fair with respect

to �

i

which is never taken due to the continual disableness of �

i

. Furthermore,

'

i

implies Q which implies :q. It follows that q never holds beyond j leading to

the fact that Q) 1 q does not hold on �, a computation of P . This contradicts

a corollary of Claim 3.3. We therefore conclude that '

i

) 1

�

:'

i

_ En(�

i

)

�

is

P

�i

-valid.

Next, we show that subpremise CW4 is not only P

�i

-valid but can be proven from
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state validities. This is the time to explain to the reader that the completeness

proof is done by induction on �, the number of compassionate transitions.

If � = 0 then we are never called to establish subpremise CW4. Therefore all

necessary premises and subpremises are state formulas and it is su�cient to show

that they are state or P -state valid as we have done in the previous discussion.

If � > 0 then system P

�i

has only � � 1 < � compassionate transitions since �

i

is compassionate. By the induction hypothesis, rule WELL-F is complete for such

systems. It follows that the response formula '

i

) 1

�

:'

i

_ En(�

i

)

�

, which has

been shown to be P

�i

-valid, is provable by a (recursive use of) rule WELL-F.

This concludes the proof of completeness of rule WELL-F for proving response

formulas p) 1 q for the case that p and q are assertions.

Example We illustrate the generation of the constructs needed for rule WELL-F

on an example. In particular, we wish to illustrate the principle of inductive

reduction by which compassionate transitions are removed one at a time.

Consider program SIMPLE-MUX presented in Fig. 3.49.

local y: integer where y = 1

P

1

::

2

6

6

6

6

6

6

4

`

0

: while y = 1 do

2

6

4

`

1

: y := y � 1

`

2

: critical

`

3

: y := y + 1

3

7

5

`

4

:

3

7

7

7

7

7

7

5

P

2

::

�

m

0

: request y

m

1

:

�

Fig. 3.49. Program SIMPLE-MUX.

This program can be viewed as a simpli�ed version of program MUX-SEM

presented in Fig. 3.1.

The property in which we are interested is

 : at

�

m

0

| {z }

p

) 1 at

�

m

1

| {z }

q

;

claiming that process P

2

eventually terminates. This formula is obviously valid

over SIMPLE-MUX. We follow the process outlined in the completeness proof to

show how formula  can be veri�ed over SIMPLE-MUX, using rule WELL-F.
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Constructing Assertion Q

In this simple case, we can explicitly enumerate the set of accessible states. In

Fig. 3.50 we present a state-transition graph which displays the accessible states

of program SIMPLE-MUX and the transitions between them.

�

�

�

�

s

0;1

: at

�

`

0

�

�

�

�

s

1;1

: at

�

`

1

C

DE

F
y: 0

�

�

�

�

s

2;1

: at

�

`

2

�

�

�

�

s

3;1

: at

�

`

3

`

2

-

C

DE

F
y: �1

-

`

1

��

6

`

3

C

DE

Fat

�

m

1

�

�

�

�

s

0;0

: at

�

`

0

�

�

�

�

s

1;0

: at

�

`

1

`

0

-

C

DE

F
y: 1

�

�

�

�

s

2;0

: at

�

`

2

�

�

�

�

s

3;0

: at

�

`

3

`

2

-

C

DE

F
y: 0

-

`

1

��

6

`

3

C

DE

Fat

�

m

0

?

m

0

?

m

0

�

�

�

�

s

4;1

: at

�

`

4

^ at

�

m

1

^ y = 0

?

`

0

Fig. 3.50. A state-transition graph for program SIMPLE-MUX.

Assertion Q characterizes all the states which are reachable from an accessible

(p: at

�

m

0

)-state by a (q: at

�

m

1

)-free segment. This includes the states

kQk: fs

0;0

; s

1;0

; s

2;0

; s

3;0

g.

Therefore, we can take for Q the assertion

Q: (at

�

`

0;1

^ y = 1 _ at

�

`

2;3

^ y = 0) ^ at

�

m

0

.

Constructs A, �

�

, h, �, '

i

, and �

i

The fair transitions of program SIMPLE-MUX consist of the just transitions `

0

, `

1

,

`

2

, `

3

and the compassionate transition m

0

. We list them in the following order:

F : f�

1

: `

0

; �

2

: `

1

; �

3

: `

2

; �

4

: `

3

; �

5

:m

0

g.

Examining the graph of Fig. 3.50, where the set kQk occupies the top row of states,

we observe that there is no Q-segment which grati�es all the �ve fair transitions.
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In particular, no Q-segment grati�es �

5

:m

0

. It follows that the order A is empty,

i.e.,

A: ;.

This makes the task of computing �

�

trivial, leading to

�

�

(s) = 0 for all s 2 kQk.

Next, we compute the height function h(s). Since �

�

(s) = 0 for all Q-states, there

is a leveled Q-segment departing from each Q-state which grati�es the transitions

f`

0

; `

1

; `

2

; `

3

g. The de�cit of such a segment is 5, corresponding to the ungrati�ed

transition �

5

:m

0

. We conclude that

h(s) = 5 for all s 2 kQk.

It follows that the full ranking function is

�(s) = (0; 5) for all s 2 kQk.

Consequently, there exists a single intermediate assertion ' = Q with a corre-

sponding helpful transition � = �

5

:m

0

.

It is not di�cult to check that all the premises of rule WELL-F, except CW4,

are P -state valid. It only remains to prove

CW4. (at

�

`

0;1

^ y = 1 _ at

�

`

2;3

^ y = 0) ^ at

�

m

0

| {z }

'=Q

)

1

�

:Q _ at

�

m

0

^ y = 1

| {z }

En(m

0

)

�

:

Proving CW4

To prove CW4, we reapply rule WELL-F with

p

�5

= Q: (at

�

`

0;1

^ y = 1 _ at

�

`

2;3

^ y = 0) ^ at

�

m

0

q

�5

: :Q _ (at

�

m

0

^ y = 1)

over program SIMPLE-MUX

�5

which is identical to program SIMPLE-MUX, except

that �

5

:m

0

is no longer considered compassionate. The removal of m

0

from the

compassion list does not change the behavior of the program in the segments of

interest, but has an e�ect on the auxiliary constructs.

Assertion Q

�5

Assertion Q

�5

should characterize all states which are reachable from an accessi-

ble p

�5

-state by a q

�5

-free segment. It is obvious that

kQ

�5

k = fs

2;0

; s

3;0

g.

Consequently,
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Q

�5

: at

�

`

2;3

^ at

�

m

0

^ y = 0.

Constructs A

�5

, �

�5

�

, h

�5

, �

�5

, '

�5

i

, and �

�5

i

Consider the q

�5

-free segments departing from Q

�5

-states. State s

2;0

initiates

the segment [s

2;0

; s

3;0

] which grati�es all the remaining four transitions `

0

, `

1

, `

2

,

and `

3

. Consequently, we set

A

�5

= (s

2;0

; s

3;0

)

which implies s

2;0

A

�5

s

3;0

.

Computing �

�5

�

, we get

�

�5

�

(s

2;0

) = 1 and �

�5

�

(s

3;0

) = 0.

It follows that s

2;0

has [s

2;0

] as the only departing leveled Q-segment with de�cit

3, corresponding to the ungrati�ed transition �

3

: `

2

. State s

3;0

has the departing

leveled Q-segment [s

3;0

] with de�cit 4, corresponding to �

4

: `

3

.

Consequently, we obtain two intermediate assertions with the following asso-

ciated constructs:

i '

�5

i

�

�5

Helpful transition �

�5

i

1 at

�

`

2

^ at

�

m

0

^ y = 0 (1; 3) `

2

2 at

�

`

3

^ at

�

m

0

^ y = 0 (0; 4) `

3

It is not di�cult to check that all premises of rule WELL-F are satis�ed for

this choice. Since the two helpful transitions are just, it is only necessary to check

subpremise JW4.

In Problem 3.4, we ask the reader to apply the construction outlined in the

completeness proof to the full mutual-exclusion program MUX-SEM of Fig. 3.1.

Expressing the Constructs by a Formal Language

The completeness proof speci�ed the necessary constructs by semantic means. We

now show that all constructs can be expressed within an appropriate assertional

language. We use some of the notation introduced in Section 2.5 of the SAFETY

book.

The Kernel Assertion Q

Recall that a state s satis�es assertion Q if there exists a P -pre�x [s

1

; : : : ; s

n

],

such that
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� s

n

= s, and

� for some k 2 [1::n], s

k

satis�es p, and

� for all i 2 [k::n], s

i

does not satisfy q.

We use the notations introduced in Section 2.5 of the SAFETY book to express Q

for the case that the system variables of program P , y = fy

1

; : : : ; y

r

g, range over

data domains that are either natural numbers or encodable as natural numbers.

We use a two-dimensional dynamic array a 2 A

2

(N) to encode sequences of states

intended to represent pre�xes and segments.

The complete formula is given by

Q(y): 9n > 0: 9a 2 A

2

(N):

�

reach(y) ^ 9k 2 [1::n]:

�

p(a[k]) ^ q-free

�

�

;

where

reach(y): jaj = (n; r) ^ �

�

a[1]

�

^ a[n] = y ^ evolve(a; n)

evolve(a; n): 8i(1 � i < n):

_

�2T

�

�

�

�

a[i]; a[i+ 1]

�

q-free: 8i 2 [k::n]: :q

�

a[i]

�

:

The free variables in Q are the list of system variables y = y

1

; : : : ; y

r

, representing

the current state.

Segments and the Transitions they Gratify

In the following discussion we use two-dimensional dynamic arrays b 2 A

2

(N) of

shape jbj = (n; r) to represent segments.

The formula Qseg(b; n; u) states that b encodes a Q-segment of length n,

originating at state u

Qseg(b; n; u): jbj = (n; r) ^ b(1) = u ^ evolve(b; n) ^ 8i 2 [1::n]: Q

�

b[i]

�

:

The formula gratify(b; i) states that segment b grati�es transition �

i

:

gratify(b; i): 9j 2 [1::n�1]: �

�

i

�

b[j]; b[j + 1]

�

_

�

�

i

2 C ^ 8j 2 [1::n]: :En

�

�

i

; b[j]

�

�

_

�

�

i

2 J � C ^ 9j 2 [1::n]: :En

�

�

i

; b[j]

�

�

;

where

En(�

i

; y): 9y

0

: �

�

i

(y; y

0

).

The formula fair(b) states that segment b is fair, i.e., grati�es all fair transi-

tions
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fair(b):

m

^

i=1

grat(b; i).

The Primary Order A

Recall that s

1

A s

2

if there exists a fair Q-segment leading from s

1

to s

2

. Repre-

senting the state-variables at s

1

and at s

2

by u and v, respectively, we de�ne the

corresponding formula uA v

uA v: 9n > 0: 9b 2 A

2

(N):

�

Qseg(b; n; u) ^ b[n] = v ^ fair(b)

�

:

The Primary Ranking �

�

When we attempt to express the primary ranking �

�

, we �nd that the assertional

language we used so far, a �rst-order language over the integers, is no longer

adequate. Our failure to express the ranking �

�

by a �rst-order language is not

accidental and there are theoretical arguments which shows that some extensions

to the �rst-order language are necessary.

The extension we choose is one which leads to the most natural formalization

of the construction of �

�

. We allow least �xed points over recursive function

de�nitions. With this extension we can express the ranking �

�

as the least �xed

point of the recursive equation

F (u) = lub

�

F (v) + 1 j v@u

	

:

Note that if u represents a A-minimal state, then the least upper bound is

taken over an empty set. The least ordinal which is bigger than all elements of

the empty set is 0. This shows that �

�

(s) = 0 for all A-minimal states s.

Expressing the Height of a State

The formula Lseg(b; n; u) identi�es array b as representing a leveled Q-segment of

length n, originating at state s, which is represented by system variables u.

Lseg(b; n; u): Qseg(b; n; u) ^ 8i 2 [1::n�1]: �

�

�

a[i]

�

= �

�

�

a[i+1]

�

:

The formula has-def (u; j) states the existence of a leveled Q-segment origi-

nating at u with de�cit j 2 [1::m]

has-def (u; j): 9n > 0 9b 2 A

2

(N): Lseg(b; n; u) ^ :gratify(b; j) ^

^

k<j

gratify(b; k).

That is, �

j

is not grati�ed in b but every �

k

, 1 � k < j, is grati�ed in b.

The height function h(u) can now be written as follows

h(u): max

�

j 2 [1::m] j has-def (u; j)

	

:
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This formula computes the maximal de�cit over all leveled Q-segments de-

parting from u.

The Final Rank and Assertions

The �nal rank � is given by

�(u):

�

�

�

(u); h(u)

�

:

The intermediate assertions '

i

(u), i = 1; : : : ;m, can be expressed by the

following

'

i

(u): Q ^ h(u) = i.

** 3.9 Completeness: General Response

In the general case, we consider a response formula

p ) 1 q,

where p and q are past formulas. In this case, the intermediate formulas'

1

; : : : ; '

m

are also past formulas and all premises are to be written as entailments). Note

that the ranking function � may also depend on the past.

Example As our running example for the general case, consider system INC

presented in Fig. 3.51 (see also Fig. 4.2 of the SAFETY book).

V : fx: integerg

�: x = 0

T : f�

I

; �g where �

�

: x

0

= x+ 1

J : f�g

C: f g

Fig. 3.51. System INC.

We wish to establish for it the response property

Q (x = 5) ) 1 Q (x = 10).

This property states that every position that has x = 5 in its past is followed

by a position that has x = 10 in its past.
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The strategy we intend to follow in proving completeness for the general

case is identical to the one followed in Section 4.9 of the SAFETY book, where we

established completeness for past invariances.

Namely, given a response formula p) 1 q, where p and q are past formulas,

and a program P , we construct stati�ed versions of p, q, and P , denoted by bp,

bq, and

b

P , respectively. Assuming that p ) 1 q is P -valid, we conclude that

bp ) 1 bq is

b

P -valid. We invoke the proof of completeness for response over

state formulas to construct intermediate assertions b'

1

; : : : ; b'

m

and ranking

b

�,

satisfying premises FW1, FW2, FW3, and FW4 of rule WELL-F. As a last step we

unstatify b'

1

; : : : ; b'

m

, and

b

� to obtain past formulas '

1

; : : : ; '

m

and a (possibly)

past dependent ranking �.

Since these steps are very similar to the corresponding steps taken in Sec-

tion 4.9 of the SAFETY book, we provide only a sketch and concentrate on a few

minor di�erences between the two cases.

Statifying p, q, and Program P

The base for stati�cation in Section 4.9 of the SAFETY book was the closure �

 

which contains all subformulas of  whose principal operator is a past operator.

Here, we need to statify both p and q at the same time. Consequently, we base

stati�cation on the set �

p;q

which contains all subformulas of p and q with a past

principal operator.

Using �

p;q

we statify p, q, and P .

Example Consider property Q (x = 5)

| {z }

p

) 1 Q (x = 10)

| {z }

q

for system INC. The

closure of p and q is given by

�

p;q

:

�

Q (x = 5); Q (x = 10)

	

:

The stati�cation transformation can be de�ned as

stat('): '

�

b

5

=Q (x = 5); b

10

=Q (x = 10)

�

:

Consequently, we have bp: b

5

and bq: b

10

.

The stati�ed system

d

INC is presented in Fig. 3.52.

Thus, we have reduced the task of proving Q (x = 5)) 1 Q (x = 10) over

INC to the task of proving b

5

) 1 b

10

over

d

INC.

Invoking the Completeness Proof for State Response

Faced with the task of verifying bp) 1 bq over

b

P , we invoke the completeness proof

for state response formulas. This invocation results in intermediate assertions

b'

1

; : : : ; b'

m

, and ranking

b

� satisfying premises FW1, FW2, FW3, and FW4 of

rule WELL-F.
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b

V : fx: integer; b

5

; b

10

: booleang

b

�: x = 0 ^ b

5

= b

10

= F

b

T : fb�

I

; b�g with transition relation (after simpli�cation)

�

b�

: x

0

= x+ 1 ^ b

0

5

= (x = 4 _ b

5

�

^ b

0

10

= (x = 9 _ b

10

�

b

J : fb�g

b

C: ;

Fig. 3.52. Stati�ed system

d

INC.

Example Applying the completeness proof to property b

5

) 1 b

10

over system

d

INC may result in a single intermediate assertion b' and the ranking

b

�

b': x � 0 ^ (b

5

$ x � 5) ^ (b

10

$ x � 10) ^ (b

5

^ :b

10

)

b

�(x; b

5

; b

10

): if b' then (9� x; 1) else (0; 0).

Note that if we were doing a manual proof of the considered property, it would

have been su�cient to take 5 � x < 10 for b' and max (9 � x; 0) for

b

�(x). The

constructs b' and

b

� displayed above are (equivalent to) the ones that are actually

constructed by the completeness proof. For example, they only allow accessible

states in b'.

Besides providing the constructs b'

1

; : : : ; b'

m

, and

b

�, the state-response com-

pleteness proof provided us with a detailed deductive proof of bp ) 1 bq over

program

b

P . This proof consists of repeated applications of rule WELL-F, which

establish the

b

P -state validity of various instances of premises FW1, FW2, FW3,

and subpremise JW4, all of which are state implications. Consequently, the steps

in the proof of

b

P q bp ) 1 bq alternate between establishing the

b

P -state validity

of a state implication and invocations of rule WELL-F.

Unstatifying

As the �nal step, we unstatify the constructs b'

1

; : : : ; b'

m

, and

b

� into '

1

; : : : ; '

m

,

and �. Subsequently, we show that each of the premises, previously shown to be a

b

P -state valid implication, is transformed into an entailment of past formulas which

can be shown to be P -valid using inverse stati�cation, rule IGEN, and entailment

reasoning. This step is very similar to the corresponding step in Section 4.9 of

the SAFETY book. Details are therefore omitted here.

