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PREFACE

The International Workshop on Automata, Formal Languages and Al-
gebraic Systems (AFLAS 2008) was held at the Kansai Seminar House,
Kyoto, Japan during the period September 20-22, 2008 as a satellite work-
shop of the Twelfth International Conference on Developments in Language
Theory (Kyoto, September 16-19, 2008).

The workshop was organized under the sponsorship of Kyoto Sangyo
University and with the financial support of Japan Society for the Promo-
tion of Science.

The organizing committee consisted of the following members: M. Ito
(Kyoto, Japan), P. Leupold (Kassel, Germany), Y. Kobayashi (Funabashi,
Japan), K. Shoji (Matsue, Japan), F.M. Toyama (Kyoto, Japan), Y. Tsujii
(Kyoto, Japan).

The topics of the workshop were: semigroups, codes and cryptography,
automata and formal languages, word- and term-rewriting systems, ordered
structures and categories, combinatorics on words, complexity and com-
putability, molecular computing and quantum computing.

The number of participants was 37 from 13 different countries. There
were 24 lectures during the sessions.

This volume contains mainly the papers based on lectures given at the
workshop. All papers have been refereed. The editors express their gratitude
to all contributors of this volume including the referees.

The organizers and editors would like to express their thanks to Kyoto
Sangyo University, Japan Society for the Promotion of Science, the World
Scientific Publishing Company and the Kansai Seminar House for providing
the conditions to realize the workshop. We are also grateful to Kayoko Tsuji,
Yoshiyuki Kunimochi and Shinnosuke Seki for their assistance during the
workshop.

June 30, 2010 Masami Ito
Yuji Kobayashi

Kunitaka Shoji

Editors



This page intentionally left blank



CONTENTS

Preface

Solidifyable Minimal Clone of Partial Operation
S. Busaman and K. Denecke

A Novel Cryptosystem Based on Finite Automata
Without Output
P. Démosi

Linear Languages of Finite and Infinite Words
Z. Esik, M. Ito and W. Kuich

Extended Temporal Logics on Finite Words
7. Esik and Sz. Tvin

The Number of Distinct 4-Cycles and 2-Matchings of Some
Zero-Divisor Graphs
M. Kanemitsu

On Normal Form Grammars and Their Size
A. Kelemenovd, L. Ciencialovd and L. Cienciala

Grobner Bases on Algebras Based on Well-Ordered Semigroups
Y. Kobayashi

Concurrent Finite Automata and Related Language Classes
M. Kudlek and G. Zetzsche

Finitely Expandable Deep PDAs
P. Leupold and A. Meduna

vii

23

33

47

63

71

85

103

113



viii

The Primitivity Distance of Words
G. Lischke

Fine Convergence of Functions and Its Effectivization
T. Mori, M. Yasugi and Y. Tsujii

On a Hierarchy of Permutation Languages
B. Nagy

Derivation Trees for Context-Sensitive Grammars
B. Nagy

On Proper Languages and Transformations of Lexicalized Types
of Automata
F. Otto

Initial Literal Shuffles of Uniform Codes
G. Tanaka and Y. Kunimochi

125

139

163

179

201

223



SOLIDIFYABLE MINIMAL CLONES OF PARTIAL
OPERATIONS

S. BUSAMAN

Department of Mathematics and Computer Science,
Prince of Songkla University,
94000 Pattani, Thailand
* E-mail: bsaofee@bunga.pn.psu.ac.th

K. DENECKE

Institute of Mathematics, University of Potsdam,
Potsdam, Germany
* E-mail: kdenecke@rz.uni-potsam.de

Partial operations occur in the algebraic description of partial recursive func-
tions and Turing machines (cf. A. I. Mal’cev®). Similarly to total operations
superposition operations can also be defined on sets of partial operations. A
clone of partial operations is a set of partial operations defined on the same
base set A which is closed under superposition and contains all total projec-
tions. The collection of all clones of partial operations defined on a set A forms
a complete lattice. For a finite nonempty set A this lattice is atomic and dually
atomic. A partial algebra is said to be strongly solid if every strong identity
of A is satisfied as a strong hyperidentity in A, i.e. if it is satisfied after any
replacement of operation symbols by derived term operations of A of the cor-
responding arity. A clone C of partial operations is called strongly solidifyable
if there is a partial algebra A such that C is equal to the clone of all term
operations of A. In this paper we determine all minimal strongly solidifyable
clones of partial operations defined on a finite nonempty set A.

Keywords: Partial algebra; Hyperidentity, Unsolid strong variety, Fluid strong
variety.

1. Introduction

Let A be a nonempty finite set. For every positive integer n an n-ary par-
tial operation on A is a map f4 : domf4 — A where domf4 C A",
ie. domf” is an n-ary relation on A, called the domain of f4. Let
P"(A) be the set of all n — ary partial operations defined on the set A



and let P(A) := |J P™(A) be the set of all partial operations on A.
n=1

Let O(A) C P(A) be the set of all total operations defined on A, i.e.
O(A) = |J O"(A) with O"(A) := {f4 € P"(A) | domf* = A"}. For
n=1

n,m > 1, fA € P"(A) and g{},...,92 € P™(A), we define the superposi-
tion of f4 and g{,..., g2, denoted by S%A(f4,¢{,...,g2) € P™(A), by
setting domS™A(fA, g, ..., ) = {(a1,...,am) € A™ | (a1,...,am) €

N domg and (g7 (a1,...,am),-..,g2(a1,...,am)) € domfA} and

=1
S%A(fA7gi4a s 797?)(a17 RRE) am)

= A9 a1,y am)y - g (A, am))
for all (ay,...,am) € domSHA(f4, g8, ..., g).
Let D C A™ be an n-ary relation on A. Then for every positive integer n
and each 1 < ¢ < n we denote by 6254 the n-ary i-the partial projection
defined by

eZﬁ(xl,...,xn) =1y

for all (z1,...,2,) € D.

Let J4 := {(32’1‘34 |1<i<mnand D= A"} be the set of all total projections
defined on A and let J} be the set of all total n-ary projections defined on
A.

Definition 1.1. A partial clone C on A is a superposition closed subset of
P(A) containing J4. A proper partial clone is a partial clone C containing
an n-ary operation f4 with domf4 # A™. If C C O(A) then C is called a
total clone.

Partial clones can be regarded as subalgebras of the heterogeneous
algebra

((Pn(A))nGI\H; (Sgl’A)m,nGN+> (JZ)nel\H)

where NV is the set of all positive integers.
This remark shows that the set of all partial clones on A, ordered by in-
clusion, forms an algebraic lattice Lp(4) in which arbitrary infimum is the
set-theoretical intersection. For F' C P(A) by (F) we denote the least par-
tial clone containing F'.

A partial algebra A = (A; (f)ier) of type T = (n;)ics is a pair consist-
ing of a set A and an indexed set (f{1);c; of partial operations where f7 is
n; — ary. Let PAlg(T) be the class of all partial algebras of type 7.

(2



Definition 1.2. Let A = (A;(f/)icr) be a partial algebra of a given
type 7. To every partial algebra A we assign the partial clone generated by
{f# | i € I}, denoted by T(A). The set T(A) is called clone of all term

operations of the algebra A.

We notice that we want to define terms over partial algebras in such a

way that the set of all partial operations induced by these terms is precisely
the clone of all term operations of A. Such terms are defined in the following
way:
Let X,, = {z1,...,2z,} be an n-element alphabet and let X be an arbitrary
countable alphabet. Let {f; | @ € I} be a set of operation symbols of
type 7, where each f; has arity n; and where X N {f; | i € I} = 0 and
X, 0 {fi | i € I} = 0. We need additional symbols e¥ ¢ X, for every
k€ Nt :=N\ {0} and 1 < j < k. The set of all n-ary terms of type 7 over
X, is defined inductively as follows (see?):

(i) Every z; € X,, is an n-ary term of type .
(ii) If wq, ..., wg are n-ary terms of type 7, then ef(wl, ..., wg) is an n-ary
term of type 7 for all 1 < j < k and all k € N7,
(iii) If wy,...,wy, are n-ary terms of type T and if f; is an n;-ary operation

symbol, then f;(wy,...,wy,;) is an n-ary term of type 7.
Let WC¢(X,,) be the set of all n-ary terms of type 7 defined in this way.
Then WS (X) := U W (X,) denotes the set of all terms of this type.

