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Chapter 0

Introduction

Objective

Hardware and software systems are growing rapidly in scale and functionality.
From smartcards to air-traffic controllers, computers are being deployed every-
where. As the complexity of a design grows, so does the likelihood of subtle
errors it contains. While the complexity of designs has been growing rapidly,
the underlying design methodology has evolved only marginally. Consequently,
assuring reliability has become one of the key engineering challenges to sustain
the ongoing computer revolution. While reliability has always been a concern
in system design, some current trends are worth noting:

• Computers are used increasingly in safety-critical applications such as
medical treatment and mission control. Presence of bugs in such applica-
tions has unacceptable consequences.

• Bugs found at later stages of design can be very expensive, an extreme
case of which is illustrated by the notorious floating-point division error
in Intel’s Pentium processor.

• There is an ever-increasing pressure to reduce time-to-market. This calls
for maximum automation of all stages of the design process, including
debugging.

• The current trend in design of embedded systems is towards greater use
of programmable components. This shifts the focus from low-level opti-
mizations to high-level designs.

Motivated by these concerns, computer-aided verification aims to provide tools
that help in detecting logical errors in early stages of design.
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Formal verification

Formal methods seek to establish a mathematical proof that a system works
correctly. A formal approach provides (1) a modeling language to describe the
system, (2) a specification language to describe the correctness requirements,
and (3) an analysis technique to verify that the system meets its specification.
The model describes the possible behaviors of the system, and the specification
describes the desired behaviors of the system. The statement the model P

satisfies the specification ϕ is now a mathematical statement, to be proved or
disproved using the analysis technique. The following two are distinguishing
hallmarks of formal verification, as opposed to traditional techniques such as
testing and simulation:

1. Formal: The intuitive correctness claim is made mathematically precise.

2. Verification: The goal of the analysis is to prove or disprove the correct-
ness claim. It is not adequate to check a representative sample of possible
behaviors as in simulation, rather a guarantee that all behaviors satisfy
the specification is required.

Automated verification

Primary focus of this book is on analysis that can be performed algorithmically.
Typically, such analysis is performed by an exhaustive simulation of the model
on all possible inputs. The analysis is performed by a software tool, called a
verifier , which determines whether the model satisfies the specification, and re-
turns the answer Yes or No along with relevant diagnostic information. While
automation has been central to the rising industrial interest in formal verifica-
tion, automated analysis is not always possible. First, the analysis problem is
typically undecidable. For instance, given a C program, determining whether
it terminates or not, is a classical undecidable problem. On the other hand, if
all the variables of a model are known to be of finite types, then the number
of possible states of a system is finite, and the typical analysis problem is de-
cidable. Second, decidability, in itself, does not imply feasibility of analysis. As
we shall study, even the simplest analysis problem is computationally hard. In
spite of the above mentioned difficulties, there is still a great deal of interesting
analysis that can be performed by a verifier. Many recent advances have led
to heuristics that make analysis feasible for interesting classes of systems. Fur-
thermore, there is a great deal of flexibility in setting up the analysis problem,
and thus, when the original analysis problem is infeasible, it can be simplified
so that a verifier can solve it, and still provide useful feedback.

An alternative to automated verification is interactive verification. In interac-
tive verification, the analysis problem is formulated as proving a theorem in a
mathematical proof system, and the designer attempts to construct the proof
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of the theorem using a theorem prover as an aid. For instance, one can for-
mulate the correctness of a sorting program using Floyd-Hoare logic, and use a
theorem prover such as HOL to prove it. While this approach is very general,
it requires considerable expertise, and the involved manual effort has proved to
be an obstacle so far.

Reactive systems

The more conventional view of a computer program is the functional view: a
program computes a function from inputs to outputs. For example, given a list of
numbers as the input, a sorting program computes another list of numbers as the
output. A more general view is the reactive view: a system is interacting with
its environment accepting requests and producing responses. For instance, a
computer network may be viewed as a reactive system that is accepting packets
from different sources and delivering them at different destinations. In the
reactive view, the computation of a system may not terminate. Such a reactive
view is more appropriate to understand a variety of systems such as an operating
system, a microprocessor, a telecommunications switch, and the world-wide web.
In this book, we are concerned with modeling, specification, and analysis of
reactive systems.

Modeling

The first step in formal verification is to describe the system in the chosen
modeling language. A modeling language can be thought as a very high-level
concurrent programming language. At this point, it is worthwhile to note the
following features of modeling which distinguish it from programming:

• The purpose of a model, in the context of formal verification, is to describe
control and interaction. In modeling, we usually avoid describing complex
data structures and data manipulation. A modeling language provides a
simple set of operations to build complex modules from simpler ones. This
simplicity makes analysis more feasible, and helps to focus attention on
how the components interact.

• A modeling language typically supports nondeterminism explicitly. For
example, a model of a lossy buffer can be described using a choice: when
a message is received by the buffer, the message is either discarded or
stored. Consequently, unlike a program, a model may exhibit many pos-
sible behaviors even after all the inputs are specified.

• In modeling, the designer describes not only the system, but also the
environment in which the system is supposed to operate. For instance,
in a model of a traffic controller, the designer describes the controller
together with its environment, namely, cars approaching the intersection
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from different directions. Explicit modeling of the environment is essential
for meaningful analysis of the system. The model of the environment
captures the assumptions about the manner in which the system is to be
used.

• A system can be modeled at many different levels of abstraction. Thus,
the same system may have different models. A model may be incomplete,
and can specify only some of the components. Unlike programming, im-
plementability is not the central issue in modeling.

Finite-state machines are widely used to describe control flow. In practice, many
extensions of finite-state machines are used. Extended finite-state machines
support variables. To describe a system consisting of interacting components,
finite-state machines need to be equipped with a communication mechanism.
For instance, in Mealy machines the edges are annotated with input and output
symbols. Our modeling language is reactive modules which allows description
of extended finite-state machines with communication mechanism rich enough
to describe different types of interactions.

Requirements

For formal analysis, a designer needs to specify the correctness requirements sep-
arately from the model of the system. Requirements capture what the system
is intended to do. Typical requirements are of two kinds. The first kind stipu-
lates that the system should always operate within a safe set, or something bad

never happens. For instance, for a traffic controller, the lights for cross-traffic
in perpendicular directions should never be green simultaneously. The second
kind stipulates that the system discharges its obligations , or something good

will eventually happen. For instance, for a traffic controller, it is essential that
a particular light does not stay red forever, and turns green eventually.

Requirements can be expressed formally in a mathematical logic. Pnueli pro-
posed the use of temporal logic to specify requirements concerning behavior of
a reactive system over time. Just as a formula of a propositional logic is inter-
preted over a valuation that assigns truth values to boolean variables, a formula
of a temporal logic is interpreted over a sequence (or more generally, a tree)
of valuations that capture the truth values of boolean variables at different in-
stances of time. Temporal logic can express many requirements succinctly and
naturally, and is well-suited for algorithmic analysis.

For writing specifications, an alternative to temporal logic is automata. In
the automata-theoretic approach to verification, the system is viewed as a gen-

erator of a formal language, the specification is an acceptor defining a formal
language, and the verification problem reduces to a language inclusion question:
whether every behavior generated by the system automaton is accepted by the
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specification automaton. The theory of ω-automata—automata over infinite
sequences—provides an elegant conceptual framework to study verification.

Model checking

Model checking means checking that the model satisfies the specification. The
analysis is performed algorithmically by searching the state-space of the model.
The term was coined by Clarke and Emerson in 1981 in the context of checking a
finite model against requirements specified in a temporal logic called Computa-

tion Tree Logic (CTL). Today the term applies more generally: models need not
be finite-state, and requirements can be written in a variety of other languages.

Model checking is computationally expensive even if we restrict attention to
simple requirements. The problem is rooted in the fact that the number of states
of a system grows exponentially with the number of variables used to describe it.
This is the so-called state-space explosion problem. We will study a variety of
techniques that alleviate this problem. In particular, symbolic model checking
has proved to be quite effective in analyzing systems of practical interest.

Given a model and a requirement as input, a model checker does not simply
answer Yes or No, rather, when the model does not satisfy the requirement,
it produces a counter-example, an evidence for the failure. This diagnostic
information is extremely useful for debugging purposes. Indeed, model checking
is typically an iterative process. The designer starts with a model of the system,
checks a variety of requirements, and uses the feedback to modify the model.

Hierarchical verification

In an ideal approach to design, the design begins with a very simple initial
model. Model checking is used to debug the model. As the designer gains
confidence in its logical correctness, the model is made more complex by adding
details, and more requirements can be analyzed. During the refinement step,
the designer would like to ensure some consistency between the models before
and after adding the details. The relationship between two different models
can be made mathematically precise by defining a refinement preorder over
the set of models. Different formal methods advocate different views regarding
when one model should be considered to be a refinement of another, that is,
they differ in the semantics of the refinement relation. The refinement checking

problem, then, is to verify that a detailed model is a refinement of the abstract
model. Observe that refinement checking is like model checking where the same
language is used to describe the model as well as the requirement. A hierarchical
approach to design and analysis corresponds to constructing models at several
different levels of abstraction, and establishing each level to be a refinement of
the next higher level.
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The problem of refinement checking, while decidable for finite-state systems,
is computationally intractable. However, the designer’s intuition regarding the
correspondence between the abstract and detailed model can be exploited to
establish the refinement claim. Of particular interest to us will be the compo-

sitional methods in which the structure of the descriptions of the two models
is used to decompose the required refinement claim into subclaims regarding
refinement relationships among components of the two models.

Hardware verification

Model checking has been most successful in hardware verification. In 1992, the
model checker SMV was used to pinpoint logical errors in the cache coherence
protocol described in the IEEE Futurebus+ Standard. This, and numerous sub-
sequent, case-studies attracted attention of hardware industry eager to enhance
capabilities of design automation tools. Model checking seems suitable to debug
intricate aspects of microprocessor designs. Today semiconductor companies
such as Lucent, IBM, Intel, Motorola, and Siemens, have internal verification
groups aimed at integrating formal verification in design flow, while CAD-tool
vendors such as Cadence and Synopsis are exploring ways to add verification
capability to design tools. Some verification tools are already commercially
available, for instance, FormalCheck of Lucent Technologies.

An important reason for the success of model checking in hardware verification
is the ease with which it fits into the existing design methodology. Hardware
description languages such as VHDL and Verilog are extremely popular, and
designers routinely use simulation and synthesis tools available for these lan-
guages. While these languages have not been designed with computer-aided
verification in mind, a significant subset can be subjected to analysis.

Software verification

High-level design is somewhat uncommon in software development, and conse-
quently, model checking has had limited influence in this domain. An important
application has been design of protocols used in safety-critical applications such
as aviation. Unlike in hardware design, there is no commonly accepted standard
language that has precise mathematical semantics and is amenable to analysis.
Increasing popularity of synchronous languages such as Esterel and Lustre,
and of Statecharts, a graphical formalism to describe hierarchically structured
state machines, suggest a promising future.

Recently, a model checking effort at Microsoft Research to check C source
code has been successful. The tool, which is being commercialized, checks if
third-party driver software conforms to the Windows interfacing requirements.
This shows that in certain control-intensive applications, model checking can be
very effective also in the software domain.
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Limitations

Computer-aided verification is only one of the many weapons available to a
designer to ensure reliability. Let us note a few limitations to understand what
it can do and what it cannot do.

• The application domain of computer-aided verification is control-intensive
concurrent systems. It seems unsuitable to analyze, for instance, a database
query manager, or a word processor.

• A model checker analyzes a model, and not the system itself. Even when
the modeling language coincides with the implementation language (e.g.
as in hardware design using VHDL), to make analysis feasible, a variety
of simplifications are used. Consequently, the gap between the model
and its implementation remains. This implies that the greatest strength
of computer-aided verification is detecting bugs, rather than certifying
absence of bugs.

• Formalizing requirements is a challenging task common to all formal meth-
ods. The designer can enumerate several requirements that the system is
supposed to satisfy, but usually cannot be sure that the list is complete.
The gap between the intuitive understanding of correctness and its formal-
ization in the specification language reasserts the applicability of model
checking as a falsification, rather than certification, tool.

• With new heuristics, and with increasing speed and available memory on
modern computers, we can hope to apply computer-aided verification to
analyze systems beyond the scope of today’s tools. However, the high
computational complexity of the analysis problem is, and will remain, a
hurdle.
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Chapter 1

Reactive Modules

This chapter introduces a modeling language, Rml (Reactive Module Language),
for describing the architecture and behavior of hardware and software systems.
Modeling languages are to be used by hardware designers, software engineers,
and CAD tools during the early stages of the design process for describing and,
more importantly, analyzing blueprints of a system. Thus, unlike an imple-
mentation language such as a hardware description language or a programming
language, a modeling language need not provide extensive mechanisms for struc-
turing control flow and manipulating data. Rather, a modeling language must
have the following four essential characteristics. First, it must facilitate high-
level, partial system descriptions by supporting nondeterminism. Second, it
must facilitate the description of interactions between systems and system com-
ponents by supporting concurrency. Third, it must facilitate the rapid proto-
typing and simulation of system descriptions by supporting an execution model.
Fourth, it must facilitate the formal analysis of system behaviors by supporting
a precise mathematical semantics. The first and fourth characteristics distin-
guish Rml from many common implementation languages; the second and third
characteristics distinguish Rml from many common requirements specification
languages.

1
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1.1 Definition of Reactive Modules

We model systems as reactive modules. Reactive modules resemble molecules,
in that they interact with each other to form composite objects. Reactive mod-
ules are built from atoms, and atoms are built from variables —the elementary
particles of systems. Our presentation proceeds bottom-up, from variables to
atoms, modules, and the composition of modules.

1.1.1 Variables

We consider systems that are discrete, deadlock-free, and nondeterministic. A
discrete system is a collection of variables that, over time, change their values
in a sequence of rounds. The first round is an initialization round, and all
subsequent rounds are update rounds. In the initialization round, the values of
all variables are initialized, and in every update round, the values of all variables
are updated. Deadlock-freedom means that in the initialization round, there is
at least one option for initializing each variable, and in every update round, there
is at least one option for updating each variable. Consequently, every update
round can be followed by another update round. Nondeterminism means that in
the initialization round, there may be several options for initializing a variable,
and in an update round, there may be several options for updating a variable.
Consequently, two exact copies of a system can, over time, exhibit very different
behaviors.

Initial commands and update commands

We define the behavior of a variable using two guarded commands —an initial

command and an update command. While unprimed symbols, such as x, refer
to the value of a variable at the beginning of a round, primed symbols, such
as x′, refer to the value of the same variable at the end of a round. A value of x
at the end of the initialization round is called an initial value of x. The possible
initial values for a variable are defined by an initial command. For example, the
initial command

init

[] true → x′ := 0
[] true → x′ := 1

asserts that 0 and 1 are the possible initial values of x. A value of x at the
beginning of an update round is called a current value of x, and a value of x at
the end of an update round is called a next value of x. In every update round,
the possible next values for x may depend on the current value of x, and on
the current values of other variables. The possible next values for a variable are
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defined by an update command. For example, the update command

update

[] y = 0 → x′ := x + 1
[] y 6= 0 → x′ := x − 1
[] true → x′ := x

asserts that in every update round, if the current value of y is 0, then the value
of x is either incremented or stays unchanged, and if the current value of y is
different from 0, then the value of x is either decremented or stays unchanged.

Example 1.1 [Scheduler] Consider a scheduler that, in every round, assigns a
processor to one of two tasks. The nonnegative-integer variable task 1 indicates
the amount of processor time, measured in rounds, which is necessary to com-
plete the first task. Similarly, the nonnegative-integer variable task 2 indicates
the amount of processor time which is necessary to complete the second task.
The ternary variable proc has the value 0 if in the most recent round, the pro-
cessor has been idle; proc has the value 1 if the processor has been assigned to
the first task; and proc has the value 2 if the processor has been assigned to the
second task. The initial command

init

[] true → proc′ := 0

asserts that initially the processor is idle. The update command

update

[] task1 = 0 ∧ task2 = 0 → proc′ := 0
[] task1 > 0 → proc′ := 1
[] task1 = 0 ∧ task2 > 0 → proc′ := 2

asserts that the scheduler always gives priority to the first task.

