

ADVANCED FORMAL VERIFICATION

This page intentionally left blank

Advanced Formal
Verification

Edited by

Rolf Drechsler
University of Bremen,
Germany

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 1-4020-2530-0
Print ISBN: 1-4020-7721-1

©2004 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Dordrecht

Contents

Preface xi

Contributing Authors xiii

Introduction xix
Rolf Drechsler

1 Formal Verification xix

2 Challenges xxi
3 Contributions to this Book xxiii

1
What Sat-Solvers can and cannot do 1

Eugene Goldberg
1 Introduction 1
2 Hard Equivalence Checking CNF formulas 3

2.1 Introduction 3
2.2 Common Specification of Boolean Circuits 5
2.3 Equivalence Checking as SAT 11

2.4 Class M(p) and general resolution 12
2.5 Computation of existentially implied functions 13
2.6 Equivalence Checking in General Resolution 14
2.7 Equivalence Checking of Circuits with Unknown CS 20
2.8 A Procedure of Equivalence Checking for Circuits with

a Known CS 22
2.9 Experimental Results 23
2.10 Conclusions 26

3 Stable Sets of Points 26
3.1 Introduction 26
3.2 Stable Set of Points 28
3.3 SSP as a reachable set of points 31
3.4 Testing Satisfiability of CNF Formulas by SSP Con-

struction 32
3.5 Testing Satisfiability of Symmetric CNF Formulas by

SSP Construction 35
3.6 SSPs with Excluded Directions 39
3.7 Conclusions 42

v

vi ADVANCED FORMAL VERIFICATION
2
Advancements in mixed BDD and SAT techniques 45

Gianpiero Cabodi and Stefano Quer
1 Introduction 45
2 Background 47

2.1 SAT Solvers 47
2.2 Binary Decision Diagrams 48
2.2.1 Zero-Suppressed Binary Decision Diagrams 49
2.2.2 Boolean Expression Diagrams 50
2.3 Model Checking and Equivalence Checking 52

3 Comparing SAT and BDD Approaches: Are they different? 54
3.1 Theoretical Considerations 54
3.2 Experimental Benchmarking 55
3.2.1 Bug Hunting in an Industrial Setting 56
3.2.2 Modifying BDD-based Techniques to Perform BMC 56
3.2.3 Conclusions 58
3.3 Working on Affinities: Variable Order 58
3.3.1 Affinities on circuit-width correlation 59
3.3.2 Recursion tree and Variable Order 59
3.3.3 A Common Static Variable Order Heuristic 60
3.3.4 Conclusions 60

4 Decision Diagrams as a Slave Engine in general SAT: Clause
Compression by Means of ZBDDs 61

ZBDDs for Symbolic Davis-Putnam Resolution 61
ZBDDs for Symbolic DLL 62
ZBDDs for Breadth-First SAT 62
Conclusions 62

5 Decision Diagram Preprocessing and Circuit-Based SAT 62
5.1 BED Preprocessing 63
5.2 Circuit-Based SAT 64
5.2.1 BDD Sweeping and SAT 64
5.2.2 SAT on BEDs 66
5.3 Preprocessing by Approximate Reachability 67

6 Using SAT in Symbolic Reachability Analysis 68
6.0.1 BDDs at SAT leaves 69
6.0.2 SAT-Based Symbolic Image and Pre-image 70

7 Conclusions, Remarks and Future Works 71

3
Equivalence Checking of Arithmetic Circuits 77

Dominik Stoffel, Evgeny Karibaev, Irina Kufareva and Wolfgang Kunz
1 Introduction 78
2 Verification Using Functional Properties 81
3 Bit-Level Decision Diagrams 85
4 Word-Level Decision Diagrams 88

4.1 Pseudo-Boolean functions and decompositions 89
4.2 *BMDs 92
4.3 Equivalence Checking Using *BMDs 94
4.4 Experiments with *BMD synthesis 97

5 Arithmetic Bit-Level Verification 105
5.1 Verification at the Arithmetic Bit Level 108
5.2 Extracting the Half Adder Network 112

4.1

4.3
4.2

4.4

Contents vii

5.3 Verification Framework 115
5.4 Experimental Results 115

6 Conclusion 118
7 Future Perspectives 119

4
125

Raik Brinkmann, Peer Johannsen and Klaus Winkelmann
1 Circuit Verification Environment: User’s View 126

1.1 Tool Environment 126
1.2 The gateprop Property Checker 127

2 Circuit Verification Environment: Underlying Techniques 129
2.1 From Property to Satisfiability 129
2.2 Preserving Structure during Problem Construction 131
2.3 The Experimental Platform RtProp 132

3 Exploiting Symmetries 133
3.1 Symmetry in Property Checking Problems 133
3.2 Finding Symmetrical Value Vectors 136
3.3 Practical Results 140

4 Automated Data Path Scaling to Speed Up Property Checking 142
4.1 Bitvector Satisfiability Problems 143
4.2 Formal Abstraction Techniques 145
4.3 Speeding Up Hardware Verification by One-To-One Ab-

straction 146
4.4 Data Path Scaling of Circuit Designs 147

5 Property Checking Use Cases 152
5.1 Application Example: Reverse Engineering 155
5.1.1 Functionality 155
5.1.2 Task 155
5.1.3 Examples for a property 156
5.1.4 Results 157
5.2 Application Example: Complete Block-Level ASIC Ver-

ification 158
5.2.1 Verification Challenge and Approach 158
5.2.2 Verifying the Control Path 159
5.2.3 Data Path Results 160
5.2.4 Overall Result 160
5.3 Productivity Statistics 161

6 Summary 162
6.1 Achievements 162
6.2 Challenges and Perspectives 163

5
Assertion-Based Verification 167

Claudionor Nunes Coelho Jr. and Harry D. Foster
1 Introduction 167

1.1 Specifying properties 169
1.2 Observability and controllability 171
1.3 Formal property checking framework 172

2 Assertion Specification 177
2.1 Temporal logic 177
2.2 Property Specification Language (PSL) 179

Application of Property Checking and Underlying Techniques

viii ADVANCED FORMAL VERIFICATION

2.2.1 Boolean layer 180
2.2.2 Temporal layer 180
2.2.3 Verification layer 182

3 Assertion libraries 183
4 Assertion simulation 184
5 Assertions and formal verification 186

5.1 Handling complexity 186
5.2 Formal property checking role 190

6 Assertions and synthesis 191
6.1 On-line validation 191
6.2 Synthesizable assertions 192
6.3 Routing scheme for assertion libraries 194
6.4 Assertion processors 195
6.5 Impact of Assertions in Real Circuits 197

7 PCI property specification example 197
7.1 PCI overview 198
7.2 PCI master reset requirement 199
7.3 PCI burst order encoding requirement 199
7.4 PCI basic read transaction 200

8 Summary 202

6
Formal Verification for Nonlinear Analog Systems 205

Walter Hartong, Ralf Klausen and Lars Hedrich
1 Introduction 206
2 System Description 206

2.1 Analog Circuit Classes 208
2.2 State Space Description 208
2.2.1 Index 209
2.2.2 Solving a DAE System 209
2.2.3 Linearized System Description 211

3 Equivalence Checking 211
3.1 Basic Concepts 212
3.1.1 Nonlinear Mapping of State Space Descriptions 212
3.2 Equivalence Checking Algorithm 213
3.2.1 Sampling the State Space 213
3.2.2 Consistent Sample Point 215
3.3 Linear Transformation Theory 217
3.3.1 System Transformation to a Kronecker Canonical

Form 217
3.3.2 DAE System Transformation into the Virtual State Space219
3.3.3 Error Calculation 222
3.4 Experimental Results 222
3.4.1 Schmitt Trigger Example 222
3.4.2 Bandpass Example 225

4 Model Checking 227
4.1 Model Checking Language 227
4.2 Analog Model Checking Algorithm 230
4.2.1 Transition Systems 230
4.2.2 Discrete Time Steps 231
4.2.3 State Space Subdivision 232
4.2.4 Transition Relation 234

Contents ix

4.2.5 Border Problems 236
4.2.6 Input Value Model 237
4.2.7 Optimizations 239
4.3 Experimental Results 239
4.3.1 Schmitt Trigger Example 239
4.3.2 Tunnel Diode Oscillator Example 240

5 Summary 242
6 Acknowledgement 242
Appendix: Mathematical Symbols 243

Index 247

This page intentionally left blank

Preface

Modern circuits may contain up to several hundred million transis-
tors. In the meantime it has been observed that verification becomes
the major bottleneck in design flows, i.e. up to 80% of the overall design
costs are due to verification. This is one of the reasons why recently
several methods have been proposed as alternatives to classical simula-
tion. Simulation alone cannot guarantee sufficient coverage of the design
resulting in bugs that may remain undetected.

As alternatives formal verification techniques have been proposed. In-
stead of simulating a design the correctness is proven by formal tech-
niques. There are many different areas where these approaches can be
used, like equivalence checking, property checking or symbolic simula-
tion. Meanwhile these methods have been successfully applied in many
industrial projects and have become the state-of-the-art technique in
several fields. But the deployment of the existing tools in real-world
projects also showed the weaknesses and problems of formal verifica-
tion techniques. This gave motivating impulses for tool developers and
researchers.

The book shows latest developments in the verification domain from
the user and from the developer perspective. World leading experts de-
scribe the underlying methods of today’s verification tools and describe
various scenarios from industrial practice. In the first part of the book
the core techniques of today’s formal verification tools, like SAT and
BDDs are addressed. In addition, instances known to be difficult, like
multipliers, are studied. The second part gives insight in professional
tools and the underlying methodology, like property checking and asser-
tion based verification. Finally, to cope with complete system on chip
designs also analog components have to be considered.

In this book the state-of-the-art in many important fields of formal
verification is described. Besides the description of the most recent re-
search results, open problems and challenging research areas are ad-
dressed. By this, the book is intended for CAD developers and re-
searchers in the verification domain, where formal techniques become a

xi

xii ADVANCED FORMAL VERIFICATION

core technology to successful circuit and system design. Furthermore,
the book is an excellent reference for users of verification tools to get a
better understanding of the internal principles and by this to drive the
tools to the highest performance. In this context the book is dedicated
to all people in industry and academia to keep informed about the most
recent developments in the field of formal verification.

Acknowledgment

All contributions in this edited volume have been anonymously re-
viewed. I would like to express my thanks for the valuable comments
of the reviewers and their fast feedback, that allowed a timely publica-
tion. Here, I also like to thank all the authors who did a great job in
submitting contributions of very high quality. My special thanks go to
Görschwin Fey and Daniel Große from my group in Bremen in helping
with the preparation of the book. Finally, I would like to thank Cindy
Zitter and Mark DeJong from Kluwer Academic Publishers. All this
would not have been possible without their steady support.

ROLF DRECHSLER

Contributing Authors

Raik Brinkmann received his Masters Degree in Computer Science
from Clausthal Technical University, in 1996. Before joining Infineon,
he worked as verification engineer and embedded system designer at
Siemens Information and Communication Networks. In 1999 he joined
Siemens Corporate Technology to focus his research on formal methods
for word-level verification, spending two years at the Infineon Design
Center in San Jose, CA. He is also working towards his Ph.D. from
University of Kaiserslautern. Currently, he is responsible for verification
core technologies in the Infineon CVE formal verification team.

Gianpiero Cabodi received the MS degree in EECS in 1984 and the
Ph.D. degree in 1989 from Politecnico di Torino. Since 1989 he has
been with the Department of Automation and Computer Engineering of
Politecnico di Torino, where he is currently an Associate Professor. He
has worked within several EEC funded research projects, and he has been
principal investigator of research contracts with DEC, COMPAQ and
INTEL. His research interests cover a broad range, within the general
framework of CAD for digital systems. He is well known for his scientific
contributions within the field of Binary Decision Diagrams applied to
Formal Verification. He is also interested in Boolean Satisfiability, Logic
and High Level Synthesis, Testing, CAD applications in Parallel and
Distributed environments.

Claudionor Nunes Coelho Jr. has a degree in Electrical Engineering
(summa cum laude) and a Masters in Computer Science from the Federal
University of Minas Gerais. He also holds a Ph.D. in Electrical Engineer-
ing and Computer Science from Stanford University. Claudionor was a
member of the technical team of several start-up companies, working in
an upper management position at Verplex Systems. He is a founder of
several start-ups, including RDBIOTEC S.A. and i-Vision. He is also an
advisor for FIR Capital Partners. He is currently a professor of Com-

xiii

xiv ADVANCED FORMAL VERIFICATION

puter Science at the Federal University of Minas Gerais. His interests
include validation techniques for complex designs, embedded systems’
design and software engineering.

Rolf Drechsler received his diploma and Dr. phil. nat. degree in com-
puter science from the J.W. Goethe-University in Frankfurt am Main,
Germany, in 1992 and 1995, respectively. He was with the Institute
of Computer Science at the Albert-Ludwigs-University of Freiburg im
Breisgau, Germany from 1995 to 2000. He joined the Corporate Tech-
nology Department of Siemens AG, Munich in 2000, where he worked as
a Senior Engineer in the formal verification group. Since October 2001
he has been with the University of Bremen, Germany, where he is now
a full professor for computer architecture. His research interests include
verification, logic synthesis, and evolutionary algorithms.

Harry Foster serves as Chairman of the Accellera Formal Verifica-
tion Technical Committee, which is currently defining the PSL property
specification language standard. He is co-author of the Kluwer Aca-
demic Publishers book Assertion-Based Design, as well as the Kluwer
book Principles of Verifiable RTL Design. Prior to joining Jasper De-
sign Automation, Harry was Verplex Systems’ Chief Architect. Harry
has researched and developed formal verification tools and methodolo-
gies for over 12 years as a Senior Member of the CAD Technical Staff
at Hewlett-Packard, and is the original co-creator of the Accellera Open
Verification Library (OVL) assertion monitor standard.

Eugene Goldberg received his M.S. degree in theoretical physics from
the Belorussian State University in 1983 and his Ph.D. degree in com-
puter science from the Institute of Engineering Cybernetics of the Be-
lorussian Academy of Sciences in 1995. From 1983 to 1995 he worked
as a researcher in the laboratory of logic design at the Institute of En-
gineering Cybernetics. From 1996 to 1997 he was a visiting scholar at
the University of California at Berkeley. He joined Cadence Berkeley
Labs in November 1997. His main interests are development of efficient
algorithms for computationally hard problems with emphasis on CAD
applications.

Walter Hartong was born in Dinklage, Germany, on February 10,
1972. He graduated (Dipl.-Ing.) in electrical engineering at the Uni-
versity of Hannover in 1997. He was with the Institute of Microelec-

Contributing Authors xv

tronic Circuits and Systems of the University of Hannover since 1997,
where he received his Ph.D. degree for his research on approaches to
model checking for nonlinear analog systems in 2002. Since 2002 he
is application engineer for analog/mixed signal circuit simulation at Ca-
dence Design Systems, Munich, Germany. His research interests include:
analog/mixed signal simulation, analog hardware description languages,
behavioral modeling, symbolic analysis, and formal verification.

Lars Hedrich was born in Hannover, Germany, on February 19, 1966.
He graduated (Dipl.-Ing.) in electrical engineering at the University of
Hannover in 1992. Since 1992 he is with the Institute of Microelectronic
Circuits and Systems at the Department of Computer Science of the
University of Hannover, where he received his Ph.D. degree in electrical
engineering for his research on approaches to formal verification of analog
circuits in 1997. In 2002 he became a junior professor. His research
interests include several areas of analog design automation: symbolic
analysis of linear and nonlinear circuits, behavioral modeling, circuit
synthesis, and formal verification.

Peer Johannsen received his Masters Degree in Computer Science at
Christian-Albrechts-University of Kiel, Germany, in 1997. Afterwards
he joined Siemens Corporate Research in Munich, focusing his work
on formal techniques for hardware verification. He spent two years of
research at the Infineon Design Center in San Jose, CA, working on new
methods for property checking of digital circuits. In 2003 he received his
Ph.D. in Computer Science from Christian-Albrechts-University of Kiel.
Currently he is a project leader in the Infineon CVE formal verification
team, responsible for the development of a new static verification tool.

Evgeny Karibaev received the B.S. and Dipl.-Ing. degrees in Electrical
Engineering from the Department of Radio Physics at Tomsk State Uni-
versity, Tomsk, Russia, in 2000 and 2001, respectively. He is currently
working toward his Ph.D. degree at the Dept. of Electrical and Computer
Engineering at the University of Kaiserslautern. His research interests
are in the field of formal hardware verification, including equivalence
checking and property checking of arithmetic circuits.

Ralf Klausen was born in Hannover, Germany, on May 26, 1971. He
graduated (Dipl.-Ing.) in electrical engineering at the University of Han-
nover in 2000. Since 2000 he is with the Institute of Microelectronic

xvi ADVANCED FORMAL VERIFICATION

Systems at the Department of Computer Science of the University of
Hannover. He is working towards a Ph.D. degree on approaches to for-
mal verification of analog circuits.

Irina Kufareva graduated from the department of Computer Science
of Tomsk State University, Russia, with a Dipl.-Ing. degree in computer
science in 1994. She received her Ph.D. in computer science in 2000. She
currently works as an assistant professor at the Dept. of Radio Physics at
Tomsk State University, Tomsk, Russia. Her current research interests
include automata theory and formal verification.

Wolfgang Kunz obtained the Dipl.Ing. degree of electrical engineer-
ing from University of Karlsruhe in 1989 and the doctor’s degree from
University of Hannover in 1992. From 1989 to 1991 he was a graduate
student at the ECE Department at the University of Massachusetts at
Amherst. From 1993 to 1998 he was with Max Planck Fault-Tolerant
Computing Group at the University of Potsdam. From 1998 to 2001
he was a professor at the CS department at the University of Frank-
furt. Since 2001 he is with the EE department at the University of
Kaiserslautern. Wolfgang Kunz conducts research in the areas of logic
and layout synthesis, equivalence checking and ATPG. For his contribu-
tions in these areas he has received several awards including the IEEE
Transactions on CAD Best Paper Award.

Stefano Quer received the MS degree in EECS in 1991 from Politec-
nico di Torino and the Ph. D. degree in 1996. In 1994, he was with the
EECS Department of the University of California at Berkeley, in 1998,
with the Advanced Technology Group, at Synopsys Inc., Mountain View,
California, and in 1999, with the Alpha Development Group, at Compaq,
Shrewsbury, Massachussetts. He has been consultant for Compaq Com-
puter Corporation. He is currently Assistant Professor at Dipartimento
di Automatica e Informatica of Politecnico di Torino. His research in-
terests include hardware description languages, logic synthesis, formal
verification, simulation and testing of digital circuits and systems.

Dominik Stoffel obtained his Diplom-Ingenieur degree from the Uni-
versity of Karlsruhe in 1992 and his Ph.D. from the University of Frank-
furt in 1999. From 1994 to 1998 he was with the Max-Planck Fault-
Tolerant Computing Group in Potsdam. From 1998 to 2001 he was with
the Electronic Design Automation group at the University of Frankfurt,

Contributing Authors xvii

Germany. Since 2001 he is working as a post-doctoral researcher in the
Electronic Design Automation group at the University of Kaiserslautern.
His research interests are in the field of logic synthesis and formal hard-
ware verification.

Klaus Winkelmann received a degree in Mathematics and, in 1984,
his Ph.D. in computer science at Erlangen University. Currently he is a
project manager in the Infineon CVE formal verification team, respon-
sible for innovative applications of property checking technology. Before
joining Infineon, he built up and led several R&D teams at Siemens Cor-
porate Research, focusing on formal techniques for the design and veri-
fication of embedded software, in particular verification and synthesis of
finite automata, synchronous languages, discrete event systems and their
applications to industrial control. He also contributed to the application
of AI techniques to problems of automation, control and diagnosis. He
has acted as reviewer, project manager and as technical director for sev-
eral European projects, and taught computer science courses in several
universities.

This page intentionally left blank

Introduction

Rolf Drechsler

With increasing design complexity, verification becomes a more and
more important aspect of the design flow. Modern circuits contain up
to several million transistors. In the meantime it has been observed that
verification becomes the major bottleneck, i.e. up to 80% of the overall
design costs are due to verification. This is one of the reasons why re-
cently several methods have been proposed as alternatives to classical
simulation, since it cannot guarantee sufficient coverage of the design.
E.g. in [2] it has been reported that for the verification of the Pentium
IV more than 200 billion cycles have been simulated, but this only cor-
responds to 2 CPU minutes, if the chip is run with 1 GHz.

Formal verification techniques have gained large attention, since they
allow to prove the correctness of a circuit, i.e. they ensure 100% func-
tional correctness. Besides being more reliable, formal verification ap-
proaches have also shown to be more cost effective in many cases, since
test bench creation - usually a very time consuming and error prone task
- becomes superfluous.

In this introduction, we first briefly describe some of the application
domains, where formal techniques have successfully been used. We give
some links to further literature where the interested reader can get more
information. Then, a list of “challenging problems” is given, i.e. a list of
topics that need further investigation in the context of formal hardware
verification. Finally, the contributions to this book are briefly described.

1. Formal Verification

The main idea of formal hardware verification is to prove the func-
tional correctness of a design instead of simulating some vectors. For
the proof process different techniques have been proposed. Most of them

 xix

R. Drechsler (ed.), Advanced Formal Verification, xix-xxv.

© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

xx ADVANCED FORMAL VERIFICATION

work in the Boolean domain, like Binary Decision Diagrams (BDDs) or
SAT solvers.

The typical hardware verification scenarios where formal proof tech-
niques are applied are

Equivalence Checking (EC) and

Property Checking (PC), also called Model Checking (MC).

The goal of EC is to ensure the equivalence of two given circuit descrip-
tions. These circuits might be given on different levels of abstraction,
i.e. register transfer level or gate level. The main steps of an equivalence
checker are as follows (see e.g. [12]):

1. Translate both designs to an internal format.

2. Establish the correspondence between the two designs in a match-
ing phase.

3. Prove equivalence or inequivalence.

4. In case of an inequivalence a counter-example is generated and the
debugging phase starts.

Notice that the circuit is considered as purely combinational by model-
ing the state elements as additional primary inputs and outputs. This
modeling may result in counter-examples that are not reachable during
normal circuit operation.

In contrast to EC, where two circuits are considered, for PC a single
circuit is given and properties are formulated in a dedicated “verification
language”. It is then formally proven whether these properties hold
under all circumstances. While “classical” CTL-based model checking
[6] can only be applied to medium sized designs, approaches based on
Bounded Model Checking (BMC) as discussed in [4] give very good results
when used for complete blocks with up to 100k gates.

Nevertheless, all these approaches can run into problems caused by
complexity, e.g. if the circuit becomes too large or if the function being
represented turns out to be “difficult” for formal methods. The second
problem often arises in cases of complex arithmetics, like multipliers.

Motivated by this, hybrid methods have been proposed, like e.g. sym-
bolic simulation and assertion checking. These methods try to bridge
the gap between simulation and correctness proofs. But these techniques
also make use of formal proof techniques.

For more information on basics on formal verification techniques the
reader is referred to [22].

INTRODUCTION xxi

2. Challenges

Even though formal verification techniques are very successfully ap-
plied and have become the state-of-the-art in many design flows, still
many problems exist. In this section a list of these problems is given.
The list is not complete in the sense that all difficulties are covered, but
many important ones are mentioned. This gives a better understanding
of current problems in hardware verification, motivates for the following
chapters of the book and shows directions for future research.

Complexity: According to Moore’s law the complexity of the circuits
steadily increases. For this, the underlying data structures are
very important. For EC and BMC often dedicated data structures
are used. For representation of the state space BDDs have shown
to work well, but if the size of the circuit becomes too large the
BDDs often suffer from “memory explosion”.

Proof technology: While BDDs and SAT are the most popular tech-
niques in hardware verification and have also been applied to many
domains, there is still a lot of research going on (see also Chapter
1 and 2). Besides the classical monolithic approaches modern EC
tools make use of multi-engine approaches that combine different
techniques, like SAT, BDD, term rewriting, ATPG, and random
pattern simulation. How to successfully combine these - often or-
thogonal - approaches is not fully understood today.

Word-level approaches: Even though most proof techniques today work
on the bit-level, many studies have shown that significant improve-
ments can be achieved if the proof engine makes use of high-level
information or even completely works on a higher level of abstrac-
tion. In this context also ILP solvers showed promise (see also
Chapter 4).

Matching in EC: As described above, before the proof process starts the
correspondence between the circuits has to be established. Here,
several techniques exist, like name-based, structural or prover-
based, but still for large industrial designs these methods often
fail. This results in very time consuming user defined matching.

Reachability of counter-examples: In EC and BMC the generated
counter-example might not be reachable in normal circuit opera-
tion. This results from the modeling of the circuit, i.e. instead of a
FSM only the combinational part is considered. Thus, it has to be
checked that the counter-example is “valid” after it has been gen-
erated, or the prover has to ensure that it is reachable. Techniques

xxii ADVANCED FORMAL VERIFICATION

have to be developed how this can be ensured without a complete
reachability analysis of the FSM, that is usually not feasible due
to complexity reasons.

Arithmetic: Industrial practice has shown that today’s proof tech-
niques, like BDD and SAT, have difficulties with arithmetic cir-
cuits, like multipliers. Word-level approaches have been proposed
as an alternative, but these methods turned out to often be difficult
to integrate in fully automatic tools. For this, arithmetic circuits
- often occurring in circuit design - are still difficult to handle (see
Chapter 4).

System integration: PC works best on the module level, i.e. for blocks
with up to 100k gates. But in multi-chip modules many of these
blocks are integrated to build a system. Due to complexity the
modules cannot be verified as one large block and for this models
and approaches are needed.

Hybrid approaches: For complex blocks or on the system level PC might
be a very complex task and for this simpler alternatives have been
studied, i.e. techniques that are more powerful than classical sim-
ulation but need less resources than PC. Techniques, like symbolic
simulation or assertion-based verification, in this context also make
use of formal verification techniques (see also Chapter 5).

Checker synthesis: The specified properties can also be synthesized and
added to the design. In this way, they can also be used for on-line
test after the circuit has been fabricated.

Analog/mixed signal: Most EC and PC models assume that the circuit
is purely digital, while in modern system-on-chip designs many
analog components are integrated. For this, also models and proof
mechanisms need to be developed for analog and mixed signal de-
vices (see Chapter 6).

Retiming: For EC retimed circuits are still difficult to handle, since
in this case the state matching cannot be performed. Thus, the
problem remains sequential and by this becomes far too complex.

Multiple clocks: Many circuits have different clocking domains, while
verification tools can often only work with a single clock.

Coverage: To check the completeness of a verification process cover-
age metrics have to be defined. While typical methods, like state
coverage, are much too weak in the context of formal verification,

INTRODUCTION xxiii

there still does not exist a good measure that is comfortable to use
for PC.

Diagnosis: After a fault has been identified by a formal verification tool
a counter-example is generated. The next step is to identify the
fault location or a reason for the failing proof process. Here, also
formal proof techniques can be applied.

Most solutions to these problems are still in a very early stage of devel-
opment, but these fields have to be addressed to make formal hardware
verification successful in industrial applications. To orient the reader,
some recent references are provided to give a starting point for further
studies: [25, 17, 22, 16, 9, 26, 13, 1, 7, 23, 21, 15, 5, 19, 24, 20, 11, 18,
27, 3, 14, 10, 8]

3. Contributions to this Book

The book consists of six chapters that cover most of the aspects de-
scribed above. Examples of proof technology are described and the latest
developments in this field are presented. But also contributions from in-
dustrial practice show the importance of formal verification approaches
in today’s design flows. Each chapter provides experimental results and
for each application domain open problems and directions for future
work are outlined.

In Chapter 1, Eugene Goldberg analyses the core problem in formal
techniques, i.e. the satisfiability problem. Resolution-based SAT solvers
are analyzed and a new way of testing satisfiability is proposed.

Properties of SAT and BDDs are studied in Chapter 2 by Gianpiero
Cabodi and Stefano Quer. Based on this analysis, the integration of the
two currently most successful proof techniques is discussed.

As mentioned above, formal proof techniques often have difficulties
in handling arithmetic circuits. This issue is addressed in Chapter 3 by
Dominik Stoffel, Evgeny Karibaev, Irina Kufareva and Wolfgang Kunz,
where EC approaches are presented.

New innovative proof techniques that make use of word-level infor-
mation are described by Raik Brinkmann, Peer Johannsen and Klaus
Winkelmann, and an industrial property checking flow is presented in
Chapter 4.

In Chapter 5, Claudionor Nunes Coelho Jr. and Harry D. Foster fo-
cus on assertion-based verification and in this context introduce a formal
property language. The underlying methodology is introduced and im-
plications for the user are addressed.

xxiv ADVANCED FORMAL VERIFICATION

Finally, an approach to formal verification of analog circuits is pro-
posed in Chapter 6 by Walter Hartong, Ralf Klausen and Lars Hedrich.
MC and EC techniques for nonlinear analog systems are discussed.

References

[1] L. Bening and H. Foster. Principles of Verifiable RTL Design.
Kluwer Academic Publishers, 2001.

[2] B. Bentley. Validating the Intel Pentium 4 microprocessor. In De-
sign Automation Conf., pages 244–248, 2001.

[3] J. Bergeron. Writing Testbenches: Functional Verification of HDL
Models. Kluwer Academic Publishers, 2003.

[4] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic
model checking using SAT procedures instead of BDDs. In Design
Automation Conf., pages 317–320, 1999.

[5] R. Brinkmann and R. Drechsler. RTL-datapath verification using
integer linear programming. In ASP Design Automation Conf.,
pages 741–746, 2002.

[6] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Sequen-
tial circuit verification using symbolic model checking. In Design
Automation Conf., pages 46–51, 1990.

[7] H. Chockler, O. Kupferman, R. Kurshan, and M. Vardi. A prac-
tical approach to coverage in model checking. In Computer Aided
Verification, volume 2102 of LNCS, pages 66–77. Springer Verlag,
2001.

[8] F. Copty, A. Irron, O. Weissberg, N. Kropp, and G. Kamhi. Efficient
debugging in a formal verification environment. Software Tools for
Technology Transfer, 4:335–348, 2003.

[9] R. Drechsler. Formal Verification of Circuits. Kluwer Academic
Publishers, 2000.

[10] R. Drechsler. Synthesizing checkers for on-line verification of
system-on-chip designs. In Int’l Symp. Circ. and Systems, pages
IV:748–IV:751, 2003.

[11] R. Drechsler and N. Drechsler. Evolutionary Algorithms for Em-
bedded System Design. Kluwer Academic Publisher, 2002.

[12] R. Drechsler and S. Höreth. Gatecomp: Equivalence checking of
digital circuits in an industrial environment. In Int’l Workshop on
Boolean Problems, pages 195–200, 2002.

[13] R. Drechsler and D. Sieling. Binary decision diagrams in theory and
practice. Software Tools for Technology Transfer, 3:112–136, 2001.

REFERENCES xxv

[14] H. Foster, A. Krolnik, and David J. Lacey. Assertion-Based Design.
Kluwer Academic Publishers, 2003.

[15] S. Hassoun and T. Sasao. Logic Synthesis and Verification. Kluwer
Academic Publishers, 2001.

[16] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco,
J. Taylor, and J. Long. Smart simulation using collaborative formal
and simulation engines. In Int’l Conf. on CAD, pages 120–126, 2000.

[17] Y. Hoskote, T. Kam, P. Ho, and X. Zhao. Coverage estimation
for symbolic model checking. In Design Automation Conf., pages
300–305, 1999.

[18] Y.-C. Hsu, B. Tabbara, Y.-A. Chen, and F. Tsai. Advanced tech-
niques for RTL debugging. In Design Automation Conf., pages
362–367, 2003.

[19] P. Johannsen and R. Drechsler. Formal verification on register
transfer level – utilizing high-level information for hardware veri-
fication. In IFIP Int’l Conf. on VLSI, pages 127–132, 2001.

[20] R. Jones. Symbolic Simulation Methods for Industrial Formal Ver-
ification. Kluwer Academic Publishers, 2002.

[21] A. Kölbl, J. Kukula, and R. Damiano. Symbolic RTL simulation.
In Design Automation Conf., pages 47–52, 2001.

[22] Th. Kropf. Introduction to Formal Hardware Verification. Springer,
1999.

[23] A. Kuehlmann, M. Ganai, and V. Paruthi. Circuit-based Boolean
reasoning. In Design Automation Conf., pages 232–237, 2001.

[24] J. Mohnke, P. Molitor, and S. Malik. Limits of using signatures for
permutation independent Boolean comparison. Formal Methods in
System Design: An International Journal, 2(21):167–191, 2002.

[25] D. Moundanos, J. Abraham, and Y. Hoskote. Abstraction tech-
niques for validation coverage analysis and test generation. IEEE
Trans. on Comp., pages 2–14, January 1998.

[26] P. Rashinkar, P. Paterson, and L. Singh. System-on-a-Chip Verifi-
cation. Kluwer Academic Publishers, 2000.

[27] A. Veneris, A. Smith, and M. S. Abadir. Logic verification based
on diagnosis techniques. In ASP Design Automation Conf., 2003.

This page intentionally left blank

Chapter 1

WHAT SAT-SOLVERS CAN AND CANNOT
DO

Eugene Goldberg
Cadence Berkeley Labs, USA

egold@cadence.com

Abstract This chapter consists of two parts. In the first part we show that reso-
lution based SAT-solvers cannot be scalable on real-life formulas unless
some extra information about formula structure is known. In the second
part we introduce a new way of satisfiability testing that may be used
for designing more efficient and “intelligent” SAT-algorithms that will
be able to take into account formula structure.

Keywords: Satisfiability problem, resolution, resolution proof complexity, equiva-
lence checking, stable set of points, symmetric CNF formulas

1. Introduction

In the last few years SAT-solvers have considerably improved their
performance. As a result, the size of the CNF formulas that can be
solved by state-of-the-art SAT-solvers [21, 23, 16, 8] in a reasonable
time has dramatically increased. This success has lead to euphoria that
reminds many people working in formal verification of early optimism
caused by the appearance of BDDs [4]. However, enthusiasts forget that
even though SAT-solvers can sometimes solve surprisingly large formu-
las, they are very far from being scalable (which is the same problem
that made people less optimistic about BDDs).

In this chapter, we will try to give a more realistic estimation of the ca-
pabilities of SAT-solvers. The chapter is based on the results described
in [10, 11, 12] and consists of two parts. The main point of the first
part is that a SAT-solver cannot be scalable unless it is provided with
some information about the structure of the CNF formula to be tested
for satisfiability. In this part, we consider a class of formulas describ-

 1

R. Drechsler (ed.), Advanced Formal Verification, 1-43.

© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

2 ADVANCED FORMAL VERIFICATION

ing equivalence checking of combinational circuits that have a common
specification (CS). A CS S of Boolean circuits N1 and N2 is just a circuit
of multi-valued gates called blocks. Either Boolean circuit is obtained
from S by replacing each block of S with its binary implementation. We
show that there is a short resolution proof that N1 and N2 are equiv-
alent however finding this proof by a deterministic algorithm is most
likely infeasible unless a CS of N1 and N2 is known. On the one hand,
it is bad news. This result means that SAT-algorithms cannot be scal-
able on equivalence checking CNF formulas (that are important from a
practical point of view) even though they have short resolution proofs of
unsatisfiability and so are very “easy”. On the other hand, this is good
news because one can have an efficient algorithm of equivalence checking
if a CS of N1 and N2 is known. In other words, addressing the question
implied by the title of this chapter one can say that SAT-solvers cannot
be scalable if no information about high-level structure of formulas is
provided.

The result above implies that it is crucial for a SAT-solver to be able to
take into account structural properties of formulas. The problem is that
the existing SAT-solvers are based on the variable splitting paradigm
introduced in the DPLL procedure [7]. During variable splitting a CNF
formula is “mutilated” and its subtle structure is usually destroyed. In
the second part of this chapter, we introduce a new procedure of satis-
fiability testing based on the notion of a stable set of points (SSP). It
turns out that to prove that a CNF formula F is unsatisfiable it is suffi-
cient to show that F evaluates to 0 (i.e. false) on a set of points called a
stable set. In a sense, proving the unsatisfiability of a CNF formula by
constructing its SSP can be viewed as “verification” by “simulation”.

In general, SSPs are much smaller than the set of all possible assign-
ments but the size of SSPs grows exponentially in the number of vari-
ables. So building a monolithic SSP point-by-point can not be used as
the basis for designing efficient universal SAT-solvers. We describe two
ways of using SSPs. First way is to compute an SSP modulo symmetries
of the formula to be tested for satisfiability. In that case, even point-by-
point computation of SSPs modulo symmetry can be efficient for highly
symmetric formulas. Another way of using SSPs is to replace computing
a monolithic SSP with constructing a sequence of much smaller SSPs of
“limited” stability. Each such an SSP is stable if “movements” in some
directions are forbidden.

What Sat-Solvers can and cannot do 3

2. Hard Equivalence Checking CNF formulas

2.1 Introduction

Since the general resolution system is the basis of almost all practical
SAT-solvers, it has been the focus of attention for a long time. In the
ground-breaking paper by Haken [13] it was shown that there is a class
of CNF formulas for which only exponential size proofs are possible. (In
the first part of this chapter we consider only unsatisfiable CNF formu-
las.) However, the impressive results of state-of-the-art SAT-solvers like
Grasp, Sato, Chaff, BerkMin suggest that for the majority of CNF for-
mulas one encounters in practice there should be short resolution proofs
of their unsatisfiability. So a natural question to ask is whether the fact
that a class of CNF formulas has short resolution proofs means that
there is an algorithm that can find these short proofs or proofs that are
“close” to them in length. (In complexity theory this question is posed
as “whether the general resolution system is automatizable”. Studying
the automatizability of proof systems was started in [2]. In [18] some
results on automatizability of general resolution were obtained.)

The objective of the first part of this chapter is to show that there
is a class of CNF formulas that have very short resolution proofs in
general resolution that are most likely very hard for a deterministic
SAT-algorithm. These formulas specify equivalence checking of Boolean
circuits and so they are very important from a practical point of view.
This result means that the power of resolution based SAT-solvers is quite
limited even for practical formulas that have provably short resolution
proofs. The good news is that one can have an efficient SAT-algorithm
for solving this class of formulas if some information about the structure
of short proofs is provided.

The class of formulas mentioned above describe equivalence checking
of circuits having a common “specification”. Let N1 and N2 be two
functionally Boolean circuits with a common specification (CS) S. The
CS S is just a circuit of multi-valued gates further referred to as blocks
such that N1 (or N2) can be obtained from S by replacing each block
G of S with its implementation I1(G) (or I2(G)). The circuit I1(G) (or
I2(G)) implements the multi-output Boolean function obtained from the
truth table of G after encoding the values of multi-valued variables with
binary codes.

The problem of equivalence checking of N1 and N2 can be easily
reduced to that of testing the unsatisfiability of a CNF formula (see
Section 2.3). Let S consist of n blocks. Let F be a CNF specifying
equivalence checking of N1 and N2. We show that the unsatisfiability
of F can be proven in general resolution in d ∗ n ∗ 36p resolution steps.

4 ADVANCED FORMAL VERIFICATION

Here d is a constant and p is the size of the largest block G of the CS S
(in terms of the number of gates one needs to implement G in N1 and
N2). In particular, if p is bounded by a constant then we get a class
of CNF formulas (in the paper it is denoted by M(p)) that has linear
size resolution proofs. The parameter p is called the granularity of the
specification S.

In spite of the fact that formulas from M(p) have short resolution
proofs of unsatisfiability there are good reasons to believe that there
does not exist an efficient SAT-algorithm for finding such proofs. Let
F be a formula M(p) specifying equivalence checking of circuits N1 and
N2 with a CS S. Let assume that the CS S is not known. On the
one hand, the problem of finding S (or a good approximation of S) is
most likely NP-hard. On the other hand, the short resolution proofs
mentioned above are closely related to CSs of N1 and N2. So given such
a short proof of equivalence of N1 and N2 one could recover a “good”
CS from this proof. Hence the existence of an efficient procedure for
finding a short proof of equivalence would mean that there is an efficient
algorithm for solving an NP-hard problem.

As we mentioned above the good news is that a formula F of M(p)
can be efficiently solved by a deterministic algorithm if some extra in-
formation is provided. This extra information is a CS S of N1 and N2

whose equivalence checking the formula F specifies. (Namely, one just
needs to know the assignment of gates of N1 and N2 to blocks of S. No
other information about S is needed. In particular, one needs neither
any knowledge of the functionality of blocks of S nor the knowledge of
binary encodings used when producing N1 and N2 from S.) We for-
mulate a specification aware algorithm of checking the unsatisfiability
formulas from M(p) that has the same complexity as resolution proofs.
That is it solves the formulas of M(p) in linear time.

The first part of this chapter is structured as follows. In Section 2.2
we introduce the notion of a CS of Boolean circuits that plays a key
role in the following exposition. Section 2.3 describes a common way
of reducing equivalence checking to SAT. In Section 2.4 we introduce a
class M(p) of CNF formulas encoding equivalence checking of Boolean
circuits with a CS of granularity p. We also describe the general reso-
lution proof system. Section 2.5 describes computation of existentially
implied functions that is used in Section 2.6. In the latter, we proof
the main result of the first part of this chapter about the complexity of
formulas from M(p) in general resolution. In Section 2.7 and 2.8 we dis-
cuss the complexity of formulas M(p) for deterministic resolution based
algorithms. In Section 2.7 we give reasons why formulas from M(p)
should be hard for deterministic SAT-algorithms that do not have any

What Sat-Solvers can and cannot do 5

knowledge of a CS of the circuits checked for equivalence. In Section 2.8
we describe an efficient resolution based SAT-algorithm for equivalence
checking of circuits with a known CS. In Section 2.9 we show experimen-
tally that formulas from M(p) are hard for existing SAT-solvers while a
specification aware algorithm easily solves them. In Section 2.10 some
conclusions are made.

2.2 Common Specification of Boolean Circuits

In this section, we introduce the notion of a common specification
of Boolean circuits. Let S be a combinational circuit of multi-valued
blocks (further referred to as a specification) specified by a directed
acyclic graph H. (An example of specification is shown in Fig. 1.1a.)
The sources and sinks of H correspond to primary inputs and outputs
of S. Each non-source node of H corresponds to a multi-valued block
computing a multi-valued function of multi-valued arguments. Each
node n of H is associated with a multi-valued variable V . If n is
a source of H , then the corresponding variable specifies values taken
by the corresponding primary input of S. If n is a non-source node
of S then the corresponding variable describes the values taken by the
output of the block specified by n. If n is a source (respectively a sink),
then the corresponding variable is called a primary input variable
(respectively primary output variable). We will use the notation
C=G(A,B) to indicate that a) the output of a block G is associated
with a variable C; b) the function computed by the block G is G(A,B);
c) only two nodes of H are connected to the node n in H and these
nodes are associated with variables A and B.

Denote by D(A) the domain of a variable A associated with a node
of H. The value of |D(A)| is called the multiplicity of A. If the
multiplicity of every variable A of S is equal to 2 then S is a Boolean
circuit .

Now we describe how a Boolean circuit N can be produced from a
specification S by encoding the multi-valued variables. Let D(A) =
{a1, . . . , at} be the domain of a variable A of S. Denote by q(A) a
Boolean encoding of the values of D(A) that is a mapping q : D(A) →
{0, 1}m . Denote by length(q(A)) the number of bits in q that is the value
of m. The value of q(ai), ai ∈ D(A) is called the code of ai. Given an
encoding q of length m of a variable A associated with a block of S,
denote by v(A) the set of m coding Boolean variables.

Example 1.1 Let B be a multi-valued variable and D(B) =
{b1, b2, b3, b4}. Then the multiplicity of the variable B is 4. Let a map-
ping q be specified by the following expressions q(b1) = 01, q(b2) =

6 ADVANCED FORMAL VERIFICATION

11, q(b3) = 10, q(b4) = 00. Then q specifies an encoding of the values
of B of length(q(B)) equal to 2. The set of coding variables v(B) =
{q1, q2} consists of two Boolean variables. The Boolean vector 01 where
q0 = 0,q1 = 1 is the code of b1 under the encoding q.

In the following exposition we make the assumptions below.

Assumption 1.1 Each gate of a Boolean circuit and each block of a
specification has two inputs and one output.

Assumption 1.2 The multiplicity of each primary input (or output)
variable of a specification is a power of 2.

Assumption 1.3 If V is a primary input (or output) variable of a spec-
ification, then length(q(A)) = log2(|D(A)|)

Assumption 1.4 If a1 and a2 are values of a variable A of a specifica-
tion and a1 �= a2, then q(a1) �= q(a2).

Assumption 1.5 If A and B are two different variables of a specifica-
tion, then v(A) ∩ v(B) = ∅.

Remark 1.1 From Assumptions 1.2, 1.3 and 1.4 it follows that if A
is a primary input (or output) variable, a mapping q : D(A) → {0, 1}m

is bijective. In particular, any assignment to the variables of v(A) is a
code of some value a ∈ D(A).

Definition 1.1 Given a Boolean circuit I, denote by Inp(I) (respec-
tively Out(I)) the set of variables associated with primary inputs (re-
spectively primary outputs) of I.

Definition 1.2 Let X1 and X2 be sets of Boolean variables and X2 ⊆
X1. Let y be an assignment to the variables of X1. Denote by proj(y,X2)
the projection of y on X2 i.e. the part of y that consists of the assign-
ments to the variables of X2.

Example 1.2 Let X1 = {x1, x2, x3, x4, x5} and X2 = {x1, x3, x5} that
is X2 ⊆ X1. Let y be the assignment (x1 = 0, x2 = 1, x3 = 1, x4 =
0, x5 = 0) to the variables of X1. Then proj(y,X2) is equal to (x1 =
0, x3 = 1, x5 = 0).

Definition 1.3 Let C=G(A,B) be a block of specification S. Let q(A),
q(B), q(C) be encodings of variables A,B, and C respectively. A Boolean

What Sat-Solvers can and cannot do 7

circuit I is said to implement the block G if the following three con-
ditions hold:

The set Inp(I) is a subset of v(A) ∪ v(B).

The set Out(I) is equal to v(C).

If the set of values assigned to v(A) and v(B) form codes q(a) and
q(b) respectively where a ∈ D(A), b ∈ D(B), then I(z′)=q(c) where
z′ is the projection of the assignment z=(q(a),q(b)) on Inp(I),
I(z′) is the value taken by I at z′, and c=G(a,b)

Example 1.3 In Fig. 1.1a a specification of three blocks is shown. The
functionality of two different implementations of the block C=G1(A,B)
(Fig 1.1b) is shown in Fig. 1.1c and 1.1d. Here D(A)= {a0,a1},
D(B)={b0,b1,b2,b3} and D(C)={c0,c1,c2}. Since A and B are pri-
mary input variables they are encoded with a minimum length code and
q1(A)=q2(A) and q1(B)=q2(B) where q1(a0)=0, q1(a1)=1, q1(b0)=00,
q1(b1)=01, q1(b2)=10, q1(b3)=11. Finally, the encodings q1(C) and
q2(C) are q1(c0)=00, q1(c1)=10, q1(c2) = 01 and q2(c0)=100, q2(c1)=
010, q2(c2)=001.

Remark 1.2 The reason why Inp(I) in Definition 1.3 may not include
all the variables of v(A) and/or v(B) is that the function G(A,B) may
not distinguish some values of A or B. (G(A,B) does not distinguish,
say, values a1, a2 ∈ D(A), if for any b ∈ D(B), G(a1, b) = G(a2, b).) So
to implement G(A,B) the circuit I may need only a subset of variables
of v(A) ∪ v(B). This situation is illustrated in Fig. 1.2. Due to the
fact that some values of the variable C are indistinguishable by G2, only
two outputs of the implementation block I(G1) (out of the three) are
connected to the inputs of I(G2). This said, henceforth, for the sake
of simplicity, we will write I(q(a),q(b)) meaning I(q′(a),q′(b)), q′(a)=
proj(q(a),Inp(I)) and q′(b)=proj(q(b),Inp(I)).

Definition 1.4 Let S be a multi-valued circuit. A Boolean circuit N is
said to implement the specification S, if it is built according to the
following two rules.

Each block G of S is replaced with an implementation I of G.

Let the output of block G1 (specified by variable C) be connected
to an input of block G2 (specified by the same variable C) in S.
Then the outputs of the circuit I1 implementing G1 are properly

8 ADVANCED FORMAL VERIFICATION

0

0

1

1

1

1

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

01

0

1 0

0 1

0 1

0 0

0

0 0

(a)

(c)

0

0

0

1

1

1

0

1

1

0

1

1

1

0

1

0

1

0

1

1 0

0 0

1 0

0 1 0

0 1

0 0 1

1 0 0

1

0

1

0

0 0

0

0

0

0

0

(b)

(d)

0 1 0

G1 G2

A B F

C K

E

G3

C = G1(A, B)

B CA

a0

a0

a0

a1

a1

a1

a1

b1

b2

b3

b0

b2

b3

c1

c1

c0

c2

c2

c1

c0

b0

a0

b1

c0

q1(C)q1(A) q1(B)

q1(C) = I1(q1(A), q1(B)) q2(C) = I2(q2(A), q2(B))

q2(A) q2(B) q2(C)

Figure 1.1. A specification and the functionality of two implementations of block G1

What Sat-Solvers can and cannot do 9

(a) (b)

G1

G2 G3

D EC

F H

A B

I(G1)

I(G2) I(G3)

v(A) v(B)

v(D) v(C)

v(H)v(F)

v(E)

Figure 1.2. A specification and its implementation

connected to inputs of circuit I2 implementing G2. Namely, the
primary output of I1 specified by a Boolean variable qi ∈ v(C) is
connected to the input of I2 specified by the same variable of v(C)
if qi ∈ Inp(I2).

Fig. 1.2 gives an example of a specification (Fig. 1.2a) and its imple-
mentation (Fig. 1.2b).

Remark 1.3 Let N be an implementation of a specification S. Let p be
the largest number of gates used in an implementation of a multi-valued
block of S in N . We will say that S is a specification of granularity p
for N .

Definition 1.5 The topological level of a block G in a specification S
is the length of the longest path from a primary input of S to G. (The
length of a path is measured in the number of blocks on it. The topological
level of a primary input is assumed to be 0.) Denote by level(G) the
topological level of G in S.

Remark 1.4 Let N be an implementation of a specification S. From
Remark 1.1 it follows that for any value assignment h to the input vari-
ables of N there is a unique set of values (x1,. . . ,xk), where xi ∈ D(Xi)

10 ADVANCED FORMAL VERIFICATION

such that h=(q(x1),. . . ,q(xk)). That is there is one-to-one correspon-
dence between assignments to primary inputs of S and N . The same
applies to primary outputs of S and N .

Definition 1.6 Let N be an implementation of S. Given a Boolean vec-
tor y of assignments to the primary inputs of N , the corresponding vector
Y =(x1,..,xk) such that y=(q(x1),. . . ,q(xk)) is called the pre-image of
y.

Proposition 1.1 Let N be a circuit implementing specification S. Let
I(G) be the implementation of a block C=G(A,B) of S in N . Let y be
a value assignment to the primary input variables of N and Y be the
pre-image of y. Then the values taken by the primary outputs of I(G)
(under the assignment y to the inputs of N) form the code q(c) of a value
c, c ∈ D(C). The latter is the value taken by the output of G when the
inputs of S take the values specified by Y .

Proofs of Proposition 1.1 and the following Proposition 1.2 are simple
and so we omit them. Instead, we explain Proposition 1.1 in Fig. 1.3.
Suppose that y is an assignment to the primary input variables of the
Boolean circuit (Fig. 1.3a) that is an implementation of the specifica-
tion shown in Fig. 1.3b. According to Remark 1.4, y can be repre-
sented as (q(a), q(b), q(d), q(e)) where a, b, d, e are values of the variables
A,B,D,E of the specification respectively. The pre-image of y is the
vector Y = (a, b, d, e). Then the outputs of gates G1,G2 and G3 take
values c = G1(a, b),f = G2(d, c) and h = G3(c, e) respectively. Since
I(G1),I(G2) and I(G3) are implementations of G1,G2,G3 respectively,
their outputs take values q(c),q(f) and q(h) respectively.

Proposition 1.2 Let N1, N2 be circuits implementing a specification
S. Let each primary input (or output) variable X of S have the same en-
coding in N1 and N2. Then Boolean circuits N1 and N2 are functionally
equivalent.

Definition 1.7 Let N1, N2 be two functionally equivalent Boolean cir-
cuits. Let N1, N2 implement a specification S so that for every primary
input (output) variable X encodings q1(X) and q2(X) (used when produc-
ing N1 and N2 respectively) are identical. Then S is called a common
specification (CS) of N1 and N2.

Assumption 1.6 Let S be a CS of N1,N2 and C be a variable of S.
We will assume that v1(C) =v2(C) if C is a primary input variable and
v1(C) ∩ v2(C) = ∅ otherwise.

What Sat-Solvers can and cannot do 11

(a) (b)

I(G2)

y = (q(a), q(b), q(d), q(e))

v(A) = q(a) v(B) = q(b)

v(H) = q(h)

v(D) = q(d)

v(F) = q(f)

v(C) = q(c)

I(G1)

I(G3)

v(E) = q(e)

G1

A = a B = b

C = cD = d

G3G2

Y = (a, b, d, e)

E = e

F = f H = h

Figure 1.3. An illustration to Proposition 1.1

Definition 1.8 Let S be a CS of N1,N2. Let p1 (respectively p2) be the
granularity of S with respect to N1 (respectively N2). Then we will say
that S is a CS of N1,N2 of granularity p = max(p1,p2).

Definition 1.9 Given two functionally equivalent Boolean circuits N1,
N2, S is called the finest common specification if it has the smallest
granularity p among all the CSs of N1 and N2.

2.3 Equivalence Checking as SAT

In this section, we recall a common way of reducing equivalence check-
ing to the satisfiability problem.

Definition 1.10 A disjunction of literals of Boolean variables not con-
taining two literals of the same variable is called a clause. A conjunction
of clauses is called a conjunctive normal form (CNF).

Definition 1.11 Given a CNF F , the satisfiability problem (SAT)
is to find a value assignment to the variables of F for which F evaluates
to 1 (also called a satisfying assignment) or to prove that such an
assignment does not exist. A clause K of F is said to be satisfied by a
value assignment y if K(y) = 1. If K(y) = 0, the clause K is said to be
falsified by y.

12 ADVANCED FORMAL VERIFICATION

The standard conversion of an equivalence checking problem into an
instance of SAT is performed in two steps. Let N1 and N2 be Boolean
circuits to be checked for equivalence. At the first step of this conversion,
a circuit M called a miter [3] is formed from N1 and N2. The miter
M is obtained by 1) identifying the corresponding primary inputs of N1

and N2; 2) XORing each pair of corresponding primary outputs of N1

and N2; 3) ORing the outputs of the added XOR gates. So the miter
of N1 and N2 evaluates to 1 if and only if for some input assignment a
primary output of N1 and the corresponding output of N2 evaluate to
different values. Therefore, the problem of checking the equivalence of
N1 and N2 is equivalent to testing the satisfiability of the miter of N1

and N2.
At the second step of conversion, the satisfiability of the miter is

reduced to that of a CNF formula F . This formula is a conjunction of
CNF formulas F 1,..,Fn specifying the functionality of the gates of M
and a one-literal clause that is satisfied only if the output of M is set to
1. The CNF F i specifies the i-th gate gi of M . Any assignment to the
variables of F i that is inconsistent with the functionality of gi falsifies
a clause of F i (and vice versa, a consistent assignment satisfies all the
clauses of F i.) For instance, the AND gate y=x1x2 is specified by the
following three clauses ∼x1∨ ∼x2∨ y, x1∨ ∼y, x2∨ ∼y.

2.4 Class M(p) and general resolution

In this short section we formally define the class of equivalence check-
ing formulas we consider in the first part of this chapter. Besides, we
describe the general resolution system.

Definition 1.12 Given a constant p, a CNF formula F is a member of
the class M(p) if and only if it satisfies the following two conditions.

F is the CNF formula (obtained by the procedure described in Sec-
tion 2.3) specifying the miter of a pair of functionally equivalent
circuits N1,N2.

N1,N2 have a CS of granularity p′ where p′ ≤ p.

Definition 1.13 Let K and K ′ be clauses having opposite literals of a
variable (say variable x) and there is only one such variable. The resol-
vent of K , K ′ in variable x is the clause that contains all the literals
of K and K ′ but the positive (i.e. literal x) and negative (i.e. literal ∼x)
literals of x. The operation of producing the resolvent of K and K ′ is
called resolution.

What Sat-Solvers can and cannot do 13

Definition 1.14 General resolution is a proof system of proposi-
tional logic that has only one inference rule. This rule is to resolve two
existing clauses to produce a new one. Given a CNF formula F , a proof
L(F) of unsatisfiability of F in the general resolution system consists of
a sequence of resolutions resulting in the derivation of an empty clause
(i.e. a clause without literals).

General resolution is complete. This means that given an unsatisfiable
formula F there is always a sequence of resolutions L(F) in which an
empty clause is derived.

2.5 Computation of existentially implied
functions

In this section, we introduce the notion of existentially implied func-
tions that is used in Section 2.6 in the definitions of filtering and corre-
lation functions.

Definition 1.15 Let F (X1,X2) be a Boolean function where X1 and
X2 are sets of Boolean variables. The function H(X2) is called exis-
tentially implied by F if

F (X1,X2) → H(X2)

if H(z)=1 where z is an assignment to the variables of X2, then
there is an assignment y to the variables of X1 such that F (y,z)=1.

Remark 1.5 Given a function F (X1,X2), the function H(X2) existen-
tially implied by F is unique. It can be obtained from F by existentially
quantifying away the variables of X1.

Proposition 1.3 Let F (X1,X2) and H(X2) be CNF formulas where
H(X2) consists of all the clauses depending only on variables from X2

that can be derived from F (X1,X2) by resolution. Then H(X2) is exis-
tentially implied by F (X1,X2).

Proof. The CNF F (X1,X2) implies H(X2) because each clause of
H is implied by F since it is derived by resolution. Assume that H
is not existentially implied by F . Then there is an assignment z to
the variables of X2 such that H(z)=1 and for any assignment y to the
variables of X1, F (y,z)=0. However, this means that F implies a clause
K depending only on variables of X2 such that K(z)=0. Since K should
be in H, then H(z) should be equal to 0, which leads to a contradiction.

Definition 1.16 Let F be a set of clauses. Denote by supp(F) the set
of variables whose literals occur in clauses of F .

14 ADVANCED FORMAL VERIFICATION

To estimate the complexity of obtaining the function existentially im-
plied by F in general resolution, we need the following proposition.

Proposition 1.4 Let F be a set of clauses that implies a clause K.
Then there is a sequence of at most 3|supp(F)| resolution steps that results
in the derivation of the clause K or a clause that implies K.

Proof. Denote by F ′ the formula that is obtained from F by making
the assignments that set the literals of K to 0 (and removing the sat-
isfied clauses and the literals set to 0). It is not hard to see that F ′ is
unsatisfiable since it implies an empty clause. So there is a resolution
proof L(F ′) that results in deducing an empty clause. Then by replacing
each clause of F ′ involved in L(F ′) with its “parent” clause from F we
get a sequence of resolutions resulting in deducing either the clause K
or a clause that implies K. The number of resolvents in L(F ′) cannot be
more than 3|supp(F ′)| (which is the total number of clauses of |supp(F ′)|
variables) and so it cannot be more than 3|supp(F)|.

Remark 1.6 From Propositions 1.3 and 1.4 it follows that given a CNF
F (X1,X2) one can obtain the function H(X2) existentially implied by F
in no more than 3|supp(F)| resolution steps.

2.6 Equivalence Checking in General Resolution

In this section, we prove some results about the complexity of formu-
las of the class M(p) (describing equivalence checking of circuits with a
CS of granularity p) in general resolution. The main idea of the proof
is that if S is a CS of N1 and N2, then their equivalence checking re-
duces to computing filtering and correlation functions. For each vari-
able C of the specification S one needs to compute filtering functions
Ff(v1(C)),Ff(v2(C)) and the correlation function Cf(v1(C), v2(C)).
Here v1(C) (respectively v2(C)) are coding variables of the encoding
q1(C) (respectively q2(C)) used when obtaining the implementation N1

(respectively N2).
The three main properties of these functions are that

They can be built based only on the information about the topol-
ogy of S and about “assignment” of gates of N1 and N2 to blocks
of S.

