

The Correctness-by-Construction Approach
to Programming

�

Derrick G. Kourie � Bruce W. Watson

The
Correctness-by-Construction
Approach to Programming

123

Derrick G. Kourie
University of Pretoria
Department of Computer Science
Pretoria
South Africa

Bruce W. Watson
Stellenbosch University
FASTAR Group, Information Science
Stellenbosch
South Africa

ISBN 978-3-642-27918-8 e-ISBN 978-3-642-27919-5
DOI 10.1007/978-3-642-27919-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012935686

ACM Codes: D.2, F.3, F.4

c� Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Software correctness is a perennial concern. It can and should be addressed as
well as possible at various levels and in various complimentary ways. This book
is devoted to software correctness at the programming-in-the-small level—down at
the point where the developer is in the process of giving birth, so to speak, to an
algorithm or part of an algorithm. Its concern lies with that which Brooks [15] calls
the essentials:

Those aspects of the programming task which are inescapably error-prone; which confound
and confuse our minds, even though individual programming commands in isolation seem
quite simple; those uncomfortable points in the code where we are inclined to behave
intuitively, guessing at or making little leaps in logic—just tiny little leaps—in an effort to
speed up the coding effort. And when we are done with coding and everything compiles
nicely, then we hold our breath and live in faith and hope that if there were small
misjudgments, they will be exposed during testing.

The book advocates a development style known as correctness by construction. The
idea is to start with a succinct specification of the problem, which is progressively
evolved into code in small, tractable refinement steps. Experience has shown that
the resulting algorithms are invariably simpler and more efficient than solutions that
have been hacked into correctness. Furthermore, such solutions are guaranteed to
be correct (i.e. they are guaranteed to comply with their specifications) in the same
sense that the proof of a mathematical theorem is guaranteed to be correct.

The idea is not new. It emerged from earlier attempts in computer science to
prove programs to be correct after the code had been written. By the mid-eighties,
hopes that such ex post facto correctness proofs could contribute practically to
software correctness more or less reached a dead end. Without imposing some
restraint on how code is to be produced, proofs rapidly become too complex—both
for the human mind, and for computers. Instead, a tradition built up, starting with
some of the most prominent founding personalities in computer science (Dijkstra,
Hoare, Knuth, Wirth) of methodically evolving correct code from specifications in
a disciplined step-wise fashion.

Dijkstra was arguably the most vociferous proponent of these ideas. He posi-
tioned himself as a prophetic voice crying out in the wilderness that the only path to

v

vi Preface

creating enlightened software developers was through “the cruelty of really teaching
computer science” [13]. He contrasted this approach with software engineering,
whose charter he disparagingly characterised as “How to program if you cannot.”
This kind of polarising language has led to unfortunate caricatures around two
computer science stereotypes: industry-based developers who supposedly hack
around in the real world producing lots of flakey code; and head-in-the-clouds
academia engaging in impractical esoteric scientific research. In this caricatured
world, the former call themselves software engineers and the latter call their research
“formal methods”.

We vigourously contest these polarised stereotypes and we hope that this book
will contribute to their erosion. We aim to convince the reader that the kind of
methodical formal approach that Dijkstra and others have advocated is well within
the reach of the average computer scientist and software engineer. Not only that:
we hope that the reader will discover that, when confronted with algorithmic
problems whose logic is unusually complicated or confusing, it is both satisfying
and profitable to develop the code by engaging in a correctness by construction
style of programming. We have therefore pitched this text at those who actually
develop code, rather than at the formal method purists. At the risk of being accused
of being insufficiently formal, we have avoided the kind of presentation style which
has given formal methods the reputation of being the domain of an elite few.

The way in which we set about achieving our purpose is by a series of graded
examples, rather than by an over-emphasis on the theory that drives the correctness
by construction development method. However, a modicum of theoretical and
notational background is unavoidable, and this we provide in Chap. 2. After rapidly
reviewing first-order predicate logic in this chapter, we relate it to the idea of (total)
correctness of Hoare pre-post formulae. This allows us to define the notion of the
weakest precondition which, in turn, allows for precisely defining the semantics
of the commands used in Dijkstra’s Guarded Command Language (GCL)—the
notation used throughout the book. Initially we rely on Hoare pre-post notation
for expressing the refinement laws of Morgan’s refinement calculus [32], but later
also introduce Morgan’s somewhat more concise notation. We restrict ourselves to
a small but useful set of the refinement laws, thus shielding the average computer
scientist from the more obscure refinement rules which will only interest theoretical
computer scientists.

Chapter 3 illustrates the correctness by construction development method on
a number of simple algorithms, many of which might have already been seen
in the first or second year of study. Chapter 4 looks at a variety of intermediate
range algorithms across a broad spectrum of application domains: analysing array
properties (such as finding the longest segment of different elements); raster
graphics applications; computational geometry; the majority voting problem; etc.
Chapter 5 considers the development method in the context of procedure calls,
including recursive procedure calls.

Chapters 6 and 7 are intended as case studies. Chapter 6 shows how the cor-
rectness by construction method was used to derive an elegant recursive algorithm
for constructing the cover graph of a so-called set intersection closed lattice. The

Preface vii

formal concept analysis (FCA) research community are discovering how variants of
these lattices can be used in a numerous applications such as machine learning and
data clustering. The derived algorithm turns out to be significantly superior to many
other competing algorithms in the domain. Although a version of the algorithm
had been intuitively discovered in the nineties, its articulation was so obscure that
even domain specialists found it difficult to understand and verify. As a result,
there were niggling doubts about its correctness, despite thorough testing. The case
study highlights the fact that the correctness by construction derivation leads to a
clear, comprehensible version of the algorithm. Its correctness can thus be readily
apprehended and accepted by the user community.

The Chap. 7 case study illustrates yet another useful feature of correctness by
construction: it offers a rational basis for articulating algorithm taxonomies. The
chapter shows how, when a number of related algorithms are developed in this style,
their commonalities are clearly exposed, thus offering a basis for taxonomising the
related algorithms. The resulting taxonomies are not only useful from a pedagogical
perspective; they also tend to expose algorithmic “gaps” in the derived taxonomy,
thus suggesting further areas of algorithmic research. In this text we have chosen
to illustrate the idea in respect of algorithms to construct minimal acyclic finite
automata. Such automata are widely used for in domains such as natural language
processing, voice recognition and intrusion detection. This is but one of several other
studies which have relied on correctness by construction as a basis for taxonomising.

Although these last two chapter are specialist in nature, we consider them
important in that they dispel the myth that correctness by construction should be
positioned in the domain of dilettante formal methods theoreticians. On the contrary,
we think that any respectable computer science/software engineering university
curriculum ought to cover the basic material to be found in this book and that
every well-educated computer scientist/software engineering graduate should know
something about its major themes. It is becoming increasingly apparent that in
universities where such material is casually bypassed under the pretext of focussing
the curriculum on industry needs, the better-informed students feel cheated by what
they perceive as a dumbing down of courses—and they would be right! Such a
viewpoint directly contradicts IEEE’s Guide to the Software Engineering Body of
Knowledge (SWEBOK)1 which identifies themes covered in this book as part of the
software engineer’s armory of tools and methods. Similarly, this book’s material
will be seen to be consonant with the aspirations of the Software Engineering
Method and Theory (SEMAT) initiative which, in its call to action2, somewhat
controversially aims to “refound software engineering based on a solid theory”.

The first four chapters of the book, as well as Chap. 6 has formed the core of
a fourth year course (involving about 30 contact hours) that we have presented for
more than a decade. More of the book can be covered in this time if the instructor

1See Chap. 10 of the SWEBOK specifications available from http://www.computer.org/portal/web/
swebok/home.
2See http://www.semat.org/bin/view.

viii Preface

selectively omits and/or assigns as self-study, some of the material in Chaps. 3, 4
and 6. We have found that students are well-able to cope with self-studying many
of the examples in Chaps. 3 and 4, provided that the instructor has initiated them
into the approach by walking through a representative number of examples. Such
self-study-based fast tracking through Chaps. 3, 4 and 6 enables one to cover the
main ideas in Chap. 7 as well—something that is well worth doing.

Students who wish to take the course are advised that they should have a basic
background in logic. Subject to this proviso, we believe that much of the material
can be taught at third year level and probably even earlier. Indeed, because of
Dijkstra’s influence, this approach to programming was taught at an introductory
level at Eindhoven University of Technology.

Many people have contributed to this book in many different ways. They all
deserve our sincerest thanks:

• Numerous students whose feedback over the years has helped improve the quality
of text.

• Loek Cleophas, who has read and critiqued earlier drafts of the book.
• Alexander Skelton, who wrote the first draft of Chap. 5 as a student project.
• Our many colleagues and friends who have constantly inspired and encouraged

us in various ways to produce this book.
• Last, but not least, our respective families who have been a constant source of

support and encouragement to us.

Pretoria, South Africa Derrick G. Kourie
Eindhoven, Netherlands Bruce W. Watson

Contents

1 Introduction . 1
1.1 Invariance Examples . 2

1.1.1 A Chess Board Problem.. 2
1.1.2 A Black and White Balls Game . 4

1.2 The Way Ahead . 5

2 Background . 7
2.1 Predicates . 8

2.1.1 Propositional Calculus . 8
2.1.2 Predicate Calculus . 10
2.1.3 Predicates Define Sets of States . 10
2.1.4 Strong and Weak Predicates . 11

2.2 Specifying Pre- and Postconditions . 14
2.2.1 Hoare Triples as Specifications of Total Correctness 14
2.2.2 Weakest Preconditions and Semantics . 16

2.3 Guarded Command Language .. 17
2.3.1 Empty Command .. 18
2.3.2 Diversion: Some Extreme Cases. 18
2.3.3 Assignment . 24
2.3.4 Composition . 27
2.3.5 Selection . 30
2.3.6 Repetition . 32

2.4 Refinement Rules . 34
2.4.1 Strengthen Postcondition Rule. 35
2.4.2 Weaken Precondition Rule . 36
2.4.3 Skip Rule . 36
2.4.4 Sequences of Refinements . 37
2.4.5 Refinement and Weakest Preconditions . 37
2.4.6 Assignment Rule . 37
2.4.7 Composition Rule . 38
2.4.8 Following Assignment Rule . 40

ix

x Contents

2.4.9 Selection Rule . 41
2.4.10 Repetition Rule . 42
2.4.11 Procedures and Procedure Calls . 45

2.5 Object Orientation . 45
2.6 Supplementary Notation . 48

2.6.1 Morgan’s Refinement Calculus . 48
2.6.2 Arrays and Sequences . 49
2.6.3 Additional GCL Commands . 50

2.7 Revision Exercises . 51

3 Simple Examples . 55
3.1 Linear Search .. 56

3.1.1 Formulating the Problem.. 56
3.1.2 Choosing the Invariant . 56
3.1.3 Establishing the Invariant . 57
3.1.4 Refining to Create a Loop .. 58
3.1.5 Putting it All Together . 60

3.2 Finding the Maximal Element . 60
3.2.1 Formulating the Problem.. 60
3.2.2 Choosing the Invariant . 61
3.2.3 Establishing the Invariant . 62
3.2.4 Refining to Create a Loop .. 63
3.2.5 Putting it All Together . 66

3.3 Binary Search . 66
3.3.1 Formulating the Problem.. 66
3.3.2 Decomposing the Problem .. 67
3.3.3 Generating the Binary Search Code . 68
3.3.4 After the Binary Search . 72
3.3.5 Putting it All Together . 73

3.4 Pattern Matching . 74
3.4.1 Formulating the Problem.. 75
3.4.2 Developing the Loop . 75
3.4.3 Putting it All Together . 77

3.5 Exponentiation . 77
3.5.1 Formulating the Problem.. 78
3.5.2 Establishing the Invariant . 78
3.5.3 Refining to Create a Loop .. 79
3.5.4 Discussion . 83

3.6 Integer Logarithm Approximation . 84
3.6.1 Problem Statement and Invariant . 84
3.6.2 Refinement Steps . 85
3.6.3 Justifying the Assignment . 85
3.6.4 Strengthening Predicates by Decreasing Ranges 86
3.6.5 Discussion . 87

3.7 Revision Exercise . 88

Contents xi

4 Intermediary Examples . 95
4.1 Dutch National Flag. 95

4.1.1 Formulating the Problem.. 96
4.1.2 Choosing the Invariant . 98
4.1.3 Refining the Specification .. 99
4.1.4 Proving the Third Guard Command .. 100
4.1.5 Putting it All Together . 102
4.1.6 Discussion . 102

4.2 Longest Segment . 103
4.2.1 Formulating the Problem.. 104
4.2.2 A First Attempt at Refinement . 105
4.2.3 A Revised Attempt at Refinement . 107
4.2.4 Putting it All Together . 111
4.2.5 Discussion . 112

4.3 Palindromes . 112
4.3.1 The Outer Loop. 113
4.3.2 Formulating the Problem.. 113
4.3.3 Refining the Specification .. 115
4.3.4 Putting it All Together . 116
4.3.5 Discussion . 117

4.4 Raster Lines . 117
4.4.1 Formulating the Problem.. 118
4.4.2 Deriving the Loop . 121
4.4.3 Developing the Loop’s Body . 122
4.4.4 Putting it All Together . 125
4.4.5 Discussion . 126

4.5 Raster Circle. 127
4.5.1 Problem Statement . 127
4.5.2 From Invariant to Loop.. 129
4.5.3 Refining the Loop’s Body . 129
4.5.4 Determining the Guards . 132
4.5.5 Deriving the Guards . 133
4.5.6 Putting it All Together . 134

4.6 Majority Voting . 136
4.6.1 Formulating the Problem.. 137
4.6.2 Arriving at an Invariant and Developing the Loop 138
4.6.3 Developing the Guards . 139
4.6.4 Discussion . 143

4.7 Computational Geometry .. 144
4.7.1 Background and Notation . 144
4.7.2 The Approach to Solving the Problem . 146
4.7.3 Deriving the Solution Constructively.. 147
4.7.4 Discussion . 150

4.8 Revision Exercises . 151

xii Contents

5 Procedures and Recursion . 161
5.1 Introduction . 161
5.2 Procedures . 162

5.2.1 Parameterless Procedures . 162
5.2.2 Pass by Value . 164
5.2.3 Pass by Result . 167
5.2.4 Pass by Value Result . 168
5.2.5 Functions . 169

5.3 Procedure Refinement Strategy. 170
5.4 Recursive Procedures . 171
5.5 Terminating Recursive Programs .. 173
5.6 Recursive Examples. 177

5.6.1 Factorial . 177
5.6.2 Searching a List . 181
5.6.3 Evaluating an Expression Tree. 185
5.6.4 MergeSort .. 191

5.7 Conclusion . 194

6 Case Study: Lattice Cover Graph Construction . 197
6.1 Introduction . 197
6.2 Preliminaries . 198

6.2.1 Lattices . 198
6.2.2 Set Intersection-Closed Lattices . 201

6.3 The Algorithm.. 205
6.3.1 The Basic Structure . 206
6.3.2 Articulating and Attaining inv1.i/ . 207
6.3.3 Articulating and Attaining inv2.i/ . 208
6.3.4 Filling in S1 . 210
6.3.5 Completing the Select Command. 211
6.3.6 The Completed Algorithm . 214
6.3.7 The Operational Implications . 215

6.4 Refactorings . 218
6.4.1 Efficiently Inserting Ci \ X . 218
6.4.2 Finding the Parent of X . 219
6.4.3 Discussion . 221

6.5 A Gentle Introduction to Formal Concept Analysis 222

7 Case Study 2: Classifying MADFA Construction Algorithms 227
7.1 Introduction . 227
7.2 From DFAs to MADFAs. 228

7.2.1 Deterministic Finite Automata—DFAs . 228
7.2.2 Acyclic Deterministic Finite Automata—ADFAs 230
7.2.3 Minimum Acyclic Deterministic Finite

Automata—MADFAs .. 231
7.2.4 Concepts for MADFA Construction Algorithms 232

Contents xiii

7.3 An Abstract MADFA Construction Algorithm .. 237
7.3.1 Structural Invariant Instantiations . 239
7.3.2 The Procedures to be Instantiated . 241
7.3.3 The Importance of the Skeleton-Based Taxonomy 241

7.4 Trie Intermediate ADFA .. 242
7.4.1 Procedure add wordT . 242
7.4.2 Adding Only Prefix Words . 244
7.4.3 Adding a Non-prefix Word in a Trie . 244
7.4.4 Procedure cleanupT . 246
7.4.5 An Example.. 249

7.5 Arbitrary Intermediate ADFA . 250
7.5.1 Procedure add wordN . 251
7.5.2 Procedure cleanupN . 255
7.5.3 Commentary . 255

7.6 Word Adding Based on a Partial Order . 255

References . 259

Index . 263

Chapter 1
Introduction

There are many debates amongst software engineers about the extent to which
one should engage in so-called upfront design. But the focus of the debate relates
mostly to programming-in-the-large: how to approach the problem of designing
a large system of interacting objects or components. The “Big Upfront Design”
(BUD) adherents believe that energy should go into developing an initial overall
architectural outline of the system; the adherents of the more recent agile software
development movement are inclined to let a system architecture evolve from the
bottom up, so to speak. Their energy goes into identifying small components of the
overall system, developing test cases and writing code that handles these test cases.

But whatever view one takes, it seems that—as a matter of fact—by the time
people get down to programming-in-the-small (i.e. actually writing code), there is
rapid recourse to the keyboard:

Try a little bit of this and a little bit of that; put in an if-command here and a loop there;
two int variables would seem to do the trick; let us try to compile; oops—forgot about the
else part of the if-command; compile again; oh dear—a syntax error; fix and recompile; run
the test cases; darn—test case 3 fails; desperately resort to pen and paper to scratch out a
couple of exploratory diagrams; ah—perhaps a separate method is needed to deal with a
newly-discovered boundary condition . . .

Those who do not recognise this kind of scenario are truly blessed. To most real
programmers, it will be painfully, if not embarrassingly, familiar. The purpose of
these notes is to change the way that readers think when coding at this programming-
in-the-small level.

Now we are not so naı̈ve as to believe that we will persuade all and sundry to
derive paper solutions to problems before entering code at a keyboard. It is just
as vain to hope that the multitudes will take time to sit cross-legged in Zen-like
meditation to clearly think through the problem at hand before taking to a keyboard,
desirable as such a practice may be! However, we do cherish a fond hope that this
book will change thought processes: that they will foster the kind of mentality that,
almost as a matter of second nature, asks: what should the pre- and postconditions
be for this method; what holds at the end of this piece of code; what might be the

D.G. Kourie and B.W. Watson, The Correctness-by-Construction Approach
to Programming, DOI 10.1007/978-3-642-27919-5 1,
© Springer-Verlag Berlin Heidelberg 2012

1

2 1 Introduction

loop’s invariant, etc. And we will not be disappointed if a few individuals discover
that it is sometimes actually both intellectually pleasing and time-wise profitable
to derive a paper solution to critical problems in the code, before hitting the
keyboard.

The underlying problem solving strategy that we advocate is to refine progres-
sively an abstract description of a problem—its specification in terms of pre- and
postconditions—to its ever-more concrete realisation, culminating in the concrete
solution specified in Guarded Command Language (GCL). A very particular kind
of abstract specification is one in which the pre- and postcondition is “invariant”—
by which we roughly mean that they are the same, barring certain variations in
the variable values that describe them. It will be seen that such “invariance” is an
extremely powerful aid to solving iterative problems. Invariance lies at the heart of
the solution to practically all the example problems that we will later be considering.
Because of its importance, and to sharpen intuition, we now present two example
problems that are easily solved by identifying invariants.

1.1 Invariance Examples

An invariant of a sequence of steps to solve a problem, is a condition that is true
before carrying out those steps, and that remains true after executing the entire
sequence of steps. If the problem solution is somehow made easier as a result of
executing the sequence once, then one would hope that by repeatedly executing
the sequence of steps (i.e. by looping) the problem can eventually be solved. It is
important to note that the invariant is not required to hold after each step; rather, it
should hold after executing the entire sequence.

The following two problems serve as a foretaste of the kind of thinking that will
be promoted in the remainder of this text. They show that the notion of an invariant
of a sequence of steps can be a powerful aid to solving problems.1

1.1.1 A Chess Board Problem

Consider an 8 � 8 chess board from which the squares in the upper left and lower
right corners have been removed, as shown in Fig. 1.1. Also available is a large
number of domino tiles such as the two shown to the right of the board in the figure,
each of which covers exactly two squares of the chess board. Assume that tiles
may not lie on top of one another. Nor may they hang over the edge of the chess
board.

1How one finds an invariant for a sequence of steps cannot be prescribed. It is very much dependent
on the problem to be solved. It is an art that comes with practice.

1.1 Invariance Examples 3

Fig. 1.1 Chessboard and
squares

Is it possible to lay tiles on the chess board in such a way so that all squares are covered?

If you try an exhaustive approach to laying all combinations of domino tiles on the
board, you might eventually arrive at an answer. This is the equivalent of trying to
hack out an answer to a coding problem on a trial-and-error basis at a keyboard.
However, there is a more subtle and elegant way to tackle the problem. Consider the
following assertions:

• A regular chess board contains the same number of black and white squares.
• The modified chess board in this problem has had two white squares removed—

therefore it has two more black than white squares.
• Every tile placement reduces by one the number of uncovered black squares and

the number of uncovered white squares.
• Thus, no matter how one lays a tile, there will always be more black squares than

white squares.
One could express this by saying that the following relationship is invariant

with respect to the tile laying operation:2

number.white/ ¤ number.black/

• As a consequence, there is no way of laying the tiles so that

number.white/ D number.black/ D 0

Becoming aware of an invariant in this problem space not only rapidly leads to
an answer to the problem; it also indicates solutions to a whole class of similar
problems. The chess board did not have to be the standard 8 � 8 size: it could

2Actually, we could make the invariant even more precise, namely number.white/ C 2 D
number.black/. However, this increased precision does not help us any further in solving the
problem.

4 1 Introduction

Fig. 1.2 20 black and 17
white balls

have had an arbitrary number of columns and rows. Neither was it necessary to
couch the problem in terms of removing two squares from opposite corners: any
number of squares could have been removed from anywhere on the board. The
answer to the problem would have been the same, for any starting position such
that number.white/ ¤ number.black/.

1.1.2 A Black and White Balls Game

Another problem that can be solved using an invariant is the following. Suppose we
take the pile of 20 black balls and 17 white balls shown in Fig. 1.2 and mix them
together in a bag.

A step consists of randomly drawing two balls from the bag, examining their
colours, and then returning one ball back into the bag according to the rules below.
(Assume that a sufficient stock of additional balls is available to allow for more
than 20 black or more than 17 white balls in the bag, if required by the rules.) The
following rules are to be applied.

1. If 2 white balls are drawn, return 1 white ball.
2. If 1 white and 1 black ball is drawn, return 1 black ball.
3. If 2 black balls were drawn, return a white ball.

Clearly, the number of balls in the bag decreases by one after each “draw 2 return 1”
step. Eventually there will only be one ball left in the bag. At that point, the game
terminates.

What colour ball remains at the end of the game?

Once more, the natural instinct of most people is to “hack out” a solution.

How many white balls remain after the first move if rule 1 applies? And how many white
balls remain after the second move? What if rule 2 or 3 applies in the second move? etc.

If you were to forge ahead meticulously and systematically with such an approach,
you will eventually arrive at the correct answer—provided you do not make
mistakes. To reduce the chances of an error, you will undoubtedly need to jot down
the state of the bag after each step. You might reasonably hope that it will not be
necessary to examine exhaustively every possible trace of steps—perhaps a pattern
in the evolution of the bag’s state will eventually emerge and will expose the answer.

1.2 The Way Ahead 5

In fact, that instinctive quest for a pattern corresponds to the search for an
invariant. Without denying the need for some initial thought-probing into the bag’s
state-by-state evolution as steps are executed, we encourage re-focussing ones
intellectual energy to deliberately aim at discovering an invariant pattern. This is
a matter of practice and habit. Often an invariant emerges very rapidly, without
needing to rely on pen and paper.

Instead of focussing on the state of the bag after one or two or three moves, per-
haps it is worth first considering the nature of the rules themselves—independently
of the concrete state of the bag (initially having 20 black and 17 white balls). A
moment’s thought will convince you that the rules imply the following invariant
property of the bag’s state before and after each step:

The parity of the number of black balls in the bag remains the same.

Thus, if the game started with an even (or uneven) number of black balls, then an
even (or uneven) number of black balls remains after each step. Furthermore, the
number of balls decreases by one after each step.3 Eventually, after the second last
step, there will be only two balls left; and a single ball will remain after the last step
has been executed.

Clearly, the invariant informs us that the last ball will be white if the game started
with an even number of black balls—which was indeed the case for the starting
position specified above. However, the invariant gives us a general solution to the
entire class of similar problems. The last ball will be:

• Black if the starting position was, say, 17 white balls and 21 black balls;
• White if the starting position was 78,140 white balls and 24,276 black balls;
• Black if there were initially 1,000 white balls and 1 black ball;
• White if there were initially 0 white balls and 520 black balls; etc.

1.2 The Way Ahead

In each of the above two examples, the solution to a seemingly complex problem
involving a sequence of steps became obvious as soon as we discovered a relevant
invariant—a property about the state of the problem space that remained constant
after each step. In the forthcoming chapters, we shall see that similar thinking can
be powerfully employed in developing loops.

The essence of our quest in the remainder of this book will be to derive code from
specifications. Once a problem has been specified, a number of refinement laws can
be deployed to refine incrementally the specification. Each refinement step adds
more algorithmic information to the specification and can be proven to be a correct

3As will be seen later, this is an example of a so-called variant—a function that strictly decreases
towards a fixed minimum value. It guarantees that the problem can be solved in a finite number
of steps.

6 1 Introduction

refinement—one that is consistent with the previous specification. Eventually a
fully algorithmic specification of the original problem is attainted. The algorithm is
guaranteed to be correct in the same sense that the proof of a mathematical theorem
is guaranteed to be correct.

Chapter 2 introduces the notation to be used, as well as the theoretical under-
pinning upon which we rely for the step-wise refinement from specification to code.
Subsequent chapters provide a series of example problems to illustrate this so-called
correctness by construction approach. The examples range from several well-known
simple problems in Chap. 3, to somewhat more complex problems in Chap. 4. It will
be seen that the approach inevitably involves the construction of loops, and that loop
invariants play a fundamental role in arriving at correct and elegant loops. Chapter 5
extends these ideas to allow for function calls in general, placing the emphasis on
solutions that entail recursive function calls.

The last two chapters shift gear. Their purpose is to support the view that
the correctness-by-construction approach to software development is not merely a
theoretical computer science theme. On the contrary, it can be used as a research
and development instrument for

• Discovering and illuminating the correctness of new and better algorithms—as
will be illustrated in Chap. 6, and

• Taxonomising algorithmic solutions to problem domains and thereby illuminat-
ing the interrelationship between algorithms—as demonstrated in Chap. 7.

Chapter 2
Background

The correctness by construction methodology advocated by this book starts off
with a predicate-based specification of the problem at hand, and then incrementally
refines that specification to code. However, to be able to do this, several preliminary
notational and theoretical matters have to be in place. This chapter provides that
background.

• Firstly, we need a very precise “language” to specify and reason about the
current or intended states of a computer. Section 2.1 briefly reviews just such
a language—the well-known first order predicates calculus. The section draws
attention to the fact that predicates can be deemed to be strong or weak in as much
as they more specifically or more generally characterise a set of computer states.

• Section 2.2 then shows how such predicates (about computer states) can be used
as the basis for specifying the pre- and postconditions of code that is to be
developed to address some problem. However, if the code is to be meaningfully
described by such pre- and postconditions, then the individual programming
language commands that constitute that code must themselves be describable in
terms of pre- and postconditions. The section therefore also introduces the notion
of pre- and postconditions as a way of specifying the meaning (semantics) of
commands of a programming language.

• Section 2.3 relies on this approach to language specification to define commands
in Dijkstra’s well-known GCL. This small, simple but very elegant set of
commands is used in the remainder of the text as the vehicle for describing
algorithms.

• The foregoing provides a basis for defining when one specification, given in
terms of a pre- and postcondition, may be regarded as a refinement another.
In fact, Sect. 2.4 gives various refinement rules that can be used to transform
a high-level pre- postcondition-based specification into equivalent GCL code.
Exactly how to do this will be amply illustrated in the remainder of the text.

• Object orientation (OO) is widely used as a paradigm for driving software
development. It therefore behoves us to discuss whether and how the correctness-
by-construction approach to developing software relates to OO. Section 2.5

D.G. Kourie and B.W. Watson, The Correctness-by-Construction Approach
to Programming, DOI 10.1007/978-3-642-27919-5 2,
© Springer-Verlag Berlin Heidelberg 2012

7

8 2 Background

briefly addresses these questions. We show how to connect inheritance in OO
to procedure refinement as described in the previous section, and we use this to
define class refinement.

• Finally, Sect. 2.6 records several notational conventions that are to be used
henceforth.

2.1 Predicates

In order to describe a problem in terms of pre- and postconditions, we need a
notation in which to express and reason about these conditions. For this, we will use
first order predicate calculus. There are numerous texts which deal extensively with
predicate calculus. Here we briefly outline the main elements that will be needed.

2.1.1 Propositional Calculus

First order predicate calculus extends on propositional calculus. Propositional
expressions (or simply propositions) are built up from well-known logical operators.
They also arise when so-called relational operators are used, usually in the context
of arithmetic or real number types. They also occur in the presence of the 2 symbol
used in the context of sets. A proposition may thus be defined as follows:

• The Boolean values true and false are propositions.
• If x and y are variables that denote propositions, then x _ y, x ^ y, x H) y,

x ” y and :x are propositions.
• If E1 and E2 denote expressions whose respective values are of a type that is

ordered by the relational operator <, then E1 < E2 is a proposition that evaluates
to true if and only if the value of E1 is less than the value of E2. Similarly
propositions can also be formed from the other relational operators (�, >, �, D
and ¤).

• x 2 S is a proposition whose value is true if x is an element of the set S , and
false otherwise.

• If x is a proposition, then .x/ is a proposition with the same truth value.

The truth values of these propositions for different evaluations of x and y are given
in the following table:

x y x _ y x ^ y x H) y x ” y :x

true true true true true true false
true false true false false false false
false true true false true false true
false false false false true true true

2.1 Predicates 9

Of course, this table will be familiar to all who have had an introductory courses
in logic and/or programming. Nevertheless, the interpretation of x H) y is counter-
intuitive for many, and is a frequent cause of confusion. Recall that x is termed the
antecedent and y, the consequent of this proposition. It is well to remember the
following

.x H) y/ is false only when x is true and y is false.
In all other cases, .x H) y/ is true.

It is also useful to remember that the proposition .x H) y/ is equivalent to the
proposition .:x _ y/, by which we mean that for all true or false allocations to the
variables x and y, the two propositions evaluate to the same truth-value. This can
expressed by stating that .x H) y/ ” .:x _ y/ is a tautology, or alternatively
by writing:

.x H) y/ � .:x _ y/

Note that the foregoing definition of a proposition allows for two types of
variables: proposition variables, and variables of some type. The latter may appear
in the context of typed expressions joined by relational operators (as stated in the
third bullet above). These variables are unbounded (or uninstantiated). In general,
it is not possible to assign a truth value to a proposition that contains uninstantiated
variables.

For example, x and y are unbounded in the proposition .x > 5/ ^ .y < 10/. It is
not possible, without further information, to assign a truth value to this proposition.
A truth value is evident only when the variables x and y have each been assigned
particular values in a particular context.

Paradoxically, however, we do not always have to assign values to unbound
variables in order to ascertain the truth value of a proposition containing unbounded
variables. For example, the proposition .x > 0/ _ :.x > 0/ contains the unbounded
variable, x, (assume it is of type integer) but clearly has value true. Similarly, the
proposition :.p ^ :p/ contains the variable p that represents some unspecified
proposition. Nevertheless, a little thought will also confirm that the truth value of
this compound expression is always true, no matter what truth value is assigned
to the variable p. These latter two propositions are examples of tautologies.
A tautology is a proposition which is always true, no matter what values are assigned
to its variables.

When mixing programs and predicates, as will be done later, a predicate method1

in the program will also be regarded as a proposition. We could therefore have a
proposition such as isCircle.x/^y > 10 where isCircle./ is assumed to be predicate
method that returns true if its argument is a circle object and false otherwise. Again,
the proposition only acquires a truth value when the unbounded variables, x and y

are instantiated to specific values of an appropriate type.

1i.e. a method that returns a Boolean value.

10 2 Background

2.1.2 Predicate Calculus

In first order predicate calculus, all propositions are regarded as predicate formulae
(simply referred to as predicates). Additionally, predicate calculus includes the
quantified predicate formulae, as next described.

Let x be a list of variables (called the bound variables) and let R be a set of
values (called the range) that x may take on. Suppose f W R ! B is a function
that maps each element in the set R to an element in the set of Boolean values, i.e.
B D ftrue; falseg. Then:

• 8x 2 R W f .x/ is a predicate that evaluates to true if and only if f .x/ D true
for each x in R. If R D ∅ then 8x 2 R W f .x/ evaluates to true.

• 9x 2 R W f .x/ is a predicate that evaluates to false if and only if f .x/ D false
for each x in R. If R D ∅ then 9x 2 R W f .x/ evaluates to false.

There are several variations of the syntax of quantified predicates. For example,
there may be multiple bound variables of different types, as in the following
example: 8.x1; x2; y/ 2 N � N � R W .f .x1; y/ _ g.x2//. Here, x1 and x2 are
elements of the set of natural numbers (denoted by N), y is an element of the set of
real numbers (denoted by R).

In other instances, the range may be implied, in which case we simply leave it
out, as in 9x W f .x/.

2.1.3 Predicates Define Sets of States

A precondition of a code segment, S , is simply a predicate formula that asserts
something about the state of the computer on which S is to be executed, just prior to
that execution taking place. Likewise, a postcondition is a predicate asserting what
is supposed to be true after S has executed. The state of the computer is described
by the value of the variables relevant to S .

Thus .x > 5/ could be a precondition or postcondition of S , asserting that the
particular variable, x, is greater than 5—an assertion that may or may not be true;
and an assertion that makes no claim about the values of other variables used by S .

We will normally treat a variable as if it was a mathematical entity. However,
to be completely accurate, we might need to relate the variable x to the way it is
stored in memory: is it stored as an integer or real number? how many bytes does it
occupy? etc. In correctness arguments, these issues could be important, in as much
as they indicate limitations on the variables in relation to precision and the range of
values (maximum and minimum) that may be assumed. When necessary, we will
explicitly relate x to its computer representation by indicating its type. Thus, x W T

will be used to indicate that variable x is of type T .
In fact, if we assume that each variable in a program is uniquely associated

with certain bytes in memory, then a predicate such as .x > 5/ has a one-to-one

2.1 Predicates 11

12A7H

Memory start

. . . 0FFFH

ADDR

. . .

Memory end

010FH . . . 0008H . . .

0000H . . . 0006H . . .

Fig. 2.1 Examples of elements in the set States.x>5/

correspondence with a set of memory states. Suppose p is an arbitrary predicate
that contains unbound variables referring to program variables. There will be some
memory states, say t1; : : : tn, in which p evaluates to true and other states, say
f1; : : : ; fm in which p evaluates to false.

Notation 2.1.1 (Statesp). The set of states in which the predicate p evaluates to
true is denoted by Statesp .

Thus if we assume that x in the predicate .x > 5/ is a variable that is stored as a
16-bit integer in memory at a byte-address ADDR, then States.x>5/ corresponds to
the set of all states of memory, each of whose elements has a hexadecimal value in
byte-address ADDR that is in the range 0006H to 7FFFH (assuming a sign bit in
the most significant digit), and any arbitrary bit values stored in the remainder of the
memory. Figure 2.1 illustrates three of the many possible states in States.x>5/.

2.1.4 Strong and Weak Predicates

As with any other predicate formulae, pre- and postconditions may rely on logical
connectives such as _ and ^ to join simpler predicates together; they may be
quantified; and we may reason about their truth or falsity. We will be particularly
concerned to compare predicates with one another in relation to whether one is
weaker or stronger than another.

Suppose W and S are predicates. As an intuitive, but slightly incomplete
definition, we might say that S is stronger than W (or, equivalently, W is weaker
than S) if and only if S H) W .

Although this is quite a simple notion, it sometimes causes confusion. It is
therefore worth elaborating a little on the matter, especially because it is intimately
bound up with the rules of refinement discussed in Sect. 2.4 of this chapter—rules
which form the core of the software construction method that we are advocating.

Our above definition actually takes liberties in the use of language. Strictly
speaking, we should have said:

12 2 Background

Definition 2.1.2 (Predicate Strength). S is stronger than W if and only if
.S H) W / is a tautology.2

Now, a tautological relationship may never evaluate to false (no matter what
values are assigned to variables in the antecedent and consequent) and therefore
S H) W may never be false. But the truth table shows that S H) W can only be
false when S is true and W is false. So to test a claim that S is stronger than W ,
it is sufficient to verify that there are no circumstances in which S is true and W is
false. Put positively, we may merely verify that whenever S is true then W is also
true.

For example, we can easily test the claim that .x > 5/ is stronger than .x > 0/,
by noting that every instantiation of x that renders .x > 5/ to be true, also renders
.x > 0/ as true—it is just not possible to choose a value of x which renders .x > 5/

to be true and .x > 0/ to be false.
What apparently confuses many is the fact that there may be instantiations of

variables in S and W that render S to be false but W to be true. For example,
suppose x is 3 in our example. Then .3 > 5/ is false but .3 > 0/ is true. It is
a mistake to conclude at this point that .x > 5/ H) .x > 0/ is consequently
false, and therefore that .x > 5/ is not stronger than .x > 0/. Refer back to the
truth table for propositional expressions, and it will be clear that the truth value of
false H) true is true!

There are several other perspectives of what it means to say that one predicate
is stronger or weaker than another. One of these views relies on the notion of
substitution.

Definition 2.1.3 (Single Substitution). P Œxna� denotes the predicate that results
by substituting each and every occurrence of the variable x that occurs in predicate
P with the symbol a.

Note that we do not insist that the substituting symbol, a, should be a constant—it
might also be another variable. For simplicity, the notation assumes that x is a
single variable and a is a single substituting symbol. However, as indicated later in
Notation 2.3.3, the same notation also allows that x may be a list of variables, and
a a list of substituting symbols. In such a case, the nth variable in the variable list is
to be substituted by the nth substituting symbol. Some subtleties to be considered in
such a case of multiple variable substitution are pointed out later.

Stated in terms of this substitution notation, what we have just argued above is
that

..x > 5/ H) .x > 0//Œxn3� � true

Also relying on this notation, we may base the claim that .x > 5/ is stronger than
.x > 0/ on the fact that

8X W ..x > 5/ H) .x > 0//ŒxnX� � true

2Note that by this definition S is stronger than itself, since .S H) S/ is a tautology—i.e.
.S H) S/ � true.

2.1 Predicates 13

Fig. 2.2 Outer oval represents all possible machine states

Note that even if the antecedent and the consequent in the predicate .x > 5/

H) .x > 0/ both evaluate to false, as would be the case when .X D �100/

then, since the predicate .false H) false/ evaluates to true, the predicate is true.
It is instructive to relate the idea of strong and weak predicates back to the notion

of the set of states associated with true instances of the predicates concerned. It is
easy to see that States.x>5/ � States.x>0/. It therefore turns out that the following
are equivalent ways of stating the same thing:

• S is stronger than W .
• S H) W is a tautology.
• 8V W .S H) W /ŒvnV � D true, where v indicates the list of variables that are

referred to in S and W , and V is a list of values that these variables may assume.
• StatesS � StatesW .

Notation 2.1.4 (V). S V W is used to indicate that S is stronger than W . V is
the “implied everywhere” symbol and indicates that “everywhere S implies W ”.

Also note that the set consisting of all possible memory states corresponds to the
predicate true, and can be denoted by Strue. true is thus the weakest possible
predicate and every other predicate is stronger than it. Conversely, false is the
strongest possible predicate, Statesfalse D ∅, and every other predicate is weaker
than false. The matter is visually illustrated in Fig. 2.2.

We could summarise this by noting that if P represents the set of all possible
predicates, then 8p W P W Statesfalse � Statesp � Statestrue. Alternatively, we could
say: 8p W P W false V p V true.

In general, therefore, a weaker predicate is less strict about the values that
variables may assume, compared to its stronger counterpart. One might associate
with the notion of a weak predicate, words such as: more abstract, more liberal, less
strict, etc.

14 2 Background

2.2 Specifying Pre- and Postconditions

In this section, we introduce a particular type of predicate, called a Hoare triple, as
a well-known approach to specifying pre- and postconditions in relation to code.
Relying on this notation, the idea of a weakest precondition is then explained.
As will be seen in the section that follows this one, the weakest precondition concept
is an elegant way of specifying the semantics of the constructs of a programming
language, as well as the semantics of a larger body of code.

2.2.1 Hoare Triples as Specifications of Total Correctness

Suppose that S is some code, and that P and Q are two predicate formulae. Then
fP g S fQg is itself a predicate formula that asserts the following:

If P is true just before S executes then S will terminate and then Q will be true.

This is a so-called Hoare triple in which P is a precondition of S and Q is the
resulting postcondition. Because it is a predicate formula, such a Hoare triple is
either true or false, provided its variables are appropriately bound, as discussed
below.

Note carefully that in order for the predicate to evaluate to true S has to
terminate if started in an arbitrary state of StatesP . In this case, we speak of “total
correctness”—i.e. if the predicate is true then S is said to be “totally” correct with
respect to the precondition P and postcondition Q.3 We shall interpret all triples to
be assertions about total correctness.

However, as already stated, if the variables in fP g S fQg are not bound, then it
may not be possible to assign a truth-value to the predicate—just as it is not possible
to decide whether or not .x > 5/ is true without knowing the value of x. However,
sometimes a truth value can indeed be assigned to fP g S fQg, even if some or all
of the variables are not bound to any value.

This happens, for example, if the Hoare triple constitutes a tautology. To give a
concrete example, suppose we denote by skip the do-nothing, or empty command in
some programming language. Then the triple fP g skip fP g is true for any predicate
P . In fact, the triple defines the meaning (or semantics) of the skip command. This
is an example of how Hoare triples can be used to provide the so-called axiomatic
semantics of programming constructs.

The objective in this text is slightly different. It is to start with the pre- and
postconditions that describe a problem, where the symbol S initially describes the
code in an entirely symbolic and non-specific manner. In this case, we can think of
a Hoare triple as a specification of a problem. It tells us the pre- and postconditions

3In some texts, P fSg Q is interpreted as a statement of partial correctness, by which is meant the
assertion that if P is true and S executes then Q will be true if S terminates.

2.2 Specifying Pre- and Postconditions 15

of the problem, and we then have to find an explicit solution to the problem—an
instantiation of S to code which renders fP g S fQg to be true.

We will rely on various rules of refinement, rules of inference and axioms
associated with Hoare triples incrementally to change S into an increasingly specific
form that corresponds to commands of a program. These various rules will be
provided in Sect. 2.4. However, at this point it is useful to enrich our notation
in anticipation of some of the refinement rules. Specifically, we allow for the
specifier to indicate which list of variables in S may be changed in order to arrive
at the postconditions. Thus fP g s W S fQg specifies that in order to ensure that
postcondition Q is met, the code in S may only change the value of one or more
variables in the list s. The variables whose values may change, i.e. those in the list
s above, are called the frame variables (or, more concisely, simply the frame) of the
specification.

As an example, consider the specification

fx � 0g y WS fy2 D xg

For this predicate to be true the code represented abstractly by S should assign a
value to y that corresponds to the square root of some x, where x is guaranteed to be
non-negative at the start of the code. If we assumed the existence of a sqrt method,
then a legitimate elaboration of the specification into a program would be

fx � 0g y WD sqrt.x/ fy2 D xg

On the other hand, if the starting problem was (somewhat obscurely) stated as:

fx � 0g x; y WS fx D y ^ y2 D xg

then a program that complies with this specification could be:

fx � 0g x WD 1I y WD 1 fx D y ^ y2 D xg

Note that this is one program that complies with the specification. In general, many
programs can comply with a given specification. (Can you think of another way
of assigning values to x and y that would meet the specification in this particular
instance?)

As a final example, if the problem was (somewhat perversely) stated as

ftrueg y WS fy2 D xg

then we would have to throw up our hands in despair—the precondition does not
place any limit on the initial value of x, and the frame requires that we only change
values of y in order to meet the postcondition. Because this specification allows that
x could possibly be negative, there is no version of S that can guarantee to always
derive a y that is the square root of x. We are being asked to derive an infeasible
program!

16 2 Background

2.2.2 Weakest Preconditions and Semantics

To explain what a programming language command does, means to indicate the
semantics of the command. Normally, this is done informally, i.e. in natural
language, and sometimes an illustrative example may be given. However, in
Sect. 2.3, it is our intention to introduce the GCL specification language by defining
the semantics of the core GCL commands in an alternative and very precise
way, namely by specifying, for each command, the so-called weakest precondition
required for that command to produce a given postcondition.

To gain some insight into the idea of a weakest precondition, consider two
predicates P and P 0 such that P V P 0—i.e. P 0 is weaker than P .

Now suppose it has been shown that fP g S fQg is true for some fixed and
given program S and for some fixed and given P and Q. Suppose, too, that another
analysis reveals that fP 0g S fQg is also true. This means that after S terminates, the
postcondition Q will be attained, even if initial conditions comply with a predicate
that is weaker than P , namely with P 0. Perhaps it will be possible to find an even
weaker predicate than P 0, say P 00, such that fP 00g S fQg is true, etc.

Eventually, for a given S and Q, there will always be exactly one precondition,
say W , that is the very weakest possible of all possible preconditions that render
fW g S fQg to be true. Not surprisingly, we call this predicate the the weakest
precondition of S with respect to Q and denote it by wp.S; Q/. It can be defined
formally as follows:

Definition 2.2.1 (Weakest Precondition). Let S be a program and Q be a predi-
cate. Then the predicate wp.S; Q/ is the weakest precondition of S with respect to
Q, if and only if

fwp.S; Q/g S fQg
and

8P � .fP g S fQg/ H) .P V wp.S; Q//

There are a few points about the weakest precondition that may seem obvious, but
are nevertheless worth emphasising.

• It should be emphasised that, per definition of the weakest precondition, it will
always be the case that:

fwp.S; Q/g S fQg
• If, for a given S and some for predicate variable Q (by which we mean that

Q is not given an explicit form such as .x > 5/), we can find an expres-
sion for wp.S; Q/ in terms of Q, then we would have very specifically—
uniquely, in fact—characterised the behaviour (or meaning, or semantics) of S .

2.3 Guarded Command Language 17

Thus, wp.S; Q/ is one very neat way of defining the semantics of a program or
statement S .4

• Also noted that for a given Q, say .x > 5/, and for some given S , the precondition
of S with respect to Q will be some predicate that typically depends on x. Its
exact form will of course depend on S . If we have already determined an explicit
general expression for wp.S; Q/, then finding wp.S; .x > 5// is a straightforward
matter of substituting .x > 5/ for Q.

In the next section, various commands of the so-called GCL will be described in
terms of their precondition semantics.

2.3 Guarded Command Language

Dijkstra proposed and used a very simple yet powerful language in which to
specify algorithms. It is known as the GCL,5 and abbreviated to GCL. Although
GCL has very precise semantics, it is not normally implemented on a computer.
Nevertheless, it is a simple matter to translate a GCL program into one of the
commonly implemented languages: Java, C++, C#, etc. GCL relies on the following
constructs:

Construct Symbol

Empty command skip
Assignment WD
Composition ;
Selection if
Repetition do

Each of these commands will now be discussed. The discussion will not only focus
on the syntax and semantics of the respective commands, but will also touch on
various other matters of interest. We shall postpone until Sect. 2.4, a discussion
about how a program made up of these commands can be refined out of a Hoare
triple specification.

4There are at least four different approaches to defining the semantics of S : operationally;
translationally; denotationally; and axiomatically. Details are beyond the scope of this text.
However, it may be of interest to note that the precondition approach is generally classified as an
axiomatic approach to defining semantics, and we usually speak of the “precondition semantics”
in this context.
5Although program constructs are commonly referred to as statements, Dijkstra preferred the term
command. For this reason, the term shall be used consistently throughout this text.

18 2 Background

2.3.1 Empty Command

We have already encountered the skip command. It is a command which “does
nothing”. Curiously, however, the command is both theoretically interesting, and
operationally necessary in GCL. From an operational point of view, we shall
see below that it is sometimes mandatory to use a skip command as part of a
selection command. From a theoretical point of view, the skip command very simply
illustrates the notion of a weakest precondition.

Since the skip command does nothing, if we want postcondition Q to hold after
executing it, then clearly this postcondition will be attained if Q holds before
executing skip. Thus, as we have already indicated, fQg skip fQg is true for any
arbitrary predicate, Q. We may then enquire: can the precondition Q be weakened in
some or other fashion, and still guarantee the attainment of Q after executing skip?
Clearly, the answer is “no”. Just to drive home the point, while the specification

fx > 5g skip fx > 5g

is always true, the specification with a slightly weaker precondition, say

fx > 0g skip fx > 5g

is false. The latter is easily seen by considering some value of x that satisfies the
precondition but not the postcondition (e.g. x D 3). Clearly if x D 3 before executing
the skip command, the resulting state (namely one in which x still equals 3) does not
satisfy the postcondition. We thus conclude that skip may be precisely and formally
defined as follows:

Definition 2.3.1 (Empty Command). The instruction, skip, is a command such
that for any predicate Q, wp.skip; Q/ D Q.

It is important to note that the definition insists that Q may assume any value. There
may well be some command(s), S , such that fQg S fQg is true for some values
of Q, but skip is the only command in the entire universe that not only guarantees
fQg S fQg to be true for any value of Q, but also guarantees that fP g S fQg is
false if P is strictly weaker than Q.

2.3.2 Diversion: Some Extreme Cases

The material presented in this section diverts from the main discussion about GCL
semantics. We believe that the material covered gives an interesting theoretical
insight into the meaning and nature of both Hoare triples precondition semantics.
Nevertheless, it is not essential background for understanding the rest of this text,
and some readers may wish to skip it—at least on first reading.

2.3 Guarded Command Language 19

Delving into the meaning of a few “extreme” Hoare triples will sharpen the
understanding of the theory developed to date, and will show its overall consistency
and elegance.

Let us start by asking the question: What kind of instruction or program S

would comply with each of the following specifications? We then consider each
case in turn.

1. ftrueg S ftrueg
2. ffalseg S ftrueg
3. ffalseg S ffalseg
4. ftrueg S ffalseg

2.3.2.1 Case 1: For What Values of S Does ftrueg S ftrueg Hold?

In this case, the answer certainly includes S D skip, since we have just seen that
fQg skip fQg holds for all values of Q, and thus specifically for Q D true. The
questions is, does ftrueg S ftrueg hold for any other instances of S?

We can get a sense of how to interpret this question by recasting the meaning of
the Hoare triple in terms of its initial definition—i.e. ftrueg S ftrueg is actually just
an abbreviated way of asserting the following predicate:

If the computer is in a state belonging to the set Statestrue just before S executes,
then S will terminate and the computer will end up in a state belonging to the set Statestrue.

We are obviously dealing here with a predicate of the form: antecedant H)
consequent.

The antecedent is the predicate “the computer is in some arbitrary state (i.e. any
element of Statestrue) just before S executes”. This predicate clearly always has the
truth value true.

The consequent is the predicate “S terminates and ends up in a state belong-
ing to the set Statestrue”—which is a rather complicated way of saying “S

terminates”.
It seems, therefore, that the predicate ftrueg S ftrueg is only rendered false by

programs which loop forever when started in some state. Note carefully that S is
not required to loop forever when started from every state. If there is only one state
from which to launch S which will cause it to loop forever, then ftrueg S ftrueg
must be judged to be false. The overall conclusion therefore is as follows.

ftrueg S ftrueg is true for any S that always terminates, no matter from which state it is
started.

2.3.2.2 Case 2: For What Values of S Does ffalseg S ftrueg Hold?

To get a handle on the kind of S that might be involved in such a specification, let
us reason once again from first principles about the weakest precondition.

20 2 Background

While fwp.S; Q/g S fQg is always true, the precondition indicates a “boundary”
at which other Hoare triples of the form fP g S fQg are also true. Specifically
fP g S fQg is true if and only if P is stronger than wp.S; Q/, i.e. P V wp.S; Q/.
The logical conclusion flowing from this observation is quite astonishing:

We have already noted that false is the strongest of all predicates;
therefore false V wp.S; Q/, whatever S and Q may be; and
therefore ffalseg S fQg is true whatever S and Q may be!

This rather counter-intuitive result means that the answer to the question posed in
the heading is as follows:

Any program, S , satisfies the predicate ffalseg S ftrueg.

You might be tempted to object: what happens if S is a non-terminating loop?
You may vaguely sense that a non-terminating loop “does not have” a weakest
precondition. We shall probe this matter in a little more detail below. Suffice it to say
that the precondition of a non-terminating S with respect to Q does indeed exist—
it is a predicate. Whatever it is, it must be the case that false V wp.S; Q/, and
so our above argument is entirely general: ffalseg S fQg and ffalseg S ftrueg are
predicates that are always true, even if S is non-terminating!

2.3.2.3 Case 3: For What Values of S Does ffalseg S ffalseg Hold?

The reasoning that led to the answer to the previous question was entirely general:
ffalseg S fQg is true whatever S and Q may be!

Therefore, again the question posed in the heading is to be answered as follows:

Any program, S , satisfies the predicate ffalseg S ffalseg.

Again, this holds, even if S is non-terminating.

2.3.2.4 Case 4: For What Values of S Does ftrueg S ffalseg Hold?

We illuminate this question by expanding the Hoare triple ftrueg S ffalseg in terms
of its initial definition, as we did before:

If the computer is in a state belonging to the set Statestrue just before S executes,
then S will terminate and the computer will end up in a state belonging to the set Statesfalse.

Here, the antecedent is the predicate “the computer is in some arbitrary state (i.e.
any element of Statestrue) just before S executes”. This predicate clearly always has
the truth value true.

The consequent is a predicate that asserts that “S terminates and the computer
does not end up in any state at all (i.e. a state that is an element of Statesfalse D∅)”.
Put differently, the consequent asserts that:

(S terminates) and (9s W ∅� (the computer ends up in state s)).

2.3 Guarded Command Language 21

We see immediately that the consequent is false, whether or not S terminates,
because the predicate (9s W ∅� (the computer ends up in state s)) always has truth-
value false.

ftrueg S ffalseg is therefore logically equivalent to the predicate true H)
false which, in terms of the truth tables, evaluates to false. It does not matter
what form S assumes, the predicate remains false. Therefore, no program S can
satisfy ftrueg S ffalseg. The answer to the question “For what values of S does
ftrueg S ffalseg hold?” is therefore

There is no S whatsoever for which ftrueg S ffalseg has value true.

The foregoing discussion is summarised in the table below.

fP g S fQg true for which S?

ftrueg S ftrueg Any S that terminates irrespective of start state
ffalseg S ftrueg Any S

ffalseg S ffalseg Any S

ftrueg S ffalseg No S whatsoever

Having regard to properties that relate to extreme Hoare triple contexts strengthens
insight into the meaning of the notation. Similarly, it is interesting and relevant to
consider weakest preconditions in limiting situations. The following questions are
of interest.

2.3.2.5 How Can the Expression wp.S; false/ Be Interpreted?

The last two rows of the above table point to two extremes of the triple:
fP g S ffalseg. In the third row, we see that the expression is true for any S

when P D false. The fourth row, however, informs us that the expression is false
for any S when P D true. The question thus arises: is there a P that is weaker than
false such that for some S , fP g S ffalseg is true. If this were to be the case, then
StatesP 	 Statesfalse D ∅. Hence there would be some state, x 2 StatesP , such that
S , when launched from state x, would terminate in some state 2 Statesfalse D ∅.
Clearly, this is never possible, irrespective of S . We therefore conclude as follows:

wp.S; false/ D false for all S .

The dual of this question is addressed next.

2.3.2.6 How Can the Expression wp.S; true/ Be Interpreted?

We already know that wp.skip; Q/ D Q for any Q, because that is precisely the
definition of skip. Thus, wp.skip; true/ D true is one instance of a possibly more
general response to the question posed above.

22 2 Background

In probing the meaning of wp.S; true/ when S is something other than skip, let
us again return to our basic definitions of the precondition and of a Hoare triple.
Since wp.S; true/ is the precondition predicate such that fwp.S; true/g S ftrueg is
true, the following must hold:

If the computer is in a state belonging to the set Stateswp.S;true/ just before S executes,
then S will terminate and the computer will end up in a state belonging to the set Statestrue.

Again, we are dealing here with an assertion of the form: antecedant H)
consequent. The consequent amounts to an assertion that we really do not care about
the final state in which we end; for the consequent to be true it is sufficient that S

should terminate. If it does not terminate, then the consequent is false. Taking this
all together, and abusing notation somewhat by assuming that .x 2 Stateswp.S;true//

asserts that execution of S starts in a state of Stateswp.S;true/, the following predicates
may be regarded as equivalent:

fwp.S; true/g S ftrueg
.x 2 Stateswp.S;true// H) .S terminates/

The second predicate is of the form .antecedant H) consequent/ which, in
terms of the truth table entries, is true under the following circumstances:

• Both .x 2 Stateswp.S;true// and .S terminates/ are true
(since (true H) true/ D true)

• .x 2 Stateswp.S;true// is false but .S terminates/ is true
(since (false H) true/ D true)

• Both .x 2 Stateswp.S;true// and .S terminates/ are false
(since (false H) false/ D true)

However, since Stateswp.S;true/ is, per definition, the largest set of states which leads
to the realisation of the postcondition, the scenario reflected in the second bullet
cannot arise. (We make this claim for all normal commands, S , that are in common
use, but return to it later.) In other words, wp.S; true/ is the weakest predicate that
guarantees the termination of S—the bullets assure us that if S is commenced in
a state that satisfies the wp.S; true/ then S will terminate, and that S will not
terminate otherwise.

wp.S; true/ is the set of states from which S may be started, that guarantees the termination
of S .

But, you may object, what if S is inherently an infinite loop? What if there is no
state in which S may be started which will guarantee its termination? Well, in that
case wp.S; true/ D false and thus Stateswp.S;true/ D ∅. As a result, only the third
bullet above can ever be realised.

The conclusion therefore holds, whether or not S terminates under some
circumstances, or always loops forever: wp.S; true/ is a predicate representing the
set of all states from which S may be started, that guarantees the termination of S .

2.3 Guarded Command Language 23

2.3.2.7 The Meaning of abort

Recall, that we arrived at the conclusion that wp.S; true/ represents the set of states
guaranteeing the termination of S , based on the assumption that S is one of the
“normal” computer commands in common use. We argued that for such commands,
the scenario represented by the second bullet above could never arise. What we
avoided saying, however, is what we mean by a “normal” command.

For the purposes of the present text, a normal command is one whose behaviour
is predictable. Even an infinite loop can be regarded as a normal command, since
we know what it does—it loops forever.

However, as we know, sometimes a program behaves unpredictably. We wash
our hands here of the need to speculate why this happens: whether because of stray
pointers, division by zero, or whatever. We simply decide, for theoretical purposes,
to equate such behaviour to the execution of a special command called abort.

abort is a completely chaotic command. We can think of it as having a weakest
precondition that cannot be determined with respect to any postcondition, including
the postcondition true. Note that this is not a claim that abort does not have
a weakest precondition with respect to some postcondition. It is merely a claim
that this weakest precondition cannot be known. Nevertheless, although unknown,
Stateswp.abort;true/ represents some real (possibly empty) set of machine states. The
predicate fwp.abort; true/g abort ftrueg remains true, because the same three
scenarios that we displayed previously also hold for abort, namely:

• If x 2 Stateswp.abort;true/ and abort executes, then abort terminates in some
arbitrary state (since (true H) true/ D true).

• If x … Stateswp.abort;true/ and abort executes, then abort terminates in some
arbitrary state (since (false H) true/ D true).

• If x … Stateswp.abort;true/ and abort executes, then abort does not terminate (since
(false H) false/ D true).

This means that if abort is launched in some states not in Stateswp.abort;true/,
then it terminates in some arbitrary state, while if launched in other states not in
Stateswp.abort;true/, it loops forever. However, it is so chaotic that we do not know
how to characterise start states that cause it to stop, and start states that cause it
to loop forever; and neither do we have any information about what the final state
might possibly be, in those cases where abort perchance terminates.

Of course, one should never purposefully execute abort. However, sometimes
abort is used to describe what happens when we accidently execute unacceptable
code. Indeed, Dijkstra uses abort to describe what happens if you commence
the execution of a “normal” instruction in a state that does not comply with the
instruction’s precondition with respect to some specified postcondition. Anything
could happen: the machine could either loop forever, or end up in some non-
predictable final state. Under such conditions, the instruction to be executed behaves
in a way that is indistinguishable from abort.

24 2 Background

2.3.3 Assignment

GCL allows for both single and multiple assignment. For the moment, we consider
single assignment only. In both cases assignment is denoted by WD, thus sensibly not
overloading the D symbol, which is the relational operator for equality.

We will define the precise semantics of single assignment in terms of its
weakest precondition. This entirely general definition applies to assignment in any
programming language.

Definition 2.3.2 (Single Assignment). If x is a variable (of some type T), and E

some expression (of the same type T), then the assignment instruction x WD E is
such that, for any predicate Q, wp.x WD E; Q/ D QŒxnE�.

We assume that E is a legitimate expression in GCL, without defining what this
is—i.e. it is assumed that the normal rules apply.

In terms of this definition, the following is always true:

fQŒxnE�g x WD E fQg

Many, upon first encountering this claim, are somewhat taken aback. It seems
slightly counter-intuitive. We are inclined to say: Surely if Q is true just before
E is assigned to x, then Q with all occurrences of x replaced by E will be true
afterwards! But a little thought will convince otherwise.

Consider, for example, the triple:

fP g x WD x C 1 fx > 5g

Clearly, if x is to be greater than 5 after being incremented by 1, then prior to that
assignment the predicate .xC1 > 5/ should hold. Note however that this is the same
as .x > 5/Œxnx C 1�. Moreover, it is the very weakest assertion that should hold
before executing x WD x C 1 that will guarantee the postcondition of .x > 5/, i.e.

wp.x WD x C 1; x > 5/ � .x > 5/Œxnx C 1� � .x C 1 > 5/ D .x > 4/

Thus, the following predicates are true:

• fx > 4g x WD x C 1 fx > 5g, since .x > 4/ is the weakest precondition
• fx > 5g x WD x C 1 fx > 5g, since .x > 5/ V .x > 4/, the weakest precond-

ition.
• fx > 1; 000g x WD x C1 fx > 5g, since x > 1; 000 V .x > 4/, the weakest pre-

condition, etc.

while the following is false:

• fx > 3g x WD x C 1 fx > 5g, since .x > 3/ is weaker than the weakest pre-
condition, .x > 4/.

2.3 Guarded Command Language 25

So, counter-intuitive as it may initially be, the precondition given above for
assignment does indeed make sense. Readers who are not fully convinced should
verify this for a variety of other scenarios. This will confirm that assignment’s
precondition is as stated.

Here we have started off with a notion of what assignment means, and proposed
and verified its weakest precondition. However, as before, we may turn the matter on
its head. Suppose we came from a universe where we did not know what assignment
meant, but we understood the idea of the weakest precondition. Then by stating the
precondition for assignment, we fully state what assignment means—we state its
semantics.

Before defining multiple assignment in terms of its weakest precondition, we first
need to extend the single substitution Definition 2.1.3 to multiple substitution.

Definition 2.3.3 (General Substitution). Assume that P is a predicate, that
x1 : : : xn is a list of distinct variables, and that a1 : : : an is a list of expressions. Then
P Œx1; x2 : : : xnna1; a2 : : : an� denotes the predicate that results after simultaneously
substituting each and every occurrence of xi in predicate P with ai . By simultane-
ous substitution is meant that ai only replaces occurrences of xi that were in P at
the start of the substitution process; occurrences of xi that might result from other
substitutions are ignored.

To illustrate the meaning of “simultaneous” substitution, consider the multiple
substitution:

.x > y/Œx; yny; z�

The result of this substitution is
.y > z/

and not
.z > z/

In other words, we do not say:

substituting x with y in the expression yields (y > y); and
substituting y with z yields (z > z).

Instead, the substitutions of x and y with y and z, respectively, in the expression
.x > y/ takes place “simultaneously”, yielding .y > z/.

We can now define multiple assignment as follows:

Definition 2.3.4 (Multiple Assignment). If x1; : : : xn is a list of distinct variables
(of types T1; : : : Tn), and E1; : : : En is a list of expressions (of corresponding types,
namely T1; : : : Tn), then the precondition of x1; x2; : : : xn WD E1; E2; : : : En with
respect to predicate Q is given by

wp.x1; : : : xn WD E1; : : : En; Q/ D QŒx1; : : : xnnE1; : : : En�.

26 2 Background

The multiple assignment command is not a necessary construct. It does not exist
in most real computer programming languages, and it is not difficult to translate any
multiple assignment back to a sequence of single assignment commands. However,
it often aids in shortening the specification of code. The common example is that of
swapping two variables. This is easily specified as the multiple assignment

x; y WD y; x:

Relating this back to the precondition for multiple assignment, the question
arises: what does a postcondition look like that says that the variables x and y have
been swapped. It does not work to say:

.x D y/ ^ .y D x/

Why not? Because this postcondition is equivalent to .x D y/, and this postcondi-
tion state is attained, not by swapping x and y, but either by assigning x to y, or
vice versa. Moreover, such a postcondition is attained from any starting state—it is
easy to verify that wp.x WD y; .x D y ^ y D x// D true.

To indicate in the postcondition Q of some specification fP g S fQg that two
variables have been swapped, we need to be able to refer in Q to the value of
the variables as they were in P , before they were changed in S . There are various
notational conventions for doing this. In this text, we shall use a subscript 0 for a
variable, to indicate its value before some code has been executed. For example in
fP g S fy D x0g the postcondition should be interpreted to mean that y must be the
same as the value that variable x had before the code S was executed. Generally this
convention will not cause any problems. Although subscript integer values are also
in other contexts, the meaning of the 0 subscript will be obvious from the particular
context, and should not cause confusion.

Equipped with this notation, we can express the fact that x and y have been
swapped as follows: .x D y0/ ^ .y D x0/. The precondition that ensures this
postcondition after executing the multiple assignment x; y WD y; x is computed as
follows:

wp..x; y WD y; x/; .x D y0/ ^ .y D x0//

� f Definition of multiple assignment weakest precondition g
..x D y0/ ^ .y D x0//Œx; y; ny; x�

� f Apply substitutiong
.y D y0/ ^ .x D x0/

� f Holds trivially in the precondition g
true

Note the following two points:

• In this text, we shall often use the above style of presenting formal arguments
or derivations—i.e. write down an expression; give a hint or brief explanation

2.3 Guarded Command Language 27

(in parenthesis) of why the next step is justified; give the next step in the
argument; give a hint to justify the next step; give the next expression; etc.

• Note that, when applying the substitution, x0 and y0 are not candidates for
substitution. They are to be regarded as constant values, not as variables.

The foregoing precondition derivation tells us that the multiple assignment swap
will achieve its objective (the postcondition) from any starting condition. Thus, for
example, the following Hoare triple is true

fx > 0 ^ y � 0g x; y WD y; x fx D y0 ^ y D x0g

since fx > 0 ^ y � 0g V true.

2.3.4 Composition

The notion of composing commands is simple but powerful. We may define the
composition of two code segments S1 and S2 in terms of precondition semantics as
follows:

Definition 2.3.5 (Composition). The composition of code segments S1 and S2 is
denoted by S1I S2. wp.S1I S2; Q/ D wp.S1; wp.S2; Q//.

From one perspective, this definition tells us exactly what the composition command
means: the precondition to ensure that Q is attained after executing S1I S2 is the
same as the precondition to ensure that wp.S2; Q/ holds after executing S1.

However, as will be seen later, the precondition semantics is a little constraining
if the need is to refine S to, say, S1I S2. Instead, it is more convenient to take note
of the following more general statement:

Property 2.3.6. If a predicate, say M can be found such that

.fP g S1 fM g/ ^ .fM g S2 fQg/

then
fP g S1I S2 fQg

In many texts, the above is expressed by the following notation:

.fP g S1 fM g/ ^ .fM g S2 fQg/
fP g S1I S2 fQg

Composition assists in breaking up a coding task into smaller, more manageable
sections. For example, suppose we need to write code that complies with the
following specification:

ftrueg x; y WS fx D y ^ y2 D xg

28 2 Background

Thus, from any arbitrary initial state, we wish change x and y so as to arrive at the
postcondition, which at first sight seems rather constrained: not only must x and
y be equal, but y2 D x. Although a code solution to this specification is not too
difficult think up directly, it is of interest to see how we can “derive” a solution by
the following a measured reasoning process.

