

This page intentionally left blankThis page intentionally left blank

N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I

World Scientific

Proceedings of AFLAS 2008

Kyoto, Japan, 20 – 22 September 2008

edited by

Masami Ito
Kyoto Sangyo University, Japan

Yuji Kobayashi

Toho University, Japan

Kunitaka Shoji
Shimane University, Japan

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-4317-60-3
ISBN-10 981-4317-60-8

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

Copyright © 2010 by World Scientific Publishing Co. Pte. Ltd.

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

AUTOMATA, FORMAL LANGUAGES AND ALGEBRAIC SYSTEMS
Proceedings of AFLAS 2008

ZhangJi - Automata, Formal Languages.pmd 7/23/2010, 2:49 PM1

July 19, 2010 17:17 WSPC - Proceedings Trim Size: 9in x 6in 00a˙Preface

v

PREFACE

The International Workshop on Automata, Formal Languages and Al-

gebraic Systems (AFLAS 2008) was held at the Kansai Seminar House,

Kyoto, Japan during the period September 20-22, 2008 as a satellite work-

shop of the Twelfth International Conference on Developments in Language

Theory (Kyoto, September 16-19, 2008).

The workshop was organized under the sponsorship of Kyoto Sangyo

University and with the financial support of Japan Society for the Promo-

tion of Science.

The organizing committee consisted of the following members: M. Ito

(Kyoto, Japan), P. Leupold (Kassel, Germany), Y. Kobayashi (Funabashi,

Japan), K. Shoji (Matsue, Japan), F.M. Toyama (Kyoto, Japan), Y. Tsujii

(Kyoto, Japan).

The topics of the workshop were: semigroups, codes and cryptography,

automata and formal languages, word- and term-rewriting systems, ordered

structures and categories, combinatorics on words, complexity and com-

putability, molecular computing and quantum computing.

The number of participants was 37 from 13 different countries. There

were 24 lectures during the sessions.

This volume contains mainly the papers based on lectures given at the

workshop. All papers have been refereed. The editors express their gratitude

to all contributors of this volume including the referees.

The organizers and editors would like to express their thanks to Kyoto

Sangyo University, Japan Society for the Promotion of Science, the World

Scientific Publishing Company and the Kansai Seminar House for providing

the conditions to realize the workshop. We are also grateful to Kayoko Tsuji,

Yoshiyuki Kunimochi and Shinnosuke Seki for their assistance during the

workshop.

June 30, 2010 Masami Ito

Yuji Kobayashi

Kunitaka Shoji

Editors

July 19, 2010 17:17 WSPC - Proceedings Trim Size: 9in x 6in 00a˙Preface

This page intentionally left blankThis page intentionally left blank

July 23, 2010 10:37 WSPC - Proceedings Trim Size: 9in x 6in 00b˙Contents

vii

CONTENTS

Preface v

Solidifyable Minimal Clone of Partial Operation

S. Busaman and K. Denecke 1

A Novel Cryptosystem Based on Finite Automata

Without Output

P. Dömösi 23

Linear Languages of Finite and Infinite Words

Z. Ésik, M. Ito and W. Kuich 33

Extended Temporal Logics on Finite Words

Z. Ésik and Sz. Iván 47

The Number of Distinct 4-Cycles and 2-Matchings of Some

Zero-Divisor Graphs

M. Kanemitsu 63

On Normal Form Grammars and Their Size

A. Kelemenová, L. Ciencialová and L. Cienciala 71

Gröbner Bases on Algebras Based on Well-Ordered Semigroups

Y. Kobayashi 85

Concurrent Finite Automata and Related Language Classes

M. Kudlek and G. Zetzsche 103

Finitely Expandable Deep PDAs

P. Leupold and A. Meduna 113

July 23, 2010 10:37 WSPC - Proceedings Trim Size: 9in x 6in 00b˙Contents

viii

The Primitivity Distance of Words

G. Lischke 125

Fine Convergence of Functions and Its Effectivization

T. Mori, M. Yasugi and Y. Tsujii 139

On a Hierarchy of Permutation Languages

B. Nagy 163

Derivation Trees for Context-Sensitive Grammars

B. Nagy 179

On Proper Languages and Transformations of Lexicalized Types

of Automata

F. Otto 201

Initial Literal Shuffles of Uniform Codes

G. Tanaka and Y. Kunimochi 223

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

1

SOLIDIFYABLE MINIMAL CLONES OF PARTIAL

OPERATIONS

S. BUSAMAN

Department of Mathematics and Computer Science,

Prince of Songkla University,

94000 Pattani, Thailand
∗E-mail: bsaofee@bunga.pn.psu.ac.th

K. DENECKE

Institute of Mathematics, University of Potsdam,

Potsdam, Germany
∗E-mail: kdenecke@rz.uni-potsam.de

Partial operations occur in the algebraic description of partial recursive func-

tions and Turing machines (cf. A. I. Mal’cev
8
). Similarly to total operations

superposition operations can also be defined on sets of partial operations. A

clone of partial operations is a set of partial operations defined on the same

base set A which is closed under superposition and contains all total projec-

tions. The collection of all clones of partial operations defined on a set A forms

a complete lattice. For a finite nonempty set A this lattice is atomic and dually

atomic. A partial algebra is said to be strongly solid if every strong identity

of A is satisfied as a strong hyperidentity in A, i.e. if it is satisfied after any

replacement of operation symbols by derived term operations of A of the cor-

responding arity. A clone C of partial operations is called strongly solidifyable

if there is a partial algebra A such that C is equal to the clone of all term

operations of A. In this paper we determine all minimal strongly solidifyable

clones of partial operations defined on a finite nonempty set A.

Keywords: Partial algebra; Hyperidentity, Unsolid strong variety, Fluid strong

variety.

1. Introduction

Let A be a nonempty finite set. For every positive integer n an n-ary par-

tial operation on A is a map fA : domfA → A where domfA ⊆ An,

i.e. domfA is an n-ary relation on A, called the domain of fA. Let

P n(A) be the set of all n − ary partial operations defined on the set A

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

2

and let P (A) :=
∞⋃

n=1
P n(A) be the set of all partial operations on A.

Let O(A) ⊂ P (A) be the set of all total operations defined on A, i.e.

O(A) :=
∞⋃

n=1
On(A) with On(A) := {fA ∈ P n(A) | domfA = An}. For

n, m ≥ 1, fA ∈ P n(A) and gA
1 , . . . , gA

n ∈ P m(A), we define the superposi-

tion of fA and gA
1 , . . . , gA

n , denoted by Sn,A
m (fA, gA

1 , . . . , gA
n) ∈ P m(A), by

setting domSn,A
m (fA, gA

1 , . . . , gA
n) := {(a1, . . . , am) ∈ Am | (a1, . . . , am) ∈

n⋂
i=1

domgA
i and (gA

1 (a1, . . . , am), . . . , gA
n (a1, . . . , am)) ∈ domfA} and

Sn,A
m (fA, gA

1 , . . . , gA
n)(a1, . . . , am)

:= fA(gA
1 (a1, . . . , am), . . . , gA

n (a1, . . . , am))

for all (a1, . . . , am) ∈ domSn,A
m (fA, gA

1 , . . . , gA
n).

Let D ⊆ An be an n-ary relation on A. Then for every positive integer n

and each 1 ≤ i ≤ n we denote by e
n,A
i,D the n-ary i-the partial projection

defined by

e
n,A
i,D (x1, . . . , xn) = xi

for all (x1, . . . , xn) ∈ D.

Let JA := {en,A
i,D | 1 ≤ i ≤ n and D = An} be the set of all total projections

defined on A and let Jn
A be the set of all total n-ary projections defined on

A.

Definition 1.1. A partial clone C on A is a superposition closed subset of

P (A) containing JA. A proper partial clone is a partial clone C containing

an n-ary operation fA with domfA 6= An. If C ⊆ O(A) then C is called a

total clone.

Partial clones can be regarded as subalgebras of the heterogeneous

algebra

((P n(A))n∈N+ ; (Sn,A
m)m,n∈N+ , (Jn

A)n∈N+)

where N
+ is the set of all positive integers.

This remark shows that the set of all partial clones on A, ordered by in-

clusion, forms an algebraic lattice LP (A) in which arbitrary infimum is the

set-theoretical intersection. For F ⊆ P (A) by 〈F 〉 we denote the least par-

tial clone containing F .

A partial algebra A = (A; (fA
i)i∈I) of type τ = (ni)i∈I is a pair consist-

ing of a set A and an indexed set (fA
i)i∈I of partial operations where fA

i is

ni − ary. Let PAlg(τ) be the class of all partial algebras of type τ .

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

3

Definition 1.2. Let A = (A; (fA
i)i∈I) be a partial algebra of a given

type τ . To every partial algebra A we assign the partial clone generated by

{fA
i | i ∈ I}, denoted by T (A). The set T (A) is called clone of all term

operations of the algebra A.

We notice that we want to define terms over partial algebras in such a

way that the set of all partial operations induced by these terms is precisely

the clone of all term operations of A. Such terms are defined in the following

way:

Let Xn = {x1, . . . , xn} be an n-element alphabet and let X be an arbitrary

countable alphabet. Let {fi | i ∈ I} be a set of operation symbols of

type τ , where each fi has arity ni and where X ∩ {fi | i ∈ I} = ∅ and

Xn ∩ {fi | i ∈ I} = ∅. We need additional symbols εk
j 6∈ X , for every

k ∈ N
+ := N \ {0} and 1 ≤ j ≤ k. The set of all n-ary terms of type τ over

Xn is defined inductively as follows (see2):

(i) Every xi ∈ Xn is an n-ary term of type τ .

(ii) If w1, . . . , wk are n-ary terms of type τ , then εk
j (w1, . . . , wk) is an n-ary

term of type τ for all 1 ≤ j ≤ k and all k ∈ N
+.

(iii) If w1, . . . , wni
are n-ary terms of type τ and if fi is an ni-ary operation

symbol, then fi(w1, . . . , wni
) is an n-ary term of type τ .

Let W C
τ (Xn) be the set of all n-ary terms of type τ defined in this way.

Then W C
τ (X) :=

∞⋃
n=1

W C
τ (Xn) denotes the set of all terms of this type.

We notice that for convenience we will denote the variables from X or

from Xn also by x, y, z, etc. Every n-ary term w ∈ W C
τ (Xn) induces an

n-ary term operation wA of any partial algebra A = (A; (fA
i)i∈I) of type

τ . For a1, . . . , an ∈ A, the value wA(a1, . . . , an) is defined in the following

inductive way (see2):

(i) If w = xi then wA = xA
i = e

n,A
i , where e

n,A
i is the n-ary total projec-

tion on the i-th component.

(ii) If w = εk
j (w1, . . . , wk) and we assume that wA

1 , . . . , wA
k are the term

operations induced by the terms w1, . . . , wk and that wA
i (a1, . . . , an)

are defined for 1 ≤ i ≤ k, then wA(a1, . . . , an) is defined and

wA(a1, . . . , an) = wA
j (a1, . . . , an).

(iii) Now assume that w = fi(w1, . . . , wni
) where fi is an ni-ary op-

eration symbol, and assume that wA
j (a1, . . . , an) are defined, with

values wA
j (a1, . . . , an) = bj for 1 ≤ j ≤ ni. If fA

i (b1, . . . , bni
)

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

4

is defined, then wA(a1, . . . , an) is defined and wA(a1, . . . , an) =

fA
i (wA

1 (a1, . . . , an), . . . , wA
ni

(a1, . . . , an)).

Let T n(A) be the set of all term operations induced by the terms from

W C
τ (Xn) on the partial algebra A and let T (A) :=

∞⋃
n=1

T n(A).

We denote by arf the arity of the partial operation f . Any mapping

ϕ = (ϕ(n))n∈N+ : C → C ′ from a clone C ⊆ P (A) into C ′ ⊆ P (B) is a clone

homomorphism if

(i) arf= arϕ(f) for f ∈ C,

(ii) ϕ(en,A
i) = e

n,B
i (1 ≤ i ≤ n ∈ N

+),

(iii) ϕ(Sn,A
m (fA, gA

1 , . . . , gA
n)) = Sn,B

m (ϕ(fA), ϕ(gA
1), . . . , ϕ(gA

n)) for fA ∈
C(n) and gA

1 , . . . , gA
n ∈ C(m).

(Here ϕ(fA) means ϕ(n)(fA) where fA is n-ary). We recall that term oper-

ations on A satisfy the same compatibility condition with respect to clone

homomorphisms as fundamental operations of A.

Lemma 1.3. Let ϕ : T (A) → T (B) be a clone homomorphism defined by

ϕ(fA
i) = fB

i for all i ∈ I. Then ϕ(tA) = tB for all t ∈ W C
τ (X).

Proof. We will give a proof by induction on the complexity of the term

t.

(i) If t = xi, then

ϕ(tA) = ϕ(xA
i) = ϕ(en,A

i) = e
n,B
i = xB

i .

(ii) If t = εk
j (t1, . . . , tk) and if we assume that ϕ(tAi) |D= tBi |D where D is

the intersection of all domains of ϕ(tAi) and tBi , 1 ≤ i ≤ k, then

ϕ(tA) |D = ϕ(εk
j (t1, . . . , tk)A) |D

= ϕ(tAj) |D
= tBj |D
= εk

j (t1, . . . , tk)B |D
= tB |D.

(iii) If t = fi(t1, . . . , tni
) and if we assume that ϕ(tAj) |D= tBj |D where D

is the intersection of all domains of ϕ(tAj) and tBj , 1 ≤ j ≤ ni, then

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

5

ϕ(tA) |D = ϕ(fi(t1, . . . , tni
)A) |D

= ϕ(Sni,A
n (fA

i , tA1 , . . . , tAni
)) |D

= Sni,B
n (ϕ(fA

i), ϕ(tA1), . . . , ϕ(tAni
)) |D

= Sni,B
n (ϕ(fA

i), ϕ(tA1) |D, . . . , ϕ(tAni
) |D)

= Sni,B
n (fB

i , tB1 |D, . . . , tBni
|D)

= fi(t1, . . . , tni
)B |D

= tB |D.

For terms we need to define a superposition operation S
m

n , as follows. Let

w1, . . . , wm be n-ary terms and let t be an m-ary term. Then we define an

n-ary term S
m

n (t, w1, . . . , wm) inductively by the following steps:

(i) For t = xj , 1 ≤ j ≤ m (m-ary variable), we define

S
m

n (xj , w1, . . . , wm) = wj .

(ii) For t = εk
j (s1, . . . , sk) we set

S
m

n (t, w1, . . . , wm) = εk
j (S

m

n (s1, w1, . . . , wm), . . . , S
m

n (sk, w1, . . . , wm)),

where s1, . . . , sk are m-ary, for all k ∈ N
+ and 1 ≤ j ≤ k.

(iii) For t = fi(s1, . . . , sni
) we set S

m

n (t, w1, . . . , wm) = fi(S
m

n (s1, w1, . . . ,

wm), . . . , S
m

n (sni
, w1, . . . , wm)), where s1, . . . , sni

are again m-ary.

This defines an operation

S
m

n : W C
τ (Xm) × (W C

τ (Xn))m → W C
τ (Xn),

which describes the superposition of terms.

The term clone of type τ is the heterogeneous algebra

Cloneτ c := ((W C
τ (Xn))n∈N+ ; (S

m

n)n,m∈N+ , (ek
j)k∈N+, 1≤j≤k).

Let A be a partial algebra of type τ and let T (A) be the clone of

term operations of A. We define a family ϕ = (ϕ(n))n∈N+ of mappings,

ϕ(n) : W C
τ (Xn) → T n(A), by setting ϕ(n)(t) = tA, the n-ary term operation

induced by t. It is easy to see that ϕ has the following properties (13):

(i) ϕ(n)(xi) = e
n,A
i , 1 ≤ i ≤ n, n ∈ N

+,

(ii) ϕ(n)(S
m

n (s, t1, . . . , tm)) |D= Sm
n (ϕ(m)(s), ϕ(n)(t1), . . . , ϕ

(n)(tm)) |D, for

n ∈ N
+, where D is the intersection of the domains of all tAi , 1 ≤ i ≤ m,

where s is m-ary, and t1, . . . , tm are n-ary.

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

6

Definition 1.4. (13) Let {fi | i ∈ I} be a set of operation symbols of type

τ and W C
τ (X) be the set of all terms of this type. A mapping σ : {fi | i ∈

I} −→ W C
τ (X) which maps each ni-ary operation symbol fi to a term of

arity ni is called a hypersubstitution of type τ .

Any hypersubstitution σ of type τ can be extended to a map σ̂ :

W C
τ (X) −→ W C

τ (X) defined for all terms, in the following way (13):

(i) σ̂[xi] = xi for every xi ∈ Xn,

(ii) σ̂[εk
j (s1, . . . , sk)] = S

k

n(εk
j (x1, . . . , xk), σ̂[s1], . . . , σ̂[sk]), where

s1, . . . , sk ∈ W C
τ (Xn),

(iii) σ̂[fi(t1, . . . , tni
)] = S

ni

n (σ(fi), σ̂[t1], . . . , σ̂[tni
]), where t1, . . . , tni

∈
W C

τ (Xn).

Let V ar(t) be the set of all variables occurring in the term t.

Definition 1.5. (9) The hypersubstitution σ is called regular if

V ar(σ(fi)) = {x1, . . . , xni
}, for all i ∈ I .

Let HypC
R(τ) be the set of all regular hypersubstitutions of type τ .

Definition 1.6. (12) A pair t1 ≈ t2 ∈ W C
τ (X)2 is called a strong identity in

a partial algebra A (in symbols A |=
s

t1 ≈ t2) if and only if the right hand

side is defined whenever the left hand side is defined and both are equal,

i.e. when both sides are defined, then the induced partial term operations

tA1 and tA2 are equal.

Let K ⊆ PAlg(τ) be a class of partial algebras of type τ and Σ ⊆
W C

τ (X)2. Consider the connection between PAlg(τ) and W C
τ (X)2 given

by the following two operators Ids : P(PAlg(τ)) → P(W C
τ (X)2) and

Mods : P(W C
τ (X)2) → P(PAlg(τ)) with

IdsK := {s ≈ t ∈ W C
τ (X)2 | ∀A ∈K (A |=

s

s ≈ t)} and

ModsΣ := {A ∈ PAl}(τ) | ∀∫ ≈ t ∈ ±(A |=
s

s ≈ t)}.

Clearly, the pair (Mods, Ids) is a Galois connection between PAlg(τ)

and W C
τ (X)2. We have two closure operators ModsIds and IdsMods and

their sets of fix points.

Definition 1.7. Let V ⊆ PAlg(τ) be a class of partial algebras of type τ .

The class V is called a strong variety of partial algebras if V = ModsIdsV .

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

7

For A ∈ PAlg(τ), V (A) is called the strong variety generated by the single

algebra A (i.e. V (A) = ModsIdsA).

Definition 1.8. A strong identity s ≈ t in a partial algebra A is called

a strong hyperidentity in A (in symbols A |=
shyp

t1 ≈ t2) if and only if

σ̂[s] ≈ σ̂[t] are strong identities in A for every σ ∈ HypC
R(τ).

The next concept which we have to introduce is the concept of a totally

symmetric and totally reflexive relation:

Definition 1.9. A relation R ⊆ An on the set A is called totally symmetric

if for all permutations s on {1, . . . , n}

(a1, . . . , an) ∈ R ⇔ (as(1), . . . , as(n)) ∈ R

and totally reflexive if R ⊇ ιn where ιn is defined by

ιn := {(a1, . . . , an) ∈ An | ai = aj and 1 ≤ i < j ≤ n}.

R is called trivial if R = An.

A binary totally reflexive and totally symmetric relation is reflexive and

symmetric in the usual sense.

2. Equivalent Strong Varieties of Partial Algebras

The concept of a hypersubstitution can be generalized to a mapping which

assigns operation symbols of one type to terms of a different type.

Definition 2.1. (13) Let τ = (fi)i∈I , τ ′ = (gj)j∈J be arbitrary types. A

mapping

τ ′

τ σ : {fi | i ∈ I} → W C
τ ′ (X),

(with arfi=ar σ(fi)), which assigns to every ni-ary operation symbol fi of

type τ an ni-ary term σ(fi) ∈ W C
τ ′ (X), is called a (τ, τ ′)-hypersubstitution.

Definition 2.2. (13) The (τ, τ ′)-hypersubstitution τ ′

τ σ is called regular if

V ar(τ ′

τ σ(fi)) = {x1, . . . , xni
} for all operation symbols fi of type τ .

Let HypC
R(τ, τ ′) denote the set of all regular (τ, τ ′)-hypersubstitutions

and let τ ′

τ σR be some member of HypC
R(τ, τ ′).

Any regular (τ, τ ′)-hypersubstitution τ ′

τ σR can be extended to a map

τ ′

τ σ̂R : W C
τ (X) → W C

τ ′ (X)

defined for all terms, in the following way:

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

8

(i) τ ′

τ σ̂R[xi] = xi whenever xi ∈ X ;

(ii) τ ′

τ σ̂R[εk
j (t1, . . . , tk)] = εk

j (τ ′

τ σ̂R[t1], . . . ,
τ ′

τ σ̂R[tk]);

(iii) τ ′

τ σ̂R[fi(t1, . . . , tni
)] = S′ni

n (τ ′

τ σR(fi),
τ ′

τ σ̂R[t1], . . . ,
τ ′

τ σ̂R[tni
]).

Lemma 2.3. (13) Let τ ′

τ σR ∈ HypC
R(τ, τ ′). Then

τ ′

τ σ̂R[S
m

n (t, t1, . . . , tm)] = S′m
n (τ ′

τ σ̂R[t],τ
′

τ σ̂R[t1], . . . ,
τ ′

τ σ̂R[tm]).

Since the extension τ ′

τ σ̂R of the regular (τ, τ ′)-hypersubstitution τ ′

τ σR

preserves arities, every extension τ ′

τ σ̂R defines a family of mappings

τ ′

τ σ̂R = (η(n) : W C
τ (Xn) → W C

τ ′ (Xn))n∈N+ .

Theorem 2.4. (13) The extension τ ′

τ σ̂R of a regular (τ, τ ′)-hypersubsti-

tution τ ′

τ σR defines a homomorphism

(η(n))n∈N+ : Cloneτ c → Cloneτ ′c where

Cloneτ c := ((W C
τ (Xn))n∈N+ ; (S

m

n)m,n∈N+ , (ek
j)k∈N+,1≤j≤k) and

Cloneτ ′c := ((W C
τ ′ (Xn))n∈N+ ; (S′m

n)m,n∈N+ , (e
′k
j)k∈N+,1≤j≤k).

Using our new concept of a hypersubstitution we can define a relation

between strong varieties of partial algebras of different types.

Definition 2.5. (13) Let V ⊆ PAlg(τ) and V ′ ⊆ PAlg(τ ′) be strong vari-

eties of type τ and τ ′, respectively. Then V and V ′ are called equivalent, in

symbols V ∼ V ′, if there exist a regular (τ, τ ′)-hypersubstitution τ ′

τ σR and

a regular (τ ′, τ)-hypersubstitution τ
τ ′σR such that for all t, t1, t2 ∈ W C

τ (X)

and t′, t′1, t
′
2 ∈ W C

τ ′ (X):

(a) V |=
s

t1 ≈ t2 ⇒ V ′ |=
s

τ ′

τ σ̂R[t1] ≈τ ′

τ σ̂R[t2];

(a′) V ′ |=
s

t′1 ≈ t′2 ⇒ V |=
s

τ
τ ′ σ̂R[t′1] ≈

τ
τ ′ σ̂R[t′2];

(b) V |=
s

τ
τ ′ σ̂R[τ

′

τ σ̂R[t]] ≈ t;

(b′) V ′ |=
s

τ ′

τ σ̂R[ττ ′ σ̂R[t′]] ≈ t′.

Lemma 2.6. Let τ ′

τ σR1
and τ ′

τ σR2
be regular (τ, τ ′)-hypersubstitutions and

A ∈ PAlg(τ ′). If τ ′

τ σR1
(fi)

A =τ ′

τ σR2
(fi)

A for all i ∈ I, then τ ′

τ σ̂R1
[t]A =τ ′

τ

σ̂R2
[t]A for t ∈ W C

τ (X).

Proof. We will give a proof by induction on the complexity of the term

t.

(i) If t = xi ∈ X , then τ ′

τ σ̂R1
[t]A = xA

i =τ ′

τ σ̂R2
[t]A.

(ii) If t = εk
j (t1, . . . , tk) and if we assume that τ ′

τ σ̂R1
[ti]

A |D=τ ′

τ σ̂R2
[ti]

A |D

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

9

where D is the intersection of all domains of τ ′

τ σ̂R1
[ti]

A and τ ′

τ σ̂R2
[ti]

A for

1 ≤ i ≤ k, then
τ ′

τ σ̂R1
[t]A |D = εk

j (τ ′

τ σ̂R1
[t1], . . . ,

τ ′

τ σ̂R1
[tk])A |D

= τ ′

τ σ̂R1
[tj]

A |D
= τ ′

τ σ̂R2
[tj]

A |D
= εk

j (τ ′

τ σ̂R2
[t1], . . . ,

τ ′

τ σ̂R2
[tk])A |D

= τ ′

τ σ̂R2
[t]A |D.

(iii) If t = fi(t1, . . . , tni
) and if we assume that τ ′

τ σ̂R1
[tj]

A |D=τ ′

τ σ̂R2
[tj]

A |D
where D is the intersection of all domains of τ ′

τ σ̂R1
[tj]

A and τ ′

τ σ̂R2
[tj]

A, for

1 ≤ j ≤ ni, then
τ ′

τ σ̂R1
[t]A |D = S′ni,A

n (τ ′

τ σR1
(fi)

A,τ
′

τ σ̂R1
[t1]

A, . . . ,τ
′

τ σ̂R1
[tni

]A) |D

= S′ni,A

n (τ ′

τ σR1
(fi)

A,τ
′

τ σ̂R1
[t1]

A |D, . . . ,τ
′

τ σ̂R1
[tni

]A |D)

= S′ni,A

n (τ ′

τ σR2
(fi)

A,τ
′

τ σ̂R2
[t1]

A |D, . . . ,τ
′

τ σ̂R2
[tni

]A |D)

= S′ni,A

n (τ ′

τ σR2
(fi)

A,τ
′

τ σ̂R2
[t1]

A, . . . ,τ
′

τ σ̂R2
[tni

]A) |D
= τ ′

τ σ̂R1
[t]A |D.

Lemma 2.7. For every mapping h : {fi | i ∈ I} → T (A), A ∈ PAlg(τ ′),

which maps the ni-ary operation symbol fi of type τ to an ni-ary term

operation from T (A), there exists a regular (τ, τ ′)-hypersubstitution τ ′

τ σR

such that h(fi) =τ ′

τ σR(fi)
A for all i ∈ I.

Proof. Let a mapping h : {fi | i ∈ I} → T (A) with h(fi) = tAi
where ti ∈ W C

τ ′ (Xni
) be given. Then we can consider a regular (τ, τ ′)-

hypersubstitution τ ′

τ σR : {fi | i ∈ I} → W C
τ ′ (X) defined by τ ′

τ σR(fi) = ti,

for i ∈ I and we get that h(fi) = tAi =τ ′

τ σR(fi)
A for i ∈ I .

Lemma 2.8. If A ∈ PAlg(τ), B ∈ PAlg(τ ′), then for every clone homo-

morphism γ : T (A) → T (B) there exists a regular (τ, τ ′)-hypersubstitution
τ ′

τ σR such that γ(tA) =τ ′

τ σ̂R[t]B for every t ∈ W C
τ (X).

Proof. Let A ∈ PAlg(τ), B ∈ PAlg(τ ′) and γ : T (A) → T (B) be a clone

homomorphism. Since γ preserves the arity, we can consider a mapping

h : {fi | i ∈ I} → T (B) with h(fi) = γ(fA
i), for i ∈ I which preserves the

arity and by Lemma 2.7, we have a regular (τ, τ ′)-hypersubstitution τ ′

τ σR

such that h(fi) =τ ′

τ σR(fi)
B, for i ∈ I . Then we get that γ(fA

i) =τ ′

τ σR(fi)
B,

for i ∈ I . We want to show that γ(tA) =τ ′

τ σ̂R[t]B for t ∈ W C
τ (X). We will

give a proof by induction on the complexity of the term t.

(i) If t = xi, then

γ(tA) = γ(xA
i) = γ(en,A

i) = e
n,B
i =τ ′

τ σ̂R[xi]
B =τ ′

τ σ̂R[t]B.

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

10

(ii) If t = εk
j (t1, . . . , tk) and if we assume that γ(tAi) |D=τ ′

τ σ̂R[ti]
B |D where

D is the intersection of all domains of γ(tAi) and τ ′

τ σ̂R[ti]
B, 1 ≤ i ≤ k, then

γ(tA) |D = γ(εk
j (t1, . . . , tk)A) |D

= γ(tAj) |D
= τ ′

τ σ̂R[tj]
B |D

= εk
j (τ ′

τ σ̂R[t1]
B |D , . . . ,τ

′

τ σ̂R[tk]B |D)

= εk
j (τ ′

τ σ̂R[t1]
B, . . . ,τ

′

τ σ̂R[tk]B) |D
= τ ′

τ σ̂R[t]B |D.

(iii) If t = fi(t1, . . . , tni
) and if we assume that γ(tAj) |D=τ ′

τ σ̂R[tj]
B |D

where D is the intersection of all domains of γ(tAj) and τ ′

τ σ̂R[tj]
B, 1 ≤ j ≤

ni, then
γ(tA) |D = γ(fi(t1, . . . , tni

)A) |D
= γ(Sni,A

n (fA
i , tA1 , . . . , tAni

)) |D
= Sni,B

n (γ(fA
i), γ(tA1), . . . , γ(tAni

)) |D
= Sni,B

n (γ(fA
i), γ(tA1) |D , . . . , γ(tAni

) |D)

= Sni,B
n (τ ′

τ σR(fi)
B,τ

′

τ σ̂R[t1]
B |D, . . . ,τ

′

τ σ̂R[tni
]B |D)

= τ ′

τ σ̂R[fi(t1, . . . , tni
)]B |D

= τ ′

τ σ̂R[t]B |D.

Proposition 2.9. Let A ∈ PAlg(τ), B ∈ PAlg(τ ′) be partial algebras and

let V := V (A) and V ′ := V (B) be the strong varieties generated by A and

by B, respectively. Then we have V ∼ V ′ if and only if T (A) ∼= T (B), i.e.

if the clones T (A) and T (B) are isomorphic.

Proof. Let τ = (fi)i∈I , τ ′ = (gj)j∈J . Let V ∼ V ′. Then there are

regular hypersubstitutions τ ′

τ σR, τ
τ ′σR satisfying Definition 2.5 (a) − (b′).

Then γ : T (A) → T (B) with tA 7→τ ′

τ σ̂R[t]B is well-defined (because of

sA = tA ⇒τ ′

τ σ̂R[s]B =τ ′

τ σ̂R[t]B) and by Lemma 2.3 we get that γ is a clone

homomorphism. Moreover, γ is injective by Definition 2.5 (a′) and (b) since

τ ′

τ σ̂R[s]B =τ ′

τ σ̂R[t]B ⇒τ
τ ′ σ̂R[τ

′

τ σ̂R[s]]A =τ
τ ′ σ̂R[τ

′

τ σ̂R[t]]A ⇒ sA = tA,

and γ is surjective by Definition 2.5 (b′) since

t′
B

=τ ′

τ σ̂R[ττ ′ σ̂R[t′]]B = γ(τ
τ ′σ̂R[t′]A).

Conversely, let T (A) ∼= T (B) and let γ : T (A) → T (B) be a clone iso-

morphism. Then there exist ti ∈ W C
τ ′ (Xni

), sj ∈ W C
τ (Xnj

) such that

γ(fA
i) = tBi , γ−1(gBj) = sAj . We define the regular hypersubstitutions

τ ′

τ σR : fi 7→ ti,
τ
τ ′σR : gj 7→ sj . By Lemma 2.8 we have γ(tA) =τ ′

τ σ̂R[t]B,

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

11

γ−1(t′
B
) =τ

τ ′ σ̂R[t′]A for t ∈ W C
τ (X) and t′ ∈ W C

τ ′ (X). We are going to

show that τ ′

τ σR, τ
τ ′ σ̂R fulfil Definition 2.5 (a) − (b′), which implies V ∼ V ′.

(a) V |=
s

s ≈ t ⇒ sA = tA ⇒τ ′

τ σ̂R[s]B = γ(sA) = γ(tA) =τ ′

τ σ̂R[t]B ⇒

V |=
s

τ ′

τ σ̂R[s] ≈τ ′

τ σ̂R[t].

Analogously we obtain for (a′) (using γ−1 instead of γ):

(b)τ
τ ′ σ̂R[τ

′

τ σ̂R[t]]A = γ−1(τ ′

τ σ̂R[s]B) = γ−1(γ(tA)) = tA,

i.e. V |=
s

τ
τ ′ σ̂R[τ

′

τ σ̂R[t]] ≈ t.

In a similar way we conclude for (b′).

3. Minimal Partial Clones

Let A be a finite set. The lattice LP (A) of all partial clones is atomic (1).

There are only finitely many minimal partial clones (atoms). In1 all of them

are determined up to the knowledge of the minimal clones in the lattice

LO(A) of all total clones. Unfortunately, in general the total minimal clones

are unknown. Lots of work has been done to determine all minimal clones

of total operations defined on a finite set (4,11). We will use the following

theorem (see1):

Theorem 3.1. The lattice LP (A) of all partial clones on a finite set A is

atomic and contains a finite number of atoms. C ∈ LP (A) is a minimal

partial clone if and only if C is a minimal total clone or C is generated

by a proper partial projection with a nontrivial totally reflexive and totally

symmetric domain.

Example 3.2. For a set F of operations defined on the same set let 〈F 〉
be the clone generated by F . For the two-element set A = {0, 1} the total

minimal clones are the following ones (10): 〈∧〉, 〈∨〉, 〈x + y + z〉, 〈m〉, 〈c1
0〉,

〈c1
1〉, 〈N〉, where ∧,∨, N denote the conjunction, disjunction and negation.

The symbol + denotes the addition modulo 2 and c1
0, c1

1 are the unary con-

stant operations with the value 0 and 1, respectively. We denote by m a

ternary operation defined by m(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z). Note

that we write 〈∧〉 instead of 〈{∧}〉. Since for n > 2 every totally symmetric

and totally reflexive relation on {0, 1} is trivial, we have exactly the follow-

ing proper partial minimal clones on {0, 1}: 〈e2
1,{(00),(11)}〉, 〈e

1
1,{0}〉, 〈e

1
1,{1}〉,

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

12

〈e1
1,∅〉. Altogether we have 11 minimal partial clones of operation defined

on the set {0, 1}.
In (4) all total minimal clones on a three-element set are determined.

There are 84 total minimal clones on {0, 1, 2}. Further we have exactly

the proper partial minimal clones generated by unary partial projections

with the domains {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, ∅, and the proper par-

tial minimal clones generated by binary projections with the domains

{(0, 0), (1, 1), (2, 2)}, {(0, 0), (1, 1), (2, 2), (0, 1), (1, 0)}, {(0, 0), (1, 1), (2, 2),

(0, 2), (2, 0)}, {(0, 0), (1, 1), (2, 2), (1, 2), (2, 1)}, {(0, 0), (1, 1), (2, 2), (0, 1),

(1, 0), (0, 2), (2, 0)}, {(0, 0), (1, 1), (2, 2), (0, 1), (1, 0), (1, 2), (2, 1)}, {(0, 1),

(1, 0), (0, 2), (2, 0)}. Since for n > 3 every totally symmetric and totally

reflexive relation on {0, 1, 2} is trivial, we have to consider totally sym-

metric and totally reflexive at most ternary relations. Since the relations

have to be totally symmetric by identification of variables one obtains

binary proper partial projections except in the case that the domain is

{(0, 0, 0), (1, 1, 1), (2, 2, 2)}. In this case by identification of variables one ob-

tains the proper partial binary projection with domain {(0, 0), (1, 1), (2, 2)}.
Altogether we have 98 partial minimal clones on {0, 1, 2}.
For |A| > 4 not all total minimal clones are known. By (11) each total

minimal clone can be generated by an operation f of one of the following

types:

(1) f is unary and f2 = f or fp = id for some prime number p,

(2) f is binary and idempotent,

(3) f is a ternary majority operation (f(x, x, y) = f(x, y, x) = f(y, x, x) =

x),

(4) f is the ternary operation x + y + z in a Boolean group,

(5) f is a semiprojection (i.e. ar f = n ≥ 3 and there exists an element

i ∈ {1, . . . , n} such that f(a1, . . . , an) = ai whenever a1, . . . , an are not

pairwise different).

4. Strongly Solidifyable Partial Clones

Definition 4.1. The partial algebra A is called strongly solid if every

strong identity is a strong hyperidentity of A.

Example 4.2. Consider the three-element partial algebra A =

({0, 1, 2}; fA) of type (1) with domfA = {1, 2} and fA(1) = 1, fA(2) = 0.

Every strong identity of A can be derived from the strong identity f 2(x) =

f3(x) (fn(x) = f(. . . (f(x)) . . .)). The unary terms over A are ε1
1(x), f(x)

and f2(x). Each of them fulfils f2(x) = f3(x). That means, f2(x) = f3(x)

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

13

is a strong hyperidentity and since all strong identities of A can be derived

from f2(x) = f3(x) every strong identity is a strong hyperidentity and A
is strongly solid.

Now we give some conditions under which A is not strongly solid.

Proposition 4.3. Let A = (A; (fA
i)i∈I) be a partial algebra with |A| ≥ 2.

Then A is not strongly solid if it satisfies one of the following conditions:

(i) There is a binary commutative operation under the fundamental

operations,

(ii) there is a total constant operation under the fundamental operations,

(iii) there is a nowhere defined (discrete) operation under the fundamental

operations,

(iv) A satisfies a strong identity s ≈ t with Left(s) 6= Left(t) or

Right(s) 6= Right(t), where Left(s) and Right(s) denote the first

and the last vaiable, respectively occurring in the term s.

(v) A satisfies a strong identity of the form f(xs1(1), . . . , xs1(n)) ≈
f(xs2(1), . . . , xs2(n)) with mappings s1, s2 : {1, . . . , n} → {1, . . . , n},
n ≥ 2, such that s1(i) 6= s2(i) for all i = 1, . . . , n.

Proof. We show that A is not strongly solid indicating a strong identity

which is not a strong hyperidentity.

(i) Let fA be a binary commutative fundamental operation of A. Com-

mutativity of fA means: f(x, y) ≈ f(y, x) is a strong identity. The strong

identity f(x, y) ≈ f(y, x) is not a strong hyperidentity. This becomes clear

if we substitute for the binary operation symbol f in f(x, y), f(y, x) the

term ε2
1(x, y).

(ii),(iii) A total, constant or nowhere defined unary operation fA satisfies

the strong identity f(x) ≈ f(y). The strong identity f(x) ≈ f(y) is not a

strong hyperidentity. This is evident if we substitute for f in f(x) ≈ f(y)

the term ε1
1(x). If fA is an n-ary total, constant or nowhere defined op-

eration and n > 1, then f(x1, x2 . . . , xn) ≈ f(x2, x1, . . . , xn) is a strong

identity but not a strong hyperidentity. We see this if we substitute for the

n-ary operation symbol f in f(x1, x2 . . . , xn) ≈ f(x2, x1, . . . , xn) the term

εn
1 (x1, . . . , xn).

(iv) This becomes clear if we substitute for all n-ary operation symbols

occurring in terms s, t the term εn
1 (x1, . . . , xn) (or the term εn

n(x1, . . . , xn)

in the second case in which Right(s) 6= Right(t)).

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

14

(v) In this case we get the proof substituting for all n-ary operation

symbols (n > 1) in f(xs1(1), . . . , xs1(n)) ≈ f(xs2(1), . . . , xs2(n)) the term

εn
j (x1, . . . , xn) for j = 1, . . . , n.

Definition 4.4. A partial clone C ⊆ P (A) is called strongly solidifyable

if there exists a strongly solid algebra A with C = T (A).

From Proposition 4.3, we get some criterions for partial clones to be not

strongly solidifyable.

Proposition 4.5. Let C ⊆ P (A) be a partial clone, |A| ≥ 2. If C satisfies

one of the following conditions (1)-(4), then C is not strongly solidifyable.

(1) C contains a binary commutative operation,

(2) C contains a total constant operation,

(3) C contains a nowhere defined operation,

(4) there exists an fA ∈ C(n), n ≥ 2, and mappings s1, s2 : {1, . . . , n} →
{1, . . . , n}, n ≥ 2, such that s1(i) 6= s2(i) for all i = 1, . . . , n and

f(xs1(1), . . . , xs1(n)) ≈ f(xs2(1), . . . , xs2(n)) is a strong identity in A.

Proof. If A is a partial algebra such that T (A) = C, and if C has one of

the properties (1) - (4), then T (A) has the same property. We can assume

that A has one of the operations requested in conditions (1) - (4) under its

fundamental operations. By Proposition 4.3 the partial algebra A cannot

be strongly solid.

Since clones of partial operations are total algebras, we can characterize

solidifyable clones in the same way as it was done in6 for clones of total

algebras.

Theorem 4.6. C is strongly solidifyable if and only if C is a free algebra,

freely generated by {fA
i | i ∈ I}.

Proof. Assume that C is strongly solidifyable. Then there exists a

strongly solid partial algebra A = (A; (fA)i∈I) such that C = T (A).

Let F n,A := {fA
j | j ∈ I and fA

j is n-ary }. Consider an arbitrary se-

quence ϕ := (ϕ(n))n∈N+ of mappings with ϕ(n) : F n,A → T n(A). For every

n ∈ N
+ and every n-ary fA

j , there are n-ary term operations tAj ∈ T (A)

with ϕ(n)(fA
j) = tAj . This allows us to define a regular hypersubstitution

σR with σR(fj) = tj , j ∈ I . Then we have ϕ(n)(fA
j) = σR(fj)

A, j ∈ I .

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

15

Let ϕ(n)(tA) = σ̂R[t]A for any t ∈ W C
τ (Xn). Then (ϕ(n))n∈N+ is the exten-

sion of (ϕ(n))n∈N+ since ϕ(n)(fA) = σ̂R[fi(x1, . . . , xni
)]A = σR(fi)

A and

ϕ = (ϕ(n))n∈N+ is an endomorphism because of

ϕ(n)(Sn,A
m (tA, tA1 , . . . , tAn)) = ϕ(n)(Sn

m(t, t1, . . . , tn)A)

= σ̂R[Sn
m(t, t1, . . . , tn)]A

= Sn
m(σ̂R[t], σ̂[t1], . . . , σ̂[tn])A

by Lemma 2.3

= Sn
m(σ̂R[t]A, σ̂[t1]

A, . . . , σ̂[tn]A)

= Sn,A
m (ϕ(n)(tA), ϕ(n)(tA1), . . . , ϕ(n)(tAn))

for every n ≥ 1.

Therefore any mapping (ϕ(n))n∈N+ can be extended to an endomorphism

of C and C is a free algebra, freely generated by {fA
i | i ∈ I}.

Conversely, let C be a free algebra, freely generated by {fA
i | i ∈ I} (i.e.

for every map ϕ : {fA
i | i ∈ I} → C there is a homomorphism (clone ho-

momorphism ϕ : 〈{fA
i | i ∈ I}〉 → C). Then we have that C = 〈{fA

i | i ∈
I}〉 = T (A), where A = (A; (fA

i)i∈I) is a partial algebra. The next step is

to show that A is strongly solid. Let σR : {fi | i ∈ I} → W C
τ (X) be a reg-

ular hypersubstitution. Consider a mapping γ : {fA
i | i ∈ I} → C = T (A)

with γ(fA
i) = σR(fi)

A. Then γ can be extended to a clone endomorphism

γ : 〈{fA
i | i ∈ I}〉 → C and by Lemma 2.8 for every term t ∈ W C

τ (X) we

have
s ≈ t ∈ IdsA ⇒ sA = tA

⇒ γ(sA) = γ(tA)

⇒ σ̂R[s]A = σ̂R[t]A

⇒ σ̂R[s] ≈ σ̂R[t] ∈ IdsA.
Therefore A is strongly solid.

Proposition 4.7. Let C, C ′ ⊆ P (A) be clones of partial algebras. If C ∼= C ′

and C is strongly solidifyable then C ′ is also strongly solidifyable.

Proof. Since C is strongly solidifyable, there is a partial algebra A =

(A; (fA
i)i∈I) such that C = T (A) = 〈{fA

i | i ∈ I}〉. Since C ∼= C ′, there is

an isomorphism ϕ : T (A) → C ′ which maps the generating system of T (A)

to a generating system of C ′. Therefore C ′ = 〈{ϕ(fA
i) | i ∈ I}〉 and we get

that C ′ is a free algebra, freely generated by {ϕ(fA
i) | i ∈ I}. By Theorem

4.6, we have that C ′ is strongly solidifyable.

From the definition of strongly solidifyable clones, from Proposition 2.9

and Proposition 4.7, we have that

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

16

Corollary 4.8. If A is strongly solid and V (A) ∼ V (B), then B is strongly

solid.

Now we want to determine all strongly solidifyable partial clones generated

by a single unary operation fA. A partial algebra A = (A; fA), (|A| ≥ 2),

where fA is a unary operation on A is called mono-unary. Every strong

identity of a mono-unary partial algebra has the form

fk(x) ≈ f l(x) (k, l ∈ {0, 1, . . .})

or

fk(x) ≈ fk(y) (k ∈ {1, 2, . . .}).

Obviously, identities of the second form cannot be strong hyperidentities

because when substituting for the unary operation symbol the term ε1
1(x)

we would get ε1
1(x) ≈ ε1

1(y) (i.e. x ≈ y) in contradiction to |A| > 1.

For a partial unary operation fA : A (→ A let ImfA := {fA(a) | a ∈ A}
be the image of fA and let λ(fA) denote the least non-negative m such

that Im(fA)m = Im(fA)m+1.

Example 4.9.

1. Consider the three-element partial algebra A = ({0, 1, 2}; fA) of type

(1) with domfA = {1, 2} and fA(1) = 0, fA(2) = 1. Then we have

fA (fA)2 (fA)3

0 − − −
1 0 − −
2 1 0 −

and λ(fA) = 3.

2. Consider the three-element partial algebra A = ({0, 1, 2}; fA) of type

(1) with domfA = {0, 2} and fA(0) = 0, fA(2) = 0. Then we have

fA (fA)2

0 0 0

1 − −
2 0 0

and λ(fA) = 1. Then |Im(fA)λ(fA)| = |Im(fA)1| = 1.

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

17

Corollary 4.10. The partial clone generated by the mono-unary partial

operation fA contains a constant if and only if |Im(fA)λ(fA)| = 1.

Then we have:

Proposition 4.11. A mono-unary partial algebra A = (A; fA), (|A| ≥ 2),

is strongly solid if and only if |Im(fA)λ(fA)| > 1 (i.e. T (A) contains no

constant and no nowhere defined partial operation).

Proof. Assume |Im(fA)λ(fA)| > 1. Then the powers (fA)m are not

constant and not nowhere defined operations. Every strong identity of A is

of the form fk(x) ≈ f l(x). The powers (fA)m and the identity operation

are the only unary operations of T (A) and satisfy this identity since

((fA)m)k(x) = ((fA)k)m(x) = ((fA)l)m(x) = ((fA)m)l(x).

Thus every strong identity is a strong hyperidentity, i.e. A is strongly solid.

If |Im(fA)λ(fA)| ≤ 1 then (fA)λ(fA) is a nowhere defined operation or

(fA)λ(fA) is constant. In this case fk(x) ≈ fk(y) is a strong identity in A
but not a strong hyperidentity in A. This becomes clear when substituting

for the unary operation symbols the term ε1
1(x). Then we get ε1

1(x) ≈ ε1
1(y)

(i.e. x ≈ y), a contradiction to |A| > 1.

If we want to determine all solidifyable minimal partial clones following

Theorem 3.1 we have to investigate the proper partial minimal clones, i.e.

the clones generated by a proper partial projection with a nontrivial totally

reflexive and totally symmetric domain. We can restrict our investigation to

one projection en
i,D for every totally reflexive and totally symmetric domain

D and every n since en
j,D ∈ 〈en

i,D〉 and en
i,D ∈ 〈en

j,D〉 for each 1 ≤ i, j ≤ n

and thus 〈en
i,D〉 = 〈en

j,D〉.
We consider the following cases:

(i) 2 < n ≤ |A|.
Choose i = 1. Then ẽn

1,D(x1, x2, x3, x4, . . . , xn) ≈ ẽn
1,D(x1, x3, x2, x4, . . . ,

xn) where ẽn
1,D is an operation symbol corresponding to the opera-

tion en
1,D, is a strong identity of the algebra A = (A; en

1,D). Indeed, if

(x1, x2, x3, x4, . . . , xn) ∈ dom en
1,D(= D), then (x1, x3, x2, x4, . . . , xn) ∈ D

since D is totally symmetric and conversely. Further, in the case that both

sides are defined, the values agree. The equation f(x1, x2, x3, x4, . . . , xn) ≈
f(x1, x3, x2, x4, . . . , xn) is not a strong hyperidentity of A = (A; en

1,D) since

when substituting for the operation symbol f the term εn
2 (x1, . . . , xn) we

would get e
n,A
2 (a1, . . . , an) 6= e

n,A
3 (a1, . . . , an) because of |A| > 2. This

means that A is not strongly solid. In a similar way for any other 1 < i ≤ n

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

18

and any totally symmetric and totally reflexive D ⊆ An we get that

(A; en
i,D) is not strongly solid. Therefore, the clones 〈en

i,D〉 with n < 2 and

1 ≤ i ≤ n are not strongly solidifyable.

(ii) 2 = n ≤ |A|.
Let D 6= ι2, i.e. D is different from the diagonal ι2 = {(a, a) | a ∈ A}. Now

we consider the equation

ẽ2
1,D(x1, ẽ

2
1,D(x1, x2)) ≈ ẽ2

1,D(x1, ẽ
2
1,D(x2, x1)).

Assume that the left hand side is defined, i.e. (x1, x2) ∈ D. Then

ẽ2
1,D(x1, x2) ≈ x1 and (x1, x1) ∈ D because of the reflexivity of D. Since

D is symmetric we get (x2, x1) ∈ D and therefore ẽ2
1,D(x2, x1) ≈ x2. From

(x1, x2) ∈ D we get that the right hand side is defined. In the same way we

get that the left hand side is defined whenever the right hand side is defined

and both sides agree. On the other hand, f(x1, f(x1, x2)) ≈ f(x1, f(x2, x1))

is not a strong hyperidentity of A = (A; e2
1,D) since when we substitute for

the operation symbol f the term ε2
2(x1, x2) we would get e

2,A
2 (x1, x2) =

e
2,A
1 (x1, x2) i.e. A would be a one-element set. If D is the diagonal ι2 we

have no contradiction. In this case e2
1,D is commutative and by Proposition

4.3(i) we conclude that A is not strongly solid. In a similar way we get

also that 〈e2
2,D〉 is not strongly solidifyable and therefore clones of the form

〈e2
i,D〉 when i ∈ {1, 2}, D = ι2, are not strongly solidifyable.

(iii) n = 1.

At first we consider the case that D 6= ∅. Then all strong identities of

the (13) algebra (A; e1
D) can be derived from the strong identity ẽ1

D(x1) ≈
[ẽ1

D]2(x1). Clearly, the equation f(x1) ≈ f2(x1) is a strong hyperidentity

of A = (A; e1
D). If D = ∅, then e1

D is the discrete unary operation satisfy-

ing the strong identity ẽ1
D(x1) ≈ ẽ1

D(x2) for all x1, x2 ∈ A. The equation

f(x1) ≈ f(x2) is not a strong hyperidentity. This is evident if we substitute

for f in f(x1) ≈ f(x2) the term ε1
1(x).

Together with Theorem 3.1 we get our result:

Theorem 4.12. A minimal partial clone C of partial operations on A (A

finite, |A| ≥ 2) is strongly solidifyable if and only if C has one of the

following forms

(1) C is generated by a unary operation fA different from the unary empty

operation and satisfying (fA)2 = fA or (fA)p = id where p is a prime

number, id the identity operation on A and C contains no constant

operation.

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

19

(2) C is generated by a binary operation gA which fulfils the identities

g(x1, x1) ≈ x1, g(g(x1, x2), x3) ≈ g(x1, f(x2, x3)) ≈ g(x1, x3).

Proof. We consider two cases:

case 1. C is generated by a proper partial projection with a nontrivial to-

tally reflexive and totally symmetric domain. Then by the remarks before

Theorem 4.12 C cannot be strongly solidifyable;

case 2. C is a total minimal clone. Then C is generated by an operation f

of one of the types (1) - (4):

(1) f is unary and f2 = f or fp = id for some prime number p. Similar to

Proposition 4.11, we get that A is a solid algebra and C is strongly solidi-

fyable.

(2) The operation f is binary and idempotent. If the binary operation f sat-

isfies f(x1, x1) ≈ x1 and f(x1, f(x2, x3)) ≈ f(x1, x3), then 〈f〉 is the clone

of a rectangular band and since rectangular bands are solid, 〈f〉 is strongly

solidifyable. Conversely, assume that C is minimal, strongly solidifyable and

of type (2). Then there exists a solid algebra A with C = T (A). We may as-

sume that the type of A = (A; fA) is (n) since C is minimal and is generated

by only one operation which is not a projection. By identification of vari-

ables, we get a binary operation g(x1, x2) := f(x1, x2, . . . , x2) which belongs

to C. Clearly, g cannot be a projection, otherwise A satisfies the identity

g(x1, x2) ≈ x1 or the identity g(x1, x2) ≈ x2. This contradicts the solidity

of A. Therefore 〈g〉 = C and then (A; gA) is also solid. Let t be an arbi-

trary binary term over (A; gA) such that leftmost(t) = rightmost(t) = x1.

Assume that tA is not a projection, then tA generates C. This means, we

can obtain gA from tA by superposition and then the term t can be pro-

duced by g and variables x1, x2 and this gives an equation of the form

g(x1, x2) ≈ f(x1, x2, . . . , x2, x1). Since A is a solid algebra, this cannot

be an identity in A and thus tA is a projection and the term t satisfies

t(x1, x2, . . . , x2, x1) ≈ x1. Therefore g satisfies the identities g(x1, x1) ≈ x1

and g(x1, g(x2, x1)) ≈ x1.

(3) f is a ternary majority operation (f(x1, x1, x2) ≈ f(x1, x2, x1) ≈
f(x2, x1, x1) ≈ x1). Then the identity f(x2, x1, x1) ≈ x1 is not a hyper-

identity of A = (A; fA) since when we substitute for the operation symbol

the term ε3
1(x1, x2, x3), we get a contradiction.

(4) f is the ternary operation x1 + x2 + x3 in a Boolean group. Then we

have that x1 + x1 + x2 ≈ x2 ≈ x2 + x1 + x1 is an identity. The identity

x1 +x1 +x2 ≈ x2 is not a hyperidentity. This becomes clear if we substitute

for the operation symbol the term ε3
1(x1, x2, x3).

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

20

(5) f is a semiprojection (i.e. ar f = n ≥ 3 and there exists an ele-

ment i ∈ {1, . . . , n} such that f(x1, . . . , xn) = xi whenever x1, . . . , xn

are not pairwise different). Then we have that f(x1, x2, . . . , xn) = xi =

f(x2, x1, . . . , xn) where i ∈ {1, . . . , n}. So, the identity f(x1, x2, . . . , xn) ≈
f(x2, x1, . . . , xn) is not a hyperidentity since when we substitute for the

operation symbol the term εn
1 (x1, . . . , xn), we get x1 ≈ x2 .

In6 the concept of the degree of representability degr(C) for a clone

of total operations is introduced. We generalize this concept to clones of

partial operations.

Definition 4.13. Let C ⊆ P (A) be a clone of partial operations. Then

the degree of representability degr(C) is the smallest cardinality |A′| such

that there is a clone C ′ ⊆ P (A′) with C ∼= C ′.

Proposition 4.14. Let C be a strongly solidifyable minimal partial clone.

(i) If C = 〈f〉, f2 = f and dom f ⊂ A then degr(C) = 2.

(ii) If C = 〈f〉, f2 = f and dom f = A then degr(C) = 3.

(iii) If C = 〈f〉, fp = id then degr(C) = p, where p is a prime number.

(iv) If C = 〈f〉 and f is binary then degr(C) = 4.

Proof. (i) If f2 = f and dom f ⊂ A then C ∼= T (A) where A =

({0, 1}; f0) with f0(0) = 0 and dom f0 = {0} since in each case the Cayley

table of the clone has the form

id f

id id f

f f f

and thus C(1) ∼= T (1)(A). Since C and T (A) are generated by its unary

operations we get

〈C(1)〉 = C ∼= T (A) = 〈T (1)(A)〉.

(ii), (iii) and (iv) were proved in.6

References

1. F. Börner, L. Haddad, R. Pöschel, Minimal partial clones, Preprint, 1990.
2. F. Börner, Varieties of Partial Algebras, Beiträge zur Algebra und Geometrie,

Vol. 37 (1996), No. 2, 259-287.
3. P. Burmeister, A Model Theoretic Oriented Approach to Partial Algebras,

Akademie-Verlag, Berlin 1986.

July 23, 2010 10:22 WSPC - Proceedings Trim Size: 9in x 6in 01

21

4. B. Csákány, All minimal clones on the three-element set, Acta Cybernetica
(Szeged), 6 (1983), 227-238.

5. K. Denecke, On the characterization of primal partial algebras by strong regu-

lar hyperidentities, Acta Math. Univ. Comenianae, Vol.LXIII, 1 (1994), 141-
153.

6. K. Denecke, D. Lau, R. Pöschel, D. Schweigert, Solidifyable clones, General
Algebra and Applications, Heldermann-Verlag, Berlin 1992.

7. E. Graczynska, D. Schweigert, Hyperidentities of given type Algebra Univer-

salis, 27 (1990), 305-318.
8. A.I. Mal’cev, Algorithms and Recursive Functions, Wolters Nordhoff Pub-

lishing, 1970.
9. J. P lonka, On Hyperidentities of some Varieties, General Algebra and Dis-

crete Mathematics, Heldermann-Verlag, Berlin 1995, 199-214.
10. E.L. Post, The two-valued iterative systems of mathematica logic, Ann. Math.

Studies 5, Princeton Univ. Press (1941).
11. I.G. Rosenberg, Minimal clones I: The five types, Lectures in Universal Al-

gebra, Colloqu. Math. Soc. J. Bolyai 43, 1983, 405-427.
12. B. Staruch, B. Staruch, Strong Regular Varieties of Partial Algebras, Algebra

Universalis, 31 (1994), 157-176.
13. D. Welke, Hyperidentitäten Partieller Algebren, Ph.D.Thesis, Universität

Potsdam, 1996.

Received: August 17, 2009

Revised: October 15, 2009

This page intentionally left blankThis page intentionally left blank

July 16, 2010 10:10 WSPC - Proceedings Trim Size: 9in x 6in 02

23

A NOVEL CRYPTOSYSTEM BASED ON FINITE

AUTOMATA WITHOUT OUTPUTS

P. DÖMÖSI
∗

Institute of Mathematics and Informatics, College of Nýıregyháza,

Sóstói út 31./B, Nýıregyháza, H-4400, Hungary
∗E-mail: domosi@nyf.hu

www.nyf.hu

In this paper we introduce a novel cryptosystem based on finite automata with-

out outputs. For encryption and decryption the apparatus uses the same secret

keys, which have the transition matrix of a key-automaton without outputs and

with an initial state and final states. To each character in the character set of

the plaintext there is one or more final states of the key automaton assigned.

During encryption the plaintext is read in sequentially character by character

and the key automaton assigns to each plaintext character a character string,

whose length is adjustable within a given length range. The apparatus cre-

ates the ciphertext by linking these character strings together. During decryp-

tion the key automaton starting from the initial state reads in the ciphertext

character by character and decryption is accomplished by linking together the

plaintext characters associated with certain final states, which provides the

plaintext in its original form.

Keywords: Cryptosystem; Finite Automata without Outputs.

1. Introduction

Automata theory provides a natural basis for designing cryptosystems and

several such systems have been designed. Some of them are based on

Mealy automata or their generalization, while others are based on cellular

automata.

Almost all cryptosystems can be modeled with Mealy machines (as se-

quential machines) or generalized sequential machines.1,4,13,19–22,25 A fur-

ther generation of the cryptosystems based on Mealy machines is the family

of public key FAPKC and FAPKC-3 systems.23,24

Almost from the very beginning of research into cellular automata, there

have been serious attempts at cryptographic applications.3,5,6,11,12,14,17,18,26

The subject matter of the present work is a cryptographic apparatus

July 16, 2010 10:10 WSPC - Proceedings Trim Size: 9in x 6in 02

24

with a Rabin-Scott automaton as key for encoding and decoding of

information.

2. Preliminaries

We start with some standard concepts and notations. All concepts not

defined here can be found in.15,16 By an alphabet we mean a finite nonempty

set. The elements of an alphabet are called letters. A word over an alphabet

Σ is a finite string consisting of letters of Σ. A word over a binary alphabet

is called a bit string. The string consisting of zero letters is called the empty

word, written by λ. The length of a word w, in symbols |w|, means the

number of letters in w when each letter is counted as many times it occurs.

By definition, |λ| = 0. At the same time, for any set H, |H | denotes the

cardinality of H. In addition, for every nonempty word w, denote by −→w the

last letter of w. (
−→
λ is not defined.) If u = x1 · · ·xk and v = xk+1 · · ·x` are

words over an alphabet Σ (with x1, . . . , xk , xk+1, . . . , x` ∈ Σ), then their

catenation uv = x1 · · ·xkxk+1 · · ·x` is also a word over Σ. In this case we

also say that u is a prefix of uv and v is a suffix of uv. Catenation is an

associative operation and, by definition, the empty word λ is the identity

with respect to catenation: wλ = λw = w for any word w. For every word w,

put w0 = λ, moreover, wn = wwn−1, n ≥ 1. Let Σ∗ be the set of all words

over Σ, moreover, let Σ+ = Σ∗ \ {λ}. Σ∗ and Σ+ are the free monoid and

the free semigroup, respectively, generated by Σ under catenation. Subsets

of Σ∗ are called (formal) languages. In particular, we put Σ0 = {λ}, Σn =

{w : |w| = n}, n ≥ 1, and Σ(0) = Σ0, Σ(n) = {w : |w| ≤ n}, n ≥ 1.

By an automaton we mean a finite Rabin-Scott automaton, i.e. a deter-

ministic finite initial automaton without outputs supplied by a set of final

states which is a subset of the state set. In more details, an automaton is

an algebraic structure A = (A, a0, AF , Σ, δ) consisting of the nonempty and

finite state set A, the nonempty and finite input set Σ, a transition function

δ : A×Σ → A, the initial state a0 ∈ A and the (not necessarily nonempty)

set AF ⊆ A of final states. The elements of the state set are the states, the

elements of AF are the final states, and the elements of the input set are the

input signals. It may happen that the initial state is a final state as well (this

is not excluded). An element of A+ is called a state word a and an element of

Σ∗ is called an input word. State and input words are also called state strings

and input strings, respectively. If a state string a1a2 · · · as (a1, . . . , as ∈ A)

has at least three elements, the states a2, a3, . . . , as−1 are also called inter-

a
The empty word is not considered as a state word.

July 16, 2010 10:10 WSPC - Proceedings Trim Size: 9in x 6in 02

25

mediate states. It is understood that δ is extended to δ∗ : A×Σ∗ → A+ with

δ∗(a, λ) = a, δ∗(a, xq) = δ(a, x)δ∗(δ(a, x), q), a ∈ A, x ∈ Σ, q ∈ Σ∗. In other

words, δ∗(a, λ) = a and for every nonempty input word x1x2 · · ·xs ∈ Σ+

(where x1, x2, . . . , xs ∈ Σ) there are a1, . . . , as ∈ A with δ(a, x1) =

a1, δ(a1, x2) = a2, . . . , δ(as−1, xs) = as such that δ∗(a, x1 · · ·xs) = a1 · · ·as.

In the sequel, we will consider the transition of an automaton in this

extended form and thus we will denote it by the same Greek letter δ.

If
−−−−→
δ(a, w) = b holds b for some a, b ∈ A, w ∈ Σ∗ then we say that w

takes the automaton from its state a into the state b, and we also say that

the automaton goes from the state a into the state b under the effect of

w. We say that z ∈ Σ+ is a dummy string with respect to the input word

u ∈ Σ∗ if for every nonempty prefix w of z,
−−−−−−→
δ(a0, uw) /∈ AF (including

−−−−−→
δ(a0, uz) /∈ AF).

Finally, for every pair a, b ∈ A of states define the language La,b ⊆ Σ∗

of input words which take the automaton from the state a into the state b

without intermediate final states. In formula, let La,b =

{w ∈ Σ∗ |
−−−−→
δ(a, w) = b, ∀u, v ∈ Σ∗ : (w = uv & u, v 6= λ) ⇒

−−−−→
δ(a, u) /∈ AF }.

In addition, for every pair i, j of positive integers with i ≤ j, put L
i,j
a,b =

{pq|p ∈ Σi−1, q ∈ Lc,b ∩ Σ(j−i+1), c =
−−−−→
δ(a, p)}.

3. A Novel Cipher

The working of the considered system mainly differs from the most of the

stream ciphers : it does not generate the ciphertexts in such a way that the

plaintext bit stream is combined with a cipher bit stream by an exclusive-

or operation (XOR). On the other hand, it has the main property of the

stream ciphers : the plaintext digits are encrypted one at a time, and the

transformation of successive digits varies during the encryption.

The key is an automaton having the property that for every state pair,

whose first element is the initial state or a final state, its second element

is any final state, there are several distinct input strings such that the last

element of the state string, assigned to the first element of the state pair

and the given input string by the generalized transition function, is the

same as the second element of the state pair and none of the intermediate

elements of the state string is a final state.

b
Using the above notation

−→
z for a given nonempty word z,

−−−−→
δ(a, w) = b means that the

last letter of the state word δ(a, w) is equal to the state b.

July 16, 2010 10:10 WSPC - Proceedings Trim Size: 9in x 6in 02

26

3.1. Key Automaton and Random Ciphertext Blocks

Let us given a pair of alphabets Π, Σ called, in order, a plaintext alphabet

and a ciphertext alphabet. Consider an automaton A = (A, a0, AF , Σ, δ)

with |AF | ≥ |Π|, a surjective mapping ϕ : AF → Π, and a triplet

d, smin, smax of positive integers having smin ≤ smax. We say that A
is a key automaton (with respect to Π, Σ, ϕ, d, smin, smax) if for every

a ∈ {a0}∪AF , b ∈ AF , there are not fewer than d input words with length at

least smin and at most smax taking the automaton from its state a into the

state b without intermediate final states. In formula, for every pair a, b ∈ A,

it is assumed that |Lsmin,smax

a,b | ≥ d.

Put for every y ∈ Π, ϕ−1(y) = {a ∈ AF | ϕ(a) = y} as usual and

let i1 · · · ik be a plaintext with i1, . . . , ik ∈ Π. Consider a list wi1 , . . . , wik

of words with wi1 ∈ Lsmin,smax

a0,a1
, . . . , wik

∈ Lsmin,smax

ak−1,ak
such that, in order,

a1 ∈ ϕ−1(i1), . . . , ak ∈ ϕ−1(ik). Then wi1 · · ·wik
is a ciphertextc of i1 · · · ik,

where wi1 , . . . , wik
are called ciphertext blocks.

3.2. Encryption

Several types of encryption processes can be constructed. One of them may

be the following general (but not really effective) one.

- Let i1 · · · ik (i1, . . . , ik ∈ Π) be a plaintext.

- 1. Put a = a0 and j = 1.

- 2. Do while end of the plaintext file.

- 2.1. Read the character ij in.

- 2.2. Let wij
= λ.

- 2.3. do while ¬(smin ≤ |wij
| ≤ smax and

−−−−−→
δ(a, wij

) ∈ ϕ−1(ij)).

- 2.3.1. Let x be a random input signal and exchange the word wij

with wij
x.

- 2.3.2. If (|wij
| = smax and

−−−−−→
δ(a, wij

) /∈ ϕ−1(ij)))

then exchange wij
with λ.

- 2.4. Output wij
.

- 2.5. Exchange a with
−−−−−→
δ(a, wij

) and j with j + 1.

Theoretically, the cycle 2.3 of this process may be arbitrarily long.7,8

Therefore, this process suffers from practical difficulties. By an appropriate

type of key automata and a slight modification of the above process, these

difficulties can be overcome. (See Section 4.)

c
Every plaintext and every ciphertext is assumed to be nonempty.

July 16, 2010 10:10 WSPC - Proceedings Trim Size: 9in x 6in 02

27

3.3. Decryption

The decryption process is also quite simple.

- Let wi1 . . . wik
(wi1 , . . . , wik

∈ Σ+) be a ciphertext.

1. Put a = a0 and j = 0.

2. Do while end of the ciphertext file.

2.1. Read the next ciphertext character x in.

2.2. Exchange a with δ(a, x) and j with j + 1.

2.3. If (a ∈ AF and j ≥ smin) then put j=0 and output ϕ(a).

4. Encryption Without Backtracks

The speed of the encryption (and decryption) has a central importance in

the field. For this reason, we propose to consider random transition matrices

having the property that each of the final states is contained in each of the

columns of the transition matrix assigned to the non-final states, moreover,

each of the columns of the transition matrix has some (at least one) of the

non-final states (and thus the number of input signals should be greater

than that of final states). Then the steps 2.3.1 and 2.3.2 of the process in

Section 3.2 is worth modifying as follows.

- 2.3.1. Let t be a random positive integer with smin ≤ t ≤ smax and

put i = 0.

- 2.3.2.1. Do while i=t-1.

- 2.3.2.1.1. Let x be a random input signal with
−−−−−−→
δ(a, wij

x) /∈ AF .

- 2.3.2.1.2. Exchange wij
with wij

x and i with i + 1.

- 2.3.2.2. Let x be a random input signal with
−−−−−−→
δ(a, wij

x) = ϕ−1(ij).

- 2.3.2.3. Exchange the word wij
with wij

x.

Obviously, by these properties, there is no backtrack search in the gener-

ation of random ciphertext blocks. Therefore the encoding algorithm be-

comes faster. On the other hand, we can prescribe the random length t of

the generated ciphertext block in advance, and apart from the last one, we

can choose the random input signals of the ciphertext block in several ways.

5. Cryptanalysis

5.1. Automatic Learning Algorithms

It is a famous result2 that there exists a time polynomial and space linear

algorithm to identify the canonical automata of k-reversible languages by

July 16, 2010 10:10 WSPC - Proceedings Trim Size: 9in x 6in 02

28

using characteristic sample sets. Therefore, a really serious attack could

be successful against the proposed stream cipher if some of the automata

Ab0,F = (A, b0, F, Σ, δ), A \ {b0} 6= ∅, b0 ∈ A, F ⊆ A based on the key

automaton A = (A, a0, AF , Σ, δ) are k-reversible for a nonnegative integer

k. The following statement can help in handling this problem.

Theorem 5.1.
10 Let A = (A, a0, AF , Σ, δ) be an arbitrary automaton.

There is no nonnegative integer k for which A is k-reversible if and only if

there are distinct states a, b ∈ A, a nonempty input word u ∈ Σ+, an input

word v ∈ Σ∗, such that
−−−−→
δ(a, u) = a,

−−−−→
δ(b, u) = b,

−−−−→
δ(a, v) 6=

−−−→
δ(b, v), and either

−−−−→
δ(a, v),

−−−→
δ(b, v) ∈ AF or

−−−−−→
δ(a, vx) =

−−−−−→
δ(b, vx) for some x ∈ Σ. �

By the above statement, given an automaton A = (A, a0, AF , Σ, δ), none

of the automata Ab0,F = (A, b0, F, Σ, δ), A \ {b0} 6= ∅, b0 ∈ A, F ⊆ A are k-

reversible for some nonnegative integer k, if for every distinct a, b ∈ A there

are a nonempty input word u ∈ Σ+, an input word v ∈ Σ∗, an input signal

x ∈ Σ such that
−−−−→
δ(a, u) = a,

−−−−→
δ(b, u) = b,

−−−−−−→
δ(a, uvx) =

−−−−−−→
δ(b, uvx). For example,

this property automatically holds if there is a row of the transition matrix

having permutation of the state set, moreover, there is a reset signal.

5.2. Adaptive Chosen-Ciphertext Attack, Adaptive Chosen-

-Plaintext Attack, Adaptive Chosen-Plaintext -Chosen-

-Ciphertext Attack

Assume that the ciphertext w1 · · ·ws consisting of the unknown cipher-

text blocks w1, . . . , ws ∈ Σ∗ is given and the cryptanalyst can make an

unbounded number of interactive queries, choosing subsequent ciphertexts

based on the information from the previous encryptions. Moreover assume,

that an upper bound k for the length of the ciphertext blocks is known for

the attacker. Then it can be possible to send a series of random strings of

length at most k to the cipher system. Sooner or later the attacker will send

the string w1 and then he/she will get an answer consisting of the plaintext

character i1 to which the first block w1 of the ciphertext was generated.

Recall that, either no answer or an answer consisting of more than one

plaintext character will arrive whenever the sent message is differs from

w1. If the plaintext consists of one character then we are ready and the

attack was successful. Otherwise the attacker can continue the attack for

the suffices w2 · · ·ws, w3 · · ·ws, . . . , ws of the ciphertext receiving, in order,

the second, third, ..., last character of the plaintext.

July 16, 2010 10:10 WSPC - Proceedings Trim Size: 9in x 6in 02

29

In this case, the only possibility of defense is to apply a relatively large

automaton, moreover, relatively large numbers for the minimal and max-

imal block lengths. Obviously, if the length of the ciphertext blocks is on

average k, and m is the minimum of the number of non-final states in all

column of the transition matrix, then for every plaintext character one can

consider at least mk−1 ciphertext blocks (even if all ciphertext blocks have

the same length). If the number of the states (and also the number of the

input signals) in the key automaton is, say, 256, moreover, there are 16

final states, then m = 238 can be assumed.d Using the above method, then

breaking for k ≥ 18 is really infeasible.

Similarly to the above method, adaptive chosen-plaintext attack and

adaptive chosen-plaintext-chosen-ciphertext attack can be constructed to

the proposed stream cipher. Similar defenses can be applied as above.

6. Performance

The speed of encryption and decryption does not essentially depend on the

size of the key automaton. We applied key automata from 16 up to 256

states and also from 16 up to 256 inputs having the properties discussed in

Section 4. The plaintext alphabet and also the set of the final states of the

key automaton was the same consisting of 2, 4, or 16 elements.

Testing software simulations of the proposed stream cipher were imple-

mented using a computer program written in C++. The implementation

was tested on a conventional laptop Toshiba Tecra A8-104 clocked at 2

GHz with 2 Mbyte L2 of cache and 1 Gbyte RAM under operation system

Windows XP. If the minimal length of the ciphertext block is 5, its maximal

length is 10, then the implemented system reaches the speed of 600 Kbyte/s

as encryption and 800 Kbyte/s as decryption (in relation to the length of

the plaintext). Comparing some stream ciphers (see, for example,9), the

proposed cryptosystem is rather slow at least for the implemented software

case.

7. Conclusion

In this paper we introduced a novel cryptosystem based on finite automata

without outputs.

d
We may assume that all columns of the transition matrix assigned to the non-final

states contain not more than 17 final states and that one of the input signals is the reset

one.

July 16, 2010 10:10 WSPC - Proceedings Trim Size: 9in x 6in 02

30

There are a few major issues with the discussed stream cipher.

- There is no serious security analysis.

- The discussed stream cipher is not really efficient, at least for the

software case. In comparison with other promising designs and even with

the state of the art ciphers (see, e.g., the homepage of the ESTREAM9

project) the performance of the discussed cipher is rather slow, at least for

the software case. A rigorous machine-independent investigation should be

necessary to explore the reasons of this drawback.

- The ciphertext may be much longer than the plaintext. An intrinsic

question is, how to deal with the ciphertext blowup. In the further research,

a concrete measure should be necessary to describe the tradeoff between

security and ciphertext blowup.

On the other hand, the discussed cryptosystem has the following

advantages :

- Although the work uses a random number generator, it can take ran-

dom number generators which are proved to be random indeed, or it can

use any radioactive or other physical random number sources.

- To each plaintext message there are several corresponding encoded

messages such that several encryptions of the same plaintext yield to several

distinct ciphertexts.

- Since there are no initial or end markers in the encoded message,

the ciphertext blocks cannot be identified without the key-automaton. So,

without the key, even the length of the plaintext is difficult to estimate,

since block lengths and the number of blocks are not public.

- Because of its inner structure, the proposed cipher is resistant to reused

key attack and substitution attack.

Acknowledgments

The author would like to thank Gábor Balázsfalvi, Tibor Csáki, Tamás

Gaál, Géza Horváth, Zoltán Mecsei, Benedek Nagy, Andor Pénzes, Heiko

Stamer, Tamás Virág for their helpful comments. Special thanks to Gábor

Balázsfalvi for developing the software discussed in Section 6 and Heiko

Stamer for his important observations and criticism.

References

1. A. Atanasiu: A class of coders based on gsm. Acta Informatica, 29 (1992),
779–791.

2. D. Angluin : Inference of reversible languages. J Assoc. Comput. Mach., 29

(1982), 741-765.

July 16, 2010 10:10 WSPC - Proceedings Trim Size: 9in x 6in 02

31

3. F. Bao: Cryptoanalysis of partially known cellular automata. IEEE Trans.
on Computers, 53 (2004), 1493–1497.

4. F. Bao and Y. Igarashi: Break finite automata public key cryptosystems.
In: Zoltán Fülöp, Ferenc Gécseg, eds., Proc. 22nd Int. Coll. On Automata
Languages and Programming - ICALP’95, Szeged, Hungary, July 10-14, 1995,
LNCS 944, Springer-Verlag, Berlin (1995), 147–158.

5. M. E. Bianco and D. A. Reed : Encryption system based on chaos theory.
US P 5,048,086, 1991.

6. E. Biham: Cryptoanalysis of the chaotic map cryptosystem suggested at EU-
ROCRYPT’91. In: D. W. Davies, ed., Proc. Conf. Advances in Cryptology
- EUROCRYPT’91, Workshop on the Theory and Application of Crypto-
graphic Techniques, Brighton, UK, April 8-11, 1991, LNCS 547 Springer-
Verlag, Berlin, 1991, 532-534.

7. P. Erdős, A. Rényi: On a new law of large numbers. J. Analyse Math. 23

(1970), 103–111.
8. P. Erdős, P. Révész: On the length of the longest head-run. Topics in in-

formation theory (Second Colloq., Keszthely, 1975), 219–228. Colloq. Math.
Soc. Janos Bolyai, Vol. 16, North-Holland, Amsterdam, 1977.

9. ESTREAM PHASE 3, http://www.ecrypt.eu.org/stream/
10. J. Falucskai: On the k-reversibility of finite automata. Annales Mathematicae

et Informaticae 36 (2009), 71–75, http://ami.ektf.hu.
11. P. Guan: Cellular automaton public key cryptosystem. Complex Systems, 1

(1987), 51–56.
12. H. A. Gutowitz, Method and Apparatus for Encryption, Decryption, and

Authentication Using Dynamical Systems. US P 5,365,589, 1994.
13. M. Gysin: One-key cryptosystem based on a finite non-linear automaton. In:

E. Dawson and J- Golic, eds., Proc. Int. Conf. Proceedings of the Cryptog-
raphy: Policy and Algorithms, CPAC’95, Brisbane, Queensland, Australia,
July 3-5, 1995. Lecture Notes in Computer Science 1029, Springer-Verlag,
Berlin (1995), 165–163.

14. T. Habutsu, Y. Nishio, I. Sasase, S. Mori: A Secret Key Cryptosystem by
Iterating a Chaotic Map. In: D. W. Davies, ed., Proc. Conf. Advances in
Cryptology - EUROCRYPT’91, Workshop on the Theory and Application
of Cryptographic Techniques, Brighton, UK, April 8-11, 1991, LNCS 547

Springer-Verlag, Berlin (1991), 127–140 .
15. J. E. Hopcroft, R. Motwani, and J. D. Ullman: Introduction to Automata

Theory, Languages, and Computation. 3rd edition, Pearson Addison-Wesley
Publishing Company, Inc., Reading, MA, 2006.

16. G. Horváth: The ϕ factoring algorithm (in Hungarian) Alkalmazott Mat.
Lapok 21, No. 2, 355–364 (2004).

17. J. Kari: Cryptosystems based on reversible cellular automata. Publ: Univer-
sity of Turku, Finland, April, 1992, preprint.

18. H. B. Lin: Elementary Symbolic Dynamics and Chaos in Dissipative Systems.
Publ.: World Scientific, Singapore, 1989.

July 16, 2010 10:10 WSPC - Proceedings Trim Size: 9in x 6in 02

32

19. T. Meskaten: On finite automaton public key cryptosystems. Publ.: TUCS
Technical Report No. 408, Turku Centre for Computer Science, Turku
(2001), 1–42.

20. V. J. Rayward-Smith: Mealy machines as coding devices. In: H. J. Beker and
F. C. Piper, eds., Cryptography and Coding, Claredon Press, Oxford, 1989.