Filtering functions and correlation functions corresponding to pri-
mary input variables of the specification are constants.

Filtering and correlation functions for a variable C specifying the
output of a block G(A,B) can be computed “locally” from filtering

What Sat-Solvers can and cannot do 15

G

B

C

A

I1(G) I2(G)

v1(A) v1(B) v2(A) v2(B)

Cf (v1(C), v2(C))

v1(C) v2(C)

Ff (v1(C)) Ff (v2(C))

Ff (v2(B))Ff (v1(A)) Ff (v1(B)) Ff (v2(A))

Cf (v1(B), v2(B))Cf (v1(A), v2(A)),

Figure 1.4. Computation of filtering and correlation functions

and correlation functions of variables A and B and CNFs specify-
ing implementations I1(G) and I2(G). So these functions can be
computed in topological order starting with inputs and proceeding
to outputs.

A general scheme for the computation of filtering and correlation func-
tions is shown in Fig. 1.4. To compute the filtering functions Ff(v1(C))
and Ff(v2(C)) and the correlation function Cf(v1(C), v2(C)) one needs
to know filtering functions Ff(v1(A)),Ff(v2(A)),Ff(v1(B)), Ff(v2(B))
and correlation functions Cf(v1(A), v2(A)),Cf(v1(B), v2(B)).

In this chapter, we consider computation of filtering and correlation
functions (represented as CNF formulas) in the general resolution proof
system. However, one can use other ways of computing these functions,
for example, employing BDDs[4].

Definition 1.17 Let N be an implementation of a specification S. Let
C be a variable of S. A function Ff is called a filtering function if:

supp(Ff) ⊆ v(C).

16 ADVANCED FORMAL VERIFICATION

A

C

G

B

Ff (v(A))∧ Ff (v(B))∧ F (I(G)) → Ff (v(c))

v(B)v(A)

v(C)

Ff (v(A)) Ff (v(B))

I(G) F (I(G))

Figure 1.5. Computation of a filtering function

If an assignment z to the variables of v(C) is a code q(c), c ∈
D(C), then Ff(z)=1. Otherwise, Ff(z)=0.

Remark 1.7 If C is a primary input variable of S, then Ff(v(C))≡1.
Indeed, as it follows from Remark 1.1, any assignment to v(C) is the
code of a value c ∈ D(C).

Proposition 1.5 Let N be an implementation of a specification S. Let
C=G(A,B) be a block of S. Let F be the CNF formula specifying N built
as described in Section 2.3 and F (I(G)) be the part of F specifying the
implementation I(G) of G in N . Then P existentially implies Ff(v(C))
where P=Ff(v(A)) ∧ Ff(v(B)) ∧ F (I(G)).

Proof. To make it easier for the reader to “visualize” the proof, we
illustrate the proposition in Fig. 1.5. To prove that P → Ff (v(C)) one
needs to show that any assignment that sets P to 1 also sets Ff (v(C))
to 1. It is not hard to see that the support of all the functions of the
expression P → Ff (v(C)) is a subset of supp(F (I(G))). Let h=(x,y,z)
be an assignment that sets P to 1 where x,y,z are assignments to the
variables from v(A),v(B) and v(C) respectively. Then h has to set to 1
the functions Ff (v(A)), Ff (v(B), F (I(G)). Since h sets Ff (v(A)) to 1,
then x=q(a), a ∈ D(A). Since h sets Ff (v(B)) to 1, then y=q(b), b ∈

What Sat-Solvers can and cannot do 17

D(B). So h = (q(a), q(b), z). To set to 1 F (I(G)), assignment z has to
be equal to q(c), where c=G(a,b). Then h sets Ff (v(C)) to 1.

Assume that Ff (v(C)) is not existentially implied by P . Then there
exists an assignment z=q(c), c ∈ D(C) such that Ff (z)=1 and for any
assignments x and y to the variables of v(A) and v(B) respectively,
P (x,y,z)=0. However, P (q(a), q(b), z) = 1 where a and b are values of
A and B such that G(a,b)=c, which leads to a contradiction.

Definition 1.18 Let S be a CS of circuits N1 and N2 and C be a
variable of S. A function Cf is called a correlation function for
encodings q1 and q2 of the values of C (used when producing N1 and
N2) if :

supp(Cf) ⊆ v1(C) ∪ v2(C) .

Cf(z1, z2)=1 for any assignment z1 to v1(C) and z2 to v2(C) such
that z1=q1(c) and z2=q2(c) where c ∈ D(C). Otherwise Cf(z1,
z2)=0.

Remark 1.8 If C is a primary input variable of S, then Cf(v1(C),
v2(C)) ≡ 1. Indeed, as it follows from Remark 1.1, any assignment to
v1(C) or v2(C) is the code of a value c ∈ D(C). Besides, from the defi-
nition of CS it follows that q1(C)=q2(C). Finally, from Assumption 1.6
it follows that v1(C) = v2(C). So any assignment (x, y) to the variables
of v1(C),v2(C) can be represented as (q1(c),q2(c)), c ∈ D(C).

Proposition 1.6 Let S be a CS of circuits N1,N2. Let C = G(A,B) be
a block of S. Let F be the CNF formula specifying the miter of N1,N2

built as described in Section 2.3. Let F (I1(G)) and F (I2(G)) be the part
of F specifying the implementation I1(G) and I2(G) of G in N1 and N2

respectively. Then P existentially implies Cf(v1(C), v2(C)) where

P = Filtering ∧ Correlation ∧ Implementation

Filtering = Ff(v1(A)) ∧ Ff(v1(B)) ∧ Ff(v2(A)) ∧ Ff(v2(B))

Correlation = Cf(v1(A),v2(A)) ∧ Cf(v1(B),v2(B))

Implementation = F (I1(G)) ∧ F (I2(G)).

Proof. To make it easier for the reader to “visualize” the proof, we
illustrate the proposition in Fig. 1.6. To prove that P implies Cf (v1(C),
v2(C)) one needs to show that any assignment that sets P to 1 also
sets Cf (v1(C),v2(C)) to 1. It is not hard to see that the support of
all the functions of the expression P → Cf (v1(C),v2(C)) is a subset of

18 ADVANCED FORMAL VERIFICATION

I1(G) I2(G)

v1(A) v1(B) v2(A) v2(B)

v2(C)v1(C)

←− F (I1(G))G

C

BA

←− F (I2(G))

Filtering = Ff (v1(A)) ∧ Ff (v1(B)) ∧ Ff (v2(A)) ∧ Ff (v2(B))

Filtering ∧ Correlation ∧ Implementation → Cf (v1(C), v2(C))

Correlation = Cf (v1(A), v2(A)) ∧ Cf (v1(B), v2(B))

Implementation = F (I1(G)) ∧ F (I2(G))

Figure 1.6. Computation of a correlation function

supp(F (I1(G)) ∪ supp(F (I2(G)). Let h=(x1, x2, y1, y2, z1, z2) be an
assignment that sets P to 1 where x1, x2, y1, y2, z1, z2 are assignments
to v1(A), v2(A), v1(B), v2(B), v1(C), v2(C) respectively. Then h has
to set to 1 all the functions the conjunction of which forms P . Since
h has to set the function Filtering to 1, then x1=q1(a1), x2=q2(a2)
where a1,a2 ∈ D(A) and y1=q1(b1), y2=q2(b2), where b1,b2 ∈ D(B).
So h=(q1(a1),q2(a2), q1(b1),q2(b2), z1, z2). Since h sets the function
Correlation to 1, then a1 has to be equal to a2 and b1 has to be equal
to b2. So h can be represented as (q1(a),q2(a), q1(b),q2(b), z1, z2) where
a ∈ D(A) and b ∈ D(B). Since h sets the function Implementation to
1, then z1 has to be equal to q1(c), c=G(a,b) and z2 has to be equal to
q2(c). So h is equal to (q1(a),q2(a),q1(b),q2(b),q1(c),q2(c)) and hence it
sets the correlation function Cf (v1(C),v2(C)) to 1.

Assume that Cf (v1(C),v2(C)) is not existentially implied by P . Then
there exists an assignment z1=q1(c), z2=q2(c) to the variables of v1(C)
and v2(C) respectively such that Cf (z1, z2)=1 and for any assignment
x1, x2, y1, y2 to the variables of v1(A), v2(A), v1(B), v2(B) respec-
tively, P (x1, x2, y1, y2, z1, z2)=0. However, P (q1(a), q2(a), q1(b), q2(b),
z1, z2)=1 where a, b are the values of A and B respectively for which
c=G(a,b). This leads to a contradiction.

What Sat-Solvers can and cannot do 19

Proposition 1.7 Let F be a formula of M(p) specifying the miter of
circuits N1,N2 obtained from a CS S of granularity p. The unsatisfia-
bility of F can be proven by a resolution proof of no more than d∗n∗36p

resolution steps where n is the number of blocks in S and d is a constant.

Proof. From Proposition 1.5 and Proposition 1.6 it follows that one
can deduce correlation and filtering functions for all the variables of S
starting with blocks of topological level 1 and proceeding in topological
order. Indeed, let C=G(A,B) be a block of topological level 1. Then A
and B are primary input variables and the filtering and correlation func-
tions for them are known (they are tautologies). Then Ff (v1(C)) and
Ff (v2(C)) are existentially implied by F (I1(G)) and F (I2(G)) respec-
tively. According to Proposition 1.5 Ff (v1(C)) (respectively Ff (v2(C)))
can be derived by resolving clauses of F (I1(G)) (respectively F (I2(G))).
Similarly, the correlation function Cf (v1(C),v2(C)) is existentially im-
plied by F (I1(G)) ∧ F (I2(G)). So it can be derived from the latter by
resolution. After filtering and correlation functions are computed for all
the variables of level 1, the same procedure can be applied to variables of
topological level 2 and so on. If S consists of n blocks, then in n steps one
can deduce correlation functions for the primary output variables of S.
At each step two filtering and one correlation function are computed for
a variable C=G(A,B) of S. The complexity of this step is no more than
36p. Indeed, the support of all functions mentioned in Proposition 1.5
and Proposition 1.6 needed for computing Ff (v1(C)), Ff (v2(C)) and
Cf (v1(C),v2(C)) is a subset of E=supp(F (I1(G))) ∪ supp(F (I2(G))).
The total number of gates in I1(G) and I2(G) is bounded by 2p, each
gate having 2 inputs and 1 output. So the total number of variables
in E cannot be more than 6p. Then according to Remark 1.6 in no
more than 36p steps one can deduce CNFs Ff (v1(C)), Ff (v2(C)) and
Cf (v1(C),v2(C)). Then the total number of resolution steps one needs to
deduce correlation functions for primary output variables of S is bounded
by n∗36p.

Now we show that from the correlation functions for primary output
variables of S one can deduce an empty clause in the number of resolu-
tion steps linear in n ∗ p. Let C be a primary output variable specifying
the output of a block G of N . Let I1(G) and I2(G) be the implemen-
tations of G in N1 and N2 respectively. Let |D(C)| = 2k (By Assump-
tion 1.2 the multiplicity of C is a power of 2.) Then length(q1(C))=
length(q2(C))=k. (By Assumption 1.3 values of C are encoded by a
minimal length encoding.)

Now we show that there is always a correlation function Cf (v1(C),
v2(C)) specified by the CNF consisting of k pairs of two literal clauses

20 ADVANCED FORMAL VERIFICATION

specifying the equivalence of corresponding outputs of I1(G) and I2(G).
Let f1 and f2 be two Boolean variables of v1(C) and v2(C) respectively
that specify corresponding outputs of N1 and N2. Since S is a CS of N1

and N2, then q1(C) = q2(C). So any assignment q1(c), q2(c) to v1(C) and
v2(C) that satisfies Cf (v1(C), v2(C)) also satisfies clauses K ′=f1∨ ∼ f2

and K ′′=∼f1 ∨ f2. So K ′ and K ′′ are implied by Cf (v1(C),v2(C))
and can be deduced by the procedure described in the proof of Proposi-
tion 1.6. (The resolution steps one needs to deduce equivalence clauses
are already counted in the expression n ∗ 36p.)

Using each pair of equivalence clauses K ′ and K ′′ and the clauses
specifying the gate g=XOR(f1,f2) of the miter, one can deduce a single
literal clause ∼g. This clause requires setting the output of this XOR
gate to 0. Each such a clause can be deduced in the number of resolu-
tions bounded by a constant and the total number of such clauses cannot
be more than n∗p. Finally, from these unit clauses and the clauses spec-
ifying the final OR gate of the miter, the empty clause can be deduced
in the number of resolutions bounded by n∗p. So the empty clause is
deduced in no more than n∗36p + d′∗n∗p steps where d′ is a constant.
Finally, one can pick a constant d such that n∗36p + d′∗n∗p ≤ d∗n∗36p

Remark 1.9 In Proposition 1.7 we give a very conservative estimate of
the complexity of deducing filtering and correlation functions. In practice
this complexity can be much lower. In a sense, the best way to interpret
the theory developed in this section is that the problem of equivalence
checking of circuits N1,N2 with a CS S of n blocks can be partitioned
into n subproblems of computing filtering and correlation functions for
each variable of S.

Remark 1.10 In general, two functionally equivalent circuits N1, N2

may have more than one CS. In that case, when estimating the complex-
ity of equivalence checking of N1,N2, it is natural to use the finest CS
(see Definition 1.9).

2.7 Equivalence Checking of Circuits with
Unknown CS

In Section 2.6 we considered equivalence checking in general reso-
lution that is a non-deterministic proof system. This means that the
proof is guided by an “oracle” that points to the next pair of clauses to
be resolved. Deterministic algorithms do not have the luxury of using
an oracle. A natural question is whether a deterministic algorithm can
benefit from the fact that the formulas from M(p) have short proofs of
unsatisfiability in general resolution. (In this section, we assume that

What Sat-Solvers can and cannot do 21

one has to prove the unsatisfiability of a formula F , F ∈ M(p) specifying
equivalence checking of N1,N2 and no CS of N1,N2 is known.) A the-
ory studying the complexity of finding proofs started only a few years
ago [2, 18] and so it cannot fully answer this question yet. However,
there is a good reason to believe that formulas of M(p) are hard for
deterministic algorithms. (Henceforth, by a deterministic algorithm we
mean a resolution based deterministic SAT-algorithm.) Indeed, let us
make the following two very plausible assumptions. First assumption is
that there is a subclass M∗ of formulas from M(p) such that resolution
proofs described in the proof of Proposition 1.7 (we will refer to them
as specification driven proofs) are “much shorter” than any other
kind of resolution proofs. Second assumption is that finding a non-trivial
CS of two Boolean circuits N1 and N2 is hard. If the two assumptions
above are true then formulas from M∗ should be hard. Indeed, specifi-
cation driven resolution proofs very closely follow a CS of N1 and N2.
So knowing a short resolution proof of the unsatisfiability of F ,F ∈ M∗

one could easily recover the CS that “guided” that proof. That would
mean that there is an efficient algorithm for extracting a common spec-
ification of N1 and N2, which contradicts our second assumption. One
more argument in support of the conjecture that formulas from M(p)
are hard for deterministic algorithms is that formulas from M(p) are
hard for the best existing SAT-solvers (see Section 2.9).

To give the reader an idea of how big the difference between the size
of non-deterministic and deterministic proofs might be, let us consider
the class of formulas M(p) where p is bounded by a constant. From
Proposition 1.7 it follows that specification driven proofs consist of at
most d∗n∗36p resolution steps that is they have linear size. On the other
hand, the complexity of these formulas for a deterministic algorithm
should be Length(F)g(p) where F is a formula of M(p), Length(F) is
the length of F and g(p) is a monotone increasing function that is linear
(or close to linear) in p. One argument in favor of such complexity is that
a deterministic algorithm views the whole formula F as one “block” and
the complexity of specification driven proofs is exponential in the size of
the maximal block. Another reason is that as it was shown in [9] one can
always pick binary encodings of multi-valued variables of a CS so that
every specification driven proof will have to contain “long” clauses whose
length is a monotone increasing function of p. Then even formulas from
a class M(p) with a quite small value of p, like p=10, can be extremely
hard for a deterministic algorithm. So it is quite possible that no matter
how good and efficient your resolution based SAT-solver is it will not be
able to solve even formulas of linear complexity!

22 ADVANCED FORMAL VERIFICATION

2.8 A Procedure of Equivalence Checking for
Circuits with a Known CS

In the previous section, we gave some reasons why formulas from M(p)
should be hard for a deterministic resolution based SAT-algorithm. Let
S be a CS of Boolean circuits N1,N2 and p be the granularity of S. Let
F be the formula of M(p) specifying the equivalence checking of N1,N2.
The good news is that if S is known then there is an efficient algo-
rithm for proving the unsatisfiability of F . This algorithm also proceeds
in topological order of variables of S computing filtering and correlation
functions. The only difference with specification guided proofs of general
resolution is that the “power” of the proof “oracle” is limited. Namely,
in general resolution this oracle guides every resolution step of the proof
(pointing to the next pair of clauses to resolve). In the deterministic
algorithm described below the specification S serves as an oracle of “lim-
ited” power. Namely, this oracle helps only to identify subcircuits I1(G)
and I2(G) of N1 and N2 that are implementations of the same block
C = G(A,B). Finding the correlation function Cf (v1(C), v2(C)) and
filtering functions Ff (v1(C)) and Ff (v2(C)) is done by this algorithm
without any “help”.

Our procedure of equivalence checking consists of two stages:
1. For each variable C of S compute filtering functions Ff (v1(C)),

Ff (v2(C)) and the correlation function Cf (v1(C), v2(C)) proceeding
in topological order of variables. If C is a primary input variable,
then Ff (v1(C)), Ff (v2(C)) and Cf (v1(C), v2(C)) are tautologies. Let
C=G(A,B). Then Ff (v1(C)) is built by computing the function ex-
istentially implied (see Definition 1.15) by Ff (v1(A)) ∨ Ff (v1(B)) ∨
F (I1(G)). (F (I1(G)) is a subset of F specifying the implementation of
G in N1. The function Ff (v2(C) is built similarly to Ff (v1(C)).) The
function Cf (v1(C),v2(C)) is built by computing the function existen-
tially implied by Ff (v1(A)) ∨ Ff (v1(B)) ∨ Ff (v2(A)) ∨ Ff (v2(B)) ∨
Cf (v1(A), v2(A)) ∨ Cf (v1(B), v2(B)) ∨ F (I1(G)) ∨ F (I2(G)).

2. Once correlation functions are computed for all primary output
variables of S, finish the proof of unsatisfiability of F by invoking a SAT-
solver like [8],[16]. (This SAT-solver is applied to the CNF consisting of
the clauses describing the correlation functions for the primary output
variables of S, the clauses specifying the gates XORing primary outputs
of N1 and N2 and the final OR gate of the miter.)

The complexity of this procedure is about the same as in general
resolution which is equal to d ∗ n ∗ 36p where d is a constant and n is
the number of blocks. The only difference is that in general resolution
no resolvent is generated twice while the procedure above may generate

What Sat-Solvers can and cannot do 23

identical clauses when computing correlation or filtering functions. So
it will have to take care of removing duplicate clauses.

The described procedure is flexible with respect to the method of com-
puting existentially implied functions. Below we describe a few options.
Let F be a CNF and supp(F) = X1 ∪ X2. Suppose one needs to com-
pute a CNF H(X2) that is existentially implied by F . If the value of
|X2| is small, one can compute H(X2) by running 2k SAT-checks where
k=|X2|. For every assignment z to the variables of X2 one needs to
check if there is an assignment y to the variables of X1 such that (y,z)
satisfies F . If such an assignment exists then the next assignment is
checked. Otherwise, a clause consisting of literals of variables from X2

that is falsified by the assignment z is added to the clauses of H(X2).
If the size of X2 is large, one can compute filtering and correlation

functions by existential quantification of the variables of X1. In terms of
SAT, existential quantification of a CNF F in a variable w of X1 means
adding to F all the resolvents that can be produced by resolving clauses
of F in w. Of course, existential quantification in all the variables of X1

is very expensive in SAT and so it works only for blocks of a small size.
However, less expensive methods for computing H(X2) in terms of SAT
can be and should be developed.

2.9 Experimental Results

The objective of experiments was to show that equivalence checking of
circuits with a fine CS S is easy if S is known and is hard otherwise. To
produce circuits having a fine CS we used the following procedure. To get
multi-valued specifications with realistic topologies we “borrowed” them
from MCNC-91 benchmark circuits as follows. First, all the benchmarks
were technology mapped using SIS [20] consisting only of two-input AND
gates. Then from each obtained circuit N a multi-valued specification S
was produced by replacing each two-input binary gate with a two-input
single output block of four-valued variables. (In other words, S changes
the functionality of N while preserving its topology.) Then from S two
functionally equivalent Boolean circuits N1, N2 implementing S were
produced using two different sets of two-bit encodings of four-valued
values. The encodings were picked in such a way that the two different
implementations of the same four-valued block in N1 and N2 had no
functionally equivalent outputs. This way we guaranteed that internal
functionally equivalent points in N1 and N2 may occur only by accident.

Note that after encoding, the number of inputs and outputs in N1 and
N2 is twice the number of inputs and outputs in the original Boolean
circuit N . For instance, the two circuits produced from C6288 used as a

24 ADVANCED FORMAL VERIFICATION

“specification” have the topology of a 16-bit multiplier and the number
of inputs and outputs of a 32-bit multiplier.

In experiments we used the best tools that were available to us.
Namely, we used the SAT-solver BerkMin downloaded from [1], the pro-
gram Nanotrav built on top of the Colorado University Decision Diagram
(CUDD) package [6] and a SAT-based equivalence checker CSAT [14]
(courtesy of Prof. Li of UCSB). We also tried the SAT-solver Zchaff [16],
but BerkMin was up to three orders of magnitude faster on our formu-
las. In the experiments we used the special mode of BerkMin designed
for equivalence checking that is described at [1]. BerkMin was run on
the formula specifying the miter M of N1 and N2 as described in Sec-
tion 2.3. Nanotrav was used to build a BDD for the miter M and CSAT
checked the satisfiability of the miter’s output. We first ran the three
tools on “regular” MCNC benchmarks to verify optimized versus non-
optimized circuits. (We do not report these results). The tools showed
quite decent performance. For example, BerkMin was able to quickly
verify all the instances including the multiplier C6288. The same kind of
performance was shown by CSAT. Nanotrav was able to build BDDs for
all the miters except C6288 very quickly (in a few seconds). In all the
experiments we ran Nanotrav using settings suggested by Fabio Somenzi
(private communication). In particular, the variable sifting option was
on. In Table 2.9 we give runtimes of the three programs shown in our
experiments. All the programs were run on a SUNW Ultra-80 system
with clock frequency 450MHz. In all the experiments the time limit was
set to 60,000 sec. (16.6 hours). The results of the best out of the three
programs is shown in black. In the last column we report run times of a
trivial CS driven procedure. This procedure computes filtering and cor-
relation function of blocks in terms of SAT by existentially quantifying
variables (as it was described in Section 2.8) and eventually deduces an
empty clause.

It is not hard to see that run times of the CS driven procedure are
linear in the size of circuits to be checked for equivalence. This is due to
the fact that the size of specification blocks is fixed (and very small). On
the other hand, the instances we generated turned out to be hard for the
three chosen tools. Even if one compares the best run times with run
times of the CS driven procedure, it is not hard to see that the former
quickly increased as the size of the instances grew.

It is unlikely that an industrial strength equivalence checker would do
much better on the circuits we generated because they have no function-
ally equivalent points. Besides, one can always produce much harder
equivalence checking problems by using even a slightly more coarse
specification (Recall that in the experiments we used a very fine CS

What Sat-Solvers can and cannot do 25

Table 1.1. Equivalence checking of circuits with a fine CS

Name
of
“specifi-
cation”

Number
of vari-
ables

Number
of
clauses

CSAT
(sec.)

Nanotrav
(BDDs)
(sec.)

BerkMin
(sec.)

CS
driven
(sec.)

C880 1,612 9,373 162.8 60,000 3.7 1.1
ttt2 2,770 17,337 281.0 1.0 11.7 1.3
x4 4,166 24,733 284.3 4.7 17.3 1.8
i9 4,954 29,861 75.3 1.5 32.7 2.1
term1 3,504 22,229 1,604.6 40.9 35.9 1.6
c7552 11,282 69,529 282.0 60,000 52.8 3.6
c3540 5,248 33,199 34,905.8 60,000 64.1 2.3
rot 5,980 35,229 163.6 19,315.6 72.2 2.1
9symml 960 6,105 31.07 1.9 113.2 0.5
frg2 10,316 62,943 13,610.4 22.6 131.4 2.9
frg1 3,230 20,575 265.8 60,000 330.3 1.7
i10 12,998 77,941 60,000 60,000 445.0 4.8
des 28,902 179,895 12,520.3 9.7 451.7 12.1
dalu 9,426 59,991 17,496.9 60,000 518.6 3.1
x1 8,760 55,571 13,580.3 13,009.6 950.2 2.8
alu4 4,736 30,465 8,020.4 135.1 992.6 2.0
i8 14,524 91,139 60,000 98.0 1,051.5 5.1
c6288 9,540 61,421 60,000 60,000 1,955.1 5.2
k2 11,680 74,581 60,000 59,392.9 5,121.5 4.3
too large 58,054 376,801 60,000 60,000 60,000 15.2
t481 19,042 123,547 60,000 60,000 60,000 6.3

26 ADVANCED FORMAL VERIFICATION

S consisting of four-valued blocks. That is the circuits produced from
S were “almost” identical.) As we mentioned in the introduction, the
problem of finding a short proof of equivalence of N1,N2 if a CS is not
known, comes down to recovering this CS from the description of N1,N2

which is computationally very hard (if not infeasible).

2.10 Conclusions

In the first part of this chapter, we introduced a class M(p) of CNF
formulas specifying equivalence checking of Boolean circuits with a com-
mon specification (CS). We showed that formulas of M(p) are “easy” for
general resolution and gave reasons why those formulas should be hard
for a deterministic algorithm that does not know a CS of the circuits to
be checked for equivalence. We also gave some experimental evidence
that formulas from M(p) are hard for existing SAT-solvers. Besides, we
formulated an efficient SAT-algorithm for equivalence checking of cir-
cuits with a known CS. The results of the first part of this chapter lead
to the following two conclusions.

A resolution based SAT-solver (most probably) cannot be scalable
even on “easy” and practical formulas unless some extra informa-
tion about the structure of short proofs is provided. (In case of
equivalence checking this extra information is provided by a CS.)

The SAT-solvers of the future should be very “intelligent” that is
very receptive to structural properties of the formula to be tested
for satisfiability.

3. Stable Sets of Points

3.1 Introduction

In the first part of this chapter, we showed that it is extremely im-
portant for a SAT-solver to be “receptive” to structural properties of
CNF formulas. However, the existing algorithms are not very good at
taking into account such properties. One of the reasons is that currently
there is no “natural” way of traversing the search space. For example,
in the DPLL procedure [7] which is the basis of almost all algorithms
used in practice the search is organized as a binary tree. In reality, the
search tree is used only to impose a linear order on the points of the
Boolean space to avoid visiting the same point twice. However, this
order may be in conflict with “natural” relationships between points of
the Boolean space that are imposed by the CNF formula to be checked
for satisfiability (for example, if this formula has some symmetries).

What Sat-Solvers can and cannot do 27

In the second part, we introduce the notion of a stable set of points
(SSP) [11]. We believe that SSPs can serve as a basis for constructing
algorithms that traverse the search space in a “natural” way. This may
lead to creating SAT-solvers that are much more “intelligent” and ef-
ficient than the existing state-of-the-art SAT-solvers. We show that a
CNF formula F is unsatisfiable if and only if there is a set of points of the
Boolean space that is stable with respect to F . If F is satisfiable then
any subset of points of the Boolean space is unstable, and an assignment
satisfying F will be found in the process of constructing an SSP. We de-
scribe a simple algorithm for constructing an SSP. Interestingly, this
algorithm is, in a sense, an extension of Papadimitriou’s algorithm [17]
(or a similar algorithm that is used in the well-known program called
Walksat [19]).

A very important fact is that, generally speaking, a set of points that
is stable with respect to a CNF formula F depends only on the clauses
(i.e. disjunctions of literals) F consists of. So the process of constructing
an SSP can be viewed as a “natural” way of traversing the search space
when checking F for satisfiability. In particular, if F has symmetries,
they can be easily taken into account when constructing an SSP. To
illustrate this point, we consider the class of CNF formulas that are
symmetric with respect to a group of permutations. We show that in
this case for proving the unsatisfiability of a CNF formula it is sufficient
to construct a set of points that is stable modulo symmetry.

If, for a class of formulas, SSPs are exponentially large, computing
a monolithic SSP point-by-point is too time and memory consuming.
We experimentally show that this is the case for hard random CNFs
formulas. One of the possible solutions to this problem is to exclude
some directions (i.e. variables) from consideration when computing an
SSP. Such a set of points is stable only with respect to “movements” in
the allowed directions. By excluding directions one can always get an
SSP of small size. We sketch a procedure of satisfiability testing in which
computing a monolithic SSP is replaced with constructing a sequence of
small SSPs with excluded directions.

The second part of this chapter is structured as follows. In Section 3.2
we introduce the notion of an SSP. Section 3.3 relates an SSP with a
set of points “reachable” from a point. A simple algorithm for building
an SSP point-by-point is described in Section 3.4. We also show exper-
imentally in Section 3.4 that even small CNF formulas may have large
sets of SSPs and so computing SSPs point-by-point is in general infea-
sible. In Sections 3.5, 3.6 we discuss two possible ways of using SSPs.
In Section 3.5 we show that to prove a symmetric CNF formula to be
unsatisfiable it is sufficient to build an SSP modulo symmetries of that

28 ADVANCED FORMAL VERIFICATION

formula. Such an SSP can be sometimes efficiently built even point-
by-point. Section 3.6 shows that the computation of a monolithic SSP
can be replaced with the construction of so called SSPs with excluded
directions whose size is easy to control. Finally, some conclusions are
made in Section 3.7.

3.2 Stable Set of Points

In this section, we introduce the notion of an SSP. Let F be a CNF
formula of n variables x1, . . . , xn. Denote by B the set {0, 1} of values
taken by a Boolean variable. Denote by Bn the set of points of the
Boolean space specified by variables x1,...,xn. A point of Bn is an
assignment of values to all n variables.

Definition 1.19 Let p be a point of the Boolean space falsifying a clause
C. The 1-neighborhood of the point p with respect to the clause C
(written Nbhd(p,C)) is the set of points that are at Hamming distance
1 from p and that satisfy C.

Remark 1.11 It is not hard to see that the number of points in
Nbhd(p,C) is equal to that of literals in C.

Example 1.4 Let C = x1 ∨ x3 ∨ x6 be a clause specified in the Boolean
space of 6 variables x1, . . . , x6. Let p = (x1 = 0, x2 = 1, x3 = 1, x4 =
0, x5 = 1, x6 = 0) be a point falsifying C. Then Nbhd(p,C) consists of
the following three points: p1 = (x1=1, x2 = 1, x3 = 1, x4 = 0, x5 =
1, x6 = 0), p2 = (x1 = 0, x2 = 1,x3=0, x4 = 0, x5 = 1, x6 = 0), p3 =
(x1 = 0, x2 = 1, x3 = 1, x4 = 0, x5 = 1,x6=1). Points p1, p2, p3 are
obtained from p by flipping the value of variables x1,x3,x6 respectively
i.e. the variables whose literals are in C.

Denote by Z(F) the set of points at which F takes value 0. If F is
unsatisfiable, Z(F) = Bn.

Definition 1.20 Let F be a CNF formula and P be a subset of Z(F).
Mapping g of P to F is called a transport function if, for any p ∈ P ,
the clause g(p) ∈ F is falsified by p. In other words, a transport function
g:P → F is meant to assign each point p ∈ P a clause that is falsified
by p.

Remark 1.12 We call mapping P → F a transport function because,
as it is shown in Section 3.3, such a mapping allows one to introduce
some kind of “movement” of points in the Boolean space.

What Sat-Solvers can and cannot do 29

C1 = x1 ∨ x2,

C2 =∼x2 ∨ x3,

C6 =∼x5 ∧ x6,

C3 =∼x3 ∨ x4,

C4 =∼x4 ∨ x1,

C5 =∼x1 ∧ x5,

p1=000000

p2=010000

p3=011000

p4=011100

p5=111100

p6=111110

p7=111111C7 =∼x6∨ ∼x1,

p14=100000,

p13=100010,

p11 = 000011,

p10=010011,

p8=011111,

p9=011011,

C5 =∼x1 ∨ x5

C1 = x1 ∨ x2

C3 =∼ x3 ∨ x4

C4 =∼x4 ∨ x1

C6 =∼x5 ∨ x6

C2 =∼x2 ∨ x3

C7 =∼x6∨ ∼x1p12=100011,

Figure 1.7. Illustration to Example 1.5

Definition 1.21 Let P be a nonempty subset of Z(F), F be a CNF
formula, and g: P → F be a transport function. The set P is called
stable with respect to F and g if ∀p ∈ P , Nbhd(p, g(p)) ⊆ P . As it was
mentioned before, “stable set of points” abbreviates to SSP.

Remark 1.13 Henceforth, if we say that a set of points P is stable with
respect to a CNF formula F without mentioning a transport function,
we mean that there is a function g:P → F such that P is stable with
respect to F and g.

Example 1.5 Consider an unsatisfiable CNF formula F consisting of
the following 7 clauses: C1 = x1 ∨ x2, C2 = x2 ∨ x3, C3 = x3 ∨ x4,
C4 = x4 ∨ x1, C5 = x1 ∨ x5, C6 = x5 ∨ x6, C7 = x6 ∨ x1. Clauses of
F are composed of literals of 6 variables: x1,. . . ,x6. The following 14
points form an SSP P : p1=000000, p2=010000, p3=011000, p4=011100,
p5=111100, p6=111110, p7=111111, p8=011111, p9=011011, p10=
010011, p11=000011, p12=100011, p13=100010, p14=100000. (Values
of variables are specified in the order variables are numbered. For exam-
ple, p4 consists of assignments x1=0, x2=1, x3=1, x4=1, x5=0, x6=0.)

30 ADVANCED FORMAL VERIFICATION

The set P is stable with respect to the transport function g specified as:
g(p1) = C1, g(p2) = C2, g(p3) = C3, g(p4) = C4, g(p5) = C5, g(p6) =
C6, g(p7) = C7, g(p8) = C4, g(p9) = C3, g(p10) = C2, g(p11) = C1,
g(p12) = C7, g(p13) = C6, g(p14) = C5.

The set P and the transport function g are given in Fig. 1.7. Next to
each point pi, the clause Ck=g(pi) is shown. Besides, for each point pi

the two points comprising Nbhd(pi, g(pi)) are indicated by arrows.
It is not hard to see that g indeed is a transport function i.e. for any

point pi of P it is true that C(pi)=0 where C = g(pi). Besides, for
every point pi of P , the condition Nbhd(p, g(p)) ⊆ P of Definition 5
holds. Consider, for example, point p10=010011. The value of g(p10) is
C2, C2 = x2 ∨ x3 and Nbhd(p10, C2) = {p11 = 000011, p9 = 011011}, the
latter being a subset of P .

Proposition 1.8 If there is a set of points that is stable with respect to
a CNF formula F , then F is unsatisfiable.

Proof Assume the contrary. Let P be a set of points that is stable
with respect to F and a transport function g, and p∗ be a satisfying
assignment i.e. F (p∗) = 1. It is not hard to see that p∗ /∈ P because
each point p ∈ P is assigned a clause C = g(p) such that C(p)=0 and
so F (p)=0. Let p be a point of P that is the closest to p∗ in Hamming
distance. Denote by C the clause that is assigned to p by the transport
function g i.e. C = g(p). Denote by Y the set of variables values of
which are different in p and p∗.

Let us show that C can not have literals of variables of Y . Assume
the contrary, i.e. that C contains a literal of x ∈ Y . Then, since P is
stable with respect to F and g, it has to contain the point p′ which is
obtained from p by flipping the value of x. But then p′ ∈ P is closer
to p∗ than p. So we have a contradiction. Since C(p)=0 and C does
not contain literals of variables whose values are different in p and p∗ we
have to conclude that C(p∗) = 0. This means that p∗ is not a satisfying
assignment and so we have a contradiction.

Proposition 1.9 Let F be an unsatisfiable CNF formula of n variables.
Then set Z(F) is stable with respect to F and any transport function
Z(F) → F .

Proof Since F is unsatisfiable, then Z(F) = Bn. For each point p ∈ Bn,
condition Nbhd(p, g(p)) ⊆ Bn holds.

Remark 1.14 From propositions 1.8 and 1.9 it follows that a CNF F
is unsatisfiable if and only if there is a set of points stable with respect
to F .

What Sat-Solvers can and cannot do 31

3.3 SSP as a reachable set of points

In this section, we introduce the notion of reachability that will be
used in Section 3.4 to formulate an algorithm for constructing an SSP.
Our main objective here is to show that the set of points reachable from a
point of the Boolean space is an SSP unless this set contains a satisfying
assignment.

Definition 1.22 Let F be a CNF formula and g: Z(F) → F be a
transport function. A sequence of k points p1, . . . , pk, k ≥ 2 is called
a path from p1 to pk in a set P with a transport function g if points
p1,...,pk−1 are in P and pi ∈ Nbhd(pi−1,g(pi−1)), 2 ≤ i ≤ k. (Note that
the last point of the path, i.e. pk, does not have to be in P .) We will
assume that no point appears twice (or more) in a path.

Example 1.6 Consider the CNF formula and transport function of Ex-
ample 1.5. Let P be the set of points specified in Example 1.5. The
sequence of points p1,p14,p13,p12 forms a path from p1 to p12. Indeed, it
is not hard to check that Nbhd(p1, g(p1)) = {p2, p14}, Nbhd(p14, g(p14)) =
{p13, p1}, Nbhd(p13, g(p13)) = {p14, p12}, Nbhd(p12, g(p12)) = {p13, p11}.
So each point p′ of the path (except the starting point i.e. p1) is contained
in the set Nbhd(p′′, g(p′′)) where p′′ is the preceding point.

Definition 1.23 Let F be a CNF formula. A point p′′ is called reach-
able from a point p′ by means of a transport function g : Z(F) → F if
there is a path from p′ to p′′ with the transport function g. Denote by
Reachable(p, g) the set consisting of a point p and all the points that are
reachable from p by means of the transport function g.

Proposition 1.10 Let F be a satisfiable CNF formula, p be a point of
Z(F), and s be a satisfying assignment (i.e. s �∈ Z(F)) that is the closest
to p in Hamming distance. Let g:Z(F) → F be a transport function.
Then in Z(F) there is a path from p to s with the transport function g
i.e. the satisfying assignment s is reachable from p.

Proof Denote by Y the set of variables whose values are different in
p and s. Since F (p)=0, then p ∈ Z(F) and the function g assigns a
clause C to p where C(p)=0. All literals of C are set to 0 by p. On
the other hand, since s is a satisfying assignment, then at least one
literal of C is set to 1 by s. Then C contains a literal of a variable y
from Y . Denote by p′ the point obtained from p by flipping the value
of y in p. The point p′ is reachable from p by means of the transport
function g. If |Y | = 1, then p′ is the satisfying assignment s. If |Y | > 1,

32 ADVANCED FORMAL VERIFICATION

then p′ cannot be a satisfying assignment since, by our assumption, the
satisfying assignment s is the closest to p. Then after applying the same
reasoning to the point p′, we conclude that the clause assigned to p′ by
g must contain a literal of a variable y′ from Y \ {y}. Flipping the value
of y′ in p′ we produce a point p′′ that is either the satisfying assignment
s or is at distance |Y | − 2 from s. Going on in this manner we reach the
satisfying assignment s in |Y| steps.

Proposition 1.11 Let P be a set of points that is stable with respect to
a CNF formula F and a transport function g : P → F . Then ∀p ∈ P ,
Reachable(p, g) ⊆ P .

Proof Assume the contrary, i.e. that there is a point p∗ ∈ Reachable(p, g)
that is not in P . Let H be a path from p to p∗. Denote by p′′ the first
point in the sequence of points specified by H that is not in P . (Points
are numbered from p to p∗). Denote by p′ the point preceding p′′ in H.
The point p′ is in P and the latter is stable with respect to F and g. So
Nbhd(p′, g(p′)) ⊆ P . The point p′′ is in Nbhd(p′, g(p′)) and so it has to
be in P . We have a contradiction.

Proposition 1.12 Let F be a CNF formula, g : Z(F) → F be a trans-
port function, and p be a point from Z(F). If P = Reachable(p, g) does
not contain a satisfying assignment for F , then P is stable with respect
to F and g, and so F is unsatisfiable.

Proof Assume the contrary i.e. that P is not stable. Then there exists
a point p′ of Reachable(p,g) (and so reachable from p) such that a point
p′′ of Nbhd(p′,g(p′)) is not in Reachable(p,g). Since p′′ is reachable from
p′ it is also reachable from p. We have a contradiction.

Remark 1.15 From Proposition 1.12 it follows that a CNF F is sat-
isfiable if and only if, given a point p ∈ Z(F) and a transport function
g : Z(F) → F , the set Reachable(p, g) contains a satisfying assignment.

In [11] properties of SSPs are discussed in more detail.

3.4 Testing Satisfiability of CNF Formulas by
SSP Construction

In this section, we describe a simple algorithm for constructing an SSP
that is based on Proposition 1.12. Let F be a CNF formula to be checked
for satisfiability. The idea is to pick a point p of the Boolean space
and construct the set Reachable(p, g). Since no transport function g :
Z(F) → F is known beforehand, it is built on the fly. In the description

What Sat-Solvers can and cannot do 33

of the algorithm given below, the set Reachable(p, g) is broken down into
two parts: Boundary and Body. Boundary consists of those points of the
current set Reachable(p, g) whose 1-neighborhood has not been explored
yet. At each step of the algorithm a point p′ of Boundary is extracted
and a clause C falsified by p′ is assigned as the value of g(p′). Then the
set Nbhd(p′, C) is generated and its points (minus those that are already
in Body∪Boundary) are added to Boundary. This goes on until a stable
set is constructed (F is unsatisfiable) or a satisfying assignment is found
(F is satisfiable).

1 Generate a starting point p. Boundary = {p}. Body=∅, g = ∅.

2 If Boundary is empty, then Body is an SSP and F is unsatisfiable.
The algorithm terminates.

3 Pick a point p′ ∈ Boundary. Boundary=Boundary \ {p′}.

4 Find a set M of clauses that are falsified by point p′. If M =
∅, then the CNF formula F is satisfiable and p′ is a satisfying
assignment. The algorithm terminates.

5 Pick a clause C from M . Take C as the value of g(p′). Generate
Nbhd(p′, C). Boundary = Boundary∪(Nbhd(p′, C)\Body). Body =
Body ∪ {p′}.

6 Go to step 2.

Interestingly, the algorithm described above can be viewed as an ex-
tension of Papadimitriou’s algorithm [17] (or a similar algorithm used
in the program Walksat [19]) to the case of unsatisfiable CNF formulas.
Papadimitriou’s algorithm (and Walksat) can be applied only to satisfi-
able CNF formulas since it does not store visited points of the Boolean
space. An interesting fact is that the number of points that one has to
explore to prove the unsatisfiability of a CNF formula can be very small.
For instance, in example 1.5, an SSP of a CNF formula of 6 variables
consists only of 14 points while the Boolean space of 6 variables consists
of 64 points. It can be shown that for a subclass of the class of 2-CNF
formulas (a clause of a 2-CNF formula contains at most 2 literals) the
size of minimum SSPs grows linearly in the number of variables of the
formula.

A natural question to ask is: “What is the size of SSPs for “hard”
CNF formulas?”. One example of such formulas are random CNFs for
which general resolution was proven to have exponential complexity [5].
Table 1.2 gives the results of computing SSPs for CNF formulas from
the “hard” domain (the number of clauses is 4.25 times the number of

34 ADVANCED FORMAL VERIFICATION

variables [15]). For computing SSPs we used the algorithm described
above enhanced by the following heuristic. When picking a clause to be
assigned to the current point p′ of Boundary (Step 5), we give preference
to the clause C (falsified by p′) for which the maximum number of points
of Nbhd(p′, C) are already in Body or Boundary. In other words, when
choosing the clause C to be assigned to p′, we try to minimize the number
of new points we have to add to Boundary.

We generated 10 random CNFs of each size (number of variables). The
starting point was chosen randomly. Table 1.2 gives the average values
of the SSP size and the share (percent) of the Boolean space taken by
an SSP. It is not hard to see that the SSP size grows very quickly. So
even for very small formulas it is very large. An interesting fact though
is that the share of the Boolean space taken by the SSP constructed by
the described algorithm steadily decreases as the number of variables
grows.

Table 1.2. SSPs of “hard” random CNF formulas

number of
variables

SSP size #SSP/#All Space
(%)

10 430 41.97
11 827 40.39
12 1,491 36.41
13 2,714 33.13
14 4,931 30.10
15 8,639 26.36
16 16,200 24.72
17 30,381 23.18
18 56,836 21.68
19 103,428 19.73
20 195,220 18.62
21 392,510 18.72
22 736,329 17.55
23 1,370,890 16.34

The poor performance of the proposed algorithm on random CNF
formulas suggests that computing a “monolithic” SSP point-by-point is
too time and memory consuming. There are at least three ways of solving
this problem. First way concerns computing SSPs for symmetric CNF
formulas. In Section 3.5 we show that to prove that a symmetric CNF
formula is unsatisfiable it suffices to build a set of points that is stable

What Sat-Solvers can and cannot do 35

modulo symmetry. Such a set of points can be very small. Another
way of dealing with the exponential blow-up of SSPs is described in
Section 3.6. The idea is to exclude some directions (i.e. variables) from
consideration when computing an SSP. This way the size of an SSP can
be drastically reduced. By constructing an SSP with excluded directions
one obtains a new implicate of the formula. By adding this implicate to
the formula we make it “simpler” (in terms of the size of its SSPs). By
computing SSPs with excluded directions and adding the corresponding
implicates we replace the computation of a monolithic SSP with the
construction of a sequence of small size SSPs. A third (and probably
most promising) way of making SSP computation more efficient is to
build SSP in big “chunks” clustering “similar” points. We do not study
this idea here leaving it for future research.

3.5 Testing Satisfiability of Symmetric CNF
Formulas by SSP Construction

In this section, we introduce the notion of a set of points that is stable
modulo symmetry. This notion allows one to modify the algorithm of
SSP construction given in Section 3.4 to take into account a formula’s
symmetry. The modification itself is described at the end of the section.
We consider only the case of permutations. However, a similar approach
can be applied to a more general class of symmetries e.g. to the case
when a CNF formula is symmetric under permutations combined with
the negation of some variables.

Definition 1.24 Let X = {x1, . . . , xn} be a set of Boolean variables.
A permutation π defined on set X is a bijective mapping of X onto
itself.

Let F = {C1, . . . , Ck} be a CNF formula. Let p = (x1, . . . , xn) be a
point of Bn. Denote by π(p) the point (π(x1), . . . , π(xn)). Denote by
π(Ci) the clause that is obtained from Ci ∈ F by replacing variables
x1, . . . , xn with variables π(x1), . . . , π(xn) respectively. Denote by π(F)
the CNF formula obtained from F by replacing each clause Ci with
π(Ci).

Definition 1.25 A CNF formula F is called symmetric with respect
to permutation π if the CNF formula π(F) consists of the same clauses
as F . In other words, F is symmetric with respect to π if each clause
π(Ci) of π(F) is identical to a clause Ck ∈ F .

36 ADVANCED FORMAL VERIFICATION

Proposition 1.13 Let p be a point of Bn and C be a clause falsified
by p i.e. C(p)=0. Let π be a permutation of variables {x1, . . . , xn} and
C ′ = π(C) and p′ = π(p). Then C ′(p′) = 0.

Proof Let δ(xi) be the literal of a variable xi that is present in C. This
literal is set to 0 by the value of xi in p. The variable xi is mapped to
π(xi) in the clause C ′ and the point p′. Then the value of π(xi) in the
point p′ is the same as that of xi in p. So the value of literal δ(π(xi))
in the point p′ is the same as the value of δ(xi) in p i.e. 0. Hence, the
clause C ′ is falsified by p′.

Remark 1.16 From Proposition 1.13 it follows that if F is symmetric
with respect to a permutation π then F (p) = F (π(p)). In other words,
F takes the same value at points p and π(p).

The set of the permutations, with respect to which a CNF formula is
symmetric, forms a group. Henceforth, we will denote this group by G.
The fact that a permutation π is an element of G will be denoted by
π ∈ G. Denote by 1 the identity element of G.

Definition 1.26 Let Bn be the Boolean space specified by variables X=
{x1,....,xn} and G be a group of permutations specified on X. Denote
by symm(p,p′,G) the following binary relation between points of Bn.
A pair of points (p, p′) is in symm(p, p′, G) if and only if there is π ∈ G
such that p′ = π(p).

Definition 1.27 Points p and p′ are called symmetric if they are in
the same equivalence class of symm(p,p′,G).

Definition 1.28 Let F be a CNF formula that is symmetric with respect
to a group of permutations G and P be a subset of Z(F). The set P
is called stable modulo symmetry with respect to F and a transport
function g: P → F if for each p ∈ P , every point p′ ∈ Nbhd(p, g(p)) is
either in P or there is a point p′′ of P that is symmetric to p′.

Proposition 1.14 Let Bn be the Boolean space specified by variables
X = {x1, . . . , xn}. Let p be a point of Bn, C be a clause falsified by p,
and a point q ∈ Nbhd(p,C) be obtained from p by flipping the value of
a variable xi. Let π be a permutation of variables from X, p′ be equal
to π(p), C ′ be equal to π(C), and q′ ∈ Nbhd(p′, C ′) be obtained from p′

by flipping the value of variable π(xi). Then q′ = π(q). In other words,
for each point q of Nbhd(p,C) there is a point q′ of Nbhd(p′, C ′) that is
symmetric to q.

What Sat-Solvers can and cannot do 37

Proof The value of a variable xk, k �= i in q is the same as in p. Besides,
the value of the variable π(xk) in q′ is the same as in p′ (q′ is obtained
from p′ by changing the value of the variable π(xi) and since k �= i then
π(xk) �= π(xi)). Since p′ = π(p), then the value of xk in q is the same as
the value of variable π(xk) in q′. On the other hand, the value of variable
xi in q is obtained by negation of the value of xi in p. The value of the
variable π(xi) in q′ is obtained by the negation of the value of π(xi) in
p′. Hence the values of the variable xi in q and the variable π(xi) in q′

are the same. So q′ = π(q).

Proposition 1.15 Let F be a CNF formula, P be a subset of Z(F),
and g : P → F be a transport function. If P is stable modulo symmetry
with respect to F and g, then the CNF formula F is unsatisfiable.

Proof Denote by K(p) the set of all points that are symmetric to the
point p i.e. that are in the same equivalence class of the relation symm
as p. Denote by K(P) the union of the sets K(p), p ∈ P . Extend the
domain of transport function g from P to K(P) in the following way.
Suppose p′ is a point that is in K(P) but not in P . Then there is a
point p ∈ P that is symmetric to p′ and so p′ = π(p), π ∈ G. We assign
C ′ = π(C), C = g(p) as the value of g at p′. If there is more than one
point of P that is symmetric to p′, we pick any of them.

Now we show that K(P) is stable with respect to F and g: K(P) → F .
Let p′ be a point of K(P). Then there is a point p of P that is symmetric
to p′ and so p′ = π(p). Then from Proposition 1.14 it follows that for
any point q of Nbhd(p, g(p)) there is a point q′ ∈ Nbhd(p′, g(p′)) such
that q′ = π(q). On the other hand, since P is stable modulo symmetry,
then for any point q of Nbhd(p, g(p)) there is a point q′′ ∈ P symmetric
to q and so q = π∗(q′′), π∗ ∈ G (π∗ may be equal to 1 ∈ G if q is in P).
Then q′ = π(π∗(q′′)). Hence q′ is symmetric to q′′ ∈ P and so q′ ∈ K(P).
This means that Nbhd(p′, g(p′)) ⊆ K(P) and so K(P) is stable. Then
according to Proposition 1.8, the CNF formula F is unsatisfiable.

Remark 1.17 The idea of the proof was suggested to the author by
Howard Wong-Toi [22].

Proposition 1.16 Let P ⊆ Bn be a set of points that is stable with
respect to a CNF formula F and transport function g : P → F . Let P ′

be a subset of P such that for each point p of P that is not in P ′ there
is a point p′ ∈ P ′ symmetric to p. Then P ′ is stable with respect to F
and g modulo symmetry.

Proof Let p′ be a point of P ′. Let q′ be a point of Nbhd(p′,g(p′)). Point
p′ is in P because P ′ ⊆ P . Since P is a stable set then q′ ∈ P . From the

38 ADVANCED FORMAL VERIFICATION

definition of the set P ′ it follows that if q′ is not in P ′ then there is a
point r′ ∈ P ′ that is symmetric to q′. So each point q′ of Nbhd(p′, g(p′))
is either in P ′ or there is a point of P ′ that is symmetric to q′.

Definition 1.29 Let F be a CNF formula, G be its group of permuta-
tions, p be a point of Z(F), and g: P → F be a transport function. A
set Reachable(p, g,G) is called the set of points reachable from p mod-
ulo symmetry if a) the point p is in Reachable(p, g,G) b) each point p′

that is reachable from p by means of the transport function g is either in
Reachable(p, g,G) or there exists a point p′′ ∈ Reachable(p, g,G) that is
symmetric to p′.

Proposition 1.17 Let F be a CNF formula, G be its group of permu-
tations, p be a point of Z(F), and g : P → F be a transport function. If
the set P=Reachable(p, g,G) does not contain a satisfying assignment,
then it is stable modulo symmetry with respect to F and g and so F is
unsatisfiable.

Proof Assume the contrary, i.e. that P is not stable modulo symmetry.
Then there is a point p′ ∈ P (reachable from p modulo symmetry) such
that a point p′′ of Nbhd(p′,g(p′)) is not in P and P does not contain a
point symmetric to p′′. On the other hand, p′′ is reachable from p′ and
so it is reachable from p modulo symmetry. We have a contradiction.

Remark 1.18 From Proposition 1.17 it follows that a CNF F that is
symmetric with respect to a group of permutations G is satisfiable if and
only if, given a point p ∈ Z(F), a transport function g : Z(F) → F , the
set Reachable(p, g,G) contains a satisfying assignment.

Let F be a CNF formula and G be its group of permutations. Accord-
ing to Proposition 1.17 when testing the satisfiability of F it is sufficient
to construct a set Reachable(p, g,G). This set can be built by the algo-
rithm of Section 3.4 in which step 5 is modified in the following way. Be-
fore adding a point p′′ from Nbhd(p′, C)\(Body∪Boundary) to Boundary
it is checked if there is a point p∗ of Boundary ∪Body that is symmetric
to p′′. If such a point exists, then p′′ is not added to Boundary.

For highly symmetric formulas the difference between the SSPs and
SSPs modulo symmetry can be huge. For example, for pigeon-hole for-
mulas the size of SSPs is exponential in the number of holes while the
size of minimum SSPS modulo symmetry is linear in the number of
holes [11].

What Sat-Solvers can and cannot do 39

3.6 SSPs with Excluded Directions

Unfortunately, the theory developed in Section 3.5 does not help in
solving CNF formulas that have no (or have very few) symmetries. In
this section, we describe a different way of reducing the size of SSPs. The
idea is to replace the computation of a single SSP with the construction
of a sequence of SSPs whose stability is “limited”. These SSPs are
called SSPs with excluded directions. The key point is that by excluding
some directions from consideration one can drastically reduce the size
of SSPs. The construction of an SSP with excluded directions allows
one to generate a new clause that is an implicate of the initial CNF
formula. This clause can be added to the current formula, which makes
the obtained formula simpler in terms of the size of SSPs. For the new
formula we can again build an SSP with excluded directions deducing a
new implicate of the formula. A sketch of the procedure of satisfiability
testing based on constructing SSPs with excluded directions is given at
the end of the section.

Definition 1.30 Let F be a CNF formula. A set of excluded direc-
tions is a set E of literals that a) does not contain opposite literals of
the same variable; b) there is no clause C of F such that all literals of
C are in E.

Definition 1.31 Let F be a CNF formula and C be a clause of F . Let
E be a set of excluded directions. Denote by Nbhd(p,C,E) the set of
points of Nbhd(p,C) that set to 1 only the literals of C that are not in
E.

Remark 1.19 Since, according to Definition 1.30, there is at least one
literal of C that is not in E, then Nbhd(p,C,E) is nonempty.

Example 1.7 Let a point p be equal to (x1 = 0, x2 = 0, x3 = 0, x4 =
1, x5 = 1, x6 = 1). Let a clause C of a CNF F be equal to x1∨x3∨x6 and
the set E of excluded directions be equal to {x4, x6}. The set Nbhd(p,C)
consists of points p1, p2 and p3 obtained from p by flipping the values of
variables x1, x3, x6 respectively. On the other hand, set Nbhd(p,C,E)
consists only of points p1, p2 because the point p3 sets to 1 an “excluded”
literal, namely the literal x6 of E.

Definition 1.32 Let P be a nonempty subset of Z(F), F be a CNF
formula, and g: P → F be a transport function. Let E be a set of
excluded directions. The set P is called stable with respect to F, g

40 ADVANCED FORMAL VERIFICATION

and E if a) each point p of P sets all the literals of E to 0; b) for each
point p of P , Nbhd(p, g(p), E) ⊆ P .

Proposition 1.18 If there is a set of points that is stable with respect
to a CNF formula F and a set E of excluded directions, then any as-
signment satisfying F has to set to 1 at least one literal of E. In other
words, the clause obtained by the disjunction of the literals of E is an
implicate of F .

Proof Let P be a set of points that is stable with respect to F , a trans-
port function g and a set E of excluded directions. Make the assignments
setting all the literals of E to 0. Remove from F all the clauses that are
satisfied by these assignments and remove from the rest of the clauses all
the literals that are in E (since they are set to 0). The obtained formula
F ′ is unsatisfiable because the set P is stable with respect to F ′ and a
transport function g′. Indeed, according to Definition 1.31, each point p
of P sets all the literals of E to 0. Then the clause C = g(p) of F cannot
be satisfied by the assignment setting a literal l of E to 0. (If a clause C
is satisfied by this assignment, it must contain the literal l but then C
cannot be falsified by p.) So all the clauses assigned to the points of P by
g are still in F ′. Denote by g′ the transport function that maps a point p
of P to the clause C ′ obtained from the clause C = g(p) by removing all
the literals of E. It is not hard to see that Nbhd(p,C ′) = Nbhd(p,C,E).
So for each point p of P it is true that Nbhd(p, g′(p)) ⊆ P .

Remark 1.20 A set of points stable with respect to a CNF F and a
set E of excluded directions can be constructed by the algorithm of Sec-
tion 3.4 modified in the following way. At step 1 the algorithm generates
a starting point setting all the literals from E to 0. At step 5 it generates
set Nbhd(p′, C,E) instead of Nbhd(p′, C).

Example 1.8 Let p1 = (x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 =
0, x7 = 0). Let F be a CNF formula containing clauses C1 = x1 ∨ x2 ∨
x3, C2 = x1 ∨ x4 ∨ x5 (and maybe some other clauses). Let the set E of
excluded directions be equal to {x2, x3, x4, x5}. Denote by p2 the point
obtained from p1 by flipping the value of x1. Taking into account that p1

falsifies clause C1 and p2 falsifies clause C2 we can form the following
transport function g: g(p1) = C1, g(p2) = C2. It is not hard to see that
the set of points P = {p1, p2} is stable with respect to clauses C1, C2,
transport function g, and set E. Indeed, since literals x2 and x3 of C1

are in E then Nbhd(p1, g(p1), E) = {p2} ⊆ P . On the other hand, since
literals x4 and x5 of C2 are in E then Nbhd(p2, g(p2), E) = {p1} ⊆ P .
From Proposition 1.18 we conclude that the clause C = x2 ∨x3 ∨x4 ∨x5

What Sat-Solvers can and cannot do 41

equal to the disjunction of literals of E is an implicate of the formula F .
On the other hand, it is not hard to see that C is actually the resolvent
of clauses C1 and C2.