Example Unstatifying the obtained constructs for system

d

INC, we obtain the

following
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': x � 10 ^

�

Q (x = 5) $ x � 5

�

^

�

Q (x = 10) $ x � 10

�

^

�

Q (x = 5) ^ :Q (x = 10)

�

�(x): if ' then (9� x; 1) else (0; 0).

3.10 Finite-State Algorithmic Veri�cation:

State Response

In this and the next section we present an algorithm for checking whether a �nite-

state program satis�es a response property p) 1 q. Consistent with our general

strategy, we consider in this section the case that p and q are assertions. In the

next section, we study the extensions necessary to handle the more general case

in which p and q may be general past formulas.

The algorithm searches for a counter-example. That is, it looks for a com-

putation � and a position j � 0 such that p holds at j but q holds at no position

k � j.

Even for �nite-state programs, a computation is an in�nite object and, usu-

ally, there are uncountably many di�erent computations. Consequently, we cannot

simply enumerate all possible computations and check each of them for being a

counter-example. Instead, we will analyze the state-transition graph G

P

, which

is always �nite for a �nite-state program P . Recall that G

P

is a graph containing

all the P -accessible states as nodes, and edges connecting s

1

to s

2

if s

2

is a � -

successor of s

1

for some � 2 T . In this section, we only consider states appearing

in G

P

. Therefore, any reference to a state s implies that s is P -accessible.

Let � be a computation. De�ne Inf (�), called the in�nity set of �, to be the

set of states that appear at in�nitely many positions of �. Since there are only

�nitely many P -accessible states, there exists a position f � 0 in � such that

s 2 Inf (�) if and only if s = s

j

for some position j � f in �.

Recall that a subgraph S � G

P

is called a strongly connected subgraph (SCS)

if, for every two distinct states s

1

; s

2

2 S, there exists a path in S, leading from

s

1

to s

2

.

Since Inf (�) contains only P -accessible states, we can view it as a subgraph

of G

P

, called the subgraph induced by �.

Claim 3.6 (from computations to subgraphs)

Inf (�) is an SCS.

Justi�cation Let s; bs 2 Inf (�) be two di�erent states. Since s 2 Inf (�), there

exists a position j � f such that s

j

= s. As bs also appears in�nitely many times
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in �, there exists a later position k > j such that s

k

= bs. Consider the segment

s=s

j

; s

j+1

; : : : ; s

k

=bs in �. For every i 2 [j::k], i � f . Consequently, s

i

2 Inf (�)

for every i 2 [j::k] and the path [s

j

; : : : ; s

k

] leading from s to bs is contained in

Inf (�).

Example Consider system INC2 presented in Fig. 3.53.

V :

�

x: [0::7]

	

�: x = 0

T : f�

I

; �

1

; �

2

; �

3

g where �

�

1

: x

0

= x�

8

1

�

�

2

: even(x) ^ x

0

= x�

8

2

�

�

3

: odd (x) ^ x

0

= x�

8

2

J : f�

1

; �

2

g

C: f�

3

g

Fig. 3.53. System INC2.

In Fig. 3.54, we present the state transition graph for INC2.

Consider the computation

�: s

0

[s

2

; s

4

; s

6

; s

0

]

k

[s

2

; s

3

; s

5

; s

7

; s

0

]

!

which consists of s

0

, followed by k � 0 repetitions of the segment [s

2

; s

4

; s

6

; s

0

],

followed by in�nitely many repetitions of the segment [s

2

; s

3

; s

5

; s

7

; s

0

]. Indepen-

dent of how large k is,

Inf (�) = fs

0

; s

2

; s

3

; s

5

; s

7

g

since these are the states that appear in�nitely many times in �.

Fair Subgraphs

Not every SCS can be obtained as the in�nity set Inf (�) of a computation �.

Consider, for example, the set S: fs

0

; s

2

; s

4

; s

6

g of Fig. 3.54. This set cannot

be the in�nity set of a computation. This is because every sequence � such

that Inf (�) = S has transition �

1

continuously enabled and never taken beyond

position f (the position such that s

j

2 Inf (�) for every j � f). Thus, any run �

such that Inf (�) = S is necessarily unjust towards transition �

1

.

Consequently, we characterize those SCS's that can be Inf (�) for some com-

putation �.
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�

�

�

�

s

0

: hx: 0i

t

�

?

�

1

�

?

�

�

�

2

�

�

�

�

s

1

: hx: 1i

�

1

�

?

�

3

?

�

�

�

�

s

2

: hx: 2i

�

1

�

-

�

?

�

2

�

�

�

�

s

3

: hx: 3i

�

1

�

-

�

3

-

�

�

�

�

s

4

: hx: 4i

�

1

�

6

�

2

�

-

�

�

�

�

s

5

: hx: 5i

�

1

�

6

�

3

6

�

�

�

�

s

6

: hx: 6i

�

1

�

�

�

2

�

6

�

�

�

�

s

7

: hx: 7i

�

1

�

�

�

3

�

Fig. 3.54. State transition graph for INC2.

Let S be a subgraph of G

P

and � a transition. We say that � is taken in S

if S contains two states, s

1

and s

2

, such that s

1

is connected by a directed edge

to s

2

and s

2

2 � (s

1

). Transition � is said to be enabled (disabled) in S if there

exists an s 2 S such that � is enabled (disabled) on s.

A subgraph S is called just if every just transition � 2 J is either taken in S

or is disabled in S. For example, subgraph fs

0

; s

1

; s

3

; s

5

; s

7

g of Fig. 3.54 is just.

It is just towards �

1

because s

1

2 �

1

(s

0

). It is just towards �

2

since �

2

is disabled

on s

1

.

As previously observed, subgraph fs

0

; s

2

; s

4

; s

6

g is not just towards �

1

, which

is enabled on all of its states but not taken.

A subgraph S is called compassionate if every compassionate transition � 2 T

is either taken in S or is not enabled in S. Not enabled means that � is disabled

on all states s 2 S.

For example, subgraph fs

0

; s

2

; s

4

; s

6

g is compassionate but not just. It ful�lls
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its obligations to the only compassionate transition �

3

, since �

3

is disabled on all

states in the subgraph. On the other hand, subgraph fs

0

; s

1

; s

2

; s

4

; s

6

g is just but

not compassionate. This is because �

3

is enabled on state s

1

of the subgraph but

is not taken in the subgraph.

A subgraph is called fair if it is both just and compassionate. Thus, subgraph

fs

0

; s

1

; s

3

; s

5

; s

7

g of Fig. 3.54 is fair.

Traversing Cycle

Let S be an SCS of G

P

. A path �: [s

a

; : : : ; s

b

] in the subgraph S is called a

traversing cycle of S if it satis�es the following requirements:

� s

a

= s

b

.

� For every s 2 S, s = s

i

for some i 2 [a::b].

� For every pair of states s; bs 2 S that are connected by an edge, there exists

an i 2 [a::b�1] such that s = s

i

and bs = s

i+1

.

Thus, � visits every state s 2 S at least once and traverses every edge connecting

two states in S at least once.

Consider, for example, subgraph fs

0

; s

1

; s

2

; s

4

; s

6

g. The shortest traversing

cycle originating at s

0

is

s

0

; s

1

; s

2

; s

4

; s

6

; s

0

; s

2

; s

4

; s

6

; s

0

.

Note that we have to go twice around the subgraph in order to traverse both edge

hs

0

; s

1

i and hs

0

; s

2

i.

It is not too di�cult to see that every SCS with n nodes has a traversing cycle

whose size has a worst case complexity of O(n

3

).

The following claim establishes a correspondence between computations and

fair subgraphs.

Claim 3.7 (fair SCS's and computations)

An SCS is the in�nity set of a computation i� it is fair.

Justi�cation Let � be a computation and S = Inf (�) its in�nity set. We will

show that S is fair.

Consider a just transition � 2 J . Being a computation, � is just towards �

which means that either � is disabled on a state s and s = s

i

for in�nitely many

i's, or there exists a pair of states bs 2 � (es) such that es = s

i

and bs = s

i+1

for

in�nitely many i's. In the �rst case, s 2 S and, therefore, � is disabled in S. In

the second case, both es; bs 2 S and � is taken in S. We conclude that S is just.
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Next, consider a compassionate transition � 2 T . As � is compassionate

towards � , either � is continually disabled from some point on, or � is taken

in�nitely many times in �. In the �rst case, � is disabled on all states in S =

Inf (�). In the second case, S contains a pair of states bs 2 � (es), which means that

� is taken in S. We conclude that S is compassionate.

Consequently, S = Inf (�) is fair.

In the other direction, consider a fair strongly connected subgraph S. Let it

have the traversing cycle

s

a

; : : : ; s

b

= s

a

.

Since all states in G

P

are accessible, there exists a path

s

0

; s

1

; : : : ; s

a

leading from some initial state s

0

to s

a

.

Consider the state sequence

�: s

0

; : : : ; s

a

; [s

a+1

; : : : ; s

b

]

!

which consists of the initial pre�x s

0

; : : : ; s

a

followed by endless repetition of

the segment s

a+1

; : : : ; s

b

. It is not di�cult to verify that � is a computation of

program P . In particular, the fact that � satis�es the requirements of justice and

compassion follows from the fairness of S and the property that s

a

; : : : ; s

b

visits

every state in S and traverses every edge in S at least once.

For example, an INC2-computation � such that Inf (�) = fs

0

; s

1

; s

3

; s

5

; s

7

g

can be given by

�: s

0

; [s

1

; s

3

; s

5

; s

7

; s

1

; s

3

; s

5

; s

7

; s

0

]

!

.

Computation � satis�es the fairness requirement by taking �

1

and �

3

in�nitely

many times. Just transition �

2

is not taken at all, but this is allowed since it is

in�nitely often disabled | at all visits to states s

1

, s

3

, s

5

, and s

7

.

Subgraphs Corresponding to Counter-Examples

The correspondence between computations and fair SCS's raises the possibility

that instead of examining uncountably many computations we may have to inspect

only the fair subgraphs of G

P

, whose number is �nite.

A path [s

a

; : : : ; s

b

] in graph G

P

is called q-free, if s

i

satis�es q for no i 2 [a::b].

A state s is called q-pending if there exists a q-free path [s

a

; : : : ; s

b

] such that

s

b

= s and s

a

satis�es p.

Assume that property p ) 1 q is P -valid. An important property of q-

pending states is that if state s

i

in a computation of P is q-pending it must be

followed by a later state s

j

, j > i, satisfying q. The reason for this is that these
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states characterize situations in which we have already observed an occurrence of

p but not yet the corresponding q, promised by the P -validity of p ) 1 q. In

that respect, they generalize the family of p-states, since for all of these states

there is still a pending occurrence of q.

Example Consider the response property

x = 0

| {z }

p

) 1 5 � x � 6

| {z }

q

for system INC2 (Fig. 3.53). The set of q-pending states for this choice of p and q

is

fs

0

; s

1

; s

2

; s

3

; s

4

g.

States s

5

and s

6

are not included since they satisfy q. State s

7

is not included

since every path connecting s

0

to s

7

must pass through either s

5

or s

6

.

When we want to check whether p) 1 q is P -valid, we refer to a computa-

tion � that does not satisfy p ) 1 q as a counter-example. It is not di�cult to

see that

� is a counter-example i�

all states from a certain position on are q-pending i�

all states in Inf (�) are q-pending.

Since we are interested in counter-examples, we de�ne the Q-graph of program

P , denoted Q

P

, to be the subgraph of G

P

consisting of the q-pending states in

G

P

. The following algorithm describes an e�cient calculation of Q

P

, given G

P

.

Algorithm Q-GRAPH (calculation of Q

P

)

Let Q

P

be a copy of G

P

.

Remove from Q

P

all q-states.

Remove from Q

P

all states not reachable from a p-state.

Example Let us calculate Q

P

for system INC2 for p: x = 0 and q: 5 � x �

6. As a �rst step, we remove the q-states s

5

and s

6

. Next we identify the p-

reachable states by successive marking. This procedure marks states according to

the sequence s

0

, s

1

, s

2

, s

3

, s

4

. State s

7

remains unmarked and is removed. We

remain with Q

P

: fs

0

; s

1

; s

2

; s

3

; s

4

g.

The preceding discussion and sequence of claims lead to a conclusion that is

summarized by the following proposition.

Claim 3.8 (checking for validity)

The graph Q

P

contains a fair SCS i� the property p) 1 q is not P -valid.



c

 Z. Manna and A. Pnueli, 10 November 1996. Not for Distribution

236 Chapter 3: Response Under Fairness

Justi�cation Assume that Q

P

contains a fair SCS S. Following the construction

described in Claim 3.7, there exists a P -computation � such that Inf (�) = S.

Since all but �nitely many states in � are q-pending, � is a counter-example

which violates p) 1 q.

In the other direction, if � is a counter-example which violates p) 1 q then

S = Inf (�) is a fair SCS of G

P

consisting of q-pending states. Consequently, it is

also a subgraph of Q

P

.

Example Consider the property

': x = 0

| {z }

p

) 1 x = 4

| {z }

q

for program INC2 (Fig. 3.53). We wish to check whether property ' is P -valid.

Calculation of Q

P

shows that all states, excluding s

4

, are q-pending. Conse-

quently, by Claim 3.8, ' is valid over INC2 i� there does not exist a fair SCS of

Q

P

= G

P

� fs

4

g. Obviously, fs

0

; s

1

; s

3

; s

5

; s

7

g is such a subgraph. We conclude

that (x = 0) ) 1 (x = 4) is not valid over INC2 and can actually point to the

computation

�: [s

0

; s

1

; s

3

; s

5

; s

7

]

!

as a counter-example.

On the other hand, let us consider another property

 : x = 0

| {z }

p

) 1 odd(x)

| {z }

q

:

Calculating Q

P

we obtain Q

P

: fs

0

; s

2

; s

4

; s

6

g. The only SCS of Q

P

is Q

P

itself.

However, Q

P

is not fair since the just transition �

1

is enabled on all states of Q

P

but is not taken in Q

P

.

We conclude that (x = 0)) 1 odd(x) is valid over INC2.

In principle, we can consider the problem solved. Since Q

P

contains only

�nitely many subgraphs, and each can be checked for being strongly connected

and fair in a �nite number of steps, we can suggest an algorithm based on this

procedure.

Unfortunately, the resulting algorithmwill not be very e�cient, since a graph

of size n may contain an exponential number of SCS's. We therefore study a more

e�cient algorithm.

An E�cient Algorithm

Let S be a strongly connected graph. We wish to check whether S is fair or

contains a fair SCS.
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It is straightforward to check whether S is just. For each � 2 J , we check

that � is disabled in S or taken in S. If S is not just then no subgraph of S can

be just. To see this, we observe that if some subgraph S

0

� S treats � justly, that

is, � is disabled or taken in S

0

, then so does S. Consequently, if S

0

� S is just

then so is S and, equivalently, if S is unjust it cannot contain a just subgraph.

Assume we found S to be just. Next, we check whether S is compassionate,

i.e., if it is the case that every compassionate transition � 2 C is either taken in S

or is disabled on all states of S. If S is compassionate, we conclude that it is fair.

However, if S is not compassionate it may still, unlike the justice case, contain a

compassionate subgraph.

For example, considering graph G

P

of Fig. 3.54, the subgraph S: fs

0

; s

1

; s

2

;

s

4

; s

6

g is not compassionate towards �

3

which is enabled on s

1

but not taken in

S. On the other hand, the subgraph of S, S

0

: fs

0

; s

2

; s

4

; s

6

g is compassionate

since �

3

is disabled on all of its states.

If S was found to be uncompassionate, there exists some transition �

k

2 C

which is not taken in S but is enabled on some states in S. Let EN (�

k

; S) denote

the set of S-states on which �

k

is enabled. Clearly, no compassionate subgraph

S

0

� S can contain any of these states. Therefore, it is safe to remove EN (�

k

; S)

from our consideration. Let U = S � EN (�

k

; S). We should check whether U

contains a fair SCS. Removing the set EN (�

k

; S) from S may lead to a subgraph

U which is no longer strongly connected. Therefore, before proceeding, we de-

compose U into a sequence of maximal strongly connected subgraphs (MSCS's)

U

1

; : : : ; U

k

. There exist several e�cient algorithms for such decomposition, and

we refer by the generic name DECOMPOSE to any of them. We used such an algo-

rithm already in Section 3.6 of the SAFETY book. We proceed to test recursively

each U

i

, i = 1; : : : ; k, checking whether it contains a fair SCS.

We summarize these steps in algorithm FAIR-SUB which accepts as input an

SCS S and produces as an output a fair SCS S

0

� S if one exits, or the empty set

; if S does not contain a fair SCS.

Algorithm FAIR-SUB (fair SCS's)

Recursive Algorithm fair-sub(S: subgraph) returns subgraph

If S is not just return ; | failure

If S is compassionate return S | S is fair

Otherwise, there exists � 2 C such that � is not taken in S and EN (�; S) 6= ;

Let U = S � EN (�; S)

Decompose U into MSCS's U

1

; : : : ; U

k

For each i = 1; : : : ; k do

if V

i

= fair-sub(U

i

) 6= ; then return V

i

| fair subgraph
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end-for

return ;. | no fair subgraphs.

Justi�cation It is not di�cult to see that if fair-sub(S) returns a nonempty

subgraph S

0

� S then S

0

is fair.

We concentrate on showing that if S contains a fair subgraph S

0

� S then

fair-sub(S) returns some fair subgraph S

00

� S, which need not be identical to

S

0

. We prove this by induction on n = jSj, the number of states in S.

For jSj = n = 1, S can contain a fair subgraph S

0

� S only if S

0

= S itself is

fair. For this case, the �rst two tests in fair-sub will �nd that S is both just and

compassionate and return it as the result.

Assume that the inductive claim is true for all subgraphs of size not exceed-

ing n, and consider a subgraph S of size n + 1 that contains a fair subgraph

S

0

� S. If S itself is fair then fair-sub will return S after the �rst two tests.