It would seem reasonable to achieve the postcondition’s two conjuncts in two
steps, suggesting that S could be seen as the composition of two commands, i.e. as
S1I S2. Suppose that after executing S1 some predicate M becomes true. Thus, we
seek S1 and S2 such that:

ftrueg x; y WS1 fM g ^ fM g x; y WS2 fx D y ^ y2 D xg (2.1)

Rather than trying to establish S1 that achieves some yet unclear M , it is often more
profitable to work “backwards”—i.e. to fill in code for S2 that achieves at least part
of the postcondition. Several possibilities suggest themselves: we could assign x to
y; or y to x; or the square of y to x; or the square root of x to y.

Let us opt for the first course of action—i.e. S2 becomes the assignment x WD y.
(This choice may seem rather arbitrary. Nevertheless, it is easy to verify that any
choice could be made. A different but accurate solution to the problem would then
be found.)

Having decided on S2, and knowing the required postcondition, means that we
are able to compute the associated weakest precondition:

wp.x WD y; .x D y ^ y2 D x//

� fDefinition of assignment weakest preconditiong
.x D y ^ y2 D x/Œxny�

� fApply substitutiong
y D y ^ y2 D y

� f.y D y/ � trueg
true ^ y2 D y

� fAbsorbtion rule: true ^ P � P g
y2 D y

This precondition seems to be a reasonable choice for M in (2.1). Thus, we now
need to find S1 so that the following is true.

ftrueg x; y WS1 fy2 D yg ^ fy2 D yg x WD y fx D y ^ y2 D xg (2.2)

We see that the predicate y2 D y could actually be written as y D 0 _ y D 1 (since
0 and 1 are the two roots of the equation y2 � y D 0). This suggests that we could
change S1 either into a command that assigns 0 to y, or into a command that assigns
1 to y. Choosing (again arbitrarily) to assign 1 to y, the logical expression in (2.2)
can be re-written as:

2.3 Guarded Command Language 29

ftrueg x; y Wy WD 1 fy2 D yg ^ fy2 D yg x WD y fx D y ^ y2 D xg (2.3)

Note that this logical expression (of the form A ^ B where A and B are Hoare
triples) may either be true or false. The second conjunct (i.e. the B part) clearly
has value true, because it corresponds to the form fwp.S; Q/g S fQg where S is
x WD y and Q is x D y ^ y2 D x.

To show that the first conjunct is true, we need to prove that

true V wp.y WD 1; .y D 0 _ y D 1//

This is because, in the general case, we can only be sure that fP g S fQg is true if
P is stronger than wp.S; Q/ (i.e. P V wp.S; Q/). In the case of expression (2.3),
P corresponds to true. We thus derive the precondition as follows:

wp.y WD 1; .y D 0 _ y D 1//

� fDefinition of assignment weakest preconditiong
.y D 0 _ y D 1/Œyn1�

� fApply substitutiong
1 D 0 _ 1 D 1

� fCommon senseg
false _ true

� fTruth tablesg
true

Since true V true we can confidently affirm that the following is a valid
specification—i.e. a specification (actually in this case, already a program)
consisting of the conjunct of two Hoare triples, which is such that if the precondition
of each triple is fulfilled, the code will achieve the corresponding postcondition:

ftrueg y WD 1 fy2 D yg ^ fy2 D yg x WD y fx D y ^ y2 D xg

It will be convenient to abbreviate the conjunction of Hoare triples as above into
the following:

ftrueg y WD 1 fy2 D yg I x WD y fx D y ^ y2 D xg

We could also write this out in a form that corresponds to the way in which code is
laid out, where predicates in parenthesis serve in the role of code comments:

f true g
y WD 1

f y2 D yg

30 2 Background

I x WD y

f x D y ^ y2 D xg
Note that in this text, we will generally follow the convention of placing the
semicolon on the same line as the next command to be executed, rather than at
the end of the last statement that preceded the “execution” of this composition
command.

Generalising from these conventions, the predicate on the left hand side below,
may be written out in abbreviated form as on the right hand side:

fP g S1 fRg ^ fRg S2 fP g � fP g S1 fRg I S2 fP g

Where convenient, this abbreviated form will be written out on separate lines,
resulting in the more conventional line-by-line style for writing code.

f Pg
S1

f Rg
I S2

f Qg

2.3.5 Selection

At first sight, the GCL command for selection might seem similar to a switch-
command, a case-command or sequence of nested if-else commands in some
conventional language, but the similarities are superficial—the GCL command has
a number of significant semantic differences.6 The syntax is as follows:

if G1 ! S1

Œ� G2 ! S2

: : :

Œ� Gn ! Sn

fi

The Gi are predicates, called guards, and the Si are GCL commands (possibly
the composition of a number of commands). Hence each Gi ! Si constitutes a
so-called guarded command—which is where the GCL language gets its name.

6In fact, the ADA select command is inspired by the GCL command, as is the choice operation
in CSP (and subsequent CSP variants such as FSP as a specification language and Occam as an
implementation language).

2.3 Guarded Command Language 31

The semantics of the select command require that, as a first step in executing the
command, all the guards are evaluated. If one or more evaluates to true, then one of
the corresponding commands is non-deterministically selected for execution. If no
guard evaluates to true then the select command executes abort !

Now this latter semantic requirement is unusual for those who are used to the
if-command in common programming languages. However, Dijkstra’s requirement
that the GCL select command should function in this way was quite deliberate. He
strongly believed that one ought to consciously establish and make explicit what has
to happen under every circumstance. There is thus no provision for a default skip. If
there are circumstances in which nothing ought to happen, then GCL still requires
of one to make those circumstances explicit, articulate them as a guard, and then
indicate that a skip command should be executed whenever that guard fires.

The non-determinism that results when more than one guard evaluates to true,
means that the associated commands should, in each case, do what is required. The
classically quoted mini-example is the use of the select command to set the variable
max to the maximum of two values, x and y. This could be specified in GCL as
follows:

if x � y ! max WD x Œ� x � y ! max WD y fi

If x D y, then both guards are true and the assignment command associated
with either one of them can be selected for execution. In this particular example,
the outcome will be the same—the value of max will indeed be the maximum of the
two other variables.

The example illustrates that GCL is a specification language, as opposed to
an implementation language such as Java. From a specification perspective, it is
not important which guard is selected: either will do. In implementing a GCL
specification, one has to make a choice about how the non-deterministically
specified options will be deterministically implemented. If one needs to implement
the max example specified above, (say in Java) a particular choice of a condition
has to be made, and particular assignment statements have to be used, both in the
context of an if-else command.

But it need not be the case that non-determinism represents alternative paths
to the same outcome, as was the case in this max example. Sometimes, a non-
deterministic GCL specification can be used to specify conditions under which
random outcomes occur. Although GCL will not be used in this fashion here, for
completeness the following artificial example is provided to illustrate the idea. The
example specifies that the outcome of tossing a coin might either be heads or tails.
Which specific outcome eventuates from a given toss is, of course, unpredictable:

if toss ! outcome WD heads
Œ� toss ! outcome WD tails
fi

The precondition of the select command with respect to postcondition Q, in its
general form, is slightly more complicated than those given for previous commands.

32 2 Background

Definition 2.3.7 (Selection). Let IF � if G1 ! S1 Œ� : : : Œ� Gn ! Sn fi. Then

wp.IF; Q/ D
n_

iD1

.Gi / ^
n̂

iD1

.Gi H) wp.Si ; Q//

Recall that this tells us what the weakest predicate is that should hold if we wish
to have a guarantee that predicate Q holds after executing the select statement that
has guards Gi ! Si ; i D 1 : : : n. It is a precise, albeit rather complicated, statement
of the semantics of the select command.Wn

iD1.Gi / means that any state that falls within the set of states associated with
weakest precondition, will be such that at least one of the guards will be true.

On the other hand, if the select command is initiated from a state that does not fall
within its precondition with respect to postcondition Q (thus, if the select statement
is initiated from a state where every guard evaluates to false), then the semantics
does not pronounce on what will happen. Put differently, under such circumstances,
anything may happen—whatever happens will not contradict the select statement’s
semantics.

But semantics that tolerates any behaviour, is reminiscent of the semantics of
the abort command. It is for this reason that Dijkstra declared that to execute the
select command from a state that does not satisfy any guard, is to execute the abort
command. The semantics of the select command in this respect are neither arbitrary
nor flippant; it is consistent with the body of theory around the notion of weakest
precondition!

Nevertheless, this precondition does not provide any immediate insight about
how to arrive at a particular select command, if our starting information is that
we have to comply with a more general specification fP g S fQg. To take such a
constructive step, we will have to rely on a refinement rule relating to the select
command, which will be given in Sect. 2.4.

2.3.6 Repetition

The final GCL command to be considered is repetition. In its general forms, it looks
a lot like the select command, in that it has several guarded commands.

do G1 ! S1

Œ� G2 ! S2

: : :

Œ� Gn ! Sn

od

The repetition command (or loop) iterates zero or more times. At the start of
each iteration, all guards are evaluated. As with the select command, a command

2.3 Guarded Command Language 33

associated with a true guard is non-deterministically selected for execution. The
loop iterates until all guards evaluate to false. In that case—unlike the select
command—it does not behave as abort. Instead, it terminates successfully and
control is passed to the next command in the sequence of program commands.

Note that the above form can also be seen as a loop with one guard only, i.e. as:

do GG ! S od

where GG D G1 _ G2 : : : _ Gn and S is the select command:

if G1 ! S1

Œ� G2 ! S2

: : :

Œ� Gn ! Sn

fi

This form is also used quite frequently, both in this text and elsewhere.
Of all the constructs mentioned to date, the repeat command’s precondition is the

most complicated. For this reason, and because it does not significantly illuminate
the way towards constructively refining loops from specifications, we will not state
it here. Instead, we turn the discussion to loop invariants.

For most examples in this text, we will be interested in finding an invariant of some
loop: a predicate that holds just before the loop is entered, that holds at the end of
every iteration of the loop, and that therefore also holds immediately after the loop
has terminated.

Definition 2.3.8 (Loop Invariant). Predicate P is an invariant of the loop
do G ! S od if and only if fP g G ! S fP g.

Thus, a loop invariant is a predicate that is true at the end of each iteration of the
loop, provided that it was true at the start of the loop’s body, and provided that the
loop’s body terminates.

If we view the loop as having the form do G1 ! S1 Œ� : : : Œ� Gn ! Sn od,
then for P to qualify as a loop invariant, it should hold whenever control reaches
the points indicated by O below, provided P holds before the loop commences:

do O G1 ! S1 O
Œ� O : : :

Œ� O Gn ! Sn O
od O

Note the following:

• A loop can have any number of invariants. In fact, true is an invariant of any loop:
in any loop, there is always some state in the universal set of states, Statestrue, that
holds at the indicated points above.

34 2 Background

• The fact that a loop has an invariant does not mean that the loop will terminate.
In fact, in any non-terminating loop, its condition, G D G1 _ G2 _ : : : _ Gn, is
quite obviously an invariant.

• If P is an invariant of a terminating loop, not only will P be true at the end
of the loop, but so will :G D :.G1 _ G2 _ : : : _ Gn/, the loop’s condition.
Thus, letting DO represents the loop in Definition 2.3.8 and given that P is an
invariant of the loop, we can be sure that the loop will terminate if and only if
fP g DO fP ^ :Gg is true.

• Similarly, the loop do G1 ! S1 Œ� : : : Œ� Gn ! Sn od is guaranteed to terminate
if each of the commands in the guarded commands is guaranteed to terminate. In
fact, the following should evaluate to true for i D 1; : : : n:

fP ^ Gi g Si fP g

If for some j , fP ^ Gj g Sj fP g is false, then it may be the case that the loop
will never terminate: the triple may be false precisely because, under starting
conditions allowed by the precondition, Sj might itself never terminate.

2.4 Refinement Rules

We are now in a position to relate the foregoing information to a set of rules or
heuristics, to be used in refining an abstract specification of a problem into a more
concrete one. As the refinement proceeds, more and more code is incorporated
into the specification, so that the final concrete specification is, in fact, a program
in GCL.

Let Spec.P; S; Q/ be an alternative notation for fP g S fQg. If S is merely a
variable standing “abstractly” in the place of a GCL program, and P and Q are
given, then it is not possible to know a priori whether Spec.P; S; Q/ is true or not—
just as it is not possible to say whether .x > 10/ is true or not without knowing
something about the value of x—its precise value, or even some range of values
which it may assume. We can only decide on the truth-value of Spec.P; S; Q/ once
S has been instantiated with some concrete GCL code.

We could, in principle, substitute S with any concrete GCL program. Some
subset of these substitutions will render the specification Spec.P; S; Q/ true and
the remainder will render it false.

A concrete GCL program that renders Spec.P; S; Q/ to be true is said to satisfy
the specification.

Notation 2.4.1. Sat.C; Spec.P; S; Q// is a predicate that asserts that the GCL
program C satisfies the specification Spec.P; S; Q/.

Refinement is based on the idea of deriving from Spec.P; S; Q/ a new refined
specification which is such that any GCL program that satisfies the refined specifi-
cation will also satisfy the original specification.

2.4 Refinement Rules 35

To make this idea more formal, let us denote by GCL the universal set of
GCL programs, and let X v Y denote the assertion that X is refined by Y (or,
equivalently, Y is a refinement of X). The meaning of this assertion is given in the
following definition.

Definition 2.4.2 (Refinement). Spec.P; S; Q/ v Spec.P 0; S 0; Q0/ if and only if

8C W GCL � Sat.C; Spec.P 0; S 0; Q0// H) .Sat.C; Spec.P; S; Q//

Thus Spec.P; S; Q/ is refined by Spec.P 0; S 0; Q0/ if every GCL program that satis-
fies the specification Spec.P 0; S 0; Q0/ also satisfies the specification Spec.P; S; Q/

Note, firstly, that the definition does not exclude the possibility that S D S 0,
i.e. that a specification can be refined simply by changing its pre- and/or its
postcondition.

Note, secondly, that we do not include an ‘only if’ in the definition. This means
that, even if Spec.P; S; Q/ v Spec.P 0; S; Q0/, it might nevertheless be possible to
find a concrete GCL program, say C , that satisfies Spec.P; S; Q/ but that does not
satisfy Spec.P 0; S; Q0/. This is simply a round-about way of saying that there could
be many refinement paths for a given specification Spec.P; S; Q/, each leading
to different concrete GCL programs that all satisfy Spec.P; S; Q/ but that do not
necessarily satisfy all possible refinements of Spec.P; S; Q/.

Consider, for example, the specification Spec.true; S; x < 5/ and the specifi-
cation Spec.true; S; x < 2/. Clearly Spec.true; S; x < 5/ v Spec.true; S; x < 2/.
(Why? Because any concrete program that starts in an arbitrary state and terminates
with x < 2, by definition also terminates with x < 5.) However the program x WD 4

satisfies Spec.true; S; x < 5/ but it does not satisfy Spec.true; S; x < 2/.

At first sight, how one is supposed to arrive at a refined specification of some
given specification might seem something of a mystery. Fortunately, there are a
large number of refinement rules to assist one in doing so. In fact, Morgan [32]
lists more than 70 such rules in the appendix to his book. Being confronted by such
a volume can be quite overwhelming, especially when a large proportion of those
rules turn out to be more of theoretical than of practical interest. Since our it is
not our objective to present a full theory of refinement, we list below a very small
selection of all the possible refinement rules—ones that we have found to be helpful
in constructing algorithms.

2.4.1 Strengthen Postcondition Rule

Suppose you are asked to write a program that complies with the specification
Spec.P; S; x > 0/. Instead of doing this, you actually write code that complies
with the specification Spec.P; S; x > 5 ^ y D 2/. What have you done? You

36 2 Background

have provided a program that complies not only with the original specifications, but
also with a specification where the postcondition has been strengthened—you have
refined the original specification to a concrete program that guarantees a stronger
postcondition. This generalises to the following refinement rule:

Rule 1. If Q0 V Q then Spec.P; S; Q/ v Spec.P; S; Q0/

2.4.2 Weaken Precondition Rule

In contrast to the previous scenario, suppose that you are asked to write a program
that complies with the specification Spec.y > 0; S; x > 0/. Instead of doing this,
you write code (call it C) that complies with the specification Spec.true; S; x > 0/.
This time, you have refined the original specification to a concrete program that
guarantees the required postcondition, even if the precondition is weaker than
originally required.

Put into the familiar Hoare triple notation, if the code, C , renders true the
predicate:

ftrueg C fx > 0g
then it must surely be the case that C also renders true the predicate:

fy > 0g C fx > 0g
Since this applies generally for any C , the definition of refinement can be refer-
enced, namely:

8C W GCL � .Sat.C; Spec.true; S; x > 0/// H) .Sat.C; Spec.y > 0; S; x > 0///

and we thus conclude that Spec.y > 0; S; x > 0/ v Spec.true; C; x > 0/.
This specific example generalises to the following refinement rule:

Rule 2. If P V P 0 then Spec.P; S; Q/ v Spec.P 0; S; Q/

2.4.3 Skip Rule

Suppose that you wish to attain postcondition x > 0, but you know a priori that
the precondition 5 < x < 100 must hold before executing the code. In this case,
you need not do anything to ensure that x > 0 will hold—the precondition implies
everywhere (is stronger than) the postcondition, so the postcondition holds without
further action. This is an instance of the more general skip refinement rule. It is
the first rule that we encounter where GCL code (albeit the humble skip command)
results from applying a refinement rule to a specification that may not yet contain
GCL code:

Rule 3. If P V Q then Spec.P; S; Q/ v Spec.P; skip; Q/

2.4 Refinement Rules 37

2.4.4 Sequences of Refinements

It is not difficult to prove that refinement is transitive—i.e. that

if X v Y and Y v Z then X v Z.

For the sake of brevity, we omit a formal proof of this claim.
The consequences of the claim, however, is that a sequence of refinement rules

can be applied to some specification, arriving at ever more refined specifications,
each of which is a refinement of all specifications preceding it in the sequence
(including the original specification). In other words, the definition of refinement
given above supports the notion of refining a specification in a stepwise or
incremental fashion.

The following briefly illustrates this idea. It is based on the assumption that
P V Q. Note the suggested layout for such refinement reasoning. At each refine-
ment step, a hint is given in braces, briefly indicating the justification for that
refinement step:

Spec.P; S; Q/

v fSkip rule since P V Q is giveng
Spec.P; skip; Q/

v fWeaken Precondition ruleg
Spec.Q; skip; Q/

2.4.5 Refinement and Weakest Preconditions

A special case of rule 2 is when a precondition P is maximally weakened, namely
to the precondition of the specification with respect to the given postcondition.

Rule 4. If P V wp.S; Q/ then Spec.P; S; Q/ v Spec.wp.S; Q/; S; Q/

2.4.6 Assignment Rule

We will not use this general precondition rule directly. However, we will rely on it
to state specific rules for specific GCL constructs.

We can use rule 4 to derive a refinement rule for the assignment command.
Suppose that we are given that P V QŒxnE� where E is some expression. Then
the following holds:

Spec.P; x W S; Q/

v fBy rule 4g
Spec.QŒxnE�; S; Q/

38 2 Background

v fBy the definition of refinementg
Spec.QŒxnE�; x WD E; Q/

v fExplanation belowg
Spec.P; x WD E; Q/

The last step in this sequence of refinements looks wrong. We do not have a
strengthen precondition refinement rule, but we have done precisely that: strength-
ened the precondition. However, on closer consideration, you will discover that the
refinement step is indeed legitimate, but we have to consider the original definition
of refinement to perceive this.

For this last step to be a legitimate refinement, the original refinement definition
requires that any concrete specification that satisfies Spec.P; x WD E; Q/ should
also satisfy Spec.QŒxnE�; x WD E; Q/. Fortunately there is only one concrete
specification that can be considered here, namely the given specification itself,
which already has GCL code x WD E as the concrete code for the specification.
It is indeed the case that this GCL code also satisfies Spec.QŒxnE�; x WD E; Q/,
and hence, the refinement step is a valid one.

This leads to the following rule for assignment:

Rule 5. If P V QŒxnE� W Spec.P; x W S; Q/ v Spec.P; x WD E; Q/

Thus, for example, suppose that P D .y > 100/ and Q D .x > 10/. Since .x > 10/

Œxny C 5� � y > 5 and since y > 100 V y > 5, the assignment rule allows the
following refinement:

fy > 100g x W S fx > 10g v fy > 100g x WD y C 5 fx > 10g
We have reverted to the conventional notation for Hoare triples, merely to emphasise
that the alternative notation used above (such as, for example, Spec.y > 100; x W
S; x > 10/) is just that—no more than an alternative that is arguably a little more
concise.

Note that the x in the assignment refinement rule 5 can be viewed as a list of
variables, and E as a list of expressions, so that the rule can also be applied in the
case of multiple assignment. Also note that the rule only holds if P is stronger than
QŒxnE�. If this is not the case, the rule may not be invoked!

2.4.7 Composition Rule

The sequential composition rule is based on the idea that if we wish to refine
Spec.P; S; Q/, then we should seek out some intermediate predicate M that
we believe to be more easily attainable from the precondition state, P . This
intermediate state then serves as a sort of half-way house from which to find some
other code that will enable us to arrive at the required postcondition, Q.

2.4 Refinement Rules 39

The rule is best stated in Hoare triple notation, but relying on the extended
notation previously introduced. It is merely a restatement of the definition of the
composition operator:

Rule 6. fP g S fQg v fP g S1 fM g I S2 fQg
Consider a very simple example. Suppose that our purpose is to attain a

postcondition x D 1^y D 0, and that we start with the most generous precondition
possible, true. The specification of the program, S , that we wish to derive is
ftrueg S fx D 1 ^ y D 0g.

A fairly obvious thing to do to achieve this objective, is to attain the two
conjuncts of the postconditions sequentially: first the one and then the other.
Suppose we decide to attain the conjunct x D 1 first. Then we can apply the
composition refinement rule as indicated in the first step below:

ftrueg S fx D 1 ^ y D 0g
v fComposition ruleg

ftrueg S1 fx D 1g I S2 fx D 1 ^ y D 0g
v fAssignment rule: .x D 1/ V .x D 1 ^ y D 0/Œyn0�g

ftrueg S1 fx D 1g I y WD 0 fx D 1 ^ y D 0g
v fAssignment rule: true V .x D 1/Œxn1�g

ftrueg x WD 1 fx D 1g I y WD 0 fx D 1 ^ y D 0g

2.4.7.1 A Brief Digression

Note that our justification for using the assignment rules in steps 2 and 3 above might
not be very convincing. In each case, several reasoning steps have been skipped.
Here is a fuller justification for step 2. Start by noting that:

.x D 1 ^ y D 0/Œyn0�

� fSubstitutiong
.x D 1 ^ 0 D 0/

� fTautologyg
.x D 1 ^ true/

� fTruth table for ^g
.x D 1/

Thus .x D 1 ^ y D 0/Œyn0� � .x D 1/ and since .x D 1/ V .x D 1/ (because
an identical predicate everywhere implies itself), it follows that the assignment rule
may be applied, in terms of which S2 is replaced by y WD 0.

Similarly, a more complete justification for the third refinement step could
also have been given. The question this raises is the following: how much formal

40 2 Background

reasoning is necessary? There is no unambiguous answer to such a question. The
inclination of novices might be to dismiss such slow incremental reasoning as we
have given above as a waste of time. Those with more experience realise that it
is precisely in skipping such seemingly tiresome reasoning steps that errors tend
to occur.

In fact, we will blushingly admit that in an earlier draft of this text there was an
error, albeit an insignificant one, in each of these steps. The error was that in each
case, the antecedent and consequent of the “implies everywhere” symbol had been
incorrectly swapped. For example, step 2 was justified by the claim that

.x D 1 ^ y D 0/Œyn0� V .x D 1/

held, instead of

.x D 1/ V .x D 1 ^ y D 0/Œyn0�

Fortuitously, in this particular instance it this did not lead to a erroneous conclusion.
In general, then, it is better to err on the side of too much rather than too little

justification. Errors tend to occur precisely at the point where hand-waving and
over-confidence step in.

2.4.7.2 How to Choose the Mid-Predicate

Note that the composition refinement rule 6 does not demand that M has to be in any
particular relationship to P and/or Q—the rule is valid for an arbitrarily chosen M .
However, just as it would normally be wiser to go from Cape Town to London via
Johannesburg rather than via Delhi, so too, in practice M should be chosen to be,
in some sense, en route from P to Q. Loosely speaking, this would mean that M

should be chosen to be stronger than P but weaker than Q. The code, S1 can be
seen as shrinking the original precondition set of states, StatesP down to a smaller
set, StatesM , which then gets further shrunk by S2 down to StatesQ.

In practice, it might be too idealistic to hope that an M can reasonably be found
such that StatesQ � StatesM � StatesP . Just as the most comfortable route between
two cities may not be along a perfectly straight line, so too, it might be necessary to
make some compromises in choosing M . However, if you find that you have chosen
an M such that StatesP \ StatesM D ∅ and/or that StatesM \ StatesQ D ∅, then
that would be good reason to suspect that you are headed 180 degrees away from
your intended destination.

2.4.8 Following Assignment Rule

The next rule is a special case that combines the composition rule and the
assignment rule. The intermediate state needed in the composition rule, M , is
chosen so that the assignment rule can be applied to the S2 part of the composition
rule. We could derive it as follows:

2.4 Refinement Rules 41

fP g x; y W S fQg
v fUse composition refinement ruleg

fP g x; y W S1 fM g I x; y W S2 fQg
� fChoose M as QŒxnE�g

fP g x; y W S1 fQŒxnE�g I x; y W S2 fQg
v fUse assignment refinement ruleg

fP g x; y W S1 fQŒxnE�g I x WD E fQg
Note, once again, that the assignment refinement rule can only be applied if
QŒxnE� V QŒxnE�, which holds trivially. Whenever the assignment rule is
invoked in a sequence of refinements as above, it should be assumed that this
“implied everywhere” requirement has been verified.

The foregoing derivation leads to the “Following Assignment Rule”:

Rule 7. fP g S fQg v fP g S1 fQŒxnE�g I x WD E fQg
We can use this rule to refine the same starting specification that we had before, as
follows:

ftrueg S fx D 1 ^ y D 0g
v fUse following assignment ruleg

ftrueg S2 fx D 1 ^ 0 D 0g I y WD 0 fx D 1 ^ y D 0g
� fSimplify using rules of logicg

ftrueg S2 fx D 1g I y WD 0 fx D 1 ^ y D 0g
v fUse assignment rule, since true V f1 D 1gg

ftrueg x WD 1 fx D 1g I y WD 0 fx D 1 ^ y D 0g

2.4.9 Selection Rule

Suppose that we are provided with the specification fP g S fQg, where P and Q

are explicitly known, but not S . We wish to construct some explicit form of S that
complies with this specification. We might discover that a disjunction of predicates,
G1 _ G2 _ : : : _ Gn, naturally suggest itself as a weaker form of P (i.e. P V
G1 _ G2 _ : : : _ Gn). This is often an indicator that a select command should be
used to refine the specification. The shape of the select command that may be used
is indicated in the following selection refinement rule.

42 2 Background

Rule 8. If P V G1 _ G2 _ : : : _ Gn then:

fP g S fQg v fP g
if G1 ! fG1 ^ P g S1 fQg
Œ� G2 ! fG2 ^ P g S2 fQg
Œ� : : :

Œ� Gn ! fGn ^ P g Sn fQg
fi

fQg

This rule slightly extends the notation used to date. It contains predicates in braces
(f and g) before and after each command, Si , of a guarded command. These may
either be regarded as assertions embedded into the code that serve as comments
to indicate what is true at that point in the code, or they may be construed as pre-
and postconditions in Hoare triples, one such triple replacing each command of the
relevant guarded command. In the latter case, fGi ^ P g Si fQg is to be interpreted
as any code which satisfies that particular specification.

Consequently the above refinement is usually the first in a sequence of refine-
ment steps in which subsequent refinements relate to one or more triples of the form
fGi ^ P g Si fQg within the select statement, eventually leading to explicit forms
for all these specifications.

It is not difficult to recognise that this rule articulates a true refinement as defined
in Definition 2.4.2: any concrete code that satisfies the refining specification (on the
right hand side) also satisfies the refined specification (on the left hand side). The
requirement that P V G1 _G2 _: : :_Gn is, however, crucial. If P was weaker than
this requirement, then the precondition would allow for the select statement to be
initiated from a state that did not render any of the guards to be true. As previously
noted, this would result in abort, which is obviously not a refinement of fP g S fQg.

2.4.10 Repetition Rule

We have already suggested that a loop invariant is often useful in constructing the
loop. But, as has also already been noted, a loop invariant does not guarantee loop
termination—something more is needed. We therefore seek a refinement rule for a
repetition command that not only relates to an invariant of the loop, but that also
guarantees loop termination. This additional characterization of a terminating loop
is called a variant.

Definition 2.4.3 (Variant of a Loop). A variant of a loop is an integer expression
in one or more of the variables that are used in the loop, whose value decreases in
each iteration of the loop, and whose value is considered to bounded from below by
some value.

2.4 Refinement Rules 43

Being bounded from below, means that the variant cannot decrease beneath some
fixed value.7 This means that if a loop has a variant, then the loop will definitely
terminate eventually. As an example, consider the following (rather trivial) loop.

i WD 10I do .i > 0/ ! i WD i � 1 od

A variant for this loop is the expression i . This is an expression in one of the
variables in the loop; it starts with value 10; and it always decreases (by 1) in every
iteration. Because of the loop’s guard, it is also bounded below by 0—the value of
the variant can never legitimately be less than 0 in the loop. As a result, we can
confidently state that the loop will terminate.

This does note mean, of course, that every loop that terminates will inevitably
have an variant. Rather, it means that if we a priori determine a variant for a loop
that is to be constructed, and ensure that the loop in fact has that variant, then we
may be assured that it will terminate eventually.

In this text, we are concerned with designing terminating loops only. We
therefore regard it as imperative to specify a variant, V , for every loop that is to
be designed. In addition, we will also always identify an invariant, P , for each loop
that we design. Our objective is to have loops that are characterised by the following
specification:

fP g do G ! fP ^ G ^ .V D V0/g S fP ^ .0 � V < V0/g od fP ^ :Gg

Here, V0 is the value of the variant before the loop’s body is executed. Note, also,
that the above form extends the notation in a similar way to the select command’s
refinement rule, rule 8. Recall that in that case, a predicate in braces can either be
seen as part of a Hoare triple, or as an assertion in code.

Of course, only one guard has been used in the repeat command above, but the
same idea applies if multiple guards are used. Let DO be a repeat command with
multiple guards, i.e.:

DO , do

G1 ! fP ^ G1 ^ V D V0g S1 fP ^ .0 � V < V0/g
Œ� : : :

Œ� Gn ! fP ^ Gn ^ V D V0g Sn fP ^ .0 � V < V0/g
od

Note that we are assuming here that each Si satisfies the predicate

fP ^ Gi ^ V D V0g Si fP ^ .0 � V < V0/g

7As a matter of convention, an integer expression rather than a real-valued expression is used, and
normally the variant is scaled so that it is bounded from below by 0.

44 2 Background

Based on this definition of DO , the following refinement rule for constructing a
repetition command can be used:

Rule 9. If GG D G1 _ G2 : : : _ Gn and V is a variant, then:

fP g S fP ^ :GGg v fP g DO fP ^ :GGg

This rule suggests a general strategy for developing a loop—a strategy that will be
followed in the remainder of this text. It involves the following steps:

1. Determine what is required of the loop (the postcondition, Q) and what is to
be regarded as the starting condition of the problem (the precondition, P). The
problem is therefore to determine S such that fP g S fQg.

2. Find a meaningful way to write down Q, or some stronger predicate than Q as
the conjunction of two other predicates: I ^ :G. The first, I , will serve as the
loop invariant. The negation of the second, G, will serve as the loop’s condition.

3. Determine what is to be done to ensure that the predicate I is reached from
state P . Perhaps nothing needs to happen, but in general it is necessary to
perform some sort of initialization of variables. At this stage, then, the following
is required to hold, where the details of B , the loop’s body, are still to be
worked out:
fP g Init fI g I do G ! fI ^ Gg B fI g od fI ^ :G V Qg

4. Determine a variant, V , for the loop. This further characterises the B needed for
the loop to work, in that the following should hold:
fP g
Init

fI g
I do G ! fI ^ G ^ V D V0g B fI ^ 0 � V < V0g od
fP ^ :G V Qg

5. Now refine B into code that will ensure that
fI ^ G ^ V D V0g B fI ^ 0 � V < V0g holds.

The strategy involves a number of refinement steps, each employing one of the
refinement rules given earlier. In outline, the refinement steps are as follows:

fP g S fQg
v fStrengthen postcondition rule: I ^ :G V Qg

fP g S fI ^ :Gg
v fComposition rule using I as intermediate predicateg

fP g Init fI gI S2 fI ^ :Gg
v fFirst refine Init as needed, then apply repetition ruleg

fP g RefinedInit fI gI do G ! B od fI ^ :Gg
v f: : : Use refinement rules to refine B further: : : g

This broad strategy needs to be suitably adapted if a repeat command with multiple
guarded commands is to be constructed.

2.5 Object Orientation 45

2.4.11 Procedures and Procedure Calls

We shall defer to Chap. 5 a full discussion about refinement in the context of
procedures. Here we briefly touch on a few relevant concepts, the intention being to
provide a setting for the discussion on OO that follows in the next section.

Loosely speaking, a procedure can be thought of as a block of commands that
is associated with both a name and zero or more parameters. The name allows for
the procedure to be invoked (or called), each call assigning specified values to the
parameters. From the perspective of this text, such an invocation serves in the place
of a GCL command, or rather, it replaces a sequence of GCL commands. The precise
form of the commands to be replaced depend on the values assigned to parameters
that may form part of the procedure call.

The circumstances will be discussed under which a refinement such as
fP 0g S fQ0g v fP g P fQg is permitted, where P represents in a general fashion
an invocation of some procedure.

What complicates the matter considerably is that there are different kinds of
parameters, each with its own semantics. Chapter 5 will discuss the various kinds
of parameters, and the rules 10 to 13 given in that chapter will show how each
parameter kind affects refinement. The rules will specifically be concerned with the
pre- and postconditions of procedures.

For the moment we simplistically ignore all issues around parameters. We
also assume that a pre- and postcondition has been articulated for each procedure
to specify its behaviour. Thus, in general we may designate the specification of
procedure P as Spec.P;P ; Q/.

Suppose that Spec.P1;P1; Q1/ and Spec.P 2;P2; Q2/ are the specifications
for procedures P1 and P2 respectively. The strengthen postcondition and weaken
precondition refinement rules (rules 1 and 2 above) may be applied to determine
whether or not Spec.P1;P1; Q1/ v Spec.P 2;P2; Q2/. As a matter of notational
convenience, if we assume that the respective pre- and postconditions are known,
we will simply write P1 v P2 instead of Spec.P1;P1; Q1/ v Spec.P 2;P2; Q2/.

Thus, by Rule 1, P1 v P2 if .Q2 V Q1/ ^ .P1 D P 2/. Similarly, by Rule 2,
P1 v P2 if .P1 V P 2/ ^ .Q1 D Q2/.

This means that procedure P1 may be refined by writing a new procedure P2

that requires the same precondition as P1 but delivers a stronger postcondition; or
that delivers the same postcondition, but requires a weaker precondition. Of course,
if both rules can be applied, we also arrive at a refined procedure. We will rely on
these general ideas in discussing OO in the next section.

2.5 Object Orientation

Object orientation is well entrenched as a software development paradigm. Its
principal strength is that it facilitates the mapping of real-world entities to the
software (classes). In the jargon of OO advocates, OO narrows the gap between the

46 2 Background

problem space and solution space. Unsurprisingly, issues of algorithmic correctness
do not disappear when one develops code within the OO paradigm—the correctness
by construction approach to software development as discussed in the rest of this
text remains both useful and valid within the OO context.

However, because of the notion of inheritance in OO, pre- and postconditions
of procedures merit special consideration. In order to understand why this is so, let
us briefly overview key concepts as developed under the classical understanding
of OO. In doing so, we note that there are numerous variants of this classical
understanding, and that nomenclature and conventions vary considerably across
different programming languages. Nevertheless, the core ideas in OO for the
purposes of our discussion are as follows.

A class may be thought of as a type that has members: i.e. variables (called
instance variables), and procedures. Multiple instances (or objects) of a class can be
created. An object’s state is determined by the value of its instance variables. These
variables encapsulate the object’s state in the sense that only the object’s procedures
are allowed to change its state—i.e. to change an object’s state, one has to invoke a
procedure of the object.

A class may have subclasses. In such a case, the members of the superclass are
inherited by the subclasses. This means that the objects of a subclass not only have
members defined in the subclass itself, but also have the members defined in the
superclass. It is also possible to override inherited members in the subclass. This
is achieved by using the same name for a subclass instance variable as superclass
instance variable; and/or by defining a procedure in the subclass that has the same
signature as a superclass procedure.

Most programming languages place no constraint on the way in which a
procedure is overridden: the overriding procedure in the subclass may conform to
any specification, without reference to the specification of the superclass procedure.
This is in violation of the original intention in OO. In the classical view, a
superclass’s objects are meant to be more abstract (or less refined or more general)
than objects of its subclass. For the most part, precisely what is meant by abstrac-
tion/refinement/generalisation/specialisation has been left a little vague, OO authors
generally illustrating these notions by way of example. Typical examples given are
of a Vehicle superclass that specialises to a Car subclass; an abstract Shape
superclass that is specialised to a Rectangle subclass; a BankAccount class
that specialises to both SavingsAccount and ChequeAccount subclasses;
etc.

A procedure that is inherited and not overridden in a subclass obviously retains
its original specification—i.e. it inherits the pre- and postconditions of the procedure
in the superclass. To override the superclass procedure means (except in a trivial
case) to change not only its internal code, but also its specifications—its pre- and
postconditions.

Clearly, the notion of refinement has no relationship to haphazard overriding
where code and pre- and postconditions are arbitrarily changed. Instead, we will
consider one class to be a refinement of another exclusively under the following
circumstances.

2.5 Object Orientation 47

Definition 2.5.1 (Class Refinement). Suppose R is subclass of class A. Then
A v R, if and only if R does not introduce new procedures as members and
A:P v R:P for every procedure A:P in class A that is overridden by procedure
R:P in class R.

It would be pleasing if real world OO programming languages supported
class refinement. Unfortunately, few do so. Eiffel is a notable exception. It allows
one to specify explicitly the pre- and postconditions of a procedure. These are
automatically carried over to inherited procedures. In addition, when overriding a
procedure one can optionally weaken the carried over precondition and/or optionally
strengthen the carried over postcondition. These procedure pre- and postconditions
are treated as assertions that can be evaluated at runtime.

If it happens that the postconditions of all procedures in class have a set of
conjuncts in common, these conjuncts may be thought of as the class’s invariant.
No matter which procedure is invoked on the object of a class, once the procedure
has completed, the invariant continues to characterise the state of the relevant object.
Eiffel also provides explicit support for the articulation of class invariants. See [31]
for a full discussion of Eiffel.

The foregoing definition of class refinement allows us to retain the conventional
notion of a superclass being more abstract/general than a refined subclass, which is
in turn appropriately described as more specialised. How are we then to characterise
a subclass which has not overridden any superclass procedures, but which has
simply added new procedures to those that are inherited? Because we have not
refined any procedure, it does not seem appropriate to call the subclass a refinement
of the superclass. Nevertheless, it seems appropriate to speak of the subclass as
being a specialisation of the abstract superclass. Following [27], we offer the
following definition:

Definition 2.5.2 (Class Enrichment). Suppose E is subclass of class A. Then E
is an enrichment of A, written as A ve E , if and only if E introduces new members
but does not override any inherited members of A.

In terms of this definition, an abstract class can be specialised in a stepwise
fashion in one of two complementary directions at each step: either by refinement
or by enrichment. The application at hand will dictate precisely which classes and
subclasses are necessary in the final design. Starting from abstract class A, we can
thus envisage a sequence of refinements and enrichments to arrive at a subclass S.
Because refinement and enrichment as defined above are mutually independent, one
could arrive at S by first carrying out all the necessary enrichments and then carrying
out the required refinements. In principle, this could happen in the following three
steps: A ve E v S. In [27], E is called the base abstraction of S and is characterised
by the fact that none of its members are refinements. Such a base abstraction, E ,
is conceptually useful in that all subclass of E refine it, even subclasses that are
more than one hierarchical level removed from E . Note that in terms of our above
definitions, such subclasses cannot be said to refine more abstract classes such as A.

48 2 Background

Also depending on the needs of the application, A may have other subclasses that
serve as base abstractions of a different subset of subclasses.

The base abstraction therefore contains all unrefined members needed by S,
all its children, and any of its siblings. The various sibling and deeper descendent
classes are derived by refining, according to the dictates of the application at hand,
different sets of members of E .

We end this brief overview of OO by commending “Design by Contract” (DbC),
advocated by Meyer [31], as an approach to developing OO software. In terms of this
paradigm, the procedure’s pre- and postconditions are conceived of as constituting a
contract between procedure developer and procedure user. The contract states that if
the user ensures that a procedure call adheres to the precondition, then the developer
guarantees that the result will conform to the postcondition. DbC meshes perfectly
with the correctness-by-construction approach to software development that is
advocated in this text. The latter addresses programming-in-the-small, emphasising
correctness at the lowest level of coding and algorithmic design. The former
extends these ideas one level higher, into the realm of classes and their associated
procedures. One might say that DbC emphasises what must be achieved at the level
of procedures, whereas correctness-by-construction focusses on how to achieve this
within a procedure.

2.6 Supplementary Notation

We close this chapter with various notational conventions that will be used as and
when convenient.

2.6.1 Morgan’s Refinement Calculus

A calculus for refinement of specifications was formalized by Morgan [32], in an
alternative notation to Hoare triples. The rules that have been presented above are
the most frequently used refinement rules enunciated by Morgan, but adapted for
Hoare triples. Morgan’s notation is a little more concise, and will be used later when
convenient.

In Morgan’s notation w W ŒP; Q� is a specification of a program with frame w,
precondition P , and postcondition Q. The notation allows that such a specification
can, where appropriate, be refined to code, instead of to another specification of this
form. It also allows that such a specification can be embedded in part of a code
structure (e.g. within the command part of a guarded command). It is precisely for
this reason that the notation is quite concise.

2.6 Supplementary Notation 49

Morgan calls the condition governing a rule’s applicability (the if part in the
rule’s statement) its proviso. The provisos and rules enunciated above are given in
Morgan’s notation in Table 2.1. It is left to the reader to make the mapping between
the two sets of rules. This table ought to serve as a handy reference point for the rest
of the text.

2.6.2 Arrays and Sequences

It will be assumed that arrays start at index 0 and that A:len denotes the length of
the array A. We shall refer to the i th element of array A as Ai�1.

As far as possible, we shall open intervals such as Œi; j / when referencing a
subarray of an array. For example AŒi;j / denotes the subarray Ai ; AiC1 : : : Aj �1.

The advantage of using an open interval such as Œi; j � is that the length of the
subarray is readily apparent, namely .j � i/. For this reason, we will avoid using
intervals such as Œi; j �, whose length is .j � i C 1/, unless other considerations
apply.

In a few isolated examples, instead of arrays, we will rely on sequence notation
used in some texts. Suppose that s is some sequence. Then:

• si represents the .i C1/st element in the sequence s. (The first element is thus s0.)
• s:q represents the number of times that element q appears in the sequence s.

Table 2.1 Refinement rules in Morgan’s notation

Rule # Rule name Proviso and rule

1 Strengthen postcondition If Q0 V Q then w W ŒP; Q� v w W ŒP; Q0�

2 Weaken precondition If P V P 0 then w W ŒP; Q� v w W ŒP 0; Q�

3 Skip If P V Q then w W ŒP; Q� v skip

5 Assignment If P V QŒnE� then w W ŒP; Q� v w WD E

6 Sequential composition w W ŒP; Q� v w W ŒP; R�I w W ŒR; Q�

7 Following assignment w; xŒP; Q� v w; xŒP; QŒxnE��I x WD E

8 Selection If P V G1 _ G2 : : : Gn then
w W ŒP; Q� v
if G1 ! w W ŒG1 ^ P; Q�

Œ� : : :

Œ� Gn ! w W ŒGn ^ P; Q�

fi
9 Repetition If GG D G1 _ G2 : : : Gn and V is a variant, then:

w W ŒP; P ^ :GG� v
do G1 ! w W ŒP ^ G1; P ^ .0 � V < V0/�

Œ� : : :

Œ� Gn ! w W ŒP ^ Gn; P ^ .0 � V < V0/�

od

50 2 Background

• s " r represents the prefix of s consisting of the first r elements (at index
positions 0 to r � 1).

• Combining this notation, we can also use s " r:q to represent the number of
times that q appears in the first r elements of the sequence s.

2.6.3 Additional GCL Commands

Occasionally, it will be convenient to augment the classical GCL commands by
more convenient commands whose semantics are fairly obvious.

• For example, it will sometimes be handy to write a loop as:

for i W I ! S rof

This describes a loop in which i is a loop variable that assumes a different value
from some set, I , in each iteration, and iteration terminates when all values have
been assumed. If this command is used, then the contents of the set I should of
course not be changed by S . Furthermore, if I is ordered in some way, then it
will be assumed that the elements of I will be selected in some order. If I is
simply a set with no known ordering on the elements, then no assumption may
be made about the order in which I ’s elements are selected.

• When a select command has the form

if G ! S Œ� :G ! skip fi

some authors are wont to abbreviated it to

as G ! S sa

This extends on Dijkstra’s original notation, using “as” which is the Dutch
translation of “if”. Whether this subsequent addition to GCL appropriately
honours the memory of Dijkstra is an open question.

• Occasionally, it will be useful to gather a sequence of commands into a unit that
is treated as a single block. This is indicated as follows: jŒS1I S2I : : : I Sn�j.

• Variables may be declared at the beginning of a specification or block using the
keyword var. For example, we could declare x to be a natural number as follows:
var x W N.

• Sequences of code may be encapsulated into a procedure or function with a
given name. Parameters of these procedures or functions are usually defined
as part of the enclosing text in which the specification is being described. In
the case of functions, the returned value should also be specified. The following
skeletal outlines illustrate the relevant requirements. Note the keywords that are
used to start and end procedures and functions. Also note that in the skeleton
below, parameters x and y are used in the procedure and function, and a tuple,

2.7 Revision Exercises 51

hw; zi is returned by the function. This tuple notation is not necessary, but
may be useful if you want to return more than one item from a function.

proc P.x; y/

: : :

corp

func F.x; y/ W hw; zi
: : :

w; z WD : : :

: : :

return hw; zi
cnuf

Note, however, that in Chap. 5 a fuller discussion of the semantics of procedures
and functions will be provided, as well as refinement approaches that are relevant
in such a context

2.7 Revision Exercises

1. When is the boolean expression x) y false?
2. To what does 9x W R � f .x/ evaluate if R D �?
3. Consider the following assertion:

“Either you do not love me, or you will do what I command.”

With which assertion(s) below is this assertion logically equivalent? Assume
that there could be zero, one or more equivalent assertions.

(a) If you love me, you will do what I command.
(b) If you do not love me, you will do what I command.
(c) If you love me, you will not do what I command.
(d) If you do not love me, you will not do what I command.

4. Consider the array A. Suppose that predicate Exists.A; i; j; r/ represents
the assertion that there is some element, say k, in the interval Œi; j / such
that Ak D r . Similarly, suppose that predicate All.A; i; j; r/ represents the
assertion that for every element, k, in the interval Œi; j /, Ak D r .

(a) Write down formal definitions of Exists.A; i; j; r/ and All.A; i; j; r/, using
universal and/or existential quantifiers.

(b) What is the truth-value of the following predicates. Briefly justify your
answers.

52 2 Background

i. Exists.A; 0; 0; r/

ii. All.A; 0; 0; r/

iii. Exists.A; 0; 5; 2/) :All.A; 0; 5; 1/

5. Explain what X V Y means in terms of StateX and StateY .
6. Consider each of the following predicates and indicate whether it is stronger

than x > 0, weaker than x > 0, equivalent to x > 0, or none of the foregoing.
NB: equivalence may be interpreted as both stronger and as weaker.

(a) .x > 0/ ^ .x � 0/

(b) .x > 0/ ^ .y � 0/

(c) .x > 0/ _ .x � 0/

(d) .x > 0/ _ .y � 0/

(e) .x > 0/) .x � 0/

(f) .x � 0/) .x > 0/

7. Indicate whether the following is true, false, or whether the truth value cannot
be determined from the data.

(a) fwp.S; Q/g S fQg
(b) ffalseg S fx > 5g
(c) fx < 6g x WD x C 1 fx > 5g
(d) ftrueg if x > 0 ! y WD 10 fi ftrueg
(e) fx D 6g if x > 0 ! y WD 10 fi fx > 0 ^ y > 0g
(f) fP g S fQg v fP g S1 fQŒxnE�gI x WD E fQg
(g) wp.x; y WD y; x; .x > y ^ x > z// D x > z ^ y > z
(h) fx > 0g skip fx > 5g
(i) ftrueg if x > 0 ! y WD 10 fi ftrueg
(j) fP g S fwp.S; P /g
(k) 8x W ∅ � ..x > 0/ ^ .x < 0//

(l) f.x < 7/ ^ .z D 5/ ^ .y < 7/g skip f.z < x/ ^ .y < 7/g
(m) ftrueg x WD 1I do .x D 1/ ! skip od ftrueg
(n) ffalseg x WD 1I do .x D 1/ ! skip od ffalseg
(o) ffalseg x WD 1I do .x D 1/ ! skip od fx ¤ 1g
(p) ftrueg x WD 1I do .x D 1/ ! skip od ffalseg
(q) fwp.S; Q/g S fQg where S is given by x WD 1I do .x D 1/ ! skip od

8. State and derive the “following assignment” refinement rule.
9. After reviewing the meaning of the “implies everywhere” relationship, deter-

mine which of the following instances the “implies everywhere” relationship
holds?

(a) .x > y/ V .x � y/

(b) .x) y/ V .y) x/

(c) .x , y/ V .y) x/

(d) .xy > x/ V .y > 1/

(e) .xy > x/ ^ .x > 0/ V .y � 1/

(f) .x > 0/ _ .y > 1/ V .xy > x/

2.7 Revision Exercises 53

10. How should the integer ranges R1 and R2 be defined, respectively, so that the
following first order predicates evaluate to true.

8x W R1 �.A) B/

8x W R2 �.A , B/

where A and B are as defined below. Also indicate in each case whether it could
be claimed that A V B .

(a) A , 3 < 0 and B , 3 � 0

(b) A , 3 < 0 and B , x � 0

(c) A , x < 0 and B , x � 0

(d) A , 3 � 0 and B , x � 0

11. Give a refinement of fP g S fQg if R V Q.
12. Prove that fy > 25g x W S fx > 5g v fy > 5g x WD y C 5 fx > 5g.
13. Determine an expression for the weakest precondition of each of the items of

code in the following Hoare triples with respect to the indicated postcondition.
Use your result to argue either that the Hoare triple is a true predicate, or a false
predicate, or that there is not enough information to determine its truth-value.

(a) fy < 10g if ..x > 0/ ^ .y < 10// ! y WD 10 fi ftrueg
(b) fP g x WD x C y fP Œxn.x C y/�g

14. Are the following legitimate refinements?

(a) fx > 1g S fx � 0g v skip

(b) fx > 1g S fx � 0g v x WD 1

(c) fx > 1g S fx � 0g v y WD 1

(d) ftrueg S fx � 0g v y WD 1

15. In a series of steps refine fy < 10g S fy > 0g to:
if ..x > 0/ _ .y < 10// ! y WD 10 fi

Why is it not possible to refine this same specification if ..x > 0/ ^ .y <

10// ! y WD 10 fi
16. A student wishes to show that A1 ^ A2 V B1 ^ B2. Under which of the fol-

lowing circumstances has she achieved her purpose?

(a) She shows that A1 V B1 ^ B2

(b) She shows that A1 V B1 and then shows that A2 V B2

(c) She shows that A1 V B1 and then shows that A2 V B1

17. Let C represent the concrete program:

do .true/ ! skip od

Which one or more of the following predicates about C are true:

(a) ftrueg C ftrueg
(b) ffalseg C ffalseg
(c) ftrueg C ffalseg

54 2 Background

(d) wp.C; false/ D false
(e) wp.C; true/ D false

18. Consider the specification Spec.P; S; Q/. Suppose that, because of the struc-
ture of the specific problem confronting you, you know that S involves doing
something (still to be worked out) and then decrementing x by 1. Show how the
following assignment refinement rule can be used to refine the specification.

19. You need to refine the following specification:
x; y; z W ŒP ^ .x D a/; Q ^ .x D yz/�,

where P and Q are predicates. Show how the following assignment rule could
be used as a first step of your refinement.

20. Sue claims that wp.S; Q/ � .x > max.0; �y//, where

S is x; y WD x C y; x

Q is ..x > 0/ ^ .y > 0// and
max.p; q/ returns the maximum of p and q.

Do you agree with Sue?
21. Show that wp.IF; .y > 0// � .x > min.0; y// where IF is given by:

IF � if .x > 0/ ! y WD 10 Œ� .x � 0/ ! y WD x � y fi

Will this IF command will abort if executed from a state in which x D �10

and y D �3?
22. Indicate whether the following relationships are true or false:

(a) If Spec.P; S; Q/ v Spec.P 0; S 0; Q0/ and Spec.P 0; S 0; Q0/ v Spec.P 00;
S 00; Q00/ then Spec.P; S; Q/ v Spec.P 00; S 00; Q00/

(b) If Spec.P; S; Q/ v Spec.P 0; S 0; Q0/ and Spec.P; S; Q/ v Spec.P 00;
S 00; Q00/ then Spec.P 0; S 0; Q0/ v Spec.P 00; S 00; Q00/

(c) If P V wp.S; Q/ then Spec.P; S; Q/ v Spec.wp.S; Q/; S; Q/

(d) If P V Q then Spec.P; S; Q/ v Spec.P; skip; Q/

23. For the purposes of this question, make a reasonable assumption about the
relationship between .INV ^ :G/ and Q. Also assume that P V INV .

(a) Consider the following two refinement steps. State the refinement rules that
have been applied in each case.

fP g S fQg
v fRefinement 1g

fP g S fINV ^ :Gg
v fRefinement 2g

fP g S1 fINVgI S2 fINV ^ :Gg
(b) Show the refinements that would typically be next applied to S1 and S2

respectively?

Chapter 3
Simple Examples

In this chapter, a number of fairly elementary algorithms are developed. They are,
namely: linear search; finding the maximal element in an array; a version of binary
search; a simple pattern matching algorithm; raising a number to a specific integer
power; and finding the integer approximation of a logarithm to the base 2.

It is probable that the reader will already have encountered at least some of these
algorithms—if not all of them. Our purpose is to use these fairly simple algorithm
to introduce a particular style of programming-in-the-small. In considering an
algorithmic problem, the approach starts off by focussing on the context of the
problem: what may be regarded as true before the algorithm is to execute? How
can this context be described more exactly as a predicate. This becomes the
precondition. Then one considers in more precise terms what the algorithm is to
achieve, also seeking to express this as a predicate. These pre- and postconditions
constitute the problem’s specifications.

The resulting specification is then refined in a systematic fashion, relying on
the refinement rules mentioned in the previous chapter. Eventually a GCL coded
solution to the problem is derived. The coded solution is guaranteed to be correct—
i.e. to be a refinement of the problem’s specification. This claim is, of course,
subject to the accuracy of our reasoning which is indeed fallible. However, it will
be seen that the kind of reasoning deployed is different from the conventional
thought processes in deriving algorithms: it is more systematic, and it is closer to
mathematical reasoning. As such, it is somewhat less error-prone, and it is inclined
to point us towards error sources that are often ignored in conventional approaches
to writing code.

This is what has been termed the software correctness by construction approach
to developing software. Of course, in saying this, we do not for a moment wish
to denigrate development approaches which emphasise testing. In fact, we would
strongly advocate thorough testing of any software that is developed—the two
approaches are entirely complimentary.

D.G. Kourie and B.W. Watson, The Correctness-by-Construction Approach
to Programming, DOI 10.1007/978-3-642-27919-5 3,
© Springer-Verlag Berlin Heidelberg 2012

55

56 3 Simple Examples

3.1 Linear Search

Consider the array A of some type (say, integer), and let x be a variable of the same
type. Under the assumption that the value of x occurs as an element of A, find an
index i at which it appears. (Note that we say an index instead of the index, since x

can appear in more than one place in A.)

3.1.1 Formulating the Problem

To make it all easier, define a predicate app.A; x; l; h/ to mean that the value of
x appears somewhere in AŒl;h/. Now we could express this in predicate logic order
formula as follows:

app.A; x; l; h/ , 9i W Œl; h/� .Ai D x/

However, often—as in this example—this level of detail in expressing predicates
is not strictly necessary, since it does not significantly contribute to the reasoning
process. In this example, then, we will never need to refer to the quantified formula,
although it does no harm to bear it in mind when thinking about the problem

Recall that the range Œl; h/ includes the l , but not the h—it is closed at the
lower end and open at the upper end. Also, recall from Sect. 2.6.2 that we will
assume throughout that indexing of arrays begins at 0. Given that, the problem to be
solved can be specified as: determine code, S such that fapp.A; x; 0; A:len/g i W S

f.Ai D x/g.
However, it will be convenient to restrict ourselves to the slightly more compact

notation of Morgan:

i W Œapp.A; x; 0; A:len/; .Ai D x/�

It should be noted that this is actually a rather imprecise specification in the
sense that app.A; x; 0; A:len/ continues to hold at all times. It is global invariant.
Consequently, it could have been inserted as a conjunct in the postcondition, and it
should be regarded as true under all conditions, no matter how we refine this initial
specification. This fact will become relevant later on in our reasoning.

3.1.2 Choosing the Invariant

Next come the steps of choosing the invariant. In order to do this, we need some
intuition: if we are to find such an element of A (which is not even sorted), we
pretty much have to look at every element of the array. We could do this randomly,
or from left to right or from right to left, or in some other pattern.

3.1 Linear Search 57

A
. . .x must be here . . .

0

. . .x not here . . .

i + 1 A.len

Fig. 3.1 Linear search before x has been found

For the purpose of this example, we try right to left. The invariant is chosen to
express something that is holds (is true) at the top and bottom of every iteration
(execution) of the loop, and therefore also holds before and after the loop. It should,
in some sense, also express the progress that we have been making towards our
end-goal (computationally). Assume that the loop has progressed to a stage where
everything from the top of the array (whose index value is A:len � 1) down to
index i C 1 has been examined and found not to contain the sought-after value, x.
Figure 3.1 depicts this schematically.
We can then express the invariant, inv, as follows:

inv , :app.A; x; i C 1; A:len/

In other words, our invariant says that we know that x does not appear as an element
of the subarray AŒiC1;A:len/.

We can now refine our specification, by strengthening the postcondition:

i W Œapp.A; x; 0; A:len/; inv ^ .Ai D x/� (3.1)

Clearly, this is a strengthening, since we simply added a conjunct, inv, to the
postcondition, .Ai D x/, and, in general X ^ Y is always stronger than both X

and Y . (This can be verified easily by thinking in terms of predicates as being
represented by sets of states, and by noting that predicate conjunction corresponds
to state set intersection.)

3.1.3 Establishing the Invariant

We already know that the general pattern for a specification before we can refine it
to a loop should be something like i W Œinv; inv^:G�. To get our refined specification
into this shape, we notice that the current precondition app.A; x; 0; A:len/, has only
a vague resemblance to our inv. So, we refine using sequential composition, with
the aim of transforming the precondition to become inv after executing some code.
The refined specification of the problem is then:

i W Œapp.A; x; 0; A:len/; inv�I i W Œinv; inv ^ .Ai D x/� (3.2)

58 3 Simple Examples

We can now work separately on the two parts of the specification to the left and right
of the composition operator.

The first part of our specification (3.2) can be viewed as nothing more than some
actions needed to establish the invariant (which must hold before the iteration can
start). Starting with

i W Œapp.A; x; 0; A:len/; inv�

if we fill in the definition of inv, we get

i W Œapp.A; x; 0; A:len/; :app.A; x; i C 1; A:len/�

It should not be that difficult to see that the assignment i WD A:len � 1 will be a
suitable refinement.

Let us go through the formal steps to verify that this is indeed an appropriate
assignment. What is needed, is a confirmation that the conditions for applying
the assignment rule indeed hold. These conditions are that the precondition must
everywhere imply the postcondition, in which appropriate substitutions have been
made. Specifically in this case, the following must apply:

app.A; x; 0; A:len/ V :app.A; x; i C 1; A:len/ŒinA:len � 1�

or
app.A; x; 0; A:len/ V :app.A; x; A:len; A:len/

The right hand side of the “implies everywhere” asserts that the value of x does
not appear in the range AŒA:len;A:len/. This is, of course, a true assertion, since nothing
can appear in an empty range.1 Since true is implied everywhere by any predicate, it
is therefore also implied everywhere by app.A; x; 0; A:len/. This confirms that the
proposed assignment is a valid refinement according to our assignment rule. The
specification in (3.2) therefore refines to the following:

i WD A:len � 1I i W Œinv; inv ^ .Ai D x/� (3.3)

Having refined the first part of specification (3.2) down to a simple assignment
statement in specification (3.3), we now continue to refine the loop.

3.1.4 Refining to Create a Loop

The second part of our sequential composition in (3.3) is

i W Œinv; inv ^ .Ai D x/�

1One can easily prove this assertion rigourously by referring to the definitions for existential
and/or universal quantification in Sect. 2.1.2 in the context of the predicate formula version of
app.A; x; A:len; A:len/.

3.1 Linear Search 59

We see immediately that this fits the pattern needed for loop refinement, where
.Ai D x/ is construed as the negation of the guard. The guard of the loop will
therefore be taken as Ai ¤ x.

We now need to choose a variant—some expression that expresses the fact that
we are making progress through every iteration of the loop. For this example,
we will choose i as our variant V . This is a good choice since we are moving
through A from right to left (i is decreasing) and i will never go negative (due
to the precondition of this entire problem, which says that the value of x appears
somewhere in A).
According to the repetition refinement rule, we can refine the second part of (3.1)
into

do Ai ¤ x !
i W Œinv ^ Ai ¤ x; inv ^ .0 � i < i0/�

od

All that remains is to refine the body of the loop into code. Intuitively (it is not
always that easy), we can see that i WD i � 1 is a good choice. We can confirm
that this assignment is a legitimate refinement by doing the necessary substitution
as required by the assignment rule, to show that

inv ^ Ai ¤ x V .inv ^ .0 � i < i0//Œi n i � 1�

Substituting inv by its definition and substituting i � 1 for i gives:

:app.A; x; i C 1; A:len/ ^ Ai ¤ x V :app.A; x; i; A:len/ ^ .0 � i � 1 < i0/

Clearly, the two conjuncts to the left of the V symbol can be simplified to the
same predicate as the first conjunct to the right of the symbol, namely
:app.A; x; i; A:len/. We thus need to show that something of the following form
holds: P V P ^ Q. At first sight, this seems unlikely to be the case—intuitively,
by adding the conjunct Q to P , one would imagine that the predicate P has been
strengthened, and P cannot imply everywhere something that is stronger than itself,
P ^ Q! Indeed, this would generally be the case, but in this particular situation, it
is not so. We argue as follows.

Consider what has to be shown if we want to prove that P V P ^ Q does not
hold. We would have to find an instance where P is true but Q is false, for then the
left hand side, P , would be true but the right hand side, P ^ Q, would be false. In
this particular situation, we need to find an i that falsifies the .0 � i � 1 < i0/ but
retains P � :app.A; x; i; A:len/ as true.

In actual fact, .0 � i � 1 < i0/, is made up of two conjuncts: .0 � i � 1/ ^
.i � 1 < i0/. Now .i � 1 < i0/ simply asserts that the decremented value of i is
less than its unchanged value, which is obviously true. Thus, the only way in which
.0 � i � 1/ ^ .i � 1 < i0/ can be falsified is if .0 � i � 1/ is false, i.e. if .0 > i � 1/.
Put differently, .0 � i � 1/ ^ .i � 1 < i0/ is false if and only if .i � 0/ is true.

60 3 Simple Examples

But any such choice of i means that the P parts of the “implies everywhere”
argument are also falsified. Recall that the P parts assert that :app.A; x; i; A:len/,
but if i is zero or less, then this is simply another way of asserting that x does not
appear at all in array A. Now by the data given for the problem, such an assertion is
false.2

Hence, there is no i for which the left hand side of the “implies everywhere” is
true while the right hand side is false. The “implies everywhere” thus holds, and
the assignment is consequently justified.

3.1.5 Putting it All Together

We can now glue all of the pieces together to get the following code as a refinement
of specification (3.3):

i WD A:len � 1I
do Ai ¤ x !

i WD i � 1

od

3.2 Finding the Maximal Element

For the second example, we take a look at the maximal element problem. We
assume that A is an array of integers (or reals—it does not really matter) and that
A contains at least one element. The problem is to determine the index, i , that
specifies a maximum element of A. (Again, we say a maximum element instead
of the maximum element, because there may be many entries corresponding to the
largest value.)

3.2.1 Formulating the Problem

There are, of course, many ways in which to solve this problem, some sensible, and
some not. A feasible but silly thing to do would be to sample random elements of
A, somehow keeping track of which element had been tested, and stopping when
we had some assurance that each element had been sampled. Clearly, it is far more
orderly to sample a contiguous area of the array, keeping track of the index of the
maximum element in the contiguous area sampled to date.

2Recall that we noted at the start of this discussion, in Sect. 3.1.1, that app.A; x; 0; A:len/ holds
invariantly throughout—i.e. x was assumed to appear somewhere in A.

3.2 Finding the Maximal Element 61

For the moment, let us keep the start and end indices (l and h respectively)
of such a contiguous area general, and simply decide to use max.A; l; h; i/ as a
predicate which asserts that i is the index of a largest element in the subarray AŒl;h/.

Although it is not to absolutely necessary to express max explicitly as a predicate
formula, nothing is lost by doing so:

max.A; l; h; i/ , 8j W Œl; h/ � .Aj � Ai / ^ .l � i < h/

The idea is therefore to find the i such that max.A; 0; A:len; i / is true. Part of
the problem statement was that the array A is not empty, so this is expressed in our
specification’s precondition:

i W ŒA:len > 0; max.A; 0; A:len; i /�

Note that, once more, we may not assume anything about the array’s internal
structure (for example, that it is sorted). In the absence of any relationship between
array elements, clearly some kind of linear traversal of the array is about the only
reasonable strategy for solving the problem.

In this case, let us (arbitrarily) elect to traverse the array from left to right. This
means that we will need a variable, j , to indicate the index range explored to
date. Consequently, the specification could more accurately be written with j as
an additional frame variable.

i; j W ŒA:len > 0; max.A; 0; A:len; i /�

3.2.2 Choosing the Invariant

As we traverse A from left to right, we will use i to keep track of the index of a
maximum found so far. The situation after searching the subarray Œ0; j / is depicted
in Fig. 3.2.
That means that an invariant, inv, can be defined in terms of i and j as follows:

inv , max.A; 0; j; i/

Note carefully that inv provides information about AŒ0;j /; it says nothing about
whether Aj > Ai or not.

A
max (A;0;j;i)

0 i

. . . subarray to be tested . . .

j A.len

Fig. 3.2 Maximal element search in subarray Œ0; j /

62 3 Simple Examples

The postcondition of the problem’s specification can be written in terms of this
invariant, by virtue of the following equivalence:

max.A; 0; A:len; i / � .inv ^ j D A:len/

Since equivalence can be regarded as strengthening (or weakening), the strengthen-
ing postcondition rule can be invoked to claim that the following is a refinement of
the original specification:

i; j W ŒA:len > 0; inv ^ j D A:len�

3.2.3 Establishing the Invariant

As in the linear search example in Sect. 3.1, we should use a sequential composition
to refine our current specification into the right form for creating a loop. Recall that
this is the third step in the overall strategy for loop development that we articulated
at the end of Sect. 2.4.10.