Remark 1.21 From Example 1.8 it follows that for an unsatisfiable for-
mula F we can always choose a set E of excluded directions so that there
is a set of two points that is stable with respect to F and E. Indeed, due
to completeness of general resolution, in F there is always a pair of
clauses C1 and C2 that produce a new resolvent. Then we form the set
E of excluded directions consisting of all the literals of C1 and C2 except
the literals of the variable in which the two clauses are resolved.

Below we sketch a procedure of satisfiability testing based on com-
puting SSPs with excluded directions.

1 Compute an SSP P of a limited size trying to minimize the set E
of excluded directions

2 Stop if a satisfying assignment is found. The formula is satisfiable.

3 Stop if E = ∅. The formula is unsatisfiable.

4 Add the deduced clause (disjunction of the literals of E) to the
current CNF formula.

5 Go to step 1.

The idea of the procedure is that adding new implicates gradually
reduces the complexity of the initial formula F in terms of the size of
“monolithic” SSPs. The claim that the size of SSPs decreases is based on
the following observations. Any set of points that is stable with respect
to a CNF formula F is also stable with respect to a CNF F ∪{C} where
C is a clause. So by adding clauses we preserve the best SSPs seen so far
and may produce even smaller ones. The latter follows from the fact that
by adding new implicates we will eventually produce an empty clause
(at step 3 of the procedure above) and any set of clauses containing an
empty clause has an SSP consisting of only one point.

An important advantage of obtaining new implicates by computing
SSPs with excluded directions is that directions can be excluded on the
fly. The choice of directions to exclude should be aimed at the reduction
of the size of the constructed SSP (that is the directions that may lead
to the blow-up of the SSP should be excluded). Besides, when excluding
directions one can make use of the information about the structure of
the CNF formula to be tested for satisfiability.

42 ADVANCED FORMAL VERIFICATION

3.7 Conclusions

In the second part of this chapter we show that satisfiability testing
of a CNF formula reduces to constructing a stable set of points (SSP).
An SSP of a CNF formula can be viewed as an inherent characteristic
of this formula. We give a simple procedure for computing an SSP.
As a practical application we show that the proposed procedure of SSP
construction can be easily modified to take into account symmetry (with
respect to variable permutation) of CNF formulas. Finally, we introduce
the notion of an SSP with excluded direction and describe a procedure of
satisfiability testing based on constructing such SSPs. We believe that
developing the theory of SSPs may lead to creating SAT-algorithms that
are much more efficient and “intelligent” than the ones implemented in
the state-of-the-art SAT-solvers.

References

[1] BerkMin web page. http://eigold.tripod.com/BerkMin.html

[2] Bonet M.,Pitassi T., Raz R. On interpolation and automatization
for Frege systems. SIAM Journal on Computing, 29(6):1939-1967,
2000.

[3] Brand D. Verification of large synthesized designs. Proceedings of
ICCAD-1993, pp. 534-537.

[4] Bryant R. Graph based algorithms for Boolean function manipula-
tion. IEEE Trans. on Computers, C(35):677-691.

[5] V.Chvatal, E.Szmeredi. Many hard examples for resolution. J. of
the ACM,vol. 35, No 4, pp.759-568.

[6] CUDD web page. http://vlsi.colorado.edu/∼fabio/

[7] M.Davis, G.Logemann, D.Loveland. A Machine program for theo-
rem proving. Communications of the ACM, 1962,vol. 5,pp. 394-397.

[8] Goldberg E., Novikov Ya. BerkMin: A fast and robust SAT-solver.
Design, Automation, and Test in Europe (DATE ’02), pp. 142-149,
March 2002.

[9] Goldberg E., Novikov Ya. How good are current resolution based
SAT-solvers. presented at SAT-2003,Margherita Ligure - Portofino
(Italy), May 5-8,2003.

[10] Goldberg E., Novikov Ya. Equivalence Checking of Dissimilar
Circuits. Presented at IWLS-2003. Laguna Beach, California,
USA,May 28-30,2003.

REFERENCES 43

[11] E. Goldberg. Testing Satisfiability of CNF Formulas by Computing
a Stable Set of Points. Proceedings of Conference on Automated
Deduction, CADE 2002, pp.161-180.

[12] E. Goldberg. Proving Unsatisfiability of CNFs locally. Journal of
Automated Reasoning. vol 28:417-434, 2002.

[13] A.Haken. The intractability of resolution. Theor. Comput. Sci. 39
(1985),297-308.

[14] F. Lu, L.-C. Wang, K.-T. Cheng, R. Huang. A circuit SAT solver
with signal correlation guided learning, DATE-2003, pp. 892-898.

[15] D.Mitchell, B.Selman, H.J.Levesque. Hard and easy distributions of
SAT problems. Proceedings AAAI-92, San Jose,CA, 459-465.

[16] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik.
Chaff: Engineering an efficient SAT-solver. Proceedings of DAC-
2001,pp. 530-535.

[17] C.Papadimitriou. On selecting a satisfying truth assignment. Pro-
ceedings of FOCS-91, pp. 163-169

[18] Razborov A., Alekhnovich M. Resolution is not automatizable un-
less W[p] is tractable. Proc. of the 42nd IEEE FOCS-2001, pages
210-219.

[19] B.Selman, H.Kautz, B.Cohen. Noise strategies for improving local
search. Proceedings of AAAI-94,Vol. 1, pp. 337-343.

[20] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, A. San-
giovanni -Vincentelli, Sequential circuit design using synthesis and
optimization. Proceedings of ICCAD, pp 328-333, October 1992.

[21] Silva J., Sakallah K. GRASP: A Search Algorithm for Propositional
Satisfiability. IEEE Transactions of Computers, 1999, Vol. 48,pp.
506-521.

[22] H.Wong-Toi. Private communication.

[23] H.Zhang. SATO: An efficient propositional prover. Proceedings of
CADE-1997, pp. 272-275.

This page intentionally left blank

Chapter 2

ADVANCEMENTS IN MIXED BDD AND
SAT TECHNIQUES

Gianpiero Cabodi
Politecnico di Torino, Dip. di Automatica e Informatica, Turin, Italy

gianpiero.cabodi@polito.it

Stefano Quer
Politecnico di Torino, Dip. di Automatica e Informatica, Turin, Italy

stefano.quer@polito.it

Abstract This chapter covers mutual interactions between Boolean Satisfiability
(SAT) solvers and Binary Decision Diagrams (BDDs). More precisely,
the presentation is focused on approaches mixing methodologies, tech-
niques, and ideas coming from both research domains. First of all, it
gives some preliminary definitions and it presents the main differences
and affinities between SAT and BDD manipulation algorithms. After
that, it overviews some of the most notable efforts to integrate the two
technologies either in a loose or in a tight way. It eventually provides
some evaluations and hints for open problems and possible future work.

Keywords: Formal verification, model checking, Boolean satisfiability (SAT), binary
decision diagrams (BDDs), reachability analysis

1. Introduction

Efficient algorithms to manipulate Boolean functions arising in real-
world applications have become increasingly popular, over the last few
years, in several areas of computer-aided design and verification. In this
chapter we focus on two classes of such algorithms: Complete Boolean
Satisfiability solvers, and symbolic manipulation of Binary Decision Di-
agrams.

 45

R. Drechsler (ed.), Advanced Formal Verification, 45-76.

© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

46 ADVANCED FORMAL VERIFICATION

Given a propositional formula, the Boolean Satisfiability Problem
(commonly abbreviated as SAT) consists of determining a variable as-
signment such that the formula evaluates to true, or establishing that no
such assignment exists. While SAT solvers’ pivotal role in theory com-
plexity has been known for a while, they have more recently received
growing research attention with the purpose of solving practical prob-
lems. Such problems include ATPG, formal verification, timing verifica-
tion and routing of field-programmable gate arrays. As far as efficiency
is concerned, although SAT is an NP-complete problem, or at least no
polynomial algorithm to solve it is known, large practical instances have
been worked out thanks to efficient implementation procedures [31, 19].
These procedures are based on elementary and extremely time-efficient
steps, which consider one problem variable at a time and appropriately
prune the overall search space. Furthermore, most such algorithms are
now publicly available and easy to use once the problem has been mod-
eled and coded in the proper format. However, since SAT do not work
on a canonical representation, many sub-problem computations may get
repeated, i.e., SAT-based techniques are potentially limited by time re-
sources.

Binary Decision Diagrams (BDDs) are commonly used to implicitly
represent large solution spaces in combinational and sequential problems
that arise in synthesis and verification. A BDD is a directed acyclic
graph constructed in such a way that its directed paths represent ob-
jects of interest (such as subsets, clauses, minterms, etc.). BDDs may
achieve an exponential compression rate, as the number of vertices and
edges (graph size) is often exponentially lower than the number of paths
(from root to leaves). BDDs can be transformed by algorithms that visit
all vertices and edges of the directed graph in some order. These algo-
rithms take therefore polynomial time in the current size of the graph.
Unfortunately, when new BDDs are created, some algorithms tend to
significantly increase the number of vertices, potentially leading to ex-
ponential memory requirements. Similarly to what just described for
SAT solvers, the order of elementary steps is critically important. To re-
duce this drawback, variable reordering techniques have been introduced.
Variable order is usually chosen either statically, i.e., by pre-processing
the input formula, or dynamically, i.e., by analyzing the outcome of
previous steps. Nonetheless, even after almost two decades of intensive
research in the area, BDDs have never been able to deal with the largest
models and problem instances.

Keeping the previous considerations in mind, it is clear that SAT and
BDD techniques are often presented as mutually exclusive alternatives.
In general, a BDD approach is more suitable for capturing all solutions

Advancements in mixed BDD and SAT techniques 47

of the problem simultaneously. On the contrary, SAT decision trees have
no variable ordering restrictions, and can therefore potentially manage
larger problems. As a direct consequence, mixed approaches can poten-
tially offer mechanisms for trading off space and time.

Some researchers have recently followed this path by addressing ways
of making BDD and SAT tools interact and cooperate to the solution of a
common task. In general this has been obtained in different application
domains (e.g., general SAT, combinational circuit verification, Bounded
Model Checking and Unbounded Model Checking, etc.), and exploiting
various interaction schemes (e.g, master-slave interaction between BDD
and SAT engines, BDD pre-processing, exploiting SAT techniques for
symbolic reachability, etc.). We overview and classify some of the most
promising works within this general framework.

More in particular, Section 2 introduces some basic concepts and the
notation adopted in the rest of the chapter. Then, Section 3 reports some
theoretical considerations regarding differences and similarities between
SAT and BDD approaches. After that, Sections 4, 5 and 6 discuss some
more practical methodologies selected among the most promising at-
tempts to exploit the best from both methodologies. Finally, Section 7
concludes the chapter with some considerations and hints for open prob-
lems and possible future works.

2. Background

2.1 SAT Solvers

In this section we give a brief description of SAT-based tools. For a
more detailed overview on SAT solvers and a complete list of references
the reader should refer to the tutorial paper [39].

SAT solvers generally operate on problems for which a Boolean func-
tion is specified in Conjunctive Normal Form (CNF). This form is a
two-level decomposition: The logical conjunction (AND) of one or more
clauses, each of which consists of the logical disjunction (OR) of one or
more literals. A literal is an instance of a variable or its complement. A
satisfying assignment for a given CNF formula is thus a set of values for
variables such that each individual clause is satisfied.

The most known complete algorithms for deciding satisfiability are
based on the Davis-Putnam method [18] (DP), and variations of the
Davis-Logemann-Loveland method [17] (DLL). The former approach, is
based on resolution and performs existential elimination on the propo-
sitional variables. The procedure is repeated until the formula equals
either 0 (unsatisfiable problem instance) or 1 (satisfiable problem in-
stance). Resolution tends to be memory intensive as existential elimi-

48 ADVANCED FORMAL VERIFICATION

nation often generates a large number of clauses. The latter approach,
based on backtrack search, implicitly enumerates the space of possible
binary assignments, looking for a satisfying one. A decision tree keeps
track of current assignments and prunes the search by iteratively ap-
plying unit propagation, usually referred to as Boolean Constraint Prop-
agation (BCP). If a conflict is reached, the search backtracks to some
previous assignment. Conflict analysis, and recursive learning constitute
major enhancements to the basic backtrack search procedure.

Conflict analysis comes into play when a conflict arises. It adds
adequate information, a conflict clause, to anticipate the possible
re-occurrence of the same conflict. Furthermore, conflict analy-
sis allows the search process to backtrack non-chronologically to
earlier levels in the search tree, considerably pruning the search
space.

Recursive learning, when extended to conjunctive normal form
(CNF) clauses, identifies necessary assignments by examining the
different possible ways of satisfying a given clause from the set of
unassigned literals.

2.2 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) [9] are directed acyclic graphs pro-
viding a canonical representation of Boolean functions. An Ordered
BDD (OBDD) is a tree-like graph where Shannon (or Boole) decom-
position f = v ∧ f |v=1 ∨ v ∧ f |v=0 is recursively applied at each node,
following an ordered set of variables. A Reduced OBDD (ROBDD [9])
for a given Boolean function is obtained by repeatedly applying two well
known reduction rules:

Merging, i.e., two isomorphic subgraphs are merged. The rule
guarantees keeping a unique (canonical) representation (and BDD
subgraph) for any given sub-function.

Deletion, i.e., a BDD node whose two outgoing edges point to the
same successor is deleted (see Figure 2.1). The rule represents
the fact that a given sub-function does not depend on the deleted
variable.

Notice that the term BDD is often used to “informally” denote a
ROBDD, or as a more generic term indicating one of the several decom-
position types proposed, as variants of the original ROBDDs. We will
also use DD to indicate “generic” Decision Diagrams.

Advancements in mixed BDD and SAT techniques 49

v

Figure 2.1. BDD Deletion Rule. A BDD node with two equal outgoing edges is
deleted.

Example 2.1 Figure 2.2 shows the BDD for the function

f(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

A solid (dashed) line indicates the 1 (0) value for the decision variable.

01

0

x1

x2

3x

x2

Figure 2.2. An Example of BDD.

Simple graph algorithms, working depth–first on BDDs, implement
many operators. apply, ite (if–then–else), and existential/universal
quantifiers are well–known examples. BDDs have been widely used in
verification problems to represent functions, as well as sets, by means of
their characteristic functions. Operations on sets are efficiently imple-
mented by Boolean operations on their characteristic functions.

2.2.1 Zero-Suppressed Binary Decision Diagrams. Zero-
Suppressed Binary Decision Diagrams (ZBDDs) [30] are a variant of
BDDs adopting an alternative deletion rule.

50 ADVANCED FORMAL VERIFICATION

Instead of removing nodes with identical (right and left) children, in
a ZBDD a node is omitted if setting the node variable to 1 causes the
function to yield 0 (see Figure 2.3).

0

v

Figure 2.3. Reduction rules for ZBDDs.

The above rule is quite effective with sparse set representations, im-
plicit manipulations of polynomials, etc., where ZBDDs are more com-
pact than standard BDDs.

Example 2.2 Figure 2.4 shows the ZBDD for the function used in the
Example 2.1, i.e., the one represented with a BDD in Figure 2.2:

f(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

Comparing Figure 2.4 with Figure 2.2, one can easily notice the differ-
ence between the adopted deletion rules. A missing variable in a BDD
means that the function value is independent from the variable, while in
a ZBDDs the implicit variable has the zero value.

To enforce this concept, we also provide the BDD interpretation of the
ZBDD graph of Figure 2.4, which obviously corresponds to a different
Boolean function:

f(x1, x2, x3) = (x1 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

2.2.2 Boolean Expression Diagrams. Boolean Expression
Diagrams (BEDs) [24] are another extension of BDDs. They allow not
only terminal and variable vertices, but also operator vertices. Ter-
minal vertices correspond to the 0 and 1 constant leaves as in BDDs.
Variable vertices v have the same semantics as vertices in a BDD, i.e.,
they correspond to the if–then–else operator of Boole’s decomposition
((v ∧ f |v=1) ∨ (v ∧ f |v=0)). Operator vertices op correspond to their
respective Boolean connectives, i.e., f |left op f |right

Advancements in mixed BDD and SAT techniques 51

01

x1

3x

x2

Figure 2.4. An Example of ZBDD.

Following this description a BDD is simply a BED without operator
nodes, whereas a circuit can be directly mapped to a BED with operator
nodes at all gates but primary inputs.

1 0

^

32x xx1

v

^

Figure 2.5. BED Example.

Example 2.3 Figure 2.5 shows a BED for function

f(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3)

and its “corresponding” circuit.

BEDs can represent any Boolean formula in linear space at the price of
being non-canonical. However, many of the desirable properties of BDDs
are maintained, since converting a Boolean formula into a BDD via a

52 ADVANCED FORMAL VERIFICATION

BED can always be done at least as efficiently as directly constructing
the BDD.

2.3 Model Checking and Equivalence Checking

Most of the applications described in this chapter target hardware
verification, under the form of Unbounded (or Bounded) Model Check-
ing [10, 28] or Equivalence Checking. We provide in this section a brief
introduction to the terminology and the main issues in BDD and SAT-
based Model Checking.

While combinational systems are described by the Boolean functions
of their outputs, synchronous sequential systems are often modeled as
Finite State Machines (FSMs). FSMs are usually described by their
Transition Relation TR, representing the present-next state behavior,
and an initial set of states S.

Properties are expressed in terms of Boolean formulas (invariants) or
temporal formulas (e.g., CTL properties). Equivalence checks are usu-
ally brought to invariant checks through the so called miter (or product
machine) structure, where two circuits share their primary inputs, and
extra gates compare the outputs under check.

Given a property P under check

Standard combinational checks are achieved by proving that P is
a tautology, or that its complement T (target state set, T = P) is
unsatisfiable.

Sequential checks on a model, characterized by a transition relation
TR and an initial state set S, seek for mutual reachability of S and
a target state set T (the property or its complement, depending
on the kind of property).

Bounded Model Checking (BMC) just performs checks up to a limited
sequential depth [7, 16]. It basically works on a propositional formula f
that is satisfiable iff there is a state path of bounded length k from S
to T. Let us use si for the state or the i − th step, with 1 ≤ i < k (see
Figure 2.6), then a BMC problem can be expressed as follows:

f = TR(S, s1) ∧ . . . ∧ TR(sk−1, sk) ∧ (sk = T)

Due to the above mentioned bounded depth, this is an incomplete
verification technique, and it works well for falsification and partial ver-
ification. If correctness, rather than bug hunting, is the target, full ver-
ification is usually attempted by BMC with longer and longer bounds,
possibly augmented with fix-point checks or inductive proofs. BMC is
usually operated by SAT solvers.

Advancements in mixed BDD and SAT techniques 53

S

TR1 TR2
TRk

...
T

S1 S S2 k

Figure 2.6. BMC propositional formula construction.

As far as BDDs are concerned, sequential verification is based on a
symbolic traversal, i.e., a forward (or backward) breadth-first visit of the
state space, represented by the following least fix-point (lfp) iteration:

FR = lfp R.(S ∨ (Img(TR,R))

The resulting state set FR is the set of forward reachable states. The
method is based on the iterated application of the Img operator, comput-
ing symbolic images of the R state set. Figure 2.8 shows a diagrammatic
representation of the state space during the overall methodology.

As T may be reached before the fix-point, it is possible to avoid full
computation of FR with on the fly tests for intersection with T. This is
shown in Figure 2.7.

SequentialVerification (TR, S, T)
New ← S

From ← S

FR ← S

while (New �= ∅)
if ((New ∧ T) �= ∅)

return (Satisfiable)
To ← Img (TR, From)

New ← To ∧ FR

FR ← FR ∨ New

From ← BestBDD (New, FR)
return (Unsatisfiable)

Figure 2.7. Symbolic Forward Verification.

CTL model checking procedures are often implemented as backward
traversals. This is easily expressed by swapping the S and T sets, and
changing the Img function with PreImg.

Approximate Traversals [14, 20] are a possible way to extend the ap-
plicability of reachability analysis (with partial verification by sufficient
checks) to larger circuits. The approach is based on the approximate
image (Img+) operator, returning over-estimations of exact images. Ef-
ficiency comes from the fact that, although R+ represents more states

54 ADVANCED FORMAL VERIFICATION

...FR

T

S
Img ImgFR1

2

nFR = R
R+

Figure 2.8. Reachability Analysis: Image Computation, R, and R
+ representation.

(see Figure 2.8), its BDD is usually much smaller than R (for that reason
R+ is represented with a smoother line with respect to R in Figure 2.8)
as many mutual interactions and dependencies among state variables are
artificially ignored.

3. Comparing SAT and BDD Approaches: Are
they different?

Several comparisons between SAT and BDD based approaches have
been attempted over the last few years, both from a theoretical and an
experimental points of view. Some works are mainly focused on differ-
ences, and they show that the two methodologies have different classes of
tractable instances. Other ones follow the intuition that common sub-
problems (e.g., variable ordering) could be faced by mixed techniques
and heuristics.

In this section we overview some works in both of the above mentioned
categories.

3.1 Theoretical Considerations

Most of the research effort showing differences between the SAT and
BDD worlds is based on finding examples of different performance, either
on specific benchmarks or broader industrial examples.

Uribe et al. [36] first show examples of out-performance in both direc-
tions between the two approaches. Using classical benchmarks from con-
straint satisfaction, artificial intelligence and combinational equivalence
verification, they compare the original DP procedure with BDDs. They
prove (theoretically as well as experimentally) that either technique may

Advancements in mixed BDD and SAT techniques 55

be exponential, while the other one is polynomial. They conclude that,
in general, BDDs are well suited for representing large numbers of so-
lutions that share a recursive structure, and for functional equivalence
problems from the circuit verification domain. The favorable best per-
formance of BDDs often comes at the expense of exponential memory
usage. BDDs are found impractical to solve highly constrained prob-
lems with few or no solutions, such as the quasi-group and hard random
3-SAT problems, on which the DP procedure is good at. The DP proce-
dure is also clearly superior if one only wants to find a single solution in
a space rich of solutions. On the other hand, it practically was of no use
in proving Boolean equivalences for which BDDs are particularly adept.

An interesting observation of [36] is that, when solving constraint
satisfaction problems with BDDs, there basically is no search. To this
respect the process consists entirely of constructing a BDD represen-
tation for a Boolean function that satisfies a given set of constraints.
Consequently, the final result represents all possible solutions. A BDD
based approach should thus be more fairly compared with exhaustive
search algorithms, and not with those methods that find only one solu-
tion. However, this distinction is irrelevant in all cases where there are
no solutions at all, since any procedure has to “exhaust” the space of
possible solutions in one way or another.

More recently, Groote et al. [21] came to similar theoretical conclu-
sions, i.e., “resolution-based and BDD-based approaches cannot simulate
each others polynomially”. They prove this property by showing formu-
las that can be solved polynomially with resolution and exponentially
with BDDs or vice-versa.

Even though quite interesting, especially from a theoretical point of
view, the above works should be just considered as initial attempts to
compare the two approaches. Being focused on very limited sets of
benchmarks, they only provide specific impressions, with some lack of
generality, and they say very little about the real relation between reso-
lution and BDDs. Experimental results on selected benchmarks may be
influenced by badly chosen variable orders in BDDs or non optimal proof
search strategies in SAT. Furthermore, new advancements in either tech-
nique (as for instance the dramatic recent improvements of SAT solvers
in circuit verification), may even fully revise any previous statement or
conclusion.

3.2 Experimental Benchmarking

A much more extensive experimental benchmarking has been pro-
posed for the specific case of Bounded Model Checking (see Section 2.3).

56 ADVANCED FORMAL VERIFICATION

The works described in this section [16, 8, 11] concentrate both on spe-
cific home-made benchmarks and on industrial examples.

3.2.1 Bug Hunting in an Industrial Setting. Bjesse et
al. [8] specifically target hardware verification to find bugs in a memory
sub-system of the Alpha microprocessor.

As the initial sub-system had something like 14400 latches, 400 pri-
mary inputs, and 15 stages of pipeline, authors had to reduce its size
before verification. To obtain a proper reduction, they applied different
methodologies. In particular, as they do not need to preserve all pos-
sible properties as long as they can still find problems in the reduced
circuit which are also present in the full size circuit, they also applied
formally incorrect ad-hoc reductions. The final model has something like
600 latches.

On the resulting circuit, authors apply BDD-based symbolic model
checking, SAT-based BMC, and Symbolic Trajectory Evaluation (STE).

Their experimental analysis shows that symbolic model checkers have
a capacity limit which prevents “cost effective” bug hunting. For ex-
ample, the BDD-based symbolic model checker Cadence SMV needed
from several hours to days to check simple properties. As a consequence,
authors looked into SAT-based BMC strategies, using both the FixIt
tool and the publicly available SAT-solver GRASP [27]. Figure 2.9 shows
a diagrammatic representation of the results by comparing the various
CPU times as a function of the bound, i.e., the length of the failure
checked.

As far as STE is concerned, authors discover that it can potentially
allow much deeper explorations (preserving acceptable run times), but
it requires much more time to produce good specifications. Their final
conclusion is that the three methods have very different characteristics,
so they finally propose a mixed verification methodology. Their sugges-
tion is to start verification by SAT-based BMC with small bound. For
each bug found, remove the bug, correct the model and move to larger
bounds. Start working contextually with SAT-based BMC and STE
whenever BMC takes more than half an hour. If neither BMC nor STE
are able to find a failure, try SMV to complete the verification task.

3.2.2 Modifying BDD-based Techniques to Perform BMC.
Copty et al. [16] compare two internal Intel tools performing BMC:

Thunder and Forecast. Thunder is based on the DLL SAT solver
SIMO. Forecast, uses a traditional BDD package. The BDD package
is an internal Intel tool, allowing dynamic reordering, partitioned tran-

Advancements in mixed BDD and SAT techniques 57

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 20 40 60 80 100 120 140 160

C
P
U

T
i
m
e

Bound

[SMV]
[SAT - FixIt]

[SAT - GRASP]

Figure 2.9. BDD and SAT comparison.

sition relations, prioritized traversal, and other state-of-the-art features.
As BDD-based tools usually perform unbounded checks, authors trans-
formed it to perform bounded verification. To this respect, as termina-
tion, i.e., checking for the fix-point, is not an issue in bounded search,
authors modify the algorithm presented in Figure 2.7 as described in
Figure 2.10.

SequentialBoundedVerification (TR, S, T, k)
Frontier ← S

for (i ← 0; i ≤ k; i ← i + 1)
if ((Frontier ∧ T) �= ∅)

return (Satisfiable)
Frontier ← Img (TR, Frontier)

return (Unsatisfiable)

Figure 2.10. Symbolic Forward Bounded Verification.
.

In this version of the algorithm the overall reached set of states,
Reached, is not maintained. At the same time, to have manageable
size for the Frontier state sets, authors adopt a partitioned-prioritized
traversal. Basically, the Frontier set is partitioned whenever its BDD
gets larger than a certain threshold and partitions are maintained in a
priority queue. Partitions are inserted in the priority queue according to
their distance from S, and they are discarded whenever they reach the
maximum allowed bound.

58 ADVANCED FORMAL VERIFICATION

Comparison is done in terms of performance and capacity on a wide
set of industrial benchmarks. On the one hand, time performance shows
that Thunder (with negligible tuning work) provides comparable re-
sults as Forecast (with much higher tuning effort). On the other hand,
Thunder could manage circuits containing thousands of memory ele-
ments and inputs, clearly far beyond the capacity of any state-of-the-art
BDD-based tool.

To sum up, this work lead to the conclusion that SAT approaches are
both more robust and scalable than BDD techniques, and more impor-
tantly they provide higher productivity within an industrial framework.

A different point of view is presented by Cabodi et al. in [11]. In this
work, authors propose a more specialized BDD-based BMC algorithm.
In order to cope with larger models, they exploit mixed forward and
backward reachability analysis, approximate and exact traversals, guided
search, conjunctive decompositions and generalized cofactor based BDD
simplifications. The overall method could attack models in the range
up to 1000-2000 memory elements. To this respect, BDDs seem to be
more scalable with increasing bounds, while SAT tools are able to attack
bugs on larger problems. Figure 2.11 shows this behavior on a well
known benchmark, while checking an invariant property available with
the original circuit description.

The graph compares CPU times for the BDD-based tool (called FBV)
and the SAT-based BMC tool (NuSMV [15], version 2.0.2), with increas-
ing value of the bound. The SAT-based tool uses both the internal and
a state-of-the-art SAT solver (mchaff [31]) as slave engines.

The authors argue that the BDD based approach can be considered
as complementary to SAT-based BMC, especially when looking for se-
quentially deep bugs.

3.2.3 Conclusions. To sum up, the previous works show that
SAT-based tools are generally more robust and scalable than BDD tech-
niques. At the same time it is also true that there seems to be enough
room also for BDD-based techniques especially as far as hard corner
cases and ad-hoc techniques are concerned. In the following sections we
concentrate on affinities and collaborative techniques.

3.3 Working on Affinities: Variable Order

On a completely orthogonal direction, the emphasis is put in [2, 3,
4, 34] on the affinities between BDDs and SAT. More specifically, the
works concentrate on strategies to find a good variable order or to select
a good variable when performing a specific step of the algorithm.

Advancements in mixed BDD and SAT techniques 59

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10 12 14 16

C
P
U

T
i
m
e

Bound

NuSMV-sat
mchaff

FBV

Figure 2.11. BMC execution time (sec) versus bound value for the am2901 bench-
mark.

It is well known that a proper variable order can provide an ex-
ponential compression rate. A similar behavior is experienced with
SAT solvers. GRASP [27], for example, uses dynamic variable-ordering
heuristics, such as DLCS (Dynamic variation of LCS) or DLIS (Dy-
namic variation of LIS). The former selects the variable that appears in
the maximum number of unresolved clauses, while the latter one selects
the literal with the same property.

3.3.1 Affinities on circuit-width correlation. Affinities be-
tween SAT and BDDs were already pointed out by Prasad et al. [33].
Their work mainly studies circuit SAT for ATPG, with the aim of char-
acterizing its complexity in terms of circuit cut-width. As a byproduct,
authors argue that BDDs show a similar behavior, since circuit-width is
an upper bound to their size.

3.3.2 Recursion tree and Variable Order. Reda et al. [34]
study the relation between the search tree of the DP/DLL procedures
and the BDD of the corresponding function. They establish that the
number of paths from the root node to the terminals of the BDD is
directly related to the number of backtracks needed to prove the equiva-
lence of two functionally equivalent circuits. This relation introduces the
ability to calculate an optimal lower bound on the number of backtracks
needed to prove equivalence. In addition, this relation leads to the con-
clusion that the capture of the variable ordering of the minimal path

60 ADVANCED FORMAL VERIFICATION

BDD in the DP procedure implies a reduction in the number of back-
tracks needed to prove the problem. So the authors exploit the above
fact, by devising a variable ordering technique for the SAT procedure.

The work is interesting in establishing a relation between BDD paths
and decision trees in a SAT solver, with both theoretical and experi-
mental support. Its main limitation appears to be the restricted model
adopted for the SAT procedure. In fact, relevant issues such as non
chronological backtracking and learning (conflict clauses), which play a
key role for SAT performance, are not addressed.

3.3.3 A Common Static Variable Order Heuristic. In [3,
2] the authors propose a “universal” variable-ordering heuristic, called
MINCE (MIN CUT Etc.).

The driving idea is to “capture” structural properties of Boolean func-
tions to optimize critical steps. The methodology introduced is based
on a variable partitioning (and consequently reordering) scheme able to
capture “connections” among variables. If one is able to partition all
variables into two largely independent separate groups, then the func-
tion is likely to be represented by a BDD with small cut, i.e., with few
edges between the two groups of variables. BDDs with small cuts tend
to have fewer edges and vertices.

To obtain this, the authors build an hyper-graph, whose vertices cor-
respond to variables and edges to clauses of the original CNF formulation
of the problem. Then, they recursively partition the graph by using the
Capo tool, applying min-cut partitioning with several optimizations. In
this way, they are able to isolate unrelated or loosely related subsets of
variables. The linear placement generated by the partitioning heuristic
is then translated back into an ordering of CNF variables and used both
for the SAT and the BDD tools.

Authors claim benefit in using the MINCE variable ordering both to
drive SAT decisions and as a static variable ordering for BDDs.

3.3.4 Conclusions. Although attractive in their starting goal,
the above works just cover a very particular aspect of BDD and SAT
interactions. Furthermore, the experimental support is still rather pre-
liminary and do not always keep into consideration state-of-the-art tools
or recent improvements in the tools and heuristics.

Advancements in mixed BDD and SAT techniques 61

4. Decision Diagrams as a Slave Engine in
general SAT: Clause Compression by Means
of ZBDDs

Let us move now to examples of mixed approaches. We describe in this
section some techniques, derived from typical SAT applications, where
ZBDDs play an important role as a slave tool interacting with a master
SAT solver. ZBDDs are used as a low-level core technique to compress
the internal clause database of the SAT solver.

To this respect, one of the main problems of SAT solvers is the ex-
ponential growth of the underlying CNF data structure. As introduced
in Section 2, ZBDDs are particularly suited to represent sparse sets,
and, for this peculiarity, they have been adopted to compact the CNF
database. Each CNF clause is encoded as a single path (from root to the
1-terminal) in a ZBDD representing the set of all clauses. The number
of ZBDD paths thus equals the number of clauses in the clause database
with a possibly relevant memory compression rate. Implementing CNF
manipulations as symbolic operations may exploit size reduction in terms
of time complexity, too.

More specifically, a ZBDD encoding uses two variables for every orig-
inal CNF variable, one for each literal. A clause is encoded by a charac-
teristic function, where the generic variable xi = 1 if the corresponding
literal belongs to the clause, otherwise xi = 0.

Example 2.4 As an example the set of clauses [4]:

Scl = (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ c ∨ d) ∧ (a ∨ b ∨ c)∧

(a ∨ c ∨ d) ∧ (a ∨ c ∨ d) ∧ (b ∨ c ∨ d) ∧ (b ∨ c ∨ d)

is represented as a characteristic function Scl(a, a, b, b, c, c, d, d), depend-
ing on 8 variables.

Unfortunately, symbolic encoding and manipulation of CNF clauses im-
ply major modifications in the SAT procedures themselves, often pre-
venting some key performance enhancements of standard explicit SAT.

ZBDDs for Symbolic Davis-Putnam Resolution.
ZBDDs were first adopted by Chatalica et al. [13] to encode CNF clauses
and perform a symbolic version of the DP procedure. They argued that
the implicit representation is able to overcome the space complexity of
DP. Since the amount of clauses generated at each resolution step (vari-
able quantification) may grow exponentially, DP is in fact acknowledged
as generally less memory efficient than DLL. By resorting to ZBDDs, the
authors are able to symbolically perform several resolutions in a single

4.1

62 ADVANCED FORMAL VERIFICATION

step, which allowed them to solve problems (e.g., the Pigeon-Hole and
Urquhart) previously known as exponential for SAT.

ZBDDs for Symbolic DLL. Aloul et al. [4, 5] use ZB-
DDs for a similar technique, applied to DLL search. The methodology
works as follows.

The clause database is firstly implicitly represented as a ZBDD. Then
the original steps of the SAT algorithms are implemented on this struc-
ture. “Decision”, for example, is implemented by adding the ZBDD for
the one-literal clause to the original ZBDD. Analogously, implicit oper-
ators on ZBDDs implement unit clause Boolean Constant Propagation
and Backtrack search on sets of clauses.

The procedure shows an exponential advantage over the corresponding
explicit version on selected test cases.

ZBDDs for Breadth-First SAT. Finally, Motter et
al. [32] use ZBDDs to implement a SAT decision process based on
Breadth-First Search (BFS). As in previously mentioned approaches,
ZBDDs allow overcoming space limitations, which are in this case con-
nected with explicit state enumerations in queues and priority queues,
typical of BFS procedures.

Conclusions. All the above methods show how ZBDDs
can deliver relevant memory reduction. Moreover, memory compression
provides proportional gains on time performance, thanks to symbolic
manipulations. As a general remark, ZBDDs are supposed to provide
higher speed-ups on classes of problems showing high compression of
CNF clauses.

Albeit the evident gains experienced on the proposed benchmarks,
the generality of ZBDD based approaches is questionable, as most of the
recent improvements attained on explicit SAT solvers, such as conflict
diagnosis and recursive learning, are not implemented with ZBDDs, and
it is even not clear how to possibly exploit them symbolically. As a
consequence, any serious alternative approach in this direction should,
at least, address this issue.

5. Decision Diagram Preprocessing and
Circuit-Based SAT

We now present approaches requiring a looser integration between
BDD and SAT tools. Symbolic BDD based manipulations can be seen
as a sort of front-end normalization or pre-processing, in order to reduce
the amount of work required by further SAT reasoning. This has been

4.2

4.3

4.4

Advancements in mixed BDD and SAT techniques 63

proposed in the domain of combinational as well as sequential verifi-
cation (Bounded and Unbounded Model Checking). We first describe
two works where preprocessing with a BDD like structure is employed
in order to normalize and simplify circuit representations before their
translation to CNF formulas. Then, we introduce two approaches, do-
ing both a BDD-like circuit preprocessing and a special-purpose SAT
algorithm operating directly over the circuit structure. We finally de-
scribe preliminary BDD manipulations, as a way to produce redundant
information to be exploited by the SAT tool for better search space
pruning.

5.1 BED Preprocessing

Abdulla et al. [1] and Williams et al. [38] propose two similar ap-
proaches to solve unbounded Model Checking.

Both works adopt a preliminary Decision Diagram representation for
the circuit. BEDs are adopted in [38], whereas a functionally similar
structure (Reduced Boolean Circuit) is used in [1]. After that, both
approaches do intermediate symbolic manipulations. They eventually
convert such a representation to a proper format to perform the final
proof. In [1] the authors use a SAT solver to perform the final proof,
while in [38] the authors either use a SAT solver or convert their repre-
sentation into BDDs.

The two works use similar variable quantification rules within image
and set inclusion/intersection operations on BEDs. Since BEDs are an
intermediate representation between circuit and canonical BDDs, sym-
bolic manipulations done in this phase can also be viewed as local BDD-
like function normalizations and simplifications over a combinational
unrolling of the circuit, and circuit representations of state sets.

Using the BED representation, the algorithms can take advantage of
their built-in reduction rules and the sharing of isomorphic sub-formulas.

In the experimental result section, both papers present data on pe-
culiar circuits, namely a multiplier and a barrel shifter. Figure 2.12
reports a diagrammatic representation of the experimental results ob-
tained by [38] for the multiplier case. Circuit c6288, a 16 bit x 16 bit
combinational multiplier, is compared with a shift-and-add sequential
implementation. The verification consists in checking that correspond-
ing outputs coincide when the shift-and-add version has finished its com-
putation. The graph plots the CPU time of the different methods (the
proposed method using BED, and the tools NuSmv, SMV, and FixIt)
as a function of the number of outputs verified

64 ADVANCED FORMAL VERIFICATION

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 2 4 6 8 10 12

C
P
U

T
i
m
e

Output

[BED]
[NuSmv]

[SMV]
[FixIt]

Figure 2.12. Multiplier results.

5.2 Circuit-Based SAT

It is generally accepted that CNF representation is a source of major
benefits for SAT solvers, as this simple, general and regular data struc-
ture is the base for important optimizations within the SAT engine. In
contrast, the CNF format has some drawbacks:

Any structural information of the circuit, often of crucial impor-
tance, is completely lost.

In many problems, a large number of instances of SAT has to be
solved for each circuit. Hence, mapping a given problem descrip-
tion to CNF can represent a significant percentage of the overall
running time.

With the purpose of addressing the above problems, SAT can be done
directly on the circuit structure (after preliminary BDD-like manipula-
tions) instead of working on CNF representations.

5.2.1 BDD Sweeping and SAT. Kuehlmann et al. [25] present
an algorithm for Boolean reasoning based on BDDs, structure transfor-
mations, and SAT procedure. The approach includes an initial BDD
pre-processing, followed by a SAT procedure working directly on the
circuit structure.

BDD pre-processing is basically oriented to remove structural redun-
dancies. It works on a BDD-like canonical and/inverter graph (AIG)
representation of the problem. AIGs use two-input and vertices, and

Advancements in mixed BDD and SAT techniques 65

inverter attributes on the edges. Similar to BDDs, they support effi-
cient structural reductions as a hash-table is used to remove structural
redundancy during construction. Moreover, a two-level lookup scheme
allows converting any local four-input sub-structure into a canonical rep-
resentation, effectively removing local redundancy. As redundancies are
usually very common in practical problems because of different sources
(e.g., the language parsing and processing, the miter structure, the re-
peated invocations of Boolean reasoning on similar problems, etc.) the
reduction is very efficient.

The structural SAT strategy implements a standard search procedure
directly on the and/inverter graph representation of the circuit. It
attempts to find a set of consistent assignments that satisfy (or violate)
the property. The underlying circuit structure enables several optimiza-
tions. For instance, propagating implications on circuit topology, which
is further enhanced by canonical AIG representation (using only one type
of vertex function allows an efficient propagation of logic implication).
BDD sweeping [26] also incrementally simplifies the graph structure, due
to its ability to efficiently find vertices that are functionally identical or
complemented. If a pair of equivalent vertices is found, the algorithm
merges them and rebuilds their fan-out structure forward.

In the overall algorithm BDD sweeping and SAT solvers are applied
in an intertwined manner as reported in Figure 2.13.

BDDsweepingSATsearch (f , BDDLimit, SATLimit)
if (f = 0)

return (Satisfiable)
if (f = 1)

return (Unsatisfiable)
while (heap �= ∅)

result ← BDDsweep (heap, BDDLimit)
if (result �= Undecided)

return (result)
result ← SATsearch (f , SATLimit)
if (result �= Undecided)

return (result)
BDDLimit ← BDDLimit + DeltaBDDLimit

SATLimit ← SATLimit + DeltaSATLimit

Figure 2.13. BDD Sweeping and SAT Search.

f represents the problem to solve. BDD sweeping is applied first. Ba-
sically, it incrementally compresses the structure from the inputs toward
the outputs. This effectively reduces the search space for the subsequent
SAT search, which is run on f . If none of the two approaches solves the
problem, memory and time limits are increased and the process iterates.

66 ADVANCED FORMAL VERIFICATION

Termination comes when the problem is solved or there is no more
room for reductions. The algorithm also keeps a heap with “hidden”
BDDs, i.e., all BDDs exceeding the current size limit. This reduce the
number of BDD re-computations of already computed BDDs, when BDD
sweeping is re-invoked with a higher size limit.

As far as experimental results are concerned, the authors compare
their algorithm against the original BDD sweeping [26] technique. Re-
sults are impressive, showing benefits in terms of memory and time some-
times of two order of magnitude. Unfortunately, no direct comparison
with a generic SAT solver is provided. It is thus uneasy to quantify the
benefits coming from circuit SAT over generic SAT.

5.2.2 SAT on BEDs. An approach following a similar track
has been proposed by Williams et al. [37], who operate a full verification
procedure on BEDs. Given a BED for a formula, one way of proving its
satisfiability is to convert the BED to the corresponding BDD. In this
case canonicity would obviously imply size explosion. As a consequence,
the proposed approach is to use an upper level SAT-like partitioning,
so that BED sizes (and more importantly the BDD sizes after BED to
BDD conversion) are kept under control.

The authors first build a BED representation of the satisfiability prob-
lem. Then they use a combination of SAT-based variable decision and
BED to BDD conversion.

If the BED is large enough (which is always the case for non trivial
problems), the procedure (a top level recursive split variable selection
procedure called BedSat) performs a case splitting, and problem parti-
tioning, similar to CNF based SAT decisions. The algorithm works on
BEDs, so variable selection heuristics are changed, and no BCP is done,
but a similar process exploiting direct implications through BEDs rewrit-
ing rules. Using BEDs the selection is obtained by pulling a variable to
the root.

Whenever a BED is small enough after a set of variable decisions, the
algorithm builds a BDD (starting from the BED) and checks whether
the result is different from 0.

Experiments show that the method is faster than both pure BDD
construction and the straight use of satisfiability solvers such as Grasp
and Sato. A diagrammatic representation of these results, for the IS-
CAS’85 circuits, is reported in Figure 2.14. Plots are not represented
when the computation could not be completed within the resource lim-
its. Data, albeit interesting, are not conclusive as they mainly involve
“small” benchmarks also often dealt with more ”traditional” methods.

Advancements in mixed BDD and SAT techniques 67

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14

C
P
U

T
i
m
e

ISCAS Benchmark

[SATO]
[GRASP]
[BedSat]

Figure 2.14. BDD and SAT comparison.

5.3 Preprocessing by Approximate Reachability

Cabodi et al. [12] explore an alternative way to make BDD-based and
SAT-based tools cooperate. Their target is to improve the efficiency of
SAT-based BMC with the help of affordable BDD-based pre-processing.

It is well known (see for example [14, 20]) that “approximate” BDD
traversals may deal with much larger circuits than “exact” ones, at the
expense of exactness. Moreover, as the degree of approximation can
be trimmed, it is always possible to trade-off memory and time with
the accuracy of the result. Unfortunately nothing comes for free and
the limit of approximate techniques in verification is that they are not
complete, i.e., over-approximate reachability can prove correctness, but
it cannot disprove it.

The driving idea of [12] is to complement the initial over-approximate
BDD traversal with a final SAT-solver search. In other words, BDDs
are used as a redundant extra information, in order to prune and focus
the search. The high-level flow is represented in Figure 2.15.

First of all, as introduced in Section 2, a combinational unrolling of the
circuit representation (TR) of length k is generated (see Figure 2.15 (a)).
By adding the expressions for S and T, and performing a proper variable
re-labeling for TR a propositional formula is stored in CNF format. After
that, a BDD manipulation phase computes the characteristic functions
of the over-approximate state sets. This can be done in the forward or
backward directions (see Figure 2.15 (b) and (c)) or mixing them both.
Then the estimate is combined, as an additional constraint, with the

68 ADVANCED FORMAL VERIFICATION

Figure 2.15. (a) Standard combinational unrolling for SAT-based BMC; (b) Approx-
imate forward traversal from S to T; (c) Approximate backward traversal from T to
S.

previously generated combinational unrolling. Finally, the SAT-engine
is run on the resulting problem to solve it.

The main target in this case is to obtain an efficient pruning on the
SAT solver search space. The method shows best effects with increasing
bounds (sequential depth), and it has the advantage of requiring a loose
integration with the SAT solver.

6. Using SAT in Symbolic Reachability Analysis

This last section presents approaches using SAT tools within inner
steps of symbolic image and/or pre-image computations. All the pre-
sented approaches share the idea of representing state sets by means of
their characteristic function, which is a typical paradigm of BDD based
verification.

We first present a BDD based verification technique using SAT proce-
dures to drive BDD partitioning and manipulations within image com-
putations.

Then we describe two approaches performing full image/pre-image
computations within a SAT tool: The former approach does not use
BDDs at all, but we include it in our presentation for two reasons:

It proposes CNF clauses and SAT solving procedures to fully sub-
stitute BDDs in one of their most popular applications.

Advancements in mixed BDD and SAT techniques 69

It is a reference work for the latter approach, where a BDD-like
decomposition is adopted for state set compressed representation.

6.0.1 BDDs at SAT leaves. Gupta et al. [22, 23] perform
BDD based reachability analysis by using a SAT procedure within sym-
bolic image computation. They call their approach BDDs at SAT Leaves.

More specifically, they use BDDs to represent state sets and a CNF
formula to represent the transition relation. Symbolic image of a state
set is computed by exhaustive SAT search of all solutions within the
space of primary input, present and next state variables. However,
rather than using SAT to enumerate each solution all the way down
to a leaf, image switches to BDD-based computations at certain inter-
mediate points within the SAT decision tree. This is done as a trade
off between space complexity of BDDs and time complexity of full SAT
enumeration.

In a sense, this approach can be regarded as SAT providing a dis-
junctive decomposition for image computation into many sub-problems,
each of which is handled symbolically using BDDs.

The image of a From state set (expressed by a BDD) is computed by
a top level SAT procedure working on the CNF formula expressing TR,
with the following major modifications:

Decisions not satisfying the From domain set are forbidden. This
restriction mechanism (called BDD Bounding) is achieved by tak-
ing the conjunction of the From set and the transition relation.

Whenever a satisfying assignment is found, present state variables
are not recorded (they are implicitly quantified out) so that solu-
tions are represented within the next state space.

The SAT procedure stops when the whole space has been visited,
not after finding any single solution (as standard SAT procedures).

One naive approach of performing BDD Bounding would be enumer-
ating each complete SAT solution up to the leaf of the search tree, and
then check if the solution satisfies the given BDD. Since this would ob-
viously be quite inefficient, the authors interleave decisions of present
and next state variables, and they dynamically check present state as-
signments against the BDD of From (with no added cost).

A key aspect of the approach is choosing when to switch from SAT
decision tree to BDD symbolic image. In fact, the main claim of the au-
thors is that their approach drastically relaxes the BDD blow-up prob-
lem, since the only BDDs required are for state set representation, not
in monolithic, but in partitioned form. The upper SAT decision tree

70 ADVANCED FORMAL VERIFICATION

works as a disjunctive “chronological” partitioning of an image problem
is subproblems.

An attractive aspect of this solution is the ability to drive partitioned
BDD manipulations with SAT-based control. However, a few inherent
limitations are represented by BDD partition overlapping, uneasy ma-
nipulation of partitions with different variable ordering, tuning thresh-
olds and parameters that control the SAT to BDD switch. Moreover, the
reported experiments mainly target a direct comparison with standard
BDD-based symbolic reachability analysis. It is thus again uneasy to
quantify the benefits coming from dovetailing SAT and BDDs over pure
SAT methods.

6.0.2 SAT-Based Symbolic Image and Pre-image. McMil-
lan [29] introduced a fully novel approach to perform unbounded CTL
model checking completely within a SAT tool. The approach is based on
a CNF quantifier elimination procedure. While the top level algorithm
is basically the same as used in BDD-based CTL model checking, sets
of states are represented as CNF formulas rather than with BDDs. This
required a modification of the SAT solver in order to be able to perform
the key operation of quantifier elimination, i.e., the enumeration of all
solutions. Whenever a satisfying assignment is found, instead of termi-
nating, the algorithm seeks for new solutions, until full exploration of
the solution space.

A key factor for efficiency is search space pruning, based on learning.
Whenever a new solution is found (and the corresponding clause added
to the solution set), the algorithm augments the clause database with
the so called Blocking Clause, which is in conflict with (i.e., it rules out)
the satisfying assignment.

Experimental results show that this technique can compete with BDD
based model checkers and in some cases outperform them. The author
compares BDDs and SAT on publicly available model checking problems
derived from the compositional verification of one unit of a commer-
cial microprocessor design. All the checked formulas are invariants and
they are all true, i.e., no counter-example is generated. Figure 2.16 re-
ports these results by plotting the performance of the SAT-based method
against the performance of the BDD-based method. The author observes
that while the total run time is much smaller for the BDD-based tech-
niques, for most individual problems, the SAT-based method is faster
(in some cases by two order of magnitude). To conclude, this is a pretty
good results for SAT-based methods as it is likely to be much room for
improvements in the SAT-based methods than in the BDD-based ones.
At least these results seems to suggest it would be a good policy to devote

Advancements in mixed BDD and SAT techniques 71

at least a short time to SAT-based methods before trying BDD-based
approaches.

0.01 0.1 1 10 100 1000 10000

0.1

1

10

100

1000

10000

0.01

R
u
n
 t

im
e

o
f

 S
A

T
−

b
as

ed
 m

et
h
o
d
s

[s
]

Run time of BDD−based methods [s]

Figure 2.16. Microprocessor Verification Results.

A related approach is presented in [35]. Here pre-image is achieved
through an ATPG based SAT search. Success-driven learning is per-
formed as in [29], but BDD like graphs are used to store state sets.
BDDs are not canonical ROBDDs and they are not used for symbolic
manipulations. They rather resemble Free-BDDs [6] (BDDs with differ-
ent orderings along different paths), mainly exploited to obtain (possibly
exponential) size compaction over CNF representation of state sets.

The presented algorithm prunes redundant search space due to over-
lapped solutions and construct a FBDD on the fly. At the end, the
FBDD becomes the representation of the pre-image set.

The experimental results focus on pre-image computation for large
ISCAS benchmarks.

7. Conclusions, Remarks and Future Works

In this chapter we have overviewed most of the works mixing SAT and
BDD techniques in order to make them cooperate. After presenting the
main differences and affinities between them, we have followed a classifi-
cation scheme based on different application frameworks and interaction
schemes adopted for SAT-BDD interaction.

Let us now briefly draw some conclusions and lessons learned from
the experiences we have described.

First of all, we should definitely agree that SAT algorithms and sym-
bolic BDD manipulations are indeed different, and they are located at
opposite points in the space of solution strategies. Differences emerge

72 ADVANCED FORMAL VERIFICATION

on most relevant choices characterizing the approaches: Time vs. space
complexity, depth-first vs. breadth-first visits, explicit decision tree vs.
symbolic representation of sets of solutions, non canonicity vs. canonic-
ity, etc. Even though affinities on variable orders have been considered,
most research efforts have been oriented to exploit SAT and BDDs as
alternative competitor tools, so that the best results can be reaped by
both of them.

However, the exploration of possible interactions and intertwined op-
erations is far from being exhausted. Although successful stories exist,
most of the works we have presented are not mature and/or not general
enough to represent major breakthroughs.

Depending on the (more or less optimistic) way we look at future
research in this field, we should at least consider two scenarios.

Different peculiarities and specializations of tools dominate, and
prevent tight interactions among them. Following the generally
accepted (and reasonable) idea that different tools have differ-
ent classes of tractable problems, research and engineering efforts
will be directed at better characterizing and predicting tractable
problem instances and dynamically switching between available
engines.

Tools are different and highly specialized, but they are activated on
partitions and/or sub-tasks of large problems, so that their degree
of interaction is tighter.

For obvious reasons, let us concentrate on the latter possibility, where
using BDDs under given (tractable) size thresholds, then switching to
SAT decision procedures, is definitely an attractive solution. This is
the leading idea of several presented approaches, seeking for an optimal
trade-off between time and memory limitations.

Dynamic self-tuning and scalability are key features for widespread
applicability and robustness. To this extent, Kuehlmann et al. [25] show
advanced aspects such as tight integration of technologies and iterative
increase of size and backtrack limits.

Other interesting, still not fully explored trends, include:

Representation and/or manipulation of state sets by SAT solvers.
McMillan [29] opens an alternative field, state sets instead of com-
binational unrolling, for SAT manipulations, whereas [12] shows
that state sets are an important additional information to con-
strain SAT search space.

Improved BDD manipulations can be achieved by resorting to
search techniques using SAT. In addition to explicit search, which

REFERENCES 73

can leverage size explosion (as in [23]), sophisticated backtracking
schemes, learning and implication handling are mode specialized
and powerful than standard depth-first visits of BDD graphs.

Relaxing canonicity is known as a way to face BDD size explosion.
CNF clauses are an extreme (non canonical) choice, while inter-
mediate solutions, like for instance BEDs [24], still lack a solid and
fully developed technology (especially in sequential verification).

Low level symbolic manipulations are an attractive issue for SAT
search. ZBDDs [4, 5, 13, 32] thus far just opened a track. A cru-
cial question is how symbolic manipulations, albeit their potential
compactness, may keep pace with the dramatic performance im-
provements strongly related to the simple and regular structure of
CNF clauses.

References

[1] P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic Reachability Anal-
ysis based on SAT-Solvers. In TACAS 2000 - Tools and Algorithms
for the Construction and Analysis of Systems, 2000.

[2] F. A. Aloul, I. L. Markov, and K. A. Sakallah. Faster SAT and
Smaller BDDs via Common Function Structure. In Proc. Int’l Conf.
on Computer-Aided Design, San Jose, California, November 2001.

[3] F. A. Aloul, I. L. Markov, and K. A. Sakallah. MINCE: A Static
Global Variable–Ordering for SAT and BDD. In Proc. Int’l Work-
shop on Logic Synthesis, Lake Tahoe, California, May 2001.

[4] F. A. Aloul, M. N. Mneimneh, and K. A. Sakallah. Backtrack Search
Using ZBDDs. In Proc. Int’l Workshop on Logic Synthesis, Lake
Tahoe, California, May 2001.

[5] F. A. Aloul, M. N. Mneimneh, and K. A. Sakallah. ZBDD–Based
Backtrack Search SAT Solver. In Proc. Int’l Workshop on Logic
Synthesis, Lake Tahoe, California, May 2002.

[6] J. Bern, C. Meinel, and A. Slobodová. Some Heuristics for Generat-
ing Tree–like FBDD Types. IEEE Transactions on CAD, 15(1):127–
131, January 1996.

[7] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Sym-
bolic Model Checking using SAT procedures instead of BDDs. In
Proc. 36th Design Automat. Conf., pages 317–320, New Orleans,
Louisiana, June 1999.

[8] P. Bjesse, T. Leonard, and A. Mokkedem. Finding Bugs in an
Alpha Microprocessor Using Satisfiability Solvers. In Gérard Berry,

74 ADVANCED FORMAL VERIFICATION

Hubert Comon, and Alan Finkel, editors, Proc. Computer Aided
Verification, volume 2102 of LNCS, pages 454–464, Paris, France,
July 2001. Springer-Verlag.

[9] R. E. Bryant. Graph–Based Algorithms for Boolean Function Ma-
nipulation. IEEE Transactions on Computers, C–35(8):677–691,
August 1986.

[10] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L.
Dill. Symbolic Model Checking for Sequential Circuit Verification.
IEEE Transactions on CAD, 13(4):401–424, April 1994.

[11] G. Cabodi, P. Camurati, and S. Quer. Can BDDs compete with
SAT solvers on Bounded Model Checking? In Proc. 39th Design
Automat. Conf., New Orleans, Louisiana, June 2002.

[12] G. Cabodi, S. Nocco, and S. Quer. Improving SAT-based Bounded
Model Checking by Means of BDD-based Approximate Traversals.
In Proc. Design Automation & Test in Europe Conf., pages 898–903,
Munich, Germany, March 2003.

[13] P. Chatalic and L. Simon. ZRes: the old DP meets ZBDDs. In Proc.
17th Conf. of Autom. Deduction (CADE), 2000.

[14] H. Cho, G. D. Hatchel, E. Macii, B. Plessier, and F. Somenzi. Algo-
rithms for Approximate FSM Traversal Based on State Space De-
composition. IEEE Transactions on CAD, 15(12):1465–1478, De-
cember 1996.

[15] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV:
a new Symbolic Model Verifyer. In Proc. Computer Aided Verifica-
tion, volume 1633 of LNCS, pages 495–499. Springer-Verlag, July
1999.

[16] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella,
and M. Y. Vardi. Benefits of Bounded Model Checking at an In-
dustrial Setting. In Gérard Berry, Hubert Comon, and Alan Finkel,
editors, Proc. Computer Aided Verification, volume 2102 of LNCS,
pages 435–453, Paris, France, July 2001. Springer-Verlag.

[17] M. Davis, G. Logemann, and D. Loveland. A Machine Procedure
for Theorem-Proving. Journal of the ACM, 5:394–397, 1962.

[18] M. Davis and H. Putnam. A Computing Procedure for Quantifica-
tion Theory. Journal of the ACM, 7:201–215, 1960.

[19] E. Goldberg and Y. Novikov. BerkMin: a Fast and Robust SAT-
Solver. In Proc. Design Automation & Test in Europe Conf., pages
142–149, Paris, France, February 2002.