Simultaneous updates

Within a round, some variables are initialized or updated simultaneously, and
some variables are initialized or updated sequentially. We insist that if two vari-
ables x and y are initialized or updated simultaneously in some round, then x
and y are initialized and updated simultaneously in every round. A set of vari-
ables that are initialized simultaneously in the initialization round, and updated
simultaneously in every update round, are said to form an atom. It is often con-
venient to name atoms, in which case the constituent variables of an atom are
referred to as the variables that are controlled by the atom. The behaviors of
all variables that are controlled by one atom are defined using a single initial
command and a single update command. For example, for the atom controlling
the two variables x and y, the initial command

init

[] true → x′ := 0; y′ := 1
[] true → x′ := 1; y′ := 0
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asserts that the possible initial values of x and y are 0 and 1, and that the initial
values of x and y are different. For the same atom, the update command

update

[] x ≤ y → x′ := x + 1; y′ := y − 1
[] x ≥ y → x′ := x − 1; y′ := y + 1

asserts that in every update round, depending on the current values of x and y,
either x is incremented and y is decremented, or vice versa.

Example 1.2 [Scheduler] Consider a scheduler similar to Example 1.1, except
that the scheduler alternates priorities between both tasks. If in a given round
the processor is assigned to the first task, then in the next round the second task
is given priority over the first task, and vice versa. The binary variable prior

indicates which of the two tasks will be given priority in the upcoming round.
The variables proc and prior form an atom; that is, the processor assignment and
the priority information are updated simultaneously. Assuming that initially
either task may be given priority, we have the initial command

init

[] true → proc′ := 0; prior ′ := 1
[] true → proc′ := 0; prior ′ := 2.

Assuming that a task retains priority until it is given the processor, we have the
update command

update

[] task1 = 0 ∧ task2 = 0 → proc ′ := 0
[] prior = 1 ∧ task1 > 0 → proc ′ := 1; prior ′ := 2
[] prior = 1 ∧ task1 = 0 ∧ task 2 > 0 → proc ′ := 2
[] prior = 2 ∧ task2 > 0 → proc ′ := 2; prior ′ := 1
[] prior = 2 ∧ task2 = 0 ∧ task 1 > 0 → proc ′ := 1.

Note that in the first, third, and fifth guarded assignments, the value of the
variable prior stays unchanged; that is, prior ′ := prior .

Sequential updates

We insist that if a variable x is initialized or updated before a variable z in
some round, then x is initialized and updated before z in every round. If x is
initialized before z in the initialization round, and x is updated before z in every
update round, then the variable x is said to be awaited by the variable z. If z
awaits x, then the possible initial values for z may depend on the initial value
of x, and in every update round, the possible next values for z may depend on
the next value of x. For example, assuming that z awaits both x and y, the
initial command

init

[] true → z′ := x′ + y′
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asserts that the initial value of z is equal to the sum of the initial values of x
and y, and the update command

update

[] y′ = 0 → z′ := x
[] y′ 6= 0 → z′ := x′

asserts that in every update round, if the next value of y is 0, then the next
value of z is equal to the current value of x, and otherwise the next value of z
is equal to the next value of x.

Example 1.3 [Scheduler] In every update round of the scheduler example, the
indicators task1 and task2 for pending work are updated after the processor is
assigned to one of the two tasks; that is, both indicators await the processor
assignment proc. The indicator task 1 is decremented in every round in which the
processor is assigned to the first task, and the indicator task 2 is decremented in
every round in which the processor is assigned to the second task. In addition,
new work for a task may arrive in any round, and it arrives in blocks of 5 units.
The nonnegative-integer variable new 1 indicates the amount of new work that
has arrived in the most recent round for the first task, and the nonnegative-
integer variable new2 indicates the amount of new work that has arrived for
the second task. The initial command and the update command for new 1 are
identical, and we write

initupdate

[] true → new ′
1 := 0

[] true → new ′
1 := 5

to avoid duplication. The variable task 1 awaits both new1 and proc1, and its
behavior is defined by the commands

init

[] true → task ′
1 := new ′

1

update

[] proc′ = 1 → task ′
1 := task1 + new ′

1 − 1
[] proc′ 6= 1 → task ′

1 := task1 + new ′
1.

The behaviors of the variables new 2 and task2 are defined by similar commands.

1.1.2 Atoms

The initialization round and every update round consist of several subrounds,
one for each atom. For an atom U , in the U -subround of the initialization
round, the controlled variables of U are initialized simultaneously, as defined by
the initial command of U . In the U -subround of an update round, the controlled
variables of U are updated simultaneously, as defined by the update command
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of U . If the possible next values for some controlled variable of U depend on
the current value of a variable x, then x is said to be read by the atom U .
Read variables occur in the update command of U as unprimed symbols. If
the possible initial values for some controlled variable of U depend on the initial
value of x, or if the possible next values for some controlled variable of U depend
on the next value of x, then the variable x is awaited by the atom U . Awaited
variables occur in the initial and update commands of U as primed symbols. A
variable can be both read and awaited by an atom, or read and controlled, but
for obvious reasons, a variable cannot be awaited and controlled.

Atom

Let X be a finite set of typed variables. An X-atom U consists of an atom
declaration and an atom body. The declaration of U consists of a nonempty
set ctrXU ⊆ X of controlled variables, a set readXU ⊆ X of read variables,
and a set awaitXU ⊆ X\ctrXU of awaited variables. The body of U consists
of an initial command initU and an update command updateU . The initial
command initU is a guarded command from awaitX ′

U to ctrX ′
U . The update

command updateU is a guarded command from readXU ∪awaitX ′
U to ctrX ′

U .

Remark 1.1 [Atom variables] All variables of an X-atom are taken from the
underlying set X of variables. If X and Y are two sets of variables with X ⊆ Y ,
then every X-atom is also a Y -atom.

An important special case of atoms are the deterministic atoms. For a determin-
istic atom, the initial values of all controlled variables are uniquely determined
by the initial values of the awaited variables, and in every update round, the
next values of all controlled variables are uniquely determined by the current
values of the read variables and the next values of the awaited variables.

Deterministic atom

The atom U is deterministic if both the initial command initU and the
update command updateU are deterministic. Otherwise, U is a nondeter-

ministic atom.

The consistency of atoms

We insist on two consistency requirements for atoms, which ensure that a col-
lection of variables that are controlled by several atoms can be initialized and
updated unambiguously. First, we require that no variable be controlled by
more than one atom. This prevents the assignment of multiple, inconsistent
values to a variable. Second, we require that there be no circular await de-
pendencies between variables. The await dependencies between the controlled
variables and the awaited variables of an atom constrain the possible temporal
orderings of the subrounds within a round. We allow only await dependencies
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that permit, within every round, at least one possible ordering of the subrounds.
Consider two variables, x and y, which are controlled, respectively, by the two
atoms Ux and Uy. If x is an awaited variable of Uy, then the initial value of y
may depend on the initial value of x, and the next value of y may depend on
the next value of x. Therefore x must be initialized and updated before y; that
is, the Ux-subround must go before the Uy-subround in the initialization round
and in every update round. It follows that y must not be an awaited variable
of Ux. More generally, the atom U1 precedes the atom Un if there is a chain
U2, . . . , Un−1 of atoms such that for all 2 ≤ i ≤ n, some controlled variable of
Ui−1 is an awaited variable of Ui. If U precedes V , then the U -subround must
go before the V -subround in every round. Therefore it must not happen that
U precedes V and V precedes U .

Atom consistency

Let X be a finite set of typed variables, let U be a set of X-atoms, and
let x and y be two variables in X . The variable y awaits the variable x,
written x ≺U y, if some atom in U controls y and awaits x. The set U is
consistent if (1) no variable is controlled by more than one atom in U , and
(2) the transitive closure ≺+

U of the await relation on the variables in X
is asymmetric. Given two atoms U and V in U , the atom U precedes the
atom V , written U ≺≺U V , if there is a variable x controlled by U and a
variable y controlled by V such that x ≺+

U y.

Proposition 1.1 [Partial order of atoms] If U is a consistent set of atoms, then

the precedence relation ≺≺U is a strict partial order on U .

Exercise 1.1 {T2} [Proof of Proposition 1.1] (a) Prove Proposition 1.1. (b) Show
that the definition of consistency cannot be relaxed; that is, prove that if the
precedence relation ≺≺U of a set U of atoms is asymmetric, then condition (2)
for the consistency of U is satisfied.

The execution of atoms

For a consistent set U of atoms, the linearizations of the partial order ≺≺U deter-
mine the possible sequences of subrounds within a round. These linearizations
are called the execution orders for U . Every consistent set of atoms has at least
one execution order, and possibly several.

Execution order

Let X be a finite set of typed variables, and let U be a consistent set of
X-atoms. An execution order for U is a sequence U1, . . . , Un of the atoms
in U which does not violate the precedence relation ≺≺U ; that is, for all
1 ≤ i, j ≤ n, if Ui ≺≺U Uj , then i < j.
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A system is closed if it controls the behavior of all its variables. We model a
closed system with the set X of variables as a consistent set U of X-atoms so
that each variable in X is controlled by some atom in U . Such a set U of atoms
is executed by carrying out, in the initialization round, all initial commands
of U in some execution order, and by carrying out, in every update round, all
update commands of U in some execution order. The outcome of the execution
is called an initialized trajectory of U : it gives, for each variable in X , a sequence
of values, one for every round. If U contains some nondeterministic atoms, then
for any given number of rounds, there can be many initialized trajectories. By
contrast, the fact that U may have several execution orders does by itself not give
rise to multiple trajectories. In particular, if all atoms in U are deterministic,
then for any given number of rounds, there is a unique initialized trajectory.

Exercise 1.2 {T2} [Execution of atoms] Let X be a finite set of typed variables,
and let U be a consistent set of X-atoms so that each variable in X is controlled
by some atom in U . Show that the possible outcomes of executing U do not
depend on the execution orders that are chosen during the execution of U ; that
is, prove that every initialized trajectory of U can be obtained by choosing an
arbitrary execution order for U and maintaining the chosen execution order in
every round.

Example 1.4 [Scheduler] The scheduler from Example 1.3 is a closed system
with six variables, new1, new2, task 1, task2, proc, and prior , which are arranged
in the five atoms A1–A5 shown in Figure 1.1. In Rml, each atom is written
as an atom name followed by an atom declaration and an atom body. In atom
declarations, the keywords reads or awaits are omitted if the sets of read
or awaited variables are empty. The atoms A3 and A4 are deterministic; the
atoms A1, A2, and A5 are nondeterministic. The set {A1, . . . , A5} of atoms is
consistent, because new1 ≺ task 1, proc ≺ task1, new2 ≺ task2, and proc ≺ task2

are the only await dependencies. There are many execution orders, including
A1, A2, A5, A3, A4 and A5, A2, A4, A1, A3. Figure 1.2 shows two, arbitrarily
chosen, initialized trajectories with 15 update rounds each. The first of these two
trajectories is depicted graphically, in the form of a so-called timing diagram, in
Figure 1.3. The vertical dotted lines of the timing diagram represent boundaries
between rounds. Note, for instance, that the variable task 1 changes its initial
value, in the first update round, only after both new 1 and proc have changed
their initial values.

Combinational and sequential atoms

In the initialization round, the possible initial values for the controlled variables
of an atom depend, in some way, on the initial values of the awaited variables.
If in every update round, the possible next values for the controlled variables
depend in the same way on the next values of the awaited variables, then the
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atom A1 controls new1

initupdate

[] true → new ′
1 := 0

[] true → new ′
1 := 5

atom A2 controls new2

initupdate

[] true → new ′
2 := 0

[] true → new ′
2 := 5

atom A3 controls task1 reads task1 awaits new1, proc
init

[] true → task ′
1 := new ′

1

update

[] proc′ = 1 → task ′
1 := task1 + new ′

1 − 1
[] proc′ 6= 1 → task ′

1 := task1 + new ′
1

atom A4 controls task2 reads task2 awaits new2, proc
init

[] true → task ′
2 := new ′

2

update

[] proc′ = 2 → task ′
2 := task2 + new ′

2 − 1
[] proc′ 6= 2 → task ′

2 := task2 + new ′
2

atom A5 controls proc, prior reads task 1, task2, prior
init

[] true → proc′ := 0; prior ′ := 1
[] true → proc′ := 0; prior ′ := 2

update

[] task1 = 0 ∧ task2 = 0 → proc′ := 0
[] prior = 1 ∧ task1 > 0 → proc′ := 1; prior ′ := 2
[] prior = 1 ∧ task1 = 0 ∧ task2 > 0 → proc′ := 2
[] prior = 2 ∧ task2 > 0 → proc′ := 2; prior ′ := 1
[] prior = 2 ∧ task2 = 0 ∧ task1 > 0 → proc′ := 1

Figure 1.1: The five scheduler atoms
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new1 5 0 0 0 0 0 0 0 0 0 5 0 0 0 5
new2 0 0 0 0 5 0 0 0 0 0 0 5 0 0 0
task1 5 4 3 2 2 1 1 0 0 0 4 4 3 3 7
task2 0 0 0 0 4 4 3 3 2 1 1 5 5 4 4
proc 0 1 1 1 2 1 2 1 2 2 1 2 1 2 1
prior 1 2 2 2 1 2 1 2 1 1 2 1 2 1 2

new1 5 0 0 0 0 0 0 0 0 0 0 0 5 0 0
new2 5 0 0 0 0 0 0 0 0 0 0 0 5 0 0
task1 5 5 4 4 3 3 2 2 1 1 0 0 4 4 3
task2 5 4 4 3 3 2 2 1 1 0 0 0 5 4 4
proc 0 2 1 2 1 2 1 2 1 2 0 0 1 2 1
prior 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2

Figure 1.2: Two initialized trajectories of the scheduler
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Figure 1.3: The timing diagram for the first trajectory from above
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atom is called combinational. Thus, a combinational atom is a (generally non-
deterministic) function that, given the values of the awaited variables at the
end of an initialization or update round, computes the possible values for the
controlled variables at the end of the round. In particular, for combinational
atoms, the possible next values of some controlled variable x cannot depend on
the current value of any variable, including x itself. By contrast, atoms that
distinguish between initial and update rounds are called sequential.

Combinational vs. sequential atom

An atom U is combinational if (1) the set readXU of read variables is empty,
and (2) the initial command initU and update command updateU are iden-
tical. Otherwise, U is a sequential atom.

Example 1.5 [Zero-delay vs. unit-delay copying] Given two variables y and x
of the same type, we want y to duplicate the behavior of x. The combinational
atom

atom CombCopy controls y awaits x
initupdate

[] true → y′ := x′

copies the value of x into y without delay. In the initial round, the atom waits
for x being initialized, and assigns the initial value of x to y. In every update
round, the atom waits for x being updated, and assigns the next value of x to y.
Consequently, both y and x have the same value at the end of every round. The
sequential atom

atom SeqCopy controls y reads x
update

[] true → y′ := x

copies the value of x into y with a delay of one round (the initial command is
irrelevant for the purposes of this example). In every update round, the atom
assigns the current value of x to y. Consequently, the value of y at the end of
every update round is the same as the value of x at the beginning of the round.
In Rml, combinational atoms can be recognized by the keyword initupdate.
For example, the atoms A1 and A2 from Example 1.4 are combinational.

Lazy and eager atoms

An atom sleeps in an update round if the values of all controlled variables stay
unchanged. An atom that may sleep in every update round is called lazy. The
progress of a lazy atom cannot be enforced, because the atom may put off the
next modification of the controlled variables for any number of rounds. By
contrast, if certain current values of read variables or next values of awaited
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variables force an immediate change in value for a controlled variable, then the
atom is called eager.

Lazy vs. eager atom

Given a finite set X of typed variables, the sleep assignment for X is the
guarded assignment γ from X to X ′ with the guard pγ = true and the

assignment ex′

γ = x for each variable x′ ∈ X ′. An atom U is lazy if the
update command updateU contains the sleep assignment for the set ctrXU

of controlled variables. Otherwise, U is an eager atom.

Example 1.6 [Continuous vs. occasional copying] Both atoms CombCopy and
SeqCopy from Example 1.5 are eager. In the first case, all modifications of
y follow immediately, within the same round, the corresponding modifications
of x; in the second case, the modifications of y are delayed by exactly one round.
By contrast, the lazy atom

atom LazyCopy controls y reads y awaits x
update

[] true → y′ := x′

[] true → y′ := y

copies the value of x into y at arbitrary times (the initial command is irrelevant
for the purposes of this example). In every update round, either the value of y
stays unchanged, or it is updated to the next value of x. Consequently, some
values of x may not be copied into y. In Rml, the atom prefix lazy can be
used instead of the sleep assignment for the update command. For example,
the atom LazyCopy can alternatively be specified as

lazy atom LazyCopy controls y reads y awaits x
update

[] true → y′ := x′.

Note that the variable y is read, even though, because the keyword lazy is used,
y does not literally occur in the update command as an unprimed symbol.