From the above specification, we choose inv as our mid predicate for the compo-
sition, giving the following as our refined specification:

i; j W ŒA:len > 0; inv�I i; j W Œinv; inv ^ j D A:len�

We can now refine these two specifications separately, before putting their resulting
refinements all together.

The first specification is directed at establishing the invariant. It suggests that
something needs to be assigned to variables i and j : not only are they explicitly
mentioned as frame variables, but they also appear as variables in the invariant’s
definition.

Assigning 0 to j leaves us in the position of not knowing quite what to assign to
i—after all, what is the index of the maximal element in AŒ0;0/ (which is an empty
range)? Should it be some special value such as 1, or perhaps �1?

An alternative is to assign 0 to i . In that case, what should the value of j be?
Well, 0 (for i) is certainly the index of the largest element in the range AŒ0;1/,
so j D 1 would be a good value. This suggests that the following would be an
appropriate refinement step in regard to the first piece of the overall specification
that we are refining:

i; j W ŒA:len > 0; inv�I v i; j WD 0; 1I

Of course, the arguments given to justify this refinement have been fairly informal
(though careful and systematic). To formally justify the refinement step (i.e. the use
of the assignment rule), we would have to show that A:len > 0 V invŒi; jn0; 1�.
The details are left as an exercise for the reader. It will be seen easily that the choice

3.2 Finding the Maximal Element 63

of values to assign to i and j makes the right hand side of the implies everywhere
symbol true, so that the implies everywhere is indeed valid, and hence that the use
of the assignment rule is justified.

3.2.4 Refining to Create a Loop

The part of the specification which is destined to become a loop is as follows:

i; j W Œinv; inv ^ j D A:len�

It is already in the right form to apply the refinement rule for repetition. In the
context of that rule, j D A:len is the negation of the guard. Applying the rule gives:

do j ¤ A:len !
i; j W Œinv ^ j ¤ A:len; inv ^ .0 � V < V0/�

od

To proceed, we need to determine which expression to use as a variant, V . Since j is
moving through A from left to right, the choice that suggests itself is V , A:len�j .
V decreases every time j moves closer to A:len and V will not go below 0. This
means that the last conjunct of the postcondition can be simplified as follows:

0 � V < V0

� fdefinition of the variantg
0 � A:len � j < A:len � j0

� fsubtract A:len all aroundg
�A:len � �j < �j0

� fmultiply by �1g
A:len � j > j0

We now need to work on the body of this loop. Throughout, it has been clear that
we will need to increment j : this is precisely what it means to “move through A

from left to right”; it is also the inspiration for the choice of variant (which requires
that j > j0 should hold in the postcondition—j0 being the previous value of j).
Suppose we decide to increment j at the end of the loop’s body. The “following
assignment” rule can be used for this purpose:

i; j W Œinv ^ j ¤ A:len; inv ^ .A:len � j > j0/�

v fFollowing assignment rule with j C 1 as Eg
i; j W Œinv ^ j ¤ A:len; .inv ^ .A:len � j > j0//Œj n j C 1��I j WD j C 1

So, having sorted out the update of j , we may now drop it out of the frame
of the remaining specification. It may therefore not be changed in that part of

64 3 Simple Examples

the specification. Instead, that part will be directed at appropriately updating i .
To achieve that, we now simplify the predicates in the specification that have not yet
been refined to code. For illustrative purposes, we shall most scrupulously justify
every step we take:

i W Œinv ^ j ¤ A:len; .inv ^ A:len � j > j0/Œj n j C 1��

� fdistributing the substitution over the two postcondition conjunctsg
i W Œinv ^ j ¤ A:len; invŒj n j C 1� ^ .A:len � j > j0/Œj n j C 1��

� fsubstituting in the second postcondition conjunctg
i W Œinv ^ j ¤ A:len; invŒj n j C 1� ^ .A:len � j C 1 > j0/�

� freasoning given belowg
i W Œinv ^ j ¤ A:len; invŒj n j C 1� ^ true�

� fsince P ^ true � P we may drop the conjunct trueg
i W Œinv ^ j ¤ A:len; invŒj n j C 1��

� fsubstituting inv with .8r W Œ0; j / � .Ar � Ai / ^ .0 � i < j //g
i W Œmax.A; 0; j; i/ ^ j ¤ A:len; max.A; 0; j; i/Œj n j C 1��

� fsubstitution j C 1 for j g
i W Œmax.A; 0; j; i/ ^ j ¤ A:len; max.A; 0; j C 1; i/�

The foregoing regarded the variant conjunct of the postcondition, .A:len � j C
1 > j0/, as true. In order to be clear why this is indeed the case, we need to be clear
about what j and j0 stand for, respectively. To repeat, j0 is the value that variable
j held before the specification. It is treated as a constant, unaffected by any code
to which the specification is refined. On the other hand, j is a variable, but since
it is no longer in the frame of the specification being considered, it too retains its
original value. It is therefore undoubtedly the case that j C 1 > j0.

Now in general, since the value of j does not change in the specification under
consideration (i.e. it does not appear as a frame variable), we are allowed to use
information about its value in the precondition to infer whether or not A:len � j C1

holds in the postcondition. Furthermore, if the precondition affirmed that A:len > j

holds, then we could certainly affirm that A:len � j C 1 is true.
Unfortunately, the precondition gives us somewhat weaker information about j ,

namely that A:len ¤ j . Merely to consider the specification in isolation from the
preceding code derived in Sect. 3.2.3 does not affirm that A:len � j C 1 is true:
the specification may start with a value of j such that A:len < j C 1, in which
case the postcondition cannot be met without changing the value of j , and no such
change is allowed since j is not in the frame. However, in the context of the problem
being solved, we know a priori (because of the way in which the loop is initialized
in Sect. 3.2.3) that the loop will never be entered unless A:len < j holds. As a
consequence, in this particular context, we may take the liberty of affirming that
A:len � j C 1 in the postcondition is in fact true.

3.2 Finding the Maximal Element 65

Essentially, the precondition of the specification that has been derived states that
i is the index of a largest element in AŒ0;j /. It also states in the postcondition that we
need the index of a largest element in AŒ0;j C1/. Now it is not too difficult to see that:

max.A; 0; j; i/ H)
�

max.A; 0; j C 1; j / if Aj > Ai

max.A; 0; j C 1; i/ if Aj � Ai

This reasoning suggests that the select (“if”) command might be applicable here
to deal with the two cases implied above, namely: Aj > Ai and Aj � Ai . Recall
from Sect. 2.4 the proviso of the refinement rule for the select command was that
P V G1 _ � � � _ Gn, where P was the precondition of the refined specification, and
G1 : : : Gn were the intended guards in the select command.

Now fortunately, the disjunction of the two predicates Aj > Ai and Aj � Ai is
true, which is implied everywhere by any other predicate, including the precon-
dition of our current specification. As a result (i.e. because “implies everywhere”
holds) we may use the selection refinement rule, and then get:

if Aj > Ai ! i W ŒAj > Ai ^ max.A; 0; j; i/ ^ j ¤ A:len; max.A; 0; j C 1; i/�

Œ� Aj � Ai ! i W ŒAj � Ai ^ max.A; 0; j; i/ ^ j ¤ A:len; max.A; 0; j C 1; i/�

fi

Based on the reasoning above, we would expect that the first branch of the
alternation refines to i WD j , while the second branch is simply a skip statement.
This gives:

if Aj > Ai ! i WD j

Œ� Aj � Ai ! skip
fi

Of course, the refinement to the first assignment is only allowed by the assignment
rule if:

Aj > Ai ^ max.A; 0; j; i/ ^ j ¤ A:len V .max.A; 0; j C 1; i//Œinj �

Likewise, the refinement to the skip statement is only justified by the skip refinement
rule if:

Aj � Ai ^ max.A; 0; j; i/ ^ j ¤ A:len V .max.A; 0; j C 1; i//

It is easy to show these two “implies everywhere” relationships. Details are left to
the reader.

66 3 Simple Examples

3.2.5 Putting it All Together

We now have all the ingredients for our final algorithm:

i; j WD 0; 1I
do j ¤ A:len !

if Aj > Ai ! i WD j

Œ� Aj � Ai ! skip
fiI
j WD j C 1

od

3.3 Binary Search

In this example, the well-known binary search algorithm is constructed from
specifications. Given a sorted array A (with elements of type integer or real—it
does not really matter) and x (of the same type as the elements), we need to specify
and refine a binary search program. Upon termination, i must be an integer such
that Ai D x if x is present in A, or i D �1 if x is not present in A. Note:

• A is not guaranteed to contain the value which we are seeking.
• A is not guaranteed to be nonempty; i.e., we may have A:len D 0.

3.3.1 Formulating the Problem

We know that the sortedness of A is part of the precondition. Abbreviate the
sortedness of A as sorted.A/. Also reuse the app predicate of Sect. 3.1. Recall that
the ranges are closed at the bottom and open at the top—i.e. app.A; x; 0; A:len/

means that the value of x appears in the range AŒ0;A:len/.
The postcondition should express two possibilities: either that the sought-after

x value appears in A (and therefore Ai D x); or else it does not appear in A (and
therefore i D �1). The postcondition can therefore be defined as:

post , .app.A; x; 0; A:len/ ^ Ai D x/ _ .:app.A; x; 0; A:len/ ^ i D �1/

The problem to be solved is therefore:

i W Œsorted.A/; post�

It is, of course, necessary to have i as a frame variable, since it must be set
to an appropriate value in order to achieve the postcondition. The question is,

3.3 Binary Search 67

however, whether additional variables are needed in the frame. We proceed from
the premise that the reader is familiar with the general binary search strategy—a
strategy that involves the use of a low/high pair of variables. These variables, too,
should be mentioned in the frame. Calling these variables l and h respectively, the
specification can be restated as follows.3

i; l; h W Œsorted.A/; post�

3.3.2 Decomposing the Problem

At this point, an overall solution strategy has to be selected. There are several. We
could, for instance, decide to initialize i to �1 and then reassign a value to it after
the binary search, if x was indeed found during the search. In fact, we could decide
to include i as one of the variables to be used during the binary search, either to
point to the mid-point of the search region, or do be the high- or low end of the
search region. None of these strategies can be said to be wrong. However, one
has the sense that by introducing i into the picture before or during the binary
search, we might be violating the well-established software engineering principle
of “separating concerns”. Consequently, it will be left as an exercise to the reader to
evolve a binary search algorithm along any of these lines. Here, we choose to delay
the assignment of a value to i until after the binary search has ended.

We thus divide the specification up into two pieces: one which does the binary
search and one which sets i on the basis of what was discovered during the binary
search. This “dividing up” is done using a sequential composition refinement step,
in just a moment. We first need to determine an appropriate choice for the mid
predicate.

The mid predicate should express the results of the binary search. At the end of
the binary search, l and h should be such that either the subarray AŒl;h/ consists of a
single element (which may or may not be equal to x) or AŒl;h/ is an empty subarray
(in which case x definitely does not appear in A). In the first case, h would have to
be D l C 1, while in the second case, h must be < l C 1. Nevertheless, it is not
sufficient to express the mid predicate simply as:

sorted.A/ ^ h � l C 1

Why not? Because such a postcondition can easily be achieved without reaching
our actual objective. For example, the assignment h WD l C 1 ensures that sorted

3These variables are not mentioned in the pre- and postconditions, and are, in this sense, local to
the inner workings of the code to be constructed “between” the pre- and postconditions, as it were.
Morgan has a refinement rule that regards the introduction of local variables into the frame as a
refinement.

68 3 Simple Examples

.A/^h � l C1 holds, but this is not at all what binary search is supposed to achieve.
We need to strengthen the above formula with a conjunct that expresses the fact that,
in searching for an index of A where x may be found, l and h have been invariantly
selected such that x always lies at an index of A that is in the range Œl; h/, if indeed
it is to be found in the array A at all. This, after all, is the well-known strategy that
is used in binary search.

The question is, how should such an invariant be formulated? It is more com-
plicated than merely claiming that app.A; x; l; h/ should always hold, since it
could be the case that :app.A; x; 0; A:len/ holds. On the other hand, if x is in
the array—i.e. if app.A; x; 0; A:len/ holds—then binary search indeed ensures that
app.A; x; l; h/ holds. This conditionality can be expressed in predicate logic as:
app.A; x; 0; A:len/ H) app.A; x; l; h/. Note that this predicate is only false when
app.A; x; 0; A:len/ is true but app.A; x; l; h/ is false. Based on this, we constitute
our required interim predicate as:

mid , sorted.A/ ^ .app.A; x; 0; A:len/ H) app.A; x; l; h// ^ .h � l C 1/

With this in mind, by the refinement rule for composition, the original problem
specification refines to:

i; l; h W Œsorted.A/; mid�I i; l; h W Œmid; post� (3.4)

The two specification components can now be refined further separately: the first to
generate the binary search code, and the second to appropriately assign a value to i .

3.3.3 Generating the Binary Search Code

We have already devised the postcondition of the first specification component in
(3.4) (namely mid) with an invariant in mind. It expressed the fact that l and h are
adjusted in such a way that, if x appears in A at all, then it appears in the range
AŒl;h/. Let us also include as part of the invariant, the fact that A will remain sorted.
(Nothing happens to change the order of elements.) The invariant is thus:

inv , sorted.A/ ^ .app.A; x; 0; A:len/ H) app.A; x; l; h//

Rewriting mid as inv ^ h � l C 1, the specification to be refined is:

i; l; h W Œsorted.A/; mid�

D fsubstituting the definition of mid g
i; l; h W Œsorted.A/; inv ^ h � l C 1�

3.3 Binary Search 69

This is starting to look a lot like what is needed for refinement into a loop.
Another application of the composition refinement rule will get it into the shape
we want, using inv as our new interim predicate. The result is:

i; l; h W Œsorted.A/; inv ^ h � l C 1�

v fsequential composition with mid0 , invg
i; l; h W Œsorted.A/; inv�I i; l; h W Œinv; inv ^ h � l C 1�

The first part will establish the invariant, while the second part will be refined
into the loop. It is straightforward to show, using the multiple assignment rule, that
the first part can be refined into:

l; h WD 0; A:len

The proof proceeds by showing that after substitution in the postcondition as
required per the assignment rule, a predicate is obtained that is identical to the
precondition, and that is therefore implied everywhere by the precondition. As a
consequence, the proposed assignment is guaranteed to be a legitimate refinement
of the specification. Here is the proof that the postcondition after substitution leads
to the precondition:

invŒl; hn0; A:len�

� fSubstituting for the definition of invg
.sorted.A/ ^ .app.A; x; 0; A:len/ H) app.A; x; l; h///Œl; hn0; A:len�

� fSubstituting the variables l and hg
.sorted.A/ ^ .app.A; x; 0; A:len/ H) app.A; x; 0; A:len///

� fSince app.A; x; 0; A:len/ H) app.A; x; 0; A:len/ � trueg
sorted.A/ ^ true

� fSince since sorted.A/ ^ true � Qg
sorted.A/

In considering the second specification, let h � l C 1 be the conjunct of its
postcondition that represents the negation of the guard. The guard will thus be
h > l C 1. For the loop’s variant, we will use h � l . This is an expression that
must decrease with every iteration and may never go below zero. From the repetition
refinement rule, we now obtain the loop:

do h > l C 1 !
i; l; h W Œinv ^ h > l C 1; inv ^ .0 � h � l < h0 � l0/�

od

70 3 Simple Examples

To refine the loop’s body, we know that we have to maintain the invariant (which
claims that if x is in A then the interval AŒl;h/ always contains x) and we also have
to ensure that the variant, h � l , decreases with each iteration. In fact, there are
numerous ways in which these two objectives can be achieved, and each way would
lead to a solution of the problem.

For example, we could increment l by 1 if Al ¤ x or we could decrement h by 1

if Ah�1 ¤ x (in both cases decreasing the variant by 1). Neither of these strategies
capitalize on the sortedness of A, and each amounts to a form of linear search.

Alternatively, we could randomly guess an index j from the range Œl; h/ and if it
turned out that Aj ¤ x, we could then rely on the sortedness of A to decide whether
to set l or h to j . Or j could be chosen to be 1

3
of the way between l and h, etc.

However, it is well-known that binary search, which halves the search interval h � l

in each iteration, is on average (and even in the worst case) the best search method.
This is the strategy we shall follow. Note that in all these strategies, it is a case of
determining some index in the interval, comparing x against the array’s value in that
index, and adjusting l and/or h accordingly.

We shall distinguish between three cases, according to whether x is less than,
greater than, or equal to A.lCh/=2. (Note in passing that in this text we will assume
that integer division rounds down.) These three cases constitute three guards, whose
disjunction is true, and which may therefore be used in a refinement using the
selection rule. (The rule’s proviso holds, since the precondition everywhere implies
true.) We obtain the following:

if .x < A.lCh/=2/

! l; h W Œinv ^ h > l C 1 ^ x < A.lCh/=2; inv ^ .0 � h � l < h0 � l0/�

Œ� .x D A.lCh/=2/

! l; h W Œinv ^ h > l C 1 ^ x D A.lCh/=2; inv ^ .0 � h � l < h0 � l0/�

Œ� .x > A.lCh/=2/

! l; h W Œinv ^ h > l C 1 ^ x > A.lCh/=2; inv ^ .0 � h � l < h0 � l0/�

fi

Note at this point that, once again, there are alternative ways in which to choose
the guards. In particular, some binary search implementations merge the equality
case with either the “less than” or the “greater than” guard. In fact, in GCL, the
equality case could be merged with both guards, resulting in a non-deterministic
specification. However, instinctively one senses that it would be better to consider
equality separately. Again, one could invoke the “separation of concerns” principle,
since equality means that the search has been successful and the loop can be
immediately terminated, whereas non-equality means that we need to halve the
search area. Thus, considering the equality case separately allows us more rapidly
to terminate the loop. The trade-off for this efficiency gain is that more cases have
to be considered in each iteration.

3.3 Binary Search 71

Let us now verify whether the “less than” case, the first guard, can be refined to
the assignment: h WD .l C h/=2. In terms of the assignment rule’s proviso, this is
permitted if:

inv ^ h > l C 1 ^ x < A.lCh/=2 V .inv ^ .0 � h � l < h0 � l0//Œhn.l C h/=2�

� fsubstitution in postconditiong
inv ^ h > l C 1 ^ x < A.lCh/=2 V .invŒhn.l C h/=2/� ^ .0 � .l C h/=2 � l < h0 � l0//

� falgebrag
inv ^ h > l C 1 ^ x < A.lCh/=2 V .invŒhn.l C h/=2/� ^ .0 � .h � l/=2 < h0 � l0//

Now one is tempted to summarily conclude that the variant part of the postcondition
evaluates to true. This kind of impulsive decision-making has been the source of
many an incorrect implementation of binary search, often leading to an infinite
loop. One needs to be very aware of the fact that .h � l/=2 is only less than
h0 � l0 if h > l—something that is thankfully assured in the precondition (since
it specifies that h > l C 1). Similarly, it seems obvious that half of some positive
value, i.e. .h � l/=2, is greater or equal to 0. Once again, the fact that .h � l/=2 is
positive, is assured by the precondition conjunct in which h > l C 1 is required to
hold.

In regard to the remaining conjuncts in the above implies everywhere relation-
ship, it is easy to see that if inv^x < A.lCh/=2 holds, as required by the precondition,
then invŒhn.l C h/=2/� will hold, due to the sortedness of A, which is asserted in
both pre- and postcondition.

As a consequence of all the foregoing reasoning, we are justified in refining the
first guard to the assignment h WD .l C h/=2.

We leave it as an exercise for the reader to articulate the reasoning that justifies
the assignment l WD .l C h/=2 for the third guard. Not surprisingly, it parallels the
reasoning given in relation to the first guard. Also left as an exercise, is the reasoning
to justify the assignment l; h WD .l C h/=2; .l C h/=2 C 1 in the case of the second
guard.

The resulting select command is therefore:

if .x < A.lCh/=2/ ! h WD .l C h/=2

Œ� .x D A.lCh/=2/ ! l; h WD .l C h/=2; .l C h/=2 C 1

Œ� .x > A.lCh/=2/ ! l WD .l C h/=2

fi

Note that after the assignment in the second guarded command, the outer loop’s
guard, h > l C 1, no longer holds; thus, the loop will not execute another iteration.
Additionally, the loop’s guard could (but need not) also be rendered false if either
the first or the third guard of the select command executes.

72 3 Simple Examples

For completeness, the code developed to date is given:

l; h WD 0; A:len
finvg
Ido .h > l C 1/ !

if .x < A.lCh/=2/ ! h WD .l C h/=2

Œ� .x D A.lCh/=2/ ! l; h WD .l C h/=2; .l C h/=2 C 1

Œ� .x > A.lCh/=2/ ! l WD .l C h/=2

fi
od
finv ^ h � l C 1g

3.3.4 After the Binary Search

Consider the specification after the loop that still has to be refined, i.e. the second
specification in (3.4): i; l; h W Œmid; post�. Recall that the mid predicate was given by
inv ^ .h � l C 1/ where:

inv , sorted.A/ ^ .app.A; x; 0; A:len/ H) app.A; x; l; h//

This mid precondition could have been realized in one of three ways:

1. If we started with app.A; x; 0; A:len/ D true, then app.A; x; l; h/ has to hold
(else the implication in mid will be false, since true H) false is false). This
in turn means that h D l C 1, since if h < l C 1 then the subarray AŒl;h/ would
be empty, contradicting the fact that app.A; x; l; h/ has to hold. In other words,
the subarray AŒl;h/ is not empty, but consists only of the one element Al , and this
element is equal to x.

2. If we started with app.A; x; 0; A:len/ D false, then app.A; x; l; h/ will also be
false. In this case, from one point of view, it really does not matter whether
h D l C 1, or h < l C 1. In neither case is Al equal to x.

3. However, from another point of view, if h < l C 1 holds, it may be instructive
to consider how this could have come about. One possibility is that the logic of
the loop is such that h, always larger than l C 1 at the start of the loop’s body,
somehow acquires a value that is less than l C 1 at the end of the loop’s body. (In
fact, deeper investigation of the loop’s body will reveal that this cannot actually
happen, but this fact is not immediately relevant to the discussion.) Another
possibility (actually, the only one) is that the loop was never entered because
the array A is empty. This would mean that l D h D A:len D 0. In this case,
it would be wise not to refer in code to array element Al , since no such element
exists in the array.

One could therefore consider two possibilities separately: h D l C 1 or h < l C 1.
These correspond (respectively) to “narrowed range to one element, perhaps finding

3.3 Binary Search 73

x” and “definitely did not find x”. This means we could refine into a pair of nested
select statements, with conditions h D l C 1 and h < l C 1 as the two outer
guards, and a nested check to verify whether x was indeed found in the case where
h D l C 1. The result is the following:

if h D l C 1 !
if Al D x ! i WD l Œ� Al ¤ x ! i WD �1 fi

Œ� h < l C 1 ! i WD �1

fi

As might be suspected, detailed justification in terms of the refinement calculus rules
to derive this nested select statement would be quite tiresome. For our purposes, the
above discussion constitutes a sufficient justification for the select statement and its
structure.

Some programmers might be uncomfortable with the foregoing. They might
prefer to keep the amount of code to a minimum, for instance by writing it as
follows:

i WD �1

I as .h D l C 1 ^ Al D x/ ! i WD l sa

Provided the ^ operation was carried out as a short-circuit evaluation (indicated later
in this text by the conditional-and symbol, cand) the foregoing would off course
work. However, there is a price to pay for the brevity: information is lost about the
underlying logic paths that lead us to conclude that x was not found. In general,
brevity of this nature is error-prone and should be avoided.

3.3.5 Putting it All Together

Finally, we get

l; h WD 0; A:lenI
do h > l C 1 !

if .x < A.lCh/=2/ ! h WD .l C h/=2

Œ� .x D A.lCh/=2/ ! l; h WD .l C h/=2; .l C h/=2 C 1

Œ� .x > A.lCh/=2/ ! l WD .l C h/=2

fi
odI
if h D l C 1 !

if Al D x ! i WD l Œ� Al ¤ x ! i WD �1 fi
Œ� h < l C 1 ! i WD �1

fi

Note that the program is correct, even when A:len D 0.

74 3 Simple Examples

M
1 -1 1 -1 -1 -1 1

0 i A.len − p.len + 1 A.len

. . .

A
Checked To be checked No need to check

p

Fig. 3.3 Interim matching scenario

3.4 Pattern Matching

In this section, the constructive approach is outlined to develop an algorithm that
does pattern matching. (This is just one of a large number of different pattern
matching problems and solutions.) We will dispense with full argumentation to
justify each step, rather focussing on the broader flow of reasoning and refinement
rules that have to be applied.

We are given a string A, a string p, and an array M , where M stands for
“Matched” and where M:len � A:len). The problem is to set the elements of M

to indicate where matches have occurred, based on the following convention:

Mi D
�

1 if p matches in A starting at position i

�1 if p does not match in A starting at position i

Note:

• The strings A and p will be treated here as arrays. Thus, for example, pi denotes
element .i C 1/ of string p (the first element being p0); A:len is the length of
string A; etc.

• A is not guaranteed to contain an occurrence of p.
• A is not guaranteed to be longer than p.
• The only index values that really matter are Œ0; A:len � p:len C 1/. To fill in the

rest of the indices with �1 is not required.
• We assume that p:len > 0.

Figure 3.3 schematically depicts the result after matching p against the first i

starting positions in A. Starting positions in the range Œi; A:len � p:len C 1/ still
need to be checked, and there is no need to check starting positions in the range
ŒA:len � p:len C 1; A:len/

3.4 Pattern Matching 75

3.4.1 Formulating the Problem

The postcondition should express the fact that every index in the range Œ0; A:len �
p:len C 1/ is correctly set as 1 or �1. We call this post:

8k W Œ0; A:len�p:lenC1/ � .Mk D 1 ^ AŒk;kCp:len/ D p/ _ .Mk D �1 ^ AŒk;kCp:len/ ¤ p/

All that our precondition states is that the array M is sufficiently large, yielding our
specification:

M W ŒM:len � A:len; post�

Since we eventually want to introduce a loop, we can already keep in mind that we
would like to traverse A (and therefore M) from left to right, as depicted in Fig. 3.3.
This could mean an invariant like “for all k in Œ0; i/, Mi is set correctly”. We can
express this as our invariant:

inv , 8kŒ0; i/ � .Mk D 1 ^ AŒk;kCp:len/ D p/ _ .Mk D �1 ^ AŒk;kCp:len/ ¤ p/

The next thing to do, is to add a conjunct G to the invariant, such that .inv ^ G/

is stronger than (or equal to) post . Clearly, this is the case if G is chosen as the
predicate i D A:len �p:len C1. The specification may now be formulated as follows.
Note that i has also been added as an additional frame variable.

M; i W ŒM:len � A:len; inv ^ .i D A:len � p:len C 1/�

Using sequential composition, we can do our usual split into the part which will
become the loop and the part which will establish the invariant:

M; i W ŒM:len � A:len; inv�I M; i W Œinv; inv ^ .i D A:len � p:len C 1/�

It is easy to verify a refinement of the first part to i WD 0. The following argument
applies:

If you substitute 0 for all occurrences of i in inv, the “for all” quantification in inv is over
an empty range, and thus inv is true. Since the precondition M:len � A:len everywhere
implies true the assignment i WD 0 refines the first part of the specification.

3.4.2 Developing the Loop

We now need to refine the second part of the specification to date, namely:

M; i W Œinv; inv ^ .i � A:len � p:len C 1/�

Here, we can already see that we already have the negation of the guard, namely
.i � A:len � p:len C 1). For a variant function, we should probably try something

76 3 Simple Examples

like A:len � p:len � i , which indicates the number of elements in the array still to be
tested. By the refinement rule for repetition, we then have:

do i < A:len � p:len C 1 !
M; i W Œinv ^ i < A:len � p:len C 1; inv ^ .0 � V < V0/�

od

From the variant, we can see that an increment of i is in order, which we can
apply using following assignment (or sequential composition followed by simple
assignment) to get4

do i < A:len � p:len C 1 !
M; i W Œinv ^ i < A:len � p:len C 1; invŒi n i C 1��I
i WD i C 1

od

Given the invariant, we would probably like to refine the statement in the body of
the loop to something like:

if .AŒi;iCp:len/ D p/ ! Mi WD 1

Œ� .AŒi;iCp:len/ ¤ p/ ! Mi WD �1

fi

This is not entirely reasonable, since it requires comparing several characters of A

against p all at once. Again, the body of the loop should be split into two pieces,
with an eye to refining the first into an inner-loop (which compares the characters)
and the second one into an alternation. We will be using j in that inner loop. As a
consequence, j becomes a new frame variable as part of the next refinement.

To apply sequential composition, we need another mid0. For that, we should prob-
ably state that all of the p characters in interval Œ0; j / matched (the corresponding
characters of A), and either j D p:len (in which case we have matched all of p) or
pj ¤ AiCj (j indicates a mismatching character at position j)

mid0 , .8n W Œ0; j / � .pn D AiCn// ^ .j D p:len _ pj ¤ AiCj /

This allows us to make the following refinement

M; i; j W Œinv ^ i ¤ A:len � p:len C 1; invŒi n i C 1��

v fsequential composition with mid0 aboveg
M; i; j W Œinv ^ i ¤ A:len � p:len C 1; mid0�I M; i; j W Œmid0; invŒi n i C 1��

Taking the hint from the disjunction in the mid0 predicate, which serves as the
precondition to the second part, this second part can be refined into

if j D p:len ! Mi WD 1 Œ� j ¤ p:len ! Mi WD �1 fi

4Here, the part relating to the variant has been omitted, since it will be true under the substitution.

3.5 Exponentiation 77

It is easy to show that the refinement to a select command is legitimate. To do this,
use the fact that the disjunction of the select command’s guards is true, and note that
mid0 V true.

To refine the first part, we could again introduce an invariant of

8n W Œ0; j / � pn D AiCn

and a variant p:len � j . After several more steps, it will yield a refinement of:

j WD 0I
do j ¤ p:len ^ pj D AiCj ! j WD j C 1 od

3.4.3 Putting it All Together

When we put all the pieces together, we get

i WD 0I
do i < A:len � p:len !

j WD 0I
do j ¤ p:len ^ pj D AiCj ! j WD j C 1 odI
if j D p:len ! Mi WD 1 Œ� j ¤ p:len ! Mi WD �1 fiI
i WD i C 1

od

3.5 Exponentiation

Developing algorithms along the lines discussed to date, is of course not as painless
as might be suggested by the narrative in previous sections of this chapter. In
practice, one’s reasoning and instincts often lead up a blind alley, and one has to
backtrack and rethink aspects of the approach to the problem. This section illustrates
this point.

It discusses a solution for a fairly simple problem but initially takes the reader
down a blind alley. However, in taking this walk down a blind alley, sufficient
information is obtained to reformulate the problem and to eventually arrive at a
good solution. Some discussion about this matter is given at the end. The discussion
is based on a real experience—it is not a fictitious example!

The problem is as follows: given a real number a and a positive natural number,
n, determine the value of an and store the result in the variable z.

78 3 Simple Examples

3.5.1 Formulating the Problem

The problem can be specified as follows:

z W Œn > 0; z D an�

Intuitively, we can start with z at some initial value, and progressively update it
to come closer to its intended final value. What invariant condition might apply?
Well, perhaps it would make sense to ensure that z always remains a raised to some
power such as a0, a1; : : : an, or in general, to ensure that z is always an�i for some i .
In such a case, z times ai will always be the same as our desired answer, an.

Let us therefore—as a first stab at the problem—define the predicate:

p.i/ , .z:ai D an/

Now notice that p.0/ corresponds to the required postcondition. Hopefully p.i/ can
serve as a loop invariant. But, if it is to serve in this role, then the program will
need to have i as a variable. At this stage, therefore, add i to the specification frame.
As previously indicated, such an addition to the frame variables constitutes a true
refinement of a specification. We can thus re-write the initial specification as:

z; i W Œn > 0; p.0/�

3.5.2 Establishing the Invariant

Taking p.i/ as our invariant, the next step is to apply the sequence rule in order to
establish p.i/ as the mid predicate.

z; i W Œn > 0; p.i/�I z; i W Œp.i/; p.0/�

We now clearly need to apply the assignment rule to refine the first part. Noting
that p.i/Œi; znn; 1� evaluates to true, we might be tempted to refine to the assignment
i; z WD n; 1 . However, z can never end up as 1 in the original problem (unless, of
course, a D 1, in which case z will always be 1 and nothing else), since n is explicitly
forbidden to be 0. It does not therefore seem reasonable to start off with such a value
for z—why initialize z to a value that it cannot ever have? If you do that, then you
force at least one iteration of the loop, whereas it might be possible to get away with
bypassing the loop altogether in some cases.

Instead, we might seek an alternative assignment to refine the first part of our
specification. The alternative that suggests itself is to initialize z to a, in which

3.5 Exponentiation 79

case i has to be initialized to n � 1. Once again, p.i/Œi; znn � 1; a� � .a:an�1 D
an/ � true, and since any precondition (including n > 0) implies true everywhere,
the assignment i; z WD n � 1; a is a legitimate refinement of the relevant specification.

3.5.3 Refining to Create a Loop

Consider now the second part of our specification. We can re-write the postcondition
as p.i/ ^ i D 0. Although this is equivalent to the original form, it may be thought
of as “strengthening” the postcondition. We therefore appeal to the strengthening
postcondition refinement rule to derive the following specification:

z; i W Œp.i/; p.i/ ^ i D 0�

Apply the repetition rule, since the second specification is of the form w W Œinv; inv ^
:GG�. It seems reasonable to anticipate that i should decline to 0, so we use i as the
variant. The result is:

do i ¤ 0 !
z; i W Œ.i ¤ 0/ ^ p.i/; p.i/ ^ 0 � i < i0�

od

Clearly, the way to decrease the variant is by decreasing i . Note that each such
change in i in the loop’s body must preserve the invariant. One way of preserving
the invariant is to multiply z by a and then to decrease i by 1. This would lead to a
loop that simply multiplied z by a, n times. (As an exercise, the reader may follow
through on this path of reasoning to derive a simple algorithm.)

However, if we think about the invariant, other more creative ideas come to mind.
For example, we could also preserve the invariant by multiplying z by a3 and then
decreasing i by 3—provided this did not lead to a z that was a raised to some power
greater than n (which would in fact violate the variant part of the postcondition
because i would decrement below 0). In fact, we could multiply z by any number of
a’s in a given iteration and decrease i appropriately, as long as we take care not to
overshoot the mark and derive a raised to some power greater than n. The objective
should be to decrease i in each iteration by as much as possible, thereby minimizing
the number of iterations.

A smart thing to do in this kind of situation is to consider the possibilities when
i is odd, and when i is even. There are several advantages in testing on the basis
of this “heuristic”. On the one hand, to carrying out tests for odd-ness or even-ness
can be done very efficiently in bit-arithmetic. Secondly, there are many problems in
which this leads to high efficiency in the loop itself. So let us explore this possibility.

Now, the selection rule requires that the precondition—in this case .i ¤
0/ ^ p.i/)—must imply everywhere the disjunction of the conditions used in the

80 3 Simple Examples

selection. Since .odd.i/_even.i// D true is everywhere implied by this precondition,
the selection rule can be applied to get the following refinement:

if odd.i/ ! z; i W Œ.i ¤ 0/ ^ p.i/ ^ odd.i/; p.i/ ^ 0 � i < i0�

Œ� even.i/ ! z; i W Œ.i ¤ 0/ ^ p.i/ ^ even.i/; p.i/ ^ 0 � i < i0�

fi

In the present case, if i is even, is there any smart thing to do about z? Well, yes,
there might be. A first guess might be to say: we can square z and halve the variable
i . On the other hand, if i is odd, we can—as previously suggested—fall back on the
simple idea of multiplying z by a and decrementing i by 1, thereby arriving at an
even value for i to be used at the next iteration. The refined select command then
becomes:

if odd.i/ ! z; i WD z � a; i � 1

Œ� even.i/ ! z; i WD z � z; i=2

fi

Let us now verify whether this assignment is correct in terms of our refinement rule
for assignment. The assignment rule requires that pre V postŒxnE� must hold if
we are to refine to the assignment x WD E. In our particular case, the refinement of
the first guarded command (when i is odd), requires that the following “everywhere
implies” relationship should hold.

.i ¤ 0/ ^ .z:ai D an/ ^ odd.i/ V ..z:ai D an/ ^ 0 � i < i0/Œi; zn.i � 1/; z:a�

Just for absolute clarity, let us rewrite this after the substitution:

.i ¤ 0/ ^ .z:ai D an/ ^ odd.i/ V .z:a:a.i�1/ D an/ ^ 0 � i � 1 < i0

Now, clearly, the variant part on the right hand side is everywhere implied by the left
hand side. (If we know that i is not 0 and is odd, then undoubtedly, i � 1 is less than
its initial value and is not less than 0.) Also, the first conjunct of the right hand side
exactly matches a conjunct on the left hand side. Thus, our first guarded command
in the select statement, odd.i/ ! i; z WD i � 1; a:z is apparently correct.

Consider now, the second of the above cases. Here we need to be convinced that
the following holds.

.i ¤ 0/ ^ .z:ai D an/ ^ even.i/ V ..z:ai D an/ ^ 0 � i < i0/Œi; zn.i=2/; z:z�

Again, for absolute clarity, let us rewrite this after the substitution:

.i ¤ 0/ ^ .z:ai D an/ ^ even.i/ V ..z:z:ai=2 D an/ ^ 0 � i=2 < i0/ (3.5)

3.5 Exponentiation 81

Again it is easy to reason that variant part is implied everywhere by the left hand
side. (If we know that i is not 0 and is even, then i=2 is less than its initial value and
is not less than 0.) However, no matter how hard one tries: it is not possible to show
that the first conjunct of the right hand side somehow follows from the left hand
side! Something has gone wrong in our reasoning process!

We are essentially stuck with a predicate of the form z:z:a
i
2 D an on the right

hand side, that needs to be implied everywhere by a predicate of the form z:ai D an

on the left hand side. Thinking logically and creatively about what the problem may
be, we see that things might have worked out somewhat better if one of the z’s in the
expression z:z:a

i
2 was in fact a

i
2 , in which case, in (3.5) we would have had as first

conjunct on the right hand side:

z:a
i
2 :a

i
2 D an

This suggests that we might be able to use an additional variable, say b, to
store some product representing a multiplied by itself a number of times, in
such a way that the predicate z:bi D an holds invariantly. The idea is that when
i is even, then we will square b (and halve i) instead of squaring z, so that the
substitution that previously troubled us will instead lead to the right hand side
conjunct .z:.b:b/i=2 D an/. Since this would be implied by its counterpart on the left
hand side, everything would be in order.

More concretely, let us therefore revise our loop invariant as follows:

p0.i/ , .z:bi D an/

We now note that p0.0/ represents the desired postcondition, as before, provided of
course that b > 0. We also note that p0.n�1/ is a tautology (as before), provided that
we initialize both b and z to a. Our refinement could now proceed as follows, where
we now no longer repeat all the argumentation:

z W Œn > 0; z D an�

v fintroduce new frame variablesg
i; b; z W Œn > 0; z D an�

� fre-write the postconditiong
i; b; z W Œn > 0; .i D 0/ ^ p0.i/�

v fapply sequence rule with p0.i/ as midg
i; b; z W Œn > 0; p0.i/�I i; b; z W Œp0.i/; .i D 0/ ^ p0.i/�

v fassignment ruleg
i; b; z WD n � 1; a; aI i; b; z W Œp0.i/; .i D 0/ ^ p0.i/�

v frepetition rule, making use of variant ig
i; b; z WD n � 1; a; aI do i ¤ 0 ! i; b; z W Œp0.i/ ^ .i ¤ 0/; p0.i/ ^ 0 � i < i0� od

82 3 Simple Examples

The body of the loop may be refined, using the selection rule, to:

if odd.i/ ! i; b; z W Œ.i ¤ 0/ ^ p0.i/ ^ odd.i/; p0.i/ ^ 0 � i < i0�

Œ� even.i/ ! i; b; z W Œ.i ¤ 0/ ^ p.i/ ^ even.i/; p0.i/ ^ 0 � i < i0�

fi

Two applications of the assignment rule, then lead to the following:

if odd.i/ ! i; z WD i � 1; z:b
Œ� even.i/ ! i; b WD i=2; b:b

fi

As usual, this last step requires that one ensures that assignment rule proviso pre V
postŒxnE� should hold. The details are left to as an exercise.

However, note that there is a key insight here regarding what should happen when
i is odd. Given that we wish to reduce i by one in order to arrive at the efficient even
number scenario, the question reduces to: what must happen if we reduce i by one
in order to preserve the invariant .z:bi D an/. Clearly, we then have to multiply z by
b (and not by a as in our earlier abortive attempt).

Note also how the final iteration of the loop (if the loop is executed at all) will
always be with i as the odd number, 1. Therefore, z will always be updated in the
last iteration, even if it is never updated in any prior iteration.

The net result is the following delightful (and non-obvious) little algorithm:

i; b; z WD n � 1; a; aI
do i ¤ 0 !

if odd.i/ ! i; z WD i � 1; z:b
Œ� even.i/ ! i; b WD i=2; b:b

fi
od

In empirical tests, this algorithm, implemented in Java, was found to be considerably
faster than a call to the pow() function in Java’s Math package. It is naturally also
considerably faster than an algorithm that merely multiplies a together n times.
Notice that the algorithm is O.log n/, which is typically the case when one halves
intervals. This means that to raise something to the power 1000, say, the algorithm
does about 10 iterations, whereas the straightforward approach would take 1000

iterations. As for Java’s pow() function, it would seem that it relies on series
expansions to compute an, where n need not be integer.

One may well ask: is efficiency an issue? Of course, that depends on the
application. In the case of this particular algorithm one could well imagine some

3.5 Exponentiation 83

“hard” real-time system (e.g. on board a missile, computing the flight path!) in
which a small processor needs to compute the value of an over and over again,
as rapidly as possible. An algorithm that is more efficient than others, such as the
one above, could be critically important.

Finally, the reader should consider how to extend this code to handle the more
general cases: if n D 0, or if n < 0.

3.5.4 Discussion

The above text could easily have been tidied up to show a direct path to the required
answer. However, it is a little difficult to argue ab initio that a loop invariant should be
z:bi D an instead of z:ai D an. Indeed, it is not even obvious why one should choose
the latter as an invariant until it is realised that it is nothing other than an assertion
that z D an�i should hold. Some text books propose the loop invariant “out of the
air”—as if one could have thought it out in the first place. However, the deliberate
decision to expose the reader to a “false path” was intended to demonstrate several
matters. Here is a quick summary of some of the lessons learnt from the derivation
above.

1. Finding loop invariants generally requires a lot of creative thinking—it is not
necessarily a trivial matter at all.

2. Sometimes, you can build on or learn from your mistakes.
3. A good loop invariant often leads to a highly efficient algorithm.
4. Following the rules rigorously, while perhaps tedious, can expose one’s errors

and help one to develop correct code. If we did not bother about rigorously
ensuring that the assignment rule’s proviso, pre V postŒxnE�, actually held, we
might not have picked up on the error. We might have felt quite comfortable with
a solution that simply squared z when i is even. Taking the trouble to carefully
check the assignment rule’s proviso led to the mistake being picked up.

5. Following the rules rigorously and careful logical reasoning also helped us to
identify appropriate initialization values. Some versions of this algorithm in
fact start more obviously: with the assignment i; b; z WD n; a; 1. This works, but
requires one iteration more than necessary.

6. The use of “odd” and “even” tests can be very useful on occasions. It is left as an
exercise to show how to derive a more naı̈ve algorithm that does not differentiate
between the odd- and even-ness of i . Relying on our initial invariant, one can
dispense with the need for a select statement, but instead have the following
assignment in the loop body: i; z WD i � 1; z:a. This would preserve the invariant
and lead to the “inefficient” version of the algorithm.

84 3 Simple Examples

3.6 Integer Logarithm Approximation

3.6.1 Problem Statement and Invariant

We end this chapter of simple algorithms, by deriving an algorithm that finds the
best possible integer approximation of the logarithm to the base 2 of a given integer.
To see what is meant by this, consider the identity relationship that holds in real-
valued arithmetic:

` D log2.N / ” 2` D N

Suppose we are given N and we need to find an integer ` that approximates log2.N /.
We can deduce from the real arithmetic identity relationship that an ` such that
N 2 Œ2`; 2`C1/ is just such an approximation.5 This is what we shall use as our
postcondition. The specification to be refined is therefore:

` W ŒN > 0; N 2 Œ2`; 2`C1/�

Note that N is a constant. It is our task to change `, and thus also the interval
Œ2`; 2`C1/, so that the interval “finds” N , as it were. Given our experience to date
of the value of invariants, perhaps it would be useful to define an interval in terms of
some parameter, n, that has the property of invariantly containing N . For example,
suppose we tried to derive an algorithm where it was invariantly the case that
N 2 Œn:2`; n:2`C1/. The postcondition is then attained when n D 1. Letting inv0 be
defined as

inv0 , N 2 Œn:2`; n:2`C1/

and introducing n as a frame variable, the specification can now be stated as:

`; n W ŒN > 0; inv0 ^ .n D 1/�

Our initial approach to this problem was based on the invariant above, but the
resulting algorithm turned out to be rather complicated. An alternative invariant
could be:

inv , N 2 Œn:2`; .n C 1/:2`/

Note that

inv ^ .n D 1/ � inv0 ^ .n D 1/ � N 2 Œ2`; 2`C1/;

the latter being the problem’s postcondition.

5As suggested later, if N is closer to 2`C1 than it is to 2`, then .` C 1/ would be a better
approximation of log2.N / than ` would be. However, this can only be established by explicitly
computing 2` and 2`C1—something which we wish to avoid in the algorithm to be derived.

3.6 Integer Logarithm Approximation 85

3.6.2 Refinement Steps

Refinement using this invariant proceeds as follows:

` W ŒN > 0; N 2 Œ2`; 2`C1/�

v fStrengthen postconditiong
` W ŒN > 0; inv ^ .n D 1/�

v fsequence ruleg
`; n W ŒN > 0; inv�I
`; n W Œinv; inv ^ .n D 1/�

v fassignment rule, since N 2 ŒN:20; 20.N C 1//g
n; ` WD N; 0I
`; n W Œinv; inv ^ .n D 1/�

v frepetition rule, variant is n � 1g
n; ` WD N; 0I
do n ¤ 1 !

`; n W Œ.n ¤ 1/ ^ inv; inv ^ 0 � n � 1 < n0 � 1�

od

v fassignment rule (justified below)g
n; ` WD N; 0I
do n ¤ 1 !

n; ` WD b n
2 c; ` C 1

od

Note that n�1 instead of n was used as the variant. This is because, by convention,
the variant is bound from below by 0, while n would be bound from below by 1.
However, it is not necessary to abide by the convention—everything still works if
you do not.

3.6.3 Justifying the Assignment

The details of the justification for the assignment in the loop are not as
straightforward as one might initially believe. (We leave aside a discussion of
the variant part, since that is straightforward.) Since integer division is involved, we
have to assume that rounding down always takes place. We have to therefore prove
that .n ¤ 1/ ^ inv V invŒn; `nb n

2 c; ` C 1�. We proceed as follows, where we assume
that n

2 is a real value:

86 3 Simple Examples

invŒn; `nb n
2 c; ` C 1�

� fExpand invg
.N 2 Œn:2`; .n C 1/:2`/Œn; ` n b n

2 c; ` C 1�

� fSubstituteg
N 2 Œb n

2 c:2`C1; .b n
2 c C 1/:2`C1/

� fFocus on the lower bound: re-arrange termsg
N 2 Œ.b n

2 c/:2:2`; .b n
2 c C 1/:2`C1/

W fSince b n
2 c:2 � n—see Sect. 3.6.4g

N 2 Œn:2`; .b n
2 c C 1/:2`C1/

� fFocus on the upper bound: re-arrange termsg
N 2 Œn:2`; .b n

2 c C 1/2:2`/

� fLetting b n
2 c D n

2 � ı, where ı D 0 _ ı D 1
2 / g

N 2 Œn:2`; . n
2 � ı C 1/2:2`/

� fAlgebrag
N 2 Œn:2`; .n C 2.1 � ı//:2`/

W fSince .n C 2.1 � ı// � .n C 1/—see Sect. 3.6.4g
N 2 Œn:2`; .n C 1/:2`/

� fDefinition of invg
inv

3.6.4 Strengthening Predicates by Decreasing Ranges

In two places in the above derivation, we used the notation X W Y to indicate that
a predicate X is weaker than another predicate Y . The predicate X had the form
N 2 Œbot; top/ and Y had the form N 2 Œbot 0; top0/. Clearly if the range in Y is
smaller than the range in X , then X is indeed weaker than Y , i.e. X W Y . It is also
clear that the range in Y is indeed smaller than that in X if bot � bot 0, and/or if
top � top0. We show that this indeed holds in each of the relevant instances in the
derivation.

In the first of these two instances, we had

N 2 Œ.bn

2
c/:2:2`; .bn

2
c C 1/:2`C1/ W N 2 Œn:2`; .bn

2
c C 1/:2`C1/

Since it is easy to see that .b n
2 c/:2 � n, and therefore that .b n

2 c/:2:2` � n:2`, the
bottom limit of the range has increased (or stayed the same), and thus the W is
justified.

3.6 Integer Logarithm Approximation 87

In the second instance, we had

N 2 Œn:2`; .n C 2.1 � ı//:2`/ W N 2 Œn:2`; .n C 1/:2`/

Since 2.1 � ı/ either evaluates to 1 (when ı D 1
2) or to 2 (when ı D 0), it follows

that n C 2.1 � ı/ � n C 1, and therefore that .n C 2.1 � ı//:2`/ � .n C 1/:2`. Thus, in
the second case, the top limit of the range has decreased (or stayed the same), and
hence the W is justified.

In summary, then, the derivation shows that

inv V invŒn; `nbn

2
c; ` C 1�

thus justifying the refinement of the loop’s body to the assignment n; ` WD b n
2 c; ` C 1

3.6.5 Discussion

A lot of effort seems to have gone into deriving the following apparently rather
simple algorithm:

fN > 0g
n; ` WD N; 0

Ido i ¤ 1 !
n; ` WD b n

2 c; ` C 1

od
fN 2 Œ2`; 2`C1/g

Of course, things always seem easier in hindsight. Without our formal approach,
you would no doubt have been able to work out the basic principle of successively
halving the original value of N . However, getting the initialisation values and
termination condition of the loop right, tends to be rather error-prone. Moreover,
our very formal reasoning has at least left us with an assurance that the algorithm is
correct in terms of its pre- and postconditions.

It is less certain that the algorithm in fact delivers the best integer approximation
of log2.N /. The claim is only true if our notion of best co-incides with the
postcondition, N 2 Œ2`; 2`C1/, which effectively results in an ` such that N � 2` � 0.

For example, if N D 1; 023, our algorithm would determine ` to be 9, so that
1; 023 2 Œ29; 210/ and 1; 023 � 29 D 1; 023 � 512 D 511 � 0. However, most people
would regard 10 as being a better integer approximation of log2.1; 023/

88 3 Simple Examples

Thus, it could be argued that in such cases it would be better to increase the
algorithm’s final value of ` by 1, even if that meant that N � 2` < 0. Specifically, we
would want to increase ` by 1 if N was closer to 2`C1 than to 2`, i.e. if ` were such
that

.N � 2`/ > .2`C1 � N /

With some algebraic manipulation, it will be seen that this is equivalent to

N > 3:2`�1

Thus, some might wish to augment the derived algorithm as follows:

fN > 0g
n; ` WD N; 0

Ido i ¤ 1 !
n; ` WD b n

2 c; ` C 1

od
fN 2 Œ2`; 2`C1/g
I if .ŒN > 3:2`�1/ ! ` WD ` C 1

Œ� .ŒN � 3:2`�1/ ! skip
fi

Unfortunately, such a select command would significantly undermine the algo-
rithm’s efficiency. You might have noticed that the loop’s body can be implemented
extremely efficiently in machine code: it requires the execution of a right shift
instruction, and an increment instruction (generally executed in 1 clock cycle each).
Indeed, the derived algorithm amounts to counting the number of times an integer
word needs to be right-shifted in order to move its left-most 1 bit into the right-most
position of the word. The select command introduces the complexity of computing
3:2l�1. It is left to the reader as an exercise to derive an alternative algorithm which
relies on an additional variable and computes 2`�1 in that variable as part of the
existing loop.

As a final comment, we remark that the entire derivation can be generalised to an
algorithm to approximate the logarithm to the base b instead of 2. In that case, the
loop’s condition should no longer be n ¤ 1 but n � b. Additionally, the argument
justifying the assignment in the body has to be generalised. It is very similar to that
given above. However, ı D 0 _ ı D 1

b
_ : : : ı D .b�1/

b
. Details are left as an exercise.

3.7 Revision Exercise

1. Derive a linear search algorithm that does not assume certainty of a successful
search. Thus, the specification can be taken as: i W Œtrue; ..i � 0/) .Ai D x//�.

3.7 Revision Exercise 89

It will be seen that the algorithm has the same initializing assignment
statement as the linear search algorithm derived in this chapter, the same loop
body, and its derivation relies on the same invariant and variant. However, its
loop condition is different from the loop condition in the derived algorithm.

2. In answering the questions below, use Xr to indicate the reverse of array X and
Xr

Œi;j /
to denote the reverse of the subarray XŒi;j /.

a. Propose an invariant, a variant, and a postcondition for the following loop.

fA:len D B:leng
i WD 0I
do .i ¤ A:len/ !

BB:len�.iC1/; i WD Ai ; i C 1

od

b. Refine fA:len D B:leng B W S fPostg to code, where

Post , 8j W Œ0; A:len/ �
8<
:

Bj D Aj if AA:len�j C1 > 0;

Bj D 0 otherwise:

3. A student produces the following version of insertion sort:

pre fA:len > 0g
i; j WD 0; 0

Ido .i < A:len/ !
j WD i � 1

Ido .j � 0/ !
if .Aj > Ai / ! Aj C1 WD Aj fi
I j WD j � 1

od
Aj C1; i WD Ai ; i C 1

od
post fsorted.A/g

where the predicate sorted.A/ is defined as

sorted.A/ , 8x; y W Œx; y/ � .Ax � AxC1/ ^ .x < y/

Assume that the program’s precondition is correct.

a. In what way the definition of sorted.A/ deficient? Give an alternative. What,
if anything, is being assumed when the given definition for sorted.A/ (and
probably your improved version as well) is used as a postcondition to the
sorting program?

90 3 Simple Examples

b. Indicate which statement in the program could cause it to fail, and justify your
claim.

c. Redefine the body of the outer loop. Do this by deciding what the inner loop’s
postcondition should be. Rely on this postcondition to propose a suitable loop
invariant for the inner loop as well as a suitable inner loop condition. Then, in
the normal way, derive code to initialize and construct the inner loop.

4. Consider a program consisting of an “infinite” loop which reads in, as its first
statement, some integer value into variable v. Thereafter, a select statement
updates two arrays A and B of unspecified length, the updating happening as
described below. Code in the remainder of the loop is not relevant to this question,
since it does not change any of the variables that are mentioned. You may assume
the following:

• Before the execution of the select statement AŒ0;n/ contains, in sorted order, the
largest X% of the values read into variable v to date.

• Also before the execution of the statement array BŒ0;m/ contains the remaining
values that have been read into v.

• A routine insert.X; y/ is available that inserts a value y into an array X in its
correctly sorted position relative to other values already placed in the array X .

• A routine remove.X; i/ is available that removes the i th element from the array
X , copying A.iC1/ into Ai , A.iC2/ into A.iC1/, etc.

• No two values that are read into variable v are the same.

Propose a select statement to update the arrays A and B so that they retain their
properties with respect to the most recently read in value for v—i.e. AŒ0;n/ still
contains, in sorted order, the largest X% of the values read into variable v to date,
while array BŒ0;m/ still contains the remaining values that have been read into v.
You should invoke the insert and remove routines as appropriate in your select
statement. However, also include code to appropriately update the variables that
indicate the number of elements that have been placed into arrays A and B

respectively to date, namely n and m. Thus, do not assume that n and m are
updated by insert and/or remove. Do not use nested select statements in the select
statement that you propose.

5. Indicate what each of the following programs achieves. Do this by (a) suggesting
a loop invariant and (b) a variant for each of the programs. Then say what holds
after the loop terminates.

a.
fA:len > 0g
i; j WD 0; 1I
do .j ¤ A:len/ !

if Aj > Ai ! i; j WD j; j C 1

Œ� Aj � Ai ! j WD j C 1

fi
od

3.7 Revision Exercise 91

b.
fsorted.A/ ^ .A:len > 0/g
i; p WD 1; 1I
do .i ¤ A:len/ !

if Ai ¤ A.i�p/ ! i WD i C 1

Œ� Ai D A.i�p/ ! i; p WD i C 1; p C 1

fi
od

c.
fA:len > 0g
`; h; r; i WD 0; A:len; 0; 1I
do .i ¤ A:len/ !

if .Ar D Ai / ! i WD i C 1

Œ� .Ar ¤ Ai / !
if .h � `/ � .i � r/ ! r; i WD i; i C 1

Œ� .h � `/ > .i � r/ ! `; h; r; i WD r; i; i; i C 1

fi
fi

od

d.
fsorted.A/ ^ sorted.B/ ^ sorted.C /g
i; j; k; r WD 0; 0; 0; 0

Ido ..i ¤ A:len/ ^ .j ¤ B:len/ ^ .k ¤ C:len// !
if .Ai > Bj / ! j WD j C 1

Œ� .Bj > Ck/ ! k WD k C 1

Œ� .Ck > Ai / ! i WD i C 1

Œ� ..Ai D Bj / ^ .Bj D Ck// ! i; j; k; r; Dr WD i C 1; j C 1; k C 1; r C 1; Ai

fi
od

e.
f Pre: .r 2 Œ0; A:len// ^ .A:len > 0/ ^ mni.A; k/ ^ .sum.A/ D S/ ^ .r D R/ g
do .r ¤ 0/ !

if .k ¤ A:len � 1/ ! Ak; k WD Ak C 1; k C 1

Œ� .k D A:len � 1/ ! Ak; k WD Ak C 1; 0

fi
I r WD r � 1

od

where following definitions hold

92 3 Simple Examples

sum.A/ ,
A:len�1X

iD0

Ai

eq.AŒl;h// , 8i; j W Œl; h/ � Ai D Aj

mni.A; k/ , k 2 Œ0; A:len/ ^ eq.AŒ0;k// ^ eq.AŒk;A:len//

^ .k 2 Œ1; A:len/) .Ak�1 D Ak � 1//

6. Consider a non-empty sorted array of integers, A. Develop an O.A:len/ algorithm
that searches for two indices, i and j , in A such that Ai C Aj D 0. Assume that
i � j and call your invariant Inv.A; i; j /.

To cater for the possibility that no two such indices can be found, the following
code should be assumed immediately after the loop:

fInv.A; i; j / ^ :Gg
if .i � j / ! print.Indices are 00i 00 and 00j 00/

Œ� .i > j / ! print.“Indices not found”/

fi
fpost: .Ai C Aj D 0/ _ .8p; q W Œ0; A:len/ � ..Ap C Aq/ ¤ 0//g

7. Derive an algorithm for a printer to print a document in so-called booklet format,
using the guidelines given below.

• The document to be printed has n pages, where 4 � n � P:len, n is a multiple of
four, and P is an array to be used by the printing algorithm. (The assumption
that n is a multiple of four is intended to simplify this problem. In cases where
a document does not comply with this requirement, for the purposes of this
exercise it is assumed that the tail end of the document is “padded” with
enough blank pages to ensure that the multiple of four assumption holds.)

• The printer stores in P pointers that reference pages of the document to be
printed. Thus, for i D 0; 1; : : : .n � 1/, Pi refers to the i C 1st page.

• getSheet./ draws a blank sheet of paper into the printer for printing, and
ejectSheet./ returns a sheet of paper which is in the printer to the out-tray.

• printFront.Pi ; Pj / prints pages i C1 and j C1 on the front of the sheet of paper
(in landscape and in the given order: first page i C 1 then page j C 1).

• Similarly, printBack.Pi ; Pj / prints pages i C 1 and j C 1, but the back of the
sheet of paper.

• Booklet format means that four document pages are printed on each sheet of
paper. The pages are therefore printed in the following order:

– Pages 1 and n are printed onto the “front” of the first sheet of paper;
– Pages 2 and .n � 1/ are printed onto the “back” of this sheet of paper.
– Pages 3 and .n � 2/ are printed onto the “front” of the next sheet of paper.
– Pages 4 and .n � 3/ are printed onto the “back” of the next sheet of paper.
– etc.

3.7 Revision Exercise 93

• printed.PŒi;j // is a predicate asserting that pages i C1 to j (i.e. pages referenced
by the pointers in PŒi;j /) have been printed onto one or more sheets of paper in
booklet format.

• Your code should have a loop whose variant is .j � i/ and whose invariant is
printed.PŒ0;i// ^ printed.PŒj C1;n//

8. Assume that A is a non-empty array of integers. The subarray, AŒ`;h/, is to be
regarded as monotonically non-decreasing if and only if:

8<
:

h D ` C 1 or

h 2 Œ` C 2; A:len/ ^ 8j W Œ`; h � 1/ � Aj � Aj C1

i.e. a subarray is monotonically non-decreasing if and only if it either consists of
only one element, or it consists of two or more elements (perhaps extending to
the end of the array) where these elements are in non-descending order.

A developer has derived the algorithm below to find i such that the subarray AŒ0;i/

is the longest monotonically non-decreasing subarray in A that starts at A0.

i WD 1

Ido ..i ¤ A:len/ cand .Ai�1 � Ai // !
i WD i C 1

od

NB: In GCL, cand and cor denote “conditional and” and “conditional or”
respectively. In C++/Java, these correspond to the well-known short-circuit
operators && and k respectively. In the context above, cand will ensure that no
attempt is ever made to evaluate the non-existent entry AA:len.

Derive the above algorithm. Pay particular attention to the following:

• Formulation of pre- and postcondition
• Loop’s postcondition as an invariant and negated guard
• Loop initialisation
• Formulation of the variant
• Proof of loop body

Chapter 4
Intermediary Examples

This chapter provides further examples of the software correctness by construction
method. The examples are fairly diverse. They range from sorting in a specialised
context (the Dutch National Flag problem), discovering segmental properties of an
array (the longest segment and the longest palindrome problems), raster drawing
algorithms, the majority voting problem and an example from computational
geometry. It will be clear that conventional “hack into correctness” approaches to
software development would be hard-pressed to come up with correct versions of
these algorithms.

4.1 Dutch National Flag

Given an array, A, that contains an arbitrary number of objects marked as r , w and
b1 in some arbitrary order, sort the entries so that all the r’s come first, followed by
the w’s, followed by the b’s.

This is one of the many sorting algorithms, but it involves a rather specialised
case—namely there are only three possible entries (at most) to be sorted. It is a
well-known result in computation theory that the general sorting problem can at
best be carried out in O.n log n/ time. However, in this special case, it is possible to
sort in O.n/ time.

An easy and obvious way of doing this is to run through the array and count up
the number of r , w and b entries. Then one can simply over-write all the entries,
filling in as many r’s then as many w’s, and finally as many b’s as were determined
in the initial run. Although this occurs in O.n/ time, it in fact iterates through the

1These stand for red, white and blue—the colours of the Dutch National Flag, hence the title of
the subsection. However, they are also the colours of the French flag, the Tricolour, and some
francophone authors characterise the problem accordingly. This text should not be construed as a
display of bias towards any particularly country.

D.G. Kourie and B.W. Watson, The Correctness-by-Construction Approach
to Programming, DOI 10.1007/978-3-642-27919-5 4,
© Springer-Verlag Berlin Heidelberg 2012

95

96 4 Intermediary Examples

array twice. The classical algorithm to be developed below improves on this by
50%—i.e., the sorting can be done with a single iteration through the array. In any
case, this counting and overwriting approach would not work if the entries were
complex objects with multiple attributes other than the r , w and b attributes that
form the search basis.

Strictly speaking, in all sorting problems we should specify as part of our
requirements, that the entries in the sorted array must match the entries that were
originally in the array. Without this constraint, an array could be “sorted” by writing
arbitrary values into the array in sorted order! One way of specifying this would be
to have the following as part of the problem’s pre- and postcondition:

count.A; r/ D Nr ^ count.A; w/ D Nw ^ count.A; b/ D Nb; (4.1)

where count.A; x/ D Nx means that the number of x-entries in the array A is some
value, Nx. For the purposes of this present exercise, we will simply assume that this
always holds, both as part of the precondition and as part of the postcondition—
without specifying it explicitly.2

4.1.1 Formulating the Problem

In order to specify the problem more concisely, let us define two predicates. The
first (called c for “colour”) asserts that all the entries in the subarray AŒl;h/ are the
colour x:

Definition 4.1.1. c.A; l; h; x/ , 8i W Œl; h/ � .Ai D x/.

Recall that if the range referenced in the colour predicate is empty, then the
predicate is true. The colour predicate in Definition 4.1.1 is merely required to
assist in formally defining a second predicate, given in Definition 4.1.2. This second
predicate asserts that a certain interim state of sortedness of the array prevails. (The
predicate is called s for “sorted”.) It is formally defined as follows:

Definition 4.1.2.

s.A; l; h; wb; wt; bb/ , c.A; l; wb; r/ ^ c.A; wb; wt; w/ ^ c.A; bb; h; b/

^0 � l � wb � wt � bb � h � A:len:

2The interested reader may refer to Morgan’s book (p. 94) that provides a more sophisticated
approach to specifying the same thing, but in the general case where the values in the array are not
known a priori. He lays down in formal terms a requirement that says: if the array’s contents are
collectively regarded as a bag of items, then the sorted array must still represent the same bag.

4.1 Dutch National Flag 97

A
unknown

0

red

l

white

wb

unknown

wt

blue

bb

unknown

h A:len

Fig. 4.1 The most general state for predicate s.A; l; h; wb; wt; bb/

A
red

l= 0

white

wb

blue

wt = bb h = A.len

Fig. 4.2 A is sorted: s.A; 0; A:len; wb; wt; bb/ ^ .wt D bb/

The sorted predicate expresses the general scenario in Fig. 4.1, showing regions
of array A already sorted into red, white and blue, respectively, and regions where
no information is assumed about the colour. Here, wb stands for white/bottom, wt
stands for white/top and bb stands for blue/bottom.

The indices wb, wt and bb have been constrained to specific upper and lower
bounds in such a way as to allow for the possibility that—in the range of the sorted
items Œl; h/—there are

1. no reds in sorted position (i.e., wb D l); and/or
2. no whites in sorted position (i.e., wb D wt); and/or
3. no blues in sorted position (i.e., bb D h).

Clearly, if all these three conditions apply, and if l and h are 0 and A:len
respectively, then s is an assertion that the array is unsorted. It could also be the
case that A:len D 0, but even in this case, the array is to be construed initially as
unsorted.3 This is precisely what we require to specify our precondition.

On the other hand, if l and h correspond to 0 and A:len respectively, and wt D
bb, then we have arrived at the scenario depicted in Fig. 4.2 below—precisely our
required postcondition. (Note that by requiring wt D bb in the postcondition, we
are stating that it is impossible for the three conditions enumerated above to apply
simultaneously, unless the array is empty (A:len D 0). However, it is possible that
at most two of the three conditions may apply—i.e., that the array contains only one
colour.)

The problem can thus be specified as follows:

A; wb; wt; bb W Œs.A; 0; A:len; 0; 0; A:len/; s.A; 0; A:len; wb; wt; bb/ ^ .wt D bb/�:

3The claim that A is unsorted should be understood as an abbreviated way of saying that the extent
to which A may be sorted, has not yet been tested. It may be the case that, once the sortedness of
A is checked, it is found that it was fully sorted from the start. Even in the case of an empty array,
we initially construe it as unsorted. Once it is verified as being an empty array, then it is regarded
as sorted.

98 4 Intermediary Examples

A
red

l = 0

white

wb

unknown

wt

blue

bb h = A.len

Fig. 4.3 Predicate s.A; 0; A:len; wb; wt; bb/ to serve as invariant

All variables in the frame are allowed to change in the refined algorithm. This
includes the array, A, in that we can change its contents (e.g., by swapping contents
of various cells around).

4.1.2 Choosing the Invariant

The next step, of course, is to identify a loop invariant. If one thinks about
the problem, the invariant that suggests itself is one that expresses an interim
situation where some regions of the array are not sorted, but others are. One
could, theoretically, regard the scenario depicted in Fig. 4.1 as a generalised interim
solution. As another example, instead of assuming that the red and white regions
are contiguous as in that figure, we could allow for an additional unsorted region
between the red and white entries. However, there is no apparent advantage in
having more than one unsorted reason at any interim stage.