Otherwise, the algorithm will �nd S to be just but not compassionate and iden-

tify a compassionate transition � 2 C which is not taken in S and such that

En(�; S) 6= ;. Subgraph S

0

being fair, it must treat � with compassion, which

implies that S

0

cannot contain any state s 2 En(�; S). Consequently, S

0

is con-

tained in U = S � En(�; S). Decomposing U into MSCS's U

1

; : : : ; U

k

, we observe

that S

0

, which is strongly connected, must be fully contained in U

j

, for some

j 2 [1::k]. Since jU

j

j � jS � En(�; S)j < n + 1, the induction hypothesis holds

for U

j

which contains a fair subgraph. Consequently, if the algorithm does not

return a nonempty result for some i < j, it will invoke fair -sub(U

i

) and obtain,

by the induction hypothesis, a nonempty fair subgraph V

i

as a result. This V

i

is

the result of fair -sub(S).

Example Consider the state-transition graph presented in Fig. 3.55.

This graph represents a �nite-state fair transition system whose fairness sets

are

J : f�

1

g

C: f�

2

; �

3

g.

We wish to check whether the property

x = 0

| {z }

p

) 1 x = 5

| {z }

q

is valid over system ROUND. As a �rst step, we identify the set of q-pending

states, which is Q

P

: fs

0

; s

1

; s

2

; s

3

; s

4

g. Since Q

P

is strongly connected we can

apply Algorithm FAIR-SUB. We �nd that Q

P

is just but not compassionate. In

particular it does not treat �

3

with compassion. Transition �

3

is enabled on s

3

but

not taken in Q

P

. Consequently, we consider U = Q

P

�En(�;Q

P

) = Q

P

�fs

3

g =

fs

0

; s

1

; s

2

; s

4

g. Subgraph U is not strongly connected and it is decomposed, using
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�

�

�

�

s

0

: hx: 0i

	

�

1

R

�

2

�

�

�

�

s

1

: hx: 1i

	

�

2

�

�

�

�

s

3

: hx: 3i

	

�

2

R

�

3

�

�

�

�

s

2

: hx: 2i

�

1

�

-

�

�

�

�

s

4

: hx: 4i

I

�

1

�

�

�

�

s

5

: hx: 5i

Fig. 3.55. System ROUND.

Algorithm DECOMPOSE, into the MSCS's U

1

: fs

4

g and U

2

: fs

0

; s

1

; s

2

g.

In the next step, we apply FAIR-SUB to U

1

: fs

4

g. This subgraph is not

just since �

1

is enabled on all of its states but not taken in U

1

. Consequently,

fair-sub

�

fs

4

g

�

returns ;, denoting a failure to locate a fair SCS within U

1

.

Applying FAIR-SUB to U

2

: fs

0

; s

1

; s

2

g we observe that this subgraph is both

just and compassionate and is therefore fair. It is compassionate towards �

3

by

having �

3

disabled on all states of U

2

.

We therefore conclude that property x = 0 ) 1 (x = 5) is not valid over

system ROUND. A counter-example is provided by any sequence that endlessly

traverses U

2

. For example, �: [s

0

; s

1

; s

2

]

!

is a computation not satisfying x =

0) 1 (x = 5).

We can now combine all the constituents into algorithm STATE-RESP for check-

ing validity of a response formula over a �nite state system.

Algorithm STATE-RESP (algorithmic veri�cation of state formulas)

To check whether formula ': p) 1 q is valid over �nite-state system P ,

� Construct the state-transition graph G

P

.

� Construct Q

P

, the graph of q-pending states, using Algorithm Q-GRAPH.

� Decompose Q

P

into MSCS's S

1

; : : : ; S

t

.

� For each i = 1; : : : ; t, apply fair-sub(S

i

).

If any of these applications returns with a nonempty result, formula ' is

not P -valid. A counter-example can be constructed from the returned
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fair subgraph.

If all applications return the empty set as result, formula ' is P -valid.

Example (checking accessibility for MUX-SEM)

Let us consider the �nite-state program MUX-SEM of Fig. 3.56 (see also Fig. 3.1).

We wish to model-check whether it satis�es the property of accessibility

local y: integer where y = 1

P

1

::

2

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

4

`

1

: noncritical

`

2

: request y

`

3

: critical

`

4

: release y

3

7

7

7

5

3

7

7

7

7

7

7

5

P

2

::

2

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

4

m

1

: noncritical

m

2

: request y

m

3

: critical

m

4

: release y

3

7

7

7

5

3

7

7

7

7

7

7

5

Fig. 3.56. Program MUX-SEM (mutual exclusion by semaphores).

at

�

`

2

| {z }

p

) 1 at

�

`

3

| {z }

q

:

We already model-checked this program for the safety property of mutual

exclusion in Section 2.6 of the SAFETY book. During this check we constructed

the state-transition graph for MUX-SEM as presented in Fig. 2.27 of the SAFETY

book.

Following algorithm STATE-RESP, we construct Q

P

, the graph of q-pending

states for p: at

�

`

2

and q: at

�

`

3

. This graph is presented in Fig. 3.57.

Analyzing the strongly connected graph Q

P

, we �nd that it is just but not

compassionate, since the compassionate transition `

2

is enabled on states s

0

, s

1

,

and s

2

. Removing these states, we are left with two SCS's fm

3

g and fm

4

g. Neither

of these subgraphs is just. Transition m

3

is enabled but not taken in fm

3

g and

transition m

4

is enabled but not taken in fm

4

g.

Thus Q

P

contains no fair SCS. We conclude that at

�

`

2

) 1 at

�

`

3

is valid

over program MUX-SEM.

Example (checking accessibility for MUX-PET1)

Consider program MUX-PET1 of Fig. 3.58 (see also Fig. 1.13). In Section 2.6 of the

SAFETY book we analyzed its safety property of mutual exclusion and constructed

in Fig. 2.28 of the SAFETY book its state-transition graph.



c

 Z. Manna and A. Pnueli, 10 November 1996. Not for Distribution

3.10 Finite-State Algorithmic Veri�cation: State Response 241

�

�

�

�

s

0

: hf`

2

;m

0

g; 1i

`

3

6

m

0

-

�

�

�

�

s

1

: hf`

2

;m

1

g; 1i

`

3

6

m

1

-

�

�

�

�

s

2

: hf`

2

;m

2

g; 1i

`

3

6

m

2

?

�

�

�

�

s

4

: hf`

2

;m

4

g; 0i

m

4

�

6

�

�

�

�

s

3

: hf`

2

;m

3

g; 0i

m

3

�

Fig. 3.57. Graph Q

P

of q-pending states of program MUX-SEM.

local y

1

; y

2

: boolean where y

1

= y

2

= F

s : integer where s = 1

P

1

::

2

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

4

`

1

: noncritical

`

2

: (y

1

; s) := (T; 1)

`

3

: await :y

2

_ s 6= 1

`

4

: critical

`

5

: y

1

:= F

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

5

P

2

::

2

6

6

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

6

6

4

m

1

: noncritical

m

2

: (y

2

; s) := (T; 2)

m

3

: await :y

1

_ s 6= 2

m

4

: critical

m

5

: y

2

:= F

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

5

Fig. 3.58. Program MUX-PET1 (Peterson's algorithm) | version 1.

Here we wish to check the response property of accessibility

at

�

`

2

| {z }

p

) 1 at

�

`

4

| {z }

q
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over program MUX-PET1.

In Fig. 3.59 we present graph Q

P

of q-pending states for p: at

�

`

2

and

q: at

�

`

4

as extracted from the graph of Fig. 2.28 of the SAFETY book. Each

node in this graph is a triple (i; j; k) representing a state in which �: f`

i

;m

j

g and

s: k.

(2,0,2)

m

0

-

`

2

?

(2,1,2)

m

1

-

`

2

?

(2,2,2)

m

2

-

`

2

?

(2,3,2)

m

3

-

`

2

?

(2,4,2)

m

4

-

`

2

?

(2,5,2)

m

5

�

��

�

-

`

2

?

(3,0,1)

m

0

-

`

3

?

(3,1,1)

m

1

-

`

3

?

(3,2,1)

m

2

�

�

-

`

3

?

(3,3,1)

m

3

-

(3,4,1)

m

4

-

(3,5,1)

m

5

�

��

�

-

(3,3,2)

`

3

?

Fig. 3.59. Graph Q

P

of q-pending states for MUX-PET1.

Decomposing Q

P

into a sequence of MSCS's, we obtain the following list

S

1

:

�

(2; 0; 2); (2; 1; 2); (2; 2; 2); (2; 3; 2); (2; 4; 2); (2; 5; 2)

	

,

S

2

:

�

(3; 3; 1)

	

; S

3

:

�

(3; 4; 1)

	

; S

4

:

�

(3; 5; 1)

	

; S

5

:

�

(3; 0; 1)

	

;

S

6

:

�

(3; 1; 1)

	

; S

7

:

�

(3; 2; 1)

	

; S

8

:

�

(3; 3; 2)

	

:

None of these subgraphs is just. Subgraph S

1

is not just because `

2

is enabled on

all of its states and not taken in S

1

. Subgraphs S

2

, S

3

, and S

4

are unjust because

transitions m

3

, m

4

, and m

5

are enabled but not taken in them. Each of S

5

, S

6

,

S

7

, or S

8

is unjust because transition `

3

is enabled but not taken in it.

We conclude that the accessibility property

at

�

`

2

) 1 at

�

`

4

is valid over program MUX-PET1.

3.11 Finite-State Algorithmic Veri�cation:

General Response
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Algorithm STATE-RESP can be applied for algorithmic veri�cation of a formula

 : p ) 1 q

over a �nite-state program P for the case that p and q are assertions. Here, we

consider the more general case that p and q are past formulas. Algorithmic veri-

�cation of general response formulas is based on extending algorithm STATE-RESP

to analyze the reachable atoms graph A

(P; )

instead of the state-transition graph

G

P

.

Recall from Section 4.10 of the SAFETY book that A

(P; )

is a graph of atoms

where each atom � 2 A has the form �: hs; '

b

1

1

; : : : ; '

b

n

n

i consisting of a state

s and assignment of truth-values to each past formula '

i

belonging to the past-

closure �

 

of formula  .

Example Consider system INC2 presented in Fig. 3.54 and the response property

 : x = 0

| {z }

p

) 1

�

even(x) ^ � odd(x)

| {z }

q

�

claiming that any state satisfying x = 0 is followed by an even state (a state in

which x is even) which is immediately preceded by an odd state.

The past-closure �

 

for this case is

�

 

:

�

� odd(x)

	

since � odd (x) is the only subformula of  with a principal past operator. Con-

sequently, we construct in Fig. 3.60 the graph A

(P; )

of reachable atoms, using

the algorithm presented in Section 4.10 of the SAFETY book.

Given an atom � 2 A

(P; )

, we can evaluate formulas p and q on � since �

provides an interpretation (T or F) to each subformula of p or q. Consequently,

we refer to an atom � as a p-atom or a q-atom if the evaluation of p or q on

� yields T. In analogy with the assertional case, we say that a path �

a

; : : : ; �

b

in A

(P; )

is q-free if no �

i

, i 2 [a; b] is a q-atom. An atom � 2 A

(P; )

is called

q-pending if there exists a q-free atom path �

a

; : : : ; �

b

= � such that �

a

is a

p-atom. We de�ne Q

A

to be the subgraph of all q-pending atoms in A

(P; )

. It

can be calculated by an algorithm analogous to Q-GRAPH replacing all references

to states, p-states, and q-states, by atoms, p-atoms, and q-atoms.

Example In Fig. 3.61 we present Q

A

the subgraph of q-pending atoms for

system INC2, p: x = 0, and q: even(x) ^ � odd (x).

The notions of just, compassionate, and fair subgraphs extend naturally to

subgraphs of atoms.

Algorithm GENERAL-RESP generalizes algorithm STATE-RESP to the case that

p and q are past formulas.
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Fig. 3.60. Graph A

(P; )

of reachable atoms for INC2.

Algorithm GENERAL-RESP (algorithmic veri�cation of general response for-

mulas)

To check whether formula  : p) 1 q, where p and q are past formulas, is

valid over a �nite-state system P .
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Fig. 3.61. Graph of q-pending atoms for INC2.

� Construct A

(P; )

the graph of reachable atoms for P and  .

� Calculate Q

A

the graph of q-pending atoms.

� Decompose Q

A

into MSCS's A

1

; : : : ; A

t

.

� For each i = 1; : : : ; t, apply fair-sub to A

i

.
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If any of the applications returns with a nonempty result, then formula 

is not P -valid. A counter-example can be constructed from the returned

fair subgraph.

If all applications return the empty set as a result, then formula  is

P -valid.

Example Decomposing graph Q

A

of Fig. 3.61 into MSCS's, we obtain the fol-

lowing list of subgraphs

A

1

: f�

0

; �

2

; �

4

; �

6

g; A

2

: f�

1

g; A

3

: f�

3

g; A

4

: f�

5

g,

A

5

: f�

7

g; A

6

: f�

1

; �

3

; �

5

; �

7

g.

All of these subgraphs are unjust towards �

1

since this transition is always

enabled but not taken in any of these subgraphs.

We conclude thatQ

A

contains no fair SCS and, therefore, x = 0) 1

�

even(x)

^� odd (x)

�

is valid over system INC2.

The justi�cation of Algorithm GENERAL RESP follows precisely the same lines

as the sequence of claims justifying its state counterpart, Algorithm STATE-RESP.

Problems

Problem 3.1 (program PROD-CONS without compassion) page 159

Consider program PROD-CONS (Fig. 3.5) under the assumption that the transitions

corresponding to the request statements are taken to be just, and the compassion

set is empty. Show that, in spite of this weakening assumption, the program still

satis�es the response property

at

�

`

2

) 1 at

�

`

4

:

Problem 3.2 (invariant for program ALTER) page 176

Prove the invariant

Y [1::j � 1] = X[1::j � 1]

for program ALTER of Fig. 3.18. In your proof you may use invariants I

1

{I

6

presented in the text. Please verify any of the invariants you use.

Problem 3.3 (communal accessibility for program INADEQUATE) page 200

Prove communal accessibility N

2

> 0 ) 1 (N

3

> 0) for program INADEQUATE

(Fig. 3.37).

Problem3.4 (using the completeness construction to verify MUX-SEM) page 224
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Use the construction outlined in the completeness proof of Section 3.8 to verify

accessibility for program MUX-SEM of Fig. 3.1.
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Chapter 2

Response for

Parameterized Programs

In this chapter we study methods for proving response properties of parameterized

programs.

Parameterized programs allow the variable size (dynamic) statements

M

j=1

S[j] and

M

OR

j=1

S[j].

The elaboration of such a statement is deferred until execution reaches it. At

that point, the variable (or expression) M is evaluated and the program prepares

to execute the statement

S[1] k : : : kS[m] or S[1] or : : : or S[m],

respectively, where m is the current value of M . Each parameterized statement

S[i], for i = 1; : : : ;m, is obtained by substituting the numeral i for the formal

parameter j appearing in the text of the program and using it as a subscript in

the labels and locally declared variables. Note that the variable M may be an

input variable or may even be computed during the execution up to this point.

In both cases, it is required that, on arrival to the dynamic statement, M has the

value of a positive integer.

We have already considered such parameterized programs when studying

methods for verifying their safety properties (Section 2.1 of the SAFETY book). To

do so, we introduced several notations: If `

i

is a location within the parameterized

statement S[k], we write at

�

`

i

[k] to denote that control is currently at location

`

i

within statement S[k]. For a cooperation statement, we write L

i

for the set of

processes whose control is currently at `

i

, i.e.,

L

i

=

�

k 2 [1::M ] j at

�

`

i

[k]

	

;

and
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N

i

= jL

i

j

for the size of this set. These notations are extended to sets and ranges of loca-

tions. Thus,

L

i

1

;i

2

;:::;i

k

= L

i

1

[ L

i

2

[ � � � [ L

i

k

L

i::j

= L

i

[ L

i+1

[ � � � [ L

j

N

i

1

;i

2

;:::;i

k

= jL

i

1

;i

2

;:::;i

k

j

N

i::j

= jL

i::j

j:

The study of methods for verifying safety properties of parameterized pro-

grams in that section led to the conclusion that, with the appropriate notations,

the basic rules are applicable and no special extensions are required to deal with

parameterized progrmas. We intend to establish a similar conclusion for response

properties, while illustrating the utility of the special notations for proving re-

sponse properties of parameterized programs.

In most of the chapter, we consider the simpler case of response formulas

p ) 1 q, where p and q are assertions. The generalization necessary to handle

the more general case that p and q are arbitrary past formulas is straightforward.

Instead of assertions, we use past formulas, and instead of requiring that implica-

tions such as p! q (for assertions p and q) be P -state valid, we require that the

entailment p) q, for past formulas p and q be P -valid.

2.1 Parameterized Well-Founded Rule

In most of the cases, response proofs of parameterized programs must be based

on a version of rule WELL-J (Fig. 1.26), rather than on the weaker rule CHAIN-J

(Fig. 1.7). This is due to the potentially unbounded number of helpful steps,

which may depend on the value of the parameter M .

RuleWELL-J assumes that we can �nd a �xed numberm of intermediate asser-

tions '

0

; : : : ; '

m

, with corresponding helpful transitions �

1

; : : : ; �

m

, and ranking

functions �

0

; : : : ; �

m

. To verify properties of parameterized programs, we can still

use a �xed number of intermediate formulas and helpful transitions but they may

refer to an additional variable k which is a process index.

To improve readability of formulas, we write �

�

i

[k]

as �

�

i

[k].

Example (program TRIVIAL)

Consider the parameterized program TRIVIAL of Fig. 2.1. This program satis�es

the response property
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in M : integer where M > 0

M

i=1

P [i] :: [`

0

: skip; `

1

: skip; `

2

: ]

Fig. 2.1. Program TRIVIAL.

N

0

> 0

| {z }

p

) 1 N

1

> 0

| {z }

q='

0

,

which states that, if some process is at `

0

, then eventually some process will be

at `

1

.