We notice that for convenlence we will denote the variables from X or
from X,, also by .y, z, etc. Every n-ary term w € WY (X,,) induces an

n-ary term operation w* of any partial algebra A = (A; (f{)ics) of type
7. For ay,...,a, € A, the value w?(as,...,a,) is defined in the following

inductive way (see?):

(i) If w = z; then wh = 2 =€l "4 where e?’A is the n-ary total projec-
tion on the i-th component.

(i) f w = 5?(101, ...,wy) and we assume that wfl,... , wy' are the term
operations induced by the terms w1, ..., wy and that w(a1,...,an)
are defined for 1 < i < k, then w?(ay,...,a,) is defined and
wh(ay, ... a,) = w;“(al, ey Gp).

(iii) Now assume that w = f;(w1,...,wy;) where f; is an n;-ary op-
eration symbol, and assume that w;“(al,...,an) are defined, with

values w;“(al,...,an) = b for 1 < j < n If fiA(bl,...,bni)



is defined, then w?(ai,...,a,) is defined and w?(ay,...,a,) =
fAwitar, ... an), ..., wi (a1, ... a,)).

Let T™(A) be the set of all term operations induced by the terms from
WE(X,) on the partial algebra A and let T(A) := |J T"(A).
n=1

We denote by arf the arity of the partial operation f. Any mapping
© = (™) pent : C — C’ from a clone C C P(A) into C’ € P(B) is a clone
homomorphism if

(i) arf=arp(f) for f € C,
(i) () =ef? (1<i<neNT),
(it) @(SmAfA, g1, 9) = SmB(e(fA), 0(gf). ..., 0(gd)) for f4 €
C™ and gft,..., g4 € O™,

(Here p(f4) means (™ (f4) where f4 is n-ary). We recall that term oper-
ations on A satisfy the same compatibility condition with respect to clone
homomorphisms as fundamental operations of A.

Lemma 1.3. Let ¢ : T(A) — T(B) be a clone homomorphism defined by
o(f) = fB for alli € I. Then o(t*) =B for allt € WE(X).

Proof.  We will give a proof by induction on the complexity of the term
t.
(i) If ¢ = x;, then

n,A n,B
‘P(tA) = <P(93A) =ple)=¢€"" = zB.

(2

(i) If ¢t = €%(t1, ..., tx) and if we assume that o) |p=tB |p where D is
the intersection of all domains of gp(t;“) and tf, 1 <i<k, then
e(t*) o = @leh(ty, ..., ti)?) Ip
= ¢t b
— tf Ip
E?(tla ) 7tk)B |D
= 8 |p.

(iii) If t = fi(t1,...,tn,) and if we assume that @(t;-“) |Ip= t? |p where D
is the intersection of all domains of gp(t}‘l) and tf , 1 <7 <ny, then



et o = e(filts,- - ta)?) Ip
p(SneA(fA L t;;‘i)) D
SriBp(f), 0(tY), - o(t)) Ip
SpB(e(f), () [ps - (ta) Ip)
SnoB(fB 48 |p, ... 1B

LA (73
filti, . t0)B D

D)

For terms we need to define a superposition operation S as follows. Let

n
Wi,. .., Wy, be n-ary terms and let ¢t be an m-ary term. Then we define an
n-ary term ?nm(t, w1, ..., Wy) inductively by the following steps:
(i) For t = z;, 1 < j < m (m-ary variable), we define

—=m
Sy (T, w1, .. W) = w;.

(ii) For t = s?(sl, ..., SE) we set
- m —m -m
S, (G wr, .. W) = E?(Sn (S1, Wiy ey W),y e vy Sy (Sk, W1, - oo, W),
where s1, ..., s, are m-ary, for all k € Nt and 1 < j < k.

(iii) For t = fi(s1,...,5n,) we set S (t,wi, ..., wn) = fi(S (s1,w1,...,
W)y -y S (Spyy W1, .., W), Where s1,...,s,, are again m-ary.

This defines an operation
S WE(Xom) > (W (X)™ — WE (Xa),

which describes the superposition of terms.

The term clone of type 7 is the heterogeneous algebra

Clonet© := ((WTC(Xn))neNH (g;n)n,meNJrv (6?)k€N+, 1§j§k)'

Let A be a partial algebra of type 7 and let T(A) be the clone of
term operations of A. We define a family ¢ = (¢(™), e+ of mappings,
o™ WE(X,) — T™(A), by setting ¢ (t) = t4, the n-ary term operation
induced by t. It is easy to see that ¢ has the following properties (13):

(1) o™ (z;) = e?’A, 1<i<n,née&Nt,

(i) ™ (S, (s:t1,- - tm)) [p= SE (™ (), 0™ (1), .., () |p, for
n € Nt where D is the intersection of the domains of all t*, 1 < i < m,
where s is m-ary, and tq,...,t, are n-ary.



Definition 1.4. ('3) Let {f; | i € I} be a set of operation symbols of type
7 and WY (X) be the set of all terms of this type. A mapping o : {f; | i €
I} — WY(X) which maps each n;-ary operation symbol f; to a term of
arity n; is called a hypersubstitution of type 7.

Any hypersubstitution o of type 7 can be extended to a map o :
WE(X) — WE(X) defined for all terms, in the following way (**):

(i) olzi] = =, for every z; € X,

(ii) 3[5?(51,...,516)] = ?n(sg?(xl,...,mk),a[sﬂ,...,ﬁ[sk]), where
81,...,8: € WE(X,),

(i) G[fi(tr,-.. tn,)] = So(o(f),0[t1],..,0[tn,]), where t1,...,t,, €
WE(X,).

Let Var(t) be the set of all variables occurring in the term ¢.

Definition 1.5. (°) The hypersubstitution o is called regular if
Var(o(fi)) ={x1,...,2n, }, forall i € I.

Let Hyp%(7) be the set of all regular hypersubstitutions of type 7.

Definition 1.6. (2) A pair t; ~ to € WY (X)? is called a strong identity in
a partial algebra A (in symbols A | t; & t) if and only if the right hand

side is defined whenever the left hand side is defined and both are equal,
i.e. when both sides are defined, then the induced partial term operations
t{* and t5' are equal.

Let K C PAlg(r) be a class of partial algebras of type 7 and ¥ C
W (X)2 Consider the connection between PAlg(r) and W (X)? given
by the following two operators Id* : P(PAlg(t)) — P(WS(X)?) and
Mod® : P(WE(X)?) — P(PAlg(r)) with

IEK = {s~te WI(X)?|VAeK (A E s=~t)}and

Mod®% .= {Ae PA[}7) |V[~U€E£(A E s=t)}.

S

Clearly, the pair (Mod®, Id®) is a Galois connection between PAlg(T)
and WY (X)2. We have two closure operators Mod*Id® and Id*Mod® and
their sets of fix points.

Definition 1.7. Let V C PAlg(r) be a class of partial algebras of type 7.
The class V is called a strong variety of partial algebras if V.= Mod*1d°V'.



For A € PAlg(7), V(A) is called the strong variety generated by the single
algebra A (i.e. V(A) = Mod®*Id* A).

Definition 1.8. A strong identity s =~ t in a partial algebra A is called

a strong hyperidentity in A (in symbols A | 1 & tg) if and only if
shyp

G[s] ~ G[t] are strong identities in A for every o € HypG(7).

The next concept which we have to introduce is the concept of a totally
symmetric and totally reflexive relation:

Definition 1.9. A relation R C A™ on the set A is called totally symmetric
if for all permutations s on {1,...,n}

(al, . ,an) €ERs (as(l), . ,as(n)) €ER
and totally reflexive if R O 1, where 1, is defined by
tn:={(a1,...,an) € A" |a;=a; and 1 <i < j<n}.

R is called trivial if R = A™.
A binary totally reflexive and totally symmetric relation is reflexive and
symmetric in the usual sense.

2. Equivalent Strong Varieties of Partial Algebras

The concept of a hypersubstitution can be generalized to a mapping which
assigns operation symbols of one type to terms of a different type.
Definition 2.1. ('*) Let 7 = (fi)icr, 7 = (gj);jes be arbitrary types. A
mapping

Yo {fi i€} — WE(X),
(with ar f;=ar o(f;)), which assigns to every n;-ary operation symbol f; of

type T an n;-ary term o(f;) € WS (X), is called a (7, 7')-hypersubstitution.