21. G. Sullivan, F. Weierud: Breaking German Army Ciphers. In: Cryptologia
24(3) (2005), 193-?232.

22. R. Tao: On finite automaton one-key cryptosystems. In: R. Anderson, ed.,
Proc. 1st Fast Software Encryption Workshop - FSE’93. Proceedings of the
Security Workshop held in Cambridge, Cambridge, UK, December 9-11, 1993,
LNCS 809, Springer-Verlag, Berlin (1994), 135-148.

23. R. Tao and S. Chen: Finite automata public key cryptosystem and digital
signature. Computer Acta 8 (1985), 401-409 (in Chinese).

24. R. Tao, S. Chen and X. Chen: FAPKC3: a new finite automata public key
cryptosystem. Publ.: Technical report No. ISCAS-LCS-95-05, Laboratory
for Computer Science, Institute of Chinese Academy of Sciences, Beijing,
1995.

25. P. Wichmann: Cryptoanalysis of a modified rotor machine. In: J.-J. Quisquar-
ter, J. Vandewalle, eds., Proc. Conf. Advances in Cryptology - EURO-
CRYPT’89, Workshop on the Theory and Applications of Cryptographic
Techniques, Houthalen, Belgium, April 10-13, 1989, LNCS 434, Springer-
Verlag, Berlin (1990), 395–402.

26. S. Wolfram: Cryptography with Cellular Automata. In: C. W. Hugh, ed.,
Proc. Conf. Advances in Cryptology - CRYPTO’85, Santa Barbara, Califor-
nia, USA, August 18-22, 1985, LNCS 218, Springer-Verlag, Berlin (1986),
429–432.

Received: January 26, 2009

Revised: June 9, 2010

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

33

LINEAR LANGUAGES OF FINITE AND

INFINITE WORDS
∗

Z.ÉSIK
1
, M. ITO

2
and W. KUICH

3

1Dept. of Computer Science, University of Szeged, Hungary

2Dept. of Mathematics, Kyoto Sangyo University, Kyoto, Japan

3Inst. for Discrete Mathematics and Geometry, TU Vienna, Austria

A linear grammar with Büchi acceptance condition is a system

G = (N, Σ, P,X0, R)

where (N, Σ, P,X0) is an ordinary linear grammar with nonterminal alphabet

N , terminal alphabet Σ, productions P and start symbol X0, and R ⊆ N is a set

of repeated nonterminals. Consider the set of all finite and infinite derivation

trees rooted X0 whose leaves are labeled with letters of the terminal alphabet

and possibly the empty word. When the tree is infinite, we require that at least

one nonterminal letter in R appears infinitely often as the label of a vertex along

the unique infinite branch of the tree. The frontier of such a tree determines

a finite or infinite word over Σ. The set of all such words is called the linear

language of finite and infinite words generated by G. Using results from
1–3

we

provide an algebraic characterization of linear languages by rational operations.

More specifically, we associate a Conway semiring-semimodule pair (S, V) with

each alphabet Σ, where S is a semiring associated with Σ and V is the set of

all subsets of infinite words over Σ of appropriate order type, and show that a

set in V is linear if and only if it can be generated from certain simple elements

of the semiring S by the rational operations.

Keywords: Linear grammar, Conway semiring-semimodule pair.

AMS Classification: 68Q42, 68Q45, 68Q70, 16Y60

1. Linear languages

In this section, we will consider languages of finite and infinite words over

an alphabet Σ generated by linear grammars. Let Σω and Σωop

respectively

∗
Research supported by grant no. 77öu9 from the Austrian-Hungarian Action Foun-

dation, the HAS-JSPS cooperative grant no. 101, and by grant no. K 75249 from the

National Foundation of Hungary for Scientific Research.

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

34

denote the set of all ω-words and the set of all ωop-words over Σ, i.e.,

Σω = {a0a1 . . . : ai ∈ Σ}

Σωop

= {. . . a1a0 : ai ∈ Σ}

Now let

ΣωΣ∗ = {uv : u ∈ Σω, v ∈ Σ∗}

Σ∗Σωop

= {vu : u ∈ Σωop

, v ∈ Σ∗}

ΣωΣωop

= {uv : u ∈ Σω, v ∈ Σωop

}

Finally, let

Σ∞ = Σ∗ ∪ ΣωΣ∗ ∪ Σ∗Σωop

∪ ΣωΣωop

.

We will use linear grammars to generate languages which are subsets of

Σ∞.

A linear grammar with Büchi acceptance condition is a system

G = (N, Σ, P, X0, R)

where (N, Σ, P, X0) is an ordinary linear grammar6 with nonterminal al-

phabet N , terminal alphabet Σ, productions P and start symbol X0, and

R ⊆ N is a set of repeated nonterminals. Consider the set of all finite and

infinite derivation trees rooted X0, whose leaves are labeled with letters of

the terminal alphabet and possibly the empty word ε. Such a tree has a root

labeled X0 and is such that whenever a vertex is labeled X , for some X ∈ N ,

then there is some production X → X1 . . . Xk in P with Xi ∈ N ∪ Σ for

all i such that the vertex has k successors, labeled X1, . . . , Xk, respectively.

In particular, when k = 0, there is a single successor labeled ε. Clearly,

each infinite derivation tree has a unique infinite branch. We say that a

derivation tree is successful if it is either finite or infinite such that at least

one nonterminal in R occurs infinitely often as the label of a vertex along

the infinite branch of the tree.

The frontier (or yield) of a derivation tree can naturally be seen as a

word in Σ∞. The language L∞(G) generated by G consists of the frontiers

of successful derivation trees rooted X0. We call a language L ⊆ Σ∞ linear

if there is a linear grammar G with Büchi acceptance condition such that

L = L∞(G).

Example 1.1. Suppose that the only productions of G1 are X → aXb and

X → ε, where a, b are letters in Σ. If R = ∅ then L∞(G1) = {anbn : n ≥ 0}

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

35

is a set of finite words. If R = {X}, then L∞(G1) = {anbn : n ≥ 0} ∪
{aωbωop

}. (Of course, for any finite word u, uω = uu . . . and uωop

= {. . . uu}.
When u is the empty word, then these words are also empty.)

Example 1.2. Consider the grammar G2 with productions X → aX , X →
Y , Y → Y b, where a, b are terminal letters and X is the start symbol. Let

R = {Y }. Then L∞(G2) = {anbωop

: n ≥ 0}.

Remark 1.1. For each linear grammar G with Büchi acceptance condition

there is an equivalent grammar G′ generating the same language with no

production whose right side is a terminal word. Indeed, let Z be a new

nonterminal and replace each production X → u where u is a terminal

word by the productions X → uZ and Z → Z. Finally, add Z to the set of

repeated nonterminals.

In Section 6 we will give an operational characterization of linear lan-

guages, similar to the Kleene theorem for ω-regular languages and Büchi

automata, cf.5 This characterization result can be proved in a way which is

similar to the aforementioned Kleene theorem. However, our point is that

both of them are instances of a more general algebraic result, formulated

in Theorem 5.1. In Sections 2, 3 and 4, we will develop the necessary al-

gebraic machinery needed in order to present this general result and the

operational characterization of linear languages.

2. ω-monoids

Definition 2.1. An ω-semigroup5 is an ordered pair (S, V) consisting of a

semigroup S, a set V , a left action S × V → V of S on V , subject to the

axiom

s(s′v) = (ss′)v (1)

for all s, s′ ∈ S and v ∈ V , and an infinite product operation Sω → V ,

(s0, s1, . . .) 7→ s0s1 · · · ∈ V such that

s(s0s1 · · ·) = ss0s1 · · · (2)

(s0 · · · si1−1)(si1 · · · si2−1) · · · = s0s1 · · · (3)

for all s, s0, s1, . . . in S and any sequence 0 < i1 < i2 < An ω-monoid

is an ω-semigroup (S, V) such that S is a monoid, moreover, the action is

unitary:

1v = v (4)

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

36

for all v ∈ V . A morphism of ω-semigroups (S, V) → (S ′, V ′) is a pair of

functions (hS , hV) such that hS is a semigroup morphism S → S ′, hV is a

mapping V → V ′, and hS and hV jointly preserve the action: hS(s)hV (v) =

hV (sv) for all s ∈ S and v ∈ V , moreover,

hS(s0)hS(s1) · · · = hV (s0s1 · · ·)

for all s0, s1, . . . ∈ S, i.e., morphisms preserve the infinite product. Mor-

phisms of ω-monoids necessarily preserve the multiplicative identity of the

monoid component.

An important example of an ω-semigroup is (Σ+, Σω), where Σ is a

set, called an alphabet, Σ+ is the free semigroup of all finite nonempty

words over Σ, Σω is the set of all ω-words over Σ, and the action of Σ+

on Σω is defined by concatenation, so that for any u ∈ Σ+ and x ∈ Σω,

ux is the ω-word with a prefix u and corresponding tail x. More generally,

consider now two alphabets Σ and ∆. Then in a similar way, we can define

the ω-semigroup (Σ+, Σ∗∆ ∪ Σω), where Σ∗∆ is the collection of all finite

nonempty words over the (disjoint) union Σ ∪ ∆ starting with a possibly

empty word in Σ∗ (the free monoid of all finite words over Σ) and ending

in a letter in ∆. The action of Σ+ on Σ∗∆ ∪ Σω is defined as above.

Proposition 2.1.
5,7 For each pair of sets (Σ, ∆), the ω-semigroup

(Σ+, Σ∗∆ ∪ Σω) is freely generated by (Σ, ∆). In more detail, given any

ω-semigroup (S, V) and any pair of functions (hΣ, h∆) with hΣ : Σ → S

and h∆ : ∆ → V , there is a unique morphism of ω-semigroups (h]
Σ, h

]
∆) :

(Σ+, Σ∗∆ ∪ Σω) → (S, V) extending hΣ and h∆.

Indeed, h
]
Σ is the unique semigroup morphism Σ+ → S extending hΣ,

and h
]
∆ is defined by

h
]
∆(a1 . . . anb) = hΣ(a1) . . . hΣ(an)h∆(b)

h
]
∆(a1a2 . . .) = hΣ(a1)hΣ(a2) · · ·

where each ai is a letter in Σ and b is a letter in ∆.

We now turn to ω-monoids.

Lemma 2.1. Suppose that (S, V) is an ω-monoid and s0, s1, . . . is an infi-

nite sequence of elements of S. If the infinite sequence i0 < i1 < . . . contains

all those indices n for which sn 6= 1 then s0s1 · · · = si0si1 · · · .

Proof. There are two cases. If there exist an infinite number of indices

n with sn 6= 1 then our claim follows from (3). In the opposite case, let

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

37

j0, . . . , jk be the sequence of all those indices n with sn 6= 1. It follows from

(2) and (4) that both s0s1 · · · and si0si1 · · · are equal to (sj0 · · · sjk
)1ω

where 1ω denotes the infinite product 1 · 1 · · · .

We now describe the structure of the free ω-monoids. Given sets Σ and

∆, let ⊥ be a letter which is not in Σ∪∆. Let ∆⊥ = ∆∪{⊥}, and consider

the pair (Σ∗, Σ∗∆⊥ ∪Σω), where Σ∗ is the free monoid of all words over Σ

including the empty word and Σ∗∆⊥ is given above. The action of Σ∗ on

Σ∗∆⊥ ∪Σω is similar to the action defined above, and the infinite product

operation is given by

u0u1 · · · =

{
u0 · · ·un⊥ if un+1 = un+2 = . . . = ε for some n ≥ 0,

u0u1 . . . otherwise.

In particular, εε · · · = ⊥.

Proposition 2.2. For any pair of alphabets (Σ, ∆), the ω-monoid

(Σ∗, Σ∗∆⊥ ∪ Σω)

is freely generated by (Σ, ∆).

Proof. Let σ0 be a new letter and let Σ0 = Σ ∪ {σ0}. Consider the free

ω-semigroup (Σ+
0 , Σ∗

0∆ ∪ Σω
0) constructed above. Let hΣ : Σ0 → Σ∗ be the

function which is the identity on Σ and maps σ0 to ε, and let h∆ be the

inclusion of ∆ in ∆⊥. We know that (hΣ, h∆) extends to a unique morphism

of ω-semigroups (h]
Σ, h

]
∆) : (Σ+

0 , Σ∗
0∆∪Σω

0) → (Σ∗, Σ∗∆⊥ ∪Σω). Note that

h
]
Σ and h

]
∆ are surjective.

Suppose now that (S, V) is an ω-monoid and hS : Σ → S and hV : ∆ →
V . First we extend hS to a function Σ0 → S by defining hS(σ0) = 1. Then

we extend (hS , hV) to a morphism of ω-semigroups

(h]
S , h

]
V) : (Σ+

0 , Σ∗
0∆ ∪ Σω

0) → (S, V).

It is clear that the kernel of h
]
Σ is included in the kernel of h

]
S . Also, by

Lemma 2.1, the kernel of h
]
∆ is included in the kernel of h

]
V . Thus there is

a unique ω-semigroup morphism

(hS , hV) : (Σ∗, Σ∗∆⊥ ∪ Σω) → (S, V)

such that hS ◦ h
]
Σ = h

]
S and hV ◦ h

]
∆ = h

]
V . It is clear that hS(ε) =

hS(h]
Σ(σ0)) = h

]
S(σ0) = 1. Thus, (hS , hV) is the unique extension of

(hS , hV) to an ω-monoid morphism.

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

38

3. Completely idempotent semiring-semimodule pairs

Recall from4 that a semiring (S, +, ·, 0, 1) consists of a monoid (S, ·, 1) and

a commutative monoid (S,+, 0) such that multiplication distributes over

all finite sums, so that

s(s1 + s2) = ss1 + ss2

(s1 + s2)s = s1s + s2s

0s = 0

s0 = 0

for all s, s1, s2 ∈ S. If in addition it holds that

s + s = s,

for all s ∈ S, then we call S an idempotent semiring. When S is a semiring,

an S-semimodule is a commutative monoid (V, +, 0) together with an action

S × V → V subject to the conditions

(ss′)v = s(s′v)

1v = v

(s + s′)v = sv + s′v

s(v + v′) = sv + sv′

0v = 0

s0 = 0

for all s, s′ ∈ S and v, v′ ∈ V . We call (S, V) a semiring-semimodule pair.

Morphisms of semirings preserve all operations and constants. A morphism

(S, V) → (S′, V ′) between semiring-semimodule pairs consists of a semiring

morphism hS : S → S′ and a monoid morphism hV : V → V ′ which

preserve the action. Note that when (S, V) is a semiring-semimodule pair

such that S is idempotent, then V is also idempotent: v + v = 1v + 1v =

(1 + 1)v = 1v = v for all v ∈ V .

A commutative idempotent monoid (S, +, 0) is called a semilattice with

0. When S is a semilattice with 0, S is (positively) ordered by s ≤ s′ if and

only if s + s′ = s′, for s, s′ ∈ S. We call S a complete semilattice if each

nonempty subset A of S has a supremum with respect to the semilattice

order denoted
∨

A. In particular, S has a greatest element. Since 0 is clearly

the least element of S, it follows that each subset of S has a supremum.

Morphisms of complete semilattices preserve all suprema.

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

39

A completely idempotent semiring is a semiring S that is a complete

semilattice, moreover, multiplication distributes over all suprema:

s(
∨

A) =
∨

{sa : a ∈ A}

(
∨

A)s =
∨

{as : a ∈ A}

for all A ⊆ S and s ∈ S. A morphism of completely idempotent semirings

is semiring morphism which is a complete semilattice morphism.

A completely idempotent semiring-semimodule pair is a semiring semi-

module pair (S, V) which is an ω-monoid such that S is a completely

idempotent semiring, V is a complete semilattice, the action is completely

ditributive so that

(
∨

A)v =
∨

{av : a ∈ A}

s(
∨

X) =
∨

{sx : x ∈ X}

for all s ∈ S, v ∈ V , A ⊆ S and X ⊆ V , moreover, the infinite product

operation Sω → V is completely distributive:

A0A1 · · · =
∨

{a0a1 · · · : ai ∈ Ai}

for all A0, A1, . . . ⊆ S. A morphism (S, V) → (S′, V ′) of completely idem-

potent semiring-semimodule pairs is a morphism (hS , hV) of semiring-

semimodule pairs which is a morphism of ω-monoids such that hS and

hV preserve arbitrary suprema.

We now describe a construction of completely idempotent semiring-

semimodule pair from an ω-monoid. Suppose that (M, V) is an ω-monoid.

Let P (M, V) = (P (M), P (V)) where P (M) and P (V) respectively denote

the sets of all subsets of M and V . Now P (M), equipped with set union and

the complex product operation (A, B) 7→ {ab : a ∈ A, b ∈ B}, is a com-

pletely idempotent semiring with ∅ and {1} acting as 0 and 1, respectively.

Also, P (V) equipped with set union and the empty set as 0 is a complete

semilattice, and the complex action of P (M) on P (V), defined by

AX = {ax : a ∈ A, x ∈ X}

for A ⊆ M and X ⊆ V is unitary and completely distributive. Define an

infinite product operation P (M)ω → P (V) by

A0A1 · · · = {a0a1 · · · : ai ∈ Ai}

for all A0, A1, · · · ⊆ M .

Theorem 3.1. Suppose that (S, V) is an ω-monoid. Then P (S, V) is

a completely idempotent semiring-semimodule pair. Moreover, P (S, V) is

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

40

freely generated by (S, V): Given any completely idempotent semiring-

semimodule pair (S′, V ′) together with a morphism (hS , hV) : P (S, V) →
(S′, V ′) of ω-monoids, there is a unique morphism of completely idempo-

tent semiring-semimodule pairs (h]
S , h

]
V) : P (S, V) → (S′, V ′) extending

(hS , hV).

Proof. It is clear that P (S, V) is a semiring-semimodule pair, moreover,

P (S) is a completely idempotent semiring, P (V) is a complete semilattice,

and the action is completely distributive. It is straightforward to check that

the infinite product satisfies the required properties.

Suppose now that we are given a morphism (hS , hV) : (S, V) →
(S′, V ′) of ω-monoids, where (S′, V ′) is a completely idempotent semiring-

semimodule pair. For each A ⊆ S and X ⊆ V , define h
]
S(A) =

∨
{hS(a) :

a ∈ A} and h
]
V (X) =

∨
{hV (x) : x ∈ X}. It is a routine matter to verify

that h
]
S and h

]
V determine a completely idempotent semiring-semimodule

pair morphism extending (hS , hV). We only prove that h
]
S and h

]
V preserve

the infinite product. To this end, let A0, A1, . . . be a sequence of subsets of

S. Then

h
]
V (A0A1 · · ·) = h

]
V ({s0s1 · · · : si ∈ Ai})

=
∨

{hV (s0s1 · · ·) : si ∈ Ai}

=
∨

{hV (s0)hV (s1) · · · : si ∈ Ai}

= (
∨

{h(s0) : s0 ∈ A0})(
∨

{h(s1) : s1 ∈ A1}) · · ·

= h
]
S(A0)h

]
S(A1) · · ·

Since the definition of the extension is forced, the proof is complete.

Thus in fact the operator P is the object part of a functor from the

category of ω-monoids to the category of completely idempotent semiring-

semimodule pairs which is the left adjoint of the obvious forgetful functor

from the category of completely idempotent semiring-semimodule pairs to

the category of ω-monoids.

Corollary 3.1. For any pair of sets (Σ, ∆), the completely idempotent

semiring-semimodule pair P (Σ∗, Σ∗∆⊥ ∪Σω) is freely generated by (Σ, ∆).

Proof. Suppose that (S, V) is a completely idempotent semiring-

semimodule pair and (hS , hV) is a pair of functions hS : Σ → S and

hV : ∆ → V , respectively. First extend (hS , hV) to an ω-monoid mor-

phism (Σ∗, Σ∗∆⊥ ∪ Σω) → (S, V) by Proposition 2.2, and then extend

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

41

this morphism by Theorem 3.1 to a morphism of completely idempotent

semiring-semimodule pairs P (Σ∗, Σ∗∆⊥ ∪ Σω) → (S, V). Since the exten-

sions were forced, the proof is complete.

Remark 3.1. A Wilke algebra5,7 (S, V) consists of a semigroup S, a set

V , a left action S×V → V subject to the equation (1), and a unary omega

operation ω : S → V which satisfies the following identities:

(ss′)ω = s(s′s)ω

(sn)ω = sω

for all s ∈ S and n ≥ 2. It then follows that ssω = sω, for all s ∈ S,

since ssω = s(ss)ω = (ss)ω = sω. Each ω-semigroup (S, V) determines a

Wilke algebra: Define sω as the infinite product ss · · · , for each s ∈ S. The

nontrivial fact proved in 7 is that each finite Wilke algebra (S, V) in turn

determines an ω-semigroup. For suppose that (S, V) is a finite Wilke algebra

and s0, s1, . . . is an ω-sequence of elements of S. Then, by a Ramsey-type

argument it follows that there is a sequence i1 < i2 < . . . such that each

sij
· · · sij+1−1, j = 1, 2, . . . is a fixed idempotent e of S. Now generalized

associativity (2) forces

s0s1 · · · = s0 · · · si1−1e
ω.

In fact, the category of finite ω-semigroups is isomorphic to the category of

finite Wilke algebras.

Call a Wilke algebra (S, V) a Wilke monoid if S is a monoid and the

action is unitary, i.e. when (4) holds. When (S, V) is a finite Wilke monoid

it is also a finite ω-monoid, thus (P (S), P (V)) is a complete semiring-

semimodule pair. Morphisms of Wilke monoids also preserve the multi-

plicative identity. It follows that the category of finite Wilke monoids is

isomorphic to the category of finite ω-monoids.

4. Conway semiring-semimodule pairs

We start by recalling from1 the definition of a Conway semiring-semimodule

pair.

Suppose that S is a semiring. We say that S is a Conway semiring if S

is equipped with a star operation ∗ : S → S subject to the sum-star and

product-star identities defined below:

(a + b)∗ = (a∗b)∗a∗

(ab)∗ = 1 + a(ba)∗b

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

42

for all a, b ∈ S. It follows that aa∗ + 1 = a∗ = a∗a + 1 holds in all Conway

semirings. Morphisms of Conway semirings also preserve the star operation.

Suppose that (S, V) is a semiring-semimodule pair. We say that (S, V) is

a Conway semiring-semimodule pair if S is a Conway semiring equipped

with an omega operation ω : S → V , subject to the following sum-omega

and product-omega identities.

(a + b)ω = (a∗b)ω + (a∗b)∗aω

(ab)ω = a(ba)ω,

for all a, b ∈ S. In particular, aaω = aω. Morphisms of Conway semiring-

semimodule pairs preserve star and omega. We say that a Conway semiring-

semimodule pair (S, V) is idempotent if S is idempotent, and we say that a

Conway semiring-semimodule pair (S, V) is ω-idempotent if 1∗ = 1 holds.

Note that any ω-idempotent Conway semiring-semimodule pair is idempo-

tent since 1 + 1 = 11∗ + 1 = 1∗ = 1. We call the operations of a Conway

semiring-semimodule pair (including the constants 0 and 1) the rational

operations.

Each completely idempotent semiring-semimodule pair (S, V) gives rise

to an ω-idempotent Conway semiring-semimodule pair. Given (S, V), define

s∗ =
∨

n≥0

n∑

i=0

si

sω = ss · · ·

for all s ∈ S.

Proposition 4.1.
3 Each completely idempotent semiring-semimodule pair

is an ω-idempotent Conway semiring-semimodule pair. Any morphism of

completely idempotent semiring-semimodule pairs is a morphism of ω-

idempotent Conway semiring-semimodule pairs.

Thus in particular, for any alphabets Σ, ∆, (P (Σ∗), P (Σ∗∆⊥ ∪ Σω)) is

a Conway semiring-semimodule pair.

Given a Conway semiring-semimodule pair (S, V) and an integer n ≥ 0,

consider the semiring Sn×n of all n × n matrices over S as well as the

monoid V n. Using the action of S on V , there is a natural action of Sn×n

on V n. Let A = (Ai,j) ∈ Sn×n and v = (vi) ∈ V n. We define

(Av)i =

n∑

j=1

Aijvj

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

43

for all i, resulting in a semiring-semimodule pair (Sn×n, V n). We turn

(Sn×n, V n) into a Conway semiring-semimodule pair. The definition uses

induction on n. Consider a matrix M ∈ Sn×n. When n = 0, M is the empty

matrix and we define M∗ to be the empty matrix and Mω to be the empty

vector. When n = 1, we have M = (s) for some s ∈ S. We define M ∗ = (s∗)

and Mω = (sω). Suppose that n > 1 and let m = n − 1. Write

M =

(
A B

C D

)

where A ∈ Sm×m, B ∈ Sm×1, C ∈ S1×m and D ∈ S1×1. We define

M∗ =

(
(A + BD∗C)∗ (A + BD∗C)∗BD∗

(D + CA∗B)∗CA∗ (D + CA∗B)∗

)
(5)

Moreover, we define

Mω =

(
(A + BD∗C)ω + (A + BD∗C)∗BDω

(D + CA∗B)ω + (D + CA∗B)∗CAω

)
(6)

Theorem 4.1.
1 When (S, V) is a Conway semiring-semimodule pair, so is

(Sn×n, V n), for each n. Moreover, (5) and (6) hold for all decompositions

of the matrix M into four blocks such that A and D are square matrices of

any dimension.

When (S, V) is a Conway semiring-semimodule pair, we define

Mωk =

(
(A + BD∗C)ω

D∗C(A + BD∗C)ω

)

for all M =

(
A B

C D

)
in Sn×n, where A ∈ Sk×k, D ∈ Sm×m, etc, so that

k ≤ n, k + m = n.

Remark 4.1. Suppose that (S, V) is a completely idempotent semiring-

semimodule pair and consider a matrix M decomposed into four parts as

above. Then for every 1 ≤ i ≤ n we have that

Mωk

i =
∨

{Mii1Mi1i2Mi2i3 · · · : ∃∞j ij ≤ k}.

5. Automata

Suppose that (S, V) is an ω-idempotent Conway semiring-semimodule pair,

Σ ⊆ S and V0 ⊆ V . We define a (Büchi-)automaton in (S, V) over (Σ, V0) to

be a system A = (α, A, k) where α ∈ {0, 1}1×n, A ∈ Sn×n whose entries are

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

44

finite sums of elements in Σ, and k is an integer ≤ n. Here, α is the initial

vector and A is the transition matrix. Integer k specifies the “repeated

nonterminals”, see below. The behavior of A is

|A| = αAωk

We say that automata A and A
′ are equivalent if |A| = |A′|. It is not hard

to see that for every automaton there is an equivalent automaton whose

initial vector is a unit vector. We say that some x ∈ V is recognizable

over (Σ, V0) if there is an automaton over (Σ, V0) whose behavior is x. We

let Rec(S,V)(Σ, V0) denote the set of all recognizable elements over (Σ, V0).

When V0 = {0}, we simply write Rec(S,V)(Σ).

We also define rational elements. Suppose that (S, V), Σ and V0 are as

before. We say that some x ∈ V is rational over (Σ, V0) in (S, V) if x can be

generated from (S0, V0) by the rational operations, i.e., when x is included

in the least Conway subsemiring-subsemimodule pair of (S, V) containing

Σ and V0. Notation: Rat(S,V)(S0, V0), or just Rat(S,V)(Σ) when V0 = {0}.
As an variant of a result in 2 we can show:

Theorem 5.1. For any ω-idempotent Conway semiring-semimodule pair

(S, V) and Σ and V0 as above, Rec(S,V)(Σ, V0) = Rat(S,V)(Σ, V0).

Thus, in particular, Rec(S,V)(Σ) = Rat(S,V)(Σ).

6. Operational characterization of linear languages

Suppose that Σ is a finite or infinite alphabet. The monoid (Σ∗)op, equipped

with reverse concatenation (u, v) 7→ vu, for all u, v ∈ Σ∗, is isomorphic to

the free monoid Σ∗ of finite words over Σ (so that it is also free). Now

consider the monoid Σ∗ × (Σ∗)op. We let Σ∗ × (Σ∗)op act on Σ∞ by

(u, v)x = uxv

for all u, v ∈ Σ∗ and x ∈ Σ∞. Since u and v are finite, it holds that uxv ∈
Σ∞. Then we define an infinite product operation (Σ∗ × (Σ∗)op)ω → Σ∞

by

(u0, v0)(u1, v1) · · · = u0u1 v1v0

The following fact is clear.

Proposition 6.1. Equipped with the above operations and action, (Σ∗ ×
(Σ∗)op, Σ∞) is an ω-monoid.

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

45

Corollary 6.1. (S, V) = P ((Σ∗×(Σ∗)op, Σ∞) = (P (Σ∗×(Σ∗)op), P (Σ∞))

is a completely idempotent semiring-semimodule pair and an ω-idempotent

Conway semiring-semimodule pair.

Thus all of the rational operations are defined on (P (Σ∗ ×
(Σ∗)op), P (Σ∞)). Our aim is to show the following result.

Theorem 6.1. A language X ⊆ Σ∞ can be generated from the singleton

subsets of Σ∗ × (Σ∗)op by the rational operations if and only if it is linear.

In our argument establishing Theorem 6.1 we will make use of Theo-

rem 5.1.

Define F as the set of all singleton subsets of Σ∗ × (Σ∗)op. An automa-

ton (α, M, k) over F is essentially the same thing as a linear grammar

with Büchi acceptance condition. To see this, consider a linear grammar

G = (N, Σ, P, Xi0 , R) with N = {X1, . . . , Xn} and R = {X1, . . . , Xk}.
By Remark 1.1, without loss of generality we may assume that each pro-

duction has a (single) nonterminal on the right side. Define an automaton

AG = (α, M, k) where for each 1 ≤ i, j ≤ n,

αi =

{
1 if i = i0
0 otherwise

Mij = {(u, v) : Xi → uXjv ∈ P}

Example 6.1. Consider the grammar G2 defined in Example 1.2 with

X1 = Y and X2 = X . Then the corresponding automaton is
(

(∅, {ε}),

(
{(ε, b)} ∅
{(ε, ε)} {(a, ε)}

)
, 1

)
.

Proposition 6.2. For each linear grammar G over Σ with Büchi accep-

tance condition having no production whose right side is in Σ∗ it holds that

L∞(G) = |AG|.

Proof. Let us write the transition matrix M of AG in the form

M =

(
A B

C D

)

where A ∈ P (Σ∗ × (Σ∗)op)k×k, B ∈ P (Σ∗ × (Σ∗)op)k×m, C ∈ P (Σ∗ ×
(Σ∗)op)m×k and D ∈ P (Σ∗ × (Σ∗)op)m×m, k + m = n. Now for each 1 ≤
i, j ≤ n, (A+BD∗C)ij is the set of all pairs of finite words (u, v) such that

there is a nontrivial derivation tree rooted Xi whose frontier is uXjv such

that except for the indicated vertices, all nonterminals labeling a vertex of

May 14, 2010 9:42 WSPC - Proceedings Trim Size: 9in x 6in 03

46

the tree belong to the set N \ R of non-repeating nonterminals. Thus, for

each 1 ≤ i ≤ k, (A + BD∗C)ω
i is the set of all words (u0, v0)(u1, v1) · · · =

u0u1 v1v0 that can be derived from Xi by a derivation tree which

has an infinite number of vertices labeled in the set R. Moreover, for each

1 ≤ j ≤ m, the jth component of D∗C(A + BD∗C)ω is the set of all words

(u0, v0)(u1, v1) · · · = u0u1 v1v0 which have a derivation tree rooted

Xk+j such that at least one nonterminal in R labels an infinite number of

vertices of the tree. By the definition of the initial vector, it follows now

that the component of the behavior of AG which corresponds to the start

symbol is exactly the language generated by the grammar G.

Using Proposition 6.2, we can now complete the proof of Theorem 6.1.

The correspondence G 7→ AG creates a bijection (up to a rearrangement

of the nonterminals) between grammars and automata A = (α, M, k) over

F . Thus, a language L ⊆ Σ∞ is linear if and only if it is the behavior

of some automaton as above. But by Theorem 5.1, the behaviors of such

automata are exactly those languages which can be constructed from F by

the rational operations.

References

1. S.L. Bloom and Z. Ésik: Iteration Theories, Springer, 1993.
2. Z. Ésik and W. Kuich: A semiring-semimodule generalization of ω-regular

languages, parts I. and II. J. Autom. Lang. Comb., 10(2005), 203–242 and
243–264.

3. Z. Ésik and W. Kuich: On iteration semiring-semimodule pairs, Semigroup

Forum, 75(2007), 129–159.
4. J.S. Golan: The Theory of Semirings with Applications in Computer Science,

Longman Scientific and Technical, 1993.
5. D. Perrin and J.-É. Pin: Infinite Words, Pure and Applied Mathematics, Vol

141, Elsevier, 2004.
6. A. Salomaa: Formal Languages. ACM Monograph Series. Academic Press,

1973.
7. Th. Wilke: An algebraic theory for regular languages of finite and infinite

words. Internat. J. Algebra Comput., 3(1993), 447–489.

Received: October 19, 2009

Revised: May 14, 2010

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

47

EXTENDED TEMPORAL LOGICS ON FINITE TREES∗

Z. ÉSIK and Sz. IVÁN

Department of Computer Science,

University of Szeged,

Hungary

Wolper associated a temporal logic to each class of (regular) languages. A
different semantics for essentially the same logic was given by Ésik. Both ap-
proaches can be extended to trees resulting in families of branching time tempo-
ral logics with regular modalities. Here, we compare the two semantics of these
branching time temporal logics and use this comparison to derive an algebraic
characterization of their expressive power with respect to the Wolper-style se-
mantics in terms of varieties of finite algebras. We also provide a game-theoretic
characterization.

1. Introduction

Wolper [13] introduced a proper extension of Linear Temporal Logic by

associating a modality to each (regular) language of words. His approach

can be extended to (finite, ranked, ordered, variable-free) trees; the resulting

family of logics subsumes e.g., the widely researched logic CTLa [1] and its

modular extension.

A logic on finite trees with the same syntax but equipped with a dif-

ferent semantics was defined in [3]. The relation between the two logics

was investigated in [7] for the case of unary trees (words), where also an

algebraic characterization has been achieved using results from [4]. Here,

we compare the two semantics for trees and use this comparison to derive

an algebraic characterization of the expressive power with respect to the

Wolper-style semantics in terms of varieties of finite algebras. To this end,

we make use of results from [6].

∗Research supported by grant no. K 75249 from the National Foundation of Hungary for
Scientific Research and by the TÁMOP-4.2.2/08/1/2008-0008 program of the Hungarian
National Development Agency.
aThe original CTL is defined over unranked and unordered, typically infinite trees, see
also Remark 6.1.

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

48

Besides algebraic characterizations (see e.g., [10]), a general tool for

studying the expressive power of logics is provided by the Ehrenfeucht-

Fräıssé games (see e.g., [12]). Here, we introduce a class of two-player games

characterizing Wolper’s logic. The game-theoretic characterization, in con-

junction with some results of [5], provides an alternative proof of the relation

between the two semantics.

2. Trees

When n is a nonnegative integer, [n] denotes the set {1, . . . , n}. Thus, [0]

is another notation for the empty set ∅. A rank type R is a finite subset

of N = {0, 1, . . .} containing 0 and at least one positive integer. A ranked

alphabet Σ =
⋃
n∈R

Σn (of rank type R) is a disjoint union of finite nonempty

sets of n-ary symbols Σn, n ∈ R.

For the whole paper we fix a rank type R and every alphabet is assumed

to have rank type R.

Given a ranked alphabet Σ, the set TΣ of Σ-terms (or (Σ-)trees) is the

least set T satisfying the following condition: whenever n ∈ R, σ ∈ Σn and

t1, . . . , tn ∈ T , then σ(t1, . . . , tn) is also in T . Since 0 ∈ R, TΣ is not empty.

When σ ∈ Σ0, we also write just σ to denote the term σ().

Any tree t ∈ TΣ can be viewed as a mapping from a tree domain

dom(t) ⊆ N ∗ to Σ as follows: the domain of a tree t is

dom(t) =





{ǫ} if t = σ ∈ Σ0, where ǫ

stands for the empty word;

{ǫ} ∪
⋃
i∈[n]

{i · v : v ∈ dom(ti)} if t = σ(t1, . . . , tn) for

some n > 0, σ ∈ Σn, ti ∈ TΣ,

and for any tree t = σ(t1, . . . , tn), the mapping from dom(t) to Σ, also

denoted t is defined as

t(x) =

{
σ if x = ǫ;

ti(v) if x = i · v for some i ∈ [n] and v ∈ N ∗.

An element of dom(t) is a node of t. A node x of t ∈ TΣ is called an n-ary

node for some n ∈ R if t(x) ∈ Σn. When t ∈ TΣ and x ∈ dom(t), t|x stands

for the subtree of t rooted at x, i.e., the unique tree with dom(t|x) = {u :

x · u ∈ dom(t)} and t|x(u) = t(x · u) for any u ∈ dom(t|x).

For better readability, Root(t) stands for t(ǫ). When s is a ∆-tree and

t is a Σ-tree for some ranked alphabets ∆ and Σ, we say that s is a

(∆-)relabeling of t if dom(s) = dom(t).

A (Σ-)tree language is any subset L of TΣ.

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

49

When Σ and ∆ are ranked alphabets, a relation ̺ ⊆ Σ×∆ is called rank-

preserving if (σ, δ) ∈ ̺, σ ∈ Σn implies δ ∈ ∆n for any n ∈ R, σ ∈ Σ and

δ ∈ ∆. A rank-preserving relation ̺ ⊆ Σ×∆ induces a literal substitution,

also denoted ̺, defined as the relation

{(s, t) ∈ TΣ × T∆ : dom(s) = dom(t), ∀x ∈ dom(s) : (s(x), t(x)) ∈ ̺}.

A rank-preserving function h : Σ → ∆ (i.e., a function mapping Σn
into ∆n for each n) induces a literal homomorphism, also denoted h, from

TΣ to T∆, where for each s ∈ TΣ, h(s) is the ∆-relabeling of s defined by

(h(s))(x) = h(s(x)) for all x ∈ dom(s). Clearly any literal homomorphism

induced by h : Σ → ∆ is a literal substitution induced by the relation

{(σ, h(σ)) : σ ∈ Σ}.

When ̺ ⊆ A×B is a relation and X is a subset of A, then ̺(X) stands

for the set {b ∈ B : (a, b) ∈ ̺ for some a ∈ X}. When L is a class of tree

languages, let S(L) (H(L), H−1(L), respectively) denote the class of all

tree languages of the form f(L) where L ∈ L and f is a literal substitution

(literal homomorphism, inverse literal homomorphism, respectively). It is

clear that the inverse of a literal substitution is also a literal substitution,

moreover, for any literal substitution S induced by some relation ̺ ⊆ Σ×∆

there exist literal homomorphisms h1 : ̺ → Σ and h2 : ̺ → ∆ (here ̺ is

viewed as a subset of Σ × ∆) such that S = h−1
1 ◦ h2, so that S(L) =

h2(h
−1
1 (L)) for any Σ-tree language L. It is also clear that H, H−1 and S

are closure operators. Thus, S(L) = H(H−1(L)) holds for any class L of

tree languages.

When Σ is a ranked alphabet, Σ(•) denotes the ranked alphabet re-

sulting from Σ endowed with a new constant symbol •. A Σ-context is a

Σ(•)-tree which has exactly one node labeled •. When ζ is a Σ-context and

t is a Σ-tree, then ζ(t), or simply ζt denotes the Σ-tree resulting from ζ by

substituting t in place of the “hole symbol” •. When L is a Σ-tree language

and ζ is a Σ-context, the quotient of L with respect to ζ is the tree language

ζ−1(L) = {t ∈ TΣ : ζt ∈ L}. When L is a class of tree languages, let Q(L)

stand for the class of all quotients of the members of L.

When Σ is a ranked alphabet, P (Σ) denotes the power alphabet of Σ,

where P (Σ)n = {(n,D) : D ⊆ Σn}b. We also define the rank-preserving

relation

SΣ = {((n,D), σ) : n ∈ R, σ ∈ D ⊆ Σn} ⊆ P (Σ)× Σ.

bWe include n to ensure disjointness of the sets P (Σ)n, since otherwise ∅ would be
ambiguous. Alternatively, we could define P (Σ)n as P (Σn − {∅}) ∪ {∅n}.

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

50

3. Temporal logics

Let Σ be a ranked alphabet. The set of FTL-formulae (over Σ) is the least

set satisfying the following conditions:

(1) for any σ ∈ Σ, pσ is an (atomic) formula (of depth 0);

(2) whenever ϕ and ψ are formulae (of maximal depth d), then (¬ϕ) and

(ϕ ∨ ψ) are also formulae (of depth d);

(3) if L ⊆ T∆ for some ranked alphabet ∆ and for each δ ∈ ∆, ϕδ is a

formula (of maximal depth d), then

L(δ 7→ ϕδ)δ∈∆ (1)

is also a formula (of depth d+ 1).

We make use of the shorthands (ϕ ∧ ψ) = (¬(¬ϕ ∨ ¬ψ)), (ϕ → ψ) =

((¬ϕ) ∨ ψ) as usual. We may also omit some parentheses following the

usual precedence order of the connectives. Subformulae of a formula are

defined as usual.

We define two different semantics. In both semantics, a Σ-tree t satisfies

the atomic formula pσ if and only if Root(t) = σ. The Boolean connectives

are handled as usual. Only the formulae of the form (1) are interpreted

differently in the two semantics.

Semantics 1. For this semantics we assume that each ranked alphabet

has a fixed lexicographic order. A tree t ∈ TΣ satisfies a formula L(δ 7→

ϕδ)δ∈∆ with respect to Semantics 1 if and only if the characteristic tree

t̂ ∈ T∆ of t determined by the family (ϕδ)δ∈∆ belongs to L.

The tree t̂ is the (unique) ∆-relabeling of t defined as follows: for each

n ∈ R and n-ary node x ∈ dom(t), let t̂(x) = δ if and only if δ ∈ ∆n and

one of the following conditions holds:

(1) either t|x satisfies ϕδ with respect to Semantics 1 and δ is the first such

symbol of ∆n;

(2) or t|x does not satisfy any ϕδ′ with δ
′ ∈ ∆n with respect to Semantics

1 and δ is the last symbol of ∆n.

Semantics 2. The Σ-tree t satisfies a formula L(δ 7→ ϕδ)δ∈∆ with

respect to Semantics 2 if and only if there exists a ∆-relabeling t̂ ∈ L of

t such that for each node x ∈ dom(t), t|x satisfies ϕt̂(x) with respect to

Semantics 2.

We write t |=i ϕ if t satisfies ϕ with respect to Semantics i, i ∈ {1, 2}.

The language defined by the formula ϕ with respect to Semantics i, i ∈ {1, 2}

is Lϕ,i = {t ∈ TΣ : t |=i ϕ}.

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

51

Let FTL(L) consist of those formulae all of whose subformulae of the

form (1) satisfy L ∈ L. For i = 1, 2, let FTLi(L) stand for the class of tree

languages definable by some FTL(L)-formula with respect to Semantics i.

Remark 3.1. We call a formula ϕ over Σ deterministic if for every subfor-

mula of ϕ of the form (1), n ∈ R and for every tree t ∈ TΣ with Root(t) ∈ Σn
there is exactly one symbol δ ∈ ∆n with t |=1 ϕδ.

It is easy to see that when ϕ is deterministic, then Lϕ,1 is not affected

by the respective ordering of the alphabets, moreover, for any class L of

tree languages and formula ϕ (of some depth d) of FTL(L) there exists a

deterministic formula ψ (of depth at most d) of FTL(L) with Lϕ,1 = Lψ,1.

Thus, FTL1(L) does not depend on the chosen respective orderings of the

alphabets.

Also observe that when ϕ is deterministic, then Lϕ,1 = Lϕ,2. Thus,

FTL1(L) ⊆ FTL2(L) for any class L of tree languages.

Example 3.1. Let R = {0, 2}, Σ be the alphabet with Σ0 = {c} and

Σ2 = {a, b}, and let L ⊆ TΣ be the tree language consisting of those Σ-

trees having exactly one node labeled a.

Then an FTL({L})-formula (still over Σ) is ϕ = L(σ 7→ ϕσ)σ∈Σ, where

ϕc = pc,

ϕa = pa,

ϕb = pa ∨ pb.

Considering the Σ-trees t1 = b(a(c, c), a(c, c)) and t2 = b(b(c, c), b(c, c)),

we get that

• t1 |=2 ϕ, since b(a(c, c), b(c, c)) ∈ L is a relabeling of t1 satisfying the

conditions of Semantics 2;

• t2 6|=2 ϕ, since the tree b(b(c, c), b(c, c)) /∈ L is the only relabeling t′ of

t2 with t2|x |=2 ϕt′(x) for each node x ∈ dom(t).

At the same time, the characteristic tree of t2 is b(b(c, c), b(c, c)) /∈ L

with respect to the family (ϕσ)σ∈Σ, and the characteristic tree of t1 is either

t1 (when a < b in the chosen ordering of Σ) or t2 (otherwise). Thus, neither

t1 nor t2 satisfies ϕ with respect to Semantics 1, hence the two semantics

are indeed different.

Moreover, it is easy to see (via a straightforward induction on the depth

of the formula) that no FTL({L})-formula ψ exists for which t1 |=1 ψ and

t2 6|=1 ψ both hold, i.e., these two trees are indistinguishable, when one con-

siders FTL({L})-formulae with respect to Semantics 1. Hence, FTL1({L})

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

52

is a proper subclass of FTL2({L}) for the singleton class {L} of tree

languages.

4. The correspondence

In this section we relate the two semantics defined in the previous section,

yielding an algebraic characterization of the classes FTL2(L), at least when

L satisfies a natural condition defined later. Let Σ denote a ranked alphabet.

Lemma 4.1. For any class L of tree languages, FTL2(L) ⊆ FTL1(S(L)).

Proof. Let ϕ be a formula of FTL(L). We construct a formula ϕ′ of

FTL(S(L)) with Lϕ,2 = Lϕ′,1, by induction of the structure of ϕ.

When ϕ is an atomic formula, let ϕ′ = ϕ.

When ϕ = (¬ϕ1) or ϕ = (ϕ1 ∨ ϕ2), let ϕ
′ = ¬(ϕ′

1) or ϕ′ = (ϕ′
1 ∨ ϕ

′
2),

respectively.

Assume that ϕ = L(δ 7→ ϕδ)δ∈∆. We define a family of formulae indexed

by P (∆) as follows: for any n ∈ R and (n,D) ∈ P (∆)n, let ϕ(n,D) stand

for the formula
∧

δ∈D

ϕ′
δ ∧

∧

δ∈∆n−D

¬ϕ′
δ.

Note that the family (ϕ(n,D))(n,D)∈P (∆) is deterministic. We will show that

for all trees t ∈ TΣ,

t |=2 L(δ 7→ ϕδ)δ∈∆ ⇔ t |=1 (S−1
∆ (L))((n,D) 7→ ϕ(n,D))(n,D)∈P (∆).

Indeed,

t |=2 L(δ 7→ ϕδ)δ∈∆ ⇔ t̂ ∈ L for some ∆-relabeling t̂ of t

with t|x |=2 ϕt̂(x) for each x ∈ dom(t)

⇔ t̂ ∈ L for some ∆-relabeling t̂ of t

with t|x |=1 ϕ
′
t̂(x)

for each x ∈ dom(t)

⇔ S∆(t̂′) ∩ L 6= ∅, where t̂′ is the P (∆)-relabeling

of t defined by t̂′(x) = (n, {δ ∈ ∆n : t|x |=1 ϕ
′
δ})

for each n-ary node x ∈ dom(t)

⇔ t |=1 (S−1
∆ (L))((n,D) 7→ ϕ(n,D))(n,D)∈P (∆).

Thus, we can define ϕ′ as (S−1
∆ (L))((n,D) 7→ ϕ(n,D))(n,D)∈P (∆).

The following facts are proved in [2]:

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

53

Lemma 4.2. FTL1 is a closure operator on classes of tree languages pre-

serving regularity, i.e., for any classes L1,L2 of tree languages, the following

hold:

(1) L1 ⊆ FTL1(L1);

(2) FTL1(FTL1(L1)) ⊆ FTL1(L1);

(3) if additionally L1 ⊆ L2, then FTL1(L1) ⊆ FTL1(L2);

moreover, if L is a class of regular tree languages, then so is FTL1(L).

It also holds that FTL1(L) is closed under inverse literal homomor-

phisms and the Boolean operations, and is closed under quotients if and

only if Q(L) ⊆ FTL1(L).

Making use of the above lemma, we can prove the reverse of the con-

tainment relation in Lemma 4.1:

Lemma 4.3. For any class L of tree languages, FTL1(S(L)) ⊆ FTL2(L).

Proof. Let ϕ be an FTL(S(L))-formula over Σ.

We construct an FTL(L)-formula ϕ′ with Lϕ,1 = Lϕ′,2, by induction on

the structure of the formula.

The only nontrivial case is when ϕ = L(δ 7→ ϕδ)δ∈∆ for some ∆-tree

language L ∈ S(L). Let us write in more detail L = S(K), for a Γ-tree

language K ∈ L, where S is the literal substitution induced by the rank-

preserving relation ̺ ⊆ Γ × ∆. Without loss of generality we may also

assume that ϕ is deterministic.

For each n ∈ R and γ ∈ Γn, let ψγ stand for the formula
∨

δ∈∆n:(γ,δ)∈̺

ϕ′
δ.

Then for any Σ-tree t,

t |=1 ϕ ⇔ t̂ ∈ S(K) for the unique ∆-relabeling t̂ of t

where t|x |=1 ϕt̂(x) for all x ∈ dom(t)

⇔ t̂ ∈ S(K) for the unique ∆-relabeling t̂ of t

where t|x |=2 ϕ
′
t̂(x)

for all x ∈ dom(t)

⇔ t̂′ ∈ K for some Γ-relabeling t̂′ of t

where t|x |=2 ψt̂′(x) for all x ∈ dom(t)

⇔ t |=2 K(γ 7→ ψγ)γ∈Γ.

Thus, we can define ϕ′ as K(γ 7→ ψγ)γ∈Γ.

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

54

Corollary 4.1. For any class L of tree languages,

FTL2(L) = FTL1(S(L)).

Thus, for each L, L ⊆ FTL1(L) ⊆ FTL2(L).

5. Algebraic characterization

Let Σ be a ranked alphabet. A (Σ-)tree automaton A = (A,Σ) consists of a

nonempty state set A, and an associated elementary operation σA : An → A

for each σ ∈ Σn, n ∈ R. When A = (A,Σ) is a tree automaton, each tree

t ∈ TΣ evaluates to an element tA ∈ A as usual. Homomorphic images,

subautomata are defined as usual.

For any set A′ ⊆ A, the tree language L(A, A′) is defined as {t ∈ TΣ :

tA ∈ A′}. A tree language L ⊆ TΣ is recognized by the tree automaton

A = (A,Σ) if L = L(A, A′) for some set A′ ⊆ A of final states.

A tree language is called regular if it is recognized by some finite tree

automaton, i.e., a tree automaton having a finite state set. It is well-known

that for any Σ-tree language L there exists a minimal tree automaton AL,

unique up to isomorphism, such that whenever L is recognized by a tree

automaton B, then AL is a homomorphic image of a subautomaton of B (i.e.,

AL divides B.) Thus, a tree language is regular if and only if its minimal

tree automaton is finite. For more information on tree automata, the reader

is referred to [11].

A tree automaton B = (B,∆) is a renaming of A = (A,Σ) if A = B

and each elementary operation of B is also an elementary operation of A.

When A = (A,Σ) is a tree automaton, we define its power automaton

P (A) as (P (A), P (Σ)) equipped with the following elementary operations:

(n,D)P (A)(A1, . . . , An) = {σA(a1, . . . , an) : σ ∈ D, ai ∈ Ai, i ∈ [n]}

for each n ∈ R, D ⊆ Σn and A1, . . . , An ⊆ A.

When A = (A,Σ) and B = (B,∆) are tree automata and α : A× Σ →

∆ is a rank-preserving function, i.e., α(a, σ) ∈ ∆n for any n ∈ R and

σ ∈ Σn, then the Moore product [6] of A and B determined by α is the tree

automaton A×α B = (A×B,Σ) equipped with the elementary operations

σA×αB((a1, b1), . . . , (an, bn)) = (σA(a1, . . . , an), δ
B(b1, . . . , bn)),

for each n ∈ R, σ ∈ Σn and (ai, bi) ∈ A×B, i ∈ [n], where

δ = α(σA(a1, . . . , an), σ).

We also define the following tree automaton D0 = ({0, 1},Bool) over

the ranked alphabet Bool, where for each n ∈ R, Booln = {↑n, ↓n} and

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

55

↑D0

n is the constant function {0, 1}n → {0, 1} with value 1, and ↓D0

n is the

constant function {0, 1}n → {0, 1} with value 0.

The following result is proved in [6]:

Theorem 5.1. Let L be a class of regular tree languages with Q(L) ⊆

FTL1(L). Then the following are equivalent for any tree language K:

(1) K ∈ FTL1(L);

(2) AK is contained in the least class of finite tree automata which contains

D0 as well as the minimal tree automata of each member of L, which

is closed under taking renamings, Moore products, and divisors.

Using this theorem and Corollary 4.1, our aim is now to give a related

characterization of FTL2(L).

Lemma 5.1. Suppose the tree language L is recognizable by the tree au-

tomaton A = (A,Σ). Then any image of L under a literal substitution is

recognizable by a renaming of P (A).

Proof. Let us assume in more detail that L is recognizable by A with the

set F ⊆ A of final states, and assume that K = S(L), where K is a ∆-

tree language and S is a literal substitution induced by the rank-preserving

relation ̺ ⊆ Σ×∆.

Let us define the ∆-renaming B of P (A) determined by

δB = (n, {σ ∈ Σn : (σ, δ) ∈ ̺})P (A),

for each n ∈ R and δ ∈ ∆n.

It is clear that for any ∆-tree t,

tB = {t̂A : t̂ ∈ S−1
∆ (t)}.

Thus, K is recognized by B with the set {A′ ⊆ A : A′ ∩ F 6= ∅} of final

states.

Lemma 5.2. Let Σ be a ranked alphabet and suppose that K ⊆ TP (Σ) is a

tree language recognizable by P (A) for a finite tree automaton A = (A,Σ).

Then K is a Boolean combination of images under literal substitutions

of languages recognizable by A.

Proof. Let us consider the literal substitution SΣ. For any P (Σ)-tree t and

state a ∈ A,

a ∈ tP (A) ⇔ a = sA for some s ∈ SΣ(t)

⇔ t ∈ S−1
Σ (La),

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

56

where La is a shorthand for L(A, {a}).

Thus, for any state a ∈ A, the language recognized by P (A) with the

set A∃a = {A′ ⊆ A : a ∈ A′} of final states is an image of a language

recognizable by A, under the literal substitution S−1
Σ .

Since for any A′ ⊆ A,

L(P (A), {A′}) =
⋂

a∈A′

L(P (A), A∃a)−
⋃

a/∈A′

L(P (A), A∃a),

and obviously

L(P (A), {A1, . . . , An}) =
⋃

i∈[n]

L(P (A), {Ai}),

the lemma is proved.

From Corollary 4.1, Theorem 5.1 and Lemmas 5.1, 5.2 we immediately

get the following characterization:

Theorem 5.2. Suppose that L is a class of regular tree languages with

Q(S(L)) ⊆ FTL2(L). Then the following are equivalent for any tree lan-

guage K:

(1) K ∈ FTL2(L);

(2) AK is contained in the least class of finite tree automata which contains

D0, the tree automaton P (AL) for each L ∈ L, which is closed under

renamings, divisors and Moore products.

6. Ehrenfeucht-Fräıssé type games

In this section we provide a game-theoretic characterization of FTL with re-

spect to Semantics 2. For a game-theoretic treatment of Semantics 1 see [5].

For the purposes of this section, when t = (t1, . . . , tn) is a tuple of trees, we

define dom(t) as
⋃
i∈[n]

{i · u : u ∈ dom(ti)}, and for any node i · u ∈ dom(t),

we define t(i · u) as ti(u) and t|i·u as ti|u.

We say that a formula ϕ over Σ separates two Σ-trees s and t, with

respect to Semantics 2, if exactly one of the trees satisfies ϕ with respect

to Semantics 2.

Let L be a class of tree languages, r ≥ 0 be an integer, and t0, t1 be

two trees over a ranked alphabet Σ. The r-round L-Wolper game on the

pair (t0, t1) of trees is played between two competing players, Spoiler and

Duplicator, according to the following rules:

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

57

(1) If Root(t0) 6= Root(t1), then Spoiler wins. Otherwise, Step 2 follows.

(2) If r = 0, then Duplicator wins. Otherwise, Step 3 follows.

(3) Spoiler picks a tree language L ∈ L over some ranked alphabet ∆,

and two P (∆)-relabelings, t̂0 and t̂1 of t0 and t1, respectively, such

that exactly one of them is contained in S−1
∆ (L). If he cannot do so,

Duplicator wins; otherwise, Step 4 follows.

(4) Duplicator picks two nodes x, y ∈ dom((t0, t1)) with (t̂0, t̂1)(x) 6=

(t̂0, t̂1)(y). If he cannot do so, Spoiler wins; otherwise, an (r− 1)-round

L-Wolper game is played on the pair ((t0, t1)|x, (t0, t1)|y) of trees. The

player winning the subgame wins the game.

Clearly, for any fixed L, r, t0 and t1, exactly one of the players has a

winning strategy; let t0 ∼rL t1 denote that Duplicator has a winning strategy

in the r-round L-Wolper game on (t0, t1). Also, let t0 ≡rL t1 denote that

the trees t0 and t1 satisfy the same set of FTL(L)-formulae having depth

at most r, with respect to Semantics 2.

Example 6.1. Let R = {0, 2} and ∆ the ranked alphabet with ∆2 =

{∨,∧} and ∆0 = {↑, ↓}, and let L ⊆ T∆ be the language consisting of ex-

actly those ∆-trees evaluating to 1 according to the standard interpretation

of the logical connectives.

Let Σ be the ranked alphabet with Σ2 = {f, g} and Σ0 = {c, d}, t1 be

the Σ-tree g(f(c, d), g(c, d)) and t2 be the Σ-tree g(f(c, c), g(d, d)). (See

Figure 1.)

%
% e

e

���� HHHH

%
% e

e %
% e

e

���� HHHH

%
% e

e

g

c d c d

f

g

g

c c d d

f

g

Fig. 1. The trees t1 and t2.

A possible 2-round {L}-Wolper game on (t1, t2) is played as follows. Since

Root(t1) = Root(t2) (= g), and there are 2 rounds left, Spoiler has to choose

a tree language K ∈ {L}. Having no other option, he chooses the ∆-tree

language L. Moreover, Spoiler also has to choose two P (∆)-relabelings, t̂1
and t̂2 of t1 and t2, respectively, such that exactly one of them is contained

in S−1
∆ (L).

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

58

Let Spoiler choose the relabelings

t̂1 = (2, {∨,∧})
(
(2, {∨})((0, {↓}), (0, {↑})), (2, {∨,∧})((0, {↓}), (0, {↑}))

)
,

t̂2 = (2, {∨,∧})
(
(2, ∅)((0, {↓}), (0, {↓})), (2, {∨})((0, {↑}), (0, {↑}))

)
.

(See Figure 2. For better readability, the arities are omitted from the labels.)

���� HHHH

%
% e

e %
% e

e%
% e

e %
% e

e

���� HHHH
S
Sw

S
Sw

{∨}

{↑}{↑}{↓}{↓}

∅

{∨,∧}

{∨}

{↓} {↑} {↓} {↑}

{∨,∧}

{∨,∧} yx

Fig. 2. The relabelings t̂1 and t̂2.

Then, t̂1 ∈ S−1
∆ (L), since t̂1 ∈ S−1

∆ (t) for t = ∨
(
∨(↓, ↑), ∨(↓, ↑)

)
∈ L.

On the other hand, t̂2 /∈ S−1
∆ (L), thus this is a valid move of Spoiler.

Now Duplicator has to choose two nodes, x and y, having different

labels in the relabelings. Assume he chooses the nodes x and y indicated

on Figure 2.

Then, Spoiler and Duplicator play a 1-round {L}-Wolper game on the

trees t′1 = f(c, d) and t′2 = f(c, c). Since Root(t′1) = Root(t′2) (= f), and

there is still one round left, Spoiler again has to choose two relabelings. Let

us assume that he chooses t̂′1 = (2, {∨})
(
(0, {↓}), (0, {↑})

)
∈ S−1

∆ (L) and

t̂′2 = (2, {∨})
(
(0, {↓}), (0, {↓})

)
/∈ S−1

∆ (L). (See Figure 3.)

%
% e

e %
% e

e %
% e

e%
% e

e

�

�
��=

c d

f

c c

f

{↓}

{∨}

{↓}{↓}

{∨}

{↑}

x

y

Fig. 3. Finishing the game: the trees t′
1
, t′

2
, t̂′

1
and t̂′

2
.

Now Duplicator has to choose two nodes of (t′1, t
′
2) having different labels

in (t̂′1, t̂
′
2). Suppose he chooses the nodes x and y indicated on Figure 3.

Then, a zero-round {L}-Wolper game begins on the trees f(c, d) and c.

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

59

Since f = Root(f(c, d)) 6= Root(c) = c, Spoiler wins this subgame and also

the whole game.

Actually, Spoiler has a winning strategy in the 2-round {L}-Wolper

game played on (t1, t2) but not in the 1-round game, i.e., t1 ∼1
{L} t2 and

t1 6∼2
{L} t2. Similarly, one can check that t1 ≡1

{L} t2 and t1 6≡2
{L} t2. As

Corollary 6.1 states, this is not a coincidence.

Lemma 6.1. For any class L of tree languages, r ≥ 0, ranked alphabet Σ

and trees t0, t1 ∈ TΣ, if t0 ∼rL t1 then t0 ≡rL t1.

Proof. We prove the lemma by induction on r. When r = 0, the claim is

obvious: Duplicator wins in 0 rounds if and only if Root(t0) = Root(t1).

Suppose that r > 0 and that the claim holds for any integer less than

r. Assume that t0 6≡rL t1. We have two cases: either t0 6≡r−1
L t1 or some

FTL(L)-formula L(δ 7→ ϕδ)δ∈∆ of depth r separates t0 and t1 (with respect

to Semantics 2).

If t0 6≡r−1
L t1, we can apply the induction hypothesis and conclude that

Spoiler already wins the (r− 1)-round L-Wolper game on (t0, t1), thus also

wins the r-round game.

Suppose that t0 ≡r−1
L t1 and that the formula ϕ = L(δ 7→ ϕδ)δ∈∆ of

depth r separates t0 and t1, say, t0 |=2 ϕ and t1 6|=2 ϕ. We design a winning

strategy for Spoiler as follows: let Spoiler choose the tree language L and the

P (∆)-relabeling t̂i, i = 0, 1 defined by t̂i(x) = (n, {δ ∈ ∆n : ti|x |=2 ϕδ})

for each n-ary node x ∈ dom(ti), n ∈ R.

Since t0 |=2 ϕ and t1 6|=2 ϕ, by Semantics 2 we get that t̂0 ∈ S−1
∆ (L),

while t̂1 /∈ S−1
∆ (L).

Now if Duplicator cannot choose two nodes having different labels ac-

cording to the relabelings, Spoiler wins the game. Otherwise, suppose Du-

plicator picks the node x of ti and the node y of tj , i, j ∈ {0, 1} with

(n,Dx) = t̂i(x) 6= t̂j(y) = (m,Dy). We have two subcases:

(1) If n 6= m, then the arities, thus the labels of the two nodes are different,

hence Spoiler wins the subgame in the next step.

(2) Otherwise Dx 6= Dy and there exists a symbol δ ∈ ∆n contained in

exactly one of the sets Dx and Dy. By the construction of the relabel-

ings, the FTL(L)-formula ϕδ of depth at most r− 1 separates ti|x and

tj |y (with respect to Semantics 2). Applying the induction hypothesis

we get that Spoiler wins the subgame, thus also wins the game.

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

60

Lemma 6.2. For any class L of tree languages, r ≥ 0 and trees t0, t1 ∈ TΣ
for some ranked alphabet Σ, if t0 ≡rL t1, then t0 ∼rL t1.

Proof. We argue by induction on r. When r = 0, Duplicator wins if and

only if Root(t0) = Root(t1).

Suppose that r > 0 and that the claim holds for any integer less than

r. Assume that t0 6∼rL t1.

If Spoiler has a winning strategy in the (r − 1)-round L-Wolper game

on (t0, t1), then by the induction hypothesis t0 6≡r−1
L t1, which obviously

implies t0 6≡rL t1.

Suppose Spoiler has a winning strategy in the r-round L-Wolper game

on (t0, t1) but not in the (r−1)-round one. Let us fix one of Spoiler’s winning

strategies and assume that Spoiler chooses the tree language L ∈ L over

∆ and the P (∆)-relabelings t̂0, t̂1 of t0 and t1 when playing this winning

strategy. For ease of notation, let t stand for the pair (t0, t1) and t̂ for

(t̂0, t̂1).

Then for any pair of nodes x, y ∈ dom(t) with t̂(x) 6= t̂(y), Spoiler

has a winning strategy in the (r − 1)-round L-Wolper game on (t|x, t|y).

Applying the induction hypothesis, for any such pair x, y of nodes there

exists an FTL(L)-formula ϕx,y of depth at most r − 1 separating t|x and

t|y, say, t|x |=2 ϕx,y and t|y 6|=2 ϕx,y.

For each n ∈ R, δ ∈ ∆n, let ϕδ stand for
∨

x∈dom(t):

δ∈S∆ (̂t(x))

∧

y∈dom(t):

δ/∈S∆(̂t(y))

ϕx,y. (2)

Note that for any possible pair x, y, the formula ϕx,y is well-defined, thus

so is ϕδ.

Let z ∈ dom(t) be a node of the pair (t0, t1) such that t̂(z) = (n,D) for

some n ∈ R and D ⊆ ∆n.

Assume that δ ∈ D. We claim that t|z |=2 ϕδ. Indeed, from the definition

of the formulae ϕz,y we have t|z |=2 ϕz,y for any node y ∈ dom(t) with

t̂(y) 6= t̂(z), and thus for any y ∈ dom(t) with δ 6∈ S∆(̂t(y)). Thus, t|z |=2∧
y∈dom(t):

δ/∈S∆ (̂t(y))

ϕz,y, which implies (by choosing x = z) that t|z |=2 ϕδ.

Assume that δ is a symbol that is not in D. We claim that t|z 6|=2 ϕδ.

Suppose to the contrary that t|z |=2 ϕδ. Then there exists a node x ∈ dom(t)

with δ ∈ S∆(̂t(x)) such that t|z |=2

∧
y∈dom(t):

δ/∈S∆(̂t(y))

ϕx,y. Since z is a node of t

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

61

with δ /∈ S∆(̂t(y)), in particular t|z |=2 ϕx,z, contradicting the definition of

the formulae ϕx,z. Thus, t|z 6|=2 ϕδ.

Hence, the FTL(L)-formula ϕ = L(δ 7→ ϕδ)δ∈∆ of depth at most r

separates t0 and t1, proving t0 6≡rL t1.

Corollary 6.1. For any class L of tree languages and r ≥ 0, the relations

≡rL and ∼rL coincide.

Using the game-theoretic characterization theorem from [5], the above

result proves an alternative formulation of Corollary 4.1:

Corollary 6.2. Let L be an arbitrary class of tree languages. Let L′ consist

of all languages of the form S−1
Σ (L) ⊆ TP (Σ), where L ⊆ TΣ is a member

of L′. Then,

FTL2(L) = FTL1(L
′),

moreover, for any FTL(L)-formula ϕ of depth r there exists an FTL(L′)-

formula ϕ′ of depth at most r with Lϕ,2 = Lϕ′,1, and vice versa.

Remark 6.1. An infinite Σ-tree t as a function from a tree domain to Σ is

defined as a finite tree except that the domain may be infinite. The results

of this section also hold for infinite trees, at least when L is finite. The

reason for this is that if L is finite, then for each r, and for each ranked

alphabet, up to equivalence there are only a finite number of formulas of

depth at most r. Thus, (2) is a finite formula even for infinite trees.

References

1. E. A. Emerson, E. M. Clarke. Using branching time temporal logic to syn-
thesize synchronization skeletons. Science of Computer Programming 2(3),
p. 241–266, 1982.

2. Z. Ésik. An algebraic characterization of temporal logics on finite trees. Parts
I, II, III. In: Proc. 1st International Conference on Algebraic Informatics,

2005, Aristotle University, Thessaloniki, p. 53–77, 79–99, 101–110, 2005.
3. Z. Ésik. Characterizing CTL-like logics on finite trees. Theoretical Computer

Science 356, p. 136–152, 2006.
4. Z. Ésik. Extended temporal logic on finite words and wreath products of

monoids with distinguished generators. In: Proc. DLT 02, Kyoto, LNCS 2450,
p. 43–48, Springer, 2003.

5. Z. Ésik and Sz. Iván. Games for temporal logics on trees. In: Proc. CIAA

2008, LNCS 5148, Springer, p. 191–200, 2008.
6. Z. Ésik and Sz. Iván. Products of Tree Automata with an Application to

Temporal Logic. Fundamenta Informaticæ 82, p. 61–78, 2007.

December 15, 2009 10:44 WSPC - Proceedings Trim Size: 9in x 6in 04

62

7. Z. Ésik and G. S. Mart́ın. A note on Wolper’s logic. In: Proc. Workshop on

Semigroups and Automata, Lisboa, 2005.
8. G. Grätzer. Universal Algebra, Springer, 1979.
9. R. Milner. Communication and Concurrency, Prentice Hall International Se-

ries in Computer Science, 1989.
10. J-É. Pin. Varieties of Formal Languages. North Oxford Academic, 1986.
11. F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, 1984.
12. H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity.

Birkhauser, 1994.
13. P. Wolper. Temporal logic can be more expressive. Information and Control

56, p. 71–99, 1983.

Received: December 15, 2009

Revised: March 29, 2010

July 16, 2010 11:15 WSPC - Proceedings Trim Size: 9in x 6in 05

63

THE NUMBER OF DISTINCT 4-CYCLES AND

2-MATCHINGS OF SOME ZERO-DIVISOR GRAPHS

MITSUO KANEMITSU

Department of Mathematics, College of Contemporary Education,

Chubu University, 487-8501 Matsumoto, 1200, Kasugai City, Japan

mkanemit@isc.chubu.ac.jp

Let Z be the ring of integers. We will write Zn for Z/nZ. The zero-divisor

graph of Zn, denoted Γ(Zn), is the graph whose vertices are the non-zero zero-

divisors of Zn with two distinct vertices joined by an edge when the product of

the vertices is zero. Let f(λ, Γ(Zn)) be the characteristic polynomial of Γ(Zn).

To n = 4p (n 6= 8) and n = 9p (n 6= 27) where p is a prime number, we find

the characteristic polynomial f(λ, Γ(Zn)), the number of distinct 4-cycles and

the number of 2-matchings of Γ(Zn).

1. Introduction

The concept of zero-divisor graph of a commutative ring was introduced

by I.Beck in [2]. In [1], Anderson and Livingston introduced and studied

the zero-divisor graph whose vertices are the non-zero zero-divisors. As

usual, the ring of integers and integers modulo n will be denoted by Z and

Zn = {0, 1, 2, · · · , n − 1}, respectivelly. The graph, Γ(Zn) as studied in [1]

has as its vertices the set Z(Zn)∗ = Z(Zn) − {0}, where Z(Zn) is the set

of zero divisors of Zn. Two distinct vertices x, y are adjacent (connected

by an edge) when xy = 0 in Zn. In this paper, we give the number of

distinct 4-cycles and 2-matchings of graphs Γ(Zn), where n = 4p (p is a

prime number (6= 2)) and n = 9p where p is a prime number (6= 3).

Let G be a graph and let A be the adjacent matrix of G.

Let us suppose that the characteristic polynomial of a graph G is

f(λ, G) = λn + C1λ
n−1 + C2λ

n−2 + C3λ
n−3 + C4λ

n−4 + · · · + Cn.

It is proved in the theory matrices that all coefficients can be expressed

in terms of the principal minors of A, where a principal minor is the de-

terminant of a submatrix obtained by taking a subset of the rows and the

same subset of the columns.

July 16, 2010 11:15 WSPC - Proceedings Trim Size: 9in x 6in 05

64

Let ϕ(n) be the Euler function. Then we have that f(λ, Γ(Zn)) =

λϕ(n) + C1λ
ϕ(n)−1 + C2λ

ϕ(n)−2 + C3λ
ϕ(n)−3 + C4λ

ϕ(n)−4 + · · ·+ Cϕ(n) is a

characteristic polynomial of Γ(Zn).

The number of distinct 4-cycles and the number of 2-matchings of Γ(Zn)

will be denoted by nC and nM , respectivelly. It is well known that C1 = 0.

Also, −C2 is the number of edges of Γ(Zn). −C3 is twice the number of

triangles in Γ(Zn). It follows that C4 = nM − 2nC ([3]).

2. Results

In this section, we give some examples and some results for the number

of distinct 4-cycles and the number of 2-matchings in some zero divisor

graphs.

We start the following Lemma.

Lemma 2.1. ([4]) Let G be a simple graph having the order n and

let (d1, d2, · · · , dn) be the degree sequence of G. Then the number of 2-

matchings of G is

nM = 1
8 (

∑n

i=1 di)
2 − 1

2

∑n

i=1 d2
i + 1

4

∑n

i=1 di

where di is a degree of a vertex vi (i = 1, 2, · · · , n) of G.

For a complete graph Kn with order n, we have that the characteristic

polynomial f(λ, Kn) = (λ− (n−1))(λ+1)n−1 and have that nM = 1
8 ((n−

1)n)2 − 1
2 ((n− 1)2n) + 1

4 (n− 1)n = 1
8n(n− 1)(n− 2)(n− 3). Also, we have

that nC = 3 × nC4 = 1
8n(n − 1)(n − 2)(n − 3). Hence C4 = nM − 2nC =

− 1
8n(n−1)(n−2)(n−3). Thus we obtain that the characteristic polynomial

f(λ, Kn) = λn − 1
2n(n − 1)λn−2 − 1

3n(n − 1)(n − 2)λn−3 − 1
8n(n − 1)(n −

2)(n − 3)λn−4 + g(λ), where g(λ) is a polynomial with respect to λ.

Example 2.2. Let p be a prime number. Then the order of the zero-

divisor graph Γ(Zp2) is p2 − ϕ(p2) − 1 = p − 1. The vertices set V (Γ(Zp2))

is {p, 2p, 3p, · · · , (p − 2)p, (p − 1)p}. Therefore Γ(Zp2) is a complete graph

Kp−1.

Lemma 2.3. Let Km,n be a complete bipartite graph with vertex sets

having m and n elements, respectively. Then we have that the following

satatements.

(1) The characteristic polynomial of Km,n is f(λ, Km,n) = λm+n −
mnλm+n−2.

(2) nM = 1
2mn(m − 1)(n − 1), nC = 1

4mn(n − 1)(m − 1).

July 16, 2010 11:15 WSPC - Proceedings Trim Size: 9in x 6in 05

65

Proof. The number of vertices in Km,n is m+n. We have that the size of

Km,n equals to mn. Hence C2 = −mn. Also, C3 = 0. By Lemma 2.1, nM =
1
8 (n×m+m×n)2− 1

2 (n2×m+m2×n)+ 1
4 (n×m+m×n) = 1

2mn(m−1)(n−1).

Moreover, we have that nC = mC2 × nC2 = 1
4mn(m− 1)(n− 1). Therefore

C4 = nM − 2nC = 0. Hence the characteristic polynomial f(λ, Km,n) =

λm+n − mnλm+n−2.

Corollary 2.4. Let n = pq (p < q, p and q are prime numbers). Then we

have that the following statements.

(1) Γ(Zpq) = Kp−1,q−1.

(2) f(λ, Γ(Zpq)) = λp+q−2 − (p − 1)(q − 1)λp+q−4.

(3) nM = 1
2 (p−1)(q−1)(p−2)(q−2), nC = 1

4 (p−1)(p−2)(q−1)(q−2).

Theorem 2.5. Let n = 4p, where p (6= 2) is a prime number. Then the

following statements hold.

(1) The characteristic polynomial f(λ, Γ(Z4p)) of Γ(Z4p) is the

following.

f(λ, Γ(Z4p)) = λ2p+1 − 4(p − 1)λ2p−1 + 2(p − 1)2λ2p−3.

(2) nM = (p − 1)(5p − 8), nC = 3
2 (p − 1)(p − 2).

Proof. The prime divisors of 4p are 1, 2, 4, p, 2p and 4p (= 0). Let [2p] =

{2p}, [p] = {p, 2p, 3p}− [2p] = {p, 3p}, [4] = {4a | a = 1, 2, 3, · · · , p−1} and

[2] = {2a | a = 1, 2, · · · , 2p − 1} − [4] − [2p]}.
We have that |[2p]| = 1, |[p]| = 2, |[4]| = p − 1, |[2]| = p − 1.

Let f(λ, Γ(Z4p)) = |λE−A| = λn +C1λ
n−1 +C2λ

n−2 + · · ·+Cn, where

E is the identity matrix and A is the adjacent matrix of Γ(Z4p).

(a) The number of vertices of Γ(Z4p) i.e. the order of Γ(Z4p).

The number of vertices in the zero-divisor graph Γ(Z4p) equals to n −
ϕ(4p)−1, where ϕ(4p) is the Euler function. We notice that n−ϕ(4p)−1 =

4p− 2(p − 1) − 1 = 2p + 1. Hence the order of Γ(Z4p) is 2p + 1. Hence the

degree of f(λ, Γ(Z4p)) is 2p + 1.

(b) The number of edges of Γ(Z4p), i.e. the size of Γ(Z4p).

The edges of Γ(Z4p) are the following a − b.

(i) a − b (a ∈ [2p], b ∈ [4]), that is, 2p − b. The number of this type’s

edges equals to p − 1.

(ii) a − b (a ∈ [2p], b ∈ [2]), i.e. 2p − b. The number of this type’s edges

equals to p − 1.

(iii) a − b (a ∈ [4], b ∈ [p]). The number of this type’s edges equals to

2(p − 1).

July 16, 2010 11:15 WSPC - Proceedings Trim Size: 9in x 6in 05

66

Therefore the number of edges is 1× (p−1)+1× (p−1)+(p−1)×2 =

4(p − 1). Hence C2 = −4(p− 1).

(c) The number of triangles is 0. Hence C3 = 0.

(d) The distinct 4-cycles of Γ(Z4p) are the following a − b − c − d − a;

(i) a − b − c − d − a (a ∈ [2p], b, d ∈ [4], c ∈ [p]).

(ii) a − b − c − d − a (a, c ∈ [4], b, d ∈ [p]). Hence we have that

nC = p−1C2 × 2 + p−1C2 × 2C2 = (p − 1)(p − 2) + 1
2 (p − 1)(p − 2) =

3
2 (p − 1)(p − 2).

By Lemma 2.1, we have that nM = 1
8 (1×(p−1)+2(p−1)×1+(p−1)×

2+3× (p− 1))2− 1
2 (12 × (p− 1)+ (2(p− 1))2× 1+32× (p− 1)+ (p− 1)2×

2)+ 1
4 (1× (p−1)+2(p−1)×1+(p−1)×2+(p−1)×3)) = (p−1)(5p−8).

Hence C4 = nM −2nC = (p−1)(5p−8)−2× 3
2 (p−1)(p−2) = 2(p−1)2.

If i ≥ 5, then Ci = 0. In fact, those coefficients can be expressed in

terms of the i-th degree principal minors of A, where a principal minor is

the determinant of a submatrix obtained by taking a subset of the rows and

the same subset of the columns. Therefore five or moreover vertices contain

the same type vertices and so minor determinant equal to 0.

Thus we have that f(λ, Γ(Z4p)) = λ2p+1−4(p−1)λ2p−1+2(p−1)2λ2p−3.

The proof is complete.

Example 2.6. Let n = 28 = 4 × 7. The prime divisors of 28 are

1, 2, 4, 7, 14, 28 (= 0). Put

[14] = {14}, [7] = {7, 21}, [4] = {4, 8, 12, 16, 20, 24}
and

[2] = {2, 6, 10, 18, 22, 26}.
The edges of Γ(Z28) are the following edges a − b:

(i) 14 − a (a ∈ [2], [4]). The number of this type’s edges is 12(= |[2]| +
|[4]|).

(ii) a − b (a ∈ [4], b ∈ [7]). The number of this type’s edges is 12(=

|[7]| × |[4]|).
The order of Γ(Z28) equals to 15 (= 28−ϕ(28)− 1). The size of Γ(Z28)

equals to 24. Hence C2 = −24. Also, the number of triangles are 0. Therefore

C3 = 0. Moreover, nM = 1
8 (6 × 2 + 3 × 6 + 12 × 1 + 1 × 6)2 − 1

2 (62 × 2 +

32 × 6 + 122 × 1 + 12 × 6) + 1
4 (6× 2 + 3× 6 + 12× 1 + 1 × 6) = 162. Also,

nC = 6C2+2×6C2 = 45. Since C4 = nM−2nC = 162−2×45 = 72, and 0 =

C5 = C6 = · · · . Therefore we have that f(λ, Γ(Z28)) = λ15 −24λ13 +72λ11.