A natural intermediate assertion to be used for proving this property is

'[k]: at

�

`

0

[k].

This assertion refers to the process index k such that P [k] is currently at `

0

. The

transition which is helpful for states satisfying '[k] is

� [k]: `

0

[k].

This shows that the identity of the helpful transition may also depend on the

process index parameter k.

In Fig. 2.2 we present rule WELL-JP, a version of rule WELL-J, extended to

accommodate parameterized intermediate formulas and corresponding parame-

terized helpful transitions. For each i = 1; : : : ;m, the parameter k in '

i

[k] and

�

i

[k] is assumed to range over some nonempty set R

i

whose size may depend on

the inputs to the program. For i 6= j, the ranges R

i

and R

j

may be di�erent. For

each j = 1; : : : ;m, we use the notation b'

j

as an abbreviation for

b'

j

: 9u 2 R

j

: '

j

[u]

indicating that b'

j

holds at a state if '

j

[u] holds there, for some u 2 R

j

.

We refer to b'

j

as the summary of the parameterized formula '

j

[k].

As usual, it is su�cient to check premise JP2 for � 6= �

i

[k].

Example (program TRIVIAL)

We show how to prove the response formula

N

0

> 0

| {z }

p

) 1 N

1

> 0

| {z }

q
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For assertions p, and q = '

0

, '

1

[k]; : : : ; '

m

[k],

transitions �

1

[k]; : : : ; �

m

[k] 2 J ,

a well-founded domain (A;�), and

ranking functions �

0

; : : : ; �

m

: � 7! A

JP1. p !

m

_

j=0

b'

j

JP2. �

�

^ '

i

[k] !

2

6

6

4

m

_

j=0

(b'

0

j

^ �

i

� �

0

j

)

_

�

'

0

i

[k] ^ �

i

= �

0

i

�

3

7

7

5

for every � 2 T

JP3. �

�

i

[k]

^ '

i

[k] !

m

_

j=0

(b'

0

j

[r] ^ �

i

� �

0

j

)

JP4. '

i

[k] ! En

�

�

i

[k]

�

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

for i = 1; : : : ;m,

and k 2 R

i

p ) 1 q

Fig. 2.2. Rule WELL-JP (parameterized well-founded response under justice).

for program TRIVIAL (Fig. 2.1), using rule WELL-JP. Take m = 1 and the following

parameterized intermediate assertions, helpful transition, and ranking functions:

'

1

[k]: at

�

`

0

[k]; �

1

[k]: `

0

[k]; �

1

: 1

q = '

0

[k]: N

1

> 0; �

0

: 0;

where the parameter k ranges over R: [1::M ]. Note that

b'

1

= 9u 2 [1::M ]: at

�

`

0

[u] = N

0

> 0.

Let us check that all premises of rule WELL-JP are satis�ed by this choice.

Since m = 1 all multiple disjunctions over j collapse to a single disjunct.

� Premise JP1 requires

N

0

> 0

| {z }

p

! � � � _ N

0

> 0

| {z }

b'

1

;

which is valid.
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� For premise JP2, it su�ces to show

�

�

^ at

�

`

0

[k]

| {z }

'[k]

! � � � _ � � � _ at

0

�

`

0

[k]

| {z }

'

0

[k] ^ �=�

0

;

for every � 6= `

0

[k]. Clearly, any such transition preserves the truth of

at

�

`

0

[k].

� Premise JP3 requires

�

`

0

[k] ^ at

�

`

0

[k]

| {z }

'[k]

! N

0

1

> 0

| {z }

q

0

_ � � � ,

which is obviously valid.

� Premise JP4 requires the obviously valid implication

at

�

`

0

[k]

| {z }

'[k]

! at

�

`

0

[k]

| {z }

En(� [k])

:

This established the validity of N

0

> 0) 1 (N

1

> 0) over program TRIVIAL.

A Useful Well-Founded Domain

Progress in parameterized programs can often be measured by the number of

processes that satisfy some requirements. For example, the response property

N

0

> 0 ) 1 (N

0

= 0)

states that, starting from a state at which some processes are at location `

0

,

eventually we will get to a state at which no process is executing at `

0

.

The most natural progress measure for such cases is the set of indices of the

processes that currently satisfy the requirement of interest.

For example, we can respecify eventual evacuation of location `

0

by the for-

mula

L

0

6= ; ) 1 (L

0

= ;),

and use L

0

as the ranking function.

It is straightforward to show that the domain of subsets of f1; : : : ;Mg with

the ordering relation � taken as set inclusion, i.e., the domain (2

[1::M ]

;�) is well

founded.

While proving veri�cation conditions involving a ranking function of the form

L

i

, we have to establish inclusions of the form L

i

� L

0

i

and L

i

� L

0

i

.

To prove L

i

� L

0

i

, we will establish

8j 2 [1::M ]: at

0

�

`

i

[j] ! at

�

`

i

[j],

which guarantee that any index j belongs to L

0

i

only if it also belongs to L

i

.
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To prove L

i

� L

0

i

, we will establish

�

8j 2 [1::M ]: at

0

�

`

i

[j] ! at

�

`

i

[j]

�

^

�

9j 2 [1::M ]: at

�

`

i

[j] ^ :at

0

�

`

i

[j]

�

:

The �rst clause of this conjunction guarantees that L

i

� L

0

i

, while the second

clause requires the identi�cation of, at least, one process which has just left L

i

.

Example (evacuation of `

0

in program TRIVIAL)

We prove the response formula

L

0

6= ;

| {z }

p

) 1 L

0

= ;

| {z }

q

;

specifying eventual evacuation of location `

0

for program TRIVIAL.

We take m = 1, and choose as follows:

'

1

[k]: at

�

`

0

[k]; �

1

[k]: `

0

[k]; �

1

: L

0

'

0

[k]: L

0

= ;; �

0

: ;:

Let us check that all premises of rule WELL-JP are satis�ed by this choice.

� To establish JP1, it is su�cient to show

L

0

6= ;

| {z }

p

! � � � _ 9j 2 [1::M ]: at

�

`

0

[j]

| {z }

b'

1

which is valid.

� To establish JP2, it is su�cient to show

�

�

^ at

�

`

0

[k]

| {z }

'

1

[k]

! at

0

�

`

0

[k] ^ L

0

� L

0

0

| {z }

'

0

1

[k] ^ �

1

< �

0

1

;

for every � 6= `

0

[k]. There are two cases to be considered: � = `

0

[i] for

i 6= k, and � = `

1

[i]. It is clear that none of these transitions can invalidate

at

�

`

0

[k], or cause a new process to join L

0

.

� For premise JP3, it is su�cient to show

�

`

0

[k] ^ at

�

`

0

[k]

| {z }

'

1

[k]

! (L

0

� L

0

0

) ^

�

L

0

0

= ;

| {z }

'

0

0

^ 9j: at

0

�

`

0

[j]

| {z }

b'

0

1

:

The strict inclusion L

0

� L

0

0

follows from the fact that transition `

0

[k] causes

P [k] to move away from `

0

to `

1

, and does not change the location of any

other process.

� Premise JP4,

at

�

`

0

[k]

| {z }

'

1

[k]

! at

�

`

0

[k]

| {z }

En

�

�

1

[k]

�



c

 Z. Manna and A. Pnueli, 28 Oct. 96. Not for Distribution

2.1 Parameterized Well-Founded Rule 97

is obviously valid.

Example (program MAX-ARRAY)

As a more advanced example, consider program MAX-ARRAY for parallel compu-

tation of the maximum of an integer array. This program was �rst presented in

Fig. 2.5 of the SAFETY book and is reproduced here in Fig. 2.3.

in M : integer where M � 1

x : array [1::M ] of integer

local y : array [1::M ] of boolean where y = T

out z : integer

`

0

:

i;j2[1::M ]

P [i; j] ::

"

`

1

: if x[i] < x[j] then `

2

: y[i] := F

`

3

:

#

`

4

:

M

i=1

Q[i] ::

"

`

5

: if y[i] then `

6

: z := x[i]

`

7

:

#

`

8

:

Fig. 2.3. Program MAX-ARRAY (�nding the maximum of an array).

In Section 2.2 of the SAFETY book, dealing with safety, we proved the partial

correctness of this program, expressed by

at

�

`

8

) maximal(z; x).

To complete the veri�cation of this program, we have to prove its termination,

expressed by response property

at

�

`

0

| {z }

p

) 1 at

�

`

8

| {z }

q

:

Intuitively, termination is obvious, since each process has a straight line program

with no loops. To prove it formally, using rule WELL-JP, we identify a well-founded

domain

(A;�):

�

[1::8]; >

�

�

�

2

[1::M ]

; �

�

:

Note that (r

1

; L

1

) � (r

2

; L

2

) for r

1

; r

2

2 f1; : : : ; 8g and L

1

; L

2

� [1::M ] if

r

1

> r

2

or (r

1

= r

2

) ^ (L

1

� L

2

).

The parameterized intermediate assertions and helpful transitions, and the rank-

ing functions are given in the table of Fig. 2.4. To compare a ranking function
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such as �

6

: (6; L

2

) with a shorter rank such as �

4

: 5, we pad the shorter tuple on

the right by the empty set ;. Thus, we are actually comparing (6; L

2

) with (5; ;).

'

8

: at

�

`

0

�

8

: `

0

�

8

: 8

'

7

[i; j]: at

�

`

1

[i; j] ^N

1::3

=M

2

�

7

[i; j]: `

1

[i; j] �

7

: (7; L

1

)

'

6

[i; j]: at

�

`

2

[i; j] ^N

2;3

= M

2

�

6

[i; j]: `

2

[i; j] �

6

: (6; L

2

)

'

5

: N

3

= M

2

�

5

: `

3

�

5

: 5

'

4

: at

�

`

4

�

4

: `

4

�

4

: 4

'

3

[i] : at

�

`

5

[i] ^N

5::7

=M �

3

[i] : `

5

[i] �

3

: (3; L

5

)

'

2

[i] : at

�

`

6

[i] ^N

6;7

= M �

2

[i] : `

6

[i] �

2

: (2; L

6

)

'

1

: N

7

= M �

1

: `

7

�

1

: 1

q = '

0

: at

�

`

8

�

0

: 0

Fig. 2.4. Assertions, transitions and rankings for program MAX-ARRAY.

Note that we refer to the exit transitions from the cooperation statements `

0

and `

4

by the names `

3

and `

7

, respectively. These are single transitions that are

enabled only when all processes within the cooperation statement have reached

their terminal locations `

3

and `

7

, respectively.

The summaries of the parameterized assertions are given by

b'

7

: N

1

> 0 ^ N

1::3

= M

2

b'

6

: N

2

> 0 ^ N

2;3

= M

2

b'

3

: N

5

> 0 ^ N

5::7

= M b'

2

: N

6

> 0 ^ N

6;7

= M:

As we see, the table refers to eight parameterized assertions and helpful tran-

sitions. Assertions '

6

, '

7

, and their corresponding transitions are parameterized

by i; j 2 [1::M ], while assertions '

2

, '

3

, and their corresponding transitions are

parameterized by i 2 [1::M ]. Thus, assertions '

6

and '

7

can be viewed as pa-

rameterized by k = hi; ji, ranging over R

6

= R

7

: [1::M ]� [1::M ], assertions '

2

and '

3

are parameterized by k = i, ranging over R

2

= R

3

: [1::M ], and assertions

'

1

, '

4

, '

5

, and '

6

can be viewed as trivially parameterized by k ranging over

R

1

= R

4

= R

5

= R

6

: [1]. Note that, for i 2 f1; 4; 5; 6g, b'

i

= '

i

.

The proof uses the following invariant
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 :

8

>

>

<

>

>

:

N

0;4;8

= 1 ^ N

1::3;5::7

= 0 _

N

1::3

= M

2

^ N

0;4::8

= 0 _

N

5::7

= M ^ N

0::4;8

= 0:

It is not di�cult to check the premises of rule WELL-JP and verify that they are

all satis�ed.

For example, let us check premise JP3 for assertion '

2

[i]. We show that the

following implication is state valid

�

`

6

[i] ^ at

�

`

6

[i] ^ N

6;7

= M

| {z }

'

2

[i]

! � � � _ N

0

7

= M ^ (2; L

6

) � (1; 0)

| {z }

b'

0

1

^ �

2

��

0

1

_

N

0

6

> 0 ^ N

0

6;7

=M ^ (2; L

6

) � (2; L

0

6

)

| {z }

b'

0

2

^ �

2

��

0

2

:

Assertion '

2

[i]: at

�

`

6

[i] ^N

6;7

= M implies N

7

� M � 1. To show the validity

of the implication, we consider two cases. If N

7

= M � 1, then transition `

6

[i]

leads to a successor state in which N

7

= M , establishing '

0

1

. If N

7

< M � 1,

there exists another index k 6= i such that at

�

`

6

[k] holds at the state before the

transition and therefore also at the successor state. This establishes b'

0

2

and a

rank decrease at the successor state.

2.2 Representation by Diagrams

To represent a proof of parameterized program by veri�cation diagrams using rule

WELL-JP, we follow the same conventions as for RANK diagrams (see Section 1.4),

but introduce a special notation for parameterized nodes and edges.

A parameterized node is identi�ed by a parameterized assertion of the form

'

j

: �k 2 R

j

: f [k],

where R

j

is the range of the parameter k, which may be di�erent for di�erent j's,

and f is an assertion that may refer to the parameter k.

When there is no danger of ambiguity (and the range R

j

is understood from

the context), we may also represent the parameterized assertion as

'

j

[k]: f [k].

To make the treatment uniform, we view nodes labeled by an unparame-

terized assertion '

u

as though they were labeled by the trivially parameterized

assertion

'

u

: �k 2 f1g: f

u

[k],

where f

u

[k] = '

u

.
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Edges departing from a node parameterized by k are of the following forms:

� A double-line edge labeled by � [k].

� A single-line edge labeled by a set-expression T

r

which stands for the set of

transition instances

�

�

r

[i] j i 2 R

r

	

, where R

r

is the range of the parameter-

ized transition �

r

[i].

Example (program TRIVIAL)

In Fig. 2.5, we present a P-RANK diagram for program TRIVIAL of Fig. 2.1.

�

�

�

�

'

1

: �k 2 [1::M ] : at

�

`

0

[k]

`

0

[k]

�

T

0

?

�


 	

�

'

0

: N

1

> 0

Fig. 2.5. P-RANK diagram for program TRIVIAL.

Node '

1

in this diagram is parameterized by k 2 [1::M ], while node '

0

is unpa-

rameterized.

Assertion '

0

can be trivially represented as parameterized by writing

'

0

: �k 2 f1g: N

1

> 0.

Veri�cation and Enabling Conditions for P-RANK Diagrams

Consider a non-terminal node labeled by the assertion '[k] and the ranking �.

Let L be a label of some edge departing from the node '.

Let '

1

; : : : ; '

n

, n > 0, be the successors of ' by L-labeled edges and let

�

1

; : : : ; �

n

be the ranking functions of these successors.

� If L = � [k] (labeling double edges), then the following veri�cation conditions

are implied:

�

�

[k] ^ '[k] !

�

(b'

0

1

^ � � �

0

1

) _ � � � _ (b'

0

n

^ � � �

0

n

)

�

'[k] ! En

�

� [k]

�

:

� If L = T

r

(labeling single edges), then the following veri�cation condition is

implied:

�

�

r

[i] ^ '[k] !

�

('

0

[k] ^ � < �

0

) _ (b'

0

1

^ � � �

0

1

) _ � � � _ (b'

0

n

^ � � �

0

n

)

�

:
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In addition, Let �

r

be any transition not appearing in the label of any edge

departing from '. Then, the following veri�cation condition is implied:

� '

�

r

[i] ^ '[k] ! '

0

[k] ^ � < �

0

.

This corresponds to transitions labeling n = 0 single edges.

Example (program TRIVIAL)

The P-RANK diagram of Fig. 2.5 implies the following veri�cation conditions:

�

`

0

[k] ^ at

�

`

0

[k] ! N

0

1

> 0 ^ 1

|{z}

�

1

> 0

|{z}

�

0

0

at

�

`

0

[k] ! at

�

`

0

[k]

| {z }

En

�

`

0

[k]

�

�

`

0

[i] ^ at

�

`

0

[k] !

�

at

�

`

0

0

[k] ^ 1 � 1) _ (N

0

1

> 0 ^ 1 > 0)

�

�

`

1

[i] ^ at

�

`

0

[k] ! at

�

`

0

0

[k] ^ 1 � 1.

The last veri�cation condition corresponds to transition `

1

[i] which labels no edge

departing from '

1

.

In Fig. 2.6, we present a P-RANK diagram for the evacuation property

L

0

6= ; ) 1 (L

0

= ;)

for program TRIVIAL.

#

"

 

!

'

1

: �k 2 [1::M ] : at

�

`

0

[k]

�

1

: L

0

`

0

[k]

�

`

0

[k]

� �

�

�

�


 	

�

'

0

: L

0

= ;

�

0

: ;

Fig. 2.6. P-RANK diagram for eventual evacuation of `

0

.

Note that while P [k] is at `

0

, no other transition `

0

[i], for i 6= k, can cause L

0

to

become empty. This is why we do not need a single edge labeled by T

0

connecting

node '

1

to node '

0

.

Valid P-RANK Diagrams
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A P-RANK diagram is said to be valid over program P (P -valid for short) if all the

veri�cation conditions associated with the diagram are P -state valid.

The consequences of having a valid P-RANK diagramare stated in the following

claim:

Claim 2.1 (P-RANK diagrams)

A P -valid P-RANK diagram establishes that the response formula

m

_

j=0

) 1 b'

0

is P -valid.

If, in addition, we can establish the P -state validity of the implications

p !

m

_

j=0

b'

j

and b'

0

! q

then, we can conclude the P -validity of

p ) 1 q.