Definition 2.2. (*3) The (7, 7')-hypersubstitution 7 o is called regular if
Var(T o(f;)) = {x1,...,2,,} for all operation symbols f; of type 7.

Let HypG(r,7') denote the set of all regular (7,7’)-hypersubstitutions
and let 7 op be some member of Hyp§ (7, 7').
Any regular (7, 7’)-hypersubstitution I/UR can be extended to a map

TR WE(X) - WE(X)

defined for all terms, in the following way:



(i) Z/&R[m] = x; whenever ; € X; /
(ii) 7GRleS(tr,- . th)] = ( rltal,- - r Gl
(iii) 7Grlfiltr, - tn)] = g w (Cor(f:).7 Grlta),. .7 Grltn,]):

Lemma 2.3. (%) Let T or € Hyp$(r,7). Then
//\ —1M —m l/\ PN ’ ~
TOoR|S, (t,t1, ... twm)] =5, C Or[t],x Gr[t1],---.f TR[tm])-
Since the extension I/ER of the regular (7, 7’)-hypersubstitution Z/UR
preserves arities, every extension ZIGR defines a family of mappings

7o =" WE(Xp) = W (Xn)nen+

Theore{m 2.4. (13) The extension T 6 of a regular (,7')-hypersubsti-
tution T or defines a homomorphism

(1™ )pent : Cloner® — Cloner’® where

Cloner® := (WE (Xn))new+: (Sp Jmment, (€¥) et 1<j<k) and
Cloner' := ((WS(Xn))neNJr; (gnm)m,neNJra (e;k)k€N+,1§j§k)~

Using our new concept of a hypersubstitution we can define a relation
between strong varieties of partial algebras of different types.

Definition 2.5. (13) Let V C PAlg(r) and V' C PAlg(7’") be strong vari-
eties of type 7 and 7/, respectively. Then V and V' are called equivalent, in
symbols V ~ V' if there exist a regular (7, 7')-hypersubstitution 7 o and
a regular (7', 7)-hypersubstitution 7,0 such that for all t,¢;,t2 € W (X)
and ', t],th € WS (X):

@V | timta=V' | I5g[t]~] Grlts);

S

(a) V' |= tv=ty =V = Logr[ti] =7 rto);
S

T

(b)) V E LGorlI Gl ~t;

W) V' E IGrLorl] =t

S

Lemma 2.6. Let :/URI and 11032 be regular (7, 7')-hypersubstitutions and
A€ PAlg(r). If T o, (f)* =7 or,(fi)* for alli € I, then T Gg, [} =7
Or, [t]A fort e WE(X).

Proof.  We will give a proof by induction on the complexity of the term
t.
(i) Ift= xz € X, then 7' Gp, [t]* = 2 =T &g, [t}

T
’

(ii) If t = ¢} B(ty,...,t) and if we assume that 7 Gg, [t:]4 |p=1 r,[t:]* |D



where D is the intersection of all domains of TG, [t;]A and T &g, [t;]A for
1 <i <k, then

Tor (M D = (I Gr[t),.... I Grt])? D
= TOmlly el
= IGn,[t;]" Ip
= 65(7— OR, [tl]v s 7:—, 6'\R2 [tk])A |D
TR, (14 |p-
(iii) If t = fi(t1,...,tn,) and if we assume that 7 G, [t J]A |D_T or, [t D
where D is the intersection of all domains of 7' &g, [t;]4 and 7 G, [t;]*, for
1 < j < n;, then
Yot p = T Con (AT R AT Gt D
= TG on (1) G 02 [pe T Gl A D)
= T Com (PN Gt b, T Gyl A D)
= TN o ()AL FmltA T Faalta ) |
7GR, [ |p-

Lemma 2.7. For every mapping h: {fi |i € I} — T(A), A€ PAlg(r'),
which maps the n;-ary operation symbol f; of type T to an n;-ary term
operation from T(A), there exists a regular (1,7')-hypersubstitution ™ o g
such that h(f;) =T or(fi)? forallie .

T

Proof. Let a mapping h : {f; | i € I} — T(A) with h(f;) = t*
where t; € WS(X,,) be given. Then we can consider a regular (7,7’)-
hypersubstitution 7 o : {fi | i € I} — WS(X) defined by = or(fi) = t;,
for i € I and we get that h(f;) =t =T or(fi)* fori € I. ]

T

Lemma 2.8. If A € PAlg(t), B € PAlg(r'), then for every clone homo-
morphism «y : T(A) — T'(B) there exists a regular (1, 7")-hypersubstitution
T or such that y(tA) =T Grlt]P for every t € WE(X).

Proof. Let A€ PAlg(r), B € PAlg(r') and v : T(A) — T(B) be a clone
homomorphism. Since  preserves the arity, we can consider a mapping
h:{fi|i€ I} — T(B) with h(f;) = v(f#), for i € I which preserves the
arity and by Lemma 2.7, we have a regular (7, 7’)-hypersubstitution :/O'R
such that h(f;) =7 or(fi)B, forie I. Then we get that y(fA) =T or(f:)?,

T T

for i € I. We want to show that y(t4) =T Gg[t]? for t € WE(X). We will
give a proof by induction on the complexity of the term ¢.

(i) If t = x;, then

A B AN AN
V() = (@) = y(ef?) = e” =T Grlwi)® =] Gr[t)°.
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(i) If t = e (ty, ..., tx) and if we assume that v(t7*) |p=""5g[ti]? |p where
D is the 1ntersection of all domains of v(tA) and T'Gg[t;]%, 1 < i < k, then
Yt o = (Gt t)M) D

= (Y Ip

= Torlt]® b

= ¢ GR[tl] D, .7 Fr[ti]® |p)

= €k( r[t)5,. .7 Grlth]®) Ip

7Gr[t® |p.

(ifi) If t = fi(t1,...,tn,) and if we assume that y(t7") |D_;’ arlti]® |p

I~

where D is the intersection of all domains of y(t7') and T og[t;]5, 1 < j <
n;, then

YA b = A(filtr, .. tn)? )\D
= ’y(S"“ ( AtA... )) |D
= Sy By (), (75“14) --'a’y( ) Ip
= St ), (t1)|D,---,’y( ) D)
= Sy BT or(f:)P.7 Grlt1]® |ps- .7 Grltn,]® |D)
= :laR[fi(tlw"vtni)]B |D
= Tor[t) Ip.

Proposition 2.9. Let A € PAlg(r), B € PAlg(r’) be partial algebras and
let V:=V(A) and V' := V(B) be the strong varieties generated by A and
by B, respectively. Then we have V ~ V' if and only if T(A) = T(B), i.e.
if the clones T(A) and T'(B) are isomorphic.

Proof. Let 7 = (fi)ier, 7 = (gj)jes. Let V. ~ V’. Then there are
regular hypersubstitutions 7 o, 7,0 satisfying Definition 2.5 (a) — (V).
Then « : T(A) — T(B) with tA —T 5g[t]? is well-defined (because of
A=A =7 Gr[s]® =T Gx(t]P) and by Lemma 2.3 we get that ~ is a clone
homomorphism. Moreover, v is injective by Definition 2.5 (a’) and (b) since

=7 Grlt)® =7, Gul] Grls]|* =1 Grl] Galt]* = s* =11

)

and -~y is surjective by Definition 2.5 (b") since

t'5 =1 GrlLoR[t))E = 4(LER[t)Y).

Conversely, let T(A) = T(B) and let v : T(A) — T(B) be a clone iso-
morphism. Then there exist t; € WS (X,,), s; € WE(X,,) such that

v(fA) = tB, 7’1(9]5) = 53-4. We define the regular hypersubstitutions
7_/

ToR: fi — ti, LOR : g; — s;. By Lemma 2.8 we have v(t4) =I' Gz[t]?,



11

= 1(t'B) =7, op[t']* for t € WE(X) and t' € WS(X). We are going to
show that ™ g, 7,6 fulfil Definition 2.5 (a) — (b'), which implies V ~ V.

@V £ sxt=st=tA=T Gals]f = y(s4) = 1(t4) =7 Grlt]F =

T
S

V & TGgrls] ~T Ggli.