In the interest of keeping things simple, then, we limit ourselves to having one
unsorted region. The question then becomes: where should the unsorted region start
and end?

Let us suppose that the unsorted region is AŒbu; tu/. Since the bottom boundary
for the reds and the top boundary for the blues are always fixed (at indices 0 and
A:len respectively) there does not seem to be any sense in choosing bu as 0 or tu
as A:len. Rather, it makes more sense to regard the unsorted region as one that falls
somewhere between the top region of the already sorted whites, and the bottom
region of the already sorted blues. We therefore choose as our unsorted region
AŒwt; bb/.

The invariant condition is depicted in Fig. 4.3 and the invariant can then be
expressed as:

Definition 4.1.3. inv , s.A; 0; A:len; wb; wt; bb/.

At this point, it begins to look as if our Definition 4.1.2 was unnecessarily
general: it is never necessary to use an l in that definition other than 0, or an h

other than A:len. In the interests of simplicity, therefore, let us revise that definition
to the following:

Definition 4.1.4.

s.A; wb; wt; bb/ , c.A; 0; wb; r/ ^ c.A; wb; wt; w/ ^ c.A; bb; A:len; b/

^0 � wb � wt � bb � A:len:

4.1 Dutch National Flag 99

The problem specification is also revised accordingly to:

A; wb; wt; bb W Œs.A; 0; 0; A:len/; s.A; wb; wt; bb/ ^ .wt D bb/�

and the invariant becomes:

Definition 4.1.5. inv , s.A; wb; wt; bb/.

4.1.3 Refining the Specification

At this stage, we can carry out the refinement to code in the sequence of steps given
below.

A; wb; wt; bb W Œs.A; 0; 0; A:len/; inv ^ .wt D bb/�

v fsequence ruleg
A; wb; wt; bb W Œs.A; 0; 0; A:len/; inv�I
A; wb; wt; bb W Œinv; inv ^ .wt D bb/�

v fassignment rule: pre V invŒwb; wt; bbn0; 0; A:len� g
wb; wt; bb WD 0; 0; A:lenI
A; wb; wt; bb W Œinv; inv ^ .wt D bb/�

v frepetition rule: variant: bb � wtg
wb; wt; bb WD 0; 0; A:lenI
do .wt ¤ bb/ !

A; wb; wt; bb W Œinv ^ .wt ¤ bb/; inv ^ .0 � .bb � wt / < bb0 � wt0�

od

Since Awt can only be either red or white or blue, we can refine the specification for
the loop’s body to get the following:

A; wb; wt; bb W Œinv ^ .wt ¤ bb/; inv ^ .0 � .bb � wt/ < bb0 � wt 0�

v fselection rule; leave out frame variables to reduce clutterg
if .Awt D r/ ! Œinv ^ .wt ¤ bb/ ^ .Awt D r/; inv ^ .0 � .bb � wt / < bb0 � wt 0�

Œ� .Awt D w/ ! Œinv ^ .wt ¤ bb/ ^ .Awt D w/; inv ^ .0 � .bb � wt / < bb0 � wt 0�

Œ� .Awt D b/ ! Œinv ^ .wt ¤ bb/ ^ .Awt D b/; inv ^ .0 � .bb � wt / < bb0 � wt 0�

fi

v fassignment rule—to be justified laterg
if .Awt D r/ ! Awt; Awb ; wt ; wb WD Awb; Awt; wt C 1; wb C 1

Œ� .Awt D w/ ! wt WD wt C 1

Œ� .Awt D b/ ! Awt; Abb�1; bb WD Abb�1; Awt; bb � 1

fi

100 4 Intermediary Examples

4.1.3.1 Remarks About the Last Step

1. In the next subsection, for illustrative purposes, it will formally and rigourously
be shown that the third of the assignment statements in the three guarded
commands, is a legitimate refinement of the specification from which it was
derived. Here we offer an informal and intuitive sense of what the three
assignment statements achieve by considering Fig. 4.3.

• If Awt D r , then swap it out with Awb and increment both wb and wt. The first
guarded command assignment does this.

• If Awt D w, then simply increment wt. The second guarded command
assignment does this.

• If Awt D b, then swap it out with Abb�1 and decrement bb. The third guarded
command assignment does this.

2. The multiple assignments in the first and third guarded command could have been
expressed in at least two alternative ways. For example, in the first guard:

• Assume a swap statement and then have:

swap.Awb; Awt/I wb; wt WD wb C 1; wt C 1:

• Alternatively, overwrite elements in the array A, but retain the constraint in
(4.1) above:

Awb; Awt; wb; wt WD r; b; wb C 1; wt C 1:

4.1.4 Proving the Third Guard Command

It is appropriate to work through the full justification of at least one of the
assignments above. Let us consider the third guard, since it is arguably the most
complex. Working through the justifications for the other two guarded commands is
left as an exercise to the reader. The refinement step at issue is:

Œinv ^ .wt ¤ bb/ ^ .Awt D b/; inv ^ .0 � .bb � wt/ < bb0 � wt0�

v fassignment rule—to be justified laterg
Awt; Abb�1; bb WD Abb�1; Awt; bb � 1

To be convinced that the refinement is legitimate, we have to prove the proviso of
the assignment law, i.e., we have to show that:

inv ^ .wt ¤ bb/ ^ .Awt D b/ V

.inv ^ .0 � .bb � wt/ < bb0 � wt 0/ŒAwt; Abb�1; bbnAbb�1; Awt; bb � 1�: (4.2)

4.1 Dutch National Flag 101

Make the substitution relevant to the variant part, and consider the result in relation
to the conjuncts in the proviso that have a bearing on the variant. We have:

� � � .wt ¤ bb/ � � � V .0 � .bb � 1 � wt / < bb0 � wt0/:

It easily follows from this that the variant part of the consequent behaves as
expected. (Keep in mind that wt starts off as, and then remains, less than or equal
to bb.)

Recall that Definition 4.1.5 of the invariant is given in terms of Definition 4.1.4 of
the predicate s, which is, in turn, defined in terms of Definition 4.1.1. Let us expand
inv in terms of these definitions, before making the substitutions required in (4.2)
above.

inv

� fDefinition 4.1.3g
s.A; wb; wt; bb/

� fDefinition 4.1.2g
c.A; 0; wb; r/ ^ c.A; wb; wt; w/ ^ c.A; bb; A:len; b/^
0 � wb � wt � bb � A:len

� fDefinition 4.1.1g
8i W Œ0; wb/ � .Ai D r/^
8i W Œwb; wt/ � .Ai D w/^
8i W Œbb; A:len/ � .Ai D b/^
0 � wb � wt � bb � A:len

� fadding in two conjuncts that are tautologiesg
8i W Œ0; wb/ � .Ai D r/^
8i W Œwb; wt/ � .Ai D w/^
8i W Œbb; A:len/ � .Ai D b/^
0 � wb � wt � bb � A:len^
Awt D Awt0 ^ Abb�1 D A.bb�1/0

We now need to make the required substitutions, and to do so “simultaneously”.
That means, for example, that after substituting Awt with Abb�1, we may not try to
apply the Œbbnbb � 1� substitution to the index of Abb�1. Notice that only the third
universal quantifier conjunct is affected by the substitution. We get:

102 4 Intermediary Examples

invŒAwt; Abb�1; bbnAbb�1; Awt; bb � 1�

� fsubstitution is simultaneousg
.8i W Œ0; wb/ � .Ai D r// ^
.8i W Œwb; wt/ � .Ai D w// ^
.8i W Œbb � 1; A:len/ � .Ai D b// ^
.0 � wb � wt � bb � 1 � A:len/ ^
Abb�1 D Awt0 ^ Awt D A.bb�1/0

� freplacing back in terms of the original definitionsg
s.A; wb; wt; bb � 1/ ^ Abb�1 D Awt0 ^ Awt D A.bb�1/0

This means that we have to show that:

s.A; wb; wt; bb/ ^ .wt ¤ bb/ ^ .Awt D b/ V

s.A; wb; wt; bb � 1/ ^ Abb�1 D Awt0 ^ Awt D A.bb�1/0

The antecedent and consequent parts of the V relationship make the same claims
about the sortedness of the subarray regions that are sorted into red and white.
In addition, the antecedent asserts that AŒbb;A:len/ contains blue elements and that
Awt is also a blue element; while the consequent asserts that AŒbb�1;A:len/ contains
blue elements and that Abb�1 contains the content previously held by Awt. Taken
together, this means that the V relationship is valid. Thus, the multiple assignment
was justified.

4.1.5 Putting it All Together

wb; wt; bb WD 0; 0; A:lenI
do .wt ¤ bb/ !

if .Awt D r/ ! Awt; Awb; wt; wb WD Awb; Awt; wt C 1; wb C 1

Œ� .Awt D w/ ! wt WD wt C 1

Œ� .Awt D b/ ! Awt; Abb�1; bb WD Abb�1; Awt; bb � 1

fi
od

4.1.6 Discussion

The reader could be forgiven for believing that this derivation took a few long routes
to achieve something that turned out to be quite simple. In a sense, this is indeed the
case. However, we have deliberately decided not to polish up and shrink-wrap the
derivation too much. We have done this to emphasise that the process of constructing

4.2 Longest Segment 103

an algorithm is, in practice, an iterative one, even though textbooks may give the
impression that one is supposed to write everything down in a neat shrink-wrapped
fashion from the start. Here are some of the matters that could be considered as
superfluous.

Since l and h do not appear in either the precondition, postcondition or invariant,
it was only in retrospect that the predicate s, originally defined to include these
bounds, was revised. To have started off with the revised form would have been to
anticipate the shape of the pre- and postcondition and of the invariant predicates.
In particular, it would have anticipated that the subarrays Œ0; l/ and Œh; A:len/

should be empty in the invariant, and this is not an obvious insight when one
considers the problem for the first time. In not simplifying s, we intend to convey the
sense that new algorithms can truly be derived (even if one sometimes goes down
overspecified paths in trying to get to a solution), without somehow “first knowing
the answer” and then reverse-engineering a refinement calculus argument to pretend
that the algorithm was derived.

As an alternative to the invariant, we could have chosen the unsorted region to
lie between the top of the already sorted reds and the bottom of the already sorted
whites. Such an invariant will lead to an alternative solution to the one that was
derived. It would require that the definition of s should change slightly, using an rt
index to designate the top of the sorted reds, instead of a wt index to designated the
top of the sorted whites. The reader may find this alternative solution as an exercise.

It might also be felt that the proof given to justify the assignment used in the third
guard is unnecessary—that by merely looking at the various figures, one can see that
the multiple assignment is valid. Such claims are normally made with the wisdom
of hindsight. In this case, where the invariant was defined in terms of one predicate,
which was defined in terms of another, the informal reasoning might have left one
with an uncomfortable sense that something might have been missed—buried within
those definitions within definitions. By exposing the underlying definitions in our
formal argument, hopefully that sense of discomfort has been assuaged.

Finally, the reader is encouraged to walk through the algorithm for some
boundary conditions: for example A:len D 0 or A:len D 1. There is much scope
here for getting boundary conditions wrong, and this was an important consideration
in defining s. We made sure that we defined and dealt with semi-open intervals in a
clear and consistent manner throughout.

4.2 Longest Segment

There are a large variety of problems related to finding one or more segments in
an array that have some particular characteristic. Pattern matching problems are
one such group of problems. Even (linear/binary) search problems could be seen as
finding a segment of length one that has some sought-after value. Another group of
such problems are the so-called longest segment problems. Essentially the task is
to identify the longest segment (i.e., subarray) in an array that has a given property.

104 4 Intermediary Examples

A

0

all different

l h N

Fig. 4.4 Longest segment general idea

Unsurprisingly, there is also a class of shortest segment problems. Here we consider
the following longest segment problem.

Given an array, A, find the longest segment AŒl;h/ such that no two elements in
the segment are the same. For ease of reference, let A:len D N . We also assume
that the array is not empty, i.e., N > 0.

We present a solution to this problem as it was developed at our first attempt—
i.e., without any notion of reengineering the refinement “backwards” from a known
answer. Of course, to derive the algorithm does not forbid one from using intuition,
gut-feel, and from anticipating the general shape of the algorithm that you guess
will emerge. The derivation should be used to affirm that gut feel, and to determine
precisely the appropriate guards, loop conditions, instructions, etc. When necessary,
we might need to backtrack from our initial intuition and reconsider another line of
development.

4.2.1 Formulating the Problem

In the present case, what we hope to identify is the maximum length segment, AŒl;h/

whose elements are all different, as represented in Fig. 4.4.
We may anticipate a loop based on an index i , that runs through the array starting

at 0 and ending at N . At the end of every iteration of the loop, we expect a picture
similar to the one above, in that AŒl;h/ is guaranteed to be the required maximum
length segment up to that point of processing. (We might intuitively anticipate that
some or other decision has to be made during each iteration in order to check
whether the maximum length segment should change; we might begin to build up an
intuition of how the change should be made, etc. However, at this stage, one should
“separate concerns” and leave those matters for later, when we need to develop the
body of our loop. If necessary, we can always retrace our steps.)

At this point, it would be useful to define some notation to help us express our
needs. In particular, it would be helpful to have predicates that express the following
notions:

1. All the elements of some subarray are different;
2. A subarray whose elements are all different is the maximum length such subarray

within a larger subarray.

To this end, define the following predicates:

4.2 Longest Segment 105

Definition 4.2.1. d.A; l; h/ , 8i; j W Œl; h/ ^ .i ¤ j / � .Ai ¤ Aj /.

Note that if AŒl;h/ is a segment with one or zero elements, then the range of the 8
quantifier is ∅ and thus d.A; l; h/ is true.

Definition 4.2.2.

maxd.A; l; h; p; q/ , .l 2 Œp; q// ^ .h 2 Œp; q// ^ d.A; l; h/ ^
8i; j W Œp; q/ � .d.A; i; j / H) .j � i � h � l//:

Of course, maxd.A; l; h; p; q/ is intended as a predicate that asserts that AŒl;h/ is a
largest subarray of different elements in the subarray AŒp;q/. Once again, it should be
noted that when the range of 8 quantifiers reduces to ∅, then the predicate evaluates
to true, i.e.:

8.l 2 Œ0; N // � maxd.A; l; l; l; l/ D maxd.A; l; l C 1; l; l C 1/ D true:

Note, however that maxd.a; l; l; l; l C 1/ D false because an empty subarray is not
the largest subarray in a subarray of length 1. Also note, in passing, that maxd at
these boundaries (e.g., maxd.A; l; l; l; l/) would not be defined if the assumption
A:len D N > 0 did not hold, i.e., if N D 0.

4.2.2 A First Attempt at Refinement

Clearly, we would like to end up with values for l and h such that maxd.A; l; h,
0; N / is true—this is precisely the postcondition to the problem. Let us then start
with the problem specification and refine it in the now familiar way, as follows,
where maxd.A; l; h; 0; i/ is used as the invariant:

l; h W ŒN > 0; maxd.A; l; h; 0; N /�

v frewriting bounds and introducing new frame variableg
l; h; i W ŒN > 0; maxd.A; l; h; 0; i/ ^ i D N �

v fsequence rule with mid D maxd.A; l; h; 0; i/g
l; h; i W ŒN > 0; maxd.A; l; h; 0; i/�I l; h; i W Œmaxd.A; l; h; 0; i/; maxd.A; l; h; 0; i/ ^ i D N �

v fassignment rule: .N > 0/ V max.A; 0; 1; 0; 1/ � trueg
l; h; i WD 0; 1; 1 I l; h; i W Œmaxd.A; l; h; 0; i/; maxd.A; l; h; 0; i/ ^ i D N �

v frepetition rule, variant is N � ig
l; h; i WD 0; 1; 1 I
do .i ¤ N / !
l; h; i W Œmaxd.A; l; h; 0; i/ ^ .i ¤ N /; maxd.A; l; h; 0; i/ ^ .i0 < i � N /�

od

106 4 Intermediary Examples

A
investigated

0

d(A; l; h)

l

investigated

h

not investigated

i N

Fig. 4.5 Longest segment interim status

A
investigated

0

d(A;l;h)

l h

¬d(A; r − 1; i)

r − 1

d(A;r;i)

r

not investigated

i N

Fig. 4.6 The revised invariant scenario

By this time the reader should be thoroughly familiar with this sequence of
refinement steps. Nevertheless, each step should still be carefully checked, ensuring
that proviso’s are valid in the case of assignments, etc. Hubris and high-handed self-
confidence lie at the heart of most bugs!

Note that correctness arguments would be considerably complicated if we had
to allow for the possibility of an empty array. In such a case, the specification’s
postcondition would be required to indicate appropriate values to assign for l and h

if N D 0. Since N > 0 is a precondition of our specification, the matter does not
arise—there will always be longest segment of different values—Œ0; 1/ in the case
where N D 1.

The challenge now is to refine the specification that forms the loop’s body.
The general picture one might have in mind is probably something like the one
in Fig. 4.5.

Clearly, to progress, we need to check whether the invariant will be violated if
we increment i . If the invariant will be violated, then we need to do something as
part of the loop body to restore it. We reason as follows:

Our invariant assures us that even though there may be one or more subsegments
in the range Œ0; i/ in which the elements are all different, the length of no single such
subsegment will exceed .h � l/.

Of the set of such subsegments, the length of only one of them can possibly be
extended as a result of inspecting the value of Ai , namely the longest subsegment
that starts at some value less than i , say r , and extends to i (excluded)—i.e., a
segment for which (d.A; r; i/ ^ :d.A; r � 1; i// holds.4

Thus, our picture can be augmented as in Fig. 4.6. This figure should not mislead
the reader. It depicts a general scenario—one in which certain boundary situations
are obscured. Specifically, the figure obscures the following special situations:

4The two terms in the conjunct are necessary. The first says that all elements in the subsegment
are different. The second asserts that the length of the subsegment of different elements cannot be
enlarged by starting that subsegment one position earlier.

4.2 Longest Segment 107

• The figure does not indicate whether or not it is possible that r 2 Œl; h/. In
general, there is no reason to suppose that this may not be the case. Indeed, in
starting off the algorithm, it is hard to see how r can be anything other than the
initial value of l and i be the same as h. In general, therefore, we shall allow
these boundaries to be in the ranges:
.0 � l � r/ ^ .l < h � i � N / ^ .r < i/:

• The characterisation of interval Œr; i/ we gave earlier, namely, .d.A; r; i/ ^
:d.A; r � 1; i// is only reasonable when r > 0. A more precise description
of this interval is: (d.A; r; i/ ^ .r > 0 H) :d.A; r � 1; i/// .

Subject to these two special situations we note that if d.A; r; i/ is true and Ai is
different from all elements in AŒr;i/, then d.A; r; i C 1/ holds. In such an event, it
may be necessary to update the values of l and h to r and i respectively, depending
on how .i C 1 � r/ and .h � l/ compare. On the other hand, if d.A; r; i/ is true and
Ai is the same as some element in AŒr;i/, then d.A; r; i C 1/ will be false. We can
then update r to a new value for which d.A; r; i C 1/ will hold. Note that there will
always be such an r , since, in the limiting case, d.A; r; i C 1/ is true when r D i .

Having reflected on these matters, the reader may reach the same conclusion that
we did, namely, that our previous invariant and refinement process should perhaps
account for the value of r as well—i.e., it would seem appropriate that a variable, r

is in the invariant whose value determines d.A; r; i/ as in the above figure.
Without going into detail, we note in passing that a naı̈ve developer may decide

that it is not absolutely necessary to keep such an updated value of r , since one
could determine r afresh as part of the body of the loop that we have not yet
refined. However, if one thinks about this carefully, it becomes clear that a double
loop would then be needed to determine r—a double loop which would be part
of the as yet unrefined body of the loop already derived. This would clearly be an
unnecessarily inefficient, if not complicated, solution. We will not pursue the matter
further here, but move on to a revised attempt to develop the algorithm, this time
bringing r into the picture along the lines outlined above.

4.2.3 A Revised Attempt at Refinement

In our second attempt, we need to initialize r outside the outer loop and appropri-
ately update it in the loop’s body. Let us see where this idea takes us.

Begin by redefining the predicate, maxd , which was used as the basis for an
invariant, giving it the additional parameter, r . We thus define the predicate maxd0
with a fifth parameter in terms of the previous predicate, maxd , that has four
parameters, as follows:

Definition 4.2.3.
maxd 0.A; l; h; p; q; r/ , maxd.A; l; h; p; q/ ^ d.A; r; q/ ^ .r > 0 H) :d.A;

r � 1; q//.

108 4 Intermediary Examples

The intention is to use this new predicate as the basis for our new invariant.
The revised problem is now easily specified and refined in exactly the same

way as before, except that we also include r as a frame variable, and initialize
it to 0. Apart from now taking maxd 0.A; l; h; 0; i; r/ as the invariant, instead of
maxd.A; l; h; 0; i/, nothing else changes in the refinement process, so we end up
with the following loop body to be refined:

l; h; r; i WD 0; 1; 0; 1 I
fInvariant: maxd 0.A; l; h; 0; i; r/g
do .i ¤ N / !

l; h; r; i W Œmaxd 0.A; l; h; 0; i; r/ ^ .i ¤ N /; maxd �0.A; l; h; 0; i; r/ ^ .i0 < i � N /

od

fInvariant: maxd 0.A; l; h; 0; i; r/ ^ .i D N /g

The previous discussion suggests that we should drive towards developing an inner
loop, based on an index, say j , that decrements from i down to r , with d.A; j; i C1/

as an invariant. The loop should terminate when j D r , or when j D 0 or when
Ai D Aj �1 is discovered, whichever occurs first.

Note, however, that r has been initialised to 0 and can only increase. Also, if one
of the loop’s termination conditions is the conjunct j D r , then if j ever reaches
0, it can safely be assumed that r D 0 as well. In other words, the postcondition,
Qinner, of this inner loop could be stated as the following:

Qinner , d.A; j; i C 1/ ^ ..j D r/ cor .Ai D Aj �1//:

The conditional or, cor, is equivalent to short-circuit evaluation, and is intended to
prevent an illicit attempt to reference Aj �1 when j D 0.

Decrementing j in a loop that preserves this invariant leads to one of the
following situations:

• If—before j is decremented down to r—it is found that Ai D Aj �1 while
d.A; j; i C 1/ is held invariant, then d.A; r; i C 1/ will be false. In this case
r has to be updated to the new value, j , so that d.A; r; i C 1/ holds.

• If j has been decremented down to a point where j D r , then this would
mean that we have established that Ai is different from all elements in AŒr;i/,
and therefore that d.A; r; i C 1/ holds. There is no need to change the value of r .

Once establishing that d.A; r; i C1/ holds, we need to check whether it is necessary
to update the values of l and h to r and i C 1 respectively, depending on how
.i C 1 � r/ and .h � l/ compare. We would also have to increment the value of i to
make sure that the variant decreases.

With that fairly broad description of the task at hand as background, we now
outline the sequence of steps to be followed in refining the loop’s body:

l; h; r; i W Œmaxd 0.A; l; h; 0; i; r/ ^ .i ¤ N /; maxd 0.A; l; h; 0; i; r/ ^ .i0 < i � N /�:

4.2 Longest Segment 109

The following layout shows, in Hoare triple notation, the refinement after successive
applications of the sequence rule, where S , representing the outer loop’s body,
is expanded to the sequence of commands denoted by S1I S2I S3. Actually, the
sequence rule has been applied twice, first expanding S to S1I S 0 and then
expanding S 0 to S2I S3.

fmaxd 0.A; l; h; 0; i; r/ ^ .i ¤ N /g l; h; r; i W S fmaxd 0.A; l; h; 0; i; r/ ^ .i0 < i � N /g
v fSuccessive sequence rule applicationsg

f.maxd 0.A; l; h; 0; i; r/ ^ .i ¤ N /g
j W S1

f.maxd 0.A; l; h; 0; i; r/ ^ .i ¤ N / ^ d.A; j; i C 1/ ^ ..j D r/ cor .Ai D Aj�1//g
„ ƒ‚ …

Qinner

I r W S2

f.maxd.A; l; h; 0; i/ ^ .i ¤ N / ^ d.A; r; i C 1/ ^ .r > 0 H) :d.A; r � 1; i C 1//g
I l; h; i W S3

f.maxd 0.A; l; h; 0; i; r/ ^ .i0 < i � N /g
The pre- and postcondition Hoare triples involving S1, S2 and S3 are now dis-

cussed separately. Note that in each case, frame variables have been very specifically
identified to indicate which variables are to change at each refinement step.

• The frame of S1 has been assigned the new frame variable, j . It is the task of S1

to determine j such that Qinner , d.A; j; i C 1/ ^ ..j D r/ cor .Ai D Aj �1//

is attained, while preserving all other conjuncts in the precondition, namely
maxd 0.A; l; h; 0; i; r/ ^ .i ¤ N /.

• S2 is concerned to set r to the value of j , since the precondition affirms that
d.A; j; i C 1/. However, in so doing, we no longer have the certainty that the
loop’s invariant, maxd0.A; l; h; 0; i; r/, remains intact. Instead, we have to revert
to the somewhat weaker postcondition, namely that maxd.A; l; h; 0; i/.

• S3 is used to reestablish the invariant maxd 0.A; l; h; 0; i; r/ and also to ensure
that the variant is decremented so that .i0 < i � N / holds. (Actually, this
latter objective could have been achieved in a separate step, or by invoking the
“following assignment” rule.

In elaborating S1, we will only change the value of j , and therefore, for simplicity
will only write down predicates that relate to j . S1 can therefore be refined as
follows:

ftrueg j W S1 fQinnerg
v fSequence ruleg

ftrueg
j W S11

fd.A; j; i C 1/g
I j W S12

fQinner � d.A; j; i C 1/ ^ ..j D r/ cor .Ai D Aj �1//g

110 4 Intermediary Examples

v fAssignment rule: true V d.A; j; i C 1/Œjni �g
ftrueg

j WD i

fd.A; j; i C 1/g
j W S12

fQinner � d.A; j; i C 1/ ^ ..j D r/ cor .Ai D Aj �1//g
v fRepetition rule. Invariant: fd.A; j; i C 1/g. Variant: j � rg

ftrueg
j WD i

I do ..j ¤ r/ cand .Ai ¤ Aj �1// ! j WD j � 1 od

fQinner � d.A; j; i C 1/ ^ ..j D r/ cor .Ai D Aj �1//g
In the last refinement step shown, we have skipped several details. Clearly, S12 is
envisaged as a loop with invariant d.A; j; i C 1/ that had been established by S11.
The specification of this loop’s body, according to the refinement rules would be:

j W Œd.A; j; i C 1/ ^ ..j ¤ r/ cand .Ai ¤ Aj �1//; d.A; j; i C 1/ ^ 0 � .j0 � r/ < .j � r/�:

We leave it to the reader to verify that the proviso holds for applying the assignment
j WD j � 1 as a refinement to this specification.

Elaborating S2 merely involves setting r to the value of j , i.e., the assignment
statement r WD j . (We ignore the possibility that r already has the value j —using a
select statement to only carry out the assignment if r ¤ j gains nothing in accuracy,
and merely introduces an element of inefficiency.) To argue that this assignment is
legitimate, we note that the postcondition of S2 where the substitution Œrnj � is
made, is given by

f.maxd.A; l; h; 0; i/^.i ¤ N /^d.A; j; iC1/^.j > 0 H) :d.A; j �1; iC1//g:

Now the second and third conjuncts of this predicate identically match the second
and third conjuncts in S2’s precondition. Moreover, the precondition’s first con-
junct, maxd 0.A; l; h; 0; i; r/, is certainly stronger than postcondition’s first conjunct,
maxd.A; l; h; 0; i/. Thus, the proviso guaranteeing the legitimacy of this assignment
will be established if we can argue that:

maxd 0.A; l; h; 0; i; r/ ^ d.A; j; i C 1/ ^ ..j D r/ cor .Ai D Aj �1//

V .j > 0 H) :d.A; j � 1; i C 1//:

To verify that this “implies everywhere” relationship holds, we need to consider two
cases: j D r and j ¤ r (actually j > r). In the first case, note that the predicate
maxd 0 contains a conjunct .r > 0 H) :d.A; r � 1; i//. Thus

4.2 Longest Segment 111

maxd 0.A; l; h; 0; i; r/ ^ .j D r/ V .j > 0 H) :d.A; j � 1; i C 1//:

In the second case (which, by virtue of the cor operator, we only need to consider
when j > 0), it easily follows that .Ai D Aj �1/ V :d.A; j � 1; i C 1/.

Finally, a select statement is required for S3 to reestablish the invariant, so that
AŒl;h/ remains the longest segment of different values in the range AŒ0;i/. Using
P and Q to represent the pre- and postconditions, respectively, the following
refinement is that appropriate:

f.maxd.A; l; h; 0; i/ ^ .i ¤ N / ^ d.A; r; i C 1/ ^ .r > 0I H)I :d.A; r � 1; i C 1//g
l; h; i W S3

f.maxd 0.A; l; h; 0; i; r/ ^ .i0 < i � N /g
v fThe select ruleg

if ..h � l/ � .i C 1 � r// ! f..h � l/ � .i C 1 � r// ^ P g l; h; i W S31 fQg
Œ� ..h � l/ < .i C 1 � r// ! f..h � l/ < .i C 1 � r// ^ P g l; h; i W S32 fQg
fi
v fAssignment rule applied twiceg

if ..h � l/ � .i C 1 � r// ! i WD i C 1

Œ� ..h � l/ < .i C 1 � r// ! i; l; h WD i C 1; r; i C 1

fi

The proviso of the select rule clearly holds, since the disjunction of the guards
evaluates to true. Formal verification of the assignments in the guard statements is
left as an exercise.

4.2.4 Putting it All Together

The result of the entire derivation is the following algorithm:

l; h; r; i WD 0; 1; 0; 1

Ido .i ¤ N / !
I j WD i

Ido .j ¤ r cand Aj �1 ¤ Ai / ! j WD j � 1 od
I r WD j

I if ..h � l/ < .i C 1 � r// ! i; l; h WD i C 1; r; i C 1

Œ� ..h � l/ � .i C 1 � r// ! i WD i C 1

fi
od

This can be slightly refactored by incrementing i only once before testing whether
new values for l and h are required:

112 4 Intermediary Examples

l; h; r; i WD 0; 1; 0; 1

Ido .i ¤ N / !
I j WD i

Ido .j ¤ r cand Aj �1 ¤ Ai / ! j WD j � 1 od
I r; i WD j; i C 1

I as ..h � l/ < .i � r// ! l; h WD r; i sa
od

4.2.5 Discussion

This problem’s solution is somewhere on the borderline between demanding
a correctness-by-construction approach, and being amenable to a hacking-into-
correctness approach. It would be interesting to know how long it would take the
normal programmer to derive this algorithm in “hacking mode”: sitting at a terminal
and trying various experiments, deriving some sort of solution, checking it with a
few test cases of boundary data, and iterating ahead until it was considered that the
answer is correct. In saying this, we are not suggesting that the above refinement
process was worked out very quickly. In fact, it took several hours. But we suspect
that the algorithm could have been semi-formally derived by refinement (without all
the didactic prose given above) somewhat more quickly than in hacking mode. What
is more, one invariably has far greater confidence in the algorithm’s correctness after
(semi-)formally deriving it than if a solution had been hacked out in edit–compile–
test cycles.

In practice one ought to be pragmatic about the degree of rigour deployed in
refining down to code: employ enough formality to ensure that you derive a correct
solution, without needing to justify every proviso of every assignment, for example,
down to the fullest level of detail.

Nevertheless, we believe that for novices to this kind of material, it is a good idea
to devote a lot of time to carrying out formal proofs rigourously, despite the amount
of writing that needs to be done. Why? Because we believe that by experiencing the
“pain” of deriving as much as possible with the fullest rigour possible, one comes
to a deeper appreciation and insight of the kinds of mistakes that are possible, and
the range of alternative paths that might have been taken.

4.3 Palindromes

Here is another instance of the longest segment problems: Given arrays A and M ,
both of length N > 0, for i W Œ0; N / store j in Mi where AŒi;iCj / is the longest
palindrome in array A that starts at position i .

4.3 Palindromes 113

4.3.1 The Outer Loop

For any k W Œ0; N /, let lpal.A; k/ denote the length of the longest palindrome in A

that starts at k. Let us take the liberty of writing down the outer loop immediately,
giving an invariant in terms of lpal, as well as the variant for this loop. We
also provide a number of relevant embedded assertions that should hold in the
code. These assertions can also be seen as pre- and postconditions in Hoare triple
specifications for different parts of the code.

i WD 0I
finv.i/ , 8k W Œ0; i/ � Mk D lpal.A; k/g
fvariant , N � ig
do i ¤ N !

finv.i/ ^ i ¤ N g
j W S I
fj D lpal.A; i/g
i; Mi WD i C 1; j

finv.i/g
od
finv.i/ ^ i D N g

4.3.2 Formulating the Problem

Our task is to make explicit the code represented in this algorithm by the symbol
S , where j is a frame variable. In doing so, we shall express S as a specification in
Morgan’s notation. Note that the precondition of S is the conjunction of the outer
loop’s invariant and the outer loop’s guard. In the interest of economizing on the
notation, we shall keep this in mind without writing these predicates out explicitly,
using true as the precondition instead. The problem can therefore be specified as
follows:

j W Œtrue; j D lpal.A; i/�:

To further refine the specification, it is useful to aid intuition by drawing pictures
to represent the scenario we are developing. Start with that which is required in the
problem, and try to generalize it to reflect an interim phase of the code’s evolution.
This has been done several times before in this text, and often aids in the formulation
of sensible invariants for loops.

Before drawing these pictures, let us first define a few predicates that will be
useful for annotating the pictures. To this end, let pal.A; i; j / be the assertion that
AŒi;iCj / is a palindrome—i.e., that there is a palindrome of length j starting at Ai

and ending at AiCj �1.

114 4 Intermediary Examples

A
M[0,i) found

0

pal (A; i; j)

i
lpal (A; i) = j

nopal (A; i; j)

i + j N

Fig. 4.7 AŒi;iCj / is largest palindrome from i

A
M[0,i) found

0

matched

i

unmatched

i + k

matched

i + j − 1 − k

nopal (A; i; j)

i + j N

Fig. 4.8 AŒi;iCj / not yet established as largest palindrome from i

Let nopal.A; i; j / be the assertion that every subrange of A starting at index i

and having length .j C 1/ or more is not a palindrome, i.e.,

• the subrange AŒi;iCjC1/ , whose of length is .j C 1/, is not a palindrome, and

• the subrange AŒi;iCjC2/ , whose of length is .j C 2/, is not a palindrome and

. . . and

• the subrange AŒi;N /, whose of length is .N � i /, is not a palindrome.

Formally, these assertions may be defined as follows:

pal.A; i; j / , 8k W Œ0; j / � AiCk D AiCj �1�k

nopal.A; i; j / , 8k W Œj C 1; N � i/ � :pal.A; i; k/:

The final state of the problem we are considering is represented in Fig. 4.7. The
figure shows that it has been established that AŒi;iCj / is a palindrome, but that
nothing larger than that, starting at i constitutes a palindrome. This means that
lpal.A; i/ D j . An interim scenario en route to this final scenario is represented
in Fig. 4.8.

In this figure, it has already been established that there is no palindrome starting
at i that is larger than j . In trying to determine whether AŒi;iCj / is a palindrome,
the first k elements have been tested, and found to match “in palindrome fashion”
with the last k elements of the subarray. Here, we have let matched.A; i; j; k/ be the
assertion that AŒi;iCk/ matches “in palindrome fashion” with AŒiCj �k;iCj /. By this,
we mean that the following k equalities have been established: Ai D AiCj �1 and
AiC1 D AiCj �1�1 and � � � AiCk�1 D AiCj �k and Formally, we may write:

matched.A; i; j; k/ , 8` W Œ0; k/ � AiC` D AiCj �1�`:

Clearly, every time a match is found, the value of k should be incremented, thus
decreasing the distance between the index on the left, i C k, and the index on the

4.3 Palindromes 115

right, i C j � 1 � k, by two units. This matching should continue until a point is
reached where the index from the left meets or crosses over with the index from the
right, i.e., until:

.i C k � i C j � 1 � k/ � .2k C 1 � j /: (4.3)

There is quite a subtle point to note here about the equality case. The left and right
indices point to elements which are next to be tested for equality. When equality
holds in (4.3), then we have a state where an element is still to be tested for equality
with itself. Clearly, this will hold and no formal test for equality is necessary. Thus,
if 2k C 1 D j , then we will have established that the subarray AŒi; i C j / is indeed
a palindrome, without needing to carry out a final check to see whether AiCk D
AiCj �1�k.

4.3.3 Refining the Specification

Figure 4.8 suggests the appropriate invariant to use in the refinement. Based on these
figures, we can rewrite our specification and then refine it as follows:

j W Œtrue; j D lpal.A; i/�

� fRewriting the postcondition in a more explicit formg
j W Œtrue; pal.A; i; j / ^ nopal.A; i; j /�

v fStrengthening the postcondition and introducing k into frame g
j; k W Œtrue; matched.A; i; j; k/ ^ .2k C 1 � j / ^ nopal.A; i; j /�

� finv , matched.A; i; j; k/ ^ nopal.A; i; j /g
j; k W Œtrue; inv ^ .2k C 1 � j /�

v fSequenceg
j; k W Œtrue; inv�I
j; k W Œinv; inv ^ .2k C 1 � j /�

v fAssignmentg
j; k WD N � i; 0I
j; k W Œinv; inv ^ .2k C 1 � j /�

v fRepetition. Variant: V , jN C .j � 2k � 1/g
j; k WD N; 0I
do .2k C 1 < j / !

j; k W Œinv ^ .2k C 1 < j /; inv ^ 0 � V.j; k/ < V.j0; k0/�

od

The choice of the variant requires some explanation. In reference to Fig. 4.8, it is
clear that k will be incremented for as long as matches are found between relevant

116 4 Intermediary Examples

items in A. Every such increment should let the variant decline. Since j � 2k � 1

will decline when k is incremented, the variant does indeed decline—provided j is
held constant.

However, the figure also suggests that if a match is not found, then k will have to
be reset to 0, thus incrementing the variant. This increment is maximally half of the
size of the array, N=2. On the other hand when k is reset to 0, it is also necessary
to decrement j by 1. To ensure that the variant declines, such a decrement by 1
of j should cause the variant to decline by at least N=2—i.e., to make up for the
variant’s increase as a result of k being set to 0. In the variant chosen above, a term
jN has been inserted. This term causes the variant to decline by N when j declines
1. Thus, if j decrements by 1 and k is reset to 0, the variant will still decline.

Turning now to the refinement of the loop’s body, we get the following:

j; k W Œinv ^ .2k C 1 < j /; inv ^ 0 � V.j; k/ < V.j0; k0/�

v fSelectiong
if AiCk D AiCj �1�k ! k WD k C 1

Œ� AiCk ¤ AiCj �1�k ! j; k WD j � 1; 0

fi

Again, we leave it as an exercise to fully prove that the provisos hold in the case of
each assignment.

4.3.4 Putting it All Together

Our final algorithm is thus as follows:

i WD 0I
finv.i/ , 8k W Œ0; i/ � Mk D lpal.A; k/g
fvariant , N � ig
do i ¤ N !

j; k WD N � i; 0 I
do .2k C 1 < j / !

if AiCk D AiCj �1�k ! k WD k C 1

Œ� AiCk ¤ AiCj �1�k ! j; k WD j � 1; 0

fi
od
fj D lpal.A; i/g
i; Mi WD i C 1; j

finv.i/g
od
finv.i/ ^ i D N g

4.4 Raster Lines 117

A
M[0,i) found

0

unmatched

i

matched

i + k

unmatched

i + j − 1 − k

nopal (A; i; j)

i + j N

Fig. 4.9 AŒi;iCj / not yet established as largest palindrome from i

4.3.5 Discussion

There is another approach to solving this problem, and it is suggested in Fig. 4.9.
The implication here is that we begin by finding a k such that i C k represents the
“middle” of the interval Œi; j /. We then decrement k down to 0 or until a match is
no longer found.

This approach might seem to be advantageous in that it produces, as a byproduct,
the lower bound for MiCk for the various values of k, since the region marked
“matched” in the figure will have been established as being a palindrome. However,
upon reflection, to do this book-keeping on M not only mixes concerns, but it ends
up without winning as much as it seemed to have promised. The reason is that,
even if the lower bound of say MiCk is known, once the loop has advanced i to
investigate the largest palindrome at the current index i Ck, it will still be necessary
to investigate the possibility of all palindromes larger than this lower bound. Nothing
is therefore gained by knowing a lower bound explicitly.

Furthermore, trying to identify the “middle” of the interval Œi; i C j / can be
error-prone and confusing. One has to account for whether there are an odd or
even number of elements in the interval and ensure that in all circumstances AiCk

and AiCj �1�k are the correct entries to be matched. Further investigation of these
matters is left as an exercise.

4.4 Raster Lines

We now turn attention to a problem in the domain of computer graphics: draw
the best approximation of a straight line between integer co-ordinates .x`; y`/ and
.xh; yh/ using the function draw.x; y/ which colours a pixel at x and y where x

and y are integers. (In the jargon of computer graphics: draw a raster line between
.x`; y`/ and .xh; yh/.) For simplicity, the problem is restricted to a line whose slope
is in the interval .0ı; 45ı/. It is easy to generalize the results for any other slope.

In [23] Gutknecht derived the solution to this problem in a correctness by
construction fashion to illustrate the educational benefits of this development
approach. The result is the famous Breshenham algorithm, normally presented in
Graphics courses.

At first sight, the solution to the problem seems clear. It is easy to use simple
secondary school geometry to determine the equation of a straight line between the

118 4 Intermediary Examples

�

�

��������������������

X0

y(X0) = Y0

X1

y(X1)

X2

y(X2)

X3

y(X3)

...

XN−1: : :

y(XN−1) = YN−1

Fig. 4.10 Raster line problem

two given points. It is also easy to determine from this equation, for any real-valued
x-co-ordinate, the corresponding real-value of the y-co-ordinate. It would seem that
all we need is a loop in which the integer values x`; x` C 1; x` C 2; : : : ; xh are caste
into real values, plug them into the equation to find the corresponding real-values of
y in each case, find the best integer approximation of y and invoke the draw.x; y/

method. However, real-valued arithmetic is inefficient in hardware and in graphics
applications, efficiency is at a high premium. The algorithm we derive executes in
integer-valued arithmetic only!

4.4.1 Formulating the Problem

It will be convenient to recast this problem slightly. The co-ordinates .x`; y`/ and
.xh; yh/ given in the initial formulation are will be seen as co-ordinates .X0; Y0/

and .XN �1; YN �1/ respectively, where X and Y are two arrays such that X:len D
Y:len D N � 2. Instead of invoking a function draw.x; y/ to colour pixels, we
shall simply store in .Xi ; Yi /; i D 1; : : : ; N � 2 the co-ordinates of the pixels that
need to be coloured. At the end, we will show that the resulting algorithm can easily
be transformed into one which invokes draw.x; y/ instead. The reason for relying
on array notation is to stay aligned with the derivations to date in this text.

If we are to colour in integer-valued pixels, it is clear that the X values are
separated by 1 unit from each other, i.e., that 8j W Œ1; N / � .Xj D X.j �1/ C 1/,
or alternatively:

8j W Œ0; N / � .Xj D X0 C j /:

The problem is to step through these X values and determine the corresponding
integer Y value.

The scenario shown in Fig. 4.10 should be interpreted as showing integer Xi

values on the horizontal axis that determine the real-valued y.Xi/’s, shown on the
vertical axis. These y values have to be approximated by appropriate integer values.

4.4 Raster Lines 119

Let dx , XN �1 � X0 and dy , YN �1 � Y0, respectively. From elementary
geometry, we know that the slope of the line is given by dy

dx
(which is a legitimate

expression because we have assumed throughout that dx > 0). The equation of the
line is therefore:

y.x/ D Y0 C .x � X0/
dy

dx
: (4.4)

Relying on Morgan’s general notation, the problem can be roughly specified as
follows:

X; Y W
�

.dx > 0/ ^ .dy > 0/ ^ dy

dx
< 1; post

�

;

where post can be informally stated as the following predicate:

8j W Œ0; N / � .j > 0 H) Xj D X.j�1/ C 1/ ^ .Yj D “the best integer approximation
of y.Xj / as determined from (4.4))”.

Notice the following about this specification:

• Per definition, Y0 is regarded as the best integer approximation of y.X0/ and
YN �1, as the best integer approximation of y.XN �1/. This can be seen by
plugging X0 and XN �1 respectively into (4.4): the result will be that y.X0/ D Y0

and y.XN �1/ D YN �1 respectively.
• The precondition is, in fact, implicitly also an invariant over all the code, since

it does not use any frame variables. In such circumstances, it is legitimate to use
the precondition in reasoning at any point about the code that has been developed
at that stage. This has been the case in several previous examples. For example, a
precondition for binary search was the sortedness of an array, which is invariantly
sorted. That fact was then used in reasoning about the code to be developed.

• In particular, at any point we may use the fact that dy

dx
< 1 (i.e., the slope is less

than 45ı) when reasoning about code. We shall see later that this is in fact an
important piece of information to use when refining to code.

• The postcondition requires each X value to be one unit larger than its predeces-
sor.

Let us now try to capture more precisely the meaning of “best integer-
approximated point”.

For any j W Œ0; N /, a reasonable way to round off real-valued y.Xj / to an integer-
value, Yj , is to choose Yj in such a way that:

jy.Xj / � Yj j � 1
2

� fdefinition of jzjg
� 1

2
� .y.Xj / � Yj / � 1

2

� fadding Yj to the inequalitiesg
Yj � 1

2
� y.Xj / � Yj C 1

2

120 4 Intermediary Examples

� fusing (4.4)g
Yj � 1

2
� Y0 C .Xj � X0/

dy

dx
� Yj C 1

2

� fmultiplying by 2dx to get rid of divisorsg
2Yj � dx � dx � 2Y0 � dx C 2.Xj � X0/dy � 2Yj � dx C dx

� fsubtracting 2Yj � dx and rearranging termsg
�dx � 2.Xj � X0/dy � 2.Yj � Y0/dx � dx

� fintroducing a new variable dj as a new conjunctg
.�dx � dj � dx/ ^ .dj D 2.Xj � X0/dy � 2.Yj � Y0/dx/

Thus, every .Xj ; Yj / co-ordinate to be determined must conform to this predicate—
a predicate that consists of three conjuncts, namely:

.�dx � dj / ^ .dj � dx/ ^ .dj D 2.Xj � X0/dy � 2.Yj � Y0/dx/:

Implicitly, d has been introduced as an auxiliary array variable. Its j th value, dj ,
has a specific value for each .Xj ; Yj / pair. (Later it will be seen that there is no need
for such array storage and we will simply overwrite dj when its previous value is
no longer necessary.)

To avoid non-determinism, let us decide to always choose Yj and dj so that the
lower bound for dj that is given above is always a strict inequality. Effectively,
therefore, we strengthen the above predicate to:

.�dx < dj / ^ .dj � dx/ ^ .dj D 2.Xj � X0/dy � 2.Yj � Y0/dx/:

Our previous postcondition can now be stated more formally, and more accu-
rately, as:

post , 8j W Œ0; N / � . .j > 0 H) Xj D X.j �1/ C 1/ ^
.�dx < dj � dx/ ^ .dj D 2.Xj � X0/dy � 2.Yj � Y0/dx/ /:

As an aside, note that it is not obvious—merely by inspecting post—to conclude
that for a given integer Xj there will be unique integer values for Yj and dj that
will satisfy post. At this stage, we remain open to the possibility that there may be
more than one pair of integer values for Yj and dj (or perhaps no pair of integer
values at all), and let the mathematics sort the matter out as we go along.

Also note that since X0 and Y0 are given, and since it is also given that dx > 0,
choosing d0 D 0 ensures that this predicate holds for .X0; Y0/.

4.4 Raster Lines 121

4.4.2 Deriving the Loop

It is now easy to see how we can use generalize post into an invariant, namely:

inv.i/ , 8j W Œ0; i/. .j > 0 H) Xj D X.j �1/ C 1/ ^
.�dx < dj � dx/ ^ .dj D 2.Xj � X0/dy � 2.Yj � Y0/dx/ /: (4.5)

Recalling that pre D .dx > 0/ ^ .dy > 0/ ^ dy

dx
< 1, and noting that the

array d should be included as a frame variable in our specification (since it will
be necessary to set and change d if we are to attain the invariant), we refine the
original specification in the now familiar fashion as follows:

X; Y; d W Œpre; post�

v fRewriting post and including i as a frame variableg
X; Y; i; d W Œpre; inv.i/ ^ .i D N /�

v fSequence rule to attain inv.i/g
X; Y; i; d W Œpre; inv.i/�I
X; Y; i; d W Œinv.i/; inv.i/ ^ .i D N /�

v fJustified below g
i; d0 WD 1; 0

I X; Y; i; d W Œinv.i/; inv.i/ ^ .i D N /�

v fRepeat rule with variant: N � ig
i; d0 WD 1; 0I
do .i ¤ N / !

X; Y; i; d W Œinv.i/ ^ i ¤ N; inv.i/ ^ 0 � N � i < N � i0�

od

To justify the initialisation step, we have to show that pre V inv.i/Œi; d0n1; 0�.
This is easily done as follows:

inv.i/Œi; d0n1; 0�

� fSubstituting the definition of inv.i/g
.8j W Œ0; i/. .j > 0 H) Xj D X.j�1/ C 1/ ^
.�dx < dj � dx/ ^ .d0 D 2.Xj � X0/dy � 2.Yj � Y0/dx//Œi; d0n1; 0�

� fReplacing i with 1, the interval of interest reduces to Œ0; 1/, only j D 0 is relevantg
.�dx < d0 � dx/ ^ .d0 D 2.X0 � X0/dy � 2.Y0 � Y0/dx//Œd0n0�

� fReplacing d0 with 0g
.�dx < 0 � dx/ ^ .0 D 0/

� f since dx > 0 is giveng
true

Thus pre V inv.i/Œi; d0n1; 0� and the initialisation assignment is justified.

122 4 Intermediary Examples

4.4.3 Developing the Loop’s Body

At this stage, we need to refine the loop’s body from the specification, and we
proceed as follows. Since we know a priori that we will have to increment i in
the loop, we might as well apply the “following assignment” rule as a first step
to achieve this, and simultaneously remove from further consideration the variant
predicate, since it is fairly obvious that it will be fulfilled.

X; Y; i; d W Œinv.i/ ^ .i ¤ N /; inv.i/ ^ 0 � N � 1 � i < N � 1 � i0�

v fFollowing assignment ruleg
X; Y; d W Œinv.i/ ^ .i ¤ N /; inv.i/Œini C 1�I i WD i C 1

v fSubstitutiong
X; Y; d W Œinv.i/ ^ .i ¤ N /; inv.i C 1/�I i WD i C 1

In considering how to refine

X; Y; d W Œinv.i/ ^ .i ¤ N /; inv.i C 1/�

it seems reasonable to change only the frame variables Xi; Yi and di . All other
variables in the arrays, X , Y and d remain unchanged. The way in which Xi should
change is quite clear: set Xi to Xi�1 C 1.

In considering how Yi might change, the following is a key insight:

Because dy

dx
< 1, when incrementing Xi by one unit, Yi either stays the same as Yi�1, or Yi

is one unit more than Yi�1.

There are no circumstances under which Yi should be increased by more than 1
(for then the slope of the line would be greater than 45ı); neither should Yi ever be
decreased (for then the slope would be negative).

This key insight suggests that a select statement is needed in which there are at
least two guards, say G1 and G2. Each guard should handle one of the different
cases for updating Yi . In both guard bodies, Xi should increment by 1 unit, as
indicated above.5

However, at this point of our reasoning, it is not clear what G1 or G2 should be,
and neither do we have any idea of how di should be updated in the respective cases.
Let us suppose that di should be updated by two values are E1 and E2 respectively
in the two respective cases. We therefore surmise that the following refinement will
be possible:

5This fact suggests that the updating of Xi might have been handled by the earlier applied
“following assignment” refinement step. However, nothing is lost by not doing so.

4.4 Raster Lines 123

X; Y; d W Œinv.i/ ^ .i ¤ N /; inv.i C 1/�

v fAssuming that inv.i/ ^ .i ¤ N / V G1 _ G2g
if G1 ! X; Y; d W ŒG1 ^ inv.i/ ^ .i ¤ N /; inv.i C 1/�

Œ� G2 ! X; Y; d W ŒG2 ^ inv.i/ ^ .i ¤ N /; inv.i C 1/�

fi
v fAssuming that the provisos for the respective assignments can be provedg

if G1 ! Xi ; Yi ; d WD Xi�1 C 1; Yi�1; E1

Œ� G2 ! Xi; Yi ; d WD Xi�1 C 1; Yi�1 C 1; E2

fi

To economise a little on notation, define the predicate:

dval.j / , .�dx < dj � dx/ ^ .dj D 2.Xj � X0/dy � 2.Yj � Y0/dx/

and note that

inv.i C 1/ � inv.i/ ^ .Xi D X.i�1/ C 1/ ^ dval.i/: (4.6)

Begin by considering the first guard’s postcondition, after substitution required
because of the assignment, i.e.:

inv.i C 1/ŒXi ; Yi ; dinXi�1 C 1; Yi�1; E1�

� fUsing equivalence (4.6)g
.inv.i/ ^ .Xi D X.i�1/ C 1/ ^ dval.i//ŒXi ; Yi ; di nXi�1 C 1; Yi�1; E1�

� fSince substituting in .Xi D X.i�1/ C 1/ yields true g
.inv.i/ ^ dval.i//ŒXi ; Yi ; dinXi�1 C 1; Yi�1; E1�

� fSince Xi; Yi ; di do not appear in inv.i/ g
inv.i/ ^ dval.i/ŒXi ; Yi ; dinXi�1 C 1; Yi�1; E1�

Recall that our intended assignment is only allowed if the precondition of the
original specification (in guard 1) everywhere implies the above expression—i.e.,
we require that:

G1 ^ inv.i/ ^ .i ¤ N / V inv.i/ ^ dval.i/ ŒXi ; Yi ; di nXi�1 C 1; Yi�1; E1� :

Now since that precondition contains the conjunct inv.i/, all we need to show to
make the assignment legitimate is that:

G1 ^ inv.i/ ^ .i ¤ N / V dval.i/ ŒXi ; Yi ; i; dinXi�1 C 1; Yi�1; i C 1; E1� :

Recall that dval.i/ consists of the conjuncts �dx < di � dx and the equality
di D 2dy.Xi � X0/ � 2dx.Yi � Y0/. Let us first consider the substitution in the
latter conjunct, i.e., in the equality. We then have:

124 4 Intermediary Examples

E1 D 2dy.Xi�1 C 1 � X0/ � 2dx.Yi�1 � Y0/

� fRearranging termsg
E1 D 2dy.Xi�1 � X0/ � 2dx.Yi�1 � Y0/ C 2dy

� fSince di�1 D 2dy.Xi�1 � X0/ � 2dx.Yi�1 � Y0/g
E1 D di�1 C 2dy

If we now decide to assign to di the value di�1 C 2dy, and make this substitution
instead of E1 in dval.i/, the first conjunct in dval.i/ becomes:

�dx < di�1 C 2dy � dx

and the second conjunct becomes true. This means that the assignment in the body
of the first guarded command is legitimate, only if the following can be shown:

G1 ^ inv.i/ ^ .i ¤ N / V �dx < di�1 C 2dy ^ di�1 C 2dy � dx:

Now recall that inv.i/ contains a conjunct of the form �dx < di�1. Since it is given
that dy > 0, this certainly means that if dx < di�1 holds, then �dx < di�1 C 2dy

also holds.
On the other hand, we can be sure that di�1 C 2dy � dx if we choose to define

G1 as:
G1 , di�1 C 2dy � dx:

If we defined G1 any weaker, then the “implies everywhere” relationship will no
longer be guaranteed. On the other hand, there does not seem to be any cogent
reason for defining G1 stronger than it is.

What we have therefore shown is that the postcondition of the first guarded
command will be guaranteed if the guarded command is formulated as:

.di�1 C 2dy � dx/ ! Xi ; Yi ; di WD Xi�1 C 1; Yi�1; di�1 C 2dy:

Arguing along exactly the same lines for the second guard (we will not repeat all
the details) leads to a derived value for di in the case where Yi is assigned the value
Yi�1 C 1. We proceed as follows:

E2 D 2dy.Xi�1 C 1 � X0/ � 2dx.Yi�1 C 1 � Y0/

� fRearranging termsg
E2 D 2dy.Xi�1 � X0/ � 2dx.Yi�1 � Y0/ C 2dy � 2dx

� fSince di�1 D 2dy.Xi�1 � X0/ � 2dx.Yi�1 � Y0/g
E2 D di�1 C 2dy � 2dx

Again, deciding to assign to di the value di�1 C 2dy � 2dx, and making this
substitution instead of E2 in dval.i/, means that the first conjunct of dval.i/

4.4 Raster Lines 125

becomes: �dx < di�1 C 2dy � 2dy � dx and the second becomes true. Similarly
to before, the following has to be shown:

G2^ inv.i/^.i ¤ N / V .�dx < di�1 C2dy �2dx/^.di�1 C2dy �2dx � dx/:

This time around, we can argue as follows. From dy

dx
< 1, it is clear that dy < dx

and therefore that dy � dx < 0. It follows that

2dy � 2dx D 2.dy � dx/ < 0:

Since di�1 � dx (which is a conjunct of inv.i/) holds, it follows that .di�1 C2dy �
2dx � dx/ also holds. As a result, G2 can be taken as .�dx < di�1 C2dy �2dx/.
This simplifies to .dx < di�1 C 2dy/.

Note that it indeed turns out that G2 D :G1, just as we had hoped for. This
means that inv.i/ ^ .i ¤ N / V G1 _ G2, which justifies our original refinement
to a select command.

4.4.4 Putting it All Together

We can therefore substitute for G1 and G2 in the above to get the final algorithm as
follows:

i; d0 WD 1; 0

Ido .i ¤ N / !
if ..di�1 C 2 � dy/ � dx/ ! Xi ; Yi ; di WD X.i�1/ C 1:Y.i�1/; d.i�1/ C 2dy

Œ� .dx < di�1 C 2dy/ ! Xi ; Yi ; di WD X.i�1/ C 1; Y.i�1/ C 1; d.i�1/ C 2dy � 2dx

fi
I i WD i C 1

od

This can be refactored to eliminate all arrays, and to insert a draw.x; y/ command
at appropriate points in the algorithm, thus arriving at a version commonly given
as the Breshenham algorithm in Graphics text books. The arrays X , Y and d are
really unnecessary from an operational standpoint: we do not need to preserve and
explicitly record all pixel pairs that are drawn. Once a pair of pixel values has been
computed and drawn, the same variables in which the information was stored may be
overwritten with the new information. Furthermore, the i variable was only needed
to track the next array index to be used, and may therefore also be eliminated.
Finally, since d C 2dy is computed along all computational paths (and also used
in the guards) it may be precomputed at the start of each loop iteration and used
wherever needed. The result is the following:

126 4 Intermediary Examples

x; y; d WD xl ; yl ; 0

I draw.x; y/

Ido .x ¤ xh/ !
d WD d C 2dy

I if .d � dx/ ! skip
Œ� .d > dx/ ! y; d WD y C 1; d � 2dx

fi
I x WD x C 1

draw.x; y/

od

4.4.5 Discussion

It was decided to use arrays in this example to retain a fairly familiar context for
the reader. If arrays are not used, then the reasoning process becomes a little less
familiar, though no less accurate. For example, in an invariant or postcondition,
we would not be able to say things like: 8j W Œ0; i/Xj � � � because we would
have used a single variable x that is constantly overwritten in each iteration of
the loop. If we wished to remain formal, we would need to extend our notational
conventions. We would need some way of not only referring to the value of x

before it was last changed, (currently we use x0, which is admittedly a little
ambiguous in that x could be construed as an array), but also to the value of x two
iterations back, three iterations back, etc. Alternatively, we could have expressed
the invariant, the postcondition, etc., semi-formally, using English narrative where
formal mathematical symbols failed. This is not such a bad idea, and is arguably
better than not explicitly formulating any invariant or postcondition at all.

In many ways, this example is rather different from previous ones. Previously,
when a select statement was anticipated, we had a fair idea of what the guards should
be, and then proceeded to determine the body of each guard. This example has
thrown up the first occasion where the body of the guard, i.e., the assignments to be
made, was predictable from the context. However, the conditions under which the
assignments should be made (i.e., the guards themselves) were unknown. We used
our theory, specifically the requirements of the proviso of the assignment rule, to
reason out what the guards should be in each case.

The final result is indeed rather interesting. We have successfully avoided any
real arithmetic. Notice that very few integer operations are needed. They are mostly
add/subtract operations. Furthermore, the two multiplication operations involve 2
as an operand. Such a multiplication can be implemented very efficiently by a shift
operation.

It should be noted that, because computer screens are not necessarily equally
scaled in the X and Y directions, it is possible that the algorithm would produce
slightly distorted results on different hardware platforms. Scaling has to take place
to correct for such distortions.

4.5 Raster Circle 127

4.5 Raster Circle

Following reasoning very similar to the previous section, a raster graphics algorithm
for drawing a circle is developed below. The algorithm turns out to be slightly
different from the one developed by Bresenham [7] and also from modifications of
Bresenham’s circle algorithm given in standard texts such as Foley et al. [14]. The
resulting algorithm is as efficient as its rivals, and can be transformed into them. The
development process focuses parallels that of the raster line drawing algorithm but
contains a few more complexities.

4.5.1 Problem Statement

The problem to be addressed is the following:

Draw 1
8
th of the circumference of a circle which has a positive integer, r , as radius and

which is centered at (0, 0). It is to be drawn on a rastered plain, implying that all co-ordinates
.x; y/ are integer-valued. The first point is to be drawn at .0; r/ and the algorithm should
end just before x > y. This guarantees that no more than 1

8
th of the circle’s circumference

is drawn.

Assume that draw.x; y/ colours the pixel .x; y/. If a complete circle was required,
draw.x; y/ could be designed to colour 7 additional points on the circle’s circum-
ference. These points are easily determined from the point .x; y/ using symmetry
arguments. The reader can easily determine that if .x; y/ lies on the circumference
of a circle, then so do the points .�x; y/; .x; �y/; .�x; �y/; .y; x/; .�y; x/;
.y; �x/ and .�y; �x/. However, if it is important in the context of the problem
that no point may be coloured more than once, then special consideration should be
given to boundary situations such as x D 0, y D 0 and x D y.

As in the case of a raster line, we regard X and Y as arrays, and we consider
that the task is to determine integer values for .X0; Y0/; .X1; Y1/; : : :. The first point
starts with X0 D 0 and Y0 D r . Once again, we step ahead in X with increments
of 1, and this time, our decision is whether to retain the current value of Y with
each X increment, or whether to decrement Y by 1. This decision is based on the
appropriate integer approximation of the real value for Y for a given X , denoted by
y.X/ and determined from the equation for a circle, namely:

y.X/ D
p

r2 � X2: (4.7)

We thus require that 8j 2 Œ0; N / �Xj D Xj �1 C1. In this case, the point at which to
stop drawing is not known a priori. Rather, it is determined by the requirement that
we only draw 1

8
th of a circle. Thus, we stop drawing as soon as we reach a value j

such that Xj > Yj . We therefore assume that N , the length of arrays X and Y , has
been chosen to be large enough for the problem at hand. (As in the case of the raster

128 4 Intermediary Examples

line, in practice it is not necessary to use arrays at all. We do so for explanatory
purposes only.)

Once again, the problem can be specified as follows:

XŒ0;N /; YŒ0;N / W Œr > 0; post�;

where post can be informally described in the following terms:

Some integer, i has been reached such that for j D 0; 1; : : : ; i all the .Xj ; Yj / pairs have
been determined in such a way that Yj is the best integer approximation of y.Xj / defined
in (4.7), and Xj D Xj�1 C 1. (However, in the case of j D 0; X0 is given as 0 and
is thus not computed from its predecessor. Y0 is also given as r , but this would also be
evident from (4.7).) Moreover, Xj � Yj for all but the last pair, i.e., for Xj � Yj for
j D 0; 1; : : : ; i � 1, but Xi > Yi .

The challenge is to state this more formally, in a way that will aid our development.
As before, for any arbitrary j , given Xj , the best integer approximation of y.Xj /

can be determined by reasoning as follows:

Yj � 1=2 �
q

r2 � X2
j < Yj C 1=2

� fsquaringg
Y 2

j � Yj C 1=4 � r2 � X2
j < Y 2

j C Yj C 1=4

� fsubtracting Y 2
j C 1=4g

�Yj � r2 � X2
j � Y 2

j � 1=4 < Yj

� fmultiplying by 4 to remove real numbersg
�4Yj � 4

�

r2 � X2
j � Y 2

j

�

� 1 < 4Yj

� fintroducing a new variable, dj g
.�4Yj � dj < 4Yj / ^ dj D 4

�

r2 � X2
j � Y 2

j

�

� 1

This suggests the following update of our informally defined postcondition:

post , 9i W N � .Xi > Yi / ^
8j W Œ0; i/ � .Xj � Yj / ^
8j W Œ1; i C 1/ � .Xj D Xj �1 C 1/ ^
8j W Œ0; i C 1/ �

�

.�4Yj � dj < 4Yj / ^
�

dj D 4
�

r2 � X2
j � Y 2

j

�

� 1
��

:

Note that the various ranges have been chosen very specifically to co-incide with
the meaning expressed in the informal description of the postcondition.

4.5 Raster Circle 129

4.5.2 From Invariant to Loop

It is now a fairly simple matter to infer an invariant from the postcondition. Simply
leave out the requirement that Xi > Yi , but include all the other conjuncts of the
postcondition into the invariant.

inv.i/ , 8j W Œ0; i/ � .Xj � Yj / ^ (4.8)

8j W Œ1; i C 1/ � .Xj D Xj �1 C 1/ ^ (4.9)

8j W Œ0; i C 1/ �
�

.�4Yj � dj < 4Yj / ^
�

dj D 4
�

r2 � X2
j � Y 2

j

�

� 1
��

(4.10)

It is thus clearly the case that inv.i/ ^ .Xi > Yi/ � post , i.e., if we attain the
invariant in a loop in which i is incremented, until the point where Xi > Yi , then
the purpose of the algorithm will have been attained. It will be convenient to view
the invariant as consisting of three main conjuncts, shown in each line above—i.e.,
inv.i/ � inv1.i/ ^ inv2.i/ ^ inv3.i/.

The specification is therefore refined as follows:

X; Y W Œr > 0; post�

v fStrengthening postcondition and including variables i and d into the frameg
X; Y; i; d W Œr > 0; inv.i/ ^ Xi > Yi �

v fSequence rule to attain inv.i/g
X; Y; i; d W Œr > 0; inv.i/�I
X; Y; i; d W Œinv.i/; inv.i/ ^ Xi > Yi �

v fAssignment rule: r > 0 V inv.i/ŒX0; Y0; i; d0n0; r; 0; �1� � trueg
X0; Y0; i; d0 WD 0; r; 0; �1I
X; Y; i; d W Œinv.i/; inv.i/ ^ Xi > Yi �

v fRepeat rule with variant: Yi � Xi g
X0; Y0; i; d0 WD 0; r; 0; �1I
do .Xi � Yi / !

X; Y; i; d W Œinv.i/ ^ Xi � Yi ; inv.i/ ^ .0 � Yi � Xi < Yi0 � Xi0 /�

od

The assignments for initialization are easily verified.