Theorem 2.7. Let n = 9p, where p (6= 3) is a prime number. Then the

following statements hold.

July 16, 2010 11:15 WSPC - Proceedings Trim Size: 9in x 6in 05

67

(1) The characteristic polynomial f(λ, Γ(Z9p)) of Γ(Z9p) is the

following.

f(λ, Γ(Z9p)) = λ3p+5 − (12p− 11)λ3p+3 − 6(p− 1)λ3p+2 + 6(p− 1)(4p−
3)λ3p+1 + aλ3p, where a is an integer.

(2) nM = 12(p − 1)(5p − 7), nC = (p − 1)(18p − 33).

Proof. The prime divisors of 9p are 1, 3, 9, p, 3p, 9p (= 0). Let

[3p] = {3p, 6p}, [p] = {rp | r = 1, 2, · · · , 8} − [3p] =

{p, 2p, 4p, 5p, 7p, 8p}, [32] = {r ·32 | r = 1, 2, · · · , p−1} and [3] = {r · 3 | r =

1, 2, · · · , 3p−1}− [3p]− [32]. Thus, we have that |[3p]| = 2, |[p]| = 6, |[32]| =

p − 1 and |[3]| = 2(p − 1).

Let f(λ, Γ(Z9p)) = |λE−A| = λn +C1λ
n−1 +C2λ

n−2 + · · ·+Cn, where

E is the identity matrix and A is the adjacent matrix of Γ(Z9p).

(a) The number of vertices of Γ(Z9p) i.e. the order of Γ(Z9p).

The number of vertices in the zero-divisor graph Γ(Z9p) equals to n −
ϕ(9p)−1, where ϕ(9p) is the Euler function. We notice that n−ϕ(9p)−1 =

3p+5. Hence the order of Γ(Z9p) is 3p+5. Hence the degree of f(λ, Γ(Z9p))

is 3p + 5.

(b) The number of edges in Γ(Z9p), i.e. the size of Γ(Z9p).

The edges of Γ(Z9p) are the following a − b.

(i) 3p− 6p. The number of this type’s is only one.

(ii) a− b (a ∈ [3p], b ∈ [3]). The number of this type’s edges is 4(p− 1).

(iii) a−b (a ∈ [3p], b ∈ [32]). The number of this type’s edges is 2(p−1).

(iv) a − b (a ∈ [32], b ∈ [p]). The number of this type’s is 6(p − 1).

Therefore the number of edges equals to 2 × 2(p − 1) + 1 + 2(p − 1) +

6(p − 1) = 12p − 11. Hence C2 = −(12p − 11).

(c) The number of triangles are the following a − b − c − a.

(i) a− b− c− a (a ∈ [3]; b, c ∈ [3p]). The number of this type’s triangles

is 2(p − 1).

(ii) a − 3p − 6p − a (a ∈ [32]). The number of this type’s triangles is

p − 1.

Hence the number of distinct 3-cycles equals to 2(p − 1) + (p − 1) (=

3(p − 1)). Thus C3 = −2 × 3(p − 1) = −6(p − 1).

(d) The distinct 4-cycles of Γ(Z4p) are the following a − b − c − d − a;

(i) a − b − c − d − a (a, c ∈ [3p], b, d ∈ [3]). The number of this type’s

distinct 4-cycles is 2(p−1)C2 (= (p − 1)(2p − 3)).

(ii) a − b − c − d − a (a, c ∈ [3p], b ∈ [3], d ∈ [32]). The number of this

type’s distinct 4-cycles is 2(p − 1)2(= 2(p − 1) × (p − 1)).

(iii) a − b − c − d − a (a, c ∈ [3p], b, d ∈ [32]). The number of this type’s

distinct 4-cycles is 1
2 (p − 1)(p − 2) (= p−1C2).

July 16, 2010 11:15 WSPC - Proceedings Trim Size: 9in x 6in 05

68

(iv) a − b − c − d − a (a ∈ [3p], b, d ∈ [32], c ∈ [p]). The number of this

type’s distinct 4-cycles is 6(p − 1)(p − 2) (= 6 × 2 × p−1C2).

(v) a − b − c − d − a (a, c ∈ [p], b, d ∈ [32]). The number of this type’s

distinct 4-cycles is 15
2 (p − 1)(p − 2) (= 6C2 × p−1C2).

Thus the number of distinct 4-cycles equals to 2(p−1)C2 +(p−1)×2(p−
1) + 6C2 × p−1C2 + 6× 2× p−1C2. Therefore nC = (p − 1)(2p− 3) + 2(p−
1)2 + 15

2 (p−1)(p−2)+ 1
2 (p−1)(p−2)+6(p−1)(p−2) = (p−1)(18p−33).

Also, we obtain that nM = 12(p− 1)(5p − 7).

Since C4 = nM − 2nC , we have that C4 = 12(p − 1)(5p − 7) − 2(p −
1)(18p − 33) = 6(p − 1)(4p− 3).

If i ≥ 6, we have that Ci = 0 using the principal minors of degree i ≥ 6.

Thus we have that f(λ, Γ(Z9p)) = λ3p+5 − (12p − 11)λ3p+3 − 6(p −
1)λ3p+2 + 6(p − 1)(4p − 3)λ3p+1 + aλ3p. The proof is complete.

Example 2.8. The characteristic polynomial f(λ, Γ(Z18)) of Γ(Z18) is

λ11 − 13λ9 − 6λ8 + 30λ7 + 24λ6 by using the Mathematica. In the above

Theorem 2.7, we see that a = 24 in this case.

Example 2.9. Γ(Z45) has the following vertices;

[3] = {3, 6, 12, 21, 24, 33, 39, 42}, [15] = {15, 30}, [9] = {9, 18, 27, 36} and

[5] = {5, 10, 20, 25, 35, 40}. The edges of Γ(Z45) are the following a − b:

(i) a − b (a ∈ [3], b ∈ [15]). The number of this type’s edges 8 × 2.

(ii) a − b (a, b ∈ [15]), i.e. 15 − 30. The mumber of this type’s edges is

only one.

(iii) a − b (a ∈ [15], b ∈ [9]). The number of this type’s edges is 2 × 4.

(iv) a − b (a ∈ [9]), b ∈ [5]). The number of this type’s edges is 4 × 6.

Hence the number of all edges is 49. The triangles of Γ(Z45) are the

following a − b − c − a:

(i) a − 15 − 30− a (a ∈ [3]). The number of this type’s triangles is 8.

(ii) a − 15 − 30− a (a ∈ [9]). The number of this type’s triangles is 4.

The number of triangles of Γ(Z45) is 12. Next, the distinct 4-cycles are

the following a − b − c − d − a:

(i) a−15−b−30−a (a ∈ [3], b ∈ [9]). The number of this type’s distinct

4-cycles is 32.

(ii) a − 15 − b − 30 − a (a, b ∈ [3], a 6= b). The number of this type’s

distinct 4-cycles is 28 (= 8C2).

(iii) 15 − a − 30 − b − 15 (a, b ∈ [9]), a 6= b). The number of this type’s

distinct 4-cycles is 6 (= 4C2).

(iv) 15 − a − b − c − 15 (a, c ∈ [9], a 6= b, b ∈ [5]). The number of this

type’s distinct 4-cycles is 72 (= 2C1 × 4C2 × 6C1).

July 16, 2010 11:15 WSPC - Proceedings Trim Size: 9in x 6in 05

69

(v) a − b − c − d − a (a, c ∈ [9] (a 6= c), b, d ∈ [5] (b 6= d)). The number

of this type’s distinct 4-cycles is 90 (= 4C2 × 6C2).

Hence, the number of distinct 4-cycles equals to nC = 228. Also, we

have that nM = 864. Thus C4 = nM − 2nC = 864 − 456 = 408. Therefore

f(λ, Γ(Z45)) = λ20 − 49λ18 − 24λ17 + 408λ16 + aλ15, where a is an integer.

References

1. D.F.Anderson and P.S.Livingston, The zero-divisor graph of a commutative
ring, J. Algebra 217 (1999), 434-447.

2. I.Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
3. N.Biggs, Algebraic Graph Theory (second edition), Cambridge University

Press 1993.
4. N.Biggs, Y.Jin and M.Kanemitsu, Beck’s graphs associated with Zn and their

characteristic polynomials, to appear in International J. Applied Math. and

Statistics.

Received: August 17, 2009

Revised: September 6, 2009

This page intentionally left blankThis page intentionally left blank

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

71

ON NORMAL FORM GRAMMARS AND THEIR SIZE
∗

A. KELEMENOVá
1,2

, L. CIENCIALOVá
1

and L. CIENCIALA
1

1Institute of Computer Science,

Silesian University in Opava, Czech Republic,
2Department of Computer Science, Catholic University,

Ružomberok, Slovakia

E-mail: {alica.kelemenova,lucie.ciencialova,ludek.cienciala}@fpf.slu.cz

In this paper normal forms for context-free grammars, namely position re-

stricted grammars, are treated and their influence to the size of the description

of languages are presented. We discuss and compare several types of position

restricted grammars and minimal size of grammars, expressed by the number

of rules, needed to generate a language. Several techniques for the transforma-

tion of given grammar to an equivalent grammar in required form are used to

reach upper bounds of the possible increase of the size complexity of languages

related to different types of the position restricted grammars.

Keywords: Normal form grammar, position restricted grammar, size

complexity.

1. Introduction

Study of the normal forms of grammars for (the context-free) languages

started in the late fifties of the last century. Ideas leading to introduce them

were following: To find such restrictions of the form of rules of context-free

grammars, which do not change their generative power, in order to handle

easily the parsing procedures or, in order to reduce the (complexity of)

proofs of theorems for (context-free) languages and to make them more

transparent. Classical examples of such description of languages are Chom-

sky normal form grammars, introduced in 1959 and Greibach normal form

grammars, introduced in 1965. In the first one we look for as short as pos-

sible rules. Rules with two nonterminals are sufficient in the right side of

rules completed by rules with single terminal on their the right sides. Cru-

∗
This research is partially supported by projects VEGA 1/0692/08 (A. Kelemenová),

IGS 37/2009, GAČR 201/09/P075 (L. Ciencialová) and by research plan MSM

4781305903 (L. Cienciala).

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

72

cial for the Greibach normal form are terminal symbols in front on the right

side of all rules. Both aspects, i.e. short rules with terminal start symbols

of the right side characterize Greibach binary form.

Several modifications or generalizations of these basic normal forms ap-

peared during the decades. For example more (than one) terminal symbols

were required in the front of the right side of production, or more (than

two) nonterminals, but bounded size, were allowed (k normal form). Ter-

minal symbols/string were required on the end of the right side of the rules

(reverse Greibach normal form), or terminals appeared both in front of and

at the end of the right sides of the rules (double Greibach normal form).

Neighboring nonterminals are not allowed in rules of the operator gram-

mars. Nice recapitulation of the normal forms for context-free grammars is

presented in6 chapter 4.

After series of these results the fascinating uniform view to the normal

form grammars was presented by M. Blattner and S. Ginsburg in 19771 and

in1982.2 Main idea was to fix the position of terminals and nonterminals

in rules of grammars. Position restricted grammars represent the collection

of the normal form grammars for context-free languages determined by k

tuples (k ≥ 3) of natural numbers. k tuple (m1, m2, . . . , mk) determines

rules with right side containing terminal strings of length m1, m2, . . . , mk

separated by single nonterminals. More formally: According to1 a grammar

is called position restricted grammar of type (m1, m2, . . . , mk), where k ≥ 3

and each mi is a nonnegative integer if each rule of grammar has either

the form A0 → w1A1w2 . . . wk−1Ak−1wk, where each Ai is a nonterminal

and each wi is a terminal word of the length mi, or A → aB or A → a.

From this point of view Chomsky normal form grammars belong to

(0, 0, 0) position restricted grammars, Greibach binary form coincides with

(1, 0, 0) position restricted grammars. In2 the authors slightly modified

the terminal rules. They replaced the right linear rules by rules A → w,

where w is a terminal string with no bound to its length. As the next step

the length set of terminal rules was taken under the consideration. Only

terminal rules allowed in supernormal-forms11 are rules A → w with |w| in

the length set of the generated language. This means that the language gen-

erated by a grammar with rule A → w, where w is a terminal string has to

produce some word of the length |w|. The supernormal-form was presented

for position restricted grammars specified by three-tuples (m1, m2, m3) and

possible generalization for arbitrary k tuple was mentioned.

Special normal form of grammars influences significantly the size

of grammars needed to generate languages and consequently the size of lan-

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

73

guages determined by the size of minimal grammar of given type, which

describes the language. See3–5,7 for previous results on grammatical com-

plexity of languages.

In the present paper the size of languages will be discussed for their de-

scription by position restricted grammars of type (m1, m2, m3). We use orig-

inal right linear rules to terminate the derivation. The length of each rule

of the position restricted grammars of given type is bounded by a constant

and so the total length of the grammars is linearly bounded by the number

of rules of grammars. Therefore we choose the number of rules to charac-

terize the size of grammars and consequently also the size of languages. In

more detail, number of production rules in grammar G, denoted by Prod

G will characterize the size of the grammar and the size of the language L

with respect to the grammars of type t = (m1, m2, m3) will be determined

by the number of rules of minimal grammar of type t, which describes L,

and will be denoted by ProdtL.

We will compare ProdtL and Prodt′L for pairs of types t =

(m1, m2, m3) and t′ = (m′
1, m

′
2, m

′
3) and for context-free languages L. In

order to find function f , as good as possible, which satisfies Prodt′L ≤
f(ProdtL) for all context-free languages we will analyze various techniques

of transformation for the grammars of type t to an equivalent grammars

of type t′.

In this paper we discuss types with at most one nonzero component.

We will consider:

(i) matrix algorithm in the case when nonzero components are in the dif-

ferent positions in t and t′;

(ii) simulation of one derivation step or several derivation steps in t by

corresponding derivation steps in t′.

Polynomial bounds will be achieved, in all considered cases, where the de-

gree of the polynomial depends on t and t′. Optimality of the presented up-

per bound polynomial will be not discussed in the present paper. In the con-

clusion we analyze consequences of the presented results for other types of

position restricted grammars and we recapitulate open cases.

2. Preliminaries and formalism for language descriptions

We assume that the reader is familiar with the theory of context-free gram-

mars and languages. First, we fix the notations used in the paper.

A position restricted grammar G = (N, T, P, S) of type t =

(m1, . . . , mk), where k ≥ 3 and (m1, . . . , mk) is a vector of natural numbers,

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

74

is a context-free grammar with rules of the following forms:

(1) A → w1A1w2A2 . . . wk−1Ak−1wk , called a t rule,

(2) A → aB,

(3) A → a,

where Ai, A, B ∈ N , wi ∈ T ∗, |wi| = mi, 1 ≤ i ≤ k and a ∈ T .

In this paper the complexity of the grammar G will be characterized

by its size and based on the number of its production rules. We denote it

Prod G, i.e. Prod G = |P | .
The size of the context-free language L with respect to position re-

stricted grammars of type t, denoted Prodt L, is given by

Prodt L = min {Prodt G | L(G) = L, G is of type t} .

Let G = (N, T, P, S) be a context-free grammar, N = {Xi | 0 ≤ i ≤ n} and

let Xi → Pi,1 | Pi,2 | · · · | Pi,mi
be all rules of G with left side Xi. With the

set P one can associate the set of the equations

Xi = Pi,1 + Pi,2 + · · · + Pi,mi
, i = 0, . . . , n,

which can be expressed also in matrix form

~a = ~a · D +~b,

where ~a is the vector (X1, . . . , Xn) of all nonterminals, ~b is the vector whose

elements bi are sums of the right sides of rules for Xi beginning with ter-

minal symbols and D is a matrix, an element Di,j in the i-th row and j-th

column of D is the sum of the right sides of the rules for Xi starting with

Xj .

We illustrate the above mentioned representation in the next example.

Example 2.1. Let G = ({A, B}, {a, b}, P, A) be a context-free grammar.

A set of rules P consists of the following rules:

A → AB B → BA

A → AA B → AA

A → aB B → b

A → a

Matrix representation of the grammar G has form:

(A, B) = (A, B) ·

(
A + B A

∅ A

)
+ (aB + a, b)

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

75

One of the methods used to transform grammars to Greibach normal

form is the matrix algorithm. Starting with grammar G represented by

~a = ~a · D +~b,

it produces grammar H described by equations

~a = ~b · Y +~b Y = D′ · Y + D′,

where Y is an n × n matrix of new nonterminals Yi,j and matrix D′ is

constructed from D substituting each nonterminal, which stays as the first

symbol in the component Di,j , 1 ≤ i, j ≤ n by corresponding sum deter-

mined by ~a = ~b · Y + ~b. For details of this transformation we refer6 pp.

125–131.

Next example presents a Greibach normal form grammar constructed

using matrix algorithm for grammar G from Example 2.1.

Example 2.2. Matrix algorithm transforms grammar G to grammar G′

specified by

(A, B) = (aB + a, b) ·

(
Y1,1 Y1,2

Y2,1 Y2,2

)
+ (aB + a, b)

(
Y1,1 Y1,2

Y2,1 Y2,2

)
=

(
D′

1,1 D′
1,2

D′
2,1 D′

2,2

)
·

(
Y1,1 Y1,2

Y2,1 Y2,2

)
+

(
D′

1,1 D′
1,2

D′
2,1 D′

2,2

)
,

where

D′
1,1 = aBY1,1 + aY1,1 + bY2,1 + aB + a + aBY1,2 + aY1,2 + bY2,2 + b

D′
1,2 = aBY1,1 + aY1,1 + bY2,1 + aB + a

D′
2,1 = ∅

D′
2,2 = aBY1,1 + aY1,1 + bY2,1 + aB + a

Note that Prod G = 7 and Prod G′ = 9 + 19 · 3 = 66.

Similarly, we can express grammar G by reverse matrix form

~a = D · ~a +~b,

where ~a is a column vector (X1, . . . , Xn) of all nonterminals, ~b is a column

vector whose elements bi are sums of the right sides of rules for Xi ending

with terminal symbols and D is a matrix, an element Di,j in the i-th row and

j-th column of D is the sum of the right sides of the rules for Xi ending with

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

76

Xj . Reverse matrix form can be transformed to reverse Greibach normal

form

~a = Y ·~b +~b Y = Y · D′ + D′,

where Y is an n × n matrix of new nonterminals Yi,j and matrix D′ is

constructed from D substituting each nonterminal, which stays as the last

symbol in the component Di,j , 1 ≤ i, j ≤ n by corresponding sum deter-

mined by ~a = Y ·~b +~b.

3. Matrix algorithm and size estimation of languages

Matrix transformation gives bases for all results presented in this section.

Following Theorem 4.9.1 in6 (see also7), matrix transformation gives cubic

bound for the size of produced grammars. The matrix transformation as-

sociates with grammar in Chomsky normal form an equivalent grammar in

Greibach binary form. This gives immediately

Theorem 3.1. Let L be a context-free language. Then

Prod(1,0,0)L ≤ cProd3
(0,0,0)L

for some c.

The matrix transformation associates with grammar of type (0, 1, 0) im-

mediately an equivalent grammar in Greibach binary form. All components

of D start with the terminal symbols so D′ = D. Therefore quadratic bound

is sufficient in this case.

Theorem 3.2. Let L be a context-free language. Then

Prod(1,0,0)L ≤ cProd2
(0,1,0)L

for some c.

Proof. Let L be a context-free language, Prod(0,1,0)L = p and let G = (N ,

T , P , S) be a minimal position restricted grammar of the type (0, 1, 0),

which generates L. The set of rules of G of the form A → BaC, A →
aB and A → a has matrix form ~a = ~a · D + ~b, where the elements of the

matrix D are in TN and the vector ~b has the elements in TN ∪ T .

Grammar H determined in matrix form by

~a = ~b · Y +~b, Y = D · Y + D,

is of the type (1, 0, 0) and ProdH ≤ (n + 1) · p ≤ cp2. This together with

Prod(1,0,0)L ≤ ProdH proves the theorem.

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

77

In the following theorem we compare complexity of the type (0, m−1, 0)

with respect to the type (0, 0, m) grammars.

Theorem 3.3. Let L be a context-free language and m ≥ 2. Then

Prod(0,m−1,0)L ≤ cProd4
(0,0,m)L

for some c.

Proof. Let L be a context-free language, m ≥ 2 and Prod(0,0,m)L = p. Let

G = (N , T , P , S) be a minimal position restricted grammar of the type

(0, 0, m) for L with the set of p1 rules of the form A → BCa1 . . . am, p2

rules of the form A → aB and p3 rules of the form A → a and with

corresponding matrix representation

~a = ~a · D +~b.

The components of the matrix D are (sums of) elements of NT m and

the components of the vector ~b are (sums of) elements in TN ∪T . Moreover

there are p1 elements in the components of D and p2 + p3 elements in

components of ~b. We analyze an equivalent grammar H determined by

equations:

~a = ~b · Y +~b Y = D · Y + D,

where matrix Y is an n × n matrix of new nonterminals Yi,j , 1 ≤ i, j ≤ n,

and n is the number of nonterminals of grammar G.

(1) ~a = ~b · Y +~b

represents n · p3 rules of form A → aY , p2 rules of form A → aB and

p3 rules of form A → a. Remaining np2 rules of form A → aBY have

to be transformed further to the type (0, m − 1, 0) rules. We replace

each rule of form A → aBY by at most 3p rules, where we substitute

nonterminal B according to corresponding rules in P . Strings in []

denote new nonterminals.

A → a[bY], [bY] → bY for B → b in P

A → a[bCY], [bCY] → b[CY] for B → bC in P,

A → [aCD]w[bY], [aCD] → a[CD], [bY] → bY for B → CDwb in P,

w ∈ T m−1, a, b ∈ T.

Total number of rules in part (1) is bounded by 3p·n·p2+p2+(n+1)·p3,

which gives cubic bound with respect to p.

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

78

(Rules for new nonterminals of the form [CD], [CY] where C, D are

nonterminals of G will be constructed in part (3).)

(2) Y = D · Y + D
represents rules of H for new nonterminals Y , which are of form Y →
BwaZ and Y → Bwa, w ∈ T m−1, a ∈ T and B ∈ N ; Y, Z ∈ N ′.

We slightly modify them to obtain rules of type (0, m − 1, 0):

Y → Bw[a], [a] → a for Y → Bwa and

Y → Bw[aC], [aC] → aC for Y → BwaC.

The matrix D represents at most p1 rules so there are at most 2(n+1)·p1

rules for nonterminals in Y constructed in the part (2).

(3) Rules for new nonterminals [AB], A ∈ N, B ∈ N ∪{Yi,j | 1 ≤ i, j ≤ n}
will be determined by rules of G for A:

[AB] → aB for A → a ∈ P,

[AB] → a[BC] for A → aB ∈ P,

[AB] → [CD]w[aB] [aB] → aB for A → CDwa ∈ P.

n nonterminals in G and n2+n nonterminals in N∪{Yi,j | 1 ≤ i, j ≤ n}
produces n2 + n3 nonterminals of the form [AB]. By construction in

part (3) we obtain at most 2p(n2 + n3) rules.

By (1) - (3) and for n ≤ p it holds Prod H ≤ cp4 for some c > 0. We

proved Prod(0,m−1,0)L ≤ cProd4
(0,0,m)L.

Theorem 3.4. Let L be a context-free language. Then

Prod(0,0,1)L ≤ cProd4
(0,1,0)L

Prod(0,1,0)L ≤ cProd4
(1,0,0)L

for some c.

Proof. To prove Prod(0,0,1)L ≤ cProd4
(0,1,0)L we assume that L is a

context-free language, Prod(0,1,0)L = p and G = (N, T, P, S), a mini-

mal position restricted grammar of type (0, 1, 0) which generates L has

p1 rules of form A → BaC, p2 rules of form A → aB and p3 rules of form

A → a. Note that each rule contains one terminal symbol, so |T | ≤ p.

Reverse matrix form for G is

~a = D · ~a +~b,

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

79

where elements of D are in NT ∪ T and vector ~b has elements from T .

Grammar H determined in reverse Greibach normal form given by

~a = Y ·~b +~b Y = Y · D + D,

where Y is n × n matrix of new nonterminals Yi,j , 1 ≤ i, j ≤ n, n is the

number of nonterminals of grammar G gives

(1) p3 rules of form A → a, np1 rules of form Y → Y Ab and p2 rules of

type Y → a, which are type (0, 0, 1) rules and

(2) np3 rules of form A → Y a, np2 rules of form Y → Y a, p1 rules of form

Y → Aa, which have to be transformed further using rules of H to

obtain rules of type (0, 0, 1) grammar.

(a) Each of the p1 rules Y → Aa will be replaced by at most p3 rules

A → b and at most n ·p3 rules A → Y b which add to the set H rules

p1p3 rules Y → b[a], and np1p3 rules Y → Y [b]a.

(b) Each of the np2 rules Y → Y a and np3 rules A → Y a will be

transformed by rules from H for Y from part I which add to the set

H rules

Y → Y [b]a, A → Y [b]a by at most np3 rules Y → Y b,

Y → b[a], A → b[a] by at most p3 rules Y → b,

Y → A[b]a, A → A[b]a by at most np2 rules Y → Ab,

Y → Y [Ab]a, A → Y [Ab]a by at most np1 rules Y → Y Ab.

At most n2p2 rules were added to H in this step.

Additionally we complete H with rules for [Ab], A ∈ N and for [a], a ∈ T :

[Ab] → a[b] (at most p1p3 rules), [Ab] → Y [a]b (at most np1p3 rules),

[a] → a (at most p rules).

Number of rules of H is bounded by cp4 for some constant c. So we conclude

with Prod(0,0,1)L ≤ cProd4
(0,1,0)L.

The second result Prod(0,1,0)L ≤ cProd4
(1,0,0)L can be proven in the

same way. Only difference is that elements of matrix D are in TN ∪ T for

(1, 0, 0) type rules A → aBC which leads to type (0, 1, 0) rules instead of

type (0, 0, 1) rules everywhere in the construction.

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

80

4. Partition of the derivations and size estimation of

languages

Type division of the position restricted grammars were studied in,10 type

t′ divides the type t if each rule of a grammar of type t can be replaced

by some derivation steps in the grammar of type t′, or equivalently each

derivation step in a grammar of type t can be replaced by some derivation

tree of type t′ grammar.

More formally: The type t′ = (m′
1, . . . , m

′
r+1) divides the type t =

(m1, . . . , mn+1) if there is a grammar G = (N, a ∪ A, P, S) such that

L(G) = {am1Aam2A . . . amn+1} and each production of G is of the form

X → am′

1X1a
m′

2X2 . . .Xra
m′

r+1 or X → aZ or X → a and every non-

terminal occurs exactly once in the right hand of side of the productions

P .

Simulation of the derivation in t by a derivation in t′ consists simply in

the subsequent simulations of individual derivation steps. Evidently, linear

bound Prodt′L ≤ cProdtL holds in this case.10 Adapting this result for

types given by 3-tuples we get

Theorem 4.1. Let L be a context-free language and 0 ≤ n ≤ m. Then

Prod(0,0,0)L ≤ cProd(m,0,0)L Prod(n,0,0)L ≤ cProd(m,0,0)L

Prod(0,0,0)L ≤ cProd(0,m,0)L Prod(0,n,0)L ≤ cProd(0,m,0)L

Prod(0,0,0)L ≤ cProd(0,0,m)L

where c is a constant for fixed m, n.

In what follows we will decompose derivation trees in a grammar of type

t to subtrees in such a way that each chosen subtree can be replaced by

some derivation steps (a derivation subtree) in type t′ grammar. So again

simulation of the derivation in type t grammar will consist in composition

of derivation subtrees of the type t′ grammar.

We illustrate this treatment on the transformation of grammars of the

type (m, 0, 0) to an equivalent grammar of type (m + 1, 0, 0).

Theorem 4.2. Let L be a context-free language and m ≥ 1. Then

Prod(m+1,0,0)L ≤ cProd4
(m,0,0)L

for some c.

Proof. Let L be a context-free language and m ≥ 1. Let Prod(m,0,0)L = p

and G = (N, T, P, S) be a minimal position restricted grammar of the type

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

81

Fig. 1. The transformation of G to G′

(m, 0, 0) for L. Assume that G has p1 rules of the form A → a1a2 . . . amBC,

p2 rules of the form A → aB and p3 rules of the form A → a; p1+p2+p3 = p.

To produce rules of (m + 1, 0, 0) grammar G′ we replace two consecu-

tive derivation steps in G starting with rule of type A → a1a2 . . . amBC by

corresponding derivation in G′:

(1) A ⇒2 a1a2 . . . ambC in G will be realized by m + 1 regular rules in G′.

At most (m + 1)p1 · p3 such rules are in G′.

(2) A ⇒2 a1a2 . . . ambDC in G gives A → a1a2 . . . ambDC in G′.

At most p1 · p2 such rules are in G′.

(3) A ⇒2 a1 . . . amb1b2 . . . bmDEC in G gives

A → a1 . . . amb1[b2 . . . bmD][EC] in G′.

At most p2
1 such rules are in G′ with at most p1 nonterminals

[b2 . . . bmD], and p2
1 nonterminals [EC].

(4) Each nonterminal [b2 . . . bmD] will be rewritten by m − 1 regular rules

to string b2 . . . bmD.

(5) Each nonterminal [AB], A, B ∈ N has in G′ rules simulating one or two

derivation steps in G. Namely:

• [AB] → aB for A → a in G.

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

82

At most p3 · n2 such rules are in G′.

• [AB] → a[DB] for A → aD in G.

At most p2 · n2 such rules are in G′ and

• A → a1a2 . . . amCD in G gives:

(a) [AB] → a1 . . . ambDB for C → b.

At most p1 · p3 · n2 such rules are in G′ and

(b) [AB] → a1 . . . ambE[DB] for C → bE

At most p1 · p2 · n2 such rules are in G′

(c) [AB] → a1 . . . amb1[b2 . . . bm[EF]][DB] for C → b1b2 . . . bmEF.

At most p2
1n

2 such rules are in G′.

Derivation trees in presented construction are schematically given on

Fig. 1, where squares are used to denote terminals and circles denote non-

terminals.

We conclude that Prod G′ ≤ f(p) for polynomial f of degree 4 and

Prod(m+1,0,0)L ≤ cProd4
(m,0,0)L.

Theorem 4.3. Let L be a context-free language. Then

Prod(0,0,0)L ≤ cProd(0,0,1)L

Prod(0,0,1)L ≤ cProd2
(0,0,2)L

Prod(0,0,m−1)L ≤ cProd3
(0,0,m)L, m ≥ 3

for some c.

Proof. Let L be a context-free language and m ≥ 1. Let Prod(0,0,m)L = p

and G = (N, T, P, S) be a minimal position restricted grammar of the type

(0, 0, m) for L. Assume that G has p1 rules of the form A → BCa1a2 . . . am,

p2 rules of the form A → aB and p3 rules of the form A → a; p1+p2+p3 = p.

To produce (0, 0, m − 1) grammar G′ equivalent to G we replace each

derivation step in G determined by one of the rules A → BCa1a2 . . . am,

by corresponding derivations in G′ starting with rule A → B[Ca1]a2 . . . am,

where [Ca1] is new nonterminal.

Rules for [Ca1] are determined by rules of G as follows:

(a) m = 1:

[Ca1] → C[a1], [a1] → a1

G′ has at most 2p1 + p rules ie. Prod(0,0,0)L ≤ cProd(0,0,1)L.

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

83

(b) m = 2:

[Ca1] → b[a1], [a1] → a1 for C → b ∈ P .

At most p3p1 + p1 rules.

[Ca1] → [b]Da1, [b] → b for C → bD ∈ P .

At most p1p2 + p2 rules.

[Ca1] → D[Eb1b2]a1, [Eb1b2] → E[b1]b2 for C → DEb1b2 in G.

At most p1p1 + p1 rules.

G′ has at most p(3 + p1) rules, ie. Prod(0,0,1)L ≤ cProd2
(0,0,2)L.

(c) m ≥ 3.

Rules for [Eb1b2 . . . bi], 1 ≤ i ≤ m − 1 determined by rules of G:

(c1) [Eb1b2 . . . bi] → b[b1b2 . . . bi] for E → b ∈ P .

At most p3 rules for each [Eb1b2 . . . bi] and p1 new nonterminals

[b1b2 . . . bi].

(c2) [Eb1b2 . . . bi] → b[Db1b2 . . . bi] for E → bD ∈ P, i < m − 1.

[Eb1b2 . . . bm−1] → [b]Db1b2 . . . bm−1 for E → bD.

At most p2 rules for each [Eb1b2 . . . bi], i < m−1 and at most p2

rules for each [Eb1b2 . . . bm−1]. Moreover p1p2 new nonterminals

[Db1b2 . . . bi] for each [Eb1b2 . . . bi] and i < m − 1.

(c3) [Eb1 . . . bi] → D[Fc1 . . . ci+1]ci+2 . . . cmb1 . . . bi

for E → DFc1 . . . cm ∈ P, i < m − 1.

[Eb1 . . . bm−1] → D[Fc1 . . . cm]b1 . . . bm−1, and

[Fc1 . . . cm] → F [c1]c2 . . . cm for E → DFc1 . . . cm ∈ P .

At most p1 rules and p1 new nonterminals [Fc1c2c3 . . . ci+1] for

each [Eb1b2 . . . bi] and i < m − 1.

(c4) We add to G′ i regular rules for [a1 . . . ai], i ≤ m − 1 for each rule

A → BCa1a2 . . . am ie. less than (m − 1)p1 rules.

In parts c1) – c3) we constructed at most (p1 + p1p2)p rules for each 1 ≤
i ≤ m − 2 and 2pp1 rules for i = m − 1. Prod G′ for constructed G′ is

bounded by cp3 for some c.

Prod(0,0,m−1)L ≤ cProd3
(0,0,m)L for all m ≥ 3.

5. Conclusion

In this paper we have presented several algorithms, which transform

vice versa two types of position restricted grammars, determined by

(m1, m2, m3), where mi 6= 0 for at most one i. The results presented in

the paper can be summarized as follows.

Let m, n be two natural numbers. Then there are polynomials p such that

(i) Prod(m,0,0)L ≤ p(Prod(n,0,0)L)

July 16, 2010 11:43 WSPC - Proceedings Trim Size: 9in x 6in 06

84

(ii) Prod(m,0,0)L ≤ p(Prod(0,n,0)L)

(iii) Prod(m,0,0)L ≤ p(Prod(0,0,n)L)

Moreover let m < n. Then

(iv) Prod(m,0,0)L ≤ cProd(n,0,0)L

(v) Prod(0,m,0)L ≤ cProd(0,n,0)L and

(vi) Prod(0,m,0)L ≤ p(Prod(0,0,n)L)

for some constant c and polynomial p.

Polynomial bounds for remaining pairs of types as well as the optimality

of the order of polynomials can be the subject of further study.

References

1. Blattner, M., Ginsburg, S., Canonical forms of context-free grammars and

position restricted grammar forms, Lecture Notes in Computer Science 56,
(Springer Verlag, Berlin, 1977), pp. 49–53 .

2. Blattner, M., Ginsburg, S., Position restricted grammar forms and grammars,
Theoretical Computer Science 17, (1982), pp. 1–27.

3. Csuhaj-Varjú, E., Kelemenová, A., Descriptional complexity of context-free

grammar forms, Theoretical Computer Science 112,(1993), pp. 277–289.
4. Gruska, J., Descriptional complexity of context-free languages, Proc. of Math-

ematical Foundations of Computer Science MFCS’73, (High Tatras, 1973),
pp. 71–83.

5. Gruska, J., Descriptional complexity (of languages). A short survey, Proc. of
Mathematical Foundations of Computer Science MFCS’76, Lecture Notes in
Computer Science 45, (Springer Verlag, Berlin, 1976), pp. 65–80.

6. Harrison, M. A., Introduction to formal language theory, (Addison Wesley P.
C., Reading, Massachusets, 1978).

7. Kelemenová, A., Complexity of normal form grammars, Theoretical Com-
puter Science 28, (1984), pp. 299–314.

8. Kelemenová, A., Grammatical levels of the position restricted grammars,
Proc. of Mathematical Foundations of Computer Science MFCS’81, Lecture
Notes in Computer Science 118, (Springer Verlag, Berlin, 1981), pp. 347–359.

9. Kelemenová, A., Minimal position restricted grammars. Relations be-

tween complexity measures, Mathematical Models in Computer Systems,
(Akadémiai Kiadó, Budapest, 1981), pp. 159–169.

10. Kelemenová, A., Type division of position restricted grammars and sizes of

languages, Colloquia Mathematica Societatis János Bolyai, 42. Algebra, Com-
binatorics and Logic in Computer Science, (Györ, Hungary, 1983), pp. 515–
522.

11. Maurer, H. A., Salomaa, A., Wood, D., A supernormal-form theorem for

context-free grammars, JACM, (1983), pp. 95–102.

Received: June 15, 2009

Revised: April 25, 2010

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

85

GRÖBNER BASES ON ALGEBRAS BASED ON

WELL-ORDERED SEMIGROUPS
∗

YUJI KOBAYASHI

Department of Information Science,

Toho University, Funabashi 274–8510, Japan

E-mail: kobayasi@is.sci.toho-u.ac.jp

We develop the theory of Gröbner bases on an algebra based on a well-ordered

semigroup inspired by the discussions in Farkas et al.,
3,4

where the authors

study multiplicative bases in an axiomatic way. We consider a reflexive semi-

group with 0 equipped with a suitable well-order, and use it as a base of an

algebra over a commutative ring, on which we develop a Gröbner basis theory.

Our framework is considered to be fairly general and unifies the existing

Gröbner basis theories on several types of algebras (ref.
1,6–10

). We discuss

a Gröbner basis theory from a view point of rewriting systems. We study

behaviors of critical pairs in our situation and give a so-called critical pair

theorem. We need to consider z-elements as well as usual critical pairs come

from overlapping applications of rules.

Keywords: Gröbner basis; well-ordered semigroup; rewriting system; critical

pair; z-element.

1. Well-ordered reflexive semigroups

Let S = B ∪ {0} be a semigroup with zero element 0. A semigroup S is

well-ordered if B has a well-order >, which is compatible in the following

sense: For a, b, c, d ∈ B,

(i) a > b, ca 6= 0, cb 6= 0 ⇒ ca > cb,

(ii) a > b, ac 6= 0, bc 6= 0 ⇒ ac > bc,

(iii) a > b, c > d, ac 6= 0, bd 6= 0 ⇒ ac > bd.

A semigroup S is called reflexive if for any a ∈ B there are e, f ∈ B such

that a = eaf . If B is a monoid, S is reflexive.

∗
This work was partially supported by Grant-in-Aid for Scientific Research (No.

21540048).

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

86

In the rest of this section S = B ∪ {0} is a well-ordered reflexive semi-

group with 0.

Lemma 1.1. For a, b, c, d ∈ S, we have

(1) ca = cb 6= 0 implies a = b,

(2) ac = bc 6= 0 implies a = b,

(3) 0 6= ca > cb 6= 0 implies a > b,

(4) 0 6= ac > bc 6= 0 implies a > b.

(5) ac = bd 6= 0 and a > b imply d > c.

Proof. (1) If a 6= b but ca = cb 6= 0, then either a > b or b > a holds. So,

either ca > cb or cb > ca holds by (i), a contradiction. The other assertions

can be proved similarly.

Lemma 1.2. For a, b ∈ B, if abn 6= 0 (resp. bna 6= 0) for all n > 0, then

ab ≥ a (resp. ba ≥ a).

Proof. If a > ab and abn 6= 0 for all n, then we would have an infinite

sequence

a > ab > ab2 > · · · .

But, this contradicts that B is well ordered.

Proposition 1.1. Any element of S is either idempotent or nilpotent or

of infinite order.

Proof. If a ∈ B is not nilpotent, a2 ≥ a by Lemma 1.2. If this a is not an

idempotent, a2 > a. So, we have an infinite sequence

a < a2 < a3 < · · · ,

that is, a is of infinite order.

Lemma 1.3. For any a ∈ B, there is a unique pair (e, f) ∈ B × B such

that a = eaf .

Proof. Suppose that there are two pairs (e, f), (e′, f ′) ∈ B × B such that

a = eaf = e′af ′. Then, enafn = a 6= 0 for all n > 0. Hence, by Lemma 1.2,

we see

a = eaf ≥ ea ≥ a.

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

87

It follows that a = ea. Similarly, we have a = e′a and af = af ′ = a. By

cancellativity (Lemma 1.1), we conclude that e = e′ and f = f ′.

Lemma 1.4. Let (e, f) be a unique pair in Lemma 1.3. We have

(1) e and f are idempotents.

(2) ea = af = a.

Proof. The statement in (2) is already proved above. Because

a = eaf = e2af2,

we have e = e2 and f = f2 by cancellativity.

Thus, we have

Proposition 1.2. For any a ∈ B, there is a unique pair (e, f) of idempo-

tents such that a = ea = af .

In the above lemma, e (resp. f) is called the source (resp. terminal) of

a and denoted by σ(a) (resp. τ(a)). Two elements a, b ∈ B are parallel and

written as a‖b, if σ(a) = σ(b) and τ(a) = τ(b).

Let E(B) be the set of idempotents in B. Idempotents in B are orthog-

onal to each other as stated in the following lemma.

Proposition 1.3. ef = 0 for any distinct e, f ∈ E(B).

Proof. Let e and f be distinct idempotents in B. Assume that ef 6= 0. If

e > f , then

ef = e2f > ef2 = ef,

a contradiction. Similarly, f > e is impossible.

Corollary 1.1. For any a, b ∈ B, ab 6= 0 implies τ(a) = σ(b).

Proof. If τ(a) 6= σ(b), then ab = aτ(a)σ(b)b = 0 by Proposition 1.3.

Corollary 1.2. For a, b ∈ B and e ∈ E(B), ae 6= 0 implies e = τ(a),

eb 6= 0 implies e = σ(b) and aeb 6= 0 implies e = τ(a) = σ(b). Moreover,

for a, b, c ∈ B, ca = a implies σ(a) = c, ac = a implies τ(a) = c and

acb = ab 6= 0 implies c = τ(a) = σ(b).

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

88

For idempotents e and f in B, eB (resp. Bf) denotes the set of elements

of B with source e (resp. terminal f). Moreover, set eBf = eB ∩ Bf . We

see that eB = eB \ {0}, Bf = Bf \ {0} and eBf = eBf \ {0}.

Example 1.1. The semigroups (S, >) given below are well-ordered reflex-

ive semigroups with 0.

(1) Let Σ∗ be the free monoid generated by an alphabet Σ, a set of

symbols (or variables). Let > the length-lexicographic order on Σ∗ defined

as follows. Let > be any total order on Σ. For two words u = a1a2 · · ·am

and v = b1b2 · · · bn, u > v if only if (i) m > n or (ii) m = n and u is

lexicographically larger than v with respect the order > on Σ. Let S =

Σ∗ ∪ {0}.
(2) Let Ab(Σ) be the free abelian monoid generated by an alphabet Σ =

{a1, a2, . . . , ak}. For elements u = am1

1 am2

2 · · · amk

k and v = an1

1 an2

2 · · · ank

k

of Ab(Σ), u > v if and only if (m1, m2, . . . , mk) is lexicographically larger

than (n1, n2, . . . , nk). Let S = Ab(Σ) ∪ {0}.
(3) Let Γ = (Γ0, Γ1) be a quiver with a set Γ0 of vertices and a set

Γ1 of edges. Let Γ∗ be the set of all paths in Γ. Consider the following

semigroup operation ◦ on S = Γ∗ ∪ {0}. For two paths p and q, p ◦ q is

the path obtained by concatenating them at the end vertex v of p, if v

coincides with the initial vertex of q, and p◦q = 0 otherwise. We can define

a compatible well-order > on Γ∗ as follows. Let p, q ∈ Γ∗. If |p| > |q|,
then p > q, where |p| and |q| are the lengths of p and q respectively. If

|p| = |q| = 0, that is p, q ∈ Γ0, then compare them in a linear ordered given

beforehand on Γ0. If |p| = |q| > 0, compare them in the lexicographic order

with respect to a linear order given beforehand on Γ1.

(4) Let n ≥ 2 and let S = {1 > a > a2 > · · · > an−1, an = 0}.
(5) Let n ≥ 2 and let S = {1 < a < a2 < · · · < an−1, an = 0}.
(6) Let S = {a < ab < ba < b}∪ {0} with aba = a, bab = b, aa = bb = 0.

If a||b, a > b and cad = 0 imply cbd = 0 for any a, b, c, d ∈ B, the

semigroup S is called normally ordered. If τ(a) = σ(b) implies ab 6= 0 for

any a, b ∈ B, S is called coherent.

Proposition 1.4. If S is coherent, it is normally ordered.

Proof. If cbd 6= 0 for b, c, d ∈ B, then τ(c) = σ(b) and τ(b) = σ(d) by

Corollary 1.1. Thus, if S is coherent, cad 6= 0 for a ∈ B with a||b.

The semigroups in (1), (2), (3) and (6) in Example 1.1 are coherent,

but the semigroup in (4) is not coherent though it is normally ordered. The

semigroup in (5) is not even normal.

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

89

2. Factors and appearances

If a = bcd for a, b, c, d ∈ B, c is a factor of a. If in particular b = σ(c), that

is, a = cd, c is a left factor, and if d = τ(c), c is a right factor.

Proposition 2.1. Any a ∈ B has only a finite number of (left ,right)

factors.

Proof. If a ∈ B has an infinite number of left factors, it has an infinite

increasing sequence a1 < a2 < · · · < an < · · · of left factors, because B is

well ordered. Let a = anbn with bn ∈ B. Then by Lemma 1.1, (5), we have

an infinite decreasing sequence b1 > b2 > · · · > bn > · · · , a contradiction.

Similarly, B does not have an infinite number of right factors. Since a factor

of a is a left factor of a right factor of a, there is only a finite number of

factors.

Corollary 2.1. The set of triples (a1, a2, a3) ∈ B × B × B such that a =

a1a2a3 is finite for any a ∈ B.

A factor of an idempotent in B is called idempotential. An element of

B that is not idempotential is nonidempotential.

The semigroups in (1), (2), (4) and (5) in Example 1.1 have a unique

idempotent 1 and have no other idempotential elements. In the semigroup

in (3), Γ0 is the set of idempotents, and there are no idempotential elements

other than idempotents. In the semigroup in (6), all (nonzero) elements are

idempotential, and among them, ab and ba are idempotents.

Lemma 2.1. For any idempotential element a ∈ B, there is an element

b ∈ B such that ab and ba are idempotents.

Proof. Since a is a factor of an idempotent, a′aa′′ is an idempotent for some

a′, a′′ ∈ B, that is, a′aa′′a′aa′′ = a′aa′′. By Corollary 1.2, aa′′a′ = σ(a) and

a′′a′a = τ(a). Letting b = a′′a′, ab and ba are idempotents.

An element b ∈ B is an associate of an element a ∈ B, if b = eaf for

some idempotential elements e and f , and we write as a ∼ b. It is easy

to see that the relation ∼ is an equivalence relation on B. A (left, right)

factor of a ∈ B is proper if it is not idempotential nor an associate of a.

An element x ∈ B is a prime if it is not idempotential and has no proper

factor.

In the semigroups in (1) and (2), Σ is the set of primes, while Γ1 is the

set of primes of the semigroup in (3). In the semigroups in (4) and (5), a is

an only prime.

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

90

Proposition 2.2. Any nonidempotential element a in B is a product of

finite number of primes.

Proof. If the assertion were not true, then for any arbitrary large k

we would have a sequence a1, a2, . . . , ak of nonidempotential elements of

B such that a1, a1a2, a1a2a3, . . . are factors of a. By Proposition 2.1,

a1 · · · am = a1 · · · an for some m < n ≤ k, and hence, am+1 · · · an is an

idempotent by Corollary 1.2. But this is a contradiction because an is not

idempotential.

It is not unique to decompose a ∈ B into a product of primes in general,

but the length of the decomposition is bounded. Let `(a) denote this bound;

`(a) = max{n | a = p1, . . . pn, pi are primes }.

In particular, we define `(a) = 0 if a is idempotential. By definition

`(ab) ≥ `(a) + `(b)

for a, b ∈ B such that ab 6= 0. Hence, if b is a proper factor of a, then

`(a) > `(b).

Elements a and b in B are left coprime (resp. right coprime) if they have

no nonidempotential common left (resp. right) factor. They are coprime, if

they are left and right coprime. Clearly, for any a, b ∈ B, there are c, d ∈ B

such that a = ca′d, b = cb′d, and a′ and b′ are coprime.

For pairs (a, b), (a′, b′) ∈ B × B, we order them as

(a, b) > (a′, b′) ⇔ a > a′ or (a = a′ and b′ > b).

A pair (a, b) is nonempty if axb 6= 0 for some x ∈ B. Pairs (a, b), (a′, b′)

are equivalent if axb = a′xb′ for any x ∈ B. The equivalence class of a

nonempty pair is a finite set by Corollary 2.1 and is called a context. The

context of a pair (a, b) is denoted by C(a, b). We always represent a context

by its maximal pair unless stated otherwise, so when we refer to a context

C(a, b), it implicitly means that (a, b) is maximal (with respect to the order

defined above) in the context.

When B is the free monoid Σ∗ generated by Σ, pairs (a, b), (a′, b′)

are equivalent if and only if a = a′ and b = b′. Thus there is no am-

biguity. When B is the free abelian monoid Ab(Σ) generated by Σ, pairs

(a, b), (a′, b′) are equivalent if and only if ab = a′b′. For example, for a, b ∈ Σ,

(ab, 1), (a, b), (b, a), (1, ab) are equivalent to each other and consist one con-

text. Among them (ab, 1) is the maximal representative.

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

91

We order contexts by the maximal representatives, that is, for contexts

c = C(a, b), c′ = C(a′, b′),

c > c′ ⇔ (a, b) > (a′, b′).

Remark that if (a, b) or (a′, b′) is not maximal representatives above, then

c > c′ if and only if there is a pair (d, e) ∈ C(a, b) such that (d, e) > (d′, e′)

for any pair (d′, e′) ∈ C(a′, b′).

If (a, b) and (a′, b′) are equivalent, then (da, be) and (da′, b′e) are equiv-

alent for any d, e ∈ B (as far as da, be, da′ and b′e are nonzero), so for a

context c = C(a, b) we can define the context d · c · e which is the equivalent

class of (da, be).

Contexts c and c′ are coprime if a and a′ are left coprime and b and b′

are right coprime for any (a, b) ∈ c and (a′, b′) ∈ c′. For any pair c, c′ of

contexts, there are a, b ∈ B such that c = a · c1 · b, c′ = a · c′1 · b and c1 and

c′1 are coprime.

Let U be a subset of B. If an element x ∈ B is decomposed as x = aub

with a, b ∈ B and u ∈ U , the triple (a, u, b) is called an appearance of U in

x. We do not distinguish appearances with the same context, and A(a, u, b)

denotes the appearance with the context C(a, b). For an appearance A =

A(a, u, b) of U in x = aub and d, e ∈ B, d · A · e denotes the appearance

A(da, u, be) of U in dxe. Two appearances A(a, u, b) and A(a′, u′, b′) are

coprime if so are the contexts C(a, b) and C(a′, b′). For any appearances

A and A′, there are coprime appearances A′′, A† and a, b ∈ B such that

A = a · A′′ · b and A′ = a · A† · b.
For two appearances A(a, u, b) and A(a′, u′, b′) of U in x, we order them

as

A(a, u, b) > A(a′, u′, b′) ⇔ C(a, b) > C(a′, b′).

Clearly, this order is a total order, and hence by Corollary 2.1, the set of

all appearances of U in a forms a finite chain. Let

A0 > A1 > · · · > An (1)

be the chain of appearances of U in a. The first A0 is the rightmost appear-

ance, and Ai−1 appears at the immediate right of Ai for i = 1, . . . , n. Two

appearances A and A′ are adjacent if either A is at the immediate right of

A′ or A′ is at the immediate right of A.

The following technical result will be used in the proof of the main

results in Section 5.

Proposition 2.3. For any distinct appearances A and A′ of U in x ∈ B,

there is a sequence of appearances Ai (n ≥ 1, i = 0, ..., n) of U in x such that

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

92

A0 = A, An = A′, and for every i = 1, . . . n, there are elements ai, bi ∈ B

and appearances A′′
i , A

†
i of U in a factor of x with Ai−1 = ai · A′′

i · bi,

Ai = ai · A
†
i · bi such that A′′

i and A
†
i are coprime and adjacent.

Proof. Suppose A > A′, and consider the chain (1) of appearances between

A and A′, where A0 = A, An = A′. We proceed by double induction on

` = `(x) and n. If ` = 0, that is, x is idempotential, then Ai−1 and Ai

are coprime for every i, and (1) itself is the desired sequence. Suppose that

` > 0. By induction hypothesis there is a desired sequence of appearances

A′
0, . . . , A

′
m between A1 and An. If A0 and A1 are coprime, we have the

desired sequence A = A0, A1 = A′
0, . . . , A

′
m. Otherwise, there are a, b ∈ B

one of which is nonidempotential such that A0 = a · A′′
0 · b, A1 = a · A′′

1 · b
with appearances A′′

0 and A′′
1 of U in a proper factor x′ of x (x = ax′b).

Since `(x′) < `(x), by induction hypothesis there is a desired sequence

of appearances A
†
0, . . . A

†
k between A′′

0 and A′′
1 of U in x′. Therefore, we

have the desired sequence a ·A†
0 · b, . . . , a ·A

†
k · b, A

′
1, . . . , A

′
m of appearances

between A and A′.

Two appearances A and A′ of U in x are disjoint if for some (a, u, b) ∈ A

and (a′, u′, b′) ∈ A′ (i) a = a′u′c for some left factor c of b′, or (ii) a′ = auc

for some left factor c of b. In case (i), b′ = cub for the right factor c of a

and x = a′u′cub, and in case (ii) b = cu′b′ for the right factor c of a′ and

x = aucu′b′.

3. Rewriting on algebras

In this section S = B ∪ {0} is a well-ordered reflexive semigroup with 0,

and K is a commutative ring with 1.

Let F = K · B be the free K-module generated by B. Then, F has an

algebra structure with the product induced from the semigroup operation

of S. An element f of F is uniquely written as a finite sum

f =

n∑

i=1

kixi (2)

with ki ∈ K \ {0} and xi are distinct elements in B. If x1 > xi for all

i = 2, . . . n, k1x1 is the leading term of f and k1 is the leading coefficient of

f , which are denoted by lt(f) and lc(f), respectively. We also set rt(f) =

f − lt(f).

The well-order > on B is extended to a partial order � on F as follows.

First, define f � 0 for any nonzero f ∈ F . Let f, g be nonzero elements of

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

93

F with lt(f) = kx and lt(g) = k′x′, where k, k′ ∈ K and x, x′ ∈ B. Then,

f � g if and only if (i) x > x′ or (ii) x = x′ and rt(f) � rt(g). Since > is

a well-order, � is also well founded, that is, there is no infinite decreasing

sequence f1 � f2 � · · · � fn � · · · in F .

The element f in (2) is uniform if σ(xi) = σ(xj) and τ(xi) = τ(xj)

for all i, j, and for this uniform f we define the source σ(f) = σ(xi) and

the terminal τ(f) = τ(xi). Two uniform elements f and g are parallel and

written as f ||g, if σ(f) = σ(g) and τ(f) = τ(g). Any element of F is

uniquely written as a sum of uniform elements.

For e, e′ ∈ E(B), eF, Fe′ and eFe′ are the subalgebras of F spanned by

eB, Be′ and eBe′ over K, respectively. We have

F =
⊕

e∈E(B)

eF =
⊕

e′∈E(B)

Fe′ =
⊕

e,e′∈E(B)

eFe′.

A rewriting rule on F is a pair r = (u, v) with u ∈ B and v ∈ F such

that u � v (that is, u > u′ for every term k · u′ of v) and u − v is uniform

(that is, v is uniform and u||v). The rule r is written as u → v.

A rule r = (u → v) is normal if xuy = 0 implies xvy = 0 for any

x, y ∈ B. If S is normally ordered, any rule is normal.

A rewriting system R on F is a (not necessarily finite) set of rewriting

rules on F . R is normal if every rule in R is normal. If f has a nonzero

term k · x (k ∈ K, x ∈ B) and x = x′ux′′ with x′, x′′ ∈ B and r =

(u → v) ∈ R, then applying the rule r upon this term, f is rewritten to

g = kx′(v − u)x′′ + f . In this situation we write as f →r g or f →R g.

We call the relation →R the one-step reduction by R (or modulo R). The

reflexive transitive closure and the reflexive symmetric transitive closure of

the relation →R is denoted by →∗
R and ↔∗

R, respectively.

Lemma 3.1. Let R be a rewriting system on F . For any f, g, f ′, g′ ∈ F

and k, ` ∈ K, if f ↔∗
R f ′ and g ↔∗

R g′, then

kf + `g ↔∗
R kf ′ + `g′.

Proof. It is clear that f ↔∗
R f ′ implies kf ↔∗

R kf ′ for any k ∈ K. Hence

it suffices to show that f ↔∗
R f ′ implies f + g ↔∗

R f ′ + g for any g ∈ F .

First, suppose that kx (k ∈ K \ {0}, x ∈ F) is a term of f, x →R t, and

f ′ = f − k(x − t). If g has no term of the form `x (` ∈ K \ {0}), then

f + g →R f ′ + g, and of course f + g ↔∗
R f ′ + g holds. If g has a term

`x (` ∈ K \ {0}, then f ′ + g →R f ′ + g′, where g′ = g − `(x − t). Here, if

k + ` 6= 0, f + g →R f ′ + g′, and if k + ` = 0, f + g = f ′ + g′. In either case

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

94

we have f + g ↔∗
R f ′ + g. The general case can be proved by induction on

the number of steps in the reduction f ↔∗
R f ′.

Set

I0(R) =
{
f ∈ F

∣∣ f ↔∗
R 0

}
.

By Lemma 3.1, we have

Corollary 3.1. I0(R) is a K-submodule of F and ↔∗
R is equal to the K-

module congruence modulo I0(R).

If f →R g, that is, f = k · xuy + f ′, and g = k · xvy + f ′, where

k ∈ K \ {0}, x, y ∈ B and u → v ∈ R, then, xuy > xvy by compatibility of

>, and f � g by the definition of �. Hence, there is no infinite sequence

f1 →R f2 →R · · · →R fn →R · · ·

of reductions in F , because � is well founded. Therefore, R is noetherian

(terminating).

We write f ↓R g for f, g ∈ F , if f and g have a common descendent,

that is, there is h ∈ F such that f →∗
R h and g →∗

R h. In this case we also

write as h ∈ f ↓R g.

A rewriting system R is confluent, if f ↓R g holds for any f, g, h ∈ F

such that h →∗
R f and h →∗

R g. In general, noetherian confluent system is

called complete, but in our situation a confluent system is complete.

An element f ∈ F is R-reducible, if a rule from R is applicable to f ,

otherwise, it is R-irreducible. An element x of B is R-irreducible if so is as

an element of F . The set Irr(R) of R-irreducible elements of B is given by

Irr(R) = B \ B · Left(R) · B,

where Left(R) =
{
u

∣∣ u → v ∈ R
}
, and f ∈ F is irreducible if and only if f

is a K-linear combination of elements of Irr(R). An R-irreducible element

f ′ such that f →∗
R f ′ is a normal form of f . Because R is noetherian, any

f ∈ F has at least one normal form.

The following is a basic result on complete rewriting systems and the

proof is standard and omitted (see2,5).

Theorem 3.1. Let R be a complete rewriting system on F , and let ρ′ be

the canonical surjection from F to the quotient K-module F/I0(R). Then,

ρ′ is injective on Irr(R) and ρ′(Irr(G)) forms a free K-base of F/I0(R).

Any f has a unique normal form f̂ , and we have

f̂ = ĝ ⇔ f ↓R g ⇔ f ↔∗
R g ⇔ f − g →∗

R 0 ⇔ ρ′(f) = ρ′(g)

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

95

for any f, g ∈ F . In particular, we have

I0(R) =
{
f ∈ F

∣∣ f̂ = 0
}

=
{
f ∈ F

∣∣ f →∗
R 0

}
.

The following result is also standard.

Proposition 3.1. For a rewriting system R on F , the following statements

are equivalent.

(1) R is complete.

(2) f →∗
R 0 for all f ∈ I0(R).

(3) Any nonzero element of I0(R) is R-reducible.

(4) Every element in F has a unique normal form.

A system R is reduced if for any rule r = (u → v) ∈ R, u and v

are (R \ {r})-irreducible. Two systems R and R′ on F are equivalent if

↔∗
R =↔∗

R′ , or equivalently, I0(R) = I0(R
′).

Lemma 3.2. Let R be a complete rewriting system on F and let r = (u →
v) ∈ R.

(1) Suppose that u = u1u
′u2 for some u1, u2 ∈ B and some rule r′ =

(u′ → v′) ∈ R distinct from r. Then, R′ = (R \ {r}) is a complete system

equivalent to R.

(2) Let v′ be an element of F such that v →∗
R v′. Then, R′ = (R\{r})∪

{r′} is a complete system equivalent to R, where r′ = (u → v′).

Proof. (1) It suffices to show that f →∗
R′ 0 for any f ∈ I0(R). On the

contrary, assume that there is f ∈ I0(R) such that f cannot be reduced to

0 modulo R′, and choose a minimal such element f with respect to �. Since

f ∈ I0(R) and R is complete, we have f →∗
R 0. Suppose that f →s f1 and

f1 →∗
R 0 for some rule s ∈ R. By the minimality of f , we see f1 →∗

R′ 0. If

s ∈ R′, then f →∗
R′ 0. This contradiction implies that s = r. Hence, f has a

term kxuy with k ∈ K \{0} and x, y ∈ B. Since u = u1u
′u2, the rule r′ can

be applied to f to get f ′ = f − kxu1(u
′ − v′)u2y. Because f ′ ∈ I0(R) and

f � f ′, we see f ′ →∗
R′ 0 by the minimality of f . But this implies f →∗

R′ 0,

a contradiction.

(2) Similar to the proof of (1).

Proposition 3.2. For any complete rewriting system R on F , there is a

reduced complete system R′ equivalent to R. If R is finite, so is R′.

Proof. If there are distinct rules r = u → v and r′ = u′ → v′ in R such that

u′ is a factor of u, then remove r from R. If there is a rule r = u → v ∈ R

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

96

such that v is R-reducible, replace it by a rule u → v̂, where v̂ is the normal

form of v modulo R. In either case the system obtained is complete and

equivalent to R by Lemma 3.2. Repeat this procedure until the system

becomes reduced. If R is finite, the procedure stops in a finite number of

steps and gives a finite reduced system R′. If R is infinite, we obtain a

reduced system R′ as a limit in our process.

4. Gröbner bases on algebras

As proved in Section 3, I0(R) is a K-submodule of F , but, in general, I0(R)

is not an ideal of F and ↔∗
R is not the congruence modulo an ideal. To fill

this gap, define

Z(R) = {xvy |x, y ∈ B, u → v ∈ R, xuy = 0}.

Set

GR =
{
u − v

∣∣ u → v ∈ R
}
,

and let I(R) be the (two-sided) ideal generated by GR.

Lemma 4.1. We have GR ⊂ I0(R), and Z(R) ⊂ I(R).

Proof. Since u− v →R 0 for u− v ∈ GR, we have GR ⊂ I0(R). If xuy = 0

for u → v ∈ R, then xvy = x(u − v)y ∈ I(R). This implies Z(R) ⊂ I(R).

Lemma 4.2. I0(R) ⊂ I(R) and the relation ↔∗
R is included in the congru-

ence modulo I(R).

Proof. If g is obtained from f by an application of a rule u → v of R, that

is, f has a term kx with k ∈ K \ {0} and x ∈ B such that x = x′ux′′ and

g = f − kx′(u− v)x′′. Then, f − g = kx′(u− v)x′′ is in I(R). Thus, we can

show (by induction) that f ↔∗
R g implies f ≡ g (mod I(R)). In particular,

I0(R) ⊂ I(R).

Proposition 4.1. Let R be a rewriting system on F . The following state-

ments are equivalent.

(1) I0(R) = I(R).

(2) The relation ↔∗
R coincides with the congruence modulo I(R).

(3) I0(R) is an ideal of F .

(4) Z(R) ⊂ I0(R).

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

97

Proof. The equivalence of (1) and (2) follows from Corollary 3.1 and

Lemma 4.2. Implication (1) ⇒ (3) is trivial. The converse is also true be-

cause GR ⊂ I0(R) by Lemma 4.1. Implication (1) ⇒ (4) is true because

Z(R) ⊂ I(R) by Lemma 4.1. Suppose that (4) holds. To show (1) it suffices

to prove that x(u−v)y ∈ I0(R) for any x, y ∈ B and u → v ∈ R. If xuy 6= 0,

then x(u − v)y →R 0. If xuy = 0, then x(u − v)y = xvy ∈ Z(R). In either

case we find x(u − v)y ∈ I0(R).

Corollary 4.1. If Z(R) ⊂ I0(R), then f ↔∗
R g implies xfy ↔∗

R xgy for

any f, g ∈ F and x, y ∈ B.

When R is normal, Z(R) = {0}. Thus, we have

Corollary 4.2. If R is a normal rewriting system on F , then I0(R) =

I(R), and ↔∗
R is equal to the congruence modulo I(R).

Let G be a set of monic uniform elements of F . We associate a rewriting

system RG on F by

RG =
{
lt(g) → −rt(g)

∣∣ g ∈ G
}
.

We sometimes confuse G with the associated rewriting system RG. We write

g = u−v ∈ G, implicitly assuming that u = lt(g) and v = −rt(g). We write

simply →G, →∗
G and ↔∗

G instead of →RG
, →∗

RG
and ↔∗

RG
, respectively.

We say that f is G-(ir)reducible, if it is RG-(ir)reducible, and Left(G) and

Irr(G) denote Left(RG) and Irr(RG), respectively. We set I0(G) = I0(RG),

I(G) = I(RG) and Z(G) = Z(RG). G is normal, if it is normal, and G is

reduced if RG is reduced.

A subset G of F is called a Gröbner basis, if

(i) every elements of G is monic and uniform,

(ii) the associated system RG is complete, and

(iii) one of the statements in Proposition 4.1 holds.

If G is normal, we can omit the condition (iii).

If G is a Gröbner basis, then by (iii) I0(RG) is equal to the ideal I(G)

of F generated by G, so G is called a Gröbner basis of the ideal I(G). The

quotient algebra A = F/I(G) is said to be the algebra defined by a Gröbner

basis G.

Proposition 4.2. Let I be an ideal of F and let G be a set of monic

uniform elements of an ideal I. The following statements are equivalent.

(1) G is a Gröbner basis of I

(2) f →∗
G 0 for every f ∈ I.

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

98

(3) Any nonzero element of I is G-reducible.

Proof. (1) ⇒ (2): Since RG is complete, f →∗
G 0 for any f ∈ I0(G) = I .

Conversely, (2) implies I0(G) = I , and RG is complete by Proposition

3.1.

(2) ⇔ (3): obvious.

If G is a Gröbner basis of an ideal I , then I = I0(G) = I(G), and ↔∗
G

is equal to the congruence modulo I . Thus, Theorem 3.1 becomes

Theorem 4.1. Let G be a Gröbner basis of an ideal I of F . Let A = F/I

be the quotient algebra of F by I and let ρ : F → A be the canonical

surjection. Then, ρ is injective on Irr(G) and ρ(Irr(G)) forms a free K-

base of A = F/I. Any f has a unique normal form f̂ , and we have

f̂ = ĝ ⇔ f ↓G g ⇔ f ↔∗
G g ⇔ f − g →∗

G 0 ⇔ ρ(f) = ρ(g)

for any f, g ∈ F . In particular, we have

I =
{
f ∈ F

∣∣ f̂ = 0
}

=
{
f ∈ F

∣∣ f →∗
G 0

}
.

By Proposition 3.2, we have

Proposition 4.3. For any Gröbner basis G of an ideal I, there is a reduced

Gröbner basis G′ of an ideal I. If G is finite, so is G′.

5. Critical pair theorem

In this section we consider conditions for a system to be complete. A rewrit-

ing system R on F is locally confluent if f ↓R g holds for any f, g, h ∈ F

such that h →R f, h →R g. As is well known (see5), a noetherian system

is complete if it is locally confluent. Actually, more precise result stated in

the following lemma is useful.

Lemma 5.1. Let R be a rewriting system on F and let h ∈ F . If f ↓R g

holds for any f, g, h′ ∈ F such that h′ →R f , h′ →R g and (h′ = h or

h′ ≺ h), then h has a unique normal form.

Let R be a reduced rewriting system on F . Consider two rules u → v

and u′ → v′ in R. Let w ∈ B and suppose that both the lefthand sides u

and u′ of the rules appear in w, that is,

w = xuy = x′u′y′ (3)

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

99

for some x, x′, y, y′ ∈ B. This situation is called critical, if the appearances

A = A(x, u, y) and A′ = A(x′, u′, y′) are not disjoint, A is at the immediate

right of A′, and the contexts C(x, y) and C(x′, y′) are coprime. For the

appearances in (3) of u and u′ in w, we have two reductions w →R xvy

and w →R x′v′y′. The pair (xvy, x′v′y′) is a critical pair if the situation is

critical. The pair is resolvable if xvy ↓R x′v′y′ holds.

First we discuss normal systems.

Lemma 5.2. If R is a normal rewriting system on F , then for f, g ∈ F

and for x, y ∈ B, f →∗
R g implies xfy →∗

R xgy.

Proof. We proceed by induction on the number of steps in the reduction

from f to g. Let f = k · x′uy′ + f ′ with k ∈ K \ {0}, f ′ ∈ F , u → v ∈
R, x′, y′ ∈ B, and f →R f1 →∗

R g, where f1 = kx′vy′ + f ′. By induction

hypothesis xf1y →∗
R xgy. If xx′uy′y 6= 0, then xfy →R kxx′vy′y + xf ′y =

xf1y. If xx′uy′y = 0, then xx′vy′y = 0 because R is normal. Hence, xfy =

xf ′y = xf1y. In either case we have xfy →∗
R xgy.

Lemma 5.3. If r = (u → v) is a normal rule, then for f ∈ F and y ∈ B,

fuy →∗
r fvy and yuf →∗

r yvf .

Proof. Let f = k1x1+ · · ·+knxn with k1, . . . , kn ∈ K \{0}, x1, . . . , xn ∈ B

and xn > · · · > x1. If xiuy = 0, then xivy = 0 because r is normal. Hence

fuy = f ′uy and fvy = f ′vy where f ′ = f − kixiy, and we can neglect

such a term in f . So, we may suppose that xiuy 6= 0 for all i = 1, . . . n.

Then, applying the rule r on the term k1x1uy we have fuy →r f1, where

f1 = k1x1vy + k2x2uy + · · · + knxnuy. Since every term in k1x1vy is less

than x2uy, we can apply r to the term k2x2uy of f1 to get f1 →r k1x1vy +

k2x2vy + k3x3uy + · · · + knxnuy. Repeating this we have the reduction

fuy →∗
r fvy.

Theorem 5.1. A normal reduced rewriting system R on F is complete

if and only if all the critical pairs are resolvable. A set G of monic uni-

form normal elements of F is a Gröbner basis if all the critical pairs are

resolvable.

Proof. It suffices to show that R is locally confluent under the condition

that all the critical pairs are resolvable. Let f, g, h ∈ F and suppose that

h →R f and h →R g. We shall show that f ↓R g by induction on h with

respect to �. Due to Lemma 5.1 the induction hypothesis implies that any

h′ such that h � h′ has a unique normal form.

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

100

Since h →R f and h →R g, h has terms k·w and k′·w′ with k, k′ ∈ K\{0}
and w, w′ ∈ B such that w = xuy, w′ = x′u′y′, x, y ∈ B, u → v, u′ → v′ ∈
R, f = h − k · x(u − v)y and g = h − k′ · x′(u′ − v′)y′.

(a) If w 6= w′, then f = k ·xvy+k′ ·w′+h′ and g = k ·w+k′ ·x′v′y′+h′,

where h′ = h−k ·w−k′ ·w′. Here, if w � w′ (the case w′ � w is symmetric),

then k ·w is a term of g and g →R g′, where g′ = k ·xvy + k′ ·x′v′y′ + h′. If

xvy has no term of the form ` ·w′, then f →R g′. If ` ·w′ is a term of xvy,

then f = (k` + k′)x′u′y′ + h′′ and g′ = k` · x′u′y′ + k′ · x′v′y′ + h′′, where

h′′ = k · xvy − ` · w′ + h′. Thus, (k` + k′)x′v′y′ + h′′ ∈ f ↓R g′. In either

case we see f ↓R g.

(b) If w = w′, then k = k′, w = xuy = x′u′y′, f = k · xvy + h′ and

g = k · x′v′y′ + h′, where h′ = h − k · w.

Here, if h′ is R-reducible, that is, h′ has a term ` · w′′ such that w′′ =

x′′u′′y′′ with x′′, y′′ ∈ B and u′′ → v′′ ∈ R, then, h = k ·w+` ·w′′ +h′′ with

h′′ ∈ F and h →R h1, where h1 = k ·w+`·x′′v′′y′′+h′′. By the result in case

(a), there exist f1, g1 ∈ F such that f1 ∈ f ↓R h1 and g1 ∈ g ↓R h1. Since

h � h1, h1 has a unique normal form h1, which is in f1 ↓R g1. Consequently,

we see f ↓R g.

If h′ is R-irreducible, f ↓R g follows from xvy ↓R x′v′y′. So, below we

suppose that h = w = xuy = x′u′y′, f = xvy and g = x′v′y′.

(c) First suppose that the appearances u and u′ in w are disjoint, that

is, there is z ∈ B such that x = x′u′z and y′ = zuy (the case x′ = xuz is

similar). Then, f = x′u′zvy and g = x′v′zuy. Hence, x′v′zvy ∈ f ↓R g by

Lemma 5.3.

(d) We may suppose that the appearances A = A(x, u, y) and A′ =

A(x′, u′, y′) are distinct. In fact, if C(x, y) = C(x′, y′), then x′uy′ = xuy =

x′u′y′. Thus, u = u′, and it implies v = v′ because G is reduced. Now let

A0, A1, . . . , An be a sequence of appearances of Left(R) in w between A =

and A′ = in Proposition 2.3. We shall prove xvy ↓R x′v′y′ by induction on

n. There are a, b ∈ B such that A = a ·A′′
0 · b, A1 = a ·A′′

1 · b and A′′
0 and A′′

1

are coprime and adjacent. Let A′′
0 = A(x0, u, y0), A′′

1 = A(x1, u1, y1) with

u1 → v1 ∈ R. By induction hypothesis, ax1v1y1b ↓R x′v′y′.

Here, if A′′
0 and A′′

1 are disjoint, x0vy0 ↓R x1v1y1 by (c) above. If A′′
0

and A′′
1 are not disjoint, then (x0vy0, x1v1y1) is a critical pair, and it is

resolvable by assumption. In either case ax0vy0b ↓R ax1v1y1b by Lemma

5.2. Since xuy � ax1v1y1b, by induction hypothesis ax1v1y1b has a unique

normal form which is in xvy ↓R x′v′y′.

The proof is complete.

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

101

Lemma 5.4. Suppose that f ∈ F has a unique normal form f̄ . If g →∗
R g′

for g, g′ ∈ F and g′ is R-irreducible, then f + g →∗
R f̄ + g′.

Proof. We proceed by induction on the number of steps in the reduction

g →∗
R g′. If g = g′, the assertion is clear. Suppose that g is not equal to g′

and has a term k · xuy with k ∈ K \ {0}, x, y ∈ B and u → v ∈ R such

that g → g1 →∗
R g′, where g1 = g − k · x(u − v)y. By induction hypothesis

f + g1 →∗
R f̄ + g′. If f has no term of the form k′ ·xuy (k′ ∈ K \ {0}), then

f + g →R f + g1, and we see f + g →∗
R f̄ + g′.

If f has a term k′ ·xuy, then f →R f1, where f1 = f−k′x(u−v)y. Here, if

k+k′ = 0, then f+g = f1+g1, and if k+k′ 6= 0, then f+g →R f1+g1. Since

f̄ is also the unique normal form of f1 and g1 →∗
R g′, we have f1 + g1 →∗

R

f̄ + g′ by induction hypothesis. Thus, in either case f + g →∗
R f̄ + g′.

If a rule u → v ∈ R or an element u − v ∈ G is not normal, that is,

xuy = 0 but xvy 6= 0, the element xvy is called a z-element, that is, xvy is

a nonzero element of Z(R) (or Z(G)). A z-element z is resolvable if z →∗
R 0

(or z →∗
G 0). It is uniquely resolvable if 0 is its unique normal form.

Lemma 5.5. Suppose that all the z-elements in Z(R) are uniquely

resolvable.

(1) If f ↓R g, then xfy ↓R xgy for any x, y ∈ B.

(2) For u → v ∈ R, f ∈ F and y ∈ B, fuy ↓R fvy and yuf ↓R yvf .

Proof. (1) Suppose f = f0 →R f1 →R · · · →R fm = h and g = g0 →R

g1 →R · · · →R gn = h, where h is R-irreducible. We shall prove xfy ↓R xgy

by induction on m+n. Suppose that m > 0 and f has a term k ·x′uy′ with

k ∈ K \{0}, x′, y′ ∈ B, u → v ∈ R and f1 = f−k ·x′(u−v)y′. By induction

hypothesis, xf1y ↓R xgy. If xx′uy′y 6= 0, then xfy →R xf1y, and hence

xfy ↓R xgy. If xx′uy′y = 0, then xfy = xf1y − k · xx′vy′y and xx′vy′y is

in Z(R). Since −k · xx′vy′y has the unique normal form 0, xfy →∗
R h̄ by

Lemma 5.4, where h̄ is an R-irreducible element in xf1y ↓R xgy. Hence,

h̄ ∈ xfy ↓R xgy.

(2) Let f = k1x1 + · · ·+knxn with k1, · · · kn ∈ K \{0} and x1, · · · , xn ∈
B. If xiuy 6= 0 for all i = 1, . . . , n, then we can show fuy →∗

R fvy as in the

proof of Lemma 5.3. So assume that f has a term k · x such that xuy = 0.

By induction we can assume f ′uy ↓ f ′vy, where f ′ = f − kx. Since xvy is

uniquely resolvable, fvy = f ′vy + kxvy →∗
R h by Lemma 5.4, where h is

an R-irreducible element in f ′uy ↓ f ′vy. Since fuy = f ′uy, it follows that

h ∈ fuy ↓ fvy.

July 16, 2010 12:27 WSPC - Proceedings Trim Size: 9in x 6in 07

102

In the following theorem, G is not necessarily normal. If all the z-

elements are resolvable and RG is confluent, then G is a Gröbner basis.

Thus, a similar proof to the proof of Theorem 5.1 is available, where Lemma

5.5 plays roles of Lemmas 5.2 and 5.3. A critical pair for RG is a critical

pair for G.

Theorem 5.2. A set G of monic uniform elements of F is a Gröbner basis

if and only if all the critical pairs are resolvable and all the z-elements are

uniquely resolvable.

A z-element xvy with x, y ∈ B, xuy = 0 and u → v ∈ R is critical,

if x and y are G-irreducible, x′′uy′′ 6= 0 for any right factor x′′ of x′ and

any left factor y′′ of y′, one of which is proper, where (x′, y′) is any pair in

C(x, y). We suspect that the following improved statement is true: a set of

monic uniform elements of F is a Gröbner basis if all the critical pairs and

all the critical z-elements are resolvable. Though we do not have a proof of

it, we at least expect that it would hold under some suitable assumptions

on S or G.

References

1. T. Becker and V. Weispfenning, Gröbner bases, Springer, 1993.
2. R.V. Book and F. Otto, String rewriting systems, Springer, 1993.
3. D.R. Farkas, C.D. Feustel and E.L. Green, Synergy in the theories of Gröbner

bases and path algebras, Can. J. Math. 45 (1993), 727–739.
4. E.D. Green, Multiplicative bases, Gröbner bases, and right Gröbner bases, J.

Symbolic Comp. 29 (2000), 601–623.
5. G. Fuet, Confluent reductions: abstract properties and applications to term

rewriting systems, J. ACM 27 (1980), 797–821.
6. Y. Kobayashi, Gröbner bases of associative algebras and the Hochschild co-

homology, Trans. Amer. Math. Soc. 375 (2005), 1095–1124.
7. Y. Kobayashi, Gröbner bases on path algebras and the Hochschild cohomology

algebras, Sci. Math. Japonicae 64 (2006), 411–437.
8. K. Madlener and B. Reinert, Relating rewriting techniques on monoids and

rings, congruencies on monoids and ideals in monoid rings Theoret. Comp.
Sci. 208 (1998), 3–31.

9. T. Mora, Gröbner bases for noncommutative polynomial rings, In: AAECC3,
Lect. Not. Comp. Sci. 229, 253–262, Springer 1986.

10. T. Mora, An introduction to commutative and noncommutative Gröbner

bases, Theoret. Comp. Sci. 134 (1994), 131–173.