1

Analogously we obtain for (a’) (using v~ instead of 7):

07 Grl; orlt]* =771 (7 Grls)®) = 7 (v () = 4,

In a similar way we conclude for (b'). ]

3. Minimal Partial Clones

Let A be a finite set. The lattice £p(4) of all partial clones is atomic (*).
There are only finitely many minimal partial clones (atoms). In all of them
are determined up to the knowledge of the minimal clones in the lattice
Loa) of all total clones. Unfortunately, in general the total minimal clones
are unknown. Lots of work has been done to determine all minimal clones
of total operations defined on a finite set (*,!1). We will use the following

theorem (see!):

Theorem 3.1. The lattice Lp(ay of all partial clones on a finite set A is
atomic and contains a finite number of atoms. C' € Lpay is a minimal
partial clone if and only if C' is a minimal total clone or C is generated
by a proper partial projection with a montrivial totally reflexive and totally
symmetric domain.

Example 3.2. For a set F' of operations defined on the same set let (F)
be the clone generated by F. For the two-element set A = {0,1} the total
minimal clones are the following ones (19): (A), (V), (z +y + 2), (m), (c}),
(c}), (N), where A, V, N denote the conjunction, disjunction and negation.
The symbol + denotes the addition modulo 2 and ¢}, ¢} are the unary con-
stant operations with the value 0 and 1, respectively. We denote by m a
ternary operation defined by m(z,y,2) = (x Ay) V (y A 2) V (z A 2). Note
that we write (A) instead of ({A}). Since for n > 2 every totally symmetric
and totally reflexive relation on {0, 1} is trivial, we have exactly the follow-
ing proper partial minimal clones on {0, 1}: <ei{(00)7(11)}>7 <ei{0}>7 <ei{1}>,
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(e})@>. Altogether we have 11 minimal partial clones of operation defined
on the set {0,1}.

In (%) all total minimal clones on a three-element set are determined.
There are 84 total minimal clones on {0, 1,2}. Further we have exactly
the proper partial minimal clones generated by unary partial projections
with the domains {0}, {1}, {2},{0,1},{0,2},{1,2},0, and the proper par-
tial minimal clones generated by binary projections with the domains
{(0,0),(1,1), (2,2)},{(0,0), (1, 1), (2,2), (0, 1), (1,0)}, {(0,0), (1, 1), (2.2),
(0,2), 2,00}, {(0,0), (1, 1), (2,2), (1,2), (2, )}, {(0,0), (1, 1), (2,2), (0, 1),
(1,0),(0,2), (2,0}, {(0,0), (1, 1), (2,2), (0,1), (1,0), (1,2), (2, )}, {(0, 1),
(1,0),(0,2),(2,0)}. Since for n > 3 every totally symmetric and totally
reflexive relation on {0,1,2} is trivial, we have to consider totally sym-
metric and totally reflexive at most ternary relations. Since the relations
have to be totally symmetric by identification of variables one obtains
binary proper partial projections except in the case that the domain is
{(0,0,0), (1,1,1),(2,2,2)}. In this case by identification of variables one ob-
tains the proper partial binary projection with domain {(0,0), (1,1),(2,2)}.
Altogether we have 98 partial minimal clones on {0,1,2}.

For |A| > 4 not all total minimal clones are known. By (') each total
minimal clone can be generated by an operation f of one of the following
types:

(1) f is unary and f? = f or f? = id for some prime number p,

(2) f is binary and idempotent,

(3) f is a ternary majority operation (f(z,z,y) = f(z,y,2) = f(y,z,x) =
z),
(4) f is the ternary operation = 4+ y + z in a Boolean group,

(5) f is a semiprojection (i.e. ar f = n > 3 and there exists an element
i € {1,...,n} such that f(ai,...,a,) = a; whenever aq,...,a, are not
pairwise different).

4. Strongly Solidifyable Partial Clones

Definition 4.1. The partial algebra A is called strongly solid if every
strong identity is a strong hyperidentity of A.

Example 4.2. Consider the three-element partial algebra A =
({0,1,2}; f4) of type (1) with domf4 = {1,2} and f4(1) =1, f4(2) = 0.
Every strong identity of A can be derived from the strong identity f2(z

)
2x) (f(x)=f(...(f(x))...)). The unary terms over A are ei(z), f(z
and f?(x). Each of them fulfils f2(z) = f3(x). That means, f2(z) = f3(x

~
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is a strong hyperidentity and since all strong identities of A can be derived
from f2(x) = f3(x) every strong identity is a strong hyperidentity and A
is strongly solid.

Now we give some conditions under which A is not strongly solid.

Proposition 4.3. Let A = (A; (f{)icr) be a partial algebra with |A| > 2.
Then A is not strongly solid if it satisfies one of the following conditions:

(i) There is a binary commutative operation under the fundamental
operations,

(ii) there is a total constant operation under the fundamental operations,

(iil) there is a nowhere defined (discrete) operation under the fundamental
operations,

(iv) A satisfies a strong identity s ~ t with Left(s) # Left(t) or
Right(s) # Right(t), where Left(s) and Right(s) denote the first
and the last vaiable, respectively occurring in the term s.

(v) A satisfies a strong identity of the form f(xg 1),. . Ts,(n)) =
f(Tsy(1)s s Tsy(ny) with mappings s1,s2 : {1,...,n} — {1,...,n},
n > 2, such that s1(i) # s2(4) for alli=1,...,n.

Proof.  We show that A is not strongly solid indicating a strong identity
which is not a strong hyperidentity.

(i) Let f4 be a binary commutative fundamental operation of A. Com-
mutativity of f4 means: f(z,y) ~ f(y, ) is a strong identity. The strong
identity f(z,y) = f(y,x) is not a strong hyperidentity. This becomes clear
if we substitute for the binary operation symbol f in f(z,y), f(y,z) the
term €% (z, y).

(ii),(iii) A total, constant or nowhere defined unary operation f4 satisfies
the strong identity f(z) &~ f(y). The strong identity f(z) ~ f(y) is not a
strong hyperidentity. This is evident if we substitute for f in f(z) =~ f(y)
the term e} (z). If f4 is an n-ary total, constant or nowhere defined op-
eration and n > 1, then f(z1,z2...,2,) = f(x2,21,...,2,) is a strong
identity but not a strong hyperidentity. We see this if we substitute for the
n-ary operation symbol f in f(x1,22...,2,) &~ f(x2,21,...,2,) the term
eM(x1, ..., Tn).

(iv) This becomes clear if we substitute for all n-ary operation symbols
occurring in terms s, ¢ the term e} (z1,...,x,) (or the term e} (z1,...,2y)

in the second case in which Right(s) # Right(t)).
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(v) In this case we get the proof substituting for all n-ary operation
symbols (n > 1) in f(xs, 1), Ts (n)) & f(Tey(1)s-+»Tsy(n)) the term
€821, yan) for j=1,...,n. [

Definition 4.4. A partial clone C C P(A) is called strongly solidifyable
if there exists a strongly solid algebra A4 with C' = T'(A).

From Proposition 4.3, we get some criterions for partial clones to be not
strongly solidifyable.

Proposition 4.5. Let C C P(A) be a partial clone, |A| > 2. If C satisfies
one of the following conditions (1)-(4), then C is not strongly solidifyable.

C contains a binary commutative operation,
C' contains a total constant operation,

{1,...,n},n > 2, such that s1(i) # s2(i) for all i = 1,...,n and
J(@g )5 Tsy(n) = [(Tsy(1)s -+ Tsy(n)) 05 @ strong identity in A.

Proof.  If Ais a partial algebra such that T'(A) = C, and if C has one of
the properties (1) - (4), then T'(A) has the same property. We can assume
that A has one of the operations requested in conditions (1) - (4) under its
fundamental operations. By Proposition 4.3 the partial algebra A cannot
be strongly solid. ]

Since clones of partial operations are total algebras, we can characterize
solidifyable clones in the same way as it was done in® for clones of total
algebras.

Theorem 4.6. C' is strongly solidifyable if and only if C' is a free algebra,
freely generated by {f{ | i € I}.