Remark 1.2 [Lazy implies sequential and, mostly, nondeterministic] Every
lazy atom U reads its controlled variables; that is, ctrXU ⊆ readXU . It fol-
lows that all lazy atoms are sequential. Furthermore, with the exception of
(trivial) atoms whose update commands contain only the sleep assignment, lazy
atoms are nondeterministic.

Passive and active atoms

During an update round, an atom can notice changes in the values of awaited
variables. If the awaited variable is also read, then the atom can directly com-
pare the current value with the next value. If the awaited variable is not read,
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then the atom can remember the next value from the previous round, by storing
it in a controlled variable, and compare it with the next value from the present
round. Therefore, every change in the value of an awaited variable is an ob-

servable event. An atom is called passive if it may sleep in every update round
in which no observable event occurs; that is, the atom may sleep whenever the
values of all awaited variables stay unchanged. By contrast, if the value of a
controlled variable is changed in certain update rounds independent of observ-
able events, then the atom is called active. The active atoms are round-driven
and the passive atoms are event-driven: while the progress of an active atom
can be enforced by the expiration of rounds, the progress of a passive atom can
be enforced only by other atoms that modify awaited variables.

Passive vs. active atom

Given two finite sets X and Y of typed variables, the conditional sleep

assignment for X with respect to Y is the guarded assignment γ from X ∪
Y ∪Y ′ to X ′ with the guard pγ = (Y ′ = Y ) and the assignment ex′

γ = x for
each variable x′ ∈ X ′. An atom U is passive if U is either combinational,
or lazy, or the update command updateU contains the conditional sleep
assignment for the set ctrXU of controlled variables with respect to the set
awaitXU of awaited variables. Otherwise, U is an active atom.

Remark 1.3 [Passive includes combinational and lazy] By definition, all com-
binational and lazy atoms are passive. This reflects the fact that conditional
sleep assignments are redundant for combinational and lazy atoms: if the con-
ditional sleep assignment is added to the update command of a combinational
or lazy atom, then the behavior of the atom remains the same. For a lazy atom,
this is trivially so. For a combinational atom, this is because if the values of
the awaited variables do not change in an update round, then the atom may
compute the same next values for the controlled variables as in the previous
round.

Example 1.7 [Round vs. event counting] If the behavior of the nonnegative-
integer variable n is defined by the active atom

atom ActiveCount controls n reads n
init

[] true → n′ := 0
update

[] true → n′ := n + 1

then the value of n at the end of the i-th update round is i. Thus, active atoms
can count the number of rounds that expire. For example, an active atom
may count the number of rounds that expire between two consecutive changes
in the value of a variable x that is controlled by another atom. By contrast,
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passive atoms do not have the ability to count rounds; they can count only the
number of observable events, such as the number of changes in the value of x.
Specifically, if the behavior of n is defined by the passive atom

atom PassiveCount controls n reads n, x awaits x
init

[] true → n′ := 0
update

[] x′ 6= x → n′ := n + 1
[] x′ = x → n′ := n

then the value of n at the end of the i-th update round is j ≤ i, where j is
the number of times that the value of x has changed during the first i update
rounds. In Rml, the atom prefix passive can be used instead of the condi-
tional sleep assignment for the update command. The atom PassiveCount is
not a good example for illustrating the use of the keyword passive, however,
because the conditional sleep assignment x′ = x → n′ := n coincides with
the default assignment of the update command (if all guards are false, then
the controlled variables stay unchanged), and therefore can be omitted with or
without prefixing the atom description. A better example for the use of the
keyword passive will follow in the next section. Now, for the record: the atoms
ActiveCount (trivially) and PassiveCount are both sequential and eager. The
combinational and lazy copiers CombCopy and LazyCopy from Examples 1.5
and 1.6 are passive (trivially), and the sequential, eager copier SeqCopy is ac-
tive. This is because SeqCopy needs to be sensitive to the expiration of rounds
in order to delay copying by exactly one round.

Remark 1.4 [Classification of atoms] The atoms can be partitioned into four
pairwise disjoint classes: the combinational atoms, the lazy atoms, the active
atoms, and the atoms that are sequential, eager, and passive.

1.1.3 Modules

A reactive module is a system, or system component, that interacts with other
systems, or other components, which, collectively, make up the environment of
the module. The behavior of some variables is controlled by the module, and
the behavior of other variables is controlled by the environment. We refer to
the former as the controlled variables of the module, and to the latter as the
environment variables. The controlled variables are partitioned into atoms, and
so are the environment variables. In the initialization round and in every update
round, the module and the environment take turns in the form of subrounds. In
each subround of the initialization round, either the module initializes an atom
of controlled variables, or the environment initializes an atom of environment
variables. In each subround of an update round, either the module updates an
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atom of controlled variables, or the environment updates an atom of environ-
ment variables. Deadlock-freedom requires that, in the initialization round, the
module is prepared to initialize its variables for all possible initial values of the
environment variables, and in every update round, the module is prepared to
update its variables for all possible current and next values of the environment
variables.

In addition to being partitioned into atoms, the controlled variables are classified
as to whether or not their values can be observed by the environment, and the
environment variables are classified as to whether or not their values can be
observed by the module. If a controlled variable is visible to the environment,
then the updating of the environment variables may depend on the values of the
controlled variable. Symmetrically, if an environment variable is visible to the
module, then the updating of the controlled variables may depend on the values
of the environment variable. Thus, a module description refers to three classes
of variables —private, interface, and external. Each private variable can be read
and modified by the module, and neither read nor modified by the environment.
Each interface variable can be read by both the module and the environment,
and modified by the module only. Each external variable can be read by both the
module and the environment, and modified by the environment only. In other
words: the module controls the private variables and the interface variables; the
environment observes the interface variables and the external variables. The
fourth class of variables —environment variables that are not visible to the
module— is, naturally, not part of the module description.

Module

A (reactive) module P consists of a variable declaration and a set atomsP

of atoms. The variable declaration of P consists of three pairwise dis-
joint, finite sets of typed variables —the set privXP of private variables,
the set intfXP of interface variables, and the set extlXP of external vari-

ables. We refer to ctrXP = privXP ∪ intfXP as the controlled variables

of P , to obsXP = intfXP ∪ extlXP as the observable variables, and to
XP = ctrXP ∪ obsXP as the module variables. The set atomsP is a consis-
tent set of XP -atoms so that each variable x ∈ XP is controlled by some
atom in atomsP iff x is a controlled variable of P .

Terminology. For the controlled variables of a module P , by definition,
ctrXP = (∪ U ∈ atomsP | ctrXU ). Similarly, we refer to readXP = (∪ U ∈
atomsP | readXU ) as the read variables of the module P , to awaitXP = (∪ U ∈
atomsP | awaitXU ) as the awaited variables of P , and to ≺P =≺atomsP

as the
await relation of P . The execution orders for atomsP are called execution orders

of P .

Important special cases of modules are the finite, the closed, and the determin-

istic modules. A module is finite if all module variables can assume only finitely
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many values. A module is closed if the behavior of the controlled variables is not
influenced by the behavior of any environment variables (although the behavior
of some environment variables may be influenced by the behavior of the con-
trolled variables). A module is deterministic if the behavior of the environment
variables uniquely determines the behavior of the controlled variables.

Finite, closed, and deterministic modules

The module P is finite if all module variables in XP have finite types;
otherwise, P is an infinite module. The module P is closed if the set extlXP

of external variables is empty; otherwise, P is an open module. The module
P is deterministic if all atoms in atomsP are deterministic; otherwise, P is
a nondeterministic module.

The execution of modules

A module P is executed by dividing every round into two phases. In the first
phase of a round, the external variables of P are initialized or updated nondeter-
ministically: each external variable obtains an arbitrary value of the appropriate
type. In the second phase of the round, the controlled variables are initialized
or updated by carrying out the initial or update commands of P in some exe-
cution order. The first phase ensures that all initial and next values of external
variables are available should they be needed in the second phase. The atom
consistency of P ensures, by Proposition 1.1, the existence of an execution order
for the second phase. The outcome of the execution is an initialized trajectory

of P , which gives a sequence of values for each variable in XP . By Exercise 1.2,
the choice of execution order does not influence the outcome of the execution.
However, since the external variables are initialized and updated nondetermin-
istically, and since the initial and update commands may be nondeterministic,
a module can have many initialized trajectories. Only modules that are both
closed and deterministic have, for any given number of rounds, a unique initial-
ized trajectory.

The observable part of an initialized trajectory of the module P , which gives a
sequence of values for each variable in obsXP , is called a trace of P . Thus, every
trace of P shows a possible observable behavior of P over time. Since different
initialized trajectories (outcomes of executions) may give rise to the same trace
(observable behavior), even modules that are both closed and deterministic can
have many traces of a given length. Formal definitions of trajectories and traces
will be given in Chapters 2 and 5.

Example 1.8 [Scheduler] The scheduler from Example 1.4 can be built from
the three modules whose Rml descriptions are given in Figure 1.4 without atom
bodies. The modules Task1 and Task2 are closed; the module Scheduler is
open. For illustration, we execute the module Scheduler in isolation. There are
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module Task1 is

interface new1 : N

atom A1 controls new1

module Task2 is

interface new2 : N

atom A2 controls new2

module Scheduler is

private prior : {1, 2}
interface task1, task2 : N; proc : {0, 1, 2}
external new1,new2 : N

atom A3 controls task1 reads task 1 awaits new1, proc
atom A4 controls task2 reads task 2 awaits new2, proc
atom A5 controls proc, prior reads task 1, task2, prior

Figure 1.4: The three scheduler modules

two execution orders, A5, A3, A4 and A5, A4, A3. In the first phase of the initial
round, the external variables new 1 and new2 are assigned arbitrary nonnegative
integers, and in the second phase, the initial commands of the three atoms
are executed in one of the two execution orders. In the first phase of every
update round, the external variables new 1 and new2 are assigned arbitrary
new nonnegative integers, and in the second phase, the update commands of
the three atoms are executed in some execution order. Since all initial and
update commands are deterministic except for the initial value of the variable
prior , for any two sequences of values for the external variables new 1 and new2,
and any initial value of prior , the module Scheduler has a unique initialized
trajectory. The two trajectories of Figure 1.2 are initialized trajectories of the
module Scheduler , and a third initialized trajectory is shown in Figure 1.5. In
the third trajectory, the values of the external variables new 1 and new2 are
updated arbitrarily, in a manner that is not compliant with the modules Task1

and Task2 . If the values of the private variable prior are omitted from an
initialized trajectory, we obtain a trace of the module Scheduler .

Block diagrams

We depict the structure of modules graphically using block diagrams. The block
diagram for a module consists of delay elements and gates which are connected
by wires, and of a module boundary. Each controlled variable is represented by
a delay element whose output wire carries, in every update round, the current
value of the variable. Each atom is represented by a gate whose output wires
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new1 1 2 0 0 1 0 3 2 0 0 0 0 5 0 0
new2 0 2 0 0 0 0 5 0 0 0 0 0 5 0 0
task1 1 2 2 1 2 1 4 5 5 4 4 3 8 7 7
task2 0 2 1 1 0 0 4 4 3 3 2 2 6 6 5
proc 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2
prior 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

new1 1 2 0 0 1 0 3 2 0 0 0 0 5 0 0
new2 0 2 0 0 0 0 5 0 0 0 0 0 5 0 0
task1 1 2 2 1 2 1 4 5 5 4 4 3 8 7 7
task2 0 2 1 1 0 0 4 4 3 3 2 2 6 6 5
proc 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Figure 1.5: An initialized trajectory of the module Scheduler and the corre-
sponding trace

carry the next values of the variables that are controlled by the atom. The out-
put wires of a gate are connected with the corresponding delay elements, where
the updated values of the variables are stored for the next round. Thus there are
two wires for each variable —one that carries the current value (delay output)
and one that carries the next value (delay input) of the variable. The wires from
delay elements to gates represent read dependencies between variables, and the
wires from gates to gates represent await dependencies. Since the precedence
relation on the atoms (gates) is asymmetric (Proposition 1.1), every wire cycle
contains at least one delay element.

The delay elements and the gates of a module are circumscribed by a dotted line
that denotes the module boundary. Each interface variable x is represented by
two output wires, labeled x and x′, that penetrate the module boundary from
the inside to the outside. In every update round, the unprimed output wire
carries the current value of the variable x, and the primed output wire carries
the next value of x. Each external variable y is represented by one or two input
wires, labeled y and y′, that penetrate the module boundary from the outside
to the inside. Since the module may use only the current value of y, or only
the next value of y, the primed input wire or the unprimed input wire can be
absent.

Example 1.9 [Scheduler] The block diagrams for the modules Task1 , Task2 ,
and Scheduler from Example 1.8 are shown in Figure 1.6.

Remark 1.5 [Block diagrams as types] The block diagram for a module con-
tains the same information as the variable declarations and the atom declara-
tions of the module. We call this information the type of the module. The



Reactive Modules 19

task2

new1A1

Task1

new1

task1

proc

prior

task2

A3

A5

A4

Scheduler

proc′

proc

new2A2

Task2

new2

new ′

1

new ′

2

new ′

1

new ′

2

task1

task ′

1

task ′

2

Figure 1.6: Block diagrams for the scheduler modules
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type of a module does not include the initial and the update commands of the
module. In particular, from the type of a module, it can be concluded if the
module is finite, or closed, but not if the module is deterministic.

Asynchronous and synchronous modules

A module stutters in an update round if the values of all interface variables
stay unchanged. A module that may stutter in every update round is called
asynchronous. The environment cannot enforce observable progress of an asyn-
chronous module. While an asynchronous module can privately record all up-
dates of external variables, all updates of interface variables proceed at a speed
that is independent of the environment speed. By contrast, a module that in-
teracts with the environment synchronously may agree to modify an interface
variable dependent on, and within the same round as, the modification of an
external variable.

Asynchronous vs. synchronous module

The module P is asynchronous if all interface variables in intfXP are con-
trolled by lazy atoms. Otherwise, P is a synchronous module.

Example 1.10 [Zero-delay vs. unit-delay vs. buffered squaring] The module

module SyncSquare is

interface out : N

external in : N

atom controls out awaits in

initupdate

[] true → out ′ := (in ′)2

waits, in every round, for the next value of the external nonnegative-integer
variable in , computes the square, and displays the result in the interface vari-
able out , all within the same round. This is done by a single, combinational
atom. Thus, SyncSquare is an operator that transforms an input stream of non-
negative integers into an output stream of corresponding squares. The operator
is synchronous, because every output value is produced in the very round in
which the corresponding input value arrives. The module

module DelayedSyncSquare is

interface out : N⊥

external in : N

atom controls out awaits in

init

[] true → out ′ := ⊥
update

[] true → out ′ := in2
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requires exactly one round to produce the square of an input value (initially,
the output value is the undefined value ⊥). Since a new output value cannot be
delayed arbitrarily, the module DelayedSyncSquare is again synchronous.

By contrast, the asynchronous module AsyncSquare from Figure 1.7 implements
an operator that requires an arbitrary number of rounds (possibly 0) for pro-
ducing the square of an input value. From one update round to the next, the
unprocessed input values are stored in the private queue buffer . If consecutive
unprocessed input values are equal, only one representative is stored in buffer ,
and the square is computed only once. The queue buffer is updated in every
round in which a new unprocessed input value arrives, so that no input values are
lost. New output values, on the other hand, are produced after arbitrary delays.
The module AsyncSquare therefore has two atoms. The atom ComputeOut ,
which controls out , is lazy: in every update round, it either computes a square
and displays the result in the interface variable out , or it sleeps. If the queue
buffer is empty, the square is computed for the external variable in; otherwise,
the square is computed for the first element of the queue. The atom StoreIn,
which controls buffer , is eager: in every update round, it waits both for the next
input value and for the action taken by the atom ComputeOut , and reacts as
follows. Whenever the input value changes and the queue buffer is nonempty
—i.e., there are already some unprocessed input values— the new input value is
added to the queue. The same happens if the input value changes and the queue
is empty, but the output value does not change —i.e., the atom ComputeOut has
decided to sleep. Whenever the output value changes (ComputeOut has decided
to compute a square) and buffer is nonempty (the square is computed for the
first element of the queue), the first element is removed from the queue. Note
that, because the keyword passive is used, the update command of StoreIn

contains both the conditional sleep assignment

[] in ′ = in ∧ out ′ = out → buffer ′ := buffer

and the default assignment

[] out ′ 6= out ∧ IsEmpty(buffer) → buffer ′ := buffer .