Received: August 17, 2009

Revised: Septembwe 1, 2010

July 23, 2010 10:24 WSPC - Proceedings Trim Size: 9in x 6in 08

103

CONCURRENT FINITE AUTOMATA AND RELATED

LANGUAGE CLASSES (AN OVERVIEW)

MANFRED KUDLEK and GEORG ZETZSCHE

Department Informatik MIN-Fakultät, Universität Hamburg

email: {kudlek,3zetzsch}@informatik.uni-hamburg.de

1. Introduction

In classical Turing machines the control is given by a finite automaton. It

is an interesting idea to use as control a Petri net in order to introduce

concurrency into automata theory, or automata into Petri net theory. This

leads to machines with the possibility of creating an arbitrary number of

heads on the tape. The heads are represented by tokens of the Petri net

pointing to positions on the tape (or vice versa). The heads can only be

distinguished if they are associated to different places of the Petri net, or

point to different tape positions. The transitions are labelled by symbols

of the tape alphabet. A computation step of such a concurrent machine

can be performed only if all heads involved are on the same tape position

and their corresponding tokens are located in the places forming the pre-

condition of one of the Petri net’s transitions. This model and some results

for concurrent Turing machines have been considered in.1,3

This model can be adapted in a straightforward manner to the simpler

model of finite automata.2,8 Since finite automata allow the input word only

to be read sequentially from left to right, the tape heads corresponding to

the tokens put into the places of the post-condition of a transition will point

to the tape position immediately to the right of the previous one, or – in

the case of a λ-move – to the same position.

Whereas finite automata accept by reaching a final state, having read

the entire input, concurrent finite automata (CFA) accept by reaching a

final configuration of the Petri net, having visited all positions of the input

at least once. Several possibilities of final configurations are possible, finite

sets of such, a singleton (either all tokens of which pointing to different

July 23, 2010 10:24 WSPC - Proceedings Trim Size: 9in x 6in 08

104

positions or all to the rightmost one), or a singleton with only one token

pointing to the rightmost position of the input. For convenience we use an

end marker # to allow the recognition of the end of the input.

Furthermore, besides λ moves also erasing of tokens is possible. This

allows for each of the possibilties for final marking four classes of accepted

languages. However, it can be shown that the simplest possibility for final

marking suffices, resulting in normal forms, and that two classes coincide,

resulting in the following classes: no λ moves and no erasing transitions,

no λ moves but erasing transitions allowed, and λ moves and/or erasing

transition allowed. The corresponding language classes are denoted by C0,

C′
0, and Cλ

0 = C′λ
0 , respectively.

Figure 1 shows an example of a CFA accepting the set {anbn | n ≥ 0}.
The initial marking of this CFA is 〈0〉, final marking 〈3〉. it starts in 0 and

counts the a’s in 1. When 0 encounters b one token is put into 2, and then

tokens in 1 are reduced whenever a b is encountered, until the end marker

is found.

0 b

##

a

a

b

b

1

2

3

Figure 1

To facilitate the description of CFA and the proofs, the theory of mul-

tisets is used. With this it can be shown that it suffices that a CFA works

in a leftmost parallel manner, i.e. that in a computation step all tokens

point to a leftmost position on the tape and not to any left of it, and that

transitions are allowed to fire in parallel, such that after this step all tokens

either point to the next position, or to the same for a λ move.

It turns out that the language classes defined in such a way contain

corresponding Petri net languages, the regular sets and the context-free

July 23, 2010 10:24 WSPC - Proceedings Trim Size: 9in x 6in 08

105

languages, but are contained in the class of context-sensitive and recursively

enumerable sets. Figure 2 shows the relations among these classes, some of

them still open if proper or not. L0, LN

0 , and Lλ
0 denote Petri net language

classes as defined in.6 Actually, C′
0 ⊆ NTIMESPACE(n2, n).

2. Definitions

In the sequel we use the concept and notations of multisets.

First we recover the definition of Petri nets and languages defined by

them.

Definition 2.1. (P/T net)

A place/transition Petri net (P/T net) is a quadruple N = (P, T, g, µ0),

where P is a finite set of places, T a finite set of transitions, g a mapping

g : T → N
|P | × N

|P | assigning to each t ∈ T a pair g(t) = (α, β), and

µ0 ∈ N
|P | the initial marking.

A transition t ∈ T with g(t) = (α, β) is enabled at marking µ, if α v µ.

In this case t can fire (be applied on) marking µ, yielding the new marking

µ′ = (µ 	 α) ⊕ β where µ, µ′ ∈ N
|P |.

Definition 2.2. (Petri net languages)

Petri net languages are defined by a P/T net N = (P, T, g, µ0) and a

transition labelling function σ : T → Σ or σ : T → Σ ∪ {λ} with a finite

alphabet Σ.

For a transition sequence τ ∈ T ∗ σ is extended to T ∗ and σ(τ) ∈ Σ∗

denotes the canonical extension of σ. For a sequence τ = t1 · · · tn there is

a sequence of markings µ0, µ1, · · · , µn corresponding to τ with tj leading

from µj to µj+1 for 0 ≤ j < n. To define a language several generating

conditions are possible, e.g.

1. By deadlock (of the P/T net N).

2. By a final set of markings F ⊆ P⊕ = N
|P |. This set should be

recursive. In this case µn ∈ F must hold for σ(τ) to be included in the

language. Special cases are

(a). F = N
|P |

(b). F finite

(c). |F| = 1 singleton

(d). F = {µf} and |µf | = 1.

In the sequel, following,5,11 we consider variants 2(c) and 2(d) only.

In addition, it has been shown there that |µf | = |µ0| = 1 suffices, too.

July 23, 2010 10:24 WSPC - Proceedings Trim Size: 9in x 6in 08

106

Furthermore, only P/T nets with transitions t with g(t) = (α, β) where

α 6= 0 will be considered.

Definition 2.3. (Petri net language classes)

The following classes of Petri net languages can be defined:5,11

Lλ
0 Petri net languages generated by Petri nets with final marking

L0 Petri net languages generated by λ-free Petri nets with final marking

µf 6= µ0, i.e. ∀t ∈ T : σ(t) 6= λ

CSS = LN

0 with X
N = X∪ {L∪ {λ} | L ∈ X} for any language class X.

Trivially, L0 ⊂ CSS = LN

0 ⊆ Lλ
0 .

Remark: If µ0 6= µf is removed in the definition then L0 = LN

0 = CSS.

The next definitions introduce concurrent finite automata (CFA).

Definition 2.4. (Concurrent finite automaton)

A Concurrent Finite Automaton (CFA) is a triple C = (N, Σ, σ) where

N = (P, T, g, µ0) is a P/T net, Σ is a finite tape alphabet for input, and

σ : T → Σ ∪ {λ} is a transition labelling function. Only P/T nets having

transitions t ∈ T with g(t) = (α, β) where α 6= 0 are allowed. Transitions t

with σ(t) = λ are called λ-transitions, and such with g(t) = (α,0) erasing

transitions.

An expression (ν(0), x(1), ν(1), · · · , x(m), ν(m), x(m+1), ν(m+1)) de-

notes a configuration of a concurrent finite automaton C, where ν(i) ∈ N
|P |

for 0 ≤ i ≤ m + 1, x(i) ∈ Σ for 1 ≤ i ≤ m, and x(m + 1) = # 6∈ Σ, the

end marker of the word w = x(1) · · ·x(m) on the tape. In most cases it

will be abbreviated by ν(0)x(1)ν(1) · · · x(m)ν(m)x(m + 1)ν(m + 1). Thus

ν : N → N
|P | is a function attaching to each tape position a multiset.⊕m+1

i=0 ν(i) represents the marking of the Petri net N . The initial configu-

ration is given by µ0x(1)0 · · ·0x(m)0#0. # is introduced to have a uniform

notation also for other kinds of automata where end markers are necessary.

Each token in a place of the P/T net represents a head on the tape.

The multiset ν(i) represents the fact that there are heads of corresponding

multiplicities on position i of the tape. In each step a transition of the

P/T net N fires, taking away tokens from input places and corresponding

heads from position i on the tape, and putting tokens on output places and

corresponding heads on position i + 1, or i if λ-transitions are concerned.

Thus heads can move only to the right, or stay on the same position.

In the simplest application of a transition the CFA works sequentially.

Only tokens corresponding to one tape position i can be taken away, and

new tokens put have to correspond to tape position i + 1, or i in case of

July 23, 2010 10:24 WSPC - Proceedings Trim Size: 9in x 6in 08

107

λ-transitions. Then the successor configuration after applying a transition

t with g(t) = (α, β) and σ(t) = xi (or σ(t) = λ) is given by

ν′(i) = ν(i) 	 α, ν′(i + 1) = ν(i + 1)⊕ β and ν ′(j) = ν(j) for j 6= i and

j 6= i + 1,

or ν′(i) = ν(i) 	 α ⊕ β and ν ′(j) = ν(j) for j 6= i,

respectively.

Several acceptance modes, analogous to Petri nets, can be defined.

1. Acceptance by deadlock (of the P/T net N).

2. Acceptance by a final set of markings F ⊆ P⊕ = N
|P |. Again, this

set should be recursive. Special cases are

(a). F finite

(b). |F| = 1 singleton

(c). F = {µf} with final configuration 0x1 · · ·0xm0#µf

(d). F = {µf} with final configuration 0x1 · · ·0xm0#µf and |µf | = 1.

In any case, reaching a final marking, at least one head has to be on

position after #, i.e. the entire input word has to be read (2(b)). Another

possibility is that all heads represented by a final marking have to be on

position after # (2(c), 2(d)).

Definition 2.5. (Language classes)

Cλ
01 languages accepted in mode 2(b)

Cλ
02 languages accepted in mode 2(c)

Cλ
03 languages accepted in mode 2(d)

C01 languages accepted by λ-free CFA in mode 2(b)

C02 languages accepted by λ-free CFA in mode 2(c)

C03 languages accepted by λ-free CFA in mode 2(d)

Trivially, C03 ⊆ C02 ⊆ C01 and Cλ
03 ⊆ Cλ

02 ⊆ Cλ
01, as well as CN

0i ⊆ Cλ
0i for

1 ≤ i ≤ 3.

Language classes for which transitions t with g(t) = (α,0) are allowed,

will be denoted by C′
0i or C′λ

0i.

Similarly, C′
03 ⊆ C′

02 ⊆ C′
01 and C′λ

03 ⊆ C′λ
02 ⊆ C′λ

01, as well as C′N
0i ⊆ C′λ

0i for

1 ≤ i ≤ 3.

The classes of regular, context-free, context-sensitive, and recursively

enumerable languages are denoted by REG, CF, CS, anf RE, respectively.

So far the application of transitions has been defined in a sequential

manner. However, it is also possible to apply transitions in a parallel (con-

current) way.

Definition 2.6. (Parallel transitions)

July 23, 2010 10:24 WSPC - Proceedings Trim Size: 9in x 6in 08

108

Consider the set T = {t1, · · · , t|T |} with g(tj) = (αj , βj) ∈ N
|P | × N

|P |

for 1 ≤ j ≤ |T |. For a multiset τ =
⊕|T |

j=1 τ(tj)tj ∈ T⊕ = N
|T | of transitions

define g(τ) = (ατ , βτ) by ατ =
⊕|T |

j=1 τ(tj)αj and βτ =
⊕|T |

j=1 τ(tj)βj .

In a distributed parallel application one has τi =
⊕|T |

j=1 τi(tj)tj and

τ =
⊕m

i=1 τi. This means that if ν(0)x(0) · · · ν(m)x(m + 1)ν(m + 1) is a

configuration, then the application of τ is defined in the following way,

called a step in:10

σ(tj) = x(i) for tj with τi(tj) > 0, ατi
v ν(i), ν′(i) = ν(i) 	 ατi

,

ν′(i + 1) = ν(i + 1) ⊕ βτi
,

and in the case of λ-transitions (at some tape position)

σ(ti) = λ for tj with τi(tj) > 0, ατi
v ν(i), ν′(i) = ν(i) 	 ατi

⊕ βτi
.

A parallel application at one tape position i only, is defined as follows

τ =
⊕|T |

j=1 τ(tj)tj where σ(tj) = x(i) for tj with τ(tj) > 0.

Note that both modes contain applications of single (sequential) tran-

sitions as special case.

In the last case leftmost application is possible, too. This means that

the transitions are applied for the position with smallest i first, as long as

possible.

Trivially, in this case parallel and sequential application are equivalent

since a sequence of applications of single transitions can be also achieved

by one parallel application, and vice versa.

3. Normal Forms

It can be shown that concurrent finite automata and their modes of pro-

cessing can be transformed into normal forms. For proofs see.2

Lemma 3.1. CFA having one initial place p0 with initial marking 〈p0〉 and

one final marking 〈pf 〉 suffice.

Lemma 3.2. For the cases Cλ
02, C02, C′λ

02, and C′
02 one final place suffices,

i.e. Cλ
02 ⊆ Cλ

03, C02 ⊆ C03, C′λ
02 ⊆ C′λ

03, and C′
02 ⊆ C′

03.

Lemma 3.3. Cλ
01 ⊆ Cλ

02, C01 ⊆ C02, C′λ
01 ⊆ C′λ

02, and C′
01 ⊆ C′

02.

From the previous lemmata we get the following theorem, yielding only

four implicitly defined language classes, denoted by Cλ
0 , C0, C′λ

0 , and C′
0,

respectively.

Theorem 3.1. Cλ
01 = Cλ

02 = Cλ
03 = Cλ

0 , C01 = C02 = C03 = C0,

July 23, 2010 10:24 WSPC - Proceedings Trim Size: 9in x 6in 08

109

as well as C′λ
01 = C′λ

02 = C′λ
03 = C′λ

0 , C′
01 = C′

02 = C′
03 = C′

0.

Furthermore, one initial and one final place suffice.

Another result is

Theorem 3.2. CN

0 = C0, CλN

0 = Cλ
0 , C′N

0 = C′
0, C

′λN

0 = C′λ
0 .

Finally, it can be shown that for C0, Cλ
0 , C′

0, and C′λ
0 the leftmost maximal

parallel mode of application of transitions suffices.

Theorem 3.3. Languages from all languages classes C0, Cλ
0 , C′

0, and C′λ
0

can also be accepted if transitions are applied in a leftmost maximal par-

allel manner, emptying all places with tokens pointing to the current tape

position.

4. Relations to Other Language Classes

In this section we present relations to Petri net language classes and to the

Chomsky hierarchy. Detailed proofs can be found in.2

Since finite automata can be seen as special Petri nets one gets

Theorem 4.1. REG ⊆ CN

0 = C0.

From the example in Figure 1 follows

Theorem 4.2. REG ⊂ C0.

Theorem 4.3. All Petri net languages are accepted by CFA with final

marking condition and the final set corresponding to that of the Petri net,

i.e.

Lλ
0 ⊆ Cλ

0 , L0 ⊆ C0, CSS ⊆ CN

0 = C0.

Theorem 4.4. C′
0 ⊆ Cλ

0 and Cλ
0 = C′λ

0 .

This is shown by replacing erasing transition by λ-transirions.

Theorem 4.5. C′
0 ⊆ NTimeSpace(n2,n).

This can be shown by simulating a CFA by a LBA with its tape parti-

tioned into 6 tracks. The total number of tokens in any reachable configu-

ration is bounded by mnk where n is the input length, needing only linear

space for storage.

This implies

Corollary 4.1. C′
0 ⊂ CS.

July 23, 2010 10:24 WSPC - Proceedings Trim Size: 9in x 6in 08

110

5. Characterization and Decidability Results

The following two theorems exhibit characterizations of context-free and re-

cursively enumerable languages using CFA and codings or homomorphisms,

shown in.8

Theorem 5.1. For every context-free language L, there is a coding h and

a non-erasing λ-free CFA C such that L = h(L(C)). Thus, CF ⊆ Hcod(C0).

This is shown by a CFA whose Petri net has two places, and every

computation of it corresponds to a leftmost derivation of the context-free

grammar.

Theorem 5.2. For every recursively enumerable language L, there is a

(possibly erasing) homomorphism h and a non-erasing λ-free CFA C such

that L = h(L(C)). Thereby, h and C are effectively constructible. Therefore,

RE = Ĥ(C0).

For this the CFA simulates a 2-counter machine, storing the counters in

two places of the Petri net.

Figure 2

L0

CSS = LN

0

REG

CF

Lλ
0 C0

C′
0

Cλ
0 = C′λ

0 CS

RE

6
¡

¡¡µ

6

¡
¡¡µ

¡
¡¡µ

@
@@

6

6
¡

¡¡µ

¡
¡¡µ

@
@@I

The next theorems show the undecibality of the emptiness problem and

The next theorems show the undecibality of the emptiness problem and

the decidability of the word problem for CFA, a fact similar to LBA.

From Theorem 5.2 follows

Corollary 5.1. The emptiness problem for CFA is undecidable.

July 23, 2010 10:24 WSPC - Proceedings Trim Size: 9in x 6in 08

111

The decidability of the reachability problem for Petri nets implies

Theorem 5.3. The word problem for CFA is decidable.

From this follows.

Corollary 5.2. Cλ
0 ⊂ RE.

The results can be summarized as a language class hierarchy given in

Figure 2 above where there are still two open problems, namely whether

C0 ⊆ C′
0 and C′

0 ⊆ Cλ
0 are proper.

6. Closure Properties

In this section we present some closure properties of language classes defined

by CFA. Detailed proofs can be found in.8

From Theorem 5.2 follows

Theorem 6.1. C0, C′
0, C

λ
0 are not closed under arbitrary homomorphisms.

Theorem 6.2. Cλ
0 is closed under non-erasing homomorphisms.

This is shown by decomposing every non-erasing homomorphism into

simple ones.

As a direct consequence from Theorems 5.1 and 6.2 follows

Corollary 6.1. CF ⊆ Cλ
0 .

By some more technical proofs the following closure properties can also

be shown:

Theorem 6.3. C0, C′
0 and Cλ

0 are closed unter union.

Theorem 6.4. C0, C′
0 and Cλ

0 are closed under intersection.

Corollary 6.2. C0, C′
0, C

λ
0 are closed under intersection with regular sets.

Theorem 6.5. C0 and Cλ
0 are closed unter concatenation.

Theorem 6.6. C0 and C′
0 are closed under inverse homomorphisms.

All results are summarized in the following diagram. Here ∩R, L1 ·L2, ∪,

∩, h−1, h, λ-free h stand for intersection with regular languages, concatena-

tion, union, intersection, inverse homomorphism, arbitrary homomorphism

and non-erasing homomorphism, respectively.

July 23, 2010 10:24 WSPC - Proceedings Trim Size: 9in x 6in 08

112

Operator C0 C′
0 Cλ

0

∩R + + +

· + ? +

∪ + + +

∩ + + +

h−1 + + ?

h – – –

λ-free h ? ? +

Figure 3

References

1. B. Farwer, M. Kudlek, H. Rölke : Petri-Net-Controlled Machine Models. FBI-
Bericht 274, Hamburg, 2006.

2. B. Farwer, M. Jantzen, M. Kudlek, H. Rölke, G. Zetzsche : Petri Net Con-

trolled Finite Automata. FI, vol. 85 (1-4), pp. 111-121, 2008.
3. B. Farwer, M. Kudlek, H. Rölke : Concurrent Turing Machines. FI vol. 79

(3-4), pp. 303-317, 2007.
4. S. Greibach : Remarks on Blind and partially Blind Multicounter Machines.

TCS 7, pp. 311-324, 1978.
5. M. Hack : Petri Net Languages. MIT, Project MAC, Computation Structures

Group Memo 124, 1975.
6. M. Jantzen : On the Hierarchy of Petri Net Languages. RAIRO 13, no. 1,

pp. 19-30, 1979.
7. M. Jantzen : Synchronization Operations and Formal Languages. In : Fifth

Conference of Program Designers. ed. A. Iványi, Eötvös Loránd University,
Faculty of Natural Sciences, Budapest, pp. 15-26, 1989.

8. M. Jantzen, M. Kudlek, G. Zetzsche : Language Classes Defined by Concur-

rent Finite Automata. FI, vol. 85 (1-4), pp. 267-280, 2008.
9. E. W. Mayr : An Algorithm for the General Petri Net Reachability Problem.

Proc. 13th Ann. ACM STOC, pp. 238-246, 1981; SIAM Journ. of Computa-
tion 13, pp. 441-460, 1984.

10. M. Mukund : Petri Nets and Step Transition Systems. IJFCS 3, no. 4,
pp. 443-478, 1992.

11. J. L. Peterson : Computation Sequence Sets. JCSS 13, pp. 1-24, 1976.
12. K. Rüdiger Reischuk : Komplexitätstheorie, Band I: Grundlagen, B. G.

Teubner, 1999.

Received: June 28, 2009

Revised: April 25, 2010

����� �����
	��
����������� �
� ����������� �"!$#�%&%�'$()+*�,.- �/(01��(2&%���3�()54�6�()7�
3

8�8�9

:<;�=>;�?A@CBEDF@CG1HJI1=>KLINMOBJ@PKN@C@CHQHRKLI1S

TVUVWXUEY[Z\UE]�TE^�Z�_
∗

`\a�b
c�d&e�fge�hib+c�j5k e
l$mnfgo�mne�b
c�pqh"l+r�s+p�t+o�f+uva�mnh"l
w
`�a�b+c�x�e$d
hie�mzy{c�e&o�fge�mnh}|�b
c�e~s�p�t
o�f+uva�mnh"l
w
�.pqh��$e�f+|&h}m���mV�Ja�|�|�e�k wV�Ja�|�|+e�k w��5e�f+uva�pq�

e+��a�h}k �\�q���$�
� �g���������q�+�����������+���

� Z�U�� ��� _�UVY>�RUE_�] ���
 Xf+p o¡�.pqh��$e�f+|�h�mn�<o¢t�y e�b+c�p o�k o�x��
w

`\a�b�£�k mn�¤o¢t�s�p�t+o�f+u¥a�mnhio�pNy e�b
c�p o�k o&x��
wV¦§e¢¨�a�f+mnuve�pqm5o&t�s+p�t+o�f+uva�mnh}o�pA©ª��|�mne�u¥|gw
 �o�«�e�m�¬�b+c�o��
a�­$wE Xf+p oC®$¯�­�®�®�w§°{±�e�b+c�²³e¢¨ £qd
k h}b

e
��a�h�k"�ª´ �$�
��µ·¶��+¸ ¹����&º����$�
� �
»�¼

��½¥½¢¾ª¿
À
Á/Â$Ã5À�Â$½&¿
½vÄ$Å�Æ�¿
¿�¾L¾�Ç�½&È�Æ�Ä�ÉXÊ1Â$Ç�Ë&Ä�Ì¤Â
Ë&Â�Í.É³¿¤Æ�Á"½&À
Ç�½¢½~Î pqh�m�e�k �Oe�Ï
¨�a�p Ð·a·d
k e
Ð�e�eg¨¤¨ª£�|¢c�Ð�o�Ñ�pOa�£�m�o�uva�m�a Ë¢ÈqÂ
Ë�Â$Ã É5Â�Ò�½5À
Ä�Ê·Ë&Â$Á"ÊCÂ§Ó Ä�Ç�Ê�Æ�¿
ÆCÊ·Ç�ÌJÓª¿
ÔÕÄ$Å.Ê�Ä�Ê�Ö�Á"Ê�¾�Ç�Ë
½gÒ�ÌJÓ Ä�Ã"½�Á"ÊNË&È�¿
Á"Ô�¾�Ç�½¢È�Æ�Ä�ÉXÊ>½gË&Ä�Ôg¿
½�×XØ³Â$½&¿
Æ[Ä�ÊNË&È�¿
½¢¿OÂ$Ç�Ë&Ä�Ì¤Â
Ë&Â�Í5Á ËC¿
½gË�Â$Ó�Ã"Á"½¢È�¿
½
Â$ÊÙÁ"Ê�ÚqÊ�Á Ë¢¿AÈ�Á"¿
Ô&Â$ÔgÀ�È�Ò[Ä$Å§Ã/Â$Ê�Û�ÇqÂ$Û�¿AÅnÂ$Ì<Á"Ã"Á"¿
½vË¢ÈqÂ
Ë�À�Ä�Á"Ê�À�Á"Æ�¿�½�ÉXÁ Ë&ÈÙË¢È�¿AÈ�Á"¿
Ô¢Â$Ô¢À�È�Ò
Ôg¿
½&Ç�Ã Ë¢Á"Ê�Û§ÅiÔgÄ�ÌÜÌ¤Â
Ë¢ÔgÁ Ý<Û�Ô&Â$Ì<Ì¤Â$Ôg½ÕÄ$Å\Ú�Ê�Á Ë&¿�Á"Ê�Æ�¿+Ý�× W È�Ç�½ÕÚ�Ê�Á Ë&¿
Ã Ò¤¿+Ý�¾qÂ$Ê�ÆqÂ$Ó�Ã"¿zÆ�¿�¿
¾
¾�Ç�½&È�Æ�Ä�ÉXÊÙÂ$Ç�Ë&Ä�Ì¤Â
Ë&ÂOÀ�Â$ÊNÂ$Ô¢¿RÂ$Ê1Â$Ç�Ë¢Ä�Ì¤Â
Ë¢Ä�ÊNÀ
Ä�Ç�Ê�Ë&¿
Ôg¾qÂ$ÔÞËCË¢Ä�Ë¢È�¿
½&¿RÛ�Ô¢Â$Ì<Ì¤Â$Ô¢½�×
ß ËàÂ$Ã"½&ÄáÅ}Ä�Ã"Ã"Ä�ÉX½�Ë¢ÈqÂ
ËCÆ�¿
Ã"¿
Ë¢Á"Ê�ÛLË¢Ô&Â$Ê�½¢Á Ë&Á"Ä�Ê�½RÆ�ÄLÊ�Ä$ËRÂ$Æ�Æ>Ì<Ä�Ô¢¿A¾ Ä�É³¿
ÔCË¢ÄLÚqÊ�Á Ë¢¿
Ã Ò
¿+Ý�¾qÂ$Ê�ÆqÂ$Ó�Ã"¿�Æ�¿
¿
¾¤¾�Ç�½&È�Æ�Ä�ÉXÊ¤Â$Ç�Ë¢Ä�Ì¤Â
Ë�Â�× ß Ê<Â�ÚqÊ�Â$Ãq½&¿
À+Ë&Á"Ä�Ê{Í�É³¿X½&Ç�Û�Û�¿�½gËÕ½¢Ä�Ì<¿³Ä�¾ª¿
Ê
¾�Ô¢Ä�Ó�Ã"¿
Ì<½�×
�Je���ÑEo�fgÐ�|$âªT Ç�½&È�Æ�Ä�ÉXÊC��Ç�Ë&Ä�Ì¤Â
Ë&Â�Í � Â
Ë¢Ô¢Á ÝCã�Ô¢Â$Ì<Ì¤Â$Ô¢½�×

äVå ;�æÕç�èqé5ê�ë�ì ç�ígéEæ

îJïªð�ñ�ònó�ô·õRö
÷.ôNñ�ö
øªð�ó.øªõ
óúù�ï�ð\ûªô·õ$ñ�ò}ï�ðüïªý�ù�ïªð{ö
ô�þ\ö�ÿ&ýÞõ�ô�ô��ªõ$ø����Lø õ$ñCö�ï ô����.ò}ûqø
	}ô�ð�ö
� ��ñ�÷�ó�ï
�<ð ø
��ö�ï��Løqö
ø ö�÷�ø öàø�ù�öàøªñ��ªô·ð�ô·õ$ø�	�ö�ï � ÿ�ó�ï
�<ð � ø õ$ñ�ô�õ
ñ��.ýÞï�õ�ô·þ�ø
� � 	}ôáøªñ
� õ
ô�ñ�ô·ð{ö�ô�ó���������ö
ô��Eô·õ�öáô·öáø
	������ � ø
�ªô �"!�#$�&%¤ô�ù·ø
	'	¥ö
÷�øqö ó(�.õ
òið$� ô�ûªô·õ)�*�áïqûªô
�
ö�÷.ô õ�ô�ñ+�$	}ö�òið$� � �Vñ�÷�ó.ï
�<ð ø���ö
ï
�Løqö$øüô�ò�ö
÷.ô·õ � ï � ïªõ ô·þ � ø ð�ó ö
÷.ô·òiõ � �Vñ�÷�ó.ï
�<ð
ñ
ö
ïªõ
ô�ñzó�ô � ô�ð�ó�òið$�RïªðOö�÷�ô�ñ+���,�Vï�	�ï\ù�ù-�.õ
õ
ò}ð$�àï�ð�ö
÷.ô � ��ñ�÷�ó�ï
�<ðOö�ï � ��.�ý³ø ðáòið � ��ö
ñ+���,�Vï�	³ï\ù�ù-�.õ$ñvö
÷.ô·õ
ô
��ö
÷.ôAø��.ö�ï
�Lø ö
ø/�Lø�0ªôAø � ï � �$.�ý~øOð�ïªð�ÿ�ò}ð � ��ö�ñ1���2�Eï
	³ï�ù�ÿ
ù-�.õ$ñ�ïªð ö
÷.ô � ��ñ�÷�ó�ï
�<ð ö
ï � �Vö�÷�ô�ñ�ô¡ø
��ö�ï��áø ö
ø1ô�þ � ø ðVó>ö�÷�ô·òiõ � ��ñ�÷Vó�ï
�<ð ñ�ö�ïªõ
ô�ñ
ñ�ïúö
÷.ô�� õ
ô � 	nøªù·ô[ö�÷.ô ö�ï � ð�ïªð{ö�ô�õ1�áòið�ø�	��<ò}ö�÷ ø ñ
ö
õ�òið$�3�4.+ð�ñ � ò}õ
ô�ó5���Üö�÷.ô6�¥ø"�

∗
W È�Á"½�É³Ä�Ô87CÉ5Â$½zÆ�Ä�Ê�¿JÉXÈ�Á"Ã"¿ T ¿
Ë¢¿
Ô Z ¿
Ç�¾ Ä�Ã"ÆRÉ5Â$½�ÅiÇ�Ê�Æ�¿
Æ�Â$½zÂ�¾ Ä�½gË¢Ö�Æ�Ä�À+Ë¢Ä�Ô&Â$Ã�Åi¿
Ã"Ã"Ä�ÉüÓ�ÒàË&È�¿
9 Â$¾qÂ$Ê�¿
½¢¿;:·Ä�À
Á"¿+Ë�Ò�Å}Ä�Ô³Ë&È�¿ T ÔgÄ�Ì<Ä$Ë&Á"Ä�Ê�Ä$Å<:·À�Á"¿
Ê�À
¿zÇ�Ê�Æ�¿
Ô�Û�Ô¢Â$Ê·Ë�Ê�Ç�Ì¥Ó ¿
Ô T>=-?A@ 8 = ×

����� �����
	��
����������� �
� ����������� �"!$#�%&%�'$()+*�,.- �/(01��(2&%���3�()54�6�()7�
3

8�8��
��ô·ð.ô�õ
ø
	zö�ï � ÿ�ó.ï
�<ð � ø õ$ñ�ô�õ
ñ �¥ïªõ)0<�Xó�ô�ô ��� �Vñ�÷�ó.ï
�<ð ø���ö
ï
�Løqö$ø$�5òið{ö�õ
ï\ó$��ù�ô�ó����
� ô�ó(�.ð�ø � �áõ
ô � õ�ô�ñ�ô�ð�öàö
÷.ô·òiõ�ñ1	}ò��ª÷{ö �ªô�ð.ô·õ$ø�	iò���øqö
ò}ï�ð �<.+ð�ó�ô�ô�ó �³ö
÷.ô�� �Jï�õ10 ô�þ.øªù�ö1	��
ø�ñ§ö
÷.ô�ñ�ô � ø õ$ñ�ô�õ
ñJô�þ.ù·ô � ö¥ö�÷�ø öJö
÷.ô��Nù·ø ð �Lø�0ªô�ô�þ � øªð�ñ�òiïªðVñJó�ô�ô � ô·õvòið1ö
÷.ô � ��ñ�÷.ÿ
ó�ï
�<ð ñ�ö�ï�õ�ô�� � ï�õ�ô � õ�ô�ù�ònñ�ô�	'���³ö�÷.ô�� ù·ø ð��Lø
0ªô ø ð ô�þ � ø ðVñ�òiïªðúï ý¤ó�ô � ö�÷ 4m

ñ�ï
ö
÷.ô�� ù$÷�ø ð$��ô�ö
÷.ô

m
ÿ¢ö
÷ ð�ïªð�ÿ�ò}ð � ��öAñ+���,�Vï�	zï\ù�ù-�.õ
õ
ò}ð$�Ùòiðüö
÷.ô � ��ñ�÷�ó�ï
�<ðúñ�ö�ïªõ
ô

ö
ï ø>ñ
ö
õ�òið$� � �<÷�ô·õ
ô
m ≥ 1

� .+ð ö�÷.ô � õ�ô�ñ�ô�ð{ö � ø � ô·õ�� �JôLó�ònñ
ù-��ñ
ñ
n
ÿ�ô�þ � ø ðVó.ø��$	iô

ó�ô�ô �/� ��ñ�÷�ó�ï
�<ð�ø
��ö�ï��Løqö
ø¤ö�÷�ø ö~ø�	��¥ø"��ñXù·ïªð{ö
øªò}ð
n
ïªõ�ýÞô��¥ô·õ�ð.ï�ð�ÿ�ò}ð � ��ö�ñ1���2�Eï
	nñ

ï�ù·ù��.õ
õ�òið$�Lòið[ö�÷.ô�ò}õ � ��ñ�÷�ó�ï
�<ð ñ�ö�ïªõ
ô�ñ��(�<÷.ô�õ�ô
n ≥ 0

��� ô�ó�ô��áï�ð�ñ
ö
õ
ø ö�ôàö
÷�øqö
n
ÿ

ô·þ � ø ð�ó.ø
�$	iô¥ó�ô�ô �/� ��ñ�÷�ó�ï
�<ð¡ø���ö
ï
�Løqö$ø�øªõ�ô¥ô����.òiûqø�	iô·ð{ö�ö
ï �áø ö�õ
ò�þ ��õ
ø
���áøªõ
ñXï ý
òið�ó�ô·þ

n � ñ�ô·ô~ö
÷.ô;�Vï\ï
0 ���
	�ø�ñ�ñ�ï
� ø ð�ó���

�.ð��§ýÞïªõ�ö�÷.ô¥ó�ô��Vð.ò�ö
ò}ï�ð�ïªý�ö�÷.ô�ñ�ô;�ªõ$ø��¡ÿ
�Lø õ$ñ�� ���vø�ñ�ô�óOï�ðáö�÷.ònñJô����.òiû�ø
	}ô�ð�ù�ô����¥ô�ó�ô��áï�ð�ñ
ö
õ
ø ö�ô<ö
÷�øqö§ö�÷.ô�	iøªð$�
��ø
�ªô¥ýgø��áò�	'�
ø�ù·ù�ô � ö�ô�ó �����+ÿ&ô·þ � ø ð�ó.ø
�$	iô ó�ô·ô � � ��ñ�÷�ó�ï
�<ð ø
��ö�ï��Løqö
ø õ�ô � õ�ô�ñ�ô�ð{ö
ñ1ø � õ�ï � ô�õ
	nø ð$����ø���ô ñ+� ��ýgø��áò�	'� ï ý<ö
÷.ô 	nø ð$����ø���ô¡ýgø��áò'	�� øªù�ù�ô � ö�ô�ó*��� j + 1

ÿ�ô�þ � ø ðVó.ø��$	iô
ó�ô�ô � � ��ñ�÷�ó�ï
�<ðÙø���ö
ï
�Løqö$ø 	nø ð$����ø���ô
��ýÞïªõ<ø�	�	

j ≥ 0
�(��ñJö�÷.ònñvòið���ð.ò}ö�ôà÷.òiô·õ$ø õ$ù$÷��

ïªý 	nø ð$����ø���ô1ýgø
�áò'	iò}ô�ñLù�ï�ò}ð�ù·òió.ò}ð$�*�<ò}ö�÷ ö�÷�ô>÷.ò}ô�õ
øªõ
ù$÷�� õ
ô�ñ1�$	}ö�òið$� ýÞõ�ï�� �Løqö�õ
ò}þ
��õ
ø
�/�Løªõ
ñ�ï ý���ð�ò�ö
ô<ò}ð�ó.ô�þ ����ð�ò�ö
ô�	��Oô·þ � ø ð�ó.ø
�$	iôvó.ô·ô ��� ��ñ�÷Vó�ï
�<ð¡ø
��ö�ï��Løqö
øRù�ø ð
�EôOñ�ô·ô�ð øªñ¤ö�÷.ô¡ø���ö
ï
�Løqö
ïªð�ÿ ��øªñ�ô�ó[ù·ï
�.ð{ö�ô�õ � ø õ�ö¤ö�ï �Lø ö�õ
ò�þ �ªõ$ø����Lø õ$ñ<ï ý��Vð.ò�ö
ô
òið�ó�ô·þ<� .+ðÙò}ö
ñ<ù·ïªð�ù�	'�Vñ�òiïªð �\ö
÷.ònñ � ø � ô·õvýÞï�õ1�,�$	nøqö�ô�ñvñ�ï��¡ôàï � ô�ð � õ�ï��$	}ô��Lñ��

�5å K�� ��æ�ígç�ígéEæ�S
! ô·õ)�LñNøªð�ó ð.ïªö
ø ö�òiïªð ýÞõ
ï
� ��ô·ð.ô�õ
ø
	¤ýÞïªõ)�Lø�	 	iøªð$�
�Vø��ªô ö�÷.ô�ïªõ)�
�;	}ï��ªònù ø ðVó ñ�ô·ö
ö
÷.ô·ï�õ1� ø õ
ôNø�ñ�ñ1�$�áô�ó ö�ï �Vô 0\ð.ï
�<ð ö�ïüö�÷�ôNõ
ô�ø�ó�ô·õáø ð�ó ù·ø ð �Vô 	iï{ï�0ªô�ó�� � òið
ñ�ö
øªð�ó.ø õ$ó�ö�ô�þ\ö)�Vï\ï
0�ñ 	iò�0ªôvö�÷�ô¤ïªð.ô�ñ ���#"�øªõ�õ
ònñ�ï�ð%$vïªõ � ô�ó(�.ð�ø�& ��� ô��<ò'	�	�ó�ô�ð.ï ö
ô
ö
÷.ôLô�� � ö � �¥ïªõ$ó ��� λ

�
|u|

ñ�÷�ø
	'	 �Eô¡ö�÷.ô�	iô·ð � ö�÷úïªý§ö�÷�ô��Jï�õ
ó
u
�
|u|Σ

ó�ô·ð�ï ö�ô�ñ
ö
÷.ôRð��$�2�Eô·õ<ïªý�ï�ù·ù��.õ
ô·ð�ù·ô�ñ¥ï ýzñ+���,�Vï�	iñ¥ýÞõ
ï
� ö
÷.ôAñ�ô�ö

Σ
òiðÙö�÷.ô �¥ïªõ$ó

u
�

� ò}ö�÷Nö�÷.ònñ����¥ôàø�	iõ�ô�øªó(�Lù�ï��áô¤ö�ïOö�÷�ôàù·ô·ð{ö�õ$ø�	Õó�ô'��ð.ò}ö�òiïªð1òiðÙï
�.õvù�ï�ð�ö
ô�þ\ö��{ö
÷.ô
ï�ð.ôàï ýzó�ô·ô � � ��ñ�÷.ÿ�ó�ï
�<ðÙø���ö
ï
�Løqö$ø$�

K(� ��æ�íÞç�ígéEæ �5ågäEå �*),+�+.-/-�02143�),5�6�798�0�:.5�;<8�:.5�7>=@?A+B+C-ED�?GFIH>ònñ1ø5!�ÿ&ö1� � 	iô

M = (Q, Σ, Γ, R, s, S, F)
� �<÷.ô·õ
ô

Q
ònñRø(��ð.ò}ö�ô ñ�ô�öRï ý<ñ�ö
øqö
ô�ñ��

Σ
ònñCö�÷�ô ò}ð � ��ö

ø
	 � ÷Vø��Eô�ö���ø ð�ó Γ
ònñàö�÷.ô � ��ñ�÷Vó�ï
�<ð ø
	 � ÷�ø��Eô�öKJ Σ

ònñAø[ñ+� ��ñ�ô·öAï ý
Γ
�³ö
÷.ô·õ
ôLònñAø

�Eï ö�ö�ï
� ñ1���2�Eï
	
#

ò}ð
Γ \ Σ

�
s ∈ Q

ònñ�ö
÷.ôNñ�ö
øªõ�öáñ
ö$øqö
ô
�
S ∈ Γ

òiñOö
÷.ôÙñ�ö
øªõ�ö
� �Vñ�÷�ó.ï
�<ð[ñ1���2�Eï
	 �

F ⊂ Q
ònñ<ö
÷.ô�ñ�ô�ö¤ïªýL�Vð�ø�	Xñ�ö
ø ö�ô�ñ�� ! ÷�ôRö�õ$ø ð�ñ�ò}ö�òiïªðÙõ�ô�	iø ö�òiïªð

R
òiñLø���ð�ò�ö
ô ñ�ô·öLö�÷�ø öLù·ïªð{ö
øªò}ðVñáô�	iô��áô·ð{ö
ñ ï ý

(I × Q × (Γ \ (Σ ∪ {#}))) ×
(Q × (Γ \ {#})+)

ø ð�ó[ïªý
(I × Q × {#}) × (Q × (Γ \ {#})∗{#})

J�÷.ô�õ�ô
I
òiñ

ø>ø[ñ�ô�öAï ývòið�ö
ô���ô·õ$ñ�ïªýJö
÷.ôáýÞïªõ)�
{i : 1 ≤ i ≤ n}

ýÞï�õAñ�ï��áô
n
�M�üô��<ò�	'	 �<õ�ò}ö�ô

mqA → pv ∈ R
òið�ñ
ö
ô�ø�óNïªý

(m, q, A, p, v) ∈ R
�

! ÷.ôJï � ô·õ$øqö
ò}ï�ðRï ý�ñ1��ù$÷�ø�ó.ô·ô � �N	�� M
òiñ�øªñ5ýÞï
	�	}ï
�¤ñ��

M
-�5B-O1¥ò�ö$ñ � ��ñ�÷�ó�ï
�<ð

ýÞõ
ï
�
x
ö�ï

y
�\ñ+���,�Vï�	}ònù·ø
	'	��,�<õ
ò�ö�ö�ô�ð1øªñ

x p⇒ y
�{ò}ý

x = (q, au, az), y = (q, u, z)
�

����� �����
	��
����������� �
� ����������� �"!$#�%&%�'$()+*�,.- �/(01��(2&%���3�()54�6�()7�
3

8�8��

�<÷.ô·õ
ô
a ∈ Σ, u ∈ Σ∗, z ∈ Γ∗ � M

+�� -�8 7�) 1¤ò}ö
ñ � ��ñ�÷Vó�ï
�<ðáýÞõ�ï��
x
ö
ï

y
�{ñ+���,�Vï�	�ÿ

òiù�ø�	�	'� �<õ
ò}ö�ö�ô�ð¡ø�ñ
x e⇒ y

�qò}ý
x = (q, w, uAz), y = (p, w, uvz), mqA → pv ∈ R

�
�<÷.ô·õ
ô

q, p ∈ Q, w ∈ Σ∗, A ∈ Γ, u, v, z ∈ Γ∗ �Eø ð�ó |u|Γ\Σ = m − 1
��� ô�ù�ø�	�	�ø

ñ�ô����.ô·ð�ù·ôàï ý � ï � ñ��.ô·þ � ô�ð�ñ�òiïªðVñ<ø ð�ó �áïqûªô�ñvø���5 ;G- 0�:C8 :�� 5 7Lïªý
M
�

! ï ô·þ � õ�ô�ñ�ñRö�÷�ø ö
M
�áø
0ªô�ñ

x e⇒ y
øªù·ù·ïªõ$ó�òið$�[ö�ï

mqA → pv
� �¥ô �<õ
ò�ö
ô

x e⇒ y [mqA → pv]
��� ôAñ�ø"� ö�÷�ø ö

mqA → pv
ònñ¤ø	� 0�
 +A5
�#),+C- :@3

m
JVø�ù·ù�ï�õ
ó�ÿ

ò}ð �
	��
�
x e⇒ y [mqA → pv]

ònñRø ð +���-�8 7%1�� 5�7 5
�),+C- :@3
m
�
M
�Lø
0ªô�ñàø ;<5�� +

ýÞõ�ï��
x
ö
ï

y
�Eñ1���2�Eï
	iòiù�ø�	�	'� �<õ�ò}ö�ö
ô·ð øªñ

x ⇒ y
�Eò}ý

M
�áø
0ªô�ñ¤ô·ò}ö�÷�ô·õ

x e⇒ y
ïªõ

x p⇒ y
�

.�ý
n ∈ I

òiñ¡ö
÷.ô �áò}ð.ò��Lø�	 � ï�ñ�ò�ö
ò}û�ô[ò}ð{ö�ô��ªô�õáñ1��ù$÷Üö�÷�ø öLô�øªù$÷ ï ý
M �

ñáõ)�$	iô�ñ
òiñOï ýCó�ô � ö
÷ n

ï�õ2	iô�ñ
ñ�� �¥ôNñ
ø"� ö
÷�øqö
M

� 1 5
�),+C- :@3
n
��ñ1���2�Eï
	iòiù�ø�	�	'�*�<õ
ò�ö�ö�ô·ð

øªñ
nM
� .+ð ö�÷�ôÙñ�ö
øªð�ó.ø õ$ó��Lø ð�ð.ô·õ���ô·þ\ö�ô·ðVó

p⇒, e⇒
�zø ð�ó

⇒
ö
ï

p⇒m, e⇒m
�

ø ð�ó
⇒m
��õ
ô�ñ � ô�ù�ö
ò}û�ô�	��
�5ýÞï�õ m ≥ 0

J�ö�÷.ô�ð �&�Vøªñ�ô�ó ï�ð
p⇒m

�
e⇒m

��øªð�ó
⇒m
�

ó�ô��Vð.ô
p⇒+

�
p⇒∗

�
e⇒+

�
e⇒∗

�
⇒+
�{ø ð�ó

⇒∗ ���5ô·ö M
�Eô¤ïªý³ó.ô � ö
÷ n

� ýÞïªõ¥ñ�ï��áô

n ∈ I
�%� ô�ó�ô'��ð.ôàö�÷�ô�
 8 7���0�8���+<8�����+C- :C+�)����

nM
�
L(nM)

�Vøªñ
L(nM) = {w ∈

Σ∗|(s, w, S#) ⇒∗ (f, λ, #)
ò}ð

nM
�<ò�ö
÷

f ∈ F}
�

! ÷.òiñ¡ònñOö�÷.ô[ïªõ
ò��ªòið�ø�	Jö � � ôÙï ý�ó.ô·ô � � ��ñ�÷�ó�ï
�<ð ø���ö
ï
�Løqö
ïªð � ��ñ¡ô�þ � 	nø òið.ô�ó
ò}ðÙö
÷.ôRò}ð{ö
õ�ï�ó(��ù�ö�òiïªð ��÷.ô·õ
ô �Jô �vø ð{övö�ïLòið\ûªô�ñ�ö�ò���ø ö�ôàø���ö
ï
�Løqö$ø/�<ò�ö
÷[øLù·ïªð�ñ�ö
øªð{ö
�Vï��.ð�óÜïªðÜö�÷.ô>ð��$�,�Vô�õLï ýCð.ïªð{ö�ô�õ1�áòið�ø�	nñOö�÷�ø ö ù·ø ð �Eô � õ�ô�ñ�ô�ð{ö¡ï�ð ö
÷.ô ñ
ö$øªùA0
øqöAø ð�� ��ò}û�ô·ð ö�ò��¡ô�������ù$÷ øªð

n
+���-%8�7),8��!
�+�)�+B+C- -�021 3%),5�6�7 8�0�:.5�;<8�:.5�7>òiñRøªð

" ÿ&ö1� � 	}ô M = (Q, Σ, Γ, R, s, S, F, n)
� �<÷.ô�õ�ô>ø�	�	¤ù�ï�� � ï�ð.ô·ð{ö
ñLøªõ�ô>ø�ñ¡ýÞïªõáö�÷�ô

ïªõ
ò'��ò}ðVø�	Xó�ô�ô � � 	�� �³ø ðVó
n

òiñCø � ï�ñ�ò�ö
ò}û�ô�òið�ö
ô���ô·õ��$#zþ � øªð�ó�òið$�Lö�õ$ø ðVñ�ò}ö�òiïªð�ñ�ù·øªð
ïªð$	�� �Eô1ø � � 	}òiô�ó òið ø>ñ
ö
ô � x e⇒ y

ò�ý
y
�<ò'	�	~ð.ïªö�ù�ïªð{ö$ø òið �áïªõ
ô¡ö�÷�øªð

n
ð.ï�ð�ÿ

ö�ô�õ1�áòið�ø�	nñ���%�ö
÷.ô·õ)�<ònñ�ôáô·ò}ö�÷�ô·õ�ñ�ï
�áôLï ö
÷.ô·õàö
õ
øªð�ñ�ò�ö
ò}ï�ð �,��ñ
ö �Eô1ø �$� 	iò}ô�ó ï�õRö�÷.ô
ù�ï�� � ��ö
ø ö�òiïªð ñ�ö�ï � ñ �<ò}ö�÷.ï���ö¡ø�ù·ù�ô � ö�òið$�3� �Qó�ô�ô � � 	�� ö
÷�øqö¡òiñ

n
ÿ&ô·þ � ø ð�ó.ø
�$	iô

ýÞïªõ¤ñ�ï
�áô
n
ònñ¤ù·ø
	'	iô�ó'& 7(� :.+�
)� +���-%8�7),8��!
�+-�

�üôRó�ï¡ð.ï ö ��ñ�ôCø
��ö�ï��Løqö
ø�ï ý�ø¡ñ � ô�ù�ò ��ô�óNó�ô � ö
÷N÷�ô·õ
ô
��	�ô � ö�÷Vñ ��õ�ô�øqö
ô·õJö�÷�øªð

n
�¥ï
�$	nóLð.ïªö¥÷�ø�û�ô�øªð��áô�*Eô�ù�ö<ø ð����¥ø"����+.ï�õ¥ø¡ó�ô � ö�÷ k

ñ+�Lø
	'	iô·õJö�÷�øªð
n
ò}ö �¡ò��ª÷{ö

�Vô¡ø ð>òið{ö�ô·õ
ô�ñ�ö�òið$� ���.ô�ñ
ö
ò}ï�ð ��ò}ýzö�÷.ô¡ù�ï�õ�õ
ô�ñ � ï�ð�ó�òið$�Ló�ô·ô � �N	���ñ�øªõ�ôRô����.ò}ûqø
	}ô�ð�ö
ö�ï

k
ÿ&ô·þ � ø ð�ó.ø
�$	iô¥ï�ð.ô�ñ��
� ��ö �¥ô�ó�ïRð.ïªö~ö�õ
ô�ø ö~ö�÷.ònñ � õ�ï��$	}ô�� ÷�ô·õ
ô
� ! ÷.ô�õ�ô·ýÞïªõ
ô<ï
�.õ

n
ÿ 	iò��¡ò}ö�ô�óNó.ô·ô � �N	���ñ<ø õ
ôCø
�$	}ô�ö�ïáô·þ � ø ð�óNø ð��áï ýXö
÷.ô·òiõ � � ö�ï

n
ð.ï�ð�ö
ô·õ)�áò}ð�ø
	iñ

øqö¤ø ð�� ��ò}û�ô·ðNö�ò��áô
�
+�òið�ø
	'	��
���Jô�õ�ô�ù·ø�	�	 �Lø ö�õ
ò�þ��ªõ$ø����Lø õ$ñ�ýÞõ�ï�� õ
ô����$	nøqö�ô�óáõ�ô��<õ�ò}ö�òið$�3�ªñ�òið�ù·ô¤ö�÷�ô��

�<ò'	�	 � 	nø"� øLù�ô�ð{ö�õ$ø�	Õõ�ï�	}ôàòiðÙö�÷.ôRð.ô·þ\ö<ñ�ô�ù�ö�òiïªð �

K�� ��æ�ígç�í¢éVæ �5å �5å � ; 8 :����,�'�-� 8�;#; 8.�vònñ¤ø�����øªó�õ)� � 	iô (N, T, M, S)
�$�<÷�ô·õ
ô

Nø ð�ó
T

øªõ�ô ö �Jï ó.òiñ �
ïªòið{ö�� ��ð.ò}ö�ôNø
	 � ÷�ø��Eô�ö$ñOøªð�ó
S ∈ N

�
M

òiñOø ��ð.ò}ö�ôÙñ�ô·öOïªý
ñ�ô����.ô·ð�ù·ô�ñ�ïªýVö
÷.ô<ýÞïªõ)�

(r1, r2, . . . , rk)
���<÷.ô�õ�ôvö
÷.ô

ri

ø õ
ô<ø�	�	.õ�ô��<õ�ò}ö�ôvõ)�$	iô�ñ�ýÞõ
ï
�
ö�÷.ôAñ�ô�ö

N × (N ∪ T)+
�

����� �����
	��
����������� �
� ����������� �"!$#�%&%�'$()+*�,.- �/(01��(2&%���3�()54�6�()7�
3

8�8��

! ÷.ô ñ�ô����.ô·ð�ù·ô�ñüï ýLö
÷.ô ýÞï�õ1�
(r1, r2, . . . , rk)

ø õ
ôÜù�ø�	�	}ô�ó ; 8 :���� �B+�1 � .+ð ø
ó�ô�õ�òiûqøqö
ò}ï�ð ï ý�ø6�Løqö�õ
ò}þ*��õ
ø
���áøªõ���ïªð$	�� ù�ï�� � 	}ô·ö�ô �áø ö�õ
òiù·ô�ñ¡ù·øªð��Vô[ø � � 	}òiô�ó �
! ÷�ø öÙònñ��vø
	'	�ö�÷�ô õ
ô��<õ
ò}ö�ô õ)�$	iô�ñNò}ð ö�÷.ô*�Løqö
õ�ò}þ �2��ñ�ö �Vôúø �$� 	}òiô�ó ò}ð ö�÷.ôúïªõ�ÿ
ó�ô�õ �ªòiûªô·ð � ! ÷.ô�ð ö
÷.ôOð�ô�þ\ö �Lø ö�õ
ò�þ ù·øªð6�Eô¡ø �$� 	iò}ô�ó � +.ï�õ�ô·þ�ø
� � 	}ô��Eö�÷.ô/�Løqö�õ
ò}þ

(A → ab, B → bb, A → a)
ù�ø ð.ð�ï ö �EôOø �$� 	iò}ô�óÙö�ïLö
÷.ôOñ�ö�õ
ò}ð �

aACCBbB
�3�Eô�ÿ

ù�ø���ñ�ô¤ö
÷.ôG�Võ
ñ�öJõ)�$	iô �<ò�	'	Eõ�ô��<õ�ò}ö�ô�ö�÷.ôCïªð 	'�
A

òið ö
÷.ôàñ
ö
õ�òið$��Jªö�÷.ô�ð ö
÷.ô�ö
÷.òiõ
ó1õ1�$	iô
ù�ø ð.ð.ïªö �VôAø �$� 	iò}ô�óÙøªð�� �áïªõ
ô
�

! ÷.ònñ>ó�ô'��ð.ò}ö�òiïªð òiñ ð�ø õ
õ�ï
�¥ô·õNö�÷Vø ð ö�÷.ô��Vñ+��ø
	Rïªð.ô����<÷.ô�õ�ô*�áïªõ
ô*�ªô·ð�ô·õ$ø�	
õ
ô��<õ
ò�ö
ôáõ1�$	iô�ñRøªõ�ôLø�ó(�áò�ö�ö�ô�ó J �$��ö�÷�ô·õ
ô/�¥ô��<ò�	'	zï�ð$	'� ��ñ�ôáù·ïªð{ö�ô·þ\ö�ÿ&ýÞõ�ô�ô¡õ
ô��<õ
ò}ö�ô
õ)�$	iô�ñáø ð�ó ö�÷�ô·õ
ô�ýÞïªõ
ôÙò}ð�ù�	'�Vó�ô[ïªð$	��úö�÷.ô�ñ�ô[òiðÜï��.õLó�ô��Vð.ò�ö
ò}ï�ð �4� �Løqö
õ�ò}þ��ªõ$ø��¡ÿ
�Lø õLïªýCòið�ó�ô·þ

k
ýÞïªõ ø � ï�ñ�ò�ö
ò}û�ô>ò}ð{ö�ô��ªô�õ¡ònñLï�ð.ô �<÷.ï�ñ�ô>ñ�ô�ð�ö
ô·ð{ö�ònø�	výÞï�õ1� �,��ñ�ö

ð.ïªöJù�ï�ð{ö
ø òið��áïªõ
ôvö�÷�øªð
k
ð.ïªð{ö
ô·õ)�¡òið�ø
	iñzòið ø ð��¡ó�ô·õ
ò}ûqø ö�òiïªð ñ�ö�ô � �ªï ö
÷.ô·õ)�<òiñ�ôvö�÷�ô

ó�ô�õ�òiûqøqö
ò}ï�ðOònñzñ
ö
ï �$� ô�ó¡ø ðVó�ð.ïªö§ñ+�Vù·ù�ô�ñ�ñ�ý �$	 ��� �áø ö�õ
ò�þ,�ªõ$ø����Lø õ�ö�÷�ø ö~òiñ�ïªýVòið�ó�ô�þ

k
ýÞïªõ¤ñ�ï
�áô � ï�ñ�ò�ö
ò}û�ôCòið{ö�ô��ªô·õ

k
òiñ<ù�ø�	�	}ô�óÙï ýM�Vð.ò�ö
ôRò}ðVó�ô�þ �

�Xå I��>í �{è��.è�ì��	� é�
�:<ígæ�íÞç �
��� @������.æ�ê������ � K��2��� HRKLI1S

� ò}ö�÷ ö�÷�ôÙï�õ�ò��ªòið�ø
	¥ó�ô'��ð.ò}ö�òiïªð ï ýCó�ô·ô � �N	 ��øªñ��ªòiûªô�ð òið ö
÷.ô � õ
ô�ù�ô�ó�òið$� ñ�ô�ù�ÿ
ö
ò}ï�ð �¥ù·ï
� � ��ö$øqö
ò}ï�ð�ñ1øªõ�ô>òið � õ
ò}ðVù�ò � 	}ô ýÞõ�ô�ô>ö�ïÜø�	}ö�ô·õ
ð�ø ö�ô �Eô�ö �¥ô·ô�ð ñ
ö
ô � ñ ö�÷�ø ö
� ï � ö
ô·õ)�¡òið�ø
	iñ~øªð�ó¡ïªð.ô�ñ�ö�÷Vøqö§ô·þ � ø ð�ó¡ð.ï�ð�ÿ¢ö
ô·õ)�áò}ð�ø
	iñ��,"�ï
�Jô�ûªô·õ���ò�ýÕö
÷.ô·õ
ô¤ô�þ�ònñ
ö$ñ
øªðüøªù�ù�ô � ö�òið$�[ù�ï
� � �.ö
øqö
ò}ï�ð>ýÞïªõRø �Jï�õ
ó ��ö
÷.ô·õ
ôOònñàø�	��¥ø"��ñ�øNù·ï
� � ��ö$øqö�òiïªð ö�÷�ø ö
��õ$ñ�ö�ó�ï\ô�ñ�ø�	�	5ö�÷�ôAô�þ � øªð�ñ�òiïªðVñ¤ø ð�ó[ï�ð$	�� ö�÷�ô·ð ñ�ö
øªõ�ö$ñvö�ï � ï � �3��	iõ
ô�øªó$�1ö
÷.ôRýgøªù�ö
ö
÷�øqö�ô·þ � ø ð�ó.ò}ð$� ö�õ$ø ð�ñ�ò�ö
ò}ï�ð�ñ¤ó�ïLð�ï ö�õ
ô�ø�ó>ø ð��1òið � ��öàñ+� �
�ªô�ñ
övö
÷�øqö�ö�÷.ònñ¤ònñ � ï�ñ�ÿ
ñ�ò'� 	}ô��(�Vô�ù·ø��Vñ�ôCò}ðÙö
÷.òiñ �vø"�¡ö�÷.ô�õ�ôàònñvð.ïáó�ô � ô·ð�ó.ô·ð�ù·ô �Eô�ö �¥ô·ô�ð1ö
÷.ôCö �Jï¡ö � � ô�ñ¥ï ý
ï � ô�õ
ø ö�òiïªð�ñ��

B ������� �5å¢äVå�� � 8),+�+C- D�?GF
M

8-� ��+.-�: 1�8<6N5��)
w �

: 3�+�7 :@3%+�� + � 1�8 7 8�� �B+C- :
 � 7�� ��5 ;G- 0�:C8 :�� 5 7 5
�

M
5 7

w �
6 3�� �B3(-%+�� ��5.� ;#1 5 7(
)�A-%5�-O1 8
��:C+�� : 3�+ & ��1 :�-�5B-

5�-%+�� 8 :�� 5 7	�
Hàèqé5é
 å �Xô�ö

γ
�Eô øúù�ï
� � �.ö
øqö
ò}ï�ð ï ýRø ó.ô·ô � �N	 �

M
� .�ý

γ
ø
	}õ
ô�ø�ó(� ý �$	 � 	�	iñ

ï��.õ 	iô����Lø
�
ñ�ù·ïªð�ó.ò�ö
ò}ï�ð�ñ<ö
÷.ô·õ
ô�ònñ�ð�ï ö�÷�ò}ð$�1ö�ï1ñ�÷.ï
� � %�ö�÷.ô�õ1�<ònñ�ôAö�÷.ô�õ�ôOô�þ�òiñ�ö
ñCø

ñ�ô����.ô�ð�ù�ô~ïªý\ö �Jï¤ù·ïªð�� ���.õ$øqö�òiïªðVñÕò}ð
γ
ñ+��ù$÷àö
÷�øqöXö�÷.ô��Võ
ñ�öXïªð�ô~òiñ�ø � ï � ï � ô·õ$øqö�òiïªð �

ö
÷.ô�ýÞï�	'	iï
�<òið$�1ï�ð.ôOøªð ô�þ � øªð�ñ�òiïªð ï ýJø1ð.ïªð�ÿ&ö�ô�õ1�áòið�ø�	 � �5ô�ö�ö�÷.ôOýÞïªõ)�áô·õ � ï � ö
÷.ô
ñ1���2�Eï
	

a
��ø ðVó 	iô�ö<ö
÷.ô 	iø ö�ö�ô�õ��Eôàö�÷.ôàö
õ
øªð�ñ�ò}ö�òiïªð

nqA → pU
� ! ÷.òiñ��¡ô�ø ð�ñ¥ö
÷�øqö

ö
÷.ôRù�ïªð%� �
�.õ$øqö
ò}ï�ð�� ��ñ�ö �Vô·ýÞïªõ
ô�ö
÷.ô�ñ�ôCö �JïOö�õ$ø ðVñ�ò}ö�òiïªð�ñ;�,��ñ
ö<÷�ø�û�ô�ö
÷.ôRñ+���,�Vï�	
aï�ð ö
÷.ô¡ö�ï � ï ý¥ö�÷�ô � ��ñ�÷.ÿ�ó�ï
�<ð � ��ò}ð�ù·ôáö�÷.ô � ï � ó�ï\ô�ñàð.ïªöAù$÷�ø ð$��ô�ö
÷.ôLñ
ö$øqö
ô¡ï�õ

òið{ö�õ
ï\ó$��ù�ôAï�õ�ù$÷�øªð$�ªôRð.ï�ð�ÿ&ö�ô·õ)�áò}ðVø�	nñ��
q
ònñ�ø
	}õ
ô�ø�ó(�Lö
÷.ôOù��.õ�õ
ô·ð{ö�ñ�ö
ø ö�ô�øªð�ó

A
òiñ

ö
÷.ô
n
ÿ¢ö
÷[ð.ïªð�ÿ&ö�ô�õ1�áòið�ø�	ÕòiðÙö�÷.ô � �Vñ�÷�ÿ+ó�ï
�<ð �

� ô��<ò�	�	3�<õ
ò�ö
ô¤ö
÷.òiñvù·ïªð�� ���.õ$øqö�òiïªð
aw; q; auAv

���<÷.ô·õ
ô¤ö
÷.ô �Võ
ñ�övù·ï
� � ïªð.ô�ð�ö
ònñ�ö�÷.ô¤ù·ïªð{ö�ô�ð{ö
ñ�ï ýVö�÷.ô<òið � ��özö$ø � ô
��ö
÷.ô<ñ�ô�ù�ïªðVóAö
÷.ô<ù-�.õ
õ�ô�ð{özñ�ö
ø ö�ô�� ø ð�ó�ö�÷.ô¥ö
÷.ò}õ$ó

����� �����
	��
����������� �
� ����������� �"!$#�%&%�'$()+*�,.- �/(01��(2&%���3�()54�6�()7�
3

8�8 ?

ïªð.ô�ö�÷�ôAñ
ö$øªùA0 ù�ï�ð{ö�ô·ð{ö$ñ �<ò}ö�÷Ùö
÷.ôCö�ï � ïªðNö�÷�ô 	}ô·ý�öv÷Vø ð�óÙñ�ònó�ô��
u
ù�ïªð{ö$ø òið�ñ

n− 1ð.ïªð{ö
ô·õ)�¡òið�ø
	iñ�� ! ÷.ôàö �JïLù·ï
� � ��ö$øqö�òiïªð[ñ�ö�ô � ñ<ó�ô�ñ
ù�õ
ò'�Eô�ó[ø
�Vïqû�ôCøªõ�ô

aw; q; auAv p⇒ w; q; uAv e⇒ w; p; uUv [nqA → pU].
"¤ï
�¥ô·û�ô·õ��

nqA → pU
ù·øªð ø�	nñ�ï2�VôCø �$� 	iòiô�ó��Eô�ýÞïªõ
ô<ö
÷.ô � ï � ���Eô�ù·ø
��ñ�ô<ö�÷.ôCó�ô � ö�÷

ï ý
A

òiñàø
	}õ
ô�ø�ó(�
n

øªð�ó>ö
÷.ô¡ù��.õ
õ�ô�ð�öCñ
ö$øqö�ô¡ònñ
q
� ! ÷.ònñCô�þ � ø ðVñ�òiïªð �Vïªð ö�÷.ô¡ï ö
÷.ô·õ

÷�ø ðVó ��ó�ï\ô�ñ¥ð.ï ö¤ù$÷�øªð$�ªô�ö�÷.ôCýgø�ù�ö¥ö�÷�ø ö
a
ònñ¥ö�÷.ô�ö�ï � ÿ �¡ï{ñ
ö<ñ1���,�Vï�	Õïªð ö
÷.ô � ��ñ�÷�ÿ

ó�ï
�<ð �ªøªð�óOö�÷���ñ§ò�öJù�ø ð��Eô � ï �$� ô�óáð.ï
� ���Eô�ù�ø���ñ�ôvö�÷�ô � ï � ï � ô·õ$øqö
ò}ï�ðOònñ§ó�ô'��ð.ô�ó
ýÞïªõ¤ø
	'	5ù·ï
�2��ò}ð�ø ö�òiïªð�ñvïªýXö
ô·õ)�¡òið�ø
	iñ¤øªð�óÙñ
ö$øqö�ô�ñ�� ! ÷�ôRõ�ô�ñ+�$	}ö�òið$�Lù�ï�ð�� ���.õ
ø ö�òiïªðNòiñ
ö�÷.ôAñ
ø��áôRøªñ¥ýÞï�õ � ï �$� òið$�A��õ$ñ
ö¤ø ðVó1ö
÷.ô·ð>ø �$� 	��{òið$� nqA → pU �

aw; q; auAv e⇒ aw; p; auUv [nqA → pU] p⇒ w; p; uUv.

���$���Lø õ
ò ��ò}ð � � �¥ôNù�ø ð ï���ö
øªò}ð øªð.ï ö
÷.ô·õ¡ù�ï�� � ��ö
ø ö�òiïªð γ′ �<÷.ô�õ�ô1ö�÷.ô � ï � ø ðVó
ö�÷.ô�ö�õ$ø ðVñ�ò}ö�òiïªð1øªõ�ô�ô�þ.ù$÷�øªð$�ªô�ó ��� ��öJö
÷.ôCõ�ô�ñ+�$	}övòiñJö�÷�ôCñ
ø��áô�ø�ñJýÞïªõ

γ
� �\òið�ù�ô�ö�÷.ònñ

� õ
ï\ù·ô�ñ
ñvù·ø ð �VôRò}ö�ô�õ
ø ö�ô�ó �.ø�	�	Eö�÷.ô � ï � ï � ô·õ$øqö
ò}ï�ð�ñvù·ø ð �Eô �áïqû�ô�óLö
ï¡ö�÷.ôRô�ð�ó1ïªý
ö�÷.ôAù·ï
� � ��ö$øqö
ò}ï�ðÙñ�ö�ô � ���1ñ�ö�ô � ��øªð�ó ö
÷.ònñ¤ù·øªð �EôAó�ïªð�ô�ýÞï�õ¤ø ð��1ù·ï
� � ��ö$øqö�òiïªð �

�\ï ó(�.õ
òið$� ø ��õ$ñ
ö � ÷�øªñ�ô òið ø ð��Üó�ô�ô � �N	 � ù�ï�� � ��ö
ø ö�òiïªð ò}öNònñ � ï{ñ�ñ�ò��$	}ô
ö�ï ó�ï ï�ð$	�� ô·þ � ø ð�ñ�òiïªð�ñNïªð ö
÷.ô ñ
ö$øªùA0 ø ð�ó ��øªñ�ònù·ø�	�	�� �¥ïªõ)0 	}ò�0ªôúø���õ
ø
�/�Løªõ
ó�ô·õ
òiû{òið$�>ø �¥ïªõ$ó ïªý¥ï�ð$	'� ö�ô�õ1�áòið�ø�	~ñ1���2�Eï
	nñ'J³ö
÷.ï
� �ª÷ �5ïªývù·ï
�.õ$ñ�ô
�Õö�÷�ô ñ
ö$øqö�ôLïªý
ö�÷.ôúø��.ö�ï
�Lø ö�ïªð ù�ïªð{ö
õ�ï�	iñ �<÷.òiù$÷ õ1�$	iô�ñÙø õ
ôüø �$� 	iòiù�ø��$	iô6�<÷�ô·õ
ô òið ô·û�ô·õ)� ñ
ö
ô � �
! ÷.ô·ð ö�÷.ô �Jï�õ
ó��ªô·ð�ô·õ$øqö�ô�óúò}ð ö�÷.ònñ/�¥ø"� ònñ2�Løqö$ù$÷.ô�ó ø���øªò}ðVñ
öOö�÷.ôÙò}ð � ��ö�� ! ÷.ô
ù�ï�� � ��ö
ø ö�òiïªðLøªù�ù�ô � ö
ñ~ò}ý5ø ð�óáï�ð$	���ò}ýEö
÷.ô¤ö �¥ï �¥ïªõ$ó.ñ�ïªðáö
÷.ô¤òið � ��öJö
ø � ô�øªð�ó¡ö�÷.ô
ñ
ö$øªùA0àø õ
ôzô�����ø
	{øªð�óàò�ý�ö
÷.ô;	iø�ñ
ö�ñ�ö
ø ö�ôJõ�ô�øªù$÷.ô�ó�òiðRö
÷.ô§ô·þ � ø ð�ñ�ò}ï�ð � ÷�ø�ñ�ô4�vøªñ ��ð�ø
	��
ñ�òið�ù·ôáö�÷.ô � ï � ñ �<ò'	�	~ð.ïªö�ù$÷�ø ð �ªôáö�÷�ô ñ
ö$øqö�ô øªð����áï�õ�ô�� ! ÷.ô ñ�ø
�áô � õ�ï\ïªý;�¥ïªõ)0�ñ
ýÞïªõ
�Vð.ò�ö
ô�	��üô·þ � ø ð�ó�ø��$	iô ó�ô·ô � �N	���ñ���ø ð�ó*�¥ô��<ò'	�	§ð�ï
� ��ñ�ôLö
÷.òiñ � õ
ï � ô·õ�ö � òið
� õ
ïqû{òið$�Ùö�÷VøqöAö
÷.ô�ñ�ô1ø��.ö�ï
�Lø ö
ø>ø õ
ôLô����.òiûqø�	iô·ð{öRö�ï6�áø ö�õ
ò�þ �ªõ$ø����Lø õ$ñàï ýI��ð.ò}ö�ô
ò}ðVó�ô�þ �

? �L�{éVè �
� �XågäEå�� 5��
8�

 � 7�:C+ ��+���1
n > 0 �

; 8 :����,� �-� 8 ;A; 8.��1�5
� � 7)�+��
n
� +'7 +��

 8 :C+ :@3%+ 1�8�;<+ �!
�8 1�1 5��
 8 7���0�8���+�1 : 3�8 : � 1 8-� ��+C- :C+B) �!�
n

+���-%8�7),8��!
�+G),+�+C- D�? F 1 �
Hàèqé5é�
 å .�öAòiñ�ø�	��¡ï{ñ
ö�ñ�ö�õ$ø ò��ª÷{ö�ÿ¢ýÞï�õ1�vø õ$ó[ö�ï ñ�ô·ô¡ö
÷�øqö��Vð.ò�ö
ô�	�� ô·þ � ø ð�ó.ø
�$	iô ó�ô·ô �
�N	���ñ ù·øªð ñ�ò'�,�$	nøqö�ô �Løqö
õ�ò}þ �ªõ$ø����Lø õ$ñOï ýG�Vð.ò�ö
ô>ò}ðVó�ô�þ � ! ÷.ô�� ù·øªð ñ�ò'�,�$	nøqö�ô
ô�þ.øªù�ö1	���ö
÷.ô �ªõ$ø����Lø õ

�
ñzó�ô�õ�òiûqøqö
ò}ï�ð ò}ð ö�÷.ô�ò}õvñ
ö$øªùA0<��� 	'	

n
ïªõ;	iô�ñ
ñ~ð.ï�ð�ÿ¢ö
ô·õ)�áò}ð�ø
	iñ

ù·øªð �Eô[ô�þ � ø ðVó�ô�ó øqö ø ð�� ö
ò'�áô��~ø ð�óÜò}ð ò}ö
ñLñ�ö
ø ö�ôÙö�÷.ô ø
��ö�ï��Løqö�ï�ðÜù�ø ð ñ
ö
ïªõ
ô
ò}ð.ýÞïªõ)�áø ö�òiïªð[ø��Eï
��ö��<÷Vøqö �Løqö�õ
ò}þNò}ö¤òiñ¤ù��.õ
õ�ô�ð�ö)	'� ñ�ò��2�$	nøqö
ò}ð$�3�%� ô �<ò'	�	5ð.ï
� ó�ô�ÿ
��ð.ô[ñ+�Vù$÷Üø ó�ô·ô � �N	�� ýÞï�õáø6�ªòiûªô�ð �Løqö
õ�ò}þ��ªõ$ø����Lø õ

(N, T, M, S)
� ��	�	vö�÷.ô

ö�õ$ø ð�ñ�ò}ö�òiïªð�ñ �¥ôáó.ô���ð.ô��Eô�	iï
� �<ò�	�	 �Vô ó�ô'��ð.ô�ó ýÞï�õAø�	�	 � ï{ñ�ñ�ò'� 	}ôLó�ô � ö�÷�ñ��5ò � ô��ÕýÞïªõ
ø�	�	 � ï�ñ�ò�ö
ò}ï�ð�ñvýÞõ
ï
�Qï�ð.ôàö�ï

n
� ! ïLòið�ù�õ
ô�ø�ñ�ôàõ
ô�ø�ó.ø��.ò�	iò�ö ���$�Jô �<ò�	�	 	}ô�ø�ûªôRø"�vø"�Lö�÷.ô

����� �����
	��
����������� �
� ����������� �"!$#�%&%�'$()+*�,.- �/(01��(2&%���3�()54�6�()7�
3

8�8 @

ó�ô � ö�÷ òið ö�÷�ôNö
õ
øªð�ñ�ò�ö
ò}ï�ð�ñOøªð�ó��<ò�	�	Jö$ø�0�ôNò}öáýÞïªõ/�.ð�ó�ô�õ
ñ�ö�ï\ï�ó ö
÷�øqö¡ö�÷.ònñ��áô�øªð�ñ
ó�ô'��ð.òið$�áö�÷�ô��PýÞï�õ¤ø�	�	5ó�ô � ö�÷�ñvýÞõ
ï
�Qïªð.ôCö�ï

n
�

�\ï 	iô�ö
G = (N, T, M, S)

�Eô¥ø��Løqö
õ�ò}þ �ªõ$ø����Lø õ�ï ý�òið�ó�ô·þ
n
��%��.õ�ó.ô·ô � �N	��

ònñ
M = ({s} ∪ (M × {1, 2, . . . , `}), T, {S} ∪ N ∪ T, R, s, S, {s}, n)

�$�<÷.ô·õ
ô
`ònñ¥ö�÷.ô �Lø þ\ò��Lø�	³ð��$�,�Vô�õ<ï ý�õ1�$	iô�ñ¥òið>ø,�Lø ö�õ
ò�þ1ïªý

G
� ! ÷�ôRïªð$	��1ù�ï�� � ï�ð.ô·ð{ö 	}ô·ý�ö

ö
ï¡ó�ô'��ð.ôàònñ§ö
÷.ôCö�õ$ø ð�ñ�ò}ö�òiïªð ý ��ð�ù�ö
ò}ï�ð % � +�ïªõvô·û�ô·õ)�/�Lø ö�õ
ò�þ
m : A1 → v1, A2 →

v2, . . . , Ak → vk

ýÞõ
ï
�
M

ò�öÙù�ïªð{ö$ø òið�ñ¡ö�÷.ô[ýÞï�	'	iï
�<òið$� ö�õ$ø ð�ñ�ò�ö
ò}ï�ð�ñ��<÷.ô�õ�ô
mió�ô�ð.ï ö
ô�ñ¥ö
÷.ôRô�	iô��áô·ð{ö

(m, i)
ýÞõ
ï
� ö
÷.ôAñ�ô�ö<ï ýzñ
ö$øqö
ô�ñ

�

sA1 → m1v1, m1A2 → m2v2, m2A3 → m3v3, . . .