[20] S. G. Govindaraju, D. L. Dill, A. Hu, and M. A. Horowitz. Approx-
imate Reachability Analysis with BDDs using Overlapping Projec-

REFERENCES 75

tions. In Proc. 35th Design Automat. Conf., pages 451–456, San
Francisco, California, June 1998.

[21] J. F. Groote and F. Zantema. Resolution and binary decision dia-
grams cannot simulate each others polynomially. Technical report,
Utrecht University, 2000.

[22] A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT–Based Image
Computation with Application in Reachability Analysis. In Proc.
Formal Methods in Computer-Aided Design, volume 1954 of LNCS,
Austin, TX, USA, 2000.

[23] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik. Partition–
Based Decision Heuristic for Image Computation using SAT and
BDDs. In Proc. Int’l Conf. on Computer-Aided Design, San Jose,
California, November 2001.

[24] H. Hulgaard, P. F. Williams, and H. R. Andersen. Equivalence
checking of combinational circuits using boolean expression dia-
grams. IEEE Transactions on CAD, July 1999.

[25] A. Kuehlmann, M. K. Ganai, and V. Paruthi. Circuit-based Boolean
Reasoning. In Proc. Design Automat. Conf., Las Vegas, Nevada,
June 2001.

[26] A. Kuehlmann and F. Krohm. Equivalence Checking Using Cuts
and Heaps. In Proc. 34th Design Automat. Conf., pages 263–268,
Anaheim, California, June 1997.

[27] J. P. Marques-Silva and K. A. Sakallah. GRASP – A New Search
Algorithm for Satisfiability. In Int’l Conference on Tool with Arti-
ficial Intellingence, 1996.

[28] K. McMillan. Symbolic Model Checking. Kluwer Academic, Boston,
Massechusset, 1994.

[29] K. L. McMillan. Applying SAT Methods in Unbounded Symbolic
Model Checking. In Ed Brinksma and Kim Guldstrand Larsen,
editors, Proc. Computer Aided Verification, volume 2404 of LNCS,
pages 250–264, Cophenagen, Denmark, 2002.

[30] S. I. Minato. Zero–Suppressed BDDs for Set Manipulation in Com-
binational Problems. In Proc. 30th Design Automat. Conf., pages
272–277, Dallas, Texas, June 1993.

[31] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In Proc. 38th Design Automat.
Conf., Las Vegas, Nevada, June 2001.

[32] D. B. Motter and I. L. Markov. A Compressed Breadth-First Search
for Satisfiability. 2002.

76 ADVANCED FORMAL VERIFICATION

[33] M. Prasad, P. Chong, and K. Keutzer. Why is ATPG easy? In Proc.
36th Design Automat. Conf., pages 22–28, New Orleans, Louisiana,
June 1999.

[34] S. Reda, R. Drechsler, and A. Orailoglu. On the Relation between
SAT and BDDs for equivalence checking. Int’l Symposium on Qual-
ity of Electronic Design (ISQED), pages 394–399, 2002.

[35] S. Sheng and M. Hsiao. Efficient Preimage Computation Using A
Novel Success–Driven ATPG. In Proc. Design Automation & Test
in Europe Conf., pages 822–827, Munich, Germany, March 2003.

[36] T. E. Uribe and M. E. Stickel. Ordered binary decision diagrams
and the Davis-Putnam procedure. In ICCCL, volume 845 of LNCS,
pages 34–49. Springer-Verlag, 1994.

[37] P. F. Williams, H. R. Andersem, and H. Hulgaard. Satisfiability
Checking Using Boolean Expression Diagrams. In TACAS 2001 -
Tools and Algorithms for the Construction and Analysis of Systems,
IT University of Copenhagen, April 2001.

[38] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combin-
ing Decision Diagrams and SAT Procedures for Efficient Symbolic
Model Checking. In E. Allen Emerson and A. Prasad Sistla, ed-
itors, Proc. Computer Aided Verification, volume 2102 of LNCS,
pages 124–138, Chicago, Illinois, July 2000. Springer-Verlag.

[39] L. Zhang and S. Malik. The Quest for Efficient Boolean Satisfiability
Solvers. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proc.
Computer Aided Verification, volume 2404 of LNCS, pages 17–36,
Cophenagen, Denmark, 2002.

Chapter 3

EQUIVALENCE CHECKING
OF ARITHMETIC CIRCUITS

Dominik Stoffel
Dept. of Electrical and Computer Engineering, University of Kaiserslautern, Germany

stoffel@eit.uni-kl.de

Evgeny Karibaev
Dept. of Electrical and Computer Engineering, University of Kaiserslautern, Germany

karibaev@eit.uni-kl.de

Irina Kufareva
Department of Radio Physiks, Tomsk State University, Tomsk, Russia

irene@molsoft.com

Wolfgang Kunz
Dept. of Electrical and Computer Engineering, University of Kaiserslautern, Germany

kunz@eit.uni-kl.de

Abstract Although equivalence checking technology has matured greatly during
the last few years and designs with millions of gates can be handled,
some specific problems remain to be difficult. Formal verification of
arithmetic circuits, especially if multiplication is involved, is one of these
problems. In this chapter we analyze origin and nature of this problem.
We then review the most important research contributions targetting
equivalence checking of arithmetics. Specifically, we outline techniques
exploiting arithmetic functional properties and techniqes based on bi-
nary decision diagrams, both on the bit and word levels. We also report
on our own experiments with Multiplicative Binary Moment Diagrams
(*BMDs). Finally, we introduce a new pragmatic approach to equiva-
lence checking of arithmetic circuits. It extracts from a gate-level netlist
an arithmetic bit-level representation of the circuit. Verification is car-
ried out on this representation using a simple arithmetic calculus rather
than a Boolean one. We show experimental results for successfully
equivalence checking a large number of industrial multipliers as well
as other circuits implementing more complex arithmetic expressions.

Keywords: Equivalence checking, arithmetic verification, datapath verification,
multiplier verification, decision diagrams, arithmetic bit level

 77

R. Drechsler (ed.), Advanced Formal Verification, 77-123.

© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

78 ADVANCED FORMAL VERIFICATION

1. Introduction

Modern circuit design flows increasingly employ formal verification
techniques in order to ensure quality and reduce time-to-market by
avoiding bug-related design iterations. Equivalence checking has be-
come a regular step in the flow. Modern tools for equivalence checking
are capable of verifying designs with millions of gates in very short times.

The great success of equivalence checking technology is due to nu-
merous research advancements in this field during the past decade. An
important idea on which a typical equivalence checker is based is to
exploit structural similarity between the two circuit models being com-
pared [1, 2]. Structurally similar circuits contain a lot internal nodes
implementing equivalent circuit functions. These internal equivalences,
sometimes called cut points [3] can be used to efficiently break the veri-
fication problem down into smaller ones as has been explored by several
researchers [4, 2, 5, 3, 1, 6].

In many applications of equivalence checking, the two circuit models
being compared exhibit a great amount of structural similarity. For ex-
ample, during logic synthesis, the transformations of a gate netlist into
another gate netlist are of fairly local scope so that many equivalent
internal functions remain. However, in some cases, structural similar-
ity is not given. An important example that occurs often in practice is
the verification of arithmetic circuits. The problem occurs when an RT-
level (register transfer level) specification of a circuit must be compared
against a gate-level implementation, e.g., when verifying the correctness
of a logic synthesis step. Figure 3.1 illustrates this case. The verifica-
tion engines in a typical equivalence checker all operate on gate-level
circuit models. Hence, in order to compare an RTL specification with a
gate-level implementation, the frontend of the verification tool first has
to generate a gate-level representation of the specification. The process
is similar to the logic synthesis step that produced the implementation.
The two gate netlists can then be compared by the backend engines to
verify equivalence or produce a counterexample. When the design con-
tains arithmetic functions, this approach is bound to fail. The problem
is that the two gate netlists hardly contain any structural similarity at
all. The reason for this lies in the great flexibility when implementing
arithmetic functions.

In general, arithmetic functions in digital circuits, such as addition,
subtraction, multiplication and division, are implemented using addi-
tion as the base function. Subtracting a number X in two’s complement
notation from a number Y , for example, is implemented by inverting
all bits of X, adding 1, and adding Y . Multiplication is also based on

Equivalence Checking of Arithmetic Circuits 79

RTL
model

gate
netlist

logic
synthesis

tool

gate
netlist

frontend
verifier

equivalence
checker

(backend)

eq
ui

va
le

nt
?

equivalent! / counterexample

Figure 3.1. Equivalence checking of an RTL model against a gate netlist

addition. Hardware multipliers are most often composed of two stages
(Fig. 3.2). In the first stage, the partial products are generated from
two operand vectors, X and Y . The way the partial products are gen-
erated depends on whether signed or unsigned numbers are processed,
and whether or not Booth recoding is used. The partial products are
inputs to the second stage which is an addition circuit. In the sequel
we will call the inputs to an addition circuit primary addends. The
addition circuit adds the primary addends up to produce the final result
Z = X · Y . The implementation of this addition circuit can be chosen
from a variety of architectures differing in performance or area require-
ments. Most common implementations are an array of carry-save adders
(CSA) or a Wallace tree. The great variety of possible implementations

Primary

addend
generation circuit

Addition
X

Y
Z = X·Y

Figure 3.2. Basic multiplier structure

for both stages of the circuit makes it impossible for the verifier front-end
to constructively reproduce the output of the synthesis tool. Hence, the

80 ADVANCED FORMAL VERIFICATION

gate-level version of the specification and the gate-level implementation
exhibit little or no structural similarity at all.

The general structure of Figure 3.2 is not restricted merely to mul-
tipliers but is found in many arithmetic circuits. Very often, a first
stage generates primary addends of some kind and a second stage com-
putes the arithmetic sum of these primary addends. Also, many de-
signs contain arithmetic RTL expressions comprised of several addition,
subtraction and multiplication operators. Modern synthesis tools and
module generators specifically target these expressions by offering more
general building blocks such multiply/add structures. Recently, commer-
cial logic synthesis tools also contain algorithms to optimize specifically
these arithmetic expressions. The multiplication operators of the RTL
code are decomposed into partial products and addition circuits. Then,
all primary addends arising in the synthesized expression (including par-
tial products and other addends) are accumulated in a single addition
circuit. This addition circuit can be constructed in a “globally” opti-
mal structure, e.g., using a Wallace tree architecture. Figure 3.3 shows

c

a primary

Addition

circuit

y = a*b+c

b
addends of

a*b

Figure 3.3. More general arithmetic circuit example

an example of such a more general circuit structure generated from the
RTL expression y = a * b + c. The primary addends for the addition
circuit consist of the partial products from the multiplication a * b and
of the separate addend c.

A great number of verification approaches have been proposed in the
past. We will cover some of the important contributions in this chap-
ter. All approaches attempt to exploit specific knowledge about the
nature of the verification problem of checking the equivalence of arith-
metic circuits. In Section 2 we discuss approaches that are based on
special properties of the arithmetic functions implemented by a circuit.
Section 3 discusses approaches that apply Binary Decision Diagrams ex-

Equivalence Checking of Arithmetic Circuits 81

ploiting structural information about the designs. In Section 4 we give
an introduction to word-level decision diagrams which are an attempt
to bridge the gap between the Boolean domain of gate-level circuits and
the word-level domain of RTL models. Finally, Section 5 introduces an
approach that exploits knowledge about the typical internal structure of
arithmetic circuits as shown in Figures 3.2 and 3.3. It extracts from the
gate-level netlist of a circuit an arithmetic bit-level representation which
serves as the basis for verification algorithms.

2. Verification Using Functional Properties

An approach for the verification of arithmetic functions which is based
on a standard equivalence checking engine was proposed by Fujita [7].
Some arithmetic functions such as multiplication, square and cube func-
tions have special properties which can be expressed as recurrence equa-
tions. For a multiplier, a recurrence equation is

f(x + 1, y) = f(x, y) + y (3.1)

The only function that satisfies this equation (and an additional bound-
ary condition f(0, y) = 0) for all x and all y is the multiplication function
f(x, y) = x ·y. Instead of verifying the equivalence of a specification and
an implementation of multiplication, we verify whether the implementa-
tion satisfies the recurrence equation. The corresponding setup is shown
in Figure 3.4. In this setup, a miter is constructed of the circuits in

+

+1

y

x

x

y

z = (x+1)*y

z = x*y + y

circuit

circuit

Figure 3.4. Verification of a multiplier using a recurrence equation

the upper part and the lower part of Fig. 3.4. The upper part realizes
the left-hand side of Equation 3.1. It consists of an incrementor which
adds 1 to the operand x, and of the circuit presumed to be a multiplier.
The lower part implements the right-hand side of the equation and is

82 ADVANCED FORMAL VERIFICATION

composed of the circuit under verification and of an adder. The circuit
being checked is a multiplier if and only if the outputs z of the the two
circuits are equivalent.

The idea now is to use a standard equivalence checking engine based on
structural similarities. However, from the general structure of Figure 3.4,
it is unlikely to find many equivalent signals in the two circuits to be
compared. This can be somewhat improved by performing successive
case splits on the bits of operand x. For example, if the least significant
bit x0 is set to 0, the incrementer degenerates to an inverter for x0 and to
identity functions for the remaining bits xi of the operand. In this case,
many internal cut points can be found between the two designs and an
equivalence check succeeds. The next case split is performed by setting
x0 = 1 and x1 = 0. The incrementor degenerates to two inverters and
identity functions for the remaining bits. This leads to fewer equivalent
functions and to a harder verification subproblem. Nevertheless, the
verification problem is broken down. In their experiments, the authors
were able to verify the multiplier C6288 from the ISCAS-85 benchmark
set in less than 12 minutes on a Sparc20.

The major drawback of this interesting approach is that for the circuit
to be checked, a recurrence equation must exist and it must be known.
This hampers automation of the verification task.

A related approach has been pursued in [8] and [9] for verifying multi-
pliers. It uses relationships of the following kind. Consider a multiplier
for unsigned numbers. Let the operands x and y be two n-bit and m-bit
vectors, respectively, representing the unsigned numbers X and Y . The
product Z = X · Y is given by

Z =

n−1∑
i=0

2ixi ·

m−1∑
j=0

2jyj (3.2)

We can decompose the right-hand side of the above equation in the
following way:

n−1∑
i=0

2ixi ·

m−1∑
j=0

2jyj︸ ︷︷ ︸
n × m multiplier

=

n−2∑
i=0

2ixi ·

m−1∑
j=0

2jyj︸ ︷︷ ︸
(n − 1) × m multiplier

+ 2n−1xn−1 ·

m−1∑
j=0

2jyj (3.3)

This relationship is used to verify the implementation of the multi-
plier. Note that the first term of the right hand side of Equation 3.3
corresponds to the multiplication of an (n− 1)-bit number with a m-bit
number. If we have a circuit implementing an n-bit × n-bit multiplier,

Equivalence Checking of Arithmetic Circuits 83

we can easily obtain an (n−1)-bit × n-bit multiplier by setting the most
significant bit (MSB) xn−1 of operand x to 0. The remaining terms rep-
resent a partial product and an adder. The idea of [8, 9] is to construct
a miter circuit representing this equation as shown in Figure 3.5. If we

+

x

y

z = x*y

z = x*y

x n−2 ... 0

n−1

n−1
y*2 x

x n−1

y

circuit

circuit

0

Figure 3.5. Inductive equivalence checking of multipliers

prove the equivalence of the outputs of this miter, then we have shown
that the circuit is an n× m multiplier provided setting xn−1 = 0 makes
it an (n − 1) × m multiplier. In other words, the construction checks
whether the multiplier includes a correct addition of the partial product
formed with xn−1. The correctness of the (n−1)×m multiplier is again
checked by setting up the same construction, this time xn−2 being the
most significant bit which is set to 0. The complete verification consists
of n steps in each of which one more operand bit xi is set to 0 and the
equivalence check using the miter of Figure 3.5 is performed.

Each miter is verified using a standard cutpoint-based equivalence
checker. From the structure of Figure 3.5 one should think that a large
number of internal equivalences exist since the lower circuit is derived
from the upper circuit by only setting an input to 0 and appending
some logic primarily at the outputs. However, structural similarities
exist only in special cases and only if additional information is used
from the structure of the circuit under verification [8].

Figure 3.6 shows a simplified example of a miter setup for the in-
duction-based approach. The upper half of the figure displays part of a
multiplier adding four partial products for the addition tree of output
column z3. (For simplicity, we completely disregard adding of carry
signals from previous columns). In the lower part of the figure the x3-

84 ADVANCED FORMAL VERIFICATION

x3
y0

x2

x1
y2

x0
y3

y1

y0

x2

x1
y2

x0
y3

y1

y0

x3

x3

n1

n2

n3

m1

m2

m3

n4

z3

z3

0

multiplier

constrained multiplier added partial product

0

Figure 3.6. Induction-based verification – simple equivalence checking problem

input of the multiplier is set to 0. The partial product x3y0 is added to
the output of the multiplier. Both circuits are checked to be equivalent
using an equivalence checker. The shown problem is easy for the checker
since many equivalences exist, e.g., m1 ≡ n1, n2 ≡ n3 ≡ m2, and m3 ≡
n4 ≡ z3. The situation changes if a different architecture is used for the
addition circuit. Consider Figure 3.7. In this case, the partial products
are added in a different order. No internal equivalences exist.

In the case of array architectures, it is possible to select the operand
bits xi to be set to 0 in the reverse order of their accumulation in the mul-
tiplier so that mostly easy situations as in Figure 3.6 occur. By choosing
the operand bits in this order, the successive iterations of adding partial
products “reconstruct” the multiplier step by step. However, for Wallace
tree [10] architectures, it is not possible to find such a “good” order of
the operand bits since it is not possible to reconstruct the tree structure
by simply appending partial product additions. In these cases, the au-
thors of [8, 9] resort to combining their approach with the verification
technique of [11]. However, for Wallace-tree architectures, the induction-
based verification approach still has problems with robustness [9].

Equivalence Checking of Arithmetic Circuits 85

x2

x1
y2

x0
y3

y1

y0

x2

x1
y2

x0
y3

y1

y0

x3

x3

n2

m1

m2

m3

n1

x3
y0

n3 n4

z3

z3

0

multiplier

constrained multiplier added partial product

0

Figure 3.7. Induction-based verification – hard equivalence checking problem

3. Bit-Level Decision Diagrams

Already in Bryant’s famous paper of 1986 [12] introducing Reduced
Ordered Binary Decision Diagrams (ROBDDs) it was proven that mul-
tiplier circuits cannot be represented efficiently by BDDs. Regardless of
the variable order, the ROBDD size is always exponential in the num-
ber of variables. Hence, the straightforward approach of constructing
“monolithic” BDDs for the circuit outputs and comparing them for
isomorphism does not work even for small multipliers. Nevertheless,
ROBDDs and their derivatives have been applied to the verification of
arithmetic circuits by using smarter approaches.

One of the first techniques was an equivalence checking approach re-
ported by Burch [13]. The method is described in detail for unsigned
combinational multipliers that compute products by adding together
partial products bits xi ∧ yj for all inputs xi and yj. The basic idea is
to apply fanout splitting to the primary inputs of the multiplier. Each
fanout branch of an operand bit is replaced by a new input variable. In
order to verify the modified circuit, a corresponding specification circuit
has to be generated to which fanout splitting has also been applied. The
resulting circuits are no longer multiplier circuits. Hence, a variable or-
dering resulting in a moderate BDD growth may exist. In fact, ordering

86 ADVANCED FORMAL VERIFICATION

the input variables according to the significance of the output bit to
which they contribute leads to a BDD size polynomial in the number
of input variables. For an n × n bit unsigned multiplier modified in the
described way, the total size of the BDD needed to represent all the
outputs is exactly 4n3 − 6n2 − 4n + 12 for n ≥ 2.

Checking the equivalence of an implementation modified by fanout-
splitting against the corresponding specification is not equivalent to
checking the original circuits. However, the method is conservative in
the sense that no incorrect circuit will be deemed correct. On the other
hand, false negatives may occur, i.e., a correct circuit may be determined
to be possibly incorrect.

In the case that the multipliers process signed numbers or that Booth
recoding is used the method is less robust. For example, with Booth
recoding, fanout splitting occurs not only at the primary inputs but
at the outputs of the Booth recoders as well. The information about
where the Booth recoders are is not always available. Also, depending
on details of the adders/subtractors used in the multiplier, in some cases
the size of the BDDs may again become exponential.

A method called “implicit verification” that also uses ROBDDs to
verify multipliers and other arithmetic circuits was proposed by Stan-
ion [11]. The method exploits what the author called “structural de-
pendence”. The circuit is partitioned into sub-circuits by backwards
traversal from the circuit outputs, starting with the least significant
output bit. As an example, Figure 3.8 shows the partitioning of a mul-

z
0

z
1

z
2

..
.

..
.

..
.

..
.

n −1

1
K

0
K

2
K

1
P

0
P

n −2K

n −1 2
P

z

P ...

X Y

Figure 3.8. Partitioning a circuit for implicit verification

tiplier circuit producing an n-bit output word into n subcircuits P0, P1,
. . . , Pn−1. Each subcircuit Pk has as inputs a number of primary in-
puts corresponding to the operand bits xi, yj, and a set of signals Kk−1

originating in the previous sub-circuit (fanout sets). If the size of the

Equivalence Checking of Arithmetic Circuits 87

fanout sets is relatively large compared to the number of inputs to the
subcircuits, the circuit is said to exhibit structural dependence that can
be exploited in verification.

Structural dependence is exploited in the following way. The circuit
is verified output bit by output bit, i.e., each primary output zi of the
implementation is compared with the corresponding output z′i of the
specification. The primary pairs of output bits are proven in ascending
order, i.e., the least significant bit z0 is proven first and the most sig-
nificant bit zn−1 is proven last. (In the following, a symbol without a
prime (′) refers to the specification, a symbol with prime refers to the
implementation.)

For each pair of output bits, an ROBDD is constructed computing the
XOR of the functions implemented by the corresponding subcircuits Pi

and P ′
i . This ROBDD represents the characteristic function g = zi ⊕ z′i

of all counterexamples for the equivalence of the circuit outputs. These
counterexamples, however, contain assignments to the variables in the
fanout sets Ki−1 and K ′

i−1 which are not satisfiable if the circuits are
equivalent. In other words, the requirement zi �= z′i places constraints
on the input variables and on the variables of the fanout set Ki−1. In
order to prove that zi and z′i are equivalent, these constraints have to
be proven to be contradictory. This is done by additionally taking the
results of previously proven output bits into account. When proving
output bits zi and z′i, the equivalence of the previously targetted out-
put bits zi−1 and z′i−1 has already been established. We can form the

characteristic function hi−1 = zi−1 ⊕ z′i−1 representing all assignments
to the inputs of the subcircuits Pi−1 and P ′

i−1 for which the output bits
are equivalent. Also, the complete input/output behaviour of these ver-
ified subcircuits can be represented by characteristic functions χi−1 and
χ ′

i−1, respectively. These functions evaluate to 1 for all assignments to
the inputs and outputs of the subcircuit which are valid with respect to
the corresponding subcircuit’s function. Specifically, the characteristic
functions evaluate to 0 for all assignments to the primary inputs and to
the variables in the fanout sets Ki−1 and K ′

i−1 that violate the subcir-
cuits’ behaviour or the equivalence of the circuit outputs. By forming
a conjunction of function g with the characteristic functions hi−1, χi−1

and χ ′
i−1 all counterexamples violating subcircuits Pi−1 and P ′

i−1 are
excluded. This may immediately lead to an evaluation of the conjoined
functions to 0 which proves the equivalence of the output bits zi and
z′i. If, however, the conjoined functions do not evaluate to 0, additional
constraints have to be added resulting from the next lower output bits
zi−2 and z′i−2. This can be continued for all previously proven circuit

88 ADVANCED FORMAL VERIFICATION

outputs. Table 3.1 shows the pseudo-code for the described approach
(taken from [11] and slightly adapted to the notations in this chapter).

function imp ver() {
partition circuits;
for i = 0 to n − 1 do {
g = zi ⊕ zi

′;
for j = i − 1 downto 0 do {

hj = zj ⊕ z′j ;

g = g · χj · χj
′ · hj;

if g = 0 then break;
}
if g �= 0 return INEQUIVALENT;

}
return EQUIVALENT;

}

Table 3.1. Implicit verification algorithm for structurally dependent circuits

Using implicit verification, the author of [11] was able to check the
equivalence of structurally dissimilar circuits such as a Wallace tree mul-
tiplier against a CSA array multiplier. Empirically, the memory require-
ments for representing the ROBDDs seem to double with every 4 bits
of operand size. Also the CPU times increased accordingly. The author
reports verification of 32×32 multipliers in about six hours of CPU time
(as of 1999) requiring 130 MBytes of memory. These results are much
better than what could be achieved by constructing monolithic BDDs for
the circuit functions. However, the seemingly exponential dependence
of the problem complexity on the number of input variables makes this
technique less robust for larger operand bit widths.

4. Word-Level Decision Diagrams

Struggling with the problems encountered in arithmetic circuit verifi-
cation, researchers looked for alternatives to bit-level graph representa-
tions. The invention of word-level decision diagrams are an attempt to
exploit specific knowledge about the circuits other than structural infor-
mation. At the same time, it is important to maintain the advantages
of compact representation and easy manipulation, since these proper-
ties have made decision diagrams in the (bit-level) Boolean domain very
successful. The idea is to make use of the fact that arithmetic circuits im-

Equivalence Checking of Arithmetic Circuits 89

plement arithmetic functions which should be dealt with in the (integer)
arithmetic domain rather than the (Boolean) logic domain. Datapath
circuits process bundles of binary signals that encode words of data.
This abstraction from binary-valued Boolean signal values to word-level
values such as integers or real numbers is the basis of word-level decision
diagrams. Many approaches have been pursued [14, 15, 16, 17, 18, 19, 20]
in this direction. The basic ingredient of all these approaches is the use
of pseudo-Boolean functions which are functions over Boolean variables
but having non-Boolean ranges, such as integers or real numbers. In
this section we review the basic concepts of word-level decision diagrams.
From a practical point of view, among all approaches proposed so far, so-
called multiplicative binary moment diagrams (*BMDs) [18] have proven
to be the most popular. We will look at these decision diagrams and
algorithms for their synthesis in more detail.

4.1 Pseudo-Boolean functions and
decompositions

A pseudo-Boolean function is a function f : Bn → Zm. It maps
vectors of binary values to vectors of integer numbers. Figure 3.9 shows
an example of such a function (taken from [18]).

x1 x2 f(x1, x2)
0 0 8
0 1 -12
1 0 10
1 1 -6

Figure 3.9. Example [18] of a pseudo-Boolean function f : B2 → Z

The concept of a pseudo-Boolean function has several benefits. From
an application point of view, it allows to link the Boolean domain of
binary-valued signals processed by gate-level logic circuits with the arith-
metic word-level domain of more abstract circuit models. From the
viewpoint of designing data structures and algorithms for function rep-
resentation and manipulation, it offers to use function decompositions
similar to the ones on which binary decision diagrams are based such
as the Shannon decomposition. This is key for graph representations of
such functions.

The basic idea is to consider B as a subset of Z. An input variable
x evaluates to either 0 or 1. Therefore, Boolean negation (INV) of a
variable x can be expressed by integer arithmetic as (1 − x) and the

90 ADVANCED FORMAL VERIFICATION

Boolean conjunction operation (AND) of l variables x1, x2, . . . , xl can
be expressed by the arithmetic product x1 · x2 · . . . · xl. Such an (integer
arithmetic) product term evaluates to 1 if and only if all variables evalu-
ate to 1, i.e., they are equivalent to the corresponding Boolean “product”
of the Boolean variables.

Using these integer arithmetic transforms for the Boolean operations,
we can effectively decompose pseudo-Boolean functions pointwise, just
as in the Boolean domain. For example, the function of Figure 3.9 can
be expressed in a “minterm” normal form by multiplying each minterm
with the corresponding function value and adding up all terms:

f(x1, x2) = 8 · (1 − x1) · (1 − x2)
+ (−12) · (1 − x1) · x2

+ 10 · x1 · (1 − x2)
+ (−6) · x1 · x2 (3.4)

Simplifying this equation yields a more compact algebraic represen-
tation of the function:

f(x1, x2) = 8 + 2x1 − 20x2 + 4x1x2 (3.5)

In the Boolean domain, the Shannon expansion is used for function
decompositions and representation as binary decision diagrams (BDDs)
[12]. A Boolean function f is expanded in terms of a variable x by
f = x · fx + x · fx, where · and + denote Boolean conjunction and
disjunction, respectively. The terms fx and fx are the functions resulting
when variable x is set to 0 and 1, respectively. They are called the
negative and positive cofactors of f with respect to variable x. The
Shannon expansion can be generalized to pseudo-Boolean functions by
replacing Boolean operators with integer arithmetic operators. If ·, +
and − denote the arithmetic operators of multiplication, addition and
subtraction, the Shannon decomposition for pseudo-Boolean functions
is:

f = (1 − x) · fx + x · fx (3.6)

In the same way, other decompositions such as the Reed-Muller or
Davio decomposition of the Boolean domain can be generalized for
pseudo-Boolean functions. For representing Boolean functions, these de-
compositions have been used for so-called functional decision diagrams
(FDDs) [21, 22]. Equations 3.7 and 3.8 are the positive and negative
Davio decompositions generalized to pseudo-Boolean functions, respec-
tively.

f = fx + x · (fx − fx) (3.7)

Equivalence Checking of Arithmetic Circuits 91

f = fx − (1 − x) · (fx − fx) (3.8)

Equations 3.7 and 3.8 can be easily verified to be equivalent with the
Shannon expansion by the reader.

Depending on the type of decomposition used, different types of word-
level decision diagrams can be developed. The Shannon decomposition
of pseudo-Boolean functions (Eq. 3.6) leads to so-called Multi-Terminal
Binary Decision Diagrams or MTBDDs [16], also called Algebraic De-
cision Diagrams (ADDss) in [17]. Figure 3.10 shows an example of an
MTBDD for the function of Figure 3.9.

x1

x2 x2

8 −12 10 −6

Figure 3.10. Example of MTBDD [18]

x1

x2 x2

8 −20 2 4

Figure 3.11. Example of BMD [18]

Using the positive Davio decomposition of Eq. 3.7, we obtain a dif-
ferent type of decision diagram called Binary Moment Diagram (BMD).
The name comes from the fact that we can view the pseudo-Boolean
function f of Eq. 3.7 as a linear function in x. The term (fx − fx) is
equivalent to the partial derivative of f with respect to x. It is called
the linear moment [18] of f . Analogously, the term fx represents the
part of f that is independent of x. It is therefore called the constant
moment of f .

Applying the positive Davio decomposition recursively on the function
of Figure 3.9 yields the BMD shown in Figure 3.11. This can be verified
by rearranging and factoring the terms of Eq. 3.5:

f(x1, x2) = (8 − 20x2) + x1(2 + 4x2) (3.9)

Note that MTBDDs and BMDs are graph representations of pseudo-
Boolean functions that are not likely to be compact in the general case.
The integer values of the range of the represented function are stored in
the terminal values. Sharing of isomorphic sub-graphs is less frequent
than for bit-level decision diagrams because of the multiplicity of possi-
ble terminal values. To allow more compact representations, extensions
have been proposed based on edge weights. Each edge in the decision
diagram is marked by an integer weight. An additive weight of an edge is

92 ADVANCED FORMAL VERIFICATION

interpreted by adding the weight to the function to which this edge is in-
cident. Introducing additive edge weights to MTBDDs lead to so-called
Edge-Valued Binary Decision Diagrams (EVBDDs) [14]. Multiplicative
edge weights are multiplied with the function to which an edge is inci-
dent. Extending BMDs with multiplicative edge weights yields so-called
*BMDs. For representing arithmetic functions, *BMDs are suited much
better than EVBDDs. Therefore, the following sections discuss *BMDs
and their synthesis in more detail.

4.2 *BMDs

Multiplicative edge weights allow to extract common factors from sub-
functions and increase the chance for sharing common subexpressions.
As an example, consider the function y = 8 − 20z + 2y + 4yz + 12x +
24xz +15xy. Figure 3.12 shows the corresponding BMD and *BMD. By
extracting multiplicative constants from the subfunctions represented
by the vertices in the BMD, the opportunities for sharing subgraphs
are increased. For example, the terms 2y + 4yz and 12x + 24xz can be
factored as 2y(1 + 2z) and 12x(1 + 2z), respectively. In the *BMD the
subgraph representing 1 + 2z is shared, after constant factors have been
extracted and placed as weights to the edges in the graph. (Weights are
represented by square boxes located next to the edges).

2

48 −20 2

*BMDBMD

2

2
x

y y

z zz

12 24 15 −5 1 5

z z

4

y y

3

x

Figure 3.12. Example of BMD versus *BMD [18]

By obeying special rules when extracting and manipulating edge
weights, *BMDs can be maintained canonical. One rule, for example,
is that the edge weights for two branches leaving a vertex be relatively
prime. It is also required, that the integer 0 never appears as edge weight
but only as a terminal value, and that when a node has a branch to 0,
the other branch has weight 1.

Equivalence Checking of Arithmetic Circuits 93

*BMDs are very well suited to represent arithmetic functions such
as word-level addition, subtraction, multiplication and exponentiation.
The *BMDs of these operations are very compact, especially if com-
pared to their bit-level BDD counterparts. It is a remarkable feature of
*BMDs to be capable of efficiently representing the multiplication oper-
ation which is infeasible to be represented by an ROBDD. Figure 3.13

PRODUCT: X*Y

x0

x1

x2

y1

y2

2

y0

420 1

0

x0

1

x1

2

x2

420 1

4

y

y

y

SUM: X+Y

Figure 3.13. Word-level sum and product of 3-bit unsigned numbers [18]

shows the *BMDs for the operations of addition and multiplication, re-
spectively, of two unsigned 3-bit numbers.

Pseudo-Boolean functions and *BMDs represent word-level oper-
ations. Digital circuits, however, process individual binary signals using
logic gates. The semantics of a set of signals is given by a specific encod-
ing of these signals. When linking bit-level to word-level representations,
encoding functions are needed. The *BMDs for such encoding functions
are also very compact. Figure 3.14 shows the *BMDs for unsigned and
two’s complement encodings, respectively, of 4-bit data words. A data
word is a vector (x3, x2, x1, x0) of Boolean variables with x3 being the
most signficant bit.

Boolean functions can also be represented by *BMDs, simply by ob-
serving that the Boolean values {0, 1} are a subset of integers and, hence,
can also be represented by a pseudo-Boolean function. However, the
representations of Boolean functions by *BMDs and by BDDs are not
always equally complex. There are cases of Boolean functions for which
*BMDs are much more complex than the BDD representations and vice

94 ADVANCED FORMAL VERIFICATION

420 1 8

x

x

x

x0

1

2

3

420 1

x

x

x

x0

1

2

3

Unsigned Two’s Complement

−8

Figure 3.14. Encoding functions for 4-bit unsigned and two’s complement num-
bers [18]

versa. Bryant and Chen [18] report, however, that generally *BMDs
behave “almost as well” as BDDs when representing Boolean functions.

Note that in some cases, the size of the graph representation can
be reduced if further decomposition types are allowed. Drechsler et
al. [20] introduced K*BMDs where a function may be decomposed with
respect to a variable using either Shannon, positive or negative Davio
decomposition (Equations 3.6–3.8). K*BMDs may have both additive
and multiplicative edge weights. Chen and Bryant proposed so-called
multiplicative power hybrid decision diagrams (*PHDDs) [23] which are
also based on all three decomposition types. They further employ power-
of-two edge weights and complement edges for negation. This allows
efficient representations of floating point functions.

4.3 Equivalence Checking Using *BMDs

The task of equivalence checking is to verify whether or not two cir-
cuit models called specification and implementation implement the same
function. For datapath circuits, verification using *BMDs seems very at-
tractive. As shown in the previous section, *BMDs are very efficient in
representing word-level functions such as number encodings and arith-
metic operators. The canonicity property of *BMDs allows us an easy
proof of equivalence of two word-level functions by checking the respec-
tive *BMDs for isomorphism. However, in most equivalence checking
scenarios, at least one of the two circuit models is given as a gate netlist
on the bit-level (not on the word-level). Figure 3.15 shows as an exam-
ple the case where the implementation is given as a netlist consisting of

Equivalence Checking of Arithmetic Circuits 95

logic gates implementing bit-level Boolean functions, whereas the spec-
ification is given on the word-level.

ENC

ENC

ENCx2

x1 yIMPL

ySPEC

bit−level

word−level

f

F

gate−level
circuit

word−level
specification

eq
u

iv
al

en
t?

Figure 3.15. Equivalence Checking with *BMDs

In order to verify the equivalence of implementation and specification,
it is necessary to link the bit-level domain of logic gates with the word-
level domain of *BMDs using encoding functions. Let the circuit in the
example of Figure 3.15 process two words of data x1, x2 to produce
one output word yIMPL. Each data word is a vector of Boolean signals.
In order to compare the implementation to the specification, these bit
vectors are converted to integers using the encoding functions indicated
by the boxes named ENC. The equivalence check amounts to checking
whether the *BMDs for ENC (f(x1, x2)) and F (ENC (x1),ENC (x2)) are
isomorphic.

The question is, however, how do we obtain the *BMDs? For the spec-
ification side this is easy, since we can assemble more complex arithmetic
expressions from the *BMDs of the individual arithmetic operators. For
the implementation side, this is more difficult. A straightforward ap-
proach is to represent the Boolean functions implemented by the gates
in the gate netlist by *BMDs. Moving from gate to gate starting at
the primary inputs of the circuit and proceeding in topological order
we construct the *BMDs for each internal signal using operations sim-
ilar to “apply” as known from ROBDDs. When we have reached the
primary outputs of the gate-level circuit, we have a vector of Boolean
functions represented by *BMDs. Applying the encoding function for
the circuit outputs to these *BMDs yields the final *BMD representing
the pseudo-Boolean function implemented by the circuit.

96 ADVANCED FORMAL VERIFICATION

This approach works sometimes but fails in other very important
cases. Let us assume that function F in Figure 3.15 is the multipli-
cation operation. Remember that *BMDs behave similarly to ROBDDs
when representing Boolean functions. Hence, at the point where we have
constructed the *BMDs for the vector of Boolean functions at the cir-
cuit’s outputs, we end up with graphs of exponential size in the number
of input variables. We cannot earn the benefits we expected from using
word-level instead of bit-level decision diagrams until we have also ap-
plied the encoding function. This forward traversal approach leads to
an intermediate “blow-up” of our data structures.

A way out of this dilemma was proposed by Hamaguchi et al. [19].
The idea is to perform a backward traversal starting with the encoding
function for the circuit outputs. At all times of the traversal we main-
tain a *BMD representing only a single intermediate pseudo-Boolean
function. A network cut is placed at the circuit outputs and is moved
in reverse topological order gate by gate until the circuit inputs are
reached. The signals on the network cut are the input variables to the
intermediate *BMD. Each time the cut frontier is moved across a gate,
the variable corresponding to the output of the gate is substituted by
the gate function expressed in variables corresponding to the gate in-
puts. This operation is similar to the “compose” operation known from
bit-level decision diagrams.

The goal of this approach is to avoid the intermediate BMD blowup.
This blowup can only be avoided if the benefits of the word-level graph
representation can be exploited. This seems to be the case in the back-
ward traversal, since at all times only a single *BMD representing a
single pseudo-Boolean function is maintained. The authors [19] show
very good results for a number of multipliers of different bit widths and
architectures.

Although these results were promising, *BMDs are still not regularly
applied in industrial verification settings. There are a number of reasons.
First, *BMDs are compact if the represented functions are arithmetic. If
there is a bug in the circuit, however, the graphs tend to explode so that
no counterexample can be determined from them. This is, however, of
minor importance. Arithmetic circuits, especially multipliers, are very
easy to test using random patterns. If there is a bug in the circuit, a
counterexample can very often be determined by simulating just a small
number of random patterns.

However, there is a more severe fact hampering the application of
*BMDs in industrial practice. Hamaguchi’s method [19] does not seem
to work well on multipliers generated by commercial synthesis tools.
These multipliers are less regular than their textbook counterparts and

Equivalence Checking of Arithmetic Circuits 97

the automatic determination of a good cut frontier is very difficult. Keim
et. al. [24] proved for a certain class of multipliers (unsigned integer
Wallace-tree type) that the backward traversal approach is of polynomial
space and time complexity. The proof is based on a circuit representation
of the multiplier consisting of the AND gates implementing the partial
product bits and of full adder cells. Unfortunately, in practice, multiplier
netlists are composed of general logic gates and information about the
arithmetic sub-components is not available.

We experimented with a large number of multipliers generated by
our own tools as well as by commercial generators with the goal to im-
prove *BMD synthesis by backward traversal as proposed by Hamaguchi.
However, we were only partially successful. In the following section, we
report on these experiments to show where the major problems are.

4.4 Experiments with *BMD synthesis

The general intuition behind preferring a backward traversal over a
forward traversal is that the former makes better use of the special char-
acteristics of *BMDs when representing arithmetic functions. Represent-
ing a pseudo-Boolean function in the *BMD should always be better than
representing a bit-level Boolean function. However, if the network cut
is not chosen appropriately, the pseudo-Boolean function implemented
by the logic between the cut variables and the (integer) circuit output
need not necessarily yield a compact *BMD. The work of [19] suggests
a simple topological ordering among the nodes of the circuit when com-
posing the *BMD. In our experiments, this node ordering worked well
for text-book multipliers generated by our own tool. However, for in-
dustrial multipliers, we were not able to construct *BMDs using simple
topological ordering. In this section we report on a number of experi-
ments evaluating where the problems are and how *BMD synthesis could
be improved.

It has been pointed out by a number of authors [18, 25, 24] that
knowledge about the sub-components of a multiplier is very useful in
*BMD construction. However, in a gate netlist this information is not
available. In order to successfully build a *BMD, however, information
about the circuit structure should be exploited. The goal is to derive
as much information about the internal structure of the gate netlist as
possible.

As a first improvement over simple topological ordering of nodes to
be composed into the *BMD, we experimented with partitioning the
gate netlist of a multiplier into non-overlapping cones. Each circuit
node belongs to exactly one cone. The cones are identified by marking

98 ADVANCED FORMAL VERIFICATION

the transitive fanin of the circuit output bits. The outputs are visited
in ascending order of their bit significance in the output word of the
multiplier.

a
b2

2

a
b0

0

a
b0

1

a
b1

0

a
b0

2

a
b2

0

a
b1

1

a
b1

2

a
b2

1

PO1

PO2

PO3

PO4

PO5

PO0

cone 0

cone 2

cone 1

cone 3

cone 4

cone 5

Figure 3.16. Partitioning of a multiplier circuit into non-overlapping cones

Figure 3.16 shows an example for partitioning a multiplier circuit into
non-overlapping cones. The partitioning yields circuit regions in the cone
of influence of each circuit output containing only gates that are not in
the cone of influence of a PO with less significance. As will be explained,
construction of the *BMD will be done cone by cone. The cones have
two types of inputs: primary inputs and signals from the adjacent cone.

Equivalence Checking of Arithmetic Circuits 99

The output of a cone is a primary output bit. The index of a cone is
the positional index of its output bit in the resulting output bit vector.

a
b2

1

b1

a2
FFR

FFR

FFR

FFR

FFR

FFR

FFR

Figure 3.17. Partitioning a cone into fanout-free regions

Cone-wise partitioning has the goal of avoiding intermediate *BMD
blow-up. The primary inputs constitute a known and good “cut” fron-
tier. With every cone finished in *BMD synthesis, the cut frontier su-
cessively contains more and more primary inputs.

Within each cone, we exploit structural information by splitting the
circuitry into its fanout-free regions (FFR) [26]. Intuitively, a fanout-free
region is a maximal subgraph of the circuit graph such that the subgraph
has tree structure. The gates inside an FFR feed exactly one other gate.
The inputs to the fanout-free region are either primary inputs or gates
with fanout. The output of the fanout-free region is either a primary
output or a gate with fanout.

Note that our netlist representation consists only of NAND gates (and
inverters), so that also XOR functions may end up in individual fanout-
free regions. As an example, Figure 3.17 shows the partitioning of cone 3
of Fig. 3.16 into fanout-free regions.

Each fanout-free region is assigned a weight. The weight of an FFR is
the number of inputs to the cone in its transitive fanin. The inputs may
be either primary inputs or signals from an adjacent cone. The weights

100 ADVANCED FORMAL VERIFICATION

W = 4

W = 2

W = 2

W = 3

W = 2

W = 5

W = 9

b2

a1

b1

a2

3 247 6 5 1 0

2 1 06 5 4 37

PO3

A

B

C

G

D

E

F

3cone

Figure 3.18. Selection of network cuts for backward traversal

Equivalence Checking of Arithmetic Circuits 101

are used for selecting the FFRs to be composed in the *BMD synthesis
process.

The *BMD is composed cone by cone in reverse index order. A net-
work cut is placed at the primary outputs as in [19] and the *BMD is
intialized with the encoding function for the output word. In the suc-
ceeding steps, the cut frontier is always advanced only within a single
cone until that cone has been fully traversed. Within this cone, the cut
frontier is moved across fanout-free regions. At any time in the traversal,
the next FFR to be placed behind the cut is the one with the heighest
weight. The gate functions within an FFR that has moved behind the
cut frontier are composed into the *BMD in reverse topological order.

Figure 3.18 shows the weights of the FFRs and the movement of the
cut frontier within cone 3 of Fig. 3.16. The individual cut frontiers are
indicated by their endpoints which are marked by ascending numbers.
Note that the cut frontier continues in the adjacent cones but is fixed
there until the current cone is fully traversed.

The goal of the heuristics in this approach is to keep the intermediate
*BMD sizes as small as possible. Performing the composition conewise
aims at obtaining pseudo-Boolean functions of arithmetic nature after
every completed cone. Advancing the cut frontier over fanout-free re-
gions keeps the intermediate cut size small and has a high chance of
composing arithmetic units such as bitwise sum and carry functions into
the *BMD.

Table 3.2 and Table 3.3 show experimental results for the construc-
tion of *BMDs using Hamaguchi’s method and the cone-based approach
for a number of multiplier circuits with different word sizes. For each
method, the maximum intermediate *BMD size is reported. Note that
this number is also indicative of the runtime performance of the algo-
rithms. As opposed to ROBDDs, *BMD operations such as apply and
compose have possibly exponential worst-case complexities so that pro-
cessing *BMDs with large numbers of nodes leads to long CPU times.
As can be seen from the tables, the cone-based approach considerably
reduces intermediate *BMD sizes.

Table 3.2 shows the results for multipliers generated by a self-written
generator (CSA array architecture). Table 3.3 shows the results for mul-
tipliers which have been created using a commercial CAD system (Syn-
opsis Design Compiler). The circuit name prefixes dw csa and dw nbw
refer to CSA array and Wallace tree architectures, respectively.

For self-generated multipliers (Table 3.2), the maximum size of the
*BMDs is 25% less on the average and 3% less in the worst case for the
cone-based approach when compared to Hamaguchi’s method [19]. The
table shows that Hamaguchi’s method works very well for multipliers

102 ADVANCED FORMAL VERIFICATION

bit vector widths Hamaguchi cone-based size

circuit name X Y Z max. *BMD size max. *BMD size reduction (%)

mult 4x4 4 4 8 126 84 33
mult 8x8 8 8 16 249 154 38
mult 16x16 16 16 32 482 342 29
mult 24x24 24 24 48 772 594 23
mult 32x32 32 32 64 1094 910 16
mult 48x48 48 48 96 1846 1734 6
mult 64x64 64 64 128 2719 2628 3

Table 3.2. Experimental results for multipliers in CSA array architecture produced
by a self-written generator.

bit vector widths Hamaguchi cone-based size

circuit name X Y Z max. *BMD size max. *BMD size reduction (%)

dw nbw 4x4 4 4 8 229 82 64
dw csa 4x4 4 4 8 1139 299 73

dw nbw 4x6 4 6 10 282 130 53
dw csa 4x6 4 6 10 19448 2345 87

dw nbw 5x8 5 8 13 304 155 49
dw csa 5x8 5 8 13 20929 693 96

dw nbw 6x8 6 8 14 528 198 62
dw csa 6x8 6 8 14 — 3428 —

dw nbw 6x9 6 9 15 384 180 53
dw csa 6x9 6 9 15 — 7839 —

dw nbw 8x8 8 8 16 547 345 36
dw csa 8x8 8 8 16 — 816369 —

dw nbw 6x12 6 12 18 611 297 51
dw csa 6x12 6 12 18 — 3985 —

dw nbw 8x16 8 16 24 1642 623 62
dw csa 8x16 8 16 24 — 41708 —

Table 3.3. Experimental results for multipliers produced by a commercial CAD sys-
tem

Equivalence Checking of Arithmetic Circuits 103

that have a very regular structure. The self-generated circuits are based
on a simple standard “text-book” multiplication scheme. With increas-
ing bit widths, the advantage of the cone-based approach diminuishes,
however, it is never worse than the simple backward traversal technique.

For industrial multipliers (see Table 3.3), however, the cone-based
method yields a much larger size improvement of 75% on the average.
For some circuits in CSA array architecture, Hamaguchi’s method was
not able to construct a *BMD due to exponential blow-up, whereas the
cone-based approach succeeded. Note the extreme difference in perfor-
mance when comparing the results for industrial multipliers with those
for the very regular circuits produced by our own generator. For in-
dustrial multiplier circuits larger than the ones shown in Table 3.3, also
the cone-based backward traversal was not able to compute the *BMD
within reasonable amounts of CPU time.

Although exploiting additional structural information significantly
improves *BMD synthesis for industrial multipliers, only small to me-
dium sized multipliers can be handled. Practical multipliers as generated
from commercial synthesis tools contain many local optimizations, e.g.,
specialized adder structures, that improve the performance of the circuit
but on the other hand severely degrade performance of the *BMD syn-
thesis process. Sometimes even local circuit transformations by merging
of gates or rearranging operands to internal circuit functions can cause
the *BMD synthesis to become too complex.

As an experiment, we performed local circuit transformations on in-
dustrial multiplier netlists with the goal of reversing the optimizations
causing the problems. We used a technique to extract XOR functions
and to identify partial product bits similar to the arithmetic bit-level
extraction technique to be described in Section 5. In addition, we em-
ployed a set of rule-based circuit transformations. The transformation
rules were derived from a manual analysis of the multiplier netlists. The
transformations include identification of full-adder carry functions as
well as substitution of equivalent signals, both based on functional ana-
lysis. The goal of these transformations is to make the multiplier netlist
more regular so that the cone-based backward traversal approach be-
comes successful.

An example for such transformations is shown in Figure 3.19. The
circuitry on the left-hand side has been transformed into the circuitry on
the right-hand side. The gates in the transformed circuit are clustered
into arithmetic bit-level entities such as partial product bits, XORs of
adders and carry functions.

Table 3.4 shows the results of *BMD synthesis after applying cir-
cuit transformations for reversing local optimizations for a number of

104 ADVANCED FORMAL VERIFICATION

Figure 3.19. Example of local transformations for extracting arithmetic bit-level in-
formation

Equivalence Checking of Arithmetic Circuits 105

bit vector widths Maximum
circuit name X Y Z *BMD size

dw nbw 8x8 8 8 16 147
dw csa 8x8 8 8 16 736

dw nbw 16x16 16 16 32 1866
dw csa 16x16 16 16 32 693

dw nbw 16x26 16 26 42 1256
dw csa 16x26 16 26 42 571

Table 3.4. *BMD synthesis results for some restructured multipliers

industrial multipliers. All multipliers have been generated by a com-
mercial CAD system. The circuit denoted by prefix dw csa and dw nbw
are multipliers in CSA array and Wallace tree architecture, respectively.
For these circuits, we constructed the *BMDs within short CPU times.
Note that a simple backward traversal as in Hamaguchi’s method [19]
fails for all circuits except dw nbw 8x8.

These experiments show that rule-based transformations introducing
regularity into the netlists are very helpful for constructing *BMDs.
However, the transformation rules may work for one type of multiplier
but fail for another. Clearly, the described approach is not a robust and
general solution to the problem of *BMD synthesis from gate netlists.
The intent of these experiments, however, was to demonstrate that suc-
cess or failure of *BMD synthesis from gate netlists depend crucially
on knowledge about the internal structure of the circuit and its sub-
components. It is worthwhile to investigate whether a more systematic
approach to the extraction of such structural information can be devel-
oped. A technique of this kind is described in the following section.

5. Arithmetic Bit-Level Verification

Word-level decision diagrams such as *BMDs are very compact rep-
resentations for arithmetic circuit functions that are also easy to manip-
ulate. However, as shown in the previous section, constructing *BMDs
from gate netlists so that they can be used in equivalence checking is
difficult. Solutions to this problem which are robust enough for practi-
cal application do not yet exist. The *BMD synthesis procedures could
benefit very much from additional structural information about the cir-
cuit. If the gate netlist could be decomposed into its sub-components,

106 ADVANCED FORMAL VERIFICATION

constructing a *BMD becomes feasible. However, as we will see in this
section, if a representation in terms of sub-components is available, the
verification problem itself becomes much easier and may be solved di-
rectly on this new representation.

In this section we describe a new approach that extracts such infor-
mation about the arithmetic sub-components of a circuit. In some sense,
it can be understood as a reverse engineering process. As described in
the introduction (Section 1), most arithmetic circuits are constructed
in a two-stage fashion as shown in Figure 3.2, (repeated in Figure 3.20
for convenience). The first stage computes primary addends, e.g., the
partial product bits of a multiplier. The second stage adds these ad-
dends to produce the final result. Not only multipliers but also more
general arithmetic expressions are implemented in this way (Figure 3.3).
It is, however, not sufficient to simply identify the specific architecture

Primary

addend
generation circuit

Addition
X

Y
Z = X·Y

Figure 3.20. Basic multiplier structure

implemented in each of the two stages of an arithmetic circuit. For a
successful *BMD synthesis, the bit-level building blocks such as the half
and full adders in the addition circuit must be determined.

Also, one could think of employing such reverse engineering as a pre-
processing step to a conventional cutpoint-based equivalence check. Not-
ing that the number of possible architectures for the addition circuit is
limited one could think of incorporating a complete set of architectures
in the verifier frontend. The gate netlist would then be repeatedly com-
pared against specifications in each of the provided architectures using
a cutpoint-based equivalence checker. Unfortunately, the naive assump-
tion that for the correct architecture there will be enough cutpoints for
the checker to succeed is wrong. Even within one and the same archi-
tecture, e.g., a carry-save adder (CSA) array, there can be numerous
implementation styles that exhibit hardly any similarity in terms of in-
ternal equivalences. As an illustration consider Figure 3.21 showing four
ways of multiplying two decimal numbers.

All four cases can be implemented by the same architectures but have
no internal equivalences at all. The adder stage of each row computes
the accumulated sum of the previous rows. The accumulated sum values
are different in all four variations. We experimentally verified the ab-

Equivalence Checking of Arithmetic Circuits 107

167 ·239

334
501
1503

39913

167 ·239

1503
501

334

39913

239 ·167

239
1434
1673

39913

239 ·167

1673
1434
239

39913

Figure 3.21. Multiplication example (decimal numbers)

sence of internal equivalences using the 16x16 bit multiplier C6288. We
modified the circuit by swapping its operands. Since multiplication is
commutative C6288 with swapped operands must be equivalent to the
original version. Proving this by our equivalence checker [27], however,
turned out to be impossible. All internal equivalences were lost, except
for the ones belonging to the partial products in the first circuit level.

As can be seen, regardless of the intended application — *BMD syn-
thesis or standard equivalence checking — reverse engineering at the
architecture level is not sufficient. It is necessary to target building
blocks at lower levels of abstraction. A first attempt in this direction
was made in [28]. This work explored mapping the gates in a multiplier
netlist to a set of component cells by pattern matching using a logic pro-
gramming tool. However, the architectures of the cells have to be known
a priori and have to be given to the tool along with the circuit to be
verified. In this section we also describe a technique operating directly
on the gate level. This technique, however, decomposes the gate netlist
of an arithmetic circuit into its smallest arithmetic units. Instead of
identifying word-level operations as a whole these are broken down into
arithmetic operators on single-bit signals. The output of the extraction
procedure is an arithmetic bit level description of the circuit. Addition
at this level is reduced to addition modulo 2 and generation of carry
signals. In general terms, the proposed approach can be summarized as
follows:

1 Decompose the two combinational circuits – where possible – into
networks of 1-bit addition primitives, such as XOR, half adder, full
adder (arithmetic bit level).

2 Prove equivalence of corresponding circuit outputs on the arith-
metic bit level using commutative and associative laws.

The arithmetic bit level representation of a circuit is very desirable.
It could, for example, serve as a preprocessing step to a *BMD synthesis
procedure or could be used by the frontend of a standard equivalence

108 ADVANCED FORMAL VERIFICATION

checker to produce an easy-to-verify specification of the arithmetic cir-
cuit. However, given such a representation the verification task becomes
so easy that checking circuit equivalence can be solved without any ad-
ditional techniques.

5.1 Verification at the Arithmetic Bit Level

Any combinational circuit which performs the addition of binary bit
vectors such as the addition stage in a multiplier can be represented
as a composition of half and full adders. Figure 3.22 shows the gate
schematics of a half adder. In the sequel, we will use the half adder
symbol shown on the right side of Figure 3.22.

operand sum

carryoperand
carry

sumoperand

operand

Figure 3.22. Half adder, schematics and symbol

A full adder can be completely decomposed into half adders. We
make use of this fact in our choice of arithmetic bit level representation.
Figure 3.23 shows a possible implementation of a full adder and the
corresponding network composed of three half adders P , Q, R. Half
adder R adds the two carry bits c1 and c2 of the half adders P and Q
and produces the full adder carry output w. Note that because the two
signals c1 and c2 can never assume the logic value 1 simultaneously, the
carry output of R produces a constant 0.

Q

R
P

c2
c1

c1

c2

a

b

c

a

c

b

"0"

carry

sumsum

carry

v

w

v

w

Figure 3.23. Full adder decomposed into half adders

Once we have obtained a representation of an addition circuit that
is only composed of half adders, we speak of a half adder network or

Equivalence Checking of Arithmetic Circuits 109

the arithmetic bit level representation of the circuit. This representation
allows for a very efficient equivalence checking procedure. In the follow-
ing, we introduce a mathematical model for the arithmetic bit level and
develop the theoretical background of our verification procedure.

Definition 3.1 An addition graph is a triple (G(V,E), R, F). G(V,E)
is a bipartite directed graph with vertex set V and directed edge set E.
The vertex set V consists of three disjoint subsets, V = S ∪ C ∪ I. The
vertices in S have exactly two immediate predecessors, and are called
sum nodes. The vertices in I have no predecessors and are called pri-
mary addends. The vertices in C have no predecessors and are called
carry nodes.

R is a relation, R ⊆ (C × S) and F is a set of Boolean functions.
The addition graph is associated with a half adder network as follows.

Each sum node is associated with the sum output of a half adder in the
network. Each carry node is associated with the carry output of a half
adder. Each primary addend is associated with an input of the half adder
network.

Two vertices v and w are connected by a directed edge (v,w), if the
half adder associated with w has the signal associated with v as operand.

For c ∈ C and s ∈ S it is (c, s) ∈ R if and only if c and s are
associated with the output signals of the same half adder in the network.

With each vertex v ∈ V we associate the Boolean function fv ∈ F in
terms of the primary addends that is implemented by the signal corre-
sponding to v in the half adder network.

For illustration of this definition, Figure 3.24 shows the addition graph
of the full adder of Figure 3.23. Note that the primary addends and the

c

c

"0"
1

2

c

a

b

w

u
v

Figure 3.24. Addition graph for full adder

110 ADVANCED FORMAL VERIFICATION

carry nodes are the source nodes of an addition graph, and are also
referred to as addends in the following. In Figure 3.24, addends are
represented by boxes, sum nodes are represented by circles. The relation
between carry and sum nodes is indicated by dashed lines. Nodes v and
w are sinks of the addition graph and correspond to outputs v and w of
the half adder network.