Figure 1.8 shows one, arbitrarily chosen, initialized trajectory for each of the
three modules SyncSquare, DelayedSyncSquare , and AsyncSquare. For the mod-
ules SyncSquare and DelayedSyncSquare , which have no private variables, the
traces coincide with the initialized trajectories. For the module AsyncSquare,
we obtain the traces by omitting the values of the private queue buffer from the
initialized trajectories. Every trace of the synchronous modules SyncSquare and
DelayedSyncSquare is also a trace of the asynchronous module AsyncSquare, but
the converse is not true. While SyncSquare and DelayedSyncSquare each have
exactly one trace for any given sequence of input values, AsyncSquare may have
infinitely many.
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module AsyncSquare is

private buffer : queue of N

interface out : N⊥

external in : N

lazy atom ComputeOut

controls out

reads out , buffer

awaits in

init

[] true → out ′ := (in ′)2

[] true → out ′ := ⊥
update

[] IsEmpty(buffer) → out ′ := (in ′)2

[] ¬IsEmpty(buffer) → out ′ := Front(buffer)2

passive atom StoreIn

controls buffer

reads in , out , buffer

awaits in , out

init

[] out ′ 6= ⊥ → buffer ′ := EmptyQueue

[] out ′ = ⊥ → buffer ′ := Enqueue(in ′,EmptyQueue)
update

[]





∧ in ′ 6= in

∧ out ′ 6= out

∧ ¬IsEmpty(buffer)



 → buffer ′ := Enqueue(in ,Dequeue(buffer))

[]





∧ in ′ = in

∧ out ′ 6= out

∧ ¬IsEmpty(buffer)



 → buffer ′ := Dequeue(buffer)

[]

[

∧ in ′ 6= in

∧ out ′ = out

]

→ buffer ′ := Enqueue(in , buffer)

Figure 1.7: Asynchronous squaring
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in 1 2 2 3 3 3 4 4 4 4 5 6 7 8 9
out 1 4 4 9 9 9 16 16 16 16 25 36 49 64 81

in 1 2 2 3 3 3 4 4 4 4 5 6 7 8 9
out ⊥ 1 4 4 9 9 9 16 16 16 16 25 36 49 64

in 1 2 2 3 3 3 4 4 4 4 5 6 7 8 9
out ⊥ ⊥ 1 4 9 9 9 9 9 16 25 25 25 25 36
buffer 1 1, 2 2 3 4 4 4 6 6, 7 6, 7, 8 7, 8, 9

Figure 1.8: Three initialized trajectories of the modules SyncSquare (top),
DelayedSyncSquare (middle), and AsyncSquare (bottom)

Exercise 1.3 {P3} [Squaring inputs] Following Example 1.10, you are asked to
implement two more operators that transform an input stream of nonnegative
integers into an output stream of corresponding squares. (a) Define a module
AsyncSquare2 which, like AsyncSquare, requires an arbitrary number (possi-
bly 0) of rounds to produce a square but, unlike AsyncSquare, computes the
square of each individual input value, even if it is identical to the previous input
value. Give an initialized trajectory of AsyncSquare such that the corresponding
trace is not a trace of AsyncSquare2 . (b) Define a module SyncSquare2 which
requires at least 2 and at most 5 rounds to produce a square. (c) Draw the
block diagrams for the four modules SyncSquare, SyncSquare2 , AsyncSquare,
and AsyncSquare2 .

Passive and active modules

A module sleeps in an update round if the values of all controlled variables stay
unchanged. The environment stutters in an update round if the values of all
external variables stay unchanged. A module that may sleep in every update
round in which the environment stutters is called passive. The environment can
enforce the progress of a passive module only by modifying external variables.

Passive vs. active module

The module P is passive if all atoms in atomsP are passive. Otherwise, P
is an active module.

Remark 1.6 [Progress of passive modules] As long as the environment stut-
ters, a passive module may sleep: for a passive module we obtain an initialized
trajectory of any given length by simply repeating initial values for all variables.
In particular, a closed, passive module may sleep in every update round. The
following exercise presents a generalization of this remark.
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Exercise 1.4 {T2} [Stutter closure for passive modules] Consider a module P ,
and for each variable in XP , consider a sequence of k ≥ 1 values. Construct
sequences of k+1 values by repeating the last value of each sequence of length k.
(a) Prove that if P is passive and the sequences of length k form an initialized
trajectory of P , then also the sequences of length k + 1 form an initialized
trajectory of P . (b) In part (a), can you replace “passive” by “asynchronous”
and “initialized trajectory” by “trace”?

Exercise 1.5 {P1} [Classification of modules] A module may be asynchronous
and passive, synchronous and passive, asynchronous and active, or synchronous
and active. Give examples for all four classes of modules.

Private determinism

For a deterministic module, the behavior of the controlled variables, both private
and interface, is uniquely determined by the behavior of the external variables.
Thus, for a nondeterministic module, nondeterminism may manifest itself in
the initialization and updating of private variables, or of interface variables,
or both. If all nondeterminism is limited to interface variables, we call it pri-

vate determinism: a module exhibits private determinism if the behavior of
the private variables is uniquely determined by the behavior of the observable
variables, both interface and external. It follows that for every privately de-
terministic module, there is a one-to-one correspondence between the initialized
trajectories (i.e., the outcomes of executions) and the traces (i.e., the observable
behaviors).

Private determinism

The module P has private determinism if all private variables in privXP are
controlled by deterministic atoms. Otherwise, P has private nondetermin-

ism.

Example 1.11 [Determinism vs. private determinism vs. nondeterminism] The
modules SyncSquare and DelayedSyncSquare of Example 1.10 are deterministic.
The module AsyncSquare is nondeterministic, because it requires an arbitrary
number of rounds for processing an input value. However, AsyncSquare has
private determinism, because the initial value of the private queue buffer is
uniquely determined by the initial values of the observable variables in and out ,
and in every update round, the next value of buffer is uniquely determined by
the current value of buffer and the current and next values of in and out . In
this way, given a trace of AsyncSquare, we can construct a unique corresponding
initialized trajectory. By contrast, the module LossyAsyncSquare of Figure 1.9,
which implements asynchronous squaring using a lossy queue, does not have pri-
vate determinism. The module LossyAsyncSquare shares the atom ComputeOut

with the module AsyncSquare, but differs in the atom that controls the private
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module LossyAsyncSquare is

private buffer : queue of N

interface out : N⊥

external in : N

lazy atom ComputeOut

controls out

reads out , buffer

awaits in

passive atom LossyStoreIn

controls buffer

reads in , out , buffer

awaits in , out

init

[] true → buffer ′ := EmptyQueue

[] out ′ = ⊥ → buffer ′ := Enqueue(in ′,EmptyQueue)
update

[]





∧ in ′ 6= in

∧ out ′ 6= out

∧ ¬IsEmpty(buffer)



 → buffer ′ := Enqueue(in ,Dequeue(buffer))

[]

[

∧ out ′ 6= out

∧ ¬IsEmpty(buffer)

]

→ buffer ′ := Dequeue(buffer)

[]

[

∧ in ′ 6= in

∧ out ′ = out

]

→ buffer ′ := Enqueue(in , buffer)

Figure 1.9: Lossy asynchronous squaring
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in 1 2 2 3 3 3 4 5 6 7
out ⊥ 1 1 1 1 1 1 9 9 9
buffer 1 3 3 3 3, 4 4, 5 4, 5 4, 5

in 1 2 2 3 3 3 4 5 6 7
out ⊥ 1 1 1 1 1 1 9 9 9
buffer 1 3 3 3 3 6 6, 7

Figure 1.10: Two observably equivalent initialized trajectories of the module
LossyAsyncSquare

queue buffer : whenever the input value changes, it may or may not be added
to buffer , and thus, some input values can be lost. Furthermore, in any given
update round, whether the next input value is lost or not is independent of the
current value of buffer and independent of the current and next values of in

and out . Figure 1.10 shows two distinct initialized trajectories of the module
LossyAsyncSquare which give rise to the same trace.

1.2 Operations on Reactive Modules

We build complex modules from simple modules using three operations —
parallel composition, variable renaming, and variable hiding.

1.2.1 Parallel Composition

The composition operation combines two modules into a single module whose
behavior captures the interaction between the two component modules. Two
modules can be composed only if their variable declarations are mutually con-
sistent, and if the combined await dependencies of the two modules are not
circular.

Module compatibility

The two modules P and Q are compatible if (1a) privXP and XQ are disjoint,
(1b) XP and privXQ are disjoint, (1c) intfXP and intfXQ are disjoint, and
(2) the transitive closure (≺P ∪ ≺Q)+ is asymmetric.

Remark 1.7 [Independent modules] If the module variables of two modules
are disjoint, then the two modules are compatible.

The composition operation is defined for compatible modules.
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Module composition

If P and Q are two compatible modules, then the (parallel) composition

P‖Q is the module such that

• each private variable of a component module is a private variable of
the compound module: privXP‖Q = privXP ∪ privXQ;

• each interface variable of a component module is an interface variable
of the compound module: intfXP‖Q = intfXP ∪ intfXQ;

• each external variable of a component module is an external variable
of the compound module, provided it is not an interface variable of
the other component: extlXP‖Q = (extlXP ∪ extlXQ)\intfXP‖Q;

• each atom of a component module is an atom of the compound mod-
ule: atomsP‖Q = atomsP ∪ atomsQ.

Remark 1.8 [Composing several modules] The composition operation on mod-
ules is commutative and associative. In Rml, we therefore omit parentheses
when writing module expressions such as P‖Q‖R.

Example 1.12 [Scheduler] By composing the three modules from Example 1.8
we obtain the module

module SchedulerSystem is Task1 ‖Task2 ‖Scheduler .

The type of the compound module is

module SchedulerSystem is

private prior : {1, 2}
interface new1,new2 : N; task1, task2 : N; proc : {0, 1, 2}
atom A1 controls new1

atom A2 controls new2

atom A3 controls task1 reads task1 awaits new1, proc
atom A4 controls task2 reads task2 awaits new2, proc
atom A5 controls proc, prior reads task 1, task2, prior

and the corresponding block diagram is shown in Figure 1.11. In the pictorial
representation of parallel composition, each primed output wire of one com-
ponent module is connected with all primed input wires of other component
modules that represent the same variable, and (not occurring in the scheduler
example) each unprimed output wire is connected with the corresponding un-
primed input wires. The module SchedulerSystem is infinite, closed, nondeter-
ministic, synchronous (all atoms are eager), and active. While every initialized
trajectory of the compound module SchedulerSystem is also an initialized tra-
jectory of the component module Scheduler , the converse is not true. This is
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task2

new1

task1

proc

prior

task2

new2

A1

A3

A5

A2

A4

new1

new ′

1

proc

proc′

new ′

2

new2

Scheduler

Task2

Task1

SchedulerSystem

task1

task ′

1

task ′

2

Figure 1.11: Block diagram for the scheduler system
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because the component modules Task1 and Task2 constrain the behavior of
the variables new1 and new2, which are external to Scheduler . For example,
the two trajectories of Figure 1.2 are initialized trajectories of SchedulerSystem;
the trajectory of Figure 1.5 is not. In Chapter 2 we will formally construct
the trajectories of a compound module from the trajectories of the component
modules.

Remark 1.9 [Module properties under parallel composition] The composition
of two modules is finite iff both component modules are finite. The compo-
sition of two open modules may be closed. The composition of two modules
is deterministic (or has private determinism) iff both component modules are
deterministic (or have private determinism). The composition of two modules
is asynchronous (or passive) iff both component modules are asynchronous (or
passive).

Abstract block diagrams

In block diagrams, we may choose to hide the internal structure of a module
and view it as a black box with input and output wires. If the atom structure of
a module is suppressed, we draw the module boundary as a solid line instead of
a dotted line. In order to compose such abstract block diagrams, every module
needs to be annotated with information about the await dependencies between
variables. The amount of compatibility information that is both necessary and
sufficient is captured by the following definition. Given a module P , a derived

await dependency x ≺d
P y of P consists of an external variable x and an interface

variable y such that x ≺+

P y. The derived await dependency x ≺d
P y indicates

that the initial value of the interface variable y may depend on the initial value
of the external variable x, and in every update round, the next value of y may
depend on the next value of x. Therefore, P cannot be composed with a module
Q with external variable y, interface variable x, and y ≺d

Q x.

Exercise 1.6 {T2} [Derived await dependencies] Consider two modules P and
Q whose variables satisfy conditions (1a)–(1c) for module compatibility. (a) Show
that the derived await dependencies of the two modules contain exactly the in-
formation that is necessary and sufficient for determining compatibility; that
is, prove that P and Q are compatible iff the transitive closure (≺d

P ∪ ≺d
Q)+

is asymmetric. (b) Assuming P and Q are compatible, construct the derived
await dependencies of the compound module P‖Q from the derived await de-
pendencies of the component modules.

A block diagram for a module P must show either its internal structure or its
derived await dependencies. Since it is immaterial if a derived await dependency
is an actual await dependency (contained in ≺P ) or only “derived” from other
await dependencies (contained in ≺+

P ), we often omit the superscript d from the
symbol ≺d.
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Task1
Scheduler

Task2

new1 new ′

1

new2 new ′

2

SchedulerSystem

proc′

task ′

1

task ′

2

task1

task2

procnew2 ≺ task2

new1 ≺ task1

Figure 1.12: Abstract block diagram for the scheduler system

new1

SchedulerSystem

new ′

1

new2 new ′

2

proc′

proc

task1

task ′

1

task2

task ′

2

Figure 1.13: Very abstract block diagram for the scheduler system

Example 1.13 [Scheduler] The block diagram of Figure 1.12 does not show
the atom structure of the component modules for the scheduler system from
Example 1.12. The module Scheduler has two derived await dependencies,
new1 ≺ task1 and new2 ≺ task 2; for example, it cannot be composed with a
module that awaits task1 and controls new1. The block diagram of Figure 1.13
further abstracts the internal structure of the compound module and views the
entire scheduler system as a black box. The module SchedulerSystem is closed,
and therefore has no derived await dependencies.

1.2.2 Variable Renaming

Before composing two modules, it may be necessary to rename private variables
in order to make the two modules compatible. Variable renaming is also useful
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for identifying an interface variable of one module with an external variable of
another module, and for creating multiple copies of a module.

Variable renaming

Let X be a finite set of typed variables, and let ρ be a renaming for X . By
ρ′ we denote the renaming for X ∪ X ′ such that for all variables x ∈ X ,
x[ρ′] = x[ρ] and x′[ρ′] = x[ρ]′. Given an X-atom U , the renamed atom

U [ρ] is the X [ρ]-atom with the set ctrXU [ρ] of controlled variables, the
set readXU [ρ] of read variables, the set awaitXU [ρ] of awaited variables,
the initial command initU [ρ], and the update command updateU [ρ]. Given a
module P , and a renaming ρ for the set XP of module variables, the renamed

module P [ρ] is the module with the set privXP [ρ] of private variables, the
set intfXP [ρ] of interface variables, the set extlXP [ρ] of external variables,
and the set {U [ρ] | U ∈ atomsP } of atoms.

Example 1.14 [Scheduler] From the generic task module

module Task is

interface new : N

atom controls new

init update

[] true → new ′ := 0
[] true → new ′ := 5

we can construct the two task modules of the scheduler system from Exam-
ple 1.12 by renaming. In Rml, we write

module Task1 is Task [new := new 1]
module Task2 is Task [new := new 2].

The interface variable new is renamed to create two distinct copies of the module
Task .

Remark 1.10 [Module properties under variable renaming] Variable renaming
preserves the cardinality (finite vs. infinite), closure (closed vs. open), determin-
ism (deterministic vs. privately deterministic vs. nondeterministic), synchronic-
ity (asynchronous vs. synchronous), and round-sensitivity (passive vs. active)
properties of modules.

Implicit renaming of private variables

Two modules P and Q can be composed only if (1a) the private variables of P
are disjoint from the module variables of Q, and (1b) the private variables of Q
are disjoint from the module variables of P . If, however, we are not interested
in the internal structures of P and Q, then we may not know the names of
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their private variables. To allow the parallel composition of modules in such
circumstances, we treat the private variables of a module as “dummies,” like the
bound variables of a quantified formula (these variables can be renamed freely,
and must be renamed suitably for safe substitution, before a free variable is
replaced by an expression). In particular, in Rml we do not distinguish between
modules that differ only in the names of private variables. Whenever we write
P‖Q, we do not insist on conditions (1a) and (1b) for module compatibility, but
rather assume that, implicitly, the private variables of P and Q are renamed
suitably before the two modules are composed. (We still do insist, of course,
on condition (1c) that the interface variables of P and Q are disjoint, and on
condition (2) that the derived await dependencies of P and Q can be combined
without introducing dependency cycles.)

1.2.3 Variable Hiding

The hiding of interface variables allows us to construct module abstractions of
varying degrees of detail. For instance, after composing two modules, it may
be appropriate to convert some interface variables to private variables, so that
they are used only for the interaction of the component modules, and are no
longer visible to the environment of the compound module.