. . . , mk−2Ak−2 → mk−1vk−2, mk−1Ak → svk.� ô�ï��¡ò}ö§ö
÷.ô�ó.ô � ö
÷�ñ¥ï ýÕö�÷.ô�ö�õ$ø ð�ñ�ò}ö�òiïªð�ñ���� 	'	Eï ý³ö
÷.ô��Pñ�÷.ï
� 	ió��Eô�ó�ô'��ð.ô�óáýÞïªõvø�	�	
� ï�ñ
ñ�ò��$	iô¡ó.ô � ö
÷�ñ 1

ö�ï
n

ñ+�Vù$÷ ö�÷VøqöRô·û�ô·õ)� ��õ
ø
���áøªõ�õ)�$	iô¡ù�ø ð �VôLñ�ò'�,�$	nøqö�ô�ó òið
ô�ûªô·õ)�Rð.ï�ð�ö
ô·õ)�áò}ð�ø
	 � ï{ñ�ò}ö�òiïªð � ! ÷�ôvñ�ö
ø ö�ô�ñ mi

ø õ
ô;��ñ�ô�ó�ï�ð$	��Aò}ðOö�÷�ô�ñ�ôJö
õ
øªð�ñ�ò�ö
ò}ï�ð�ñ
ñ�ò'�,�$	nøqö�òið$�

m
�5ö
÷��VñRö�÷�ô·õ
ô òiñ�ïªð$	�� ï�ð.ô � ï�ñ
ñ�ò��$	iôáö�õ$ø ð�ñ�ò}ö�òiïªð ýÞïªõAô�øªù$÷úï ývö
÷.ô�ñ�ô

ñ�ö
ø ö�ô�ñ�� ! ÷.ònñ �áô�ø ð�ñÕö
÷�øqöXö�÷.ô§ø
��ö�ï��Løqö�ï�ðàô·ò}ö�÷.ô�õXô�þ�ô�ù-��ö
ô�ñÕö
÷.ô~ô·ð{ö
ò}õ
ô~ñ�ô����.ô·ð�ù·ôzï ý
ö
õ
øªð�ñ�ò}ö�òiïªðVñzù�ïªõ
õ
ô�ñ � ï�ð�ó�òið$�¤ö
ïàö�÷.ô �Løqö
õ�ò}þ

m
�qïªõzò}ö4�<ò'	�	�ñ�ö�ï � �<ò}ö�÷.ï���ö§øªù�ù�ô � ö�òið$�

ö
÷.ô �Jï�õ
ó �
! ïOñ�ô·ô�ö�÷�ø ö

G
ø ð�ó

M
øªõ�ô�ô����.òiûqø�	iô·ð{ö���	iô�ö ��ñ;	}ï\ï
0Lø ö§ö�÷�ôàñ�ô·ð{ö
ô·ð{ö�ònø�	VýÞïªõ)�Lñ

ïªý<ø ó�ô·õ
ò}ûqø ö�òiïªð ø ð�ó ö
÷.ôNù·ïªõ
õ�ô�ñ � ïªðVó�ò}ð �[ñ�ö
ø�ùA0üù·ïªð{ö�ô�ð�ö$ñ�� �Jïªö�÷ ñ�ö
øªõ�ö2�<ò}ö�÷
S
�

��ñLñ
ö$øqö�ô�ó ø
�Vïqû�ô
��õ1�$	iô�ñOï ý�ö�÷.ô �ªõ$ø����Lø õáø ðVó ô�þ � øªð�ó�òið$� ö
õ
øªð�ñ�ò�ö
ò}ï�ð�ñ¡ï ý¤ö
÷.ô
ó�ô�ô � �N	 � ô·ðVøªù�ö¤ô·þ.øªù�ö)	'�1ö�÷.ôOñ�ø
�¡ôAù$÷Vø ð$��ô�ñ�� ! ÷���ñ¤øªñ�	}ï�ð$� øªñ �¥ôAó�ï ð�ï ö���ñ�ô
øªð�� � ï � ñ���ö�÷�ô[ñ�ô·ð{ö
ô·ð{ö�ònø�	¥ýÞïªõ)�Lñáø ð�ó ö�÷.ô>ù�ï�õ�õ
ô�ñ � ïªð�ó�òið$� ñ�ö
ø�ùA0 ù�ï�ð�ö
ô·ð{ö
ñ¡ø õ
ô
ònó�ô·ð{ö
òiù�ø�	 ��ø ðVóáò�ö§ònñ~ï��\û{òiï
�Vñ�ö�÷�ø ö§ô·û�ô·õ)�Aö
ô·õ)�¡òið�ø
	 �¥ïªõ$ó�ö
÷�øqö¥ù·ø ð��Eô�ó�ô�õ�òiûªô�ó����
ö
÷.ô ��õ
ø
�/�Løªõ§ù·øªð ø�	nñ�ï �Eô ��ô·ð.ô�õ
ø ö�ô�óOï�ðáö�÷.ôCñ
ö$øªùA0<���Xô����Lø��$����ñ�÷.ï
�¤ñzö
÷�øqövø�	�	
ù·ï
� � ��ö$øqö�òiïªðVñ³ï ý M

ù·ø ð �Eô~ð.ï�õ1�Lø�	iò��·ô�ó�òiðàö�÷.ònñ �Lø ð�ð.ô·õ���+�ò}ðVø�	�	'���·øqý�ö
ô·õ ��ð�òiñ�÷.òið$�
ö
÷.ô1ñ�ò'�,�$	iø ö�òiïªð ïªý<ø �Lø ö�õ
ò�þ �

M
ònñ�ø�	��vø"�\ñàòið ò}ö
ñ
�Vð�ø�	¥ñ
ö$øqö�ô

s
ø ð�ó ù�ø ð ö�÷���ñ

ø�ù·ù�ô � öàö�÷.ô��¥ïªõ$ó ï�ð ö
÷.ô ñ�ö
øªùA0>ò}ývò�ö�ù·ïªð�ñ�òiñ�ö
ñCï�ð$	'� ï ý§ö
ô·õ)�áò}ð�ø
	iñRøªð�ó �áø ö
ù$÷.ô�ñ
ö
÷.ôáò}ð � ��ö �Jï�õ
ó � ! ÷�ô·õ
ô�ýÞïªõ
ôAö
÷.ô ó�ô�ô � � 	�� øªù�ù�ô � ö
ñ�ö�÷.ô ñ
ø��áô/	iøªð$�
�Vø��ªô�ö�÷�ø ö
ö
÷.ô �ªõ$ø����Lø õ �ªô�ð.ô·õ$øqö
ô�ñ��

+�ïªõRñ�÷�ï
�<ò}ð$�1ö�÷.ôáòið\ûªô·õ$ñ�ôOòið�ù-	���ñ�ò}ï�ð �<�Jôáð.ô�ô�ó ø �áï�õ�ôáñ�ï � ÷.ònñ
ö
òiù�øqö
ô�ó øªõ1����ÿ
�áô·ð{ö$øqö�òiïªð �,� ô��<ò'	�	�ù·ïªð�ñ�ö�õ)��ù�ö§ø �áø ö�õ
ò�þ/�ªõ$ø����Lø õ�ýÞïªõJø �ªòiûªô·ðLó�ô�ô � �N	 � ��øªð�ó
ø
��ø òiðOö�÷.ô¤ñ�ô·ð{ö�ô�ð{ö�ònø�	�ýÞï�õ1�Lñzø ðVó�ö
÷.ô�ñ�ö
ø�ùA0�ù�ï�ð�ö
ô·ð{ö
ñ �<ò�	�	$�Vô�ò}ðLù-	iï�ñ�ô<ù�ï�õ�õ
ô�ñ � ï�ð�ÿ
ó�ô�ð�ù�ô��O"�ï
�Jô�ûªô·õ��.ñ�ò}ð�ù·ôàö�÷.ô,�ªõ$ø����Lø õ<ó�ï\ô�ñ�ð.ï öCó�òiñ�ö�òið$���.òiñ�÷ �Eô�ö �¥ô·ô·ð>ó�ò *Õô·õ
ô·ð{ö
� ï�ñ�ò�ö
ò}ï�ð�ñ¤ïªý~ð.ïªð.ÿ¢ö
ô·õ)�¡òið�ø
	iñ �<÷�ò'	iôAö
÷.ôOø
��ö�ï��áø ö�ï�ð ó�ï\ô�ñ�� �¥ôAð.ô·ô�ó[ö�ïÙñ
ö
ïªõ
ôRò}ð.ÿ
ýÞï�õ1�Løqö
ò}ï�ðÙø
�Vï���övö�÷.ô�ò}õ � ï{ñ�ò}ö�òiïªðÙò}ðÙö
÷.ôRð.ïªð.ÿ¢ö
ô·õ)�¡òið�ø
	iñJö�÷�ô��Lñ�ô�	}û�ô�ñ���� ÷.ô·ð�ô·ûªô�õ
ð.ô�� ïªð�ô�ñ¥ø õ
ô¤ò}ð{ö
õ�ï�ó(��ù·ô�óLï�õ �<÷�ô·ð1ï�ð.ô�ònñJõ�ô��<õ�ò}ö�ö
ô·ð ö
ïOøOñ
ö
õ�òið$��ïªý5ïªð$	��áö�ô�õ1�áò}ÿ
ð�ø
	iñ���ö�÷�ô<ýÞï
	�	}ï
�<òið$�Cïªð.ô�ñ�ð.ô·ô�óOö�ï �Eô � � ó�øqö�ô�ó ���Eô�ù�ø���ñ�ôvö�÷.ô�ò}õ � ï�ñ�ò}ö�òiïªð�ñzù$÷�øªð$�ªô��
! ÷.ònñ �<ò�	'	 �EôRô·ðVñ+�.õ
ô�ó ��� � �.ö�ö�òið$� ø
	'	Õö
÷.ôRõ1� 	}ô�ñvò}ð\ûªï�	}û�ô�ó1ò}ð[ïªð�ô �Lø ö�õ
ò�þ �

����� �����
	��
����������� �
� ����������� �"!$#�%&%�'$()+*�,.- �/(01��(2&%���3�()54�6�()7�
3

8�8��

�üôJð.ï
� � õ�ï�ù�ô�ô�ó�ö�ï¤ó.ô���ð.ôJø �Løqö�õ
ò}þ��ªõ$ø����Lø õ5ñ�ò��2�$	nøqö
ò}ð$�¤øªð
n
ÿ&ô·þ � ø ð�ó.ø
�$	iô

ó�ô·ô � � 	�� (Q, Σ, Γ, R, s, S, F, n)
� ! ÷�ôAñ�ô·övïªý�ð�ïªð�ÿ&ö�ô�õ1�áòið�ø�	nñ;�<ò'	�	 �Eô

(N × {2, . . . , n}) ∪ (N × Q) ∪ ({ε} × {2, . . . , n}) ∪ {S},

�<÷.ô·õ
ô
N = Γ \ Σ

�5ø ð�ó ö�÷.ôLñ�ô�ù�ï�ð�ó ù·ï
� � ïªð.ô�ð�ö �<ò�	'	~ù·ïªð{ö
øªò}ð ö�÷.ô � ï�ñ�ò�ö
ò}ï�ð ïªý
ø��ªòiûªô�ð ñ�ö
øªùA0[ñ1���,�Vï�	��Vò�ýJò�öCòiñ�ð.ï ö�ö�÷.ô ��õ$ñ
öCïªð.ô��Vï�õ�ò}ö��<ò�	'	�ù�ï�ð�ö$ø òið>ö�÷�ôOñ�ö
øqö
ô
�
ò�ý§ö�÷.ôáñ+���,�Vï�	�ònñ�ö�÷.ô#��õ$ñ
öàïªð.ô�� ! ÷�ô¡ñ�ö
øªõ�öàñ+���2�Eï
	 �<ò�	'	 �Eô

S
�³øªð�ó[ö�÷�ô/�Lø ö�õ
ò�þ

(S → (S, s)(ε, 2)(ε, 3) · · · (ε, n))
òiñ�ö�÷�ô�ïªð 	'�[ïªð�ô�ù�ï�ð�ö$ø òið.òið$�1øLõ)�$	iô�õ
ô��<õ
ò�ö
ò}ð$�

S
� ! ÷.ôAñ1���2�Eï
	nñ �<ò�ö
÷

ε
øªõ�ô � 	nøªù·ô·÷.ï�	ió.ô·õ$ñ§ýÞï�õvý �.õ�ö�÷.ô�õ<ð.ïªð�ÿ&ö�ô�õ1�áòið�ø�	nñ��

+.ïªõ�ö�÷.ô �Løqö�õ
ònù�ô�ñOñ�ò��2� 	iø ö�òið$�[ö�÷.ôÙø���ö
ï
�Løqö
ïªð
�
ñàö
õ
øªð�ñ�ò}ö�òiïªðVñ��Xö�÷.ôÙñ�ò�� � 	}ô�ñ
ö

ù·ø�ñ�ô�òiñ �<÷.ô·ðNô�þ.øªù�ö1	��áïªð.ôCð.ïªð.ÿ¢ö
ô·õ)�¡òið�ø
	Vònñ§ï�ð ö
÷.ô�õ
ò��ª÷{ö�ÿ�÷�ø ðVó ñ�ònó�ô�ï ý5ö
÷.ô�õ)�$	iô
�
! ÷.ô·ð�ö�÷.ô � ï�ñ�ò�ö
ò}ï�ð�ñ�ï ý�ð.ï�ð�ÿ&ö�ô·õ)�áò}ðVø�	nñ5òið�ö
÷.ôJïªö�÷.ô�õ � ø õ�ö
ñ�ï ý.ö
÷.ôvñ�ô�ð�ö
ô·ð{ö�ònø�	�ýÞïªõ)�
ø õ
ô¤ð.ïªövø�*Eô�ù�ö�ô�ó ���\ïAýÞï�õJô�ûªô·õ)�Oö�õ$ø ð�ñ�ò�ö
ò}ï�ð

kpA → quBv
�<ò�ö
÷

uv ∈ T ∗ �¥ô�øªó�ó
ö�÷.ô��Løqö
õ�ònù�ô�ñ

((X, p) → (X, q), (A, k) → u(B, k)v)
ýÞï�õRø�	�	�ð�ïªð�ÿ&ö�ô�õ1�áòið�ø�	nñ

Xø ð�ó1ø�	�	
k
�Eô�ö �¥ô·ô�ðLö �¥ï�ø ð�ó

n
� ! ÷.ôG��õ
ñ�öJõ)�$	iô�ù$÷�øªð$�ªô�ñzö
÷.ô�ñ�ö
ø ö�ô¤ö
÷�øqövònñJñ�ö�ï�õ�ô�ó

ò}ðAö�÷.ô§ñ�ô·ð{ö
ô·ð{ö�ònø�	ªýÞïªõ)�
�
ñ �Võ
ñ�öXð.ï�ð�ö
ô·õ)�áò}ð�ø
	��·ö�÷.ô¥ñ�ô�ù�ï�ð�óàõ1� 	}ô§ó.ï{ô�ñ³ö
÷.ô§ô·þ � ø ð�ñ�ò}ï�ð

øqö � ï{ñ�ò}ö�òiïªð k
�3.�ý

k = 1
�Vö�÷.ô�ð ö�÷�ô,�Løqö
õ�ò}þ>òiñCñ�ò}ð$��	}ô·ö�ï�ð ø ð�óüù�ï�ð�ö$ø òið�ñ<ö
÷.ô¡õ1�$	iô

(A, p) → u(B, q)v
� �<÷.ònù$÷ õ
ô��<õ
ò}ö�ô�ñ�ö�÷�ôOð.ï�ð�ÿ&ö�ô·õ)�áò}ðVø�	�ø ð�óüù$÷�ø ð$��ô�ñ�ö�÷.ôáñ�ö
øqö
ô

ò}ð>øáñ�ò}ð$��	}ôRñ�ö�ô � �
.�ýÕøàõ)�$	iô¥ïªý�ö
÷.ô �ªõ$ø����Lø õ � õ
ï�ó(��ù�ô�ñ �áïªõ
ôJö
÷�ø ð¡ïªð�ô<ð.ïªð�ÿ&ö�ô�õ1�áòið�ø�	 ��ö�÷.ô�ðáö�÷.ô

ó�ô � ö�÷úò}ð ö
÷.ô ñ�ò��2� 	iø ö�ô�ó ñ�ö
øªùA0 ï ý¥ø
	'	~ö�÷.ôáð.ï�ð�ÿ¢ö
ô·õ)�áò}ð�ø
	iñCö
ïÙö�÷.ôLõ
ò'��÷{öàïªýJö
÷�øqö
ø �$� 	}ònù·ø ö�òiïªð ñ�òió.ôOònñàù$÷�ø ð$��ô�ó � ! ÷.ô�õ�ô·ýÞïªõ
ôAö�÷�ô�ñ�ô � ï�ñ�ò�ö
ò}ï�ð�ñ�ð.ô·ô�ó>ö�ï �Eô,� � ó.ø ö�ô�ó
øªù�ù�ïªõ$ó�òið$�
	��
� ! ÷.ô � õ
ï
� 	}ô�� ÷.ô·õ
ô>ònñ¡ö�÷�ø ö �Jô>ó�ï ð.ïªö�0{ð�ï
� �z÷.ï
� �Lø ð�� ð�ïªð�ÿ
ö�ô�õ1�áòið�ø�	nñ~ö
÷.ô·õ
ôàø õ
ô
� ! ÷.ònñJònñ;�<÷.ô·õ
ô�ö�÷.ô�ý �.ð�ù�ö�òiïªðÙï ý5ö
÷.ôRñ+���2�Eï
	nñ¥ù�ïªð{ö$ø òið.ò}ð �

ε�Vô�ù�ï��¡ô�ñ�ù-	iô�ø õ��K� ò�ö
÷�ö
÷.ô·òiõ � õ
ô�ñ�ô·ð�ù·ô
���Jôvø�	��¥ø"��ñ�÷�ø�ûªôJô�þ.øªù�ö1	�� n
ð.ï�ð�ÿ¢ö
ô·õ)�áò}ð�ø
	iñ

ó(�.õ
ò}ð �Lö�÷.ôáñ�ò'�,�$	iø ö�òiïªð>ïªýzö�÷.ôáó�ô·ô � �N	��2�³ø ð�ó[ö
÷���ñ¤ö
÷.ô/�áø ö�õ
òiù·ô�ñ�ù·ø ð6�Vô¡ó�ô�ÿ
ñ�ò��ªð�ô�ó �<ò�ö
÷Nö
÷.ònñ¤ù�ï�ð�ó�ò}ö�òiïªð �

�\ï�ýÞï�õ�ø¤ö�õ$ø ð�ñ�ò}ö�òiïªð
kpA → qu0B1u1B2 . . . u`−1B`u`

�K��õ
ñ�ö�ð�ï ö�ôJö�÷Vøqö�ò�özù·øªð
ïªð$	����EôRô�þ�ô�ù���ö�ô�ó ��ò�ý�ö�÷.ô�õ�ôRøªõ�ôàøqö �áï�ñ�ö

n− ` + 1
ð.ï�ð{ö�ô·õ)�áò}ðVø�	nñJï�ð1ö
÷.ôRñ
ö$øªùA0�J

ï ö
÷.ô·õ)�<òiñ�ô~ö
÷.ôvù�ïªðVó�ò�ö
ò}ï�ðAï ý3�Vô�ò}ð$� ��ð.ò}ö�ô�	'�Rô·þ � ø ð�ó�ø��$	iô§ònñXû\òiï
	nøqö
ô�ó � ! ÷.ònñ���ïªð�ö�÷.ô
ï ö
÷.ô·õà÷�øªð�ó � �áô�øªð�ñ�ö�÷�ø öRö�÷.ôLù��.õ�õ
ô·ð{öRñ�ô�ð{ö�ô·ð{ö
òiø
	�ýÞïªõ)� �2��ñ�öAù�ï�ð�ö$ø òiðüø ö 	iô�ø�ñ
ö

` − 1 �
	nøªù·ô·÷.ï�	ió�ô�õ
ñàù·ïªð{ö
øªò}ð.òið$�

ε
� �üôáö
ô�ñ�öRýÞïªõàö
÷.òiñ ��� ñ
ö$ø õ�ö�òið$�Ùö�÷.ô��Lø ö�õ
òiù·ô�ñ

�<ò�ö
÷ ñ�ô����.ô·ð�ù·ô�ñ
(X, i) → (X, i), (ε, i + 1) → (ε, i + 1)

�3�<÷.òiù$÷>ó�ï1ð.ï ö�ù$÷�øªð$�ªô
ø ð��{ö�÷.òið$� �$��öàô�ñ�ö
ø�� 	}ònñ�÷ ö�÷�ø ö�ö
÷.ô �Võ
ñ�ö � 	nøªù·ô·÷.ï�	ió.ô·õ�ònñàøqö � ï{ñ�ò}ö�òiïªð i + 1

� ��ñ�ø
ñ�ô�ù�ï�ð�ó1ñ�ö�ô � �.ø�	�	Eö�÷.ôàð.ï�ð�ö
ô·õ)�áò}ð�ø
	iñJýÞõ
ï
� � ï�ñ�ò�ö
ò}ï�ð�ñ k + 1

ö�ï
i
ø õ
ô �¡ïqû�ô�ó

`− 1
� ï{ñ�ò}ö�òiïªðVñAö
ï ö
÷.ôNõ
ò��ª÷{ö¡øªð�ó õ
ô � 	nøªù·ô�ó����úö
÷.ôNð�ïªð{ö�ô�õ1�áòið�ø�	 � ��ö¡ö�÷.ô�õ�ô ���úö�÷.ô
ó�ô·ô � �N	��

�
ñ�ô�þ � øªð�ñ�òiïªð � ! ÷.ònñ¤ònñ�ó�ï�ð.ô ���Ùñ�ô����.ô�ð�ù�ô�ñ

(Y, k + j) → (Bj+1, k +

j)uj+1, (Z, k + j + `−1) → (Y, k + j + `−1)
ýÞï�õ~ö�÷�ô ��õ$ñ
ö

`−1
ð.ïªð{ö�ô�õ1�áòið�ø�	nñ��

�<÷.ònù$÷Üø õ
ôÙõ�ô � 	iø�ù�ô�ó����úö�÷.ô[ð.ô��Qï�ð.ô�ñOýÞõ
ï
�Fö�÷�ôÙô·þ � ø ð�ó.ò}ð$�üö�õ$ø ðVñ�ò}ö�òiïªð � ! ÷.ô

����� �����
	��
����������� �
� ����������� �"!$#�%&%�'$()+*�,.- �/(01��(2&%���3�()54�6�()7�
3

8�� =

ýÞï�	'	iï
�<ò}ð � ïªð.ô�ñ�øªõ�ôOù�ï � ò}ô�ó ���[ñ�ô����.ô�ð�ù�ô�ñ
(Y, m) → (Y, m), (Z, m + ` − 1) →

(Y, m+`−1)
Jq÷.ô�õ�ôJö�÷.ô �Võ
ñ�özõ1�$	iô<ù$÷.ô�ùA0�ñ��
�<÷.ònù$÷Oð.ï�ð{ö�ô·õ)�áò}ðVø�	�ònñzøqö�ö�÷.ô<ï�õ�ò��ªòið�ø
	

� ï�ñ�ò�ö
ò}ï�ð �{ö�÷.ôRñ�ô�ù·ïªð�ó1õ1�$	iôàù�ï � ò}ô�ñJò}ö `− 1 �
ï�ñ�ò}ö�òiïªð�ñJö�ï¡ö
÷.ô�õ
ò��ª÷{ö�� ! ÷.ònñ � õ�ï�ù·ô�ñ
ñ

�,��ñ
ö¥ñ
ö$ø õ�ö�ýÞõ
ï
� ö�÷.ô�õ�ò��ª÷{ö~ñ�ònó�ô<òiðLïªõ$ó�ô·õzð�ï özö�ïAó.ô�	iô�ö�ô�ø ð��Að.ï�ð�ö
ô·õ)�áò}ð�ø
	$�Eô�ýÞïªõ
ô
ò}ö�÷�ø�ñ �Eô·ô�ð�ù�ï � ò}ô�ó ��+�òið�ø�	�	���òið � ï�ñ�ò�ö
ò}ï�ð k

�Jô �2��ñ�ö�ø � � 	'� (A, k) → u0(B1, k)u1øªð�óÙò}ð � ï{ñ�ò}ö�òiïªð[ï�ð.ô
(X, p) → (X, q)

ö�ï�� � ó.øqö
ôàö�÷.ôAñ�ö
ø ö�ô��
��� �/�Løªõ�ò��·òið$� �Ùö
÷.ô �áø ö�õ
òiù·ô�ñ ýÞïªõ ñ�ò'�,�$	nøqö�òið$�

kpA → qu0B1u1B2 . . .

u`−1B`u`

ø õ
ô�ö
÷.ôàýÞï
	�	}ï
�<òið$�3�(�<÷.ô·õ
ô
i
òiñ<ñ1��ù$÷Ùö�÷Vøqö

n ≥ i > k �

((X, i) → (X, i), (ε, i + 1) → (ε, i + 1)
�

(Ym, m) → (Ym, m),

(Zm, m + ` − 1) → (Ym, m + ` − 1),

}
ýÞï�õ

m
ýÞõ�ï��

i
ó.ï
�<ð1ö
ï

k + `

(Ym, m) → (Bm−k+1, m)um−k+1,

(Zm, m + ` − 1) → (Ym, m + ` − 1),

}
ýÞï�õ

m
ýÞõ�ï��

k + ` − 1
ó�ï
�<ðNö�ï

k + 1

(A, k) → u0(B1, k)u1, (X
′, p) → (X ′, q))

%�ð.ô6�áø ö�õ
ò�þ òiñ1ó�ô���ð�ô�ó ýÞïªõNô�ø�ù$÷ � ï�ñ
ñ�ò'�$	iô ù�ï��2�.òið�ø ö�òiïªð ï ý
X, X ′, Ym ∈ N

�

Z ∈ N ∪ {ε}
� .�ý

k = 1
�~ö�÷.ô�ð ö�÷.ô 	nøªñ�ö 	iò}ð�ô òiñNù�ï�ð�ó�ô·ðVñ�ô�óÜòið{ö�ï ï�ð.ô ñ�ò}ð$��	}ô

õ)�$	iô
(A, p) → u0(B1, q)u1

���¤ïªö�ònù�ô¡ö�÷VøqöCö�÷.ôáð��$�2�Eô·õàïªýJð.ï�ð�ö
ô·õ)�áò}ð�ø
	iñ�òið ö
÷.ô
ñ�ô·ð{ö�ô�ð{ö�ònø�	5ýÞï�õ1� õ
ô��Lø òið�ñ�ù�ïªðVñ
ö$ø ð{ö�ó(�.õ
òið$�1ø � � 	}ònù·ø ö�òiïªð>ïªýzö�÷.ô�ñ�ô,�áø ö�õ
òiù·ô�ñ¤øªð�ó
ö
÷��Vñvö�÷.ôAù·ïªð�ó.ò�ö
ò}ï�ðNïªý �Eô·òið$�áï ýL��ð.ò}ö�ôRòið�ó�ô·þ1òiñ�ù�ï
� � 	iòiô�ó �<ò�ö
÷ �

ø
��ø òið �¥ô ð�ô·ô�ó �Løqö�õ
ònù�ô�ñQö�÷Vøqö ù$÷�ø ð �ªô ñ�ö
ø ö�ôFø ð�ó ó�ï ö�÷.ô ô�þ � øªð�ÿ
ñ�ò}ï�ð ò}ð ï�ð.ô
� ñ�ïFö
÷.ô ��õ$ñ
öQö �JïFõ)�$	}ô�ñQøªõ�ô�ù�ï�ð{ö�õ$øªù�ö
ô�ó òið�ö
ï

(A, p) →
u1(B1, q)u2(B2, 2)u3 . . . u`(B`, `)u`+1

�
+�òið�ø�	�	'���Eö�÷.ô�õ�ôOõ�ô��áøªò}ðVñ¤ö
÷.ô¡ù�øªñ�ô2�<÷.ô�õ�ô¡ø1ð�ïªð�ÿ&ö�ô�õ1�áòið�ø�	�òiñCô·þ � ø ð�ó�ô�ó[ö�ï[ø

ñ�ö�õ
ò}ð � ï ý<ö
ô·õ)�¡òið�ø
	iñ�ïªð$	��
�&.+ð ö�÷.ònñ¡ù·øªñ�ôLïªð�ô1ð.ô�� � 	iø�ù�ô·÷�ï
	nó�ô·õ,�2��ñ�ö2�Eô1òið�ö
õ�ïªÿ
ó(�Vù�ô�ó ��øªð�ó ö�÷.ô � ï{ñ�ò}ö�òiïªð ï ývö�÷.ôNð.ïªð{ö
ô·õ)�¡òið�ø
	iñ�õ�ò��ª÷{öAï ý<ö
÷.ô1õ)�$	iô1ø � � 	}ònù·ø ö�òiïªð
�,��ñ
ö �Eô ó�ô�ù·õ�ô�øªñ�ô�ó6���>ï�ð.ô
� �Xô�öàö�÷�ôáö�õ$ø ð�ñ�ò�ö
ò}ï�ð6�Eô

kpA → qu
�<ò}ö�÷

u ∈ T ∗ �
� ��ø òið �(�¥ôAñ
ö$ø õ�ö;���1ö�ô�ñ�ö�òið$�¡ýÞïªõvö
÷.ô �Eïªõ$ó�ô·õ �Eô�ö �¥ô·ô�ðNð.ï�ð{ö�ô·õ)�áò}ðVø�	nñ<ø ð�ó � 	nøªù�ô·ÿ
÷.ï�	ió.ô·õ$ñ&���

(X, i) → (X, i), (ε, i+1) → (ε, i+1)
� ! ÷.ô�ð,�¥ô<ù·ø ð/�ªïCýÞõ
ï
� 	iô�ý�özö
ï

õ
ò'��÷{ö�� ��õ$ñ
ö � � ó.øqö
ôCö�÷.ôRñ�ö
øqö
ô
�\ö
÷.ô·ð[ñ�ò��2� 	iø ö�ô�ö�÷.ôàõ)�$	}ôRø �$� 	iòiù�øqö�òiïªð �\øªð�ó ��ð�ø�	�	��
ñ�ò'�,�$	nøqö�ôOö�÷�ô/�áïqû�ô��áô·ð{ö�ïªý~ö�÷�ôOïªö�÷.ô�õCð�ïªð{ö�ô�õ1�áòið�ø�	nñ¤ö
ï1ö
÷.ô�	}ô·ý�ö ���>ø�ó � ��ñ�ö�òið$�
ö
÷.ô·òiõ � ï�ñ�ò�ö
ò}ï�ðNð��$�,�Vô�õ
ñ<øªð�ó1òið�ñ�ô·õ�ö�ø¡ð.ô��

ε
� ! ÷.ô �Løqö�õ
ònù�ô�ñvøªõ�ô

�

((X, i) → (X, i), (ε, i + 1) → (ε, i + 1)
�

(X ′, p) → (X ′, q), (A, k) → u,

(Ym, m) → (Ym, m − 1)
ýÞï�õ

m
ýÞõ�ï��

k + 1
ö�ï

i

(X, i) → (X, i − 1)(ε, i))

����� �����
	��
����������� �
� ����������� �"!$#�%&%�'$()+*�,.- �/(01��(2&%���3�()54�6�()7�
3

8���8

.+ðRö�÷�òiñ�ù·ø�ñ�ô��·ö
÷.ô·õ
ô§ònñ�ø�	nñ�ï<ö
÷.ô � ï{ñ�ñ�ò'��ò'	iò�ö �Cö
÷�øqö �JôJ÷�ø�ûªô
n
ð.ïªð{ö�ô�õ1�áòið�ø�	nñ � õ�ô�ñ�ô�ð{ö

ø ð�ó ð.ï
ε
��.+ð ö
÷�øqö<ù·ø�ñ�ô�ö�÷.ô ��õ$ñ
ö;	}òið.ôàñ�ò�� � 	�� ù�ïªð{ö$ø òið�ñ

(X, n) → (X, n)
���<÷�òiù$÷

ô�ñ�ö
ø
�$	}ònñ�÷.ô�ñ�ö�÷�ø ö�ö
÷.ô/	iø�ñ
ö � ï{ñ�ò}ö�òiïªð òiñCï�ù·ù�� � òiô�ó ���>øNð.ïªð{ö�ô�õ1�áòið�ø�	 � +.ïªõ
k = 1ö�÷.ô�õ�ôCònñ¥ø,	iò�ö�ö1	iô �áï�ó�ò �Vù·ø ö�òiïªðNð.ô�ù·ô�ñ
ñ�øªõ1�����Eô�ù�ø���ñ�ôCó.ô�	iô�ö�òið$�Oö�÷.ô ��õ$ñ�ö¥ð.ï�ð{ö�ô·õ)�áò�ÿ

ð�ø�	<�¥ï
�$	nóÙø�	nñ�ï¡ó�ô�	iô�ö
ô�ö
÷.ôRñ
ö$øqö
ôCïªý5ö�÷�ôAó�ô·ô � �N	��2� ! ÷.ô�õ�ô·ýÞïªõ
ô�ö
÷.ôRñ�ô�ù�ïªðVó 	iò}ð.ô
òiñ

(A, p) → u, (Y, 2) → (Y, q)
�Õø ð�ó[ö
÷.ôAö
÷.òiõ
ó 	iòið.ô�ònñ�ï�ð$	��NýÞï�õ

m
ýÞõ�ï��

3
ö�ï

i
�

�¤ïªö�ònù�ô<ö
÷�øqöJö�÷.ô�õ1�$	iô
(X, i) → (X, i−1)(ε, i)

�
�<÷.ònù$÷ òið�ù�õ
ô�ø�ñ�ô�ñ�ö�÷.ô�ð��$�2�Eô·õJï ý
ð.ïªð{ö
ô·õ)�¡òið�ø
	iñ��.ònñ¤ø �$� 	}òiô�ó[ï�ð$	'�Ùøqý�ö
ô·õ¤ö
÷.ôAð.ï�ð{ö�ô·õ)�áò}ðVø�	Xø ö � ï{ñ�ò}ö�òiïªð k

÷�ø�ñ��Eô·ô·ð
ó�ô�	iô�ö
ô�ó � .+ðNö
÷.ònñ��vø"�Lö�÷.ôAù·ïªð�ó.ò�ö
ò}ï�ðÙïªý �Eô·òið$�Lïªý ��ð�ò�ö
ôRò}ð�ó.ô�þ[òiñ¤ù·ï
� � 	iò}ô�ó �<ò}ö�÷
ø�	nñ�ï¡÷.ô�õ�ô��

� ÷.ô·ð õ
ô��áïqû\ò}ð �1ö
÷.ô�	}ô·ý�ö�ÿ �áï�ñ�öàð�ïªð�ÿ&ö�ô�õ1�áòið�ø�	 �³÷.ï
�¥ô·ûªô�õ��Eö
÷.ô·õ
ôáòiñAø
	iñ�ïÙö�÷.ô
� ï{ñ�ñ�ò��.ò'	iò}ö �Aö�÷Vøqö~ò}ö§òiñzö�÷.ô<ï�ð$	'�Oïªð.ô���.+ðáö�÷�òiñ~ù�øªñ�ô
��ö
÷.òiñ �Jï��$	nó,�Eôvö�÷�ô�	iø�ñ
ö~ô·þ � ø ð�ÿ
ñ�òiïªð ïªý¤ø>ð.ïªð.ÿ¢ö
ô·õ)�¡òið�ø
	���ø ð�ó ö
÷.ôNñ�ò'�,�$	nøqö�òiïªð ñ�÷.ï��$	ió ñ�ö�ï � � ! ÷.ô ïªð 	'� �Løqö�ö
ô·õ
	}ô·ý�öáö�ï õ�ô�ñ�ï�	}û�ô
� �<÷.ô·ðÜö�÷.ô 	nøªñ�öáð�ïªð�ÿ&ö�ô�õ1�áòið�ø�	¥òiñáó�ô�	}ô·ö�ô�ó �zòiñ¡ö
÷.ôNýgøªù�öáö
÷�øqöLòið
ö�÷.ôNô·ð�ó ï ý<ö�÷�ôNñ�ò'�,�$	iø ö�òiïªð ��ò}ðÜøªó.ó�ò}ö�òiïªðúö
ï ö
÷.ô �¥ïªõ$óúï ý<ö
ô·õ)�¡òið�ø
	iñ�� �¥ô ÷�ø�û�ô
ö�÷.ô�õ�ô��áøªò}ð�ò}ð$� � 	iø�ù�ô�÷.ï
	nó�ô·õ$ñ�� ! ÷.ô��[ñ�÷�ï
�$	nó �VôOõ�ô��áïqûªô�óÙøqý�ö
ô·õ�ö�÷.ô,	iø�ñ
ö�ô·þ � ø ð�ÿ
ñ�òiïªðáïªý³øàð�ïªð�ÿ&ö�ô�õ1�áòið�ø�	.òið ø ðLø�ù·ù�ô � ö�òið$�Aù·ï
� � ��ö$øqö�òiïªð ������ù$÷LøªðLô�þ � ø ðVñ�òiïªðáù·øªð
ïªð$	��àö
ø
0ªô � 	nøªù·ôJòið¡ö�÷.ôI��õ$ñ
ö � ï�ñ�ò�ö
ò}ï�ð �qï ö
÷.ô·õ)�<ònñ�ôJö�÷.ô�õ�ô<øªõ�ô¥ï ö
÷.ô·õ�ð.ï�ð�ÿ¢ö
ô·õ)�áò}ð�ø
	iñ
	}ô·ý�öAö�÷Vøqö �¥ï
�$	nó6�Eô ô·þ � ø ð�ó�ô�ó ý ��õ�ö
÷.ô·õ�� ! ÷.ô�õ�ô·ýÞïªõ
ô/�¥ô øªó�ó ýÞï�õAø�	�	zö�õ$ø ðVñ�ò}ö�òiïªð�ñ
õ�ô��áïqû{òið$�Rö
÷.ô ��õ$ñ
ö¥ð.ïªð�ÿ&ö�ô�õ1�áòið�ø�	<�Løqö
õ�ònù�ô�ñ~ö
÷�øqö<ó�ïOö�÷.ònñ¥ô�þ � øªð�ñ�òiïªðNø ð�ó1ò}ð[øªó\ÿ
ó�ò}ö�òiïªð õ
ô��áïqû�ô � 	nøªù·ô·÷.ï�	ió�ô�õ
ñ�ýÞõ
ï
� � ï�ñ�ò�ö
ò}ï�ð�ñ 2

ö�ï
n
JEö�÷.ònñ �¥ø"�Ùö
÷.ô�ñ�ô��áø ö�õ
òiù·ô�ñ

ø õ
ôOï�ð$	�� ø �$� 	}ònù·ø
�$	}ô¡ò}ýJö
÷.ôLð.ïªð.ÿ¢ö
ô·õ)�¡òið�ø
	�ö
÷�øqöRònñRô�þ � øªð�ó�ô�ó ònñRõ�ô�ø�	�	'�[ö
÷.ô�	iø�ñ
ö
ïªð.ô�� +.ï�õ1�Lø
	'	��
��ýÞï�õ ô·û�ô·õ)� ö�õ$ø ðVñ�ò}ö�òiïªð

1pA → qu
�<ò�ö
÷

u ∈ T ∗ �Jô ø�ó.ó ö�÷.ô
�Løqö�õ
ò}þ

((A, p) → u, (ε, 2) → λ, . . . , (ε, n) → λ)
��ò}ý

q
ònñ�ø(�Vð�ø�	¥ñ
ö$øqö�ô�� ! ÷.ònñ

�¥ø"����ø
	iñ�ïüö�÷.ô>ñ�ö
øqö
ô[ï ý�ö
÷.ô>ó�ô·ô � � 	�� ó�òiñ
ø � � ô�ø õ$ñ���ò}ý�ò}ö��vøªñ#��ðVø�	 �~ø ð�ó ö�÷.ô
�ªõ$ø����Lø õ

�
ñ�ó�ô�õ�òiûqøqö
ò}ï�ðOö
ô·õ)�áò}ð�ø ö�ô�ñ4�<ò}ö�÷áö�÷�ô�ñ�ø
�áô¤ñ
ö
õ�òið$�Rï ýÕö
ô·õ)�¡òið�ø
	iñ�ö
÷�øqö¥ø õ
ô

ïªðLö
÷.ôàñ
ö$øªùA0áï ý³ö
÷.ôCñ�ò��2�$	nøqö
ô�ó ó�ô�ô � �N	�� ò}ðÙø�ù�ï�� � ��ö
ø ö�òiïªð1ø�ù·ù·ïªõ$ó�ò}ð �Rö�ïOö�÷.ô
� øqö�ö�ô�õ�ð ïªý �5ô����Lø � �'��� "¤ô�õ�ô1ò�ö��2��ñ�ö2�Eô1õ
ô�ù�ø�	�	}ô�ó ö�÷�ø ö¡ù�ï�ð{ö�ô�þ\ö�ÿ¢ýÞõ
ô·ô �Lø ö�õ
ò�þ
�ªõ$ø����Lø õ$ñ�ï ý���ð.ò}ö�ô¤òið�ó�ô·þ¡÷Vø�ûªôvö�÷�ô�ñ�ø
�áô �ªô·ð�ô·õ$øqö�òiûªô � ï
�Jô�õ4�<÷.ô·ö�÷.ô�õzö�÷.ô�õ�ô�ø õ
ô
ó�ô�	iô�ö
ò}ð ��õ)�$	}ô�ñ§ï�õ§ð.ïªö���ñ�ô·ô �Xô����Lø � �'��� �àòið ö
÷.ô �Eï\ï
0áïªð1õ�ô��
�$	nøqö
ô�óLõ
ô��<õ
ò�ö
ò}ð � � �

"¤ô·õ
ôRö
÷.ôAó�ô·õ
òiû�ø ö�òiïªð �ªõ$ø � ÷�ñ¤ó�ïLð.ïªö�ù�ï�õ�õ
ô�ñ � ï�ð�ó1ö�ï ô�øªù$÷Ùï ö�÷�ô·õ�ø�ñ¤ó�òiõ�ô�ù�ö1	��
øªñ¥ø��Eïqûªô�� "�ï
�Jô�ûªô·õ�� ö
÷.ôRù�ï�õ�õ
ô�ñ � ï�ð�ó�ô�ð�ù�ô¤ònñvñ
ö
ò'	�	Õõ
ø ö�÷.ô�õJô�û\òió�ô�ð{ö����5ô·ö �Vñ¥ó.ô���ð.ô
ö�÷.ô ýÞï
	�	}ï
�<òið$� �Lø �$� òið$�[ö
÷�øqö � õ�ï,�
ô�ù�ö$ñàö�÷�ô1ù�ï�� � ï
��ð�ó ð.ïªð{ö�ô�õ1�áòið�ø�	nñàö
ï[ö�÷.ô�ò}õ
��õ$ñ
ö¤ù�ï�� � ï�ð.ô·ð{ö¤ø ð�ó[ó�ô�	}ô·ö�ô�ñ¥ö�÷.ô � 	nøªù·ô·÷.ï�	ió.ô·õ$ñ

�

ρ(x) :=





X
ò�ý

x = (X, i), X ∈ N, i ∈ {1, 2, . . . , n} ∪ Q

λ
ò�ý

x = (ε, i), i ∈ {1, 2, . . . , n}
x

ò�ý
x ∈ T.

%��\û{òiï
�Vñ+	��
�Xö�÷.ô[ó�ô·ô � �N	 �
�
ñLñ
ö$øªùA0úù�ïªð{ö
ô·ð{ö
ñ¡øqö¡ö�÷.ô[ñ�ö
ø õ�öOïªý�ø ù·ï
� � ��ö$øqö
ò}ï�ð

ø õ
ô ö
÷.ô ñ
ø��áôúøªñNö�÷�ôüò��Lø��ªô �.ð�ó�ô�õ
ρ

ï ýAö
÷.ô ñ�ô·ð{ö
ô·ð{ö�ònø�	CýÞïªõ)� ï
��ö$ø òið.ô�ó øqý�ÿ

����� �����
	��
����������� �
� ����������� �"!$#�%&%�'$()+*�,.- �/(01��(2&%���3�()54�6�()7�
3

8�� �

ö
ô·õ1ø �$� 	��{òið$� ö�÷�ô>ïªð$	����Løqö
õ�ò}þ ø �$� 	iòiù�ø��$	iô[ò}ð ö�÷�ô �Vô��ªòið.ð.òið$� �~ðVø��áô�	��
(S →

(S, s)(ε, 2)(ε, 3) · · · (ε, n))
� ��	nñ�ïúö�÷.ô ñ�ö
ø ö�ô ñ�ö�ï�õ�ô�óÜòið ö�÷.ôüñ�ô�ð�ö
ô·ð{ö�ònø�	¤ýÞïªõ)� ònñ

ô����Vø�	<ö
ïúö�÷.ô>ï�ð.ô>ï ýCö�÷.ô ó.ô·ô � �N	 � � ��ñáö�÷�ô ô�þ � 	nø ð�ø ö�òiïªð�ñ¡ö
÷.õ
ï
�$��÷.ï
��öáö
÷.ô
ó�ô'��ð.ò}ö�òiïªðNï ýXï��.õ �Lø ö�õ
ò�þ ��õ
ø
�/�Løªõ§ò�	'	���ñ�ö�õ$øqö�ô��ªö
÷.ô�ñ�ô�ö �Jï�ýÞô�øqö)�.õ
ô�ñ��{ô����Vø�	iò�ö �¡ï ý
ñ�ö
ø�ùA0áù·ïªð{ö�ô�ð{ö
ñvø ð�ó ö�÷.ôàñ�ô·ð{ö�ô�ð�ö
òiø
	�ýÞï�õ1�

�
ñ¥ò'�Lø���ô �.ðVó�ô·õ

ρ �
	���ñJö�÷.ôàô�����ø
	}ò}ö �áï ý

ñ�ö
ø ö�ô�ñ��[øªõ�ô � õ
ô�ñ�ô·õ
ûªô�ó ���>ñ�ò'�,�$	�ö$ø ð.ô�ï
��ñCø � � 	}ònù·ø ö�òiïªð ïªýJø ð ô�þ � ø ðVó�ò}ð � ö�õ$ø ðVñ�ò}ÿ
ö
ò}ï�ðLò}ðáö
÷.ô�ó�ô�ô � �N	 � ø ðVó¡ö�÷.ô�ù·ïªõ
õ�ô�ñ � ïªðVó�ò}ð � �Lø ö�õ
ò�þ¡ïªðáö�÷�ô�ñ�ô�ð{ö�ô·ð{ö
òiø
	.ýÞïªõ)� �
	��.ô¡ö�ïÙö�÷�ôOï�ð.ô�ÿ&ö�ïªÿ&ï�ð.ôOù·ïªõ
õ�ô�ñ � ïªð�ó.ô·ð�ù·ô2�Eô�ö �¥ô·ô·ðüô�þ � øªð�ó�òið$�1ö
õ
øªð�ñ�ò�ö
ò}ï�ð�ñ�øªð�ó
�Løqö
õ�ònù�ô�ñ � ö�÷VøqöAø�	��¥ø"��ñ�÷�ø�ûªôOö�ï[ø �$� 	'� ø
	'	�ï ýJö�÷.ô�ò}õàõ)�$	iô�ñ���ò}öàòiñRù�	}ô�ø õ�ö�÷�ø öRøªð��
ù·ï
� � ��ö$øqö�òiïªðNøªù·ù·ïªõ$ó�òið$�Rö�ï �5ô����áø �$���
���Vô·ýÞïªõ
ô � ï �$� ò}ð$�¡ònñJñ�ö
øªõ�ö
ô�ó ��	}ô�øªó.ñ§ö�ïáø
ö
ô·õ)�¡òið�ø
	Õñ�ö�õ
òið$�Oï�ð ö
÷.ôRñ
ö$øªùA0áö�÷Vøqö<ù·ø ð[ø�	nñ�ï2�Eô ��ô·ð.ô�õ
ø ö�ô�ó����áö�÷.ô �ªõ$ø����Lø õ��{ò�ý
ö
÷>ô�ù-�.õ
õ
ô·ð{ö�ñ
ö$øqö
ôRòiñ ��ð�ø�	 � ! ÷.ô�ò}ð\ûªô�õ
ñ�ôàòiñ�ô�����ø
	'	��1ï��{û\òiï
��ñ<øªð�óNö�÷���ñ¤ö�÷.ôRö �¥ï
ó�ô�û\òiù·ô�ñ<ø õ
ôàô����.òiûqø�	iô·ð{ö��

+�ïªõ �áø ö�õ
ò�þ ��õ
ø
���áøªõ
ñ¤ï ý ��ð�ò�ö
ô¡òið�ó�ô·þ ò�öàònñ�0\ð.ï
�<ð ö�÷�ø ö�ö
÷.ô�� ��ò}û�ô�õ
òiñ�ôAö
ï
øªð òið���ð�ò�ö
ô ÷.òiô·õ$ø õ$ù$÷��>ïªý¤ù-	nøªñ
ñ�ô�ñàï ý 	iøªð$�
��ø
�ªô�ñ�� +.ï�õAô·û�ô·õ)� � ï�ñ�ò�ö
ò}û�ôLò}ð{ö�ô��ªô�õ

n
�

ö
÷.ô�ù-	nøªñ
ñzïªý<	nø ð �
��ø
�ªô�ñ ��ô·ð.ô�õ
ø ö�ô�ó/���2�Lø ö�õ
ò�þ/�ªõ$ø����Lø õ$ñ�ï ýÕò}ð�ó.ô�þ
n
ònñ � õ
ï � ô·õ)	��

ù·ïªð{ö
øªò}ð.ô�óLòiðLö�÷.ôàù-	nøªñ
ñ~ïªý 	iøªð$�
�Vø��ªô�ñ �ªô�ð.ô·õ$øqö
ô�ó������Løqö�õ
ò}þ���õ
ø
���áøªõ
ñ~ï ý5òið�ó�ô�þ

n + 1
�§ñ�ô·ô ! ÷.ô�ïªõ
ô�� �$���
��!>ö
÷.ô �Eï\ï
0 ïªð õ�ô��
�$	nøqö
ô�ó õ
ô��<õ
ò�ö
ò}ð$�3� � �\ò}ðVù�ô>ö
÷.ô�ñ�ô

ù�	iø�ñ�ñ�ô�ñàø õ
ô¡ô�����ø�	�ö
ïNö
÷.ôáïªð.ô�ñRøªù�ù�ô � ö�ô�ó6��� ��ð.ò}ö�ô�	'� ô·þ � ø ð�ó�ø��$	iô¡ó.ô·ô � �N	 ��ñ��
ø
	iñ�ï¡ö�÷.ô�ñ�ôRó�ô�û{ònù�ô�ñvò}ðVó(��ù�ôAøªðNòið���ð�ò�ö
ôA÷.òiô·õ$ø õ$ù$÷����

� éVè�é ��� ��è�� �5å¢äVå�� 5.� 8�

 � 7O:.+ � +!��1
n > 0 �

:@3%+ ��
 8 1�1�5���
 8 7���0�8���+�1 8-� ��+C- :C+B)
���

n
+�� -�8 7�),8��!
 +<)�+B+C- D�?GF 1 � 1 - � 5B-�+!��
,� ��5 7O:.8�� 7 +�) � 7�: 3�+ ��
 8 1B1#5��
 8�7��,0�8�� + 1

8�����+C- :C+�)����
n + 1

+���-%8�7),8��!
�+#)�+B+C- D�?GF 1 �

+�ïªõ1ó�ô�ô � �N	 ��ñ òið �ªô�ð.ô·õ$ø�	�ò�ö1ònñ1øªð ï � ô·ð ���.ô�ñ�ö�òiïªð5�<÷.ô·ö�÷.ô�õNø�ó(�áò�ö�ö�òið$�
ó�ô�	}ô·ö�òið$�Üö�õ$ø ð�ñ�ò�ö
ò}ï�ð ï ý�ö�÷.ô ýÞïªõ)�

kpA → qλ
ù$÷�øªð$�ªô�ñLö
÷.ô·òiõ>ù�ï
� � �.ö
øqö
ò}ï�ð�ø�	

� ï
�Jô�õ��
.+ðáö�÷.ôCù·øªñ�ô<ï ý���ð�ò�ö
ô�	��¡ô·þ � ø ð�ó�ø��$	iô¤ó�ô·ô � �N	���ñ �¥ô�ù·øªð��ªòiûªô¤øàð.ô���ø ö�òiûªô
øªð�ñ+�¥ô·õÕö
ï<ö�÷�ô§ù�ï�õ�õ
ô�ñ � ï�ð�ó�òið$� ����ô�ñ�ö�òiïªð � �5ï\ï
0\òið$� ��øªùA0Cøqö³ö�÷�ô � õ
ï\ï ý\ï ý ! ÷.ô·ï�õ�ô��
� �'�����¥ô§ù·øªð�ñ�ô·ô~ö
÷�øqö�ö�÷.ô¥òið�ö
õ�ï�ó(�Vù�ö�òiïªð�ï ý�ó�ô�	}ô·ö�òið$�¤ö
õ
øªð�ñ�ò}ö�òiïªðVñ5òiðAö�÷�ôJó�ô�ô � �N	 �
ñ�ò'�,�$	nøqö�ô�ó �<ò�	�	5ñ
ö
ò'	�	<	}ô·ö���ñvø�	�	}ï
� ö
ï¡ù·ïªð�ñ�ö�õ)��ù�övøªðNô�����ò}ûqø�	iô·ð{ö �Løqö�õ
ò}þ �ªõ$ø����Lø õ
òið[ö�÷.ôOñ�ø
�¡ô �vø"�
� %�ð$	'�Ùñ�ï��áô �¡ï�õ�ôRïªý�ö�÷.ôAõ)�$	iô�ñ<òið[ö�÷�ô �Løqö�õ
ò}þ �ªõ$ø����Lø õ �<ò�	�	
ð.ï
� �Eô�ó�ô�	}ô·ö�òið$� �>�$��ö�ø�ñ��áô·ð{ö
ò}ï�ð.ô�ó[òið>ö�÷�ô � õ
ï{ïªý�ö�÷.ònñ�ó�ï\ô�ñ¤ð.ïªö�ù$÷�ø ð �ªôàö�÷�ô·òiõ
��ô·ð.ô�õ
ø ö�òiûªô � ï
�¥ô·õ��

� éVè�é ��� ��è�� �5å �³å�� 5�� 8.

�� 7�:C+ ��+���1
n > 0 � n

+���-�8 7)�8-��
 +G)�+�+.- D�?GF 1I6 � : 3),+�
 +�:
 � 7�� : � 8�7%1�� :�� 5 7%1 8�� �B+C- : :@3%+ 1'8�;<+ ��
 8 1�1�5��
�8 7��,0�8�� +�1�8 1

n
+���-%8�7)�8-��
 +),+�+C-

D�? F 1 6 � : 3�5 0�:),+�
 +�:�� 7���:�� 8 7�1�� : � 5�7%1 �

����� �����
	��
����������� �
� ����������� �"!$#�%&%�'$()+*�,.- �/(01��(2&%���3�()54�6�()7�
3

8���9

�Xå�� �N�\æ Hàèqé���� �
� S

.+ð ö
÷.ô � õ
ô�ù·ô�ó�òið$�Ùò}ð\ûªô�ñ
ö
ò'�{øqö
ò}ï�ð�ñ��Õï�ð$	'� ��ð.ò}ö�ô�	�� ô·þ � ø ð�ó.ø
�$	iôáó.ô·ô � �N	���ñR÷�ø�û�ô
�Vô�ô·ð1ù·ïªð�ñ�ònó�ô·õ
ô�óOö�÷Vøqö¥ù�ø ð ø�ù·ù�ô�ñ�ñ§ø�	�	�ï ýÕö
÷.ô�ð.ï�ð�ÿ&ö�ô·õ)�áò}ðVø�	nñzïªðáö
÷.ô·òiõ � �Vñ�÷�ó.ï
�<ð
ñ
ö
ïªõ
ô
� %�ð>ö�÷�ô¡ïªö�÷.ô�õ�÷Vø ð�ó �Õòið � õ
ô�ù·ô�ó�òið$� �Jï�õ10Nö�÷.ôáñ�ï ÿ+ù·ø�	�	iô�ó ó�ô � ö�÷ü÷�øªñ �Eô·ô�ð
ö�÷.ôNýÞï�ù-��ñ¡ïªý�ò}ð\û�ô�ñ�ö�ò���øqö
ò}ï�ð�ñ�� ! ÷.ònñ¡òiñOö�÷�ôÙð��$�,�Vô�õOïªý�ð.ï�ð�ÿ¢ö
ô·õ)�áò}ð�ø
	iñ¡ù�ï��.ð{ö�ô�ó
ýÞõ�ï��Qö
÷.ôAö
ï � ö
÷�øqö�ö�÷.ô¡ó�ô·û\ònù�ô�ù�ø ð õ
ô��<õ
ò�ö
ô
�$�<÷�ò'	iô2�áïªõ
ôAð.ï�ð�ÿ&ö�ô·õ)�áò}ðVø�	nñ �áò'��÷�ö
�Vô � õ�ô�ñ�ô�ð{ö1ó�ô·ô � ô�õNó�ï
�<ð òið ö�÷.ô � ��ñ�÷�ó�ï
�<ð ñ
ö
ïªõ$ø���ô
��� ÷.ô�ð 	}ï\ï�0{òið$� ø ö ö�÷.ô
ò}ð{ö
ô·õ � 	iø"���Eô�ö �¥ô·ô�ð1ö
÷.ô�ñ�ôCö �Jï�ö � � ô�ñvïªý�õ
ô�ñ�ö�õ
òiù�ö�òiïªð�ñ��{ò�ö¤ñ�ô·ô��Lñ;�áï�ñ�ö<ò}ð{ö�ô�õ�ô�ñ
ö
ò}ð �
ö�ïàó�ô�ö
ô·õ)�áò}ð.ô;�<÷.ô·ö�÷.ô�õ~ø ��ð.ò}ö�ôvð��$�,�Vô�õ�ïªýVð.ï�ð{ö�ô·õ)�áò}ðVø�	nñ �Eô���ïªð�óOø�ó�ô�ô � �N	�� � ñó�ô � ö�÷>ù·øªðNòið�ù�õ
ô�ø�ñ�ôCò}ö
ñ � ï
�Jô�õ�� � ï�õ�ôCýÞïªõ)�Lø�	�	'�

�
ø õ
ô

k
ÿ�ô�þ � ø ðVó.ø��$	iôàó�ô·ô � �N	���ñ

ô����.òiûqø�	iô·ð{ö ö�ï
k + 1

ÿ�ô�þ � øªð�ó.ø
�$	}ô ó.ô·ô � � 	���ñNï�ó ó�ô � ö�÷ k � �¤ð�ó ýÞïªõ �<÷�òiù$÷
ò}ð{ö
ô��ªô�õ
ñ

i
øªõ�ô

k
ÿ&ô·þ � ø ð�ó.ø
�$	iô ó�ô·ô � �N	���ñ1ïªý�ó�ô � ö�÷ k − i

ô����.òiû�ø
	}ô�ð{ö1ö�ï
k
ÿ

ô�þ � øªð�ó.ø�� 	}ôRó�ô�ô � �N	���ñ¤ï ýzó�ô � ö
÷ k − i − 1 �� õ�ô�	iø ö�ô�ó ���.ô�ñ�ö�òiïªðÙònñ¥ö�÷.ôRõ
ô�	nøqö
ò}ï�ð �Eô�ö �¥ô·ô�ð ��ð�ò�ö
ô�	��1ô�þ � øªð�ó.ø
�$	}ôàø ðVó ��ô·ð�ÿ
ô·õ$ø�	³ó�ô�ô � �N	���ñ��$.�ö¤ònñvõ$øqö�÷�ô·õvï
�\û\ò}ï���ñJö�÷�ø ö

k
ÿ�ô�þ � ø ðVó.ø��$	iôàó�ô·ô � �N	 ��ñ�ù�ø ð �Vô

ñ�ò��2� 	iø ö�ô�ó���� ó.ô·ô � �N	���ñáïªý�ó�ô � ö�÷ k
� ! ÷�ôÙù·ïªð\ûªô�õ
ñ�ôLòiñ � õ
ï
�Vø��$	��üð�ï ö¡ö�õ1��ô
�

"¤ï
�¥ô·û�ô·õ��qö�÷.ô 	nø ð$����ø���ô�ñzö
÷�øqö �¥ô·õ
ô���ñ�ô�óLö
ïOñ�ô � øªõ
ø ö�ô<ö
÷.ôàù-	nøªñ
ñ�ô�ñ~ï ý&	iøªð$�
��ø
�ªô�ñ
øªù�ù�ô � ö�ô�ó ���1ó�ô·ô � � 	���ñvïªý�ó�ô � ö�÷�ñ k

ø ðVó
k + 1 � ïªõ
ò'��ò}ð�ø
	'	�����ñ�ô�ó �����Røªñ
ø òVö�ï

ñ�ô � ø õ$øqö
ô�ù-	nøªñ
ñ�ô�ñJï ýXñ�ö
øqö
ô���õ
ø
���áøªõ
ñ����Jù·ø ðNø�	nñ�ï,�Vôàøªù�ù�ô � ö�ô�ó ��� k
ÿ&ô·þ � ø ð�ó.ø
�$	iô

ó�ô·ô � � 	���ñ��.õ
ô�ñ � ô�ù�ö�òiûªô�	'� k + 1
ÿ&ô·þ � ø ð�ó.ø
�$	iô�ó�ô�ô � �N	���ñ�� ! ÷.ònñvòið�ó�ònù·øqö
ô�ñ¥ö
÷�øqö

ö�÷.ô>õ
ô�ñ�ö�õ
ònù�ö�òiïªð ï ýCô�þ � øªð�ó.ø���ò'	iò�ö � �¡ò��ª÷{ö ð.ïªö �Vô �,��ù$÷ �Jô�ø�0ªô�õ¡ö�÷�øªðÜö
÷�øqö ïªý
ó�ô � ö�÷ �

� �

.�{è �\æ�ì,�\S
	�

��
���������������������
�� �!��"#����$&%�'�(*)+
,� -.%/"�"�-0'1�3254/6�7.8�9�9;:
9#<�=>9�?A@B4�C�D>4�6FE�G�4�EFH!IAJLK�90CNM

GO@BHQPQRTSOU���VW'�X������F�Y����$WVZ'1��	�[�[.\0]!�F� ����$WVW'3�O^A_3
O` -�'F����aO��bdc������e)>%/'�X0��%�X���"f%�'�(hgi��"�_�b
(�-�je'k������-0lm%/�A%O

nF

�5
�o
��(���'�%���pq����U
g+��"�_,(�-;je'
������-0lm%/�A%O�,rts�uT4BvA6�<�9�?A@B4�uxwxsA4�y�z1��{;|�	mRTn/}0}0~0]!

�O

��
�pq%�"�"�-�j�%�'�(��L
tg&�/��'3�q�eH�E�G�CW4/u�H�7��eH!�i?!w�uxw�6OE�w�6�=>9�?A@B4�CtD>4�6OE�G�4�EFH��3��H�9�?A�

RTSOU���VW'�X�����bT�Y�!��$�%/X���� ����$WVW'3�3	�[0��[.]!

|�
*o�
Y�5
i�q%/����VW"�-�'3��vA6�ux?#9�7�G�s�uxw�9�6�uT9�=>9/?!@h40C+D>4�6FE�G�4�EFH��3��H�9�?A��R��t(�(�VW"�-0'�b�����"�$W���F�

� ��%�(�VW'�X���o*%/"�"�%�^A_���"�������"���	�[.\��0]!

{F

�5
eo
��(���'�%���rtGOuT9�@h4�uT4�4�6,7�D>4/6OE�G�4�EFH!I����3��H�9�?A��4�6�7�r� . ,C w�s�4�uxw�9�6�IkRTS�U���VZ'�X0�����

)1-0'�(�-0'1��n/}0}�}.]!

~O

¡¢
�£5%�"�%�Vx�e�t'��¢VW���A%;��^!_F��� ���dj ����'¤` -�'O���!a���b�c�������%/',(�` -�'F����aO��b#SO��'�"�VN��VW¥.��)3%�'�b

X��,%/X0��"��&¦O9/G�?A6�4�C�9#<h§+9�@� ,GOu�H!?¨4/6�7B©��/IAu�H!@LIQ©�s�wTH!6,sAH!I y>��|.[0n�R#	�[0\�}.]!

%<ô�ù·ô·òiûªô�ó

��ª ��ð.ô �(��� ��«�«�¬
%<ô�û\òiñ�ô�ó

�
� � õ
ò'	4��­ � ��«$��«

This page intentionally left blankThis page intentionally left blank

July 16, 2010 16:20 WSPC - Proceedings Trim Size: 9in x 6in 10

125

THE PRIMITIVITY DISTANCE OF WORDS

GERHARD LISCHKE
∗

Institute of Informatics, Faculty of Mathematics and Informatics,

Friedrich Schiller University Jena, Ernst-Abbe-Platz 1-4,

D-07743 Jena, Germany

e-mail: gerhard.lischke@uni-jena.de

The Hamming distance between two words of equal length is the number of

positions where the two words differ. This distance is extended to a distance

between words and languages and to a maximal distance of words of given

length and a language. We investigate these distances between words and vari-

ous sets of primitive words and various sets of periodic words which have been

introduced in the paper Ito/Lischke: Generalized periodicity and primitivity

for words, Math. Log. Quart. 53, 2007. The distance from an arbitrary word to

one of the sets of primitive words is not greater than one. In the opposite direc-

tion, from primitive words to nonprimitive words this distance may be greater,

and we determine it exactly to the periodic words and to the semi-periodic

words, depending from the lengths of the words and from the cardinality of

the alphabet, as well as to the remaining sets of nonprimitive words if the

alphabet has at least three letters.

Keywords: Periodicity of words, primitivity of words, Hamming distance.

1. Introduction

A Hamming distance-based measure h from coding theory [2] was used in

[4,5] to study similarity of languages and to create some uncountable hier-

archies of languages. In [3], some special kinds of periodicity and primitivity

for words have been considered, and the set theoretical relationship between

the sets of these words was given. It was the idea of Sándor Horváth in Bu-

dapest to ask for the distance in the sense of h between arbitrary words and

these languages. Studying such distances between words and languages, as

well as the analogously defined edit distances, is not new, see, for instance,

∗
Most of this work was done while visiting the Faculty of Science of Kyoto Sangyo

University in Spring 2008, and a preliminary version of it was presented at the workshop

AFLAS 2008 in Kyoto.

July 16, 2010 16:20 WSPC - Proceedings Trim Size: 9in x 6in 10

126

[7], and the references there. But, whereas Manthey and Reischuk consider

computing the Hamming distance and computing the edit distance from

a complexity theory point of view, we are interested in the exact distance

between a given word and the sets of words which are primitive in a special

sense. This should also be interesting and important to know. We shall show

that this distance is not greater than 1 whatever special kind of primitivity

we use. On the other hand, the distance between words and sets of words

which are periodic in some special sense is more complicated and not yet

clear in all cases.

In Section 2 we recall our basic definitions and relationships from [3,4,5]

which are needed for our investigations and we give the new definitions. In

Section 3, first we show that for each non primitive resp. non strongly prim-

itive word there exists a primitive resp. strongly primitive word with the

distance 1. Then we generalize this result to the other kinds of primitivity.

In Section 4 we consider the distances between words and the complements

of the sets of primitive words which are the periodic words and we deter-

mine them exactly for the periodic words and for the semi-periodic words,

depending from the cardinality of the alphabet, as well as to the remaining

sets of periodic words if the alphabet has at least three letters. In Section 5

we make some concluding remarks and propose the use of so-called vectors

of primitivity distances to classify primitive words.

2. Basic definitions and relationships

For our whole paper, let X be a fixed nonempty, finite alphabet. Further-

more, we assume that X is a nontrivial alphabet in the sense that it has

at least two symbols a and b (otherwise, all of our results become trivial or

meaningless), and that we have a fixed ordering of X . IN = {0, 1, 2, 3, . . .}
denotes the set of all natural numbers. X∗ is the free monoid generated by

X or the set of all words over X . The empty word is denoted by e, and

X+ =Df X∗ \ {e}.
For a word p ∈ X∗, |p| denotes the length of p. For k ∈ IN, pk denotes

the concatenation of k copies of the word p. For 1 ≤ i ≤ |p|, p[i] is the

letter at the i-th position of p. For p ∈ X+ with |p| ≥ 2 define p◦ =Df

p[1]p[2] · · · p[|p| − 1]x where x is the first letter from X \ {p[|p|]} according

to the fixed ordering of X (in fact it doesn’t matter which letter x 6= p[|p|]
it is).

For words p, q ∈ X∗, we say p is a prefix of q, in symbols p v q, if there

exists r ∈ X∗ such that q = pr. p is a strict prefix of q, in symbols p < q,

if p v q and p 6= q. Pr(q) =Df {p : p < q} is the set of all strict prefixes

July 16, 2010 16:20 WSPC - Proceedings Trim Size: 9in x 6in 10

127

of q (including e if q 6= e). p is a subword of q, in symbols p>q, if there

exist r, s ∈ X∗ such that q = rps. p 6>q means that p does not occur as a

subword of q.

We consider the following folding operation:

For p, q ∈ X∗, p⊗ q =Df {w1w2w3 : w1w3 6= e ∧ w1w2 = p ∧ w2w3 = q},
p⊗0 =Df {e}, p⊗k+1 =Df

⋃
{w ⊗ p : w ∈ p⊗k} for k ∈ IN.

For sets A, B ⊆ X∗, A ⊗ B =Df

⋃
{p⊗ q : p ∈ A ∧ q ∈ B}.

The following example illustrates this operation.

Let p = aabaa. Then p ⊗ p = p⊗2 = {aabaaaabaa, aabaaabaa, aabaabaa}.

Now we define the following sets of words which are periodic or primi-

tive in different senses:

Per =Df {u : ∃v∃n(v < u ∧ n ≥ 2 ∧ u = vn)}
is the set of periodic words.

Q =Df X+ \ Per is the set of primitive words.

SPer =Df {u : ∃v∃n(v < u ∧ n ≥ 2 ∧ u ∈ vn · Pr(v))}
is the set of semi-periodic words.

SQ =Df X+ \ SPer is the set of strongly primitive words.

QPer =Df {u : ∃v∃n(v < u ∧ n ≥ 2 ∧ u ∈ v⊗n)}
is the set of quasi-periodic words.

HQ =Df X+ \ QPer is the set of hyper primitive words.

PSPer =Df {u : ∃v∃n(v < u ∧ n ≥ 2 ∧ u ∈ {vn} ⊗ Pr(v))}
is the set of pre-periodic words.

SSQ =Df X+ \ PSPer is the set of super strongly primitive words.

SQPer =Df {u : ∃v∃n(v < u ∧ n ≥ 2 ∧ u ∈ v⊗n · Pr(v))}
is the set of semi-quasi-periodic words.

SHQ =Df X+ \ SQPer is the set of strongly hyper primitive words.

QQPer =Df {u : ∃v∃n(v < u ∧ n ≥ 2 ∧ u ∈ v⊗n ⊗ Pr(v))}
is the set of quasi-quasi-periodic words.

HHQ =Df X+ \ QQPer is the set of hyper hyper primitive words.

The inclusion structure between these sets is given in the following fig-

ure, where the lines denote strict inclusion from bottom to top. Sets which

are not connected by such a line, are incomparable under inclusion.

July 16, 2010 16:20 WSPC - Proceedings Trim Size: 9in x 6in 10

128

QQPer

PSPer

SPer

Per

SQPer

QPer

Q

SQ

SSQ

HHQ

HQ

SHQ

Figure 1

Recall, that the sets Q and Per have received special interest and play

an important role in the algebraic theory of codes and formal languages

(see [6,8,10]), but also the remaining sets deserve some attention [3].

Let u ∈ X+. The shortest word v such that there exists a natural number

n with u = vn is called the root of u, denoted by root(u). The shortest

word v such that there exists a natural number n with u ∈ vn · Pr(v) is

called the strong root of u, denoted by sroot(u).

Four further kinds of roots can be defined in ways corresponding to the

definitions of the sets above, but they are not explicitly used in this paper.

Let us remark that all these roots are primitive words and that their prefix

relationship is investigated in [3].

For two words u and v of the same length, the Hamming distance is

h(u, v) =Df |{i : 1 ≤ i ≤ |u| ∧ u[i] 6= v[i]}|, where |M | for a set M denotes

its cardinality.

For k ∈ IN, two words u and v are called k-similar, denoted by u
k̃

v, if

|u| = |v| and h(u, v) ≤ k.

For a nonnegative real number δ < 1, words u and v are called δ-similar,

denoted by u
δ̃

v, if |u| = |v| and h(u, v) ≤ δ · |u|.
Two languages L1, L2 ⊆ X∗ are called k-similar, denoted by L1 k̃

L2, if

∀u∃v(u ∈ L1 → v ∈ L2 ∧ u
k̃

v) ∧ ∀v∃u(v ∈ L2 → u ∈ L1 ∧ u
k̃

v).

L1 δ̃
L2 is defined accordingly for 0 ≤ δ < 1.

Now we define the distance between words and languages.

For p ∈ X∗ and L ⊆ X∗, assuming L contains words of length |p|,
d(p, L) =Df min{h(p, q) : |q| = |p| ∧ q ∈ L}.

July 16, 2010 16:20 WSPC - Proceedings Trim Size: 9in x 6in 10

129

Of course we have 0 ≤ d(p, L) ≤ |p| and d(p, L) = 0 ↔ p ∈ L.

Because in the following we are interested in the distance between words

and sets of primitive words and there are no nonprimitive words of length

1 (and no primitive words of length 0), in considering d(p, L) we assume in

principle that |p| ≥ 2 and {|q| : q ∈ L} ⊇ IN \ {0, 1}.

The maximal distance of words of length n and a language L ⊆ X∗ is

md(n, L) =Df max{d(p, L) : p ∈ X∗ ∧ |p| = n} for n ∈ IN.

Because this distance may depend from the cardinality of the alphabet

X , we shall write mdk(n, L) instead of md(n, L) in such cases, where k =

|X | is the cardinality of X .

Lemma 2.1. If for some language L there exists a word p with d(p, L) = m,

then for each natural number l ≤ m there exist words pl of the same length

as p such that d(pl, L) = l.

Proof. Let q ∈ L with h(p, q) = m. Then for l ∈ {0, 1, . . . , m}, change

m − l of those letters p[i] where p[i] 6= q[i] into q[i] to get pl. Assume

d(pl, L) = r < l. Then there must exist q′ ∈ L with h(pl, q
′) = r, and

h(p, q′) ≤ h(p, pl) + h(pl, q
′) = m − l + r < m contradicting d(p, L) = m.

Therefore for our languages L and natural numbers n ≥ 2, in the follow-

ing it is only interesting to determine the values mdk(n, L). Then it is clear

that for each natural number l ≤ mdk(n, L) there exist words p of length n

such that d(p, L) = l but no word p of length n with d(p, L) > mdk(n, L).

For a finite sequence x1, x2, . . . , xs of letters from X , let

maj(x1, x2, . . . , xs) be that letter which is in the majority of x1, x2, . . . xs,

and if two or more letters have the same majority then it should be the first

one of them according to the fixed ordering of X (in fact it doesn’t matter

which of them we take in such case).

Finally, let us remark that for a real number r, brc denotes the greatest

integer which is smaller or equal to r, and dre denotes the smallest integer

which is greater or equal to r. By a strict divisor of a natural number n we

mean any divisor s > 1 of n (including n itself).

July 16, 2010 16:20 WSPC - Proceedings Trim Size: 9in x 6in 10

130

3. The distance to primitive words

It is easy to see that for each nonprimitive or periodic word p there exists a

primitive word with the distance 1, namely p◦. The same is true for semi-

periodic words. This is a consequence of the famous Theorem of Fine and

Wilf:

Lemma 3.1. ([1, 6]) Let u and v be nonempty words and i, j ∈ IN. If ui and

vj contain a common prefix of length |u|+|v|−gcd(|u|, |v|) where gcd(|u|, |v|)
denotes the greatest common divisor of |u| and |v|, then root(u) = root(v).

Theorem 3.1. If p ∈ Per then p◦ ∈ Q. If p ∈ SPer then p◦ ∈ SQ.

Proof. First assume p ∈ SPer and sroot(p) = v where p = vnvi with

n ≥ 2, |vi| = i 6= 0, and vi < v. Then p◦ = vnv◦i . Assume p◦ /∈ SQ

and sroot(p◦) = u which means that p◦ = umu′ for some m ≥ 2 and

u′
< u. Then vn+1 and um+1 have the common prefix p[1] · · ·p[|p| − 1] of

length n · |v| + i − 1. We have m · |u| − 1 ≤ n · |v| + i − 1 and therefore

|u|+ |v|−gcd(|u|, |v|) ≤ |u|+ |v|−1 ≤ n·|v|+i

m
+ |v|−1 ≤ n

2 |v|+ |v|+ i
2 −1 ≤

n · |v| + i − 1. It follows by Lemma 3.1 that root(u) = u = root(v) = v.

On the other side, because of |p| = |p◦| and p 6= p◦, u = v is not possible.

If i = 0 which means p ∈ Per we can argue in exactly the same way

and get p◦ ∈ SQ ⊆ Q.

Corollary 3.1. d(p, Q) ∈ {0, 1} and d(p, SQ) ∈ {0, 1} for arbitrary

p ∈ X+, and md(n, Q) = md(n, SQ) = 1 for n ≥ 2.

Instead of proving analogoues results for each of the sets HQ, SSQ,

SHQ, and HHQ we prove a more general result and use the inclusion

structure from Figure 1.

We use the following definition.

For x ∈ X and p ∈ X∗, an x-block in p is a longest subword of consecu-

tive letters x in p.

Theorem 3.2. If p ∈ QQPer then there exists q ∈ HHQ such that

h(p, q) = 1.

Proof. Assume p ∈ QQPer. Let a be the first letter of p.

Case 1). There is no other letter in p, i.e. p = ai, i ≥ 2. Then q =Df p◦ ∈
HHQ.

July 16, 2010 16:20 WSPC - Proceedings Trim Size: 9in x 6in 10

131

Case 2). There is still another letter in p, let’s say b, and i should be the

greatest length of a b-block in p. This means p = p1abip2 where p1 = e

or a v p1, bi 6 >p1 and p2 = e or a v p2 with bi+1 6 >p2. Then define

q =Df p1bb
ip2. Assume q ∈ QQPer. This means that q ∈ u⊗m ⊗ Pr(u) for

some u < q and m ≥ 2. Then p1b
i+1 v u must follow and therefore bi+1>p2

which is a contradiction.

In both cases we found q ∈ HHQ with h(p, q) = 1 which proves the

theorem.

The following are consequences of the inclusion structure from

Figure 1:

Corollary 3.2. d(p, HQ), d(p, SSQ), d(p, SHQ), d(p, HHQ) ∈ {0, 1} for

arbitrary p ∈ X+, and md(n, HQ) = md(n, SSQ) = md(n, SHQ) =

md(n, HHQ) = 1 for each n ≥ 2.

Also Corollary 3.1 is a consequence of Theorem 3.2 and it is interesting

to remark that we proved it without using the Theorem of Fine and Wilf.

But, on the other hand, the construction of q = p◦ in Theorem 3.1 is much

easier than that of Theorem 3.2.

4. The distance to nonprimitive words

We have seen that it is not far from an arbitrary word to some word which

is primitive in any sense. More exactly, it is enough to change one digit in

an arbitrary word to convert it into a primitive one of any sense. But in

the opposite direction, from some primtive word to a nonprimitive one the

distance may be greater.

Theorem 4.1. For natural numbers n, k ≥ 2 holds that

mdk(n, Per) =





n − n
s
(b s

k
c + 1) if there is a strict divisor of n

which is not dividable by k, and

s is the smallest such divisor

n − n
k

if k is prime and n is a power of k.

Proof. First remark, that there is no strict divisor of n which is not divid-

able by k if and only if k is prime and n is a power of k. If 2 ≤ n ≤ k and s

divides n, then let p be a word of length n which has all of its letters differ-

ent each other. Then q =Df (p[1] · · · p[n
s
])s ∈ Per with h(p, q) = n − n

s
,

and this is the smallest distance to a periodic word if s is the smallest

July 16, 2010 16:20 WSPC - Proceedings Trim Size: 9in x 6in 10

132

strict divisor of n. Also, in this case, s = k if n = k and k is prime, or

s < k and therefore b s
k
c = 0, and this corresponds to the theorem. Now

let n > k and p ∈ X∗ be an arbitrary word of length n. Let n = r · s

with s ≥ 2 (If n is prime then s = n and r = 1). We define a word

q ∈ Per in the following way: Let q =Df us where |u| = r and u[i] =Df

maj(p[i], p[i + r], p[i + 2r], . . . , p[i + (s − 1)r]), for i = 1, ..., r. Obviously, p

can be transformed into q by changing of at most r · bs − s
k
c letters. If k

divides s then r · bs − s
k
c = r · s − rs

k
= n − n

k
. If k doesn’t divide s then

r · bs− s
k
c = r · (s−b s

k
c− 1) = n− n

s
(b s

k
c+ 1), which is smaller than n− n

k

and has its smallest value if s is the smallest strict divisor of n which is not

dividable by k.

We get the given value for d(p, Per) if we choose p such that

for i = 1, . . . , r, each letter from X occurs with frequency b s
k
c or b s

k
c + 1

under p[i], . . . , p[i + (s − 1)r], where n = r · s and s is the smallest strict

divisor of n which is not dividable by k, or s = k if k is prime, n is a power

of k and r = n
k
.

Corollary 4.1. Some special values are

mdk(n, Per) =





n
2 if k > 2 and n is even,

or k = 2 and n is a power of 2

(n − n
s
)/2 if k = 2 and s ≥ 3 is the smallest

odd and strict divisor of n

n − 1 if k = n and n is prime

n − (bn
k
c + 1) if k 6= n and n is prime

n−1
2 if k = 2 and n > 2 is prime.

Remark 4.1. If we define fk(n) =Df mdk(n, Per) for fixed k ≥ 2, then

fk is not monotone for each k ≥ 2. This is illustrated by the following

examples. For k = 2 let n be such that both n − 1 and n + 1 are prime

and n ≥ 12 is not a power of 2. Then f2(n − 1) = n−2
2 > f2(n) =

n−n
s

2

with s ≥ 3, and f2(n) < f2(n + 1) = n
2 . For k > 2 let n be prime

with n > 3k
k−2 . Then fk(n − 1) = n−1

2 < fk(n) = n − (bn
k
c + 1), and

fk(n) > fk(n + 1) = n+1
2 .

Now we interpret our results in the language of similarity of languages.

For a two-letter alphabet X we know from Corollary 3.1 and Corollary 4.1

that for each p ∈ Per there is a q ∈ Q with p 1̃ q and for each p ∈ Q of

length n ≥ 2 there is a q ∈ Per with p ñ
2

q but not p ñ
2
−1

q if n is prime.

This means:

July 16, 2010 16:20 WSPC - Proceedings Trim Size: 9in x 6in 10

133

Corollary 4.2. Let Q′ be the set of all primitive words of length at least

2 over a two-letter alphabet. Then Q′ and Per are not c-similar for any

natural constant c, but Q′
1̃
2

Per.

Corollary 4.3. For an alphabet X with k symbols, Q′
˜1− 1

k

Per holds.

Remark, that such (1− 1
k
)-similarities have been established already for

other language classes in [5].

It is trivial that L1 ⊆ L2 implies d(p, L2) ≤ d(p, L1) and md(n, L2) ≤
md(n, L1). Because of the inclusion structure given in Figure 1 it is therefore

interesting to investigate whether the distances to SPer, QPer, PSPer,

SQPer, and QQPer diminish the values from Theorem 4.1.

Theorem 4.2. For natural numbers n, k ≥ 2 holds that

mdk(n, SPer) =

{
dn

3 e if k = 2

dn
2 e if k > 2.

Proof. For n = 2 everything is clear. Let p ∈ X∗ with n = |p| > 2 and

k ≥ 2 be the cardinality of the alphabet X . We want to convert p into a

semi-periodic word q with sroot(q) = u, this means q = usu′ for some s ≥ 2

and u′
< u. Let r =Df |u| and t =Df |u′|. Then

n = r · s + t and 0 ≤ t < r. (1)

For i = 1, . . . , t, let u[i] =Df maj(p[i], p[i + r], p[i + 2r], . . . , p[i + sr]), and

for i = t + 1, . . . , r, let u[i] =Df maj(p[i], p[i + r], . . . , p[i + (s− 1)r]). Then

h(p, q) ≤ t · bs + 1 −
s + 1

k
c + (r − t) · bs −

s

k
c ,

where the equality may hold. Let us denote

mk(n, r, s, t) =Df t · bs + 1 −
s + 1

k
c + (r − t) · bs −

s

k
c ,

and let be s = αk + γ where 0 ≤ γ < k.