Justi�cation The �rst part of the claim follows from the soundness rule WELL-JP,

and the observation that the veri�cation conditions induced by a P-RANK diagram

imply premises JP2{JP4 of rule WELL-JP. Given the two additional implications,

we can also infer premise JP1 and the replacement of b'

0

by q.

Example (program MAX-ARRAY)

We return to the example of program MAX-ARRAY (Fig. 2.3), for which we wish

to prove termination, speci�ed by

at

�

`

0

| {z }

p

) 1 at

�

`

8

| {z }

q

:

In Fig. 2.7 we present a P-RANK diagram for this property.

In this diagram, we use encapsulation conventions to factor out the pre�x

�

i;j

2 [1::M ] from '

6

and '

7

and write it as a label of the supernode containing

these nodes. A similar factoring was applied to nodes '

2

and '

3

.

When we compute the default veri�cation conditions corresponding to transi-

tions that do not label departing edges, it is important to consider these transitions

only for the values of the parameter which do not appear in labels of departing

edges.

Consider, for example, the veri�cation conditions for the parameterized as-

sertion '

6

: �i; j 2 [1::M ]: at

�

`

2

[i; j] _ N

2;3

= M

2

. The veri�cation condition

corresponding to the double edge departing from '

6

is:
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�


 	

�

'

0

: at

�

`

8

`

7

�

�

�

�

�

'

1

: N

7

= M

C

DE

F

�i 2 [1::M ]:

�

`

6

[i]

#

"

 

!

'

2

: at

�

`

6

[i] ^ N

6;7

=M

�

2

: (2; L

6

)

� �

�

�

`

6

[i]

�

`

5

[i]

#

"

 

!

'

3

: at

�

`

5

[i] ^ N

5::7

= M

�

3

: (3; L

5

)

� �

�

�

`

5

[i]

�

�




`

5

[i]

`

4

�

�

�

�

�

'

4

: at

�

`

4

`

3

�

�

�

�

�

'

5

: N

3

= M

2

C

DE

F

�i; j 2 [1::M ]:

�

`

2

[i; j]

#

"

 

!

'

6

: at

�

`

2

[i; j] ^ N

2;3

=M

2

�

6

: (6; L

2

)

� �

�

�

`

2

[i; j]

�

`

1

[i; j]

#

"

 

!

'

7

: at

�

`

1

[i; j] ^ N

1::3

=M

2

�

7

: (7; L

1

)

� �

�

�

`

1

[i; j]

�

�




`

1

[i; j]

`

0

�

�

�

�

�

'

8

: at

�

`

0

Fig. 2.7. P-RANK diagram by rule WELL-JH for program MAX-ARRAY.
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�

`

2

[i; j] ^ at

�

`

2

[i; j] ^ N

2;3

= M

2

| {z }

'

6

!

�

at

0

�

`

2

[i; j] ^ N

0

2;3

= M

2

^ (6; L

2

) � (6; L

0

2

)

�

_

�

N

0

3

= M

2

^ (6; L

2

) � 5

�

:

Among the default veri�cation conditions, we should include

(k; r) 6= (i; j) ^ �

`

2

[k; r] ^ at

�

`

2

[i; j] ^ N

2;3

= M

2

!

at

0

�

`

2

[i; j] ^ N

0

2;3

= M

2

^ (6; L

2

) � (6; L

0

2

),

as asll we

�

`

1

[k; r] ^ at

�

`

2

[i; j] ^ N

2;3

=M

2

!

at

0

�

`

2

[i; j] ^ N

0

2;3

= M

2

^ (6; L

2

) � (6; L

0

2

).

Note the di�erence between the condition corresponding to `

2

[k; r] and the

one corresponding to `

1

[k; r]. In the case of `

2

, we have to exclude the parameter

value (k; r) = (i; j), since `

2

[i; j] already labels an existing edge departing from

'[i; j]. To do so, we add the conjunct (k; r) 6= (i; j) to the antecedent of the

implication. In the case of `

1

, which labels no edge departing from '

7

[i; j], no

such restriction is necessary.

Example (mutual exclusion by turn setting)

Consider parameterized program TURN of Fig. 2.8 which manages mutual exclu-

sion between an arbitrary number of processes by turn setting. The program uses

a shared variable t, which is initially 0. Each process P [i], interested in entering

its critical section, loops in `

2::5

trying to change t to the identity number of P [i],

namely i. The grouped statement at `

3

is such that it sets t to i only if it �nds

t = 0. If P [i] �nds t 6= 0 it does not modify t but still moves to `

4

. At `

4

the

process checks whether its execution of `

3

succeeded in setting t to i. Finding a

value t = i at `

4

, P [i] enters its critical section `

5

. Otherwise it returns to `

2

and

then to `

3

to try again.

Mutual exclusion is ensured by the invariant

�

: i 2 L

5;6

! t = i.

We wish to show a weak-accessibility property, formulated by

 : N

2

> 0 ^ t = 0

| {z }

p

) 1 N

5

> 0

| {z }

q

:

This formula states that if some process is at `

2

with t = 0, then eventually

some process will get to `

5

. We refer to it as weak accessibility (sometimes also

as communal accessibility), since it does not guarantee that the same process

detected at `

2

with t = 0 will be the one to enter `

5

. The stronger property
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in M : integer where M > 1

local t : integer where t = 0

M

i=1

P [i] ::

2

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: while t 6= i do

2

6

4

`

3

:




if t = 0 then t := i

�

`

4

: if t = i then

`

5

: critical

3

7

5

`

6

: t := 0

3

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 2.8. Program TURN (mutual exclusion by turn setting).

of accessibility, claiming that any individual process visiting `

2

with t = 0, will

eventually reach `

5

, which can be expressed by the formula

at

�

`

2

[i] ^ t = 0 ) 1 at

�

`

5

[i],

is not valid for this program. In Problem 2.1, the reader is requested to show

that accessibility is not guaranteed for program TURN.

To verify the weak-accessibility property expressed by  , we use the following

in rule WELL-JP

'

3

[k]: at

�

`

2

[k] ^ N

3

= 0 ^ t = 0 �

3

: 3 �

3

[k]: `

2

[k]

'

2

[k]: at

�

`

3

[k] ^ t = 0 �

2

: 2 �

2

[k]: `

3

[k]

'

1

: at

�

`

4

[t] ^ t 6= 0 �

1

: 1 �

1

: `

4

[t]

q = '

0

: N

5

> 0 �

0

: 0:

We proceed to check the premises of rule WELL-JP.

� Premise JP1 requires showing p ! � � � _ b'

3

. Since N

2

> 0 implies the

assertion b'

3

: 9k: at

�

`

2

[k], the premise follows.

� Premise JP2 will be checked for each i = 1; 2; 3.

'

3

[k]: at

�

`

2

[k]^ N

3

= 0 ^ t = 0

Most of the transitions satisfy JP2 for '

3

by preserving '

3

and �

3

. The only

transitions that may falsify '

3

are transitions of the form `

2

[i]. Transition

`

2

[i] leads to a state satisfying b'

2

: 9r: at

�

`

2

[r] ^ t = 0.

'

2

[k]: at

�

`

3

[k] ^ t = 0
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The only transitions that can falsify '

2

are of the form `

3

[i]. However, such

a transition leads to a state satisfying '

1

: at

�

`

4

[t]^ t 6= 0.

'

1

: at

�

`

4

[t] ^ t 6= 0

The only transition that can falsify '

1

is `

4

[t] which leads to a state satisfying

the goal assertion q: N

5

> 0.

� Premise JP3 will be checked for each i = 1; 2; 3.

'

3

[k]: at

�

`

2

[k] ^ N

3

= 0 ^ t = 0

Here we show

�

`

2

[k] ^ � � � ^ t = 0

| {z }

'

3

! 9r: at

0

�

`

3

[r] ^ t

0

= 0

| {z }

b'

0

2

^ 3 > 2.

Since �

`

2

[k] implies at

0

�

`

3

[k] and t

0

= t, the implication is valid.

'

2

[k]: at

�

`

3

[k] ^ t = 0

Here we show

�

`

3

[k] ^ N

3

> 0 ^ t = 0

| {z }

'

2

! at

0

�

`

4

[t] ^ t

0

6= 0

| {z }

b'

0

1

^ 2 > 1.

Since �

`

3

[k] under t = 0 implies at

0

�

`

4

[k] and t

0

= k 6= 0, the right-hand side

follows.

'

1

: at

�

`

4

[t] ^ t 6= 0

We will show

�

`

4

[t] ^ at

�

`

4

[t] ^ t 6= 0

| {z }

'

1

! N

0

5

> 0

| {z }

q

0

:

Since �

`

4

[t] and t 6= 0 imply at

0

�

`

5

[i], the right-hand side follows.

� Premise JP4 is obviously satis�ed, since '

i

[k] implies En

�

�

i

[k]

�

for i = 1; 2; 3.

We can summarize this WELL-JP proof in the P-RANK diagram presented in Fig. 2.9.

Program RACE

Consider program RACE, presented in Fig. 2.10. This program consists of M

competing processes. The �rst process P [k

1

] to perform statement `

1

will set

its local variable t[k

1

] to 1, while incrementing the shared variable y to 2. This

process eventually gets back to location `

0

and, on �nding t[k

1

] = 1 will proceed

to `

2

. All processes performing statement `

1

later than P [k

1

] will obtain values

of t[k] greater than 1, and cannot exit the while loop at `

0

.
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C

DE

F

�k 2 [1::M ]: t= 0

�

�

�

�

'

3

: at

�

`

2

[k] ^ N

3

= 0

T

2

?

`

2

[k]

�

�

�

�

�

'

2

: at

�

`

3

[k]

`

3

[k]




� �

6

T

3

�

�

�

�

'

1

: at

�

`

4

[t] ^ t 6= 0

`

4

[t]

�

�


 	

�

'

0

: N

5

> 0

Fig. 2.9. P-RANK diagram for program TURN.

in M : integer where M > 0

local y : integer where y = 1

M

k=1

P [k] ::

2

6

6

6

4

local t: integer where t = 0

`

0

: while t 6= 1 do

`

1

: (t; y) := (y; y + 1)

`

2

:

3

7

7

7

5

Fig. 2.10. Program RACE.

The property we wish to establish for this program is that eventually some

process reaches `

2

. This property is stated by the following response formula.

N

0

> 0 ^ y = 1

| {z }

p

) 1 N

2

> 0

| {z }

q

:

It is easy to trace the progress of the computation towards the goal N

2

> 0

through the stages

b'

3

: N

0

> 0 ^ y = 1

(initial) and

b'

2

: N

1

> 0 ^ y = 1,
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up to

'

1

[k]: at

�

`

0

[k] ^ t[k] = 1.

The next helpful step takes transition `

0

[k] and reaches

q = '

0

: N

2

> 0.

Consequently, we choose assertions, helpful transitions, and ranking functions

as follows:

'

3

[k]: at

�

`

0

[k] ^ y = 1 �

3

[k]: `

0

[k] �

2

: 3

'

2

[k]: at

�

`

1

[k] ^ y = 1 �

2

[k]: `

1

[k] �

2

: 2

'

1

[k]: at

�

`

0

[k] ^ t[k] = 1 �

1

[k]: `

0

[k] �

1

: 1

'

0

: N

0

> 0:

In Fig. 2.11, we present a P-RANK diagram representing this proof.

�


 	

�

'

0

: N

2

> 0

`

0

[k]

�

�

�

�

�

'

1

: at

�

`

0

[k] ^ t[k] = 1

`

1

[k]

�

�

�

�

�

'

2

: at

�

`

1

[k]

`

0

[k]

�

�

�

�

�

'

3

: at

�

`

0

[k]

C

DE

F

y = 1

C

DE

F

�k 2 [1::M ]:

Fig. 2.11. P-RANK diagram for program RACE.

Advanced Example: Resource-Allocator Program
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In some cases, response properties of a parameterized program can be proven

without the need for explicit parameterization of the assertions and helpful tran-

sitions. Thus, rules CHAIN-J (Fig. 1.7) and WELL-J (Fig. 1.26) can be used directly.

We illustrate this on the example of a resource allocator program.

We reconsider program RES-SV for the allocation of a resource between several

customers (the shared-variables version). This program was �rst presented in

Section 2.2 of the SAFETY book (Fig. 2.9), and is reproduced here in Fig. 2.12.

We denote t�

M

1 = (t mod M ) + 1.

in M : integer where M > 0

local g; r: array [1::M ] of boolean where g = F; r = F

A ::

2

6

6

6

6

6

6

6

6

6

6

6

4

local t: integer where t = 1

m

0

: loop forever do

2

6

6

6

6

6

6

4

m

1

: if r[t] then

2

6

4

m

2

: g[t] := T

m

3

: await :r[t]

m

4

: g[t] := F

3

7

5

m

5

: t := t �

M

1

3

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

5

M

i=1

C[i] ::

2

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: r[i] := T

`

3

: await g[i]

`

4

: critical

`

5

: r[i] := F

`

6

: await :g[i]

3

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 2.12. Program RES-SV (resource allocator).

We are interested in proving the response properties of this program. The

main response property is that of accessibility, stated by the formula

 : at

�

`

2

[k] ) 1 at

�

`

4

[k].
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This formula states that any process that is interested in entering its critical

section, will eventually succeed in doing so.

We are aided in this proof by the invariant

'[i]: idle[i] _ requesting [i] _ granted [i] _ releasing[i]

holding for every i = 1; : : : ;M , where

idle[i]:

�

at

�

m

0;1;5

_ t 6= i

�

^ at

�

`

0::2;6

[i] ^ :r[i] ^ :g[i]

requesting[i]:

�

at

�

m

0::2;5

_ t 6= i

�

^ at

�

`

3

[i] ^ r[i] ^ :g[i]

granted [i]: at

�

m

3

^ t = i ^ at

�

`

3::5

[i] ^ r[i] ^ g[i]

releasing[i]: at

�

m

3;4

^ t = i ^ at

�

`

6

[i] ^ :r[i] ^ g[i]:

In Fig. 2.13, we present a diagram (duplicated from Fig. 2.10 of the SAFETY

book) which represents the possible movements of the system between the four

cases comprising assertion '[i].

releasing[i]: :r[i] ^ g[i]

'

&

$

%

^ (at

�

m

3;4

^ t = i)

^ at

�

`

6

[i]

idle[i]: :r[i] ^ :g[i]

'

&

$

%

^ (at

�

m

0;1;5

_ t 6= i)

^ at

�

`

0::2;6

[i]

m

4

6

`

2

[i]

-

`

5

[i]

�

granted [i]: r[i] ^ g[i]

'

&

$

%

^ (at

�

m

3

^ t = i)

^ at

�

`

3::5

[i]

requesting [i]: r[i] ^ :g[i]

'

&

$

%

^ (at

�

m

0::2;5

_ t 6= i)

^ at

�

`

3

[i]

m

2

?

Fig. 2.13. Four phases in the life of a customer process.

The proof is established by the following lemmas:

Lemma A at

�

`

2

[k] ) 1

�

at

�

`

3

[k] ^

�

(at

�

m

0::3

^ t = k) _ t 6= k

�

�

Lemma B at

�

`

3

[k] ^ t 6= k ) 1

�

at

�

`

3

[k] ^ at

�

m

0::3

^ t = k

�

Lemma C at

�

`

3

[k] ^ at

�

m

0::3

^ t = k ) 1 at

�

`

4

[k].
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Lemma A traces the progress of C[k] from `

2

[k] to `

3

[k]. Deriving at `

3

[k], we

distinguish between two cases according to whether the allocator is currently

paying attention to C[k] (t = k) or to some other customer C[i], t = i 6= k. If

the allocator is currently devoted to C[i], i 6= k, then Lemma B ensures that

C[k]'s turn will eventually come. Lemma C shows that, once the allocator pays

attention to C[k], process C[k] eventually advances to `

4

[k].

Clearly, by the transitivity of response (rule TRNS-R), we obtain the required

accessibility property.

� Proof of Lemma A

The proof of the response property

at

�

`

2

[k] ) 1

�

at

�

`

3

[k] ^

�

(at

�

m

0::3

^ t = k) _ t 6= k

�

�

using rule CHAIN-J, is presented in the diagram of Fig. 2.14.

�

�

�

�

at

�

`

2

[k]

`

2

[k]

�

C

DE

F

at

�

`

3

[k]

�

�

�

�

at

�

m

5

^ t = k ^ :g[k]

m

5

�

�


 	

�

�

at

�

m

0::3

^ t = k

�

_ t 6= k

Fig. 2.14. Lemma A for program RES-SV.

The proof of this diagram relies on the invariant '[k], by which

at

�

`

3

[k] !

2

6

6

4

�

at

�

m

0::3

^ t = k

�

_

�

at

�

m

5

^ t = k ^ :g[k]

�

_

t 6= k

3

7

7

5

:

To see this observe that, by '[k], at

�

`

3

[k] implies that either requesting[k] or

granted [k] hold. The assertion requesting [k] implies
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(at

�

m

0::2;5

_ t 6= k) ^ :g[k],

which is equivalent to

�

(at

�

m

0::2;5

^ t = k) _ t 6= k

�

^ :g[k].

This implies

(at

�

m

0::2

^ t = k) _

�

at

�

m

5

^ t = k ^ :g[k]

�

_ t 6= k.

Taking the disjunction of this formula with at

�

m

3

^ t = k, which is implied by

granted [k], we obtain the right-hand side of the implication above.

� Proof of Lemma B

The proof of the response property

at

�

`

3

[k] ^ t 6= k ) 1

�

at

�

`

3

[k] ^ at

�

m

0::3

^ t = k

�

;

using rule WELL-J, is presented in Fig. 2.15.

Let us trace progress towards the goal '

0

in this veri�cation diagram, starting

from a state in which C[k] is at `

3

and t 6= k. The diagram analyze the various

locations in which A can currently be. If A is at m

0

('

9

) it eventually moves

to m

1

('

8

). At m

1

, A tests the value of r[t]. If r[t] = T, A moves to m

2

('

7

).