Variable hiding

Given a module P , and an interface variable x in intfXP , by hiding x
in P we obtain the module hide x in P with the set privXP ∪ {x} of
private variables, the set intfXP \{x} of interface variables, the set extlXP

of external variables, and the set atomsP of atoms.

Remark 1.11 [Hiding several variables] In Rml, we write hide x1, x2 in P as
an abbreviation for the module hide x1 in (hide x2 in P ), which is identical
to the module hide x2 in (hide x1 in P ).

Example 1.15 [Scheduler] If we hide the interface variables task 1 and task2 in
the scheduler system from Example 1.14, we obtain the module

module SchedulerSystem2 is hide task 1, task2 in SchedulerSystem

whose block diagram is shown in Figure 1.14. Our conventions for the pictorial
representation of variable renaming and variable hiding are evident from the fig-
ure. Hiding preserves the initialized trajectories of a module, but not the traces.
A trace for the module SchedulerSystem2 gives values only to the observable
(interface) variables new 1, new2, and proc.

Remark 1.12 [Module properties under variable hiding] Variable hiding pre-
serves the cardinality, closure, and round-sensitivity properties of modules. Hid-
ing preserves determinism, but may not preserve private determinism. By hiding
a variable in a synchronous module we may obtain an asynchronous module.
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new ′

1

proc

proc′

Scheduler

Figure 1.14: Block diagram for the scheduler system with renaming and hiding

Remark 1.13 [Abstract block diagrams as abstract types] Every block diagram
for a module P , no matter how abstract, contains four pieces of information: the
read external variables, the awaited external variables, the interface variables,
and the derived await dependencies of P . We call this information the abstract

type of the module. Since the names of private variables are immaterial, the
abstract types of two modules suffice for determining if the two modules are
compatible. Given a complex module that is built from simple modules using the
three operations of composing, renaming, and hiding, and given the (abstract)
types of all simple modules, we can infer the (abstract) type of the complex
module. It is for this reason that the operations of composing, renaming, and
hiding can be performed also on block diagrams.

1.3 Examples of Reactive Modules

We draw on examples from several application domains —synchronous and asyn-
chronous hardware, concurrent programs with read-shared variables, and dis-
tributed programs with synchronous and asynchronous message passing.
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1.3.1 Synchronous Circuits

Synchronous circuits are built from logic gates and memory cells that are driven
by a sequence of clock ticks. Each logic gate computes a boolean value once per
clock cycle, and each memory cell stores a boolean value from one clock cycle to
the next. We model each logic gate and each memory cell as a reactive module
so that every update round represents a clock cycle. The wires that connect
the logic gates and the memory cells are modeled as boolean variables. As is
customary in circuit design, we denote the values of wires by 0 and 1 instead of
false and true, respectively. We construct synchronous circuits from three basic
building blocks: as basic logic gates we use the Not gate and the And gate,
and as basic memory cell we use the latch (set-reset flip-flop). These building
blocks are then combined to circuits by applying the three module operations
of parallel composition, variable renaming, and variable hiding.

Combinational circuits

Figure 1.15 defines three deterministic, synchronous, passive modules for mod-
eling Not, And, and Or gates. The module SyncNot models a zero-delay Not
gate, which takes a boolean input and produces a boolean output. The input is
modeled as an external variable, in , because it is modified by the environment
and visible to the gate. The output is modeled as an interface variable, out ,
because it is modified by the gate and visible to the environment. In the initial
round, the Not gate waits for the input value to be initialized before computing
the initial output value, by negating the initial input value. In every update
round, the Not gate waits for the input value to be updated before comput-
ing the next output value, by negating the updated input value. The module
SyncNot is passive, because the output changes only if the input changes, and
synchronous, because the output changes in the very round (clock cycle) in which
the input changes (zero delay). The module SyncAnd models a zero-delay And
gate in similar fashion. The And gate takes two boolean inputs, represented by
the external variables in1 and in2, and produces a boolean output, represented
by the interface variable out . In the initial round, both input values must be
initialized before the gate issues the initial output value. In every update round,
both input values must be updated before the gate issues the next output value
with zero delay.

From Not and And gates we can build all combinational circuits. For example,
by de Morgan’s law, a zero-delay Or gate can be defined by composing a zero-
delay And gate with three zero-delay Not gates that negate both inputs and the
output of the And gate. The resulting module SyncOr has the same abstract
type as the module SyncAnd —two awaited boolean inputs represented by the
external variables in1 and in2, and a boolean output represented by the interface
variable out which depends on both inputs (the long dashes in Figure 1.15
indicate Rml commentary). The private variables z1, z2, and z3 of SyncOr



Reactive Modules 35

module SyncNot is

interface out : B

external in : B

atom controls out awaits in

initupdate

[] in ′ = 0 → out ′ := 1
[] in ′ = 1 → out ′ := 0

module SyncAnd is

interface out : B

external in1, in2 : B

atom controls out awaits in1, in2

initupdate

[] in ′
1 = 0 → out ′ := 0

[] in ′
2 = 0 → out ′ := 0

[] in ′
1 = 1 ∧ in ′

2 = 1 → out ′ := 1

module SyncOr is

—interface out

—external in1, in2

hide z1, z2, z3 in

‖ SyncAnd [in1, in2, out := z1, z2, z3]
‖ SyncNot [in , out := in1, z1]
‖ SyncNot [in , out := in2, z2]
‖ SyncNot [in , out := z3, out ]

Figure 1.15: Synchronous Not, And, and Or gates
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Figure 1.16: Block diagrams for the synchronous Not, And, and Or gates
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represent internal wires that connect the four component gates. The values
of these internal wires can be neither read nor modified by the environment.
Since out waits for z3, which waits for both z1 and z2, which wait for in1 and
in2, respectively, we obtain the two derived await dependencies in1 ≺ out and
in2 ≺ out ; that is, every update of the output must be preceded by updates of
both inputs. The module SyncOr is again passive (all atoms are combinational)
and synchronous (an eager atom controls the output).

Figure 1.16 shows, in the left column, detailed block diagrams for the zero-delay
Not, And, and Or gates, and in the center column, corresponding abstract
block diagrams. We omit the unprimed output wires from the abstract block
diagrams of logic gates, because they are not used for building circuits (to
save the value of a wire from one clock cycle of a synchronous circuit to the
subsequent clock cycle, the value must be latched). We abbreviate the abstract
block diagrams of the logic gates using module boundaries of different shapes
which resemble the standard gate symbols. This allows us to suppress the
derived await dependencies. The abbreviations are shown in the right column
of Figure 1.16.

Sequential circuits

Figure 1.17 defines a nondeterministic, synchronous, active module for modeling
a unit-delay latch. The latch takes two boolean inputs, represented by the
external variables set and reset , and produces a boolean output, represented by
the interface variable out . Unlike the logic gates, the latch has a boolean state,
which is represented by the private variable state. The latch behaves like a
Moore machine. In every update round, the latch first issues its state as output
and then waits for the updated input values to compute its next state. If the
updated value of set is 1 and the updated value of reset is 0, then the latch
changes its state to 1. If the updated value of set is 0 and the updated value
of reset is 1, then the latch changes its state to 0. If both updated input values
are 0, then the state of the latch (which is equal to the already updated output
out ′) does not change. If both updated input values are 1, then the next state
of the latch is arbitrary —it may be either 0 or 1 (in this case, two of the guards
apply, and the value of state is updated nondeterministically). What remains
to be specified are the initial values of out and state. The initial output of the
latch is arbitrary (this is a second source of nondeterminism). The initial state
of the latch is computed combinationally from the initial values of out , set , and
reset as during update rounds (in particular, if both set and reset are initially 0,
then the initial value of state is determined by the initial value of out).

The resulting module SyncLatch is active, because in every round a new output
is issued independently of any input change, and synchronous, because after
an input change the output changes in the very next round (unit delay). Fig-
ure 1.18 shows the detailed block diagram for the latch and, below, an abstract
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module SyncLatch is

private state : B

interface out : B

external set , reset : B

atom ComputeOutput controls out reads state

init

[] true → out ′ := B

update

[] true → out ′ := state

atom ComputeNextState controls state awaits out , set , reset
initupdate

[] set ′ = 1 → state ′ := 1
[] reset ′ = 1 → state ′ := 0
[] set ′ = 0 ∧ reset ′ = 0 → state ′ := out ′

Figure 1.17: Synchronous latch

block diagram. As with logic gates, we omit the unprimed output wire from
the abstract block diagram of the latch, because it is not used for building cir-
cuits. Note that while zero-delay logic gates have (derived) await dependencies
between inputs and outputs, the unit-delay latch does not. For this it was nec-
essary to model the latch with two atoms, each controlling one variable, rather
than with a single atom controlling both variables: in the module SyncLatch,
the state variable state waits for the input variables set and reset ; the output
variable out does not. This decoupling of the output computation, which re-
quires no inputs, from the next-state computation, which requires both inputs,
into separate subrounds is essential for composing latches with logic gates which,
in every round (clock cycle), provide the latch inputs dependent on the latch
outputs.

Example 1.16 [Binary counter] As an example of a sequential circuit, we de-
sign a three-bit binary counter. The counter takes two boolean inputs, repre-
sented by the external variables start and inc, for starting and incrementing the
counter. The counter value ranges from 0 to 7, and is represented by three bits.
We do not make any assumption about the initial counter value. A start com-
mand resets the counter value to 0 and overrides any increment command that is
issued in the same round. An increment command increases the counter value
by 1. If the counter value is 7, the increment command changes the counter
value to 0. In every round, the counter issues its value as output —the low bit
on the interface variable out0, the middle bit on the interface variable out1, and
the high bit on the interface variable out2. (While combinational circuits are
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Figure 1.18: Block diagrams for the synchronous latch

passive, sequential circuits are active.)

Figure 1.19 shows a possible design of the three-bit counter from three one-
bit counters (for clarity, in Rml we can annotate the component modules of
a compound module with the names of the observable variables even if the
variables are not renamed). Note that carry0 waits for both start and inc, then
carry1 waits for carry0, and carry2 waits for carry1. It follows that all three
bits of the counter are updated in a single round (clock cycle). Figure 1.20
shows block diagrams for the one-bit counter Sync1BitCounter and the three-bit
counter Sync3BitCounter . The module Sync3BitCounter has no derived await
dependencies; it is finite, open, nondeterministic (because the initial counter
value is arbitrary), privately deterministic, synchronous, and active. Figure 1.21
shows an initial trajectory of Sync3BitCounter and, for some of the variables,
the corresponding timing diagram. (The private variables of the three one-bit
counters have been renamed implicitly; for instance, z has been renamed to z0,
z1, and z2.)

Exercise 1.7 {P3} [Synchronous circuits] (a) Define a passive module SyncNor

that models a zero-delay Nor gate. Use the variable names in1 and in2 for
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module Sync1BitCounter is

—interface out , carry
—external start , inc

hide set , reset , z in

‖ SyncLatch[set , reset , out ]
‖ SyncAnd [in1, in2, out := out , inc, carry ]
‖ SyncOr [in1, in2, out := carry , start , reset ]
‖ SyncNot [in , out := reset , z]
‖ SyncAnd [in1, in2, out := inc, z, set ]

module Sync3BitCounter is

—interface out0, out1, out2

—external start , inc

hide carry0, carry1, carry2 in

‖ Sync1BitCounter [start , inc, out , carry := start , inc, out0, carry0]
‖ Sync1BitCounter [start , inc, out , carry := start , carry 0, out1, carry1]
‖ Sync1BitCounter [start , inc, out , carry := start , carry 1, out2, carry2]

Figure 1.19: One-bit and three-bit binary counters

input, and use out for output. (b) Why is

hide z in

‖ SyncNor [in1, in2, out := set , z, out]
‖ SyncNor [in1, in2, out := reset , out , z]

not a legal definition of a module? (c) Consider the module

module SyncDelay is

private state : B

interface out : B

external in : B

atom ComputeOutput controls out reads state

atom ComputeNextState controls state awaits in

initupdate

[] true → state ′ := in ′

which shares the atom ComputeOutput with the module SyncLatch from Fig-
ure 1.17. Give a few initialized trajectories of the module SyncDelay . Then
characterize, in precise words, the set of all initialized trajectories of SyncDelay .
Is the module SyncDelay finite? Closed? Deterministic? Privately determinis-
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Figure 1.20: Block diagrams for the one-bit and three-bit binary counters
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inc 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1
start 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
z0 0 1 1 0 0 1 0 1 1 1 1 0 1 0 1
set0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1
reset0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 0
carry0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0
z1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1
set1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
reset1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0
carry1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
z2 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1
set2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
reset2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
carry2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
out0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0
out1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0
out2 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0

inc

0

start

carry0

carry1

carry2

out0

out1

out2

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 1.21: An initialized trajectory of the module Sync3BitCounter
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tic? Asynchronous? Passive? (d) Draw block diagrams for the module

module SyncLatch2 is

—interface out

—external set , reset
hide z1, z2, z3 in

‖ SyncNor [in1, in2, out := set , z3, z1]
‖ SyncNor [in1, in2, out := reset , out , z2]
‖ SyncDelay [in, out := z1, out ]
‖ SyncDelay [in, out := z2, z3]

at three different levels of abstraction. Compare the abstract type of the module
SyncLatch2 with the abstract type of the module SyncLatch . Give an initialized
trajectory of SyncLatch2 and draw its timing diagram. How do the traces of
SyncLatch2 differ from the traces of SyncLatch? Can the traces of SyncLatch

be matched by removing one of the component modules from the compound
module SyncLatch2 ?

1.3.2 Shared-variables Protocols

We refer to concurrent programs that communicate through read-shared vari-
ables as processes. We model each process as a reactive module with a single
atom. The sequential control of a process is often encoded by a controlled vari-
able called pc, which stands for “program counter.” The interface variables of
a process can be read by other processes. All inter-process communication oc-
curs in this way, by processes reading (rather than awaiting) external variables,
which are controlled by other processes. Hence, there are no awaited vari-
ables: in every update round, each process determines the next values of the
controlled variables based solely on the current values of variables. Processes
are combined by applying the three module operations of parallel composition,
variable renaming, and variable hiding. In the synchronous case, all processes
proceed in lock-step —one step per update round. In the asynchronous case,
each process may or may not proceed in any given update round.

The mutual-exclusion problem

A paradigmatic problem in concurrent programming is the mutual-exclusion
problem, which asks for a programming solution to ensure that no two pro-
cesses simultaneously access a common resource, such as an I/O device or a
write-shared variable. We illustrate the use of reactive modules for modeling
concurrent programs by modeling two protocols —one synchronous, the other
asynchronous— which solve the mutual-exclusion problem. We restrict our at-
tention to the two-process case. Without loss of generality, we assume that
each process has a so-called “critical section,” which contains all accesses to the
common resource. The interface variable pc1 of the first process indicates if the
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process control is outside the critical section (pc1 = outC ), requesting to enter
the critical section (pc1 = reqC ), or inside the critical section (pc1 = inC ). The
interface variable pc2 of the second process indicates the status of the second
process in the same manner. Each process starts outside its critical section: the
initial command for pc1 is

init

[] true → pc′1 := outC

and similarly for pc2. Each process may remain outside its critical section for
an arbitrary number of rounds, and it may remain inside the critical section
for an arbitrary number of rounds. In other words, each process may request
to enter the critical section at any time, and it may leave the critical section
at any time. We model these assumptions using nondeterminism: the update
command for pc1 contains the guarded assignments

update

[] pc1 = outC →
[] pc1 = outC → pc′1 := reqC

[] pc1 = inC →
[] pc1 = inC → pc′1 := outC

and similarly for pc2. Since the program counters pc1 and pc2 are interface
variables, in every update round, each process “knows” about the current status
of the other process. Our task is to add guarded assignments that permit each
process to enter its critical section, by updating pc1 or pc2 from reqC to inC ,
in a controlled fashion. We say that the i-th process has the opportunity to
enter the critical section if the guard is true for some guarded command that
sets pci to inC . (If a process has the opportunity to enter the critical section,
the process does not necessarily need to enter, because it may have additional
nondeterministic choices.)

In a correct solution to the mutual-exclusion problem, the parallel composition
of both processes has to meet several requirements. First and foremost is the
requirement of mutual exclusion: it must not happen, ever, that both processes
are inside their critical sections simultaneously. The mutual-exclusion require-
ment can be enforced easily, say, by never permitting the second process to enter
the critical section. This, however, is not a satisfactory solution and is ruled
out by the following, second requirement, which is called accessibility if either of
the processes requests to enter the critical section, then in the current or some
future round, the process will have the opportunity to enter; furthermore, this
opportunity will present itself no matter how the other process behaves —i.e.,
how it resolves its nondeterministic choices— as long as the other process does
not stay inside the critical section forever.