Proof. Assume that C is strongly solidifyable. Then there exists a
strongly solid partial algebra A = (A;(f*)ics) such that C = T(A).
Let F™4 := {f# | j € I and f{* is n-ary }. Consider an arbitrary se-
quence ¢ := (™), cn+ of mappings with (™ : F4 — T7(A). For every
n € Nt and every n-ary fJA, there are n-ary term operations t;“ e T(A)
with @™ (f#) = t7*. This allows us to define a regular hypersubstitution
or with og(f;) = t;, 7 € I. Then we have w(”)(f]A) = or(fj)t j €L
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Let () (t4) = Gg[t]* for any t € W (X,,). Then (¢(™), e+ is the exten-
sion of (), e+ since o (f4) = Gr[fi(z1, ..., 20" = or(fi)* and
? = (o), cn+ is an endomorphism because of

e (SIARA L, ) = pM(S (. )
Gr[S™ (t,t1, ... )2
S (Grlt],ota], ... Flta])*
by Lemma 2.3
Sn (Gr[t]A, G[t]A, . .., Ota]?)
SnA(P™ (1), @M (1), . e (7))
for every n > 1.

Therefore any mapping ((p(”))neN+ can be extended to an endomorphism
of C and C is a free algebra, freely generated by {f/ |i € I}.

Conversely, let C be a free algebra, freely generated by {f# | i € I} (i.e.
for every map ¢ : {f* | i € I} — C there is a homomorphism (clone ho-
momorphism @ : ({f | i € I}) — C). Then we have that C = ({f | i €
I}) = T(A), where A = (A; (f{)icr) is a partial algebra. The next step is
to show that A is strongly solid. Let og : {fi | i € I} — W (X) be a reg-
ular hypersubstitution. Consider a mapping v : {f# |i € I} — C = T(A)
with v(f) = or(f;)*. Then 7 can be extended to a clone endomorphism
7:{fA|iecI}) — C and by Lemma 2.8 for every term t € WC(X) we

have
seteld*A = sA=tA
= 7(s*) =751
= og[s]t =aRr[tA
= 31{[8] ~ ER[t] e Id°A.
Therefore A is strongly solid. u

Proposition 4.7. Let C,C’ C P(A) be clones of partial algebras. If C = C’
and C is strongly solidifyable then C' is also strongly solidifyable.

Proof.  Since C is strongly solidifyable, there is a partial algebra A =
(A; (f#)ier) such that C = T(A) = ({f# | i € I}). Since C = (', there is
an isomorphism ¢ : T'(A) — C’ which maps the generating system of T'(.A)
to a generating system of C’. Therefore C' = ({p(f{*) | i € I}) and we get
that C’ is a free algebra, freely generated by {¢(f#) | € I'}. By Theorem

4.6, we have that C’ is strongly solidifyable. ]

From the definition of strongly solidifyable clones, from Proposition 2.9
and Proposition 4.7, we have that
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Corollary 4.8. If A is strongly solid and V(A) ~ V(B), then B is strongly
solid.

Now we want to determine all strongly solidifyable partial clones generated
by a single unary operation f4. A partial algebra A = (A4; f4), (|4] > 2),
where f4 is a unary operation on A is called mono-unary. Every strong
identity of a mono-unary partial algebra has the form

fk(x) ~ fl(x) (k,1€{0,1,...})

)= ffy)  (ke{l2,...).

Obviously, identities of the second form cannot be strong hyperidentities
because when substituting for the unary operation symbol the term e} (z)
we would get e1(z) ~ €1 (y) (i.e. x ~ y) in contradiction to |A| > 1.

For a partial unary operation f4 : A —o— A let Imf4 := {f%(a) | a € A}
be the image of f4 and let A(f#) denote the least non-negative m such
that Im(f4)™ = Im(f4)™+.

Example 4.9.

1. Consider the three-element partial algebra A = ({0, 1,2}; f4) of type
(1) with domf4 = {1,2} and f4(1) = 0, f4(2) = 1. Then we have

and \(f4) = 3.

2. Consider the three-element partial algebra A = ({0,1,2}; ) of type
(1) with domf4 = {0,2} and f4(0) = 0, f4(2) = 0. Then we have

LU’
0jo 0
1] — —
210 0

and A(f4) = 1. Then [Im(f) )| = [Im(f4)!| = 1.
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Corollary 4.10. The partial clone generated by the mono-unary partial
operation 2 contains a constant if and only if |Im(fA)’\(fA)| =1.

Then we have:

Proposition 4.11. A mono-unary partial algebra A = (A; f4), (|A] > 2),
is strongly solid if and only if |Im(fA))‘(fA)| > 1 (i.e. T(A) contains no
constant and no nowhere defined partial operation).

Proof.  Assume |Im(fA))‘(fA)| > 1. Then the powers (f#4)™ are not
constant and not nowhere defined operations. Every strong identity of A is
of the form f*(x) ~ f!(x). The powers (f4)™ and the identity operation
are the only unary operations of T'(A) and satisfy this identity since

(™" @) = (™) = (FH)™ (@) = (FH™) (@)
Thus every strong identity is a strong hyperidentity, i.e. A is strongly solid.
If |Im(fA)’\(fA)| < 1 then (fA)’\(fA) is a nowhere defined operation or
(fA)’\(fA) is constant. In this case f*(z) ~ f*(y) is a strong identity in A
but not a strong hyperidentity in 4. This becomes clear when substituting

for the unary operation symbols the term e} (z). Then we get €1 (z) ~ €1 (y)
(i.e. x = y), a contradiction to |A| > 1. ]

If we want to determine all solidifyable minimal partial clones following
Theorem 3.1 we have to investigate the proper partial minimal clones, i.e.
the clones generated by a proper partial projection with a nontrivial totally
reflexive and totally symmetric domain. We can restrict our investigation to
one projection €}, for every totally reflexive and totally symmetric domain
D and every n since e} , € (e'p) and ef'p € (€} p) for each 1 < 4,5 <n
and thus (e}’ p) = (€} p)-

We consider the following cases:

(i) 2<n <|A|.

Choose i = 1. Then €} (21, T2, T3, T4, ..., Tn) = €] p(¥1, T3, T2, Ta, .. -,
Zn) where €] p is an operation symbol corresponding to the opera-
tion e} p, is a strong identity of the algebra A = (4;e} p). Indeed, if

(z1,22,23,24,...,2n) € dom €} p(= D), then (21,73, 72,74,...,2,) € D
since D is totally symmetric and conversely. Further, in the case that both
sides are defined, the values agree. The equation f(x1,x2,x3, T4, ..., Ty) &
f(x1, 23,2, 24,...,7,) is not a strong hyperidentity of A = (4;e} p) since
when substituting for the operation symbol f the term &b (zq,...,x,) we
would get ) (ar,...,an) # ey?(ay,..., a,) because of [A| > 2. This

means that A is not strongly solid. In a similar way for any other 1 <i <n
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n

and any totally symmetric and totally reflexive D C A™ we get that
(Asefp) is not strongly solid. Therefore, the clones (e} ) with n < 2 and
1 <4 < n are not strongly solidifyable.

(ii) 2=n < |A].

Let D # 12, i.e. D is different from the diagonal 12 = {(a,a) | a € A}. Now
we consider the equation

é%,D(Ilv é%,D(CClvﬂC?)) ~ éiD(Ilv éip(zm r1)).

Assume that the left hand side is defined, ie. (z1,22) € D. Then
é%’D(Il,Ig) ~ x1 and (z1,21) € D because of the reflexivity of D. Since
D is symmetric we get (z2,21) € D and therefore éiD(acg,xl) ~ x5. From
(21,22) € D we get that the right hand side is defined. In the same way we
get that the left hand side is defined whenever the right hand side is defined
and both sides agree. On the other hand, f(z1, f(2z1,22)) = f(z1, f(22,21))
is not a strong hyperidentity of A = (A; e% p) since when we substitute for

the operation symbol f the term e3(x1,72) we would get eg’A(xl,xg) =

e?’A(xl,xg) i.e. A would be a one-element set. If D is the diagonal 1o we

have no contradiction. In this case e% p is commutative and by Proposition
4.3(1) we conclude that A is not strongly solid. In a similar way we get
also that (e% p) is not strongly solidifyable and therefore clones of the form
(€7 p) when i € {1,2}, D = 1, are not strongly solidifyable.

(iii) n = 1.

At first we consider the case that D # (). Then all strong identities of
the (13) algebra (A;ek) can be derived from the strong identity éh(z1) ~
[€h]?(x1). Clearly, the equation f(z1) ~ f%(z1) is a strong hyperidentity
of A= (4;e}). If D = (), then e}, is the discrete unary operation satisfy-
ing the strong identity éh(x1) & €} (x2) for all 21,22 € A. The equation
f(z1) = f(x2) is not a strong hyperidentity. This is evident if we substitute
for fin f(z1) ~ f(z2) the term e} (z).