The modelling of a half adder by two separate nodes in the addition
graph may seem awkward. Note, however, that our definition leads to a
decomposition of the half adder network into graph entities such that all
but the source vertices correspond to XOR operations. Therefore, each
sum node in the graph can be associated with the sum modulo 2 of all
source nodes in its transitive fanin. This facilitates the manipulation of
the graph structure.

In the following, without loss of generality, we assume that the addi-
tion graph is a forest of trees. If the addition graph obtained from the
original half adder network does not have tree structure, we can always
generate a forest of trees by duplication of appropriate graph portions
including primary addends.

v

p

q
u

v

p

q
u

r

s

t

t

s

r

Figure 3.25. Addition graph of Lemma 3.1

Lemma 3.1 Let r and s be the operands of a sum node u in an addition
graph. Further, let u and t be the operands of a sum node v, as shown
in Figure 3.25. Let p and q be the carry nodes of u and v, respectively.
Exchanging operand r with operand t does not change fv and does not
change fp ⊕ fq.

Proof 3.1 Function fv does not change because addition modulo 2 is
commutative. The function fp ⊕ fq does not change, because (r · s) ⊕
((r ⊕ s) · t) = (t · s) ⊕ ((t ⊕ s) · r).

Equivalence Checking of Arithmetic Circuits 111

Half adder networks implementing practical addition stages have the
special property that each addition tree computes a digit of a binary
encoded integer. The carry signals of the addition tree for digit i all feed
into the addition tree for the next digit, i + 1. This can be exploited
when checking the equivalence of addition trees in practical addition
networks.

Lemma 3.2 The output functions of two addition trees T and T̃ (Fig-
ure 3.26) are equivalent if the following conditions are true.

1 The sets of primary addends for T and T̃ are identical (IT = IT̃).

2 There exists an addition tree S such that the set of all carry nodes
being addends for T is identical with the set of carries generated
in S. The same holds for T̃ and some addition tree S̃.

3 The output functions of S and S̃ are equivalent.

Proof 3.2 If the output functions of S and S̃ are equivalent, then the
sum modulo 2 of all carries generated in S is equivalent to the sum mod-
ulo 2 of all carries generated in S̃. This follows from the observation that
S can be transformed into S̃ by a sequence of operand swaps according
to Lemma 3.1. T as well as T̃ compute the modulo 2 sum of the primary
addends and the carries of S.

I T

CS

T
~

S
~

CS
~

I TI T
~(addends of S)

T

S
equivalent

(addends of S)
~=

Figure 3.26. Illustration of Lemma 3.2

Once we have a representation of an addition circuit as a half adder
network, the equivalence check using Lemma 3.2 is straightforward. Note

112 ADVANCED FORMAL VERIFICATION

that finding addition tree S for addition tree T in condition 2 is trivial
in practice, since S is located in the immediate structural vicinity of T .
The correspondences S̃ with S and T̃ with T are known from the given
equivalence checking task.

Note the recursive nature of Lemma 3.2: the equivalence of the output
digit i (tree T) depends on the equivalence of digit i − 1 (tree S). The
terminal case of the recursion is digit 0 where no carry-ins exist and only
condition 1 of the lemma needs to be checked. The total run-time of the
equivalence check according to Lemma 3.2 is linear in the number of half
adders which is proportional to circuit size.

Another possibility to verify addition circuits on the arithmetic bit
level is to manipulate the circuits using the operation of Lemma 3.1
until both circuits have the same structure and contain enough inter-
nal equivalences for a standard equivalence checking procedure to be
successful.

The problem that remains to be solved, however, is how to extract the
arithmetic bit level representation from the gate netlist of an addition
circuit. This is subject of the following section.

5.2 Extracting the Half Adder Network

In the following, we give an intuitive description of the techniques
used for extracting an arithmetic bit-level representation of a circuit in
the form of a half adder network. A more detailed treatment of this
subject can be found in [29].

An addition circuit can be implemented in many different ways. Dif-
ferent architectures, e.g. carry-save adder arrays or Wallace trees, exist,
aiming at different design goals. Also for the components and subcom-
ponents there exists a variety of implementation choices. As an example
of an adder stage which is not constructed from cascaded half and full
adders, consider the 4-bit carry-lookahead adder of Figure 3.27. In order
to speed up computation time, the carry signals in each output cone are
generated by a special logic block.

It is our goal to extract a half adder network that abstracts from such
implementation details. We seek an extraction technique that produces
as output a network of half adders which is functionally equivalent to
the implementation.

The approach we propose is based on the following assumption: The
predominant operation at the bit level is the computation of exclusive
OR. This logic function is part of every implementation of binary addi-
tion. We use Boolean reasoning techniques [27] to detect XOR relation-
ships in the original circuit. Note that there are many possibilities to

Equivalence Checking of Arithmetic Circuits 113

C
a

rr
y
−

L
o

o
k
a

h
e

a
d

L
o

g
ic

s

s

s

s

c0

c

c

c

c
c

3

2

1

0

4
4

a

a

a

a

b

b

b

b

1

1

2

2

3

3

a

a

a

a

b

b

b

b

0

0

1

1

2

2

3

3

2

1

3

0

0

Figure 3.27. 4-bit carry-lookahead adder

implement XOR detection algorithms, e.g. using SAT, local BDDs or
structural hashing techniques. In order to trade off performance against
quality of results, it is desirable to have several phases with different algo-
rithms. Although we have not experimented with this, we believe that as
a first extraction phase, a structure-based functional hashing technique,
e.g., the technique based on AND/INVERTER graphs of [30], could be
very efficient to extract the majority of the XOR functions in an arith-
metic circuit. The few remaining XOR functions could then be detected
by a more powerful yet more time-consuming functional analysis based
on SAT, BDDs or ATPG.

Guided by the detected XORs we construct a network of half adders as
a reference circuit. We store implications between nodes in the original
circuit and the half adder network. The stored implications establish a
mapping between the nodes of the original and the reference circuit.

As an example, consider the implementation of a full adder shown in
Figure 3.28.

Using Boolean reasoning techniques it is possible to prove that the
signal x can be expressed as the exclusive OR of signals a and b. As
a consequence, in the reference circuit, we insert a half adder node u
with operands a and b and store implications reflecting the equivalence
of the sum output of the half adder and node x. Also, signal p can be
expressed as the exclusive OR of x and c. We insert a half adder node v
with operands x and c and store the equivalence of the sum output with
signal p.

114 ADVANCED FORMAL VERIFICATION

a

b

eq
ui

va
le

nt

eq
ui

va
le

nt

eq
ui

va
le

nt

"0"

v
w

x

u

c

c
c

1

2

p

q

Figure 3.28. Full adder implementation and mapped half adder network

Now that the half adders u and v exist, it is possible to express signal q
as an exclusive OR of the carry outputs c1 of u and c2 of v. Also, we can
identify the implication c1 = 1 → c2 = 0 which is equivalent to c1 ·c2 = 0,
for all possible input vectors of the adder circuit. Therefore we insert
half adder w with operands c1 and c2, and we store the information that
the carry output of this half adder produces a constant 0. We also store
an equivalence pointer between the sum output of w and the output q of
the adder circuit. We now have a complete mapping of the adder circuit
as a half adder network.

Note that although function q implements the majority function, q =
(a+b)c+ab = ab+ac+bc, of the inputs a, b, c and not an XOR function
of any of these operands, we can still find a mapping for this node by
using signals from the reference circuit.

When detecting an XOR relationship of the form y = a ⊕ b for some
signal y in the original circuit, with a and b being signals in the original
or in the reference circuit, it is actually not sufficient to insert a half
adder with operands a and b. It could be that an operand has to be
inverted in order to make the half adder useful as an operand later.
Since the correct operand phases cannot be determined by the XOR
detection (y = a ⊕ b = a ⊕ b), we add not only one half adder for each
XOR found but all four half adders corresponding to the four possible
combinations of inversions of the operands.

Equivalence Checking of Arithmetic Circuits 115

The Boolean analysis underlying this procedure is local and of fairly
low complexity. An efficient implementation can be based on ATPG,
SAT, decision diagrams or structural hashing [3].

5.3 Verification Framework

The proposed approach can be added as an additional heuristic to ex-
isting equivalence checking frameworks. Equivalence checking is run for
given circuits in the usual way until standard techniques abort by lack of
internal equivalences. If there are large regions without internal equiva-
lences, the extraction procedure of Section 5.2 is activated, attempting
to generate an arithmetic bit level representation of the pathological re-
gion. This can be successful, if the region is indeed an arithmetic block.
If the circuit contains a multiplier, standard equivalence checking will
be successful in identifying internal equivalences for many nodes in the
circuit, including the partial products of the multiplier. However, it
will fail to process the subsequent addition circuit. After extracting the
arithmetic bit level representation the verification can be completed.

Commercial equivalence checkers offer practical solutions for verify-
ing circuits containing multipliers by black-boxing these multipliers. If,
however, arithmetic expressions have been optimized as in Figure 3.3,
the individual multiplication operators can no longer be identified. It
is interesting to note that the arithmetic bit-level extraction approach
proposed here is insensitive to such expression optimizations, since the
general two-stage structure of primary addend generation followed by
an addition circuit still prevails.

The proposed extraction procedure will fail to extract an arithmetic
bit level description if the multiplier circuit contains an error. This,
however, is easily detected by a simulation step earlier in the verifica-
tion flow. As stated previously, multipliers are highly random-pattern
testable so that a buggy design is usually detected by only a small num-
ber of random patterns.

5.4 Experimental Results

The described techniques have been implemented as a part of the
HANNIBAL [27] tool. Table 3.5 shows some of our results for extract-
ing the half adder networks for multipliers of different origin, bit widths
and architectures. In our experiments we found that for multipliers
generated by our own self-written generator tools it was much easier to
extract the arithmetic bit-level representation than for circuits generated
by commercial synthesis tools. These circuits are much more “sophis-
ticated” than their academic counterparts which are constructed using

116 ADVANCED FORMAL VERIFICATION

common text-book components and architectures. For reasons of space,
we do not report verification results for circuits generated by our own
tools.

The first column shows the origin of the circuit. We have exper-
imented with multipliers generated by two different commercial syn-
thesis tools, one of them being Synopsys Design Compiler TM(labeled
“comm. 1”) in Table 3.5. Additionally, we have three different versions
of C6288 from the well-known ISCAS-85 benchmark set in the table. Cir-
cuit c6288 is the original circuit, circuit c6288nr is its non-redundant
version, and circuit c6288opt is the result of optimizing c6288 using SIS
with script.rugged.

The various multipliers process signed or unsigned numbers (column
2). Some benchmarks are based on Booth encoding (marked “b” in
column 3), others are not (marked “n” in column 3). Columns 4 to 6
show the bit widths of multiplication operands, X, Y , and result, Z.
Column 7 shows the circuit size given as the number of connections in
the netlist. The last column reports on the CPU time on a 1300 MHz
PC running Linux.

The benchmarks differ greatly with respect to the architectures used,
such as Wallace trees and arrays of RCA or CSA adders. For all these
architectures, the arithmetic bit level could be extracted within short
CPU times. Note that due to the Boolean nature of our extraction
technique the arithmetic bit level can also be obtained if the multiplier
has been been optimized using standard logic synthesis techniques. This
is illustrated by means of c6288opt and logic synthesis by SIS.

We verified the equivalence between any pair of multipliers with the
same operand widths and number interpretation (signed/unsigned) us-
ing the equivalence check of Lemma 3.2. After the arithmetic bit level
was extracted, the actual equivalence check in all cases took only a frac-
tion of a second.

In a second experiment (Table 3.6) we ran the arithmetic bit level ex-
traction algorithm on circuits computing larger arithmetic expressions
containing several multipliers. These netlists were generated by Synop-
sys DC Ultra TM, which features advanced arithmetic optimization capa-
bilities as described in Section 5.1 by identifying and merging arithmetic
addition trees.

Circuit MAC1 computes the expression y = a0*b0 + a1*b1, and cir-
cuit MAC8 computes y = a0*b0 + ...+ a8*b8. Column 2 of Table 3.6
shows the number of multipliers in each expression. The remaining
columns report the bit width of the result y, the size of each circuit
given as the number of connections and the CPU time needed to extract
the arithmetic bit level representation. Note that the multiplication op-

Equivalence Checking of Arithmetic Circuits 117

circuit Booth bit vector widths size CPU time
origin u/s enc. X Y Z (# conns.) (h:mm:ss)

comm. 1 s b 22 6 28 1393 0:00:08
comm. 1 s n 22 6 28 1372 0:00:22
comm. 1 s n 6 22 28 1394 0:00:27
comm. 1 u b 22 6 28 1424 0:00:07
comm. 1 u b 6 22 28 1326 0:00:09
comm. 1 u n 22 6 28 1254 0:00:08
comm. 1 u n 6 22 28 1499 0:00:10
comm. 1 u n 22 6 28 1362 0:00:11
c6288 u n 16 16 32 5568 0:00:33
c6288nr u n 16 16 32 4698 0:01:37
c6288opt u n 16 16 32 4721 0:00:21
comm. 1 s b 16 16 32 2324 0:00:29
comm. 1 u n 16 16 32 2682 0:00:44
comm. 1 u n 16 16 32 2778 0:01:37
comm. 2 s b 16 16 32 2340 0:00:26
comm. 2 u b 16 16 32 2443 0:00:20
comm. 2 u n 16 16 32 2740 0:00:38
comm. 2 u n 16 16 32 2336 0:00:22
comm. 1 s b 15 22 37 2955 0:00:42
comm. 1 s b 22 15 37 3052 0:00:54
comm. 1 s n 15 22 37 3652 0:02:14
comm. 1 u b 15 22 37 2944 0:00:49
comm. 1 u b 22 15 37 3174 0:00:53
comm. 1 u n 15 22 37 3541 0:01:23
comm. 1 u n 22 15 37 3524 0:01:14
comm. 1 u n 15 22 37 3652 0:01:54
comm. 2 s b 24 24 48 5178 0:01:32
comm. 2 u b 24 24 48 5319 0:01:27
comm. 2 u n 24 24 48 6410 0:03:40
comm. 2 u n 24 24 48 5424 0:01:49
comm. 2 s n 32 32 64 11636 0:24:13
comm. 2 u b 32 32 64 9265 0:04:34
comm. 2 u n 32 32 64 11612 0:13:35
comm. 2 u n 32 32 64 9792 0:05:48
comm. 2 s b 48 48 96 20203 0:29:50
comm. 2 u b 48 48 96 20464 0:22:09
comm. 2 u n 48 48 96 22368 0:29:21

Table 3.5. Arithmetic bit level extraction on multiplier gate netlists

118 ADVANCED FORMAL VERIFICATION

circuit # mult.’s result bit width # conn.’s # CPU time (s)

MAC1 2 17 1528 7
MAC8 9 17 12034 95

Table 3.6. Arithmetic bit level extraction on expressions

erations cannot be isolated as blocks in the gate netlist due to the arith-
metic optimization by the synthesis tool. The partial product bits of
each sub-expression are added by one optimized addition tree which can
be extracted using the proposed algorithm. Both circuits were proven
to be equivalent to their specification using Lemma 3.2.

6. Conclusion

In this chapter we have summarized the results of over a decade of
world-wide research efforts to improve on the verification of arithmetic
circuits. Even after so many years, equivalence checking of arithmetics,
especially multipliers, is still a very hard problem for which only partial
solutions exist.

Verification techniques that use specific properties of the implemented
arithmetic functions (Section 2) work only in special cases where such
properties can be identified [7], or they are not robust in the sense that
they cannot sufficiently handle certain architectures [8, 9].

Solutions based on bit level decision diagrams (Section 3) such as [4,
11] suffer from high complexity and may lack robustness, even if the
BDDs are not built for the circuit outputs directly but certain structural
properties of the arithmetic circuits (e.g. “structural dependence” [11])
are exploited.

The greatest advances have been achieved with the invention of word-
level decision diagrams (Section 4). Among those, *BMDs [18] have the
greatest promise because they can efficiently represent integer multipli-
cation. However, they require word-level information about a design
which is often not available and difficult to extract from a given bit level
implementation. If *BMDs are to be constructed from a gate netlist,
so far, only a backwards traversal synthesis technique can be successful,
and it requires fine-tuned heuristics to select the right cut frontiers. Even
then, for many practical circuits as generated from commercial synthesis
tools, *BMDs cannot be constructed because of excessive consumption
of computation ressources.

Equivalence Checking of Arithmetic Circuits 119

Finally, we have presented a pragmatic approach for equivalence
checking of arithmetic circuits including multipliers (Section 5). The
method is based on a bit level reverse-engineering approach. The main
challenge is to efficiently extract an arithmetic bit level description of
a circuit from a given gate netlist. As described in Section 5.2, the
presented technique is not general, i.e., in practice it relies on certain
assumptions about the internal structure of the circuits to be verified.
Fortunately, these assumptions are often fulfilled for today’s synthesis
enginges. In a practical evaluation, the method has been tested on var-
ious multipliers and other arithmetic circuits and proved very promis-
ing. The approach can easily be integrated into standard equivalence
checking frameworks and can increase the robustness of conventional
equivalence checkers for arithmetic circuits.

7. Future Perspectives

Formal verification of arithmetic circuits remains to stay an interesting
field of research with many open questions, not only in equivalence check-
ing. To a growing extent, formal verification by equivalence checking in
industrial design flows is being complemented by property checking. Es-
pecially since the advent of Bounded Model Checking (BMC) [31] a few
years ago, property checkers became capable of verifying designs of real-
istic sizes. Bounded model checkers are based on purely combinational
models of the circuits to be verified. Also in property checking, arith-
metic circuits pose problems to the verification tools. The situation be-
comes particularly difficult if the arithmetic expressions are intertwined
with Boolean control logic so that pure word-level representations are
not appropriate.

It is not at all obvious how to cope with arithmetic circuitry in such
situations. There may be cases where a word-level diagram is a desir-
able form of representation of a circuit. However, as demonstrated in
this chapter, even after many years of research it is not clear how to ob-
tain word-level diagrams from gate or bit-level circuit representations.
One possibility which is currently being explored in our research group
is using an intermediate arithmetic bit-level representation as presented
in Section 5 also in property checking. Many other possibilities exist
that need to be explored. For example, SAT-based techniques as used
in BMC have shown to be very effective for verifying control-dominated
designs. On the other hand, they behave poorly on datapath circuits.
Different solving techniques, e.g., such as ILP (integer linear program-
ming), have proven to be more successful on pure arithmetic problems.
However, typical property checking tasks contain expressions over both,

120 ADVANCED FORMAL VERIFICATION

datapath and control logic signals. Handling the control parts of a prob-
lem efficiently such that the power of ILP solver on the datapath parts
can be exploited is a difficult and open problem with many research op-
portunities [32, 33]. It may also be worthwhile to consider other solving
techniques such as CLP (constraint logic programming), e.g. along the
lines of [34].

As has been successful for equivalence checking, the goal for the de-
velopment of efficient property checkers will be a multi-engine approach
with each engine having its specific strengths and weaknesses. An ef-
fective set of heuristics implemented in the verifier front-end will have
to pre-process each verification problem in order to identify adequate
sub-problems which can be solved by the appropriate solving engines.
A great amount of research is necessary to develop these new heuristics
and new solving engines and to determine the interactions between all
components.

References

[1] W. Kunz, “An efficient tool for logic verification based on recursive
learning,” in Proc. International Conference on Computer-Aided
Design (ICCAD-93), pp. 538–543, Nov. 1993.

[2] D. Brand, “Verification of large synthesized designs,” in Proc. In-
ternational Conference on Computer-Aided Design (ICCAD-93),
pp. 534–537, 1993.

[3] A. Kühlmann and F. Krohm, “Equivalence checking using cuts
and heaps,” in Proc. Design Automation Conference (DAC-97),
pp. 263–268, June 1997.

[4] J. R. Bitner, J. Jain, M. S. Abadir, J. A. Abraham, and D. S. Fussell,
“Efficient algorithmic circuit verification using indexed BDDs,” in
Proc. Fault Tolerant Computing Symposium (FTCS-94), pp. 266–
275, 1994.

[5] J. Jain, R. Mukherjee, and M. Fujita, “Advanced verification tech-
niques based on learning,” in Proc. 32nd ACM/IEEE Design Au-
tomation Conference (DAC-95), pp. 420–426, June 1995.

[6] Y. Matsunaga, “An efficient equivalence checker for combina-
tional circuits,” in Proc. Design Automation Conference (DAC-96),
pp. 629–634, June 1996.

[7] M. Fujita, “Verification of arithmetic circuits by comparing two sim-
ilar circuits,” in Proc. International Conference on Computer Aided
Verification (CAV ’96) (R. Alur and T. A. Henzinger, eds.), no. 1102

REFERENCES 121

in Lecture Notes in Computer Science, pp. 159–168, Springer, Au-
gust 1996.

[8] Y.-T. Chang and K.-T. Cheng, “Induction-based gate-level ver-
ification of multipliers,” in Proc. International Conference on
Computer-Aided Design (ICCAD-01), (San Jose, CA), pp. 190–193,
2001.

[9] Y.-T. Chang and K.-T. Cheng, “Self-referential verification of gate-
level implementations of arithmetic circuits,” in Proc. Design Au-
tomation Conference (DAC-02), pp. 311–316, 2002.

[10] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans-
actions on Electronic Computers, vol. EC-13, pp. 14–17, February
1964.

[11] T. Stanion, “Implicit verification of structurally dissimilar arith-
metic circuits,” in Proc. International Conference on Computer De-
sign (ICCD-99), pp. 46–50, October 1999.

[12] R. Bryant, “Graph-based algorithms for boolean function manip-
ulation,” IEEE Transactions on Computers, vol. 35, pp. 677–691,
August 1986.

[13] J. Burch, “Using BDDs to verify multipliers,” in Proc. Design Au-
tomation Conference (DAC-91), pp. 408–412, 1991.

[14] Y. T. Lai and S. Sastry, “Edge-valued binary decision diagrams for
multi-level hierarchical verification,” in Proc. Design Automation
Conference (DAC-95), pp. 254–260, 1995.

[15] E. M. Clarke, M. Fujita, P. McGeer, K. L. McMillan, J. Yang, and
X. Zhao, “Multi-terminal binary decision diagrams: an efficient data
structure for matrix representation,” in Proc. International Work-
shop on Logic Synthesis, pp. (P6a) 1–15, 1993.

[16] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J.-Y. Yang,
“Spectral transforms for large boolean functions with application to
technology mapping,” in Proc. 30th ACM/IEEE Design Automa-
tion Conference (DAC-93), (Dallas, TX), pp. 54–60, June 1993.

[17] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. Hachtel, E. Macii,
A. Pardo, and F. Somenzi, “Algebraic decision diagrams and their
application,” in Proc. International Conference on Computer-Aided
Design (ICCAD-93), pp. 188–191, 1993.

[18] R. Bryant and Y. A. Chen, “Verification of arithmetic functions by
binary moment diagrams,” in Proc. Design Automation Conference
(DAC-95), pp. 535–541, 1995.

[19] K. Hamaguchi, A. Morita, and S. Yajima, “Efficient construction of
binary moment diagrams for verifying arithmetic circuits,” in Proc.

122 ADVANCED FORMAL VERIFICATION

International Conference on Computer-Aided Design (ICCAD-95),
pp. 78–82, November 1995.

[20] R. Drechsler, B. Becker, and S. Ruppertz, “K*BMDs: A new data
structure for verification,” in Proc. European Design & Test Con-
ference, pp. 2–8, 1996.

[21] U. Kebschull, E. Schubert, and W. Rostenstiel, “Multi-level logic
based on functional decision diagrams,” in Proc. European Design
Automation Conference (EDAC-92), pp. 43–47, 1992.

[22] R. Drechsler, B. Becker, A. Sarabi, M. Theobald, and M. Perkowski,
“Efficient representation and manipulation of switching functions
based on ordered kronecker functional decision diagrams,” in Proc.
Design Automation Conference (DAC-94), pp. 415–419, 1994.

[23] Y.-A. Chen and R. E. Bryant, “*PHDD: An efficient graph repre-
sentation for floating point circuit verification,” in Proc. Interna-
tional Conference on Computer-Aided Design (ICCAD-97), pp. 2–7,
November 1997.

[24] M. Keim, M. Martin, B. Becker, R. Drechsler, and P. Molitor, “Poly-
nomial formal verification of multipliers,” in VLSI Test Symposium,
pp. 150–155, 1997.

[25] Y.-A. Chen and J.-C. Chen, “Equivalence checking of integer mul-
tipliers,” in Proc. Asia and South Pacific Design Automation Con-
ference (ASPDAC-01), (Yokohama, Japan), pp. 196–174, 2001.

[26] M. Abramovici, M. Breuer, and A. Friedman, Digital Systems Test-
ing and Testable Design. Piscataway, New Jersey: IEEE Press, 1994.

[27] W. Kunz and D. Stoffel, Reasoning in Boolean Networks - Logic
Synthesis and Verification Using Testing Techniques. Boston:
Kluwer Academic Publishers, 1997.

[28] H. Simonis, “Formal verification of multipliers,” in Proceedings of
the IFIP WG10.2 WG10.5 International Workshop on Applied For-
mal Methods for Correct VLSI Design (L. J. Claesen, ed.), (North
Holland), pp. 267–286, Elsevier Science Publishers B.V., 1990.

[29] D. Stoffel and W. Kunz, “Equivalence checking of arithmetic cir-
cuits on the arithmetic bit level,” submitted to IEEE Transactions
on Computer-Aided Design, 2003.

[30] A. Kuehlmann, M. K. Ganai, and V. Paruthi, “Circuit-based
boolean reasoning,” in Proc. Design Automation Conference (DAC-
01), pp. 232–237, June 2001.

[31] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Sym-
bolic model checking using SAT procedures instead of BDDs,”

REFERENCES 123

in Proc. International Design Automation Conference (DAC-99),
pp. 317–320, June 1999.

[32] Z. Zeng, M. Ciesielski, and B. Rouzeyre, “Functional test genera-
tion using constraint logic programming,” in Proc. IFIP VLSI-SOC
Conference, December 2001.

[33] R. Brinkmann and R. Drechsler, “RTL-datapath verification using
integer linear programming,” in VLSI Design, pp. 741–746, 2002.

[34] Z. Zeng, M. Ciesielski, and B. Rouzeyre, “LPSAT: A unified ap-
proach to RTL satisfiability,” in Proc. Design, Automation and Test
in Europe Conference (DATE-2001), pp. 398–402, March 2001.

[35] S. Kimura, “Residue BDD and its application to the verification of
arithmetic circuits,” in Proc. Design Automation Conference (DAC-
95), pp. 542–545, 1995.

[36] T. Kim, W. Jao, and S. Tjian, “Arithmetic optimization using
carry-save-adders,” in Proc. Design Automation Conference (DAC-
98), pp. 433–438, 1998.

This page intentionally left blank

Chapter 4

APPLICATION OF PROPERTY
CHECKING AND UNDERLYING
TECHNIQUES

Infineon’s Circuit Verification Environment

Raik Brinkmann
Infineon Technologies AG

raik.brinkmann@infineon.com

Peer Johannsen
Infineon Technologies AG

peer.johannsen@infineon.com

Klaus Winkelmann
Infineon Technologies AG

klaus.winkelmann@infineon.com

Abstract This article gives an in-depth view of the use of formal property veri-
fication at Infineon Technologies AG. We present the method and tool
from a user perspective, and also discuss some aspects of its underlying
innovations. Finally we present a range of applications high-lighting
the strong relevance of property checking for today’s complex design
projects.

Keywords: Property checking, SAT algorithm, circuit verification, CVE

Introduction

Infineon Technologies AG offers a broad range of semiconductor prod-
ucts for target markets such as mobile communications and networks,

 125

R. Drechsler (ed.), Advanced Formal Verification, 125-166.

© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

126 ADVANCED FORMAL VERIFICATION

access control and network security, car electronics, and more. In order
to meet its highly demanding cost and quality targets, Infineon is using
an advanced design flow incorporating state-of-the-art commercial tools,
as well as innovative in-house tools.

For guaranteeing functional correctness, formal property-checking has
become an integral part of this design flow, and has been used in more
than 20 projects to date, including large ASICs.

The focus of property checking is on the block level, i.e. for estab-
lishing functional correctness of design blocks, where a block is typically
an object handled by a single designer, comprising a few hundred up to
approx. 10000 lines of HDL code. It may consist itself of a hierarchy of
VHDL entities, but seldom of more than two levels.

This focus on individual design blocks is motivated as follows: Local
errors i.e. errors whose cause resides within a single block, constitute
more than 50% of all errors. Often they are hard to localize from a
systems view and delay ramp-up of system simulation. As the proba-
bility of correct functioning of a chip equals at most the product of the
respective probabilities for all blocks, extreme quality blocks are key for
predictable system quality.

For verifying the integration of formally-verified blocks into a larger
entity, e.g. a complete ASIC, state-of-the-art simulation techniques are
used, which are outside the scope of this paper.

This article gives an in-depth view of the use of formal property ver-
ification at Infineon. We present the approach not only from a user
perspective, but also discuss some aspects of its underlying technology.
In particular we discuss a novel approach of dealing with bit-vector op-
erations, as well as the exploitation of symmetries to speed up proof
performance.

Finally we present a range of applications high-lighting various use
cases, and discuss relevant parameters such as project size, project phase
when verification is applied, verification goals, verification effort, cost
and quality.

1. Circuit Verification Environment: User’s
View

1.1 Tool Environment

The Infineon design flow includes the formal verification tool-set CVE
(Circuit Verification Environment), which has been developed by Sie-
mens and Infineon for more than a decade. CVE is mostly used by these
two companies, but also made available to a number of large European
electronics firms.

Application of Property Checking 127

CVE consists of language front-ends including VHDL and Verilog, the
gatecomp equivalence checker and a property checker called gateprop.

1.2 The gateprop Property Checker

Functional verification using gateprop, is based on

compiling (automatically) the design into an internal finite state
machine representation, and

formalising (manually) its specification using a simple temporal
property language, called ITL.

The formalised specification together with the FSM is then trans-
formed into a bounded model checking problem, which is checked
for satisfiability.

This yields a work flow as outlined in Figure 4.1.

(VHDL , Verilog)
Design Specification

Frontend

Property holds Counterexample

Formalized Property

Verification Engine (SAT, BDD, ATPG, ...)
Satisfiability Check

Satisfiable?
NO YES

Property Checker

Bounded Model Checking Problem

Figure 4.1. Property Checking Work Flow

Figure 4.2 shows a desk-top with the CVE graphical user interface
for property checking in the foreground window, and an editor with a
property file in the background.

An ITL property is essentially a constraint on the design’s signals over
a finite time interval. For the property to be valid means to hold for every

128 ADVANCED FORMAL VERIFICATION

Figure 4.2. The CVE user interface for property checking

observation window of the appropriate length, in every run admitted by
the design. The tool checks each property and, if it is found to be not
universally valid, produces a counter-example. For blocks in the 30 to
100k gates range this check takes from seconds to a few minutes per
property.

The basic concepts of the language are:

HDL flavour: The user chooses to write in either a VHDL or Verilog
syntax, using familiar language constructs to quickly get up to
speed with property writing.

Time steps: A property is written over a number of time steps, from
time t (i.e. t+0) to a future time (e.g. time t+4 after 4 clock cycles).
Consequently, there are a few time constructs in the language (e.g.
at t, during[t,t+2], etc.).

Each property consists of a ”prove” and an ”assume” part.

Assume part: This part allows the designer to specify the working
mode of the design under inspection. Assumptions such as no
reset occurs at time t are typically necessary to investigate if the
design exhibits a particular behavior. Further typical assumptions
are at time t the input connection request is high or there will be
no write request during time interval t+1 to t+5.

Application of Property Checking 129

Prove part: This part of the property specifies expected behavior. Typ-
ical assertions in the prove-part are the grant output is set at time
t+5 or the write acknowledge output will somewhere be issued
within time interval t+1 to t+3.

There are a number of language extensions that are designed to result
in concise but intuitive properties, including data quantifiers, a powerful
macro mechanism and time variables. As an example, here is a theorem
for the ADD instruction of a processor.

theorem th_add;

freeze:

Rs1 = natural’instr_Rs1(inst_i) @ t0,

Rs2 = natural’instr_Rs2(inst_i) @ t0,

Rd = natural’instr_Rd(inst_i) @ t0,

cond = natural’instr_cond(inst_i) @ t0,

task_no = natural’"stack/task" @ t0,

operand1 = v_reg(task_no, Rs1) @ t0,

operand2 = v_reg(task_no, Rs2) @ t0,

/* compute expected result */

result_exp = (operand1 + operand2) @ t0;

assume:

general_assumptions;

-- this is an ADD instruction:

at t0: instr_opcode(inst_i) = add_m;

at t0 - 1: satisfies(v_flags(task_no), cond);

prove:

at t0 + 1: v_reg(task_no,Rd)= result_exp(31 downto 0);

at t0 + 1: v_flags(task_no).zero

= to_bit(result_exp(31 downto 0) = 0);

at t0 + 1: v_flags(task_no).carry = result_exp(32);

end theorem;

Example ITL theorem specifying the ADD instruction of a processor.

2. Circuit Verification Environment: Underlying
Techniques

2.1 From Property to Satisfiability

Here we outline the basic concept of transforming a property, together
with the design, into a Boolean satisfiability problem. This is done in
several steps.

First the design, given in a language such as Verilog or VHDL, is
transformed into a finite state machine. The techniques for this are

130 ADVANCED FORMAL VERIFICATION

well known; however, large effort has been invested to actually develop
an efficient and robust compiler covering the complete language subsets
used in industry.

The finite state machine (FSM) thus obtained is now ”unrolled”, or
”unfolded” to represent several successive time points, i.e. each next-
state variable is fed into the state variable of a new copy of the FSM,
until a sufficiently large time window is covered, depending on the timing
constructs occuring in the property. Figure 4.3 illustrates the construc-
tion of this unrolled model.

A property describes a Boolean relation on this unrolled design, in
terms of inputs, outputs and states at various time points. In Figure
4.4, a block representing such a relation is added.

. . . .

. . . .

. . . .

. . . .

Inputs
at t

at t
Outputs

States at t
Register Register

States at t+1

at t+1
Outputs

Inputs
at t+1

Register
States at t+2

Outputs
at t+2

Inputs
at t+2

Inputs
at t+c

Register
States at t+c

Outputs
at t+c

Figure 4.3. Unrolling

. . . .

. . . .

. . . .

. . . .

at t+c

Property Violation
Flag (1/0)

InputsInputs
at t

Inputs
at t+1

Inputs
at t+2

States at t
Register

Property Relation

Figure 4.4. Bounded Model Checking Problem

Proprietary satisfiability algorithms are now imployed to decide the
truth of the property.

If the proof fails (the problem is satisfiable), gateprop will provide a
debug sequence in terms of the inputs and states required to demonstrate
the failure - in case of the above example this would mean that the output
will not be constant.

Debugging in gateprop is again via a waveform of inputs, states and
outputs, as shown in Figure 4.5. However, gateprop does not use reacha-

Application of Property Checking 131

bility analysis so it is possible that the design can start in an unreachable
state at time t. It turns out that this theoretical draw-back is very rarely
an obstacle in practical applications. If it does occur, the user normally
adds a few assumptions to the theorem and re-runs the proof. Clearly,
this may create new proof obligation to be discharged later-on, e.g. by
proving a separate theorem for the remaining cases, or by proving an
inductive invariant.

Figure 4.5. A wave-form showing a counter-example

2.2 Preserving Structure during Problem
Construction

All formal approaches to verification, including property checking, use
some kind of formal representation for a design. Structure, i.e. functional
units and their operations, can only be exploited, if it is explicitly avail-
able in this formal representation. Hardware description languages, in
which the functionality of a design is first formulated, operate on the
register transfer level (RTL). On the register transfer level structure is
explicit. It is prevalent in data types and functional units. Bitvectors
(vectors of bits) are the prevailing data type. We exploit this structure to
reduce the computational effort for solving property checking problems.

However, the standard gateprop flow destroys a lot of the structure,
because the design is flattened into a bit-level representation. Hence the
syntactic correlation of the single bits, available on the register transfer
level, is lost. Therefore, the regular structure of a design is not explicit
in its formal representation. To be able to exploit the structure of a
design it must be preserved.

132 ADVANCED FORMAL VERIFICATION

If, in contrast to the standard approach, the design is synthesized
into a register transfer level representation, a word-level representation
of the property checking problem can be constructed, and the structure is
preserved. Now, structural information can be used to reduce the size of
property checking problems before solving them. Such a reduction is of
most practical use, if this reduction is fully automatic, and is seamlessly
integrated into a tool.

2.3 The Experimental Platform RtProp

Two novel reduction approaches relying on the word-level representa-
tion of design and property are described in Sections 3, and 4. For eval-
uating these ideas, as well as an experimental platform for RTL-based
property checking, the program RtProp has been developed. It takes a
register transfer level state machine (RSM) and an interval-temporal-
logic (Verilog-ITL) property as well as an optional clocking scheme as
basic input.

The RSM is a constructive representation of a digital circuit as a
Mealy machine on the register transfer level. RSMs can be gener-
ated automatically from Verilog-HDL descriptions using our tool ver-
ilogRTL2rsm. The optional clocking scheme allows to automatically
compute a synchronous model of the design. The given ITL-property is
also taken as input by gateprop which makes it easy to try RtProp on
relevant industrial examples. The property is first translated into a basic
form removing syntactic sugar, such that it is an expression over input
output and state variables of the design annotated with time points.

The output and transition functions of the design as well as property
are represented by bitvector terms [13, 24]. Bitvector terms are rep-
resented internally by fully collapsed term graphs, maximally sharing
common subexpressions [26]. Normalization techniques such as constant
propagation are built into the term generation process and are implicitly
applied when terms are constructed.

From design and property a bitvector term with Boolean output is
constructed which is constantly 1 iff the property holds in all states of
the design.

Bitvector terms can be translated into vectors of Boolean terms as
usual. Boolean terms can be checked for constantness using our com-
posite prover, incorporating our state of the art proprietary BDD and
SAT techniques. (For a similar approach see [25].) If counterexamples
are generated they are automatically translated back to the RT-level and
presented to the user in textual form.

Application of Property Checking 133

Different reduction techniques are implemented and can be applied to
the problem before solving it on the Boolean level. Two of the integrated
reduction techniques, namely symmetry reduction and automated data
path scaling, are described in Sections 3, and 4. Another idea imple-
mented in RtProp can be found in [9].

The represented techniques as well as all steps described above (from
reading the input files, through generating the problem, applying reduc-
tion and giving a counterexample if appropriate) are seamlessly inte-
grated into the tool and require no user assistance.

3. Exploiting Symmetries

Analysis of the structure of property checking problems for regular
designs such as memories, arbiters and bus systems, has shown that
symmetry is an important structural feature, that can, and should be
exploited to make the bounded model checking approach even more pow-
erful.

3.1 Symmetry in Property Checking Problems

To solve the property checking problems generated by gateprop, as
well as RtProp, it has to be checked whether some Boolean function
is identical to 1 (for a similar approach see e.g. [5]). As described be-
fore this is mainly done using search procedures like SAT, which employ
clever search heuristics. However, symmetries in search problems, and
in particular in bounded model checking problems, make these search
heuristics ineffective. This often leads to exponential behavior and thus
to inefficiency, because symmetrical parts of the search space are con-
sidered several times. The idea of symmetry reduction is to prevent
this.

Basically, there are two kinds of symmetry found in Boolean functions.
The first is invariance under permutation of some variables (symmetrical
variables), the second is invariance under assignment of different values
to the same variable (symmetrical values of a variable).

The intuitive notion of symmetry is that of symmetrical variables.
A Boolean function f is symmetrical in some variables x and y if f
stays invariant under permutation of x and y. Consider for example the
function f1:

Example 4.1 (Symmetrical Variables)

g : {0, 1} × {0, 1} → {0, 1}

g(x, y) �→ x ∧ y

134 ADVANCED FORMAL VERIFICATION

In g, x and y are interchangeable since ∧ is a commutative operation.
Hence x and y are symmetrical variables in g.

There are several published approaches on how to exploit this kind of
symmetry, e.g. [14, 11, 21]. However, for our examples neither of them
worked well since either such symmetries were not present, or if they
were detected, the reduction did not show much effect.

In contrast, we will focus on symmetrical values, which are a gener-
alization of equivalent values. We will first give a notion of equivalent
values and their exploitation and then generalize to symmetrical values.

In general, if f : D1×· · ·×Dn → D is a function in n variables X with
discrete domains and codomains, then the values a and b are equivalent
values for a variable x ∈ X iff the restrictions of f to x = a and x = b are
the same, i.e. iff f |x=a = f |x=b. If all values for x are pairwise equivalent
then the problem whether f = 1 is independent of x.

Let in the following f : {0, 1} × · · · × {0, 1} → {0, 1} be an n-ary
Boolean function in n variables X = {x1, . . . , xn}. The restrictions of f
to x = 0 and x = 1 are the cofactors of f w.r.t. x. If the values 0 and
1 are equivalent for x ∈ X (i.e. if fx = fx̄ then f = 1 is independent of
x. So, if we want to check whether f = 1 holds, it is sufficient to show
either fx = 1 or fx̄ = 1. Conversely, if we know that fx �= fx̄ then f = 1
does not hold.

Now the notion of equivalent values is extended to symmetrical values.
First consider the following example.

Example 4.2 (Symmetrical Values) As an example consider the
function f2 below.

h : {0, 1} × {0, 1} × {0, 1} → {0, 1}

h(x, y, z) �→ ite(x, y → (y ∨ z), z → (z ∨ y))

Then h|x=1 = y → (y∨ z) and h|x=0 = z → (z∨y). It is easy to see that
both cofactors are equivalent, since they are both tautological (identical
to 1). (However, in general (e.g. when h is a property checking problem)
this is not so easy to see, i.e. it is in general a computationally complex
task.)

Obviously, if a function is constant, renaming variables does not
change this fact, since it is independent of all variables. For a Boolean
function f and a permutation π of variables in f we have in particular
f = 1 iff π(f) = 1. We can conclude that f = 1 holds iff f |x=1 = 1, and
there exists some π fixing x such that f |x=1 = π(f |x=0).

Application of Property Checking 135

Example 4.3 (Symmetry Reduction) Consider h in the example
above. By looking at the cofactors h|x=1 = y → (y∨z) and h|x=0 = z →
(z ∨ y) it is evident that their representations are very similar. In fact
the terms y → (y ∨ z) and z → (z ∨ y) have the same structure. They
only differ in the names of variables. By permuting y and z they can be
mapped onto each other. This means that π permuting y and z (while
fixing x) we found such a variable renaming and can conclude: h = 1
iff h|x=1 = 1. Thus we can eliminate x from the problem and consider
either cofactor further.

In the following the values 0 and 1 are called symmetrical values for
x in f , iff the two cofactors of f w.r.t. x are permutation equivalent
(symmetrical), i.e. if there exists a permutation π of the variables in f
fixing x such that f |x=1 = π(f |x=0). Note that if we can prove that
there is no such π then f may not be constant and we can conclude that
f = 1 does not hold. (Note that if π is restricted to be the identity the
argument above is still valid, and we are back to the equivalent value
case.)

Now let X be the set of all variables in f . Consider the situation where
a set of k variables Xk = {x1, . . . , xk} ⊂ X is ’factored out’ at the same
time. Let a1, . . . , ak, b1, . . . , bk ∈ {0, 1} then vectors (a1, . . . , ak) and
(b1, . . . , bk) are called equivalent value vectors for the vector of variables
(x1, . . . , xk) w.r.t. f , iff

f |x1=a1,...,xk=ak
= f |x1=b1,...,xk=bk

(Here the functions f |x1=a1,...,xk=ak
and f |x1=b1,...,xk=bk

are k’th order
cofactors of f w.r.t. Xk.) It is easy to see that equivalence of value
vectors is an equivalence relation on the 2k different value vectors, which
are partitioned into equivalence classes.

Applying the same extension as in the case of one variable the vectors
(a1, . . . , ak) and (b1, . . . , bk) are called symmetrical value vectors for the
vector of variables (x1, . . . , xk) w.r.t. f , iff

∃π ∈ Sym(X\Xk) : f |x1=a1,...,xk=ak
= π(f |x1=b1,...,xk=bk

)

(Note that π above can be extended trivially to a permutation of X,
fixing the elements of Xk.) Symmetry of value vectors is an equivalence
relation on the 2k different value vectors, which are partitioned into
equivalence classes. This equivalence relation is called the symmetry
relation for f w.r.t. Xk.

Now, symmetrical value vectors for vectors of variables in some
Boolean function, if known, can be used for preprocessing in property
checkers. Let FXk

be the set of all k-th order cofactors of f w.r.t. a

136 ADVANCED FORMAL VERIFICATION

set Xk ⊆ X with |Xk| = k. Then f = 1 holds iff all cofactors in FXk

are constantly 1, or, respectively, if they are all pairwise permutation
equivalent and either of them is constantly one.

f = 1

⇔ ∀f ′, g′ ∈ FXk
∃π ∈ Sym(X\Xk) : f ′ = π(g′) ∧ ∃h′ ∈ FXk

: h′ = 1

Example 4.4 (Exploiting Symmetrical Values) As an example
consider a 256× 16 memory and property describing its write behavior,
as shown in Figures 4.6 and 4.7. The resulting problem is obviously
symmetrical in all values for the bitvector of ax and dx, respectively. If
this can be shown formally by a tool this knowledge can be exploited in
such a way that only one 8×16-order cofactor of the respective Boolean
function has to be considered. This reduces the search space by a factor
of 2128.

In general the symmetry relation is not a single equivalence class. Even
if it is, sometimes just an approximation of the symmetry relation might
be known. Then still only one cofactor for each equivalence class has
to be checked. Let P = {P1, . . . , Pl} be a partition of 2k, and let
R = {r1, . . . , rl} with rj = (aj1, . . . , ajk) ∈ Pj , 1 ≤ j ≤ l be a set of
representatives of each equivalence class. Then the following holds:

f = 1 ⇔
∧

1≤j≤l

f |x1=aj1,...,xk=ajk
= 1

Obviously the quality of the reduction depends on how good the ap-
proximation of the symmetry relation is and how easy it can be com-
puted. Approaches for finding good approximate symmetry relations are
described below.

3.2 Finding Symmetrical Value Vectors

The problem of finding symmetrical value vectors can be solved by
showing permutation equivalence of the respective cofactors. In general,
two n-ary Boolean functions f and g over variables X = {x1, . . . , xn}
are permutation equivalent (symmetrical) iff there is a permutation π ∈
Sym(X) of the variables X such that f = π(g), i.e. f(x1, . . . , xn) =
g(π(x1), . . . , π(xn)) for all x1, . . . , xn ∈ {0, 1}. Such a permutation is
called a variable renaming. The problem of finding π such that for
two functions f and g, we have f = π(g) is known as the permutation
equivalence problem. For Boolean functions it is also known as Boolean
isomorphism problem.

Application of Property Checking 137

‘define MEM_WIDTH 16

‘define MEM_DEPTH 8

‘define MEM_CELLS 256

module memory (cs, rw, rs, a, di, do, clk);

input cs;

input rw;

input rs;

input [‘MEM_DEPTH-1:0] a;

input [‘MEM_WIDTH-1:0] di;

input clk;

output [‘MEM_WIDTH-1:0] do;

reg [‘MEM_WIDTH-1:0] m [‘MEM_CELLS-1:0];

reg [‘MEM_WIDTH-1:0] o;

integer i;

always @(posedge clk)

begin

if (rs)

begin

for (i = 0; i<=‘MEM_CELLS-1 ; i = i+1)

begin

m[i]=‘MEM_WIDTH’d0;

end

o = ‘MEM_WIDTH’d0;

end

else // if (clk)

if (cs)

begin

if (rw)

m[a]=di;

else

o = m[a];

end

else

if (! rw)

o = ‘MEM_WIDTH’d0;

end // always @ (posedge clk or negedge reset)

assign do = o;

endmodule // memory

Figure 4.6. Verilog-HDL Code of Memory

138 ADVANCED FORMAL VERIFICATION

theorem write;

for:

ax = 0..MEM_CELLS-1,

dx = 0..MEM_WIDTH-1;

freeze:

dixt = di[dx]@t;

assume:

at t: rs == 1’b0;

at t: cs == 1’b1;

at t: rw == 1’b1;

at t: a == ax;

prove:

at t+1: m[ax][dx] == dixt;

end theorem;

Figure 4.7. Write Property for Memory in Verilog-ITL

Example 4.5 (Symmetrical Functions) As an example consider the
functions f and g:

f : {0, 1} × {0, 1} → {0, 1}

f(x, y) �→ (x ∧ ¬y) ∨ (¬x ∧ ¬y)

g : {0, 1} × {0, 1} → {0, 1}

g(x, y) �→ (y ∧ ¬x) ∨ (¬y ∧ ¬x)

They are identical after renaming x with y and y with x in either func-
tion, i.e. for π = (x �→ y, y �→ x) we have f(x, y) = g(π(x), π(y)). Note
that the functions f ′ and g′ below are also symmetrical by the same π.

f ′ : {0, 1} × {0, 1} → {0, 1}

f ′(x, y) �→ ¬y

g′ : {0, 1} × {0, 1} → {0, 1}

g′(x, y) �→ ¬x

The functions f and f ′ are actually the same. Therefore they are also
symmetrical. (The same holds for g and g′.)

It is well known that the permutation equivalence problem for Boolean
functions is Co-NP-complete [1]. So, the question is why should it be
easier to solve the permutation equivalence problem for cofactors than
proving their constantness individually.

Application of Property Checking 139

The answer is twofold. On one hand it is to be expected that, for
Boolean functions generated when property checking, self similarities,
prevalent in the structure of design and property, are reflected in the
representation of this function (as in h). By choosing the set Xk appro-
priately this should lead to similar representations for the cofactors.

On the other hand we do not really need to decide the permuta-
tion equivalence of cofactors. Instead it is often sufficient to employ
semi-decision procedures. Using a semi-decision procedure the set of all
possible value vectors, and hence the set of all cofactors FXk

w.r.t. Xk

is partitioned into equivalence classes of an approximate symmetry re-
lation. In this case we need to prove f ′ = 1 for only one representative
f ′ of each equivalence class.

Such procedures are for example (semi-) decision procedures for
Boolean equivalence (where π is the identity), as known from combi-
national equivalence checking or certain rewrite heuristics. Structural
symmetry of cofactors is another criterion implying permutation equiv-
alence. Obviously different approaches can be combined in order to
improve a given symmetry relation. It is also possible to compute sym-
metry relations for two disjoint sets of variables Xk and Xl separately
and to join them yielding a symmetry relation for Xk

⋃
Xl.

Since many of these approaches benefit from structural similarities
in the function representation our implementation lifts the idea to the
register-transfer-level, i.e. instead of a Boolean function we consider a
bitvector function f ′ with Boolean codomain. The grouping of Boolean
variables to bitvector variables and the representation of f ′ is naturally
derived from the bitvector variables of the RTL representation of design
and property. This ensures that structural self similarities are preserved
as much as possible by representing the Boolean function as bitvector
term (comparable to an HDL expression). It also gives a guideline on
how to choose Xk which is done along the bits of bitvector variables.

For computing approximate symmetry relations we developed new
methods operating on sets of bitvector functions. They combine different
rewrite heuristics for normalization and reduction of complex bitvector
term graphs with isomorphism and automorphism procedures for spe-
cially labeled directed acyclic graphs. These graphs originate in the
term graph representation of the bitvector functions (cofactors) in ques-
tion. If two graphs for two functions are isomorphic, then the respective
term graphs have the same structure modulo permutation of arguments
of commutative function symbols. The automorphism procedure allows
to check many graphs (and thus many functions) for isomorphism at the
same time. A detailed description of the approach is out of our scope
here, but some of the ideas are presented in more detail in [10].

140 ADVANCED FORMAL VERIFICATION

3.3 Practical Results

The reduction approach described above has been integrated into the
tool RtProp and has been used on industrial designs, in many cases
showing considerable performance gains.

To make the approach work practically, different rewrite heuristics
for bit-vector terms have been developed. Furthermore different degrees
of structural symmetry can be discovered by specially adopted graph
algorithms working on bitvector terms. Interleaving them leads to fast
and reliable preprocessing techniques for property checking, exploiting
symmetrical values.

For normalization a prototypical rewrite system was implemented.
As graph automorphism engine an implementation of [22], optimized for
sparse graphs, was integrated. Currently the following reductions are
implemented.

1 Rewrite heuristics to be applied on top of the built-in normaliza-
tion can be specified in form of rule specifications contained in
an additional file. Two different rewrite strategies (top-down and
bottom-up rewriting) can be selected and are combined. Rule spec-
ifications can be selected for application in either or both strate-
gies. Rewriting is implemented as term graph rewriting on fully
collapsed term graphs such that common subexpressions are only
treated once. During top-down (bottom-up) rewriting subterms
are normalized in reverse topological (topological) order until all
subterms are in normal form.

2 Symmetry reduction can be performed for the bitvector variables of
the problem belonging to ’for’-variables in the given ITL-property.
Different strategies can be selected by options, for example whether
rewriting should be applied to the whole bitvector term before gen-
erating cofactor terms or not. During symmetry reduction equiv-
alence classes for the values of these selected variables are sub-
sequently improved. First simple heuristics are tried, if no more
reduction is achieved more sophisticated and more expensive meth-
ods are applied.

One of our industrial applications is a 256x55-bit 2 way set associative
Tag-RAM as they are commonly used in memory caches. It consists of
about 500 lines of Verilog source code and could not be scaled down
by hand easily. Therefore it was desirable to verify the design as is. It
contains a lot of control logic to organize the data transfers and some
arithmetic for determining whether a hit of miss occurred. It was verified
that the read and write operations work correctly and the content of

Application of Property Checking 141

the tag memory does not change if the memory is not enabled. The
properties are parameterizable in the number of memory cells, between 2
and 256. The properties are specified over 8 time steps. Up to 6 variables
have been selected for elimination. The advantages of the reduction
approach are tremendous for all three properties.

The first property ensures that the memory content does not change
unwanted. For the configurations proving this property for 2 to 32 ad-
dresses (address input values) and 2 to 32 memory cells all cofactors were
collapsed to a single one which was proven almost in no time. In the
other cases not all cofactors were identified leaving 64, 128 and 256 small
problems. The reduction time increased with the number of cofactors,
except the transition from 128 to 256. Here the reduction procedure
used a different strategy due to the large number of cofactors (It gave
up earlier on some reductions). Proving the property without reduction
required more than three hours CPU-time. Using reduction this time
was reduced to about 7 minutes.

The situation is comparable for the other properties. Using reduction
the last property has been proven for the first time (however, spending
14 hours CPU time). It could not be proven before using gateprop. Here,
the remaining cofactors were often symmetrical for different configura-
tions since just the property was scaled up.

Note that proving many of the reduced properties was intractable for
BIMC at the time our research efforts on symmetry reduction started.
Only due to improvements on the SAT-solver implementation using
newest results [23] the ratio changed somewhat in favor of not reduc-
ing the problem before solving it. However, this effect was not strong
enough. Still the reduction approach leads to a speedup by one to two
orders of magnitude in relevant cases, proving a property intractable for
the standard approach even now.

At first sight, our symmetry reduction scheme has some similiarities
with the one proposed in [15]. There so called scalar set variables are
used to indicate possible symmetries in the state space of a design. How-
ever these scalar set variables can be used in only a few syntactic contexts
in order to maintain the structural symmetry of the design. Therefore
the approach can not be used within the context of Verilog- and VHDL-
HDL verification. In contrast, our approach has many advantages. Since
it is defined semantically it does not suffer from syntactic restrictions on
the variables containing symmetries as in [15]. Although the ’for’ vari-
ables of the property are taken as candidates for symmetry reduction,
this is not necessary. Any possible variable in the function to be checked
can be taken. In fact, symmetry relations allow even much more com-
plex relationships, for example between values of different variables. At

142 ADVANCED FORMAL VERIFICATION

the same time, syntactic self similiarities in the design and property can
be exploited as efficiently.

4. Automated Data Path Scaling to Speed Up
Property Checking

In the following, another formal high-level technique is described
which is used in CVE in order to speed up property checking runtimes.
The core functionality of this approach is based on a simple and straight-
forward idea. High-level design specifications of digital circuits contain
the structural information on how single bits are arranged to represent
word-level signals and which individual bits belong to the same word-
level signal. The information about the widths of data path signals and
about word-level data flow is available and can be exploited.

Under specific conditions, it is possible to replace an n-bit data path
of a circuit design by an m-bit data path, with m < n, and then to use
the scaled and smaller version of the design for verification instead of the
original one without altering verification results. Such data path scaling
is a classical means for attacking the state space explosion problem.

Reduction of data path widths is typically tried if verification of an
ASIC which includes an n-bit data path takes too long or cannot be
completed due to reasons of computational complexity. So far, data
path scaling was often done manually based on experience and intuition
of the circuit designer, usually without having the (formal) guarantee
that the property which was considered and had to be verified really
was independent of the width of the data path and that the chosen
amount of scaling did not falsify verification results. Moreover, such
manual modifications usually required intensive rewriting of the HDL
code as shrinking the width of a data path causes additional side-effects.
If, for example, a 32-bit bus is replaced by a bus of smaller width, say
16-bit, then the width of each signal which accesses the bus by read or
write operations must be scaled too. Side-effects can go even farther
if such a signal is the concatenation of several other smaller signals.
Consider a design where a 24-bit signal reads information from the 24
most-significant bits of the bus while another 8-bit signal reads the 8
least-significant bits. At the outset, it is not clear how reducing the
bus-width to 16 bits affects the two signals which read from the bus and
how scaling has to be applied to them.

The approach implemented in CVE was presented in [20] and allows
for a fully automated scaling of data path widths. The technique ef-
ficiently analyzes word-level data flow in RTL design descriptions with
respect to a specified property. Designs are automatically scaled down

Application of Property Checking 143

by reducing signal widths before property checking, while guaranteeing
that the property holds for the scaled model if and only if it holds for the
original design. The reduced model of the circuit is used as input instead
of the original design, thus speeding up property checking runtimes and
allowing larger design sizes to be verified.

4.1 Bitvector Satisf iability Problems

The data path scaling technique is based on data flow specification by
means of formal bitvector theories (see e.g. [12, 24]). Bitvector theories
have proven to be an adequate means of describing digital hardware and
related Bounded Model Checking problems at a higher level of design
abstraction. Bitvectors are array-like structures of finite width over a
two-valued domain, which can be used to model multi-bit circuit signals.
Word-level data flow and control flow aspects of digital designs can be
characterized by bitvector equations in a way, such that design properties
can be verified by determining satisfiability of such equations. Several
decision procedures have been investigated which determine satisfiability
or validity of bitvector equations, see e.g. [3, 4, 6, 12, 13, 24, 18]. How-
ever, either the expressiveness of the term languages and the bitvector
theories which are used is rather limited, or the performance of the de-
cision procedures cannot compete with SAT and BDD based property
checking when applied to large real world circuit designs.

Instead of trying to directly solve bitvector equations, the approach
implemented in CVE utilizes the high-level information contained in
the bitvector terms in order to compute a second corresponding and
equivalent system of bitvector equations for which then satisfiability is
determined by using conventional SAT and BDD based methods. Thus,
a high-level abstraction technique for systems of bitvector equations is
established, which is characterized in the way that the SAT problem
which is related to the second system is smaller than the SAT problem
related to the original system and therefore generally can be decided
much faster and with less computational effort (see Figure 4.8 for an
illustration of the basic concept).

The mathematical framework of this abstraction technique is the for-
mal satisfiability problem BvSAT for bitvector functions and bitvector
disequalities, which was first presented in [19] and which is a generaliza-
tion of the SAT problem from Boolean variables to bitvectors of finite
width. Satisfiability of systems of bitvector equations can be reduced to
satisfiability of instances of BvSAT.