Reactive Modules 45

Synchronous mutual exclusion

The protocol SyncMutex of Figure 1.22 provides a synchronous solution to the
mutual-exclusion problem. The first process, Q1, proceeds into its critical sec-
tion when the second process is not in its critical section (but may be requesting
to enter), and the second process, Q2, proceeds into its critical section when the
first process is outside its critical section (and not requesting to enter). In par-
ticular, if both processes are trying to enter their critical sections in the same
round, only the first process will succeed. In that case, the second process will
enter its critical section as soon as the first process leaves its critical section.
This guarantees accessibility. Both processes proceed synchronously, because if
a process tries to enter its critical section, then it will proceed into the critical
section in the first round in which it is permitted to do so.

Exercise 1.8 {P2} [Synchronous mutual exclusion] The module SyncMutex is
active, because if a process is permitted to enter its critical section in the first
round in which it tries to enter, then the process proceeds into the critical section
in the same round, without waiting for a change in the value of the external
variable. Modify the protocol SyncMutex to obtain a synchronous, passive
solution to the mutual-exclusion problem. (Do not use additional variables.)

Asynchronous mutual exclusion

In the asynchronous model of concurrent programming, all processes proceed at
independent, and possibly varying, speeds. The assumption of speed indepen-

dence abstracts details about the execution of a concurrent program: it captures
parallel implementations on multiple processors of unknown speeds, as well as
time-sharing implementations on a single processor with an unknown scheduling
policy. In reactive modules, each speed-independent process is specified by a
lazy atom. Then, in every update round, each speed-independent process may
either proceed (i.e., the values of some controlled variables change) or sleep (i.e.,
the values of all controlled variables stay unchanged). For concurrent programs
with read-shared variables, the assumption of speed independence is captured
formally by the following definition.

Speed-independent process set

A speed-independent process is a lazy atom without awaited variables. A
speed-independent process set is a module all of whose atoms are speed-
independent processes.

Remark 1.14 [Properties of speed-independent process sets] Every speed-inde-
pendent process set is both asynchronous and passive. The speed-independent
process sets are closed under parallel composition, variable renaming, and vari-
able hiding; that is, if these operations are applied to speed-independent process
sets, then the results are again speed-independent process sets.
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module Q1 is

interface pc1 : {outC , reqC , inC }
external pc2 : {outC , reqC , inC}
atom controls pc1 reads pc1, pc2

init

[] true → pc′1 := outC

update

[] pc1 = outC →
[] pc1 = outC → pc′1 := reqC

[] pc1 = reqC ∧ pc2 6= inC → pc′1 := inC

[] pc1 = inC →
[] pc1 = inC → pc′1 := outC

module Q2 is

interface pc2 : {outC , reqC , inC }
external pc1 : {outC , reqC , inC}
atom controls pc2 reads pc1, pc2

init

[] true → pc′2 := outC

update

[] pc2 = outC →
[] pc2 = outC → pc′2 := reqC

[] pc2 = reqC ∧ pc1 = outC → pc′2 := inC

[] pc2 = inC →
[] pc2 = inC → pc′2 := outC

module SyncMutex is Q1 ‖Q2

Figure 1.22: Synchronous mutual exclusion
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module P1 is

interface pc1 : {outC , reqC , inC }; x1 : B

external pc2 : {outC , reqC , inC}; x2 : B

lazy atom controls pc1, x1 reads pc1, pc2, x1, x2

init

[] true → pc′1 := outC ; x′
1 := B

update

[] pc1 = outC → pc′1 := reqC ; x′
1 := x2

[] pc1 = reqC ∧ (pc2 = outC ∨ x1 6= x2) → pc′1 := inC

[] pc1 = inC → pc′1 := outC

module P2 is

interface pc2 : {outC , reqC , inC }; x2 : B

external pc1 : {outC , reqC , inC}; x1 : B

lazy atom controls pc2, x2 reads pc1, pc2, x1, x2

init

[] true → pc′2 := outC ; x′
2 := B

update

[] pc2 = outC → pc′2 := reqC ; x′
2 := ¬x1

[] pc2 = reqC ∧ (pc1 = outC ∨ x1 = x2) → pc′2 := inC

[] pc2 = inC → pc′2 := outC

module Pete is hide x1, x2 in P1 ‖P2

Figure 1.23: Asynchronous mutual exclusion
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initial P2 P1, P2 P2 P2 P1, P2 P1 P2

pc1 outC outC reqC reqC reqC reqC reqC inC outC outC

pc2 outC reqC inC inC inC outC reqC reqC reqC inC

x1 true true false false false false false false false false

x2 false false false false false false true true true true

Figure 1.24: An initialized trajectory of the module Pete

The previous, synchronous solution to the mutual-exclusion problem violates
speed independence. An asynchronous solution, which must take the form of
a speed-independent process set, is more difficult to devise and understand.
The protocol Pete of Figure 1.23 provides the asynchronous solution due to
Peterson, in which each process employs an additional boolean interface variable
(x1 and x2, respectively). If both processes are trying to enter their critical
sections in the same round, then the first process can succeed if x1 6= x2, and the
second process can succeed if x1 = x2. This guarantees the mutual-exclusion
requirement. However, in contrast to the simple protocol SyncMutex , it is
not obvious that Pete meets the accessibibility requirement; indeed, much of
this book will be devoted towards developing algorithms for checking if a finite
module like Pete meets a requirement like accessibility. Figure 1.24 shows a
sample initialized trajectory of Pete. Since the two atoms of Pete are speed-
independent processes, in any given update round, either none, one, the other,
or both atoms may sleep. The first line of Figure 1.24 indicates for every update
round which processes proceed.

Exercise 1.9 {T3} [Accessibility for Peterson’s protocol] Prove that the mod-
ule Pete meets the accessibilty requirement. (As with the proofs required by
other exercises, your aim need not be a derivation in some formal calculus, but
an argument that is sufficiently rigorous and detailed as to convince the reader
and, more importantly, yourself.)

Exercise 1.10 {P3} [Three-process mutual exclusion] You are asked to gener-
alize Peterson’s protocol to the case of three processes: first specify the three-
process mutual-exclusion problem; then present your solution in the form of a
finite module which is a speed-independent three-process set. Give an initialized
trajectory of your protocol along which each process enters the critical section
at least once (annotate the trajectory, as in Figure 1.24, with the processes that
proceed during the update rounds).

Exercise 1.11 {P3} [Interleaving model] Peterson’s protocol was originally de-
signed under the interleaving assumption that in every update round at least
one of the two processes sleeps. The interleaving assumption is stronger (more
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restrictive) than the assumption of speed independence, which permits update
rounds in which both processes proceed. (a) Implement Peterson’s original pro-
tocol using three synchronous, passive modules, two of which represent the two
processes. The third module represents a scheduler which, in every update
round, nondeterministically determines which of the two processes sleeps. The
decision of the scheduler is communicated to the processes through an auxiliary
variable that is controlled by the scheduler and awaited by the processes. After
parallel composition, hide the auxiliary variable to obtain an asynchronous pro-
tocol which has the same abstract type as Pete and strictly fewer traces. Give a
trace of Pete which is not a trace of your new protocol. (b) Every asynchronous
protocol that meets the mutual-exclusion requirement under the assumption
of speed independence also meets the mutual-exclusion requirement under the
interleaving assumption. Can you find an asynchronous protocol, in the form
of a speed-independent two-process set, which violates the mutual-exclusion re-
quirement, but does so only along initialized trajectories that contain at least
one update round in which both processes proceed?

1.3.3 Message-passing Protocols

We refer to distributed programs that communicate through messages as agents.
The transmission of messages is governed by message-passing protocols, which
ensure that all messages that are sent are also received. We illustrate the use of
reactive modules for modeling distributed programs by modeling several proto-
cols for passing messages between agents.

Event variables

We refer to every change in the value of a variable x as an x event. Thus,
in every update round, an x event either happens or does not happen; the x
events may happen as rarely as never, or as often as once per update round.
In this spirit, in reactive modules we model the happening of a pure event —
a happening without value, such as an individual clock tick or the fact that
a message is being transmitted from a sender to a receiver— by toggling a
boolean variable. Suppose, for example, that the boolean variable tick is used
for modeling clock ticks. Then, the pure event “clock tick” happens whenever
the value of tick changes either from true to false , or from false to true. In those
update rounds in which the next value of tick is equal to the current value, no
clock tick happens. In other words, the clock ticks are represented by the tick

events.

If a boolean variable x is used to model pure events, then we are interested in all
changes to the value of x, but the actual value of x at the beginning or end of any
given round is irrelevant. Hence, Rml provides a special type, denoted E, for
the modeling of pure events. The variables of type E are called event variables.
Each event variable ranges over the set B of boolean values, but compared to
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boolean variables, the initialization and updating of event variables is strongly
restricted. The initialization of event variables is implicit: each event variable
is initialized nondeterministically to either true or false . In update commands,
an event variable x can occur only in the following two ways. First, the Rml
expression x! stands for the assignment x′ := ¬x, which issues an x event. (If
x! is absent from a guarded assignment, then x′ := x by default, and no x event
is issued.) It follows that the atom that controls x must read x. Second, the
Rml expression x? stands for the boolean expression x′ 6= x, which checks if an
x event is happening. It follows that an atom that does not control x, reads x
if and only if it awaits x. Given a module P , we write eventXP for the set of
event variables of P .

Synchronous communication

We are given two agents —a sender and a receiver. The sender produces a
message, then sends the message to the receiver and produces another message,
etc. The receiver, concurrently, waits to receive a message, then consumes the
message and waits to receive another message, etc. We model each agent as
a module that cannot observe the control variables of the other agent. The
private variable pc of the sender indicates if the agent is producing a message
(pc = produce) or attempting to send a message (pc = send). The sender starts
by producing a message:

init

[] true → pc′ := produce

Messages are produced by the lazy atom Producer , which requires an unknown
number of rounds to produce a message. Once a message is produced, the pro-
ducer issues a doneP event (which is private to the sender) and the produced
message is shown as msgP (which initially is undefined). We assume that mes-
sages have the finite type M, and that any stream of messages from the finite
set M may be produced. We model these assumptions using nondeterminism:

lazy atom Producer controls doneP ,msgP reads pc, doneP

init

[] true → msg ′
P := ⊥

update

[] pc = produce → doneP !; msg ′
P := M

Once a message has been produced, the sender is ready to send the message:

update

[] pc = produce ∧ doneP ? → pc′ := send

The private variable pc of the receiver indicates if the agent is waiting to receive
a message (pc = receive) or consuming a message (pc = consume). The receiver
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starts by waiting to receive a message:

init

[] true → pc′ := receive

The received message is stored in the private variable msgR. Messages are
consumed by the lazy atom Consumer , which requires an unknown number of
rounds to consume a message. Once a message is consumed, the consumer issues
a doneC event (which is private to the receiver) and the consumed message is
shown as msgC (which initially is undefined):

lazy atom Consumer controls doneC ,msgC reads pc, doneC ,msgR

init

[] true → msg ′
C := ⊥

update

[] pc = consume → doneC !; msg ′
C := msgR

Once a message has been consumed, the receiver waits to receive another mes-
sage:

update

[] pc = consume ∧ doneC? → pc′ := receive

Our task is to add guarded assignments that permit the sender to send a mes-
sage, by updating pc from send to produce , and guarded assignments that permit
the receiver to receive a message, by updating pc from receive to consume, in a
controlled fashion. Roughly speaking, when composing both agents, the stream
of consumed messages msgC should contain the same message values, in the
same order, as the stream of produced messages msgP . Formal requirements
for message-passing protocols will be stated in Chapter ??.

The protocol SyncMsg of Figure 1.25 has the sender and the receiver synchro-
nize to transmit a message; that is, when ready to send a message, the sender is
blocked until the receiver becomes ready to receive, and when ready to receive
a message, the receiver is blocked until the sender transmits a message. The
synchronization of both agents is achieved by two-way handshaking in three
subrounds (or “stages”) within a single update round. The first subround be-
longs to the atom Stage1 of the receiver. If the receiver is ready to receive a
message, it asynchronously issues an interface ready event to signal its readiness
to the sender. The second subround belongs to the atom Stage2 of the sender.
If the sender sees an external ready event and is ready to send a message, it
synchronously issues an interface transmit event to signal a transmission, and it
offers the message which is to be transmitted in the interface variable msgS . The
third subround belongs to the atom Stage3 of the receiver. If the receiver sees an
external transmit event, it copies the message from the external variable msgS

to the private variable msgR. The three-stage, two-way handshaking structure
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module SyncSender is

private pc : {produce, send}; doneP : E

interface transmit : E; msgS : M; msgP : M⊥

external ready : E

passive atom Stage2

controls pc, transmit ,msgS

reads pc, doneP , ready , transmit ,msgP

awaits doneP , ready
init

[] true → pc′ := produce ; msg ′
S := M

update

[] pc = produce ∧ doneP ? → pc′ := send

[] pc = send ∧ ready? → transmit !; msg ′
S := msgP ; pc′ := produce

lazy atom Producer controls doneP ,msgP reads pc, doneP

module Receiver is

private pc : {receive, consume}; msgR : M; doneC : E

interface ready : E; msgC : M⊥

external transmit : E; msgS : M

passive atom Stage3

controls pc,msgR

reads pc, transmit , doneC

awaits transmit ,msgS , doneC

init

[] true → pc′ := receive ; msg ′
R := M

update

[] pc = receive ∧ transmit? → msg ′
R := msg ′

S ; pc′ := consume

[] pc = consume ∧ doneC? → pc′ := receive

lazy atom Stage1 controls ready reads pc, ready
update

[] pc = receive → ready !

lazy atom Consumer controls doneC ,msgC reads pc, doneC ,msgR

module SyncMsg is

—interface msgP ,msgC

hide ready , transmit ,msgS in

‖ SyncSender

‖ Receiver

Figure 1.25: Synchronous message passing
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Figure 1.26: Block diagram for synchronous message passing
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transmit

ready ≺ transmit , msgS

msgP

msg ′
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msg ′
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SyncMsg
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transmit ′ready ready ′ msg ′

S

Receiver

Figure 1.27: Abstract block diagram for synchronous message passing

of the protocol SyncMsg can be seen in the block diagram of Figure 1.26 and
in the abstract block diagram of Figure 1.27.

Both agents SyncSender and Receiver are passive, because the sender may sleep
in any given update round except when the receiver signals ready , and the
receiver may sleep in any given update round except when the sender signals
transmit . The sender is synchronous, because it signals transmit in the very
round in which the receiver signals ready ; the receiver is asynchronous. The
entire protocol SyncMsg , after hiding the variables transmit and msgS , is both
asynchronous and passive. Figure 1.28 shows a sample initialized trajectory of
the module SyncMsg , assuming that the possible values of messages are M =
{a,b,c}. (The two program counters have been renamed implicitly, and their
values are abbreviated. Instead of giving the values of event variables, the figure
indicates when the corresponding events happen.) The corresponding trace of
SyncMsg consists of a stream of produced messages msgP and a stream of
consumed messages msgC .

Exercise 1.12 {P2} [Synchronous message passing] (a) Give a few additional
initialized trajectories of the module SyncMsg and the corresponding traces.
Then characterize, in precise words, the set of all traces of SyncMsg . (b) Define
a module that has the same abstract type and the same traces as the module
SyncMsg , but as few private variables as possible.

Exercise 1.13 {P3} [Dining philosophers] Suppose that there are two rooms
and n philosophers. In one room, the philosophers think; in the other room,
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pcS p p s s p s s s p p p s s p s
transmit 3 3 3

msgS c c c c a a a a b b b b b c c
doneP 3 3 3 3

msgP ⊥ ⊥ a a a b b b b b b c c c b

pcR r r r r c c c r c r r r r c r
ready 3 3 3 3 3 3

msgR b b b b a a a a b b b b b c c
doneC 3 3 3

msgC ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ a a b b b b b c

msgP ⊥ ⊥ a a a b b b b b b c c c b
msgC ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ a a b b b b b c

Figure 1.28: An initialized trajectory of the module SyncMsg and the corre-
sponding trace

they eat while seated at a round table. Every philosopher owns one of the
n chairs at the table. There is one chopstick between each of the n plates,
and every philosopher uses both the left and the right chopstick for eating
(it follows that at most bn/2c philosophers can be eating at the same time).
Every philosopher begins by thinking and, when hungry, enters the dining room.
There, the philosopher sits down at the table at the designated chair, picks
up the chopstick to the left (or waits until it becomes available), and then
the chopstick to the right (or waits). Once in control of both chopsticks, the
philosopher eats, then releases both chopsticks, leaves the dining room, thinks,
and returns when hungry again.