4.5.3 Refining the Loop’s Body

The general requirements of the loop are clear: we need to increment i and then
update Xi to be one more than its predecessor. Then we need to set Yi and di to

130 4 Intermediary Examples

the values required by the invariant. We will allow ourselves the luxury of not being
further concerned with the variant part of the postcondition, since all manipulations
to X values involve an increase, and all manipulation to Y values involve a decrease.
In both these instances, the variant will decrease towards its bottom limit. We note
that in incrementing i we will attain inv1.i/. In updating Xi we will attain inv2.i/.
The challenge in updating Yi and di is to attain inv3.i/. We proceed as follows:

X; Y; i; d W Œinv.i/ ^ Xi � Yi ; inv1.i/ ^ inv2.i/ ^ inv3.i/�

v fSequence ruleg
i W Œinv.i/ ^ Xi � Yi ; inv1.i/ ^ inv2.i � 1/ ^ inv3.i � 1/�

I X W Œinv1.i/ ^ inv2.i � 1/ ^ inv3.i � 1/; inv1.i/ ^ inv2.i/ ^ inv3.i � 1/�

I Y; d W Œinv1.i/ ^ inv2.i/ ^ inv3.i � 1/; inv1.i/ ^ inv2.i/ ^ inv3.i/�

v fAssignment rule: See justification belowg
i WD i C 1

I X W Œinv1.i/ ^ inv2.i � 1/ ^ inv3.i � 1/; inv1.i/ ^ inv2.i/ ^ inv3.i � 1/�

I Y; d W Œinv1.i/ ^ inv2.i/ ^ inv3.i � 1/; inv1.i/ ^ inv2.i/ ^ inv3.i/�

v fAssignment rule: See justification below.g
i WD i C 1I Xi WD Xi�1 C 1

I Y; d W Œinv1.i/ ^ inv2.i/ ^ inv3.i � 1/; inv1.i/ ^ inv2.i/ ^ inv3.i/�

The first assignment, i WD i C 1, is justified on the grounds that

.inv1.i/ ^ inv2.i � 1/ ^ inv3.i � 1//Œini C 1� � .inv1.i C 1/ ^ inv2.i/ ^ inv3.i//:

Since inv1.i C 1/ � inv.i/ ^ Xi � Yi , and since the relevant specification’s
precondition and postcondition after substitution are identical, the assignment’s
proviso is fulfilled.

The second assignment, Xi WD Xi�1 C 1, is justified on the grounds that the
postcondition after substitution transforms as follows:

.inv1.i/^inv2.i/^inv3.i �1//ŒXi nXi�1 C1� � .inv1.i/^inv2.i �1/^inv3.i �1//

(4.11)
and since this is equivalent to the relevant precondition, the assignment’s proviso is
again satisfied.

To be convinced of the equivalence claimed in equivalence (4.11) note, firstly,
that inv1.i/ and inv3.i � 1/ do not contain any references to Xi . These predicates
are therefore unaffected by the substitution on the left hand side, and thus appear
unchanged on the right hand side. In inv2.i/ the only conjunct that is affected by the
substitution asserts that Xi D Xi�1 C 1. However, the substitution changes this to
the tautology: Xi�1 C 1 D Xi�1 C 1. As a result,

inv2.i/ŒXinXi�1 C 1� � inv2.i � 1/

and thus equivalence (4.11) holds.

4.5 Raster Circle 131

Having updated Xi and i , the task of the last specification in our partially refined
loop body, namely,

Y; d W Œinv1.i/ ^ inv2.i/ ^ inv3.i � 1/; inv1.i/ ^ inv2.i/ ^ inv3.i/�

is to determine values of Yi and di that correspond with the updated Xi value. To do
this, we have to do something that renders inv3.i/ true, given that inv3.i � 1/ is the
starting position.

Analogously to the previous line-drawing example, we turn to domain-specific
information for clues about how this may be done—i.e., we know that in drawing
this particular 1

8
th of a circle, for each increment in the X co-ordinate, the Y co-

ordinate will either stay the same in each iteration, or will be one less than its
predecessor. Thus, we again anticipate a select command with two guards, the first
retaining Yi at its previous value, and the second, decrementing Yi by 1. As before,
we need to work out the conditions under which these values are assigned to Yi , as
well as the values to be assigned to di in each case.

The refinement step thus has the following form:

X; Y; i; d W Œinv1.i/ ^ inv2.i/ ^ inv3.i � 1/; inv1.i/ ^ inv2.i/ ^ inv3.i/�

v fSelect role, anticipating that the precondition V G1 _ G2g
if G1 !

f inv1.i/ ^ inv2.i/ ^ inv3.i � 1/ ^ G1 g
Yi ; di WD Yi�1; E1

f inv.i/ � inv1.i/ ^ inv2.i/ ^ inv3.i/ g
Œ� G2 !

f inv1.i/ ^ inv2.i/ ^ inv3.i � 1/ ^ G2 g
Yi ; di WD Yi�1 � 1; E2

f inv.i/ � inv1.i/ ^ inv2.i/ ^ inv3.i/ g
fi

Once more, note that for each guarded command, we need to choose a guard, G,
and assignments to Yi and di so that, loosely speaking the following holds: inv3.i �
1/ ^ G V inv3.i/Œsubstitution�. And since inv3.i/ � inv3.i � 1/ ^ .�4Yi � di <

4Yi/ ^ .di D 4.r2 � X2
i � Y 2

i / � 1/, the essence of our task for each guard, is to
find G, Yi and di such that:

G V .�4Yi � di < 4Yi/ ^ �

di D 4
�

r2 � X2
i � Y 2

i

� � 1
�

Œsubstitution�:

Again, we use the predicate
�

di D 4
�

r2 � X2
i � Y 2

i

� � 1
�

to fix a value to be
assigned to di for a given Yi (i.e., depending on whether Yi stays the same as Yi�1

or decrements by 1). To find such a di means to render this predicate true when the
associated values for Yi and di are plugged into it.

Having found such values for Yi and di , we then have to select a value for the
guard such that

G V .�4Yi � di < 4Yi/ Œsubstitution� ^ true:

132 4 Intermediary Examples

With the forgoing as a general outline of our refinement strategy, we now
determine values to be assigned to di in each guarded command.

4.5.4 Determining the Guards

As just pointed out, the values to be assigned to di can be determined by considering
di D 4

�

r2 � X2
i � Y 2

i

� � 1 in the inv3.i/ part of the postcondition, when
making the substitutions prescribed by the assignment rule’s proviso. Note that
in simplifying the expressions that we get after substitution, we are allowed to
rely on equality relationships that otherwise form part of the postcondition context
under consideration. In particular, since inv2.i/ contains a conjunct stating that
Xi D Xi�1 C 1, we will be justified in replacing Xi by Xi�1 if it suites out purpose.

Considering the first guard, we get:
�

di D 4
�

r2 � X2
i � Y 2

i

� � 1
�

ŒYi ; dinYi�1; E1�

� fSubstitution and since Xi D Xi�1 C 1 by inv2.i/g
E1 D 4

�

r2 � .Xi�1 C 1/2 � Y 2
i�1

� � 1

� fSquaringg
E1 D 4

�

r2 � �

X2
i�1 C 2Xi�1 C 1

� � Y 2
i�1

� � 1

� fArithmeticg
E1 D 4

�

r2 � X2
i�1 � .2Xi�1 C 1/ � Y 2

i�1

� � 1

� fArithmeticg
E1 D 4

�

r2 � X2
i�1 � Y 2

i�1

� � 1 � 4.2Xi�1 C 1/

� fdi�1 D 4.r2 � X2
i�1 � Y 2

i�1/ � 1g
E1 D di�1 � 8Xi�1 � 4

In the second case we get:
�

di D 4
�

r2 � X2
i � Y 2

i

� � 1
�

ŒYi ; di nYi�1 � 1; E2�

� fSubstitutions and since Xi D Xi�1 C 1 by inv2.i/g
E2 D 4.r2 � .Xi�1 C 1/2 � .Yi�1 � 1/2/ � 1

� fExpanding .Xi�1 C 1/2g
E2 D 4.r2 � X2

i�1 � .2Xi�1 C 1/ � .Yi�1 � 1/2/ � 1

� fExpanding with �.Yi�1 � 1/2g
E2 D 4

�

r2 � X2
i�1 � .2Xi�1 C 1/ � Y 2

i�1 C .2Yi�1 � 1/
� � 1

� fArithmeticg
E2 D 4

�

r2 � X2
i�1 � .2Xi�1 C 1/ � Y 2

i�1 C .2Yi�1 � 1/
� � 1

�4.2Xi�1 C 1 � 2Yi�1 C 1/

4.5 Raster Circle 133

� fdi�1 D 4
�

r2 � X2
i�1 � Y 2

i�1

� � 1g
E2 D di�1 � 4.2Xi�1 C 1 � 2Yi�1 C 1/

� fSimplificationg
E2 D di�1 C 8.Yi�1 � Xi�1 � 1/

The specification to be refined is therefore the following:

if G1 ! finv1.i/ ^ inv2.i/ ^ inv3.i � 1/ ^ Xi�1 � Yi�1 ^ G1g
Yi ; di WD Yi�1; di�1 � 4.2Xi�1 C 1/

finv.i/g
Œ� G2 ! finv1.i/ ^ inv2.i/ ^ inv3.i � 1/ ^ Xi�1 � Yi�1 ^ G2g

Yi ; di WD Yi�1 � 1; di�1 C 8.Yi�1 � Xi�1 � 1/

finv.i/g
fi

However, by the assignment rule, this refinement will only be valid if the precondi-
tion in each case everywhere implies the postcondition in which all occurrences of
Yi and di are replaced by their new values.

4.5.5 Deriving the Guards

For the first guard, it is required to show the following “implies everywhere”
relationship:

inv1.i/ ^ inv2.i/ ^ inv3.i � 1/ ^ Xi�1 � Yi�1 ^ G1

V inv.i/ŒYi ; di nYi�1; di�1 � 4.2Xi�1 C 1/�: (4.12)

In order to do that, consider the following steps to transform the consequent.

inv.i/ŒYi ; di nYi�1; di�1 � 4.2Xi�1 C 1/�

� fSince inv1.i/ and inv2.i/ do not contain terms to be substitutedg
inv1.i/ ^ inv2.i/ ^ inv3.i/ŒYi ; dinYi�1; di�1 � 4.2Xi�1 C 1/�

� fSince inv3.i � 1/ does not contain terms to be submittedg
inv1.i/ ^ inv2.i/ ^ inv3.i � 1/^
�

.�4Yi � di < 4Yi / ^ �

di D4
�

r2 � X2
i � Y 2

i

� � 1
� �

ŒYi ; di nYi�1; di�1 � 4.2Xi�1C1/�

� fSecond conjunct evaluates to true after substitutiong
inv1.i/ ^ inv2.i/ ^ inv3.i � 1/^
.�4Yi�1 � di�1 � 4.2Xi�1 C 1/ < 4Yi�1/ ^ true

� fMaking implied conjuncts explicitg
inv1.i/ ^ inv2.i/ ^ inv3.i � 1/^
.�4Yi�1 � di�1 � 4.2Xi�1 C 1// ^ .di�1 � 4.2Xi�1 C 1/ < 4Yi�1/

134 4 Intermediary Examples

� fSince di�1 < 4Yi�1 is a conjunct in inv3.i � 1/ and �4.2Xi�1 C 1/ < 0g
inv1.i/ ^ inv2.i/ ^ inv3.i � 1/ ^ .�4Yi�1 � di�1 � 4.2Xi�1 C 1//

Noting the correspondence between the antecedent this form of the consequence
in (4.12), it is clear that a sufficient condition for the “implies everywhere”
relationship to hold, is when

G1 � �4Yi�1 � di�1 � 8Xi�1 � 4

or, equivalently
G1 � di�1 � 4.2Xi�1 � Yi�1 C 1/

Arguing along similar lines, it will be found that

G2 � di�1 < 4.2Xi�1 � Yi�1 C 1/

The details are left as an exercise.

4.5.6 Putting it All Together

From all of the above, the following circle-drawing algorithm has been derived:

X0; Y0; i; d0 WD 0; r; 0; �1I
f invariant: inv.i/ g
do Xi � Yi !

i WD i C 1I Xi WD Xi�1 C 1I
if di�1 � 4.2Xi�1 � Yi�1 C 1/ ! Yi ; di WD Yi�1; di�1 � 4.2Xi�1 C 1/

Œ� di�1 < 4.2Xi�1 � Yi�1 C 1/ ! Yi ; di WD Yi�1 � 1; di�1�8.Xi�1 � Yi�1C1/
fi

od

If we rewrite this algorithm without the use of arrays, we can, as before, eliminate
variable i , and overwrite x, y and d values to get the following. Before overwriting
a previously computed .x; y/ co-ordinate we call the draw.x; y/ function to display
the co-ordinate as a pixel on the screen.

However, there are a number of points that need careful consideration.

• It is not entirely clear where to invoke draw.x; y/. Notice that x and y are first
updated (in the loop’s body) and then checked (in the loop’s condition) to see
whether they are still in the range of the first 1

8
th of the circumference of the

circle. Therefore, if we simply insert a draw.x; y/ invocation as the last command
in the loop’s body, we run the risk of possibly drawing a pixel that is outside
of those bounds in the final iteration of the loop. Should this be an important
consideration in the context of some problem, then we would need a select
statement that checks whether the x and y values computed are still within range,

4.5 Raster Circle 135

only invoking draw.x; y/ if they are. Furthermore, if we took this approach, then
we would also have to invoke draw.x; y/ before the loop, otherwise the first pixel
will not be drawn.

An alternative solution would invoke draw.x; y/ at the beginning of the loop,
without invoking it before the loop starts. There is no need for concern that the
command will not be invoked if the loop is never entered, since our initialisation
of x and y to 0 and r respectively guarantees that the loop always completes at
least one iteration.

• We should also give consideration to the fact that the assignments in the guarded
command above rely on Xi�1 whose value is actually Xi � 1. Now if, below, we
update x by overwriting it, then later references to Xi�1 in the above algorithm
should be replaced with x � 1 instead of by x.

Accounting for these two points, the revised algorithm becomes:

x; y; d WD 0; r; �1I
f invariant: inv.i/ g
do x � y !

draw.x; y/I
x WD x C 1I
if d � 4.2x � y � 1/ ! d WD d � 4.2x � 1/

Œ� d < 4.2x � y � 1/ ! y; d WD y � 1; d � 8.x � y/

fi
od

Although this software correctness-by-construction approach has derived an algo-
rithm that is fully correct, it differs from the so-called mid-point circle drawing
algorithm that appears in many graphics text books. This algorithm is given below:

x; y; d; p; t WD 0; r; 3; .1 � r/; .�2 � r C 5/I
do x � y !

draw.x; y/I
if p < 0 ! d; p; t WD d C 2; p C d; t C 2

Œ� p � 0 ! y; d; p; t WD y � 1; d C 2; p C t; t C 4

fiI
x WD x C 1I

od

Our derived algorithm is less efficient than the mid-point circle drawing algorithm in
that the former involves relatively complicated guards to be tested, as well as several
more operations per guard body than required by the latter. On the other hand, our
derived algorithm only needs 3 variables, whereas the conventional one needs 5, so
we have a slight gain in space efficiency.

Furthermore, quite a lot of refactoring can be carried out on our derived algorithm
to make it more efficient. For example, noting that 4.2x � 1/ is computed several
times and noting that it increases in every iteration by 4 (since x increases by
1), the value could be stored in a variable, say z, initialized to �4 (i.e., since

136 4 Intermediary Examples

4.2:0 � 1/ D �4) and then incremented by 4 in every iteration. This yields the
somewhat simpler algorithm that has an additional variable, namely:

x; y; z; d WD 0; r; �4; �1I
f invariant: inv.i/ g
do x � y !

draw.x; y/I
x; z WD x C 1; z C 4I
if d � z � 4y ! d WD d � z
Œ� d < z � 4y ! y; d WD y � 1; d C 8.x � y/

fi
od

There are yet further possibilities for transformation, and it can be shown that after
several such transformations, the mid-point circle algorithm is derived. However,
details are beyond the scope of this present text.

4.6 Majority Voting

The problem solved in this section is also briefly discussed in the previously
mentioned guest editorial by Gutknecht [23]. The problem is a rather strange one,
and is very cryptically explained in that editorial. It can be stated as follows.

Each element in a sequence, b, of length M > 0, is a vote for some arbitrary individual.
Write a program that eliminates all but one individual, x, in such a way that no individual
who is eliminated has a majority of votes.

You should note the requirements of the problem very carefully: the claim is not
that x has the majority of votes. Rather, it is that if the algorithm selects x as its
outcome, then no individual other than x may have the majority of votes. In other
words, the problem statement requires that x has to be the winning candidate if x

has strictly more than 50% of the votes. If no-one has more than 50% of the votes,
then x may be any arbitrary individual. This latter statement holds, even if some
individual other than x has exactly 50% of the votes.

Furthermore, the problem statement is entirely silent about how many different
candidates there may be. The algorithm is intended to function properly, irrespective
of the number of candidates, and it is not required that this number is known
beforehand!

To take a few concrete examples, consider the five different ballot count scenarios
for candidates A, B and C given in the table below. (Ignore the last two columns for
the moment.) The table is intended to illustrate that each of the five scenarios could
be a legitimate outcome of the majority voting algorithm.

In each scenario, A and B are assumed to have been eliminated as majority
candidates by the algorithm, and C is left as x—the possible majority candidate.

4.6 Majority Voting 137

A B C Total s range wrt s range wrt
(x) (M) (4.14) and (4.15) C and Total

Scenario 1 5 5 90 100 5–50 5–10
Scenario 2 20 10 70 100 20–50 20–30
Scenario 3 40 5 55 100 40–50 40–45
Scenario 4 30 30 40 100 30–50 30–60
Scenario 5 40 40 20 100 40–50 40–80

In scenarios 1, 2 and 3, C is in fact the majority candidate. In scenario 4, neither C

nor any other candidate is the majority candidate, but C , still designated the possible
majority candidate, happens to have the most number of votes (although not more
than 50%). In scenario 5, C does not even have the most votes, but A and B have
been explicitly excluded from being majority candidates and the algorithm has still
designated C as the possible majority candidate.

The algorithm has to deliver x D C as outcome in the first three scenarios. It
may (but need not) deliver x D C as outcome in the fourth and fifth scenario.

4.6.1 Formulating the Problem

To formalize the required postcondition, we rely on the notation relating to
sequences which was introduced in Sect. 2.6.2. If you have forgotten it, it would
probably be a good idea to briefly review that section at this stage.

We claim that for any candidate, y, who appears on the ballot, if y ¤ x then
it must be the case that b:y � M=2—the number of votes for y in sequence b is
less than or equal to the total number of votes. If this were not so, then it would be
incorrect to designate x as the possibly winning candidate.

However, as will be demonstrated below, sometimes this upper bound of M=2

on b:y can be much too liberal. Let us take s to be an alternative upper bound of all
such b:y’s, where we assume that s � M=2. We thus have:

8y W .y ¤ x/ � b:y � M=2; (4.13)

8y W .y ¤ x/ � b:y � s (4.14)

and 2s � M: (4.15)

In fact, it is clear that if we rely on (4.14) and (4.15) alone, then (4.13) can be treated
as redundant. The problem can thus be specified as:

x; s W Œtrue; 8y W .y ¤ x/ � b:y � s ^ 2s � M �:

138 4 Intermediary Examples

Now consider the penultimate column in the above table. It shows the ranges over
which s may be chosen, while still complying with (4.14) and (4.15). In each
case, the lower bound is the maximum of A and B’s votes (shown in the first two
columns), while the upper bound is 50 D M=2.

The question arises: can we not constrain s more tightly? Clearly, one cannot
constrain the lower bound any more—the bound is fully determined by the votes for
A and B to date. However, the upper bound in the second last column seems overly
generous in some scenarios. For example, in scenario 1, any value of s more than
10 (which is the number of votes not allotted to C) represents an overly generous
upper limit.

In the last column of the table above, an alternative upper limit on s is used,
namely .M � b:x/—i.e., the number of votes left after allocating votes given to x.
It is clear that in some cases, this bound overrides the bounds implied by (4.14) and
(4.15), while in other cases, this does not happen. This suggests that an alternative
bound could be placed on s, namely:

s � M � b:x: (4.16)

We can therefore refine the above specification, by strengthening the postcondition
with the bound in (4.16), as follows:

x; s W Œtrue; 8y W .y ¤ x/ � b:y � s ^ 2s � M ^ s � M � b:x�:

Note in passing, that this last bound, (4.16), is not strictly necessary in the
postcondition, in the sense that if (4.14) and (4.15) hold, then the result will already
comply strictly with the statement of the majority voting problem.

4.6.2 Arriving at an Invariant and Developing the Loop

An invariant predicate can now be defined; one that asserts that after the first m

ballots have been counted, (4.14), (4.15) and (4.16) will hold. Such an invariant
clearly specialises to the required postcondition when m is M .

inv.x; s; m/ , 8y W .y ¤ x/ � b " m:y � s ^ 2s � m ^ s � m � b " m:x:

We can easily ensure that the invariant holds initially (vacuously) by the
initialization actions given below. Refinement now proceeds as follows:

4.6 Majority Voting 139

x; s; m W Œtrue; inv.x; s; m/ ^ m D M �

v fsequenceg
x; s; m W Œtrue; inv.x; s; m/� I x; s; m W Œinv.x; s; m/; inv.x; s; m/ ^ m D M �

v fassignmentg
x; s; m WD b0; 0; 1I
x; s; m W Œinv.x; s; m/; inv.x; s; m/ ^ m D M �

v frepetition, variant M � mg
x; s; m WD b0; 0; 1I
do .m ¤ M / !

x; s; m W Œinv.x; s; m/ ^ .m ¤ M /; inv.x; s; m/ ^ 0 � M � m < M � m0�

od

We already have a broad notion of how the loop’s body will emerge after
refinement. Obviously m will have to be incremented (thus decreasing the variant).
Each such step will point to a fresh vote in the sequence b, and we will need to
decide on how to change the x and/or s (if at all) in each iteration, based on the
newly encountered vote. Clearly the loop’s body will require a select statement.
At this point, let us make a design decision to have the body as a single select
statement, with an unknown number of guarded commands, and let us anticipate
that the increment in m will take place in each guarded command. Refactoring
afterwards can always take place if we find it necessary or desirable.

4.6.3 Developing the Guards

Since we will be refining using selection, we will be dealing with guarded
commands of the form:

G ! x; s; m W ŒG ^ inv.x; s; m/^.m ¤ M /; inv.x; s; m/^0 � M �m < M �m0�:

In each case, we shall also want to change the specification into an assignment of
the form x; s; m WD E1.x/; E2.s/; E3.m/ and to do this we will have to use the
assignment rule to argue that the following V holds:

G ^ .m ¤ M / ^ inv.x; s; m/ V .inv.x; s; m/ ^ 0 � M � m < M � m0/

Œx; s; mnE1.x/; E2.s/; E3.m/�: (4.17)

For the present purposes, we will make these arguments rather informally.
The first question we face is: what guards shall we construct? Two possibilities

immediately come to mind: guards that determine what to do when bm D x and

140 4 Intermediary Examples

those that say what to do when bm ¤ x. In the former case, the value of s (upper
bound of all b:y’s that exclude b:x) need not change. Neither should the current
“winner” x change. We need merely increment m in order to decrease the variant.
The first guarded command can therefore be taken as:

bm D x ! m WD m C 1:

We note that the guarded command fulfills the formal requirements: it indeed
preserves the invariant, and it ensures that the variant strictly decreases. (The reader
may formally check these claims, via the arguments implied by (4.17) above.)

In considering the case of bm ¤ x, the situation is a little more complicated. We
have to distinguish between two cases: when 2s < m and when 2s D m. (Note that
one would have to think the matter through quite deliberately before reaching this
conclusion. The fact that we have simply stated this to be the case should not be
construed to imply that it should be entirely obvious, even at first sight.)

In the case of .bm ¤ x/ ^ .2s < m/, the question arises: do we have reason to
change the “winner” from the current value of x? Seemingly not, since there is no
candidate y ¤ x such that b " .m C 1/:y becomes a majority count. When probing
bm, such a y would only become a majority candidate if, just prior to probing bm,
.b " m:y D s/ ^ .2s D m/ is true.

However, in order to guarantee the invariant, the upper bound on the count of y,
namely s, should be increased by one, just in case some y is already at its upper
bound. We can do this without violating the .2s � m/ conjunct of the invariant,
provided that m is also incremented—something that we need to do in any case in
order to decrease the variant. Since both s and m are incremented by 1, and since
b " m:x is unchanged, the third conjunct of the invariant is also preserved. As a
result of the foregoing, the second guarded command can be specified as:

.bm ¤ x/ ^ .2s < m/ ! s; m WD s C 1; m C 1:

Once again, we note that the guarded command fulfills the formal requirements: it
indeed preserves the invariant, and ensures that the variant strictly decreases. Again,
this can be formally checked as an exercise via the arguments implied by (4.17)
above.

The case that now remains is where .bm ¤ x/ ^ .2s D m/. Here we cannot
simply increment both s and m by 1, since that would result in a violation of the
invariant conjunct: .2s � m/. But we must increment m in order to decrease the
variant. It seems that we now have no alternative but to change the value of x.
To what should we change it? The most likely option seems to be to change it to
whatever the value of bm is at that stage. Furthermore, there is nothing to suggest
that s has to be changed in any way. As a result of the foregoing, the third guarded
command thus appears to be:

.bm ¤ x/ ^ .2s D m/ ! x; m WD bm; m C 1:

4.6 Majority Voting 141

Our argumentation to arrive at this command might have seemed rather arbitrary.
Let us therefore argue the case more convincingly by formally showing that the
“implies everywhere” relation in (4.17) holds for this particular guarded command.
This means that the following has to be shown:

.bm ¤ x/ ^ .2s D m/ ^ .m ¤ M / ^ inv.x; s; m/ V

.inv.x; s; m/ ^ 0 � M � m < M � m0/Œx; mnbm; m C 1�:

As before, the variant strictly decreases, because m is incremented. The conjuncts
referring to the variant are thus true and need not be further considered in our
argumentation.

But is the invariant preserved after the assignment? To answer this question, let
us substitute inv.x; s; m/ by its definition in both the antecedent and consequent,
and also carry out the substitution Œx; mnbm; m C 1� required in the consequent. We
then get the following:

.bm ¤ x/ ^ .2s D m/ ^ .m ¤ M /^ (4.18)

8y W .y ¤ x/ � b " m:y � s^ (4.19)

2s � m ^ s � m � b " m:x (4.20)

V

8y W .y ¤ bm/ � b " .m C 1/:y � s^ (4.21)

2s � m C 1^ (4.22)

s � m C 1 � b " .m C 1/:bm (4.23)

We argue that the antecedent (LHS) everywhere implies the consequent (RHS) by
showing that each one of the three conjuncts on the RHS will necessarily also hold,
if some combination of conjuncts on the LHS holds. If this can be shown, it will
mean that if all of the conjuncts in the LHS hold, then all of the conjuncts on the
RHS will also be true.
First conjunct (4.21): Since this conjunct is a universally quantified predicate, it can
also be seen as the set of conjuncts over each instance of the quantification. The
corresponding antecedent set of conjuncts, (4.19), matches those in the consequent
in all cases except two candidates: the consequent includes candidate x but excludes
candidate bm; while the antecedent excludes the x candidate, but includes the bm

candidate. Here, our only concern is to argue that if the antecedent holds, then the
consequent’s conjunct that claims b " .m C 1/:x � s, will also hold. This can be
established by considering the following three antecedent conjuncts, two of which
appear in (4.18) and the other in (4.20):

142 4 Intermediary Examples

.bm ¤ x/ ^ .2s D m/ ^ .s � m � b " m:x/

V fSubstituting m by 2s in last conjunctg
.bm ¤ x/ ^ .s � 2s � b " m:x/

� fsimplifying and rearrangingg
.bm ¤ x/ ^ .b " m:x � s/

V fbm ¤ x, means that b " m:x D b " .m C 1/:x g
b " .m C 1/:x � s

Thus, (4.21) will always hold if the antecedent holds.
Second conjunct (4.22): The relationship .2s D m/ holds in (4.18) of the antecedent.
This implies everywhere that .2s � m C 1/ holds. Thus, (4.22) will always hold if
the antecedent holds.
Third conjunct (4.23): This conjunct can be seen to be implied everywhere by the
antecedent, by considering several of the antecedent’s conjuncts collectively, namely
the first two conjuncts in (4.18) and the universally quantified conjunct in (4.19):

.bm ¤ x/ ^ .2s D m/ ^ 8y W .y ¤ x/ � b " m:y � s

V fSince .bm ¤ x/, consider only y D bm in 8y W .y ¤ x/ � b " m:y � sg
.2s D m/ ^ b " m:bm � s

V fSince .2s D m/ � .s D m�s/, replace s by .m � s/ in second conjunctg
b " m:bm � m � s

� frearranging termsg
s � m � b " m:bm

� fSince b " m:bm D b " .m C 1/:bm � 1g
s � .m C 1/ � b " .m C 1/:bm

Again we see that (4.23) will always hold if the antecedent holds.
These arguments, taken together, formally justify our proposed guard and assign-

ments for the third guarded command. As a result of all the above argumentation,
we arrive at the following final refinement:

x; s; m WD b0; 0; 1I
do .m ¤ M / !

if .bm D x/ ! m WD m C 1

Œ� .bm ¤ x/ ^ .2s < m/ ! s; m WD s C 1; m C 1

Œ� .bm ¤ x/ ^ .2s D m/ ! x; m WD bm; m C 1

fi
od

4.6 Majority Voting 143

4.6.4 Discussion

This is a rather strange, almost magical, algorithm. Neither its derivation, nor its
final form, nor the interpretation of its output is obvious.

In regard to its derivation, presumably the conventional informal approach to
solving this problem would be to keep a total in memory of the number of votes
for each candidate as one iterated through the sequence of ballots. The maximum
total would then be determined at the end of the iteration. This would normally
require that we knew, a priori, how many candidates there are, or else that we
dynamically determined this number as we iterated through the ballot sequence. The
present algorithm is totally oblivious of the number of candidates. It merely chugs
through the ballot sequence and comes up with an answer, which is admittedly a
little obscure as discussed below, but nevertheless correct in terms of the stated
postcondition.

In following a less conventional but more formal approach to achieve the
postcondition, we needed to derive a loop invariant. The determination of the
invariant required quite a lot of thought. To some extent, it could be argued
that (4.15) and (4.13) above are be fairly obvious. However, the need for the
strengthening brought about by (4.16) is not at all obvious. We only became fully
convinced of its necessity (Gutknecht’s exposition implies that it is a sort of “nice-
to-have”) when trying to argue the case for the third guard of the alternation
statement. The reader is encouraged to check that it was specifically required in
the argumentation at that stage of the above discussion. Without taking note of this
invariant relationship, one cannot prove the proviso.

The final form of the algorithm could certainly not be written down by the
average programmer without some sort of formal derivation. One of the questions
that might be asked about this final form is: should one not also cater for the
possibility that .bm ¤ x/ ^ .2s > m/? Clearly this would be redundant, since the
entire argument in deriving the algorithm is that the invariant must hold before each
loop iteration, and it is preserved after each loop iteration. If at any stage .2s > m/

became true, then the invariant would be violated. Recall that the semantics of
the selection statement is that it fails if none of its guards are satisfied. In the
current context, failure in the event of the invariant being violated would be entirely
appropriate. It would signal that an error had occurred in our logical reasoning—
hopefully something that has not occurred in the foregoing reasoning process.

At the end of the algorithm, s and x have specific values and, of course, M is
also given. There does not seem to be any obvious way of using these results to say
whether x is definitely the majority candidate or not. At best, one can conclude that
if 2s D M then x is not a majority candidate. (Why?) But if this happens, one is
not entitled to conclude that x is the candidate with the maximum (non-majority)
number of votes. Furthermore, it is not legitimate to conclude that if 2s < M then
x is indeed the majority candidate. This may be the case, but is not necessarily so.
The algorithm seems to be based on the notion that: “This is a democracy. Unless

144 4 Intermediary Examples

the citizens elect a clear winner, then anyone on the ballot list may be chosen as the
winner.”

Another application of the algorithm (appropriately adapted in terms of the
loop’s stopping condition) could be where voting takes place on a continuous basis,
with the current “winner” being fed back to the voters. One might expect the
voters to alter their votes away from worst-choice candidates towards more popular
candidates as the voting progresses. Eventually, one might expect a convergence
towards the winning candidate as the voting progresses. This kind of scenario is
not so far-fetched: it could well be used as a strategy in fault-tolerant computing
where several processors are sometimes required to compute the same result and
the majority-voted result is used as the correct answer, but only after a period
of convergence over time with the same machines somehow moderating their
computation according to the current winning outcome, x. Similar scenarios could
be considered in optimization algorithms (e.g., particle swarms needing to decide a
search direction) where different processes have to “vote” for the next appropriate
direction of search.

4.7 Computational Geometry

There are numerous interesting algorithms in a domain of study called compu-
tational geometry. We present here, a very simple example taken from work on
so-called axial line placement in collections of convex polygons.

4.7.1 Background and Notation

Figure 4.11 depicts a “chain” of convex polygons. The polygons are marked as
A; : : : ; J . These convex polygons are said to form a chain because they have the
following characteristics:

• Polygons A and J each share exactly one side with a neighbouring polygon
(namely with B and I respectively).

• All the other polygons each share two sides: one with each of two neighbours.

These shared sides are called adjacencies. The figure also indicates four axial
lines crossing adjacencies between polygons. The first runs from polygon A to
polygon C ; the second from polygon C to E; the third from E to G; and the
fourth from H to J . An axial line is therefore characterised by the adjacencies that
it intersects. The axial lines that will be of interest must be maximal. A maximal
axial line has the property that it cannot be extended in any direction without
crossing a side of a polygon that is not an adjacency. All axial lines in Fig. 4.11
are maximal—they cannot be extended in either direction in such a way that they

4.7 Computational Geometry 145

Fig. 4.11 Chain of convex polygons

cross an additional adjacency, even if their orientation (gradient) is changed, or if
they are shifted upwards, downwards, left or right.

Our general task is to develop an algorithm to perform maximal axial line
placement on a chain of convex polygons. In particular, we want to construct a
smallest set of maximal axial lines that ensures that every adjacency is crossed at
least once. Note that the axial lines in Fig. 4.11, though maximal, do not conform to
the problem’s requirements: they leave the adjacency between G and H uncrossed.
At least another maximal axial line from F to H is required.6

As an aside, one should also note that the minimal set of maximal lines crossing
all adjacencies may not necessarily be unique. However, we shall be content with
any single solution.

In order to construct the smallest set of maximal axial lines that ensures that
every adjacency is crossed at least once, assume that the following is given7:

• C is a chain of n convex polygons, C D c1; c2; : : : cn.
• There is an adjacency between polygon cj and cj C1, denoted by cj jcj C1, for

j D 1; : : : ; n � 1. (Note, therefore, that the first adjacency is c1jc2 and the last
adjacency is cn�1jcn.)

• vis.j; i/ is a predicate method that returns true if adjacency cj jcj C1 is partially
visible to ci�1jci . This means that:

6The figure is obviously just an example and our above conclusion is based on simple visual
observation. If the precise co-ordinates of the various vertices in the convex polygons were known,
it might turn that an axial line could be drawn from E to H . However, such precision is not of
concern in this discussion.
7The notation used here is taken from the original formulation of the problem, and therefore
deviates from our convention to date of enumerating entities from 0.

146 4 Intermediary Examples

– When the predicate is true, then an axial line can be drawn that crosses
through adjacencies cj jcj C1; cj C1jcj C2; : : : ; ci�1jci .

– The predicate is defined for 1 � j � i � n

– Note that vis.j; j / is construed as true because the set of adjacencies to be
crossed is empty.

– For all 1 < j < i < n, if vis.j; i/^:vis.j �1; i/^:vis.j; i C1/ holds, then
the axial line that crosses through adjacencies cj jcj C1; cj C1jcj C2; : : : ; ci�1jci

is maximal.
– For all 1 � i < n, if vis.1; i/ ^ :vis.1; i C 1/ holds, then the axial line that

crosses through adjacencies c1jc2; c2jc3; : : : ; ci�1jci is maximal.
– For all 1 < j � n, if vis.j; n/ ^ :vis.j � 1; n/ holds, then the axial line that

crosses through adjacencies cj jcj C1; cj C1jcj C2; : : : ; cn�1jcn is maximal.
– If vis.1; n/ holds, then the axial line that crosses through adjacencies

c1jc2; c2jc3; : : : ; cn�1jcn is maximal.

• axline.j; i/ is a method that returns an axial line which crosses all adjacencies
from cj jcj C1 to ci�1jci .

– The precondition of the axline.j; i/ method is vis.j; i/ ^ 1 � j < i � n.

• F is a set that contains maximal axial lines in the chain of polygons, C .

4.7.2 The Approach to Solving the Problem

Our task is to construct set F so that it contains the minimal number of maximal
axial lines needed to ensure that all adjacencies are crossed at least once. Since
F will grow incrementally as part of the algorithm, and therefore have a different
content as the algorithm progresses, we will refer to its final state as F f .

The essential idea is encapsulated in the following, which we shall refer to as the
left-to-right approach and abbreviate to the LRA:

Start in the first polygon and extend an axial line from it that crosses as many adjacencies
as possible. This is a maximal axial line and it is inserted into the minimal set. The polygon
in which this maximal axial line ends is then used as a starting point for a new maximal
axial line which is first extended as far to the right as possible; and then as far to the left as
possible. This maximal axial line, too, is inserted into the minimal set, F . This is repeated
from each rightmost termination point (i.e., polygon) of a maximal axial line in F , until all
adjacencies have been intersected.

Of course, care should be taken in the LRA not to attempt to extend a maximal
axial line to the right of the rightmost polygon, or to the left of the leftmost polygon.
Furthermore, it is essential that one first extends as far right as possible, and only
thereafter, as far left as possible.

It can be shown that the LRA leads to a minimal set of maximal axial lines cross-
ing all adjacencies. Even though this claim might seem obvious, it is nevertheless
requires proof. Such a proof is given in the original work from which this material

4.7 Computational Geometry 147

is taken, but will not discussed here. Rather, we wish to develop an algorithm that
executes the LRA, based on the correctness-by-construction approach.

Start by defining F.j / as a predicate to serve as part of a loop invariant. The
predicate asserts that when the LRA has investigated polygon cj in polygon chain
C , then F will contain all and only the maximal axial lines in F f that end in a
polygon of the subchain c1; : : : ; cj . Thus F.j / is defined, informally, as follows:

F.j / , .ci jciC1 : : : ch�1jch/ 2 F ” .h � j / ^ .ci jciC1 : : : ch�1jch/ 2 F f :

The following should be noted about this predicate, F.j /:

• The truth value of F.j / depends on the current contents of the set F . For F.j /

to be true, every axial line in F f that ends in or before cj has to be in the F ;
and every axial line in F has to correspond with an axial line in F f that ends in
or before cj .

• However, F.j / may be true, even if there are no axial lines in F ending in cj .
If there is no such axial line in the final set, F f , then F.j / will only be true if
there is no such axial line in F . Likewise, if there is indeed such axial line in the
final set, F f , then F.j / will only be true if there is also such axial line in F .

• The definition of F.j / implies that F.1/ is true, if and only if F D ∅:

• The definition of F.j / also implies that F.n/ is true, if and only if F D F f :

4.7.3 Deriving the Solution Constructively

What is needed is an algorithm, S such that fn � 2g F WS fF.n/g.
In thinking about the steps needed in the algorithm, suppose that we already

have determined F.j /; a maximal axial line running through polygon cj is to be
determined as the next axial line to insert into F . In order to determined this next
axial line, we need to probe adjacencies as far to the right as possible, starting with
adjacency of cj jcj C 1. We then need to probe adjacencies as far to the left as
possible, stating with cj jcj C 1. We use index h to demarcate the rightmost polygon
probed to date, and index ` to demarcate the leftmost index to date. We therefore
define an invariant in terms of j; ` and h as follows:

inv.`; j; h/ , F.j / ^ vis.`; h/ ^ 1 � ` � j � h � n:

Since
inv.`; n; h/ � F.n/ ^ vis.`; h/ ^ 1 � ` � n D h

it follows that inv.`; j; h/ ^ .j D n/) F.n/ and therefore that inv.`; j; h/ ^ .j D
n/ can be used to refine by strengthening the postcondition.

148 4 Intermediary Examples

However, in doing so, there could be some uncertainty about the values that `

and h will assume at the end of the loop. In the case of h, the matter is quite clear:
as seen above, it is explicitly part of the invariant that when j D n, then h will have
the value n.

The final status of ` in a loop whose postcondition is inv.`; j; h/ ^ .j D n/ is
less clear. The invariant contains the conjunct vis.`; h/ (which would actually be
vis.`; n/ at the end of the loop) but does not explicitly require that :vis.` � 1; h/

holds (assuming ` > 1). From the point of view of correctness argumentation, it
is irrelevant whether or not :vis.` � 1; h/ holds or not. All that is required is that
F.n/ holds, since that assures us that the will be in F a maximal axial line that ends
in polygon cn. Provided this holds, it does not matter whether or not :vis.` � 1; h/

holds or not. It just so happens that in the loop we construct below, it does indeed
hold, subject to the requirement that ` > 1

With these remarks in mind, we now refine the problem specification given above
as follows (this time, remaining with Hoare triple notation):

fn � 2g F WS fF.n/g
v fStrengthening postconditiong

fn � 2g F W S finv.`; j; h/ ^ .j D n/g
v fIntroducing frame variablesg

fn � 2g F; `; j; h W S finv.`; j; h/ ^ .j D n/g
v fSequence ruleg

fn � 2g F; `; j; h W S1 finv.`; j; h/g I
finv.`; j; h/ F; `; j; h W S2 finv.`; j; h/ ^ .j D n/g

v fAssignment ruleg
F; `; j; h WD �; 1; 1; 2I
finv.`; j; h/g F; `; j; h W S2 finv.`; j; h/ ^ .j D n//g

v fIteration ruleg
F; `; j; h WD �; 1; 1; 2I
finv.j; `; h/g
do .j ¤ n/ !

finv.j; `; h/ ^ .j ¤ n/g F; `; j; h W S2 finv.`; j; h/ ^ 0 � V < V0g
od

finv.`; j; h/ ^ .j D n/g

The justifications for each refinement step above are fairly straightforward and are
left as an exercise. The complete algorithm with a refined loop body is given below
without further proof.

4.7 Computational Geometry 149

pre fn � 2g
F; j; l; h WD �; 1; 1; 2

finv.`; j; h/ , F.j / ^ vis.`; h/ ^ 1 � ` � j � h � ng
fV , .n C 1/.n � jF j/ C .n � .h � `//g
Ido .j ¤ n/ !

if h < n cand vis.`; h C 1/ ! h WD h C 1

Œ� .h D n cor :vis.`; h C 1// ^ .l > 1 cand vis.` � 1; h// ! ` WD ` � 1

Œ� .h D n cor :vis.`; h C 1// ^ .l D 1 cor :vis.` � 1; h// !
F; j; `; h WD F [faxline.`; h/g; h; h; h C 1

fi
od
finv.`; j; h/ ^ j D ng
post fF.n/g

Although the guards in the select statement may seem rather complex, a little
thought will convince you of their accuracy and comprehensiveness. However, the
variant, V , which is specified in the comments, and which was used to refine the
loop is non-trivial and requires an explanation. This variant is given as:

V , .n C 1/.n � jF j/ C .n � .h � `//:

V accounts for the fact that in each iteration, either:

• h � `, the current length of an axial line being considered at this point in the
algorithm, comes closer to n (which happens either because h is increased or
because ` is decreased); or

• the number of adjacencies in F increases by 1, so that jF j comes closer to its
upper bound, namely n. Put differently, n � jF j comes closer to its lower bound
of 0.

However, when the latter happens, then h � ` is also reset to 0, meaning that n �
.h � `/ might actually increase. Thankfully, it can never increase by more than n!

To offset this potential increase, therefore, and to ensure that the variant decreases
by at least 1 in each iteration, any possible unit increase in jF j, which is also a
decrease in n � jF j, is magnified by a factor of .n C 1/. This accounts for the term
.n C 1/.n � jF j/ in the variant. As a result, if the term .n � .h � `// in the variant
increases by at most n, then the term .n C 1/.n � jF j/ decreases by n C 1, thus
ensuring that the variant decreases by at least 1.

As seen in the first guard, the final algorithm increases h as much as possible.
Then (only if h can no longer be increased) it decreases ` by as much as possible,
as seen in the second guard. If neither of these two actions are possible, (as seen
in the third guard) then the axial line from ` to h is maximal. This line is therefore
added into F , and j is increased to h. Furthermore, ` and h are reset to h and h C 1

respectively. Note that the guards are mutually exclusive.

150 4 Intermediary Examples

Recall that cand and cor are used to indicate the “conditional and” and
“conditional or” operations (also known as short circuit operations). x cand y only
evaluates expression y if expression x evaluates to true; otherwise it returns false.
Similarly, x cor y only evaluates expression y if expression x evaluates to false;
otherwise it returns true.

4.7.4 Discussion

The algorithm for this problem that was proposed in its original publication looks
rather different from the one we have derived. For comparative purposes, it is given
below, restated in GCL notation. Variable names have been changed to coincide
with those used in the derived algorithm, and “conditional or” expressions, not in
the original, have been used where appropriate.

Input: a chain of convex polygons C and n D jC j
Output: a minimal set of maximal axial lines F

j WD 1 fSource of current axial line in the loopg
F WD � fWill contain final set of axial linesg
for h D 2 to n

as ..h D n/ cor :vis.j; h C 1// !
` WD j � 1

Ido ` ¤ 0 cor vis.`; h/ !
` WD ` � 1

od
I F WD F [axline.` C 1; h/

I j WD h

sa
rof

It is left to the reader to understand the algorithm in this form, and to become
convinced of its correctness.

Here are some matters of concern about this form of the algorithm—concern,
not in the sense that the algorithm is incorrect, but rather in the sense that an
added intellectual burden is imposed on the reader in trying to verify the algorithm’s
correctness:

• The fact that ` is not initialized, means that the reader has to be convinced that it
will acquire a correct value eventually.

• It is left to the reader to infer the condition under which the loop does nothing
more than start the next iteration. Use of the classical GCL select statement would
explicitly have a guarded command: ..h ¤ n/ cand vis.j; h C 1// ! skip.

4.8 Revision Exercises 151

• This means that the condition under which the search for the right-most end of
the axial line is advanced—i.e., the condition under which h is incremented—is
not made explicit.

• The notation obscures the fact that there is an underlying symmetry involved in
either incrementing h by as much as possible, then decrementing ` by as much
as possible, and then generating the axial line.

• It is disconcerting that ` has to be decremented one past its required value, and
then incremented in generating the axial line.

• The assignment of h to j makes more sense when a loop invariant statement
drives the motivation to do this.

• Some effort is required to verify that the algorithm is correct at boundary values
(e.g., when j D 1 or when h D n) and, in the absence of a structure or checklist,
one is often left with a feeling of uncertainty about whether every boundary
condition has been checked.

No doubt, criticisms could also be made of the first variation of the algorithm. For
example, it might have been better to have constructed separate loops within the
main loop that increment h and decrement ` respectively. However, we contend that,
in general, by constructively deriving code from specifications, the overall structure
and purpose of the code tends to be more transparent and elegant than if unguided
intellectual effort is brought to bear on the problem.

4.8 Revision Exercises

1. Study the so-called “stable marriage problem” and its solution, as outlined
in Wikipedia (http://en.wikipedia.org/wiki/Stable marriage problem). Suggest
a suitable variant and invariant for the problem. Attempt to write these down in
natural language. Only once you have this should you attempt to formally state
the invariant and variant.

2. Study the “Convex Hull Problem” and the “Graham Scan Algorithm” It
is given at http://softsurfer.com/Archive/algorithm 0109/algorithm 0109.htm#
Convex%20Hulls

Suggest an appropriate variant and invariant for the loop in this problem. Do
not be too concerned about specifying the invariant as a predicate—just give an
English narrative description of it.

Note that the pseudocode given at the above website is actually rather flakey.
It is reproduced below. You will notice that i is not properly initialised, and is
also not properly incremented in the loop.

Input: a set of points S = {P = (P.x,P.y)}
Select the rightmost lowest point P0 in S.
Sort S angularly about P0 as a center.

For ties, discard the closer points.
Let P[N] be the sorted array of points.

152 4 Intermediary Examples

Push P[0]=P0 and P[1] onto a stack W.
while i < N
{

Let PT1 = the top point on W
Let PT2 = the second top point on W
if (P[i] is strictly left of the line PT2 to PT1) {

Push P[i] onto W
i++ // increment i

}
else

Pop the top point PT1 off the stack
}
Output: W = the convex hull of S.

A more accurate rendition of the loop, given in GCL, follows below. A few
stack operations have been assumed, using a Java-like style for calling stack
methods.
i WD 2

f Variant: : : : g
f Invariant: : : : g
do .i ¤ P:len/ !

P T1; P T 2 WD W:top.1/; W:top.2/

I if .Pi :isLef t.P T 2; P T1// ! W:push.Pi /

Œ� :.Pi :isLeft.P T 2; P T1// ! W:pop. /

fi
I i WD i C 1

od
f Invariant: ^ .i D P:Len/ g

3. Square root approximation We are given a natural number s, and we must set
the natural number r to the greatest integer not exceeding

p
s, where p takes

the non-negative square root of its argument. Thus starting from s D 9, for
example, we would expect to finish with s D 29 ^ r D 5.

4. Derive an algorithm to find indices ` and h such that AŒ`;h/ is a shortest maximal
run in the array A. Assume that A:len > 0. Rely on the following definitions:

A run in an array is a subarray whose values are all the same.
A left run in an array is a run in the array that cannot be extended further to
the left
A maximal run in an array is a left run in the array that cannot be extended
further to the right.

Suggestions:

• The following figure (Fig. 4.12) might aid in determining an invariant and
variant

• Of course, the shortest possible maximal run is necessarily of length 1.
You may therefore be tempted to build tests into your algorithm that
enforce termination when a run of length 1 is found. Ignore this matter in

4.8 Revision Exercises 153

Fig. 4.12 Invariant and variant

deriving your code. It will complicate reasoning about more fundamental
questions. The derived code can always be refactored to account for
maximal runs of length 1 at a later stage.

• Map the algorithm derived above to a program in your favourite
programming language, and test your code against arrays such as the
following:
Œ1111000011000�

Œ1�

Œ000011�

Œ00001�

Œ1110000�

Œ0011�

Œ101010� etc.

5. The code below was provided as a hacked solution to the shortest maximal
run problem described in the previous exercise. Is it correct? If you have
difficulty reaching a conclusion, it would be wise to draw a life-lesson from
your experience about the consequences of hacking code into correctness.
`; h; i; r WD 0; A:len; 0; 1

Ido .r ¤ A:len/ !
do ..r ¤ A:len/ ^ .Ai D Ar// ! r WD r C 1 od
I if ..h � l/ � .r � i// ! i WD r

Œ� ..h � l/ > .r � i// ! l; h WD i; r

fi
od

6. You are given an array, A, (A:len > 0) that is described by the following
diagram.

Thus, all elements of the subarray AŒ0;k/ are the same; all elements of subarray
AŒk;A:len/ are the same; and Ak D A.k�1/ � 1. However, we also allow for the

154 4 Intermediary Examples

possibility that k D 0, in which case, all elements in the array are the same. We
can express this by saying that array A is monotonically non-increasing,8 and
its elements never differ by more than 1 unit.

Derive an algorithm to add r units (where r 2 Œ0; A:len/) to elements of A in
such a way that A retains this property of being monotonically non-increasing
with elements never differing by more than 1 unit. You may assume that k is
known at the start of the algorithm.

Use these guidelines:

• Regard A; r and k as frame variables.
• Define a predicate, mni.A; k/ that asserts that A is monotonically non-

increasing, with a difference occurring at between elements A.k�1/ and Ak ,
provided k > 0; and all elements are the same if k D 0. Use in your
definition, the predicate eq.AŒ`;h// that asserts that all elements in the interval
Œ`; h/ are the same.

• Specify the precondition, but include in it the predicate that sum.A/ D S ,
where sum.A/ denotes the sum of the elements in the array. Also include in
the precondition an assertion that the r D R. Thus S and R denote the initial
values of sum.A/ and r , respectively.

• Specify the postcondition, including in it conjunct(s) that clarify the rela-
tionship between the updated values of sum.A/ and r on the one hand, and
their respective initial values R and S .

• The problem statement strongly suggests a loop invariant. Give this invari-
ant.

• Use the invariant to solve the problem in a single loop.
• Make clear what you are using for a variant.

Aside:

This is the simplest in a whole family of possible load-balancing algorithms.
In such problems, the objective is to balance out the load between different
processors/workers/units, the load here being represented by the value stored in
different array elements.

One could imagine variations such as:

• A has more than one step;
• k is not known initially;
• r is not restricted to being � A:len;
• A is monotonically non-decreasing without further restrictions about only

one step; and
• no restriction on the shape of A.

8A formal definition of a monotonically non-decreasing subarray was given in Exercise 8, Sect. 3.7.

4.8 Revision Exercises 155

The latter is probably the most complex case. It is not immediately obvious
whether there is a “best” way to balance the load. There could be several
strategies to try to obtain a smooth shape for A, but it is not obvious whether
there is a uniquely best way.

7. Derive an algorithm to find the intersection of three integer sets. Assume that
each set is implemented as a sorted integer array (possibly empty). The three
sets are therefore stored in arrays A, B and C respectively, and their intersection
should be stored as a sorted array in array D. Assume that D:len is large
enough to store the intersection, i.e., D:len � max.A:len; B:len; C:len/

To simplify notation, it will be handy to use set notation on arrays, or subarrays.
Thus, the problem statement can be specified as follows, where i , j , k and r

are indices into arrays A, B , C and D respectively:

i; j; k; r; D W Œsorted.A/^sorted.B/^sorted.C /; sorted.D/^D D A\B \C �

or, more simply, if we assume throughout that the sortedness of arrays is
implied, then:

i; j; k; r; D W Œtrue; D D A \ B \ C �:

Note that there are some subtle issues around the question of when the loop
should terminate. One solution would be to arrange for each index in each array
to reach the end of the array. Another (more efficient approach) would be to
terminate the loop when any index reaches the end of an array.

8. A Small Case-Study9

Andile received an email from her friend Adam containing the following
extract—

“. . . what prompted me to write this email, was that we had to write a simple algorithm:
a function which reads chunks of predetermined size from a file, sending each chunk
in turn without reading the entire file into memory. The trick is that the algorithm
should start from a specified starting position, and the file should be read only up to
(and including) a particular end position. And, the end position may not be specified,
in which case you should read up to the end of the file. Similarly, the starting position
may also not be specified, in which case you should start reading from the start of the
file. . . . ”

The email included the Python solution in Fig. 4.13 that had been developed.
Adam asked whether “formal methods” would provide a cleaner solution to
their problem.

Never having used Python, Andile studied the algorithm and decided the
following:

9This case study describes an interaction between a very smart former postgraduate student and
one of the authors. In order to preserve anonymity, names have been changed in the narrative

156 4 Intermediary Examples

Fig. 4.13 Supplied Python version

• As in C, variables in Python can be interpreted as Booleans, as is the case in
lines 3, 12, 16 and 20.
In line 3, evidently the variable start used as a Boolean, evaluates to true
if it is given explicitly in the method call.
Similarly, in line 12, evidently chunk used as a Boolean, evaluates to false
if and only if the reading action on the file has reached the end of the file.
Line 16 uses end in a similar fashion to start in line 3, but also uses end
as an ordinary integer type.
Finally, in line 20, chunk is used as a Boolean and evaluated similarly to
line 12.

• The essence of the given Python algorithm could be rewritten in GCL-like
pseudocode as in Fig. 4.14. The following is assumed:
The data is read from array A instead of from some file. To mimic the Python
code in line 11, the pseudocode uses a read method to move information
from a subarray to chunk.
In the GCL pseudocode, it is assumed that if s D �1 then the intention of
the method caller was to read from the beginning of the file; and similarly if
e D �1 then read to the end of the file.
A method called yield is used to do something with the chunk at the end of
the loop, corresponding to line 21 of the Python program.

• Finally, Andile articulated the pre- and postcondition require of this code as
shown in Fig. 4.14.

She then wrote down a much cleaner GCL algorithm for the problem,
following the kind of development strategy advocated in this book, without

4.8 Revision Exercises 157

Fig. 4.14 GCL version of supplied Python algorithm

fully elaborating each refinement step on paper. The entire exercise took her
about 30 min, and it probably took about 10 min to write down her proposed
algorithm. She sent back her solution with the following comments:

I found the range.py example interesting. . . . my thoughts about your solution were
that your loop seemed to try to mix several concerns that should be separated.

• What are the bounds over which the task is to take place
• What is the normal flow of logic to be handled by a loop
• What is the exceptional case, i.e., to deal with the last chunk that may be smaller

than previous chunks.

It seems to me that by trying to deal with all these concerns in the same loop, you
ended up with a load of logic and flags that were unnecessarily complicated. . . . my
solution tried to deal with each concern separately. The essence of my approach is

that I sought a loop invariant that was simple—everything “processed” in the range
[start,exclude). Next, I asked: What must be true at the end of the loop? Answer:
Invariant AND predicate that says “can’t go further in the loop”—i.e., if I read another
chunk, then I would pass “end”. The negation of that predicate became the loop’s
condition.

After that, everything is pretty simple: Need a loop body to read a chunk, do the
processing, and step ahead one increment. Need a bit of code after the loop to handle
the tail end processing, need something before the loop to set it up, etc.

Adam translated the GCL-like solution back into Python, thoroughly tested it,
found no errors, and confessed to feeling embarrassed at his original version.
The main concern in his version was to avoid reading the length of the file at
the beginning (in Andile’s GCL example, she simply assume it to be available

158 4 Intermediary Examples

Fig. 4.15 Solution outline

as A:len) because he felt that this would involve an inefficient system call. His
subsequent remarks in this regard are worth hearing:

“I do believe that you should let performance influence your design if and only if
after profiling you discover that you indeed have a performance problem. And, XP
has this principle called “YAGNI” (You ain’t gonna need it.) So, maybe I’ve violated
that principle and built in a performance improvement of questionable value (because
it has not been profiled) which I may not need (because I have not experienced the
problem).”

Your Task:

Reconstruct Andile’s version of the algorithm. Use the solution outline
in Fig. 4.15. Of course, you have to articulate the invariant, variant, loop
condition, etc.

9. (a) Derive a GCL program to solve the following problem:

L W �

N > 0 ^ b > 1; N 2 �

bL; bLC1
�	

;

i.e., derive an integer approximation, L, of logb.N /. This is of course a
generalisation of the problem that was discussed in Sect. 3.6, namely:

L W �

N > 0; N 2 �

2L; 2LC1
�	

:

(b) Note that the above will may not give the “best” approximation. For
example, if N D 723 and b D 10, it will deliver L D 2 because
N 2 �

102; 103
�

. Constructively develop code to find the best integer
approximation, L, of logb.N /.

Start by formulating a formal postcondition that depends on the various
parameters and that expresses what is required, so that the problem
becomes:

4.8 Revision Exercises 159

L W ŒN > 0 ^ b > 1; post.b; N; L/�:

You are likely to find that refining post.b; N; L/ is the most challenging part
of this question. Thereafter it is simply a matter of “reusing” your solution
in the first part of the exercise, and taking a fairly obvious step thereafter.

10. Longest prefix matching Given arrays S and p of characters, find the index i

of the leftmost occurrence of the longest prefix of p in S . For example, when
S D WatkinsWatson; p D Walsh we would obtain i D 0 since no prefix longer
than Wat matches, and it matches leftmost at the beginning of S . On the other
hand, for p D Watsonville we would have i D 7.

11. Longest strictly descending subsequence Given an array Q of numbers, find
the rightmost indices i and j such that the j � i is maximal and for all
k W i < k � j

Qk�1 > Qk:

For example, if Q D Œ�1000; 2; 1:5; �1; 6; 5; 4� the answer is i D 4; j D 6. Q

is guaranteed to be non-empty.
12. Longest alternating subsequence Given an array Q of numbers, find the

leftmost indices i and j such that the j � i is maximal and for all integers
Qi ; : : : ; Qj , the sequence is alternating (strictly) increasing–decreasing. It
may start decreasing or increasing and end on either. For example, if Q D
Œ�5000; �1000; 2; 2:1; �1; �0:5; 6; 7� the answer is i D 1; j D 6 because from
Q1 D �1000 to Q6 D 6 the sequence starts increasing and then alternates. Q

is guaranteed to be non-empty.

Chapter 5
Procedures and Recursion

5.1 Introduction

Procedures1 offer a well-known way of reusing code. A procedure may be viewed as
a named block of code, characterised by its pre- and postconditions. It may be called
(or invoked) from other parts of a program. A correctness-by-construction approach
can be used to derive the body of the procedure, thus ensuring that it conforms to
its stated pre- and postconditions. However, to date we have not explicitly shown
how calling a procedure can be incorporated into our refinement rules. Section 5.2
provides the relevant refinement rules, while Sect. 5.3 provides a broad strategy for
deriving procedures.

The rest of the chapter the focusses on recursion. This is a well-known and
powerful algorithmic device in terms of which procedures call themselves during
execution—hence the unsettling aphorism:

To understand recursion, you have to understand recursion!

Although it takes a little time to become familiar with the idea of recursion, once
the ice has been broken, recursive algorithms turn out to have a kind of magically
succinct quality about them.

Recursion is useful in solving problems through a Divide and Conquer strategy:
a problem is broken down into smaller pieces that can be easily solved, and then all
the smaller solutions are merged together. Recursive procedures are also often used
to traverse recursive data structures, such as lists, graphs, trees and lattices.

Many problems are amenable to both recursive and iterative algorithmic solu-
tions. For example, Kaldewaij [25] uses correctness-by-construction techniques to
derive iterative solutions for both Quicksort and Mergesort—classically presented

1Synonyms are subprocedure, subprogram, routine, subroutine, function and method. In this text,
we will keep to the terms procedure and function as they were classically used in languages such
as Pascal.

D.G. Kourie and B.W. Watson, The Correctness-by-Construction Approach
to Programming, DOI 10.1007/978-3-642-27919-5 5,
© Springer-Verlag Berlin Heidelberg 2012

161

162 5 Procedures and Recursion

as recursive algorithms. Recursive algorithmic solutions often have advantages over
their equivalent iterative versions. Many are more elegantly expressed in their
recursive forms, making such algorithms easier for programmers to understand,
remember and implement. In the case of template meta-programming in C++,
variables cannot be used to support iteration, so recursion for performing repetition
[2] is obligatory. On the downside, recursion is more space- and time-expensive
when implemented on a real machine.

Nevertheless, on grounds of elegance alone, it is worth investigating how to
incorporate recursion into the correctness-by-construction approach. In Sect. 5.4,
refinement rules for deriving recursive procedures will be presented, as well as a
discussion of total correctness. Section 5.5 shows how variants can be used to ensure
termination of recursive programs. The section offers a strategy for constructing
such procedures, somewhat analogous to the loop construction strategy of Chap. 2.
Section 5.6 then provides a number of examples to demonstrate how the material in
Sects. 5.2–5.5 can be used to derive recursive algorithms in practice.

5.2 Procedures

This section draws on the refinement rules provided by Morgan’s refinement
calculus. A procedure is a named block of code, characterised by a pre- and
postcondition, and possibly by so-called “formal” parameter variables. It can be
invoked by giving its name and so-called “actual” parameters to be passed on to
and/or retrieved from the procedure. The scope of the parameters can be set in
different ways. However, for simplicity, in this discussion we will assume that all
variables to be considered other than actual and formal parameters have global
scope—i.e. they are visible from both the calling environment, and within the
procedure.

5.2.1 Parameterless Procedures

The simplest of procedure refinement rule deals with procedures with no parameters.
Let R./ denote a call to a procedure defined as proc R./ S corp—i.e. the procedure
has name R and body S . The following refinement applies.

Rule 10. Spec.P; S; Q/ v Spec.P; R./; Q/

In other words, if we wish to derive code that terminates in StateQ if commenced in
StateP , and we already know that the body, S , of the parameterless procedure, R./

complies with this requirement, then we might as well just call R./! We don’t even
need to know the details of what S does—if, given the precondition, R./ terminates
and produces the specified postcondition, then it is good enough.
Consider, for example, the following simple procedure which sets a global variable,
x, to 1.

5.2 Procedures 163

proc SetToOne./ x WD 1 corp

The body of this procedure just happens to comply with the following specification.2

Spec.x < 20; x W S; x > 0/

It is easy enough to prove that the body of SetToOne./ indeed complies with this
specification (a simple exercise left to the reader). But whether we know that
Spec.x < 20; x W S; x > 0/ holds as a matter of proof, or as a matter of externally
supplied information, Rule 10 asserts that invoking SetToOne./ from Statex<20 will
result in a new state in Statex>0.

Clearly, x W Œx < 20; x > 0� is not the most specific characterisation of what
the body of SetToOne./ accomplishes. Such a specification would require maximal
weakening of the precondition and strengthening of the postcondition, namely x W
Œtrue; x D 1�. Rule 10 would also apply in this case, so that we could assert that:

Œtrue; x D 1� v SetToOne./

Parameterless procedures such as SetToOne./ are, however, very limited in their
usefulness. For example, SetToOne./ is restricted to both the global variable x and
the constant value 1. The procedure would be far more useful if it could accept, as
a parameter, a variable other than x on which to perform its assignment, and/or a
value other than 1 to be used in the assignment.

There are three classically-known types of parameters: “pass-by-value”, “pass-
by-result” and “pass-by-value-result.”3 Refinement rule are defined to handle each
of these types of parameters in procedures.

In the rule explanations that will follow below, a formal parameter is the variable
declared in the procedure definition whose scope is limited to the procedure. An
actual parameter refers to the variable or value sent through at the procedure call.
In the following code snippet, z is the formal parameter and a is the actual parameter.

proc Proc.z/ : : : corp
:::

a WD p � q C r I
P roc.a/

2Recall the three equivalent notational options introduced in Chap. 2. There we introduced
Spec.x < 20; x W S; x > 0/ as just another form of the Hoare triple notation fx < 20g x W
S fx > 0g. Morgan’s notation of x W Œx < 20; x > 0� suppresses explicit reference to abstract
code, S , whereas concrete code is explicitly given and any inference about such code’s pre- and
postconditions has to rely on previous refinement steps. We freely alternate between notations in
order to highlight various aspects of a specification.
3Some contexts speak of “in”, “out” and “in out” parameters, respectively. The terms “call-
by-value” and “call-by-reference” are also encountered, the latter being more or less equivalent
to “pass-by-value-result”.

164 5 Procedures and Recursion

This example takes some notational liberties, in that Proc does not specify the type
of its formal parameter as pass-by-value, pass-by-result or pass-by-value-result. As
will be seen below, this is normally required.

We will now indicate the refinement rules that can be used in the presence of
each of these three types of parameters. Throughout we will refer to a procedure
R.z/, that has the formal parameter z, and which is invoked as R.a/, where a is
the actual parameter. We will mention in passing various constraints that apply to
the contents of the pre- and postconditions when these rules are applied. However,
for the sake of simplicity, we will not fully elaborate on them, nor methodically
check for compliance with those constraints in subsequent examples, since—in the
main—they forbid rather extreme situations which are seldom relevant.

5.2.2 Pass by Value

A pass-by-value parameter initialises the formal parameter’s value to that of the
actual parameter’s value, but changes made to the value of the formal parameter
during execution of the procedure do not affect the value of the actual parameter, a.
Essentially the parameter is used to pass a value to the procedure, and therefore the
parameter a is best thought of as an expression (which is evaluated before control is
passed to the procedure body) rather than as a variable.4

Suppose we are given the procedure specified as proc R.value z/ w; z W Rbody

corp. This specification emphasises that the frame variables (or perhaps variable
lists) w and z may change when Rbody is executed. The pass-by-value rule to be
given below indicates the circumstances under which R.a/ may be invoked.

The rule will rely on the notation a0 to denote the actual parameter, a, after all
occurrences of w in a have been substituted by w0, i.e. a0 � aŒwnw0�. Now to see
why this makes sense, one has to understand that the expression a may include the
variable w. For example, a could be the expression w C 4x (x being some other
arbitrary variable). Since frame variable w may change during the execution of R,
we have an interest in noting its initial value w0, as well as the initial value of a,
namely a0 � w0 C 4x. Note that there is no need to be concerned about how x will
change during a call to R: we may assume that it does not change at all, since it does
not appear as a frame variable in relation to Rbody.

Using this notation, the pass-by-value refinement rule is as follows.

4An expression is a programming construct that returns a value. A variable to which a value has
been assigned is thus one special form of an expression. Other kinds of expressions are constants,
expressions with operators, etc. A function call is also conventionally regarded as an expression.

5.2 Procedures 165

Rule 11. Pass by value rule5

Given: proc R.value z/ fP g w; z W Rbody fQg corp
Rule: fP Œzna�g w W S fQŒz0na0�g v fP Œzna�g R.a/ fQŒz0na0�g
Suppose we have a library containing the utility procedure R. To be useful, we
would obviously expect that its documentation contains information about the
pre- and postconditions, P and Q, under which it operates—i.e. under which
fP g w; z W Rbody fQg is true. Of course, the details of Rbody is assumed to be
unknown. However, we do know that Rbody may only change values of the pass-
by-value formal parameter z and the globally known variable w. (Throughout, we
assume z and w to be single variables. The discussion trivially generalises to the case
where they represent lists of variables instead.) Note that P and/or Q are allowed
to refer to variables w and z.