The data path scaling is based on a size reduction of BvSAT problems
by means of a formal one-to-one correspondence between given instances

144 ADVANCED FORMAL VERIFICATION

Abstraction Mathematical Framework

RTL Design + Property

SAT BV Equations BvSAT

SAT’ BV Equations’ BvSAT
′

�

�

�

�

� �

Figure 4.8. Basic Concept

of BvSAT and related instances over bitvector domains of smaller width.
This correspondence maps satisfiable instances onto smaller satisfiable
instances, and unsatisfiable ones onto smaller unsatisfiable instances
(i.e. the correspondence preserves satisfiability in a one-to-one fashion).
It is used in order to reduce a system of equations over bitvectors of cer-
tain widths into an equivalent system over bitvectors of smaller widths,
while preserving satisfiability of the equations in a one-to-one fashion.
The reduction is based on symbolic analysis of word-level data flow and
detection of uniform data dependencies. The reduction technique fur-
thermore provides an efficient way to compute satisfying solutions of the
original system from satisfying solutions of the reduced system.

Satisfiability of bitvector equations can be checked in the Boolean
domain by transforming systems of bitvector equations into Boolean
formulae, i.e. into instances of propositional SAT, and afterwards apply-
ing bit-level satisfiability checks, like SAT and BDD based procedures.
Thus, bitvector formalisms are ideally suited for combining BMC and
high-level verification techniques. The complexity of determining satisfi-
ability of Boolean formulae generally depends on the number of Boolean
variables occurring in the formulae. When systems of bitvector equations
are transformed into SAT problems, Boolean variables are generated for
each bit of each bitvector variable. Thus, the complexity of checking
satisfiability of systems of bitvector equations directly depends on the
overall number of bits of all input, internal and output signals occurring
in a design, i.e. on the sum of the widths of all bitvectors occurring in

Application of Property Checking 145

the equations. As a consequence, width reductions can have a significant
impact on the runtimes of satisfiability checkers.

4.2 Formal Abstraction Techniques

In general, abstraction techniques implement the following approach.
Instead of directly solving a given verification problem P , a smaller or
simpler instance P ′ := τ (P) is computed in which information that is
not relevant for solving the verification problem is abstracted and which
is then solved by conventional methods.

Depending on the degree of reduction or simplification between P
and P ′, solving P ′ can possibly be done faster and might require sig-
nificantly less resources. It has to be ensured that computing P ′ from
P preserves certain criteria as far as solvability is concerned. In this
context, an abstraction technique τ is said to be one-to-one if, for all
problem instances P , solvability of P ′ :=τ (P) is related to solvability of
P in a one-to-one fashion, i.e. if the abstract problem is solvable if and
only if the original problem is solvable. Since we consider satisfiability
problems, we have:

τ is a one-to-one abstraction: (P ′ satisfiable ⇐⇒ P satisfiable)

If the domains of abstract and original problem differ, then abstrac-
tions usually provide an additional transformation τ which computes
solutions of the original problem from solutions found on the abstract
problem instance, i.e. if s is a satisfying solution of P ′ := τ (P), then
τ(s) yields a satisfying solution of P .

Thus, solving the original problem can completely and efficiently be
replaced by solving the abstract problem instance, provided that the to-
tal amount of time for computing the abstract instance and then solving
it is still faster than solving the original problem. For example, conver-
sion of Boolean SAT formulae from CNF to DNF yields a one-to-one
abstraction with respect to satisfiability. As far as complexity is con-
cerned, deciding satisfiability of CNF formulae is NP-complete, whereas
satisfiability of DNF formulae can be determined in polynomial time.
However, whether there exists an efficient computation of the abstrac-
tion itself, is still an open problem which is equivalent to the P=NP
problem.

If an abstraction is not one-to-one, then for each solution s found for
P ′, an additional consistency check has to be performed which inspects
if τ(s) indeed is a solution of P or not (a so-called false-negative). Such
an abstraction still might be of interest if establishing a one-to-one ab-
straction is not possible, but finding solutions s of P ′ and performing the

146 ADVANCED FORMAL VERIFICATION

consistency check for τ(s) is fast. In such a case, abstraction is usually
combined with guided-search techniques on the solution space of P ′. For
each solution that is found, a consistency check is performed, and the
search is continued if this check fails. Yet, the amount of reduction of the
problem size achieved by such an abstraction must justify the additional
costs for validating solutions found for the abstract problem instance.

One-to-one abstractions are highly attractive in digital hardware veri-
fication because reduced or simplified problem instances can significantly
increase the performance of existing verification tools. If the abstract
problem instance is specified in the same formalism which is used for the
original problem, then one-to-one abstractions can easily be embedded in
existing verification flows without having to modify the underlying verifi-
cation techniques. Additionally, abstractions which operate on RT-level
can incorporate and utilize all high-level information which is available
in the problem specification.

4.3 Speeding Up Hardware Verification by
One-To-One Abstraction

The method used in CVE implements a fully automated word-level
abstraction technique, which operates as a preprocess for property check-
ing of digital hardware. A one-to-one RTL abstraction of a digital design
is computed in which the widths of word-level signals are reduced with
respect to a property.

Given an RTL specification of a digital design and a property ϕ, a
reduced RTL model is generated in which each word-level signal x is
replaced by a corresponding shrunken signal of width mx ≤ n, where n
denotes the original width of x . The method establishes a one-to-one
abstraction, i.e. ϕ holds for the original design if and only if ϕ holds for
the reduced model. False-negatives cannot occur.

Design and abstract model differ from each other only as far as signal
widths are concerned. Each mx is the minimum number of bits for
x which is necessary and sufficient in order to establish a one-to-one
abstraction for ϕ and a reduced model of the abovementioned type. The
width of each signal in the abstract RTL model is minimal with respect
to the design, the property ϕ, and the abstraction technique we propose
(i.e. by solely changing signal widths).

Furthermore, a post-processing of counterexamples is provided. If ϕ
does not hold for the abstract RTL, and if a counterexample in terms of
value assignments to its input signals is found, then a counterexample
for the original circuit can be computed. The verification task itself
is completely carried out on the scaled-down version of the design. If

Application of Property Checking 147

the property fails, then CVE computes counterexamples for the original
design from counterexamples found on the reduced model.

The method also strictly separates the pre-/postprocessing of design
and counterexample and the property checking process itself. Thus, the
approach itself is independent of the concrete realization of the property
checker and can be combined with the whole variety of property checking
techniques implemented in CVE.

Moreover, if preprocessing yields that no reduction is possible for a
given design and a property, then abstract model and original design are
identical. Thus, the verification task itself is not impaired by using the
proposed abstraction as a preprocess.

Linear signal width reductions result in exponentially smaller state
spaces. A linear reduction of a signal’s width from n bits down to m
bits, m < n, causes an exponential reduction of the size of the induced
state space from 2n down to 2m. Hence, the proposed abstraction to
a great extent can have influence on the verification runtimes and can
significantly speed up property checking. Furthermore, state space re-
ductions allow larger design sizes to be verified. Experimental results
on large industrial circuits have demonstrated the applicability and effi-
ciency of the proposed method.

4.4 Data Path Scaling of Circuit Designs

Data path scaling is used as a preprocessing step in the verification
flow. The technique implemented in CVE exploits structural high-level
design information and absorbs the informational gap between RTL and
bit-level by establishing a fully automated scaling of the design.

in . . . i2i1

om . . . o2o1

sm...
s2
s1

s′m...
s′2
s′1

?

+

&

�i 3
�i2

�i1

�o2 �o1

�s2

�s1

�s ′

2

�s ′

1

Figure 4.9. Bit-Level Design Specification vs. Word-Level Design Specification

Figure 4.9 demonstrates one of the differences between high-level and
bit-level specifications of digital designs. The information which collec-
tions of single bits resemble high-level circuit signals is present in RTL

148 ADVANCED FORMAL VERIFICATION

specifications, but is lost on bit-level. As a consequence, the specifica-
tion of data flow on bit-level lacks this information, too. Data flow can
only be specified in terms of single-bit signals and Boolean logic gates,
whereas on RT-level the data paths of a design are characterized by
multi-bit busses and high-level operators and modules, as indicated in
Figure 4.10.

in . . . i2i1

om . . . o2o1

sm...
s2
s1

s′m...
s′2
s′1

?

+

&

�i3
�i2

�i1

�o2 �o1

�s2

�s1

�s ′

2

�s ′

1

Figure 4.10. Bit-Level Data Flow vs. Word-Level Data Flow

The implemented abstraction technique exploits high-level informa-
tion on multi-bit signals and high-level information on multi-bit data
flow. In order to be able to do so, a prerequisite is to make this type
of information available in an intermediate preprocessing stage of the
verification flow. Therefore, in a first conceptual step, the conventional
frontend is replaced by a new frontend which, instead of a bit-level rep-
resentation, generates an RTL representation of the Bounded Model
Checking problem in which the structural information on high-level data
flow is preserved. Then, in a successive step, this RTL representation is
further processed and transformed into the traditional bit-level represen-
tation, which is then handed to the property checker. The so modified
verification flow is shown in Figure 4.11.

Up to this point, high-level information was only contained in the
formal specification of the bounded temporal property and in the HDL
design specification. Now, this information is combined and made avail-
able in a high-level representation of the Bounded Model Checking prob-
lem. Note that the loss of information is still inherent in the modified
verification flow. It is deferred and now occurs in the newly introduced
transformation step.

In this context, Bounded Model Checking problems are represented
on RT-level by formal systems of bitvector equations. For a given de-
sign D and a formal property ϕ the new frontend synthesizes a system

Application of Property Checking 149

E of bitvector equations such that the corresponding Bounded Model
Checking problem ϕ̂ is satisfiable if and only if E is satisfiable, i.e.

E is satisfiable ⇐⇒ property ϕ does not hold for design D (4.1)

Word−Level Equations

System E of Property
does not
hold

E satisfiable

Satisfying

Solution of E

Bounded Temporal Property
(VHDL , Verilog)

Design Specification

New Frontend

RTL Representation
Bounded Model Checking Problem

Verification Engine (SAT, BDD, ATPG, ...)
Satisfiability Check

Satisfiable?
NO YES

Property Checker

Bounded Model Checking Problem
Bit−Level Representation

Transformation

Property holds Counterexample

Figure 4.11. Modified Property Checking Flow

Bitvector variables of E correspond to multi-bit circuit signals of D.
Each signal and each bitvector variable x has a fixed width n ∈ N+

(which in the following is sometimes annotated as a subscript in square
brackets) and takes bitvectors of respective length as values. The later
transformation of E into a bit-level representation of the Bounded Model
Checking problem generates one bit-level variable for each bit of a bitvec-
tor variable. Thus satisfying solutions of E directly correspond to satis-
fying solutions of ϕ̂ and vice versa, and yield counterexamples for ϕ and
D (see Figure 4.11). The abstraction technique establishes a preprocess-
ing step. The system E of bitvector equations is taken and analyzed,
and a second system E′ is computed which is then used for property
checking instead of the original system E. The system E′ is generated
by replacing each word-level signal x of E by a corresponding shrunken
signal of width m ≤ n (where n denotes the original width of x).

The original system E and the abstract model E′ differ from each
other only as far as signal widths are concerned. All other data flow
aspects, like for example operators or term structure,

150 ADVANCED FORMAL VERIFICATION

. . .

Reduced Signals

. . .

Word−Level Signals

�x[n1]
�y[n2]

�z[n3]

�x[m1]
�y[m2]

�z[m3]

Figure 4.12. Basic Abstraction Technique

Word−Level Equations Abstract Word−Level Equations

=

=

=

=

⊗

�

[i, j]

.

=

=

=

=

⊗

�

[i′, j′]

.

Figure 4.13. Reducing Systems of Word-Level Equations

are not changed (see Figure 4.13), and the method computes the re-
duced widths such that satisfiability is strictly preserved, i.e.

E is satisfiable ⇐⇒ E′ is satisfiable (4.2)

The width of each signal in the abstract model is the minimum width
which is necessary and sufficient in order to establish a one-to-one ab-
straction with respect to design, property, and the considered reduction
technique (E′ differing from E only by reduced variable widths). The
reduced system E′ then corresponds to a scaled version of the original
design D, and scaling is understood in terms of strictly preserving the
general data flow of D except for a reduction of the widths of the data
paths, as illustrated in Figure 4.14.

16

16

8

12

16

8 16 1

16

8
8

8

4

6

8

8 1

8

4

4

?

+

&

?

+

&

�a[16]

�b[8]

�a′
[16]

�b′[8]

�x[32]�y[4]�z[8]

�o[8] �p[16]

�a[8]

�b[4]

�a′
[8]

�b′[4]

�x[16]�y[2]�z[4]

�o[4] �p[12]

Figure 4.14. Original and Scaled Design

Application of Property Checking 151

The amount of reduction that can be achieved is determined with
respect to the circuit property that is to be verified. The scaled version
of the design is then used for verification instead of the original one, and
(4.2) yields:

the property holds for the original design
⇐⇒

the property holds for the scaled design

If the property does not hold, then, considering the modified verifica-
tion flow, the counterexample which is returned by the property checker
is a counterexample for the scaled version of the design. The abstraction
technique which is presented in this thesis adds an additional postpro-
cessing step to the verification flow. In this step, the reduced counterex-
ample is taken and a counterexample for the original design is generated.
The proposed reduction technique provides an easy generation of satisfy-
ing solutions of E from satisfying solutions of E′. Figure 4.15 illustrates
how the proposed abstraction technique is integrated in the verification
flow.

Satisfying

Solution of E

Postprocessing

Satisfying

Solution of E’

E’ satisfiable E satisfiable

Word−Level Equations

System E of Property
does notE satisfiable
hold

(VHDL , Verilog)

Design Specification

Bounded Model Checking Problem
RTL Representation

RTL Representation
Abstract BMC Problem

Transformation

Bounded Temporal Property

Property holds

Frontend

Satisfiable?
NO YES

Verification Engine (SAT, BDD, ATPG, ...)
Satisfiability Check

Property Checker

Bit−Level Representation
Abstract BMC Problem

Counterexample for Abstract BMC Problem

Reverse Abstraction

One−To−One Abstraction

Counterexample for Original BMC Problem

Word−Level Equations

System E’ of

PreprocessingPreprocessing

Figure 4.15. Property Checking Flow with High-Level Abstraction

152 ADVANCED FORMAL VERIFICATION

The process of scaling down signal widths is separated into two sub-
sequent phases. First, the coarsest granularity of each word-level signal
is computed as determined by the structural data dependencies of E.
A granularity is a separation of a signal into several contiguous parts
which indicate the coarsest possible subsumptions of individual bits of
the signal which are processed on the same data path.

Then, for each such part, the necessary minimum width is computed
which guarantees that satisfiability of E and E′ correspond to each other
in a one-to-one fashion. According to these computed minimum widths,
the reduced width for the corresponding signal is reassembled. The basic
concept of this technique is shown in Figure 4.16.

Minimum Width Computation

Dependency Decomposition

Signal

Reassembly

Reduced Signal

Figure 4.16. Signal Width Reduction

The bit-level representation of the Bounded Model Checking problem
which is generated from the RTL representation contains bit-level vari-
ables for each bit of each word-level signal. Depending on the degree of
reduction of the signal widths during scaling, the bit-level representation
can contain significantly less variables when the abstract RTL model is
used (see Figure 4.17).

The effect is a reduction of the sizes of the Bounded Model Check-
ing problems which have to be handled by the property checker. This
aspect coincides with a speed-up of the verification runtimes. Thus,
although property checking is still done on bit-level, this verification ap-
proach indirectly uses and benefits from high-level information. Another
advantage is that no modifications have to be applied to the property
checker; the proposed abstraction can easily be integrated into existing
flows (see also [16, 17] for an overview).

5. Property Checking Use Cases

In this section we will highlight several aspects of applying the prop-
erty checking technology to recent industrial designs. The information
given is based on more than 20 application projects carried out over
the recent few years both at Infineon and Siemens. In most cases, the

Application of Property Checking 153

Reduced Word−Level Signal

Word−Level Signal

(VHDL , Verilog)

Design Specification

Bounded Model Checking Problem
RTL Representation

Transformation

Bounded Temporal Property

Property holds

Frontend

Satisfiable?
NO YES

Verification Engine (SAT, BDD, ATPG, ...)
Satisfiability Check

Property Checker

Bit−Level Representation
Abstract BMC Problem

Counterexample for Abstract BMC Problem

Reduction
Information

Counterexample for Original BMC Problem

Signal−Width Reduction

RTL Representation
Abstract BMC Problem

Signal−Width Enhancement

1 0 1

0 0 0 0 1 1 11

Decomposition

Bit−Level Variables

�x[n]

�x′
[m]

x′
1x′

2x′
3

�x[n]

�x′
[m]

�x[n]

. . . x8

Figure 4.17. Speeding Up Property Checking by Automated Data Path Scaling

154 ADVANCED FORMAL VERIFICATION

verification effort has initially been driven by an experienced verifica-
tion engineer from the CVE team. After he has produced a first set of
properties and detected the first bugs, typically the designers gradually
adopt the method and start writing properties by themselves.

The size of the applications carried out, measured in verification effort,
ranges from a few days up to several person-years. The largest project
consists of 40 blocks verified with 660 properties.

Many different use-cases have been identified, differing in the partic-
ular project situation and the goals of the verification:

Hard debugging is typically applied late in a project when an unex-
pected difficulty arises. A designer has run maybe several weeks of
simulations, each uncovered bug seems to spawn new ones, and the
tape-out dead-line is approaching. Property checking is called for
to get it right once and for all beyond reasonable doubt. Or even
worse, a chip is already in production when a new load scenario
causes a mysterious failure. A so-called metal-fix is required, i.e. a
local patch on the silicon, and this needs to be validated with the
highest possible certainty.

Hard verification: It becomes clear early in a project that the func-
tionality of a particular block can not be checked sufficiently using
classical simulation methods.

The reasons can be:

partially asynchronous behaviour, such as several indepen-
dent clock domains,

very complex control with a combinatorial explosion of inter-
acting states, modes, flags etc.

Reverse engineering and documentation: An existing design
needs to be adapted for re-use in a new context, the original de-
signer is not available, and the documentation turns out to be less
detailed than required. A property suite is needed to unequivo-
cally document the function of the block, its operation conditions
as well as its communication protocols.

Early design validation is in a way the most mature application sce-
nario. When starting a new ASIC design project, a deliberate
decision is taken to spend a considerable portion of the validation
budget for formal block-level verification. For each block either
simulation or property checking is used as verification approach.
The investment is paid off by the high quality of the blocks, allow-
ing a smooth system integration.

Application of Property Checking 155

For each of these scenarios we have experienced several instances. We
will discuss examples for reverse Engineering and documentation as well
as early design validation in sections 4.1 and 4.2, respectively. Section
4.3 will summarize the overall experience in terms of measurements for
productivity.

The approach also provides for the correct integration of blocks and
for the proper interaction of a few blocks. In addition, the property suite
constitutes a precise, compact and intuitive documentation of the block
under development.

5.1 Application Example: Reverse Engineering

This section describes the application of the gateprop property checker
to a reverse engineering problem for a communication design used to
convert AAL2 packets into ATM frames. (AAL2 is one particular com-
munication protocol in the ASM Asynchronous Transfer Mode standard,
see [2]).

5.1.1 Functionality. The design receives data packets (SDUs,
service data units) from an array of DSPs and sends them to a dedicated
ATM channel. While incoming packets have varying length, the resulting
ATM packets (PDUs, protocol data units) have constant length of 48
bytes, such that several cases of combining and splitting need to be dealt
with. Also one extra input channel for test purposes as well as one extra
output channel for a buffer loop are taken into account.

The part of the design considered here consists of about 5000 lines
of VHDL code, resulting in 84000 gates (not counting on-board RAMs.
Including RAMs there are 805 000 gates).

The basic function of the design is to transfer data packets as follows:

read input from DSP lines into input buffer.

transfer AAL2 packets to output queues and convert to ATM for-
mat

read from output queues and forward to an ATM processing pack-
age.

5.1.2 Task. After completion of the design the designer left
the company. Early tests indicated potential errors, which the new team
could not easily locate. In addition, new requirements led to the decision
for a re-design. In this situation a cooperation with the CVE team was
started, with the goal,

to locate and diagnose the errors in the design, if there are any,

156 ADVANCED FORMAL VERIFICATION

to provide a detailed documentation as the basis for the redesign,

to specify the performance data in terms of burst data rates.

Our verification procedure can be characterized as a formally supported
review, based on the gateprop tool.

Re-engineering method. gateprop was used for reverse engineer-
ing in the following steps:

1 Read and understand the design specification

2 Read (parts of) the VHDL code.

3 Write a property capturing one relevant function of the design.

4 Use gateprop to check whether the property holds.

5 If the property fails, analyse the counter-example: if it does not
indicate a design bug, refine the property and go to 4.

6 If a design bug is found, report it and go to 3.

7 If the property holds, it documents a portion of the design. Repeat
steps 3 to 6 until the design is fully covered by properties.

In the current project, the Debussy tool was used in addition to gateprop
for analyzing the design. Debussy (by Novas) supports static interac-
tive analysis of VHDL code such as tracing the drivers and loads of a
signal, and visualizing the data flow structure. Whenever a counter-
example shows that a certain signal behaves in some case different from
the expectation, Debussy helps to quickly identify the particular situa-
tion when that occurs. Refining the property (step 5) means then that
an assumption is added to exclude that situation.

5.1.3 Examples for a property. For illustration we choose
(a slightly simplified version of) the property describing the control of
the data transfer:

One transfer operation is started when

the controlling finite state machine is in the start state, and

there is enough space in the target queue.

To start the transfer, three control signals are set, and after 10 cycles
the start state is reached again, so that the next target queue will be
considered. This is formally expressed as follows:

Application of Property Checking 157

theorem start_transfer;

for timepoints: t_s = t+2, t_end = t_s+11;

freeze:

DEST_NO = act_op_queue @ t_s,

SRC_NO = bumx_trans_source_o @ t_s + 9;

assume:

at t_s: search_state = start;

at t_s+8: space = ’1’;

at t: DEST_NO <= 8;

at t: SRC_NO <= 64;

during [t, t_end]: noreset;

<... others ...>

prove:

during [t_s, t_s+9]: act_op_queue = DEST_NO;

at t_s+ 9: bumx_trans_o = ’1’;

at t_s+ 9: bumx_trans_source_o = SRC_NO;

at t_s+ 9: bumx_trans_destination_o = DEST_NO;

at t_s+10: search_state = start;

at t_s+10: act_op_queue = next_q(DEST_NO);

end theorem;

5.1.4 Results. The complete circuit passed our VHDL front
end in app. 10 minutes. The complete verification suite consists of 70
theorems, which are verified in app. 60 minutes.

Major results were:

One deep design bug was revealed during the work. It occurs in
the special case that due to a timeout, an incomplete packet is
being read from the FIFO queue, and a new SDU packet is at the
same time written to the FIFO. The bug occurs when the timing
of these two events is within a window of two cycles no problem
occurs if the writing starts before or after this window. Therefore
it would be extremely difficult to reproduce, let alone discover this
error by traditional simulation.

The documentation specifies the detailed functionality and can be
used both for performing the resign and for checking its correct-
ness.

The performance analysis showed that the current design can pro-
cess at least 120 SDU packets in each 250 us cycle, which is almost
twice the required rate.

158 ADVANCED FORMAL VERIFICATION

5.2 Application Example: Complete Block-Level
ASIC Verification

The ASIC considered in this section is developped by Siemens Mobile
Communications. It serves as a ’number-cruncher’ coprocessor in the up-
link of a UMTS base station. An external client controls its operations,
called tasks, via the control path of the ASIC, using parameter tables.
The client is also responsible for starting and stopping the tasks. This
is achieved by setting execution conditions, stored in execution tables,
which are monitored by the control path [27].

The size of the coprocessor is more than 2 million logic gates, not
counting on-chip RAM. Its clocking frequency is above 100MHz. The
average data throughput lies in the range of several Gbit/s.

5.2.1 Verification Challenge and Approach. This project
combines aspects of our ”hard verification” scenario with the goal of
complete early block-level verification.

The main challenge for the verification of the ASIC is its complicated
task scheduling. It is dependent on many parameters. Most of the
parameters are allowed to change every 10ms (the duration of one frame).
This results in a case space of more than 1018 cases. Obviously, this case
space could not be verified with classical approaches like simulation.

In addition to verifying the ”difficult” blocks related to these schedul-
ing function, gateprop was applied to almost every block of the ASIC.
The exception was a few data-processing elements which seemed easy to
validate by simulation.

The verification approach in our ASIC project combines block-level
formal verification with system-level simulation. Working in a bottom-
up way, each block was verified formally before the system level was even
coded.

The verification team was headed by one experienced CVE verifica-
tion engineer. All verification engineers had some background in formal
methods and have been trained to use CVE. The major verification load
was handled by this team, separating the concerns of designing and ver-
ifying. In addition, each designer underwent the same CVE training.
Over the duration of the project the designers themselves increasingly
started using the formal tool, e.g. adapting properties and running re-
gressions.

In the verification process we can discern several phases. For each of
them a close interaction of designer and verifier was practised:

Preparatory formalisation: using the informal specification, and inter-
action with the designer team, first properties were written even before

Application of Property Checking 159

block-level architecture is available. This required at least the entity
description and saves some effort for the later phases - however in most
cases the actual verification also required some knowledge of implemen-
tation details, such as the names of state variables.

Initial block verification: parallel to coding of a block properties were
written, and as soon as the VHDL code could be successfully compiled,
formal verification was started. Alternatively, the designer often ran a
first simple simulation for a few standard cases before he handed the
code over for verification. The latter option filters out some trivial bugs,
but makes little difference from a global perspective. In this phase both
trivial and complex bugs were found (and fixed), and as a result a for-
mal block-level specification existed which covered the block’s function
completely, and truthfully with respect to the implementation.

Block-level regression: when a new HDL version was checked in the
existing property suite was re-run, in some cases catching errors that
were introduced by the change. This was often but not always possible
without adapting the property suite.

Specification adaptation: as is common in a large innovative project as
this, the system specification changed during the development duration.
E.g., certain additional modes and flags were proposed by system engi-
neering, and had to be incorporated into the already coded blocks. In
this case properties had to be adapted in parallel with the code change,
and re-checked. The complete regression suite was very helpful in these
cases as it is by no means trivial to maintain the existing function while
adding new ones.

Interface verification: Once two or more communicating blocks had
been completely verified at the block level, the formal specification pro-
vided an excellent means to check their mutual interfaces. The ITL
properties unequivocally describe the timing, handshake protocols and
dependencies for each partner of an interface.

An example of such a situation is this: block A produces a result x,
together with a ”valid” flag x valid. Unless this flag is set, the value is
considered irrelevant. Now Block B, which consumes x, assumes that if
x is not valid, it will not take the special value X’010’, and acts on this
assumption. None of the blocks is faulty by itself, but B’s assumption
is just not guaranteed by A.

Such dependencies were captured in ITL properties, and by carefully
reviewing them, several bugs were discovered that resulted from two
designers’ deviating understanding of the informal specification.

5.2.2 Verifying the Control Path. Verifying control logic is
an ideal application of property checking. Instead of generating sophis-

160 ADVANCED FORMAL VERIFICATION

ticated stimuli to check normal operation as well as the corner cases,
properties cover all cases of an expected functionality at once. Moreover
the specification of the control path is done using Finite State Machines.
This directly allows to derive properties from the specification and check
their validity in the RTL-description.

On the first synthesisable version of the code a large number of bugs
were found. This is due to the fact that no simulation run preceded the
formal verification, so a lot of simple bugs occurred. The advantage was
that no effort was spent setting up a test bench at module level for the
task controller.

The most important contribution of the formal verification was the
detection of some difficult bugs. Often these were detected by the most
general properties - such as mutual exclusion of events or a condition
that always has to be met. While there was no error under most circum-
stances, the occurrence of several rare conditions at once caused a faulty
behavior. Bugs of this kind would not have been caught by a simulation
run.

5.2.3 Data Path Results. Our ASIC has many blocks with
arithmetic functions. These contain more of the standard arithmetic
such as complex addition and multiplication. Although arithmetic is
typically problematic for formal verification tools, most blocks could be
verified by CVE. In some cases we did encounter complexity problems,
which, however, could always be alleviated by manual interaction, for
example, by reducing the bit widths of the arithmetic operators. Typical
design errors found in these blocks include wrong operand signs, wrong
comparison operators (< instead of ≤) and typical entity interface prob-
lems.

Note that property checking cannot completely replace simulation.
For example, as stated before, designers usually maintain a test bench
during the design process to be able to quickly simulate the basic func-
tionality concurrently with coding and to immediately remove the most
obvious design errors. Interestingly, after running these simulations, the
designers very often felt sure that their designs were free of error, espe-
cially because their test benches operated the design at maximum load.
A number of errors stayed undetected just because the designed system
was simulated at ”full-load” operating conditions, thereby simply disre-
garding certain slower input rates. These errors were, however quickly
discovered by formal verification.

5.2.4 Overall Result. Block-level verification was completely
covered by formal property checking. Comparing this to a traditional

Application of Property Checking 161

simulation-based approach, we have to consider several factors, as fol-
lows.

The total human effort for writing properties was about two person
years. For a comparative discussion of such effort figures see the next
section.

The computation time for a complete regression run has to be com-
pared to the total simulator run time. On a basis of 40 blocks verified,
we find that the sum of all verification run times is in the order of 50
CPU hours. However, fewer than 2 % of all theorems (10 out of a total
of 660) account for more than 90% of this computation time. In other
words 98% functional coverage is possible within only 5 hours. Given
that simulator time is today one of the severely limiting factors in the
ASIC quality assurance process, these figures show that formal property
checking provides a very valuable progress here.

The quality achieved by block-level verification is probably the most
important factor. It can be measured by the number of bugs which
make it to the later stages of system simulation and emulation, or even to
silicon. We have already reasonable evidence to claim that this number is
cut down substantially. This claim is based on analyzing and classifying
ca. 200 bugs discovered by property checking. This analysis showed that
more than a third of these would have been missed by block-level as well
as system-level simulation.

5.3 Productivity Statistics

It would be naive to believe that the benefits of formal verification
come for free. From the experience of more than 20 ASIC projects we
can quite well predict the effort required for completely verifying a given
block: Per 1000 lines of VHDL code, the required effort ranges between
4 and 8 person days for verification, depending on such factors as

the verification engineer’s familiarity with the design,

inherent complexity of the design,

initial design quality, i.e. number of errors in the code.

When properties can be re-used because the design is very similar to
one already formally verified, then this effort is naturally considerably
reduced, typically to 1-3 days per 1000 LOC.

An other interesting parameter is the size of the property sets: com-
pared to the HDL code size, they are regularly smaller by a factor of 1.5
to 5. This large diversity in compression factor is due to the wide variety
of different scenarios - the factor is small when the design complexity

162 ADVANCED FORMAL VERIFICATION

comes from a complex specification such as complicated filter operations
on the data path. It is high when there is a concise specification which
abstracts from implementation details such as in a pipe-lined processor.

Note that the above figures apply for complete property suites, i.e. the
properties form a complete case split of all situations faced by the design
block. Thus, formal block verification is a well-controlled process with
a clear termination criterion that produces blocks free from functional
errors.

On the other hand, complete verification is not always the goal. De-
pending on the available resources, doing a ”best effort”, or just analyz-
ing a few ”critical” properties, or some aspect which escapes simulation,
is also possible, and has often been done.

The above figure has to be compared to the total human effort for
HDL coding on the one hand, and writing test benches on the other.

It is an often-quoted fact that total verification effort is typically 50-
70% of the total project effort, while coding is in the 20-40% range.
According to our experience, the effort for complete formal block verifi-
cation is in the order of 50-80% of the coding effort.

Thus the total effort for block verification is reduced by 20-40% com-
pared to a purely simulation-based approach. At the same time, a much
higher block quality is obtained. Previously costly redesigns caused by
errors in complex corner cases are now avoided. The savings in hard-
ware and simulator licenses and the advantage of more reliable project
schedules appear substantial but have not yet been quantified.

These estimates are based on adopting a two-heads policy, i.e. de-
signer and verification engineer are distinct persons. Having the de-
signer formally verify his block may save at least another 40% of the
above formal block verification effort.

6. Summary

6.1 Achievements

Time to market and first-time-right silicon are the most important
targets in today’s ASIC development. We have demonstrated in many
applications that property checking contributes significantly to meeting
these targets.

Proof technology based on Boolean solvers has matured over many
years to a high efficiency. We have given two examples of novel concepts
for reasoning mechanisms exploiting higher-level structure, thus further
extending the performance boundaries of formal methods.

REFERENCES 163

6.2 Challenges and Perspectives

While formal property checking of design blocks is widely accepted as
an efficient verification technology, several challenges remain. We briefly
discuss the most important ones.

Completeness proofs: While proving a single property provides the
highest possible confidence in that property, the question ”when
have we written sufficiently many properties?” is of growing rele-
vance. Based on the concept of case splitting, we do have criteria
to check this completeness of a property set. However, these crite-
ria are currently checked only manually and therefore, error-prone.
Automating this check will be a significant step forward towards
establishing formal proofs in a standard design flow. Compared to
the traditional ways of measuring coverage, such a completeness
proof is much more significant as it addresses functional rather
than code coverage.

Mixed-style verification: Simulation will remain an important tool
in the overall verification flow. The division of work between for-
mal and simulation-based techniques is currently decided ad hoc.
A more systematic approach needs is called for, e.g. by stating
properties and test-benches in a common style or language. The
efforts to standardize a property specification language (PSL) may
contribute to this unification.

System on Chip: system level properties are out of the reach of
today’s technology - they require adequate abstraction techniques
in order to avoid complexity explosion. Combining our efficient
satisfiability-based techniques with abstract interpretation, and/or
theorem provers looks like a promising approach.

Acknowledgments

The results reported here are to a large extent owed to the CVE team.
Wolfram Büttner is acknowledged for his outstanding role in establishing
this technology. Jörg Bormann, Dominik Stoffel, H.-Joachim Trylus
and Görschwin Fey contributed important pieces of experience from the
reported applications.

References

[1] Agrawal, M. and Thierauf, T. The Boolean Isomorphism Problem.
IEEE Symposium on Foundations of Computer Science, pp. 422–
430, 1996.

164 ADVANCED FORMAL VERIFICATION

[2] The ATM Forum. ATM Technology: The Foundation for Broadband
Networks. http://www.atmforum.com/

[3] Barrett, C. W. and Dill, D. L. and Levitt, J. R., ”Validity Checking
for Combinations of Theories with Equality”, Proc. FMCAD, pp.
187–201, 1996

[4] Barrett, C. W. and Dill, D. L. and Levitt, J. R., ”A Decision Pro-
cedure for Bitvector Arithmetic”, Proc. DAC, pp. 522–527, 1998

[5] Biere, A. and Cimatti, A. and Clarke, E.M. and Zhu, Y. Symbolic
Model Checking Without BDDs Proc. of Tools and Algorithms for
the Analysis and Construction of Systems (TACAS’99), number
1579 in LNCS, pp 193–207, 1999.

[6] Bjørner, N. and Pichora, M. C., ”Deciding Fixed and Non-fixed Size
Bit-vectors”, Proc. TACAS, pp. 376–392, 1998

[7] Bormann, J., “Productivity Figures for Complete Formal Block Ver-
ification”, User Forum, DATE 2003

[8] Bormann, J., Spalinger, Ch., “Formale Verifikation für Nicht-
Formalisten”, IT+TI 2/2001.

[9] Brinkmann, R. and Drechsler, R. RTL-Datapath Verification Us-
ing Integer Linear Programming. Proc. of ASP-DAC/VLSI Design
2002, January 07 - 11, 2002 Bangalore, India, pp. 741–746, 2002.

[10] Brinkmann, R. Using Symmetry for Problem Reduction in Bounded-
Model-Checking on the Register-Transfer-Level. Proc. of SymCon’01
– Symmetry in Constraint Satisfaction Problems, CP’01 Post-
Conference Workshop, 2001.

[11] Crawford, J. and Ginsberg, M.L. Eugene Luks, and Amitabha Roy.
”Symmetry-Breaking Predicates for Search Problems.” KR’96: Prin-
ciples of Knowledge Representation and Reasoning, pp. 148–159.
Morgan Kaufmann, 1996.

[12] Cyrluk, D. and Möller, M. O. and Rueß, H., ”An Efficient Deci-
sion Procedure for a Theory of Fixed-Sized Bitvectors with Com-
position and Extraction”, Ulmer Informatik-Berichte, Fakultät für
Informatik, Universität Ulm, 1996

[13] Cyrluk, D. and Möller, M. O. and Rueß, H., ”An Efficient Decision
Procedure for the Theory of Fixed-Sized Bit-Vectors”, Proc. CAV,
pp. 60–71, 1997

[14] Markov, I.L. and Sakallah, K.A., and Aloul, F.A. and Ramani, A.
Solving Difficult SAT Instances in the Presence of Symmetry. Proc.
of ACM/IEEE Design Automation Conf., pp. 731–736, 2002.

REFERENCES 165

[15] Ip, C.N. and Dill, D.L. Better verification through symmetry. Proc.
of the 11th International Conference on Computer Hardware De-
scription Languages and their Applications (CHDL’93), pp. 97–112,
1993.

[16] Johannsen, P. and Drechsler, R., ”Formal Verification on the RT-
Level – Computing One-To-One Design Abstractions by Signal
Width Reduction”, Proc. VLSI, pp. 127–132, 2001

[17] Johannsen, P. and Drechsler, R., ”Speeding Up Verification of RTL
Designs by Computing One-To-One Abstractions with Reduced Sig-
nal Widths”, VLSI 2001 Post Conference Book, 2002, Kluwer Aca-
demic Publishers

[18] Johannsen, P., ”On Solving Systems of Bitvector Equations – An
Efficient Decision Procedure for a Theory of Fixed-Size Bitvectors
with Concatenation, Extraction and Negation”, Siemens Corp., CT
SE 4, 1999

[19] Johannsen, P., ”Reducing Bitvector Satisfiability Problems to Scale
Down Design Sizes for RTL Property Checking”, IEEE Proc.
HLDVT, pp. 123–128, 2001

[20] Johannsen, P., ”Speeding Up Hardware Verification by Automated
Data Path Scaling”, PhD Thesis, Christian-Albrechts-University of
Kiel, 2003

[21] Kravets, V.N. and Sakallah, K.A. ”Generalized Symmetries in
Boolean Functions.” Proc. of ICCAD 2000, pp. 526–532, 2000.

[22] McKay, B.D. Practical Graph Isomorphism. Congressus Numeran-
tium, volume 30, pp. 45–87, 1981.

[23] Moskewicz, M.W. and Madigan, C.F. and Zhao, Y. Zhang, L. and
Malik, S. Chaff: Engineering an Efficient SAT Solver. Proc. of the
38th Design Automation Conference (DAC’01), pp. 530–535, 2001.

[24] Möller, M. O. and Rueß, H., ”Solving Bit-Vector Equations”, Proc.
FMCAD, pp. 36–48, 1998

[25] Paruthi, V. and Kuehlmann, A. ”Equivalence Checking Combin-
ing a Structural SAT-Solver, BDDs, and Simulation.” Proc. of
the IEEE International Conference On Computer Design: VLSI In
Computers and Processors (ICCD ’00), pp. 459–464, 2000.

[26] Plump, D. ”Handbook of Graph Grammars and Computing by
Graph Transformation”, volume 2, chapter Term graph rewriting.
World Scientific, 1998. Ehrig, H. and Engels, G. and Kreowski, H.-
J.and Rozenberg, G.,editors.

[27] Winkelmann, K., Trylus, J., Stoffel, D., Fey, G., “Cost-Efficient For-
mal Block Verification for ASIC Design”, in: Drechsler, R., Metho-

166 ADVANCED FORMAL VERIFICATION

den und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen, 6. GI/ITG/GMM-Workshop Mod-
ellierung und Verifikation, Shaker-Verlag 2003.

Chapter 5

ASSERTION-BASED VERIFICATION

Property Specification

Claudionor Nunes Coelho Jr.
Computer Science Department, Universidade Federal de Minas Gerais, Belo Horizonte,

MG - Brazil

coelho@dcc.ufmg.br

Harry D. Foster
Jasper Design Automation, Inc, Mountain View, CA - USA

harry@jasper-da.com

Abstract Assertion-based verification – that is, user-specified properties combined
with simulation, formal techniques, and even synthesis – is likely to be
the next revolution in hardware design and verification. This chapter
explores a verification break-through prompted by multi-level specifi-
cation and assertion verification techniques. The emerging Accellera
PSL formal property language, as well as the Accellera Open Verifica-
tion Library standards and the important roles they will play in future
assertion-based verification flows are discussed.

Keywords: assertion, assumption, constraint, dynamic verification, formal verifica-
tion, restriction, static verification, property, specification, synthesis

1. Introduction

As formal research matures and approaches a level of sophistication
required by industry (beyond the bounds of research and early adopters),
we must take steps to ensure a successful transfer (scaling) to this more
demanding level. One step is to fundamentally change design method-
ologies such that we move from ambiguous natural language forms of
specification to forms that are mathematically precise and verifiable.
Furthermore, these languages must lend themselves to automation. For-

 167

R. Drechsler (ed.), Advanced Formal Verification, 167-204.

© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

168 ADVANCED FORMAL VERIFICATION

mal property specification is the key ingredient in this methodological
change. The end result is higher design quality through:

improved understanding of the design space – resulting from the
engineer’s intimate analysis of the requirements, which often un-
covers design deficiencies prior to RTL implementation

improved communication of design intent among multiple stake-
holders in the design process

improved verification quality through the adoption of assertion-
based verification techniques

Although the need for methodological change is clear, transitioning
formal verification technology into an industry design environment has
been limited by a lack of methodology guidelines for effective use.

Property specification (that is, assertions, constraints, and functional
coverage) is fundamental to an assertion-based verification platform.
Once specified, properties enable the following components, which may
be included in an assertion-based verification platform:

verifiable testplans through property specification (for example, ex-
ecutable functional coverage models, which help answer the ques-
tion ”what functionality has not been exercised?”)

exhaustive and semi-exhaustive static formal property checking
technology (for example, model checking and bounded-model
checking)

dynamic property checking technology (for example, monitoring
assertions in simulation) for improved observability that reduces
the time involved in debug

hardware verification languages (HVLs) for testbench generation
that leverage property specification to define expected input (con-
straints) and output (assertions) behavior

constraint-driven stimulus generation based on interface properties
that target block-level designs

assertion property synthesis to address silicon observability chal-
lenges during chip bring-up in the lab, as well as operational error
detection required for high availability (HA) class systems

Dynamic verification, for the foreseeable future, will remain a critical
component of an assertion-based methodology for two reasons: (1) the

Assertion-Based Verification 169

inherent capacity limitations of today.s formal technology, and (2) the
unanswered question – ”Is the formal specification complete?” - In other
words, formal verification can help us answer questions about the design,
provided we ask the questions in terms of a property. However, if we
neglect to ask a question, then we might have a false sense of security
that the design is correct. Similarly, dynamic verification is inherently
incomplete. However, during random stimulus generation, it can occa-
sionally be useful for identifying design errors that address questions we
would have never thought to ask.due to an incomplete specification.

In this chapter, we discuss the important role that property specifi-
cation plays in an assertion-based verification flow. We begin with a
discussion of a property specification framework, we compare and con-
trast basic linear and branching time temporal logic, and we introduce
the Accellera PSL property specification language [2]. Next, we intro-
duce the idea of creating a library of assertion monitors that can be
used in various forms of verification. We then focus our discussion on
assertions in simulation, followed by a discussion of assertions in formal
verification. Next, we explore how assertions can actually be synthe-
sized to address silicon observability challenges during lab bring-up, as
well as operational error detection required for high availability (HA)
class systems. Finally, we demonstrate examples of property and asser-
tion specification and close with a discussion of future directions with
property specification and assertion-based verification.

1.1 Specifying properties

Informally, a property is a description of design intent. When study-
ing properties, it is generally easier to view their composition as three
distinct layers:

the Boolean layer, which is comprised of Boolean expressions (for
example, Verilog or VHDL expressions)

the temporal layer, which describes the relationship of Boolean
expressions over time

the verification layer, which describes how to use a property during
verification

Defining (or partitioning) a property in terms of the abstract layer
view enables us to dissect and discuss various aspects of properties. How-
ever, it is quite simple to express design properties, and the three-layer
view is merely a way to explain concepts. We do not intend for our
use of this vehicle to convey a sense that the actual language syntax is
complex.

170 ADVANCED FORMAL VERIFICATION

To aid in studying property concepts, all examples in the following
sections are presented using the Accellera PSL property specification
language, unless otherwise noted.

Boolean layer: A property’s Boolean layer is comprised of Boolean
expressions composed of variables within the design model. For
example, if we state that ”signal en1 and signal en2 are mutually
exclusive,” then the Boolean layer description representing this
property could be expressed in Verilog as shown in Example 5.1.

Example 5.1 Boolean layer expressed in Verilog

!(en1 & en2) // enables are mutually exclusive

Temporal layer: A property’s temporal layer permits to describe the
Boolean expressions. relationships to each other over time. Thus,
all time ambiguities associated with a property are removed. For
example, if signal en1 and signal en2 are always mutually exclusive
(that is, for all time), then a temporal operator could be added to
the Boolean expression to state precisely this. Temporal operators
allow us to specify precisely when the Boolean expression must
hold. Example 5.2 demonstrates this point using the PSL temporal
operator always combined with a Verilog Boolean expression.

Example 5.2 A property’s temporal layer expressed in PSL

always !(en1 & en2) // enables are mutually exclusive

Together, the Boolean and temporal layers form the foundation of
a property.

Verification layer: While a property.s Boolean and temporal layers
describe general behavior, they do not state how the property
should be used during verification. In other words, should the
property be asserted, and thus checked? Or should the property
be assumed as a constraint? Or should the property be used to
specify an event used to gather functional coverage information
during simulation? Thus, it is the third layer of a property, which
is the verification layer, that states how the property is to be used.

Look again at the property ”signal en1 and signal en2 are mutually
exclusive.” Example 5.3 shows this property with the PSL assert

Assertion-Based Verification 171

directive. This states that the property is to be treated as an
assertion during verification.

Example 5.3 A property’s verification layer expressed in PSL.

1.2 Observability and controllability

Fundamental to the discussion of assertion-based verification is under-
standing the concepts of controllability and observability. Controllability
refers to the ability to stimulate a specific line of code or structure within
the design. Note that, while in theory a simulation testbench has high
controllability of the input bus of its device under verification, it can
have low controllability of an internal point. Observability, in contrast,
refers to the ability to observe the effects of a specific internal, stimulated
line of code or structure. Thus, a testbench generally offers limited ob-
servability, if it only observes what is on the external ports of the device
or model, because all the internal signals and structures are often hid-
den from the testbench. To identify a design error using the testbench
approach, the following conditions must hold:

proper input stimulus must be generated to activate (that is, sen-
sitize) a bug

proper input stimulus must be generated to propagate all effects
resulting from the bug to an output port

It is possible, however, to set up a condition where the input stimulus
activates a design error that does not propagate to an observable output
port. In these cases, the first condition cited above applies; however, the
second condition is absent.

A benefit of assertions embedded in the design model is that they
increase observability. In this way, the verification environment no longer
depends on the second condition listed above to identify bugs. Thus, any
improper or unexpected behavior can be caught closer to the source of
the bug, in terms of both time and location in the design intent.

172 ADVANCED FORMAL VERIFICATION

While assertions help solve the observability challenge in simulation,
they do not help with the controllability challenge. However, formal
property checking of assertions enables us to address the controllability
challenge as discussed in the following section.

The reader should note that the simplification achieved by eliminat-
ing or reducing the verification problem to solving the controllability
problem in a design does not make the verification problem any easier,
as selecting the right pattern to sensitize an error condition can be as
hard as sensitizing the design to propagate the erroneous condition to
the output pins of the design.

1.3 Formal property checking framework

In this section, our goal is to introduce the basic elements of formal
property checking and in so doing, convey a sense of both its inher-
ent power and limitations. Steps required to perform formal property
checking (for example, model checking) include:

compile a formal model of the design

create a precise and unambiguous specification

apply an automated and efficient proof algorithm

Each of these steps is briefly discussed below.

Compile a formal model: In the first step of the formal property
checking process, we create a formal model of the design by com-
piling a non-ambiguous description of the model (usually a synthe-
sizable subset of a hardware description language, such as a Verilog
RTL model) into a form accepted by the property checker. For the
purpose of our discussion, we consider hardware designs as a set
of finite state concurrent systems. For example, the value of the
current state of the system can be determined at a particular point
in time by examining all state-elements of the system. The next
state of the system can be computed as a function of the system’s
current state value and design input values. This function is called
a transition function. In formal verification, we can conveniently
represent a current state - next state pair as a transition relation of
the system. For example, (si,si+1) is a transition relation ,where
si represents a current state of the system, and si+1 represents one
next state possibility directly reachable from si.

In a formal representation of a design, we use state to indicate
any variable retaining its value over time. In that broader sense, a

Assertion-Based Verification 173

state can be considered to be the inputs of the design, the variables
from the control path representing the finite-state machines of the
design and the variables from the datapath representing stored
results from operations, such as the results from ALU operations.
In Example 5.4, we demonstrate a state representation for a simple
design containing two inputs and three internal variables.

Example 5.4 State representation in a design: in an RTL design
with inputs Reset and Clock, and variables State, AluOut, and
Flags; a state for this system is represented by all possible combi-
nations of the tuple s = < Reset ,Clock ,State,AluOut ,Flags >. A
transition from state si to state si+1 is represented by all possible
sequences of tuples ¡Reset, Clock, State, AluOut, Flags¿.

A path at state is an infinite sequence of states π = s0s1s2..., which
represents a forward progression of time and a succession of states.
Note that a simulation trace is one example of a path. A set of
paths represents the behavior of the system. Hence, a formal model
can be created by compiling a synthesizable model of the design
into a state transition graph structure, referred to as a Kripke
structure [10].

A Kripke structure M is a four tuple M = (S, S0, R, L), which
consists of:

S a finite set of states

S0 a set of initial states, where S0 ⊆ S

R ⊆ S × S a transition relation, where for every state s ∈ S.
There is a state s′ ∈ S such that (s, s′) ∈ R

L : s → 2AP , where L is a function that labels each state
with a set of atomic propositions (AP) that are true at that
particular state

A Kripke structure models the design using a graph, where a node
represents a state, and an edge represent transition between states.
Atomic propositions map Boolean variables (and their negation)
into the formal model of a design, represented by S, S0, and R.
For any atomic proposition p, if p ∈ L(s), we say p is true (holds)
in s. Similarly, if p /∈ L(s), we say p is false (does not hold) in s.
By analyzing when an atomic proposition holds in a state, we can
verify if a property is true or false.

Example 5.5 Consider a sequential 2-bit counter with counting
variable Count[1:0] and an input pin Clock. We can build a Kripke

174 ADVANCED FORMAL VERIFICATION

structure based on the states formed by the tuple ¡Clock, Count[1],
Count[0]¿. The Kripke structure is presented in Figure 5.1. For
this Kripke structure, Count[1] holds for the states s3, s4, s5, and
s6.

S0

<0,0,0>

S1

<1,0,1>

S2

<0,0,1>

S3

<1,1,0>

S4

<0,1,0>

S5

<1,1,1>

S6

<0,1,1>

Figure 5.1. Kripke structure for 2-bit counter.

Create a formal specification: In the next step of formal property
checking, properties are specified as assertions of the design that
we wish to verify. Informally, a property describes design intent.
More formally, a property is defined as follows:

Definition 1: property – a collection of logical and temporal
relationships between and among subordinate Boolean ex-
pressions, sequential expressions, and other properties that
in aggregate represent a set of behavior (that is, a path).

A safety property is defined as follows:

Definition 2: safety property – a property that specifies an in-
variant over the states in a design. The invariant is not nec-
essarily limited to a single cycle, but it is bounded in time.
Loosely speaking, a safety property claims that something
bad does not happen. More formally, a safety property is a
property for which any path violating the property has a fi-
nite prefix such that every extension of the prefix violates the
property.

For example, the property, the signals wr en and rd en are
mutually exclusive and whenever signal req is asserted, signal
ack is asserted within 3 cycles are safety properties.

A liveness property is defined as follows:

Definition 3: liveness property – a property that specifies an
eventuality that is unbounded in time. Loosely speaking, a
liveness property claims that something good eventually hap-
pens. More formally, a liveness property is a property for

Assertion-Based Verification 175

which any finite path can be extended to a path satisfying
the property.

For example, the property whenever signal req is asserted,
signal ack is asserted some time in the future is a liveness
property.

Finally, a fairness property is defined as follows:

Definition 4: fairness property – property that specifies that
some condition will occur infinitely often. More formally, a
fairness property is a property for which any infinite path will
contain infinitely many fair states, or states that satisfy the
fairness condition of the property.

Underlying many property languages is a formalism known as
propositional temporal logics, which allows us to reason about se-
quences of transitions between states. Two formalisms for describ-
ing sequence propositions are branching-time temporal logic [4]
and linear-time temporal logic [13]. CTL is an example of branch-
ing-time logic. The temporal operators of this formalism allow us
to reason about all paths originating from a given state. Whereas
in the case of LTL (a linear-time temporal logic), the temporal op-
erators allow us to reason about events along a single computation
path.

Applying a proof algorithm Once we have created a formal model
representing the design and a formal specification precisely describ-
ing a property that we wish to verify, our next step is to apply an
automated proof algorithm. For example, given a formal model of
a design described as a Kripke structure M = (S, S0, R, L), and a
temporal logic formula f expressing some desired property of the
design, the problem of proving the correctness of f involves finding
the set of all states in S that satisfy f .

Note that the formal model satisfies the specification if and only if
all initial states (that is, ∀si ∈ Sn) are in the set of the states that
satisfies f . A procedure for determining a set of states satisfying
f is informally shown in Figure 5.2.

The illustrated proof algorithm we use is known as reachability
analysis using image computation. This algorithm is the basic
algorithm for proving that a temporal property f is valid.

The algorithm begins with a set of initial states S0, as shown in
Figure 5.2. Using the transition relation R, as previously dis-
cussed, we calculate within one step (that is, a tick of the clock)

176 ADVANCED FORMAL VERIFICATION

all reachable states from S0. This calculation process is referred
to as image computation. The new set of reachable states is S1

in our example. We iterate on this process, generating a new set
of reachable states at each step that grows monotonically, until
no new reachable states can be added to the new set (that is, a
fixed-point occurs when Sk == Sk+1).

Figure 5.2. Calculating reachable states

For example, if the temporal formula f describes a safety property,
we can validate that f holds on each new state calculated during
the image computation step.

Proof results For this fixed-point proof algorithm, one of three possi-
ble results occurs:

Pass. The process reaches a fixed-point, and the formula f
holds on all reachable states. Hence, the verification is done
(that is, the design is valid for this property).

Fail. The process has yet to reach a fixed-point, and the
formula f was determined not to hold on a particular state
si, which was calculated during the search. Hence, a counter-
example (that is, a path π = s0s1s2..., sj) can be calculated
back from the bad state sj to an initial state. This counter-
example is then used to debug the problem.

Undecided. The process aborts prior to reaching a fixed-
point due to a condition known as state-explosion (that is,
there are too many states for the proof engine to represent
in memory). In the following section, we discuss a few tech-
niques that address the state-explosion problem.

Formal property checking tools use a number of different proof
algorithms. A detailed discussion of these specific proof algorithms,
creating formal models, and temporal logics is beyond the scope

Assertion-Based Verification 177

of this chapter. For in-depth discussions on these subjects, we
suggest [5] and [11].

2. Assertion Specification

In this section, we discuss branching-time and linear-time temporal
logic as a foundation for our introduction to the Accellera Property
Specification Language (PSL).

2.1 Temporal logic

Temporal logic enables us to reason about systems in a very simple
way by hiding time relationships between Boolean formulas. For exam-
ple, instead of writing ∀t.!(en1(t)&en2(t)), in which time t is explicit
in the temporal formula, we may simply write always !(en1 & en2),
which states that en1 and en2 should not hold at the same time.

In this chapter, we assume a temporal logic in which existential and
universal quantifiers can be applied only to time, which is called proposi-
tional temporal logic in the literature. Even though quantification can be
applied only to the time variable, when we prove temporal formulas we
will be proving formulas over paths of execution (π = s0s1s2...). In the
formula ∀t.!(en1(t)&en2(t)), for example, proving this property for path
π implies that we will be proving the conditions !(en1(s0)&en2(s0)),
!(en1(s1)&en2(s1)), ...

When we prove a temporal logic property, we may assume that a state
has only one successor, in which case the property is proven on a given
path or trace of execution. This logic is called linear time temporal
logic. We may also assume that each state may have several successors,
in which case we have to prove the property on a set of paths. The
latter case is usually represented as an infinite tree and it is suitable for
representing computations. This logic is called branching time temporal
logic.

To show how these two types of logic differ, we first introduce CTL*,
which contains both CTL and LTL, and plays essential roles in formal
hardware verification for branching time temporal logic and linear time
temporal logic, respectively.

CTL* contains operators for reasoning about paths of computation,
such as the operators G (always), F (eventually), U (until) and X (next)
and operators for reasoning on branching paths of execution, that is,
the operators A (for all paths of execution) and E (for any path of
execution). In addition to these quantifiers, any Boolean composition of
CTL* formulas are CTL* formulas as well.

178 ADVANCED FORMAL VERIFICATION

For any temporal formulas p and q, the temporal formula G p means
that p always holds, or the temporal formula p holds for all states of a
path π. The temporal formula F p means that p holds for some future
state of a path π. The temporal formula p U q means that the temporal
formula p will be valid in all states of a path π until q is true in some
future state of π.

Path quantifiers behave as described previously. The temporal for-
mula A p means that for all paths π starting with the current state, p
will be valid. The temporal formula E p means that there is a path π
starting with the current state for which p is valid.

As seen in the previous paragraphs, CTL* can be separated into state
formulas and path formulas. Any atomic proposition or Boolean formula
over state formulas is a state formula. In addition, existential quantifi-
cation over path formulas (E path, where E is the existential quantifier
and path is a path formula) is also a state formula.

Any state formula is a path formula, as are path formulas Boolean
composition of path formulas. In addition, path formulas can be com-
posed using the temporal operators X path and path1 U path2.

The reader should note that the F operator can be thought of as
an alias for the unary form of the until operator (F p = true U p),
and that G and F are dual, that is, G p is equivalent to !F !p. The
rationale behind the first alias is that eventually p is equivalent to waiting
vacuously until p occurs; and the rationale behind the second formula is
that stating that p is always true is equivalent to saying that it is not
the case that !p will be true in the future. Similarly, it is not difficult to
show that E and A are dual.

Note that in CTL* we do not make any restriction on the order in
which temporal and branching operators appear in a valid formula. As
a result, FG p and AG p are valid CTL* formulas. The first formula
states that eventually p will be true forever. The second formula states
that for all paths starting from the current state, p always will be true.

Valid CTL* formulas can be proven valid (or not) in formal models
of a design. Let f be a CTL* temporal formula expressing some desired
behavior, and let M be a formal model of a design described as a Kripke
structure (S, S0, R, L). The problem of proving the correctness of f for
the model M involves finding the set of all states in S that satisfy f .

{∀s ∈ S s.t. M,s |= f}

where M,s |= f means the property represented by the temporal
formula f holds at state s of model M . Note that the formal model
satisfies the specification if and only if {∀s ∈ S0} ⊆ {∀s ∈ S s.t. M,s |=
f}.

Assertion-Based Verification 179

Now that we have presented CTL* to the reader, we can restrict this
logic to CTL and LTL.

CTL: a CTL formula is a CTL* formula beginning by a branch
quantifier (A and E), restricting that temporal operators (F, G,
U, and X) be preceded by branch quantifiers For example, the
formula AG p is a valid CTL formula, but FG p is not.

LTL: an LTL formula is the subset of CTL* formulas obtained
by simply restricting the valid formulas to path formulas. For
example, the formula FG p is a valid LTL formula, but AG p is
not.

If we consider an implicit universal quantifier for all paths in front of
an LTL formula, we can see that certain behaviors, such as A(GF f)
cannot be represented by CTL, although it is a valid LTL formula. Sim-
ilarly AG(EF f) is a valid CTL formula, but not a valid LTL formula.
While the first formula states that for all states of all paths, eventually
f will be valid (a fairness constraint), the second formula states that for
all branches of all states, at least in one of the paths eventually will have
a valid f .