The passive module Stick of Figure 1.29 implements a chopstick. The private
variable pc indicates if the chopstick is available (pc = free), picked up by the
philosopher to the left (pc = left), or picked up by the philosopher to the right
(pc = right). An external reqL event indicates that the philosopher to the left
requests the chopstick, an interface grantL event indicates that the philosopher
to the left picks up the chopstick, and an external releaseL event indicates that
the philosopher to the left releases the chopstick. The event variables reqR,
grantR, and releaseR refer to the philosopher to the right. (a) Define a pas-
sive module Phil which implements a philosopher and, using multiple, renamed
copies of Phil and Stick , define a compound module Dine4 which implements
the dining-philosophers scenario for n = 4. Illustrate the communication struc-
ture of the module Dine4 by drawing block diagrams for Phil , Stick , and Dine4

at suitable levels of abstraction. (b) Give an initialized trajectory of your mod-
ule Dine4 which ends up in a situation where all 4 philosophers sit at the table,
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module Stick is

private pc : {free , left , right}
interface grantL, grantR : E

external reqL, releaseL, reqR, releaseR : E

passive atom

controls pc, grantL, grantR

reads pc, reqL, grantL, releaseL, reqR, grantR, releaseR

awaits reqL, releaseL, reqR, releaseR

init

[] true → pc′ := free

update

[] pc = free ∧ reqL? → grantL!; pc′ := left

[] pc = free ∧ reqR? → grantR!; pc′ := right

[] pc = left ∧ releaseL? → pc′ := free

[] pc = right ∧ releaseR? → pc′ := free

Figure 1.29: A chopstick for the dining philosophers

have picked up one chopstick, and wait for the other chopstick to become avail-
able. There are several ways to prevent this deadlock situation. (b1) Have each
philosopher pick up both chopsticks simultaneously (or wait until both chop-
sticks become available). (b2) Add to the entrance of the dining room a guard
that admits at most n − 1 = 3 philosophers into the dining room at any given
time. Define a passive module Guard and draw the abstract block diagram
for the dining-philosophers scenario with a guard. (Hide all communication be-
tween the philosophers and the guard so that the resulting module has the same
abstract type as the module Dine4 .)

Exercise 1.14 {P3} [Write-shared variables] Consider a concurrent program
with two processes, R1 and R2, both of which have read and write access to a
boolean variable x. When R1 wishes to read the value of x, it issues an interface
read1 event and expects, depending on the current value of x, either an external
return true event or an external return false event within the same round. Sim-
ilarly, when R2 wishes to read x, it issues an interface read 2 event and expects
an external return true or return false event within the same round. When R1

wishes to assign the value i to x, for i ∈ {true, false}, it issues an interface
write1 i event. Similarly, when R2 wishes to assign the value i to x, it issues an
interface write2 i event. If both R1 and R2 issue conflicting write requests, then
x is updated nondeterministically to one of the written values. (a) Define a pas-
sive module Rx for modeling the shared variable x. Your module should have
the private boolean variable x, the two interface event variables return true

and return false , and the external event variables read 1, read2, write1 true,
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write1 false , write2 true, and write2 false . (b) Give an alternative implemen-
tation Pete2 of Peterson’s mutual-exclusion protocol (Figure 1.23) which uses
instead of the two read-shared boolean variables x1 and x2 the single write-
shared boolean variable x. Define two modules R1 and R2 for modeling the
two processes of the protocol, encoding x1 = x2 by x = true and x1 6= x2 by
x = false . The resulting module

module Pete2 is hide . . . in R1 ‖R2 ‖Rx

should have the same abstract type and the same traces as the module Pete.
(c) How would you change the definition of Rx in part (a) if x is a nonnegative-
integer variable rather than a boolean variable?

Asynchronous communication

While the synchronous message-passing protocol SyncMsg of Figure 1.26 per-
forms a two-way handshake within a single round, the asynchronous protocol
AsyncMsg of Figure 1.30 uses many rounds for a single handshake. The two
protocols have identical receiver agents. Every send-receive cycle of AsyncMsg

consists of four phases —a message production phase, an agent coordination
phase, a message transmission phase, and a message consumption phase— each
consisting of any number of update rounds. During the message production
phase, the sender (pc = produce) takes an unknown number of rounds to pro-
duce a message. During the agent coordination phase, the sender (pc = wait)
waits for an external ready event, which signals the readiness of the receiver
to receive a message. The receiver (pc = receive) takes an unknown number
of rounds to issue an interface ready event. During the message transmission
phase, pc = send for the sender and pc = receive for the receiver. The sender
takes an unknown number of rounds to transmit the message, asynchronously
issuing an interface transmit event and simultaneously offering the message in
the interface variable msgS . The receiver, ready to receive, sees the external
transmit event and copies the message from the external variable msgS to the
private variable msgR. During the message consumption phase, the receiver
(pc = consume) takes an unknown number of rounds to consume the message.
The message consumption phase overlaps with the ensuing message production
phase, which initiates a new send-receive cycle.

Exercise 1.15 {P2} [Asynchronous message passing] (a) Draw block diagrams
for the module AsyncMsg at several levels of abstraction. (b) Give a few initial-
ized trajectories of the module AsyncMsg and the corresponding traces. Then
characterize, in precise words, the set of all traces of AsyncMsg . (c) How do the
traces of the module AsyncMsg differ from the traces of the module SyncMsg

from Exercise 1.12?

Exercise 1.16 {P4} [Faulty communication] Suppose that the delivery of mes-
sages may be delayed in a communication medium, and that messages may be
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module AsyncSender is

private pc : {produce, send ,wait}; doneP : E

interface transmit : E; msgS : M; msgP : M⊥

external ready : E

passive atom ProgramCounter

controls pc

reads pc, doneP , ready , transmit

awaits doneP , ready , transmit

init

[] true → pc′ := produce

update

[] pc = produce ∧ doneP ? → pc′ := wait

[] pc = wait ∧ ready? → pc ′ := send

[] pc = send ∧ transmit? → pc ′ := produce

lazy atom Transmitter

controls transmit ,msgS

reads pc, transmit ,msgP

init

[] true → msg ′
S := M

update

[] pc = send → transmit !; msg ′
S := msgP

lazy atom Producer controls doneP ,msgP reads pc, doneP

module AsyncMsg is

—interface msgP ,msgC

hide ready , transmit ,msgS in

‖ AsyncSender

‖ Receiver

Figure 1.30: Asynchronous message passing
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Figure 1.31: Message passing through channels

reordered, lost, and corrupted in the medium. We model the communication
medium by two agents that are interjected between the sender and the re-
ceiver of the synchronous message-passing protocol SyncMsg . The signal chan-
nel SyncChannel , with the external variable ready and the interface variable
readyM , delivers signals from the receiver to the sender. The message channel
AsyncChannel , with the external variables transmit and msgS and the inter-
face variables transmitM and msgM , delivers messages from the sender to the
receiver. The new message-passing protocol is implemented by the module

module BufferedMsg is

—interface msgP ,msgC

hide ready , readyM , transmit , transmitM ,msgS ,msgM in

‖ SyncSender [ready := readyM ]
‖ SyncChannel

‖ AsyncChannel

‖ Receiver [transmit ,msgS := transmitM ,msgM ]

whose abstract block diagram is shown in Figure 1.31. We wish to model both
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reliable and unreliable communication media with various latencies and capac-
ities. For each of the following parts of the exercise, give at least one initial-
ized trajectory of the module BufferedMsg . (a) Define a synchronous, passive
module SyncChannel which delivers signals without delay (every signal is de-
livered in the round in which it is sent). Then define an asynchronous, passive
module AsyncChannel which delays messages arbitrarily (by an unknown num-
ber of rounds), and delivers the messages in the order in which they are sent.
(b) Modify the module AsyncChannel so that the messages are not necessarily
delivered in the order in which they are sent. (b1) Assume that a message can
be overtaken by at most 3 newer messages. (b2) Assume that a message can be
overtaken by an arbitrary number of newer messages. (c) Modify the module
AsyncChannel so that messages may be lost. (c1) Assume that any message
may be lost. (c2) Assume that the message channel has a capacity of 5 mes-
sages; that is, in any given round, the channel can store at most 5 undelivered
messages. If 5 messages are stored and a new message is received from the
sender, then the new message is lost. (d) Modify the module AsyncChannel so
that messages may be reordered, lost, and corrupted (a message is corrupted if
its contents is changed arbitrarily).

Timed communication

Instead of waiting for the receiver to be ready to receive a message, the sender
may choose to retransmit a message repeatedly until the receiver acknowledges
the receipt of the message. The decision to retransmit can be based upon timing:
a message is retransmitted if no acknowledgment is obtained within a certain
amount of time. For measuring time, we let protocols refer to an external digital
clock. We model the clock as an asynchronous, passive module:

module AsyncClock is

interface tick : E

lazy atom controls tick reads tick

update

[] true → tick !

The clock module AsyncClock issues tick events at undetermined times. The
tick events represent clock ticks and can be observed by other modules.

Consider the receiver module TimedReceiver of Figure 1.32. Instead of signal-
ing when it is ready to receive a message, the module TimedReceiver confirms
the receipt of a message by issuing an interface ack event for acknowledgment.
If for the duration of 4 clock ticks after receiving a message, the message has
not been acknowledged, then a time-out occurs. If a time-out occurs, then an
acknowledgment is issued right away, in the round that immediately follows the
4th clock tick after message reception. Consequently, the receipt of every mes-
sage is confirmed within at most 4 time units, as measured by the clock module
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module TimedReceiver is

private pc : {receive, confirm, consume}; msgR : M;
doneC , timeout : E; timer : [0..3]

interface ack : E; msgC : M⊥

external transmit , tick : E; msgS : M

passive atom ReceiverProgramCounter

controls pc,msgR, ack
reads pc, transmit , timeout , ack , doneC

awaits transmit ,msgS , timeout , doneC

init

[] true → pc′ := receive ; msg ′
R := M

update

[] pc = receive ∧ transmit? → msg ′
R := msg ′

S ; pc′ := confirm

[] pc = confirm ∧ ¬timeout? →
[] pc = confirm → ack !; pc ′ := consume

[] pc = consume ∧ doneC? → pc′ := receive

passive atom ReceiverTimer

controls timer , timeout

reads pc, transmit , tick , timer , timeout

awaits transmit , tick
init

[] true → timer := [0..3]
update

[] pc = receive ∧ transmit? → timer ′ := 0
[] pc = confirm ∧ tick? ∧ timer < 3 → timer ′ := timer + 1
[] pc = confirm ∧ tick? ∧ timer = 3 → timeout !

lazy atom Consumer controls doneC ,msgC reads pc, doneC ,msgR

Figure 1.32: Timed message passing: receiver
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module TimedSender is

private pc : {produce, send ,wait}; doneP , timeout : E; timer : [0..4]
interface transmit : E; msgS : M; msgP : M⊥

external ack , tick : E

passive atom SenderProgramCounter

controls pc

reads pc, doneP , transmit , ack , timeout

awaits doneP , transmit , ack , timeout

init

[] true → pc ′ := produce

update

[] pc = produce ∧ doneP ? → pc′ := send

[] pc = send ∧ transmit? → pc ′ := wait

[] pc = wait ∧ ack? → pc ′ := produce

[] pc = wait ∧ timeout? → pc ′ := send

passive atom SenderTimer

controls timer , timeout

reads pc, transmit , tick , timer , timeout

awaits transmit , tick
init

[] true → timer := [0..4]
update

[] pc = send ∧ transmit? → timer ′ := 0
[] pc = wait ∧ tick? ∧ timer < 4 → timer ′ := timer + 1
[] pc = wait ∧ tick? ∧ timer = 4 → timeout !

lazy atom Transmitter

controls transmit ,msgS

reads pc, transmit ,msgP

lazy atom Producer controls doneP ,msgP reads pc, doneP

Figure 1.33: Timed message passing: sender
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AsyncClock . The corresponding sender does not know when the receiver is
ready to receive a message. If a message is transmitted when the receiver is not
ready to receive it, then the message is lost. Therefore the sender must retrans-
mit every message that is not acknowledged. The sender module TimedSender

of Figure 1.33 uses the atom Transmitter from Figure 1.30 for transmitting a
message, and then waits for an acknowledgment for exactly 5 clock ticks. The
waiting period of 5 clock ticks suffices, because the receiver acknowledges the
receipt of every message within at most 4 clock ticks. If the sender does not
obtain an acknowledgment for the duration of 5 clock ticks, then it decides to
retransmit the message. The resulting timed message-passing protocol

module TimedMsg is

—interface msgP ,msgC

hide transmit ,msgS , ack , tick in

‖ TimedSender

‖ TimedReceiver

‖ AsyncClock

has the same abstract type as the protocols SyncMsg and AsyncMsg .

Exercise 1.17 {P2} [Timed message passing] (a) Draw block diagrams for the
module TimedMsg at several levels of abstraction. (b) Give a few initialized
trajectories of the module TimedMsg and the corresponding traces. Then char-
acterize, in precise words, the set of all traces of TimedMsg . (c) How do the
traces of the module TimedMsg differ from the traces of the module AsyncMsg

from Exercise 1.15?

Exercise 1.18 {P2} [More timed message passing] If the worst-case durations
of message transmission and message consumption are known to the sender,
then there is no need for the receiver to signal its readiness to receive a message,
nor to acknowledge the receipt of a message. Design a timed message-passing
protocol that consists of a sender, a message channel, a receiver, and the clock
module AsyncClock , and reflects the following three timing assumptions: (1) the
production of a message requires at least 3 clock ticks, and after transmitting
a message, the sender waits for 4 clock ticks before producing another message;
(2) the channel takes at least 2 and at most 5 clock ticks to deliver a message;
(3) every message is consumed within a single clock tick. Since 5 + 1 < 3 + 4,
the receiver can be ready to receive every message that is transmitted by the
sender. The resulting message-passing protocol should have the same abstract
type and the same traces as the module AsyncMsg .

1.3.4 Asynchronous Circuits∗

In an asynchronous circuit, unlike synchronous circuits, there is no single global
clock, and a change in the value of an output due to changes in the values
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of the inputs may be delayed. We model each asynchronous logic gate by a
nondeterministic passive module for which a change in the values of its inputs
causes a corresponding change in the value of the output after an arbitrary
number of update rounds. An asynchronous logic gate is stable when its output
is the desired function of the inputs, and unstable otherwise. For example, an
asynchronous And gate is stable when its output is the conjunction of both
inputs. The condition

And(in1, in2, out) = (out = in1 · in2)

is called the stability condition of an And gate with inputs in1 and in2 and
output out . The output of an asynchronous gate can change only if the gate
is unstable; when this happens the gate becomes stable. The gate takes an
unknown number of rounds to become stable. If the gate is stable, and any
of the inputs change in a way that violates the stability condition, then the
gate turns unstable. If the gate is unstable, and any of the inputs change
without rendering the stability condition true, the gate remains unstable. If,
however, any of the inputs of an unstable gate change in a way that renders the
stability condition true, a hazard is encountered, and the gate fails. If a gate
has failed, its output may change arbitrarily. These modeling assumptions for
an asynchronous And gate are specified by the asynchronous, passive module
AsyncAnd of Figure 1.34. The private variable pc indicates the status of the gate
(stable , unstable, or hazard ) at the end of each round. The interface and external
variables of AsyncAnd are identical to the interface and external variables of
the synchronous module SyncAnd from Figure 1.15. However, unlike SyncAnd ,
the asynchronous module AsyncAnd has no (derived) await dependencies.