If γ = 0, then α = s
k

and

mk(n, r, s, t) = t·bs+1−α− 1
k
c+(r−t)bs−αc = t(s+1−α−1)+(r−t)(s−α)

= r(s − α) = rs(1 − 1
k
).

This has its smallest value (under the conditions γ = 0 and s ≥ 2) if s = k,

July 16, 2010 16:20 WSPC - Proceedings Trim Size: 9in x 6in 10

134

α = 1, and r is the smallest integer with r(s+1) > n. This is r = b n
s+1c+1,

and we get

mk(n, r, s, t) = (b
n

k + 1
c + 1)(k − 1). (2)

If γ 6= 0, then α = s−γ
k

and mk(n, r, s, t) = t ·bs+1−α− γ+1
k

c+(r−t)bs−
α − γ

k
c = t(s − α) + (r − t)(s − α− 1) = r(s − α − 1) + t = n − r(1 + α) =

n− r(1 + s−γ
k

). This has its smallest value for s = 3 if k = 2, and for s = 2

if k 6= 2, and r = bn
s
c. In the first case, we have α = 1 and

mk(n, r, s, t) = n − b
n

3
c · 2 =





n
3 if n ≡ 0 mod 3
n+2

3 if n ≡ 1 mod 3
n+4

3 if n ≡ 2 mod 3

. (3)

In the second case, we have α = 0 and

mk(n, r, s, t) = n − b
n

2
c = d

n

2
e. (4)

mdk(n, SPer) is now the smallest value of (2), (3), (4) under the condition

(1). For k = 2 we get from (2) the value bn
3 c+1 =





n
3 + 1 if n ≡ 0 mod 3
n+2

3 if n ≡ 1 mod 3
n+1

3 if n ≡ 2 mod 3

.

It follows with (3) that md2(n, SPer) =





n
3 if n ≡ 0 mod 3
n+2

3 if n ≡ 1 mod 3
n+1

3 if n ≡ 2 mod 3

.

This means that md2(n, SPer) = dn
3 e. For k > 2, the smaller value of (2)

and (4) is given by (4), which completes the proof.

Corollary 4.4. SQ′
2̃

3

SPer for a two-letter alphabet and SQ′
3̃
4

SPer

otherwise.

(SQ′ is the set of all strongly primitive words with length at least 2.)

Here we see that it would be convenient to define f -similarity for a

function f . Then we would have SQ′
f̃

SPer where

f(n) =

{
1
3 + 2

3n
if |X | = 2

1
2 + 1

2n
otherwise.

Investigating the distances to QPer, PSPer, SQPer and QQPer be-

comes more complicated because of the use of the folding operation. For a

k-letter alphabet with k > 2 the maximal distance of words of length n to

one of these languages is the same as to the set SPer. We presume that

this is also true for a two letter alphabet, but we have not yet a complete

proof.

July 16, 2010 16:20 WSPC - Proceedings Trim Size: 9in x 6in 10

135

Theorem 4.3. If L is one of the sets QPer, PSPer, SQPer, and QQPer

then for natural numbers n ≥ 2 and k ≥ 3 holds that

mdk(n,L) = md3(n, SPer) = dn
2 e.

Proof. Let L ∈ {QPer, PSPer, SQPer, QQPer}. It is clear that

mdk(n,L) ≤ mdk(n, SPer) for all n, k ≥ 2. To show the equality we have

to find for each n ≥ 2 a word p of length n over a k-letter alphabet with

d(p,L) = mdk(n, SPer). The case k = 2 will be discussed after the proof.

Let k ≥ 3 and a, b, c be three pairwise different letters from the alphabet

X , and p =Df adn
3
ebb

n+1

3
ccb

n
3
c. Then |p| = n, and it is easy to see that a

word q ∈ QQPer with the smallest distance to p has a hyper-hyper-root u

with no overlappings in q. This means, q is of the form usu′ ∈ u⊗s ⊗Pr(u)

where s ≥ 2 and u′ ∈ Pr(u). Indeed, it is q = u2u′ ∈ SPer where u′ is the

first letter of u or it is empty (depending whether n is odd or not) and u is

the prefix of length bn
2 c of p. Therefore d(p,L) = md3(n, SPer) = dn

2 e.

Conjecture. If L is one of the sets QPer, PSPer, SQPer, and QQPer

then for natural numbers n ≥ 2 holds that md2(n,L) = md2(n, SPer) =

dn
3 e.

To prove this conjecture we have to find for each n ≥ 2 a word p of

length n over {a, b} with d(p,L) = dn
3 e. For n ∈ {2, 3} this is done by

p = ab resp. p = abb. Now let n > 3 and therefore dn
3 e > 1, and let

p =Df ad n
3
ebb

2n
3
c. Then |p| = n and h(p, q′) = dn

3 e with q′ = bn ∈ L.

To show that there is no word q ∈ QPer with |q| = n and h(p, q) < dn
3 e

we assume the opposite. This means, q ∈ u⊗s for some s ≥ 2. We could

show that |u| < dn
3 e − 1 and s > 3 must follow, and that there must be

overlappings of u in q. But a final proof was not yet successful. By some

computer experiments [9] this conjecture was reinforced for all words with

length up to 15.

5. Concluding remarks

Comparing Theorem 4.1 and Theorem 4.2 we see that for a k-letter alpha-

bet and words of length n, the maximal primitivity distance — this should

mean the distance to the sets Per, SPer, and so on — is the same for SPer

as for Per if k > 2 and n is even or k = 2 and n is dividable by 3, but in

the most other cases it is smaller for SPer. Of course, for a fixed primitive

word p of length n > 2 we have 0 < d(p, SPer) ≤ d(p, Per) ≤ md(n, Per),

July 16, 2010 16:20 WSPC - Proceedings Trim Size: 9in x 6in 10

136

where d(p, SPer) < d(p, Per) is possible.

If, for instance, p = (ab)mb, m > 1, n = 2m + 1, then d(p, SPer) = 1,

and d(p, Per) = m = n−1
2 .

For a more instructive description we propose the use of the following

so-called vector of primitivity distances:

D(p) =Df [d(p, Per), d(p, SPer)],

or more generally

Dv(p) =Df [d(p, Per), d(p, SPer), d(p, QPer), d(p, PSPer), d(p, SQPer),

d(p, QQPer)].

To be independent from the lengths of the words consider the relative

distance vector, which is

Dv′(p) =Df
1
|p| · [d(p, Per), d(p, SPer), d(p, QPer), d(p, PSPer),

d(p, SQPer), d(p, QQPer)].

Even though by Theorem 4.3 and our conjecture the maximal distances

to the sets SPer, QPer, ... are the same, for single words these distances

may be different each other.

Because of Figure 1 and Theorem 4.1, if Dv(p) = [z1, z2, . . . , z6] then

0 ≤ z6 ≤ z5 ≤ z3 ≤ z2 ≤ z1 ≤ md(|p|, P er) and z6 ≤ z4 ≤ z2. It is

still open whether there exist words p such that all components in Dv(p)

are different from each other. Also it should be interesting to study more

general relationships between the components of Dv(p) and to classify the

primitive words according to such vectors.

Acknowledgement

I am very grateful to Masami Ito for our cooperation and for his hospitality

and generosity during my stay in Kyoto in Spring 2008, and to Péter Burcsi

in Budapest for his interest and comments which exposed some mistakes in

my preliminary version and led to a complete revision of it.

References

1. N.J.Fine, H.S.Wilf, Uniqueness theorems for periodic functions, Proc. AMS
16 (1965), 109–114.

2. R.W.Hamming, Error detecting and error correcting codes, Bell System
Techn. Journ., 29 (1950), 147–160.

July 16, 2010 16:20 WSPC - Proceedings Trim Size: 9in x 6in 10

137

3. M.Ito, G.Lischke, Generalized periodicity and primitivity for words, Math.
Log. Quart. 53 (2007), 91–106, Corrigendum in Math. Log. Quart. 53 (2007),
642–643.

4. G.Lischke, Restorations of punctured languages and similarity of languages,
Math. Log. Quart. 52 (2006), 20–28.

5. G.Lischke, Some uncountable hierarchies of formal languages, Annales Univ.
Sci. Budapest., Sect. Comp. 26 (2006), 171–179

6. M.Lothaire, Combinatorics on Words, Addison-Wesley, Reading (Mass.),
1983.

7. B.Manthey, R.Reischuk, The intractability of computing the Hamming

distance, Theoret. Comput. Sci. 337 (2005), 331–346.
8. H.J.Shyr, Free Monoids and Languages, Hon Min Book Company, Taichung,

1991.
9. L.Wolff, Projektarbeit, Gymnasium Bergschule, Apolda, Germany, 2008.
10. S.S.Yu, Languages and Codes, Tsang Hai Book Publishing Co., Taichung,

2005.

Received: June 21, 2009

Revised: March 31, 2010

This page intentionally left blankThis page intentionally left blank

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

139

FINE CONVERGENCE OF FUNCTIONS AND

ITS EFFECTIVIZATION

TAKAKAZU MORI

Faculty of Science, Kyoto Sangyo University,

E-mail: morita@cc.kyoto-su.ac.jp

YOSHIKI TSUJII

Faculty of Science, Kyoto Sangyo University,

E-mail: tsujiiy@cc.kyoto-su.ac.jp

MARIKO YASUGI
∗

Kyoto Sangyo University,

E-mail: yasugi@cc.kyoto-su.ac.jp

In this article, we first discuss the Fine continuity and the Fine convergence in

relation to the continuous convergence on [0, 1). Subsequently, we treat com-

putability and the effective Fine convergence for a sequence of functions with

respect to the Fine topology. We prove that the Fine computability does not

depend on the choice of an effective separating set and that the limit of a

Fine computable sequence of functions under the effective Fine convergence

is Fine computable. Finally, we generalize the result of Brattka, which asserts

the existence of a Fine computable but not locally uniformly Fine continuous

function.

Keywords: Fine topology, dyadic interval, Fine continuous function, Fine com-

putable function, effective Fine convergence, continuous convergence.

1. Introduction

The main objective of this article is to effectivize the notions of convergence

of a sequence of continuous functions and the limit of such a sequence in

the Fine space.

Fine introduced the Fine metric on the unit interval and initi-

ated the theory of Walsh-Fourier analysis by proving some fundamental

∗
This work has been supported in part by Kayamori Foundations of Informational Sci-

ences Advancement K15VIII and Science Foundations of JSPS No.16340028.

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

140

theorems.4,10 He defined the Fine metric between two real numbers as the

weighted sum of differences of corresponding bits in their binary expansions

with infinitely many 0’s. Many topological properties concerning the Fine

metric are derived from the property that a dyadic interval, that is, an in-

terval [a, b) with dyadic rationals a and b, is open and closed (clopen) with

respect to the Fine metric. The topology generated by the set of all dyadic

intervals is equivalent to the one induced by the Fine metric. We call this

topology the Fine topology and [0, 1) with this topology Fine space.

In this article, we use the term “function” as a mapping from some space

to the real line R with the ordinary Euclidean topology. In order to spec-

ify the topological properties with respect to the Fine topology, we prefix

“Fine” to the relevant terms. For example, the convergence of a sequence

in [0, 1) with respect to the Fine topology is called Fine convergence. Topo-

logical notions with no prefix or with the prefix “E-” will mean the notions

with respect to the Euclidean metric.

Let CF be the set of all Fine continuous functions. It is well known that

a function belongs to CF if and only if it is E-continuous at every dyadic

irrational and right E-continuous at every dyadic rational.4,10 Moreover, a

function in CF is uniformly Fine continuous if and only if it has a left limit at

every dyadic rational. Fine continuous function may diverge. For example,

f(x) = 1
1−2x

χ[0, 1
2
)(x) is locally uniformly Fine continuous and diverges at

1
2 , where χA denotes the indicator (characteristic) function of the set A.

Brattka proved the existence of a Fine computable function, hence Fine

continuous, which is not locally uniformly Fine continuous.

In Section 2, we consider various notions of continuity and the corre-

sponding notions of convergence for functions on the Fine space. We define

t-Fine Fine convergence (Definition 2.5) and “Fine convergence” (Definition

2.6) and prove their equivalence (Proposition 2.2). Both are stronger than

pointwise convergence and weaker than locally uniform Fine convergence.

They preserve Fine continuity (Proposition 2.4). Their relation to contin-

uous convergence is also discussed. In Section 4, we prove that the notion

of effective Fine continuity of functions does not depend on the choice of

an effective separating set (Theorem 4.1). In Section 5, we introduce the

notion of effective Fine convergence of functions (Definition 5.1). We prove

that the limit of an effectively Fine continuous sequence of functions under

this effective Fine convergence is also effectively Fine continuous (Theorem

5.2) and that the effective Fine limit of a Fine computable sequence of

functions is Fine computable (Theorem 5.3). We also define the notion of

a computable sequence of dyadic step functions and prove that a function

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

141

f is Fine computable if and only if there exists a computable sequence of

dyadic step functions which Fine converges effectively to f (Theorem 5.4).

In Section 6, we work on Brattka’s example, which is Fine computable but

not locally uniformly Fine continuous. We prove that this example satis-

fies a recursive functional equation, which is related to self-similarity. We

modify this equation and obtain other examples (Theorems 6.1 and 6.2).

Let us remark that, some of the notions and propositions in this article

could be generalized to any metric space with a computability structure

and an effective separating set. The advantage of the Fine space that there

is a universal algorithm to determine, for any computable element x, which

fundamental neighborhood x belongs to.

Let us note that we employ Pour-El and Richards’ approach8 in treating

effectivity and computability, and will not mention other approaches in

order to avoid complication.

2. Fine convergence and continuous Fine convergence

In this section, we define various classical notions of continuity and con-

vergence of real functions with respect to the Fine topology. We will then

effectivize them in Sections 3-5. The domain of discurse will be the real

functions on [0, 1). Those who are interested only effective results can skip

this section.

The Fine metric dF on [0, 1) is defined4 to be dF (x, y) =
∑∞

k=1 |σk −
τk|2−k for x, y ∈ [0, 1), where 0.σ1σ2 · · · and 0.τ1τ2 · · · are the binary ex-

pansions of x and y with infinitely many zeros respectively.

A left-closed right-open interval with dyadic rational end points is called

a dyadic interval. It is easy to see that a dyadic interval is open and closed

with respect to the Fine metric. This property corresponds to prohibition

of left convergence to dyadic rationals and makes some E-discontinuous

functions Fine continuous.

We use the following notations for special dyadic intervals.

I(n, k) = [k 2−n, (k + 1)2−n), 0 6 k 6 2n − 1,

J(x, n) = such I(n, k) that includes x.

Since the intervals {I(n, k)}k are disjoint and ∪2n−1
k=0 I(n, k) = [0, 1),

J(x, n) is uniquely determined for each n and x. We call I(n, k) a funda-

mental dyadic interval (of level n) and J(x, n) a dyadic neighborhood of x

(of level n). It is obvious that I(n, k) = {x | dF (x, k 2−n) < 2−n} holds.

The Fine space is totally bounded. However, it is not complete, since,

for any dyadic rational r, the sequence {r−2−n} is a Fine Cauchy sequence

but does not Fine converge.

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

142

We state a simple property for later use.

Lemma 2.1. The following three are equivalent for any x, y ∈ [0, 1) and

any positive integer n.

(i) y ∈ J(x, n). (ii) x ∈ J(y, n). (iii) J(x, n) = J(y, n).

It is obvious that the sequence {J(x, n)}n forms a fundamental system of

neighborhoods of x and the set of all fundamental dyadic intervals becomes

an open base for the topology introduced by the Fine metric. If we define

Vn(x) = J(x, n), then it is easy to show that {Vn} satisfies the axioms of

an effective uniform topology.12 It holds that J(x, n + 1) ⊂ {y | dF (x, y) <

2−n}. So the topology induced from {Vn} is equivalent to the one induced

from the Fine metric.

The notion of continuity on the Fine space is formulated as follows.

Definition 2.1. (t-Fine continuity) A function f is said to be topologically

Fine continuous (t-Fine continuous) if, for each k and x, there exists a

positive integer N(k, x) such that y ∈ J(x, N(k, x)) implies |f(y)− f(x)| <

2−k.

We define the following Fine continuity using an enumeration of all

dyadic rationals {ei}. Notice that, we can select a sequence of dyadic ratio-

nals which Fine converges to x for each x ∈ [0, 1), and that we can select

an ei such that x ∈ J(ei, n), or ei ∈ J(x, n), for each x and n.

Definition 2.2. (Fine continuity) A function f is said to be Fine contin-

uous if, for each k and i, there exists an integer N(k, i) such that

(a) x ∈ J(ei, N(k, i)) implies |f(x) − f(ei)| < 2−k.

(b)
⋃

i J(ei, N(k, i)) = [0, 1).

Proposition 2.1. The t-Fine continuity and the Fine continuity are

equivalent.

Proof. Suppose first that f is Fine continuous with respect to N2(k, i).

Then, by (b), for each k and x, there exists an i such that x ∈ J(ei, N2(k +

1, i)). Define, for such an i, N1(k, x) = N2(k+1, i). Recall that J(ei, N2(k+

1, i)) = J(x, N2(k+1, i)) holds. So, if y ∈ J(x, N1(k, x)) = J(x, N2(k+1, i)),

then y ∈ J(ei, N2(k + 1, i)). Since x ∈ J(ei, N2(k + 1, i)), by (a) for x and

y, it follows

|f(y) − f(x)| 6 |f(y) − f(ei)| + |f(x) − f(ei)| < 2−(k+1) + 2−(k+1) = 2−k.

So, f is t-Fine continuous with respect to N1(k, x).

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

143

Conversely, assume that f is t-Fine continuous with respect to N1(k, x).

Define N2(k, i) = min{N1(k + 1, x) | ei ∈ J(x, N1(k + 1, x)), x ∈ [0, 1)}.
Notice that the minimum is attained by some z ∈ [0, 1). For such a z,

N2(k, i) = N1(k + 1, z). Now suppose x ∈ J(ei, N2(k, i)) = J(ei, N1(k +

1, z)). Notice that J(ei, N1(k + 1, z)) = J(z, N1(k + 1, z)). Then x ∈
J(z, N1(k + 1, z)) and ei ∈ J(z, N1(k + 1, z)). So, using the t-Fine con-

tinuity, we have,

|f(x) − f(ei)| 6 |f(x) − f(z)| + |f(z) − f(ei)| < 2−(k+1) + 2−(k+1) = 2−k.

This proves (a).

Notice next that, for each k and x, there is an ei such that ei ∈
J(x, N1(k+1, x)). Take a z as above. Then, since N1(k+1, z) 6 N1(k+1, x),

x ∈ J(ei, N1(k + 1, x)) ⊂ J(ei, N1(k + 1, z)) and hence

x ∈ J(x, N1(k + 1, x)) ⊂ J(z, N1(k + 1, z)) = J(ei, N2(k, i)).

Hence, we obtain x ∈ J(ei, N2(k, i)). This proves (b).

Let us remark that t-Fine continuity of a function is the usual topolog-

ical definition of continuity. We have introduced Fine continuity since it is

suitable for effectivization.

Uniform convergence and locally uniform convergence are fundamental

concepts of the calculus.

Definition 2.3. (Uniform Fine continuity) A function f is said to be uni-

formly Fine continuous if, for any k, there exists a positive integer N(k)

such that y ∈ J(x, N(k)) implies |f(x) − f(y)| < 2−k.

Definition 2.4. (Locally uniform Fine continuity) A function f is said

to be locally uniformly Fine continuous if, for k and i, there exist positive

integers N(i) and M(k, i) such that x, y ∈ J(ei, N(i)) and y ∈ J(x, M(k, i))

imply |f(x) − f(y)| < 2−k.

Definition 2.5. (t-Fine convergence) A sequence of functions {fn} is said

to t-Fine converge to f if, for each k and x, there exist positive integers

N(k, x) and M(k, x) such that y ∈ J(x, N(k, x)) and n > M(k, x) imply

|fn(y) − f(y)| < 2−k.

Let us note that we obtain locally uniform Fine convergence from Def-

inition 2.5 if N(k, x) does not depend on k. We also define the following

convergence, for the sake of effectivization, similarly to Definition 2.2.

Definition 2.6. (Fine convergence) A sequence of functions {fn} is said to

Fine converge to f if, for each k and i, there exist positive integers N(k, i)

and M(k, i) such that

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

144

(a) x ∈ J(ei, N(k, i)) and n > M(k, i) imply |fn(x) − f(x)| < 2−k,

(b)
⋃∞

i=1 J(ei, N(k, i)) = [0, 1) for each k.

Similarly to Proposition 2.1, we can prove the following equivalence.

Proposition 2.2. t-Fine convergence and Fine convergence are

equivalent.

For a sequence of Fine continuous functions, we obtain the following

proposition.

Proposition 2.3. If a sequence of t-Fine continuous functions t-Fine

converges to f , then f is also t-Fine continuous.

Proof. Let {fn} be a sequence of t-Fine continuous functions with re-

spect to N1(n, k, x) and suppose that it t-Fine converges to f with respect

to N2(k, x) and M(k, x). Define N(k, x) = max{N2(k + 2, x), N1(M(k +

2, x), k + 2, x)}. Then y ∈ J(x, N(k, x)) implies

|f(y) − f(x)|
6 |f(y) − fM(k+2,x)(y)| + |fM(k+2,x)(y) − fM(k+2,x)(x)|

+|fM(k+2,x)(x) − f(x)| < 3 · 2−(k+2) < 2−k.

From Propositions 2.1, 2.2 and 2.3, we obtain the following proposition.

Proposition 2.4. If a sequence of Fine continuous functions Fine con-

verges to f , then f is also Fine continuous.

t-Fine convergence reminds us of continuous convergence. According to

Binz,1 continuous convergence and locally uniform convergence do not co-

incide on the Fine space. Schröder9 investigated the notion of continuous

convergence of a function sequence in relation to the admissible represen-

tation of the space of all continuous functions

Definition 2.7. (Continuous Fine Convergence9) {fn} is said to Fine con-

verge continuously to f if {fn(xn)} E-converges to f(x) for every sequence

{xn} which Fine converges to x.

Notice that the continuous Fine convergence is equivalent to the follow-

ing; for each k and x there exist integers N(k, x) and M(k, x) which satisfy

that y ∈ J(x, N(k, x)) and n > M(k, x) imply |fn(y) − f(x)| < 2−k.

Proposition 2.5. If a sequence of Fine continuous functions {fn} Fine

converges continuously to f , then f is Fine continuous.

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

145

Proof. Let us assume that a sequence {xm} Fine converges to x. For each

m, {fn(xm)}n E-converges to f(xm) by virtue of continuous convergence.

So, we can choose a strictly increasing sequence of positive integers {nm}
such that |fnm

(xm) − f(xm)| < 2−m. If we define yn = xm if n = nm for

some m and = x otherwise, then {yn} Fine converges to x. From the con-

tinuous convergence, {fn(yn)} E-converges to f(x). Hence, the subsequence

{fnm
(xm)} E-converges to f(x). From the above inequality, {f(xm)} also

E-converges to f(x).

For a sequence of Fine continuous, we obtain the following proposition.

Proposition 2.6. For a sequence of Fine continuous functions, t-Fine

convergence and continuous Fine convergence are equivalent.

From Propositions 2.2 and 2.6, we obtain the following theorem.

Theorem 2.1. For a sequence of Fine continuous functions, Fine conver-

gence and continuous Fine convergence are equivalent.

3. Fine computability

A sequence of rationals {rn} is called recursive if there exist recursive func-

tions α(n), β(n) and γ(n) which satisfy rn = (−1)γ(n) β(n)
α(n) . We will subse-

quently treat the computability of sequences from the Fine space and the

computability of functions on the Fine space. So, we assume that a number

x or a sequence {xn} is in [0, 1) unless otherwise stated.

A double sequence {xn,m} is said to Fine converge effectively to a se-

quence {xn} if there exists a recursive function α(n, k) such that xn,m ∈
J(xn, k) for all n, k and all m > α(n, k).

A sequence {xn} is said to be Fine computable if there exists a recursive

double sequence of rationals {rn,m} which Fine converges effectively to

{xn}. For this definition, it is sufficient to take a recursive sequence of

dyadic rationals instead of a recursive sequence of rationals in general. A

single element x is called Fine computable if the sequence {x, x, x, . . .} is

Fine computable. The definition of Fine computability can be extended to

multiple sequences in an obvious manner.

If we use the Euclidean metric instead of the Fine metric in the above,

then we obtain the usual notion of computability on the real line. We call

this computability E-computability. Notice that a single real number is E-

computable if and only if it is Fine computable, and that a Fine computable

sequence of real numbers is also an E-computable sequence,2,6,13 but the

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

146

converse of the latter fact does not hold. It also holds that a recursive

sequence of rationals is Fine computable, while an E-computable sequence

of rationals is not necessarily Fine computable.2,6

There have been several approaches to weaker notions of computable

functions in order to make some simple E-discontinuous functions com-

putable. We quote only some recent works,2,6,7,12–14 which are closely re-

lated to this article. In the last two, the computability on the range is weak-

ened by replacing the recursive modulus of convergence with the limiting

recursive one in the definition of computable sequences of reals. Another

method is that the topology on the domain of definition is replaced by the

Fine metric, which is stronger than the Euclidean metric.2,6,7 The latter

approach is generalized to the computability with respect to an effective

uniformity.12,13

The uniform Fine computability of a function is introduced by Mori.6

The locally uniform Fine computability is also treated together with ef-

fective locally uniform Fine convergence. A similar but slightly different

notion of computability is also introduced12 for functions on a space with

an effective uniform topology.

In the rest of this section, we review the above two definitions of com-

putability for functions on the Fine space, together with the corresponding

effective convergence. Another will be introduced in the next section. We

take a recursive enumeration of all dyadic rationals in [0, 1) {ei}, as an

effective separating set, and use it throughout this article. (An effective

separating set is a computable sequence which is dense in [0, 1) and which

effectively approximates every computable sequence.)

Definition 3.1. (Uniformly Fine computable sequence of functions6) A

sequence of functions {fn} is said to be uniformly Fine computable if (i)

and (ii) below hold.

(i) (Sequential Fine computability) The double sequence {fn(xm)} is

E-computable for any Fine computable sequence {xm}.
(ii) (Effectively uniform Fine continuity) There exists a recursive func-

tion α(n, k) such that, for all n, k and all x, y ∈ [0, 1), y ∈ J(x, α(n, k))

implies |fn(x) − fn(y)| < 2−k.

The uniform Fine computability of a single function f is defined by that

of the sequence {f, f, . . .}. Notice that the computability of the sequence

{fn(xm)} in (i) is E-computability.

Definition 3.2. (Effectively uniform convergence of functions6). A se-

quence of functions {fn} is said to converge effectively uniformly to a func-

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

147

tion f if there exists a recursive function α(k) such that, for all n and k,

n > α(k) implies |fn(x) − f(x)| < 2−k for all x.

Theorem 3.1. If a uniformly Fine computable sequence of functions {fn}
converges effectively uniformly to a function f , then f is also uniformly Fine

computable.

The proof is similar to that of the corresponding theorem.8

Definition 3.3. (Locally uniformly Fine computable sequence of func-

tions5) A sequence of functions {fn} is said to be locally uniformly Fine

computable if the following (i) and (ii) hold.

(i) {fn} is sequentially Fine computable.

(ii) (Effectively locally uniform Fine continuity) There exist recursive

functions α(n, k, i) and β(n, i) which satisfy the following (ii-a) and (ii-b).

(ii-a) For all i, n and k, |fn(x) − fn(y)| < 2−k if x, y ∈ J(ei, β(n, i))

and y ∈ J(x, α(n, k, i)).

(ii-b)
⋃∞

i=1 J(ei, β(n, i)) = [0, 1) for each n.

It is proved in Example 4.15 that the function f defined by f(x) = 1
1−2x

if x < 1
2 and = 0 if x ≥ 1

2 is locally uniformly Fine computable but not

uniformly Fine continuous, since it diverges at 1
2 .

Definition 3.4. (Effectively locally uniform Fine convergence5). A se-

quence of functions {fn} is said to Fine converge effectively locally uni-

formly to a function f if there exist recursive functions γ(i) and δ(k, i) such

that

(a) |fn(x) − f(x)| < 2−k for x ∈ J(ei, γ(i)) and n ≥ δ(k, i),

(b) ∪∞
i=1J(ei, γ(i)) = [0, 1).

Theorem 3.2.
5 If a locally uniformly Fine computable sequence of func-

tions {fn} Fine converges effectively locally uniformly to f , then f is locally

uniformly Fine computable.

Theorem 3.2 can be proved similarly to the proof of Theorem 5.3 in

Section 4. The above two definitions of computable functions can be carried

over to an effectively separable metric space with a computability structure

or to a space with effective uniformity.

The notion of the Fine computable functions is introduced by Brattka2

for a single function. We extend it to that of a function sequence. and prove

a theorem similar to Theorem 3.2.

Recall that {ei} is a recursive enumeration of all dyadic rationals in

[0, 1) and that it is an effective separating set.

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

148

Definition 3.5. (Fine computable sequence of functions) A sequence of

functions {fn} is said to be Fine computable if it satisfies the following.

(i) {fn} is sequentially Fine computable.

(ii) (Effective Fine Continuity) There exists a recursive function

α(n, k, i) such that

(ii-a) x ∈ J(ei, α(n, k, i)) implies |fn(x) − fn(ei)| < 2−k,

(ii-b)
⋃∞

i=1 J(ei, α(n, k, i)) = [0, 1) for each n, k.

Fine computability of a single function f is defined by replacing α(n, k, i)

with α(k, i). It is equivalent to saying that the sequence {f, f, . . .} is

computable.

Definition 3.6. (Effective Fine continuity with respect to {ri}) If the re-

quirement (ii) in Definition 3.5 holds for a Fine computable sequence {ri}
instead of {ei}, we say that f is effectively Fine continuous with respect to

{ri}.

We proposed12 a slightly different notion of computability of functions

on an effective uniform topological space, that is, we required the sequen-

tial computability, the effective continuity with respect to some effective

separating set and the relative computability.

4. Fine computable functions

On the Fine space, we can prove that the effective Fine continuity of a

function sequence does not depend on the choice of an effective separating

set. We will state and prove this fact for a single function f as below.

Theorem 4.1. If f is effectively Fine continuous with respect to an effec-

tive separating set {ri}, then f is effectively Fine continuous with respect

to any effective separating set {tj}.

For the proof of this theorem, we prepare some elementary properties

concerning dyadic intervals. Classically, they are self-evident.

We say that a sequence of dyadic intervals Ij = [aj , bj) (aj < bj) recur-

sive if {aj} and {bj} are recursive sequences of dyadic rationals. A recursive

dyadic intervals {Ij} is called recursive dyadic covering of a dyadic interval

I if it is recursive and satisfies ∪jIj = I .

Lemma 4.1. The following hold.

(i) Let {Ij} be a recursive sequence of dyadic intervals. For any Fine

computable sequence of numbers {xl}, xl ∈ Ij or xl 6∈ Ij can be determined

effectively.

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

149

(ii) Let {si} be an effective separating set. Then we can find effectively

an i such that si ∈ I(n, k) holds for any n and k, that is , there is a recursive

function of n and k which computes i. In this case, I(n, k) = J(si, n).

(iii) Let {Ij} be a recursive dyadic covering of [0, 1) and let {xn} be

Fine computable. Then there is a recursive j = j(n) such that xn ∈ Ij(n).

(iv) Let I and J denote dyadic intervals. Then, we can decide effectively

whether I ∩ J = φ or not, and whether I ⊆ J or not.

(v) If a dyadic interval [a, b) is not a fundamental dyadic interval,

then we can decompose it effectively into finitely many disjoint fundamental

dyadic intervals.

From the condition (ii-b) in Definition 3.5, it follows that the set of

dyadic neighborhoods {J(ei, α(n, k, i))}i is a recursive dyadic covering of

[0, 1) for each n, k.

For a covering consisting of dyadic intervals, the following lemma holds.

Lemma 4.2. Let {Jp} be a recursive dyadic covering of a dyadic interval

I. Then, we can construct a recursive dyadic covering {Iq} of I, which

satisfies the following conditions.

(i) Each Iq is a fundamental dyadic interval.

(ii) Iq is a subinterval of Jp for some p.

(iii) Iq’s are disjoint.

Proof. Let us first note that we can claim the following (a) and (b) by

using Lemma 4.1: (a) The complement of a dyadic interval, say [a, b)c, is

a disjoint union of intervals [0, a) ∪ [b, 1). (b) The complement of a finite

union of dyadic intervals (∪n
i=1[ai, bi))

c = ∩n
i=1[ai, bi)

c can be represented

by a finite disjoint union of fundamental dyadic intervals.

We only outline the construction of {Iq} according to a routine proce-

dure in measure theory. The construction itself will explain that the whole

procedure can be done effectively.

First, J1 is a dyadic interval by definition. So, we can decompose it

into finitely many disjoint fundamental dyadic intervals, say, I1, . . . , Iτ1
by

Lemma 4.1 (v).

Second, consider (J2 ∩ (J1)
c) = (J2 ∩ (∪τ1

q=1Iq)
c). It is a finite dis-

joint union of dyadic intervals by (b) just above. So, we decompose

them and obtain a finite sequence of disjoint fundamental dyadic intervals

Iτ1+1, . . . , Iτ1+τ2
, the union of which is (J2 ∩ (J1)

c).

Next, try the same for (J3 ∩ (J1 ∪ J2)
c) = (J3 ∩ (∪τ1+τ2

q=1 Iq)
c), and so

on. If we continue the above process, we obtain {Iq}, which is the desired

sequence.

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

150

The construction above suggests the following: if Jp = J(rp, α(p)) for

some recursive function α(p) and a recursive sequence of dyadic rationals

{rp}, then we can obtain recursive functions β(q) and γ(q) (0 6 γ(q) 6

2β(q) − 1) so that Iq = I(β(q), γ(q)).

Proposition 4.1. Let {ri} be an effective separating set and let f be a

function on [0, 1). Then, f is effectively Fine continuous with respect to

{ri} if and only if there exist a Fine computable double sequence {sk,q} and

a recursive function δ(k, q) which satisfy the following.

(a) {sk,q}q is a subset of {ri} for each k.

(b) {J(sk,q , δ(k, q))}q is disjoint for each k.

(c) x ∈ J(sk,q , δ(k, q)) implies |f(x) − f(sk,q)| < 2−k.

(d)
⋃∞

q=1 J(sk,q , δ(k, q)) = [0, 1) for each k.

Proof. First, we prove the “if” part. For each k and i, we can find effec-

tively such q = q(k, i) that ri ∈ J(sk+1,q , δ(k + 1, q)). It is sufficient to take

α(k, i) = δ(k + 1, q) (cf. Definitions 3.5 and 3.6), since

|f(x) − f(ri)| 6 |f(x) − f(sk+1,q)| + |f(sk+1,q) − f(ri)| < 2−k

for x ∈ J(ri, α(k, i)) = J(sk+1,q , δ(k + 1, q)).

To prove the “only if” part, let α(k, i) be a recursive modulus of conti-

nuity of f and let us consider {J(rp, α(k + 1, p))}p for each k. If we apply

Lemma 4.2 to this sequence with I = [0, 1), then we obtain recursive func-

tions β(k, q) and γ(k, q) so that the sequence {Ik,q} = {I(β(k, q), γ(k, q))}
is a recursive dyadic covering of [0, 1) and satisfies (i) through (iii) of

Lemma 4.2 for each k. We define δ(k, q) = β(k, q). For each q, we can

select p = p(k, q) and i = i(k, q) so that ri ∈ Ik,q ⊆ J(rp, α(k + 1, p)). If we

put sk,q = ri, then it holds that

|f(x) − f(sk,q)| 6 |f(x) − f(rp)| + |f(rp) − f(ri)| < 2−k,

for x ∈ J(sk,q , δ(k, q)) = Ik,q .

Proof of Theorem 4.1. Assume that f is effectively Fine continuous

with respect to an effective separating set {ri} and that {tj} is an effective

separating set. Let {sk,q} and δ(k, q) satisfy the requirements (a) through

(d) in Proposition 4.1. For each k, q, choose some tj ∈ J(sk+1,q , δ(k + 1, q))

and denote it by uk,q. (We can do this effectively, hence {uk,q} is Fine

computable). It holds that J(sk+1,q , δ(k + 1, q)) = J(uk,q , δ(k + 1, q)) and

|f(y) − f(uk,q)| 6 |f(y) − f(sk+1,q)| + |f(sk+1,q) − f(uk,q)| < 2−k

for y ∈ J(uk,q , δ(k + 1, q)). If we define δ̃(k, q) = δ(k + 1, q), then δ̃(k, q)

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

151

is recursive and the conditions (a) through (d) of Proposition 4.1 hold for

{uk,q} and δ̃(k, q) with respect to {tj}. If we apply Proposition 4.1 again,

we obtain that f is effectively Fine continuous with respect to {tj}.

Let us consider the maximum of a Fine computable function. It is proved

that a uniformly Fine computable function has the computable supremum.7

But the corresponding property does not hold for locally uniformly Fine

computable functions. To see this, let us define

χc(x) = χ[0,c)(x), χ̃n(x) = χ[1−2−(n−1),1−2−n)(x). (1)

Proposition 4.2. There exists a bounded locally uniformly Fine com-

putable function, the supremum of which is not computable.

Proof. Let a be a one-to-one recursive function from positive integers to

positive integers whose range is not recursive. Define cn =
∑n

k=1 2−a(k).

Then {cn} is an E-computable sequence of real numbers, which is mono-

tonically increasing and converges to a non-computable limit c.8 Define

also f(x) =
∑∞

n=1 cnχ̃n(x). In = [1− 2−(n−1), 1− 2−n) = [2
n−2
2n , 2n−1

2n) is a

fundamental dyadic interval and {In} is a partition of [0, 1). Let us define

n = β(i) = α(k, i) if ei ∈ In. Then α and β are recursive, and f is locally

uniformly Fine computable with respect to β and α. On the other hand,

sup06x<1 f(x) = c is not E-computable.

At the end of this section, we give a simple example of a function which

satisfies neither the sequential computability nor the effective Fine continu-

ity (cf. Definition 3.5). In the following proposition, 1
3 is not essential, and

the proposition remains valid if we replace 1
3 with any dyadic irrational.

Proposition 4.3. χ 1
3

satisfies the following:

(i) χ 1
3

is not “Fine continuous.”

(ii) It is not sequentially Fine computable.

5. Effective Fine convergence

In this section, we define effective Fine convergence of a sequence of func-

tions, and prove that the space of effectively Fine continuous functions is

closed with respect to this convergence.

Definition 5.1. (Effective Fine convergence of functions) We say that a

sequence of functions {fn} Fine converges effectively to a function f if there

exist recursive functions β(k, i) and γ(k, i) which satisfy

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

152

(a) x ∈ J(ei, β(k, i)) and n > γ(k, i) imply |fn(x) − f(x)| < 2−k,

(b)
⋃∞

i=1 J(ei, β(k, i)) = [0, 1) for each k.

Definition 5.2. (Computable sequence of dyadic step functions6) A se-

quence of functions {ϕn} is called a computable sequence of dyadic step

functions if there exist a monotonically increasing recursive function δ(n)

and an E-computable sequence of reals {cn,j} (0 6 j < 2δ(n), n = 1, 2, . . .)

such that

ϕn(x) =
∑2δ(n)−1

j=0 cn,jχI(δ(n),j)(x). (2)

A computable sequence of dyadic step functions is uniformly Fine con-

tinuous, since ϕn(x) = ϕn(y) if x, y ∈ I(δ(n), j) for some j. Typical ex-

amples of computable sequences of dyadic step functions are the system of

Walsh functions, that of Haar functions and that of Rademacher functions.

Theorem 5.1. Let f be a Fine computable function. Define a “computable

sequence of dyadic step functions” {ϕn} by

ϕn(x) =
∑2n−1

j=0 f(j2−n)χI(n,j)(x). (3)

Then {ϕn} Fine converges effectively to f .

Proof. Let f be a Fine computable function with respect to α(k, i).

If n > α(k + 1, i), then J(ei, α(k + 1, i)) =
⋃

j2−n∈J(ei,α(k+1,i)) I(n, j).

Assume further that x ∈ J(ei, α(k + 1, i)). Then, x ∈ I(n, j) for some j

which satisfies j2−n ∈ J(ei, α(k +1, i)) and ϕn(x) = f(j2−n). So we obtain

|ϕn(x) − f(x)| = |f(j2−n) − f(x)| 6 |f(j2−n) − f(ei)| + |f(ei) − f(x)|

< 2−(k+1) + 2−(k+1) = 2−k.

Therefore, {ϕn} Fine converges effectively to f with respect to γ(k, i) =

β(k, i) = α(k + 1, i).

Similarly to Proposition 4.1, we can obtain the following proposition.

Proposition 5.1. A sequence of functions {fn} Fine converges effectively

to f if and only if there exist a recursive sequence of dyadic rationals {sk,i}
and recursive functions β(k, i) and γ(k, i) which satisfy the following:

(a) x ∈ J(sk,i, β(k, i)) and n > γ(k, i) imply |fn(x) − f(x)| < 2−k.

(b)
⋃∞

i=1 J(sk,i, β(k, i)) = [0, 1) for each k.

(c) {J(sk,i, β(k, i))}i are disjoint for each k.

We can also define the notion of effective Fine convergence with respect

to any effective separating set, and prove that the notion of effective Fine

convergence does not depend on the choice of an effective separating set.

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

153

Now, we prove the closedness of the space of Fine computable functions

under effective Fine convergence.

Theorem 5.2. If an effectively Fine continuous sequence of functions

{fn} Fine converges effectively to f , then f is effectively Fine continuous.

Proof. Let {fn} be effectively Fine continuous with respect to α(n, k, p),

that is, x ∈ J(ep, α(n, k, p)) implies |fn(x) − fn(ep)| < 2−k and⋃∞
p=1 J(ep, α(n, k, p)) = [0, 1) for each n, k. From effective Fine conver-

gence, we obtain {sk,i}, β(k, i) and γ(k, i) satisfying the conditions (a), (b)

and (c) in Proposition 5.1. In particular, {J(sk,i, β(k, i))}i are are disjoint

for each k.

From the requirement (ii-b) of Definition 3.5 for α(n, k, p), we have

J(sk+2,i, β(k + 2, i)) ⊆ [0, 1) =
⋃∞

p=1 J(ep, α(γ(k + 2, i), k + 2, p)).

If we set I = J(sk+2,i, β(k+2, i)) and {Jk,i,p}p = {J(ep, α(γ(k+2, i), k+

2, p))∩ I}p, and apply Lemma 4.2, we obtain a recursive dyadic covering of

J(sk+2,i, β(k + 2, i)), say {Ik,i,q} = {I(ξ(k, i, q), η(k, i, q))}, which satisfies

(i)∼(iii) of Lemma 4.2 for each pair k, i . Let us remark that Ik,i,q is a

subinterval of Jk,i,p for some p, and that ξ(k, i, q) and η(k, i, q) are recursive

functions.

We can find effectively some p = p(k, i, q) such that ep ∈ Ik,i,q . Define

rk,i,q = ep and δ(k, i, q) = ξ(k, i, q), and assume x ∈ J(rk,i,q , δ(k, i, q)) =

Ik,i,q . Since J(rk,i,q , δ(k, i, q)) ⊆ J(sk+2,i, β(k+2, i)), |f(x)−fγ(k+2,i)(x)| <

2−(k+2) and |f(rk,i,q) − fγ(k+2,i)(rk,i,q)| < 2−(k+2) hold. So

|f(x) − f(rk,i,q)|
6 |f(x) − fγ(k+2,i)(x)| + |fγ(k+2,i)(x) − fγ(k+2,i)(rk,i,q)|

+|fγ(k+2,i)(rk,i,q) − f(rk,i,q)|
< |fγ(k+2,i)(x) − fγ(k+2,i)(rk,i,q)| + 2−(k+1).

On the other hand, Ik,i,q = J(rk,i,q , δ(k, i, q)) ⊆ J(ep, α(γ(k + 2, i), k +

2, p)) = Jk,i,p and rk,i,q = ep imply that

|fγ(k+2,i)(x)−fγ(k+2,i)(rk,i,q)| = |fγ(k+2,i)(x)−fγ(k+2,i)(ep)| < 2−(k+2).

Therefore, x ∈ J(rk,i,q , δ(k, i, q)) implies |f(x) − f(rk,i,q)| < 2−k.

Furthermore, ∪i ∪q J(rk,i,q , δ(k, i, q)) = ∪iJ(sk+2,i, β(k + 2, i)) = [0, 1)

due to the assumption for {sk,i}, β, γ and δ.

We can perform the above procedure effectively in i. So, taking some

recursive pairing function, 〈i, q〉 = i+ 1
2 (i+ q)(i+ q +1) for example, define

rk,` = rk,i,q and δ(k, `) = δ(k, i, q) for ` = 〈i, q〉. Then, the necessary con-

dition of Proposition 4.1 (with respect to k and `) holds for f , {rk,`} and

δ(k, `) for each `. We can thus conclude that f is effectively continuous.

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

154

Theorem 5.3. If a Fine computable sequence of functions {fn} Fine con-

verges effectively to f , then f is Fine computable.

Proof. Effective Fine continuity is guaranteed by Theorem 5.2.

Let us assume that {fn} Fine converges effectively to f with respect

to β(k, i) and γ(k, i). To prove the sequential computability, let {xm}
be Fine computable. We can find effectively an i = i(k, m) so that

xm ∈ J(ei, β(k, i)). If n > γ(k, i), then |fn(xm) − f(xm)| < 2−k. So the

E-computable sequence {fn(xm)}n converges effectively to {f(xm)} effec-

tively in m, and hence {f(xm)}m is an E-computable sequence.

Combining Theorem 5.3 with Theorem 5.1, we obtain the following.

Theorem 5.4. (Equivalent condition for Fine computable function)

A function f is Fine computable if and only if there exists a computable

sequence of dyadic step functions which Fine converges effectively to f .

We can extend Theorem 5.3 to the case where a computable double

sequence {fm,n} Fine converges effectively to a sequence {fm}, by suitably

extending the notions of the Fine computable sequence, the effective Fine

convergence and the computable sequence of dyadic step functions.

Theorem 5.5. If a Fine computable double sequence of functions {fm,n}
Fine converges effectively to a sequence {fm}, then {fm} is Fine com-

putable.

Theorem 5.6. A sequence of functions {fm} is Fine computable if and

only if there exists a computable double sequence of dyadic step functions

{ϕm,n}, which Fine converges effectively to {fm}.

Example 5.1. (Counter Example) Let us consider χ 1
3

in Proposition

4.3. Define xn to be 1
3 (1 − 4−n). Then {xn} is Fine computable and Fine

converges to 1
3 . Hence, χxn

converges pointwise to χ 1
3
. Moreover, {χxn

} is

a computable sequence of dyadic step functions (Definition 5.2). However,

the convergence is neither Fine nor continuous due to Propositions 2.4 and

2.5.

6. Recursive functional equations and Fine computable

functions

In this section, we provide several examples concerning Fine computability

of functions. Some of them are represented as linear combinations of χc(x)’s

and χ̃n(x)’s, which have been introduced in Section 4 (Equation (1)).

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

155

Example 6.1. Define fn =
∑n

i=1 2−iχei
and f =

∑∞
i=1 2−iχei

. Then,

{fn} is uniformly Fine computable , |fn(x) − fm(x)| 6

∑m
i=n+1 2−i < 2−n

holds for n < m, and {fn} converges effectively uniformly to f . So, f is

uniformly Fine computable by Theorem 3.1. On the other hand, f is E-

discontinuous at every dyadic rational, since f(x) − f(ei) > 2−i for any

x < ei.

Example 6.2. Let a be a one-to-one recursive function from positive in-

tegers to positive integers, whose range is not recursive, and let us define

fn(x) =
∑n

k=1 χ̃a(k)(x) and f(x) =
∑∞

k=1 χ̃a(k)(x). Then, {fn} is a com-

putable sequence of dyadic step functions. Classically, {fn} converges to f

and f is Fine continuous. However, f does not satisfy the sequential com-

putability, since f(1− 2−m) = 1 if m = a(k) for some k and = 0 otherwise.

So, the convergence is not effectively Fine by Theorem 5.3. On the other

hand, f is effectively locally uniformly Fine continuous.

The existence of an example which is Fine computable but not locally

uniformly Fine computable has been proved by Brattka.2

Example 6.3. (Brattka2) The example of Brattka is the following:

v(x) = (4){∑∞
i=0(`i mod 2)2−ni−

∑i−1

j=0
(nj+`j) if µ(x) = 0n01`00n11`10n2 · · ·∑m

i=0(`i mod 2)2−ni−
∑i−1

j=0
(nj+`j) if µ(x) = 0n01`00n11`10n2 · · · 1`m0ω

,

where n0 > 0, ni > 0 for i > 0 and `i > 0 for all i > 0. (µ(x) expresses the

binary expansion of x with infinitely many zero’s.)

For investigation of this example and its generalizations, we introduce

the following fundamental dyadic intervals and mappings.

A` = [1 − 2−(`−1), 1− 2−`), S`(t) = 1 − 2−(`−1) + 2−`t : [0, 1) → A`

B` = [1 − 2−`, 1) =
⋃∞

j=`+1 Aj , R`(t) = 1 − 2−` + 2−`t : [0, 1) → B`

Obviously, {A`}∞`=1 is an infinite partition of [0, 1) and {A1, . . . , Aj , Bj}
is a finite partition of [0, 1) for each j. Furthermore, S` is a bijection from

[0, 1) onto A` and S−1
` (x) = 2`(x − (1 − 2−(`−1))). R` is a bijection from

[0, 1) onto B` and R−1
` (x) = 2`(x − (1 − 2−`)).

We note that x ∈ A` if and only if µ(x) is expressed as 1`−10 ∗ ∗ · · · .
First, we treat the approximating sequence of dyadic step functions

{vn}, which is obtained from v by Equation (3) in Theorem 5.1. Since v

is known to be Fine computable, {vn} Fine converges effectively to v by

virtue of Theorem 5.1.

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

156

The fact that the v is not locally uniformly Fine continuous2 assures

that it is not locally uniformly Fine computable. From this and Theorem

3.2, it follows that the convergence of {vn} to v cannot be locally uniformly

Fine, let alone effectively locally uniformly Fine.

It is easy to see that the sequence {vn} satisfies the following recurrence

equation.

v1(x) =

{
0 if x ∈ A1 = [0, 1

2)

1 if x ∈ B1 = [1
2 , 1)

,

vn(x) =





1+(−1)i

2 + 2−ivn−i(S
−1
i (x)) if x ∈ Ai (1 6 i 6 n − 1)

1+(−1)n

2 if x ∈ An

1+(−1)n+1

2 if x ∈ Bn

. (5)

We illustrate the first four of {vn} in Figure 1. Let us examine the graph

of v4. The restriction of v4 to A1 = [0, 1
2) is the contraction of the graph of v3

with scale 1
2 . The restriction of v4 to A2 = [12 , 3

4) is the vertical translation

of the contraction of the graph of v2 with scale 2−2. The restriction of v4 to

A3 = [34 , 7
8) is the contraction of the graph of v1 with scale 2−3. v4(x) = 1

if x ∈ A4 = [7
8 , 15

16) and v4(x) = 0 if x ∈ B4 = [1516 , 1).

v1(x) v2(x)
0

1/2

1

1 0

1/2

1

1

v3(x) v4(x)
0

1/2

1

1 0

1/2

1

1

Fig. 1. vn(x) for n = 1, 2, 3, 4

By definition, it holds that v`(k2−n) = vn(k2−n) for ` > n, and hence

they are equal to v(k2−n) for any k < 2n. This shows that the value v(x)

is determined by vn(x) if x is a dyadic rational of level n.

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

157

In Figure 2, we present an approximating graph of v by drawing a line

from (k2−6, v(k2−6)) to ((k + 1)2−6, v(k2−6)) for 0 6 k 6 26 − 1.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

lineps6large.nb 1

Fig. 2. v(x) for x = k2
−6, 0 6 k 6 2

6 − 1

To prove some properties of the function v, we derive a simple recurrence

equation. It is easily proved from Equation (4) that v(x) satisfies v(0) = 0

and the following functional equation

v(x) = 1+(−1)`

2 + 2−`v(S−1
` (x)) if x ∈ A` (` = 1, 2, . . .). (6)

Equation (6) suggests that the graph of v has a certain properties of the

fractal. This property is called invariance for an infinite systems of contrac-

tions.11 If we replace the first term in the right hand side of Equation (6)

with a computable sequence from [0, 1), we can obtain other examples of

Fine computable functions.

Theorem 6.1. Assume that {h(`)}` is an E-computable sequence from

[0, 1] and that h(1) = 0.

(i) The equation

f(x) = h(`) + 2−`f(S−1
` (x)) if x ∈ A` (` = 1, 2, . . .) (7)

has a unique bounded Fine computable solution.

(ii) If lim inf`→∞ h(`) 6= lim sup`→∞ h(`), then the bounded solution of

Equation (7) is not locally uniformly Fine continuous.

(iii) If lim inf`→∞ h(`) = lim sup`→∞ h(`) = lim`→∞ h(`) = a and

this convergence is effective, then the bounded solution of Equation (7) is

uniformly Fine computable.

If h is given by h(`) = 0 for an odd ` and = 1 for an even `, then we

obtain the example of Brattka.

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

158

We can also get Fine computable functions by the following equation,

which is similar to Equation (7) but slightly different.

Theorem 6.2. Let h satisfy the assumption of Theorem 6.1.

(i) The equation

f(x) = h(`) + 1
2f(S−1

` (x)) if x ∈ A` (` = 1, 2, . . .) (8)

has a unique bounded Fine computable solution.

(ii) If h is not constant, then the bounded solution of Equation (8) is

not locally uniformly Fine continuous.

For the proof of Theorems 6.1 and 6.2, we introduce the following no-

tations: For each x ∈ [0, 1), we can define an infinite sequence of positive

integers {`i(x)}∞i=1 so that x ∈ A`1(x) and S−1
`i(x) · · ·S

−1
`1(x)(x) ∈ A`i+1(x),

and then define L0(x) = 0 and Lj(x) = `1(x)+ `2(x)+ · · ·+ `j(x) for j > 0.

For a dyadic rational r, we define its level by

lev(r) = min{n ∈ N | ∃j.r = j2−n}. (9)

We have mentioned the level of a fundamental dyadic interval I in Section

3. We denote this with lev(I). If {rn} is a recursive sequence of dyadic

rationals, then {lev(rn)}n is recursive.

We list up some properties concerning {S`} and {`i(x)}.

Fact 1: `j(x) > 1 and Lj(x) > j.

Fact 2: For any positive integers `1, `2, . . . , `k, we define Lk = `1+ . . .+

`k. Then S`1S`2 · · ·S`k
([0, 1))

= [1 − 2−L1 − 2−L2 − · · · − 2−(Lk−1), 1 − 2−L1 − 2−L2 − · · · − 2−Lk) is a

fundamental dyadic interval of level Lk.

Fact 3: For any positive integers `1, `2, . . . , `k,

if x ∈ S`1S`2 · · ·S`k
([0, 1)), then `i(x) = `i, i = 1, 2, . . . , k.

Fact 4: If a dyadic rational r is of level n and lies in A`, then the level

of S−1
` (r) is equal to or less than n − `. Hence, if Lj(r) > lev(r), then

S−1
`j(r) · · ·S

−1
`2(r)S

−1
`1(r)(r) = 0.

Fact 5: If {xn} is a Fine computable sequence of reals, then the double

sequence of integers {`i(xn)} is recursive in i and n.

Fact 6: Let f be a solution of Equation (7).

Put t = S−1
`j(x) · · ·S

−1
`2(x)S

−1
`1(x)(x) for x ∈ [0, 1). Then we obtain f(x) =

h(`1(x)) + 2−L1(x)h(`2(x)) + · · · + 2−Lj−1(x)h(`j(x)) + 2−Lj(x)f(t). (10)

Moreover, if r is dyadic rational and Lj(r) > lev(r), then it holds by

Fact 4 that

f(r) = h(`1(r)) + 2−L1(r)h(`2(r)) + · · · + 2−Lj−1(r)h(`j(r)). (11)

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

159

Fact 7: Let f satisfy Equation (8). Put t = S−1
`j(x) · · ·S

−1
`2(x)S

−1
`1(x)(x) for

x ∈ [0, 1). Then, we obtain

f(x) = h(`1(x)) + 2−1h(`2(x)) + · · · + 2−(j−1)h(`j(x)) + 2−jf(t), (12)

f(r) = h(`1(r)) + 2−1h(`2(r)) + · · · + 2−(j−1)h(`j(r)). (13)

for dyadic rational r with Lj(r) > lev(r).

Subsequently, ||f || will denote the supremum of a function f (if it exists).

Proof of Theorem 6.2 (i). Let f be a bounded solution of Equation

(8) (or Equation (7)). Since, 0 ∈ A1 and S−1
1 (0) = 0, we obtain f(0) =

1
2f(0) and hence f(0) = 0. From Equation (12) (or Equation (10)) and the

assumption that h(`) ∈ [0, 1], we obtain |f(x)| 6 1 + 2−1 + · · · + 2−(j−1) +

2−j ||f ||. Letting j tend to infinity, we obtain |f(x)| 6

∑∞
j=0 2−j = 2. Hence

||f || 6 2.

Existence: Since ||h|| 6 1,
∑∞

j=1 2−(j−1)h(`j(x)) converges absolutely and

uniformly in x. If we denote this limit function by f , then it is easy to prove

that f satisfies Equation (8).

Uniqueness: Suppose that f and g are bounded solutions of Equation (8)

or of Equation (7). Then, from Equation (12) (or from Equation (10)),

|f(x) − g(x)| 6 2−j(||f || + ||g||)
holds for all j. Since the right-hand side tends to zero as j tends to infinity,

we obtain f = g.

We remark that the unique bounded solution of Equation (8) is given

by f(x) =
∑∞

j=1 2−(j−1)h(`j(x)) by Existence and Uniqueness, The conver-

gence in the right-hand side is effectively uniform.

Effective Fine Continuity: We temporarily fix an arbitrary k. From the

definition of {S`} and Fact 2, the set of intervals

{S`1S`2 · · ·S`k+3
([0, 1))}`1,`2,...,`k+3

is a partition of [0, 1) consisting of fun-

damental dyadic intervals. (`1, `2, . . . , `k+3 range over all positive integers.)

Therefore, each ei is contained in some I = S`1S`2 · · ·S`k+3
([0, 1)). Note

that we can find such I effectively in k and i. If we define γ(k, i) to be the

level of I , then J(ei, γ(k, i)) = I and γ is recursive.

Assume that x ∈ J(ei, γ(k, i)). Then, `j(x) = `j(ei) = `j for 1 6 j 6

k + 3 by Fact 3, and we obtain by Equation (12)

f(x) = h(`1) + 2−1h(`2) + · · · + 2−(k+2)h(`k+3) + 2−(k+3)f(t),

f(ei) = h(`1) + 2−1h(`2) + · · · + 2−(k+2)h(`k+3) + 2−(k+3)f(s),

where, t = S−1
`k+3

· · ·S−1
`2

S−1
`1

(x) and s = S−1
`k+3

· · ·S−1
`2

S−1
`1

(ei). Therefore,

|f(x) − f(ei)| 6 2 2−(k+3)||f || 6 4 2−(k+3) < 2−k.

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

160

This proves the effective Fine continuity of f .

Sequential Computability: Let {xn} be a Fine computable sequence in [0, 1).

Define yn,m = h(`1(xn)) + 2−1h(`2(xn)) + · · · + 2−(m−1)h(`m(xn)).

Then, the double sequence {yn,m} is E-computable by Fact 5 and E-

converges effectively to {f(xn)} by the remark in the proof of uniqueness.

Therefore, {f(xn)} is an E-computable sequence of reals.

Theorem 6.1 (i) can be proved similarly by replacing (8) with (7) and

(12) with (11).

Proof of Theorem 6.1 (ii). Let us assume that lim infm→∞ h(m) 6=
lim supm→∞ h(m), and suppose that f were locally uniformly Fine con-

tinuous with respect to functions α(k, i) and β(i), that is, for all k,

|f(x) − f(y)| < 2−k if x, y ∈ J(ei, β(i)) and y ∈ J(x, α(k, i)), and⋃∞
i=1 J(ei, β(i)) = [0, 1).

Put δ = lim sup`→∞ h(`)− lim inf`→∞ h(`) and consider any fixed i and

the corresponding J(ei, β(i)).

Now, take k so large that 2−k < δ 2−(β(i)+1). From the definition of δ,

there exist m1 > α(k, i) and m2 > α(k, i) such that h(m2) − h(m1) > δ
2 .

Let z be the left end point of J(ei, β(i)). Then it holds that lev(z) 6

β(i). Put further x = z+2−(β(i)+1)(1−2−(m1−1)) and y = z+2−(β(i)+1)(1−
2−(m2−1)). Then z, x and y are dyadic rationals and z can be expressed

as j2−β(i) for some integer j. From the last property above, there exists

an integer n such that Ln(z) = β(i) + 1. `j(z) = `j(x) = `j(y) if j 6 n,

`j(z) = 1 if j > n, `n+1(x) = m1, `n+1(y) = m2 and `j(x) = `j(y) = 1 if

j > n + 1.

By Equation (11) and Fact 1, we obtain

f(y) − f(x) = 2−Ln(z)(h(m2) − h(m1)) > 2−(β(i)+2)δ. (14)

From Equation (14) and the choice of k, f(y) − f(x) > 2−k holds.

On the other hand, x, y ∈ J(ei, β(i)) and y ∈ J(x, α(k, i)) hold. This

implies, from the assumption, |f(x) − f(y)| < 2−k, contradicting Equation

(14). f is thus not locally uniformly Fine continuous.

Proof of Theorem 6.2 (ii). Assume that h(m1) < h(m2). For any i,

there exists an integer n such that Ln(ei) = lev(ei) + 1. Put, for any m,

x = ei + 2−(lev(ei)+1)(1 − 2−(m−1)) + 2−(m+lev(ei)+1)(1 − 2−(m1−1))

and

y = ei + 2−(lev(ei)+1)(1 − 2−(m−1)) + 2−(m+lev(ei)+1)(1 − 2−(m2−1)).

Then, x and y are dyadic rationals and satisfy

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

161

`n+1(x) = `n+1(y) = m, `n+2(x) = m1, `n+2(y) = m2,

`n+3(x) = `n+3(y) = 1, `n+4(x) = `n+4(y) = 1, · · · .

So we obtain

f(x) = f(ei) + 2−(lev(ei)+1)h(m) + 2−(lev(ei)+2)h(m1)

f(y) = f(ei) + 2−(lev(ei)+1)h(m) + 2−(lev(ei)+2)h(m2)

by Equation (13). Hence, f(y) − f(x) = 2−(lev(ei)+2)(h(m2) − h(m1)) > 0.

On the other hand, it holds that x, y ∈ J(z, lev(ei) + m) and y ∈
J(ei, lev(ei) + m). If f were locally uniformly Fine continuous, then

f(y)−f(x) would be arbitrarily small for sufficiently large m, contradicting

the last inequality.

Proof of Theorem 6.1 (iii). For any `1, `2, . . . , `j and x ∈ [0, 1), define

t = S−1
`j

· · ·S−1
`1

(x). Then it holds that `i(x) = `i for 1 6 i 6 j and we

obtain by Fact 6 (10),

f(x) = h(`1) + 2−L1h(`2) + · · · + 2−Lj−1h(`j) + 2−Ljf(t). (15)

Let α(k) be a modulus of convergence of h to some number a, that is, α

is a recursive function which satisfies that ` > α(k) implies |h(`)−a| < 2−k.

We can assume that α(k) > k.

Let us consider the finite partition of [0, 1) consisting of all sets of

the form U1U2 · · ·Uk+3[0, 1), where Ui is chosen from the family of sets

{S1, S2, . . . , Sα(k+3), Rα(k+3)}. By Fact 2, each U1U2 · · ·Uk+3[0, 1) is a fun-

damental dyadic interval. So we can define β(k) to be the maximum of their

levels.

Suppose y ∈ J(x, β(k)). Then x and y are contained in some

U1U2 · · ·Uk+3[0, 1).

If Rα(k+3) does not appear in U1, U2, . . . , Uk+3, then it holds that `i(x) =

`i(y) for 1 6 i 6 k + 3 from Fact 3. So we obtain by Equation (15)

|f(x) − f(y)| 6 2 2−Lk+3||f || 6 4 2−(k+3) < 2−k.

Otherwise, there exists at least one Rα(k+3) in U1, U2, . . . , Uk+3. Let Uj

be the first occurrence of Rα(k+3) in U1, U2, . . . , Uk+3. If j > 2, then `i(x) =

`i(y) for 1 6 i 6 j − 1. Since Rα(k+3)([0, 1)) = Bα(k+3) =
⋃∞

i=α(k+3)+1 Ai,

we obtain from (15), for some t, s ∈ [0, 1),

f(x) = h(`1(x)) + 2−L1(x)h(`2(x)) + · · · + 2−Lj−2(x)h(`j−1(x))

+2−Lj−1(x)h(`j(x)) + 2−Lj(x)f(t),

f(y) = h(`1(y)) + 2−L1(y)h(`2(y)) + · · · + 2−Lj−2(y)h(`j−1(y))

+2−Lj−1(y)h(`j(y)) + 2−Lj(y)f(s).

It holds that `j(x), `j(y) > α(k + 3) > k + 3. So we obtain

July 23, 2010 10:26 WSPC - Proceedings Trim Size: 9in x 6in 11

162

|f(x) − f(y)|

6 2−Lj−1(x)|h(`j(x)) − h(`j(y))| + 2−Lj(x)|f(t)| + 2−Lj(y)|f(s)|

6 2−(k+3) + 4 2−α(k+3)
6 5 2−(k+3) < 2−k.

Therefore, y ∈ J(x, β(k)) implies |f(x)−f(y)| < 2−k, and the effectively

uniform Fine continuity holds.

References

1. E. Binz. Continuous Convergence on C(X). Lecture Notes in Mathematics
469. Springer, 1975.

2. V. Brattka. Some Notes on Fine Computability. Journal of Universal Com-

puter Science, 8:382-395, 2002.
3. H.-P. Butzmann and M. Schroder. Spaces making continuous convergence

and locally uniformly convergence coincide, their very weak P -property, and
their topological behavior. Math. Scand., 67:227-254, 1990.

4. N. J. Fine. On the Walsh Functions. Trans. Amer. Math. Soc., 65:373-414,
1949.

5. T. Mori. Computabilities of Fine-Continuous Functions. Computability and

Complexity in Analysis, (4th International Workshop, CCA2000. Swansea),
ed. by Blanck, J. et al., 200-221. Springer, 2001.

6. T. Mori. On the computability of Walsh functions. Theoretical Computer

Science, 284:419-436, 2002.
7. T. Mori. Computabilities of Fine continuous functions. Acta Humanistica et

Scientifica Universitatis Sangio Kyotiensis, Natural Science Series I, 31:163-
220, 2002. (in Japanese)

8. M.B. Pour-El and J. I. Richards. Computability in Analysis and Physics.
Springer-Verlag, 1989.

9. M. Schröder. Extended admissibility Theoretical Computer Science, 284:519-
538, 2002.

10. F. Schipp, W.R. Wade and P. Simon. Walsh Series. Adam Hilger, 1990.
11. Y. Tsujii, M. Mori, M. Yasugi and H. Tsuiki . Fine-Continuous Functions

and Fractals Defined by Infinite Systems of Contractions. Lecture Notes in

Computer Science, Vol. 5489, 109-125. Springer, 2009.
12. Y. Tsujii, M. Yasugi and T. Mori. Some Properties of the Effective Uniform

Topological Space. Computability and Complexity in Analysis, (Lecture Notes

in Computer Science 2064), ed. by Blanck, J. et al., 336-356. Springer, 2001.
13. M. Yasugi, T. Mori and Y. Tsujii. Effective sequence of uniformities and its

effective limit, CCA2005 Proceedings (Informatik Berichte 326-7/2005 Fern
Universität in Hagen),301-318,2005.

14. M. Yasugi and M. Washihara. A note on Rademacher functions and com-
putability. Words, Languages and Combinatorics III, ed. by Masami Ito,
Teruo Imaoka, 466-475. World Scientific, 2003.

Received: August 17, 2009

Revised: December 14, 2009

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

163

ON A HIERARCHY OF PERMUTATION LANGUAGES

BENEDEK NAGY

Department of Computer Science, Faculty of Informatics, University of Debrecen,

4010 Debrecen, PO Box. 12, Hungary,

E-mail: nbenedek@inf.unideb.hu

www.inf.unideb.hu/∼nbenedek

The family of context-free grammars and languages are frequently used. Unfor-

tunately several important languages are not context-free. In this paper a possi-

ble family of extensions is investigated. In our derivations branch-interchanging

steps are allowed: language families obtained by context-free and permutation

rules are analysed. In permutation rules both sides of the rule contain the

same symbols (with the same multiplicities). The simplest permutation rules

are of the form AB → BA. Various families of permutation languages are

defined based on the length of non-context-free productions. Only semi-linear

languages can be generated in this way, therefore these language families are

between the context-free and context-sensitive families. Interchange lemmas

are proven for various families. It is shown that the generative power is in-

creasing by allowing permutation rules with length three instead of only two.

Closure properties and other properties are also detailed.

Keywords: Chomsky hierarchy; Permutation languages; Interchange (permuta-

tion) rule; Semi-linear languages; Mildly context-sensitivity.

1. Introduction

The Chomsky type grammars and the generated language families belong

to the most basic and most important fields of theoretical computer sci-

ence. The field is fairly old, the basic concepts and results are from the

middle of the last century (see, for instance, Refs. 1–4). The context-free

grammars (and languages) are widely used due to their generating power

and due to the simple way of derivation. The derivation trees represent

the context-free derivations. In these derivations the direction left-to-right

is preserved. Moreover the branches of the tree are independent of each-

other. Well known that there is a big gap between the efficiency of context-

free and context-sensitive grammars. There are very simple non-context-

free languages as well, for instance {a2n

|n ∈ N}, {anbncn|n ∈ N}, etc. So,

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

164

context-free grammars are not enough to describe several phenomena of the

world,5 but the context-sensitive family is too large, the context-sensitive

grammars are too powerful and they have some inconvenient properties.

Therefore several branches of extensions of context-free grammars were in-

troduced by controlling the derivations in another way.5 It was known in

the early 70’s that every context-sensitive grammar has an equivalent one

using rules of the following types AB → AC, AB → BA, A → BC, A → B

and A → a (where A, B, C are non-terminals and a is a terminal symbol). In

1974 Penttonen showed that one-side context-sensitivity is enough to obtain

the whole context-sensitive language class,6 so grammars with only rules of

type AB → AC, A → BC, A → B, A → a are enough. In Turing-machine

simulations the rules of type AB → BA are frequently used to represent

the movement of the head of the machine. We use the term permutation

rule (or interchange rule) for those rules which have the same multiset of

symbols in both sides. They allow to permute some consecutive letters in

the sentential form. The grammars having non-context-free rules only in

the form AB → BA was characterized in Refs. 7,8. Now we are continuing

the research by allowing longer permutation rules, e.g., rules of length 3 as

rules type ABC → CBA. We note here that in Ref. 9 long permutation

rules are allowed without fixed points.

These rules are monotone rules having exactly the same letters in both

sides. We will show that the context-free rules and interchange rules are

more efficient than the context-free derivations, moreover the generative

capacity is increasing by allowing permutation rules of length 3 instead of

2, but they are not enough to get all context-sensitive languages.

Our investigation has an interest for concurrency and parallelisation

theory as well, where the order of some processes can be interchanged.

The work has some linguistic motivations as well: in some morpholog-

ically rich languages (as, for instance, Japanese, Finnish and Hungarian)

the word order is not strict in a sentence. Example: ‘A kutya hangosan

ugat.’ ‘Hangosan ugat a kutya.’ ‘A kutya ugat hangosan.’ ‘Hangosan a

kutya ugat.’ ‘Ugat a kutya hangosan.’ ‘Ugat hangosan a kutya.’ are all cor-

rect sentences about the same meaning: The dog (a kutya) barks (ugat)

loudly (hangosan). So, usually some of the parts of the sentences can freely

be interchanged. Some linguistical applications of permutation languages

are shown in Ref. 10.

The structure of the paper is as follows. In the next section we recall

some basic definitions and facts that we need later on. After this, Sec. 3 is

devoted to introduce and analyse new families of languages. Some of our

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

165

results are extensions of the results presented in Ref. 8 to wider classes

of languages. Moreover our main result is the proof of the strict inclusion

between the language classes generated by context-free and permutation

rules of length 2 and 3, respectively. We will prove that these families con-

tain only semi-linear context-sensitive languages and all the context-free

languages. Examples and several properties, such as, closure properties are

detailed.

2. Basic Definitions and Preliminaries

First some definitions about Chomsky-type grammars and generated lan-

guages are recalled and our notations are fixed.

A grammar is a construct G = (N, T, S, H), where N, T are the non-

terminal and terminal alphabets, with N ∩ T = ∅; they are finite sets.

S ∈ N is a special symbol, called initial letter or start symbol. H is a

finite set of pairs, where a pair (v, w) is usually denoted by v → w with

v ∈ (N ∪ T)∗N(N ∪ T)∗ and w ∈ (N ∪ T)∗, (where we used the well-

known notation of Kleene-star). H is the set of derivation rules; v ⇒ w

(v, w ∈ (N ∪T)∗) is a direct derivation if there exist v1, v2, v
′, w′ ∈ (N ∪T)∗

such that v = v1v
′v2, w = v1w

′v2 and v′ → w′ ∈ H . The transitive and

reflexive closure of the direct derivation is the derivation denoted by v ⇒∗ u.

We say that v ∈ (N∪T)∗ is a sentential form if S ⇒∗ v holds. The language

generated by a grammar G is the set of terminal words which can be derived

from the initial letter: L(G) = {w|S ⇒∗ w, w ∈ T ∗}.
We use λ to denote the empty word. For any word and sentential form

u we will use |u| to sign its length, i.e., the number of letters it contains.

Note that |λ| = 0. Two grammars are equivalent if they generate the same

language up to the empty word.

Depending on the possible structures of the derivation rules various

classes of grammars are defined. We recall the most important classes.

• monotone grammars: each rule v → u satisfies the condition |v| ≤ |u| but

the possible rule S → λ, in which case S does not occur on any right

hand side of a rule.

• context-free grammars: for every rule the next scheme holds: A → v with

A ∈ N and v ∈ (N ∪ T)∗.

• regular grammars: each derivation rule is one of the following forms:

A → w, A → wB; where A, B ∈ N and w ∈ T ∗.

A language is regular/ context-free/ context-sensitive if it can be gen-

erated by a regular/ context-free/ monotone grammar, respectively. For

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

166

these families the notations Lreg , LCF and LCS are used. The language

families generated by generative grammars form the Chomsky hierarchy:

Lreg (LCF (LCS .

Let u be a word, then uT denotes its mirror word (i.e., its reading from

the end to the beginning).

Let v and u be two words over the alphabet T . The shuffle of v and

u is defined as u � v = {u1v1...unvn|u = u1...un, v = v1...vn, ui ∈ T ∗, vi ∈
T ∗, 1 ≤ i ≤ n, n ∈ N, n ≥ 1}. Consequently, the shuffle of languages L1 and

L2 is: L1 � L2 = {w|w = u � v, u ∈ L1, v ∈ L2}.
Let T and T ′ be two alphabets. A mapping h : T ∗ → (T ′)∗ is called

homomorphism if h(λ) = λ and h(uv) = h(u)h(v) for all u, v ∈ T ∗.

Let the terminal alphabet T be ordered. For each word its Parikh-vector

is assigned (Parikh-mapping). The elements of this vector are the occur-

rences of the letters of the alphabet in the word. Formally, using alphabet

T = (a1, a2, ..., an): Ψ : T ∗ → N
n, Ψ(w) = (|w|a1

, |w|a2
, ..., |w|an

), where

w ∈ T ∗ and |w|ai
is the number of occurrences of the letter ai in w. The

set of Parikh-vectors of the words of a language is called the Parikh-set

of the language. Formally: Ψ(L) = {Ψ(w)|w ∈ L}. Two languages are

letter-equivalent if their Parikh-sets are identical. A language is linear (in

Parikh-sense) if its Parikh set can be written in the form of a linear set:{
v0 +

m∑
i=1

xivi|xi ∈ N

}
, for some vj ∈ N

n, 0 ≤ j ≤ m. A language is semi-

linear (in Parikh-sense) if its Parikh set can be written as a finite union of

linear sets. Due to Parikh’s theorem11 it is known that every context-free

language is semi-linear. For every semi-linear set there is a regular language

such that its Parikh set equals to the given semi-linear set. Non semi-linear

context-sensitive languages are known, for instance L� = {an2

|a ∈ T}.
The commutative closure of a language L is the set of all words having

Parikh-vectors included in the Parikh-map of the language, i.e., {w|Ψ(w) ∈
Ψ(L)}. A language is called commutative if it is the commutative closure

of itself.

The context-free grammars are very popular ones because the concept

of derivation trees fits very well in these derivations. It is an important

property of the (context-free) derivations that the direction left-to-right is

preserved. The letters in the beginning of the sentential form refer for the

beginning of the derived word, and have no influence to the end-part.

Now we refine the Chomsky hierarchy. We will obtain language classes

between the context-free and the context-sensitive ones. We do this by

allowing some permutations of the branches of the derivation trees, i.e., the

direction left-to-right is not necessarily preserved in derivations.

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

167

3. Context-Free Grammars Extended with Permutation

Rules

First we are defining the grammar and language class we are dealing with

in a formal way.

A rule is a permutation rule if the left hand side contains exactly the

same non-terminals as its right hand side (with multiplicities). One can

characterize these rules by the length of its sides. There is only one type of

permutation rules with length two: AB → BA, where A, B ∈ N . For rules

having larger length there are several possibilities.

A grammar G = (N, T, S, H) is a permutation grammar if besides the

context-free rules H contains only special type of non-context-free rules,

namely: permutation rules. We denote the language family generated in

this way by Lperm. A permutation grammar is said to be of order n if it has

permutation rules only of length n. The languages that can be generated

by permutation grammars having permutation rules only of length n are

denoted by Lpermn
.

We note here that in some papers7,8 only permutation rules of order

2 are used, while in Ref. 9 longer rules are also allowed but without fixed

points. In this paper we are using the most general form as we defined

above.

In the derivation these new rules allow to permute some branches of

the derivation tree, so the left-to-right property of the context-free case

is violated. Now, let us see an example for a grammar that generates a

language in Lperm2
.

Example 3.1. Let G = ({S, A, B, C}, {a, b, c}, S, H) be a permutation

grammar with H = {S → ABC, S → SABC, AB → BA, BA → AB,

AC → CA, CA → AC, BC → CB, CB → BC, A → a, B → b, C → c}.
Figure 1 shows the “derivation-tree” of the word aaccbb in this system.

The language containing all words with the same number of a, b and

c is generated in the previous example. This language is non-context-free,

since intersected by the regular language described by the expression a∗b∗c∗

the language {anbncn|n ∈ N} is obtained which does not satisfies the usual

pumping lemma for context-free languages (Bar-Hillel12). So, we can state,

that the generating power of the grammars is increasing if we allow in-

terchange rules. Obviously without any (efficiently applicable) interchange

rule one can generate any context-free language. Looking at the “derivation

tree” shown in Fig. 1 one can observe that some branches are interchanged

violating the left-to-right property of context-free derivations.

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

168

Fig. 1. Derivation in a permutation grammar.

One may ask how many interchange rules are needed in the grammar

to generate a non-context-free language. The next example answers the

question: one interchange rule is enough to increase the generating power.

Example 3.2. Let G = ({S, A, B, C}, {a, b, c}, S, H) be a grammar with

rules: H = {S → ABC, S → ABSC, BA → AB, A → a, B → b, C → c}.
The generated language intersected by the regular language a∗b∗c∗ is

anbncn.

Definition 3.1. Let G = (N, T, S, H) be a permutation grammar that

generates L. The grammar Gb = (N, T, S, H ′) obtained from G by deleting

the non-context-free rules from H is the basis grammar of G. The generated

context-free language Lb is a basis language of L.

A basis language is letter equivalent to the original one. Since the per-

mutation rules do not modify the multiset of the symbols of a sentential

form, the Parikh-vector/set of the generated word/language is the same as

the Parikh-vector/set of the word/language generated in a context-free way

without the permutation rules. This fact can be formalized by the following

results.

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

169

Lemma 3.1. Each basis language of a permutation language L is a subset

of L.

Theorem 3.1. All languages which can be generated with permutation

grammars are semi-linear in Parikh-sense.

Proof. Consider a permutation grammar that generates the language L.

Each generated word w of L has a letter-equivalent w′ in the basis context-

free language of L. Therefore L and Lb are letter equivalent. Since all

context-free languages are semi-linear the classes Lperm and Lpermn
(n ∈

N, n ≥ 2) are semi-linear as well.

Corollary 3.1. There are context-sensitive languages that cannot be gen-

erated by permutation grammars.