It is beyond the scope of this chapter to discuss thoroughly the seman-
tics of CTL*, CTL, and LTL. Our goal is to give a short introduction
on this subject to support the remainder of this chapter. We refer the
reader to [11] to a more complete definition of these logics’ semantics
and complexities.

Although writing temporal formulas is much easier than writing their
formulas with explicit time quantifiers, these temporal formulas can still
cause major problems during the verification procedure, leading to false
positive results due to incorrect formula specification.

2.2 Property Specification Language (PSL)

The Accellera Property Specification Language (PSL) is an ideal lan-
guage for specifying design intent in either linear-time temporal logic or
an optional branching-time temporal logic. In Section 1.1, we presented
a segmented layering concept as a matter of convenience to describe a
property language. Similarly, the PSL language definition is segmented
into layers: Boolean, temporal, modeling, and verification. The tem-
poral layer supports either the LTL linear-time temporal logic or CTL
branching-time temporal logic operators. In this section, we consider
only the linear-time temporal logic component known as the PSL foun-
dation language (FL). For a more complete definition, see [2].

180 ADVANCED FORMAL VERIFICATION

2.2.1 Boolean layer. At the Boolean layer, a PSL specification
references signals and variables within an HDL description (for example,
Verilog or VHDL). Hence, the underlying HDL syntax and semantics for
Boolean expressions ensure semantic consistency between the property
specification and the HDL model.

2.2.2 Temporal layer.

Sequences: Sequences of Boolean conditions that occur at successive
clock cycles can be described succinctly using Sequential Extended
Regular Expressions (SEREs). Sequences and SEREs can be con-
structed as follows (where b is a Boolean expression):

b – a Boolean expression is a SERE in its simplest form

{SERE} – a sequence constructed by a SERE

SERE ; SERE – a SERE constructed by concatenating two
SEREs

{sequence — sequence} – a sequence describing alterna-
tives

{sequence & sequence} – a sequence describing parallel
non-length matching sequences (that is, two sequences, both
hold at the current cycle, regardless of whether they complete
in the same cycle or in different cycles)

{sequence & sequence} – a sequence describing parallel
length matching sequences (that is, two sequences, both hold
at the current cycle, and both complete in the same cycle)

PSL provides various repetition operators ([]) that concisely de-
scribe repeated concatenation of the same SERE. For example,
given the SERE r and a Boolean b:

r[*m:n] – a sequence of n contiguous occurrences of r

b[=m:n] – any sequence containing n occurrences of b

b[->m:n] – any sequence ending in the nth occurrence of b

r[*] – zero or more occurrences: r[*0:inf]

r[+] – at least a single occurrence: r ; r[*]

The repeat range m : n can be replaced by a single constant
n (for example, [*2]). In addition, an unbounded range could

Assertion-Based Verification 181

be expressed as [*0:inf], where the keyword inf represents in-
finity. Note that the + and * qualifiers may stand alone, with-
out a preceding SERE, in which case they represent the advance-
ment in time within a range of cycles (for example, {a;[*2];b} =
{a;‘TRUE[*2];b}).

Properties: PSL supports all the standard LTL operations. In ad-
dition, more readable operators are defined in terms of the base
operators. For example, given the PSL temporal formulas f,f1,
f2, a few of the common PSL FL operators include:

!f – f does not hold

f1 & f2 – f1 and f2 both hold

f1 | f2 – f1 or f2 or both hold

f1 -> f2 – f1 implies f2

f1 <-> f2 – f1 -> f2 and f2 -> f1

always f – f holds in every cycle: G f

never f – f does not hold in any cycle: G !f

next f – f holds in the next cycle, if any: X f

next! f – f holds in the next cycle: X!f

f1 until f2 – f1 holds until f2 holds, if ever: f1 W f2

f1 until! f2 – f1 holds until f2 eventually holds: [f1 U f2]

f1 before f2 – f1 holds before f2 holds

within(r1, b)r2 – r2 occurs after r1 and before b

eventually! f – an f holds in some future cycle: F f

Notice the eventually! operator, which is referred to as a strong
operator due to the exclamation mark (!). PSL supports both
strong and weak operator forms. A strong form requires the ter-
minating condition to eventually occur, while the weak form makes
no requirement about the terminating condition. For example, the
strong and weak forms of ”busy shall be asserted until done is as-
serted” are (busy until! done) and (busy until done), respec-
tively. The strong form (that is, tt until!) states that busy shall be
asserted until done is asserted, and that done shall eventually be
asserted. The weak form (that is, until) states that busy shall be
asserted until done is asserted, and that if done is never asserted,
then busy shall stay asserted forever. Note that a property that
uses a non-negated strong operator is a liveness property, while one
that uses only non-negated weak operators is a safety property.

182 ADVANCED FORMAL VERIFICATION

PSL also supports operators that build complex properties out of
SEREs:

{r1} |-> {r2} - r2 starts in the last cycle of r1 (overlap)

{r1} |=> {r2} - r2 starts in the first cycle after r1

{r} (f) - f holds in the last cycle of r

Declarations: PSL allows us to define named property and sequence
declarations with optional arguments, which facilitates reuse.
These parameterized declarations can be referenced by name and
instantiated in multiple places in designs with unique argument
values.

For example, we could specify the property that en1 and en2 are
mutually exclusive as follows:

Example 5.6 PSL property declaration

property mutex (boolean clk, a, b) =

always !(a & b)@(posedge clk);

2.2.3 Verification layer.

Directives: The verification layer provides directives that tell the ver-
ification tools what to do with the specified properties. Direc-
tives specify whether a given property is expected to hold (that
is, an assertion) or assumed to hold (that is, an assumption) as a
constraint. Similarly, other directives specify whether verification
should exclude situations in which a given sequence occurs (that
is, a restriction) or ensure that other sequences are encountered
during verification (that is, a functional coverage specification).
The PSL verification directives are:

assert

assume

assume guarantee

restrict

restrict guarantee

cover

fairness and strong fairness

Assertion-Based Verification 183

Clock declaration: PSL provides a means for specifying a default clock
expression, which enables us to define multiple properties or se-
quences without explicitly specifying a clock. For example:

Example 5.7 PSL default clock declaration

default clock = (posedge clk);

assert always !(en1 & en2);

Alternatively, we can explicitly associate a clock with a property
or sequence as follows:

Example 5.8 PSL explicit clock declaration

assert always !(en1 & en2) @(posedge clk);

3. Assertion libraries

There is a large class of properties that can be reused, which ranges
from a higher-level common interface protocol down to lower-level RTL
implementation properties. For example, using PSL, we could express
a property that signals en1 and en2 are always mutually exclusive as
follows:

Example 5.9 PSL property for mutually exclusive signals

property mutex =

always (reset_n != 1’b0 || !(en1 & en2))@(posedge clk);

assert mutex;

However, we could encapsulate the properties into a parameterized
template or module, which can be pre-verified and then reused. The
Accellera Open Verification Library (OVL) [7] is an example of an as-
sertion library ideal for use in an industry setting. For example, we could
express the assertion that a and b are always mutually exclusive using
an OVL assert always Verilog module as follows:

Example 5.10 OVL assertion monitor for mutually exclusive signals

assert_always mutex (clk, reset_n, !(en1 & en2));

The OVL assertion monitors provide many systematic elements for an
effective assertion-based verification methodology that are typically not

184 ADVANCED FORMAL VERIFICATION

addressed by general property languages. For instance, the OVL incor-
porates a consistent and systematic means of specifying RT-level imple-
mentation assertions structurally through a set of concurrent assertion
monitors. These monitors provide designers with a module, which guides
them to express a broad class of assertions. In addition, these monitors
address methodology considerations by providing uniformity and pre-
dictability within an assertion-based verification flow and encapsulating
the following features:

unified and systematic method of reporting that can be customized
per project

common mechanism for enabling and disabling assertions during
the verification process

systematic method of filtering the reporting of a specific assertion
violation by limiting the firing report to a configured amount

One particularly compelling aspect of the OVL is that it does not
require a compilation step to take advantage of assertion specification in
the RTL source. Furthermore, the assertion library has proven its value
in an industrial setting since the library is written in standard IEEE-
1364 Verilog and IEEE-1076 VHDL, and it works with any commercial
simulator. This means that IP containing assertions can be delivered to
customers without delivering any additional tools for preprocessing the
assertion into simulation monitors.

4. Assertion simulation

An assertion-based methodology leverages the assertion specification
between multiple verification techniques, for example static formal prop-
erty checking and dynamic simulation-based verification. Although for-
mal verification has proven its worth in an industry setting, for the
foreseeable future simulation will play a critical role in the design ver-
ification flow. In this section, we discuss the role of simulation in an
assertion-based methodology.

Currently, various techniques support assertions within a simulation
environment; for example, adopting a library of assertion monitors (as
previously discussed), including native simulator support for assertion
languages (like PSL), or translating an assertion specification into a
checker or monitor that is integrated into the simulation environment [3].
Figure 5.3 shows an environment for translating a formal property lan-
guage (such as PSL) into a simulation monitor. The user provides a
design to be verified, as well as formal specifications and a set of test

Assertion-Based Verification 185

programs generated either manually or automatically. During simula-
tion, the translated checker reports any property violations.

Figure 5.3. Assertion checker generation from specification

Assertions in simulation have been used by many prominent compa-
nies, including: Cisco Systems, Inc., Digital Equipment Corporation,
Hewlett-Packard Company, IBM Corporation, Intel Corporation, LSI
Logic Corporation, Motorola, Inc., and Silicon Graphics, Inc.

Designers from these companies describe their success with method-
ologies that incorporate assertions as follows:

34% of all bugs uncovered with simulation were found by asser-
tions on DEC Alpha 21164 project [9]

25% of all bugs uncovered with simulation were found by asser-
tions on DEC Alpha 21264 project – The DEC 21264 Micropro-
cessor [14]

25% of all bugs uncovered with simulation were found by asser-
tions on Cyrix M3 (p2) project [6]

From these published results, a common theme emerges: when de-
signers use assertions as a part of the verification methodology, they are
able to detect a significant percentage of design failures. Thus, asser-
tions not only enhance a verification methodology; they are an integral
component. Finally, one significant aspect of specifying assertions is, as
previously stated, that assertions improve observability. This results in
a significant reduction in simulation debug time – a savings of up to 50%
as reported by [3].

186 ADVANCED FORMAL VERIFICATION

5. Assertions and formal verification

As we stated in our introduction to this chapter, as formal research
matures and approaches a level of sophistication required by industry
(beyond the bounds of research and early adopters), we must take steps
to ensure a successful transfer (scaling) to this more demanding level.
Although the need for methodological change is clear, transitioning for-
mal verification technology into an industry design environment has been
limited by a lack of methodology guidelines for effective use.

One of the difficulties encountered when attempting to apply formal
verification to an industry setting is successfully managing the state ex-
plosion problem. When attempting to prove correctness of assertions on
an RTL implementation, a full proof is not always achievable. However,
the value of functional formal verification is not limited by any means
to full proofs. In reality, the value lies in finding bugs faster or earlier in
the design cycle and finding difficult bugs missed by traditional simula-
tion approaches, which in turn increases confidence in the correctness of
the design while decreasing time to market. If our goal is an exhaustive
proof, verification for assurance versus verification for bug hunting, then
typically some form of abstraction is typically required on portions of
the design (for example, counters and memories).

Another difficulty encountered when attempting to apply formal ver-
ification to an industry setting is the methodological requirement for
accurately specifying environment constraints. The formal verification
engine uses the constraints to limit the exhaustive search to a valid set of
legal behaviors. Note that the work used to create block-level environ-
mental constraints for a formal verification engine can often be re-used
as block-level interface assertions during full-chip and system simulation.
Hence, there is a return on investment for formally specifying block-level
interface properties that include, as previously stated, improved under-
standing of the design space, improved communication of design intent,
and improved verification quality.

5.1 Handling complexity

In this section, we discuss techniques typically used to handle the state
explosion problem when proving properties on industrial RTL models.

Choose appropriate RTL. The first step in handling complexity is
to initially choose the right level of RTL on which to apply formal.
For example, RTL contained in control-intensive logic is better
suited for formal property checking than RTL that models data
path logic. Size of the RTL component (in terms of state directly

Assertion-Based Verification 187

related to a property) must be considered. Other factors that in-
fluence the RTL selection are design-related. For example, not
every RTL component (that is, module, block, or unit) is a good
candidate for stand-alone verification. Interesting properties may
require more logic to be included beyond our selected RTL com-
ponent. This can be problematic since many internal interfaces
are rarely documented. Furthermore, the additional logic not in-
cluded with our RTL component that we wish to verify may be
too complex to model as environment constraints. Nonetheless, if
we choose the appropriate RTL wisely, we can have a high degree
of success at formally verifying properties on RTL components.

Property decomposition. We recommend that complex sequential
assertions be split into simpler assertions. For example, break
a req-ack handshake down into its component elements (arcs on a
timing diagram). This think static rather than dynamic approach
works well for formal proofs.

Compositional reasoning. One technique to cope with the state ex-
plosion problem is to partition a large unverifiable component into
smaller, independently verifiable components. This technique is
referred to as compositional reasoning. For example, a large super-
block component can be partitioned (often quite naturally) into a
set of smaller block and sub-block components. When verifying a
property of one of these partitioned components, we must specify a
set of constraints that model the behavior of the other components
(that is, the environment for the component under verification).

We define a constraint as follows:

Definition 5: constraint: A condition (usually on the input sig-
nals) that limits the set of behavior to be considered by the
formal verification engine. A constraint may represent real
requirements on the environment in which the design is used,
or it may represent artificial limitations imposed in order to
partition the verification task.

Gradual semi-exhaustive verification. Although in theory, com-
positional reasoning using constraints sounds attractive, when ap-
plying formal property checking within an industrial setting, a
more modest approach is generally used. We refer to this approach
as gradual semi-exhaustive formal verification via restrictions. The
advantage of this approach is that it has the potential of flushing
out complex bugs as quickly as possible using formal verification
to search a large state space.

188 ADVANCED FORMAL VERIFICATION

Essentially, this approach is a gradual development of a formal
verification environment around the RTL component that was se-
lected using restrictions.

This approach has the following benefits:

Allows us to control the state space explored to prevent state
explosion using restrictions

Enables us to initially turn off portions of the design’s func-
tionality - and then gradually turn on additional functionality
as we validate the design under a set of restrictions

Allows us to refine the constraint model into more general
assumptions without initially encountering state explosion

Provides an easier method of debugging by selecting, and thus
controlling, the functionality in the environment that is en-
abled

We define a restriction as follows:

Definition 6: restriction: A statement that the design is con-
strained by a given artificial property and a directive to veri-
fication tools to consider only paths on which the given prop-
erty holds.

A restriction may reduce a set of opcodes to a smaller set of legal
values to be explored during the formal verification search pro-
cess. Or a restriction may limit the component’s mode settings
to read only during one phase of a proof, and then re-prove with
a write mode restriction. Other examples include restricting the
upper eight bits of a 16-bit bus to a constant value while letting
the lower eight bits remain unconstrained during the formal verifi-
cation search, and then shifting the restriction to a new set of bits
and re-proving with the new bus restrictions. It is important to
note that even with the use of restrictions, the number of scenar-
ios that the formal verification engine explores is very large, and
complex errors will be detected under these conditions.

A variant of this technique has been used in industrial settings to
prove the correctness of properties, and it is based on the notion
of inductive proofs. First, the designer proves that the property
holds for the reset state of the circuit. Then, we constrain the
formal method of the design to look like it is the base case for then
proving the inductive step. As a major advantage, this method can

Assertion-Based Verification 189

be very effective, as it optimally uses model checking for proving
circuits exhaustively for a very short number of cycles.

One of the difficulties encountered is that usually verification en-
gineers must have a very good understanding of the property that
needs to be proven and the design itself, because if they under-
constrain the design, they may get a false positive. On the other
hand, if they overconstrain the design, they may get a false neg-
ative. Usually, the designer starts from a very weak constraint
(to get a false positive) and incrementally strengthens it until the
property becomes true. Although this may get fast proof results,
we cannot tell in general if we have overconstrained the model.

Exhaustive proofs. The second technique used in an industrial set-
ting, which is often the outcome of a gradual semi-exhaustive veri-
fication approach, is to relax the restrictions into general interface
assumptions in an attempt to prove properties on the partitioned
component. The advantage of performing the semi-exhaustive ver-
ification approach first using restrictions, as opposed to exhaustive
proofs, is that if we cannot prove the property under the restric-
tion, then we cannot prove it using general assumptions. Hence,
we must employ other techniques (such as abstraction) if a proof
is required.

We define an assumption as follows:

Definition 7: assumption: A statement that the design is con-
strained by a given property and a directive to verification
tools to consider only paths on which the given property
holds.

Note the subtle distinction between assumptions and restrictions
related to our goal of applying formal verification technology in
an industrial setting. For restrictions, our goal is to find bugs and
clean up the partitioned components of the design using formal
techniques. We are under no obligation to validate restrictions
(either in simulation or formal verification). Using assumptions,
however, our goal is to prove correctness, which can be a more
difficult task. Often, we convert assumptions into assertions, which
we then attempt to prove on neighboring components of the design.
This strategy is known as assume-guarantee reasoning [8]. If an
assumption is too difficult to formally prove, we use simulation to
validate these assumptions as interface assertions.

190 ADVANCED FORMAL VERIFICATION

5.2 Formal property checking role

In this section, we discuss the role formal property checking plays
during various phases within a design flow. The first step in the
process is to identify good property candidates that provide a clear
return on investment (ROI) for the effort involved in the formal
verification process and likelihood for success (LFS). Examples in-
clude properties related to portions of the design that:

have historically resulted in respins due to bugs (hence, ROI)

are estimated to be difficult to verify (or it will be difficult
to achieve high coverage) using traditional simulation means
(hence, ROI)

are contained in control-intensive logic vs. data path logic
(hence, LFS)

are supported with enough bandwidth from the design team
to adequately define required environment constraints when
a full proof is required (hence, LFS)

Good property candidates for formal verification can occur at mul-
tiple levels of abstraction and phases of the design process. The
level of expertise required for success at each phase varies depend-
ing on the verification goals.

Architectural verification. Formal verification has been successfully
applied to proving architectural properties on shared memory con-
sistency protocols (for example, cache coherence or sequential con-
sistency protocols) as well as other architectural considerations (for
example various arbitration schemes). The goal of this phase of
formal verification is to flush out high-level architectural bugs prior
to RTL implementation. However, successful architectural formal
verification in an industry setting, in general, requires a verifica-
tion team with a high level of expertise. In part, this expertise
requirement comes from the need to create abstract models of the
system that are formal-friendly.

Concurrent design and verification. Formal verification within an
industry setting can be applied early during the RTL development
phase in an attempt to flush out bugs prior to module integra-
tion into the system verification environment. In general, this is a
low-effort task (which could be higher depending on the particular
engineer’s goals). As the engineer codes assertions into the RTL
implementation, formal property checking combined with interface

Assertion-Based Verification 191

restrictions attempt to find bugs. If time permits, the verification
engineer might attempt to extend this gradual semi-exhaustive ap-
proach into a full proof.

Block-level regression. Formal verification, when applied to the block
level, offers much more than a low-effort, early bug-hunting tool.
On the contrary, the strategy offers a means to deliver high quality
blocks to the chip integration environment. Although the initial
effort, before chip integration, does allow for early bug hunting,
formal property checking’s value extends beyond the initial stage.
To provide a quick path for finding bugs and saving precious debug
time during regression, it can also be performed every time the
team modifies the block-level RTL code. This especially makes
sense after a team makes the initial constraint investment at the
block-level, which allows a formal tool to quickly prove the block-
level assertions.

Post-silicon verification. We have successfully applied formal prop-
erty checking during post-silicon verification. When a bug is iden-
tified in the lab, a formal test environment is created around the
RTL implementation containing the bug. A property associated
with the bug is created, and then the error is demonstrated on
the RTL model using formal property checking combined with a
formal testbench (that is, environmental properties used as con-
straints). Once the corrected RTL implementation is available, it
is instantiated into the formal testbench and the formal property
checker is used again to verify the fix.

6. Assertions and synthesis

Assertions can be synthesized for both automatic verification and for
on-line assertion validation. A synthesizable assertion can provide an
automatic model that serves as a crosscheck against formal verification.
For on-line assertion validation, an assertion can be checked during the
lifetime of a design. In this section, we show how assertions can be used
in live designs to guarantee that the design works as expected.

6.1 On-line validation

On-line validation is a technique that checks for design correctness
during circuit operation. It uses the idea of white-box verification to
provide a live circuit with enough observability so that any incorrect
behavior that has not been captured during the design simulation and
prototyping phases can still be captured during the circuit operation.

192 ADVANCED FORMAL VERIFICATION

As most designs evolve over time, this technique can be used to fix
design bugs for the next generation of chips and circuit debugging and
correction in FPGAs.

ASSERTION PROCESSOR

Figure 5.4. Diagram of assertion processor framework

Figure 5.4 is a diagram of a framework that must be added to an
integrated circuit to process assertions. There are three main compo-
nents to this framework: the assertions (square white boxes) that are
distributed over the integrated circuit representing the conditions that
must be checked during the circuit operation; the assertion processor,
which is a circuit designed to process the results of the assertions and
take proper action, being as simple as raising an error pin to put the
system in halt mode or even to communicate with an embedded proces-
sor to dispatch an error correction routine; and a routing scheme that
communicates the results of the assertions to an assertion processor.

6.2 Synthesizable assertions

Which assertions are suitable for on-line validation of integrated cir-
cuits? The reader should recall the three types of properties that were
described in Section 2: safety, liveness and fairness.

Of these three, safety properties are the only type that can be used for
on-line validation, because we can analyze the past history of a design
to ascertain that nothing bad has happened to the circuit yet. Although
running a live circuit for a long time does not guarantee that the property
will ever hold false, we can ensure that it has not violated the property
yet. The other types of properties, namely liveness and fairness, depend
either on future events to ascertain validity or infinite traces.

Assertion-Based Verification 193

A synthesizable assertion can be obtained if we code an assertion
using a synthesizable RTL subset of a hardware description language,
such as Verilog HDL or VHDL. Example 5.11 shows the code for an
assert never assertion, while Figure 5.5 illustrates the circuit.

Some researchers have proposed that the complexity of a synthesized
assertion lies on the conditions passed to the assertion, and not in the
assertion itself. We partially agree with this statement because the con-
ditions that a designer wants to check are usually encoded in some ex-
pression inside the circuit description. By carefully choosing the correct
form of the expression (for example, favoring re-usable expressions by
the synthesis tool), a designer can avoid the regeneration of long and
complex expressions that will add to the overall circuit size.

We leave to the reader to contrast the original assert never from
the description in the Open Verification Library with this simplified
version to understand the conversion from a simulation assertion to a
synthesizable assertion.

Assertions that can be synthesized can be classified as either deter-
ministic or non-deterministic. Deterministic assertions trigger after a
fixed number of cycles if a design failure is detected. An example of
this type of assertion is assert never , which triggers if a condition
is true. On the other hand, non-deterministic assertions will be tested
only after an initial (or triggering) event occurs, and as a result, may
never be tested. Examples of these assertions are assert window and
assert time. The reader should be aware of non-deterministic asser-
tions, as they may never fire in a design not because the property being
checked is true, but because the initial event never triggers.

Example 5.11 A property’s verification layer expressed in PSL

module assert_never (ck, reset_n, expr);

input ck, reset_n, expr;

reg result;

always @(posedge ck)

if (reset_n == 1’b0)

result <= 1’b1;

else

result <= (expr == 1’b0);

initial result = 1’b1;

endmodule

194 ADVANCED FORMAL VERIFICATION

D Q result
reset_n

expr

ck

Figure 5.5. assert never synthesized circuit

6.3 Routing scheme for assertion libraries

A synthesized assertion has to connect on one side to the integrated
circuit itself and on the other side to the assertion processor. Note that
a portion of the assertion library has to work on the speed of the design
itself, but the portion connected to the assertion processor is usually
subject to much less stringent time requirements.

One of the consequences of this fact is that routing from the assertion
to the assertion processor does not have to be implemented in a one-to-
one manner. We can leverage the work on the scan-chain (IEEE-1149
standard [IEEE-1149]) to implement a routing scheme that communi-
cates the results of the assertions to an assertion processor.

In Figure 5.6-a, we present a typical assertion module from the Open
Verification Library. In order to use it in a scan-chain architecture we
defined extra pins, three inputs and two outputs, as shown in Figure
5.6-b. Table 5.1 contains descriptions of each additional signal.

assert_ModuleA
reset_n

clk

test_expr

assert_ModuleA
reset_n

clk

test_expr

escen

esclk

esci

esco

eo

(a) (b)

Figure 5.6. Extension to assertion library to enable distributed routing scheme

To better understand how this extended circuit works, we present in
Figure 5.7 the routing scheme using scan-chain and in Figure 5.8 the

Assertion-Based Verification 195

Table 5.1. Added pins for synthesizable assertion library extension.

Signal Description I/O

Escen Error Scan Enable Input
Esclk Error clock Input
Esci Error Scan Input Input
Esco Error Scan Output Output
Eo Error Output Output

synthesized circuit for assert never. When an assertion fails, the pin
eo will signal the assertion processor of a failed assertion. Immediately,
the assertion processor will start scanning the assertion sequence (us-
ing esck clock) to determine the failed assertion. Note that in this case
however, the assertion processor will not know which assertion failed im-
mediately, requiring an additional scan sequence and adding complexity
to the assertion processor. Figure 5.9 shows a possible timing sequence
that can be issued by the assertion processor to determine which asser-
tion has failed.

ASSERTION PROCESSOR

Figure 5.7. Scan-chained routing

6.4 Assertion processors

All of our discussion leads to the implementation of an assertion pro-
cessor. The assertion processor can be as complex as a small micro-

196 ADVANCED FORMAL VERIFICATION

D Q result
reset_n

expr

ck

Desci

esck

ei

eo

esco

EN

EN

escen

Figure 5.8. Synthesized circuit for modified assert never

eo

escen

esco 1 2 3 4 5 n

esclk

Figure 5.9. Time diagram of assertion scan issued by assertion processor

processor and as simple as a single pin. The designer must answer the
following questions to decide the complexity of an assertion processor.

Is the assertion processor responsible for determining what hap-
pened? If yes, a full scanner has to be implemented. Otherwise
external pins should be provided.

Should the assertion processor interact with the integrated circuit
when an assertion fails? If the assertion processor has to stop
processing inside the chip, or if it has to interrupt an embedded
processor, additional complexity has to be added to the assertion
processor.

A simpler assertion processor enables an entire system to be man-
aged by an external assertion processor. On the other hand, a complex
assertion processor can deal with more difficult situations, such as the
example mentioned above.

Assertion-Based Verification 197

Note that the assertion mechanism described earlier allows us to de-
termine which assertion has failed but not the conditions under which
the assertion failed. As a result, a more complex assertion processor
has to be implemented if we need to know the conditions under which
the circuit has failed. In this case, the assertion processor should have
access to a local storage and it should be able to stop the processor from
continuing.

6.5 Impact of Assertions in Real Circuits

In [12], several assertions from the Open Verification Library were
synthesized for a Xilinx FPGA, with bit ranges and delays ranging from
1 to 32. The sizes of the assertions ranged from 3 LUTs and 1 flip-flop
(in the case of assert always) to 149 LUTs and 67 flip-flops (in the
case of assert change).

It has been suggested that just synthesizing the assertions does not
give a good measure because RTL languages enable designers to write
very complex expressions when instantiating assertions, and these ex-
pressions would not be accounted for in the synthesis results. However,
in real designs, the expressions specified in the assertion instances gener-
ally correspond to some cone of logic previously specified by the designer.
As a result, its impact should be minimal.

7. PCI property specification example

In this section, our goal is to demonstrate a process of translating a
set of natural language requirements into a set of properties. We have
chosen examples from the Peripheral Component Interconnect (PCI)
specification [1]. Please note that it is not our intention to fully specify
all functional requirements of the PCI – we leave this as an exercise for
the reader.

You will note that many of the properties we specify in this section are
at a transaction level. Protocol specification and verification at a trans-
action level is more efficient than at a signal interaction level. Trans-
action level specification not only permits more efficient test stimulus
generation, it also enables debugging and measuring functional coverage
at a higher level of abstraction. Nonetheless, specifying transaction level
properties is not always efficient for formal verification, and partitioning
the transaction level property into a set of simpler properties can yield
better results.

Transactions are conveniently constructed by partitioning the behav-
ior definition into a set of sequence specifications, with each sequence rep-
resenting a specific behavior segment of a transaction. These sequences

198 ADVANCED FORMAL VERIFICATION

are then combined to form a more complex bus transaction specification.
We recommend that interface protocol or transaction specification occur
prior to coding the RTL.

7.1 PCI overview

The PCI local bus is an industry standard, high performance 32- or
64-bit local bus architecture with multiplexed address and data lines.
The bus was defined with the primary goal of establishing an industry
standard, high performance, low cost interconnect mechanism between
highly integrated peripheral controller components, peripheral add-in
boards, and processor/memory systems.

Figure 5.10. PCI interface

We begin our discussion of creating a PCI formal specification by
illustrating the bus interface required pin list as shown in figure1-8. This
is followed by a brief description for each required PCI signal. Finally,
we demonstrate how to convert a natural language specification of the
PCI bus protocol into a set of assertions.

A PCI bus transaction consists of an address phase followed by one
or more data phases. During the address phase, the C/BE[3:0]# bus

Assertion-Based Verification 199

command indicates the type of transaction. During the data phase,
C/BE[3:0]# are used as Byte Enables.

Note that the # symbol at the end of the signal name indicates an
active low signal. For our examples, we convert the # symbol into ”n”
as part of the name to indicate an active low signal.

7.2 PCI master reset requirement

In this section, we demonstrate how to translate a simple PCI reset re-
quirement, stated in Section 2.2.1 of the PCI Local Bus Specification [1].
The PCI reset requirement is stated as follows:

To prevent AD, C/BE#, and PAR signals from floating during reset, the
central resource may drive the RST# lines during reset (bus parking) but
only to a logic low level; they may not be driven high.

In Example 5.12, we have written a PSL assertion to check that the
AD, C/BE#, and PAR signals are never driven high during reset.

Example 5.12 PSL assertion for PCI signal reset requirements.

default clock = (posedge clk);

assert always (rst_n==0) -> !(|{ad, cbe_n, par});

Note that we have used the Verilog reduction or operator to deter-
mine if any bit in this example is a logical one. The same assertion
could be specified using a Verilog OVL implication monitor as shown in
Example 5.13.

Example 5.13 OVL assertion for PCI signal reset requirements.

assert_always mstr_reset (clk, !rst_n, !(|{ad,cbe_n,par});

7.3 PCI burst order encoding requirement

The memory address space for the PCI is defined by the bits AD[31:2].
The lower two bits (that is, AD[1:0]) are encoded to indicate the order
in which the master is requesting the data transfer, as defined in Section
3.2.2.2 of the PCI Local Bus Specification. Table 5.2 specifies the legal
burst order encoding for memory transactions. Hence, address bit AD[0]
must never be set to an active high value for a memory transaction burst
order request.

200 ADVANCED FORMAL VERIFICATION

Table 5.2. Burst order encoding.

AD[1 AD[0] burst order

0 0 linear increment
0 1 reserved
1 0 cache wrap mode
1 1 reserved

In Example 5.14, we code a PSL assertion to validate a correct mem-
ory burst order request. Note that this assertion uses a sequence to de-
fine a memory address phase sequence (that is, a falling edge of FRAME#,
along with the decoding of a memory transaction from the bus com-
mand C/BE#). Whenever this prefix sequence occurs, then bit AD[0]

must always be active low for a valid burst order encoding.
The PCI memory address phase is described by defining the sequence

SERE MEM ADDR PHASE, which matches sequences containing a
falling edge of FRAME# combined with a decoding of a memory command.
This forms a prefix sequence, which implies that the reserved AD[0] is
not active high.

Example 5.14 PSL burst order encoding assertion.

‘define mem_cmd ((cbe_n == .MEM_READ) || \

(cbe_n == ‘MEM_WRITE) || \

(cbe_n == ‘MEM_RD_MULTIP) || \

(cbd_n == ‘MEM_RD_LINE) || \

(cbd_n == ‘MEM_WR_AND_INV))

sequence SERE_MEM_ADDR_PHASE={frame_n;!frame_n && mem_cmd};

property PCI_VALID_MEM_BURST_ENCODING =

always {SERE_MEM_ADDR_PHASE} |-> {!ad[0]}

abort !rst_n @(posedge clk);

assert PCI_VALID_MEM_BURST_ENCODING;

7.4 PCI basic read transaction

In this section, we demonstrate (via a simplified example) another
transaction-level property, which we construct by partitioning the trans-
action into a set of partial behaviors specified as sequences. A PCI basic
read operation consists of the following phases:

Assertion-Based Verification 201

an address phase, which for a basic read consists of a single address
transfer in one clock

a data phase, which includes one transfer state plus zero or more
wait states

The address phase occurs on the first clock cycle in which FRAME#

is asserted. For a basic read transaction, there must be at least one
turn around cycle between the address phase and the data phase. A
data phase completes when an active IRDY# and either an active TRDY#

or STOP# is clocked. The read transaction completes when FRAME# be-
comes inactive. In reality, there are numerous transaction-terminating
conditions defined in section 3.3.3 of the PCI specification that can be
initiated by either the master or target (for example, timeout, abort,
retry, disconnect). For our PCI basic read operation, our goal is to
demonstrate how to build a transaction through a set of sequence spec-
ifications. Hence, we have chosen to simplify our example and ignore
these special terminating cases. We leave it to the reader to modify our
example by specifying all terminating conditions.

Byte enable requirement. Section 3.3.1 (page 47) of the PCI Local
Bus Specification states the following requirement associated with
a read transaction:

The C/BE# output buffers must remain enabled (for both read and
writes) for the first clock of the data phase through the end of the
transaction

Example 5.15 demonstrates how to specify a PCI basic read transac-
tion as specified with the C/BE# output buffer requirement. The prop-
erty PCI READ TRANSACTION begins with an address phase (that
is, SERE RD ADDR PHASE). We then specify a sequence that de-
scribes the initial required turn around cycle (that is, SERE TURN -
AROUND), which occurs the first clock after the address phase. Then,
the C/BE# signals remain unchanged throughout the remaining data
phase cbe n==prev(cbe n), that is, throughout SERE DATA PHASE.

When specifying protocol requirements, we have the choice of creat-
ing a complex property that captures all requirements required for the
transaction, or partitioning the different requirements of the transaction
into a set of simpler properties. For example, for simplicity we decided
not to specify the read transaction latency requirements in Example 5.15
for either the bus target or master (as defined in Section 3.5 of the PCI
specification). Hence, we could either modify our assertion example by
directly writing in the additional bus latency requirements or we could
create a separate simpler property for the latency requirements.

202 ADVANCED FORMAL VERIFICATION

Example 5.15 PSL basic read transaction assertion.

‘define data_complete

((!trdy_n||!stop_n)&&!irdy_n&&!devsel_n)

‘define end_of_transaction (data_complete && frame_n)

‘define adr_turn_around (trdy_n & !irdy_n)

‘define data_tranfer

(!trdy_n&&!irdy_n&&!devsel_n&&!frame_n)

‘define wait_state ((trdy_n || irdy_n) && !devsel_n)

‘define cbe_stable (cbe_n==prev(cbe_n))

‘define read_cmd ((cbe_n == ‘IO_READ) || \

(cbe_n == ‘MEM_READ) || \

(cbe_n == ‘CONFIG_RD) || \

(cbe_n == ‘MEM_RD_MULTIP) || \

(cbe_n == ‘MEM_RD_LINE))

sequence SERE_RD_ADDR_PHASE={frame_n;!frame_n && read_cmd};

sequence SERE_TURN_AROUND = {adr_turn_around};

sequence SERE_DATA_TRANSFER =

{

{{wait_state[*];data_transfer}[1:inf]}

};

sequence SERE_END_OF_TRANSFER = {data_complete && frame_n};

sequence SERE_DATA_PHASE =

{

{{SERE_DATA_TRANSFER};{SERE_END_OF_TRANSFER}} &&

{cbe_stable}

};

property PCI_READ_TRANSACTION =

always {SERE_RD_ADDR_PHASE} |=>

{SERE_TURN_AROUND; SERE_DATA_PHASE} abort

!rst_n @(posedge clk);

assert PCI_READ_TRANSACTION;

8. Summary

In this chapter, we discussed the important role that property specifi-
cation plays in an assertion-based verification flow. In the future, we pre-
dict that design and verification will become property-based. Through
the standardization of property languages, such as PSL, we foresee new

REFERENCES 203

and exciting EDA markets emerging, opening the door for improved
productivity, and all made possible through assertion-based design prac-
tices. Once specified, properties may be used across multiple design and
verification technologies, such as simulation, formal verification, and syn-
thesis.

References

[1] PCI Local Bus Specification. PCI Special Interest Group, revision
2.2 edition, 1998.

[2] Accellera proposed standard Property Specification Language (PSL)
1.0, 2003.

[3] Abarbanel, Y., Beer, I., Gluhovsky, L., Keidar, S., and Wolfsthal,
Y. Focs–automatic generation of simulation checkers from formal
specifications. In Proceedings of Computer Aided Verification, 12th
International Conference, pages 414–427, 2000.

[4] Clarke, E. and Emerson, E. A. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. LNCS 407.
Logic of Programs: Workshop, 1981.

[5] Clarke, E., Grumberg, O., and Peled, D. Model Checking. The MIT
Press, 2000.

[6] Foster, Krolnik, A., and Lacey, D. Assertion-Based Design. Kluwer
Academic Publishers, 2003.

[7] Foster, H. and Coelho, C. Assertions targeting a diverse set of
verification tools. Proc. Intn’l HDL Conference, 2001.

[8] Grumberg, O. and Long, D. Model checking and modular verifica-
tion. In ACM Transaction on Programming Languages and Systems,
pages 843–872, 1994.

[9] Kantrowitz, M. and Noack, L. I’m done simulating; now what? ver-
ification coverage analysis and correctness checking of the decchip
21164 alpha microprocessor. In Proc. Design Automation Confer-
ence, pages 325–330, 1996.

[10] Kripke, S. Semantic considerations on model logic. In Proceedings
of a Colloquium: Modal and Many valued Logics, volume 16, pages
83–94, 1963.

[11] Kropf, T. Introduction to Formal Hardware Verification. Springer,
1998.

[12] Nacif, J., de Paula, F., Foster, H., Jr., C. C., Sica, F., Jr., D. S., and
Fernandes, A. An assertion library for on-chip white-box verification
at run-time. In Proc. Latin American Test Workshop, 2003.

204 ADVANCED FORMAL VERIFICATION

[13] Pnueli, A. The temporal logic of programs. In 18th IEEE Sympo-
sium on foundation of Computer Science. IEEE Computer Society
Press, 1977.

[14] Taylor, S., Quinn, M., Brown, D., Dohm, N., Hildebrandt, S., Hug-
gins, J., J., and Ramey, C. Functional verification of a multiple-issue
out-of-order, superscalar alpha processor-the dec alpha 21264 mi-
croprocessor. In Proc. Design Automation Conference, pages 638–
643, 1998.

Chapter 6

FORMAL VERIFICATION FOR
NONLINEAR ANALOG SYSTEMS:
APPROACHES TO MODEL AND
EQUIVALENCE CHECKING

Walter Hartong
Cadence Design Systems, Feldkirchen, Germany

hartong@cadence.com

Ralf Klausen
Institute of Microelectronic Systems, University of Hannover, Germany

klausen@ims.uni-hannover.de

Lars Hedrich
Institute of Microelectronic Systems, University of Hannover, Germany

hedrich@ims.uni-hannover.de

Abstract In this contribution, we present equivalence and model checking meth-
ods for nonlinear analog systems. Both approaches are based one the
system’s nonlinear state space description. The equivalence checker
computes a nonlinear transformation of the state space descriptions into
a canonical form. Thus, the input/output behavior of the specifying and
the target system can be compared independently of the different state
representations. The model checking approach uses an automatic state
space subdivision method to transfer the continuous state space into
a discrete model retaining the essential analog dynamics. The analog
system properties are described in an extended CTL language. Experi-
mental results show the feasibility of both approaches.

Keywords: Analog, formal verification, model checking, equivalence checking

 205

R. Drechsler (ed.), Advanced Formal Verification, 205-245.

© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

206 ADVANCED FORMAL VERIFICATION

1. Introduction

Growing design size and shorter design cycles increase the need for
powerful validation methods for digital as well as for analog and mixed
signal systems. Formal verification methods for analog systems can com-
plement the existing methods for digital systems and hybrid systems.
They can be used for verifying the behavior of digital library cells on
transistor level in order to close the chain of evidence to digital formal
verification approaches or directly for verifying the analog behavior of
an analog cell.

The goals used in digital formal verification algorithms are also valid
for analog verification. Two major method classes (equivalence checking
and model checking) can be defined for analog systems as follows.

Definition 6.1 Equivalence checking for analog systems proves or dis-
proves that the input/output behavior of a target system is equal to that
of a specifying system. The proof is valid for all possible input stimuli
and for the entire system behavior.

Definition 6.2 Model checking for analog systems proves or disproves
given properties of a target system. The proof is valid for all possible
input stimuli and for the entire system behavior.

However, some distinctions have to be made. Since analog domains
are continuous in time and value, calculating exact equivalences of two
values is difficult. Therefore, computing formal statements means to
deal with tolerances, intervals, regions, or approximations.

Furthermore, the system description given by differential equations is
not solvable analytically in general. Hence, an approximation of the so-
lution in a numerical process is necessary. Due to this approximation, a
theoretical proof, as required for a formal verification algorithm in a nar-
rower sense, can not be achieved for nonlinear analog systems. However,
this is true for any formal verification process on physical systems since
the achievable accuracy is limited by the system model used [24, 29].

In this chapter, two approaches to formal verification are presented.
The first one implements an equivalence checking method comparing
two analog system descriptions. The second one is a model checking
algorithm, enabling the check of certain specification properties versus
the target system.

2. System Description

In contrast to digital logic, analog circuits are continuous in signal
values and time. Checking the exact equivalence or exact properties of

Formal Verification for Nonlinear Analog Systems 207

an analog system is not reasonable, because even a small deviation of
a system parameter may lead to a negative verification result. Due to
this, formal verification of analog systems has to handle deviations of
the system’s behavior. In this chapter, two possible methods to deal
with deviations are described. First, a deviation measure can be defined
to indicate the error magnitude. If this error is below a predefined
threshold, the systems are equal from a practical point of view.

Second, the system can be discretized by building boxes (intervals).
These boxes can be handled like distinct sets of an infinite number of
signal values enabling set based comparison. The comparison is exact
due to set operations. Hence, the continuous character of analog signals
disappears leaving some discretization errors.

Analog circuits can be modeled by circuit descriptions like netlists
with corresponding device and behavioral models. The basic system
description for both problems, equivalence and model checking, are non-
autonomous systems of nonlinear first-order differential equations. The
system of differential equations can be built by using the Modified Nodal
Approach [23]. This approach uses Kirchhoff’s node equations and ad-
ditional device equations for special devices like voltage sources and in-
ductors.

In this chapter, we restrict ourselves to single-input single-output
(SISO) systems. However, the approaches described below can be easily
extended to handle MIMO (multiple-input multiple-output) systems.

An analog system (Equation (6.1)) consists of n nonlinear first order
differential algebraic equations (DAE system)

f(x(t), ẋ(t), u(t)) = 0 ⇔

f(1)(x(t), ẋ(t), u(t)) = 0,
f(2)(x(t), ẋ(t), u(t)) = 0,
...
f(n)(x(t), ẋ(t), u(t)) = 0

 (6.1)

with the input u(t), the time t, the vector x (Equation (6.2)) of n system
variables (e.g. node voltages and currents)

x(t) =
[
x(1)(t), x(2)(t), ..., x(n)(t)

]T
, (6.2)

and its time derivative ẋ(t).
For verification tasks, an output variable y(t) has to be identified for

each system. In general, this is done by defining an output equation

g(y(t),x(t)) = 0 . (6.3)

In general, the output variable is a system variable x(t). In this case,
g is a simple selection function in terms of x(t) and y(t). The input u(t)

208 ADVANCED FORMAL VERIFICATION

is not part of g, because direct influences from inputs to outputs can be
always described by introducing additional variables and equations.

2.1 Analog Circuit Classes

Since analog circuits can be divided into different classes, the formal
verification problem can be addressed by different methods. Three main
classes of analog circuits can be distinguished based on the following
criteria [20]:

linear/nonlinear,

static/dynamic,

nominal values/parameter tolerances.

Our approaches deal with nonlinear dynamic circuits without toler-
ances. To our knowledge, there exists no formal verification approach for
the most general circuit class, namely nonlinear dynamic circuits with
parameter tolerances, due to time complexity problems. However, it is
theoretically possible to extend the proposed algorithms in order to deal
with tolerances.

2.2 State Space Description

State space descriptions are a widely used concept in the analog do-
main, especially in control theory, and of course in the digital domain.
For all cases, the circuit behavior can be described by means of the
state space enabling a canonical description and simplifying algorithmic
access.

An electrical circuit can be described combining Equation (6.1) and
Equation (6.3) to

f(x(t), ẋ(t), u(t)) = 0 ,
g(y(t),x(t)) = 0 .

(6.4)

A subset of system variables x(t) is called the state variables xz(t):

Definition 6.3 A state variable xz

i (t) is a variable, whose value can
be chosen independently (at least valid under some constraints) for the
solution of the DAE system (Equation (6.4)).

The remaining variables are called non-state or algebraic variables
xa(t). Both variable types build up the n system variables

x(t) = [xz(t),xa(t)] . (6.5)

Formal Verification for Nonlinear Analog Systems 209

The z state variables xz(t) span the state space. Every point in the
state space represents a state of the system. If the input u(t) is added as
an additional dimension to the state space, the resulting space is called
extended state space.

A SISO system, described by the equation system f and the output
equation g, can be graphically represented by a vector field of the deriva-
tives of the state variables ẋz(t) in the extended state space and a scalar
field of the output variable y(t) (see Figure 6.1). The system’s dynamics
are described by the vector field of the derivatives of the state variables.
Trajectories of the system starting from a state in the state space can
be constructed simply by following the time derivatives vectors. These
trajectories are computed in transient analysis of circuit simulation for
example. Both fields together describe the entire nonlinear dynamic
input/output behavior of the system.

In general, the state variables are those variables for which initial
values can be independently chosen regarding the corresponding initial
value problem of the DAE system (see also Section 2.2.2). A state
variable occurs at least once in time derivative form ẋz

i (t) within the
DAE system. In some special cases constraints might exist, which limit
the free choice of the state variables, for example a linear dependent
combination of two state variables’ derivatives result in only one freely
selectable state variable. These cases will be neglected in the further
explanation. Moreover, hidden constraints from equations result in even
more complex dependencies, measured by the index of the equation sys-
tem.

2.2.1 Index. Systems of ordinary differential equations (ODEs)
have no algebraic variables. If algebraic variables occur, the system is
called a system of differential algebraic equations (DAEs) [31]. A widely
used measure for the solveability of DAE systems is the index. Many
index definitions exist [15]. In the case of nonlinear equations, the dif-
ferentiation index is used [14]. For linear or linearized equations, the
Kronecker index [27] can be used. An ODE system has the index 0, a
DAE system has at least the index 1. For systems with index 2 or higher,
indicating that there are hidden constraints in the equations, the solve-
ability of the system is not straightforward and additional techniques
have to be used. Some techniques are described in [11]. Our verification
approaches deal with index 0 and 1 problems, but can be extended by
appropriate techniques to higher indices.

2.2.2 Solving a DAE System. The basic task in analog
system analysis is to solve the nonlinear differential equation system

210 ADVANCED FORMAL VERIFICATION

��� �� �

�

�

�

� �

� �

�

��� �� �

�

�

� �

� �

�

�

�

� � � 	
 �

� � 	 � � 	

� � � � 	 � � � 	 � � � 	 � �

� � � � 	 � � � 	 � � � 	 � �

� � � � � � �

� � � � � � � � � �

� �

� �

Figure 6.1. Equivalent descriptions of a system as implicit state space equations and
as vector and scalar fields in the extended state space.

(Equation (6.4)). Assuming given initial values xz(t0), the problem to
be solved is the initial value problem (IVP).

In the index 0 case with no algebraic variables xa(t), the DAE-System
can be solved theoretically for ẋ(t) = f ′(x(t), u(t)). Accordingly the solu-
tion of the initial value problem can be calculated by directly integrating
the DAE system

x(t0 + ∆t) = x(t0) +

∫ t0+∆t

t0

f ′ (x(τ), u(τ)) dτ . (6.6)

The integration can be done in an analytical or - in most cases -
in a numerical way. y(t) can be computed easily by evaluating g for
x(t0 + ∆t).

However, electrical circuits are usually not index 0 systems. Addi-
tionally, the equations f can not be solved for ẋ(t). Thus, we have to
integrate an implicit DAE system numerically. The initial value xz(t0)
for each state variable xz has also to be given. One of the most important
numerical integration methods is the backward Euler formula. In this
case, the time derivatives ẋz are replaced by the numerical integrator in
Equation (6.4)

Formal Verification for Nonlinear Analog Systems 211

x (tn) , y (tn) ={
x(tn), y(tn)

∣∣∣∣∣ f
(

xz(tn)−xz(tn−1)
∆tn

,x(tn), u(tn)
)

= 0

g(y(tn),x(tn)) = 0

}
.

(6.7)

The solution x(tn), y(tn) is computed by a numerical solver for the
resulting algebraic equation system, for example by Newton-Raphson
iteration.

In circuit simulations, namely transient analysis, the DC solution of
the system is chosen as x(t0). The following solutions are sequentially
computed using the newly calculated value x(tn) as an initial value for
the next time step.

2.2.3 Linearized System Description. The previous para-
graph dealed with nonlinear large signal values of the analog system. It
is often an advantage to have a linear or linearized system description
enabling the transformation to the frequency domain and the use of the
powerful theory for linear systems. As we will see later, a linearized sys-
tem description is also used for the equivalence checking approach (see
Section 3.3).

For small deviations around a solution x, a locally linearized system
of equations resulting from f can be set up

C · ẋ(t) + G · x(t) = b · u(t) ,
y = rT · x(t) ,

(6.8)

with the capacitance and admittance matrices

C =
∂f(ẋ,x, u)

∂ẋ
,G =

∂f(ẋ,x, u)

∂x
, (6.9)

and the input and output vectors

b = −
∂f(ẋ,x, u)

∂u
, rT = −

∂g(x)

∂x
. (6.10)

3. Equivalence Checking

There exist some approaches to equivalence checking for hybrid sys-
tems which use known verification methodologies for digital systems ver-
ification and adapt them to analog or partially analog systems [22, 32].
They are restricted by verifying linear or piecewise linear analog sys-
tems. In [20, 18] some approaches to equivalence checking for circuits
with tolerances are described. One approach deals with the non-general
class of linear systems, another one with static, nonlinear systems.

212 ADVANCED FORMAL VERIFICATION

On the other hand, there are a lot of simulation based techniques com-
puting performance characteristics from a target circuit and comparing
them to given specifications, like worst-case analysis [9, 2]. These ap-
proaches are based on probabilistic methods giving good and reliable
results for the mentioned tasks. However, they are neither able to prove
that a circuit with tolerance parameters fulfills a certain specification nor
doing that for all possible input stimuli, which is demanded for formal
verification.

The following approach deals with the class of nonlinear dynamic cir-
cuits and is restricted to nominal parameters. Therefore, it is not possi-
ble to perform an inclusion proof as in the approaches using parameter
tolerances [19]. Accordingly the target systems and specifications need
not to be distinguished.

3.1 Basic Concepts

The basic idea of the algorithm for nonlinear dynamic system ver-
ification is to compare two geometrical descriptions of two systems A
and B. These geometrical descriptions can be obtained by transform-
ing the two equation systems into state space descriptions, as explained
in Section 2.2. The objective is to determine whether the vector fields
ẋz

A(xz

A, u), ẋz

B(xz

B , u) and the scalar fields yA(xz

A, u), yB(xz

A, u) are equal
or not. Possible different behaviors of the systems result in differences
in the scalar and vector fields and are evaluated using an appropriate
error calculation.

3.1.1 Nonlinear Mapping of State Space Descriptions.
In general, two systems do not have the same internal state variables
because they are represented by different implementations on possibly
different levels of abstraction. Therefore, the simple method of com-
puting the vector fields in state spaces directly is not able to identify
systems with a similar input/output behavior.

For example, consider the two systems in Equation (6.11). The sys-
tems A and B are equal with respect to their input/output behavior.

System A : System B :

fA : ẋA + 3(xA − x
2
3
A · u) = 0 fB : ẋB + xB − u = 0

gA : yA − xA = 0 gB : yB − x3
B = 0

(6.11)

fB can be derived from fA using the translation rule xA = x3
B . How-

ever, the differential equations and the vector and scalar fields are dif-
ferent (see Figure 6.3). Therefore, mapping functions zA = tA(xA) and

Formal Verification for Nonlinear Analog Systems 213

zB = tB(xB) have to be found which uniquely map the state variables
xA, xB onto the so called virtual state variables zA, zB . The idea behind
this step is to map the state space descriptions ẋz

A(xz

A, u), ẋz

B(xz

B , u) into
a canonical representation żA(zA, u), żB(zB , u). The canonical represen-
tation should be a representation with decoupled, ordered states. In the
linear case, this could be achieved with the Kronecker Normal Form (see
Section 3.3.1). In the nonlinear case, the mapping has to be iteratively
computed as we will see later.

As a result from the mapping into the canonical form, the vector field
żA in the virtual extended state space of the transformed system A can

be compared to the vector field żB . For this example using zA = x
1
3
A and

zB = xB leads to two identical vector fields żA and żB (see Figure 6.3).
The scalar fields yA and yB are transformed by the mapping functions
accordingly.

Using this result, we can define our verification approach more pre-
cisely: Two systems with equal virtual state space vector fields żA, żB

and scalar fields yA, yB, resulting from mapping functions tA and tB,
have equal input/output behavior if

żA(zA, u) = żB(zB , u)
yA(zA, u) = yB(zB , u)

∧ (6.12)

is valid.
Since it is impossible, to compute the time derivatives of a DAE sys-

tem (Equation (6.1)) analytically, a direct computation of the nonlinear
mapping functions tA, tB is also not possible. Therefore, a numerical
computation including error calculation of Equation (6.12) has to be
used.

3.2 Equivalence Checking Algorithm

Since the analytical generation of the mapping functions tA and tB

is impossible, an iterative method is used. The idea is to linearize the
system at particular sampling points and to use linear mapping matrices
FrA

and FrB
to apply a local linear mapping. To consider the nonlinear

behavior of the systems, the linearization has to be done in the whole
state space. This leads to an algorithm, which samples the extended
state space and compares the vector and scalar fields at every discrete
sampling point.

3.2.1 Sampling the State Space. As shown above, the ex-
tended state space of the two systems is sampled in order to find the
mapping functions iteratively (see similar sampling method in system

214 ADVANCED FORMAL VERIFICATION

identification [5]). The boundaries of the extended state space are de-
termined by the maximum excitation of the variables and the input,
which are defined by the user. Assuming a finite step size leads to a fi-
nite set of points. The step size of the sampling algorithm is determined
by a step size control algorithm, described in [20]. The basic verification
algorithm is shown in Figure 6.2.

Verification of nonlinear dynamic systems() {
read netlists and setup nonlinear equations for both systems
for every input value in a predefined range do {

use DC analysis to obtain initial state vectors x0A
, x0B

compute linear mapping matrices FrA
, FrB

for every sample point in predefined ranges do {
compute new step size ∆z
compute state vectors for next sample point:

xgivA
= xoldA

+ FrA
· ∆z, xgivB

= xoldB
+ FrB

· ∆z
compute consistent sample points xconsA

, xconsB

using xgivA
, xgivB

compute linear mapping matrices FrA
, FrB

calculate εż (error of the state derivatives vector fields)
calculate εy (error of the output scalar field)
adjust xconsA

xoldA
= xconsA

, xoldB
= xconsB

}
}
check if εż and εy < errormargin for all sample points

}

Figure 6.2. Basic verification algorithm.

First, the generation of the differential equation systems described
in Section 2 for both systems is necessary. Two loops are needed to
sample the extended state space. In the outer loop, the input variable is
increased stepwise from the given start to the end value. Inside this loop
a DC analysis is accomplished to determine the operating point, used as
initial state vector x0. Instead of computing the mapping functions tA

and tB, two local mapping matrices FrA
and FrB

are calculated, using
a linearized state space description. This is necessary, because only for
linear systems a direct calculation of the canonical representation and the
corresponding mapping matrices can be found. A detailed description
how to calculate the local linear mapping matrices is given in Section 3.3

Formal Verification for Nonlinear Analog Systems 215

The inner loop starts with the computation of the state vectors for
the next sample point, using ∆z as step size

xgivA
= xoldA

+ FrA
· ∆z ,

xgivB
= xoldB

+ FrB
· ∆z .

(6.13)

The resulting sample point xgiv is generally a non-consistent sample
point. A related consistent sample point xcons can be calculated using
the algorithm described in Section 3.2.2. A consistent sample point
enables the computation of the linear mapping matrices FrA

and FrB

for the actual sample point. These mapping matrices are used for the
calculation of the next sample points, absolute and relative errors of the
vector fields, and the scalar fields in the virtual state space.

Additionally, the state variables xconsA
of circuit A are adjusted to

meet the state variables of circuit B exactly. This adjustment is nec-
essary to avoid summation of small deviations to larger errors while
iteratively stepping through the state space. A detailed description of
this adjustment can be found in [20, 18]. The algorithm’s last step proves
the equivalence of the two systems. The two systems are equal, if the
calculated absolute and relative errors are smaller than an error bound
for every sample point in the extended virtual state space (see Section
3.3.3).

The iterative calculation of the extended state space variables is shown
in Figure 6.3 for three executions of the inner loop. At symbol ①, the
verification run starts at the DC operating point for the input value of
u = 0.5. The starting points in the original and the virtual extended
state space correspond to each other by definition. After computing the
mapping matrices FrA

and FrB
, the step size ∆z is determined. Now,

the next state variable values in the original extended state space can
be computed. In the virtual extended state space the next points are
determined using ∆z. The resulting points are marked with ②. The
second evaluation of the inner loop results in the points labeled with ③.

3.2.2 Consistent Sample Point. In Section 2.2.2 the numeri-
cal solution of the initial value problem of a DAE system (Equation (6.4))
is given with the objective of doing transient simulation. In that section,
the initial value is assumed to be a consistent initial value of the DAE
system [11], which is defined as follows:

Definition 6.4 A vector xcons is a consistent initial value of Equa-
tion (6.4) if there exists a solution of Equation (6.4) that fulfills x(t0) =
xcons.

216 ADVANCED FORMAL VERIFICATION

�

� � � �

�

�

�

�
���

�

�

�

� � � 	
 � � �

�

�
�

�
�

�

�
��� �

�

� � � 	
 � � �

� �

� � 	
 � �
 � �
�
 �
 � � � � �
 � �
� 	 � 	
 � � � �
 �

� !!�

�

�

�
���

�
�

�

�
���

� � 	
 � �
 �
" � � 	 � � �
� 	 � 	
 � � � �
 �

� � ! � � !

�

�

�

�
� �� �

�

�

�
� �� �

$ � � � �
 � �
� � � � � � � � � � 	 � �
 �

� �

�

!

�

!

�
�
$ � � �

�
� � "

�
$ � �

�
� � "� �

�� �

��

�� �

��

�∆
�∆

��
��

��
�⋅∆� ��

�⋅∆�

�∆
�∆

≠
�

�
%

��
�

��
��

Figure 6.3. Construction of the nonlinear mapping for the example of Equa-
tion (6.11).