The rule indicates that the a call to R.z/, i.e. the concrete code R.a/, then
conforms to the specification
fP Œzna�g R.a/ fQŒz0na0�g.

Moreover, the rule indicates that this specification is a refinement of any abstract
specification that has the same pre- and postconditions and allows for the changes
in w—i.e. it is a refinement of fP Œzna�g w W S fQŒz0na0�g.

Note that it would not make any sense to specify in the postcondition, Q, any kind
of expectations on the range of final values of the formal value parameter, z. Why
not? Well, because the scope of z is limited to within Rbody, and any such information
would be of no use to a caller of R. However, it is well within expectation that the
designer of Rbody might need to specify, in postcondition Q, something about how
the initially passed value of z, namely z0, features in relation to other variables that
have been manipulated during the execution of R. For example, the purpose of Rbody

may have been to ensure that w > z0.
Now suppose that you need to change the value of w at a point where you know

that predicate P 0 will hold, and you believe that by using the actual parameter a

in the call R.a/, your purpose would be achieved—i.e. say Q0 will hold. How can
you know whether or not the call R.a/ complies with your requirements in a given
context? Rule 11 will assist you in answering your question.

The information you have at hand is that fP g w; z W Rbody fQg holds. The rule
tells you that by calling R.a/, you may be confident that fP Œzna�g R.a/ fQŒz0na0�g
will hold.

If P 0 and Q0 do not coincide exactly with P Œzna� and QŒz0na0� respectively,
you would still not know whether or not the call to R.a/ achieves your purpose.
To be affirmed of that, you would need to show is that

fP 0g w; z W S fQ0g v fP Œzna�g R.a/ fQŒz0na0�g

5The rule is given in Hoare triple notation, because the pre- and postconditions that apply when the
call is issued are explicitly shown. For this reason Hoare notation will also be used in subsequent
rules. However, the essential equivalence of the two notations should constantly be borne in mind.
In Morgan’s notation this particular rule is: w W ŒP Œzna�; QŒz0na0�/ v R.a/.

166 5 Procedures and Recursion

You would have to rely on other refinement rules to show this—typically using rules
relating to strengthening postconditions, weakening preconditions, etc. You might
even have to rely on the sequence rule where P Œzna� and QŒz0na0� feature as mid
predicates en route to attaining Q0 from P 0.

As an example of the rule in action, consider the following procedure, which
merely sets the global variable, w, to its pass-by-value parameter incremented by 1.

proc R.value z/ w WD z C 1 corp

Now suppose that the designer of this procedure had placed it in a library and,
for reasons related to the context of its intended use, advertises that R.value z/
conforms to the specification:

w; z W Œw � 0 ^ z < 100; w > z0�

It is a simple matter to show that the procedure’s body indeed conforms to the
specification. (Of course, it also conforms to various other specifications, and in
practice, it might have been more sensible for the designer to specify a precondition
that is as weak as possible, and a postcondition that is as strong as possible, for
example w; z W Œtrue; w D w0 C 1 ^ x D z0 C 1�. However, the given specification
is used for illustrative reasons.)

Note that, as required for the application of the rule, the postcondition is
independent of the formal parameter, z. It indeed reference its initial value z0, but
this was tolerated by the rule’s constraints. As a result we may apply Rule 11, using
.w � 0 ^ z < 100/ and .w > z0/ as P and Q, respectively.

Let us consider applying the rule under two circumstances. In the first case,
suppose we want to use an actual parameter of 5, i.e. we wish to call R.5/. To
apply the rule we need to determine the precondition under the substitution Œzn5�,
which becomes

w � 0 ^ 5 < 100 � w � 0 ^ true � w � 0:

Also needed is the postcondition under the substitution Œz0na0�, where

a0 � aŒwnw0� � 5Œwnw0� � 5

The postcondition under the substitution Œz0n5� then becomes

.w > w0z0/Œz0n5� � .w > 5/

Rule 11 then assures us that:

f.w � 0/g w W S f.w > 5/g
v f.w � 0/g R.5/ f.w > 5/g

5.2 Procedures 167

Thus, Rule 11 assures us that if w > 0 and the call R.5/ is made, then the call will
terminate and w > 5 when it does so.

To illustrate the use of the rule when the actual parameter is slightly more
complicated, suppose we wished to make the call R.3w C 1/. In this case, we
need to make the substitution Œzn3w C 1� in the precondition to get: .w � 0/ ^
.3w0 C 1 < 100/

Since a0 D .3w C 1/Œwnw0� D 3w0 C 1, we need the substitution Œz0n3w0 C 1�

in the postcondition. This gives .w > 3w0 C 1/. The result would be the following
application of Rule 11:

f.w � 0/ ^ .3w0 C 1 < 100/g w W S f.w > 3w0 C 1/g
v f.w � 0/ ^ .3w0 C 1 < 100/g R.3w0 C 1/ f.w > 3w0 C 1/g

It does no harm at this stage to eliminate the explicit reference to initial values in P ,
so that, because of Rule 11 we could have confidence in the following specification:

f.0 � 3w C 1 < 100/g R.3w C 1/ f.w > 3w C 1/g

Of course, the developer who wished to ensure that the postcondition holds after the
call to R.3w C 1/ would have to ensure that the precondition holds before the call.
That seems like a lot more trouble than it is worth in the case of this rather contrived
example.

In summary, we have seen that if we know something about behaviour of a
procedure’s body in terms of pre- and postconditions that comply with the rule’s
restrictions, and if we invoke the procedure with appropriate actual parameters, then
Rule 11 informs us of a pre-post specification to which that invocation will conform.

5.2.3 Pass by Result

A “pass-by-result” actual parameter has to be a variable—it may not be any other
kind of expression. It is assigned the value of its corresponding formal parameter
when the procedure terminates. Such parameters pass values “out” of the procedure
whereas pass-by-value parameters pass values “into” the procedure.

The pass-by-result rule is given below, where it is now assumed that a in the call
R.a/ is a variable.

Rule 12. Pass by result rule
Given: proc R.result z/ fP g w; z W Rbody fQg corp
Rule: fP g w; a W S fQŒzna�g v fP g R.a/ fQŒzna�g

The rule is contingent on certain constraints in the way P and Q are constituted:
z0 may not appear in Q and z may not appear in P . These constraints are entirely
sensible.

168 5 Procedures and Recursion

z is used to return a result from Rbody; when the call is made it is assumed to
be unassigned (to have no value). Thus, its initial value, z0, is irrelevant to the final
outcome of Rbody and therefore ought not to appear in the postcondition, Q.

Similarly, it would not make sense to refer to z in the precondition, P . Since z’s
value is not communicated to Rbody, its initial value cannot play any meaningful
role in the procedure’s outcome and therefore has no place in the procedure’s
precondition, P .

A simple example illustrates the rule in action. Consider the following procedure.

proc R.result z/ z; w WD x C 1; w C 1 corp

Here, x may be viewed as a global variable, or perhaps as a local constant. Whatever
the case, the procedure’s designer would have to advertise that the procedure
conforms to a specification that assumes knowledge that the user knows something
about the value of x. For example, the following specification may be advertised:

z; w W ŒP; Q� where P � true and Q � .w > w0 ^ z > x/

(That the body actually adheres to this claim can readily be verified.)
Suppose that we, as users of the procedure, require that the call R.a/ should

result in Q0 � .w > w0 ^ a > x/. From the designer’s specifications it is evident
that Q0 � QŒzna�. The rule allows us to conclude that

ftrueg w; a W S f.w > w0 ^ a > x/g
v ftrueg R.a/ f.w > w0 ^ a > x/g

which is just another way of saying that the call R.a/ is a refinement of a
specification that seeks to attain the postcondition from an arbitrary (true) starting
scenario, and that, in turn, is a longwinded way of saying that the R.a/ will achieve
our desired postcondition, irrespective of the starting state.

5.2.4 Pass by Value Result

A “pass-by-value-result” parameter is a combination of the previous two parameter
types. The actual parameter, which is again constrained to be a variable, both ini-
tialises the value of the formal parameter at the start of the procedure and the value
of the formal parameter is passed back to the actual parameter at the termination
of the procedure. The rule indicates the circumstances under which R.a/ may be
invoked when we are given the procedure proc R.value result z/ Rbody corp. The
rule appears as a combination of Rule 11 and Rule 12.

Rule 13. Pass by value-result rule
Given: proc R.value result z/ fP g w; z W Rbody fQg corp
Rule: fP Œzna�g w; a W S fQŒz0; zna0; a�g v fP Œzna�g R.a/ fQŒz0; zna0; a�g

5.2 Procedures 169

In contrast to the pass-by-result rule, the rule does not require that z may not be
appear in P . Similarly, in contrast to the pass-by-value rule, the rule does not require
that z may not appear in Q.

Consider the simple example that differs from the previous one only in that z is
now passed by value-result, and z replaces the role of x in the previous example.

proc R.value result z/ z; w WD z C 1; w C 1 corp

It is easy to verify that the procedure’s body complies with the specification:

ftrueg z; w WD x C 1; w C 1 f.w > w0 ^ z > z0/g

Taking P in the rule as true, Q as .w > w0 ^ z > z0/ and applying the rule’s
substitutions, we get:

ftrueg w; a W S f.w > w0 ^ a > a0/

v ftrueg R.a/ f.w > w0 ^ a > a0/g

Thus, invoking R.a/ from any start state guarantees that both w and a will be larger
than their respective values before the invocation.

5.2.5 Functions

Functions are easily refined as they are special cases of procedures. A function
returns values, and thus any function can be expressed as a procedure with an
additional pass-by-result parameter for each of its return values. For example, the
following snippet

proc Example.result x, result y, value x/ : : : x; y WD 0; 1 corp
: : :

Example.p; q; r/

is equivalent to

func Example.value z/ W hx; yi : : : a; b WD 0; 1 ncuf
: : :

p; q WD Example.r/

170 5 Procedures and Recursion

To refine a specification into a function call, simply show that the refinement is
valid for the procedure version of the procedure and then rewrite the procedure in
its function form.

5.3 Procedure Refinement Strategy

The procedure refinement rules can be used as the basis of the following steps to
develop a procedure.

1. Choose a name for the procedure that describes its functionality. Suppose we
choose Compute for illustrative purposes. We also use Parms as a temporary
placeholder for the unspecified parameters. The procedure then has form:

proc Compute.P arms/ Body corp

2. Decide what the procedure should do in terms of the pre- and postconditions of
Body. This will put the procedure in the form:

proc Compute.Parms/ fP g Body fQg corp

3. Decide on what inputs the procedure should take and what outputs it should
produce. Then add parameters to reflect these. The pre- and postconditions
should provide a clue as to the mode of each parameter. Variables in the precon-
dition only are probably pass-by-value parameters; variables in the postcondition
only are probably pass-by-result parameters; and variables in both the pre- and
postcondition are probably pass-by-value-result parameters. This will put the
procedure in the following form:

proc Compute.value inI result out I value result inout/

fP g in; out; inout W S fQg
corp

where in, out and inout may represent lists of parameters of those respective
modes. Note that at this stage S represents an abstraction of the code that is yet
to be instantiated.

4. Refine the body of the procedure into code using refinement laws such as the
assignment and selection laws. This will put the procedure in the form:

proc Compute.value inI result outI value result inout/

fP g : : : code : : : fQg
corp

5.4 Recursive Procedures 171

5. Decide on the actual parameters to be used when calling the procedure from the
main program. Let ina, outa and inouta represent the actual pass-by-value, pass-
by-result and pass-by-value-result parameters, respectively. The refinement rules
indicate that a call to the procedure with these actual parameters will result in the
following correct specification:

fP Œin; inoutnina; inouta�g
Compute.ina; out; inouta/

fQŒin0; in; ‘out; inout0; inoutnina0; ina; outa; inouta0; inouta�g
6. If the procedure has pass-by-result parameters, it may be refactored into a

function, making the necessary adjustments to the call in the main program.
This step is entirely optional, but may make the final program easier to read
and understand.

5.4 Recursive Procedures

Now that the refinement laws for procedures have been presented, we should be
able to refine recursive procedures. Let us begin with a classic recursive example,
the factorial function.

The factorial of some positive integer n, written nŠ, is defined as the number
1 � 2 � � � � � n, or, in product of a sequence notation:

nŠ D
nY

kD1

k

0Š is considered to be a special case and is defined as having the value 1.
Following the strategy in Sect. 5.3, we choose a name for the procedure giving

proc Factorial.Parms/ Body corp

The procedure should take a non-negative integer, say n, as input and produce as
output its factorial value, say f. We replace Body with this specification:

fn � 0g n; f W Body ff D n0Šg

Note that we use n0 in the postcondition instead of n. This clarifies that even if the
value of n changes within the procedure, f must eventually be the factorial of the ini-
tial value of n. If, instead, the specification had simply been fn � 0g Body ff D nŠg,
then n; f WD 0; 1 would be a valid refinement of the specification, but contrary to
what we intended to specify.

Since n appears in the precondition but not in the postcondition (n0 appears in
the postcondition instead), n may be a pass-by-value parameter (or even a pass-by-
value-result parameter, but not a pass-by-result parameter).

172 5 Procedures and Recursion

On the other hand, f does not appear in the precondition, but does appear in
the postcondition. Hence it may be a pass-by-result parameter (but not a pass-by-
value parameter and not a pass-by-value-result parameter). The procedure now looks
like this:

proc Factorial.value n; result f / fn � 0g n; f W Body ff D n0Šg corp

The next step is to refine the body of the specification into code. Since this is a
recursive procedure, we know that as part of the code refinement, Factorial should
call itself. Since the formal and actual parameters of a recursive function will have
the same names, we distinguish the formal parameter corresponding to some actual
parameter x by x0.

Using this notation, and leaving aside termination issues for the moment, suppose
that we wanted to argue that the following refinement is allowed by the procedure
refinement rules:

fn0 � 0g n; f W Body ff 0 D n0
0Šg

v Using Rule 11 for n and Rule 12 for f

fn0 � 0g Factorial.n0; f 0/ ff 0 D n0
0Šg (5.1)

This code is supposed to set f 0 to n0Š when it terminates, and since f D f 0 and
n D n0 in the first recursive call, the final outcome should indeed then be that f D n.

The problem here, though, is that the refinement is premised on the assumption
that

proc Factorial.value n; result f / fn � 0g n; f W Body ff D n0Šg corp

is given (check the rules to see this), and in particular, that

fn � 0g n; f W Body ff D n0Šg (5.2)

is given—i.e. known to be a true predicate. However, we do not know yet that the
predicate is true. To prove it true, we would have to show that if the precondition
holds, and Body executes, then Body will terminate and the postcondition will hold.
This cannot be done directly, since the contents of Body has not yet been determined.

We could, in principle, make an assumption about the content of Body. We could
say: suppose predicate 5.2 is true, and on this assumption, we apply a procedure
refinement rule. Do we then end up with something contradictory or not? If so, then
the assumption would have been invalid; otherwise it can be accepted.

In the present case, if we made that assumption and applied the procedure
rule as just discussed above, then Body would contain a recursive call to itself,

5.5 Terminating Recursive Programs 173

and the call would have the actual parameters that correspond exactly to the
formal parameters. The procedure would clearly end up recursing infinitely! In fact,
therefore, predicate 5.2 would have been shown, ex post facto, to be false.

In deriving recursive procedures, we therefore face the two common problems
hinted at above: finding a way of recursively calling the procedure that guarantees
termination; and applying the refinement rules on the assumption that their appli-
cation is valid, and only being able to verify that application thereafter. This latter
verification can usually be done by using induction as a proof technique. In the
material below we shall not carry out these proofs, since this will deflect from our
main purpose. However, they are not difficult, and can easily be developed by the
interested reader.

The following section, then, proposes a strategy for developing terminating
recursive procedures. Even though the strategy does not pretend to be a universal
recipe for developing recursive algorithms, it will be useful for many problems.

5.5 Terminating Recursive Programs

Chapter 2 presented a strategy for guaranteeing loop termination. Using this strategy
for iteration as a guide, we will formulate a strategy to develop recursive procedures
that are guaranteed to terminate once called. This strategy is offered, not as a
panacea, but as an approach that will work for most recursive algorithms.

The second step of Chap. 2’s iteration strategy mentions a predicate, G, which
serves as the loop’s condition. While G is true the loop continues to execute, and
when G becomes false the loop terminates. It turns out that a similar predicate will
be useful in recursive procedures as well.

For any recursive procedure we need to find one or more base cases. A base case
refers to a condition under which the result to be returned is directly known or can
easily be computed—i.e. a recursive call is not to be made. Suppose that there are
i > 0 different base cases and that they occur respectively under the conditions B1,
B2, . . . , Bi . Let G D .B1 _ B2 _ � � � _ Bi /. The general idea is therefore to execute
one of the base cases whenever conditions warrant it, and to make a recursive call
whenever :G holds.

However, merely to include code to handle base cases is not enough. Even
though the recursion is guaranteed to terminate if G holds, there is no guarantee
that conditions will eventually be reached to ensure that G does in fact hold.

Again we look to the iteration strategy for inspiration. This strategy, as part
of its third step, introduced a variant, V, which must satisfy the conjuncts
.0 � V / ^ .V < V0/ at the end of each iteration of the loop (as part of the loop
body’s postcondition).

For recursion, we also introduce a variant V, but with a few special properties.

• V is formulated in terms of variables and/or formal parameters. This has
several implications. For discussion purposes below, we denote the variant as

174 5 Procedures and Recursion

V.in; inout; x/, where in is a value parameter, inout is a value result parameter
and x is a variable (or possibly a list of variables).

– Since V is used for logical reasoning only, the scope of x is not critical. It
may be global or local. Local implies that, in the current recursive execution,
the variable’s value from a previous recursive execution will be unknown at
the code level. However, reasoning at an abstract/logical level about its value
in previous recursions and how its value may affect V , remains a perfectly
legitimate exercise.

– In reasoning about the value of the variant at any particular stage of the
computation, the formal parameters in and inout obviously need to be replaced
by the value of the actual variables (say ina and inouta) at each stage.

– In the context of recursion , a variant will not be formulated in terms of result
parameters.

• The variant expression should consistently decline with each recursive invocation
of the procedure, i.e. the predicate .0 � V / ^ .V < V0) should hold. But this
raises two related questions. At which point should the predicate hold? And what
should V0 designate at that point?

– In answer to the first question, we require that .0 � V / and .V < V0)
should hold just before executing the first command in the body of the called
recursive procedure—i.e. .0 � V / and .V < V0) should be conjuncts of the
recursive procedure’s precondition.

– In answer to the second question, we need to consider two scenarios. In the
first scenario, we assume that a recursive call had been issued by a previous
execution of the procedure. In that case, V0 D V0.in; inout; x// is taken as
the variant’s value at a particular point in the previous recursive execution;
namely, the point just before determining which guarded command of the
select statement should be executed. At that point, V0’s value is such that
the :G guarded command will be selected. Subsequent to selecting that
command but prior to issuing the recursive call, V0’s value might be changed.

The second scenario needing consideration is when a procedure is called for the
first time—i.e. it is called from a main program. In this case, for convenience we
shall assume that the value of V0 D Max, where Max is the maximum value that can
be represented in the system—i.e we assume that V < V0 always holds at the first
call.

These two additional considerations (base cases and variants) suggest a strategy
for developing recursive procedures that are guaranteed to terminate. The recursive
refinement strategy is as follows:

1. Follow steps 1 through 3 of the general strategy for defining a procedure
presented in Sect. 5.3—i.e. choose a name for the procedure, determine the
pre- and postconditions of the procedure and determine the parameters for the
procedure.

5.5 Terminating Recursive Programs 175

2. Identify base case guards, B1, B2, . . . , Bi . Also identify the values R1,
R2; : : : ; Ri that should be returned in each of these cases respectively. Introduce a
select command with guards B1, B2, . . . , Bi and :G.6 Following the convention
used in the general strategy for defining a procedure, the procedure should now
be in the form:

proc Compute.value inI result outI value result inout/
fpreg
if B1 ! fpre ^ B1g out WD R1 fpostg

:::

Œ� Bi ! fpre ^ Bi g out WD Ri fpostg
Œ� :G ! fpre ^ :Gg S fpostg
fi
fpostg

corp

3. Define a variant, V, for the recursion . As shown in the procedure outline below,
revise the precondition by adding .0 � V / ^ .V < V0/ as additional conjucts.
The revised precondition is denoted as pre0.

proc Compute.value inI result out I value result inout/
fpre0 � .pre ^ .0 � V / ^ .V < V0//g
if B1 ! fpre0 ^ B1g out WD R1 fpostg

:::

Œ� Bi ! fpre0 ^ Bi g out WD Ri fpostg
Œ� :G ! fpre0 ^ :Gg S fpostg
fi
fpostg

corp

4. Refine fpre ^ :Gg S fpostg. Notionally, one might typically use the sequence
rule to arrive at the form

fpre ^ :Gg S0I fmid0g S1I fmid1g S2 fpostg

6It is not necessary to prove the proviso for the select rule here since the disjunction of the guards
is (G _ :G) which is always true. Since all preconditions everywhere imply true, this select
command as part of the recursive refinement strategy will always be valid.

176 5 Procedures and Recursion

where S0 involves a phase of preparation for a recursive call in S1. This
preparation might typically include a decrementing of V . Indeed, very often no
explicit preparation is necessary so that S0 is simply empty, and may be ignored.

The choice of the mid1 predicate should articulate one or more subproblems
implicit in post that can be solved by one or more recursive calls to this
procedure. S1 should then be refined to attain mid1. The actual parameters of
all recursive calls (and global variable values before the calls) should be such
that they comply with the preconditions of the recursively called procedure,
specifically in regard to the variant.

In each recursive call revisions to the pass-by-value parameters, in, and/or
pass-by-value-result parameters inout will typically drive down the variant in
the recursively called procedure. For descriptive purposes below, we notion-
ally describe this by assuming functions F and F 0 which transform in and
inout to their values required in the call. These functions may be evaluated
as part of S0 indicated above, and/or they might represent direct substi-
tutions of formal parameters by appropriate expressions (in the case of in
variables). Thus, we assume that S1 may be represented by the recursive
call Compute.F.in/; out; F 0.inout//. Of course, in practice this might be very
simplistic, since additional computation might be required before and after the
recursive call, and indeed, more than one recursive calls may be required.

5. Derive code, here generically denoted by a function H , such that

fmidg out WD H.out/ fpostg

is satisfied. After refinement, this puts the procedure in the form:

fpre ^ 0 � V < V0g
if B1 ! out WD R1

:::

Œ� Bi ! out WD Ri

Œ� :G ! fPossible preparation code for recursive callg
Compute.F.in/; out; F 0.inout//I
out WD H.out/

fi
fpostg

6. Finally, follow steps 5 and 6 of the general strategy for defining a procedure
presented in Sect. 5.2. That is, refactor the procedure into a function if desired,
and call the procedure from the main program. In the case where the variant V
includes global variant variables, the main program call may involve initialising
these variables to appropriate values to satisfy 0 � V < V0. Recall, however,
that we will always assume that this predicate is satisfied at the first invocation
of the recursive procedure.

5.6 Recursive Examples 177

5.6 Recursive Examples

In this section, we will use the recursive refinement strategy to develop several
recursive algorithms from specification.

5.6.1 Factorial

First, we will use the recursive refinement strategy to develop a terminating
refinement of Factorial developed in Sect. 5.4. To recap, after steps 1 through 3
of the general procedure refinement strategy, we have a Factorial procedure of the
form

proc Factorial .value n; result f / fn � 0g n; f W S ff D n0Šg corp

so step 1 of the recursive refinement strategy is complete. Step 2 requires the
identification of base cases. To complete this step, consider the definition

nŠ D
(Qn

kD1 k if n > 0

1 if n D 0
(5.3)

which shows that 0Š is a base case since its value is known and trivially returnable.
Many implementations of recursive factorial use only this base case and work

properly, but from a semantic point of view, 0Š is considered a special case of the
factorial function rather than a trivially simple case (since

Q0
kD1 k is not defined).

Keeping this in mind, 1Š is trivially simple and also a good semantic fit since it
represents the simplest defined case of

Qn
kD1 k. For this reason, we declare B1 ,

(n D 0) and B2 , (n = 1). Since the precondition specifies that .n � 0/ we may
take :G to be

:G � .n ¤ 0 ^ n ¤ 1/ ^ .n � 0/ � .n � 2/

The refinement is therefore:

proc Factorial.value n; result f /

fn � 0g
if .n D 0/ ! f WD 1

Œ� .n D 1/ ! f WD 1

Œ� .n � 2/ ! fn � 2g S ff D n0Šg
fi
ff D n0Šg

corp

178 5 Procedures and Recursion

For step 3, it is necessary to define a variant V which will satisfy 0 � V < V0 as
part of the precondition of each recursive call. Intuitively, n makes a good choice
for V, since n is bounded from below by zero. (We know that when n is 0 or 1 there
is no recursive call.)

We now have V � n, and we add 0 � n < n0 to the precondition. The
precondition to the procedure is therefore modified to

.n � 0/ ^ .0 � n < n0/ � .n � 0/ ^ .n < n0/

The resulting procedure outline is therefore:

proc Factorial.value n; result f /

f.n � 0/ ^ .n < n0/g
if .n D 0/ ! f WD 1

Œ� .n D 1/ ! f WD 1

Œ� .n � 2/ ! fn � 2g S ff D n0Šg
fi
ff D n0Šg

corp

Recall that we assume that when the initial call from the main program is made,
then the variant part of the precondition is initially met by default.

Step 4 now advises us to use the composition rule, as part of step 4, to refine the
specification of the last guard into

fn � 2g n; f W S1 fmid gI n; f W S2 ff D n0Šg

The challenge is to determine mid in such a way that: (1) S1 can be refined to a
recursive call that attains mid; and (2) as part of S2, something can be done to f so
that f D n0Š is satisfied.

Equation (5.3) shows that the factorial’s definition can be restated recursively as

nŠ D n � .n � 1/Š (5.4)

provided that n > 0. This broadly suggests the way ahead:

• Define mid as ff D .n0 � 1/Šg and satisfy mid by regarding S1 as the recursive
call Factorial ..n � 1/; f /.

• Then refine S2 to f WD f � n to attain the postcondition ff D n0Šg. (Thus, in
terms of the earlier discussion, the function H.f / is defined as f � n.)

Let us therefore show that the following is true.

fn � 2g Factorial ..n � 1/; f / ff D .n0 � 1/ŠgI f WD f � n ff D n0Šg (5.5)

5.6 Recursive Examples 179

We begin by addressing the first part of (5.5). Assume the that the specification
of the Factorial program is correct, i.e. that f.n � 0/ ^ .n < n0/g Rbody ff D n0Šg
is true, where Rbody designates the body of the program that is still being evolved.
(As suggested earlier, this can later be verified by an inductive argument.) Noting
that .n�1/ is to be used as an actual parameter for the formal parameter n we apply
Rule 11 to get:

f.n � 0/ ^ .n < n0/Œnn.n � 1/�g n; f W S1 ff D nŠŒnn.n � 1/�g
v fRule 11g

f.n � 1 � 0/ ^ .n � 1 < n0/g Factorial..n � 1/; f / ff D .n � 1/Šg
� fSince .n � 1 � 0/ � .n � 1/ and since .n � 1 < n0/ � true g

f.n � 1/g Factorial..n � 1/; f / ff D .n � 1/Šg (5.6)

This refinement sequence assures us that starting from n � 1 and calling
Factorial..n � 1/; f / will guarantee that f D .n � 1/Š will subsequently hold. The
postcondition of (5.6) happily co-incides with the first postcondition encountered in
the specification (5.5). However, specification (5.5) has a stronger precondition than
(5.6), namely .n � 2/ instead of .n � 1/. Clearly, then,

fn � 2g Factorial..n � 1/; f / ff D .n � 1/Šg (5.7)

is guaranteed to hold, if (5.6) holds.7

Seen in terms of the function F mentioned in the narrative of step 4, this
function has implicitly been defined as F.x/ D x � 1, so that the recursive call
Factorial.n � 1; f / and Factorial.F.n/; f / are equivalent.

To verify the assignment in the second part of (5.5) we need to prove that f D
.n0 � 1/Š V f D n0ŠŒf nf � n�. This follows directly done.

Sticking all the pieces of code together gives the final refinement of the factorial
procedure:

proc Factorial.value n; result f /

fn � 0g
if .n D 0/ ! f WD 1

Œ� .n D 1/ ! f WD 1

Œ� .n � 2/ ! Factorial.n � 1; f /I f WD n � f

fi
ff D nŠg

corp

7Note carefully that we are not arguing here that (5.7) refines (5.6). It patently does not, since it
involves a strengthening of the precondition, not a weakening thereof. Indeed, the reverse is true,
by virtue of the “weaken precondition” refinement rule, i.e. (5.7) v (5.6). Rather, we are claiming
that if a specification is known to be true for a weak precondition, it is guaranteed to remain true
for a stronger precondition.

180 5 Procedures and Recursion

While this refinement is already complete, in the interests of completing all the steps
in the strategy, the procedure can be easily refactored into a function by making f

into a return value and compacting the recursive call and assignment of f into a
single statement as follows:

func Factorial.value n/ W hf i
fn � 0g
if .n D 0/ ! f WD 1

Œ� .n D 1/ ! f WD 1

Œ� .n � 2/ ! fn � 0g f WD n � Factorial.n � 1/ ff D nŠg
fi
ff D nŠg

cnuf

Finally, suppose that a main program has been specified by

fx D 7g y W S fy D x0Šg

Intuitively, we would want to replace S by a recursive call to the derived function,
and return its value in y, i.e. we would simply say that this specification is adhered
to by y WD Factorial.x/. Let us verify this intuition by meticulous adherence to
the refinement rules. Since we rely on our convention that this first call always
complies with the variant used to derive the recursive procedure, we will not include
the variant as part of the procedure’s precondition.

fx D 7g y W S fy D x0Šg
v fWeaken preconditiong

fx > 0g y W S fy D x0Šg
� fReversed substitutiong

fn > 0Œnnx�g y W S ff D n0ŠŒn0; f nx0; y�g
v fRule 11 (pass-by-value) and Rule 12 (pass-by-result)g

fn > 0Œnnx�g y WD Factorial.x/ ff D n0ŠŒn0; f nx0; y�g
� fForward substitutiong

fx > 0g y WD Factorial.x/ fy D x0Šg
This final form gives code that is a refinement of the specification stated for the main
program. It guarantees that if the actual variable x is initialised to any positive value,
the code will terminate and deliver in y a value that is the factorial of x. In particular,
if x is initialised to 7 to conform with the main program’s precondition, the code will
compute 7Š. Henceforth, we will take the liberty of following our intuition, instead
of giving this complete justification for making the recursive call from the main
program.

5.6 Recursive Examples 181

5.6.2 Searching a List

In Chap. 3, an iterative linear search algorithm was developed that searches through
elements of an array. Here we develop a recursive linear search algorithm that
searches through elements of a list.

Consider a list L of elements E0, E1, . . . , En�1 where n is the length of L and
each element contains some arbitrary integer value. The following concepts and
operations are defined:

• Val.E/ denotes the value of the element E.
• H.L/ denotes the first element (index zero) of the list L.
• T .L/ denotes a sublist of L that contains all the elements of L in order, except

for H.L/.8

• A special “terminating element” T is defined as having the property that Val.T /

returns the special value NULL.
• The predicate NT.L) returns true if and only if the last element of list L and

only the last element is a terminating element. We say that such a list is null-
terminating.

• The length of a null-terminating list, L:len, does not include the terminating
element, so for an empty null-terminating list L, we have L:len D 0.9

Let x denote some integer value and L denote a non-terminating list as defined
above. We are going to consider a problem whose precondition is:

pre , NT.L/

We will develop a recursive linear search algorithm to search L for the value of x.
If the value of x appears in an element within L, then variable i must represent the
index of that element (starting from index zero), otherwise i must have the value �1.

We rely on a similar predicate to the one used for developing the iterative array
linear search algorithm developed in Chap. 3, namely

appears.L; V / , 9j W Œ0;L:len/ � .V D Val.Lj //

which is true if an element with the value of V appears in L and false otherwise.
As discussed above, x may or may not match an element in L and the postcondi-

tion must take both of these possibilities into account. Thus, the postcondition can
be expressed as

post.L; x; i/ , .appears.L; x/ ^ Val.Ei/ D x/ _ .:appears.L; x/ ^ .i D �1//

8Head and Tail are analogous to the CAR and CDR pointers in LISP.
9This terminating list design is based on the Typelist struct developed by Alexandrescu for the Loki
library [2].

182 5 Procedures and Recursion

The specification of the problem can be stated formally as

i W ŒNT.L/; post.L; x; i/�

Commencing at step 1 of the suggested strategy for developing recursive
procedures, note that the procedure that we will develop finds an index of an
element. Hence we select IndexOf as its name. The formal specification statement
of IndexOf is almost the same as that just given for the problem, namely i W
ŒNT.L/; post.L; z; i /�. The only difference is that the specification of IndexOf relies
on formal parameters L and z, whereas the previous specification referenced the
specific values L and x which will later serve as actual parameters for IndexOf .

Since L appears in both the pre- and postcondition we could pass it as a value-
result parameter. However, since the procedure should not change the list itself, it is
safer to pass L by value. z appears in the postcondition but once again, z should not
be changed as part of the algorithm, so we also pass it by value. i is the output of the
procedure and is passed by result. This gives us an initial form of

proc IndexOf .value L; value z; result i/

fNT .L/g
i W S

fpost.L; z; i /g
corp

With step 1 complete, step 2 requires that base cases be identified and handled. One
obvious base case is where the list is empty (except, of course, for its terminating
element whose presence is enforced by the precondition NT.L/). In such a case, the
list cannot contain z, so i should be assigned to �1 to satisfy the postcondition.

A second base case exists when the first element of a list is an element with the
value of z. Formally stated, when Val.H.L// D z we can return the index 0.

As suggested by step 2, we introduce a selection statement to handle these
base cases. To reduce notational clutter, we leave out from the precondition to S

explicit reference to the conjunct corresponding to :G as well as to V D V0. These
conjuncts should always be regarded as implicitly present in subsequent reasoning.
The result is:

proc IndexOf .value L; value z; result i/

fNT.L/g
if .Val.H.L/// D NULL/ ! i WD �1

Œ� .Val.H.L/// D z/ ! i WD 0

Œ� ..Val.H.L// ¤ NULL/ _ .Val.H.L/// ¤ z/// !
fNT.L/ ^ ..Val.H.L// ¤ NULL/ _ .Val.H.L/// ¤ z///g

S

fpost.L; z; i /g
fi
fpost.L; z; i /g

corp

5.6 Recursive Examples 183

Now we must define a variant in such a way that we can guarantee the recursive
calls terminate. By passing an empty null-terminating list to the procedure it will
not recurse, so by passing ever smaller sublists recursively, we can guarantee
termination. Keeping this in mind, a good choice for V appears to be V D L:len.
Step 3 is now complete.

Step 4 requires the use of composition to split the specification of the recursive
case. We need to choose mid such that it is satisfied by a recursive call. Consider
information that is inherent in the guard of this recursive case. It consists of two
disjuncts. One of the disjuncts affirms that the H.L/ ¤ z; the other, H.L/ ¤ NULL,
affirms that there is at least one more non-terminating element remaining in the tail
of the list. This information indicates that a reasonable aim for mid would be to
assert that i indicates where—if at all—z is to be found in the tail of the list. This
is precisely what is asserted by post.T .L/; z; i /, which we therefore select as our
version of mid in this case.

From this point, to cut back on notational clutter, we will not refer to the guard
conjuncts H.L/ ¤ z and H.L/ ¤ NULL in our subsequent reasoning. Neither will
we refer to the variant, except to note that it will indeed decline from one recursive
call to the next.

We want to refine as follows:

fNT .L/g S fpost.L; z; i /g
v fSequence ruleg

fNT .L/g S1 fpost.T .L/; z; i /g I S2 fpost.L; z; i /g (5.8)

v fBy some suitable justificationg
fNT .L/g IndexOf .T .L/; z; i /I fpost.T .L/; z; i /g (5.9)

S2

fpost.L; z; i /g

How do we justify the second refinement step—i.e. the step that leads from (5.8) to
(5.9)? Clearly we have to appeal to Rule 11.

Rule 11 assumes the correctness of the body of IndexOf with respect to its stated
pre- and postconditions. For our purposes, this correctness is assumed but it can be
separately verified using induction subsequent to its derivation.

The rule then requires us to make the substitution ŒLnT .L/� in the precondition
fNT.L/g of the body of IndexOf . The rule also requires us to make the substitution
ŒL0nT .L0/� in the postcondition fpost.L; z; i /g of the body of IndexOf . Here, the
L in postcondition fpost.L; z; i /g references the incoming list, L. It may therefore
be treated as L0 and replaced by its initial tail, denoted by T .L/. Applying the rule
then explains the first step of following refinement sequence.

184 5 Procedures and Recursion

fNT.T .L//g S1 fpost.T .L/; z; i /g (5.10)

v fUsing Rule 11g
fNT.T .L//g IndexOf .T .L/; z; i / fpost.T .L/; z; i /g

v fSince NT.L/ ” NT.T .L//g
fNT.L/g IndexOf .T .L/; z; i / fpost.T .L/; z; i /g (5.11)

But notice carefully the following: we wanted to show (5.8) v (5.9), and we have
shown that (5.10) v (5.11) holds instead. Fortunately, (5.9) and (5.11) match.
However, the preconditions in (5.8) and (5.10) do not match. Nevertheless, as
pointed out above, the precondition in (5.8) is equivalent to the precondition in
(5.10)—i.e. NT.L/ ” NT .T .L//. We may therefore confidently assert that (5.8)
v (5.9).

The function F mentioned in step 4 of the refinement strategy corresponds in
this present instance to T .x/. At the conclusion of this step we have:

proc IndexOf .value L; value z; result i/

fNT .L/ ^ 0 � L:len < L0:leng
if .Val.H.L/// D N ULL/ ! i WD �1

Œ� .Val.H.L/// D z/ ! i WD 0

Œ� ..Val.H.L/// ¤ NULL/ _ .Val.H.L/// ¤ z/// !
fNT .L/g

IndexOf .T .L/; z; i /I
fpost.T .L/; z; i /g

S2

fpost.L; z; i /g
fi
fpost.L; z; i /g

corp

To execute step 5, we note that if the index of element x in a list is denoted by i, then
the index of x in a superlist created by appending an element to the beginning of the
list must be i+1. Thus, if the sought-after entry is found at index i in the tail of L,
then it must be at i C 1 in L itself. This suggests that we can define the H function
as H.x/ D x C 1.

Note, however, that we must also consider the possibility that the element does
not occur in the sublist, (i D �1), and in such a case, i retains the value i D �1

with respect to the full list. This leads to the full definition of

H.x/ D
(

x C 1 x � 0

x x D �1:

Using an “as” command to represent this conditional change in the value of x, we
have the complete code for the recursive function IndexOf :

5.6 Recursive Examples 185

proc IndexOf .value L; value z; result i/

fNT.L/ ^ 0 � L:len < L0:leng
if .Val.H.L/// D NULL/ ! i WD �1

Œ� .Val.H.L/// D z/ ! i WD 0

Œ� ..Val.H.L/// ¤ NULL/ _ .Val.H.L/// ¤ z/// !
fNT .L/ ^ 0 � L:len < L0:leng

IndexOf .T .L; z/; i/I
as .i � 0/ ! i WD i C 1 sa

fpost.L; z; i /g
fi
fpost.L; z; i /g

corp

If desired, the procedure can now be refactored into a function. Either way, the
procedure is ready to be called from a main program.

5.6.3 Evaluating an Expression Tree

Expression trees are often used in compilers to represent expressions as part of
syntax analysis [1]. In this section a recursive algorithm will be developed to
evaluate the expression represented in a binary expression tree (BET).

The primary use of recursion in this algorithm will be to traverse a recursive
structure in order to carry out a specific computation. As such, it will be prudent to
define exactly what is expected of this recursive structure.

The structure to be used is a BET. The predicate BET.T / evaluates to true if and
only if T abides by the following rules:

• G.T; A/ is a connected acyclic graph with set of nodes T and set of arcs A.
Because A is not further referenced in this discussion, we shall simply refer to
the graph as T .

• T D N0; N1; : : : ; Nk�1, where jT j D k < 1 denotes the number of nodes in T .
• Each node in T has exactly one parent, which is another node in T , except for

the single “root” node. The Root.T / function returns the root node of T .
• Each node in T has either zero children or two children. The predicate Term.N /

is true if and only if the node N has zero children.
• If a node N has two children, one is referred to as the left child and the other is the

right child and these are returned for node N by L.N / and R.N / respectively.
The parent of both L.N / and R.N / is of course N .

• If Term.N / is false for some N , then N holds a reference to an operator. For
simplicity we will deal only with two binary operators. Op.N / returns either the
special value ‘+’ for addition or the special value ‘�’ for multiplication.

186 5 Procedures and Recursion

Fig. 5.1 A binary expression tree that evaluates to 64

• If Term.N / is true for some N , then N holds a reference to an integer value.
This value is denoted by Val.N /

• The function T .R/ returns the tree T formed with the node R as its root.

The above rules imply that all the nodes N in a BET T share a single common
ancestor: the root node of the tree.

A BET is evaluated by evaluating each node, starting from leaf nodes and work-
ing upwards. A leaf node, N has the value Val.N /. The value of a non-leaf node, N ,
whose two children are leaf nodes L and R respectively is Val.L/ Op.N / Val.R/.
This value is recursively used to evaluate non-leaf nodes higher up in the tree. The
value of the BET (i.e. the value of the binary expression which the tree represents)
is given is the value of the tree’s root.

The value of the BET T will be denoted by Eval.T /. Note carefully that Eval.T /

as used here is a mathematical function, not the name of a procedure or function in
a computer program.

Consider, for example, the BET in (Fig. 5.1). The evaluation of the binary tree T
is .5 � 8/ C ..3 C 1/ � 6/ D 64, i.e. Eval.T / D 64.

We develop here a recursive procedure to evaluate an arbitrary BET that
conforms to the description given above.

Step 1 requires that we pick a name, specification and choose parameters for
the procedure to be defined. Since we are evaluating a tree, Evaluate will be the
name for the procedure. Note throughout that this procedure name should be sharply
distinguished from the mathematical function previously mentioned, Eval, which
returns an integer value.

The procedure’s precondition asserts that the tree structure, T , to be traversed
is a BET as defined above, since we will be using these rules to refine the

5.6 Recursive Examples 187

specification, so
pre , BET.T /

The postcondition asserts that some integer variable, say r, has the value of the
evaluated tree, so

post , r D Eval.T /

T and r appear in the pre- and postconditions, so they make good candidates for
Evaluate’s parameters. However, we know that later we will probably want to pass
subtrees recursively to Evaluate, so a reference to a single root node, N , may be
more useful than a reference to a tree T . Whenever we wish to refer to the full tree
T , we can easily represent it as T .N /. Moreover, we can represent the two subtrees
of node N as T .L.N // and T .R.N //. Rewriting the pre- and postcondition in this
form, the resulting specification becomes:

r W ŒBET.T .N //; r D Eval.T .N //�

This particular recursive algorithm does not change the tree structure or values
in the nodes, so we pass N by value.10 The output variable r only appears in
the postcondition and should be passed by result. We now have a procedure
skeleton:

proc Evaluate.result r; value N /

fBET .T .N //g
r W S

fr D Eval.T .N //g
corp

The specification needs to be refined with respect to S , the body of the recursive
procedure to be developed.

It is necessary to determine base conditions where no recursive call is required.
From the BET rules, it is known that when a node is terminal (it has no children)
it holds a reference to an integer value that represents its evaluation. Under such
circumstances, Val.N / can simply be returned through an assignment of r. A select
statement can be used to deal with this single base case. This leads to the procedure
outline:

10However, a node will generally by represented by an object in an object-oriented programming
languages, and most of these languages pass object parameters by a reference to the object.
Semantically, a pass by reference is the same as a pass by value result, so in this example N could
have been passed by value result. This would help to develop an algorithm that will be correct
when implemented in an object oriented language such as Java, where objects can only be passed
by reference.

188 5 Procedures and Recursion

proc Evaluate.result r; value N /

fBET.T .N //g
if Term.N / ! r WD P Val.N /

Œ� :Term.N / ! r W ŒBET.T .N //; r D Eval.T .N //�

fi
fr D Eval.T .N //g

corp

Ideally, each node in the tree should be visited exactly once for a complete traversal.
As it turns out, this can be achieved by calling Evaluate on the left and right children
of each non-terminal node N as long as we start at the root of the full tree: since the
BET rules assert that the tree is connected and each non-root node has a parent, then
clearly each node will be traversed (at least) at some point as the child of its parent
beginning with the children of the root.

The rules also state that there are no loops or cycles among nodes, so each node
will be traversed at most once. Since each node must be visited at least once and at
most once, each node must be visited exactly once. This fact makes it easy to find a
variant V.

We assume a global variable, L, is a set of nodes that is initialized to ∅ before
Evaluate is called. Assume that the call to Evaluate passes on the BET B as actual
parameter.

Each time a node is visited Evaluate must insert the visited node into L, thus
increasing its size. This way, as B is traversed, L will become larger until it is equal
in size to B (at which point all the nodes of B will have been visited and no more
recursive calls should be allowed.) This gives a variant that depends on the actual
parameter used during the call, namely V D jBj � jLj. The code thus far is

proc Evaluate.result r; value N /

fBET.T .N // ^ .0 � jBj � jLj < jBj � jL0jg
L WD L [fN gI
if Term.N / ! r WD Val.N /

Œ� :Term.N / ! r W ŒBET.T .N //; r D Eval.T .N //�

fi
fr D Eval.T .N //g

corp

Note that we have inserted at the beginning of the code an assignment statement
to update L, since every entry into the procedure represents a visit to a node. This
means that for every subsequent recursive call, the variant relative to its value at the
beginning of this current recursive execution will have declined by one.

5.6 Recursive Examples 189

The recursive refinement strategy now suggests the use of composition to split
the specification of the :G guard into two. A mid must be found such that it is
satisfied by a recursive call to Evaluate.

The evaluation of any tree is found be performing the operation of its root
on operands derived from evaluating its left and right subtrees respectively. This
suggests that mid should be satisfied by not one, but two recursive calls to Evaluate.
As this is the case, it does not seem possible to store the result of the recursive calls
in r as the second call will overwrite the first. Instead, it makes sense to introduce
two temporary variables t1 and t2 to store the values of the evaluation of the left and
right subtrees respectively. Later we will find a formula to derive the value of r from
t1 and t2. By using the composition rule a second time we are left with the sequence
of specifications

r W ŒBET.T .N //; r D Eval.T .N //�

v fComposition rule applied twiceg
L; r; t1; t2 W ŒBET.T .N //; t1 D Eval.T .L.N ///�I
L; r; t1; t2 W Œt1 D Eval.T .L.N ///;

t1 D Eval.T .L.N /// ^ t2 D Eval.T .R.N ///�I
L; r; t1; t2 W Œt1 D Eval.T .L.N /// ^ t2 D Eval.T .R.N ///

r D Eval.T .N //�

Noting that the predicate BET.T .N // is invariant, it is carried over into each mid
predicate as an extra conjunct, and we get

v fRules 11 and 12 g
fBET.T .N //g

Evaluate.t1; T .L.N ///I
fBET.T .N // ^ t1 D Eval.T .L.N ///g

Evaluate.t2; T .R.N ///I
BET.T .N // ^ t1 D Eval.T .L.N /// ^ t2 D Eval.T .R.N ///gI

L; r; t1; t2 W S

r D Eval.T .N //g
We will not justify the refinement step in detail. It relies on Rules 11 and 12 and

requires substituting formal parameters with actual parameters, as specified by those
rules. It also requires of us to ensure that only BETs are passed as actual parameters.
That the left- and right subtrees passed as actual parameters in the recursive calls are
indeed BETs follows directly from the fact that BET.N / holds prior to the relevant
call. This is the reason for writing BET.N / explicitly as a conjunct in the various
preconditions above.

190 5 Procedures and Recursion

The foregoing refinement can now be inserted into the code derived thus far.
Refinement of the last part of the above specification can then proceed in terms of
step 5 of our general strategy, the purpose being to derive appropriate code for S .

What is needed is a function H that will assign to r a value, in terms of t1 and t2
such that r D Eval.T .N // is true. As previously pointed out, the value of a tree is
equal to the root’s binary operator applied to the evaluation of its left subtree (which
we happen to have stored in t1) and the evaluation of its right subtree (which we
happen to have stored in t2.) Since N is non-terminal (Term.N / returned false
during the guard evaluation of the selection statement) the BET rules tell us that
the function Op.N / will return the operator of N , which will be either “+” or “�”.
Using this knowledge, H can be written as

H.N; x; u; v/ D
(

x WD u C v if Op.N / D “ C ”

x WD u � v if Op.N / D “ � ”

and this refines the procedure to its final form. The main program can now be refined
to a call to Evaluate, sending through the root of B as a parameter:

proc Evaluate.result r; value N /

fBET.T .N //g
L WD L [fAddress.N /gI
if Term.N / ! r WD Val.N /

Œ� :Term.N / !
Evaluate.t1; T .L.N ///I
Evaluate.t2; T .R.N ///I
if .Op.N / D “C00/ ! r WD t1 C t2
Œ� .Op.N / D “�00/ ! r WD t1 � t2
fi

fi
fr D Eval.T .N //g

corp

We draw attention to the following general matters regarding Evaluate./.
Firstly, note that the global variant variable, L, need not have been global at all.

Instead, L could easily have been passed by value-result to the procedure. However,
passing these extra parameters to a procedure can make it cluttered and difficult
to understand. In fact, L can be refactored out of the program altogether—its only
purpose was to make explicit a variant in support of reasoning about termination.
This would make the procedure slightly more portable, in the sense that the user
(caller) would not need to initialise L or be otherwise concerned with it.

As a second closing observation, note that although the final algorithm defined
for Evaluate./ is relatively short and simple, this only because the algorithm relies
heavily on the fact that it is traversing a well defined BET structure with many
helpful restrictions and rules. When writing an algorithm to traverse over a recursive

5.6 Recursive Examples 191

structure like a tree, graph or lattice, it pays off to spend time identifying and
defining what is expected from the structure. Doing so will make the algorithm
simpler to write, as there is more information with which to work.

5.6.4 MergeSort

The final example details the derivation of the well-known von Neumann Merge-
Sort algorithm. The algorithm is based on the idea that two sorted arrays can be
easily merged into a single sorted array. A single array is broken down into many
arrays of size one and zero, then these mini arrays are all merged together again to
form a sorted array.

The function to merge two lists together is iterative, and thus will not be refined
here. Instead, we will simply assume that it is already implemented with the
signature

func Merge.value Y; value Z/ W hXi
and satisfies the specification: X W Œsorted.Y / ^ sorted.Z/; .X D Y [Z/ ^
sorted.X/�

The first step, as always, is to choose a name, parameters and specification for the
procedure. MergeSort is as good a name as any, and it should take an array as input.
Its output should be the sorted array. To keep these two concerns separate, we pass
the input array A by value and the output sorted array S by result. Let perm.A; S/

denote that S is a permutation of A. This gives us:

S W Œtrue; perm.A; S/ ^ sorted.S/�

The obvious base cases are that either A is empty or A contains only one element.
In either case, A is already sorted and S WD A satisfies the specification. This gives:

proc MergeSort.value A; result S/

if .A:len D 0/ ! S WD A

Œ� .A:len D 1/ ! S WD A

Œ� .A:len > 1/ ! S W Œtrue; perm.A; S/ ^ sorted.S/�

fi
corp

The variant is where things get tricky. Consider the diagrams in Fig. 5.2a, b. Clearly
there are two different “stages” in performing a merge-sort: The array is split,
then merged. However, these actions are interleaved: calls to merge will happen
in between calls to split, and thus a variant must be found to take into account
both of these types of calls. Each of these two stages needs to be considered when
constructing the variant, so splitPart C mergePart seems like a good place to start.

192 5 Procedures and Recursion

(a) A.len is even

(b) A.len is odd

Fig. 5.2 MergeSort where A:len is even and where A:len is odd. (a) A:len is even (b) A:len is odd

We begin by considering the splitPart. The diagrams show that splitting the array
forms a kind of tree (shown as black edges) with a particular depth. We begin
by defining the maximum size, maxSize, of this tree to be the depth of the tree
multiplied by the size of the array. This way we can also define a global variant
variable, say splitCount, that stores combined sizes of the subarrays that have been
split. As the arrays are split, their sizes are added to the variant variable, so that
(maxSize - splitCount) approaches zero.

The depth of the tree has a logarithmic relation to the size of the array. Since
the array is split in two, the depth of the tree is log2.A:len/ rounded up to the
closest integer, in addition to the depth (1) of the original array. This makes

5.6 Recursive Examples 193

maxSize D .log2.A:len/ C 1/ � size/ and thus splitPart D ...log2.A:len/ C 1/ �
size/ � splitCount/. Now to consider the mergePart. The diagrams show that the
merge part also forms a kind of tree (shown as grey edges) and has depth equal
to one less than the spilt tree: log2.A:len/. After each merge, we add the size of
the newly formed subarray to a global variable, say mergeCount. This way, as the
subarrays are merged together ..log2.A:len/ � A:len/ � mergeCount/ approaches
zero.

Combining all of this together we are left with

V D .log2.A:len/ � .A:len/ � splitCount/ C .log2.A:len/

� .A:len/ � mergeCount/

The recursive refinement strategy now suggests the use of the composition rule.
In a similar way to the Evaluate problem from the previous section, an array can be
thought of as the concatenation of its left subarray and its right subarray. We should
use the composition rule twice so that the specification is divided into three parts:
The first part should be satisfied by a recursive call on the left subarray and the
second part should be satisfied by a recursive call on the right subarray. To store
the sorted versions of these arrays we will use two temporary variables T1 and T2.
We define

mid1 , .perm.AŒ0;A:len=2/; T1/ ^ sorted.T1// and

mid2 , .perm.AŒA:len=2;A:len/; T2/ ^ sorted.T2//

which leads to the specification of the body of the :G guard as
S W Œtrue; mid1�I S W Œmid1; mid1 ^ mid2�I S W Œmid1 ^ mid2; perm.A; S/ ^

sorted.S/�

Before refining specifications to recursive calls we need to make sure the variant
is satisfied. This can be done by making sure that splitCount increases in size before
either left or right is called and that mergeCount increases after merge is called. The
easiest way to achieve this is to carry out the assignment of splitCount before the
select statement and the assignment of mergeCount after the call to Merge./. We can
now refine to recursive calls, leaving the program in the form:

proc MergeSort.value A; result S/

if .A:len D 0/ ! S WD A

Œ� .A:len D 1/ ! S WD A

Œ� .A:len > 1/ !
MergeSort.AŒ0;A:len�=2/; T1/I MergeSort.AŒA:len=2;A:len/; T2/

S W Œmid1 ^ mid2; perm.A; S/ ^ sorted.S/�

fi
corp

Now all that is required is to find a H which assigns the value of S in terms of T1

and T2. It turns out that a call to Merge.T1; T2/ produces the required value of S , so

S W Œmid1 ^ mid2; perm.A; S/ ^ sorted.S/� v S WD Merge.T1; T 2/

194 5 Procedures and Recursion

We must also remember to add mergeCount WD mergeCount C S:len to satisfy the
variant. This leaves the procedure in its final form:

proc MergeSort.value A; result S/

splitCount D splitCount C A:lenI
if .A:len D 0/ ! S WD A

Œ� .A:len D 1/ ! S WD A

Œ� .A:len > 1/ !
MergeSort.AŒ0;A:len=2/; T1/

I MergeSort.AŒA:len=2;A:len/; T2/

I S WD Merge.T1; T 2/

I mergeCount WD mergeCount C S:len
fi

corp

Now the procedure can be called from a main program that sets the initial values of
the global variant variables, mergeCount and sortCount to zero. As in the previous
example, however, these counters are not an essential part of the algorithm, but were
introduced in order to support reasoning about termination.

5.7 Conclusion

This chapter has illustrated how recursive algorithms can be derived in a formal
correctness-by-construction fashion. A general strategy for deriving recursive algo-
rithms has been outlined and illustrated by way of a number of examples. The
strategy relies on refinement rules that indicate how a procedure invocation can be a
refinement of a specification. The specification, in turn, corresponds to the pre- and
postcondition of the called procedure, but where formal parameters are substituted
by actual parameters. The way in which the substitution is to take place depends on
the mode of the parameter: pass by value, result, or value-result.

Two important issues arise in the applying these rules. In the first place, the rules
assume that the called procedure is correct in that it has a body that conforms to a
specified pre- and postcondition. However, in the case of recursion , there is no way
of knowing whether or not the called recursive program is indeed correct, because
it is still under construction. It can only be formally shown to be correct once the
algorithm has been developed. Induction would be the most suitable mathematical
strategy for providing such proofs. However, no such proofs have been given in
this chapter. Although we recognise the value and validity of mathematical rigour
in providing such proofs, we nevertheless regard such proofs as outside the scope
of this text. Instead, this chapter serves as a starting point for those who would
wish to pursue more rigourously the theme of refinement calculus in the context of
procedure invocation and recursive procedure construction.

A second issue worth mentioning at this point is the introduction of a variant
as part of the general solution strategy. Although the formal definition of a variant

5.7 Conclusion 195

indeed gives confidence that the recursion will not be infinite, in most situations it
might be something of an overkill. This became evident in the last two examples,
where we saw that variables keeping track of the variant could be refactored out of
the final solution—they serve no other role in the program except to indicate that
progress is being made towards arriving at the base cases. From a pragmatic point
of view, one could dispense with a variant if you have sufficient assurance that your
successive recursive calls will always be on ever-smaller problems and therefore
that the base case scenarios will eventually be reached. This is specifically the case
when the recursive calls deal with data structures such as graphs, trees, lists, sets,
etc which are partitioned into smaller data structures at each call.

The algorithm to be derived in the next chapter will depend significantly on
recursion. However, we will neither prove the final algorithm correct by use of
induction, nor will we formally define a variant to describe its progress towards
termination, since this will be self-evident.

Chapter 6
Case Study: Lattice Cover Graph Construction

In this chapter, the correctness by construction approach is applied to an algorithmic
problem that lies well off the beaten track of classical text book examples. The
algorithm has been in the public domain since about 2000, but was only clearly
explained and its correctness shown in 2010 [26]. The algorithm has also been
shown to be considerably more efficient than its rivals.

The principle reason why we choose to devote an entire chapter to the derivation
of this algorithm is to impress upon the reader that correctness by construction as
an approach to developing software is not merely a classroom exercise. Instead, it
can be used to discover new and important algorithms. When adopted as a general
approach to working out new algorithms, the results tend to be both elegant and
fruitful.

6.1 Introduction

The problem to be addressed is to construct the so-called cover graph of a special
type of set called a lattice. Now this task is crucial in an emerging field in computer
science called formal concept analysis (FCA). FCA relies on lattices to study sets of
objects and their associated discrete attributes. In fact, organising such information
in a lattice structure provides the richest, most detailed possible view of the data. It
allows for the deployment of inferencing mechanisms, so that these structures can be
used in fields such as machine learning, linguistics, ontology building, knowledge
representation, data mining, etc.

Formal concept analysis has been around for about three decades. Various
algorithms, many rather inefficient, have been proposed to construct the cover
graphs required by the theory. In fact, one of the alleged shortcomings of the FCA
approach is that these cover graphs can, in worst case scenarios, grow exponentially.
The graph construction algorithm developed here evolved from the efforts of a
postgraduate project at Pretoria University in which a cover graph construction
algorithm, known in the literature as AddIntent, was proposed. The algorithm turned

D.G. Kourie and B.W. Watson, The Correctness-by-Construction Approach
to Programming, DOI 10.1007/978-3-642-27919-5 6,
© Springer-Verlag Berlin Heidelberg 2012

197

198 6 Case Study: Lattice Cover Graph Construction

out to be significantly faster than others under almost all scenarios, particularly
when applied to live data. However, the algorithm’s workings were rather opaque,
and consequently it was difficult to be convinced of its correctness. This chapter
shows how a variant of that algorithm can be derived in a way that is transparent,
comprehensible and correct. Refactoring to the original algorithm is quite easily
done. The material covered is derived from a published version in [26].

The next section will introduce the required basic theory about lattices in general,
and the notion of a special kind of lattice to be used in the chapter, called a set
intersection-closed lattice (SICL). An algorithm is then developed in a correctness
by construction fashion that inserts an element into an existing SICL, and that
expands its existing cover graph accordingly. The refactorings needed to derive
the original AddIntent algorithm are then provided, and the reader is also given a
brief introduction to the FCA study domain, so that the practical applicability of the
algorithm may more fully be appreciated.

6.2 Preliminaries

6.2.1 Lattices

First, we recall basic definitions from lattice theory [4, 11]. We will be concerned
with a finite set, L. We do not really care what type of elements are in the set.
However, we insist that some (but perhaps not all) elements of the set can be
compared to one another, and we denote the comparator by the symbol �. The
fact that this symbol corresponds to the well known “less or equal to” symbol used
to indicate the ordering of numbers (either real or integer) is co-incidental. For
example, L could represent a set of people, and a � b could be used to represent
the fact either that the symbols a and b represent the same person, or that person a

is a descendent of person b. Alternatively, L could represent a set of sets, and a � b

could be used to represent the fact that set a is a subset of set b (i.e., a � b). A set
whose elements can be compared by some such comparator is called a partially
ordered set under the following circumstances.

Definition 6.2.1. Set L is partially ordered by � if and only if:

• � is reflexive, i.e., 8a W L � .a � a/
• � is antisymmetric, i.e., 8a; b W L � ..a � b/ ^ .b � a// H) .a D b/
• � is transitive, i.e., 8a; b; c W L � ..a � b/ ^ .b � c// H) .a � c/

A partially ordered set (abbreviated to a poset) will be denoted by .L; �/ if we
wish to emphasise that � is the ordering relationship. The following are examples
of posets:

.Lsets ; �/ where Lsets D ffa; b; c; d g; fa; b; cg; fa; b; d g; fb; cgg
�
Lfam; ��

where Lfam D fpete;mary;bob;billg

6.2 Preliminaries 199

In the second example, we are assuming that Pete and Mary are siblings, and
that they have grandfathers Bob and Bill. We are using � to indicate descendant
relationships, but also assume that � is reflexive—i.e., that, for example, pete �
pete holds.

In such posets it is not necessary that all pairs of elements are comparable by the
ordering. Thus, it is neither the case that pete � mary, nor that mary � pete.
Similarly, bob and bill bear no descendant relationship to one another—at least
no relationship that is evident in set Lfam. Similarly, in poset Lsets , there is no
subset relation between fa; b; cg and fa; b; d g.

Moreover, depending on how L is chosen, it may or may not be the case that
given an arbitrary set of elements T � L, a u can be found such that 8x W T P.x � u/.
If it is the case, then u is called an upper bound of the set T .

Definition 6.2.2 (Upper bound). Let .L; �/ be a poset, and T � L. Then u is an
upper bound of T if and only if .8x W T � .x � u//.

Thus, fa; b; cg is an upper bound of the set Tsets D ffa; b; cg; fb; cgg. Also bob is
an upper bound of the set Tfam D fpete;maryg. Notice that since fa; b; cg 2 Tset

but bob … Tfam, the upper bound of set T may or may not be an element of T .
Also notice that a set T may have many upper bounds. For example Tfam has

the set of upper bounds Tufam D fbob;billg. Similarly, Tset has the following
set of upper bounds Tuset D ffa; b; cg; fa; b; c; d gg. Now Tuset possesses a property
that Tufam does not have, namely, there is an element of Tuset that is “smaller” than
all other elements of Tuset . This is the set fa; b; cg. This element is the least upper
bound (LUB) of Tset . We define separately this key notion about posets.

Definition 6.2.3 (Supremum or LUB). Let .L; �/ be a poset, and T � L. Then
u is the supremum (or least upper bound or LUB, or join) of T if and only if T has
a non-empty set of upper bounds, call it Tup, and 8x 2 Tup � .u � x/.

We provide the following observations about the notion of a supremum:

• The terms supremum, LUB and join are synonyms.
• If a set T has no upper bounds, then it does not have a supremum.
• The fact that a set has upper bounds is not a guarantee that the set has

a supremum. For example, the set Tfam mentioned above does not have a
supremum.

• It is not difficult to prove that the supremum, if it exists, is unique.
• A set that has only one upper bound will obviously have that upper bound as its

supremum.
• The supremum of set T may or may not be an element of T . For example,

consider the poset .R; �/, where R represents the real numbers. The subset of
R represented by the interval Œ0; 1/ has as its supremum 1, but 1 … Œ0; 1/. As
another example, the supremum of T D ffb; cg; fa; b; d gg in the poset .Lsets ; �/

mentioned above, is fa; b; c; d g … T .
• The term “join” is more commonly encountered in literature about lattices (see

below) and the symbol _ is often used as an infix operator to denote a join. Thus,

200 6 Case Study: Lattice Cover Graph Construction

if u is the join of T D fa; bg then we could write u D a _ b. Less commonly one
might encounter the notation u D W

T to denote the supremum or join of set T .

Dual concepts apply in regard to lower bounds in a poset: T could have a lower
bound in poset .L; �/. The set of lower bounds may or may not have a greatest
lower bound (GLB). The reader may, as an exercise, formulate the precise meaning
of these concepts. The GLB of T � L is also called the infimum or meet of T . The
meet of a and b is sometimes denoted by a ^ b.

We are now finally in a position to give the definition of a lattice:

Definition 6.2.4 (Lattice). A lattice is a poset .L; �/ in which every pair of
elements has a supremum and an infimum.

Where the ordering relation � is clear from the context, the lattice is simply
indicated by L. Because every set of elements of a non-empty lattice L has a
supremum and infimum, it can easily be shown that L has a maximum element
(denoted by >L) and a minimum element (denoted by ?L).

Definition 6.2.5 (Child, parent and cover relationships). If c; p 2 L then we
say that c is a child of p (p is a parent of c) if and only if

.c � p/ ^ .8r W .L n fc; pg/ � .:.c � r � p//:

We also say that p covers c.

Notation 6.2.6 (�L). We denote such a child–parent relationship between the
elements of a lattice by c � p or by c �L p where required by the context. Note
that �L is called the cover relation of L. It is a binary relation on the set L, i.e., it
is the set of pairs from the elements of L that are in a child–parent or cover relation
to one another. Specifically:

�L , f.c; p/ j c �L pg:

This cover relation on a lattice can be represented visually by a graph called a line
(or Hasse) diagram. Figure 6.1 is an example of such a line diagram. Its contents will
be discussed in more detail below. For the moment, note that in this line diagram,
lattice elements are nodes; parent nodes are drawn above their child nodes; and an
arc is drawn between every two nodes c and p for which c � p holds. Following
the normal convention of denoting a graph by a pair of sets, the first being the set
of nodes, and the second being the set of arcs, the line diagram of L can be denoted
by the graph .L; �/. Unsurprisingly, we also refer to this graph as the cover graph
of L.

This rest of this chapter is about using the correctness-by-construction approach
to develop an algorithm that constructs the cover graph of a particular kind of
lattice. The next subsection introduces this particular kind of lattice, as well as other
concepts that will be used in developing the algorithm.

6.2 Preliminaries 201

6.2.2 Set Intersection-Closed Lattices

The notion of a set of subsets from an alphabet, A, is quite well-known. The
maximal set of subsets of A, the powerset, denoted P.A/, consists of all possible
subsets of A, including Ø and A itself. Clearly the intersection of any two elements
chosen from P.A/ will also be an element of P.A/. We say that P.A/ is closed
with respect to set intersection and we call P.A/ a closure system. We are interested
in closure systems, of which P.A/ is but one example. The general definition of a
closure system is the following.

Definition 6.2.7 (Closure system). A closure system C on some alphabet A

is a collection of subsets of A that contains A and that is closed under set
intersection—i.e.:

C is a closure system on A ” .A 2 C/ ^
�
8X � C W

�\
X 2 C

��
:

In this definition, C is a set of subsets formed from the alphabet A, and X is to be
interpreted as a subset of the set elements of C—i.e., X is a set of subsets of C. The
intersection of all the sets in X , denoted above by

TX , will obviously be another
set, possibly the set Ø. For C to be closed under set intersection, it is required that
this resulting set is also an element of C.

There are very many possible ways of ordering two arbitrary elements, X and Y ,
of a closure system, C, depending on the given context. For example, we could
order the decide to order a closure system whose elements are all of different sizes,
in terms of the respective sizes of the elements, i.e., X � Y if and only if jX j � jY j.
Alternatively, we may flip a coin to decide whether two randomly selected elements
of a closure system, say X and Y , are to be regarded as X � Y .