Together with Theorem 3.1 we get our result:

Theorem 4.12. A minimal partial clone C of partial operations on A (A
finite, |A| > 2) is strongly solidifyable if and only if C' has one of the
following forms

(1) C is generated by a unary operation f2 different from the unary empty
operation and satisfying (f4)? = f4 or (f4)P = id where p is a prime
number, id the identity operation on A and C contains no constant
operation.
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(2) C is generated by a binary operation g which fulfils the identities
g(z1,21) = w1, g(g(x1, 22),23) = g(@1, f (22, 23)) =~ g(21, 23).

Proof.  We consider two cases:

case 1. C is generated by a proper partial projection with a nontrivial to-
tally reflexive and totally symmetric domain. Then by the remarks before
Theorem 4.12 C' cannot be strongly solidifyable;

case 2. C'is a total minimal clone. Then C' is generated by an operation f
of one of the types (1) - (4):

(1) f is unary and f? = f or f? = id for some prime number p. Similar to
Proposition 4.11, we get that A is a solid algebra and C' is strongly solidi-
fyable.

(2) The operation f is binary and idempotent. If the binary operation f sat-
isfies f(z1,21) = 21 and f(x1, f(x2,23)) = f(x1,23), then (f) is the clone
of a rectangular band and since rectangular bands are solid, (f) is strongly
solidifyable. Conversely, assume that C' is minimal, strongly solidifyable and
of type (2). Then there exists a solid algebra A with C' = T'(A). We may as-
sume that the type of A = (A; f4) is (n) since C is minimal and is generated
by only one operation which is not a projection. By identification of vari-
ables, we get a binary operation g(x1, x2) := f(x1, 22, ..., z2) which belongs
to C. Clearly, g cannot be a projection, otherwise A satisfies the identity
g(x1,x2) = 21 or the identity g(z1,22) = x2. This contradicts the solidity
of A. Therefore (g) = C and then (4;g?) is also solid. Let ¢ be an arbi-
trary binary term over (A; g?) such that leftmost(t) = rightmost(t) = x.
Assume that t* is not a projection, then t* generates C. This means, we
can obtain g“ from t# by superposition and then the term ¢ can be pro-
duced by ¢ and variables x1,z2 and this gives an equation of the form
g(x1,22) =~ f(x1,22,...,22,21). Since A is a solid algebra, this cannot
be an identity in A and thus t is a projection and the term t satisfies
t(x1,xa, ..., o2, 1) ~ x1. Therefore g satisfies the identities g(z1,z1) &~ 1
and g(z1, g(x2, 1)) ~ 1.

(3) f is a ternary majority operation (f(z1,z1,22) =~ f(x1,22,21) =~
f(xo,x1,21) = x1). Then the identity f(zo,z1,21) = x1 is not a hyper-
identity of A = (A; f*) since when we substitute for the operation symbol
the term £3(x1, 22, 23), we get a contradiction.

(4) f is the ternary operation x1 4+ z2 + x3 in a Boolean group. Then we
have that x1 + 1 + z9 = T3 & x5 + x1 + 21 is an identity. The identity
1+ 21 +x2 & T2 is not a hyperidentity. This becomes clear if we substitute

for the operation symbol the term 3 (z1, 22, 3).
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(5) f is a semiprojection (i.e. ar f = n > 3 and there exists an ele-
ment ¢ € {1,...,n} such that f(x1,...,2,) = x; whenever z1,...,z,
are not pairwise different). Then we have that f(z1,22,...,2,) = 2; =
f(za,21,...,2,) where i € {1,...,n}. So, the identity f(x1,z2,...,2,) =
f(za,21,...,2,) is not a hyperidentity since when we substitute for the
operation symbol the term e (z1,...,2,), we get 21 ~ xg . [ ]

In® the concept of the degree of representability degr(C) for a clone
of total operations is introduced. We generalize this concept to clones of
partial operations.

Definition 4.13. Let C C P(A) be a clone of partial operations. Then
the degree of representability degr(C) is the smallest cardinality |A’| such
that there is a clone ¢’ C P(A’) with C' = (.

Proposition 4.14. Let C be a strongly solidifyable minimal partial clone.
(i) If C = (f), f?> = f and dom f C A then degr(C) = 2.

(ii) If C = (f), f?> = f and dom f = A then degr(C) = 3.

(iii) If C = (f), fP =id then degr(C) = p, where p is a prime number.
(i) If C = (f) and [ is binary then degr(C) = 4.

Proof. (i) If f2 = f and dom f C A then C = T(A) where A =
({0,1}; fo) with fo(0) = 0 and dom fo = {0} since in each case the Cayley
table of the clone has the form

id f
id | id f
rr f

and thus CM = TW(A). Since C and T(A) are generated by its unary
operations we get

<C(1)> =C0=2T(A = <T(1)(A)>-

(ii), (iii) and (iv) were proved in. ]
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In this paper we introduce a novel cryptosystem based on finite automata with-
out outputs. For encryption and decryption the apparatus uses the same secret
keys, which have the transition matrix of a key-automaton without outputs and
with an initial state and final states. To each character in the character set of
the plaintext there is one or more final states of the key automaton assigned.
During encryption the plaintext is read in sequentially character by character
and the key automaton assigns to each plaintext character a character string,
whose length is adjustable within a given length range. The apparatus cre-
ates the ciphertext by linking these character strings together. During decryp-
tion the key automaton starting from the initial state reads in the ciphertext
character by character and decryption is accomplished by linking together the
plaintext characters associated with certain final states, which provides the
plaintext in its original form.

Keywords: Cryptosystem; Finite Automata without Outputs.

1. Introduction

Automata theory provides a natural basis for designing cryptosystems and
several such systems have been designed. Some of them are based on
Mealy automata or their generalization, while others are based on cellular
automata.

Almost all cryptosystems can be modeled with Mealy machines (as se-
quential machines) or generalized sequential machines.!413:19-22,25 A fyy-
ther generation of the cryptosystems based on Mealy machines is the family
of public key FAPKC and FAPKC-3 systems.?324

Almost from the very beginning of research into cellular automata, there
have been serious attempts at cryptographic applications.?-6-11,12,14,17,18,26

The subject matter of the present work is a cryptographic apparatus
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with a Rabin-Scott automaton as key for encoding and decoding of
information.

2. Preliminaries

We start with some standard concepts and notations. All concepts not
defined here can be found in.**!¢ By an alphabet we mean a finite nonempty
set. The elements of an alphabet are called letters. A word over an alphabet
3 is a finite string consisting of letters of 3. A word over a binary alphabet
is called a bit string. The string consisting of zero letters is called the empty
word, written by A. The length of a word w, in symbols |w|, means the
number of letters in w when each letter is counted as many times it occurs.
By definition, |A] = 0. At the same time, for any set H, |H| denotes the
cardinality of H. I_)n addition, for every nonempty word w, denote by w the
last letter of w. (A is not defined.) If w = &1 - -z and v = Tgq1 - - xp are
words over an alphabet ¥ (with x1,..., 2k, Tg41,...,2¢ € X), then their
catenation uv = x1 -+ TxTpy1 - -+ g is also a word over X. In this case we
also say that u is a prefix of uv and v is a suffiz of uv. Catenation is an
associative operation and, by definition, the empty word A is the identity
with respect to catenation: wA = Aw = w for any word w. For every word w,
put w® = X\, moreover, w™ = ww™ ',n > 1. Let ¥* be the set of all words
over 3, moreover, let T = ¥* \ {A}. * and ¥ are the free monoid and
the free semigroup, respectively, generated by 3 under catenation. Subsets
of ¥* are called (formal) languages. In particular, we put X° = {\}, X" =
{w:|w|=n},n>1,and O =% %M = L : |w| <n},n > 1.