For this chapter, the calculation of a consistent sample point is equiva-
lent to calculating the consistent initial value. The proposed equivalence
checking approach needs consistent sample points. In this case, the esti-
mated value calculated from Equation (6.13) can not be assumed to be
a consistent sample point. That means, some state variables have slight
deviations from the consistent sample point. In case of linear dependent
state variables, this is caused by the nonlinearities of the DAE-system.

Formal Verification for Nonlinear Analog Systems 217

Therefore, the possibly inconsistent sampling point xz

giv has to be
transfered into a consistent one xz

cons. Additionally, we are also inter-
ested in the values of the state variables’ derivatives ẋz

cons corresponding
to the consistent sample point. They will be used in error calculation
procedures (see Section 3.3.3).

In order to compute the consistent sample point, the values for the
state variables xz

giv are given. The unknown values for this problem are
the variables’ values xa

cons and the state variable’s time derivatives values
ẋz

cons. Hence, the following system of equations has to be solved

f(ẋz

cons,x
z

giv,x
a

cons, ugiv) = 0 ,

g(ycons,x
z

giv,x
a

cons) = 0 .
(6.14)

The variable’s time dependencies are eliminated due to the initial
value definition. Accordingly, Equation (6.14) is a system of nonlinear
equations, because the state variables’ derivatives ẋz

cons are independent
unknown variables. It can be solved using a Newton-Raphson solver,
which should be specialized in solving equation systems of electrical
circuits. The result is a consistent sample point xcons and the state
variables’ derivative values ẋz

cons, representing a consistent sample point
in the neighborhood of the given input vector xz

giv.

3.3 Linear Transformation Theory

In general, calculating the nonlinear mapping functions zA = tA(xA)
and zB = tB(xB) from the nonlinear system functions fA and fB directly
is impossible. However, a direct mapping at a particular sample point
can be calculated based on linearized systems. The three main steps in
this task are

linearizing the system in the operating point,

computing the Kronecker canonical form, and

calculating the mapping matrix Fr

for both systems. The last two steps are described in detail in the
following sections.

3.3.1 System Transformation to a Kronecker Canonical
Form.

Starting point for the consideration is the generalized eigenvalue problem

(C · α + G · β) · x = 0 (6.15)

218 ADVANCED FORMAL VERIFICATION

with the eigenvalues λ = α
β
. The matrices G and C correspond to

the conductance and the capacitance matrices of the linearized system.
There exist many methods to solve the generalized eigenvalue problem,
e.g. the QZ algorithm.

For further studies the following assumptions are made:

G is a regular and invertible matrix. Hence all eigenvalues λ are
�= 0. This is always true for analog systems with an existing DC
operating point.

The number of eigenvectors must be equal to the number of eigen-
values. This leads to equation systems with an index ≤ 1.

To calculate the Kronecker canonical form, two invertible transforma-
tion matrices E and F are needed, solving Equation (6.16) and Equa-
tion (6.17).

E ·G · F = G̃ =

−λ1 0 · · · 0

0 −λ2
...

...
. . . 0

0 · · · 0 1

 (6.16)

E ·C ·F = C̃ =

1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 0

 (6.17)

For systems with an index ≤ 1 the matrices G̃ and C̃ are diagonal
matrices. The upper part of the diagonal of matrix G̃ consists of the
negative eigenvalues −λ1 · · · −λz, the lower part of the diagonal is filled
with ones. A similar structure applies to matrix C̃. The upper part of
the diagonal is filled with ones and the lower part of the diagonal with
zeros. In both matrices the upper part represents the finite eigenval-
ues, the lower part stands for the infinite eigenvalues. With these two
matrices we get the Kronecker canonical form

s · C̃ · x + G̃ · x = 0 . (6.18)

The complex frequency variable s results from the Laplace transfor-
mation of the linearized system shown in Equation (6.8). The results
from the generalized eigenvalue problem are the eigenvalues and the right
and left eigenvectors. If we arrange the right eigenvectors columnwise in
a matrix Vr, the solution of the generalized eigenvalue problem can be
written in matrix form:

Formal Verification for Nonlinear Analog Systems 219

C ·Vr · −G̃ + G · Vr · C̃ = 0 . (6.19)

The transformation matrices E and F can be determined by coefficient
comparison. Therefore, Equation (6.17) has to be multiplied with E−1

from the left side and Equation (6.19) has to be multiplied with G̃−1

from the right side. Because both G̃−1 and C̃ are diagonal matrices,
they can be swapped. Finally, the results of the coefficient comparison
are

F = Vr ,

E = G̃ ·V−1
r · G−1 .

(6.20)

E and F are defined, so that the Kronecker canonical form, shown in
März [27] can be calculated. Another method for the determination of
the transformation matrices can be found in [10] (elimination method).
Note, that for systems with an index > 1 these methods can not be used.
Instead, a different approach has to be chosen.

3.3.2 DAE System Transformation into the Virtual State
Space. In order to compute a canonical form, the linearized systems
shown in Equation (6.21) have to be transformed into an explicit state
space description [30] Equation (6.22)

s ·C · x + G · x = q · u ,
y = rT · x ,

(6.21)

ż = AD · z + bD · u ,
y = cT

D · z + dD · u .
(6.22)

The transformation from the virtual state space into the state space
is defined as

x = Fr · z , (6.23)

where z ∈ R
z is the state vector in the virtual state space and Fr ∈

R
n×z is the finite part from the transformation matrix F, shown in

Equation (6.20).
To derive the canonical form the state space is expanded by the infinite

state space variables z∞. This theoretical consideration is needed to
calculate the unknown matrix AD, the vectors bD and cT

D as well as the
scalar d. Using these extensions, Equation (6.23) can be written as

x =
[

Fr F∞

]
·

[
z

z∞

]
= F · z∗ . (6.24)

220 ADVANCED FORMAL VERIFICATION

If Equation (6.21) is multiplied with E from the left side and further-
more, if the variables x are replaced by the transformation (6.24), the
following expressions can be derived:

s · E · C ·F · z∗ + E · G · z∗ = E · q · u ,
y = rT ·F · z∗ .

(6.25)

With the definition of the matrices G̃ and C̃ and dividing Equa-
tion (6.25) into an upper and a lower part, we get

s ·

[
I 0
0 0

][
z

z∞

]
+

[
−Λ 0
0 I

][
z

z∞

]
=

[
Er

E∞

]
· q · u , (6.26)

y = rT ·
[

Fr F∞

]
·

[
z

z∞

]
. (6.27)

Thereby Λ represents the finite eigenvalues, arranged in a diagonal
matrix. The results can be determined using the upper part of Equa-
tion (6.26) and a rewritten form of Equation (6.27), combined with the
lower part of Equation (6.26)

AD = Λ ,
bD = Er · q ,
cT

D = rT ·Fr ,
dD = rT ·F∞ ·E∞ · q .

(6.28)

Before the calculation of the virtual state space variables is performed,
the eigenvalues are sorted according to their magnitude. This is neces-
sary to obtain a unique mapping of each state space variable from one
system to the other.

The resulting systems can have different orders. The number of eigen-
values of system A zA and the number of eigenvalues of system B zB

often differs. In this case, the number of eigenvalues has to be reduced
to the minimum number of eigenvalues of both systems

zr = min(za, zb) . (6.29)

Additionally, the number of used eigenvalues zr can be limited by the
user. This technique is comparable to the dominant poles model order
reduction. An alternative solution would be to reduce both systems
using other model order reduction techniques [13, 12].

Different scales of the eigenvectors are eliminated by using the vectors
bD and the vectors cT

D for an additional scaling condition. The scaling
problem results from the fact, that the eigenvectors Vr, which are used to

Formal Verification for Nonlinear Analog Systems 221

calculate the transformation matrices E and F, have only fixed directions
but not fixed lengths. Therefore, an additional scaling matrix Tz is
needed

ADA
·Tz

!
= Tz · ADA

,

bDA

!
= Tz · bDB

,

Tz · c
T
DA

!
= cT

DB
.

(6.30)

To calculate the coefficients of the scaling matrix Tz the three Equa-
tions (6.30) are combined to one equation system. This overdetermined
equation system can be solved using a least square approach. After-
wards, the scaling matrix Tz is used to scale the mapping matrices

F′
rA

= Tz · FrA
,

F′
rB

= FrB
.

(6.31)

As shown in Equation (6.31), only the mapping matrix FA is affected
by the scaling algorithm. The mapping matrix FB remains unchanged.
The complete algorithm to calculate the mapping matrices is shown in
Figure 6.4.

Determine linear mapping matrices FrA
and FrB

() {
linearize systems A and B at the sample point.
calculate the eigenvalues and the eigenvectors
sort eigenvalues and eigenvectors according to their magnitude
if za �= zb then {

reduce the system A and B to the order of zr

}
calculate transformation matrices EA, FA, EB and FB.
calculate the state space descriptions:

żA = ADA
· zA + bDA

· uA

yA = cT
DA

· zA + dDA
· uA

żB = ADB
· zB + bDB

· uB

yB = cT
DB

· zB + dDB
· uB

scale mapping matrices with Tz

return F′
rA

and F′
rB

}

Figure 6.4. Algorithm for linear transformation generation.

222 ADVANCED FORMAL VERIFICATION

3.3.3 Error Calculation. The derivatives żA, żB have to be
calculated in order to determine the errors between the state variables in
the virtual state space. The computation of the consistent sample point
xcons also calculates the time derivatives ẋz

cons (see Section 3.2.2). Using
Equation (6.23) we could transform the ẋ vector into the virtual state
space. Since we do not have the complete ẋ vector, a reduced equation
system has to be build. Multiplying Equation (6.23) from the left side
with C and building the time derivative leads to the following adequate
reduced system

C · ẋcons|ẋa

cons=0
= C · F · ż . (6.32)

The part of the vector ẋcons which belongs to the algebraic variables
ẋa

cons is set to zero. Due to the structure of C, the solution of Equa-
tion (6.32) will not depend on ẋa

cons. Equation (6.32) can be solved with
a least square algorithm for ż where the residuum would be in general
close to zero. Computing derivatives of virtual state variables for both
systems enables the error calculation.

We receive the errors εż and εy straightforward by calculating the
differences εż = ‖żA − żB‖ and εy = ‖yA − yB‖ for each sample point.
Additionally, relative and mean relative errors are calculated.

3.4 Experimental Results

In this section, the described equivalence checking approach is applied
to two nonlinear examples. The first example, a Schmitt trigger circuit,
is highly nonlinear. The model checking approach described in Section
4 also deals with this example (Section 4.3.1). The second example,
a bandpass circuit consists of more state variables and is modeled on
transistor level.

3.4.1 Schmitt Trigger Example. The netlist of the inverting
Schmitt trigger consists of an opamp (operational amplifier) behavioral
model, two resistors, and an output capacitance as shown in Figure 6.5.
The opamp’s open loop gain is 10000. The output voltage restriction is
±5 V and the maximum output current is 80 mA. The capacitor is set
to 1 µF, resistors R1 and R2 are both set to 10 kΩ. Thus, the switching
threshold is about ±2.5 V and the output voltage varies between +5 V
and −5 V.

This circuit has only one state variable, namely, the output voltage
Vout. Additionally, it has one input signal Vin. To consider all states
that might occur in the circuit, the extended state space is chosen to be
Vout = [−7 V .. 7 V] and Vin = [−7 V .. 7 V].

Formal Verification for Nonlinear Analog Systems 223

R
1

C
1R

2
V

in

V
out

+

-

Figure 6.5. Schmitt trigger circuit.

A vector plot of the state variable derivatives V̇out is shown in Fig-
ure 6.6. The stable and unstable equilibriums are marked with solid and
dashed lines, respectively. There are two stable equilibriums states at
5.0 V and −5.0 V with in the input voltage range of Vin = −2.5 V to
2.5 V.

-6

-4

-2

0

2

4

6

u=Vin

-6 -4 -2 2 4 6 z=Vout

Figure 6.6. State variables derivatives V̇out for Schmitt trigger circuit.

The specification for this example is a behavioral model of the Schmitt
trigger function. It is written in an analog hardware description lan-
guage. The parameters for the model are shown in Table 6.1. The model
consists of one state variable and nonlinear equations based on Heaviside
functions modeling the Schmitt trigger’s behavior. The time constant
for the state variable is determined by estimating the time constant re-
sulting from the capacitance C1 and the output current limitation of the
opamp.

224 ADVANCED FORMAL VERIFICATION

Table 6.1. Parameters of specifying behavioral model.

Parameter Value

Positive output voltage 5.0 V
Negative output voltage -5.0 V
Positive threshold voltage 2.5 V
Negative threshold voltage -2.5 V
Switching time constant 6.7 ms

A first equivalence checking run verifies the behavioral model versus
the circuit. The step size was chosen to 0.2 V in the extended state space.
9179 points are calculated in about 189 s on a SUN SPARC Ultra 10.
The results are shown in Figure 6.7. The errors are mean relative errors
(see Section 3.3.3) plotted versus the state variable Vout and the input
variable Vin. The state derivative error in the entire extended state
space is below 3%. The observable deviations result from differences in
transition regions caused by the extremely nonlinear functions used in
the models (Heaviside and tanh).

The output error (Figure 6.7 right) consists of two errors correspond-
ing to the two output values of the Schmitt trigger. The slight difference
is a result from small deviations in the ideal behavior due to the resistive
load at the opamp’s output.

Overall, the maximum errors are below 3% which seems to be an
appropriate limit for concluding that two circuits have the same in-
put/output behavior.

0.1%

0.2%

0.3%

0.4%

0.5%

-6 -4 -2
2 4 6

-6-4-2
246

2%

4%

6%

8%

10%

-6 -4 -2
2 4 6 z=Vout

-6-4-2
246u=Vin z=Vout

u=Vin

εz
. εy

Figure 6.7. Error of derivatives of state variables εż and output error εy for Schmitt
trigger circuit.

Formal Verification for Nonlinear Analog Systems 225

In order to show the equivalence checking results in case of a faulty
circuit behavior, we change the resistor R1 to 8 kΩ. The new system
primarily differs in the state variable derivatives. The plot of its mean
relative error is shown in Figure 6.8. The modified resistor leads to a
displacement of the region corresponding to the positive and negative
output voltage. In Figure 6.8 two of those regions can be identified.
The first one is the triangular area indicating different negative threshold
voltages. The second one is a difference in the positive threshold voltage
resulting in a rectangular plane of large errors parallel to the Vout, Vin

plane. The maximum error is 86% clearly indicating a different behavior.

10%

20%

30%

40%

50%

60%

70%

80%

-6 -4 -2
2 4 6u=Vin

-6
-4

-2

2
4

6 z=Vout

εz
.

Figure 6.8. State variable derivative error εż for the faulty Schmitt trigger circuit.

3.4.2 Bandpass Example. The second example is a Sallen-
Key bandpass filter. This circuit consists of five resistors, two capacitors,
and an opamp (see Figure 6.9). The opamp itself is modeled with eight
MOS transistors using a full BSIM3 model. The resistors R1 and R2 are
set to 15.9 kΩ, the resistor R3 is set to 31.8 kΩ, R4 is set to 5 kΩ, and
finally R5 is set to 10 kΩ. The capacitors C1 and C2 are both set to
10 nF

The circuit has two dominant state variables: the nodal-voltages VI

and VII and seven parasitic state variables resulting from the capaci-
tances inside the MOS transistors. Since the two dominant state vari-
ables correspond to a linear combination of the two nodal voltages, a
clear mapping of the virtual state variables z to the nodal voltages is
impossible. Additionally, the number of states have to be reduced in or-
der to compare the circuit with the given specification, which covers the
dominant states only. Together with the input signal Vin the extended

226 ADVANCED FORMAL VERIFICATION

R
1

C
1

C
2

R
2

R
3

+

-

R
4

R
5

V
in V

out

I II

Figure 6.9. Bandpass circuit.

state space has three dimensions. For a three-dimensional representa-
tion, only the two state variables are chosen for plotting.

According to the equivalence checking methodology an executable
specification is used for the equivalence checker. As a specification the
transfer function shown in Equation (6.33) is used, which can be written
in an analog hardware description language

HBP =
b1 · sn

1 + a1 · sn + a2 · s2
n

. (6.33)

The coefficients are chosen as a1 = 0.35775 ms, a2 = 0.025281 µs2

and b1 = 0.11925 ms. The transfer function has two conjugated complex
poles.

The verification run compares the bandpass netlist versus the transfer
function model. In the first run the boundaries of the extended state
space are set to [−0.9 V .. 0.9 V]. The input value is set to a constant
value of 1.0 V , the step size is 0.02 V . The algorithm needs 236 seconds
to compare 8281 points in the virtual state space. The results are shown
in Figure 6.10. The mean relative errors are plotted over the two virtual
state space variables z0 and z1.

In contrast to expectations, the maximum errors are quite large. For
the derivatives of the state variables a maximum error of over 100% is
calculated. The output error is 6%, which exceeds the postulated error
bound. The derivatives of the state variables are similar for both sys-
tems, as long as the state variables do not exceed its limits. These limits
result from the nonlinearities inside the transistor models not considered
by the linear transfer function.

To illustrate this effect, a second run was invoked with reduced bound-
aries. Now the mapping of the state space variables is done in the range
of [−0.45 V .. 0.45 V] with a step size of 0.01 V . This leads to 8281

Formal Verification for Nonlinear Analog Systems 227

Figure 6.10. State variables derivative error εż and output error εy for the Bandpass
circuit.

calculated points in the virtual state space. The maximum error for the
derivatives of the state variables is now only 0.05% and the maximum
output error is 0.08%. Inside these state space boundaries we can as-
sume, that the equivalence of both systems regarding the input/output
behavior is proven.

4. Model Checking

Model checking algorithms prove or to disprove the correctness of a
given specification property of an actual system. As we have shown in
Section 2.2, the state space description represents the entire behavior
of a nonlinear dynamic system. To enable a model checking procedure
for nonlinear dynamic systems, the specification properties have to be
described as properties of the state space description. These state space
properties will be checked versus the system’s state space [17, 16].

The next section introduces a property description language enabling
the definition of analog system properties within the state space descrip-
tion. The main algorithmic task is to check these state space properties
versus the system description. This issue will be addressed in the follow-
ing four sections. Finally, some experimental results are given, showing
the use of the developed prototype.

4.1 Model Checking Language

One of the most common language in digital model checkers is CTL
(Computation Tree Logic) invented by Clarke and Emerson [6]. The lan-

228 ADVANCED FORMAL VERIFICATION

guage is based on two types of operators: path quantifiers and temporal
operators (see Table 6.2).

In contrast to linear time logics like LTL (Linear Time Logic), CTL
is a branching time logic. That means, that the system behavior is not
fully determined for the future. Due to nondeterministic system behavior
or unknown changes of input values, the system has several possible
behavioral paths in the future. The path quantifier determines whether
a condition is valid for at least one path in the future or for all paths. As
we will see in the following sections, consideration of nondeterministic
system behavior is essential for model checking on analog systems, even
if the analog system is deterministic. This is caused by the necessary
approximations made in the discrete model generation.

The temporal operator is used to describe the time dependent system
behavior. Since this approach is focused on dynamical systems, the time
dependencies have to be included in the analog property description.

Obviously, CTL in its basic form is not suited for the description
of analog properties because it considers only boolean state variables.
Thus, the language has been extended by a minimum set of opera-
tions enabling its use for analog models. Table 6.2 gives a short syntax
overview on the CTL language and the analog extensions (bold symbols
in the table). The extended language is called CTL-A.

For example, the equation Θ = AF(state1) can be read as follows: All
paths starting in a state within Θ will eventually reach a state in which
state1 is true. To simplify matters, we do not distinguish between a
CTL condition and the set of states that fulfills this condition, both will
be named by capital Greek letters.

Since the domain of digital state variables is restricted to boolean
values, the statements a and ¬a cover the whole domain. Analog state
variables are defined continuously. Therefore, the greater and smaller
operators are introduced in the CTL-A language definition. In this
way, half planes can be described in the continuous state space e.g.
x1 > −13.2546. The combination of several half planes with boolean
operators enables the definition of arbitrary Manhattan polytopes in a
continuous n-dimensional space. Boolean variables are left out in the fol-
lowing model checking algorithms because only purely analog systems
are considered. However, an extension of this approach to mixed signal
or hybrid systems is possible.

The following example explains the use of CTL-A to describe transient
system properties. More complex CTL-A equations can be found in
Section 4.3. The system behavior is given by

{
ẋ = (1, 0)T

}
. Figure 6.11

shows the system dynamics as light gray arrows in the state space. The
CTL-A equation to be analyzed is given in Equation (6.34)

Formal Verification for Nonlinear Analog Systems 229

Table 6.2. CTL-A syntax description.

Φ := a | z ∗ v | Φ ◦ Φ | ¬Φ | � � Φ |

� Φ U Φ | � �−1 Φ | � Φ U−1 Φ

a boolean state variables

z continuous state variables

v constant real values

∗ analog > = greater

operators < = smaller

◦
boolean operators

∨ = or

∧ = and

¬ ¬ = not

� path quantifiers A = on all paths

E = on some paths

� temporal
operators

X = next-time

F = eventually

G = always

U U = until
−1 past time inversion

Φ = (x(1) > 2) ∧ (x(1) < 3) ∧ (x(2) > 1) ∧ (x(2) < 3)

Ψ = EF (Φ) .
(6.34)

Since all states at the left side of Φ have a path that will eventually
reach Φ, it is obvious that Ψ is true for these states. The result is shown
as the gray region in Figure 6.11.

In the classical CTL definition, the time model is restricted to the
future. It has been shown in some experimental results [17], that con-
sideration of the past is essential for analog specification properties. The
time model for the past is branching and infinite. Thus, the operator
−1 inverses all system transitions with respect to time. For example
EF−1(x) means, that the condition x must have been valid on at least
one path in the past. A collection of other past time definitions and lan-
guages can be found in [26]. For the system described above the formula
EF−1 (Φ) results in the region on the right hand side of Φ.

230 ADVANCED FORMAL VERIFICATION

 x2

x1

1

2

3

1 2 3

Figure 6.11. Result of the CTL-A formula: EF (Φ).

The analog specifications that can be described in CTL-A are limited.
For example, frequency domain behavior is not covered by the language.
For future development a further extension of the property description
language is necessary to focus on the needs in analog design. However,
it will be shown below that checking a variety of analog properties is
possible even with this minimum extension of digital CTL.

4.2 Analog Model Checking Algorithm

We have shown in the last section that all analog system properties
covered by CTL-A can be represented as regions in the continuous state
space. The analog model checking task is to calculate the region fulfilling
a given CTL-A formula.

For a numerical analysis, the continuous variables in an analog system
- state values and time - have to be transfered into a discrete state space
description with state transition relations. The next sections illustrate
this process.

4.2.1 Transition Systems. Digital and hybrid model checking
tools are often based on transition systems.

Definition 6.5 A state transition system T = (Q,Q0,
∑

, R) consists
of

– a set of states Q,
– a set of initial states Q0,
– a set of generators or events

∑
, and

– a state transition relation R ⊆ Q×
∑

×Q.

Formal Verification for Nonlinear Analog Systems 231

An analog system description (Equation (6.4)) is also a state transi-
tion system. The set of states Q can be represented by the continuous
extended state space R

n. The number of states x ∈ Q is infinite, due
to the continuous definition of the state variables. The initial state Q0

is a single point or a region in the state space. Often, but not neces-
sarily, this is the DC operating point. There exist only i + 1 generators∑

causing state transitions, namely, the time t and the i input values
u(t). The state transition relation R ⊆

(
R

n × R
i+1 × R

n
)

is a continu-
ous function given by the time derivatives ẋz(t). We assume the state
variables xz to be independent. For systems with dependent state vari-
ables (see Section 2.2) the algorithms have to be modified by taking into
account approaches from [4] and Section 3.2.2. Since the output function
g (y(t),x(t)) in Equation (6.4) is very simple in most practical cases, it
will be assumed that output values are only state variables x. Thereby,
function g can be neglected for the rest of this chapter.

The actual state transition can be calculated by integrating the dif-
ferential equation system (shown for the ODE case where x = xz)

fint(x(t0),u(t), δt) =

x(t0) +

∫ t0+δt

t0

{ẋ(τ) | f (ẋ(τ),x(τ),u(τ)) = 0} dτ.
(6.35)

Equation (6.35) has no direct time dependency but it depends on the
input signals u(t). Thus, the generators

∑
are not time t and input

values but rather a time difference δt and the input values. Without
losing generality, the time difference δt might be either infinitesimal
small or a finite value.

Thus, digital and analog systems can be described by transition sys-
tems. However, the analog system is continuous in time and state vari-
able values. Therefore, a method has to be developed to approximate
this behavior numerically. Some of the following algorithms have been
inspired by research in the area of approximating dynamical behavior
[8]. Despite the similarities, there are differences, mainly caused by the
overall target of the algorithms. The work of Kurshan and McMillan
[25] is also linked to the following algorithms.

4.2.2 Discrete Time Steps. In Section 4.2.1 we found that
the transition relation R ⊆

(
R

n × R
i+1 × R

n
)

for an analog system is
given as a continuous function and the actual state transition can be cal-
culated by integrating this function. According to Section 2.2.2 Equation
(6.35) can be solved using numerical integration with a small time step
∆t = tn − tn−1

232 ADVANCED FORMAL VERIFICATION

fnum (x(tn−1),u(tn),∆t) ={
x(tn)

∣∣∣ f
(

x(tn)−x(tn−1)
∆t

,x(tn),u(tn)
)

= 0
}

.
(6.36)

Besides numerical problems, an error due to the finite length of ∆t
can not be avoided. To bound this error, a local step size control mech-
anism is necessary. The algorithm used is known from transient analog
simulations. It takes the second derivative with respect to time for a
local measurement of the integration error. If the given error threshold
is exceeded, the step size is reduced. Otherwise, the transient step is
accepted. This method can be used directly in the analog model check-
ing tool. An arbitrary test point xz(t) in the state space is mapped to
its successor state xz(t + ∆t), depending on the actual step size ∆t and
the input signals u(t). In contrast to transient simulation, there is no
temporal predecessor state for a test point. A second time step has to
be calculated for each point to determine the second derivative, enabling
a local step size control.

In general, the time step ∆t will vary throughout the state space, due
to the step size control. As we will see later, this makes the checking of
explicit time dependencies difficult because ∆t has to be stored for each
transition separately. To reduce the problem, the time step is chosen to
be equal for each point within one state space region (to be defined in
Section 4.2.3). Kurshan and McMillan [25] proposed a constant time step
∆t for the whole space developed by several small numerical integration
steps (segments of trajectories). Despite the advantage of a constant
time step, this approach is not suitable for all circuits since the step size
variation in terms of state variable values may be large throughout the
state space.

Thus, every state space point xz(t) can be mapped to its successor
point s(xz(t)) = fnum(x(t),uconst,∆tlength control) (only state variables
xz(t) are taken into account) including a local step length control and
assuming given input values. The resulting tuple of test and target point
is represented by a successor vector sv(xz(t)) = s(xz(t)) − xz(t) in the
state space.

4.2.3 State Space Subdivision. To get a discrete and finite
state model, the continuous and infinite state space has to be bounded
and subdivided by rectangular boxes. In general, boxes are not necessar-
ily the best choice [21]. However, for implementation reasons boxes are
the far most convenient data structure. Other subdivision geometries
might be considered during future improvements. The restriction to a
finite region will also be discussed in Section 4.2.5.

Formal Verification for Nonlinear Analog Systems 233

Since there is no digital environment, a natural subdivision for the
starting region, given for example by threshold values of digital state
transitions, is missing [1]. Furthermore, to retain the analog system
behavior correctly, a sufficient number of subdivisions is necessary, espe-
cially in state space regions with highly nonlinear behavior. This differs
from approaches focusing on digital circuit behavior [25]. However, the
number of discrete regions should be kept as small as possible to reduce
the total runtime.

The algorithm starts with a user controlled uniform subdivision in
all state space dimensions. Then, an automatic subdivision strategy is
used to react on different system dynamics, depending on the actual
state space region. The main target is to get a uniform behavior in
each state space box. The uniformity is measured by the variation of
the successor vectors (sv) starting at given test points Ptest within the
state space regions (see Section 4.2.2 and 4.2.4). Namely, vector length
variation lvar and angle avar between different vectors are considered.
Equations (6.37) and (6.38) give the definitions of these values. The
function l gives the length of the argument vector or vector component.
Input value variations are not taken into account

lvar = 1 −
minx

z∈Ptest l(sv(xz))

maxxz∈Ptest l(sv(xz))
. (6.37)

To simplify matters, the maximum angle between the successor vec-
tors is not calculated in detail. The angle variation is approximated
by the cosine of the vectors with respect to each state space dimension
(Equation (6.38))

avar = maxk∈n

{
max

xz∈Ptest

l(sv(xz)(k))

l(sv(xz))
− min

xz∈Ptest

l(sv(xz)(k))

l(sv(xz))

}
. (6.38)

Box subdivision is continued recursively until lvar and avar drop under
a given threshold or a given subdivision depth is exceeded.

Within the expected accuracy, all boxes fulfilling the lvar and avar

thresholds do not contain fix points. The reason is that fix points are al-
ways surrounded by regions with nonuniform behavior in terms of Equa-
tions (6.37) and (6.38). The fix point information is stored and used in
the transition relation algorithm (Section 4.2.4).

Additional subdivisions are applied if the successor vectors in a region
are too short in relation to the box size. These subdivisions are mainly
necessary in regions where the system is strongly nonlinear, which im-
plies ∆t to be very small. Each box in the state space represents a

234 ADVANCED FORMAL VERIFICATION

single state in the discrete model. Thus, the set of i states is given by
Q = {box1, box2, ..., boxi}.

Until now, symbolic state representation techniques known form dig-
ital model checking have not been used because the usability of these
methods is not obvious for analog problems.

4.2.4 Transition Relation. The last step in getting a discrete
system model is the transition relation between state space regions. In
Section 4.2.2 successor points for single state space points have been
defined. Using this point to point relation (s), the target Region Rexact

is given by the set of all target points associated with a test point within
the state space Region Rtest (see Equation (6.39)), as illustrated by the
gray regions in Figure 6.12

Rexact = {s(xz) | xz ∈ Rtest} = s(Rtest). (6.39)

Rexact

 x2

x1

Rtest

1 2

3 4

5 6

Figure 6.12. Exact nonlinear transformation of Region Rtest.

One way to approximate the target region is to choose a number of test
points Ptest within the test region (e.g. randomly, grid based, or corner
values) and to calculate the dedicated target points Ptarget. The target

Region R̃testpoint can be approximated using an appropriate inclusion
fexpand of these points. As we will explain later, an inclusion operation
is also needed while expanding the target regions to the actual state
space regions (see Figure 6.14). These two steps can be combined. Even
a few test points may give a reasonable target approximation, but the
Region R̃testpoint might be under- or overestimated

Formal Verification for Nonlinear Analog Systems 235

Ptest = {p1,p2, . . . ,pnt} , pi ∈ Rtest, (6.40)

Ptarget = {s(pi) | pi ∈ Ptest} , (6.41)

R̃testpoint = {fexpand(x
z) | xz ∈ Pziel} � Rexact. (6.42)

There are two approaches making this process rigorous which means
that the target Region Rexact is fully included in the target approxima-
tion. At first, it is shown in [25] that R̃testpoint is certainly overestimated
if all corner values are used as test points and if s can be assumed to
be monotonic. Secondly, following the argumentation in [8], this is done
using Lipschitz constants L in each state space dimension. Using a
grid of test points, spaced by h, we can calculate an extension diameter
dex = kLh for the target points. Expanding each target point by dex

gives a set of boxes. The union of these boxes is an overestimated target
approximation R̃lipschitz. In Figure 6.13 three test and target points and
the dedicated extension boxes are shown

R̃lipschitz = {fexpand(s(x
z),kL,h) | xz ∈ fgrid (h,Rtest)}

⊇ Rexact.
(6.43)

 x2

x1

1 2

3 4

5 6

kL2
.h2

kL1
.h1

Rlipschitz

Rtest

 h1

h2

Figure 6.13. Optimized test point method using Lipschitz constants.

All discussed target Regions (Rexact, R̃testpoint, and R̃lipschitz) do not
match the state space subdivisions used. Therefore, a second step is
necessary to extend these regions to a legal set of boxes. For example,
the expansion of Region Rexact (hatched areas in Figure 6.14) is given

236 ADVANCED FORMAL VERIFICATION

by the set of all boxes having contact with the target Region Rexact.
Fortunately, this operation is always an overestimation and therefore
does not impact the correctness of the above results. Up to now, only
the approximation R̃testpoint has been used in the experimental results.

Rtest

 x2

x1

1 2

3 4

5 6

Rtestpoint

Figure 6.14. Expanded successor region matching the state space subdivisions.

4.2.5 Border Problems. The continuous state space for an
analog system is infinite by definition. However, it is not necessary to
consider the whole space since infinite state variable values are not phys-
ically useful for practical examples. That means, the system dynamics
will always force the growing state values to decrease at some point. The
system behaves like a passive system at the end [28]. There are different
methods to estimate the so called reachable state space regions [7, 3].
However, in most cases considering a much smaller state space region is
sufficient. In this approach, the restriction to finite values is done by a
user defined state space region, comprising the relevant system behavior.
The restriction causes border problems, which will be discussed in this
section.

The following example will show the border problems and the imple-
mented solution. Assuming a differential equation

{
ẋ = (1, 0)T

}
and the

CTL formula EG(Φ) where Φ = ((x(2) > 1.0) ∧ (x(2) < 2.0)). For this
simple example the model checking problem is easy to solve analytically.
For a given time step δt the system solution x(tn + δt) is determined by
Equation (6.44)

x(tn + δt) = x(tn) +

∫ tn+δt

tn

ẋ(τ) dτ =

[
x(1)(tn) + δt

x(2)(tn)

]
. (6.44)

Formal Verification for Nonlinear Analog Systems 237

It is obvious, that EX(Φ) = Φ for all δt, since a time step causes only
a shift in x(1) direction and the Region Φ is not restricted there. EG(Φ)
is the largest fix point of the sequence {Φ0 = Φ;Φi+1 = Φi ∧ EX(Φi)}.
Consequently, the analytical result of EG(Φ) is Φ.

If a restricted state space - for example ([−5 .. 5], [−5 .. 5])T - is ap-
plied to this example the result changes dramatically. Using the solution
of x(tn + δt) we find EX(Φ) to be ([−5 .. (5 − δt)], [1 .. 2])T . Thus, the
largest fix point for the sequence defining EG is ∅ (see Figure 6.15 left).

This result should be reviewed in detail since the state space restric-
tion should not have an impact on the model checking result. Therefore,
the meaning of Ψ = EG(Φ) has to be studied again: “For each state ψ
within Ψ there is a path starting in ψ such that Ψ is invariantly true on
this path.” In the given example, every path leaves the restricted state
space after some time but that does not necessarily mean that Ψ is not
fulfilled on that path since Ψ is also restricted to the given state space.
Thus, it is a free choice to define whether a path leaving or entering the
restricted state space region fulfills a given CTL condition or not.

In other words, it has to be defined whether the area outside of the
restricted state space is part of the actual region being the argument of
the CTL-A function or not. In the above example we simply assumed
that the outside area is not part of the Region Φ

Φ =
(
([−5 .. 5], [1 .. 2])T ∩ Outside

)
,

EG(Φ) = ∅.
(6.45)

Under this assumption the given result is correct (Equation (6.45)).
If we assume the outside area to be part of the Region Φ we get the
result shown in Equation (6.46) (see Figure 6.15 right)

Φ =
(
([−5 .. 5], [1 .. 2])T ∪ Outside

)
,

EG(Φ) = Φ.
(6.46)

To implement this function, an outside area flag is stored for each
region used during the CTL-A evaluation. Every newly defined region
will by default exclude the outside area and the outside area flag is false
in this case. All boolean operations are not only applied to the regions
but also to the outside area flags. Thereby, it is possible to define all
possible constellations of regions and outside area flags.

4.2.6 Input Value Model. To solve Equation (6.35) or (6.36)
the input value u(t) is needed. Until now, we have not defined this value.

238 ADVANCED FORMAL VERIFICATION

 x2

x1

1

2

3

1 2 3

 x2

x1

1

2

3

1 2 3

Figure 6.15. Border problem example in a restricted state space. Left: The outside
area is not part of Φ. Right: The outside area is included in Φ.

In principle, the input signals might be defined explicitly. However, this
is not really useful since the model checking result will only be true
for one specific input signal and this is a contradiction to the formal
verification idea. Therefore, some conditions for the input signals are
assumed without defining them explicitly. To do this, the state space
is extended by the input variables resulting in the extended state space
(see Section 2.2). Thus, every state within the extended state space
contains information on the actual input values. However, there is no
information on the input value change with respect to time. Moreover,
it is theoretically impossible to predict the input value variation because
the input values are not determined by the system itself but rather from
some outside systems.

There are two extreme assumptions: The input values do not change
at all and the input values may change over the whole input value range.
For the first assumption, the model is built up for several constant input
values as described before. There will not be any transition between
states with different input values. In the second approach, a state space
region has not only transitions to regions at the same input level but
additional transitions to the neighbor regions in terms of input values.
By using the extended state space and the described input model the
transition relation changes to R ⊆

(
R

n+i × R
1 × R

n+i
)
.

As we will see later, both of these input models are useful for certain
conditions to be checked. Between these two extreme models it is pos-
sible to assume the input values to vary within a given frequency range
or within a maximum input voltage slope.

Formal Verification for Nonlinear Analog Systems 239

4.2.7 Optimizations. The algorithms described above, gener-
ates a successor operation for the discrete state space model. However,
experiences show that some additional steps are necessary to optimize
the transition relation for some corner cases. Namely, these are preven-
tion of long successor vectors, resulting in a box over-jump, boxes with
self-connection, and boxes with no transitions to other boxes.

Due to long successor vectors in terms of box diameters a neighbor
box over-jump can occur. The results are unwanted holes within the
CTL output regions. Without losing generality, the successor vector
length can be reduced preventing this behavior.

As we have seen before, the subdivision algorithms store informa-
tion about boxes possibly containing fix points (Section 4.2.3). For all
remaining boxes (not containing fix points) it is unphysical to have a
self-connection or no connection to other neighbor boxes. Thus, all self-
connections within these boxes are removed. By applying additional
subdivisions in regions without connections an optimized transition re-
lation is generated.

It has been mentioned in Section 4.2.2, that no explicit time relations
are considered. It might be useful and necessary in future to store not
only the transition relation R ⊆ Q×Q but rather this relation combined
with the related transition time delays R ⊆ Q×Z ×Q where Z denotes
the set of all transition time delays used.

4.3 Experimental Results

Two small nonlinear examples are used to show the capability of the
proposed algorithms. The first one is a Schmitt trigger circuit and the
second one is a tunnel diode oscillator.

4.3.1 Schmitt Trigger Example. The circuit used is de-
scribed in Section 3.4.1. We use the netlist representation for model
checking. To consider all states that might occur, the extended state
space is chosen to be Vout = [−7.7 .. 7.7] and Vin = [−7.7 .. 7.7]. The
most interesting features of the Schmitt trigger function are the switch-
ing properties for one output state to the other. The result of formulat-
ing this by CTL-A is: Φ1 = EF(Vout < −4.5). Φ1 is the set of states in
which a path exists that will eventually reach the region Vout < −4.5.
We choose the constant input value model for this calculation. The col-
lection of boxes fulfilling this condition is shown in Figure 6.16 in light
gray.

Obviously, the circuit always switches to the negative output state
above Vin � 2V . Below this point the switching depends on the output
state Vout. This behavior can directly be extracted from Figure 6.6

240 ADVANCED FORMAL VERIFICATION

Vin

Vout

-2-4-6 642

2

4

6

-2

-4

-6

Figure 6.16. Model checking result Φ1.

showing the unstable equilibriums in the circuit. An equivalent formula
can be applied to find the positive switching conditions.

The result of a CTL-A formula is the collection of boxes fulfilling this
condition. Such graphical output might be useful for analog designers.
In general however, we would expect only true or false as output for a
CTL-A formula. To derive this, the checking condition can be expanded
by an additional statement. For example

Φ2 = EF(Vout < −4.5) & ((Vout > −1) & (Vin < −1)). (6.47)

In this case, the output is an empty set, which means there is no path
from region ((Vout > −1) & (Vin < −1)) to the negative output state.
CTL-A formula (6.47) is false for the whole state space proving that the
Schmitt trigger circuit has a stable output for the given input region. If
the output set is not empty then at least one state fulfills the formula.
Every CTL-A formula can be changed in the same manner to obtain a
binary result instead of a graphical one. However, we prefer graphical
results since they can give more insight into the algorithms.

4.3.2 Tunnel Diode Oscillator Example. The analog sys-
tem in our second example is a simple tunnel diode oscillator circuit
shown in Figure 6.17. The input voltage Vin is set to 2.6 V. In this op-
erating point the circuit starts to oscillate automatically. The bounded
state space is given byVC = [−0.2 .. 4.4] and IL = [−0.2 .. 4.0].

According to digital systems a stable oscillation might be proved by
the following CTL-A equation

Formal Verification for Nonlinear Analog Systems 241

Φ3 = {AG(AF(IL > 2.2)) & AG(AF(IL < 1.6))} . (6.48)

The collection of boxes fulfilling this condition is shown in the left
part of Figure 6.18 in light gray. Except of some border boxes and the
middle region, the whole state space is covered. The border boxes cannot
be considered in the verification result due to the algorithm described
in Section 4.2.5. The empty middle region is caused by the limited
resolution of the discrete model. The algorithm detects that fix points
are possibly included in these state space regions. Therefore, the above
CTL-A formula is not fulfilled. Theoretically, only one single fix point
is present in this region.

R

CV
C

V
out

L I
L

Figure 6.17. Tunnel diode oscillator.

Figure 6.18. Left: Model checking result Φ3. Right: Model checking result Φ4.

We can conclude that nearly the whole plane will float into an sta-
ble orbit. The next question might concern the possible orbit geometry.
We generate this by applying Φ4 =

{
(EG−1(Φ3))

}
. The result Φ4 con-

tains the whole orbit calculated by an ordinary simulation (black line in
Figure 6.18 right).

These two examples illustrate possible property descriptions. It seems
to be possible to describe a lot of properties in the time domain like large
signal output swing, PSRR (power supply rejection ratio), stability, os-
zillations etc. with CTL-A. Properties with numeric timing informations

242 ADVANCED FORMAL VERIFICATION

like slew rate need the mentioned extension of our algorithm (see Sec-
tion 4.2.7). Until now, frequency domain properties are not considered.
These topics are future research work.

5. Summary

In this chapter, two approaches to formal verification of analog sys-
tems with nonlinear dynamic behavior are presented. Both approaches
can deal with strongly nonlinear systems like Schmitt trigger circuits,
which is shown in the example sections. The abstraction level of the
handled systems ranges from transistor netlists to behavioral descrip-
tions in a hardware description language.

The first approach enables equivalence checking for analog systems.
It compares two systems in the extended state space spanned by the
dominant state variables of both systems. Hence, circuits with many
state variables resulting from parasitic elements could be verified against
an abstract behavioral description as shown in the bandpass example.
The equivalence checking procedure samples the state space. An explicit
conversion into a discrete model for verification purposes is not necessary.
The result is an error measure clearly identifying differences between the
circuits. Some results show the practicability of the approach.

The second part of the chapter describes a model checking approach.
A discrete model of the analog system is generated in order to apply
model checking algorithms. The discrete modeling retains the strongly
nonlinear dynamic behavior of the analog circuit with few states using
automatic subdivision approaches. The properties to be checked are de-
scribed in a CTL extension (CTL-A) enabling the description of analog
properties. The same example used for equivalence checking is inves-
tigated with model checking showing the differences of the approaches
and the advantages of the methodology in comparison to simulation.

Together, both approaches allow formal analog design validation on
a large range of abstraction levels comparable to digital formal verifi-
cation methodology. Furthermore, an integration with digital formal
verification is possible. Accordingly, an implementation of mixed-signal
algorithms based on these approaches seems to be the next step towards
a closed formal verification flow.

6. Acknowledgement

The authors would like to thank Dr. Uwe Feldmann, Infineon Tech-
nologies, and his team for fruitful discussions and contributions on effi-
cient state space calculation and system transformation to a Kronecker
Canonical Form.

REFERENCES 243

Appendix: Mathematical Symbols

R Set of real numbers

x Vector

x(i) ith component of vector x

A Matrix

f(x) Function in terms of x

f(x) Vector of functions

ẋ = dx(t)
dt

Time derivative of x(t)

A Set

A CTL operator

Φ Temporal logic expressions

[xl..xu] Interval with lower bound xl and upper bound xu

Special variable naming

xz Vector of state variables

xa Vector of algebraic variables

z Vector of virtual state variables

References

[1] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete
abstractions of hybrid systems. Proceedings of IEEE, (88):971–
984, 2000.

[2] K.J. Antreich, H.E. Graeb, and C.U. Wieser. Circuit analysis and
optimization driven by worst-case distances. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
13(1):57–71, 1994.

[3] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approxi-
mate reachability analysis of piecewise-linear dynamical systems.
HSCC ’00: Hybrid Systems: Computation and Control, LNCS,
pages 76–90, 2000.

[4] P.N. Brown, A.C. Hindmarsh, and R.P. Linda. Consistent ini-
tial condition calculation for differential-algebraic systems. SIAM
Journal on Scientific Computing, 19(5):1495–1512, 1998.

[5] F.H. Bursal and B.H. Tongue. A new method of nonlinear system
identification using interpolated cell mapping. ACC ’92: American
Control Conference, 4:3160–3164, 1992.

244 ADVANCED FORMAL VERIFICATION

[6] E.M. Clarke and E.A. Emerson. Design and synthesis of synchro-
nisation skeletons using branching time temporal logic. Lecture
Notes in Computer Science, Springer-Verlag, 131, 1981.

[7] T. Dang and O. Maler. Reachability analysis via face lifting.
HSCC ’98: Hybrid Systems: Computation and Control, Lecture
Notes in Computer Science, pages 96–109, 1998.

[8] M. Dellnitz, G. Froyland, and O. Junge. The algorithms behind
gaio - set oriented numerical methods for dynamical systems. Er-
godic Theory, Analysis, and Efficient Simulation of Dynamical
Systems (eds. B. Fiedler), Springer, pages 145–174, 2001.

[9] A. Dharchoudhury and S.M. Kang. Worst-case analysis and
optimization of VLSI circuit performances. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
14(4):481–492, 1995.

[10] P. Van. Dooren. The computation of Kronecker’s canonical form of
a singular pencil. Journal on Linear Algebra and its Applications,
27:103–140, 1979.

[11] D. Estévez-Schwarz. Consistent initialization for index-2 differen-
tial algebraic equations and its application to circuit simulation.
Dissertation, Humboldt-Universität Berlin, 2000.

[12] P. Feldmann and R.W. Freund. Efficient linear circuits analysis by
pade approximation via the lanczos process. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
14(5):639–649, 1995.

[13] L. Fortuna, G. Nunnari, and A. Gallo. Model order reduction
techniques with applications in electrical engineering. Springer-
Verlag, Berlin, 1992.

[14] C.W. Gear. Differential algebraic equations, indices, and inte-
gral algebraic equations. SIAM Journal on Numerical Analysis,
27(6):1527–1534, 1990.

[15] M. Günther and U. Feldmann. The DAE-index in electric cir-
cuit simulation. Mathematisches Institut, Technische Universität
München, 1993.

[16] W. Hartong, L. Hedrich, and E. Barke. Model checking algorithms
for analog verification. DAC ’02: Design Automation Conference,
pages 542–547, 2002.

[17] W. Hartong, L. Hedrich, and E. Barke. On discrete modeling
and model checking for nonlinear analog systems. CAV ’02: In-
ternational Conference on Computer-Aided Verification, LNCS,
2404:401–413, 2002.

REFERENCES 245

[18] L. Hedrich and E. Barke. A formal approach to nonlinear ana-
log circuit verification. ICCAD ’95: International Conference on
Computer Aided Design, pages 123–127, 1995.

[19] L. Hedrich and E. Barke. A formal approach to verification of lin-
ear analog circuits with parameter tolerances. DATE ’98: Design,
Automation and Test in Europe, pages 649–654, 1998.

[20] L. Hedrich and W. Hartong. Approaches to formal verification of
analog circuits. Low-Power Design Techniques and CAD Tools for
Analog and RF Intergrated Circuits, Wambacq, P., eds., Kluwer
Academic Publishers, Boston, 2001.

[21] T.A. Henzinger and P.-H. Ho. Algorithmic analysis of nonlinear
hybrid systems. CAV ’95: International Conference on Computer-
Aided Verification, LNCS, 939(7):225–238, 1995.

[22] T.A. Henzinger, P-H. Ho, and H. Wong-Toi. Hytech: A model
checker for hybrid systems. Lecture Notes in Computer Science,
Springer-Verlag, pages 460–463, 1997.

[23] C.W. Ho, A.E. Ruehli, and P.A. Brennan. The modified nodal
approach to network analysis. IEEE Transactions on Circuits and
Systems, 22(6):504–509, 1975.

[24] T. Kropf. Introduction to formal hardware verification. Springer-
Verlag, Berlin, Heidelberg, 1999.

[25] R.P. Kurshan and K.L. McMillan. Analysis of digital circuits
through symbolic reduction. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 10(11):1356–
1371, 1991.

[26] F. Laroussinie and P. Schnoebelen. Specification in CTL+past for
verification in CTL. Information and Computation, 156(1/2):236–
263, 2000.

[27] R. März. Numerical methods for differential algebraic equations.
Acta Numerica, pages 141–198, 1991.

[28] W. Mathis. Theorie nichtlinearer Netzwerke. Springer-Verlag,
Berlin, 1987. (German).

[29] K.L. McMillian. Symbolic model checking. Kluwer Academic Pub-
lishers, Boston, 1993.

[30] S. Natarajan. A systematic method for obtaining state equations
using MNA. IEE Proceedings G, 138(3):341–346, 1991.

[31] L. Petzold. Differential/algebraic equations are not ODE’s.
JSIAM, 3(3):367–384, 1982.

[32] A. Puri and P. Varaiya. Decidability of hybrid systems with rect-
angular differential inclusions. CAV ’94: International Conference
on Computer-Aided Verification, LNCS, pages 95–104, 1994.

This page intentionally left blank

Index

*BMDs, 92
*PHDD, 94
1-neighborhood of a point, 28

absolute error, 215
Accellera Open Verification Library, 183
Accellera Property Specification Lan-

guage, 179
ADD, 91
addend, 79
addition graph, 109
algebraic decision diagram, 91
analog formal verification, 206
analog/mixed signal, xxii
approximate reachability analysis, 53, 67
arithmetic, xxii
arithmetic bit level, 107
arithmetic expression, 80
arithmetic transform, 90
assertion checking, xx
assertion processor, 192, 196
assume-guarantee reasoning, 189
assumption, 189
ATM, 155
ATPG, 71
automatic test pattern generation, 71

BDD, 46, 48, 85
BDD sweeping, 65
BED, 50
binary decision diagram, 46, 48
binary moment diagram, 91
bitvector term, 132
bitvector theories, 143
block, 3, 5
BMD, 91
Boolean expression diagram, 50
Boolean layer, 169, 170
Boolean satisfiability problem, 45, 47
border problems, 236
bounded model checking, 52
branching time temporal logic, 177

canonical representation, 213

challenges, xxi
checker synthesis, xxii
class M(p), 4, 12
common specification, 2, 4, 10, 11, 20
complexity, xxi
compositional reasoning, 187
computation tree logic, 227
computing stable set of points, 32
cone partitioning, 98
constant moment, 91
constraint, 187
continuous state space, 208
controllability, 171
correlation function, 17
counter-example, xxi, 176
coverage, xxii
CVE, 126

data path scaling, 142, 147
Davio decomposition, 90
diagnosis, xxiii
differential equations, 207
discrete state space, 230
discrete time step, 231
dynamic verification, 168

edge weight, 91
eigenvalues, 218
eigenvectors, 218
encoding function, 93
equivalence checking, xx, 211
error bound, 215
excluded directions, 40
existential implication, 13
extended state space, 209
extraction technique, 112

fairness, 192
fairness property, 175
fanout splitting, 85
fanout-free region, 99
FBDD, 71
filtering function, 15
finest, 11, 20

247

248 ADVANCED FORMAL VERIFICATION

finite state machine, 52, 129
fixed-point, 176
formal property-checking, 126
formal verification, xix
free binary decision diagram, 71
FSM, 52

general resolution system, 13
granularity, 4, 9, 11
graph automorphism, 139
graph isomorphism, 139

Hamaguchi’s method, 96
high-level abstraction, 143, 145
hybrid approach, xxii

image computation, 175
implementation, 7
implicit verification, 86
induction-based equivalence checking, 82
input value model, 237
iterative computation, 16, 17
ITL, 127

K*BMD, 94
Kripke structure, 173
Kronecker canonical form, 219

linear moment, 91
linear time temporal logic, 177
lipschitz, 235
liveness, 192
liveness property, 174

mapping functions, 212
mapping matrices, 213
matching, xxi
metal-fix, 154
miter, 12
model checking, xx, 52, 172, 227
modulo symmetry, 36
MTBDD, 91
multi-terminal binary decision diagram,

91
multiple clocks, xxii
multiple-input multiple-output, 207
multiplicative binary moment diagrams,

92
multiplier, 79

observability, 171
OVL, 183

partial derivative, 91
path formula, 178
PCI local bus, 198
permutation equivalence, 138

primary addend, 79
product machine, 52
proof technology, xxi
property, 169, 174
property checking, xx
property decomposition, 187
property specification, 168
pseudo-Boolean function, 89
PSL, 179, 193

reachability, xxi
reachability analysis, 52, 175
reachable set of points, 31
recurrence equation, 81
Reed-Muller decomposition, 90
register transfer level, 132
regression, 161
relative error, 215
restriction, 188
retiming, xxii
reverse engineering, 106
reverse engineering, 156
rewriting, 139
ROBDD, 85
RtProp, 132

safety, 192
safety property, 174
SAT, 11, 45, 47
satisfiability problem, 11
scalar field, 209
scan-chain, 194
sequential verification, 52
Shannon expansion, 90
single-input single-output, 207
specification, 3, 5, 7, 9
specification driven proofs, 21
stable set of points, 29
state formula, 178
state space subdivision, 232
state transition, 230
state variables, 208, 213
state-explosion, 176
STE, 56
structural dependence, 86
symbolic simulation, xx
symbolic trajectory evaluation, 56
symmetrical values, 134
symmetry, 133
symmetry reduction, 134
synthesizable assertion, 193
system integration, xxii

temporal layer, 169, 170
temporal logic, 177
term graph, 132
transistion system, 230
transition function, 172

INDEX 249

transition relation, 172, 234
traversal, 52
two-heads policy, 162

UMTS, 158

vector field, 209
verification layer, 169, 170

virtual state variables, 213

white-box verification, 191
word-level approach, xxi

ZBDD, 49
zero-suppressed binary decision diagram,

49

	Cover
	Contents
	Preface
	Contributing Authors
	Introduction
	1 Formal Verification
	2 Challenges
	3 Contributions to this Book

	1 What Sat-Solvers can and cannot do
	1 Introduction
	2 Hard Equivalence Checking CNF formulas
	2.1 Introduction
	2.2 Common Specification of Boolean Circuits
	2.3 Equivalence Checking as SAT
	2.4 Class M(p) and general resolution
	2.5 Computation of existentially implied functions
	2.6 Equivalence Checking in General Resolution
	2.7 Equivalence Checking of Circuits with Unknown CS
	2.8 A Procedure of Equivalence Checking for Circuits with a Known CS
	2.9 Experimental Results
	2.10 Conclusions

	3 Stable Sets of Points
	3.1 Introduction
	3.2 Stable Set of Points
	3.3 SSP as a reachable set of points
	3.4 Testing Satisfiability of CNF Formulas by SSP Construction
	3.5 Testing Satisfiability of Symmetric CNF Formulas by SSP Construction
	3.6 SSPs with Excluded Directions
	3.7 Conclusions

	2 Advancements in mixed BDD and SAT techniques
	1 Introduction
	2 Background
	2.1 SAT Solvers
	2.2 Binary Decision Diagrams
	2.3 Model Checking and Equivalence Checking

	3 Comparing SAT and BDD Approaches: Are they different?
	3.1 Theoretical Considerations
	3.2 Experimental Benchmarking
	3.3 Working on Affinities: Variable Order

	4 Decision Diagrams as a Slave Engine in general SAT: Clause Compression by Means of ZBDDs
	4.1 ZBDDs for Symbolic Davis-Putnam Resolution
	4.2 ZBDDs for Symbolic DLL
	4.3 ZBDDs for Breadth-First SAT
	4.4 Conclusions

	5 Decision Diagram Preprocessing and Circuit-Based SAT
	5.1 BED Preprocessing
	5.2 Circuit-Based SAT
	5.3 Preprocessing by Approximate Reachability

	6 Using SAT in Symbolic Reachability Analysis
	6.0.1 BDDs at SAT leaves
	6.0.2 SAT-Based Symbolic Image and Pre-image

	7 Conclusions, Remarks and Future Works

	3 Equivalence Checking of Arithmetic Circuits
	1 Introduction
	2 Verification Using Functional Properties
	3 Bit-Level Decision Diagrams
	4 Word-Level Decision Diagrams
	4.1 Pseudo-Boolean functions and decompositions
	4.2 *BMDs
	4.3 Equivalence Checking Using *BMDs
	4.4 Experiments with *BMD synthesis

	5 Arithmetic Bit-Level Verification
	5.1 Verification at the Arithmetic Bit Level
	5.2 Extracting the Half Adder Network
	5.3 Verification Framework
	5.4 Experimental Results

	6 Conclusion
	7 Future Perspectives

	4 Application of Property Checking and Underlying Techniques
	1 Circuit Verification Environment: User's View
	1.1 Tool Environment
	1.2 The gateprop Property Checker

	2 Circuit Verification Environment: Underlying Techniques
	2.1 From Property to Satisfiability
	2.2 Preserving Structure during Problem Construction
	2.3 The Experimental Platform RtProp

	3 Exploiting Symmetries
	3.1 Symmetry in Property Checking Problems
	3.2 Finding Symmetrical Value Vectors
	3.3 Practical Results

	4 Automated Data Path Scaling to Speed Up Property Checking
	4.1 Bitvector Satisfiability Problems
	4.2 Formal Abstraction Techniques
	4.3 Speeding Up Hardware Verification by One-To-One Abstraction
	4.4 Data Path Scaling of Circuit Designs

	5 Property Checking Use Cases
	5.1 Application Example: Reverse Engineering
	5.2 Application Example: Complete Block-Level ASIC Verification
	5.3 Productivity Statistics

	6 Summary
	6.1 Achievements
	6.2 Challenges and Perspectives

	5 Assertion-Based Verification
	1 Introduction
	1.1 Specifying properties
	1.2 Observability and controllability
	1.3 Formal property checking framework

	2 Assertion Specification
	2.1 Temporal logic
	2.2 Property Specification Language (PSL)

	3 Assertion libraries
	4 Assertion simulation
	5 Assertions and formal verification
	5.1 Handling complexity
	5.2 Formal property checking role

	6 Assertions and synthesis
	6.1 On-line validation
	6.2 Synthesizable assertions
	6.3 Routing scheme for assertion libraries
	6.4 Assertion processors
	6.5 Impact of Assertions in Real Circuits

	7 PCI property specification example
	7.1 PCI overview
	7.2 PCI master reset requirement
	7.3 PCI burst order encoding requirement
	7.4 PCI basic read transaction

	8 Summary

	6 Formal Verification for Nonlinear Analog Systems
	1 Introduction
	2 System Description
	2.1 Analog Circuit Classes
	2.2 State Space Description

	3 Equivalence Checking
	3.1 Basic Concepts
	3.2 Equivalence Checking Algorithm
	3.3 Linear Transformation Theory
	3.4 Experimental Results

	4 Model Checking
	4.1 Model Checking Language
	4.2 Analog Model Checking Algorithm
	4.3 Experimental Results

	5 Summary
	6 Acknowledgement
	Appendix: Mathematical Symbols

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	Z