In general, we cannot claim that an arbitrary ordering of a closure system is a
lattice, because the ordering may not comply with the rules of a partial order, and/or
because it might not be the case that every pair of elements has a supremum and
infimum.

In this text, we are interest in one very specific way of ordering the elements of a
closure system, namely by set inclusion—i.e., X � Y if and only if X � Y . It turns
out that such a closure system (i.e., closure system ordered by set inclusion, �)
is indeed a lattice—it is a partially ordered set in which every non-empty set of
elements has a unique LUB (supremum) and a unique GLB (infimum). We will not
prove this result from lattice theory, but merely accept it.

Definition 6.2.8 (SICL). If C is a closure system on A, then we call the lattice
.C; �/ a SICL.

Figure 6.1 shows a line diagram of a SICL with alphabet fa; b; c; d g. In this
figure, as well as in forthcoming examples, a set fa; b; c; d g is abbreviated to
abcd, fa; b; cg to abc, etc. The SICL is the set of nodes in the diagram,
fabcd;abd;ad;bd;bc;d;b; Øg. The line diagram represents the cover graph of

202 6 Case Study: Lattice Cover Graph Construction

Fig. 6.1 Example line
diagram/cover graph of
lattice L

this SICL, where a node p is connected by a downward arc to a node c if c � p.
(For example, the fact that abd � abcd means that, in the diagram, abcd should
be connected by the downward arc to abd, etc.).

The top element of the lattice in the figure is abcd, the bottom element is Ø
and there are various other elements in between. Notice that set intersection closure
indeed holds: the intersection of every pair of nodes in the figure (actually of every
set of nodes in the figure) is also a node in the figure. Some examples are:

ad \ bd D d;

abd \ bd D bd;

abd \ bc D b;

ad \ bc D Ø;

abd \ ad \ bc D Ø;

etc.

Notice also that the meet operation (^) on sets in a SICL coincides with the
intersection operation. For example, ad \ bd D d D ad ^ bd. One can easily
find the meet of a set of nodes in the diagram by traversing down paths from each
node in the set to where these paths “meet” in a common node. Notice, too, that there
will always be one and only one such meet. We can formulate this as the following
general property.

Property 6.2.9. In a SICL, the meet of a set of nodes is the same as the intersection
of the set of nodes.

In a similar way, one can easily find the join of a set of nodes in the diagram by
traversing up paths from each node in the set to where these paths “join” in a
common node. Nevertheless, one should not infer that there is a symmetry in a
SICL between the meet and the join (_) operation. It is sometimes but not always

6.2 Preliminaries 203

the case that if x and y are two arbitrary nodes in a SICL then x _y D x [y. There
is a danger of being confused by this. For example, in Fig. 6.1, it is indeed the case
that ad [bd D ad _ bd D abd. However the figure also exhibits the following
counter-example: bcd D bd [bc ¤ bd _ bc D abcd. Perhaps it would be wise
to state this fact as well as a property.

Property 6.2.10. In a SICL, the join of a set of nodes is sometimes, but not always
the same as the union of the set of nodes.

Furthermore, not every node in the figure is produced by intersecting some other
two nodes. For example, nodes abcd, abd, ad, bd and bc are not produced by the
intersection of any other nodes. Notice that these nodes only have a single parent in
the cover relation (or no parent in the case of the top node, abcd). We state this fact
as a formal SICL property.

Property 6.2.11. In a SICL, any node with two or more parents is the intersection
of those parents. A node with less than two parents is not the result of intersection.

We shall require following SICL property (actually of any lattice) and the
associated notation in developing the algorithm below.

Property 6.2.12. If C is an arbitrary element of a SICL L, then the set fR 2 L j
R � C g (denoted by #C and called a principal ideal) is also a SICL whose top
element is C . The cover relationship (arcs in the cover graph) of SICL #C will be
denoted by �#C .

Thus, for example, in Fig. 6.1, the principal ideal of abd is a SICL, we denote it by
#abd and it consists of the following elements: fabd;ad;bd;b;d; Øg. The arcs in
the cover graph of #abd are thus given by �#abdD f.abd;ad/; .abd;bd/; .bd;b/;

.bd;d/; .ad;d/; .d; Ø/; .b; Ø/g. Similarly, #bc is a SICL consisting of fbc;b; Øg
and the arcs in its cover graph are given by �#bcD f.bc;b/; .b; Ø/g.

It will also be important in developing the algorithm to be aware of the following
property of SICLs (actually of any lattice).

Property 6.2.13. Some nodes in #C might be children of some nodes in L n #C .
However, no node in #C can be a parent of a node in L n #C .

This is evident in Fig. 6.1. For example, none of the nodes in #abd is a parent to
any node outside of #abd. However, some nodes in #abd are children of nodes in
the original SICL—for example abd is a child of >L and b is a child of bc.

Property 6.2.13 is crucial to the algorithm we shall develop since it has the
following important consequence. Suppose we add a node to a principal ideal
of a node in SICL L, say to #C , without changing anything else in L n #C .
However, we do it in such a way as to preserve the SICL nature of #C —i.e., we
add all additional nodes needed in #C to ensure that it is set intersection-closed.
Then, Property 6.2.13 assures us that none of the new nodes will have children in
L n #C .

204 6 Case Study: Lattice Cover Graph Construction

As a concrete example of this, suppose we wished to add ab into SICL #abd
in Fig. 6.1, and we specifically wanted to retain the new structure as a SICL. Then
we would also have to add a to the revised #abd since a D ab \ ad. In addition,
we would have to add arcs .abd;ab/; .ab;b/; .ab;a/; .ad;a/ and .a; Ø/ to the
arcs of the original �#abd. Nodes abcd and bc are still parents of nodes in both the
original and revised #, but nodes in neither the original nor revised SICL are parents
to nodes in Ln #abd.

In order to formulate the problem to be addressed, let us define the following
predicates:

SICL.L; >L/ , L is a SICL defined on the alphabet A D >L

CG.L; �L/ , The cover graph of SICL L consists of nodes L and arcs �L

pre , SICL.L; >L/ ^ CG.L; �L/ ^ X � >L

post0 , SICL.L; >L/ ^ CG.L; �L/ ^ X 2 L

The problem to be addressed is then almost (but not quite): .L; �L/ W Œpre; post 0�.
Formulated in this way, the problem stated in natural language is more or less:

Given a SICL L and its cover graph with arcs �L, as well as a new set X which is a subset
of the SICL’s top element, update the SICL and its arcs so that it incorporates the new set X .

Clearly, in order to do this update, not only the new set X must be added into the
SICL, but all additional sets that are needed to ensure set intersection-closedness.
Our formulation indeed embodies this requirement, since it requires as part of post0
not only that X 2 L but also that the updated L must be a SICL. What is wrong
with the above formulation is that it does not insist that the new SICL must differ
minimally from the original one. It is not enough to preserve the SICL property—
we must do so without adding additional sets into the SICL that are not specifically
required because of the addition of X .

We therefore require a way of saying unambiguously that L must be enlarged to
include only X and pairwise intersections of X with all elements of L. This is the
purpose of Definition 6.2.14 that introduces the notion of an X-extension of a set.

Definition 6.2.14. Let L0 and L each be a set of sets from the alphabet A such that
L0 � L. Let X � A and suppose X 2 L. Then L is said to be an X-extension of L0,
denoted by L0 vX L, if

8Y 2 L n L0 W ..X D Y / _ .9Z 2 L0 W Y D .X \ Z///:

Note that if L0 D L, then the universal quantification in the above predicate is over
an empty range and so the predicate is true, implying that a set of sets can be taken
to be an X-extension of itself, where X is any element of that set.

6.3 The Algorithm 205

This definition means that each element in L that is not in L0, aside from X itself,
can be derived by intersecting some element in L0 with X .

As an example, suppose L is taken as all the elements in the lattice in Fig. 6.1,
and L0 is taken as all excluding ad, d and Ø—i.e.:

Suppose that L D fabcd, abd, ad, bd, bc, d, b, Øg
and L0 D fabcd, abd, bd, bc, bg

so that L n L0 D fad, d, Øg

Then L0 vad L.
To prove that this is indeed the case, we need to consider all elements in L n L0

other than ad itself. These are d and ∅. We need to show that each of these elements
is the result of intersecting ad with an element in L0.

This is indeed the case, since both bd and b are in L0 and:

d D ad \ bd;

∅ D ad \ b:

On the other hand, if L0 consists of all elements of L apart from b and d, i.e.,

L D fabcd, abd, ad, bd, bc, d, b, ∅g and

L0 D fabcd, abd, ad, bd, bc, ∅g

then L0 6vb L. This is because d in L n L0 cannot be derived by intersecting b with
any element in L0. Similarly, under this scenario, L0 6vd L.

The problem to be solved refines the earlier version by strengthening the
postcondition, i.e.,

.L; �L/ W Œpre; post 0� v .L; �L/ W Œpre; post�;

where pre , SICL.L; >L/ ^ CG.L; �L/ ^ X � >L

and post , SICL.L; >L/ ^ CG.L; �L/ ^ X 2 L ^ L0 vX L

6.3 The Algorithm

We shall now derive a procedure, insert, whose pre- and postconditions are as
described above. The input, .L; �L/, is the cover graph of a SICL L, and the updated
version of this cover graph is returned by the procedure. The updating is in terms
of the input set X , which is a subset of >L. The returned cover graph is of a new

206 6 Case Study: Lattice Cover Graph Construction

SICL, L, which is the X-extension of the original SICL L0:1 The procedure outline
is therefore:

proc insert .value result .L; �L/; value X/

pre fSICL.L; >L/ ^ CG.L; �L/ ^ X � >Lg
.L; �L/ W S

post fSICL.L; >L/ ^ CG.L; �L/ ^ X 2 L ^ L0 vX Lg
corp

As seen in the previous chapter, the formal parameter X is designated a value
parameter because it passes on a value to the procedure without changing in the
procedure, whereas the graph parameter .L; �L/ is designated value result because
it not only provides an input value to the procedure, but also serves to return the
result. In the interests of economising on notation, we shall take the liberty of
dropping the value result and value descriptions of the formal parameters from
this point on.

6.3.1 The Basic Structure

As a strategy to refine S , finding the position of X in CG.L; �L/ seems like a
sensible thing to do. As a first step to do this, suppose we decide to test whether or
not >L is the parent of X . Let C>L D fC jC � >Lg be the of children of >L and
suppose that jC>Lj D n. In the algorithm below, we assume that these children are
ordered, and they are indicated by Ci ; i D 0; : : : ; n�1. It seems reasonable to iterate
over all these children and test whether any of them give an indication of whether
or not X � >L holds. What should be tested in order to gain such an indication?

Well, we know for sure that X � >L does not hold if, for some Ci , we find that
X � Ci . In that case the parent of X in the new SICL will either be Ci itself, or
some node below Ci in the line diagram (since all of those nodes will, per definition
of a SICL be subsets of Ci). In the notation introduced in Property 6.2.12, the parent
of X will be in #C i .

Furthermore, if it turns out that X D Ci for some i , then it is indeed the case that
X � >L, but because of the equality our job is already done. The procedure can
return because the postcondition is already satisfied.

If neither of these circumstances arise—i.e., if 8Ci � X ª Ci—then we can infer
that X is indeed the child of >L and proceed further. We therefore consider the
following refinement strategy for S :

1It is trivial to adapt the algorithm for cases where :.X � >L/ . Two cases then need to be
handled. If X � >L then X simply becomes the new top of the enlarged SICL. If :.X �
>L ^ X � >L/ then insert X \ >L into L, create a supremum for X and >L and join X and
>L to their supremum.

6.3 The Algorithm 207

i WD 0I
let fC0; Ci ; : : : Cn�1g be the set of >L’s children.
do ..i ¤ n/ ^ .X ª Ci // ! i WD i C 1 od
f .i D n/ _ .X � Ci / g
if .i D n/ ! fX � >Lg fS1 entails connecting X to >L and X to its childreng

fpostg
Œ� ..i < n/ ^ .X D Ci // ! return fpostg
Œ� ..i < n/ ^ .X � Ci // ! fInsert X in#C i g S2 fpostg
fi

6.3.2 Articulating and Attaining inv1.i /

This loop is rather naı̈ve for several reasons, and we shall progressively upgrade
it, as well as articulate a loop invariant that emerges from the upgraded form. For
the moment, we limit attention to one particular shortcoming of the loop: we are
ignoring the possible children of X in the new SICL that might be discovered as we
examine each Ci .

For example, if we discover that Ci � X , then we can be sure that Ci � X in the
new SICL. Let us enhance the loop by introducing a select statement to test whether
Ci � X holds, and if so, to collect Ci as a possible child of X into the set C. Of
course, this set should be initialised to ∅.

We may now well inquire what to do if :.Ci � X/ holds. In that case, attention
falls on CiX D Ci \X : to preserve set intersection-closedness, clearly CiX will have
to become part of the new SICL, if it is not already in there. (Note in passing that
this holds even if CiX D ∅—it cannot be assumed that every SICL already has ∅
as its bottom element.) Moreover, in the new SICL, it is possible that CiX � X will
hold. The loop should ideally deal with both these possibilities: namely, take note
of CiX as a possible child of X and insert CiX into L. For the moment, however,
we limit the loop to collecting all possible children of X into set C. The matter of
installing any CiX as part of the new SICL will be addressed later. Thus, the select
statement should be provided with a second guard :.Ci � X/ which adds CiX

to C.
After i iterations, this loop will have ensured that C contains all potential children

of X in the new SICL that are present in the first i principal ideals of the children
of >L. The set of nodes represented by all the elements in these principal ideals is
visually depicted in Fig. 6.2 where Mi is defined as:

Mi D
� Si�1

kD0.#Ck/ if i > 0

∅ if i D 0
:

Another way of saying that C contains all potential children of X in Mi is to say that
every element of Mi that is a subset of X must also be a subset of some element

208 6 Case Study: Lattice Cover Graph Construction

Fig. 6.2 Mi D Si�1
kD0.#C k/

of C. However, it is not enough to merely describe C in this way. We should also
assert that it does not contain unnecessary elements—i.e., it only contains elements
that are subsets of X . This description of C is formally captured in the following
loop invariant:

inv1.i/ , .8Y W..Y 2 Mi /^.Y � X//�.9C 2 C W Y � C // ^ .8C 2 C W C � X/:

(6.1)
As a consequence of the above, we can now enhance the procedure outline to date
as shown below, where the added parts have been underlined.

let fC0; Ci ; : : : Cn�1g be the set of >L’s children.
i;C WD 0;∅I
finv1.i/g
do ..i ¤ n/ ^ .X ª Ci // !

if .Ci � X/ ! C WD C [fCi g
Œ� :.Ci � X/ ! C WD C [fCi \ Xg
fi
i WD i C 1

od
f ..i D n/ _ .X � Ci // ^ inv1.i/g
if .i D n/ ! fX � >Lg fS1 entails connecting X to >L and X to its childreng fpostg
Œ� ..i < n/ ^ .X D Ci// ! return fpostg
Œ� ..i < n/ ^ .X � Ci // ! fInsert X in#C i g S2 fpostg
fi

6.3.3 Articulating and Attaining inv2.i /

Although we have not installed into the SICL the set CiX D Ci \ X that is implicit
in the second guard, this has to be done at some stage in order to retain the set
intersection-closedness property in the final SICL. It would be convenient to do so
as part of the second guard in the select statement of the loop. The alternative would
be to store CiX and handle its insertion into the SICL at a later stage. Though the
latter seems possible (and thus a possible avenue to explore for future research), the

6.3 The Algorithm 209

former seems preferable. At first sight, it might not be entirely clear how one could
do this.

However, given that we wish to add a node to a SICL, and that we are writing
the procedure insert to do precisely that, the possibility of recursion naturally arises.
Can we not make a recursive call to insert as part of the second guard, passing it
Ci \ X instead of X? Careful consideration of the pre- and postconditions of insert
will show that this can indeed be done: before such a call, the precondition of insert
with formal parameters suitably replaced by actual parameters will be valid. After
the call we will have a new SICL which is a (Ci \ X)-extension of the starting one,
and which now has Ci \ X as part of it. Thus we could change the second guarded
command to the following:

f:.Ci � X/ ^ SICL.L; >L/ ^ CG.L; �L/ ^ .Ci \ X/ � >Lg
:.Ci � X/ ! C WD C [fCi \ XgI insert..L; �L/; .Ci \ X//

fSICL.L; >L/ ^ CG.L; �L/ ^ .Ci \ X/ 2 L ^ L0 vCi \X Lg
Although this would work correctly, we evidently have an inefficiency built into
such a call. We are forcing a search for a position for Ci \ X in L starting with the
children of >L. These children will be examined from left to right, even though we
know a priori that Ci \X in L has to be installed somewhere below the node Ci . All
iterations of the loop prior to that point would have been redundant. Let us endure
this inefficiency for the time being, and refactor it later.

We now focus on the whether or not the first guard of the select statement con-
forms to the same pre- and postcondition specification as the second guard, i.e., does
the following hold:

f.Ci � X/ ^ SICL.L; >L/ ^ CG.L; �L/ ^ .Ci \ X/ � >Lg
.Ci � X/ ! C WD C [fCig

fSICL.L; >L/ ^ CG.L; �L/ ^ .Ci \ X/ 2 L ^ L0 vCi \X Lg
This is trivially the case for the first two conjuncts of the postcondition, which

remain unchanged by the command of the first guard. In verifying that the third
conjunct remains true, note that since the guard is Ci � X , it must be the case that
Ci D .Ci \ X/. So the third conjunct amounts to the assertion that L vCi L0. Since
L D L0 and since L is an extension of itself with respect to any node that is in
L, including Ci , the third conjunct is true as well. Thus, the first guard preserves
the postcondition. Since the second guard also preserves it (albeit potentially quite
inefficiently) the following invariant is preserved by the loop as a whole:

inv2.i/ , SICL.L; >L/ ^ CG.L; �L/ ^ .8k W Œ0; i/ � .L0 vCk\X L//: (6.2)

The invariant of the loop is now inv1.i/ ^ inv.2/, and the following structure has
been evolved:

210 6 Case Study: Lattice Cover Graph Construction

let fC0; Ci ; : : : Cn�1g be the set of >L’s children.
i; C WD 0;∅I
finv1.i/ ^ inv2.i/g
do ..i ¤ n/ ^ .X ª Ci// !

if .Ci � X/ ! C WD C [fCig
Œ� :.Ci � X/ ! C WD C [fCi \ XgI insert..L; �L/; Ci \ X/

fi
i WD i C 1

od
f ..i D n/ _ .X � Ci// ^ inv1.i/ ^ inv2.i/g
if .i D n/ ! fSince X � >L, connect X to >L and X to its childreng S1 fpostg
Œ� ..i < n/ ^ .X D Ci // ! return fpostg
Œ� ..i < n/ ^ .X � Ci// ! fInsert X in#C i g S2 fpostg
fi

6.3.4 Filling in S1

Suppose the loop terminates with i D n. Then .8k W Œ0; i/ �.L0 vCk\X L//, which is
the third conjunct of inv2.n/, assures us that L already embodies all sets needed for
X to be included into it—i.e., if we insert X into L it will still be set intersection-
closed. Moreover, the fact that the second conjunct holds, namely CG.L; �L/,
means that all sets that have been added into L are correctly connected in the cover
graph. All that remains is to include node X in L (this is achieved by the assignment
command L WD L [fXg) and to correctly connect X to its parent and children.

Since i D n we can be sure that X is not a subset of any child of the top element.
Hence, the top element is the only parent of X . The arcs in the cover graph should
therefore be updated by the assignment: �L WD�L [f.>L; X/g.

Children of X in the final lattice, L, have to be the largest subsets of X that are
in L. Obviously, every such subset is the intersection of X and a child, C , of the top
element in L0; of course, this intersection may be equal to C (in which case, C is
a child of X). The set C consists of all such intersections obtained. It can easily be
verified that not every element of C need necessarily be a maximal subset of X in L:
some may be proper subsets of others. Only the maximal subsets of X in C have to
be identified and connected to X . Assume that getMax.C/ is a function that returns
as a set the maximal sets in C—i.e., sets in C that are not contained in any other sets
in C.

To finish the insertion of X into .L; �L/, we therefore have to connect X to all
the maximal subsets of X in C so that they become children of X . If any child of X ,
say C is linked to >L, then the corresponding arc must be removed. The assignment

�L WD .�L nf.>L; C /g/ [f.X; C /g

6.3 The Algorithm 211

expresses this removal of arc .>L; C / (if it exists) from L and installation of .X; C /

as a new parent–child arc in the cover graph of the SICL. The command S1 in the
guard of the select statement following the loop can thus be elaborated as follows.

if .i D n/ !
L WD L [fXg
I �L WD�L [f.>L; X/g
I for C W getMax.C/ !

�L WD .�L nf.>L; C /g/ [f.X; C /g
rof

Œ� ..i < n/ ^ .X D Ci // ! return fpostg
Œ� ..i < n/ ^ .X � Ci // ! fInsert X in#C i g S2 fpostg
fi

6.3.5 Completing the Select Command

The implications need to be considered if the loop does not iterate through all the
children of >L, but instead terminates because it is found—possibly after one or
more recursive calls in the loop—that .X � Ci / for some i < n. If this happens, then
the foregoing derivation shows that the loop ends in the state .i < n/ ^ .X � Ci/ ^
inv1.i/ ^ inv2.i/. One of the last two guarded commands in the select command
after the loop will then be executed. Formulated as Hoare triple specifications that
need to be proven true, the bodies of these last two commands have the following
forms respectively:

f.i < n/ ^ .X D Ci/ ^ inv1.i/ ^ inv2.i/g return fpostg; (6.3)

f.i < n/ ^ .X � Ci / ^ inv1.i/ ^ inv2.i/g S2 fpostg; (6.4)

where S2 represents the code needed to ensure that we “Insert X in #C i”. The
definitions of inv2.i/ and post are copied below as a reminder of their formulation,
and so that they can easily be compared against one another. However, in inv2.i/

we use the notation L0 to indicate the SICL before executing the return statement
or S2, and we indicate the originally input SICL as L00.

inv2.i/ , SICL.L0; >L0 / ^ CG.L0; �L0 / ^ .8k W Œ0; i/ � .L00 vCk\X L0//;

(6.5)

post , SICL.L; >L/ ^ CG.L; �L/ ^ .X 2 L/ ^ .L0 vX L/: (6.6)

For correctness reasoning purposes, return can be viewed as similar to skip: the
specification fP g return fQg is true provided P V Q. Obviously variable values
remain unchanged, so that L D L0. Taking this into account, the definitions (6.5)
and (6.6) clearly show that .X D Ci/ ^ inv2.i/ V post so that the return in
specification (6.3) can be regarded as valid. Note that the last conjunct of inv2.i/

plays no role in the reasoning. Moreover, in considering the last conjunct of post,

212 6 Case Study: Lattice Cover Graph Construction

note that if .X 2 L/ ^ .L0 D L/, which is indeed the case here, then .L0 vX L/ D
true—as noted previously, any set is an extension of itself with respect to any one
of its own elements.

All that remains, therefore, is to determine S2. Once more, a recursive call to
insert suggests itself, this time inserting X into #Ci , i.e., insert..#Ci ; �#C i

/; X/.
The precondition of the following Hoare triple would have to be true to permit such
a recursive call, and the result would be the indicated postcondition. (Note that Ci

has been used to indicate the top of this SICL, instead of the equivalent but more
cumbersome notation >#C i

.)

fSICL.#C 0i
; C0i / ^ CG.#C 0i

; �#C 0i
/ ^ .X � C0i /g (6.7)

insert..#C i ; �#C i
/; X/ (6.8)

fSICL.#C i ; Ci/ ^ CG.#C i ; �#C i
/ ^ .X 2 #C i / ^ .#C 0i

vX #C i/g (6.9)

Using Property (6.2.12), it is easy to see that if the precondition of specification
(6.4) holds, then (6.7) will also hold, i.e., SICL.#C 0i

; C0i / ^ CG.#C 0i
; �#C 0i

/ ^
.X � C0i / will also hold. The call to insert in (6.8) may thus be made and the
indicated postcondition in (6.9) is then guaranteed to be attained.

The question, then, is whether this resulting postcondition (6.9) V post in (6.6).
In other words, if we update the SICL #C i which is within the SICL L by minimally
inserting X into it (minimally in the sense that #C i0

vX #C i holds) so that its cover
graph is now described by CG.#C i ; �#C i

/, can we then reasonably claim each of the
conjuncts of post will hold? Let us argue the case by showing that (6.9) everywhere
implies each of post’s conjuncts in turn.

• Showing that (6.9) V SICL.L; >L/:
Property 6.2.12 states that SICL.L; >L/ V SICL.#C i ; >#C i

/. It cannot simply
be asserted that the reverse holds, namely SICL.#C i ; >#C i

/ V SICL.L; >L/. In
the absence of other contextual information aboutL and #C i this claim cannot be
affirmed or denied. However, consider the situation when we add two conjuncts
to the left hand side that are true.

The first, SICL.L0; >L0 /, is a conjunct of inv2 in (6.5), and is thus true ahead
of the insert. Furthermore it is unaffected by the call.

The second, #C i0
vX #C i , is true because it is a conjunct of the call’s

postcondition, as see in (6.9).
We thus consider the following assertion, which we claim indeed holds:

SICL.L0; >L0 / ^ #C i0
vX #C i ^ SICL.#C i ; >#C i

/ V SICL.L; >L/: (6.10)

Here we are claiming that if we take into account that L0 started off as a SICL,
and that Ci , which is now an X-extension of its original form, is embedded into
L without anything else in L changing, then the resulting L indeed constitutes a
SICL.

This claim can only be falsified if the intersection of a node in L n #C i , say
p, with a new node in #C i , say q, is absent from L.

6.3 The Algorithm 213

But we can see that this will never be the case if we consider the intersection
(the meet) of p and Ci , say m. This set would necessarily be in both #C i0

(because of the set intersection-closedness property of L0) and in #C i (because
insert does not remove any nodes). Because #C i is a SICL, it must also be the
case that the meet of m and q, call it m0, is in #C i . It is easy to show that this set,
m0, corresponds with p \ q. Formally:

p \ q

� f.q 2 .#C i // H) .q � Ci / H) .q D Ci \ q/g
p \ Ci \ q

� fSet intersection is associative, and m D p \ Ci g
m \ q

� fm0 D m \ qg
m0

Thus, the intersection of an arbitrary node in L n #C i with any new node in
#C i is always in .#C i / � L.

Hence, (6.10) is always true.
• Showing that (6.9) V CG.L; �L/:

In a similar manner, we would like to show that the following holds:

CG.L0; �L0 / ^ #C i0
vX #C i ^ CG.#C i ; �#C i

/ V CG.L; �L/:

To do this, we need to argue that it is sufficient to add the new arcs of �#C i
into

�L in order to obtain all the arcs of the cover graph of L (which we have just
proven to be a SICL). Since the call’s postcondition guarantees that the arcs in
�#C i

accurately represent parent–child relationships in #C i , and since the call to
insert neither adds new arcs, nor deletes any existing arcs between nodes in #C i

and nodes in L n #C i , we are left with two possible concerns: should new arcs
involving nodes in #C i and nodes L n #C i be added to �L; and/or should any
existing arcs involving nodes in #C i and nodes L n #C i be removed from �L?

Property 6.2.13 eliminates any concerns in regard to arcs starting from nodes
in #C i and ending at nodes in L n #C i : none could have existed before the call,
and none should be installed after the call. That leaves for consideration arcs
where a parent is in L n #C i and a child is in #C i .

An argument against the need to remove or replace any existing arc runs as
follows. Suppose .p; q/ is such an arc in the cover graph of the original SICL.
That would mean that q is the meet (infimum) of p and any other node in #C i

that is a superset of q, including the meet between p and Ci . That means that q

is the largest set of common elements shared by p and Ci . The insertion of X

into #C i does not add to this set of common elements. Therefore existing arcs
should not be removed or replaced from the cover graph of the new SICL. Either
removal or replacement would incorrectly imply that the largest set of common
elements between p and Ci has changed.

There is a similar argument against the need to insert an arc (as opposed
to replacing an existing one). Per definition of a lattice, Ci and every node in

214 6 Case Study: Lattice Cover Graph Construction

p 2 L n #C i has a meet in both the original and resulting SICL. If there was
previously no arc from p to a node in #C i then inserting such a parent–child arc
would change the meet of p and Ci . But since p and Ci have exactly the same
elements in common before and after the placement of X in the SICL, it would
be illegitimate to change this meet, which is precisely what the introduction of
an arc would do.

• Showing that (6.9) V .X 2 L/:
Since X 2# Ci V X 2 L, the third conjunct of post is quite obviously
everywhere implied by the postcondition of insert’s call.

• Showing that (6.9) V .L0 vX L/:
Since the guard’s condition prior to the insert call requires that X � Ci , it is
quite clear that the intersection of any element in L with X will be in #C i . As a
result, it easily follows that .#C i0

vX #C i / V .L0 vX L/ holds.

6.3.6 The Completed Algorithm

Putting all the pieces together delivers the following algorithm for insert:

Algorithm 6.3.1.
proc insert.value result .L; �L/; value X/

pre fSICL.L; >L/ ^ CG.L; �L/ ^ X � >Lg
let fC0; Ci ; : : : Cn�1g be the set of >L’s children.
i; C WD 0;∅

I finv1.i/ ^ inv2.i/g
do ..i ¤ n/ ^ .X ª Ci // !

if .Ci � X/ ! C WD C [fCig
Œ� :.Ci � X/ ! C WD C [fCi \ XgI insert..L; �L/; Ci \ X/

fi
I i WD i C 1

od
f ..i D n/ _ .X � Ci // ^ inv1.i/ ^ inv2.i/g
I if .i D n/ !

L WD L [fXg
I �L WD�L [f.>L; X/g
I for C W getMax.C/ !

�L WD .�L nf.>L; C /g/ [f.X; C /g
rof
I return

Œ� ..i < n/ ^ .X D Ci // ! return
Œ� ..i < n/ ^ .X � Ci // ! insert..#C i ; �#C i

/; X/

fi
post fSICL.L; >L/ ^ CG.L; �L/ ^ X 2 L ^ L0 vX Lg
corp

6.3 The Algorithm 215

Table 6.1 Comparing X against Cf and then against sibling Cs : logical possibilities

X D Cs X � Cs Cs � X CsX D Cs \ X

X D Cf Cf D Cs Cf � Cs Cs � Cf CsX D Cfs

No/No No/No No/No Yes/No
X � Cf Cs � Cf X � Cf ^ X � Cs Cs � Cf CsX � Cf s

No/No Yes/No No/No Yes/No
Cf � X Cf � Cs Cf � Cs Cf ; Cs 2 C Cf ; CsX 2 C

No/No No/No Yes/Yes Yes/Yes
CfX D Cf \ X CfX D Cfs CfX � Cfs CfX ; Cs 2 C CfX ; CsX 2 C

Yes/Yes Yes/Yes Yes/Yes Yes/Yes

There is much that could be said about this algorithm. On the one hand, there
are several refactoring possibilities as well as previously published variants of the
algorithm. One variant has been used in the context of FCA and been shown to be
very efficient from a practical point of view. On the other hand, the “almost magical”
impact of the recursion obscures a number of interesting operational details that are
worth reviewing. In the next section we shall consider some of these operational
details, and return to the refactored variations after that.

6.3.7 The Operational Implications

While the previous correctness by construction argumentation guarantees the
algorithm’s correctness, it has bypassed a number of details about possible execution
traces that may be followed, depending on the data to be processed. A consideration
of these will provide further insight into the algorithm. However, this section may
be skipped at first reading.

Table 6.1 identifies logical possibilities of how children of a common parent in
a SICL (in the present case >L) may be matched against X . In the algorithm’s
main loop, these children are compared sequentially against X , and it is of interest
to discover matching combinations that might be both logically and operationally
possible, those that might be logically possible but operationally impossible, and
those that are not logically possible at all. By “operationally possible” we refer to
the possible traces of events as the loop is executed.

Row headers in the table indicate possible outcomes when X is compared to child
Cf and column headers, when X is compared to child Cs. The f and s subscripts
are intended to signify the order of comparison: the Cf comparison f irst takes place
and then (secondly) the Cs comparison. In each case, the outcome could be equality
(D), or the child contains X (C � X), or X contains the child (X � C), or none of
these, in which case the intersection of X and the child is denoted by CfX and CsX ,
respectively. We also use Cf s to refer to Cf \ Cs . For ease of reference, we shall
refer to the cell in the i th row and j th column as cell (i; j).

216 6 Case Study: Lattice Cover Graph Construction

Each cell contains three entries: a predicate about Cf and/or Cs on a first row;
and, on a second row, a pair consisting of the words “Yes” and/or “No”. The first row
entry of cell (i; j) indicates what we could logically infer if the outcome of the first
X comparison (with Cf) was as indicated in row i , and the subsequent outcome of
the X comparison (with Cs) was as indicated in column j . The first bottom entry in
each cell indicates whether such an outcome is logically possible for children of the
same parent in a SICL. The second bottom entry indicates whether the outcome is
operationally possible in the algorithm when it is logically possible—i.e., whether
the algorithm’s loop will continue after comparing X against Cf to subsequently
compare X against Cs.

Thus, cell (1, 1) indicates that if Cf was found to be equal to X , and subsequently
it was found that Cs was also equal to X , this would logically mean that Cf D Cs .
Since a parent in a SICL cannot have two identical children, the word “No” appears
twice in that cell to indicate that this is neither logically nor operationally possible.
Similarly, the first row of cell (1, 2) indicates if X D Cf and X � Cs , then logically,
Cf � Cs . However, in a SICL X cannot be equal to a child of the top node and then
subsequently found to be contained by another child, since that would mean that Cf

should be located somewhere in #C s .
As a final example, consider cell (2, 2). The “Yes” entry in the bottom row of this

cell affirms that it is logically possible for X to be a proper subset of two children of
the top node in a SICL, Cf and Cs . The “No” entry affirms that once the algorithm’s
loop establishes that X � Cf , it will terminate, and the loop will not discover that
X � Cs.

Collectively, the scenarios reflected in the table’s first two rows correspond
to conditions under which the loop terminates— i.e., when X � Cf the loop’s
condition no longer holds. All cell entries in these two rows are labelled as “No/No”
because it is logically not possible to encounter the given scenario in a SICL, or as
or “Yes/No” because the algorithm’s design is such that X will not be tested against
Cs even the indicated relationship between X and Cs is permitted by the definition
of a SICL. It is therefore unnecessary to inquire further about the operational
consequences in these contexts.

Row three shows that if .Cf � X/ then it is not possible that .X � Cs/. Column
three shows that if .Cs � X/ then it is not possible that .X � Cf /. Taken together,
this means that if X is a superset of any one of the children of SICL >L, then
this logically excludes the possibility that X is a subset or equal to some other
child of >L. Thus, if X is a superset of some child, then—even if this fact has not
been established operationally—the loop will iterate through all the children of >L,
possibly finding that X is also a superset the other children (indicated as a possibility
in cell (3, 3)) and/or finding that the second guard fires so that CsX has to be inserted
into the lattice, which is the case indicated in cell (3, 4). In each of these cases, the
loop collects the possible children of X into C, as suggested by the entries cell (3, 3)
and cell (3, 4).

Row four shows what happens if none of the conditions in the headers
of first three rows are encountered when testing Cf (i.e., when it is neither
the case that Cf ª X nor that X ª Cf). In this case—both logically and

6.3 The Algorithm 217

Fig. 6.3 The scenario in cell (4, 2): X � Cs H) CfX � Csf

operationally—“anything” can subsequently be anticipated with respect to Cs: i.e.,
subsequent iterations of the loop might discover that .Cs D X/, or that .X � Cs/,
or that .Cs � X/ or, if none of these alternatives occur, that CsX D .Cs \ X/ has to
be inserted into the lattice.

The information in cell (4, 3) and cell (4, 4) is consistent with the information just
discussed in regard to the third row: the loop collects possible child information to
preserve invariant (6.1) and traverses more children of >L without any problems.
However, unlike the case of row three (i.e., Ci � X), which logically guaranteed
that all n children would be tested, a row four occurrence does not give any
assurance of whether or not this will be the case. It is possible that the loop may
subsequently terminate because of equality (column one) or child containment of X

(column 2).
These two cases, shown in cell (4, 1) and cell (4, 2) might, for some, raise

troubling questions. Can we be sure that the recursive call inserting CfX into the
SICL was legitimate if we subsequently discover that X D Cs or X � Cs? What
effect does the recursive call have on the overall structure that is later handled by
these cases?

In the case of X D Cs (cell (4, 1)) there is evidently no problem. Since L is per
definition set intersection-closed, it must be the case that Cf \Cs D Cfs was already
in L. Thus inserting CfX D Cf \ X D Cf \ Cs D Csf into L is not problematic.
An attempt is made to insert an existing node into L and has no effect at all on L.
The loop will complete having done one, or perhaps more, “useless” but harmless
recursive calls and then terminate when it is discovered that X D Cs . The select
statement after the loop will simply return from insert with an unchanged L.

If we insert CfX D Cf \ X into L and then subsequently discover that X � Cs

holds (i.e., the cell (4, 2) scenario), no problem exists either. We know this because
X � Cs means that CfX must be a subset of or equal to Cfs D Cf \Cs (symbolically
CfX � Cfs). The matter is illustrated in Fig. 6.3. The figure shows that the first
recursive call will insert the set CfX into L somewhere in #C s . Because L is
set intersection-closed, Cfs will already be in #C s , and CfX will be installed

218 6 Case Study: Lattice Cover Graph Construction

somewhere below this set. The subsequent call to install X in #C s will occur in
an updated version of #C s in which some of the work which it would in any case
need to do, has already been done.

Note that since equality may hold (i.e., it may be that CfX D Cfs or, even
more generally that CfX already exists in # Cfs), it is possible that L may be
unchanged by the call. Either way (i.e., whether equality holds or updating takes
place) makes no difference to the ultimate correctness argument. Operationally, the
loop will eventually terminate by discovering that X � Cs . It will then execute the
relevant guard of the subsequent select statement, making the recursive call to insert
to install X in #C i , where i D s in this context.

It is these considerations that inform some of the refactorings suggested below,
particularly the refactoring discussed in Sect. 6.4.2.

6.4 Refactorings

There are numerous ways in which Algorithm 6.3.1 can be refactored. Here we
shall only consider two: one reasonably obvious measure to improve efficiency, and
then a refactoring which will bring the algorithm more closely in line with other
published versions.

6.4.1 Efficiently Inserting Ci \ X

In elaborating the select command in the algorithm’s main loop, we proposed
in Sect. 6.3.3 that the second guard should use the recursive call insert..L; �L/;

Ci \X/ to place Ci \X into L. It was pointed out that this implied that the children
of >L would be examined against Ci \ X from left to right and that this was quite
obviously inefficient, since we already know at that Ci \ X should be installed
somewhere below Ci . Nevertheless, the call was issued in that form and, since the
pre- and postconditions match the loop’s invariant, there was no need for a lengthy
justification about its correctness.

Subsequently, it was shown that if X � Ci , then a recursive call to insert..#C i ;

�#C i
/; X/ could be made after the loop which would insert X into L. This was

justified in some detail in Sect. 6.3.4. It was shown that minimally updating the
principal ideal, #C i does not undermine any of the SICL properties of L, and
therefore achieves the required postcondition.

In like manner, the first recursive call could just as well be started from Ci

rather than >L, thus avoiding the unnecessary examination of other children of
>L. Because arguments to legitimate such a call closely parallel those already
given in Sect. 6.3.4, they need not be repeated here. This then is our first suggested
refactoring: in Algorithm 6.3.1, replace the call insert..L; �L/; Ci \ X/ in the main
loop by insert..#C i ; �#C i

/; Ci \ X/. It will be seen that this form is used in the
Algorithm 6.4.3 to be presented below.

6.4 Refactorings 219

6.4.2 Finding the Parent of X

The original version of Algorithm 6.3.1 was published in [41, 42] and was called
AddIntent for reasons that will be hinted at later. It was not derived using correctness
by construction methods. As a matter of fact, most people found the algorithm very
difficult to follow, and were quite uncertain of its correctness. Confidence in its
correctness was largely dependent on test data.

Subsequently, a rather more elegant version of the algorithm was derived and has
been discussed in [26]. This latter version checks for X D Ci or X � Ci as two
additional guards in the select statement in the main loop. If one of these guards fire,
a flag is set and, where necessary, the recursive call is made from the body of that
additional guard in the loop to insert X somewhere in #C i . The flag is then used
to terminate the loop. This renders the loop’s invariant slightly more complicated,
because it has to account for the change in state that is possibly brought about if one
of these guards fires. Algorithm 6.3.1 pleasingly avoids the need for such flags and
has a simpler invariant.

A subsequent discussion and refactoring in [26] is based on the desirability of
a simpler select statement in the loop, so that the resulting loop in [26] would
contain only the two guards—as we already have in Algorithm 6.3.1. However, this
is achieved is by a refactoring that leads to an algorithm that is similar in structure
to the original in [41, 42]: prior to the loop, the parent P of X is sought, relying
on a function called getP . The subsequent loop then has the same select statement
as that Algorithm 6.3.1. The function for getP is not derived, but merely described
verbally.

It turns out that getP is actually a stripped down version of Algorithm 6.3.1.
All that is needed is to remove from Algorithm 6.3.1 all the commands associated
with inv1.i/ and the installation of X into L, and to appropriately adapt the select
statement after the loop. Furthermore, since L remains unchanged, inv2.i/ is no
longer relevant. Instead, the loop’s invariant is a statement that the region searched
to date does not contain the parent of X , i.e.:

inv3.i/ , ÀP W Mi � .X �L P /: (6.11)

The result is Algorithm 6.4.1 below, given in function format, rather than as a
procedure.

Algorithm 6.4.1.
func getP.value .L; �L/; value X/ W hP i
pre fSICL.L; >L/ ^ CG.L; �L/ ^ X � >Lg
let fC0; Ci ; : : : ; Cn�1g be the set of >L’s children.
i; WD 0

I finv3.i/g
do ..i ¤ n/ ^ .X ª Ci // ! i WD i C 1 od
f ..i D n/ _ .X � Ci// ^ inv3.i/g

220 6 Case Study: Lattice Cover Graph Construction

I if .i D n/ ! P WD >L
Œ� ..i < n/ ^ .X D Ci// ! P WD X

Œ� ..i < n/ ^ .X � Ci// ! P WD getP..#C i ; �#C i
/; X/

fi
post f.X D P / _ .X �L P /g
I return
cnuf

Justifying the commands in the guard bodies of the select command following the
loop is straight forward. Notice that the getP returns X if it is established that it
already exists in L. This is reflected in its postcondition.

Algorithm 6.3.1 can now be refactored by first invoking getP to return the parent
of X . If it is found that X is already in L, we of course return directly. Otherwise
the main loop of Algorithm 6.3.1 may be used as before, but with the strengthened
precondition that X �L P . As a result, the loop simply iterates over all children of
P and assembles the possible children of X in set C as before. After the loop, X is
installed into L in exactly the same way as before.

Putting all the pieces together delivers the following refactored algorithm for
insert that relies on getP and matches other published versions.

Algorithm 6.4.2.
proc insert.value result .L; �L/; value X/

pre fSICL.L; >L/ ^ CG.L; �L/ ^ X � >Lg
let fC0; Ci ; : : : ; Cn�1g be the set of >L’s children.
P WD getP..L; �L/; X/

f.P D X/ _ X � P /g
I if P D X ! return
Œ� P ¤ X !

C WD ∅

I finv1.i/ ^ inv2.i/ ^ .X �L P /g
for all .Ci � P / !

if .Ci � X/ ! C WD C [fCig
Œ� :.Ci � X/ ! C WD C [fCi \ XgI insert..#C i ; �#C i

/; .Ci \ X//

fi
rof
f .i D n/ ^ inv1.i/ ^ inv2.i/g
IL WD L [fXg
I �L WD�L [f.P; X/g
I for C W getMax.C/ !

�L WD .�L nf.P; C /g/ [f.X; C /g
rof

fi
I return
post fSICL.L; >L/ ^ CG.L; �L/ ^ X 2 L ^ L0 vX Lg
corp

6.4 Refactorings 221

6.4.3 Discussion

Algorithms 6.3.1 and 6.4.3 are incremental algorithms: they can be used to grow
a given SICL L by set X and all other sets implied by the insertion of X into L.
Clearly, they can be used to construct a SICL ab initio that contains a prespecified
set of sets.2 For example, suppose we wanted to construct a SICL out of the set of
sets X . We would first need to compute the top element of the SICL, which is given
by the union of all the sets in X , i.e., > D SX , using f>g as the starting SICL, and
then successively placing elements of into the incrementally growing SICL:

Algorithm 6.4.3.
proc makeSICL.result .L; �L/; value X /

.L; �L/ WD .
SX ;∅/

I for all .X 2 ToDo/ !
insert..L; �L/; X/

rof
corp

Assuming that j SX j D n, the worst case order-of-magnitude performance of
any general SICL construction algorithm to build a SICL out of X is O.2n/.
Algorithms 6.3.1 and 6.4.3 are no exceptions. This is because the maximum number
of subsets that can be built out of a set of n elements is 2n. (Put differently, the so-
called powerset of X consists of 2jX j subsets of X .)

It is nevertheless interesting to reflect on circumstances under which one the two
algorithm may be better than the other, for there appear to be trade-offs to be made
between the two of them.

Algorithm 6.3.1 recognises the need to insert the node Ci \ X (as well as other
new child nodes of this inserted node) at some stage, and does the work needed
to install these nodes on the spot, as it were. This seems like an efficient action to
take, provided that one does not have to search too frequently and too deeply for the
parent of Ci \ X in subsequent recursive calls. In other words, if jCi \ X j is fairly
large—i.e., if we may reasonably anticipate that the parent of Ci \X is high up in the
cover graph—then Algorithm 6.3.1 may have some advantage over Algorithm 6.4.3.
On the other hand, the latter algorithm avoids the accumulation of potential children
of X in C that may turn out subsequently to have been unnecessary. It would require
an empirical study over many different kinds of data sets to establish whether these
theoretical considerations play a significant role in actual performance.

2Of course, we assume that jX j < 1. However, the algorithm specifications above are not
inherently limited to dealing with finite sets. They could, in principle, be implemented on a
computer that had some way of representing infinitely large sets and which could carry out the
required set operations (intersection, membership, union) on those infinite sets.

222 6 Case Study: Lattice Cover Graph Construction

From a theoretical perspective, one could perhaps argue that Algorithm 6.3.1
is more elegant in that it seamlessly wraps the search for a parent of X into the
same overall structure of the algorithm, whereas Algorithm 6.4.3 requires a call to
getP . Again, there is a counter-argument to this, namely that the latter separates the
concerns of finding a parent of X and of inserting X into L—a well-established and
sound software engineering principle.

There are several additional refactorings that could marginally affect the overall
performance of this algorithm. For example, one could improve on the efficiency of
getMax by noting that whenever Ci � X holds, we have found a definite child of
X . Only the sets .Ci \ X/ that are placed in C in the second guard may turn out to
be subsets of the actual children of X , instead of being actual children of X once all
the information has been collected. Arrangements can be made to account for this
by collecting definite children of X separately from potential children of X . The
subsequent establishment of actual children could then, in some cases, be speeded
up. Again, such a refactoring will not affect the algorithm’s worst case performance.

6.5 A Gentle Introduction to Formal Concept Analysis

Under what circumstances, one might ask, would one want to construct a SICL?
It turns out that SICL-construction lies at the heart of a field of study called FCA
[19]. FCA relies on graphs that represent so-called concept lattices [8, 19, 48] (also
referred to as Galois lattices or formal concept lattices) to provide a rich source of
information about the inter-relationship between a set of objects under study that
share certain discrete attributes. These concept lattices provide a framework for
representing, discovering, inferring and managing knowledge in various domains,
including linguistics [35], social network analysis [17, 36], ontology building [38]
and information retrieval [9]. Concept lattices also play a role in some machine
learning methods [29] and data mining techniques [40]. Another area of application
is software construction and engineering. (See, for example, [3,12,21,24,30,37] and
a survey in [39]). A comprehensive introduction to concept lattices and, especially,
its applications in computer science is provided in [8]. Below we give a gentle
introduction to the topic.

Essentially, a concept lattice is built from a set, M , of attributes, subsets of which
characterize each element in a set, G, of objects. Each node in a concept lattice is
characterized by two sets .A; B/ where A � G and B � M . The pair may only
appear in the concept lattice if A consists of all objects that possess all the attributes
in B . Additionally it has to be the case that B is maximal, meaning that there are
not any additional attributes shared by A that are not included in B .

Such a pair .A; B/ is then called a concept.
Note carefully that a concept has to have the largest sets possible for the given

context. By this we mean the following. Suppose that you pick a set of objects,
say A, and discover that these objects have attributes in B in common. This does
not yet entitle you to conclude that .A; B/ is concept. You first have to establish that,

6.5 A Gentle Introduction to Formal Concept Analysis 223

in the context under consideration, no other object also possess the attributes B . You
also have to establish that the objects in A do not possess some other attributes in
common that are not in B . Only if these conditions hold can you conclude that
.A; B/ is a concept.

As our running example, consider the cross-table at the top of Fig. 6.4. Such a
table is called a context. The particular context displayed in the figure is one of the
classical examples used in FCA, and is known as the Living Context. Its ten columns
consist of “attributes” (chosen to be of interest for a particular purposes) of living
things and its rows enumerate nine living “objects” that are to be studied. An “X”
in a given cell indicates that the particular object possesses the associated attribute.
Thus M D f Needs water, Lives in water, . . . , Suckles youngg and G D f Leech,
Bream, . . . , Maizeg. Cells indicate attributes that characterise the various objects.
An example of a concept is the set of all objects that need water, live on land, need
chlorophyll and have 1-leaf germination, i.e., the concept (fReed,Maizeg, fNeeds
water, Lives on land, Needs chlorophyll, 1-leaf germinationg). Note that the objects
and attributes are tightly coupled: if you leave out one attribute, you inadequately
describe what maize and reeds have in common, and if you add “Lives in water”
as an attribute to describe the concept of a reed, then you are no longer describing
the concept that includes maize. Likewise, if you leave out one of the objects, you
no longer describe the objects that share those particular attributes. Neither may
you add “bean” to the set of objects, because then you no longer limit the concept
description to 1-lead germinating objects.

The concept .A; B/ is said to have an extent of A and an intent of B . Now it
turns out that if you determine all concepts in a given context, and then consider the
extents of these concepts, they will form a closure system on G. This claim might
not be self-evident, but can be strictly proven. Similarly, it can also be proven that
the intents of all concepts constitute a closure system on M . Thus, if two subsets of
G (or M), say A and A0, are the extents (respectively, intents) of nodes in a concept
lattice, then A \ A0 will also be the extent (intent) of some node in the lattice.

From the information given above, we could imagine drawing two different cover
graphs for the two different SICLs for these two closure systems—one for the set of
set intersection-closed object sets, and one for the set intersection-closed attribute
sets. Nodes in each set could be labelled by the associated concepts. Note that in
each case, we will have all the concepts in the cover graph, ordered differently from
top to bottom. In the one case, nodes with the largest extents will be at the top, and
in the other case, nodes with the largest intents. However, it is a remarkable fact that
if you flip one of the cover graphs over so that its smallest nodes are on top (e.g.,
the cover graph for the attributes), then the nodes in the two graphs will match one
another on an exact pair-wise basis! Each such pair matching gives the extent and
intent for a concept. In effect, we only need the one cover graph to get the other.

The set of concepts drawn up from a context can therefore be regarded as forming
a lattice—a so-called concept lattice—which embodies two SICLs. To set up a
concept lattice and its associated cover graph, we could use the algorithm discussed
in this chapter (or any one of several others), making slight adaptations for keeping
track of each node’s extent (if a SICL based on intents is constructed), or of each

224 6 Case Study: Lattice Cover Graph Construction

Lives-in-Water

Needs Chlorophyl Needs-water
Lives-onLand Is motile

Has limbs

Suckles young

1-Leaf Germination

2-Leaf Germination

Spike-Weed Maize
Reed Bean Frog

Bream Dog
Leeach

Needs
water

Lives
in water

Lives
on land

Needs
chlorophyl

1 leaf
germinate

2 leaf
germinate

Is
motile

Has
limbs

Suckles
young

Leech

Bream

Frog

Dog

Spike-weed

Reed

Bean

Maize

X X X

X X X X

X X X X X

X X X X X

X X X X

X X X X X

X X X X

X X X X

Fig. 6.4 Living context and cover graph

node’s intent (if a SICL based on extents is constructed). The resulting cover graph
would be the same. However, we would not know which way the arcs should point
in such a cover graph, because we have not yet specified an ordering on concepts.
When is one concept smaller than another?

By FCA convention, concepts are assumed to be ordered by set-containment of
their intents—the smaller the extent, the smaller the concept. Thus, for concepts
.A; B/ and .C; D/, we have .A; B/ � .C; D/ iff A � C . (It can easily be shown
that, alternatively, .A; B/ � .C; D/ iff D � B .) The relation � is defined as above.

Thus the largest concept is the one with the most attributes in its intent, and
the least objects (possibly none) in its extent. The smallest concept is the one with
the least attributes in its intent (possible none) and the most objects in its extent.
Somewhat perversely, however, it has become an FCA convention to draw and
depict concept lattices with the smallest node on the top, and the largest node at
the bottom of the drawing—the exact opposite to the SICLE drawing in Fig. 6.1
previous given. The cover graph for the living context’s concept lattice is drawn in
Fig. 6.4 according to this counter-intuitive convention. This concept lattice was set
up using the open source tool known as Concept Explorer.3

3Note: Concept Explorer’s author has requested that users cite his Russian text, [49].

6.5 A Gentle Introduction to Formal Concept Analysis 225

Certain nodes are tagged by attribute or object labels. To infer the concept
represented by a given node, one can infer the extent by collecting together all the
object labels that can be found by tracing paths radiating out from the node in a
downward direction. Similarly, the intent can be found by collecting all the attribute
labels encountered on paths moving from the node in an upward direction. Thus
the top and bottom concepts of the lattice (counter-intuitively placed in the reverse
direction in the diagram) are as follows:

> D .∅; fNeeds water, Lives in water, . . . , Suckles youngg)
? D . fLeech, Bream, . . . , Maizeg, fNeeds waterg)

In all, there are nineteen concepts in the cover graph. The reader may find, as an
exercise, the node representing the concept (fFrog, Reedg, fNeeds water, Lives in
water, Lives on landg).

To construct a concept lattice and cover graph from a given context using
Algorithm 6.3.1 or 6.4.3, initialise the graph structure with a single node, M ,
which forms the top node of a singleton lattice, and remains the top node in all
subsequently generated lattices. The construction then proceeds by successively
calling the algorithm for every object from G, where the set to be inserted into
the lattice corresponds to the set of attributes that characterize the particular object,
and the lattice generated by each call is used as the starting lattice for the next call.
Although our algorithms generate only concept intents, they can be easily adapted
to generate extent–intent pairs, i.e., concepts.

For several decades, a variety of algorithms for constructing concept lattices
have been proposed, e.g., [20, 34, 41]. See [28] for a review and comparison. To
date, the algorithm reported in [34] appears to have the best theoretical worst-case
complexity estimate, namely O.jLj.jGj C jM j/jGj/, where jLj is the number of
concepts in the resulting lattice. Note that this is the complexity of constructing
the lattice from scratch rather than updating an existing lattice by inserting a new
object. In [26] an upper bound worst case complexity of O.jGj3jM jjLj/ is derived
for Algorithm 6.4.3 in the general case. However, in the case of very dense lattices,
a worst case upper bound estimate of O.jGj2jM jjLj/ was derived.

In [42] empirical experiments were undertaken to compare the performance
of several of the most efficient (according to [28]) and/or most popular lattice
construction algorithms: Norris [33], Ganter (a.k.a. NextClosure) [18], a version
of Bordat [6] from [28], Godin [20] and Nourine [34].4

It was found that an algorithm called AddIntent in [41] in the form very close
to Algorithm 6.4.3) generally outperformed the others, except for two scenarios
where it was ranked second. Most experiments were based on randomly generated
data, or on constructing Boolean lattices of various sizes (i.e., maximally large
lattices for various attribute set sizes). However, when four real-world data-sets
taken from the UCI repository [5] were used, AddIntent dramatically outperformed

4Algorithms were implemented in C++ on the same codesbase. Tests were performed on a
PentiumTM 4–2 GHz computer with 1 Gigabyte RAM running under Windows XPTM.

226 6 Case Study: Lattice Cover Graph Construction

Fig. 6.5 Performance of AddIntent and other algorithms using empirical data (Based on data
from [42])

the other algorithms as seen in Fig. 6.5. SPECT (Single Proton Emission Computed
Tomography) is a real data set that contains 267 objects and 23 attributes, generating
a lattice with 21,550 concepts. The remaining datasets (Breast Cancer Wisconsin
Breast Cancer, and Solar Flare databases) are given in the form of many-valued
tables and the QuDA program [22] was used to transform vector representations of
objects in these data sets into attribute sets.

Chapter 7
Case Study 2: Classifying MADFA Construction
Algorithms

The previous chapter illustrated the potency of software correctness by construction
for developing a new and elegant algorithm. In this chapter we focus on classifying
and taxonomising algorithmic problems by relying on correctness by construction
thinking.

Systematic classification and taxonomisation is somewhat underdeveloped in
computer science. One can see this, for example, in text books on data structures and
algorithms. Quite sensibly, algorithms that address a common problem domain—for
example, sorting—will be grouped in the same chapter. However, the presentation
of the material seldom reflects, in any fundamental sense, the underlying common-
alities and differences between the algorithms.

As will be illustrated, software correctness by construction methods can be
a significant aid in articulating the commonalities and differences between algo-
rithms. In our experience, the advantages are not merely pedagogic in nature. The
taxonomising effort may well expose gaps in the taxonomic structure of related
algorithms, thus suggesting avenues of potential research.

In this chapter, we illustrate how to classify a subset of algorithms that mini-
mize acyclic deterministic finite automata. A comprehensive loop-invariant-based
taxonomisation of such algorithms is given in [43]. That taxonomy resulted in the
invention of a number of algorithms that were previously unknown. Clearly it is
beyond the scope of the present text to attempt anything more than a brief illustration
of the general idea. Nevertheless, in order to do that, we need to introduce relevant
concepts related to finite automata.

7.1 Introduction

In the world of software, there is a vast number of applications to handle, recognize,
search for and otherwise manipulate sequences of characters from some alphabet.
Some that immediately come to mind are: compilation, word processing, text
searching, natural language translation and many more.

D.G. Kourie and B.W. Watson, The Correctness-by-Construction Approach
to Programming, DOI 10.1007/978-3-642-27919-5 7,
© Springer-Verlag Berlin Heidelberg 2012

227

228 7 Case Study 2: Classifying MADFA Construction Algorithms

In each of these cases, elements of an alphabet—i.e. elements of some set
of entities—are arranged in sequences (or strings). At the core of most of these
problems is the notion that a “language” consists of a (possibly infinite) set of
permissable strings. Here the term “language” is used in a technical and generic
sense. In some contexts, it could mean a natural language such as English. In this
case, the language is defined to be the set of strings that constitute legitimate English
sentences. In another context, the language could designate some programming
language, say Java. Again, in this case, the Java language is defined by the set of
all strings that constitute syntactically correct Java programs. In yet other cases, the
language could be taken to mean the set of all legitimate keywords in a programming
language (which is different from the set of all syntactically correct programs in
that language); or the set of words in a natural language (which is different from
the set of all sentences in the language); or the set of possible strings of nucleotides
(molecules that occur in DNA, normally designated by the letters A, C, G and T) in
a genomic sequence that have some specific property, etc.

There are many challenges in processing strings in such languages, principally
centered on identifying whether or not a string is an element of a given language.
Since it is generally impractical explicitly to store all legitimate strings of the
language, one of the problems is that of representing the language in some way.
Language theorists have developed various formalisms for doing this, the most
common being the use of so-called production rules. Chomsky classified languages
into a four level hierarchy, based on the kinds of production rules that may be used
to describe a language. Going from the most complex to the most simple, the classes
of languages are called, respectively: recursively enumerable, context sensitive,
context free and regular (or right linear). A natural language such as English is an
example of a context sensitive language. Programming languages (Java, CCC, etc.)
are context free. These matters are well documented, and the interested reader can
refer to any number of text books for further information.

This chapter is all about a subset of regular languages—i.e., a subset of those
languages that can be recognised by acyclic deterministic finite automata. The
need for processing such regular languages arises in a large number of contexts:
network intrusion detection systems, pattern matching, predictive text editing, spell
checking, lexical analysis in compiling, DNA analysis, etc. In this chapter, we will
not focus so much on how to recognise whether a given string is an element of
a such regular language. Instead, we will focus on strategies for building minimal
data structures for representing such regular languages.

7.2 From DFAs to MADFAs

7.2.1 Deterministic Finite Automata—DFAs

With each regular language is associated a formalism called a deterministic finite
automaton (DFA). Such an automaton is an abstract computational device that is

7.2 From DFAs to MADFAs 229

considered to be in some state at any given point in its computation. Formally, a
DFA can be defined as follows:

Definition 7.2.1 (Deterministic Finite Automaton). A DFA is a five-tuple
.Q; ˙; ı; F; s/ where:

Q is a finite set of states;
˙ is a finite set of symbols called the alphabet;
ı W Q �˙ ¹ Q is a transition function that maps a state and an alphabet symbol
to a state;
F � Q is a set of so-called final states; and
s 2 Q is the start state.

The DFA is thus initially considered to be in state s. It “processes” symbols from
the alphabet, by transiting to a new state when presented with a symbol. This new
state is determined by the transition function, ı, which maps the current state and
symbol to the next state.

Note that the ¹ used in the signature of the function ı in the above definition is
conventionally used to indicate that ı is a possibly partial function. We therefore do
not assume that the function ı is defined for every state / alphabet symbol pair.1 If a
state/symbol pair, .q; a/, is undefined for ı, this will be denoted this by ı.q; a/ D ?.

Every automata may be depicted as a transition graph. In such a graph, states are
depicted as circles, start states have an in-edge from nowhere and final states are
represented by two concentric circles. Transitions are depicted as labeled directed
edges. Figure 7.1 gives an example of a transition graph.

The graph represents the DFA, M , in which

M D .Q; ˙; ı; F; s/

Q D f0; 1; 2; 3g;
˙ D fa;bg;
ı D fh.0;a/; 1i; h.0;b/; 2ih.1;b/; 3i; h.2;a/; 3ig;

F D f3g;
s D 0

0

1
a

2

b 3

b

a

Fig. 7.1 Transition graph
example

1In many texts, ı is assumed to be a total function. That means that instead of ı being undefined
for certain state/alphabet pairs, the automaton is assumed to transit to a special “sink” state when
encountering such state/alphabet pairs.

230 7 Case Study 2: Classifying MADFA Construction Algorithms

L.M / D fab;bag (L.M / denotes the language of M—see later)

jM j D 4 (jM j denotes the size of M—see later)

Here, we have followed the convention of representing the function ı as a set of pairs,
the first element of each pair being from the domain, and the second element being
from the range. Thus, for example, ı.0;a/ D 1 can be represented as h.0;a/; 1i, etc.
Because ı is a function, there can only be one out-transition of a node in a transition
graph labelled by a given symbol. If, for example, Fig. 7.1 had a transition from
state 0 to state 1 labelled a, and another from state 0 to state 2, also labelled a, this
would mean that ı.0; a/ maps to two states—which is not possible for a function.

As an example of where ? is used, note that since there is no out transition from
state 2 on symbol b, this means that ı.2;b/ D ?.

7.2.2 Acyclic Deterministic Finite Automata—ADFAs

In this text we are concerned a with very specific type of DFA: the subset of DFAs
whose transition graphs do not have cycles. The transition graph in Fig. 7.1 is just
such an example. DFAs associated with such transition graphs are called acyclic
DFAs (abbreviated to ADFAs). Henceforth, all discussion should be assumed to
be in reference to ADFAs. However, some of the properties also apply to DFAs
in general. Readers interested in additional information about DFAs and related
matters (such as non-deterministic finite automata) should refer to other standard
sources.

ADFAs are of great practical importance because they can be used to represent
languages whose elements (also referred to as words) are finite in length.

Given a transition graph of some ADFA, it is typically used to check whether
a given string from the alphabet is in fact a word represented within the graph. To
discuss this further, we introduce some notation that will be used in the rest of the
chapter.

Let ˙� be the Kleene closure of ˙—i.e., the set of all possible strings that can
be formed from the alphabet ˙ , including the empty string, normally designated
by �. In addition ˙C D ˙� n f�g.

Let a 2 ˙ and v 2 ˙�. Then av denotes a string in ˙C. We assume throughout
the following functions:

head W ˙C ! ˙ such that head(av) D a;

tail W ˙C ! ˙� such that tail(av) D v:

Consider a finite string x 2 ˙� and some ADFA, M D .Q; ˙; ı; F; s/. Broadly
speaking, to determine whether M accepts x we need to do the following:

7.2 From DFAs to MADFAs 231

Find the state, say q1, that is returned by ı.head.x/; s/. Then find the state, say q2, that
is returned by ı.head.tail.x//; q1/. Continue in this way until the entire string has been
processed. If the resulting state, say qn 2 F then we say that M has accepted x; otherwise
x has been rejected by M . Of course, if x D � then it is accepted by M if and only if the
start state, s 2 F .

Algorithm 7.2.2 indicates how to determine algorithmically whether or not a
string x 2 ˙� is accepted or rejected by M .

Algorithm 7.2.2.
f .x 2 ˙�/ ^ .jxj < 1/ g
t; q WD x; s0I
f inv , t is untested and the current state is q g
do ..t ¤ �/ cand .ı.head.t/; q/ ¤ ?// !

q; t WD ı.head.t/; q/; tail.t/
od
finv ^ ..t D �/ cor .ı.head.t/; q/ D ?//g
if ..t D �/ ^ .q 2 F // ! accept x

Œ� ..t D �/ ^ .q … F // ! reject x

Œ� .t ¤ �/ ! reject x

fi

L.M / is used to denote the set of all words accepted by ADFA M . It is called the
language of M . Algorithm 7.2.2 can be used to check—positively or negatively—
whether an arbitrary word of finite length is in L.M /. In this sense, the algorithm
defines L.M /.2

However, Algorithm 7.2.2 assumes that the relevant transition graph is available.
In practice, one often starts off, not with a transition graph representing L.M /, but
just with L.M / itself—for example, with a list of words in a dictionary. The first
challenge is efficiently (in space and time) to construct the transition graph that
represents all these words.

7.2.3 Minimum Acyclic Deterministic Finite
Automata—MADFAs

As shall be seen, there are many ways in which this can be done. Indeed, in general
many ADFAs (and thus also many transition graphs) may have the same language.
Such ADFAs will typically have differently defined ı’s and/or Q’s and/or F ’s. Each
such automaton, M , can be assigned a size, denoted by jM j, that corresponds to its

2Note as an aside that this claim cannot be extended to DFAs in general (i.e., to DFAs that are not
ADFAs) since the algorithm cannot affirm whether a word of infinite length (represented in a finite
way) is part of a given DFA’s language.

232 7 Case Study 2: Classifying MADFA Construction Algorithms

number of states, jQj. (Other notions of size are possible, for example, involving
the total number of transitions. We do not consider them here.)

Now it turns out that, associated with each regular language L whose elements
consist of finite length words, there is a unique smallest ADFA.3 If M is an
ADFA, we shall use the predicate MIN.M / to assert that it is the smallest ADFA
recognising the language L.M /.

Determining this minimum ADFA (henceforth abbreviated to MADFA)—or
even an approximation of it—is a vital task in large-scale applications of automata
theory. This is because construction of an ADFA from a set of words without giving
attention on the ADFA’s size tends to result in a state-space explosion. In practice,
minimisation could reduce an ADFA’s size by a factor of 10 or more, in some cases
making the difference between determining whether or not an application will be
feasible on a given hardware platform.4

Because of the practical importance of the task, the last couple of decades have
seen a variety of algorithms being proposed for deriving a MADFA from a given
set of finite words. Although authors of new algorithms typically cite and perhaps
briefly explain existing algorithms, the presentation, style of explanation, notation
differs considerably from one another. It therefore becomes increasingly difficult to
gain an overall understanding of how the set of algorithmic solutions inter-relate,
and to identify potential gaps that could be exploited by further research.