By an automaton we mean a finite Rabin-Scott automaton, i.e. a deter-
ministic finite initial automaton without outputs supplied by a set of final
states which is a subset of the state set. In more details, an automaton is
an algebraic structure A = (A4, ag, Ar, %, d) consisting of the nonempty and
finite state set A, the nonempty and finite input set X, a transition function
d: Ax X — A, the initial state ag € A and the (not necessarily nonempty)
set Arp C A of final states. The elements of the state set are the states, the
elements of Ap are the final states, and the elements of the input set are the
input signals. It may happen that the initial state is a final state as well (this
is not excluded). An element of A™ is called a state word ® and an element of
3* is called an input word. State and input words are also called state strings
and input strings, respectively. If a state string ajas - - as (a1,...,as € A)
has at least three elements, the states as,as,...,as—1 are also called inter-

2The empty word is not considered as a state word.
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mediate states. It is understood that § is extended to §* : AxY* — AT with
0*(a,\) = a, 6*(a,zq) = 6(a,x)0*(6(a,x),q),a € A,z € ¥,q € £*. In other
words, 6*(a,A) = a and for every nonempty input word xixs - x; € BT
(where x1,22,...,25 € X) there are aj,...,as € A with d(a,z1) =
ay,0(ay,x2) = ag,...,0(as—1,xs) = as such that §*(a,z1 -+ x5) = ay - - - as.

In the sequel, we will consider the transition of an automaton in this
extended form and thus we will denote it by the same Greek letter 4.

If 6(a,w) = b holds P for some a,b € A,w € ¥* then we say that w
takes the automaton from its state a into the state b, and we also say that
the automaton goes from the state a into the state b under the effect of
w. We say that z € X7 is a dummy string with respect to the input word

—_—
u € X* if for every nonempty prefix w of z, §(ag,uw) ¢ Ap (including
—
0(ag,uz) ¢ Ap).

Finally, for every pair a,b € A of states define the language L,; C ¥*
of input words which take the automaton from the state a into the state b
without intermediate final states. In formula, let L, =

— —_—
{weX"|d(a,w) =b,Yu,v e X" : (w=wv & u,v#X) = §(a,u) ¢ Ar}.
In addition, for every pair i, of positive integers with i < j, put L% =

{pglp € X7, g € Lepy NS0 ¢ = §(a,p)}.

3. A Novel Cipher

The working of the considered system mainly differs from the most of the
stream ciphers : it does not generate the ciphertexts in such a way that the
plaintext bit stream is combined with a cipher bit stream by an exclusive-
or operation (XOR). On the other hand, it has the main property of the
stream ciphers : the plaintext digits are encrypted one at a time, and the
transformation of successive digits varies during the encryption.

The key is an automaton having the property that for every state pair,
whose first element is the initial state or a final state, its second element
is any final state, there are several distinct input strings such that the last
element of the state string, assigned to the first element of the state pair
and the given input string by the generalized transition function, is the
same as the second element of the state pair and none of the intermediate
elements of the state string is a final state.

b . . v . rY oy
Using the above notation Zz" for a given nonempty word z, §(a, w) = b means that the

last letter of the state word d(a, w) is equal to the state b.
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3.1. Key Automaton and Random Ciphertext Blocks

Let us given a pair of alphabets II, X called, in order, a plaintext alphabet
and a ciphertext alphabet. Consider an automaton A = (4, ag, Ar,%,0)
with |Ap| > |I|, a surjective mapping ¢ : Ap — II, and a triplet
d, Smin, Smaz Of positive integers having Syin < Smaz. We say that A
is a key automaton (with respect to I, X, ¢, d, Smin, Smaz) if for every
a € {ag}UAR,b € Ap, there are not fewer than d input words with length at
least sy and at most Sy, taking the automaton from its state a into the
state b without intermediate final states. In formula, for every pair a,b € A,
it is assumed that [L37™ %] > d.

Put for every y € I, o= (y) = {a € Ar | ¢(a) = y} as usual and

let i1 -- i be a plaintext with iq,...,4, € II. Consider a list w;,,...,w;,
of words with w;, € LgmipSmax . q; € LgminSmax guch that, in order,
a1 € o 1(i1),...,ar € o 1(ix). Then wy, - --w;, is a ciphertext® of iy - - iy,
where w;, , ..., w;, are called ciphertext blocks.

3.2. Encryption

Several types of encryption processes can be constructed. One of them may
be the following general (but not really effective) one.
- Let i1 ---ig (i1,...,ix € II) be a plaintext.
-1.Put a=ap and j = 1.
- 2. Do while end of the plaintext file.
- 2.1. Read the character %; in.
- 2.2. Let wy; = A
—_—
- 2.3. do while T(spmin < |wy; | < Simae and d(a,wy;) € 0 1(iy)).
- 2.3.1. Let = be a random input signal and exchange the word w;,
with w;, z.
—_—
- 2.32.If (Jwy, | = Smae and 6(a,w;;) & ¢~ (i5)))
then exchange w;; with A.
- 2.4. Output wy;.

_
- 2.5. Exchange a with 0(a,w;;) and j with j + 1.

Theoretically, the cycle 2.3 of this process may be arbitrarily long.”®
Therefore, this process suffers from practical difficulties. By an appropriate
type of key automata and a slight modification of the above process, these
difficulties can be overcome. (See Section 4.)

“Every plaintext and every ciphertext is assumed to be nonempty.
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3.3. Decryption

The decryption process is also quite simple.
- Let w;, ... w;, (wiy, ..., w;,, €X7T) be a ciphertext.
1. Put a = ap and j = 0.
2. Do while end of the ciphertext file.
2.1. Read the next ciphertext character x in.
2.2. Exchange a with §(a, z) and j with j + 1.
2.3.If (a € Ap and j > S, ) then put j=0 and output ¢(a).

4. Encryption Without Backtracks

The speed of the encryption (and decryption) has a central importance in
the field. For this reason, we propose to consider random transition matrices
having the property that each of the final states is contained in each of the
columns of the transition matrix assigned to the non-final states, moreover,
each of the columns of the transition matrix has some (at least one) of the
non-final states (and thus the number of input signals should be greater
than that of final states). Then the steps 2.3.1 and 2.3.2 of the process in
Section 3.2 is worth modifying as follows.

- 2.3.1. Let ¢t be a random positive integer with S, <t < Spee and

put 2 = 0.

- 2.3.2.1. Do while i=t-1.

- 2.3.2.1.1. Let = be a random input signal with ¢(a,w;;x) ¢ Ap.

- 2.3.2.1.2. Exchange w;; with w;,z and ¢ with ¢ + 1.

B ——

- 2.3.2.2. Let 2 be a random input signal with é(a, w;, ) = ¢~ (i;).

- 2.3.2.3. Exchange the word w;; with w;; .
Obviously, by these properties, there is no backtrack search in the gener-
ation of random ciphertext blocks. Therefore the encoding algorithm be-
comes faster. On the other hand, we can prescribe the random length ¢ of
the generated ciphertext block in advance, and apart from the last one, we
can choose the random input signals of the ciphertext block in several ways.

5. Cryptanalysis

5.1. Automatic Learning Algorithms

It is a famous result? that there exists a time polynomial and space linear
algorithm to identify the canonical automata of k-reversible languages by
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using characteristic sample sets. Therefore, a really serious attack could
be successful against the proposed stream cipher if some of the automata
Apy 7 = (4,00, F,%,0),A\ {bo} # 0, by € A,F C A based on the key
automaton A = (A4, ag, Ar, %, d) are k-reversible for a nonnegative integer
k. The following statement can help in handling this problem.

Theorem 5.1.1% Let A = (A, ap, Ar,%,d) be an arbitrary automaton.
There is no nonnegative integer k for which A is k-reversible if and only if
there are distinct states a,b € A, a nonempty input word u € X7, an input
word v € X*, such that §(a,u) = a,0(b,u) = b,d(a,v) # 6(b,v), and either

R —

d(a,v),0(b,v) € Ap or §(a,vx) = §(b,vz) for some x € X. O

By the above statement, given an automaton A = (A4, ag, Ar, %, J), none
of the automata Ay, p = (A, bo, F, X,0), A\ {bo} #0, bp € A, F C A are k-
reversible for some nonnegative integer k, if for every distinct a,b € A there
are a nonempty input word u € 7, an input word v € ¥*, an input signal
x € ¥ such that §(a,u) = a,d(b,u) = b, 6(a, uvzr) = §(b, uvz). For example,
this property automatically holds if there is a row of the transition matrix

having permutation of the state set, moreover, there is a reset signal.