Otherwise, A moves to m

5

('

1

). According to invariant '[t] (i.e., '[i] when i = t),

when A is at m

2

, g[t] = F and since, on entering m

2

, A has just tested r[t] to

be T, we obtain the conjunction at

�

m

2

^ r[t] ^ :g[t] in '

7

. By '[t], r[t] ^ :g[t]

implies at

�

`

3

[t] which complete '

7

. From m

2

, A eventually sets g[t] to T and

moves to m

3

. At this point, we analyze the various possible locations of C[t], i.e.,

the customer process C[i], i = 1; : : : ;M , such that currently t = i.

Since at '

7

, C[t] is at at

�

`

3

[t] and r[t] = T, transition m

2

leads to the state

described by '

6

. From `

3

, C[t] moves to `

4

('

5

) and from there to `

5

('

4

).

Taking `

5

, r[t] is reset to F and C[t] moves to `

6

('

3

) waiting for g[t] to

become F. Up until this point, A cannot move because it waits for r[t] to become

F. Once r[t] = F, A moves to m

4

('

2

) and from there to m

5

('

1

).

At m

5

, A sets t to t�

M

1 advancing to the next process index in cyclic order.

There are two cases. If t = (k � 1) mod M then t �

M

1 = k and transition m

5

leads to a state in which A is at m

0

, t = k, and C[k] is still waiting at `

3

.

If t 6= (k� 1) mod M then m

5

leads again to a state covered by '

9

. Here we

must show that this transition causes a rank decrease. This means that

�

�(t; k); 1

�

>

�

�(t �

M

1; k); 9

�

;

for t 6= k. To show this, we will prove �(t; k) > �(t�

M

1; k) for t 6= k.

Recall that the cyclic distance function was de�ned in Section 3.4 of the

SAFETY book as
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C

DE

F

at

�

`

3

[k]; t 6= k; :g[k]

�(t; k): (k � t) mod M

�

�

�

�

'

9

: at

�

m

0

m

0

�

�

�

�

�

'

8

: at

�

m

1

m

T

1

�

m

F

1

�

�




�

�

�

�

'

7

: at

�

m

2

^ at

�

`

3

[t] ^ r[t] ^ :g[t]

m

2

�

�

��

�

at

�

m

3

; g[t]

C

DE

F

r[t]

�

�

�

�

'

6

: at

�

`

3

[t]

`

3

[t]




�

�

�

�

'

5

: at

�

`

4

[t]

`

4

[t]




�

�

�

�

'

4

: at

�

`

5

[t]

`

5

[t]

�

�

�

�

�

'

3

: at

�

`

6

[t] ^ :r[t]

m

3

�

�

�

�

�

'

2

: at

�

m

4

m

4

�

�

�

�

�

'

1

: at

�

m

5

m

5

�

m

5

� �

�

�

�


 	

�

'

0

: at

�

`

3

[k] ^ at

�

m

0::3

^ t = k

Fig. 2.15. Lemma B for program RES-SV.

�(t; k): (k � t) mod M .

This function measures the number of times t has to be increased by 1 modulo

M until it equals k.

It is obvious that if t 6= k then t�

M

1 is closer to k in a cyclic distance than

t. For example, consider a situation where M = 8, t = 8 and k = 3.
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Observe that

t�

8

1 = 8�

8

1 = (8 mod 8) + 1 = 1.

The two cyclic distances are

�(t; k) = �(8; 3) = (3� 8) mod 8 = (�5) mod 8 = 3

�(t�

8

1; k) = �(1; 3) = (3� 1) mod 8 = 2 mod 8 = 2.

Note that the restriction to t 6= k is essential, because if t = k then

�(t; k) = �(k; k) = 0 6>

�(t �

M

1; k) = �(k �

M

1; k) = (�1) mod M = M � 1.

Let us prove the rank decrease for arbitrary M > 1 and arbitrary t 6= k,

using the mathematical de�nitions of �

M

and �(t; k).

Let n denote �(t; k) =

�

(k � t) mod M

�

. Obviously 0 � n < M . From the

facts that 0 < t � M , 0 < k � M , and t 6= k, it follows that n 6= 0. Using

0 < n �M , we compute

�(t�

M

1; k) =

�

k � (t �

M

1)

�

mod M =

�

k �

�

(t mod M ) + 1

�

�

mod M

=

�

(k � 1)� (t mod M )

�

mod M

= (k � 1� t) mod M

=

�

�1 + (k � t)

�

mod M

=

�

�1 + ((k � t) mod M ))

�

mod M

= (�1 + n) mod M = (n� 1) mod M

= n� 1 < n = �(t; k):

This computation uses the fact that, for C satisfying 0 � C < M , C mod M = C,

and the following property of the mod operator:

�

a� (b mod M )

�

= (a � b) mod M ,

which allows the introduction and elimination of mod M within the scope of

another mod M .

� Proof of Lemma C

The response property

at

�

`

3

[k] ^ at

�

m

0::3

^ t = k ) 1 at

�

`

4

[k],

is proven by rule CHAIN-J. The proof is presented in the diagram of Fig. 2.16.

The Bakery Algorithm
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C

DE

F

at

�

`

3

[k]; r[k]; t = k

C

DE

F

:g[k]

�

�

�

�

at

�

m

0

m

0




�

�

�

�

at

�

m

1

m

1




�

�

�

�

at

�

m

2

m

2

�

�

�

�

�

at

�

m

3

^ g[k]

`

3

[k]




�


 	

�

at

�

`

4

[k]

Fig. 2.16. Lemma C for program RES-SV.

In Fig. 2.17, we present an atomic version of the bakery algorithm for mutual

exclusion among M > 0 processes.

The algorithm is called the bakery algorithm, since it is based on the idea that

customers, as they enter, pick numbers which form an ascending sequence. Then,

a customer with a lower number has higher priority in accessing its critical section.

Statement `

2

ensures that the number assigned to y[i] is greater than the current

value of ticket [j], for all j = 1; : : : ;M . Then statement `

3

admits process P [i] into

the critical section only if, for all j 6= i, either y[j] = 0, implying that process P [j]

is currently not interested in entering its cricial section, or ticket [j] > ticket[i]

which implise that P [j] has a higher turn number and, therefore, a lower priority

than P [i].

We refer to this version of the program as atomic because it assumes that

taking the maximum of ticket [1]; : : :; ticket[M ] can be done in one step and, sim-

ilarly, testing that all P [j] for j 6= i have lower priority than P [i] can be done in

one step.

Proving Mutual Exclusion

To prove the property of mutual exclusion, we �rst establish some local invariants,

relating the value of ticket [i] to the location of process P [i].

�

0

: ticket [i] � 0

�

1

: ticket [i] > 0 $ at

�

`

3::5

[i].

Consider two distinct processes, P [i] and P [k], for i 6= k. Their mutual exclusion

can be speci�ed by the invariance of the assertion

 : :

�

at

�

`

4

[i] ^ at

�

`

4

[k]

�

:
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in M : integer where M > 0

local ticket : array[1::M ] of integer where ticket = 0

M

i=1

P [i] ::

2

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

4

`

1

: noncritical

`

2

: ticket [i] := 1 +max(ticket [1]; : : : ; ticket[M ])

`

3

: await 8j 6= i: ticket [j] = 0 _ ticket [i] < ticket[j]

`

4

: critical

`

5

: ticket [i] := 0

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

5

Fig. 2.17. Program BAKERY-AT (atomic bakery algorithm).

Applying the technique of assertion propagation (described in Chapter 1

of the SAFETY book), we obtain the following necessary condition for  being

invariant (taking into account invariant �

0

):

�: at

�

`

3

[i] ^ at

�

`

4

[k] ! 9j 6= i: 0 < ticket [j] � ticket [i].

A good heuristic is to try to establish mutual exclusion of P [i] and P [k], using

assertions that only refer to the variables of P [i] and P [k]. Therefore we may look

for the weakest (i; k)-assertion which implies �. This is given by

at

�

`

3

[i] ^ at

�

`

4

[k] ! 0 < ticket[k] � ticket[i].

Since at

�

`

4

[k] implies ticket [k] > 0 by �

1

, we can simplify the candidate assertion

to

�

3

: at

�

`

3

[i] ^ at

�

`

4

[k] ! ticket [k] � ticket [i].

It is not di�cult to ascertain that �

3

is an invariant (using �

0

and �

1

).

Informally, we may consider the two relevant transitions.

� Taking `

3

[k] while at

�

`

3

[i]. Transitions `

3

[k] can be taken only if ticket[i] = 0

or ticket [k] < ticket[i]. By �

1

, at

�

`

3

[i] implies ticket [i] > 0. Therefore,

taking the transition implies ticket [k] < ticket[i] which guarantees ticket [k] �

ticket [i].

� Taking `

2

[i]. This transitions sets ticket[i] to a value which is not smaller

than 1 + ticket [k]. Hence ticket [k] � ticket [i].

In a symmetric way, we propose and verify the invariance of

�

4

: at

�

`

3

[k] ^ at

�

`

4

[i] ! ticket [i] � ticket [k].

It is now straightforward to verify the invariance  , relying on �

3

and �

4

as
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previously established invariances.

Proving Accessibility

The property of accessibility for process P [i] can be speci�ed by the formula

�: at

�

`

2

[i] ) 1 at

�

`

4

[i].

It is trivial to follow the progress of P [i] from `

2

to `

3

. Consequently, the main

veri�cation task should establish the property

�: at

�

`

3

[i] ) 1 at

�

`

4

[i].

The only reason process P [i] may be held at `

3

, not being able to proceed imme-

diately to `

4

is that there are some processes superior to P [i]. A process P [j] is

said to be superior to P [i] if 0 < ticket [j] < ticket [i]. Consequently, we de�ne

superior(i) =

�

j 2 [1::M ] j 0 < ticket[j] < ticket [i]

	

to be the set of all (indices of) processes superior to P [i].

Consider what may happen to the set superior(i) while P [i] is waiting at

`

3

. Processes may leave the set superior(i) by performing `

5

, setting their ticket

variable to 0. Once a process has left superior(i) it cannot reenter this set because

the only way for a process to attain a positive ticket value is by performing

`

2

. However, execution of `

2

by P [j] while P [i] is at `

3

, necessary leads to a

value ticket[j] > ticket [i], which shows that P [j] is not in superior(i) even after

execution of `

2

.

We conclude that while P [i] is waiting at `

3

, the set superior(i) can never

increase. We will now argue that if the set is non-empty, it will eventually decrease.

Consider process P [j] which has the minimal positive value of ticket[j]. If

superior(i) 6= ; then, obviously j 2 superior(i). Having a positive ticket value

implies that P [j] is somewhere in the range f`

3

; `

4

; `

5

g. We claim that wherever

it is, its progress is guaranteed. In particular, even if P [j] is at `

3

it cannot be

blocked by any other process, since ticket [j] is (positively) minimal.

Thus, P [j] is guaranteed to progress until it reaches `

5

, whose execution

decreases the size of superior(i).

Consequently, while P [i] is waiting at `

3

, the set superior(i) repeatedly de-

creases, until it becomes empty. Once superior(i) is empty, P [i] has the minimal

positive ticket and its progress to `

4

is guaranteed.

In Fig. 2.18, we present a P-RANK diagram for the proof of property � based

on the above arguments. The proof uses the assertion

minimal(k): ticket(k) > 0 ^ 8j: ticket(j) > 0 ! ticket(k) � ticket(j).

In Problem 2.3, the reader is requested to consider several non-atomic

versions of the bakery algorithm and verify their properties.
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C

DE

F

�k 2 [1::M ]: minimal ; at

�

`

3

[i]; superior(i) 6= ;

�: superior(i)

�


 	

�

'

0

: at

�

`

4

[i]

`

3

[i]

�

�

�

�

�

'

1

: at

�

`

3

[i] ^ superior(i) = ;

`

5

[k]

�

`

5

[k]

��

�

�

�

�

�

'

2

: at

�

`

5

[k]

`

4

[k]

�

�

�

�

�

'

3

: at

�

`

4

[k]

`

3

[k]

�

�

�

�

�

'

4

: at

�

`

3

[k]

Fig. 2.18. A P-RANK diagram proving accessibility for program BAKERY-AT.

2.3 Coordination by Add-And-Store

As our next set of examples, illustrating the techniques for proving response prop-

erties of parameterized programs, we present a family of algorithms, based on a

special synchronization instruction.

Some computers have special \add-and-store" instructions that fetch a value

from a location in memory, add to it a number and store the result in the same

location, all within one execution cycle. If several processors that have this in-

struction are connected to a common shared memory then, while one of them

performs such an add-and-store instruction, no other processor can interfere with

the value being fetched and stored at this location. This provides a natural im-

plementation of the atomic instruction y := y + e for a shared variable y and a

local expression e. A local expression is an expression that depends only on vari-

ables local to the process. Usually, the value which is stored is also retained in an

internal register. This enables a single transition implementation of the multiple

assignment statement

(t; y) := (y + e; y + e),
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where y is a shared variable, e is a local expression, and t is a variable local to

the process that is executing this instruction.

To emphasize the special role of this statement, it is written in the form

t := y := y + e,

in all the programs in this section.

Add-and-store statements of the described form have often been suggested

as means for implementing semaphores. As we will see below, they are not as

strong as semaphores, since they lack the compassion property associated with

semaphores. That is, the transitions associated with add-and-store statements

are not compassionate while semaphore transitions are.

We present two programs that coordinate entry to critical sections by means

of add-and-store statements and investigate their response properties. Since these

statements are not compassionate, they cannot directly ensure individual acces-

sibility of each process to its critical section. Instead, they can only ensure the

weaker property of cummunal accessibility by which, if some process wishes to

enter the critical section, some process (not necessarily the same) will eventually

enter its critical section. However, as will be shown, communal accessibility can

be used to program more involved algorithms that ensure individual accessibility.

Notations and Inferences

To facilitate proofs of the programs in this section, we introduce some special no-

tations that rely on the special structure of the considered programs. All programs

considered here consist of a parallel composition of M processes P [1]; : : :; P [M ],

where M is an input to the program. Each process has a local variable t. Let `

a

and `

b

, a � b be two locations in the program. We de�ne the following notations:

L

t�c

a::b

:

�

i 2 [1::M ] j at

�

`

a::b

[i] ^ t[i] � c

	

;

N

t�c

a::b

:

�

�

L

t�c

a::b

�

�

where � is one of the six binary relations f<; �; =; 6=; �; >g.

Thus, L

t>c

3::4

denotes the set of all process indices i 2 [1::M ], such that P [i] is

currently at `

3

or at `

4

and t[i] > 0, and L

t>c

3::4

denotes the total number of such

processes.

For the case that b = a, we write L

t�c

a::b

and N

t�c

a::b

simply as L

t�c

a

and N

t�c

a

.

For the case that b = a+ 1, we write L

t�c

a::b

and N

t�c

a::b

simply as L

t�c

a;b

and N

t�c

a;b

.

There is an obvious connection between assertions referring to expressions

such as N

t�c

a::b

and assertions that use existential quanti�cation over the index i.

For example, the following equivalence is a direct consequence of the de�nitions.
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N

t>0

a::b

> 0 $ 9i:

�

at

�

`

a::b

[i] ^ t[i] > 0

�

:

All quanti�ed variables in this section are rigid variables denoting process

indices which range over [1::M ]. We therefore omit their range speci�cations

from the formulas.

Some of the following proofs use rule EE-INTR, which can be derived in the

proof system presented in Volume I.

Rule EE-INTR (introduction of existential quanti�ers)

p ) 1 q

(9i: p) ) 1 (9i: q)

In the case that formula q has no free occurrences of i, we can use this rule to

infer (9i: p)) 1 q from p) 1 q.

Mutual Exclusion by Add-and-Store

We consider �rst program MUX-AST presented in Fig. 2.19, which implements

mutual exclusion by add-and-store instructions.

in M : integer where M > 0

local y : integer where y = 1

M

i=1

P [i] ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

local t: integer

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: t := �1

`

3

: while t < 0 do

2

6

6

6

6

6

4

`

4

: await y > 0

`

5

: t := y := y � 1

`

6

: if t = 0 then

`

7

: critical

`

8

: y := y + 1

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 2.19. Program MUX-AST (mutual exclusion by add-and-store).
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The program consists of M > 0 processes which coordinate their entry to

their critical sections via the shared \semaphore" variable y. In addition, each

process P [i] has a local variable t which is used in the program. The program for

each process is a cycle, in which the process alternates between the execution of

its noncritical section at `

1

and the attempt to enter its critical section at `

7

.

The process may elect to stay forever in its noncritical section.

If the process exits its noncritical section, the protocol for trying to enter the

critical section starts at `

2

, where the variable t is set to �1. Then, the process

enters a loop at `

3

which is terminated only when t becomes nonnegative. A

nonnegative value of t (actually 0), signals that the process managed to enter its

critical section, and may therefore return to `

1

.

Within the loop, the process waits �rst at `

4

for y to become positive. When

the process detects a positive y it performs an add-and-store statement at `

5

with

y and the constant �1, retaining the value stored in y also in t.

One may wonder why do we need further checks after having detected a

positive y at `

4

. The answer is that two processes P [i] and P [j] may detect a

positive y at `

4

and move, one after the other, to `

5

. Assume P [i] to be the �rst

to perform `

5

. It will lower y to 0 and obtain a t[i] = 0. The second process P [j],

performing `

5

one step later, will get to y = t[j] = �1. Therefore, it is necessary

for a process to check its own t after the addition to see whether it was the �rst

to perform `

5

.

Indeed, at `

6

process P [i] checks whether it was the lucky one. On �nding

t[i] = 0, P [i] concludes that it was the �rst to perform `

5

and proceeds to enter

the critical section at `

7

. On exit it increments y, o�setting the subtraction at

`

5

. Since t[i] = 0 in this case, the loop of `

3

terminates, and lucky process P [i]

returns to `

1

.

If the process �nds a negative t, it concludes that it is not its turn to enter,

and proceeds to `

8

. Here it increments y to o�set the subtraction at `

5

. Since

t < 0, the loop of `

3

does not terminate, and the process returns to `

4

to try its

luck once more.