The proof of this corollary may go by the following example. The context-

sensitive language L� is not semi-linear, therefore it cannot be generated

using only permutation rules as non-context-free rules.

We would like to know something on the generative powers of the per-

mutation grammars having various order.

Lemma 3.2. Let G = (N, T, S, H) be a permutation grammar with a

permutation rule u → v of length n. There is a permutation grammar

G′ = (N ′, T, S, H ′) that is equivalent to G and the set H ′ is obtained from

H by deleting the rule u → v, adding some context-free rules, and adding a

permutation rule of length n + 1.

Proof. Let A be the first nonterminal of u, i.e., u = Au′. Let B1 be a

newly introduced nonterminal (that is in N ′ \N). Let H ′ contain the rules

A → B1A, B1Au′ → B1v, and B1 → λ (instead of the original rule u → v).

One can see that these new rules by the help of the new nonterminal sym-

bol simulate exactly the original derivation rule u → v, i.e., the sequence of

these new rules can and must be applied in a terminating derivation in G′

if and only if the original rule is applied at that place in a derivation in G.

Let n be the length of the longest permutation rule(s) of the grammar

G. By the previous lemma one can replace every shorter permutation rule

by a set of context-free rules and permutation rules of length n. Therefore

the generated language belongs to the class Lpermn
for every permutation

grammar having permutation rules of length at most n. As consequences

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

170

of the previous sequence of ideas we can state the following results about

the hierarchy of these language classes.

Theorem 3.2. The language classes of permutation languages are in the

following relation:

Lpermn
⊆ Lpermn+1

, for n ∈ N, n > 1, and Lperm =
∞⋃

n=1

Lpermn
.

Proof. The statements follow directly from Lemma 3.2.

Further, we can use the term ‘order’ of a permutation grammar in the

sense of its longest permutation rule. Now, we are detailing some further

results about Lperm.

Based on Lemma 3.1 we can state the following.

Proposition 3.1. For every permutation language L there is a number

n ∈ N such that for any word w ∈ L with |w| > n there is a word w′ ∈ L

with the following properties:

• w′ and w have identical Parikh-vectors,

• every context-free pumping lemma works on w′, i.e., there are infinitely

many words in L that can be obtained from w′ by pumping.

So context-free pumping lemmas (Bar-Hillel,12 Ogden,13 Bader-

Moura,14 Dömösi-Ito-Katsura-Nehaniv,15 etc.) can be applied in this way

to permutation languages. Later in this section some interchange lemmas

will be shown for permutation languages.

Now we show an example for a language in Lperm3
. The idea is to

compose the words of three different languages (two linear context-free and

a permutation language of order 2 are used). So every word of the language

can be divided to three scattered subword in the following way: the letters

having the same position modulo 3 form the desired subwords.

Example 3.3. Let G = ({S, S ′, S′′, A, B, C, D, E, E′, F, F ′, G, G′, H, H ′,

I, J, K, M, O, P, Q, R}, {a, b, c, d, e, e′, f, f ′, g, g′, h, h′}, S,

{S → E′AIBS′CODG, S → E′AJBS′′CQDG, S → F ′AKBS′CPDH,

S → F ′AMBS′′CRDH, S′ → IAIBS′CODO, S′ → IAJBS′′CQDO,

S′ → JAKBS′CPDQ, S′ → JAMBS′′CRDQ, S′′ → KAIBS′CODP,

S′′ → KAJBS′′CQDP, S′′ → MAKBS′CPDR,

S′′ → MAMBS′′CRDR, AIB → BIA, BIA → AIB, AJB → BJA,

BJA → AJB, AKB → BKA, BKA → AKB, AMB → BMA,

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

171

BMA → AMB, AOB → BOA, BOA → AOB, APB → BPA,

BPA → APB, AQB → BQA, BQA → AQB, ARB → BRA,

BRA → ARB, AS′B → BS′A, BS′A → AS′B, AS′′B → BS′′A,

BS′′A → AS′′B, AIC → CIA, CIA → AIC, AJC → CJA, CJA → AJC,

AKC → CKA, CKA → AKC, AMC → CMA, CMA → AMC,

AOC → COA, COA → AOC, APC → CPA, CPA → APC,

AQC → CQA, CQA → AQC, ARC → CRA, CRA → ARC,

AS′C → CS′A, CS′A → AS′C, AS′′C → CS′′A, CS′′A → AS′′C,

AID → DIA, DIA → AID, AJD → DJA, DJA → AJD,

AKD → DKA, DKA → AKD, AMD → DMA, DMA → AMD,

AOD → DOA, DOA → AOD, APD → DPA, DPA → APD,

AQD → DQA, DQA → AQD, ARD → DRA, DRA → ARD,

AS′D → DS′A, DS′A → AS′D, AS′′D → DS′′A, DS′′A → AS′′D,

BIC → CIB, CIB → BIC, BJC → CJB, CJB → BJC, BKC → CKB,

CKB → BKC, BMC → CMB, CMB → BMC, BOC → COB,

COB → BOC, BPC → CPB, CPB → BPC, BQC → CQB,

CQB → BQC, BRC → CRB, CRB → BRC, BS ′C → CS′B,

CS′B → BS′C, BS′′C → CS′′B, CS′′B → BS′′C, BID → DIB,

DIB → BID, BJD → DJB, DJB → BJD, BKD → DKB,

DKB → BKD, BMD → DMB, DMB → BMD, BOD → DOB,

DOB → BOD, BPD → DPB, DPB → BPD, BQD → DQB,

DQB → BQD, BRD → DRB, DRB → BRD, BS ′D → DS′B,

DS′B → BS′D, BS′′D → DS′′B, DS′′B → BS′′D, CID → DIC,

DIC → CID, CJD → DJC, DJC → CJD, CKD → DKC,

DKC → CKD, CMD → DMC, DMC → CMD, COD → DOC,

DOC → COD, CPD → DPC, DPC → CPD, CQD → DQC,

DQC → CQD, CRD → DRC, DRC → CRD, CS ′D → DS′C,

DS′C → CS′D, CS′′D → DS′′C, DS′′C → CS′′D, I → EE′, J → EF ′,

K → FE′, M → FF ′, O → GG′, P → GH ′, Q → HG′, R → HH ′,

S′ → EG′, S′′ → FH ′, A → a, B → b, C → c, D → d, E → e, E ′ → e′,

F → f, F ′ → f ′, G → g, G′ → g′, H → h, H ′ → h′})

be a grammar that generates Ld. Then clearly Ld ∈ Lperm3
. The language

consists of the words which can be described in the following way: every

word has length divisible by 12. Regarding the letters of positions 2 modulo

3: they form words having the same number of a, b, c and d. The letters of

positions divisible by 3 form words {ww′|w ∈ {e, f}∗, w′ ∈ {g, h}∗, and w′

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

172

equals to the mirror of w (i.e., wT) with respect to the mapping M : M(e) =

g, M(f) = h}. For every word of Ld the words of letters having positions 1

modulo 3 form the similar word as the word of every third positions over

the alphabet {e′, f ′, g′, h′}.

Now we present a result that can be used to decide whether a language

is not a permutation language. The next theorem is an interchange lemma

for the family Lperm2
.

Theorem 3.3. Let L ∈ Lperm2
and let Lb be any of its basis languages.

For any word w ∈ L, w 6∈ Lb there exists a word w′ ∈ L such that there

exist u, v, x, y ∈ T ∗: w = uxyv, w′ = uyxv and w 6= w′.

Proof. Let G be a permutation grammar of order 2 that generates L such

that it generates Lb without the permutation rules. Since w 6∈ Lb there

exists a/last rule AB → BA that is applied in a derivation of w for some

A, B ∈ N . Then there is a derivation, such that S ⇒∗ uABv ⇒ uBAv ⇒∗

uxyv = w in which w can be generated in context-free way from uBAv.

Obviously w′ = uyxv ∈ L generated without the last application of the

interchange rule AB → BA.

Now we show that Example 3.3 does not satisfy the condition of Theo-

rem 3.3.

Language Ld is clearly not context-free.

Let us consider the words w′
n of the following shape: let un be the word of

the letters of 2 modulo 3 positions (that can be obtained by homomorphism

M1 : M1(a) = a, M1(b) = b, M1(c) = c, M1(d) = d, M1(e) = λ, M1(e
′) =

λ, M1(f) = λ, M1(f
′) = λ, M1(g) = λ, M1(g

′) = λ, M1(h) = λ, M1(h
′) = λ

), and vn be the word formed by letters of 0 modulo 3 positions (that

can be obtained by homomorphism M2 : M2(a) = λ, M2(b) = λ, M2(c) =

λ, M2(d) = λ, M2(e) = e, M2(e
′) = λ, M2(f) = f, M2(f

′) = λ, M2(g) =

g, M2(g
′) = λ, M2(h) = h, M2(h

′) = λ). Since the letters of positions 1

modulo 3 have to be exactly the signed (′) versions of the next letters of

position 0 modulo 3, un and vn identify the word of the language. Let

un = anbncndn and vn = enfnhngn.

Let us assume that Ld ∈ Lperm2
: then let Gi be any permutation gram-

mar of order 2 that generates Ld, and let Lbi be the correspondent basis

language.

Ld is not context-free. Moreover there is no context-free language Lc

such that Lc ⊆ Ld and Lc contains all the words w′
n for all n ∈ N (because

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

173

the pumping12 of any long enough words w′
n yields words that are not in

Ld). Therefore there is a value of m ∈ N such that w′
n cannot be generated

in context-free way if n > m. Then there is a word w′
n that is not in Lbi. So,

by our assumption, Theorem 3.3 can be applied on this word: w′
n has two

consecutive subwords which can be interchanged to get another word of Ld.

Let us find the subwords x and y. It is obvious that xy must be either in the

first half or the second half of w′
n. (If it intersected the middle of w′

n, then

after the interchange the letters e, f and g, h and/or their signed versions

e′, f ′, g′, h′ would be in a wrong order.) The subword xy cannot intersect the

first quarter of w′
n, because then the word obtained by mapping M2 will not

be of the desired form. Similar argument works for the third quarter. Then,

the length of x and y must be both divisible by 3. (If it is not fulfilled, then

there will be a problem by the order of a, b, c, d and e, f, g, h and e′, f ′, g′, h′

letters, i.e., they will not be only on 2 modulo 3, 0 modulo 3 and 1 modulo

3 positions, respectively.) If xy is inside a quarter of w′
n and both x and y

has length divisible by 3, then by interchanging the subwords x and y the

same word w′
n is obtained. Therefore there is no way to partition w′

n to

four parts as uxyv such that uyxv ∈ Ld and uxyv 6= uyxv.

By Theorem 3.2 and the previous example we have proved that the

inclusion Lperm2
(Lperm3

is strict. The previous results can be summarized

in the following way:

Theorem 3.4. The place of these new language classes in the Chomsky-

hierarchy:

LCF (Lperm2
(Lperm3

(LCS.

Now an interchange lemma is presented for other families of Lperm by

generalizing Theorem 3.3.

Theorem 3.5. Let L ∈ Lpermn
and let Lb be any of its basis languages.

For any word w ∈ L, w 6∈ Lb there exists a word w′ ∈ L such that there

exist u, v, x1, ..., xn ∈ T ∗: w = ux1...xnv, w′ = uxp(1)...xp(n)v and w 6= w′,

where p(1), ..., p(n) is a permutation of 1, ..., n.

Proof. Let G be a grammar having permutation rules of length n such that

L(G) = L and Lb is the basis language of L with respect to the grammar

G. Since w 6∈ Lb there exists a/last rule Ap(1)...Ap(n) → A1...An that is

applied in a derivation of w for some non-terminals Ai. Then there is a

derivation, such that S ⇒∗ uAp(1)...Ap(n)v ⇒ uA1...Anv ⇒∗ ux1...xnv = w

in which w is generated in context-free way from uA1...Anv. Obviously

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

174

w′ = uxp(1)...xp(n)v ∈ L generated without the last application of the

interchange rule Ap(1)...Ap(n) → A1...An.

Example 3.4. The language Labc = {anbncn | n ∈ N} is not a context-

free language. Moreover, this language does not satisfy the condition in

Theorem 3.5. Hence this language is not even in Lpermm
for any value of

m, and so it is not in Lperm.

The language {anbncn|n ∈ N} is an example for semi-linear context-

sensitive languages that is not in Lpermm
for any value of m ∈ N, m ≥ 2.

The language Labc is important from linguistical point of view. It is a

well known language belonging to mildly context-sensitive language fami-

lies. It can be obtained by the intersection of the language of Example 3.1

and the regular set a∗b∗c∗, or by intersection of the language generated

in Example 3.2 and a∗b∗c∗. By Lemma 3.1 it is clear that a context-free

grammar with interchange rule without any other help cannot generate

Labc. With a similar method one can have another important elements

of the mildly context-sensitive language families, such as the language

Labcd = {anbmcndm|n, m ∈ N}.10

Over the 1-letter terminal alphabet the interchange rules do not add

anything to the generating power of context-free grammars. Moreover in

this case only regular languages can be generated since it is known that in

this case all semi-linear languages are regular.

In the derivations of these grammars we drop the basic property of the

(context-free) derivation trees. We allow to change the order of letters in

the sentential form and therefore in the derivation (tree) as Fig. 1 shows.

Now the closure properties of Lperm and its subfamilies will be analysed.

Proposition 3.2. The language families Lperm and Lpermn
(n ≥ 2) are

closed under the regular operations (union, concatenation, Kleene-closure).

The closure under regular operations can be proved by the usual technique.

As a consequence, they are also closed under n-th power for any n ∈ N.

Now closure under some other operations are shown.

Theorem 3.6. The language families Lperm and Lpermn
(n ≥ 2) are closed

under shuffle, commutative-closure, homomorphism and mirror image.

Proof. Let G = (N, T, S, H) be a permutation grammar such that termi-

nals occur only in rules of type A → a with A ∈ N, a ∈ T . (This can be done

by substituting every occurrence of each terminal a by newly introduced

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

175

non-terminal Aa in every rule that is not of the form A → a and adding

the new rule Aa → a to the grammar for every terminal a.) We present

a grammar Gcom = (N, T, S, H ∪ Hcom) which provides the commutative

closure Lcom of the language L(G). So, let Hcom = {AB → BA|A, B ∈ N}.
There is a derivation of w ∈ L(G) such that the sentential form u ∈ N ∗ can

be obtained from which w is derived by only rules of type A → a. From u

all of its permutations can be obtained in Gcom by the help of the rules in

Hcom. In this way one can get any kind of permutations of the originally

derived word w.

Now for closure under shuffle we use the grammars G1 = (N1, T, S1, H1)

and G2 = (N2, T, S2, H2) in the same kind of normal form generating L(G1)

and L(G2), respectively (with conditions N1 ∩ N2 = ∅ – that can be ob-

tained by renaming non-terminals; and terminals can be introduced in both

the grammars only by rules of type A → a). Now we give a grammar

that generates the shuffle Lshuf of the languages L(G1) and L(G2). Let

Gshuf = (N1 ∪ N2 ∪ {S}, T, S, H1 ∪H2 ∪ {S → S1S2} ∪Hshuf) be a gram-

mar with Hshuf = {AB → BA|A ∈ N1, B ∈ N2}, where S /∈ N1 ∪ N2. It

generates the shuffle of L(G1) and L(G2).

Observe that only context-free rules and permutation rules of length 2 are

needed to add to the rule set. Therefore if n ≥ 2 is the length of the longest

permutation rule of H , then the generated language Lcom is in Lpermn
.

Moreover, it is true that Lcom is in Lperm2
, since the original permutation

rules can be omitted, it is enough to use only the permutation rules of Hcom

to obtain Lcom. If G1 is a permutation grammar of order m1 and G2 is a

permutation grammar of order m2, then Lshuf belongs to Lpermn
where

n = max(m1, m2, 2).

Now we prove the closure under homomorphism. Let G be a permuta-

tion grammar such that terminals appear only in rules type A → a. Let

h : T ∗ → (T ′)∗ be a homomorphism. Let Ghom = (N, T ′, S, H ′) be the

grammar obtained from G by changing every rule A → a (where a ∈ T)

to the rule A → v where v = h(a). It is clear that the generated language

is exactly h(L(G)), moreover Ghom has the same order as G, because only

context-free rules are modified.

Finally, let G = (N, T, S, H) be a permutation grammar. For the closure

under mirror image the elements of the set of rules H must be changed

into their reverse, i.e., A → u (u ∈ (N ∪ T)∗) is in Hm if and only if

(A → uT) ∈ H ; and the permutation rule (v → u) ∈ Hm if and only

if (vT → uT) ∈ H . Obviously for each word w ∈ L(G) the mirror of its

‘derivation tree’ gives a real derivation in Gm = (N, T, S, Hm) and vice-

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

176

versa. Therefore Gm generates exactly the mirror of L(G). Obviously the

order of Gm is the same as the order of G.

Theorem 3.7. The language families Lperm and Lpermn
are not closed

under intersection by regular languages and hence under intersection. They

are not closed under complement.

Proof. As we have already shown (see Example 3.4) the language Labc is

not in Lperm and not in Lpermn
, but can be obtained by the intersection of

a regular and a permutation language. Moreover the permutation language

of Example 3.1 can be used, and that is especially belonging to Lperm2
,

and so to every class Lpermn
. Therefore none of the families of permutation

languages is closed under intersection (and under intersection by regular

languages).

The class LCF is not closed under complement: the complement of Labc is

context-free, while Labc is not. Hence LCF (Lperm and LCF (Lpermn

(for any n > 2), the complement of Labc belongs also to every class of

permutation languages. Opposite to this, as we already proved, Labc is not

belonging to any of them. In this way the theorem is proved.

Concluding the previous two theorems:

Corollary 3.2. Lperm and Lpermn
(n ≥ 2) are not trios, not AFL’s and

not anti-AFL’s.

So, our language families are similar to the context-free family in the

fact that they are not closed under complement and intersection. But oppo-

site the context-free class the classes of permutation languages (Lperm and

Lpermn
) are closed under commutative closure and shuffle product. Note,

that the family LCS is also closed under shuffle and commutative closure.

It is interesting that the smaller families of the Chomsky-hierarchy such as

regular sets and context-free languages are not closed under commutative

closure, but their commutative closure are in Lperm, moreover they are in

Lperm2
. Since every commutative semi-linear language is a commutative

closure of a regular language, all commutative semi-linear languages are in

Lperm2
(and so in every other family of permutation languages). Opposite

to LCF and the families of permutation languages, LCS is closed under

intersection and complement.

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

177

4. Conclusions, Further Remarks

In context free grammars the branches of the derivations are independent of

each other. In this paper context-free derivations with branch-interchange

were presented. The language families Lperm and Lpermn
(n ≥ 2) strictly

contain the context-free class, and they contain only semi-linear languages.

They are strictly inside the context-sensitive class. Moreover Lperm2
is

strictly smaller than Lperm3
. We left open the problem whether the hierar-

chies between Lpermn
and Lpermn+1

and between Lpermn
and Lperm (with

n > 2) are strict. Closure properties under several operations (such as, for

instance, shuffle, commutative closure and complement) are analysed. It

was shown that all commutative semi-linear languages are in Lperm2
.

Now we present further open problems related to the permutation lan-

guages. The solution of the parsing problem of theses new language families

is an important open problem. It is also an interesting task to analyse the

effect of other controlling mechanisms in the derivations. For instance, what

is the case when priority can be used among various (types of) rules? It is

also a subject of future research to establish the connection of permutation

grammars and the field of shuffles of trajectories.16 They seem to be highly

related to each other.

Acknowledgements

Useful comments of the participants of the International Workshop on Au-

tomata, Formal Languages and Algebraic Systems (AFLAS 2008) are grate-

fully acknowledged.

The research is party supported by the programme Öveges of the Hun-

garian National Office for Research and Technology (NKTH) and by a

Japanese-Hungarian bilateral project of the Hungarian Science and Tech-

nology Foundation (TÉT).

References

1. J. E. Hopcroft and J. D. Ullmann, Introduction to Automata Theory, Lan-

guages, and Computation, (Addison-Wesley, Reading, 1979).
2. C. Martin-Vide, V. Mitrana and Gh. Paun (eds.), Formal Languages and

Applications, (Springer-Verlag, Berlin, Heidelberg, 2004).
3. Gy. E. Révész, Introduction to Formal Languages, (McGraw-Hill, New York,

1983).
4. A. Salomaa, Formal Languages, (Academic Press, New York, 1973).
5. J. Dassow and Gh. Paun, Regulated Rewriting in Formal Language Theory,

(Springer-Verlag, Berlin, 1989).

July 19, 2010 11:12 WSPC - Proceedings Trim Size: 9in x 6in 12

178

6. M. Penttonen, One-sided and two-sided context in formal grammars, Infor-

mation and Control 25, (1974), pp. 371–392.
7. E. Mäkinen, On permutative grammars generating context-free languages.

BIT 25, (1985), pp. 604–610.
8. B. Nagy, Languages generated by context-free grammars extended by type

AB → BA rules, Journal of Automata, Languages and Combinatorics 14/2
(2009), an earlier version is presented as Languages generated by context-

free and type AB → BA rules, in Proc. 8th Int. Symposium of Hungarian

Researchers on Computational Intelligence and Informatics (CINTI 2007),
(Budapest, Hungary, 2007) pp. 563–572.

9. R. V. Book, On the structure of context-sensitive grammars, Int. Journal of

Computer and Information Sciences 2 (1973), pp. 129–139.
10. B. Nagy, Permutation languages in formal linguistics, in Proc. IWANN 2009,

Lecture Notes in Computer Science 5517 (2009), pp. 504–511.
11. R. J. Parikh, On context-free languages, J. ACM, 18 (1966), pp. 570–581.
12. Y. Bar-Hillel, M. Perles and E. Shamir, On formal properties of simple phrase

strucuture grammars, Z. Phonetik. Sprachwiss. Kommunikationsforsch. 14

(1961), pp. 143–172.
13. W. Ogden, A helpful result for proving inherent ambiguity, Math. Systems

Theory 2 (1968), pp. 191–194.
14. C. Bader and A. Moura, A generalization of Ogden’s lemma, J. ACM 29

(1982), pp. 404–407.
15. P. Dömösi, M. Ito, M. Katsura and C. Nehaniv, New pumping lemma for

context-free languages, in Proc. DMTCS’96, eds. D. S. Bridges, C. S. Calude,
J. Gibbons, S. Reeves and I.H. Witten, (Springer-Verlag, 1997), pp. 187–193.

16. A. Mateescu, G. Rozenberg and A. Salomaa, Shuffle on trajectories: syntactic
constraints, Theoretical Computer Science 197 (1998), pp. 1–56.

Received: May 7, 2009

Revised: March 22, 2010

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

179

DERIVATION TREES FOR CONTEXT-SENSITIVE

GRAMMARS

BENEDEK NAGY

Department of Computer Science, Faculty of Informatics, University of Debrecen,

4010 Debrecen, PO Box. 12, Hungary,

E-mail: nbenedek@inf.unideb.hu

www.inf.unideb.hu/∼nbenedek

One of the main reasons that context-free grammars are widely used is the

fact that the concept of derivation trees fits to them very well. The left-most

derivations play important role both in theory and practice. Unfortunately with

left-most derivations only context-free languages can be derived even if the rules

of the grammar are not context-free. In this paper we investigate derivation

trees for context-sensitive grammars based on Penttonen’s one-sided normal

form. The concept of the presented derivation graphs are a kind of extension of

the well-known context-free derivation-trees. Moreover it allows to define left-

most derivations in context-sensitive grammars without loosing the efficiency

of the derivations. These left-most derivations are not derivations in the usual

sentential form sense. They are the generalizations of the classical (context-

free) left-most derivations, in the way of constructing a derivation tree. Some

examples and a new type of ambiguity are also shown.

Keywords: Chomsky hierarchy; Context-sensitive languages; Derivation tree;

Canonical derivation; Left-most derivation; Ambiguity.

1. Introduction

Context-free grammars and languages are well known, their theory is

well developed, they are widely used; however the world is not-context-

free.1 There are well-known phenomena proved to be context-sensitive, non

context-free, such as language of logical tautologies, programming and nat-

ural languages etc. Two of the most important reasons that context-free

grammars and languages are widely spread and used in practice are that

the derivations can be represented by tree-graphs and left-most deriva-

tions are sufficient. ‘No image general about the way in which a sentence

is generated following the grammar’s productions has been obtained’ in

context-sensitive case, therefore these languages ‘are not so much studied’

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

180

— claimed Atanasiu.2 For this reason tree-like derivation graphs are recom-

mended for grammars in Kuroda normal form, moreover by dividing the set

of non-terminals to two disjoint sets (cd-Kuroda normal-form) a left-most

derivation is also defined in Ref. 2. Unfortunately even if every words of the

language can be derived by this left-most derivation, it is generally not suf-

ficient, it works by blocking some branches of the derivation graph. We note

here that graphical representations of derivations are not only nice visual-

izations, but also important for scientific reasons. They help in analysis and

give a tool for — both theoretical and practical — further research includ-

ing relations to complexity classes, relations to other formalisms, parsing

techniques etc. We also note that Brandenburg can represent the deriva-

tions of phrase-structure grammars by trees,3 but the nodes of his tree are

complex derivations starting from a part of the sentential form till a part

in which a derived terminal (or in case of non-context-sensitive grammars,

the empty string) can be found. The complexity (diameter) of the nodes

is measured, and these trees are used to describe relations to complexity

classes.

In the next section we recall some basic definitions and facts that we

need later on. In Sec. 3 based on Penttonen’s old result4,5 we build the

derivation graphs for context-sensitive grammars in a tree-like form. The

branches of these derivation trees need some synchronization points. These

synchronization points cause a new type of ambiguity that can also be

important in linguistics. Based on the newly introduced derivation-trees

the concept of left-most derivation can also be extended. Our left-most

derivation gives back the classical concept in context-free case, however

it does not coincide with the concept of derivation generally. One of our

most important results that it works in context-sensitive case as well, i.e.,

all context-sensitive derivation-trees can be constructed by our left-most

derivation.

2. Preliminaries

In this section we recall some basic concepts and facts about formal lan-

guages. First the definitions of the Chomsky-type grammars and the Chom-

sky hierarchy are shown.

2.1. Chomsky-hierarchy: basic notions and definitions

We assume that the reader is familiar with the basic concepts of formal

language theory. We only fix our notation and briefly recall some facts that

are needed later. (See Refs. 6,7 for more details.)

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

181

The length of the empty word is zero, i.e., |λ| = 0. A grammar is a

construct G = (N, T, S, H), where N, T are the non-terminal and termi-

nal alphabets, with N ∩ T = ∅; they are finite sets. S ∈ N is a special

symbol, called the start symbol (initial letter). H is a finite set of pro-

duction rules, where a rule uses to be written in the form v → w with

v ∈ (N ∪ T)∗N(N ∪ T)∗ and w ∈ (N ∪ T)∗. Throughout the paper capi-

tal letters (A, B, C, D, ...) stand for nonterminals, while lower case letters

(a, b, c, ...) stand for terminals. Let G be a grammar and v, w ∈ (N ∪ T)∗.

Then v ⇒ w is a direct derivation if there exist v1, v2, v
′, w′ ∈ (N∪T)∗ such

that v = v1v
′v2, w = v1w

′v2 and v′ → w′ ∈ H . We will use the term under-

lined (or signed) derivation for derivations in which the left-side of the used

rule is underlined at the place of the application: v1v
′v2 ⇒ w = v1w

′v2.

The derivation is the reflexive and transitive closure of the direct derivation

and also of the signed derivation. There is a special derivation that plays

a very important role in this paper: A derivation is called left-most if in

every derivation step the subword v1 ∈ T ∗. The string v ∈ (N ∪ T)∗ (it is

a word over N ∪ T) is called a sentential form if it has a derivation from

S. The language generated by a grammar G is the set of (terminal) words

can be derived from the initial letter: L(G) = {w|S ⇒∗ w ∧ w ∈ T ∗}.
If λ /∈ L, then we say that L is λ-free. Two grammars are equivalent

if they generate the same language up to the empty word. In this paper,

from now on, we do not care about whether λ is in the language or not.

Depending on the possible structures of the derivation rules we have the

following classes. They are the grammars of the Chomsky-hierarchy.

• every grammar is phrase-structured

• monotonous grammars: for every derivation rule v → w, |v| ≤ |w|
• type 1 (context-sensitive) grammars: each rule is in the form v1Av2 →

v1wv2, with v1, v2 ∈ (N ∪ T)∗, A ∈ N and w ∈ (N ∪ T)∗ \ {λ}
• type 2 (context-free) grammars: each rule is in the form A → v with

A ∈ N and v ∈ (N ∪ T)∗.

• type 3, or regular grammars: each derivation rule is one of the following

forms: A → a, A → aB, A → λ; where A, B ∈ N and a ∈ T .

The generated language is regular (Lreg)/ context-free (LCF)/ context-

sensitive (LCS)/ monotonous (Lmon)/ recursive enumerable (LRE) if it

is generated by a regular/ context-free /context-sensitive/ monotonous/

phrase-structure grammar, respectively. These classes form the following

(so-called Chomsky) hierarchy: Lreg (LCF (LCS = Lmon (LRE .

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

182

It is known, that any type of grammar has an equivalent one that is

the same type and there is no terminal rewriting (i.e., every rule has only

non-terminal(s) in the left-hand-side). Moreover every non-regular grammar

has a same type equivalent grammar such that terminals occur only rules

of type A → a.

A derivation is a left-most derivation if v1 ∈ T ∗ in each signed derivation

step. In this way the first non-terminal of the sentential form is rewritten

by an applicable rule in each derivation step.

It is a very important property of left-most derivations (see Ref. 7) that

they provide a context-free language independently of the type of the gram-

mar. In context-free case the (originally) generated language coincides with

the language generated by left-most derivations. The left-most derivations

play important role, for instance, at pushdown machines.

For the Chomsky-type grammars there are so-called normal forms, in

which the form of the used derivation rules are more restricted than in

the original definition. Moreover it is well-known, that using only such

restricted-form rules the generating power remains the same. Now, we recall

possible normal-forms for context-free and context-sensitive grammars.

For each context-free grammar there is an equivalent grammar in which

all derivation rules are in one of the forms A → BC, A → a (A, B, C ∈
N, a ∈ T). A grammar has only these kinds of rules is in Chomsky normal

form.

In Kuroda normal form the rules can be in the following forms: AB →
CD, A → BC, A → B, A → a (where A, B, C, D ∈ N, a ∈ T). For every

monotonous grammar there is an equivalent one in Kuroda normal form.

There is a strong restriction for the length of the rules. Any of the left and

right-hand-side of a rule has maximum length two. Moreover these rules

are monotonous.

By a trick from Révész every rule of type AB → CD can be replaced by four

context-sensitive rules:8 AB → AZ, AZ → WZ, WZ → WD, WD → CD,

where W, Z are newly introduced non-terminals of the grammar. (This trick

also gives a proof of the equivalence between monotonous and context-

sensitive grammars.) Every (λ-free) context-sensitive language can be gen-

erated by rules of the forms AB → AC, AB → CB, A → BC, A → B, A →
a (where A, B, C ∈ N, a ∈ T). This is the so-called Révész normal form for

context-sensitive grammars.

There was an open question (stated, for instance in Ref. 9) whether

one-sided context-sensitivity is enough to generate all context-sensitive lan-

guages or one-sided context-sensitive languages are strictly included in the

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

183

context-sensitive language class. The next normal form gives the answer

for this question. The Penttonen normal form was introduced in Ref. 4,

where it is called one-sided normal form: Every context-sensitive language

can be generated by a grammar whose production rules are of the forms

A → BC, AB → AC, A → a, where A, B and C are nonterminals and

a is a terminal.

2.2. Derivation graphs for phrase-structure grammars

The derivations have graphical representations (see, for instance, Refs. 8,

10,11, where they are called syntactical graphs and they were described

informally). In this paper we deal with derivation graphs and trees; we

start with these graphs, therefore we give a formal definition:

The derivation graphs can have two kinds of nodes: symbol-labeled nodes

have label from T ∪N ∪{λ}, while rule-labeled (or cross) nodes have labels

from H . Let these directed graphs be defined in the following inductive

way. Let the start-graph be the one-node graph without any edges with

node labeled by S. The start-graph is a derivation graph corresponding to

the sentential form S.

Inductive step: In each (signed) derivation step a new rule-labeled node α

(having label u → v ∈ H) is constructed with in-edges from the nodes cor-

responding to the underlined symbols of the sentential form (the underlined

string must be u). The out-edges from α are going to new symbol-labeled

nodes, in a correct order, according to the right-hand-side v of the used

production. In this new derivation graph, the symbol-labeled nodes that

are not having out-edges (yet) represent the symbols of the actual senten-

tial form (in left to right order).

A derivation graph is finished if it represents a derivation of a terminal

word.

Note that every derivation graph, but the start-graph, has the following

properties. It is a bipartite graph: its nodes are labeled from H and by the

set of symbols (T ∪ N ∪ {λ}), respectively. We allow to use the symbol λ

to label a node generated by a rule of type u → λ for some appropriate u.

The ‘root’ is a node labeled by S having only an out-edge and no in-edge,

as the derivation starts from S. Every symbol-labeled node, but the root,

has exactly 1 in-edge (representing the derivation step in which this symbol

is generated), and can have at most 1 out-edge. If it was already used in

the derivation as a symbol of the left-hand-side of an applied rule, then

there is an out-edge. The other (rule-labeled) nodes can have several in and

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

184

Fig. 1. Derivation graph in a phrase-structure grammar (left) and Modification of the

graph (middle) to usual Derivation tree in context-free case (right)

several out-edges. These nodes represent the derivation steps. Let us see

an example.

Example 2.1. Let G0 = ({S, A, B, C}, {a, b, c}, S, {S → ABC, A → AA,

S → ASBC, ABC → λ, AABB → C, AC → c, BC → b, AB → ABB,

A → a}) be a phrase structure grammar. Figure 1 (left) shows a finished

derivation-graph in this system. In the figure only the symbol-labeled nodes

are labeled, the labels of the rule-labeled nodes are not marked, but they

are uniquely determined by their connections to labeled nodes.

Note that the widely used graphical representations of derivations are

trees for context-free grammars, these trees are usually called derivation-

trees, they are leaf-ordered trees, as we detail in the next subsection.

2.3. Derivation trees for context-free case

Graphical representation is more frequently used for derivations in context-

free grammars. If only context-free rules are used, then the graphs can be

simplified. In these graphs each rule-labeled node has exactly 1 in-edge.

The graph holds the same information about the derivation excluding the

rule-labeled nodes (see Fig. 1 middle).

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

185

labels of the corresponding edges of

the original graph the tree

A → α

α → v1 A → v1

... ⇒ ...

α → vi A → vi

In Fig. 1 (right) a derivation-tree is shown. In these trees the symbols

of the leaves give the sentential form. Terminated derivation trees have

not any nonterminal labeled leaves. In these graphs every leaf is labeled

by a terminal symbol (or sometimes by the empty word λ). All other

nodes (they are labeled by non-terminals) must have some (at least one)

successor(s).

The context-free grammars are very popular because the concept of

derivation trees fits very well to their derivations. For a signed derivation

the derivation tree is uniquely determined, which is not true without signing

the derivation. Applying the rule S → SS to S one obtains SS, and SSS by

the second application without knowing which S of SS is rewritten. Thus,

two different derivation trees can represent this derivation. It is a kind of

ambiguity of context-free grammars.

Using the Chomsky normal form a finished tree is a binary tree. Each

non-terminal labeled node has two successor nodes labeled by non-terminals

or only one successor node labeled by a terminal. In these derivation graphs,

the subtrees rooted at the children of a node v having branching factor two

are called left and right subtrees of v. The set of nodes that are obtained

with a path from the root in which the first (left-most) branch is used

at every node is the left-branch of the tree. Similarly the right-branch is

also defined. In trees there is a partial ordering relation, called dominance.

A node v dominates the node v′ if v′ is in the subtree rooted by v. In

this case it is said that v is an ancestor of v′. Every two nodes have a

uniquely determined latest common ancestor in the tree. If v′, v′′ are not in

dominating relation in any order, then their latest common ancestor node

v is the root of a subtree with the following property. One of the nodes

(of v′, v′′) are in the left subtree, the other is in the right subtree of v. We

say, that two nodes v′, v′′ are in neighbor branches of the tree if v′ is in

the right-branch of the left-subtree of v and v′′ is in the left-branch of the

right-subtree of the same node v. We also can say that v′ is on the left-

neighbor branch of the node v′′ if v′ and v′′ are in neighbor branches and

v′ is in the left subtree of v. In context-free grammars there is a derivation

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

186

corresponding to the given derivation tree, in which the symbols of the

nodes v′ and v′′ are neighbors in the sentential form.

In context-free case the left-most derivations are those derivations in

which the first non-terminal of the sentential form is rewritten by an ap-

plicable rule in each derivation step. Regarding the derivation tree, the

left-most derivation gives the same way as the depth-first graph-search al-

gorithm discover a tree.12 Moreover the following facts are known.

Fact 2.1. For each signed derivation there is a unique derivation tree.

The possible signed derivations in context-free grammars form equivalent

classes. Each class can be represented by a uniquely determined derivation

tree. Each derivation tree can be represented by a unique derivation: by the

left-most derivation.

In the next sections we show that the concept of derivation trees and left-

most derivations can be extended to context-sensitive grammars as well.

2.4. Derivation graphs for context-sensitive languages

In this subsection we analyse the form of derivation graphs in monotonous

and context-sensitive grammars. Although there were several attempts to

describe the derivations of context-sensitive grammars by tree-like struc-

tures, in general, the result was not satisfactory. We will recall Atanasiu’s

approach in next subsection; and solve the problem in Sec. 3.

The monotonous and context-sensitive cases are between the general

phrase-structure and context-free cases. Can we use special graphs to rep-

resent the derivations? Let us start with the derivations of monotonous

grammars. In every monotonous rule the right-hand side has at least the

same length as the left-hand side has. Since these rules are more related

to the rules of a phrase-structure grammar than the rules of a context-free

grammar, using them the derivation graphs are very different from trees as

it can be seen, for instance, in the next example.

Example 2.2. Let Gm = ({S, A, B, C, D, E, F, G}, {a, b}, S, Hm) be a mo-

notonous grammar with rule set Hm = {S → DABE, S → DABEF,

F → GG, F → GGF, G → b, aG → Ga, BE → aa, Aa → aa, Da → aa,

AB → BAA, DB → DC, CA → AAC, CE → BE}. Figure 2 shows a

possible derivation-graph in this system.

As we can see, the graph in Fig. 2 is not a tree. In these derivation graphs

there are two kinds of nodes as we defined earlier. Each cross-node has

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

187

S

D A B E F

 B A A G G F

D C G G F

A A C b G G

 A A C b b

 B E

 a a

 a a G a

 a a G a G a

 a a G a G a G a

 a a G a b G a

a a b b

Fig. 2. Derivation in a monotonous grammar

in-edges and at least the same number of out-edges due to the monotone

property. Moreover λ is not used in these graphs. These are the only differ-

ences comparing these graphs to the derivation graphs of phrase-structure

grammars.

Observing our example derivation, one can see that the derivation is

continued form the node labeled by D in the left-hand-side of the figure (in

‘level’ 4) after a long waiting for several steps in the middle of the graph.

2.4.1. Atanasiu’s approach for monotonous grammars

A variation of the previously mentioned derivation graphs are presented in

Ref. 2 based on Kuroda normal form.

Note, that a main difference between the derivation graphs and deriva-

tion trees is the existence of rule-labeled nodes. A new type of edge was

introduced, see Fig. 3, and this difference was removed. The rules type

AB → CD are represented by these special types of edges from the node

labeled by A to the node labeled by B and the latter node has two children

labeled by C and D. The node labeled by A is called context-node, while

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

188

Fig. 3. Transforming graphical representations of rules of type AB → CD by Atanasiu

the node labeled by B is a derivation node. A node for which a context-free

rule is applied is also called derivation node. A derivation graph (tree) is

shown in Fig. 4 using this modification. Moreover it is proved that every

Fig. 4. Atanasiu’s derivation tree for a grammar in Kuroda normal form

monotonous grammar has an equivalent one in which the set of possible con-

text and derivation non-terminals are disjoint (these grammars are called

cd Kuroda normal form). Further, the concept of left-most derivation was

modified such that in each step the left-most derivation non-terminal of the

actual sentential form must be rewritten. It was shown that in this way

every monotonous language can be generated in left-most way. However

one may feel, that these derivations are not really left-most derivations,

since some branches of the derivation graphs are blocked by context-non-

terminals and waiting for their turn, in which they are rewritten.

Now we are going to define derivation graphs that are more similar to

trees. We will exclude the cross-nodes of the derivation graphs by a new

method.

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

189

3. A New Concept of Derivation Tree in Context-Sensitive

Case

We will show, that in context-sensitive grammars, and specially in Pent-

tonen normal form the derivations can be represented by graphs that are

very close to trees.

Now we are using the original definition of the context-sensitive gram-

mars to give the new approach. In the rules the context is the same in both

sides of a rule. Now, considering the derivation graphs in these grammars,

one can observe, that the context symbols are repeated. We do not need to

repeat them in the graph, but it should be marked that they are needed

for these derivation steps. Figure 5 shows a part of the original form of the

derivation graph (left), and the new way of the representation of this part

(right). We note here that if the replaced non-terminal and the context are

not uniquely defined (such as, for instance, at ABC → ASBC) we can use

the first non-terminal that can be the replaced one, without any problem.

Fig. 5. Graphical representations of the context-sensitive rule ABCD → ABSBD.

The concept of derivation-trees does not work in pure form for context-

sensitive grammars and derivations. The neighborhood of a non-terminal

can also be important at an application of a replacing rule. We use two

kinds of edges in these derivation graphs to represent the context-sensitive

derivation steps. The original, derivation edges are coming from the replaced

non-terminal and going to the new (terminal or nonterminal) symbol(s)

given in the right hand side of the used derivation rule. Each new type of

edge (represented by box and broken arrows) shows the neighborhood of

the replaced non-terminal as it is required in the used rule. We will use the

names context-box and context-edge.

Example 3.1. Let Gcs = ({S, A, B, C, D, E, F, G, I, J, K, L, M, O, P},
{a, b, c}, S, Hcs) be a context-sensitive grammar, with rule set

Hcs = {S → aSA, S → bSB, abS → abCE, baSA → baDFA, EA → EG,

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

190

Fig. 6. ‘Derivation-tree’ in a context sensitive grammar with context-boxes

EG → IG, IG → IE, IE → AE, EB → EJ, EJ → KJ, KJ → KE,

KE → BE, FA → FL, FL → ML, ML → MF, MF → AF, FB → FO,

FO → PO, PO → PF, PF → BF, CA → CE, CB → CF, DA → DE,

DB → DF, C → a, D → b, E → a, F → b}. Figure 6 shows a possible

derivation-graph in this system.

Opposite to Atanasiu’s approach the context symbols are not rewritten in

the derivation step (in which they are used as context).

The derivation graphs are more similar to trees if grammars in Pent-

tonen normal form are applied. The derivation ‘tree’ will be simpler; each

context-box contains only a left-neighbor non-terminal. (Therefore we will

use only context-edges without context-boxes in these cases.) For these sit-

uations we define the derivation trees for context-sensitive case in a formal

way.

Definition 3.1. Let G = (N, T, S, H) be a grammar in Penttonen normal

form. The derivation tree for a sentential form v is a directed graph build up

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

191

from labeled nodes (labels from N ∪ T and two kinds of edges (derivation

and context) as follows. The nodes and the derivation edges form a tree

graph (as in context-free case): The root is labeled by S. Every interior

node is labeled by a non-terminal. The sequence of labels of leaves reading

from left to right yields v.

Let A be the label of an interior node, and let u be its child(ren)’s la-

bel(s reading from left to right). Then one of the following conditions is

fulfilled.

(i) If there is no context-edge that ends at that interior node, then

A → u ∈ H .

(ii) If exactly one context edge ends at that interior node (coming from a

node labeled by C ∈ N), then CA → Cu ∈ H .

Every context-edge connects two neighbor branches of the tree (directed

from left to right), i.e., a context edge can go from v′ to v′′ if their latest

common ancestor is v and v′ is in the right-branch from the first child of

v and v′′ is in the left-branch from the second child of v. There are no

context-edges crossing each other, i.e., a node v′ which is an ancestor of a

node v′′ (with v′ 6= v′′) must not have an out-context-edge to a node v′′′ if

there is a context-edge from v′′ to any of the ancestors of v′′′. A node can

have several out-context-edges and at most 1 in-context-edge. A derivation

tree is said to be finished if it has only terminal-labeled leaves.

Regarding the structure of our trees a non-terminal labeled node can

have successor(s) according to a rule in H . Let the label of an interior node

be A ∈ N , then it can have one or two successor nodes. In the first case this

child can be labeled by a terminal (based on a rule A → a where a ∈ T)

or can be a non-terminal C corresponding to a rule BA → BC with a

non-terminal B; while in the latter case these nodes (and their order) must

coincide with a rule in the form A → BC with B, C ∈ N .

Besides the representation of context-free steps, the graph also contains

context-edges representing the applied context-sensitive rules. When a node

v labeled by a non-terminal A has only one successor node which is also non-

terminal labeled (let its label be C), then v has exactly one in-context-edge

and it is from a node v′ labeled by B (satisfying BA → BC ∈ H) such that

v and v′ are in neighbor branches. Moreover there are some restrictions

for context-edges, namely none of them can cross any other edges (nor

derivation, nor context).

In Ref. 13 the language anbncn is generated by a left context-sensitive

grammar. Now a similar example is shown in Penttonen normal form.

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

192

Fig. 7. Derivation-tree in a grammar in Penttonen normal form

Example 3.2. Let Gp = ({S, A, B, C, D, E, F, G, I, J, K, L, M, O}, {a, b,

c}, S, Hp) be a context-sensitive grammar in Penttonen normal form, with

rule set Hp = {S → AG, G → BC, A → IJ, J → DE, EB → EE,

EC → EK, K → FL, D → IM, M → AB, BE → BB, BF → BO,

O → CL, A → a, B → b, C → c, D → a, E → b, F → c, I → a, L → c}.
Figure 7 shows a possible derivation tree in this system. Observe that the

structure of the graph is simple and easily readable.

The new concept (derivation-tree for context-sensitive grammars) has a

strict relation to derivations in the same way as derivation trees relate to

derivations in context-free case.

Theorem 3.1. For a grammar G there exists a derivation tree for a string

w if and only if S ⇒∗ w (i.e., w is a sentential form).

Proof. We give a relation between signed derivations and derivation trees.

The proof goes by induction on the number of derivation steps. Trivially

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

193

the tree having only a node labeled by S is the initial sentential form. Let us

assume that there is a derivation tree and its leaves give the sentential form

w. There are three cases based on the possible derivation steps. Applying a

context-free rule it is trivial that the same method works as in context-free

case, the new tree corresponds to the new sentential form. Applying a rule

in the form AB → AC in the derivation both nodes labeled by A and B

must be leaves of the tree, moreover they are neighbors. The context edge

between them can be added and a new derivation edge can connect the

node labeled by B to the new node labeled by C.

In the opposite direction a derivation tree represents real derivations as the

next construction shows. Let a context-sensitive derivation tree be given, it

is the ‘target-tree’. Our aim is to prove that it represents a derivation of a

sentential form, i.e., it can be generated in a way presented in the previous

part of the proof. For this purpose we construct a sequence of derivation-

trees. This sequence starts with the graph with the only node labeled by

S having no edges; and it finishes with the target-tree. Moreover every two

consecutive elements of the sequence represent trees in which the derivation

is continued by exactly 1 step. In the construction of the sequence the term

‘actual derivation-tree’ will be used to represent the element from which we

are continuing the construction. It is clear that the root of the target-tree:

a node labeled by S corresponds to the symbol S from which the derivation

starts and there is no context-edge from the root.

We call a leaf node v of the actual derivation-tree ‘continuable’ if it is not

leaf of the target-tree and one of the following conditions is fulfilled:

(i) there are no context-edges starting/ending at this node in the target-

tree; or

(ii) if there is an in-context-edge to the node v in the target-tree from a

node u, then u is a leaf of the actual derivation-tree; and if there is an

out-context-edge to a node u from v in the target-tree, then u is in the

actual derivation-tree and u is not a leaf of this tree.

Let us start to construct the sequence of trees. In every step the derivation

will be continued by derivation edge(s) from one of the continuable nodes

of the actual tree. The place of the applied derivation step is given by

the place of the node of the tree, while the used derivation rule is given

by the structure of the target-tree. (If there is an in-context-edge to the

actual node, then a context-sensitive rule is applied, and a context-free rule

is applied in other cases.) By the previous notion of continuable nodes,

it is easy to see that the derivation process can be continued from the

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

194

continuable nodes. Moreover, until the actual derivation-tree equals to the

target-tree, there is at least 1 continuable node in the actual derivation-tree.

Therefore derivation trees correspond exactly to sentential forms that can

be derived in the grammar.

A leaf node can be continuable if it is already used as a context in the

derivation steps that needs it as a context. The previous theorem immedi-

ately implies the following statement.

Corollary 3.1. For a grammar G there exists a finished derivation tree for

a word w if and only if w ∈ L(G).

Remark 3.1. The branches of the derivation tree in a context-sensitive

grammar are not independent, communication (synchronization) among

them is needed by the context-edges.

A derivation from a non-terminal can be continued when all branches

are after the points where this non-terminal was needed as a (part of a)

context, i.e., this non-terminal has been used at all context-edges which

contain it.

As we can see, using a kind of synchronization (communication, or ap-

pearance check) among the branches of the derivation the generating power

of the grammar is increasing.

4. Left-Most Derivations in Context-Sensitive Case

Since left-most derivations play very important role in context-free gram-

mars, there were several attempts to define left-most derivations in context-

sensitive case keeping the generative power. As we already mentioned the

proposed solutions are not satisfactory in general. In this section we solve

this problem. Using the classical definition of left-most derivation only

context-free languages can be obtained even if the grammar is phrase-

structured.7 Therefore we need another kind of left-most derivation, which

does not coincide with the left-most derivation in the original (senten-

tial form) sense. We are considering left-most derivations in derivation-tree

sense, which differs from the classical concept of left-most derivations for

non-context-free derivation trees. The new type of left-most derivation is

universal, in the sense, that all words of the language can be obtained by

its help. For context-sensitive grammars the left-most derivation is defined

in (derivation) graph sense opposite to the context-free case in which it is

left-most in sentential-form sense as well:

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

195

Definition 4.1. Let G = (N, T, S, H) a grammar in Penttonen normal

form. The left-most derivation for a word w is the method of the construc-

tion of a derivation tree for w in the following way. In each step the left-

most non-terminal labeled leaf of the tree is used to provide new node(s) by

derivation edge(s). It is possible that this step goes by using an in-context-

edge from one of its neighbor nodes (the derivation has already continued

from these neighbor non-terminal labeled nodes).

The left-most derivation is exactly the same order of construction as

a left-most traversal goes in the tree (using the order given by the tree

with the derivation edges). In context-free case, since the branches of the

tree are independent, the left-most traversal of the tree gives the left-most

(sentential) derivation. There is a significant difference between context-

free and context-sensitive cases. In both cases it can be considered as a

construction of the derivation tree, but while in context-free case it is a

real (sentential) derivation in the same time, in context-sensitive case it is

usually not a real derivation: using the sentential form, the rules cannot be

applied in this order. Now we give a recursive algorithm which can provide

a left-most derivation.

Algorithm 4.1.

input: a context-sensitive grammar G in Penttonen normal form

output: a derivation tree in this grammar

Step 1. Let the start-graph: a node labeled by S be given. Let the node v be

this node.

Step 2. Call the method continue with parameter v.

Method: continue

input: a node v of the derivation tree

Step 1. Let A be the label of v.

Step 2. Apply an appropriate derivation rule of G to extend the tree:

– a. any context-free rule of the form A → a can be applied with a ∈ T .

If such a rule is applied then

Extend the tree by a new node labeled by a and a derivation edge

from v to the new node.

Return.

– b. any context-free rule of the form A → BC can be applied with B, C ∈
N .

If such a rule is applied then

Extend the tree by two new nodes labeled by B and C and two derivation

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

196

edges from v to the new nodes, respectively.

Call the method continue with the (left-)child node labeled by B.

Call the method continue with the (right-)child node labeled by C.

Return.

– c. context-sensitive rule BA → BC can be applied if there is a node v ′

with label B in the left-neighbor branch of v such that there is no context-

edge starting from any node v′′ dominated by v′ (with v′ 6= v′′)

If such a rule is applied then

Extend the tree by a context edge from v′ to v, a new node with label C

and a derivation edge from v to the new node.

Call the method continue with the child node labeled by C.

Return.

The algorithm gives a left-most traversal of the tree (using derivation

edges). The left-most derivation (i.e., the construction of the tree) can go

in a left to right order. The leftmost branch does not depend on other

branches. The next branch may need context somewhere, and one can find

it on the finished left neighbor branch. The left-hand-side part of the graph

is never changed, but the right-most non-terminals of the graph may needed

as contexts to build up the remaining part. It is important that the context

edges cannot cross each-other.

For the example (Fig. 7) the left-most derivation is the following. The

graph is built up in the next order: S → AG, A → IJ , I → a, it is

the left-most branch of the derivation-graph. It is independent of all the

remaining part of the graph. The construction is continuing from the left-

most non-terminal: J → DE, D → IM , I → a, another branch is finished.

The left-most non-terminal leaf is M , so M → AB, A → a. Now B → b.

Then E is the left-most non-terminal leaf, and a context B is used: from the

already given right-hand-side of the actual branch of the graph: BE → BB.

Then B → b, G → BC, and contexts are needed: EB → EE, BE → BB

and B → b finishes this branch. Now, EC → EK, K → FL, and a context-

edge again: BF → BO. Then O → CL, C → c, and L → c finish these

branches, while and L → c finish the construction of the derivation-graph.

The left-most derivation in context-sensitive case usually is not a real

derivation in traditional (sentential form) sense, but it is unique for every

derivation tree. It is a way to construct the derivation tree with context-

edges, but it relates to sentential derivations.

Proposition 4.1. Having the derivation tree any real (sentential) deriva-

tions can be constructed with the following condition. In a derivation step

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

197

every non-terminal must remain from which a context edge starts to a non-

terminal that is not already rewritten in the derivation.

The previous proposition is closely related to the proof of Theorem 3.1,

where the term continuable was used for those non-terminals from which

the (sentential) derivation can be continued. Observe that usually a deriva-

tion graph represents more than one (signed) derivations. From the graph

one can obtain the possible left-most real sentential derivation of a word

by replacing the left-most continuable non-terminal at each derivation step.

In our derivation of Example 3.2 (Fig. 7), a real (and left-most as possi-

ble) derivation is: S ⇒ AG ⇒ IJG ⇒ aJG ⇒ aDEG ⇒ aIMEG ⇒
aaMEG ⇒ aaABEG ⇒ aaaBEG ⇒ aaaBEBC ⇒ aaaBEEC ⇒
aaaBBEC ⇒ aaabBEC ⇒ aaabBEK ⇒ aaabBBK ⇒ aaabbBK ⇒
aaabbBFL ⇒ aaabbBOL ⇒ aaabbbOL ⇒ aaabbbCLL ⇒ aaabbbcLL ⇒
aaabbbccL ⇒ aaabbbccc. This derivation is a real derivation and usu-

ally does not coincide with our newly defined and analysed left-most

derivation.

Now a new type of ambiguity is shown.

Example 4.1. Let Gamb = ({S, F, U, T, I, L, M}, {if, then, else, a < b,

b < c, a = a + 1, c = c + 1}, S, Hif) be a context-sensitive grammar in

Penttonen normal form, with rule set Hif = {S → SS, S → FU, U → TS,

F → IL, E → MS, US → UE, I → if, T → then, M → else, L → a < b,

L → b < c, S → a = a + 1, S → c = c + 1}. Figure 8 shows two examples of

context-sensitive derivation trees in this system.

In the left-most derivation the same rules are applied in the same order,

the only difference is the place of the used context in rule US → UE.

The two derivation trees differ by the origin of the context-edge. A version

Fig. 8. Ambiguity caused by various places of the applied context

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

198

of dangling-else ambiguity is presented with two possible structure of the

conditions.

5. Conclusions

Derivation graphs are analysed. The concept of derivation trees was ex-

tended to the context-sensitive case. Our solution differs from Atanasiu’s

approach. He defined his derivation trees for monotonous grammars in

Kuroda normal form, and used his left-most and right-most derivations

in cryptographical applications. Contrary, in our approach the derivation

tree is extended by the help of context-edges based on Penttonen normal

form. In our derivation trees the context nodes are not rewritten in steps

in which they are used as context. Every non-terminal is rewritten exactly

once in a finished derivation tree. Moreover, the left-most derivation is ex-

tended in the sense of constructing the derivation tree in the left-most way.

It is uniquely defined for every derivation tree. Moreover, since in every step

the left-most non-terminal labeled node of the tree is used (i.e. rewritten

in this step), one can easily built any derivation tree in this way. It is not

necessary to wait some steps or block some nodes since the new parts of

the tree have no influence to the already generated left part. A new form

of ambiguity is obtained from this approach, as within a derivation various

context relations may become applicable. To have right-most derivations

the symmetric form of Penttonen normal form is needed: it can be defined

only for grammars having rules of the forms A → a, A → BC, AB → CB.

In context free grammars the branches of the derivation tree are indepen-

dent of each other. In context-sensitive case it is enough to use only a node

of the left-neighbor branch in the synchronization. The derivation trees and

the left-most derivations can easily be extended to phrase-structure gram-

mars. We note here that in Ref. 14 a new normal form was presented for

context-sensitive grammars excluding the possible iterations in the deriva-

tion caused by context-sensitive rules of a grammar in Penttonen normal

form, e.g., AB → AC, AC → AB. Our derivation graph and left-most

derivation approach is applicable to extend the pushdown automata for non-

context-free case,15 and to construct a parsing-system to context-sensitive

grammars, we are working on such a system.

Acknowledgements

The author thanks the useful discussion on the topic with Victor Mitrana.

The project is partly supported by the programme Öveges (NKTH) and by

a bilateral Japanese-Hungarian project (TéT).

July 19, 2010 15:28 WSPC - Proceedings Trim Size: 9in x 6in 13

199

References

1. J. Dassow and Gh. Paun, Regulated Rewriting in Formal Language Theory,
(Springer-Verlag, Berlin, 1989).

2. A. Atanasiu and V. Mihalache, About derivations in context-sensitive gram-
mars, report (1993) 21 pages, an earlier shorter version is appeared as: Deriva-
tion graphs for context-sensitive grammars, in Salodays in Theoretical Com-

puter Science, (Hyperion Press, 1993) 5 pages.
3. F.-J. Brandenburg, On the tranformation of derivation graphs to derivation

trees (Preliminary report), in Proc. of MFCS’81, LNCS 118 (Springer, 1981),
pp. 224–233.

4. M. Penttonen, One-sided and two-sided context in formal grammars, Infor-

mation and Control 25, (1974), pp. 371–392.
5. A. Mateescu, 2003, On context-sensitive grammars, Lecture Notes in 2nd

Int. PhD School on Formal Languages and Applications, (Tarragona, Spain,
2003), in Formal Languages and Applications, eds. C. Martin-Vide, V. Mi-
trana and Gh. Paun (Springer-Verlag, Berlin, Heidelberg, 2004), pp. 139–161.

6. J. E. Hopcroft and J. D. Ullmann, Introduction to Automata Theory, Lan-

guages, and Computation, (Addison-Wesley, Reading, 1979).
7. G. Rozenberg and A. Salomaa (eds.), Handbook of Formal Languages, 3 vol-

umes (Springer, Berlin, 1997).
8. Gy. E. Révész, Introduction to Formal Languages, (McGraw-Hill, New York,

1983).
9. A. Salomaa, Formal Languages, (Academic Press, New York, 1973).

10. G. Buntrock and F. Otto, Growing context-sensitive languages and Church-
Rosser languages, Information and Computation 141, (1998), pp. 1–36.

11. J. Loeckx, 1970, The parsing for general phrase-structure grammars, Infor-

mation and Control 16, (1970), pp. 443–464.
12. S. J. Russel and P. Norvig, Artificial Intelligence: A Modern Approach (Pren-

tice Hall, New Jersey, 1995).
13. C. Martin-Vide, Formal language theory: classical and non-classical ma-

chineries, Lecture Notes in 2nd Int. PhD School on Formal Languages and
Applications, (Tarragona, Spain, 2003), a shorter version can be found in:
The Oxford Handbook of Computational Linguistics, ed. R. Mitkov (Oxford
University Press, Oxford, 2003), pp. 157–177.

14. B. Nagy and P. Varga, A new normal form for context-sensitive grammars,
in Proc. of (35th Conf. on Current Trends in) Theory and Practice of Com-

puter Science (SOFSEM 2009), Volume II, (Spindleruv Mlyn, Czech Repulic,
2009), pp. 60–71.

15. B. Nagy, An automata-theoretic characterization of the Chomsky-hierarchy,
in Proc. of 7th Annual Conf. on Theory and Applications of Models of Com-

putation (TAMC 2010), LNCS (Springer, 2010), accepted for publication

Received: June 21, 2009

Revised: March 23, 2010

This page intentionally left blankThis page intentionally left blank

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

201

ON PROPER LANGUAGES AND TRANSFORMATIONS

OF LEXICALIZED TYPES OF AUTOMATA

FRIEDRICH OTTO

Fachbereich Elektrotechnik/Informatik, Universität Kassel,

D-34109 Kassel, Germany

E-mail: otto@theory.informatik.uni-kassel.de

Motivated by the way in which sentences of natural languages are analyzed

in linguistics, types of automata are studied that work on extended alphabets

which, in addition to the input symbols, also contain certain auxiliary symbols.

The latter model the use of (morphological, syntactical, and semantical) cate-

gories in the process of analyzing sentences. The automata we consider work on

so-called characteristic languages, that is, on languages that include auxiliary

symbols. The proper language is obtained from a characteristic language by

removing all occurrences of auxiliary symbols. By requiring that the automata

are lexicalized, we restrict the lengths of blocks of auxiliary symbols that are ad-

mitted. We study the classes of proper languages for deterministic finite-state

acceptors, pushdown automata, two-pushdown automata, and freely rewriting

restarting automata that are lexicalized. In addition, we use a generalization

of the notion of proper language to associate a (binary) transformation with a

characteristic language. This leads to the study of transformations of a certain

form for the above types of automata.

Keywords: Proper Language; Lexicalized Type of Automaton; Transformation.

1. Introduction

Automata with a restart operation were introduced originally to describe

a method of grammar-checking for the Czech language.1 These automa-

ta started the investigation of restarting automata as a suitable tool for

modeling the so-called analysis by reduction, which is a technique that is

often used (implicitly) for developing formal descriptions of natural lan-

guages based on the notion of dependency .2,3 In particular, the Functional

Generative Description4 (FGD) for the Czech language is based on this

method.

FGD is a dependency based system, which translates given sentences

into their underlying tectogrammatical representations, which are (at least

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

202

in principle) disambiguated. Let w be a sentence of a natural language that

is to be analyzed. First w is split into a sequence of tokens, which can then

be taken as the input symbols of the proper analyzer. So we assume that

w is already given as a sequence of tokens w1, w2, . . . , wn. Now the process

we are interested in consists of three main phases:

(1) In the first phase, called lexical analysis, each token is annotated with

all tags (that is, categories) that could possibly apply to this par-

ticular token using a dictionary. Thus, in this phase a sequence of

nonterminals of bounded length is inserted after each token wi. This

annotation contains morphological, syntactical, and possibly also some

semantical information. It describes all possibilities for classifying the

token wi.

(2) If the annotation for a token wi gives several possible classifications,

then one tries to delete all classifications that contradict the actual situ-

ation given by the context. This process, which is called disambiguation,

ends with either a unique classification for all tokens, with the detec-

tion of an error (in case all classifications are removed from a token

based on context information), or with a small number of remaining

classifications.5 In the first case the disambiguation process is success-

ful, while in the latter case the remaining ambiguities are resolved by

generating all possible completely disambiguated sequences, which are

then considered separately.

(3) Finally, analysis by reduction is applied to the disambiguated sequence

of tokens and their remaining annotations. It consists in stepwise sim-

plifications (that is, reductions), which continue until the so-called core

predicative structure of the sentence is reached. Each simplification re-

places a small part of the sentence by an even shorter phrase.

Here we formalize the latter step of this process by studying various de-

terministic types of automata for proper languages. These automata work

on so-called characteristic languages, that is, on languages that include

auxiliary symbols (categories) in addition to the input symbols. The proper

language is obtained from the characteristic language by removing all aux-

iliary symbols from its words (sentences). By requiring that the automata

considered are lexicalized we restrict the lengths of blocks of auxiliary sym-

bols that are allowed by a constant. This restriction is quite natural from

a linguistic point of view, as these blocks of auxiliary symbols model the

meta-language categories from individual linguistic layers with which an

input string is being enriched when its disambiguated form is being pro-

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

203

duced (see above). We use deterministic types of automata only in order

to ensure the correctness preserving property for the analysis.

This paper is structured as follows. In Section 2 we shortly restate the

hierarchy results that have been obtained recently for lexicalized restarting

automata.6–8 In fact, for freely rewriting restarting automata various two-

dimensional hierarchies of proper languages have been derived, where the

one dimension is governed by the number of rewrites that may be executed

in any one cycle, and the other dimension is parametrized by the num-

ber of auxiliary symbols that may occur concurrently on the tape in any

valid computation. In Section 3 we then consider the proper languages of

deterministic finite-state acceptors and deterministic pushdown automata.

We will see that the class of proper languages of finite-state acceptors is

just the class REG of regular languages, while the class of proper languages

of deterministic pushdown automata is the class CFL of all context-free

languages. In Section 4 we study the proper languages of deterministic

two-pushdown automata that are shrinking or even length-reducing. As we

will see they are universal, that is, each recursively enumerable language is

the proper language of such an automaton. Therefore, we turn to lexicalized

two-pushdown automata, showing that the class of proper languages of de-

terministic two-pushdown automata that are shrinking (or length-reducing)

and lexicalized coincides with the class GCSL of growing context-sensitive

languages. Finally, in Section 5 we turn to transformations defined by char-

acteristic languages. We define the concept in general terms, and we present

a few preliminary results for deterministic finite-state acceptors, pushdown

automata, and shrinking/length-reducing two-pushdown automata. The pa-

per closes with a short summary and some open problems.

Notation. Throughout the paper we will use λ to denote the empty word.

Further, |w| will denote the length of the word w, and if a is an element of

the underlying alphabet, then |w|a denotes the a-length of w, that is, the

number of occurrences of the letter a in w. Further, N+ will denote the set

of all positive integers.

If Σ is a subalphabet of Γ, then by Pr
Σ we denote the projection from Γ∗

onto Σ∗, that is, Pr
Σ is the morphism defined by a 7→ a (a ∈ Σ) and A 7→ λ

(A ∈ Γ r Σ). If v = Pr
Σ(w), then v is the Σ-projection of w, and w is an

expanded version of v. For a language L ⊆ Γ∗, Pr
Σ(L) = {Pr

Σ(w) | w ∈ L }.
If M is an automaton (finite-state, pushdown, etc.) with input alphabet

Σ and tape alphabet Γ containing Σ, then LC(M) will denote the char-

acteristic language of M , which consists of all words w over Γ that are

accepted by M . Now L(M) = LC(M)∩Σ∗ is the input language of M , and

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

204

LP(M) = Pr
Σ(LC(M)) is the proper language of M . Thus, a word u ∈ Σ∗

belongs to the proper language of M if and only if an extended version

v ∈ Γ∗ of u is in the characteristic language of M .

For any class A of automata, LC(A) will denote the class of characteristic

languages recognizable by automata from A, L(A) will denote the class of

input languages recognizable by automata from A, and LP(A) will denote

the class of proper languages of automata from A. By DCFL we denote

the class of deterministic context-free languages. Occasionally we will use

regular expressions instead of the corresponding regular languages.

2. Restarting Automata

The restarting automaton has been designed specifically as a formal model

for the analysis by reduction. In fact, a large variety of types of restarting

automata has been developed over the years. Here we are particularly in-

terested in the freely rewriting restarting automaton, FRR-automaton for

short, as described in Ref. 8.

An FRR-automaton is a (nondeterministic) machine that consists of

a finite-state control, a single flexible tape with end markers, and a

read/write window of fixed size. Formally, it is described by an 8-tuple

M = (Q,Σ,Γ, c, $, q0, k, δ), where Q is a finite set of states, Σ is a finite in-

put alphabet, Γ is a finite tape alphabet containing Σ, the symbols c, $ 6∈ Γ

are used as markers for the left and right border of the work space, respec-

tively, q0 ∈ Q is the initial state, k ≥ 1 is the size of the read/write window,

and δ is the transition relation that associates to each pair (q, w) consisting

of a state q and a possible content w of the read/write window a finite set

of possible transition steps. There are four types of transition steps:

1. A move-right step (MVR) causes M to shift the read/write window one

position to the right and to change the state. However, the read/write

window cannot move across the right sentinel $.

2. A rewrite step causes M to replace a non-empty prefix u of the content

w of the read/write window by a shorter string v, thereby reducing the

length of the tape, and to change the state. Further, the read/write

window is placed immediately to the right of the string v. However,

occurrences of the delimiters c and $ can neither be deleted nor newly

created by a rewrite step.

3. A restart step causes M to place its read/write window over the left

end of the tape, so that the first symbol it sees is the left sentinel c,

and to reenter the initial state q0.

4. An accept step causes M to halt and accept.

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

205

If δ(q, w) = ∅ for some pair (q, w), then M necessarily halts, and we

say that M rejects in this situation. If δ(q, w) contains at most a single

transition for each pair (q, w), then M is a deterministic FRR-automaton.

We use the prefix det- to denote deterministic types of restarting automata.

Observe that the rewrite steps of an FRR-automaton differ slightly from

those for a classical restarting automaton like the RRWW-automaton.9 A

rewrite step of an RRWW-automaton replaces the complete content w of

the read/write window by a shorter word v, and then the read/write window

is moved to the right of the newly written word. For an FRR-automaton,

however, a rewrite step replaces a non-empty prefix u of the content w = uz

of the read/write window by a shorter word v, producing the factor vz, and

then the read/write window is moved just to the right of the factor v. Hence,

after executing this rewrite step, the suffix z is still inside the read/write

window. This change in the definition of the rewrite step is caused by the

following observation: When an FRR-automaton is to rewrite a factor u

by a word v, a certain finite look-ahead z may be needed to determine

the correct occurrence of the factor u to be rewritten. However, this very

factor z (or a suffix thereof) might be used in the next rewrite step, and so

the read/write window must not skip across it.

Observe further that the model of the FRR-automaton presented here

differs from the model studied in Ref. 10. Our model has length-reducing

rewrite steps only, while the rewrite steps of the model considered in Ref. 10

are just required to be weight-reducing with respect to some weight func-

tion, that is, that model is a generalization of the shrinking restarting

automaton.11

A configuration of an FRR-automaton M is a string αqβ, where q ∈ Q,

and either α = λ and β ∈ {c} ·Γ∗ · {$} or α ∈ {c} ·Γ∗ and β ∈ Γ∗ · {$}; here

q represents the current state, αβ is the current content of the tape, and it

is understood that the window contains the first k symbols of β or all of β

when |β| ≤ k. A restarting configuration is of the form q0cw$. If w ∈ Σ∗,

then q0cw$ is an initial configuration.

We observe that any computation of M consists of certain phases. A

phase, called a cycle, starts in a restarting configuration, the head moves

along the tape performing move-right and rewrite operations until a restart

operation is performed and thus a new restarting configuration is reached.

If no further restart operation is performed, the computation necessarily

finishes in a halting configuration, which is either rejecting or accepting.

Such a phase is called a (rejecting or an accepting) tail. It is required that

in each cycle M performs at least one rewrite step – thus each cycle strictly

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

206

reduces the length of the tape. We use the notation u `c
M v to denote a

cycle of M that begins with the restarting configuration q0cu$ and ends

with the restarting configuration q0cv$; the relation `c∗

M is the reflexive and

transitive closure of `c
M .

A sentential form w ∈ Γ∗ is accepted by M , if there is an accept-

ing computation which starts from the restarting configuration q0cw$. By

LC(M) we denote the language consisting of all sentential forms accepted

by M ; we say that LC(M) is the characteristic language of M , while the

set L(M) = LC(M)∩Σ∗ of all input sentences accepted by M is called the

input language recognized by M .

We emphasize the following basic properties9,12 of restarting automata,

which are often used implicitly in proofs.

Proposition 2.1 (Error Preserving Property). Let M be an FRR-

automaton, and let x, y ∈ Γ∗. If x `c∗

M y and x /∈ LC(M), then y /∈ LC(M),

either.

Proposition 2.2 (Correctness Preserving Property). Let M be an

FRR-automaton, and let x, y ∈ Γ∗. If x ∈ LC(M), and if x `c∗

M y is part of

an accepting computation of M , then y ∈ LC(M), too.

Observe that the latter property does in general not hold for input

languages, as apart from the initial configuration, each restarting config-

uration in an accepting computation may contain some auxiliary (that is,

non-input) symbols.

Finally we come to the notion of monotonicity. Let C = αqβ be a

rewrite configuration of an FRR-automaton M , that is, a configuration in

which a rewrite step is to be applied. Then |β| is called the right distance

of C, which is denoted by Dr(C). A sequence of rewrite configurations

S = (C1, C2, . . . , Cn) is called monotone if

Dr(C1) ≥ Dr(C2) ≥ · · · ≥ Dr(Cn).

Let j be a positive integer. We say that a sequence of rewrite configu-

rations S = (C1, C2, . . . , Cn) is j-monotone if there is a partition of S into

j subsequences

S1 = (C1,1, C1,2, . . . , C1,n1
), . . . , Sj = (Cj,1, Cj,2, . . . , Cj,nj

)

such that each Si, 1 ≤ i ≤ j, is monotone. Observe that it is not re-

quired that the subsequences S1, . . . , Sj follow sequentially one after an-

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

207

other in the original sequence. Instead they are in general all scattered

throughout the original sequence. Hence, a sequence of rewrite configura-

tions (C1, C2, . . . , Cn) is not j-monotone if and only if there exist indices

1 ≤ i1 < i2 < · · · < ij+1 ≤ n such that Dr(Ci1) < Dr(Ci2) < · · · <
Dr(Cij+1

).

A computation of an FRR-automaton M is called j-monotone if the

sequence of rewrite configurations that is obtained from the cycles of that

computation is j-monotone. Observe that here those rewrite configurations

are not taken into account that correspond to the rewrite steps that are

executed in the tail of that computation. A computation is j-rewriting if

none of its cycles contains more than j rewrite steps. Finally, a compu-

tation is j-constrained if it is both j-rewriting and j-monotone, and the

FRR-automaton M is called j-constrained if each of its computations is

j-constrained. We use the prefix j-constr- to denote j-constrained types of

FRR-automata.

Above we introduced FRR-automata as acceptors for characteris-

tic languages and input languages. Now we turn to proper languages

of FRR-automata. Here we will only consider FRR-automata M =

(Q,Σ,Γ, c, $, q0, k, δ) that are deterministic. Recall that the proper language

of M is defined as the set of words LP(M) = Pr
Σ(LC(M)), that is, a word

v ∈ Σ∗ belongs to LP(M) if and only if there exists an expanded version

u of v such that u ∈ LC(M). As a det-FRR-automaton M can easily be

simulated by a deterministic Turing machine in quadratic time, we see that

the membership problems for the languages LC(M) and L(M) are solvable

in quadratic time.

The class CRL of Church-Rosser languages is a basis for the class RE

of recursively enumerable languages,13 that is, for each recursively enumer-

able language L ⊆ Σ∗, there exists a Church-Rosser language B on some

alphabet ∆ strictly containing Σ such that Pr
Σ(B) = L. As CRL coincides

with the class of input languages of deterministic RRWW-automata,14 there

exists a deterministic RRWW-automaton M ′ with input alphabet ∆ and

tape alphabet Γ such that L(M ′) = B. Hence, L = Pr
Σ(B) ⊆ Pr

Σ(LC(M ′)).

However, the language LC(M ′) will in general also contain words for which

the projection onto Σ does not belong to the language L, that is, the

above inclusion is in general a strict one. Nevertheless, using a technically

more involved construction the following result has been derived,6 where

Σ0 = {a, b}, Σ1 = Σ0 ∪ {c}, ϕ0 : Σ∗
0 → Σ∗

0 is the injective morphism that

is defined by a 7→ aa and b 7→ bb, and ϕ : Σ∗
0 → Σ∗

1 denotes the mapping

that is defined by ϕ(w) = ϕ0(w) · c.

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

208

Proposition 2.3. For each recursively enumerable language L ⊆ Σ+
0 , there

exists a 1-rewriting det-FRR-automatonM such that LP(M)∩Σ∗
0 ·c = ϕ(L).

Thus, a word w ∈ Σ∗
0 belongs to the recursively enumerable language L

if and only if its image ϕ(w) belongs to the proper language LP(M). This

yields the following result.

Corollary 2.1. There exists a deterministic FRR-automaton M such that

the language LP(M) is non-recursive.

Thus, the proper languages of deterministic FRR-automata are in gen-

eral far more complex than the corresponding input and characteristic

languages. Therefore we now turn our attention to deterministic FRR-

automata for which the use of auxiliary symbols is restricted as in Refs. 6

and 15.

Definition 2.1. Let M = (Q,Σ,Γ, c, $, q0, k, δ) be a det-FRR-automaton.

(a) A word w ∈ Γ∗ is not immediately rejected by M if, starting from the

restarting configuration q0cw$, M either performs a cycle of the form

w `c
M z for some word z ∈ Γ∗, or M accepts w in a tail computation.

By NIR(M) we denote the set of all words that are not immediately

rejected by M .

(b) The det-FRR-automaton M is called lexicalized if there exists a con-

stant j ∈ N+ such that, whenever v ∈ (Γ r Σ)∗ is a factor of a word

w ∈ NIR(M), then |v| ≤ j.

(c) M is called strongly lexicalized if it is lexicalized, and if each of its

rewrite operations just deletes some symbols.

Strong lexicalization is a technique that is used in dependency based for-

mal descriptions of natural languages.4 Below we are interested in (strongly)

lexicalized FRR-automata and their proper languages. By LRR (SLRR)

we denote the class of (strongly) lexicalized FRR-automata, and by t-

LRR (t-SLRR) we denote the class of (strongly) lexicalized FRR-automata

which execute at most t rewrite steps in any cycle. Further, by j-constr-

LRR (j-constr-SLRR) we denote the class of (strongly) lexicalized FRR-

automata that are j-constrained. Recall that lexicalized FRR-automata are

deterministic.

If M is a lexicalized FRR-automaton, and if w ∈ Γ∗ is an extended

version of an input word v = Pr
Σ(w) such that w is not immediately rejected

by M , then |w| ≤ (j + 1) · |v| + j for some constant j > 0. Accordingly we

have the following result.

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

209

Corollary 2.2. If M is a lexicalized FRR-automaton, then the proper lan-

guage LP(M) is context-sensitive.

On the other hand, we have the following negative result.

Proposition 2.4. The Church-Rosser language Le = { a2n

| n ∈ N } is not

contained in LP(1-LRR).

Proof. Assume that Le = LP(M) for a 1-rewriting LRR-automaton M =

(Q, {a},Γ, c, $, q0, k, δ), and let z = a2n

∈ Le, where n is a large integer.

Then there exists an extended version w ∈ Γ∗ of z such that w ∈ LC(M).

Thus, the computation of M with input w is accepting. From the Pumping

Lemma for restarting automata,14 it is easily seen that this computation

cannot just consist of an accepting tail computation, that is, it begins with

a cycle of the form w `c
M w′. From the Correctness Preserving Property it

follows that w′ ∈ LC(M), which in turn implies that Pr
{a}(w′) ∈ Le. Thus,

Pr
{a}(w′) = am for some integer m satisfying 2n − k ≤ m < 2n + k. As m

must be a power of two, it follows from the choice of z that m = 2n, that

is, w′ is obtained from w by rewriting some auxiliary symbols only. We can

repeat this argument until eventually M either rewrites some occurrences

of the symbol a, which will then yield a word ŵ ∈ LC(M) for which the

projection Pr
{a}(ŵ) does not belong to the language Le anymore, or until

M accepts a word w̃ in a tail computation for which Pr
{a}(w̃) = a2n

holds.

In the latter case the Pumping Lemma can be applied to show that LP(M)

contains words that do not belong to the language Le. In either case it

follows that LP(M) 6= Le, contradicting our assumption above. Thus, Le is

not the proper language of any 1-rewriting LRR-automaton.

Finally we consider the following static complexity measure for LRR-

automata.

Definition 2.2. Let M = (Q,Σ,Γ, c, $, q0, k, δ) be an LRR-automaton,

and let m ∈ N. The automaton M has word-expansion m, denoted by

W(M) = m, if each word from NIR(M) contains at most m occurrences

of auxiliary symbols, that is, if w ∈ Γ∗ is not immediately rejected by M ,

then |Pr
ΓrΣ(w)| ≤ m.

We use the prefix W(m)- to denote classes of deterministic FRR-

automata that have word-expansion m. The following result taken from

Ref. 8 is a generalization of a result for lexicalized RRWW-automata.6,15

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

210

Theorem 2.1. If M is a W(m)-LRR-automaton for some m ∈ N,

then the membership problem for LP(M) is solvable deterministically in

time O(nm+2).