5.2. Adaptive Chosen-Ciphertext Attack, Adaptive Chosen-
-Plaintext Attack, Adaptive Chosen-Plaintext -Chosen-
-Ciphertext Attack

Assume that the ciphertext wi ---wgs consisting of the unknown cipher-
text blocks wi,...,ws € ¥* is given and the cryptanalyst can make an
unbounded number of interactive queries, choosing subsequent ciphertexts
based on the information from the previous encryptions. Moreover assume,
that an upper bound k for the length of the ciphertext blocks is known for
the attacker. Then it can be possible to send a series of random strings of
length at most k to the cipher system. Sooner or later the attacker will send
the string w; and then he/she will get an answer consisting of the plaintext
character ¢; to which the first block w; of the ciphertext was generated.
Recall that, either no answer or an answer consisting of more than one
plaintext character will arrive whenever the sent message is differs from
wi. If the plaintext consists of one character then we are ready and the
attack was successful. Otherwise the attacker can continue the attack for
the suffices wy - - - wg, w3 - - - ws, . . ., ws of the ciphertext receiving, in order,
the second, third, ..., last character of the plaintext.
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In this case, the only possibility of defense is to apply a relatively large
automaton, moreover, relatively large numbers for the minimal and max-
imal block lengths. Obviously, if the length of the ciphertext blocks is on
average k, and m is the minimum of the number of non-final states in all
column of the transition matrix, then for every plaintext character one can
consider at least m*~! ciphertext blocks (even if all ciphertext blocks have
the same length). If the number of the states (and also the number of the
input signals) in the key automaton is, say, 256, moreover, there are 16
final states, then m = 238 can be assumed.? Using the above method, then
breaking for k > 18 is really infeasible.

Similarly to the above method, adaptive chosen-plaintext attack and
adaptive chosen-plaintext-chosen-ciphertext attack can be constructed to
the proposed stream cipher. Similar defenses can be applied as above.

6. Performance

The speed of encryption and decryption does not essentially depend on the
size of the key automaton. We applied key automata from 16 up to 256
states and also from 16 up to 256 inputs having the properties discussed in
Section 4. The plaintext alphabet and also the set of the final states of the
key automaton was the same consisting of 2, 4, or 16 elements.

Testing software simulations of the proposed stream cipher were imple-
mented using a computer program written in CTF. The implementation
was tested on a conventional laptop Toshiba Tecra A8-104 clocked at 2
GHz with 2 Mbyte L2 of cache and 1 Gbyte RAM under operation system
Windows XP. If the minimal length of the ciphertext block is 5, its maximal
length is 10, then the implemented system reaches the speed of 600 Kbyte/s
as encryption and 800 Kbyte/s as decryption (in relation to the length of
the plaintext). Comparing some stream ciphers (see, for example,?), the
proposed cryptosystem is rather slow at least for the implemented software
case.

7. Conclusion

In this paper we introduced a novel cryptosystem based on finite automata
without outputs.

dWe may assume that all columns of the transition matrix assigned to the non-final
states contain not more than 17 final states and that one of the input signals is the reset
one.
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There are a few major issues with the discussed stream cipher.

- There is no serious security analysis.

- The discussed stream cipher is not really efficient, at least for the
software case. In comparison with other promising designs and even with
the state of the art ciphers (see, e.g., the homepage of the ESTREAM?
project) the performance of the discussed cipher is rather slow, at least for
the software case. A rigorous machine-independent investigation should be
necessary to explore the reasons of this drawback.

- The ciphertext may be much longer than the plaintext. An intrinsic
question is, how to deal with the ciphertext blowup. In the further research,
a concrete measure should be necessary to describe the tradeoff between
security and ciphertext blowup.

On the other hand, the discussed cryptosystem has the following
advantages :

- Although the work uses a random number generator, it can take ran-
dom number generators which are proved to be random indeed, or it can
use any radioactive or other physical random number sources.

- To each plaintext message there are several corresponding encoded
messages such that several encryptions of the same plaintext yield to several
distinct ciphertexts.

- Since there are no initial or end markers in the encoded message,
the ciphertext blocks cannot be identified without the key-automaton. So,
without the key, even the length of the plaintext is difficult to estimate,
since block lengths and the number of blocks are not public.

- Because of its inner structure, the proposed cipher is resistant to reused
key attack and substitution attack.
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LINEAR LANGUAGES OF FINITE AND
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A linear grammar with Biichi acceptance condition is a system
G=(N,%, P, Xo,R)

where (N, X, P, Xo) is an ordinary linear grammar with nonterminal alphabet
N, terminal alphabet X, productions P and start symbol Xo, and R C N is a set
of repeated nonterminals. Consider the set of all finite and infinite derivation
trees rooted X whose leaves are labeled with letters of the terminal alphabet
and possibly the empty word. When the tree is infinite, we require that at least
one nonterminal letter in R appears infinitely often as the label of a vertex along
the unique infinite branch of the tree. The frontier of such a tree determines
a finite or infinite word over X. The set of all such words is called the linear
language of finite and infinite words generated by G. Using results from 173 we
provide an algebraic characterization of linear languages by rational operations.
More specifically, we associate a Conway semiring-semimodule pair (S, V') with
each alphabet ¥, where S is a semiring associated with ¥ and V is the set of
all subsets of infinite words over 3 of appropriate order type, and show that a
set in V is linear if and only if it can be generated from certain simple elements
of the semiring S by the rational operations.

Keywords: Linear grammar, Conway semiring-semimodule pair.
AMS Classification: 68Q42, 68Q45, 68Q70, 16Y60

1. Linear languages

In this section, we will consider languages of finite and infinite words over
an alphabet ¥ generated by linear grammars. Let £ and ¢ respectively

*Research supported by grant no. 776u9 from the Austrian-Hungarian Action Foun-
dation, the HAS-JSPS cooperative grant no. 101, and by grant no. K 75249 from the
National Foundation of Hungary for Scientific Research.
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denote the set of all w-words and the set of all w°P-words over X, i.e.,

E‘”:{aoal...:aiEZ}
> = {.. . a1a0 : a; € X}

Now let
Y ={uv:ueX¥ ve X}
2 = fouue B¢, v e B
»ore” = fuv:u e x¥, vex"}
Finally, let
2P =2 usUstu s’ usese”

We will use linear grammars to generate languages which are subsets of
¥,
A linear grammar with Biichi acceptance condition is a system

G= (NaE7P7X07R)

where (N, ¥, P, Xg) is an ordinary linear grammar® with nonterminal al-
phabet N, terminal alphabet 3, productions P and start symbol X, and
R C N is a set of repeated nonterminals. Consider the set of all finite and
infinite derivation trees rooted X, whose leaves are labeled with letters of
the terminal alphabet and possibly the empty word e. Such a tree has a root
labeled X and is such that whenever a vertex is labeled X, for some X € N,
then there is some production X — X;... Xy in P with X; € NU X for
all 7 such that the vertex has k successors, labeled X1, ..., X, respectively.
In particular, when & = 0, there is a single successor labeled e. Clearly,
each infinite derivation tree has a unique infinite branch. We say that a
derivation tree is successful if it is either finite or infinite such that at least
one nonterminal in R occurs infinitely often as the label of a vertex along
the infinite branch of the tree.

The frontier (or yield) of a derivation tree can naturally be seen as a
word in ¥°°. The language L°°(G) generated by G consists of the frontiers
of successful derivation trees rooted Xy. We call a language L C 3°° linear

if there is a linear grammar G with Biichi acceptance condition such that
L =L>(G).

Example 1.1. Suppose that the only productions of G; are X — aXb and
X — €, where a, b are letters in X. If R = () then L*°(G1) = {a™b" : n > 0}
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is a set of finite words. If R = {X}, then L>°(G;) = {a™" : n > 0} U
{a“b*""}. (Of course, for any finite word u, u* = uu ... and u*” = {...uu}.
When u is the empty word, then these words are also empty.)

Example 1.2. Consider the grammar G5 with productions X — aX, X —
Y, Y — Yb, where a,b are terminal letters and X is the start symbol. Let
R ={Y}. Then L™(G3) = {a™b*"" : n > 0}.

Remark 1.1. For each linear grammar G with Biichi acceptance condition
there is an equivalent grammar G’ generating the same language with no
production whose right side is a terminal word. Indeed, let Z be a new
nonterminal and replace each production X — u where u is a terminal
word by the productions X — uZ and Z — Z. Finally, add Z to the set of
repeated nonterminals.

In Section 6 we will give an operational characterization of linear lan-
guages, similar to the Kleene theorem for w-regular languages and Biichi
automata, cf.> This characterization result can be proved in a way which is
similar to the aforementioned Kleene theorem. However, our point is that
both of them are instances of a mor