Proving Safety Properties: Mutual Exclusion

As a �rst step in the veri�cation of program MUX-AST, let us prove the safety

property of mutual exclusion. This property states that at most one process may

be at `

7

, and is expressible by:

N

7

� 1.

We prove several invariants that lead to the desired conclusion.

The �rst invariant is given by

I

1

: at

�

`

7

[i] ! t[i] = 0.
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Observe that the assertions refer to the instance of variable t that belongs to pro-

cess P [i] as t[i]. This invariant can be veri�ed by checking the relevant transitions.

They are `

6

[i] which proceeds to `

7

only if t[i] = 0, and `

2

[i], `

5

[i] which modify

t[i], but do not end up at `

7

[i].

A second invariant is given by

I

2

: N

6::8

+ y = 1.

This is easily veri�able by observing that initially N

6::8

= 0 and y = 1. Then we

check the relevant transitions and �nd that `

5

[i] decrements y by 1 but increments

N

6::8

by 1. The latter is because process P [i] has just joined the set L

6::8

by

entering `

6

. Similarly, transition `

8

increments y by 1 but decrements N

6::8

by 1.

Thus, both preserve the sum N

6::8

+ y.

From this invariant it follows that y � 1 is also invariant.

The last invariant we consider is:

I

3

: i 6= j ! :

�

�

at

�

`

6::8

[i] ^ t[i] = 0

�

^

�

at

�

`

6::8

[j] ^ t[j] = 0

�

�

which states that at most one process P [i] can be at `

6::8

with a zero t variable.

The only transition which may potentially falsify this assertion is taking `

5

[i]

from a state satisfying at

�

`

6::8

[j] ^ t[j] = 0 (symmetrically, taking `

5

[j] from a

state satisfying at

�

`

6::8

[i] ^ t[i] = 0). However, in this case N

6::8

> 0 which, in

view of I

2

, implies y � 0. Since transition `

5

[i] leads to t

0

[i] = y � 1, it follows

that t

0

[i] < 0. Therefore, i does not satisfy at

0

�

`

6::8

[i]^ t

0

[i] = 0 and the assertion

I

3

is not falsi�ed.

This shows that all transitions preserve assertion I

3

.

From I

1

and I

3

we conclude

N

7

� 1.

Proving Response Property: Communal Accessibility

As we have already commented, the add-and-store instructions are not strong

enough to guarantee individual accessibility, i.e., that each process wishing to

enter its critical section will eventually do so. Instead, we prove the weaker

property of communal accessibility (also called weak accessibility). This property

claims that, if some process wishes to enter its critical section, then some process

(not necessarily the same) will eventually enter its critical section. This can be

expressed by:

N

2

> 0 ) 1 (N

7

> 0).

Let us prove this property.

Consider the progress of a process from `

2

to `

7

. It can certainly advance

unhindered until it reaches `

4

. At `

4

it has to wait until y becomes positive. Due
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to I

2

, y becomes positive only when the range `

6::8

is evacuated by all processes

currently residing there. When y becomes positive, one or more processes will

reach `

5

. The �rst process to execute `

5

, while y is positive, will get a zero value

of t and will eventually get to `

7

.

Thus, we can partition the description of progress into phases, identi�ed as

follows:

1. Some process gets to `

4

.

2. While some processes are at `

4

and y � 0, the range `

6::8

is evacuated until

y becomes 1.

3. Some process executes `

5

while y is still 1, gets a zero t, and proceeds to `

7

.

Consequently, we prove these stages in the progress towards entry to the critical

section as separate lemmas.

Lemma A N

2

> 0 ) 1 (N

4

> 0)

In Fig. 2.20 we present a CHAIN-J proof of the response formula

at

�

`

2

[i] ) 1 (N

4

> 0).

�

�

�

�

'

2

: at

�

`

2

[i]

`

2

[i]




�

�

�

�

'

1

: at

�

`

3

[i] ^ t[i] < 0

`

3

[i]

�

�

�


 	

�

'

0

: N

4

> 0

Fig. 2.20. CHAIN diagram for Lemma A.

Applying rule EE-INTR and observing that N

4

> 0 does not refer to the index

i, we obtain

(9i: at

�

`

2

[i]) ) 1 (N

4

> 0),

from which, by monotonicity, we conclude

N

2

> 0 ) 1 (N

4

> 0).

Once we know that some process is at `

4

, there are two cases to consider,

depending on whether y is positive. Consider �rst the more di�cult one, in which

y � 0. The following lemma claims that from the more di�cult case, we are

guaranteed to reach the easier case in which N

4

> 0 ^ y > 0.

Lemma B N

4

> 0 ^ y � 0 ) 1 (N

4

> 0 ^ y > 0)
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We prove this lemma by rule WELL-JP. The proof is presented by the P-RANK

diagram of Fig. 2.21.

C

DE

F

N

4

> 0

C

DE

F

�k 2 [1::M ]: y � 0; N

5::8

> 0

�: L

5::8

�

�

�

�

'

4

: at

�

`

5

[k]

`

5

[k]




�

�

�

�

'

3

: at

�

`

6

[k]

`

6

[k]




`

6

[k]

�

�

�

�

�

'

2

: at

�

`

7

[k]

`

7

[k]

�

�

�

�

�

�

'

1

: at

�

`

8

[k]

`

8

[k]

��

�

`

8

[k]

�

�


 	

�

'

0

: y > 0

Fig. 2.21. P-RANK diagram for Lemma B.

Note that any transition that causes N

6::8

to become 0 leads, according to

I

2

, to a positive y.

The reason we use the ranking N

5::8

instead of N

6::8

which is mentioned in

I

2

, is that N

6::8

can increase by execution of `

5

. The rank N

5::8

cannot increase,

while y � 0, because no process can pass `

4

if y � 0.

Lemma C N

4

> 0 ^ y > 0 ) 1 (N

7

> 0)

This lemma is proven again by rule WELL-JP, tracing the progress from `

4

to

`

7

. The proof is presented in the P-RANK diagram of Fig. 2.22.

We use the invariant I

2

to infer y > 0! y = 1.

The three lemmas can be combined into a single P-RANK diagram, presented

in Fig. 2.23.

It is possible to omit most of the internal details of this diagram, and retain

just the top-level structure, identifying the lemmas which lead from one phase to

the next. This leads to the diagram of Fig. 2.24.

This schematic diagram identi�es the partition of the proof into three lem-

mas. Each lemma is represented as a box, with exits that lead to subsequent
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C

DE

F
y = 1

C

DE

F

�k 2 [1::M ]:

�

�

�

�

'

3

: at

�

`

4

[k]

`

4

[k]




T

5

� �

6

�

�

�

�

'

2

: at

�

`

5

[k]

`

5

[k]




�

�

�

�

'

1

: at

�

`

6

[k] ^ t[k] = 0

`

6

[k]

�

�


 	

�

'

0

: N

7

> 0

Fig. 2.22. P-RANK diagram for Lemma C.

boxes. The box represents the response property, guaranteeing that eventually

the computation will exit to one of the successors of this box.

From Communal to Individual Accessibility

Program MUX-AST for mutual exclusion by add-and-store instructions does not

fully satisfy our expectations from a satisfactory solution to the mutual exclu-

sion problem. It falls short in guaranteeing communal accessibility rather than

individual accessibility. However, once some process is admitted to the critical

section we can appoint it as an arbitrator for the next round. This is because

when being in the critical section it can perform activities such as determining

which process will be the next to be admitted, without having to worry about

possible interference from other processes.

In Fig. 2.25 we present program IMUX-AST, which implements individual ac-

cessibility. This program extends program MUX-AST in several ways. It contains

an additional variable next ranging over 1::M , and whose value represents the in-

dex of a process, that has been given higher priority in the last arbitration round.

The local variable t of MUX-AST is transformed in IMUX-AST into an array t[1::M ]

that can be inspected by each of the processes. Initially next = 0.

The protocol proceeds very much as before, except that at `

4

we introduced

a new gate. The function of the gate at `

4

is to hold there all processes except the

one that has been given higher priority. Note that, if no process has been given

priority, next = 0 and all processes can pass the gate at `

4

. From there on, the

protocol proceeds as before, except that there is an additional code performing an

arbitration round at `

9::15

. Since this code follows immediately after the critical

section it is guaranteed to be performed in exclusion, by a single process P [i].

The �rst question asked at `

9

is whether a new round of arbitration is needed.
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�
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�

`

8
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`

8
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�

�

`

8
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`
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�

�

'
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: at

�

`

5
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`

5
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�
�

�

�

�

'
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�

`

6
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T
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�
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DE
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Fig. 2.23. P-RANK diagram for N

2

> 0) 1 (N

7

> 0).



c

 Z. Manna and A. Pnueli, 28 Oct. 96. Not for Distribution

2.3 Coordination by Add-And-Store 127

�

�

�
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> 0

�
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�

�

Lemma A

�
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4
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�

Lemma B

�

�

�

�

N

4

> 0 ^ y = 1

�
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�

�

Lemma C

�


 	

�

N

7

> 0

Fig. 2.24. Top-level structure of the proof.

A new round is needed if either no process has been assigned a high priority, i.e.,

next = 0, or if the process with the higher priority is P [i] itself.

The other case is that some other process, P [k], for k 6= i has been assigned a

high priority, but P [i] entered the critical section ahead of P [k]. The algorithm is

such that some overtaking is possible. In this case, P [k] is still attempting entry

to its critical section and we should not modify its priority. Hence in such a case,

P [i] proceeds directly to `

16

and no arbitration takes place.

On entering the arbitration section, variable next is reset to 0 for the case

that its previous value was i. Process P [i] then sets variable j to the next index

following i in cyclic order, and enters the while loop at `

12

. The loop searches
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in M : integer where M = 0

local j; y; next : integer where y = 1; next = 0

t : array [1::M ] of integer where t = 0

M

i=1

P [i] ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: t[i] := �1

`

3

: while t[i] < 0 do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

4

: await next = 0 _ next = i

`

5

: await y > 0

`

6

: t[i] := y := y � 1

`

7

: if t[i] = 0 then

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

8

: critical

`

9

: if next = 0 _ next = i then

2

6

6

6

6

6

6

6

6

6

4

`

10

: next := 0

`

11

: j := (i mod M ) + 1

`

12

: while next = 0 ^ j 6= i do

2

6

4

`

13

: if t[j] < 0 then

`

14

: next := j

`

15

: j := (j mod M ) + 1

3

7

5

3

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

`

16

: y := y + 1
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7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
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7

7
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7

7

7
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7

7

7

7

7

7

7
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7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
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7
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7

5

Fig. 2.25. Program IMUX-AST | guaranteeing individual accessibility.

for the �rst j in cyclic order such that t[j] < 0. Note that t[j] < 0 is a reliable

indicator that P [j] is interested in entering the critical section but has not done

so yet. If such a j is found, P [i] sets next to j, thus declaring j to have a high

priority, and then exits the loop. Another possibility is that no such j has been

found, and then j will close a full cycle and return to the value i. The loop

terminates in both of these cases.

The reader is invited to verify that this program guarantees individual ac-

cessibility, i.e., that it satis�es the requirement

at

�

`

2

[k] ) 1 at

�

`

7

[k].
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Readers-Writers with Add-And-Store Instructions

An interesting extension of the mutual exclusion problem is the readers-writers

problem. In this problem we distinguish two types of critical sections, called a

reading section and a writing section. The required exclusion property is that

while some process resides in a writing section, no other process may

reside in either a reading or a writing section.

Note that this allows several processes to cohabit a reading section.

The Program

Program READ-WRITE for solving the readers-writers problem, using add-and-store

instructions, is presented in Fig. 2.26. (Compare with program READ-WRITE of

Fig. 2.11 of the SAFETY book, which uses generalized semaphores.) After the

statement noncritical at `

1

, which represents the noncritical activity of the pro-

cesses, each process branches nondeterministically to either the read protocol R,

at location `

2::7

, or to the write protocol W , at `

8::14

.

In the read protocol, each reader tries to decrement y and achieve a nonnega-

tive value in t (and in y). Since the initial value of y is M , up to M readers may

decrement y by 1, and still obtain a nonnegative value. If a reader succeeds to

obtain a nonnegative value for t, it proceeds to the read section at `

6

. If it does

not, it corrects y at `

7

and continues to loop.

The writer's protocol is similar, except that a writer subtracts M From y,

attempting to obtain a nonnegative value. This is possible only if that particular

writer is the only one currently subtracting from y. Even if one reader has sub-

tracted and lowered y to M � 1, the writer, subtracting a further M will already

obtain �1, and be barred from entering the writing section.

Another special feature of the write protocol is the wait at `

10

for y to become

M . This is similar to the await y > 0 we had in the mutual exclusion program

MUX-AST (Fig. 2.25). This is necessary, because otherwise we can construct a

computation in which two writers chase one another around the `

9

loop, keeping

y always negative, without any of them or a reader being able to enter any of the

critical sections. With the await gate at `

10

, this cannot happen as we will prove

below.

Proving Mutual Exclusion

The �rst property we prove is that of exclusion, as required by the problem. This

is established by several invariants.

� Invariant I

1

N

5::7

+ M �N

12::14

+ y = M .

This equality holds initially, since y = M and N

5::7

= N

12::14

= 0. It is



c

 Z. Manna and A. Pnueli, 28 Oct. 96. Not for Distribution

130 Chapter 2: Response for Parameterized Programs

in M : integer where M > 0

local y : integer where y = M

M

i=1

P [i] ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

local t: integer where t = 0

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

R ::

2

6

6

6

6

6

6

6

6

4

`

2

: t := �1

`

3

: while t < 0 do

2

6

6

6

4

`

4

: t := y := y � 1

`

5

: if t � 0 then

`

6

: Read

`

7

: y := y + 1

3

7

7

7

5

3

7

7

7

7

7

7

7

7

5

or

W ::

2

6

6

6

6

6

6

6

6

6

6

4

`

8

: t := �1

`

9

: while t < 0 do

2

6

6

6

6

6

4

`

10

: await y = M

`

11

: t := y := y �M

`

12

: if t � 0 then

`

13

: Write

`

14

: y := y +M

3

7

7

7

7

7
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7

7

7

7

7

7

7

7

7
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7
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7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
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Fig. 2.26. Program READ-WRITE (readers-writers

with add-and-store).

preserved by transitions, such as `

4

which increments N

5::7

by 1 and decre-

ments y by 1, or `

11

which increments N

12::14

by 1 and decrements y by M .

Similarly, it is preserved by `

7

and `

14

.

� Invariant I

2

N

t�0

5::7

+ M �N

t�0

12::14

� M .

There are two transitions that may endanger the invariance of this assertion.

`

4

[i] while N

t�0

5::7

+M �N

t�0

12::14

= M

However, due to I

1

,

y = M � N

5::7

� M �N

12::14
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� M � N

t�0

5::7

� M �N

t�0

12::14

= 0:

So the execution of `

4

[i] will produce t

0

[i] < 0, and hence N

t�0

5::7

does not

increase.

`

11

[i] while N

t�0

5::7

+M �N

t�0

12::14

> 0

This is a dangerous situation since by adding one more element to N

t�0

12::14

the sum will increase beyond M .

However due to I

1

, and a calculation identical to the one before we obtain

y � M � N

t�0

5::7

� M �N

t�0

12::14

< M .

Consequently, the execution of `

11

[i] produces t

0

[i] < 0, and does not increase

N

t�0

12::14

.

� Invariant I

3

L

6

� L

t�0

5::7

:

This is equivalent to the implication

at

�

`

6

[i] ! t[i] � 0,

claimed for every i = 1; : : : ;M . The invariant can be veri�ed by considering

the transitions that enter `

6

. Since a process P [i] can enter `

6

only if t[i] � 0,

it follows that i 2 L

t�0

5::7

, after the transition.

� Invariant I

4

Similarly to the above invariant, we can also prove

L

13

� L

t�0

12::14

,

which is equivalent to

at

�

`

13

[i] ! t[i] � 0.

From I

3

and I

4

we can conclude

N

6

+ M �N

13

� N

t�0

5::7

+ M �N

t�0

12::14

:

Using I

2

we conclude

N

6

+ M �N

13

� M .

From this it is easy to infer

N

13

> 0 ! N

6

= 0 ^ N

13

= 1,

which is precisely the exclusion property required. It states that if some

process is at `

13

, then it is the only one there, and no process is at `

6

.

Proving Accessibility
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The response property we prove for this program is again that of communal acces-

sibility . Since this program has two types of critical sections, a read and a write

section, communal accessibility has an even broader interpretation. It states that

if some process is interested in entering one of the critical sections, then some

process will eventually enter one of the critical sections. We cannot even guar-

antee, for example, that if some process wants to read (write) then some process

will eventually read (write). This property is expressible by

N

2

+N

8

> 0 ) 1 (N

6

+N

13

> 0).

We prove this property by two lemmas, concentrating �rst on the writers.

Lemma A N

8

> 0 ) 1 (N

6

+N

13

> 0)

This lemma states that if a process is interested in writing, then eventually

some process will either read (visit `

6

) or write (visit `

13

).

The proof of the lemma is established by a sequence of simpler lemmas,

identifying important intermediate stages in getting fromN

8

> 0 to N

6

+N

13

> 0.

We refer the reader to Fig. 2.27 which presents a diagram showing the structure

of the proof.

Lemma A1 N

8

> 0 ) 1 (N

10

> 0)

This lemma ensures that if some process is currently at `

8

then eventually

some process will arrive at `

10

.

This simple property is a direct consequence of the property

at

�

`

8

[i] ) 1 at

�

`

10

[i],

which is established by the RANK diagram of Fig. 2.28.

�

�

�

�

'

2

: at

�

`

8

[i]

`

8

[i]




�

�

�

�

'

1

: at

�

`

9

[i] ^ t[i] < 0

`

9

[i]




�


 	

�

'

0

: at

�

`

10

[i]

Fig. 2.28. P-RANK diagram for Lemma A1.