Experience with several problem domains has shown that a methodical correct-
ness by construction derivation of each relevant algorithm can be a potent means
of finding and articulating the intrinsic differences and similarities between a set
of related algorithms. This was recently done in [43] with respect to the MADFA
construction algorithms. Interested readers can read the source document for full
details. Here we intend giving a brief overview of what the approach entails, but in
order to do this, some additional MADFA-related concepts need to be explained.

7.2.4 Concepts for MADFA Construction Algorithms

The concepts presented in this subsection are needed to illustrate the elegant
classification of MADFA construction algorithms that is provided in [43]. Because
we will not be examining the details of each and every algorithm in this present text,
we can conveniently skip over several of the additional definitions and concepts
presented in [43]. However, the reader should be aware that the articulation of
such concepts constitutes a significant part of the intellectual effort required to

3Up to isomorphism. Note: This claim is also true for regular languages and DFAs in general.
4At the 2009 annual FSMNLP workshop, a speaker from Google demonstrated the company’s
prototype voice recognition system that was based on DFA technology where a minimisation
algorithm had been used to reduce the initially derived DFA of size about 10 million, down to
about 3 million.

7.2 From DFAs to MADFAs 233

achieve a fundamental and elegant taxonomisation. Part of the effort may involve a
restatement of widely known concepts. Another part may be to articulate predicates
implicitly relied upon by other authors, but not explicitly stated. In general,
the challenge should not be underestimated of providing a unified notation and
vocabulary at an appropriate level of formality. The effort is well worth it, since
the rewards will be seen in terms of elegance that facilitates pedagogic and research
objectives.

For notational convenience, we will assume throughout that we are referencing
an ADFA, M D .Q; ˙; ı; F; s/. In terms of this assumption, we will take the liberty
of not including M as a parameter of a predicate or function. We will assume that
the various symbols associated with M are globally known and we will freely use
them and reference them. In addition, if we refer to state p, for example, then we are
assuming that p 2 Q. Similar remarks apply to start state references, references to
ı, etc. On the other hand, whenever relevant we will allow ourselves the freedom to
include M as a parameter of a predicate or function. For example, we have already
noted that L.M / represents the language of M , and that MIN.M / asserts that M is
a MADFA. Henceforth we will generally simply write L to represent this language,
and simply write MIN to assert that M is a MADFA.

Under this assumption, we start with following definitions, leading to the
definition of a trie.

Definition 7.2.3 (Confluence state). A state p is a confluence state, written
Is Confl.p/, iff it has more than one in-transition in the transition graph of M .

Definition 7.2.4 (Confluence-free set of states). A set of states X is confluence-
free, written Confl free.X/, iff 8p W X � .:Is Confl.p//

Definition 7.2.5 (Trie). M is a trie, written Is Trie, iff its transition graph is a tree
rooted at start state s.

For our purposes we shall assume that the start state s of an ADFA is never
a confluence state. A trie is therefore an ADFA without any confluence states
whatsoever. Note that all leaves of a trie are final states. The ADFA associated with
the transition graph in Fig. 7.1 is not a trie: the graph is not a tree, and Is Confl.3/

is true. On the other hand, the ADFA of the transition graph in Fig. 7.2 is indeed a
trie—it is a tree whose leaves are final states, and there are no confluence states.

Notation 7.2.6. For a state p, ˙p denotes the subset of ˙ on which p has out-
transitions. That is, ˙p D faja 2 ˙ ^ ı.p; a/ ¤ ?g.

Thus, in reference to Fig. 7.2, ˙0 D fhg; ˙1 D fa;eg; ˙2 D fd;rg; ˙3 D ∅, etc.

Definition 7.2.7 (Extending ı). We extend ı to the function ı� W Q � ˙� ¹ Q

where

ı�.p; w/ D
8
<

:

p if w D �

ı�.ı.p; a/; v/ if .w D av/ ^ .v 2 ˙�/ ^ .a 2 ˙p/

? otherwise
:

234 7 Case Study 2: Classifying MADFA Construction Algorithms

0 1
h

2
a

6

e

3

d

4r 5d

7
a

11

r

8
d

9

r

10
d

12
d

13

e

Fig. 7.2 Trie example

Again, taking a few examples from Fig. 7.2: ı�.0; �/ D 0; ı�.0;h/ D 1;

ı�.0;hea/ D 7; ı�.6;ard/ D 10; ı�.6;ab/ D ?, etc. Thus, ı�.p; w/ returns
the state in which we land (if any) if we recursively apply ı to the members of the
string w, starting from state p.

Definition 7.2.8 (Right language of a state). The right language of a state p,
denoted L.p/, is defined by L.p/ D fwjı�.p; w/ 2 F g.

In words, L.p/ is the set of strings associated with all the paths from state p to any
final state. For example, in Fig. 7.2, L.6/ D f�;ad;ard;rd;reg. The example
shows that if p 2 F , (which is true of state 6 in the figure) then � 2 L.p/. On the
other hand, if p D s, the start state of ADFA M , then clearly L.s/ D L.M /.

Definition 7.2.9 (The w-path from state p). For state p and w 2 ˙�; Œp
wÝ� is

the sequence of states p; : : : ; ı�.p; v/ where v is the longest prefix of w such that
ı�.p; v/ ¤ ?.

Here are a few examples from Fig. 7.2 of w-paths from various states:

Œ0
hadÝ� D h0:1:2:3i

Œ0
haÝ� D h0:1:2i

Œ0
hatÝ� D h0:1:2i

7.2 From DFAs to MADFAs 235

Œ6
ereÝ� D h6i

Œ6
reÝ� D h6:11:13i

In some contexts, we may pass a path argument Œp
wÝ� to a predicate or function

which expects a set argument, thereby implicitly treating the path as a set of states.
We also need to denote the set of states that are on paths leading out from some

other set of states.

Notation 7.2.10 (Successors of states in X). If X � Q then Succ�.X/ denotes
the set:

fp 2 Q j 9q; w W .q 2 X ^ w 2 ˙�/ � ı�.q; w/ D pg:
For example, the successor states of all final nodes in the ADFA in Fig. 7.2 is

given by Succ�.F / D f3; 5; 6; 7; 8; 9; 10; 11; 12; 13g. Note that state 6 is included
in the set, because ı.6; �/ D 6.

Note that in a trie, there is only one path from the start state, s to any other state.
This is clearly visible in the example trie of Fig. 7.2. However, in general there
may be more than one path from the start state to another state in an ADFA. For
example, in Fig. 7.1 there are two paths from state 0 to state 3. This means that we
cannot characterise a state p by distance from the start state. Instead, we have to
talk about the minimum path length from the start state. This leads to the following
notation and definition.

Notation 7.2.11 (Minimum path length). Let minpath.p/ denote the minimum
path length over all paths from the start state of ADFA M to state p.

This allows us to define the notion of depth in an ADFA

Definition 7.2.12 (Depth levels). In ADFA M , for each k 2 N we denote the set
of states at depth level k by DLk , defined as follows:

DLk D fp j .p 2 Q/ ^ .minpath.p/ D k/g:

The depth levels form a partition of Q, i.e., on the assumption that the depth level
of states are in the range Œ0; n/, we have that Q D DL0 [DL1 [� � � DLn�1 and
8i; j W Œ0; n/ � .i ¤ j) DLi \ DLj D ∅/. We also allow range specification
as part of our depth level notation. For example, DL�k refers to the set of states
DLk [� � � DLn�1, and DL<k refers to the set of states DL0 [� � � DLk�1.

Notation 7.2.13 (Shortest word length of an ADFA). Function minlen.M / (or
simply minlen) is the length of the shortest word accepted by M .

Clearly, minlen is the depth of a final state closest (in terms of path-length) to start
state s.

236 7 Case Study 2: Classifying MADFA Construction Algorithms

In principle, words in L can be ordered in many ways: by length, by number
of vowels, by the number of zeros in their ascii representation, etc. One specific
ordering will be designated the lexicographic ordering. In a natural language
context, this would typically be the alphabetically-based lexicographic ordering
used in dictionaries. At least one of the words in L will be the lexicographically
greatest word.

Notation 7.2.14 (Lexicographically greatest word). Let lexmax denote the lexi-
cographically greatest word in L.

It is worth emphasising that in the discussion to follow, a set of words W will be
provided as input for various algorithms to be considered. M will change over time
as the algorithm under discussion runs along. Any reference to lexmax in such a
context should be construed to be in reference to the language L.M /, as determined
by the description of M at that stage of the algorithm—i.e., lexmax is not the
lexicographically greatest word in the set of words W that is provided at input.

In order to minimize an automaton, one has to identify all so-called equivalent
states, and merge them. The notion of state equivalence is neatly defined as follows:

Definition 7.2.15 (State equivalence). Define E as an equivalence relation on
states where

E.p; q/ � .L.p/ D L.q//:

In other words, states p and q are equivalent if and only if they have the same right-
languages. Equivalent states p and q can be merged. This entails selecting one of
them, say p, redirecting all inbound transitions that go into q into p instead, and
removing q from the set of states. The result will be a smaller automaton but with L
the same as before. We assume that procedure merge is available to do this.

Once all equivalent states have been merged, the resulting ADFA will in fact be
a MADFA, i.e., MIN will hold.

It is handy to have notation for expressing the pairwise inequivalence of elements
within a given set of states.

Definition 7.2.16 (Pairwise inequivalent states). Let Inequiv.X/ be a predicate
asserting that no pair of states in the set of states, X, is equivalent, i.e.,

Inequiv.X/ � 8p; q W X � ..p ¤ q/) :E.p; q//:

Using this notation, the key characteristic of a MADFA—that no pair of its states
are equivalent—can now be expressed symbolically:

MIN � Inequiv.Q/:

It is also handy to be able to assert that the elements between two states are
pairwise inequivalent.

Definition 7.2.17 (Pairwise inequivalent sets of states). Assuming X and Y are
two sets of states, let Pairwise inequiv.X; Y / be a predicate asserting that no pairing

7.3 An Abstract MADFA Construction Algorithm 237

of a state in X and a state in Y is equivalent, i.e.,

Pairwise inequiv.X; Y / � 8.p; q/ W .X � Y / � :E.p; q/:

It will be seen that the following equivalence relationship between the two foregoing
definitions serves as an important basis for classifying some of the minimising
strategies used in various algorithms.

Property 7.2.18.

Inequiv.X [Y / � Inequiv.X/ ^ Inequiv.Y / ^ Pairwise inequiv.X; Y /

Equipped with the foregoing notation and concept definitions we are now in
a position to provide a basis for systematically classifying MADFA construction
algorithms.

7.3 An Abstract MADFA Construction Algorithm

The task of constructing a MADFA can be specified as follows:

Q; ı; F W ŒW � ˙�; Min ^ L D W �:

It is assumed that M D .Q; ˙; ı; s; F / starts off with known and fixed ˙ . This
specification is then refined to a general algorithm skeleton for constructing a
MADFA from a set of words. We skip the detailed refinement steps because they
are fairly obvious, and will distract from the main theme at hand.

An abstract type, State, is assumed that characterises the elements of Q.
A function, create(), is also assumed that creates and returns a new object of type
State. The function is used to create the start state, s. The remaining components
of M (namely Q, ı and F) are then minimally initialised. The algorithm thereafter
adds the words from W one-by-one to L, ensuring that at each step, Q, ı and F are
changed appropriately.

In some cases, the order in which the words are added is important—and so we
assume some partial order � on the words. In the remaining cases, � should be
regarded as degenerate in the sense that it renders all words incommensurate—i.e.,
for no two words, say w and v is it the case that w � v or v � w. In these cases
words are selected in any order.

In the skeleton algorithm, a number of matters will be left in abstract form.
In subsequent discussions we will show how particular instantiations of these
abstractions lead to different algorithmic solutions to the general problem of
deriving a MADFA from a set of words. The following lists the abstractions at
issue:

238 7 Case Study 2: Classifying MADFA Construction Algorithms

1. A structural invariant, Struct.D/ (for the set of words D already processed), is
maintained on the ADFA; that is, Struct.D/ holds both before and after a word
w is added to the ADFA. Subsequent instantiations of this abstract invariant are:
the ADFA has a trie structure, the ADFA is minimal, etc.

2. The body of a procedure, add word, to add individual words is not given in the
skeleton algorithm.

3. The nature of the partial order � on the words is not specified in the skeleton
algorithm.

4. A cleanup procedure, cleanup, is applied to the ADFA after the words have been
added, yielding the desired MADFA. However, its body is not specified.

All of these are, in some sense, meta-parameters of the skeleton algorithm, and are
instantiated in various ways by existing (in some cases, recently invented) concrete
algorithms.

With some of the add word procedures, the intermediate automaton derived
after adding all the words in W may not yet be minimal. Consequently, a cleanup
procedure is specified to transform the ADFA into a MADFA. For this reason, in the
body of the algorithm, M is assumed to be an ADFA, but not necessarily a MADFA.

The algorithm partitions W � ˙� into D (for “Done”) and T (for “To-do”). The
boundary of this partition is constantly shifted. It is also assumed that word set W

and ADFA M are global variables:

Algorithm 7.3.1.
jŒ var D; T W set of ˙�
j f W � ˙� g

s WD create. /I
.Q; ı; s; F / WD .fsg;∅; s;∅/I
D; T WD ∅; W I
f invariant WStruct.D/

variant WjT j g
do T ¤ ∅ ! jŒ var w W ˙�

j let w W w is any minimal element of T under �I
f Struct.D/ g

Q; ı; F W add word.w/I
f Struct.D [fwg/ g

D; T WD D [fwg; T � fwg
f Struct.D/ g

�j
odI
f Struct.W / g

Q; ı; F W cleanup. /

f Min ^ L D W g
�j

Known MADFA construction algorithm can be derived by refining specific
versions of add word and cleanup, based on specific instantiations of Struct.D/

and �. The general process is outlined in the following subsections.

7.3 An Abstract MADFA Construction Algorithm 239

7.3.1 Structural Invariant Instantiations

The way in which the structural invariant, Struct.D/, is instantiated neatly exposes
various possible ways of constructing the MADFA. The following instantiations
lead to known (sometimes recently invented) MADFA algorithms:

1. StructT .D/ � Is Trie ^ L D D.
This leads to the trie-based algorithms which will be discussed in Sect. 7.4 on
page 242. These are characterised as non-incremental because they first build an
ADFA, then minimize afterwards—i.e., they do not incrementally minimize the
evolving ADFA.

2. StructN .D/ �L D D

This leads to non-incremental algorithms in which the evolving ADFA is not
constrained to be a trie. These algorithms are briefly discussed in Sect. 7.5 on
page 250. Note that StructT .D/ V StructN .D/.

3. StructI .D/ � Min ^ L D D

Here the invariant requires that every instantiation of M after a word has
been added to its language, L, results in a MADFA—the generated ADFA is
minimal. Thus, an implicit invariant requirement is that Inequiv.Q/ should hold.
However, because Min � Inequiv.Q/, including Inequiv.Q/ as a conjunct in
the invariant is superfluous. Again, note that StructI .D/ V StructN .D/. These
incrementally minimizing algorithms will not be discussed further in this text.
Readers seeking further details may refer to [43].

4. StructR.D/ � Is Trie ^ L D DR

The superscript R on the set D indicates that all elements of D are reversed.
Thus, in add word, an ADFA is built of words that are the reverse of the words
provided in W . The ADFA is built as a trie. The clean up operation then flips
around this trie (in effect, it changes the direction of the arrows in the transition
graph) and provides the resulting structure with a new start state. Although
the resulting transition graph’s acyclic nature is retained by this operation, it
will no longer represent a DFA (for technical reasons not discussed here). The
transition graph represents a so-called non-deterministic finite automaton (an
NFA). A known general algorithm is then used that converts NFAs to DFAs.
What renders this approach particularly elegant is that the outcome of this
known determinising algorithm, in this particular case, is not just a DFA, but
an ADFA. Even more elegant is the fact that this ADFA is already minimised—it
is a MADFA. The algorithm is related to Brzozowski’s minimization algorithm
[45, 47] and given in alternative forms in [44, 46]. We will not give it further
attention in this text.

5. StructS .D/ � Inequiv.Q � Œs
lexmaxÝ �/ ^ Confl free.Œs

lexmaxÝ �/ ^ LD D.
This leads to the algorithm by Daciuk, Mihov and others, in which words are
added in lexicographic order. We will provide a little more information about
this algorithm, as well as those compliant with the next two structural invariants
in Sect. 7.6 on page 255.

240 7 Case Study 2: Classifying MADFA Construction Algorithms

6. StructD.D/ � Inequiv .D>minlen/ ^ Confl free .DL�minlen/ ^ LD D.
This leads to a new algorithm where words are added in order of decreasing
length. The idea is briefly described in Sect. 7.6 on page 255.

7. StructW .D/ � Inequiv.Succ�.F // ^ Confl free.Q � Succ�.F // ^ L D D.
This leads an alternative algorithm for adding words in order of decreasing
length. It, too, is briefly described in Sect. 7.6 page 255.

Each of these structural invariants can be cast into the general form:

StructX.D/ � Inequiv.Y / ^ Confl free.Z/ ^ L D f .D/

where:

X is one of the seven structural variants (i.e., X 2 fT; N; I; R; S; D; W g);
Y and Z are subsets of Q; and
f .D/ D DR when X D R and f .D/ D D otherwise.

The matter is summarised in Table 7.1. Clearly in degenerate cases where Y D ∅

then Inequiv.Y / D true and when Z D ∅ then Confl free.Z/ D true. Moreover,
because Is trie � Confl free.Q/ (per definition of a trie), the table contains Q in
the column for confluence-free states wherever the original invariant had a conjunct
Is trie.

The table shows that in all but one case (the case in the second row of the
table), Q, Z and Y are related by the equation Y D Q � Z. In other words, in
six of the seven cases, add word conforms to a generic invariant that requires a
subset of the states to be held inequivalent, while the rest of the states are rendered
confluence free.

Rows 1 and 4 (i.e., where X 2 fT; Rg) are associated with add word variants
which ensure a trie at each iteration without paying any attention minimization
opportunities. In these cases clean up does the minimization afterwards. Row 3
is associated with an add word variant that ignores the matter of confluence-free
states entirely, focussing on retaining a minimized structure throughout. In this case,
clean up is not required. Row 2 represents a “degenerate” case, which also ignores
the matter of confluence-free states entirely.

Table 7.1 Invariant summary: StructX .D/ � I nequiv.Y / ^ Confl free.Z/ ^ L D f .D/

X Y : Inequivalent states Z: Confluence-free states Y f .D/

1 T ∅ Q .Q � Z/ D

2 N ∅ ∅ ∅ D

3 I Q ∅ .Q � Z/ D

4 R ∅ Q .Q � Z/ DR

5 S Q � Œs
lexmaxÝ � Œs

lexmaxÝ � .Q � Z/ D

6 D DL>minlen DL�minlen .Q � Z/ D

7 W Succ�.F / Q � Succ�.F / .Q � Z/ D

7.3 An Abstract MADFA Construction Algorithm 241

The rows 5, 6 and 7 point to add word versions that partition Q in somewhat less
extreme ways than those relating to rows 1, 3 and 4. We shall discuss these partitions
in slightly more detail in Sect. 7.6.

7.3.2 The Procedures to be Instantiated

The general specification for add word is:

Algorithm 7.3.2.
f Struct.D/ g

Q; ı; F W add word.w/

f Struct.D [fwg/ g
The various instances of Struct given above lead to different versions of add word.
These versions will be given names of the form add wordX where X is the
corresponding subscript of Struct as per one of the above instances.

Note, however, that in the general structure of Algorithm 7.3.1, add word is
invoked within a loop that first acquires some w as “any minimal element of T ”.
Hence, there is an implicit conjunct in the precondition of add word asserting that w
is a minimal element of T . In the case of the first four versions of Struct, all elements
in W (and therefore in T) are considered equally minimal, and so this requirement
plays no role in the elaboration of the corresponding version of add word—it can
just as well be left out. In the case of the last three versions of Struct, however,
different notions of minimality are used in each respective case, leading to different
versions of add word. In these cases, the requirement that w should be a minimal
of T is therefore an important consideration, and is made an explicit conjunct in the
precondition.

For each version of Struct, we also have a corresponding specification for
cleanup, whose general specification is:

Algorithm 7.3.3.
f Struct.W / g

Q; ı; F W cleanup
f Min ^ L D W g

The versions of cleanup will be given names of the form cleanupX where X is the
corresponding subscript of Struct.

7.3.3 The Importance of the Skeleton-Based Taxonomy

The common algorithm skeleton is a key aspect of the algorithm presentation in
this text. All of the presently known algorithms have been successfully cast into this
framework, and there is every reason to believe that newly discovered algorithms
will also fit within this or a similar taxonomy.

242 7 Case Study 2: Classifying MADFA Construction Algorithms

Moreover, the framework serves to spark fresh ideas about how the task of
MADFA construction might be approached. For example, [43] notes that the loop
in which add word is embedded is premised on the selection and insertion of one
word at a time. This exposes questions like:

• Could add wordset algorithms perhaps be developed that added a set of words at
a time to the currently developed ADFA? What might these properties be?

• Could we envisage a multi-threaded parallel execution of the body of the loop,
each thread handling a different word or set of words? What synchronisation
mechanisms would be needed? On what basis should such thread assignment
take place?

In this sense, taxonomisation and classification not only support comprehension, but
also act as a stimulus for research ideas.

In the next two sections, we will refine the first two Struct variants to cor-
responding versions of add word. Additionally, the next section will also refine
cleanup to a level where possibilities for “bifurcation” into different refinement
paths becomes clearly visible. However, tracing the refinements down each path to
fully implementable algorithms is considered outside the scope of the present text,
whose principal concern is to illustrate how correctness by construction supports
taxonomisation within a domain.

7.4 Trie Intermediate ADFA

In this section, we maintain M as a trie during the construction of the ADFA, and
use the associated structural invariant:

StructT .D/ � Is Trie ^ L D D:

Following the construction of the trie using add wordT , procedure cleanupT merges
equivalent states yielding the sought-after MADFA.

7.4.1 Procedure add wordT

For add wordT , we get specification. We use L0 to represent the initial value of L.

proc add wordT .in w W ˙�/ !
f pre Is Trie ^ L D L0 g
S7.4.1

f post Is Trie ^ L D L0 [fwg g
corp

7.4 Trie Intermediate ADFA 243

It is convenient to weaken both the pre- and postcondition of S7.4.1 in such a way
that it can be reused as part of the add word implementations in some of the other
instantiations of Struct.

In both cases, we weaken the Is Trie conjunct to Confl free.Œs
wÝ�/. This is

indeed a weakening, because no state in a trie may be a confluence, whereas the

weakened conjunct only forbids states in the set Œs
wÝ� to be a confluence. Recall

that Œs
wÝ� refers to the sequence of states in the existing structure whose transitions

will spell out the longest possible prefix of w, as it were—i.e., it is meaningful to

refer to Œs
wÝ� in an ADFA (trie in this case), even if w is not yet part of its language.

Note that in terms of the refinement rules, weakening the precondition constitutes
a true refinement, but weakening the postcondition is not! However, with this
postcondition weakening, we will still obtain a trie after all words W are added,
provided that when adding a new word, say w0, we do not disturb the confluence-

free status of Œs
wÝ� with respect to a previously added word, w. This will indeed be

the case.
The simplest way to proceed in refining S7.4.1 is to introduce a new state

variable q, establish q D ı�.s; w/ ^ q ¤ ? and then make q a final state (so
that the ADFA accepts w), as in the following example. Assume we initially have
the ADFA accepting herd, as in Fig. 7.3a. We wish to add the word her, which is
a prefix of herd. This results in state 3 becoming a final one, as in Fig. 7.3b.

We therefore have the following procedure

proc add wordT .in w W ˙�/ !n
pre Confl free.Œs

wÝ�/ ^ L D L0

o

jŒ var q W State
j S 0

7.4.1I
f q D ı�.s; w/ ^ q ¤ ? g
F WD F [fqg

�jn
post Confl free.Œs

wÝ�/ ^ L D L0 [fwg
o

corp

We can continue our derivation with S 0
7.4.1.

0 1
h

2
e

3
r

4
d

0 1
h

2
e

3
r

4
d

a

b

Fig. 7.3 Adding a prefix word. (a) ADFA for herd. (b) ADFA for her and herd

244 7 Case Study 2: Classifying MADFA Construction Algorithms

7.4.2 Adding Only Prefix Words

In this subsection only, we assume that w is a prefix of a word already accepted by
.Q; ı; s; F /—that is ı�.s; w/ ¤ ?. Clearly, this is an unrealistic assumption—it is
rarely applicable—but it forms a good starting point for a simple algorithm. We also
introduce two additional variables l; r W w D lr and maintain invariant q D ı�.s; l/,
giving the following for S 0

7.4.1.

:::

f ı�.s; w/ ¤ ? g
jŒ var l; r W ˙�
j l; r; q WD �; w; sI

f invariant: w D lr ^ q D ı�.s; l/

variant: jr j g
do r ¤ � !

l; r; q WD l � head.r/; tail.r/; ı.q; head.r//

od
�j
f q D ı�.s; w/ ^ q ¤ ? g
:::

The precondition ı�.s; w/ ¤ ? sometimes becomes established just by adding the
words in a certain order (i.e., by the choice of �). However, for the version of
Struct which we are currently considering, no ordering relationship is assumed—
any w 2 W may be the next word to be added. We therefore may not rely on any
such ordering advantages, and therefore generalise the algorithm in the next section.

7.4.3 Adding a Non-prefix Word in a Trie

In the case where ı�.s; w/ D ?, we begin by finding the longest prefix l of w
which is recognised by the existing ADFA—i.e., the longest l such that ı.s; l/ ¤ ?.
We then build additional states and transitions if required, to cater for recognising
the suffix of w that follows on l . The matter is illustrated in the following example.

Initially, we have the ADFA in Fig. 7.4a accepting her. We wish to add the word
had. The (longest common) prefix h (of had and her) lies on a path to state 1, at
which point we are stuck and new states 4 and 5 must be created, eventually giving
the ADFA in Fig. 7.4b.

Recall that we are assuming that w D lr . To express that “l is the longest prefix
on a path reachable from s,” we use the following (using the invariant q D ı�.s; l/)

ı�.s; l/ ¤ ? ^ .r D � cor ı.q; head.r// D ?/

7.4 Trie Intermediate ADFA 245

0 1
h

2
e

4

a

3
r

5
d

0 1
h

2
e

3
r

a

b

Fig. 7.4 Adding a non-prefix word (a) ADFA for her. (b) ADFA for her and had

Intuitively, this means that there is a full l-path from the start state s, and that either
we have run out of symbols to consider (i.e., r D �) or no further transitions are
possible.

Instead of our previous refinement of S 0
7.4.1, we obtain

:::

jŒ var l; r W ˙�
j S 00

7.4.1If q D ı�.s; l/ ^ ı�.s; l/ ¤ ? ^ .r D � cor ı.q; head.r// D ?/ g
S 000

7.4.1
�j
f q D ı�.s; w/ ^ q ¤ ? g
:::

Statement S 00
7.4.1 simply follows the w-path through M until no further transition

is possible, then statement S 000
7.4.1 extends M as necessary with new states and

transitions.
The final procedure is given below. It uses function create. / that creates a new

object of type State, inserts it into Q and returns a reference to this object.

proc add wordT .in w W ˙�/ !n
pre confl free.Œs

wÝ�/ ^ L D L0

o

jŒ var q W State
j jŒ var l; r W ˙�

j l; r; q WD �; w; sI
f invariant: w D lr ^ q D ı�.s; l/

variant: jr j g
do r ¤ � cand ı.q; head.r// ¤ ? !

l; r; q WD l � head.r/; tail.r/; ı.q; head.r//

odI
f q D ı�.s; l/ ^ ı�.s; l/ ¤ ? ^ .r D � cor ı.q; head.r// D ?/ g

246 7 Case Study 2: Classifying MADFA Construction Algorithms

f invariant: w D lr ^ q D ı�.s; l/

variant: jr j g
do r ¤ � ! jŒ var p W State

j p WD create. /I
ı.q; head.r//; q WD p; pI
l; r WD l � head.r/; tail.r/

�j
od

�jI
f q D ı�.s; w/ ^ q ¤ ? g
F WD F [fqg

�jn
post confl free.Œs

wÝ�/ ^ L D L0 [fwg
o

corp

This algorithm corresponds closely to most trie-construction algorithms—
including that sketched by Fredkin, the inventor of tries [16]. An example of its
output is given on page 249 in Sect. 7.4.5.

7.4.4 Procedure cleanupT

In this section, we briefly consider minimization procedures with the following
specification:

proc cleanupT ./ !
f pre Is Trie ^ L D L0 g
S7.4.4

f post Min ^ L D L0 g
corp

Our objective is to outline the broad structure of commonly used minimizing
algorithms, without fully elaborating them. We avoid a full elaboration, because
the current concern is to show how correctness by construction can serve as a means
of classifying algorithms. While minimization of ADFAs (and indeed of DFAs in
general) is of great importance, we would loose focus of our major objective if we
attended to the details here. Instead the reader is referred to other sources, where
[43] would be an excellent starting point.

The minimisation algorithms that we allude to in this text do not insist on starting
off with a trie. We therefore relax the precondition to L D L0—i.e., we drop the first
conjunct Is Trie, and allowing M to have confluence states.

A partition of “done” and “to-do” states of Q is maintained, namely D, T . D is
“done” in the sense that it is a set of pairwise inequivalent states—that is Inequiv.D/

holds. T is the set of states still to be processed. A loop is envisaged in which

7.4 Trie Intermediate ADFA 247

each iteration sees the selection of a non-empty set of states N from T . N is then
modified to ensure that each pair of states taken respectively from D [N and D are
inequivalent. When this is achieved, N is added into D.

The loop thus guarantees that T shrinks at every iteration. However, while D is
guaranteed not to shrink in any iteration, it cannot be guaranteed to grow: it may
in fact remain the same size for many iterations when equivalent states are being
merged. The algorithm outline is therefore:

Algorithm 7.4.1.

proc cleanupT . / !
f pre L D L0 g
jŒ var D; T W set of State
j D; T WD ∅; QI

f invariant WInequiv.D/ ^ L D L0

variant WjT j g
do T ¤ ∅ ! jŒ var N W set of State

j let N W N � T ^ N ¤ ∅I
T WD T � N I
f N ¤ ∅ g
N W S 0

7.4.4I
f Inequiv.D [N / g
D WD D [N

f Inequiv.D/ g
�j

od
�j
f post Min ^ L D L0 g

corp

This gives a specification for statement S 0
7.4.4: establish Inequiv.D [N / while

changing only N (and implicitly M).
To map out the refinement paths of S 0

7.4.4 that flow from this skeletal form of
cleanupT , note that because of Property 7.2.18, the postcondition of S 0

7.4.4 conforms
to the following equivalence relationship:

Inequiv.D [N / � Inequiv.D/ ^ Inequiv.N / ^ Pairwise inequiv.D; N /

Thus the postcondition of S 0
7.4.4 may be replaced by the right hand side of the above

equivalence relationship. Since conjunct Inequiv.D/ is in the loop invariant, D

should be left intact when refining S 0
7.4.4. The remaining two conjuncts can serve

as the basis for two different refinement paths of S 0
7.4.4. In each of these cases,

one of the conjuncts is “moved” into the let statement which selects N in the first
place, thereby simplifying S 0

7.4.4 because that conjunct now becomes a conjunct to
the precondition to S 0

7.4.4.

248 7 Case Study 2: Classifying MADFA Construction Algorithms

7.4.4.1 First Refinement Path

In the first refinement path, we select N in the let statement so that Inequiv.N /

holds but not necessarily Pairwise inequiv.D; N /. The task in S 0
7.4.4 is therefore

to ensure that Pairwise inequiv.D; N / holds. In the second refinement path, the
opposite strategy is followed: N is selected so that Pairwise inequiv.D; N / holds,
and S 0

7.4.4 is designed to ensure that Inequiv.N / is holds.
The first refinement path in turn leads to at least two further possibilities.

• The easiest is to select N as a single state, p 2 T , in which case Inequiv.fpg/
holds trivially. This leads to the following refined code extract as one particular
version of clean upT :

:::

f invariant: Inequiv.D/ ^ L D L0

variant: jT j g
do T ¤ ∅ ! jŒ var p W State

j let p W p 2 T I
T WD T � fpgI
f Inequiv.fpg/ g
if 9q W D � Equiv.p; q/ !

let q W q 2 D ^ Equiv.p; q/I
merge.p; q/

Œ� Àq W D � Equiv.p; q/ !
f Inequiv.D [fpg/ g
D WD D [fpg

fi
f Inequiv.D/ g

�j
od
:::

Note that the existence of a procedure merge.p; q/ is assumed. It changes ı

and Q by merging the two states, p and q. Viewed from the perspective of the
associated transition graph, this means redirecting all in-transitions of node q into
node p instead, removing all out-transitions from node q, and indeed removing
node q itself.

There are several further refinements related to this code segment whose
details we omit. Essentially they relate to the functions needed to establish the
predicate Equiv.p; q/, as well as various strategies to select the next p from T .

• An alternative way of selecting N in the skeleton Algorithm 7.4.1 that ensures

Inequiv.N /, is to choose a path of states Œr;
xÝ� � T for some state r and string

x. This is based on a property whose proof we omit, but which is intuitively clear,

7.4 Trie Intermediate ADFA 249

namely that Inequiv.Œr;
xÝ�/ for arbitrarily chosen r and x. Again, we omit full

details of how S 0
7.4.4 could be refined in this case.

7.4.4.2 Second Refinement Path

In the second refinement path that flowed from a consideration of Property 7.2.18,
we pointed out that algorithms could be developed whereby N is chosen at each
step such that

Pairwise inequiv.D; N / provably holds. Equivalent nodes in N are then merged and
the resulting N is added to D. We will skip a detailed discussion of the theoretical
considerations that show how such an N can be selected, and that result in an
alternative version of clean upT based on this idea. Instead, we present in the next
section an example to illustrate the general idea.

7.4.5 An Example

Figure 7.5a shows the trie resulting from using iteratively add wordT to add the
words had, hard, head, heard, herd, here, her, he. In applying cleanupT ,
D starts off as ∅ and T is the set of all the nodes.

In the first iteration, we select N as all the leaf final states, namely
f3; 5; 8; 10; 12; 13g. Since D D ∅, Pairwise inequiv.D; N / holds trivially. Since
the right languages of all states in N are all the same, (namely f�g) these states are
equivalent. They are therefore merged into a state called 3, as shown in Fig. 7.5b.
At this point, therefore, D D f3g.

In the next step, we let N be the set of all the states one level ‘back’ from the
merged state 3, namely N D f4; 9; 11g. Theory which has not been covered above
guarantees that they will be pairwise inequivalent to D. This is also evident if one
examines the right languages of the relevant states. However, these right languages
will also reveal that 9 and 4 are equivalent. They are therefore merged into 4.
(Of course the merging could have occurred vice-versa, with 4 merged into 9.)
State 11 is not merged since it is final and the other two are not (i.e., the right
languages of the respective states differ because � is in the right language 11 but
not in that of 4 or 9). The resulting automaton is shown in Fig. 7.6a. At this stage,
D D f3; 4; 11g.

Moving one step back from state 4, we consider N D f2; 7g. Again, note that
each of these states are pairwise inequivalent with all the states in D. The right
languages of these two states also turn out to be the same, so that they may be
merged. The result is shown in Fig. 7.6b, at which point D D f2; 3; 4; 11g. The
remaining states f6g; f1g; f0g are easily seen to be inequivalent, and are also
pairwise inequivalent with the states in D, so that the ADFA in Fig. 7.6b is
minimal.

250 7 Case Study 2: Classifying MADFA Construction Algorithms

0 1
h

2
a

6

e

3

d

4r 5d

7
a

11

r

8
d

9

r

10
d

12
d

13

e

0 1
h

2
a

6

e

3

d

4
r

d

7
a

11

r

d

9

r d

d

e

a

b

Fig. 7.5 First minimization step. (a) Initial trie: D D ∅. (b) Merge final states: D D f3g

7.5 Arbitrary Intermediate ADFA

In this section, we reflect on how to add a word to an arbitrary ADFA—one in
which confluences may be encountered (when adding word w) on the w-path. We
will, however, make use of the fact that s (the start state) cannot be a confluence due
to acyclicity. The structural predicate is simply

StructN .D/ � L D D:

7.5 Arbitrary Intermediate ADFA 251

11

3

d

e

6

r

7
a

0 1
h

e

2

a d

4

r

d

d

r

11

3

d

e

6

r

2

a

0 1
h

e

a

d

4

r d

a

b

Fig. 7.6 Second and final minimisation steps. (a) Merge states 4 and 9: D D f3; 4; 11g. (b) Merge
states 2 and 7: D D f2; 3; 4; 11g

Following construction, procedure cleanupN merges states in the same way as any
of the variants of cleanupT discussed in Sect. 7.4.4.

7.5.1 Procedure add wordN

Without modification, the algorithms of Chap. 7.4 (add wordT and variants) may
add words accidentally if a confluence state is encountered. Consider the following
example.

Initially, we have the ADFA shown in Fig. 7.7a that accepts hard and herd,
but is not confluence-free. While adding the new word head, we arrive at the
confluence state 2. From state 2, there is no a out-transition and so we naı̈vely

252 7 Case Study 2: Classifying MADFA Construction Algorithms

extend the automaton as in Fig. 7.7b to accept the new word head. An unintended
side-effect of is that the ADFA now incorrectly also accepts haad!

A “cloning” operation is required at the confluence state. By this, we mean that
an additional state should be created, and out transitions to the new state should be
inserted that match out transitions from the confluence state both in alphabet and in
destination states. We will assume that a function clone.p/ returns such a new state,
which is a ‘clone’ of its argument p. We assume that clone.p/ adds the cloned state
into Q and the cloned out transitions to ı. The transition to the confluence state that
is traversed by the new word to be added should then be moved to this cloned state.
The next example illustrates the point.

As in the previous example, we begin with the MADFA accepting hard and
herd shown in Fig. 7.7a. While adding the new word head, we arrive at confluence
state 2 which is cloned, yielding new state 5. As shown in Fig. 7.8a the transition on
e from state 1 to state 2 is changed to end in state 5. Note that the languages of the
ADFAs in Figs. 7.7a and 7.8a are the same. Two additional states are then added, as
shown in Fig. 7.8b, giving the final automaton.

Recall that procedure add wordT (in Sect. 7.4 on page 242) contains two repeat
loops. The first visits states in the transition graph, ending in the state that identifies
in the graph the longest matching prefix of the word to be added. The second repeat
loop then creates new states from that point onwards to cater for the suffix that
remains of the word.

In modifying add wordT to add wordN , the modified algorithm needs to clone
confluence states that are encountered in the first repeat loop (i.e., the loop that
identifies the longest matching prefix). The second repetition need not be changed,

0 1
h

2
a

e
3

r
4

d

0 1
h

2
a

e

3
r

5

a

4
d

6
d

a

b

Fig. 7.7 Naı̈ve extension of an automaton. (a) ADFA accepting hard and herd. (b) ADFA
accepting hard, herd, head and haad

7.5 Arbitrary Intermediate ADFA 253

0 1
h

2
a

5

e 3

r

r
4

d

0 1
h

2
a

5

e 3

r

r

6

a

4
d

7
d

a

b

Fig. 7.8 Second and final minimisation steps. (a) Confluent state 2 in Fig. 7.7a produces cloned
state 5. (b) ADFA accepting hard, herd and head

since it is only creating new states, none of which can be a confluence state. We can
modify the first repetition accordingly yielding the procedure body:

proc add wordN .in w W ˙�/ !
f pre L D L0 g
jŒ var q W State
j jŒ var l; r W ˙�I p W State

j l; r; q WD �; w; sI
f invariant: w D lr ^ q D ı�.s; l/ ^ Confl free.Œs

lÝ�/

variant: jr j g
do r ¤ � cand ı.q; head.r// ¤ ? !

p WD ı.q; head.r//I
as Is Confl.p/ !

p WD clone.p/I
ı.q; head.r// WD p

saI
q WD pI
l; r WD l � head.r/; tail.r/

254 7 Case Study 2: Classifying MADFA Construction Algorithms

odIn
Confl free.Œs

wÝ�/
o

f q D ı�.s; l/ ^ ı�.s; l/ ¤ ? ^ .r D � cor ı.q; head.r// D ?/ g
f invariant: w D lr ^ q D ı�.s; l/

variant: jr j g
do r ¤ � ! jŒ var p W State

j p WD create. /I
ı.q; head.r//; q WD p; pI
l; r WD l � head.r/; tail.r/

�j
od

�jI
f q D ı�.s; w/ ^ q ¤ ? g
F WD F [fqg

�jn
post Confl free.Œs

wÝ�/ ^ L D L0 [fwg
o

corp

This, however, is also subject to improvement thanks to another observation:

Once a confluence state has been cloned, further states in the w path (other than newly
created ones) will also have to be cloned.

For this reason, we can again split the first of the above repetitions into two
sequentially composed repetitions, in our final algorithm:

proc add word0
N .in w W ˙�/ !

f pre L D L0 g
jŒ var q W State
j jŒ var l; r W ˙�I p W State

j l; r; q WD �; w; sI
f invariant: w D lr ^ q D ı�.s; l/ ^ Confl free.Œs

lÝ�/

variant: jr j g
do r ¤ � cand ı.q; head.r// ¤ ? cand :Is Confl.ı.q; head.r///!

l; r; q WD l � head.r/; tail.r/; ı.q; head.r//

odI
f invariant: w D lr ^ q D ı�.s; l/ ^ Confl free.Œs

lÝ�/

variant: jr j g
do r ¤ � cand ı.q; head.r// ¤ ? !

f Is Confl.ı.q; head.r/// g
p WD ı.q; head.r//I
f Is Confl.p/ g
p WD clone.p/I
ı.q; head.r//; q WD p; pI
l; r WD l � head.r/; tail.r/

7.6 Word Adding Based on a Partial Order 255

odI
n

Confl free.Œs
wÝ�/

o

f q D ı�.s; l/ ^ ı�.s; l/ ¤ ? ^ .r D � cor ı.q; head.r// D ?/ g
f invariant: w D lr ^ q D ı�.s; l/

variant: jr j g
do r ¤ � ! p WD create./I

ı.q; head.r//; q WD p; pI
l; r WD l � head.r/; tail.r/

od
�jI
f q D ı�.s; w/ ^ q ¤ ? g
F WD F [fqg

�jn
post Confl free.Œs

wÝ�/ ^ L D L0 [fwg
o

corp

This algorithm always clones confluences, which proves to be inefficient if they
are subsequently found to be equivalent (and therefore merged). High-performance
implementations of this algorithm perform a “lazy cloning” (also known as “virtual
cloning”) operation, substantially improving the performance [10].

7.5.2 Procedure cleanupN

For cleanupN we can use any one of the general minimization algorithms from [44]
or a version of cleanupT from Sect. 7.4.4.

7.5.3 Commentary

If the MADFA is to be built from scratch, add wordN is uninteresting since the
initial ADFA will be a trie in which no confluences occur. Procedure add wordN

is primarily interesting for adding words to an ADFA in which some confluences
already occur from previous minimization steps. Interestingly, add wordN also
works on cyclic DFA’s.

7.6 Word Adding Based on a Partial Order

There are two add word variants that allow confluent states to be constructed—
those associated with the Struct variants in rows 2 and 3 of Table 7.1 (i.e., StructN
and StructI). In Sect. 7.5’s review of the add wordN algorithm, we saw that if a

256 7 Case Study 2: Classifying MADFA Construction Algorithms

confluence state is encountered on the prefix path of the new word to be inserted,
then that confluence state has to be cloned. Such cloning is also required when
encountering a confluence state in add wordI , whose form has not been discussed
here.

Performance profiling of implementations of the algorithms partially presented
in Sect. 7.5, as well as of algorithms derived from StructI .D/ shows that most of
the execution time is spent on two operations:

• Cloning confluence states.
• Merging states found to be equivalent.

(Creating new states is a cheap operation in practice.) While the merging operation
is generally unavoidable in constructing a MADFA, some MADFA research has
focussed on performance improvement by limiting, if not quite eliminating, the need
for cloning.

The structural invariants in rows 5, 6 and 7 of Table 7.1 have their origin in
a quest to limit cloning. Each of the three associated add word algorithms avoid
cloning by ensuring that in adding the next word, only a confluence-free path needs
to be investigated. Since cloning only has to be applied to confluence states, the
expense of cloning is thereby avoided.

At the same time these three add word variants guarantee that all states not on
this confluence-free path are retained as inequivalent. (Recall that these variants are
designated add wordS , add wordD and add wordW corresponding to the structural
invariants in rows 5, 6 and 7 of the table, respectively.)

Each variant of add word therefore consists of a loop that selects and inserts the
next word into the ADFA to generated date. The bodies of the respective loops all
conform to the following general pattern:

f P.w/ ^ Inequiv.Q � Z/ ^ Confl free.Z/ ^ L D L0 g
add wordT .w/I

f R0.w/ ^ Inequiv.Q � Z0/ ^ Confl free.Z0/ ^ L D L0 [fwg g
S7.6

f R.w/ ^ Inequiv.Q � Z/ ^ Confl free.Z/ ^ L D L0 [fwg g

Here Q, Z, Z0, P.w/, R0.w/ and R.w/ assume values according to the algorithm
under consideration. Q and Z assume the values shown in rows 5, 6 and 7 of
Table 7.1.

P.w/ is an assertion indicating how w must be ordered in relation to the words
already incorporated into L. R0.w/ and R.w/ are revised assertions about the
ordering relationship of words in L. In overview, the following holds:

• In the case of add wordS , P.w/ requires that the next word, w, to be added
must be lexicographically greater than all words already in L. Both R0.w/

and R.w/ simply state that w is now the lexicographically largest word in L,

7.6 Word Adding Based on a Partial Order 257

i.e., w D lexmax. By implication, words are to be submitted to add wordT in
increasing lexicographic order.

• In the case of add wordD , P.w/ requires that the length of the next word to be
added, jwj, must be less or equal to minlin—the shortest word length in L to
date. In this case, R0.w/ and R.w/ state that w is now smallest length word in
L, i.e., w D minlen. By implication, words are to be submitted to add wordT in
decreasing order of word length.

• In the case of add wordW , P.w/ and R.w/ are the same as in add wordD .
However, R0.w/ has a somewhat more complicated form, namely that F D
F0 [fı�.s; w/g ^ ı�.s; w/ … F0. Elaborating on the meaning of this requirement
is beyond the scope of this present discussion. However, note that again, words
are to be submitted to add wordT in decreasing order of word length.

The general form given above uses Z0 to indicate that the call to add wordT

modifies the set of states that are now inequivalent, and, accordingly, the set of
states that are confluence free. In order to reestablish the invariants that apply in
each of the three respective cases, commands generically denoted above by S7.6

need to be carried out. The detailed form of these commands are beyond the scope of
this discussion. However, in general, these commands reestablish a the partition of
inequivalent states and confluence-free states, in preparation for the next iteration
of the loop.

Once all words have been added, a residual cleanup needs to be carried
out to ensure inequivalence of states that remain at the end of the loop’s final
iteration. Again, the commands relevant to each will differ slightly, and will not
be discussed here.

The intention here has been to illustrate that a correctness by construc-
tion approach to understanding related algorithms provides deep insight into the
commonalities and differences between the algorithms. We have also claimed
that the process of uncovering and articulating these commonalities and differences
often results in new insights into alternative ways of solving the problem concerned.
This is precisely the case in the three algorithms overviewed above: in seeking a
correctness by construction understanding of pre-existing algorithms add wordS

and add wordW , the algorithm add wordD suggested itself as an entirely new
algorithm, which was published for the first time in [43].

References

1. A. Aho, M. Lam, R. Sethi, J. Ullman, Compilers: Principles, Techniques and Tools, 2nd edn.
(Pearson Education, 2007), ISBN-10: 0321491696, ISBN-13: 9780321491695

2. A. Alexandrescu, Modern CCC Design: Generic Programming and Design Patterns Applied
(Addison-Wesley, Boston, Massachusetts, 2001), ISBN 978-0201704310

3. G. Arévalo, in Proceedings of LMO 2003: Langages et Modeles à Objets, Understanding
behavioral dependencies in class hierarchies using concept analysis, Hermes, Paris, January
2003. pp 47–59

4. G. Birkhoff, Lattice Theory (Amer. Math. Soc. Coll. Publ., Providence, R.I., 1973)
5. C.L. Blake, C.J. Merz, UCI repository of machine learning databases. University of California,

Irvine, Dept. of Information and Computer Sciences, 1998
6. J.P. Bordat, Calcul pratique du treillis de Galois d’une correspondance. Math. Sci. Hum.

23(2), 243–250 (1978)
7. J. Bresenham, A linear algorithm for incremental digital display of circular arcs. Commun.

ACM 20(2), 100–106 (1977)
8. C. Carpineto, G. Romano, Concept Data Analysis: Theory and Applications (John Wiley &

Sons Ltd, New York, 2004)
9. C. Carpineto, G. Romano, A lattice conceptual clustering system and its application to

browsing retrieval. Mach. Learn. 24(2), 95–122 (1996)
10. J. Daciuk, S. Mihov, B.W. Watson, R.E. Watson, Incremental construction of minimal acyclic

finite state automata. Comput. Linguist. 26(1), 3–16 (2000)
11. B. Davey, H. Priestley, Introduction to Lattices and Order, 2nd edn. (Cambridge University

Press, Cambridge, 2002)
12. U. Dekel, Applications of concept lattices to code inspection and review. Technical report,

Department of Computer Science, Technion (2002)
13. E.W. Dijkstra, On the cruelty of really teaching computer science. Commun. ACM 32(12),

1414 (1989)
14. J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, Computer Graphics: Principles and Practice

in C, 2nd edn. (Pearson, New York, 1995)
15. F.P. Brooks Jr., in The Mythical Man-Month: Essays on Software Engineering, No silver bullet

(Addison-Wesley, New York, 1995), ISBN 0-201-83595-9
16. E. Fredkin, Trie memory. Commun. ACM 3(9), 490–499 (1960)
17. L.C. Freeman, D.R. White, Using Galois lattices to represent network data. Sociol. Methodol.

23, 127–146 (1993)
18. B. Ganter. Two basic algorithms in concept analysis, FB4-Preprint No. 831 (Technische

Hochschule Darmstadt, June 1984)

D.G. Kourie and B.W. Watson, The Correctness-by-Construction Approach
to Programming, DOI 10.1007/978-3-642-27919-5,
© Springer-Verlag Berlin Heidelberg 2012

259

260 References

19. B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations (Springer, Berlin,
1999)

20. R. Godin, R. Missaoui, H. Alaoui. Incremental concept formation algorithms based on Galois
lattices. Comput. Intell. 11(2), 243–250 (1995)

21. R. Godin, H. Mili, in Proceedings of the OOPSLA ’93 Conference on Object-oriented
Programming Systems, Languages and Applications, Building and maintaining analysis-level
class hierarchies using Galois lattices. (1993), pp. 394–410

22. P.A. Grigoriev, S.A. Yevtushenko, in Concept Lattices: Proc. of the 2nd Int. Conf. on Formal
Concept Analysis, ed. by P. Eklund. Quda: applying formal concept analysis in a data mining
environment, vol 2961/2004 (Springer, Berlin/Heidelberg, 2004), pp. 386–393

23. J. Gutknecht, Pulling rabbits out of a hat. South African Comput. J. 3, 1–4 (1990)
24. M. Huchard, H. Dicky, H. Leblanc, Galois lattice as a framework to specify algorithms building

class hierarchies. Theor. Inform. Appl. 34, 521–548 (2000)
25. A Kaldewaij, Programming: Derivation of Algorithms (Prentice Hall International Ltd,

New York, 1990)
26. D.G. Kourie, S. Obiedkov, B.W. Watson, F.D. van der Merwe, An incremental algorithm to

construct a lattice of set intersections. Sci. Comput. Program. 74(3), 128–142 (2009)
27. D.G. Kourie, An approach to defining abstractions, refinements and enrichments. Quæst. Inf.

6(4), 174–178 (1989)
28. S. Kuznetsov, S. Obiedkov, Comparing performance of algorithms for generating concept

lattices. J. Exp. Theor. Artif. Intell. 14(2/3), 189–216 (2002)
29. S. Kuznetsov, in Concept Lattices: Proceedings of the 2nd International Conference on Formal

Concept Analysis, ed. by P. Eklund. Machine learning and formal concept analysis. LNCS,
vol. 2961 (Springer-Verlag, Berlin, Heidelberg, 2004), pp. 287–312

30. C. Lindig, G. Snelting, in Proceedings of the 1997 International Conference on Software
Engineering (ICSE ’97), Assessing modular structure of legacy code based on mathematical
concept analysis, Boston, MA, May 1997. pp. 349–359

31. B. Meyer, Touch of Class: Learning to Program Well with Objects and Contracts (Springer-
Verlag, Berlin, Heidelberg, 2009)

32. C. Morgan, Programming from specifications (1998), http://web2.comlab.ox.ac.uk/oucl/
publications/books/PfS/

33. E.M. Norris, An algorithm for computing the maximal rectangles in a binary relation. Rev.
Roum. Math. Pures A. 23(2), 243–250 (1978)

34. L. Nourine, O. Raynaud, A fast algorithm for building lattices. Inform. Process. Lett. 71,
199–204 (1999)

35. U. Priss, in Formal Concept Analysis, Foundations and Applications, ed. by B. Ganter,
G. Stumme, R. Wille. Linguistic applications of formal concept analysis. LNAI, vol. 3626
(Springer-Verlag, Berlin, Heidelberg, 2005), pp. 149–160

36. C. Roth, S. Obiedkov, D.G. Kourie, in Proceedings of the 4th International Conference on
Concept Lattices and Their Applications, ed. by S.B. Yahia, E.M. Nguifo. Towards concise
representation for taxonomies of epistemic communities, Faculté des Sciences de Tunis,
Université Centrale, Hammamet, Tunisia, 2006, pp. 205–218

37. G. Snelting, F. Tip, Reengineering class hierarchies using concept analysis. SIGSOFT Softw.
Eng. Notes 23(6), 99–110 (1998)

38. G. Stumme, A. Mädche, in Proceedings of the17th International Conference on Artificial
Intelligence (IJCAI ’01), ed. by B. Nebel. FCA-merge: Bottom-up merging of ontologies,
Seattle, WA, USA, 2001. pp. 225–230

39. T. Tilley, R. Cole, P. Becker, P. Eklund, in Formal Concept Analysis, Foundations and
Applications, ed. by Bernhard Ganter, Robert Godin, A survey of formal concept analysis
support for software engineering activities. Lecture Notes in Computer Science, vol. 3626,
July 2005, pp. 250–271

40. P. Valtchev, R. Missaoui, R. Godin, in Concept Lattices: Proceedings of the 2nd International
Conference on Formal Concept Analysis, ed. by P. Eklund. Formal concept analysis for
knowledge discovery and data mining: The new challenges. LNCS, vol. 2961 (Springer-Verlag,
Berlin, Heidelberg, 2004), pp. 352–371

References 261

41. F.J. van der Merwe, Constructing concept lattices and compressed pseudo-lattices, Master’s
thesis, University of Pretoria, 2003

42. F.J. van der Merwe, S. Obiedkov, D.G. Kourie, in Concept Lattices: Proc. of the 2nd Int. Conf.
on Formal Concept Analysis, ed. by P. Eklund. AddIntent: A new incremental algorithm for
constructing concept lattices. LNCS, vol. 2961 (Springer-Verlag, Berlin, Heidelberg, 2004),
p. 411

43. B.W. Watson, Minimizing acyclic deterministic finite automata, Ph.D., FASTAR Research
Group, Department of Computer Science, University of Pretoria, South Africa, 2011

44. B.W. Watson, Taxonomies and Toolkits of Regular Language Algorithms, Ph.D. thesis,
Eindhoven University of Technology, Faculty of Computing Science, September 1995

45. B.W. Watson, in CIAA 2000, ed. by Yu, Păun. Directly constructing minimal DFAs: Combining
two algorithms by Brzozowski (2000), pp. 242–249

46. B.W. Watson, in CIAA 2000, ed. by Yu, Păun. A history of Brzozowski’s DFA minimization
algorithm (2000)

47. B.W. Watson, Directly constructing minimal DFAs: Combining two algorithms by Brzozowski.
South African Comput. J. 29, 17–23 (2002)

48. R. Wille, in ICFCA ’09: Proceedings of the 7th International Conference on Formal Concept
Analysis, ed. by Sébastien Ferré, Sebastian Rudolph, Restructuring lattice theory: An approach
based on hierarchies of concepts (Springer-Verlag, Berlin, Heidelberg, 2009), pp. 314–339

49. S.A. Yevtushenko, in Proceedings of the 7th national conference on Artificial Intelligence KII-
2000. System of data analysis “concept explorer” (in Russian), Russia (2000), pp. 127–134

Index

WD, see Assignment command
I, see Composition command
X-extension of a lattice, 204
w-path from a state, 234
abort, 22, 23, 31–33
skip, see Empty command
do . . . od, see Repetition command
if . . . fi, see Selection command

Acyclic deterministic Finite Automaton, 230
ADFA, see Acyclic deterministic Finite

Automaton
Array, 49

Class
Abstraction, 46
Enrichment

Definition, 47
Generalisation, 46
Inheritance, 46
Refinement

Definition, 47
Specialisation, 46

Closure system, 201
Command, 17

Assignment, 24
Multiple, 25
Single, 24

Composition, 27
Definition, 27

Empty, 18
Definition, 18

Repetition, 32
Satisfies specification, 34
Selection, 30

Definition, 32

Confluence state, 233
Confluence-free set of states, 233
Correctness by construction, 6, 7, 46, 55, 117,

197, 198, 215, 219, 227, 232, 242,
246, 257

Cover relationship, 200

DbC, see Design by Contract
Depth level, 235
Design by Contract, 48
Deterministic finite automaton, 229
DFA, see Deterministic finite automaton

Examples
Binary search, 66
Dutch National Flag, 95
Exponentiation, 77
Integer logarithm approximation, 84
Linear search, 56
Longest segment, 103
MADFA Construction

Abstract algorithm, 237
Confluence-based, 250
Partial order based, 255
Trie-based, 244

Majority voting, 136
Maximal axial lines, 144
Maximal element, 60
Palindromes, 112
Pattern matching, 74
Raster circle, 127
Raster line, 117
Recursive

Search a list, 181
Evaluate an expression tree, 185

D.G. Kourie and B.W. Watson, The Correctness-by-Construction Approach
to Programming, DOI 10.1007/978-3-642-27919-5,
© Springer-Verlag Berlin Heidelberg 2012

263

264 Index

Find a factorial value, 177
Merge-sort, 191

SICL Construction, 205

GCL, see Guarded command language
Greatest lower bound, see Infimum
Guarded command language, 17

Additional commands
as . . . sa, 50
func. . . cnuf, 51
proc. . . corp, 51
Block notation, 50

Commands, see Command

Hoare triple, 14
Extreme cases, 18

Infimum, 200
Invariant, 2–5, 33, 34, 42, 47, 57, 58, 68, 70,

75, 77–79, 81–85, 98, 99, 101, 103,
106–110, 113, 115, 119, 126, 129,
138, 140, 141, 143, 147, 148, 151,
207, 209, 217, 219, 238–240, 244

Definition of
Loop, 33

Join, see Supremum

Lattice, 200
Least upper bound, see Supremum
Lexicographically greatest word, 236
Lower bound, 200

MADFA, see Minimum acyclic deterministic
finite automata

Meet, see Infimum
Minimum acyclic deterministic finite automata,

231
Minimum path length, 235

Pairwise inequivalent
Set of states, 236
States, 236

Partial order, 198
Postcondition, 10, 14–16, 18, 23, 24, 26, 31,

32, 36, 39, 44, 45, 48, 49
Precondition, 10, 14–16, 18, 25, 36–38, 47, 48

Weakest, 16, 20, 22, 23, 25–29, 31–33, 37
Extreme cases, 21

Predicate

Statesp , 11
As set of states, 10
Strength, 12
Strong, 11
Weak, 11

Predicate calculus, 7, 8, 10
Propositional calculus, 8

Recursion, 161, 162, 173–175, 185, 194, 195
Base case, 174
Deriving recursive programs, 173
Variant, 173

Refinement
And weakest precondition, 37
Class, see Class refinement
Definition, 35
Morgan’s refinement calculus, 48
Rules, 34

Assignment, 38
Composition, 39
Following assignment, 41
Parameterless call, 162
Pass-by-result call, 167
Pass-by-value call, 164
Pass-by-value-result call, 168
Procedures, 45
Selection, 44
Skip, 36
Strengthen postcondition, 35
Weaken precondition, 36

Right language of a state, 234

Sequence, 49
Set intersection-closed lattice, 201
Shortest word length of an ADFA, 235
SICL, see Set intersection-closed lattice
Specification, 14

Command satisfies, 34
State equivalence, 236
Strategy for developing a loop, 44
Substitution

General, 25
Single, 12

Successor states, 235
Supremum, 199

Trie, 233

Upper bound, 199

Variant, 42

	Cover
	The Correctness-by-Construction Approach to Programming
	Preface
	Contents

	Chapter1 Introduction
	1.1 Invariance Examples
	1.1.1 A Chess Board Problem
	1.1.2 A Black and White Balls Game

	1.2 The Way Ahead

	Chapter2 Background
	2.1 Predicates
	2.1.1 Propositional Calculus
	2.1.2 Predicate Calculus
	2.1.3 Predicates Define Sets of States
	2.1.4 Strong and Weak Predicates

	2.2 Specifying Pre- and Postconditions
	2.2.1 Hoare Triples as Specifications of Total Correctness
	2.2.2 Weakest Preconditions and Semantics

	2.3 Guarded Command Language
	2.3.1 Empty Command
	2.3.2 Diversion: Some Extreme Cases
	2.3.2.1 Case 1: For What Values of S Does {true} S {true} Hold?
	2.3.2.2 Case 2: For What Values of S Does {false} S {true} Hold?
	2.3.2.3 Case 3: For What Values of S Does {false} S {false} Hold?
	2.3.2.4 Case 4: For What Values of S Does {true} S {false} Hold?
	2.3.2.5 How Can the Expression wp(S,false) Be Interpreted?
	2.3.2.6 How Can the Expression wp(S,true) Be Interpreted?
	2.3.2.7 The Meaning of abort

	2.3.3 Assignment
	2.3.4 Composition
	2.3.5 Selection
	2.3.6 Repetition

	2.4 Refinement Rules
	2.4.1 Strengthen Postcondition Rule
	2.4.2 Weaken Precondition Rule
	2.4.3 Skip Rule
	2.4.4 Sequences of Refinements
	2.4.5 Refinement and Weakest Preconditions
	2.4.6 Assignment Rule
	2.4.7 Composition Rule
	2.4.7.1 A Brief Digression
	2.4.7.2 How to Choose the Mid-Predicate

	2.4.8 Following Assignment Rule
	2.4.9 Selection Rule
	2.4.10 Repetition Rule
	2.4.11 Procedures and Procedure Calls

	2.5 Object Orientation
	2.6 Supplementary Notation
	2.6.1 Morgan's Refinement Calculus
	2.6.2 Arrays and Sequences
	2.6.3 Additional GCL Commands

	2.7 Revision Exercises

	Chapter3 Simple Examples
	3.1 Linear Search
	3.1.1 Formulating the Problem
	3.1.2 Choosing the Invariant
	3.1.3 Establishing the Invariant
	3.1.4 Refining to Create a Loop
	3.1.5 Putting it All Together

	3.2 Finding the Maximal Element
	3.2.1 Formulating the Problem
	3.2.2 Choosing the Invariant
	3.2.3 Establishing the Invariant
	3.2.4 Refining to Create a Loop
	3.2.5 Putting it All Together

	3.3 Binary Search
	3.3.1 Formulating the Problem
	3.3.2 Decomposing the Problem
	3.3.3 Generating the Binary Search Code
	3.3.4 After the Binary Search
	3.3.5 Putting it All Together

	3.4 Pattern Matching
	3.4.1 Formulating the Problem
	3.4.2 Developing the Loop
	3.4.3 Putting it All Together

	3.5 Exponentiation
	3.5.1 Formulating the Problem
	3.5.2 Establishing the Invariant
	3.5.3 Refining to Create a Loop
	3.5.4 Discussion

	3.6 Integer Logarithm Approximation
	3.6.1 Problem Statement and Invariant
	3.6.2 Refinement Steps
	3.6.3 Justifying the Assignment
	3.6.4 Strengthening Predicates by Decreasing Ranges
	3.6.5 Discussion

	3.7 Revision Exercise

	Chapter4 Intermediary Examples
	4.1 Dutch National Flag
	4.1.1 Formulating the Problem
	4.1.2 Choosing the Invariant
	4.1.3 Refining the Specification
	4.1.3.1 Remarks About the Last Step

	4.1.4 Proving the Third Guard Command
	4.1.5 Putting it All Together
	4.1.6 Discussion

	4.2 Longest Segment
	4.2.1 Formulating the Problem
	4.2.2 A First Attempt at Refinement
	4.2.3 A Revised Attempt at Refinement
	4.2.4 Putting it All Together
	4.2.5 Discussion

	4.3 Palindromes
	4.3.1 The Outer Loop
	4.3.2 Formulating the Problem
	4.3.3 Refining the Specification
	4.3.4 Putting it All Together
	4.3.5 Discussion

	4.4 Raster Lines
	4.4.1 Formulating the Problem
	4.4.2 Deriving the Loop
	4.4.3 Developing the Loop's Body
	4.4.4 Putting it All Together
	4.4.5 Discussion

	4.5 Raster Circle
	4.5.1 Problem Statement
	4.5.2 From Invariant to Loop
	4.5.3 Refining the Loop's Body
	4.5.4 Determining the Guards
	4.5.5 Deriving the Guards
	4.5.6 Putting it All Together

	4.6 Majority Voting
	4.6.1 Formulating the Problem
	4.6.2 Arriving at an Invariant and Developing the Loop
	4.6.3 Developing the Guards
	4.6.4 Discussion

	4.7 Computational Geometry
	4.7.1 Background and Notation
	4.7.2 The Approach to Solving the Problem
	4.7.3 Deriving the Solution Constructively
	4.7.4 Discussion

	4.8 Revision Exercises

	Chapter5 Procedures and Recursion
	5.1 Introduction
	5.2 Procedures
	5.2.1 Parameterless Procedures
	5.2.2 Pass by Value
	5.2.3 Pass by Result
	5.2.4 Pass by Value Result
	5.2.5 Functions

	5.3 Procedure Refinement Strategy
	5.4 Recursive Procedures
	5.5 Terminating Recursive Programs
	5.6 Recursive Examples
	5.6.1 Factorial
	5.6.2 Searching a List
	5.6.3 Evaluating an Expression Tree
	5.6.4 MergeSort

	5.7 Conclusion

	Chapter6 Case Study: Lattice Cover Graph Construction
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Lattices
	6.2.2 Set Intersection-Closed Lattices

	6.3 The Algorithm
	6.3.1 The Basic Structure
	6.3.2 Articulating and Attaining inv1(i)
	6.3.3 Articulating and Attaining inv2(i)
	6.3.4 Filling in S1
	6.3.5 Completing the Select Command
	6.3.6 The Completed Algorithm
	6.3.7 The Operational Implications

	6.4 Refactorings
	6.4.1 Efficiently Inserting CiX
	6.4.2 Finding the Parent of X
	6.4.3 Discussion

	6.5 A Gentle Introduction to Formal Concept Analysis

	Chapter7 Case Study 2: Classifying MADFA Construction Algorithms
	7.1 Introduction
	7.2 From DFAs to MADFAs
	7.2.1 Deterministic Finite Automata—DFAs
	7.2.2 Acyclic Deterministic Finite Automata—ADFAs
	7.2.3 Minimum Acyclic Deterministic Finite Automata—MADFAs
	7.2.4 Concepts for MADFA Construction Algorithms

	7.3 An Abstract MADFA Construction Algorithm
	7.3.1 Structural Invariant Instantiations
	7.3.2 The Procedures to be Instantiated
	7.3.3 The Importance of the Skeleton-Based Taxonomy

	7.4 Trie Intermediate ADFA
	7.4.1 Procedure add_wordT
	7.4.2 Adding Only Prefix Words
	7.4.3 Adding a Non-prefix Word in a Trie
	7.4.4 Procedure cleanupT
	7.4.4.1 First Refinement Path
	7.4.4.2 Second Refinement Path

	7.4.5 An Example

	7.5 Arbitrary Intermediate ADFA
	7.5.1 Procedure add_wordN
	7.5.2 Procedure cleanupN
	7.5.3 Commentary

	7.6 Word Adding Based on a Partial Order

	References
	Index