As the 1-(S)LRR-automaton is almost identical to the (strongly)

lexicalized RRWW-automaton,6,15 we have the following result.

Theorem 2.2. The class CFL of context-free languages coincides with

the class of proper languages of 1-constrained (strongly) lexicalized FRR-

automata, that is,

LP(1-constr-LRR) = LP(1-constr-SLRR) = CFL.

Actually, based on the parameter j of constrainability and the word

expansion factor W (m) several two-dimensional hierarchies of classes of

proper languages have been derived.6,8

Theorem 2.3. For all m ≥ 0, all i ≥ 1, and all X ∈ {LRR, SLRR},

(a) LP(W(m)-i-constr-X) (LP(W(m)-(i+ 1)-constr-X).

(b) LP(W(m)-i-constr-X) (LP(W(m+ 1)-i-constr-X).

(c) LP(W(m)-i-X) (LP(W(m)-(i+ 1)-X).

(d) LP(W(m)-i-X) (LP(W(m + 1)-i-X).

Some further results relating these language classes to some other classes

of proper languages of certain restricted types of restarting automata can

also be found in Refs. 6 and 8.

3. Finite-State Acceptors and Pushdown Automata

Here we study proper languages of finite-state acceptors and pushdown

automata. Let A = (Q,Σ,Γ, q0, F, δ) be a deterministic finite-state acceptor,

DFA for short, where Q is a finite set of states, Σ is a finite input alphabet,

Γ is a finite tape alphabet containing Σ, q0 ∈ Q is the initial state, F ⊆ Q is

the set of final states, and δ : Q×Γ → Q is the (partial) transition function.

Then LC(A) = {w ∈ Γ∗ | A accepts on input w } is the characteristic

language of A, while LP(A) = Pr
Σ(LC(A)) is the proper language of A.

The DFA A is called lexicalized if there exists a constant c ∈ N+ such that,

for each w ∈ LC(A) and each factor v ∈ (Γ r Σ)∗ of w, |v| ≤ c holds. We

use the prefix lex- to denote lexicalized types of automata.

It is well-known that LC(DFA) = REG, the class of regular languages.

As REG is closed under arbitrary morphisms, it follows that with LC(A),

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

211

also LP(A) = Pr
Σ(LC(A)) is regular. On the other hand, if Σ = Γ, then

LC(A) = LP(A). Thus, we have the following trivial observation.

Observation 3.1. LP(DFA) = LP(lex-DFA) =?REG.

Thus, in the case of finite-state acceptors proper languages give just

another characterization for the class of regular languages.

A deterministic pushdown automaton, DPDA for short, is given through

a tuple M = (Q,Σ,Γ,∆, q0,⊥, F, δ), where Q is a finite set of states, Σ is a

finite input alphabet, Γ is a finite tape alphabet containing Σ, ∆ is a finite

pushdown alphabet containing the bottom marker ⊥, q0 ∈ Q is the initial

state, F ⊆ Q is the set of final states, and δ : Q×(Γ∪{λ})×∆ → Q×∆∗ is

the (partial) transition function. A configuration of M is written as a triple

(q, u, α), where q ∈ Q is the current state, u ∈ Γ∗ is the remaining input

with the input head on the first symbol of u (or on λ, if u = λ), and α ∈ ∆∗

is the current content of the pushdown store with the first letter of α at

the bottom and the last letter of α at the top. A word w ∈ Γ∗ is accepted

by M , if the computation of M that starts with the initial configuration

(q0, w,⊥) reaches a final configuration of the form (q, λ, α), where q ∈ F

and α ∈ ∆∗. Then LC(M) = {w ∈ Γ∗ | M accepts on input w } is the

characteristic language of M , while LP(M) = Pr
Σ(LC(M)) is the proper

language of M .

It is well-known that LC(DPDA) = DCFL. However, as the language

class DCFL is not closed under arbitrary morphisms, we obtain a strictly

larger class of languages by considering proper languages of DPDAs.

Theorem 3.1. LP(DPDA) = LP(lex-DPDA) = CFL.

Proof. As the class of context-free languages is closed under arbitrary

morphisms, we see that LP(DPDA) ⊆ LP(PDA) ⊆ CFL, where PDA denotes

the class of (nondeterministic) pushdown automata.

Conversely, assume that L ⊆ Σ∗ is a context-free language. Without

loss of generality we may assume that L does not contain the empty word.

Thus, there exists a context-free grammar G = (N,Σ, S, P) for L that is

in Greibach normal form,16 that is, each rule of P has the form A→ α for

some string α ∈ Σ ·N∗. For the following construction we assume that the

rules of G are numbered from 1 to m.

From G we construct a new grammar G′ = (N,Σ ∪ B,S, P ′), where

B = {∇i | 1 ≤ i ≤ m } is a set of new terminal symbols that are in

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

212

one-to-one correspondence to the rules of G, and

P ′ = {A→ ∇iα | (A → α) is the i-th rule of G, 1 ≤ i ≤ m }.

Obviously, a word ω ∈ (Σ∪B)∗ belongs to L(G′) if and only if ω has the form

ω = ∇i1a1∇i2a2 · · ·∇in
an for some integer n > 0, where a1, . . . , an ∈ Σ,

i1, . . . , in ∈ {1, . . . ,m}, and these indices describe a (left-most) derivation

of w = a1a2 · · · an from S in G. Thus, Pr
Σ(L(G′)) = L(G) = L. From ω

this derivation can be reconstructed deterministically. In fact, the language

L(G′) is deterministic context-free. Hence, there exists a DPDA M for this

language. By interpreting the symbols of B as auxiliary symbols, we obtain

a DPDA M ′ such that Pr
Σ(LC(M ′)) = Pr

Σ(L(M)) = Pr
Σ(L(G′)) = L. It

follows that LP(DPDA) = CFL.

Observe from the proof above that within each word from LC(M ′),

auxiliary letters and input letters alternate. Thus, the DPDA M ′ is even

lexicalized.

4. Two-Pushdown Automata

Finally we turn to the proper languages of two-pushdown automata.

A two-pushdown automaton, TPDA for short, is a nondeterministic au-

tomaton with two pushdown stores. Formally, it is defined as an 8-tuple

M = (Q,Σ,Γ, k, δ, q0,⊥, F), where Q is a finite set of states, Σ is a fi-

nite input alphabet, Γ is a finite pushdown alphabet with Γ) Σ and

Γ ∩ Q = ∅, k ≥ 1 is the size of the pushdown windows, q0 ∈ Q is the

initial state, ⊥ ∈ Γ r Σ is the bottom marker of the pushdown stores,

and δ : Q × Γ≤k × Γ≤k → Pfin(Q × Γ∗ × Γ∗) is a transition relation. Here

Γ≤k = {u ∈ Γ+ | |u| ≤ k }, and Pfin(Q × Γ∗ × Γ∗) denotes the set of finite

subsets of Q× Γ∗ × Γ∗. In addition, we require that the special symbol ⊥
can only occur at the bottom of a pushdown store, and that no other letter

can occur at that place. The automaton M is a deterministic two-pushdown

automaton (DTPDA), if δ is a (partial) function from Q× Γ≤k × Γ≤k into

Q× Γ∗ × Γ∗.

Following Ref. 17, a configuration of a (D)TPDA is described by a

word uqv, where q ∈ Q is the current state, u ∈ Γ∗ is the content of

the first pushdown store with the first letter of u at the bottom and the

last letter of u at the top, and v ∈ Γ∗ is the content of the second pushdown

store with the last letter of v at the bottom and the first letter of v at the

top. For an input string w ∈ Σ∗, the corresponding initial configuration is

⊥q0w⊥. The (D)TPDA M induces a computation relation `∗
M on the set

of configurations, which is the reflexive transitive closure of the single-step

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

213

computation relation `M . The (D)TPDA M accepts with empty pushdown

stores, that is, LC(M) = {w ∈ Γ∗ | ⊥q0w⊥ `∗
M q for some q ∈ F } is the

characteristic language accepted by M , and L(M) = LC(M)∩Σ∗ is its input

language.

Definition 4.1.

(a) A (D)TPDA is called shrinking, if there exists a weight function ϕ : Q∪
Γ → N+ such that, for all q ∈ Q and all u, v ∈ Γ≤k, (p, u′, v′) ∈ δ(q, u, v)

implies that ϕ(u′pv′) < ϕ(uqv). Here ϕ is extended to a morphism from

(Q ∪ Γ)∗ into N by taking ϕ(λ) = 0 and ϕ(wa) = ϕ(w) + ϕ(a) for all

words w ∈ (Q ∪ Γ)∗ and all letters a ∈ Q ∪ Γ.

(b) A (D)TPDA is called length-reducing, if, for all q ∈ Q and all u, v ∈ Γ≤k,

(p, u′, v′) ∈ δ(q, u, v) implies that |u′v′| < |uv| holds.

Obviously, the length-reducing TPDA is a special case of the shrinking

TPDA. Observe that the input is provided to a TPDA as the initial con-

tents of its second pushdown store, and that in order to accept a TPDA

is required to empty its pushdown stores. Thus, it is forced to consume its

input completely.

From the definition of the transition relation δ we see that M halts

immediately whenever one of its pushdown stores is emptied. Because of

the above property this happens if and only if a transition of the form

(q, u, v⊥) 7→ (q′, u′, λ) or (q,⊥u, v) 7→ (q′, λ, v′) is performed. Thus, we can

assume without loss of generality that M has a single halting state qf , and

that all the halting and accepting configurations of M are of the form qf .

The following results have been obtained on the descriptive power of

shrinking and length-reducing (D)TPDAs.17,18

Proposition 4.1.

(a) A language is growing context-sensitive, if and only if if it is the in-

put language of a length-reducing TPDA, if and only if it is the input

language of a shrinking TPDA.

(b) A language is Church-Rosser, if and only if if it is the input language

of a length-reducing deterministic TPDA, if and only if it is the input

language of a shrinking deterministic TPDA.

What can we say about the proper languages of shrinking/length-

reducing DTPDAs? As mentioned before the class CRL of Church-Rosser

languages is a basis for the class RE of recursively enumerable languages.

Hence, if L ⊆ Σ∗ is a recursively enumerable language, then there exists a

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

214

Church-Rosser language B on some alphabet ∆ strictly containing Σ such

that Pr
Σ(B) = L. Thus, there exists a shrinking/length-reducing DTPDA

M ′ with input alphabet ∆ and tape alphabet Γ such that L(M ′) = B.

As CRL is closed under intersection with regular languages,18 we can even

assume that LC(M ′) ⊆ ∆∗ holds, implying that LC(M ′) = B. If we now in-

terpret M ′ as a shrinking/length-reducing DTPDA with input alphabet Σ,

then we obtain that LP(M ′) = Pr
Σ(B) = L, that is, we have the follow-

ing result. Here we use the prefixes sh- and lr- to denote shrinking and

length-reducing TPDAs, respectively.

Proposition 4.2. LP(sh-DTPDA) = LP(lr-DTPDA) = RE.

Thus, we see that the class of proper languages of shrinking/length-

reducing DTPDAs is already universal. Accordingly, we need to restrict the

use of auxiliary symbols for these DTPDAs. Therefore, we consider proper

languages of shrinking/length-reducing DTPDAs that are lexicalized.

Proposition 4.3. If M is a shrinking/length-reducing DTPDA that is lex-

icalized, then the proper language LP(M) is growing context-sensitive.

Proof. LetM be a shrinking/length-reducing DTPDA with input alphabet

Σ and tape alphabet Γ, and assume that M is lexicalized with constant

j ∈ N. Then no word w ∈ LC(M) contains any factor from (Γ r Σ)∗

of length exceeding j. Thus, the morphism Pr
Σ : Γ∗ → Σ∗ has j-limited

erasing16 on LC(M). As LC(M) is a Church-Rosser language, it belongs

to the class GCSL of growing context-sensitive languages.17 This in turn

implies that LP(M) = Pr
Σ(LC(M)) is also growing context-sensitive, as

this class is closed under limited erasing.19

Actually each growing context-sensitive language is the proper language

of a shrinking/length-reducing DTPDA that is lexicalized. As remarked by

Buntrock,19 each growing context-sensitive language L ⊆ Σ∗ is the im-

age of a Church-Rosser language L1 ⊆ Σ∗
1 under some λ-free morphism

ψ : Σ∗
1 → Σ∗. Without loss of generality we can assume that Σ1 and Σ are

disjoint. Define Γ = Σ1 ∪ Σ, and define a new morphism Ψ : Σ∗
1 → Γ∗ by

mapping s 7→ ψ(s)s for all s ∈ Σ1. It is easily seen that with L1, also Ψ(L1)

is a Church-Rosser language. We can now construct a shrinking/length-

reducing DTPDA M1 with input alphabet Σ and tape alphabet Γ′ contain-

ing Γ such that LC(M1) = Ψ(L1) and LP(M1) = Pr
Σ(Ψ(L1)) = ψ(L1) = L.

Thus, we have the following characterization.

Corollary 4.1. LP(lex-sh-DTPDA) = LP(lex-lr-DTPDA) = GCSL.

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

215

5. Transformations Computed by Deterministic Types of

Automata

The real goal of performing analysis by reduction on (the enriched form

of) an input sentence is not simply to accept or reject this sentence, but to

extract information from that sentence and to translate it into another form

(be it in another natural language or a formal representation). Therefore,

we want to interpret various types of automata as “transducers,” that is, we

study (binary) relations that are computed by various types of automata.

The general setting will be as follows.

Let Γ be a finite alphabet, and let Σ1 and Σ2 be two disjoint subalpha-

bets of Γ, where Σ1 is interpreted as an input alphabet, and Σ2 is seen as

an output alphabet. With an automaton M on Γ one can now associate the

relation Rel(M) ⊆ Σ∗
1 × Σ∗

2 that is defined as follows:

Rel(M) = { (u, v) | ∃w ∈ LC(M) : Pr
Σ1(w) = u and Pr

Σ2(w) = v },

where Pr
Σi denotes the projection from Γ∗ onto Σ∗

i , i = 1, 2. Thus, a pair

(u, v) ∈ Σ∗
1 × Σ∗

2 belongs to the relation Rel(M) if and only if there exists

a word x in the shuffle of u and v such that an extended version w of x

belongs to the characteristic language LC(M). We say thatM recognizes (or

computes) the relation Rel(M). For u ∈ Σ∗
1, the image of u under Rel(M)

is defined by

Rel(M)(u) = { v ∈ Σ∗
2 | (u, v) ∈ Rel(M) },

and for v ∈ Σ∗
2, the preimage of v with respect to Rel(M) is defined by

Rel−1(M)(v) = {u ∈ Σ∗
1 | (u, v) ∈ Rel(M) }.

A relation R ⊆ Σ∗
1 × Σ∗

2 is a transduction of type X if there exists an

automaton M of type X such that Rel(M) = R holds. By Rel(X) we denote

the class of all transductions of type X.

Now, for any type X of automaton, the following questions are of

interest:

– What are typical examples of transductions of type X?

– What closure and non-closure properties does the class of transductions

of type X have?

– What are the algorithmical and complexity-theoretical properties of

the class of transductions of type X?

– Is there a characterization of the class of transductions of type X in

terms of more classical language families or automata?

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

216

In analogy to the situation for proper languages we are in particu-

lar interested in relations that are computed by automata which are

lexicalized.

We first study binary relations of deterministic finite-state acceptors.

To this end we need the following notions and definitions.

A rational transducer is defined as T = (Q,Σ,∆, q0, F, E), where Q is a

finite set of internal states, Σ is a finite input alphabet, ∆ is a finite output

alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and

E ⊂ Q× Σ∗ × ∆∗ ×Q is a finite set of transitions.

If e = (p1, u1, v1, q1)(p2, u2, v2, q2) · · · (pn, un, vn, qn) ∈ E∗ is a sequence

of transitions, then its label is the pair `(e) = (u1u2 · · ·un, v1v2 · · · vn) ∈
Σ∗ ×∆∗. By `in(e) we denote the first component u1u2 · · ·un ∈ Σ∗, and by

`out(e) we denote the second component v1v2 · · · vn ∈ ∆∗. The sequence e

above is called a path from p1 to qn, if pi+1 = qi for all i = 1, . . . , n − 1.

It is called successful if p1 is the initial state q0, and if qn is a final state.

By Λ(p, q) we denote the set of all paths from p ∈ Q to q ∈ Q, and we

define Λ(p,Q′) =
⋃

q∈Q′ Λ(p, q) for all subsets Q′ ⊆ Q. Finally, T (p, q) =

{ `(e) | e ∈ Λ(p, q) } and T (p,Q′) = { `(e) | e ∈ Λ(p,Q′) }. Thus, Λ(q0, F)

is the set of all successful paths, and T (q0, F) is the set of labels of all

successful paths. Then Rel(T) = T (q0, F) is called the relation defined

by T . For u ∈ Σ∗ and v ∈ ∆∗, T (u) = { v ∈ ∆∗ | (u, v) ∈ T (q0, F) }, and

T−1(v) = {u ∈ Σ∗ | (u, v) ∈ T (q0, F) }. Obviously, the domain of Rel(T)

is the language L(T) = {u ∈ Σ∗ | T (u) 6= ∅ }, which is the set of all input

words for which T has an accepting computation.

The relations defined by rational transducers are just the so-called ra-

tional relations ,20 that is, the rational subsets of the monoid Σ∗ ×∆∗. We

denote the class of rational relations over Σ∗ × ∆∗ by Rat(Σ,∆). Actually

we will make use of the following characterization of rational relations.20

Theorem 5.1. A relation R ⊆ Σ∗ × ∆∗ is rational if and only if there

exist a finite alphabet Ω, a regular language K over Ω, and two morphisms

f : Ω∗ → Σ∗ and g : Ω∗ → ∆∗ such that R = { (f(w), g(w)) | w ∈ K }.

Based on this characterization we can easily derive the following

result.

Proposition 5.1.

Rel(DFA) =
⋃

Σ,∆
Σ∩∆=∅

Rat(Σ,∆).

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

217

Proof. Let R ⊆ Σ∗×∆∗ be a rational relation. Then by Theorem 5.1 there

exist a finite alphabet Ω, a regular language K over Ω, and two morphisms

f : Ω∗ → Σ∗ and g : Ω∗ → ∆∗ such that R = { (f(w), g(w)) | w ∈ K }.
Assume that the three alphabets Σ, ∆, and Ω are pairwise disjoint. As K is

a regular language over Ω, there exists a complete DFA A = (Q,Ω, q0, F, δ)

for this language. From A we now design a DFA B with tape alphabet

Θ = Σ∪∆∪Ω as follows: For all p, q ∈ Q and all a ∈ Ω, if δ(p, a) = q, then

B has a sequence of transition steps that takes B from p to q, while reading

the word ψ(a) := af(a)g(a). It is easily seen that B can be constructed in

such a way that LC(B) = {ψ(w) | w ∈ K }. Hence,

Rel(B) = { (Pr
Σ(ψ(w)),Pr

∆(ψ(w))) | w ∈ K }
= { (f(w), g(w)) | w ∈ K } = R.

Conversely, let A = (Q,Σ1,Σ2,Γ, q0, F, δ) be a DFA with tape alpha-

bet Γ, input alphabet Σ1 ⊂ Γ, and output alphabet Σ2 ⊂ Γ, where Σ1

and Σ2 are disjoint. Then Rel(A) = { (Pr
Σ1(w),Pr

Σ2(w)) | w ∈ LC(A) }.
As LC(A) is a regular language over Γ, and as Pr

Σ1 : Γ∗ → Σ∗
1 and

Pr
Σ2 : Γ∗ → Σ∗

2 are morphisms, we see from Theorem 5.1 that the rela-

tion Rel(A) is rational. This completes the proof of Proposition 5.1.

Next we turn to the so-called pushdown relations. A pushdown trans-

ducer (PDT for short) is defined as T = (Q,Σ,∆, X, q0, Z0, F, E), where Q

is a finite set of internal states, Σ is a finite input alphabet, ∆ is a finite

output alphabet, X is a finite pushdown alphabet, q0 ∈ Q is the initial

state, Z0 ∈ X is the initial symbol on the pushdown, F ⊆ Q is the set of

final states, and E ⊂ Q × (Σ ∪ {λ}) ×X ×Q ×X∗ × ∆∗ is a finite set of

transitions.21 A configuration of T is written as (q, u, α, v), where q ∈ Q is

a state, u ∈ Σ∗ is the still unread part of the input, α ∈ X∗ is the contents

of the pushdown store with the first letter of α at the bottom and the last

letter at the top, and v ∈ ∆∗ is the output produced so far. If (q, au, αx, v)

is a configuration, where a ∈ Σ ∪ {λ} and x ∈ X , and (q, a, x, p, y, z) ∈ E,

then T can perform the transition step (q, au, αx, v) ` (p, u, αy, vz), that

is, a is read from the input, the topmost symbol x on the pushdown is

replaced by the string y, the word z is appended to the output, and the

internal state changes from q to p. The relation Rel(T) computed by T is

defined as

Rel(T) = { (u, v) ∈ Σ∗ × ∆∗ | (q0, u, Z0, λ) `∗ (q, λ, α, v)

for some q ∈ F and α ∈ X∗ }.

A relationR ⊆ Σ∗×∆∗ is called a pushdown relation if R = Rel(T) holds for

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

218

some PDT T . By PDR(Σ,∆) we denote the class of all pushdown relations

over Σ∗ × ∆∗.

Proposition 5.2.

Rel(DPDA) =
⋃

Σ,∆
Σ∩∆=∅

PDR(Σ,∆).

Proof. Let T = (Q,Σ,∆, X, q0, Z0, F, E) be a PDT such that Σ ∩ ∆ = ∅.
We present a DPDA M = (Q′,Σ,∆,Γ, X, q′0,⊥, F

′, δ′) such that

Rel(M) = { (Pr
Σ(w),Pr

∆(w)) | w ∈ LC(M) } = Rel(T)

holds. With each possible transition e ∈ E of T , we associate a new auxiliary

letter γe, that is, we take Γ = Σ ∪ ∆ ∪ { γe | e ∈ E }. As usual we assume

without loss of generality that the various subalphabets of Γ are pairwise

disjoint. For e = (p, a, x, q, y, β), where p, q ∈ Q, a ∈ Σ∪{λ}, x ∈ X , y ∈ X∗,

and β ∈ ∆∗, let ψ(e) denote the word ψ(e) := γeaβ. Now M is designed in

such a way that it expects an input of the form ψ(w) for some w ∈ E+ such

that the sequence of transition steps described by w forms an accepting

computation of T . Obviously, during this computation T consumes the

input ι(w) and produces the output ω(w), where ι : E∗ → Σ∗ and ω :

E∗ → ∆∗ are the morphisms induced by mapping e = (p, a, x, q, y, β) onto

a and onto β, respectively. Then it is easily verified that LC(M) = {ψ(w) |
w describes an accepting computation of T }, and accordingly, Rel(M) =

Rel(T) follows.

Conversely, let M = (Q,Σ,∆,Γ, X, q0,⊥, F, δ) be a DPDA that com-

putes a relation Rel(M) = { (Pr
Σ(w),Pr

∆(w)) | w ∈ LC(M) }. We need to

describe a PDT T = (Q,Σ,∆, X, q0, Z0, F, E) that realizes this very binary

relation. We define the transition relation E of T as follows, where p, q ∈ Q,

x ∈ X , and y ∈ X∗:

(p, a, x, q, y, λ) ∈ E if δ(p, a, x) = (q, y) for all a ∈ Σ ∪ {λ},
(p, λ, x, q, y, c) ∈ E if δ(p, c, x) = (q, y) for all c ∈ ∆,

(p, λ, x, q, y, λ) ∈ E if δ(p, b, x) = (q, y) for all b ∈ Γ r (Σ ∪ ∆).

Thus, given a word u ∈ Σ∗ as input, T nondeterministically guesses an

expanded version w ∈ Γ∗ of u and tries to simulate an accepting compu-

tation of M on input w. If T is successful, then w ∈ LC(M) holds, and

we see that while processing w, T produces the output Pr
∆(w). Hence,

Rel(T) ⊆ Rel(M) holds. Conversely, if (u, v) ∈ Rel(M), then there exists

an expanded version w ∈ Γ∗ of the shuffle of u and v such that w ∈ LC(M)

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

219

holds. Obviously, T has an accepting computation that simulates the ac-

cepting computation of M on input w. It follows that Rel(M) = Rel(T)

holds.

Finally we turn to relations that are computed by deterministic two-

pushdown automata.

Proposition 5.3. Let Σ and ∆ be two finite disjoint alphabets. Then a

binary relation R ⊆ Σ∗×∆∗ can be computed by a shrinking/length-reducing

DTPDA if and only if it is recursively enumerable.

Proof. If R ⊆ Σ∗ × ∆∗ is recursively enumerable, then also the lan-

guage LR = {uv | (u, v) ∈ R } is recursively enumerable. Hence, by

Proposition 4.2 there exists a shrinking/length-reducing DTPDA M such

that LP(M) = LR. It follows that Rel(M) = { (Pr
Σ(w),Pr

∆(w)) | w ∈
LC(M) } = R holds.

Conversely, if R = Rel(M) for a shrinking/length-reducing DTPDA M ,

then obviously the relation R is recursively enumerable.

As the proof of Proposition 5.3 uses Proposition 4.2 in an essential

way, it follows that words from LC(M) may contain a very large number of

occurrences of auxiliary symbols. A DTPDA M = (Q,Σ,∆,Γ, k, δ, q0,⊥, F)

is called lexicalized if there exists a constant j ∈ N+ such that, for all

w ∈ LC(M), |w| ≤ j ·(|w|Σ +|w|∆) holds, that is, the number of occurrences

of auxiliary symbols in w ∈ LC(M) is bounded from above by a fixed linear

multiple of the combined number of input and output symbols in w.

Proposition 5.4. Let Σ and ∆ be two disjoint finite alphabets. Then a

binary relation R ⊆ Σ∗×∆∗ can be computed by a shrinking/length-reducing

DTPDA that is lexicalized, if the language LR = {uv | (u, v) ∈ R } is

growing context-sensitive.

Proof. Assume that R ⊆ Σ∗ × ∆∗ is a binary relation for which the lan-

guage LR is growing context-sensitive. Then it follows from Corollary 4.1

that LR = LP(M) for a lexicalized shrinking/length-reducing DTPDA. But

then R = Rel(M) follows immediately.

However, the converse of Proposition 5.4 does not hold in general. Let

Σ = {a, b}, let Σ = {ā, b̄} such that Σ ∩ Σ = ∅, and let : Σ∗ → Σ
∗

be

the morphism induced by a 7→ ā and b 7→ b̄. The marked copy language

Lmc = {ww | w ∈ Σ∗ } is not growing context-sensitive,19,22 and so by

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

220

Corollary 4.1, it is not the proper language of any lexicalized shrinking

DTPDA. On the other hand, if h : Σ∗ → (Σ ∪ Σ)∗ denotes the morphism

induced by a 7→ aā and b 7→ bb̄, then the language Lmd = {h(w) | w ∈ Σ∗ }
is regular, that is, it is in particular the proper language of a shrink-

ing DTPDA M . If we now interpret Σ as input alphabet and Σ as out-

put alphabet of M , then the relation Rel(M) coincides with the relation

R = { (w,w) | w ∈ Σ∗ }, which implies that the language LR coincides

with the language Lmc. Thus, although the relation R is computed by

a shrinking DTPDA that is lexicalized, the language LR is not growing

context-sensitive.

6. Conclusion

We have investigated the classes of proper languages of various types of (lex-

icalized) automata. First we have considered classes of proper languages of

(strongly) lexicalized restarting automata with multiple rewrites. We have

seen the influence of two parameters on the expressive power of these au-

tomata: the number of rewrites per cycle, and the number of auxiliary sym-

bols that may appear on the tape at the same time. Then for finite-state

acceptors we have seen that we just obtain another characterization for

the class of regular languages. More interestingly, the proper languages of

(lexicalized) deterministic pushdown automata yield another description of

the class of context-free languages, and for shrinking/length-reducing deter-

ministic two-pushdown automata, the class of proper languages is universal,

while in the case of lexicalized automata of this type, we obtain another

characterization of the class of growing context-sensitive languages.

Finally we have considered transductions, that is, binary relations,

that are computed by deterministic finite-state acceptors, deterministic

pushdown automata, and deterministic two-pushdown automata that are

shrinking/length-reducing. As it turned out the former are just the class of

rational relations and the class of pushdown relations, respectively. Which

binary relations are computed by shrinking/length-reducing deterministic

two-pushdown automata that are lexicalized? What can we say about the

classes of transductions that are computed by the various types of deter-

ministic restarting automata?

References

1. V. Kuboň and M. Plátek. A grammar based approach to a grammar checking
of free word order languages. In: COLING’94, Proc., Vol. II, Kyoto, Japan,
1994, 906–910.

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

221

2. M. Lopatková, M. Plátek, and V. Kuboň. Modeling syntax of free word-order
languages: Dependency analysis by reduction. In: V. Matoušek, P. Mautner,
and T. Pavelka (eds.), TSD 2005, Proc., Lecture Notes in Computer Sci-

ence 3658, Springer, Berlin, 2005, 140–147.
3. P. Sgall, E. Hajičová, and J. Panevová. The Meaning of the Sentence in Its

Semantic and Pragmatic Aspects. Reidel Publishing Company, Dordrecht,
1986.

4. M. Lopatková, M. Plátek, and P. Sgall. Towards a formal model for functional
generative description: Analysis by reduction and restarting automata. The

Prague Bulletin of Mathematical Linguistics 87 (2007) 7–26.
5. P. Květoň. Rule-based morphological desambiguation. The Prague Bulletin

of Mathematical Linguistics 85 (2006) 57–71.
6. F. Mráz, F. Otto, and M. Plátek. The degree of word-expansion of lexical-

ized RRWW-automata – A new measure for the degree of nondeterminism
of (context-free) languages. Theoretical Computer Science 410 (2009) 3530–
3538.

7. F. Otto and M. Plátek. A two-dimensional taxonomy of proper languages of
lexicalized FRR-automata. In: C. Martin-Vide, F. Otto, and H. Fernau (eds.),
LATA 2008, Proc., Lecture Notes in Computer Science 5196, Springer, Berlin,
2008, 409–420.

8. M. Plátek, F. Otto, and F. Mráz. Two-dimensional hierarchies of proper
languages of lexicalized FRR-automata. Information and Computation 207
(2009) 1300–1314.

9. P. Jančar, F. Mráz, M. Plátek, and J. Vogel. On monotonic automata with
a restart operation. Journal of Automata, Languages and Combinatorics 4
(1999) 283-292.

10. F. Mráz, F. Otto, and M. Plátek. Free word order and restarting automata.
In: R. Loos, S.Z. Fazekas, and C. Mart́in-Vide (eds.), LATA 2007, Preproc.,
Report 35/07, Research Group on Math. Linguistics, Universitat Rovira i
Virguli, Tarragona, 2007, 425–436.

11. T. Jurdziński and F. Otto. Shrinking restarting automata. International

Journal of Foundations of Computer Science 18 (2007) 361–385. An extended
abstract appeared in: J. Jȩdrzejowicz and A. Szepietowski (eds.), MFCS 2005,

Proc., Lecture Notes in Computer Science 3618, Springer, Berlin, 2005, 532–
543.

12. F. Otto. Restarting automata and their relations to the Chomsky hierar-
chy. In: Z. Ésik and Z. Fülöp (eds.), Developments in Language Theory,

DLT’2003, Proc., Lecture Notes in Computer Science 2710, Springer, Berlin,
2003, 55–74.

13. F. Otto, M. Katsura, and Y. Kobayashi. Infinite convergent string-rewriting
systems and cross-sections for finitely presented monoids. Journal of Symbolic

Computation 26 (1998) 621–648.
14. F. Otto. Restarting automata. In: Z. Ésik, C. Martin-Vide, and V. Mitrana

(eds.), Recent Advances in Formal Languages and Applications, Studies in
Computational Intelligence, Vol. 25, Springer, Berlin, 2006, 269–303.

15. F. Mráz, M. Plátek, and F. Otto. A measure for the degree of nondeterminism

July 19, 2010 16:17 WSPC - Proceedings Trim Size: 9in x 6in 14

222

of context-free languages. In: J. Holub and J. Žd’árek (eds.), CIAA 2007,

Proc., Lecture Notes in Computer Science 4783, Springer, Berlin, 2007, 192–
202.

16. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, Reading, MA, 1979.
17. G. Buntrock and F. Otto. Growing context-sensitive languages and Church-

Rosser languages. Information and Computation 141 (1998) 1–36.
18. G. Niemann, F. Otto. The Church-Rosser languages are the deterministic

variants of the growing context-sensitive languages. Information and Com-

putation 197 (2005) 1–21.
19. G. Buntrock. Wachsende kontextsensitive Sprachen. Habilitationsschrift,

Universität Würzburg, 1996.
20. J. Berstel. Transductions and Context-free Languages. Teubner Studi-

enbücher, Teubner, Stuttgart, 1979.
21. K. Culik and C. Choffrut. Classes of Transducers and Their Properties. Re-

search Report CS-81-04, Department of Computer Science, University of Wa-
terloo, 1981.

22. C. Lautemann. One pushdown and a small tape. In: K.W. Wagner (ed.), Dirk

Siefkes zum 50. Geburtstag, Technische Universität Berlin and Universität
Augsburg, 1988, 42–47.

Received: June 21, 2009

Revised: April 28, 2010

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

223

INITIAL LITERAL SHUFFLES OF UNIFORM CODES

GENJIRO TANAKA and YOSHIYUKI KUNIMOCHI

Dept. of Computer Science, Shizuoka Institute of Science and Technology,

Fukuroi-shi, 437-8555 Japan

E-mail: {tanaka,kunimoti}@cs.sist.ac.jp

It is known that the family of prefix codes is closed under the initial literal

shuffle operation. However, it has not been known whether or not other families

of codes are closed under this operation. In this paper we investigate the initial

literal shuffles of subsets of full uniform codes. We shall show that the initial

literal shuffle operation preserves various properties of uniform codes under

certain conditions. From this fact, we can construct more complicated uniform

codes from simpler uniform codes by using the initial literal shuffle operation.

Keywords: Initial literal shuffle; Code; Uniform code; Circular code; Limited

code; Extractable submonoid.

Mathematics Subject Classification: 68Q70

1. Introduction

Let A be an alphabet, A∗ the free monoid over A, and 1 the empty word.

Let A+ = A∗−{1}. A word v ∈ A∗ is a right factor of a word u ∈ A∗ if there

is a word w ∈ A∗ such that u = wv. For a word w ∈ A∗ and a letter x ∈ A

we let |w|x denote the number of x in w. The length |w| of w is the number

of letters in w. Therefore, An = {w ∈ A∗| |w| = n }, n ≥ 1. Two words x, y

are said to be conjugate if there exist words u, v such that x = uv, y = vu.

The conjugacy relation is an equivalence relation. By Cl(x) we denote the

class of x of this equivalence relation. We define the permutation on A∗ by

Γ(1) = 1 and Γ(av) = va for all a ∈ A, v ∈ A∗.

Then words x and y are conjugate if and only if Γn(x) = y for some n ≥ 0.

A word w is called a primitive word if w is not a power of another word.

A nonempty subset C of A+ is said to be a code if for

x1, ..., xp, y1, ..., yq ∈ C, p, q ≥ 1,

x1 · · ·xp = y1 · · · yq =⇒ p = q, x1 = y1, . . . , xp = yp.

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

224

A subset M of A∗ is a submonoid of A∗ if M2 ⊆ M and 1 ∈ M . Every

submonoid M of a free monoid has a unique minimal set of generators

C = (M − {1})− (M − {1})2. C is called the base of M .

A submonoid M is right unitary in A∗ if for all u, v ∈ A∗,

u, uv ∈ M =⇒ v ∈ M.

M is left unitary in A∗ if it satisfies the dual condition. A submonoid M

is biunitary if it is both left and right unitary. Let M be a submonoid of

a free monoid A∗, and C its base. If CA+ ∩ C = ∅ (resp. A+C ∩ C = ∅),
then C is called a prefix (resp. suffix) code over A. C is called a bifix code if

it is a prefix and suffix code. A submonoid M of A∗ is right unitary (resp.

biunitary) if and only if its minimal set of generators is a prefix code (resp.

bifix code) ([1, p.46],[5, p.108]).

Let C be a nonempty subset of A∗. If |x| = |y| for all x, y ∈ C, then

C is a bifix code. We call such a code a uniform code. The uniform code

An, n ≥ 1, is called a full uniform code.

Definition 1. Let x, y∈A∗. Then the initial literal shuffle x◦y of x and

y is defined as follows:

(1) If either x = 1 or y = 1, then x ◦ y = xy.

(2) Let x = a1a2 · · · am and let y = b1b2 · · · bn, ai, bj ∈ A. Then

x ◦ y =

{
a1b1a2b2 · · · anbnan+1an+2 · · ·am if m ≥ n,

a1b1a2b2 · · · ambmbm+1bm+2 · · · bn if m < n.

Let C1, C2 ⊂ A∗. Then the initial literal shuffle C1 ◦ C2 of C1 and C2

is defined as C1 ◦ C2 = {x ◦ y |x ∈ C1, y ∈ C2}.
Now we list the fundamental properties of the initial literal shuffle.

Let w, u, v, u′ v′ ∈ A+.

(1) If |u| = |v| and |u′| = |v′|, then (u ◦ v)(u′ ◦ v′) = uu′ ◦ vv′.

(2) If w = u ◦ v and |u| = |v|, then wk = uk ◦ vk, k ≥ 1.

(3) If |u| = |v| + 1 and |u′| = |v′|, then (u ◦ v)(u′ ◦ v′) = uv′ ◦ vu′.

(4) If |u| = |v| + 1 and |u′| + 1 = |v′|, then (u ◦ v)(u′ ◦ v′) = uv′ ◦ vu′.

(5) If w = u◦v and |u| = |v|+1, then w2 = uv◦vu and w2m = (uv)m◦(vu)m.

Let C1 and C2 be subsets of An.

(6) If ci ∈ C1, di ∈ C2, 1 ≤ i ≤ p, then

(c1 ◦ d1)(c2 ◦ d2) · · · (cp ◦ dp) = (c1c2 · · · cp) ◦ (d1d2 · · · dp).

(7) If u ∈ C∗
1 , v ∈ C∗

2 and |u| = |v|, then u ◦ v ∈ (C1 ◦ C2)
∗.

(8) If |u| = |v| and u ◦ v ∈ (C1 ◦ C2)
∗, then u ∈ C∗

1 and v ∈ C∗
2 .

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

225

(9) Let x and y be elements in A∗ such that |x| = |y|. Then, x ∈ C∗
1 and

y ∈ C∗
2 if and only if x ◦ y ∈ (C1 ◦ C2)

∗.

(10) (C1 ◦ C2)
∗ =

⋃∞
k=0(C

k
1 ◦ Ck

2).

2. Initial Literal Shuffles of Uniform Codes

A submonoid M of A∗ is said to be pure ([6]) if for all x ∈ A∗ and n ≥ 1,

xn ∈ M =⇒ x ∈ M.

A submonoid M of A∗ is very pure if for all u, v ∈ A∗,

uv, vu ∈ M ⇒ u, v ∈ M.

It is obvious that a very pure submonoid is a pure submonoid.

Definition 2. A subset C of A∗ is called a circular code if for all n, m ≥
1 and x1, · · · , xn, y1, · · · , ym ∈ C, and p ∈ A∗ and s ∈ A+, the following

implication holds:

sx2 · · ·xnp = y1 · · · ym, and x1 = ps =⇒
n = m, p = 1, and xi = yi (1 ≤ i ≤ n).

Any nonempty subset of a circular code is also a circular code. A sub-

monoid of A∗ is very pure if and only if its minimal set of generators is a

circular code([1], p.323).

Definition 3. Let p, q ≥ 0 be two integers. A code C is said to be (p, q)-

limited if for any sequence u0, u1, · · · , up+q of words in A∗, the assumptions

ui−1ui ∈ C∗ (1 ≤ i ≤ p + q) imply up ∈ C∗.

C is called a limited code if it is a (p, q)-limited for some integers p, q ≥ 0.

Let A be a finite set, and let C ⊂ An. If C is limited, then C is circu-

lar([1, p330]). Any subset D of a circular code C is also circular. Therefore

the finite circular code D is limited([1,p333]). If D is (p, q)-limited, then

for arbitrary sequence u0, u1, · · · , up+q ∈ A∗ such that uiui+1 ∈ D∗ we

have up ∈ D. Since D∗ is biunitary and up, up−1up, upup+1 ∈ D∗, we have

up−1, up+1 ∈ D∗. It follows that ui ∈ D∗ for all 0 ≤ i ≤ p + q. Therefore,

D is (s, t)-limited for all s, t with s + t = p + q.

Proposition 1. Let n be an even number, and let C1, C2 ⊂ An. If both

C∗
1 and C∗

2 are pure, then (C1 ◦ C2)
∗ is pure.

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

226

Proof. Suppose that wm ∈ (C1 ◦ C2)
∗, w ∈ A+.

Case 1. |w| is odd, and w = x1y1 · · ·xpypxp+1, xi, yi ∈ A, p ≥ 0.

We show that Case 1 cannot occur. That is, we prove that if |w| is odd, then

wm /∈ (C1 ◦C2)
∗ for any m ≥ 1. Put x = x1x2 · · ·xp+1, y = y1y2 · · · yp, then

w = x ◦ y. Since |wm| = m|w| is even, m = 2m0 for some integer m0 ≥ 1.

From w2 = (x ◦ y)(x ◦ y) = (xy) ◦ (yx) we have wm = (xy)m0 ◦ (yx)m0 ∈
(C1 ◦ C2)

∗. Thus (xy)m0 ∈ C∗
1 , and (yx)m0 ∈ C∗

2 . Since C∗
1 is pure, we

have xy ∈ C∗
1 . Thus C1 contains a word of odd length. This contradicts our

assumption. Thus Case 1 does not occur.

Case 2. |w| is even, and w = x1y1 · · ·xpyp, xi, yi ∈ A.

Put x = x1x2 · · ·xp, y = y1y2 · · · yp, then we have wm = xm ◦ ym ∈ (C1 ◦
C2)

∗. Thus x ∈ C∗
1 , y ∈ C∗

2 and |x| = |y|. Consequently w = x ◦ y ∈
(C1 ◦C2)

∗. Therefore, (C1 ◦ C2)
∗ is pure. Q.E.D.

For the case C1 = C2 we have the following:

Corollary 1. Let n be an even number, and let C ⊂ An. If C∗ is pure,

then (C ◦ C)∗ is pure.

Proposition 2. Let C ⊂ An. If (C ◦ C)∗ is pure, then C∗ is pure.

Proof. Suppose that wm ∈ C∗. Then wm ◦wm = (w ◦w)m ∈ (C ◦C)∗.

Consequently w ◦ w ∈ (C ◦ C)∗. Therefore, w ∈ C∗. Q.E.D.

Example 1. Let C1 = {ab, ba}, C2 = {b2}. Then C∗
1 is pure, and C∗

2 is

not pure.

(1) C1 ◦ C1 = {a2b2, ab2a, ba2b, b2a2}. (C1 ◦C1)
∗ is a pure submonoid.

(2) C1 ◦ C2 = {ab3, b2ab}. (C1 ◦ C2)
∗ is pure. Therefore, the converse of

Proposition 1 does not hold.

(3) {b}∗ is pure, but ({b} ◦ {b})∗ = {b2}∗ is not pure.

Proposition 3. Let C1, C2, and C be subsets of An (n ≥ 2) such that

(C1 ∪ C2) ⊂ C. If C is circular, then C1 ◦ C2 is circular.

Proof. Note that both C1 and C2 are circular since they are subsets of

the circular code C.

Let uv, vu ∈ (C1 ◦ C2)
∗, u, v ∈ A∗. If either u = 1 or v = 1, then u, v ∈

(C1 ◦C2)
∗. Consequently we consider other cases.

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

227

Case 1. uv ∈ (C1 ◦ C2)
+ − (C1 ◦ C2). Case 2. uv ∈ C1 ◦ C2.

Case 1. Let uv = α1α2 · · ·αk · · ·αm, αi = (ci ◦ di) ∈ C1 ◦ C2, 1 ≤ i ≤ m,

and αk = (x1x2 · · ·xn) ◦ (y1y2 · · · yn), xj , yj ∈ A, 1 ≤ j ≤ n.

Case 1-i. If u = α1 · · ·αk and v = αk+1 · · ·αm, then u, v ∈ (C1 ◦ C2)
∗.

Case 1-ii. u = α1 · · ·αk−1x1y1 · · ·xpyp, v = xp+1yp+1 · · ·xnynαk+1 · · ·αm,

1 ≤ p < n. In this case we have

vu = xp+1yp+1 · · ·xnynαk+1 · · ·αmα1 · · ·αk−1x1y1 · · ·xpyp

= (e1 ◦ f1)(e2 ◦ f2) · · · (em ◦ fm)

for some ek ∈ C1, fk ∈ C2, 1 ≤ k ≤ m. It follows that (xp+1 · · ·xn

ck+1 · · · cmc1 · · · ck−1x1 · · ·xp) ◦ (yp+1 · · · yndk+1 · · · dmd1 · · · dk−1y1 · · · yp) =

(e1e2 · · · em) ◦ (f1f2 · · · fm). Thus

xp+1 · · ·xnck+1 · · · cmc1 · · · ck−1x1 · · ·xp = e1e2 · · · em.

This contradicts the fact that C1 is circular. Thus Case 1-ii cannot occur.

Case 1-iii. u = α1 · · ·αk−1x1y1 · · ·xpypxp+1, v = yp+1 · · ·xnynαk+1 · · ·αm,

0 ≤ p < n. In this case we have

vu = yp+1 · · ·xnynαk+1 · · ·αmα1 · · ·αk−1x1y1 · · · ypxp+1

= (e1 ◦ f1)(e2 ◦ f2) · · · (em ◦ fm)

for some (ej ◦ fj) ∈ C1 ◦ C2, 1 ≤ j ≤ m. It follows that (yp+1 · · · yn

dk+1 · · · dmd1 · · · dk−1y1 · · · yp) ◦ (xp+2 · · ·xnck+1 · · · cmc1 · · · ck−1x1 · · ·xp+1)

= (e1 · · · em) ◦ (f1 · · · fm). Thus

yp+1 · · · yndk+1 · · · dmd1 · · · dk−1y1 · · · yp = e1 · · · em, (1)

xp+2 · · ·xnck+1 · · · cmc1 · · · ck−1x1 · · ·xp+1 = f1 · · · fm. (2)

Note that ci, di, ei, fi ∈ C for all i (1 ≤ i ≤ m) and n ≥ 2. If p > 1, then

the equality (1) contradicts our assumption that C is circular. If p = 0,

then the equality (2) also contradicts our assumption. Therefore, Case 1-iii

cannot occur.

Case 2-i. uv = x1y1 · · ·xnyn, x1x2 · · ·xn ∈ C1, y1y2 · · · yn ∈ C2, and u =

x1y1 · · ·xpyp, p ≥ 1. In this case we have

vu = xp+1yp+1 · · ·xnynx1y1 · · ·xpyp

= (xp+1 · · ·xnx1 · · ·xp) ◦ (yp+1 · · · yny1 · · · yp) ∈ C1 ◦ C2.

Thus x1x2 · · ·xn, xp+1 · · ·xnx1 · · ·xp ∈ C1. That is, C1 contains nontrivial

conjugate elements. This contradicts the fact that C1 is circular.

Case 2-ii. uv = x1y1 · · ·xnyn, x1x2 · · ·xn ∈ C1, y1y2 · · · yn ∈ C2, and

u = x1y1 · · ·xpypxp+1, 0 ≤ p < n. In this case we have

vu = yp+1 · · ·xnynx1y1 · · ·xpypxp+1

= (yp+1 · · · yny1 · · · yp) ◦ (xp+2 · · ·xnx1 · · ·xp+1) ∈ C1 ◦ C2.

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

228

Thus x1x2 · · ·xn ∈ C1, xp+1 · · ·xnx1 · · ·xp ∈ C2. That is, C contains two

distinct conjugate words. This contradicts our assumption. Therefore, Case

2 can not occur. Consequently only Case 1-i can occur. Q.E.D.

Since C = C ∪ C, we have the following:

Corollary 2. Let C ⊂ An, n ≥ 2. If C is circular, then C ◦C is circular.

Proposition 4. Let C ⊂ An. If C ◦ C is circular, then C is circular.

Proof. Suppose that there exist u, v ∈ A∗ such that uv, vu ∈ C∗ and

u /∈ C∗. For the two elements u ◦ u, v ◦ v ∈ A∗ we have

(u ◦ u)(v ◦ v) = uv ◦ uv ∈ (C ◦ C)∗, (v ◦ v)(u ◦ u) = vu ◦ vu ∈ (C ◦ C)∗.

However u ◦ u /∈ (C ◦C)∗. Thus (C ◦C)∗ is not very pure, that is, C ◦C is

not circular. Q.E.D.

Example 2. (1) Let C = {ab, ba}. Then C∗ is pure, but it is not very

pure. (C ◦C)∗ is pure. However, by Proposition 4, (C ◦C)∗ is not very pure.

Thus C ◦ C is not circular.

(2) Let C1 = {aba} and C2 = {a2b}. Then both C1 and C2 are circular.

However, C1 ∪C2 is not circular. C1 ◦C2 = {(a2b)2} and a2b /∈ (C1 ◦C2)
∗.

Thus (C1 ◦ C2)
∗ is not pure. Therefore, C1 ◦ C2 is not circular.

(3) Let A = {ai | i ≥ 0} (an infinite set). Let C = { aiai+1 | i ≥ 0} ⊂ A2.

Then C is a circular code([1, p.330]). Thus C ◦C = {aiajai+1aj+1 | i, j ≥ 0 }
is a circular code. Since D = {a2

i a
2
i+1|i ≥ 0} is a subset of a circular code

C ◦ C, D is a circular code.

Proposition 5. Let C1, C2, and C be nonempty subsets of An (n ≥ 2)

such that (C1∪C2) ⊂ C. If C is (p, q)-limited, then C1◦C2 is (p, q)-limited.

Proof. Let D = C1 ◦ C2. Assume that u0, u1, · · · , up+q ∈ A∗ and

uk−1uk ∈ D∗, 1 ≤ k ≤ p + q.

Case 1. If ui ∈ D∗ for some i (0 ≤ i ≤ p + q), then uk ∈ D∗ for all

k (0 ≤ k ≤ p + q) since D∗ is biunitary.

Case 2. So we consider the other case that ui /∈ D∗ for all i (0 ≤ i ≤ p+q).

From ui−1ui ∈ D+ we have

ui−1ui = (c1 ◦ d1)(c2 ◦ d2) · · · (cti
◦ dti

)

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

229

for some integer ti and (ck ◦ dk) ∈ C1 ◦C2, ck ∈ C1, dk ∈ C2 for 1 ≤ k ≤ ti.

Then there exist some m (1 ≤ m ≤ ti) and wi−1, w
′
i−1 ∈ A+ such that

cm ◦ dm = wi−1w
′
i−1 and

ui−1 = (c1◦d1) · · · (cm−1◦dm−1)wi−1, ui = w′
i−1(cm+1◦dm+1) · · · (cti

◦dti
).

Let cm = xi−1,1xi−1,2 · · ·xi−1,n, dm = yi−1,1yi−1,2 · · · yi−1,n,

xi−1,j , yi−1,j ∈ A, 1 ≤ j ≤ n, then wi−1(resp. w′
i−1) is a left factor (resp. a

right factor) of xi−1,1yi−1,1xi−1,2yi−1,2 · · ·xi−1,nyi−1,n. It follows that

ui−1ui = (c1 · · · cm−1 ◦ d1 · · · dm−1)(cm ◦ dm)(cm+1 · · · cti
◦ dm+1 · · · dti

)

= (αi−1 ◦ βi−1)xi−1,1yi−1,1xi−1,2yi−1,2 · · ·xi−1,nyi−1,n(γi−1 ◦ δi−1),

where αi−1 = c1 · · · cm−1, βi−1 = d1 · · · dm−1, cm ◦ dm =

xi−1,1yi−1,1xi−1,2yi−1,2 · · ·xi−1,nyi−1,n,

γi−1 = cm+1 · · · cti
, δi−1 = dm+1 · · · dti

. We note that if m = 1 (resp.

m = ti), then αi−1 ◦ βi−1 = 1 (resp. γi−1 ◦ δi−1 = 1).

Case 2-i. |u0| is even.

u0 = (α0 ◦β0)x01y01· · ·x0ry0r, u1 = x0,r+1y0,r+1 · · ·x0ny0n(γ0 ◦ δ0), r ≥ 1.

In this case, all ui (0 ≤ i ≤ p + q) have even lengths since ui−1ui ∈ (A2n)∗.

From

u1u2 = (α1 ◦ β1)x11y11x12y12 · · ·x1ny1n(γ1 ◦ δ1),

we have

u1 = (α1 ◦ β1)x11y11 · · ·x1sy1s, s ≥ 1,

u2 = x1,s+1y1,s+1 · · ·x1ny1n(γ1 ◦ δ1),

for some s. Consequently

u1 = x0,r+1y0,r+1 · · ·x0ny0n(γ0 ◦ δ0) = (α1 ◦ β1)x11y11 · · ·x1sy1s.

Note that |γ0 ◦ δ0| ≡ 0 mod 2n, |α1 ◦ β1| ≡ 0 mod 2n, and

|u1| = |γ0 ◦ δ0| + 2(n − r) = |α1 ◦ β1| + 2s.

If |γ0 ◦ δ0| 6= |α1 ◦ β1|, then we have either n − r > n or s > n. This is a

contradiction. Thus we have |γ0 ◦ δ0| = |α1 ◦ β1| and n − r = s. It follows

that

u1 = x0,r+1y0,r+1 · · ·x0ny0n(γ0 ◦ δ0) = (α1 ◦ β1)x11y11 · · ·x1,n−ry1,n−r,

u2 = x1,n−r+1y1,n−r+1 · · ·x1ny1n(γ1 ◦ δ1).

From

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

230

u2u3 = (α2 ◦ β2)x21y21x22y22 · · ·x2ny2n(γ2 ◦ δ2),

we have

u2 = (α2 ◦ β2)x21y21 · · ·x2ty2t,

u3 = x2,t+1y2,t+1 · · ·x2ny2n(γ2 ◦ δ2),

for some t. It follows that

u2=x1,n−r+1y1,n−r+1 · · ·x1ny1n(γ1 ◦ δ1) = (α2 ◦ β2)x21y21 · · ·x2ty2t.

Note that |γ1 ◦ δ1| ≡ 0 mod 2n, |α2 ◦ β2| ≡ 0 mod 2n, and

|u2| = |γ1 ◦ δ1| + 2r = |α2 ◦ β2| + 2t.

Then we have t = r. That is,

u2 = x1,n−r+1y1,n−r+1 · · ·x1ny1n(γ1 ◦ δ1) = (α2 ◦ β2)x21y21 · · ·x2ry2r,

u3 = x2,r+1y2,r+1 · · ·x2ny2n(γ2 ◦ δ2).

By repeating this argument we have

u0 = (α0 ◦ β0)x01y01· · ·x0ry0r = (α0x01· · ·x0r) ◦ (β0y01· · ·y0r),

u2f−1 = x2f−2,r+1y2f−2,r+1 · · ·x2f−2,ny2f−2,n(γ2f−2 ◦ δ2f−2)

= (α2f−1 ◦ β2f−1)x2f−1,1y2f−1,1 · · ·x2f−1,n−ry2f−1,n−r, f ≥ 1,

u2f = x2f−1,n−r+1y2f−1,n−r+1 · · ·x2f−1,ny2f−1,n(γ2f−1 ◦ δ2f−1)

= (α2f ◦ β2f)x2f,1y2f,1 · · ·x2f,ry2f,r, f ≥ 1,

up+q = xp+q−1,r+1yp+q−1,r+1 · · ·xp+q−1,nyp+q−1,n(γp+q−1 ◦ δp+q−1),

if p + q is odd,

up+q = xp+q−1,n−r+1yp+q−1,n−r+1 · · ·xp+q−1,nyp+q−1,n(γp+q−1 ◦ δp+q−1),

if p + q is even.

Note that

u2f−1 = (x2f−2,r+1 · · ·x2f−2,nγ2f−2) ◦ (y2f−2,r+1 · · · y2f−2,nδ2f−2)

= (α2f−1x2f−1,1 · · ·x2f−1,n−r) ◦ (β2f−1y2f−1,1 · · · y2f−1,n−r).

u2f = (x2f−1,n−r+1 · · ·x2f−1,nγ2f−1) ◦ (y2f−1,n−r+1 · · · y2f−1,nδ2f−1)

= (α2fx2f,1 · · ·x2f,r) ◦ (β2fy2f,1 · · · y2f,r),

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

231

Let

v2i = α2ix2i,1 · · ·x2i,r , i ≥ 0,

v2i+1 = α2i+1x2i+1,1 · · ·x2i+1,n−r , i ≥ 0,

vp+q = xp+q−1,n−r+1 · · ·xp+q−1,nγp+q−1, if p + q is even,

vp+q = xp+q−1,r+1 · · ·xp+q−1,nγp+q−1, if p + q is odd.

For v0, v1, · · · , vp+q ∈ A∗ we have vjvj+1 ∈ C∗
1 ⊂ C∗. Since C is a bifix

(p, q)-limited code, we have vj ∈ C∗ for all 0 ≤ j ≤ p + q. However |v0| is

not multiple of n. This is a contradiction. Thus Case 2-i cannot occur.

Case 2-ii. |u0| is odd. In this case all ui have odd length since ui−1ui ∈
(A2n)∗.

If u0=(α0◦β0)x01y01· · ·x0ry0rx0,r+1 and u1=y0,r+1x0,r+2 · · ·x0ny0n(γ0◦δ0),

then we have that for f ≥ 1,

u2f−1 = y2f−2,r+1x2f−2,r+2 · · ·x2f−2,ny2f−2,n(γ2f−2 ◦ δ2f−2)

= (α2f−1 ◦ β2f−1)x2f−1,1y2f−1,1 · · · y2f−1,n−r−1x2f−1,n−r,

u2f = y2f−1,n−rx2f−1,n−r+1 · · ·x2f−1,ny2f−1,n(γ2f−1 ◦ δ2f−1)

= (α2f ◦ β2f)x2f,1y2f,1 · · ·x2f,ry2f,rx2f,r+1,

up+q = yp+q−1,n−r · · ·xp+q−1,nyp+q−1,n(γp+q−1 ◦ δp+q−1), if p + q is even,

up+q = yp+q−1,r+1 · · ·xp+q−1,nyp+q−1,n(γp+q−1 ◦ δp+q−1), if p + q is odd.

Therefore,

β2f−1y2f−1,1 · · · y2f−1,n−r−1 = x2f−2,r+2 · · ·x2f−2,nγ2f−2,

α2f x2f,1 · · ·x2f,r+1 = y2f−1,n−r · · · y2f−1,nδ2f−1.

If r + 1 < n, then we set

v0 = α0x01 · · ·x0,r+1,

v2f−1 = β2f−1y2f−1,1 · · · y2f−1,n−r−1,

v2f = α2fx2f,1 · · ·x2f,r+1,

vp+q = xp+q−1,r+2 · · ·xp+q−1,nγp+q−1, if p + q is odd,

vp+q = yp+q−1,n−r · · · yp+q−1,nδp+q−1, if p + q is even.

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

232

If r + 1 = n, then we put

v0 = β0y01 · · · y0,n−1,

v2f−1 = α2f−1x2f−1,1,

v2f = β2fy2f,1 · · · y2f,n−1,

vp+q = yp+q−1,nδp+q−1, if p + q is odd,

vp+q = xp+q−1,2 · · ·xp+q−1,nγp+q−1, if p + q is even.

Then vi−1vi ∈ C∗ for all i = 1, · · · p + q. Since C is a bifix (p, q)-limited

code, we have vj ∈ C∗
1 for any 0 ≤ j ≤ p + q. However the length of v0

is not a multiple of n. This is a contradiction. Therefore, Case 2-ii cannot

occur.

Hence only Case 1 is possible to occur. Thus C1 ◦ C2 is (p, q)-limited.

Q.E.D.

For the case that C1 = C2 = C, we have the following:

Corollary 3. Let C ⊂ An (n ≥ 2). If C is (p, q)-limited, then C ◦ C is

(p, q)-limited.

Proposition 6. Let C ⊂ An. If C ◦C is (p, q)-limited, then C is (p, q)-

limited.

Proof. Let u0, u1, · · · , up+q be a sequence of words in A∗ where

ui−1ui ∈ C∗ for 1 ≤ i ≤ p + q. Consider the following sequence of words in

A∗; u0 ◦ u0, u1 ◦ u1, · · · , up+q ◦ up+q. Then

(ui−1 ◦ ui−1)(ui ◦ ui) = (ui−1 ◦ ui) ◦ (ui−1 ◦ ui) ∈ (C ◦ C)∗.

Since C ◦C is (p, q)-limited, we have up ◦up ∈ (C ◦C)∗. Therefore, up ∈ C∗.

Q.E.D.

A subset C ⊂ A+ is said to be infix if for all x, y, z ∈ A∗ the assump-

tions z ∈ C, xzy ∈ C imply x = y = 1. For example a subset C of An is an

infix code. A nonempty subset C ⊂ A+ is said to be an intercode of index

m, m ≥ 1, if Cm+1 ∩ A+CmA+ = ∅.
An intercode of index m is (p, q)-limited for all p and q with p + q =

2m+1. In general, if an infix code L is (p, q)-limited for some p, q ≥ 0 with

p + q = 2m + 1, then L is an intercode of index m([9]).

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

233

Let C ⊂ An, n ≥ 2. If C is an intercode of index m, then C is (p, q)-

limited for some p, q ≥ 0 with p + q = 2m + 1. Therefore, by Proposition

5, C ◦C is an infix (p, q)-limited code. Thus C ◦C is an intercode of index

m. That is, Proposition 5 implies the next proposition. However we give a

direct proof for the sake of clarity and completeness.

Proposition 7. Let C ⊂ An, n ≥ 2, and let C1 and C2 be nonempty

subsets of C. If C is an intercode of index m, then C1 ◦ C2 is an intercode

of index m.

Proof. Assume that w ∈ (C1 ◦ C2)
m+1 ∩ A+(C1 ◦ C2)

mA+ 6= ∅. Then

w = (α1α2 · · ·αm+1) ◦ (β1β2 · · ·βm+1) = u((γ1γ2 · · · γm) ◦ (δ1δ2 · · · δm))v

for some u, v ∈ A+ and αi, βi, γj , δj ∈ (C1 ∪ C2) ⊂ C, 1 ≤ i ≤ m + 1, 1 ≤
j ≤ m.

Case 1. |u| is even. Note that any elements in (C1 ◦C2)
∗ have even length.

Therefore, |v| is also even. Thus u = x ◦ y, v = x′ ◦ y′ for some x, y, x′, y′ ∈
A+ such that |x| = |y| ≥ 1 and |x′| = |y′| ≥ 1. It follows that

w = (α1α2 · · ·αm+1) ◦ (β1β2 · · ·βm+1) = (xγ1γ2 · · · γmx′) ◦ (yδ1δ2 · · · δmy′).

Therefore,

α1α2 · · ·αm+1 = xγ1γ2 · · · γmx′ ∈ Cm+1 ∩ A+CmA+.

This contradicts our assumption.

Case 2. |u| is odd.

In this case |v| is also odd. u = x ◦ y, v = x′ ◦ y′ for some x, y, x′, y′ ∈ A+

such that |x| = |y| + 1 and |x′| = |y′| + 1. It follows that

w = (α1α2 · · ·αm+1) ◦ (β1β2 · · ·βm+1) = (xδ1δ2 · · · δmy′) ◦ (yγ1γ2 · · · γmx′).

If |u| = 1, that is, if u = x ∈ A and y = 1, then y′ 6= 1 since |u| + |v| =

2n ≥ 4. Thus α1α2 · · ·αm+1 = xδ1δ2 · · · δmy′ ∈ Cm+1 ∩ A+CmA+. This is

a contradiction.

If |u| 6= 1, then we have, β1β2 · · ·βm+1 ∈ A+CmA+, a contradiction. There-

fore, (C1 ◦ C2)
m+1 ∩ A+(C1 ◦ C2)

mA+ = ∅. Q.E.D.

Corollary 4. Let C ⊂ An, n ≥ 2. If C is an intercode of index m, then

C ◦ C is an intercode of index m.

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

234

Example 3. Let C1 = {aba, ba2}, C2 = {ab2}. Then C1 is not circular.

Thus C1 is not an intercode. However, (C1 ◦C2)
∗ = {a2b2ab, ba2bab} is an

intercode of index 1.

Proposition 8. Let C ⊂ An. If C ◦ C is an intercode of index m, then

C is an intercode of index m.

Proof. Assume that w ∈ Cm+1 ∩ A+CmA+ 6= ∅. Then w =

c1c2 · · · cm+1 = ud1d2 · · · dmv for some ci, dj ∈ C, 1 ≤ i ≤ m+1, 1 ≤ j ≤ m,

u, v ∈ A+.

(C ◦ C)m+1 3 (c1 ◦ c1)(c2 ◦ c2) · · · (cm+1 ◦ cm+1)

= (ud1d2 · · · dmv) ◦ (ud1d2 · · · dmv),

= (u ◦ u)((d1d2 · · · dm) ◦ (d1d2 · · · dm))(v ◦ v)

∈ (u ◦ u)(C ◦ C)m(v ◦ v).

Therefore, (C ◦C)m+1 ∩A+(C ◦C)mA+ 6= ∅. This contradicts our assump-

tion. Thus C is an intercode of index m. Q.E.D.

A submonoid M of A∗ is said to be extractable if for all x, y, z ∈ A∗,

z, xzy ∈ M =⇒ xy ∈ M.

It is obvious that M is biunitary. Therefore, the base of M is a bifix code.

The base of an extractable submonoid is called an extractable code.

Example 4. (1) Let φ : A∗ → G be a morphism from a free monoid A∗

onto a group G. Let H be a normal subgroup of G, and let C be the group

code defined by C∗ = φ−1(H). Then C∗ is an extractable submonoid of A∗.

(2) Let C = {ab, ba}. Then C∗ is an extractable pure submonoid.

(3) Let C = {aba, b2a}. Then C is (p, q)-limited for all p, q ≥ 0 with

p + q = 3, and C∗ is extractable.

(4) Let C = {a2, ab}. Then C∗ is extractable, but it is not pure.

(5) Let C = {a4, aba2, a2b2}. Then C∗ is not extractable.

Proposition 9. Let C ⊂ An. Then C is extractable if and only if C ◦C

is extractable.

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

235

Proof. Assume that C∗ is extractable. Let x, y ∈ A∗, z, xzy ∈ (C◦C)∗.

We consider the following two cases.

Case 1. |x| is even. Then, since z ∈ (A2n)∗, we have that y is even. Let

x = x1 ◦x2, |x1| = |x2|, y = y1 ◦ y2, |y1| = |y2|, and let z = α ◦β, |α| = |β|,
α, β ∈ C∗. Then

(x1 ◦ x2)(α ◦ β)(y1 ◦ y2) = (x1αy1) ◦ (x2βy2) ∈ (C ◦ C)∗.

It follows that α, x1αy1, β, x2βy2 ∈ C∗. Hence x1y1, x2y2 ∈ C∗. Since

|x1y1| = |x2y2|, we have

(x1y1) ◦ (x2y2) = (x1 ◦ x2)(y1 ◦ y2) = xy ∈ (C ◦ C)∗.

Thus (C ◦ C)∗ is extractable.

Case 2. |x| is odd. In this case, |y| is also odd. Let x = x1◦x2, |x1| = |x2|+1,

y = y1 ◦ y2, |y1| = |y2| + 1, and let z = α ◦ β, |α| = |β|, α, β ∈ C∗. Then

(x1 ◦ x2)(α ◦ β)(y1 ◦ y2) = (x1βy2) ◦ (x2αy2) ∈ (C ◦ C)∗.

It follows that β, x1βy2, α, x2αy1 ∈ (C ◦C)∗. Therefore, x1y2, x2y1 ∈ C∗.

Since |x1y2| = |x2y1|, we have

(x1y2) ◦ (x2y1) = (x1 ◦ x2)(y1 ◦ y2) = xy ∈ (C ◦ C)∗.

Conversely, assume that (C◦C)∗ is extractable. Let x, y ∈ A∗, and z, xzy ∈
C∗. If z = 1, then xy ∈ C∗. Thus, we consider the case z 6= 1. Then we

have,

(xzy) ◦ (xzy) = (x ◦ x)(z ◦ z)(y ◦ y) ∈ (C ◦ C)∗ and z ◦ z ∈ (C ◦ C)∗.

Since (C ◦C)∗ is extractable, we have (x◦x)(y ◦y) = (xy)◦ (xy) ∈ (C ◦C)∗.

Hence xy ∈ C∗. Q.E.D.

Let C be a code. If uv ∈ C implies vu ∈ C, then C is called a reflective

code.

Proposition 10. Let C ⊂ An. Then C is reflective if and only if C ◦C

is reflective.

Proof. Assume that C is reflective. Let uv = x ◦ y ∈ C ◦ C, x =

a1a2 . . . an ∈ C, y = b1b2 . . . bn ∈ C (ai, bi ∈ A). Since C is reflective,

vu = (bk . . . bnb1 . . . bk−1) ◦ (ak+1 . . . ana1 . . . ak) ∈ C ◦C if the length |u| =

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

236

2k − 1(1 ≤ k ≤ n − 1) of u, or vu = (bnb1 . . . bk−1) ◦ (a1 . . . an) ∈ C ◦ C if

|u| = 2n− 1. Similarly we have vu ∈ C ◦ C if |u| = 2k(0 ≤ k ≤ n).

Conversely, assume that C ◦ C is reflective. Let uv = a1a2 . . . an ∈
C(ai ∈ A) with |u| = k. We may suppose that 0 < k < n. Since (uv ◦uv) =

a1
2a2

2 . . . an
2 ∈ C◦C and C◦C is reflective, ak+1

2 . . . an
2a1

2 . . . ak
2 ∈ C◦C.

Moreover C ⊂ An implies vu = ak+1 . . . ana1 . . . ak ∈ C. Q.E.D.

If a conjugacy class C = Cl(w) of a word w is extractable, then C is an

extractable reflective code. By Proposition 9 and Proposition 10, C ◦ C is

an extractable reflective codes.

Corollary 11. Let u ∈ A+ be a primitive word of length n. Let w =

um, m ≥ 1 , and let

Cl(u) = {u = u0, u1, · · · , un−1}, Cl(w) = {w = w0, w1, · · · , wn−1},

where Γ(ui) = ui+1 and wi = (ui)
m for 0 ≤ i ≤ n − 1, and wn+j = wj .

Furthermore, let

C =





Cl(w0) ◦ Cl(w0) if n = 1 ,
⋃p

j=1 Cl(w0 ◦ wj) if n = 2p , p ≥ 1 ,

⋃p+1
j=1 Cl(w0 ◦ wj) if n = 2p + 1, p ≥ 1 .

If Cl(w) is extractable, then C is extractable.

Proof. Cl(w) ◦ Cl(w) is an extractable reflective code. We shall show

that C = Cl(w) ◦ Cl(w). Note that Γ(wi ◦ wj) = wj ◦ wi+1, and

Γ2α+1(wi ◦ wj) = wj+α ◦ wi+α+1, Γ2α(wi ◦ wj) = wi+α ◦ wj+α.

If n = 1, then u ∈ A, and C = Cl(w) ◦ Cl(w) = {u2m}.
We consider the case |u| = n = 2p, p ≥ 1. Let 1 ≤ j ≤ p. Suppose

that Γ2α+1(w0 ◦ wj) = w0 ◦ wj for some 0 ≤ α ≤ n − 1. Then w0 ◦ wj =

wj+α ◦ wα+1. Therefore, j + α ≡ n(mod n) and α + 1 ≡ j. It follows that

n = 2α− 1. Since n is even, this cannot occur. Therefore Γ2α+1(w0 ◦wj) 6=
w0 ◦ wj for all 0 ≤ α ≤ n − 1. Suppose that Γ2α(w0 ◦ wj) = w0 ◦ wj for

some 1 ≤ α ≤ n. Then wα ◦ wj+α = w0 ◦ wj . It implies that α = n since

1 ≤ α ≤ n. Therefore, Γ2α(w0 ◦ wj) 6= w0 ◦ wj for all 1 ≤ α ≤ n − 1 and

Γ2n(w0 ◦wj) = w0 ◦wj . Thus Γk(w0 ◦wj) 6= w0 ◦wj for all 1 ≤ k ≤ 2n− 1,

Thus we have |Cl(w0 ◦ wj)| = 2n for 1 ≤ j ≤ p.

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

237

Next we shall shows that Cl(w0 ◦ wj) ∩ Cl(w0 ◦ wk) = ∅ for any two

distinct j, k such that 1 ≤ j ≤ p, 1 ≤ k ≤ p. If Γ2α+1(w0 ◦ wj) = wj+α ◦
wα+1 = w0 ◦ wk , then n − j + 1 = k. Since j ≤ p, we have

k = n − j + 1 ≥ p + 1 > p.

This is a contradiction. Therefore, for 1 ≤ j, k ≤ p and j 6= k we have

Cl(w0 ◦ wj) ∩ Cl(w0 ◦ wk) = ∅. Since |
⋃p

j=1 Cl(w0 ◦ wj)| = 2np = n2, we

have Cl(w) ◦ Cl(w) =
⋃p

j=1 Cl(w0 ◦ wj).

Now we consider the case n = 2p+1. We can show that |Cl(w0 ◦wj)| =

2n for 1 ≤ j ≤ p, and Cl(w0 ◦ wj) ∩ Cl(w0 ◦ wk) = ∅ for any j and k such

that 1 ≤ j, k ≤ p and j 6= k.

Let 0 ≤ α ≤ p. Suppose that

Γ2α+1(w0 ◦ wp+1) = wα+p+1 ◦ wα+1 = w0 ◦ wp+1.

Then α = p. Therefore, Γ2α+1(w0 ◦ wp+1) 6= w0 ◦ wp+1 for 1 ≤ α ≤ p − 1

and Γ2p+1(w0 ◦ wp+1) = w0 ◦ wp+1.

Let 1 ≤ α ≤ p. Suppose that Γ2α(w0 ◦ wp+1) = wα ◦ wα+p+1 = w0 ◦ wp+1.

Then α = n > p. This contradicts the condition 1 ≤ α ≤ p. Hence

Γ2α(w0 ◦ wp+1) 6= w0 ◦ wp+1 for 1 ≤ α ≤ p. Thus Γk(w0 ◦ wp+1) 6=
w0 ◦ wp+1 for all 1 ≤ k ≤ 2p. Hence, |Cl(w0 ◦ wp+1)| = n. It follows that

|
⋃p+1

j=1 Cl(w0◦wj)| = 2np+n = n2. Thus Cl(w)◦Cl(w) =
⋃p+1

j=1 Cl(w0◦wj).

Q.E.D.

Remark. If n = 2p + 1 and u0 = a0a1 · · ·a2p, then Γp+1(u0) =

ap+1ap+2 · · · ap. It follows that

u0 ◦ up+1 = a0ap+1 · · ·arar+p+1 · · ·apa2p+1ap+1a2p+2 · · ·a2pa3p+1,

where an+s = at, t ≡ n + s mod n. Therefore

u0 ◦ up+1 = (a0ap+1a1ap+2 · · · ap−1a2pap)
2.

References

[1] Berstel, J. and Perrin, D., 1985, Theory of Codes. Academic Press.
[2] Berard, B., 1987, Literal shuffle, Theoret. Comput. Sci. 51, pp. 281–299.
[3] Ito, M. and Tanaka, G., 1990, Dense property of initial literal shuffles, Intern.

J. Computer Math., Vol. 34, pp. 161–170.
[4] Ito, M., Thierrin, G. and Yu. S. S., 1996, Shuffle-closed languages, Publ. Math.

Debrecen, 48/3-4, pp. 317–338.
[5] Lallement, G. 1979, Semigroup and Combinatorial Applications. Wiley.

July 23, 2010 10:33 WSPC - Proceedings Trim Size: 9in x 6in 15

238

[6] Restivo, A., 1974, On a Question of McNaughton and Papert, Information

and Control 25, pp. 93–101.
[7] Shyr, H. J., 1991, Free Monoids and Languages. 2nd edition. Hon Min Book

Company, Taichung, Taiwan.
[8] Tanaka, G., 1988, Alternating products of prefix codes, Proc. 2nd Confer-

ence on Automata, Fromal Languages and Programming Systems, Salgotar-
jan, Hungary. DM88-4, pp. 209–213.

[9] Yu, S. S., 1990, A characterization of intercodes, Intern. J. Computer Math.,
Vol. 36, pp. 39–45.

Received: April 2, 2009

Revised: March 21, 2010

	CONTENTS
	Preface
	Solidifyable Minimal Clone of Partial Operation S. Busaman and K. Denecke
	1. Introduction
	2. Equivalent Strong Varieties of Partial Algebras
	3. Minimal Partial Clones
	4. Strongly Solidifyable Partial Clones
	References

	A Novel Cryptosystem Based on Finite Automata Without Output P. Domosi
	1. Introduction
	2. Preliminaries
	3. A Novel Cipher
	3.1. Key Automaton and Random Ciphertext Blocks
	3.2. Encryption
	3.3. Decryption

	4. Encryption Without Backtracks
	5. Cryptanalysis
	5.1. Automatic Learning Algorithms
	5.2. Adaptive Chosen-Ciphertext Attack, Adaptive Chosen- -Plaintext Attack, Adaptive Chosen-Plaintext -Chosen- -Ciphertext Attack

	6. Performance
	7. Conclusion
	Acknowledgments
	References

	Linear Languages of Finite and In nite Words Z. Esik, M. Ito and W. Kuich
	1. Linear languages
	2. -monoids
	3. Completely idempotent semiring-semimodule pairs
	4. Conway semiring-semimodule pairs
	5. Automata
	6. Operational characterization of linear languages
	References

	Extended Temporal Logics on Finite Words Z. Esik and Sz. Iv an
	1. Introduction
	2. Trees
	3. Temporal logics
	4. The correspondence
	5. Algebraic characterization
	6. Ehrenfeucht-Fraısse type games
	References

	The Number of Distinct 4-Cycles and 2-Matchings of Some Zero-Divisor Graphs M. Kanemitsu
	1. Introduction
	2. Results
	References

	On Normal Form Grammars and Their Size A. Kelemenov a, L. Ciencialov a and L. Cienciala
	1. Introduction
	2. Preliminaries and formalism for language descriptions
	3. Matrix algorithm and size estimation of languages
	4. Partition of the derivations and size estimation of languages
	5. Conclusion
	References

	Grobner Bases on Algebras Based on Well-Ordered Semigroups Y. Kobayashi
	1. Well-ordered reexive semigroups
	2. Factors and appearances
	3. Rewriting on algebras
	4. Grobner bases on algebras
	5. Critical pair theorem
	References

	Concurrent Finite Automata and Related Language Classes M. Kudlek and G. Zetzsche
	1. Introduction
	2. Definitions
	3. Normal Forms
	4. Relations to Other Language Classes
	5. Characterization and Decidability Results
	6. Closure Properties
	References

	Finitely Expandable Deep PDAs P. Leupold and A. Meduna
	1. Introduction
	2. Definitions
	3. A Hierarchy of Finitely Expandable Deep PDAs
	4. Open Problems
	References

	The Primitivity Distance of Words G. Lischke
	1. Introduction
	2. Basic definitions and relationships
	3. The distance to primitive words
	4. The distance to nonprimitive words
	5. Concluding remarks
	Acknowledgement
	References

	Fine Convergence of Functions and Its E ectivization T. Mori, M. Yasugi and Y. Tsujii
	1. Introduction
	2. Fine convergence and continuous Fine convergence
	3. Fine computability
	4. Fine computable functions
	5. Effective Fine convergence
	6. Recursive functional equations and Fine computable functions
	References

	On a Hierarchy of Permutation Languages B. Nagy
	1. Introduction
	2. Basic Definitions and Preliminaries
	3. Context-Free Grammars Extended with Permutation Rules
	4. Conclusions, Further Remarks
	Acknowledgements
	References

	Derivation Trees for Context-Sensitive Grammars B. Nagy
	1. Introduction
	2. Preliminaries
	2.1. Chomsky-hierarchy: basic notions and de nitions
	2.2. Derivation graphs for phrase-structure grammars
	2.3. Derivation trees for context-free case
	2.4. Derivation graphs for context-sensitive languages
	2.4.1. Atanasiu's approach for monotonous grammars

	3. A New Concept of Derivation Tree in Context-Sensitive Case
	4. Left-Most Derivations in Context-Sensitive Case
	5. Conclusions
	Acknowledgements
	References

	On Proper Languages and Transformations of Lexicalized Types of Automata F. Otto
	1. Introduction
	2. Restarting Automata
	3. Finite-State Acceptors and Pushdown Automata
	4. Two-Pushdown Automata
	5. Transformations Computed by Deterministic Types of Automata
	6. Conclusion
	References

	Initial Literal Shu es of Uniform Codes G. Tanaka and Y. Kunimochi
	1. Introduction
	2. Initial Literal Shu es of Uniform Codes
	References