Arriving at a state satisfying N

10

> 0, there are two cases to be considered. The

easier one is that y = M , and Lemma A4 below shows how to get from this

situation to the goal N

6

+ N

13

> 0. The more complicated situation is when

y < M (in view of the invariant I1, always y � M ). The two lemmas, A2 and

A3, show that being at N

10

> 0 ^ y < M we eventually get to the easier case

of N

10

> 0 ^ y = M . They split the case N

10

> 0 ^ y < M into two subcases,

according to whether N

11::14

is positive or zero, and show that from both we

eventually arrive to N

10

> 0 ^ y = M .
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�

�

�

�

N

8

> 0

A1

?

�

��

�

N

10

> 0

�

��

�

y < M

�

��

�

N

11::14

> 0

A2

?

A2

�

�

-

�

��

�

N

11::14

= 0

A3

�

�

�

A3

?
�

�

�

�

y = M

A4

?

�


 	

�

N

6

+N

13

> 0

Fig. 2.27. Structure of the proof of Lemma A.

Lemma A2 N

10

> 0 ^ y < M ^ N

11::14

> 0 )

1

�

N

10

> 0 ^ (N

11::14

= 0 _ y = M )

�

The proof of this lemma can be based on rule WELL-JP, and is presented in

the P-RANK diagram of Fig. 2.29.

Note that transitions from `

14

may either retain N

11::14

> 0 and y < M , or

evacuate L

11::14

completely, or increase y to become M . It is possible for y to

equal M , while some processes are still at `

10;11

.

Note that we have to consider also the possibility that a transition `

7

increases

y to become M .
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�
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�
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�

`

14
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�

C

DE
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`
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�

�

�
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�

	


�

'
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: N

10

> 0

Fig. 2.29. P-RANK diagram for Lemma A2.

In the proof we rely on the fact that while y < M , all transitions of the form

`

10

[i] are disabled.

Lemma A3 N

10

> 0 ^ y < M ^ N

11::14

= 0 )

1

�

(N

10

> 0 ^ y = M ) _ N

6

> 0

�

The proof of the lemma is presented in the P-RANK diagram of Fig. 2.30.

We observe that, due to I

1

, the antecedent implies that 0 < N

4::7

< M and
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�

`

5
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Fig. 2.30. P-RANK diagram for Lemma A3.

0 < y < M . This situation is split in the diagram into several subcases:

� N

4

= N

6

= 0 ^ N

t<0

5

+N

7

> 0 is covered by '

3

and '

4

� N

4

> 0 is covered by '

2

� N

t�0

5

> 0 is covered by '

1

� N

6

> 0 is the goal '

0

.

The sum N

t<0

5

+N

7

decreases on each `

7

transition. It must eventually drop
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to zero, ensuring y = M , unless N

4

becomes positive before.

Combining Lemmas A2 and A3 together, we obtain

N

10

> 0 ^ y < M ) 1

�

(N

10

> 0 ^ y = M ) _ N

6

> 0

�

:

It remains to show that from (N

10

> 0) ^ (y = M ) we are also guaranteed to

reach N

13

+N

6

> 0. This is claimed by the next lemma.

Lemma A4 N

10

> 0 ^ y = M ) 1 (N

6

+ N

13

> 0)

The proof of this lemma is presented in the P-RANK diagram of Fig. 2.31.

�

�

�

�

'

4

: at

�

`

10

[k]

`

10

[k]

�

�

�

�

�

'

3

: at

�

`

11

[k]

`

11

[k]

�

�

C

DE

F

y = M

T

11

?

T

4

?

�

�

�

�

'

1

: at

�

`

12

[k] ^ t[k] � 0

`

12

[k]

�

�

�

�

�

'

2

: at

�

`

5

[k] ^ t[k] � 0

`

5

[k]

�
�

�

�

�

N

13

> 0

�

�

�

�

N

6

> 0

�

	


�

'

0

:

C

DE

F

�k 2 [1::M ]:

Fig. 2.31. P-RANK diagram for Lemma A4.

This concludes the proof of Lemma A, which states that if a process wishes

to write then eventually some process will read or some process will write.

By combining Lemmas A1, A2, and A3, we can also obtain Corollary A
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Corollary A N

10

> 0 ) 1 (N

6

+ N

13

> 0)

The second case we have to handle is the possibility that a process wishes to

read. This is covered by

Lemma B N

2

> 0 ) 1 (N

6

+N

13

> 0)

The proof of Lemma B is also split into several intermediate stages. In

Fig. 2.32 we present these stages and the lemmas that lead from one stage to the

next.

�

�

�

�

N

2

> 0

B1

?

�

��

�

N

t<0

3::7

> 0

�

�

�

�

N

12::14

> 0

B2

�

?

B2

?

B2

�

?

�

�

�

�

N

12::14

= 0

B3

�

?

B3

�

?
�

�

�

�

N

t�0

5

> 0

B5

?

�


 	

�

N

6

> 0

�

�

�

�

N

12

> 0

B4

?

B4

?

�

�

�

�


 	

�

N

13

> 0

Fig. 2.32. Structure of the proof of Lemma B.

Lemma B1 N

2

> 0 ) 1

�

N

t<0

3::7

> 0

�

This simple lemma follows a process that wishes to read, from location `

2

to

location `

3

, where it arrives with t[i] < 0. The lemma is so simple that we skip

its proof.



c

 Z. Manna and A. Pnueli, 28 Oct. 96. Not for Distribution

138 Chapter 2: Response for Parameterized Programs

Arriving at `

3

, it is important to distinguish between the case that y > 0

and the case y � 0. Due to the invariant I

1

, if y � 0 then either N

12::14

> 0 or

N

5::7

= M . Since N

3

> 0, it is impossible for all processes to be at `

5::7

, and

therefore we conclude that N

12::14

> 0. The next lemma shows that this case

must develop to the simpler case in which N

12::14

= 0. However, we cannot hope

that while this happens, the process which is currently at `

3

will stand still. What

can it do? It can loop around `

3::7

and perhaps even get to `

5

with a nonnegative

t[i]. If this happens then we are close to our goal N

6

> 0. If it does not happen,

we should at least make sure that this process does not escape the loop `

3::7

without visiting `

6

�rst. To contain some processes in the loop we use the set

L

t<0

3::7

, observing that the only way a process can leave this set, is by moving to

L

t�0

5

.

Consequently, the next lemma establishes

Lemma B2

N

t<0

3::7

> 0 ^ N

12::14

> 0 ) 1

2

4

�

N

t<0

3::7

> 0 ^ N

12::14

= 0

�

_

N

t�0

5

> 0 _ N

12

> 0

3

5

The proof of this lemma is presented in the P-RANK diagram of Fig. 2.33. It

uses the ranking function N

12::14

which decreases on each `

14

transition. By I1,

as long as N

12::14

> 0, y is smaller than M .

In a more general situation we would have to worry about the possibility

of N

12::14

increasing due to an `

11

transition. Here, however, any `

11

transition

makes L

12

nonempty, which is one of the goals of this lemma.

Similarly, the only transition that can violate N

t<0

3::7

> 0 is L

4

from a positive

y. This, however, makes L

t�0

5

nonempty, which is another goal.

The next lemma considers a situation in which there is still some unsatis�ed

process (i.e., t[i] < 0) in the `

3::7

loop, while N

12::14

= 0. It shows that eventually

one of the sets L

t�0

5

or L

12

must become nonempty.

Lemma B3 N

t<0

3::7

> 0 ^ N

12::14

= 0 ) 1

�

N

t�0

5

> 0 _ N

12

> 0

�

The lemma is proved in P-RANK diagram of Fig. 2.34. Note that while being

at `

6

, t[i] � 0, so that L

t<0

6

is always empty. Therefore, having N

t<0

3::7

> 0 implies

that we must have a nonempty L

3::5;7

. If L

4

is nonempty, then due to N

12::14

= 0

and to I1, we are guaranteed to have a positive y. Therefore, any `

4

transition

from such a state, leads to a nonempty L

t�0

5

.

Lemma B4 N

12

> 0 ) 1 (N

6

+ N

13

> 0)
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C

DE

F

�k 2 [1::M ]: N

12::14

> 0; N

t<0

3::7

> 0; y < M

�: L

12::14

�

�

�

�

'

3

: at

�

`

12

[k]

`

12

[k]

�

`

12

[k]

�

�




�

�

�

�

'

2

: at

�

`

13

[k]

`

13

[k]

�
�

�

�

�

'

1

: at

�

`

14

[k]

`

14

[k]

�

�

�

`

14

[k]

�

T

4

?

T

11

?

�

	


�

'

0

:

�

�

�

�

N

t�0

5

> 0

�

�

�

�

N

t<0

3::7

> 0 ^ N

12::14

= 0

�

�

�

�

N

12

> 0

Fig. 2.33. P-RANK diagram for Lemma B2.

This lemma starts from a situation in which we identify a writer at `

12

.

If t[i] � 0 for this process, then we can easily prove that eventually N

13

> 0.

Otherwise, t[i] < 0, and we can easily trace the progress of this process from `

12

,

through `

14

, `

9

until it reaches `

10

. We now use Lemma A to show that if L

10

is

nonempty, then eventually some process will reach `

6

or `

13

.

Lemma B5 N

t�0

5

> 0 ) 1 (N

6

> 0)

This lemma requires one helpful step, performed by any of the processes in

L

t�0

5

, to achieve a nonempty L

6

.

Problems

Problem 2.1 (mutual exclusion by turn setting) page 105
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C

DE

F

�k 2 [1::M ]: N

t<0

3::7

> 0; N

12::14

= 0; t[k] < 0

�

�

�

�

'

4

: at

�

`

5

[k]

`

5

[k]

�

�

�

�

�

'

3

: at

�

`

7

[k]

`

7

[k]

�
�

�

�

�

'

2

: at

�

`

3

[k]

`

3

[k]

�
�

�

�

�

'

1

: at

�

`

4

[k] ^ y > 0

`

4

[k]

�

�

T

11

?

T

4

?

�

	


�

'

0

:

�

�

�

�

N

t�0

5

> 0

�

�

�

�

N

12

> 0

Fig. 2.34. P-RANK diagram for Lemma B3.

Show that the property of (individual) accessibility, speci�ed by

at

�

`

2

[i] ^ t = 0 ) 1 at

�

`

5

[i]

is not guaranteed for program TURN (Fig. 2.8).

Problem 2.2 (mutual exclusion with central manager) page 105

Program PMUX-MAN of Fig. 2.35 implements mutual exclusion, using a central

allocator process A which receives requests in variable y and responds in variable

x. Using the parameterized rules presented in this chapter, prove accessibility for

this program, which can be speci�ed by the response formula

N

2

> 0 ) 1 (N

4

> 0),
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where N

2

counts the number of processes P [j] currently executing at location m

2

,

while N

4

counts the number of processes P [j] currently executing at location m

4

local x; y: integer where x = 0; y = 0

A ::

2

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

4

`

1

: while y = 0 do

`

2

: skip

`

3

: x := y

`

4

: while x 6= 0 do

`

5

: skip

`

6

: y := 0

3

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

5

M

j=1

P [j] ::

2

6

6

6

6

6

6

6

6

4

m

0

: loop forever do

2

6

6

6

6

6

4

m

1

: noncritical

m

2

: while x 6= j do

m

3

: y := j

m

4

: critical

m

5

: x := 0

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

5

Fig. 2.35. Program PMUX-MAN.

Note that this program cannot guarantee individual accessibility but only

communal accessibility (see page 104).

Problem 2.3 (molecular bakery algorithms) page 117

In Fig. 2.17, we presented the atomic version of the bakery algorithm and veri�ed

its properties.

This atomic version is obviously not an LCR-program and represents a very

simpli�ed version which cannot be directly implemented on existing hardware.

A �rst attempt to transform program BAKERY-AT into an LCR program breaks

each of the non-LCR statements `

2

and `

3

into a for-loop. This leads to program

BAKERY-1, presented in Fig. 2.36.

While program BAKERY-1 obeys the LCR restriction, it is no longer a correct

solution to the mutual exclusion problem.
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in M : integer where M > 1

ticket: array [1::M ] of integer where ticket = 0

M

i=1

P [i] ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

j; k; t: integer where j = k = t = 0

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: t := 0

`

3

: for k = 1 to M do

`

4

: t := max

�

t; ticket [k]

�

`

5

: ticket [i] := t+ 1

`

6

: for j = 1 to M do

2

6

4

`

7

: await

0

B

@

j = i

_ ticket [j] = 0

_ ticket [i] < ticket [j]

1

C

A

3

7

5

`

8

: critical

`

9

: ticket [i] := 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 2.36. Program BAKERY-1: an LCR version.

(a) Present a segment of a computation of program BAKERY-1 which violates

mutual exclusion.

As can be seen from your counter-example, the fault can be traced to the

fact that while process P [i] is computing its next ticket value at locations `

3

{`

5

,

the value of ticket[i] is unreliable and should not be checked by other processes

at statement `

7

.

To correct this problem, we introduce a protection mechanism, by which

ticket [i] cannot be accessed while P [i] is at the location range `

3

{`

5

.

This leads to program BAKERY-2 of Fig. 2.37.

The protection mechanism implemented in BAKERY-2, indeed solves the prob-

lem of mutual-exclusion violation.

(b) Prove that program BAKERY-2 ensures mutual exclusion.

While program BAKERY-2 guarantees mutual exclusion, it fails to maintain

the complementary required property of accessibility.

(c) Show a computation of program BAKERY-2 which fails to satisfy the property
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in M : integer where M > 1

choosing : array [1::M ] of boolean where choosing = F

ticket : array [1::M ] of integer where ticket = 0

M

i=1

P [i] ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

j; k; t: integer where j = k = t = 0

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: choosing [i] := T

`

3

: t := 0

`

4

: for k = 1 to M do

`

5

: t := max

�

t; ticket[k]

�

`

6

: ticket[i] := t + 1

`

7

: choosing [i] := F

`

8

: for j = 1 to M do

2

6

6

6

4

`

9

: await :choosing [j]

`

10

: await

0

B

@

j = i

_ ticket [j] = 0

_ ticket [i] < ticket [j]

1

C

A

3

7

7

7

5

`

11

: critical

`

12

: ticket [i] := 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 2.37. Program BAKERY-2: ticket computation is protected.

of accessibility for one of the processes.

To overcome the di�culty illustrated by your counter-example, we augment

the priority comparison mechanism of statement `

7

by a secondary component,

which is the process index. Thus, if both ticket [i] and ticket[j] are di�erent from

zero, then P [i] has a higher priority if

�

ticket[i]; i

�

�

�

ticket [j]; j

�

;

where the comparison is lexicographic.

This leads to program BAKERY of Fig. 2.38.

This version is �anlly satisfactory in that it satis�es the properties of mutual

exclusion and accessibility.

(d) Prove that program BAKERY satis�es the property of mutual exclusion.
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in M : integer where M > 1

choosing : array [1::M ] of boolean where choosing = F

ticket : array [1::M ] of integer where ticket = 0

M

i=1

P [i] ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

j; k; t: integer where j = k = t = 0

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: choosing [i] := T

`

3

: t := 0

`

4

: for k = 1 to M do

`

5

: t := max

�

t; ticket [k]

�

`

6

: ticket [i] := t+ 1

`

7

: choosing [i] := F

`

8

: for j = 1 to M do

2

6

6

6

4

`

9

: await :choosing [j]

`

10

: await

0

B

@

j = i

_ ticket[j] = 0

_ ticket[i]� ticket[j]

1

C

A

3

7

7

7

5

`

11

: critical

`

12

: ticket[i] := 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 2.38. Program BAKERY: Final version.

(e) Prove that program BAKERY satis�es the property of accessibility.

� Problem 2.4 (Peterson's algorithm for n processes) page 117

Program MUX-PET-N of Fig. 2.39 presents a solution to the mutual-exclusion prob-

lem for an arbitrary number of processes.

The while statement at `

3

gradually increases the priority of process P [i] from

1 to n. When the priority, expressed by j (j[i] for process P [i]), grows beyond n,

P [i] is admitted to its critical section. On entering priority level j, process P [i]

records (at `

4

) its current priority in y[i] and writes its identity number (i) in s[j]

the signature logbook for this level. It then remains at level j until it detects one

of two occurrences. Either the number of processes of priority not smaller than

j becomes 1, which means that P [i] is the only one with such priority, or the

logbook s[j] assumes a value di�erent than i, implying that some of the processes
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in n : integer where n � 2

local y; s: array[1::n] of integer where y = s = 0

n

i=1

P [i] ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

local j; k; above-me: integer

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: noncritical

`

2

: j := 1

`

3

: while j < n do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

4

: y[i] := j

`

5

: s[j] := i

`

6

: above-me := n

`

7

: while above-me > 1 ^ s[j] = i do

2

6

6

6

6

6

6

6

6

4

`

8

: above-me := 0

`

9

: k := 1

`

10

: while k � n do

2

6

4

`

11

: if y[k] � j then

[`

12

: above-me := above-me + 1]

`

13

: k := k + 1

3

7

5

3

7

7

7

7

7

7

7

7

5

`
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: j := j + 1
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`

15

: critical

`

16

: y[i] := 0
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Fig. 2.39. Program MUX-PET-N (mutual exclusion for n processes).

entered level j after P [i].

To check for the �rst occurrence, statements `

8

to `

13

repeatedly count the

number of processes with priority not smaller than j. Note that one cannot assume

that on termination of the while statement `

10

the value of above-me necessarily

equals the number of processes with priority not smaller than j. While P [i] counts,

some processes with high priority may go through the critical section and lower

their priority, and some processes with low priority may raise their priority to the

tested level after being considered.

Prove that program MUX-PET-N guarantees accessibility to each of its pro-

cesses, by showing that the response formula

at

�

`

2

[i] ) 1 at

�

`

15

[i]
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is P -valid over MUX-PET-N.
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