Exercise 1.19 {P3} [Asynchronous circuits] (a) Define an asynchronous, pas-
sive module AsyncNot which specifies an asynchronous Not gate (use the vari-
able name in for input, and use out for output). Give a few initialized trajec-
tories of the module AsyncNot . Then characterize, in precise words, the set of
all traces of AsyncNot . (b) Give a few initialized trajectories of the module

module AsyncNor is

hide z1, z2 in

‖ AsyncAnd [in1, in2, out := z1, z2, out ]
‖ AsyncNot [in , out := in1, z1]
‖ AsyncNot [in , out := in2, z2]

and characterize its traces. Given our modeling assumptions, is the module
AsyncNor a correct implementation of an asynchronous Nor gate? (How do
the traces of AsyncNor compare with the traces of the module that results from
replacing each And condition in the module AsyncAnd by a Nor condition?)
(c) An asynchronous latch has the two external variables set and reset and
the interface variable out . The state of the asynchronous latch is stable when
set = 1 implies that the state is 1, and reset = 1 implies that the state is 0. The
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module AsyncAnd is

private pc : {stable, unstable, hazard}
interface out : B

external in1, in2 : B

lazy atom Output controls out reads pc, out

init

[] true → out ′ := B

update

[] pc = unstable → out ′ := ¬out

[] pc = hazard → out ′ := ¬out

passive atom Status controls pc reads pc, out awaits in1, in2, out

init

[] And(in ′
1, in

′
2, out ′) → pc′ := stable

[] ¬And(in ′
1, in

′
2, out ′) → pc′ := unstable

update

[] pc = stable ∧ ¬And(in ′
1, in

′
2, out ′) → pc′ := unstable

[] pc = unstable ∧ And(in ′
1, in

′
2, out ′) ∧ out ′ 6= out → pc′ := stable

[] pc = unstable ∧ And(in ′
1, in

′
2, out ′) ∧ out ′ = out → pc′ := hazard

Figure 1.34: Asynchronous And gate
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output of the asynchronous latch is stable when out is equal to the state of the
latch. The state and the output stabilize independently, each taking an unknown
number of rounds to switch from unstable to stable. A hazard is encountered
if either the state is unstable and a change of the inputs renders it stable,
or the output is unstable and a change of the state renders it stable. Define
an asynchronous, passive module AsyncLatch which specifies an asynchronous
latch under these modeling assumptions. Give a few initialized trajectories of
the module AsyncLatch and characterize its traces. (d) Give a few initialized
trajectories of the module

module AsyncLatch2 is

hide z in

‖ AsyncNor [in1, in2, out := set , z, out]
‖ AsyncNor [in1, in2, out := reset , out , z]

and characterize its traces. Given our modeling assumptions, is the module
AsyncLatch2 a correct implementation of an asynchronous latch? (How do the
traces of AsyncLatch2 compare with the traces of AsyncLatch?)

Exercise 1.20 {P3} [Explicitly clocked circuits] (a) Modify the modules AsyncAnd

and AsyncNot (from Exercise 1.19) so that each gate, when unstable, stabilizes
within at most 3 rounds, provided no hazard is encountered in the meantime.
Are the resulting modules ClockedAnd and ClockedNot synchronous or asyn-
chronous? Active or passive? (b) Modify the module AsyncLatch (from Exer-
cise 1.19) so that the state of the latch, when unstable, stabilizes within at most
3 rounds, provided no hazard is encountered in the meantime. Furthermore, the
output of the latch, when unstable, stabilizes whenever an external tick event
occurs. The resulting module ClockedLatch should be synchronous and passive.
Unlike the synchronous, active latch SyncLatch of Figure 1.17, which is implic-
itly clocked (every update round corresponds to a clock cycle), the synchronous,
passive latch ClockedLatch is explicitly clocked (every external tick event cor-
responds to a clock cycle). (c) Let Clocked3BitCounter be the module that
results from replacing every component of the module Sync3BitCounter from
Example 1.20 as follows: replace each occurrence of SyncAnd by ClockedAnd ,
each occurrence of SyncNot by ClockedNot , and each occurrence of SyncLatch

by ClockedLatch . Define a module Clock , which issues interface tick events, so
that the compound module

hide tick in Clocked3BitCounter ‖Clock

implements an asynchronous three-bit counter whose only hazards can be caused
by primary inputs (start and inc) changing too frequently. (You need to deter-
mine the minimal frequency of clock ticks which cannot cause hazards.)
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1.4 Bibliographic Remarks

Reactive modules were introduced by [AlurHenzinger99]. Rml is at its core
a synchronous modeling language based on read-shared variables, and thus
is closely related to synchronous programming languages such as Esterel
by [BerryGonthier88]. In Rml, asynchrony is modeled by nondeterministic
progress, and communication events are modeled by changes in the values of
variables. Paradigmatic modeling languages that are based on these alterna-
tive primitives include the asynchronous shared-variables language Unity by
[ChandyMisra88], the asynchronous event-communication language I/O Au-
tomata by [Lynch96], and the synchronous event-communication languages
Csp and Ccs by [Hoare85, Milner89].
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Chapter 2

Invariant Verification

In this chapter, we study the formulation and verification of the simplest but
most important kind of system requirements, called invariants. An invariant
classifies the states of a reactive module into safe and unsafe, and asserts that
during the execution of the module, no unsafe state can be encountered.

1
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2.1 Transition Graphs

The information about a module which is necessary for checking invariants is
captured by the transition graph of the module. Consequently, invariant verifi-
cation is performed on transition graphs.

2.1.1 Definition of Transition Graphs

At every point during the execution of a system, the information that is neces-
sary to continue the execution is called the state of the system. The state of a
discrete system changes in a sequence of update rounds. Every possible state
change is called a transition of the system. The behaviors of a discrete system
can thus be captured by a directed graph whose vertices represent the system
states and whose edges represent the system transitions. Such a graph is called
a transition graph.

Transition graph

A transition graph G consists of (1) a set Σ of vertices, (2) a subset σI ⊆ Σ
of the vertices, and (3) a binary edge relation →⊆ Σ2 on the vertices. The
vertices in Σ are called states, the vertices in σI are called initial states,
and the edges in → are called transitions. We refer to the set Σ of states
as the state space of G. Every subset of states from Σ is called a region; in
particular, σI is the initial region of G. Every binary relation on Σ is called
an action; in particular, → is the transition action of G.

Properties of transition graphs

The following properties of transition graphs are important. First, the transition
action of every deadlock-free system is serial : for every state s, there is at least
one successor state t with s → t. Second, the mathematical analysis of a system
is often simplified if the transition action is finitely branching : for every state s,
there are at most finitely many successor states t with s → t. Third, if the
system may decide, in every update round, to leave the state unchanged, then
the transition action is reflexive: every state s is its own successor state; that
is, s → s. Last, systems are amenable to analysis by graph algorithms if the
state space is finite.

Serial, finitely branching, reflexive, finite transition graph

The transition graph G = (Σ, σI ,→) is serial if (1) the initial region σI is
nonempty and (2) the transition action → is serial. The transition graph G
is finitely branching if (1) the initial region σI is finite and (2) the transition
action → is finitely branching. The transition graph G is reflexive if the
transition action → is reflexive. The transition graph G is finite if the state
space Σ is finite.
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s0

s1 s2

s3

Figure 2.1: The transition graph Ĝ

Remark 2.1 [Finite implies finite branching] Every finite transition graph is
finitely branching.

Trajectories of transition graphs

The execution of a discrete system follows a path in the corresponding transition
graph. Such a path starts in an initial state and proceeds through successive
transitions. We are interested only in the states that are encountered within
a finite number of transitions. The resulting finite paths are called initialized
trajectories.

Trajectory of transition graph

Let G = (Σ, σI ,→) be a transition graph. A trajectory of G is a nonempty
word s1..m over the alphabet Σ of states such that si → si+1 for all 1 ≤ i <
m. The first state s1 is the source, the last state sm is the sink, and the
number m of states is the length of the trajectory s1..m. The trajectory s1..m

is an initialized trajectory of G if the source s1 is an initial state of G. The
set of initialized trajectories of G, denoted LG, is called the state language
of the transition graph G.

Remark 2.2 [Seriality implies trajectories of arbitrary length] Let G be a serial
transition graph, and let s be a state of G. For every positive integer i, there is
at least one trajectory of G with source s and length i. In particular, for every
positive integer i, there is at least one initialized trajectory of G with length i.
It follows that for serial transition graphs G, the state language LG is infinite.
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Example 2.1 [Transition graph] Figure 2.1 shows a finite transition graph with
four states (s0, s1, s2, and s3). The two states s0 and s2 are initial, as is indicated
by the short arrows without source state. The transition graph Ĝ has a total
of six transitions. Since every state has at least one outgoing transition, Ĝ
is serial. The infinite state language L

Ĝ
includes the following four initialized

trajectories:

s0

s0s0s0s0

s0s0s2s3

s2s3s2s3s3s3s2

The state language L
Ĝ

is the regular set s+
0 ∪ (s∗0s2(s

+
3 s2)

∗s∗3).

Remark 2.3 [Languages defined by transition graphs] For a transition graph
G with state space Σ, the state language LG is a language over the alphabet Σ.
We say that G defines the language LG. If G is finite, then LG is a regular
language. But not every subset of Σ∗ is definable by a transition graph with
state space Σ, and not every regular language is definable by a finite transition
graph. This is shown in the following exercise.

Exercise 2.1 {T2} [Languages defined by transition graphs] Let A be an al-
phabet, and let L ⊆ A∗ be a language over A. (a) Prove that the language L is
definable by a transition graph iff L is prefix-closed and fusion-closed. (Fusion
closure captures the fact that the system state determines the possible future
behaviors of the system.) (b) Prove that the language L is definable by a tran-
sition graph with the initial region A iff L is prefix-closed, fusion-closed, and
suffix-closed. (c) Prove that the language L is definable by a reflexive transition
graph iff L is prefix-closed, fusion-closed, and stutter-closed.

2.1.2 From Reactive Modules to Transition Graphs

We associate with every reactive module a serial transition graph that captures
the behaviors of the module.

The states of a module

The state of a module between two rounds is determined by the values of all
module variables. This is because the possible outcomes of the next and all
future update rounds are determined solely by the current values of the module
variables, and do not depend on any previous values.

State space of a module

Let P be a reactive module. A state of P is a valuation for the set XP of
module variables. We write ΣP for the set of states of P .
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Remark 2.4 [Existence of states] Every module has at least one state. The
empty module, with the empty set of module variables, has exactly one state.

The state s of a module is initial if after the initial round, all module variables
may have the values indicated by s. Consider a variable x. If x is external,
then s can map x to any value of the appropriate type. If x is controlled
by an atom U , then all variables in awaitXU are initialized before x. In this
case, the initial value s(x) depends on the initial values of the awaited variables
of U . The dependence is specified by the initial command initU , which defines
a relation between the valuations for the primed awaited variables awaitX ′

U and
the valuations for the primed controlled variables ctrX ′

U . In the following, if s is
a valuation for a set X of unprimed variables, we write prime(s) for the valuation
for the set X ′ of corresponding primed variables such that prime(s)(x′) = s(x)
for all variables x ∈ X .

Initial region of a module

Let P be a reactive module, let s be a state of P , and let s′ = prime(s).
The state s is an initial state of P if for every atom U of P ,

(s′[awaitX ′
U ], s′[ctrX ′

U ]) ∈ [[initU ]].

We write σI
P for the set of initial states of P .

Example 2.2 [Mutual exclusion] Recall Peterson’s solution to the asynchronous
mutual-exclusion problem from Figure 1.23. The module Pete has 3×2×3×2 =
36 states. Four of the states —s1, s2, s3, and s4— are initial:

s1(pc1) = outC , s1(x1) = true, s1(pc2) = outC , s1(x2) = true;
s2(pc1) = outC , s2(x1) = true, s2(pc2) = outC , s2(x2) = false ;
s3(pc1) = outC , s3(x1) = false , s3(pc2) = outC , s3(x2) = true;
s4(pc1) = outC , s4(x1) = false , s4(pc2) = outC , s4(x2) = false .

It follows that the initial value of pc1 and pc2 is outC , and the initial values of
x1 and x2 are unspecified.

Lemma 2.1 [Existence of initial states] Every module has an initial state.

Proof. Consider a module P . We prove the stronger claim that for every
valuation se for the external variables of P , there is an initial state s of P
such that s[extlXP ] = se. Consider a valuation se for extlXP and an execution
order U1, . . . , Un for the atoms of P . We construct a sequence s0, s1, . . . , sn

of valuations for XP as follows (let s′i = prime(si) for all 0 ≤ i ≤ n): first,
choose s0 so that s0[extlXP ] = se; then, for all 1 ≤ i ≤ n and Yi = XP \ctrXUi

,
let si[Yi] = si−1[Yi] and choose si[ctrXUi

] so that (s′i−1[awaitX ′
Ui

], s′i[ctrX
′
Ui

]) ∈
[[initUi

]]. At each step, at least one choice is possible because the binary relation
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[[initUi
]] is serial. The construction ensures that for all module variables x of P ,

if x is an external variable, then sn(x) = se(x), and if x is a controlled variable
of the atom Ui, then sn(x) = si(x). It follows that sn is an initial state of P
with sn[extlXP ] = se.

The transitions of a module

Consider two states s and t of a module. If the state s indicates the current
values of the module variables at the beginning of an update round, and the
state t indicates possible next values of the module variables at the end of the
update round, then the state pair (s, t) is a transition of the module. For a
formal definition of transitions, consider a variable x. If x is external, then
t can map x to any value of the appropriate type. If x is controlled by an
atom U , then all variables in awaitXU are updated before x. In this case, the
next value t(x) depends on the current values of the read variables of U and
on the next values of the awaited variables. The dependence is specified by the
update command updateU , which defines a relation between the valuations for
the unprimed read variables readXU and the primed awaited variables awaitX ′

U

on one hand, and the valuations for the primed controlled variables ctrX ′
U on

the other hand.

Transition action of a module

Let P be a reactive module, let s and t be two states of P , and let t′ =
prime(t). The state pair (s, t) is a transition of P if for every atom U of P ,

(s[readXU ] ∪ t′[awaitX ′
U ], t′[ctrX ′

U ]) ∈ [[updateU ]].

We write →P for the set of transitions of P .

Example 2.3 [Mutual exclusion] Consider the state s1 of the module Pete
from Example 2.2. There are four transitions —(s1, s1), (s1, s5), (s1, s6), and
(s1, s7)— whose first component is the initial state s1:

s5(pc1) = reqC , s5(x1) = true, s5(pc2) = outC , s5(x2) = true;
s6(pc1) = outC , s6(x1) = true, s6(pc2) = reqC , s6(x2) = false ;
s7(pc1) = reqC , s7(x1) = true, s7(pc2) = reqC , s7(x2) = false .

The transition (s1, s1) corresponds to an update round in which both processes
sleep; the transition (s1, s5) corresponds to an update round in which the first
process proceeds and the second process sleeps; the transition (s1, s6) corre-
sponds to an update round in which the first process sleeps and the second
process proceeds; and the transition (s1, s7) corresponds to an update round in
which both processes proceed.

Lemma 2.2 [Existence of transitions] Let P be a module. For every state s
of P , there is a state t of P such that s →P t.
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Exercise 2.2 {T1} [Proof of Lemma 2.2] Let P be a module. Prove that for
every state s of P , and every valuation te for the external variables of P , there
is a state t of P such that (1) s →P t and (2) t[extlXP ] = te. Lemma 2.2 follows.

The transition graph of a module

We can now collect together the state space, initial region, and transition action
of a module, thus obtaining a transition graph.

Transition graph of a module

Given a reactive module P , the transition graph underlying P is GP =
(ΣP , σI

P ,→P ).

Terminology. From now on, we freely attribute derivatives of the transition
graph GP to the module P . For example, each trajectory of GP is called a
trajectory of P ; the state language LGP

is called the state language of P , and
denoted LP .

Example 2.4 [Mutual exclusion] Figure 2.2 shows the transition graph GPete

for Peterson’s mutual-exclusion protocol. The label o1i0 denotes the state s
with s(pc1) = outC , s(x1) = true, s(pc2) = inC , and s(x2) = false , etc. Each
state s has a reflexive transition of the form s → s, and these transitions are
omitted from the figure. Note that some states at the left and right borders of
the figure are identical, so as to avoid a large number of crossing edges in the
figure. It can be checked that the state sequence shown in Figure 1.24 is indeed
an initialized trajectory of GPete .

Proposition 2.1 [Seriality of transition graphs that underlie modules] For ev-
ery module P , the transition graph GP is serial.

Proof. Proposition 2.1 follows from Lemmas 2.1 and 2.2.

Remark 2.5 [Transition graphs for finite, closed, deterministic, and passive
modules] If P is a finite module, then GP is a finite transition graph. If all ex-
ternal variables of P have finite types, then GP is a finitely branching transition
graph. In particular, for every closed module, the underlying transition graph is
finitely branching, and for every closed deterministic module P , the underlying
transition graph has branching degree 1: there is exactly one initial state, and
for each state s, there is exactly one successor state t with s →P t. If P is a
passive module, then the transition action →P is reflexive.

The transition graph GP captures only the behaviors of the module P , and
not its interface structure. First, transition graphs do not distinguish between
controlled and external variables. Hence there is no composition operation on
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r1i0r0i1i0r0
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o1i1

i1r1
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r1o0

i1o0
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r0o0r0o0

i0o0 o0i1

Figure 2.2: The transition graph GPete
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transition graphs. Second, transition graphs do not distinguish between private
and observable variables. Hence asynchronicity does not correspond to a prop-
erty of transition graphs, and there is no hiding operation on transition graphs
(the hiding of variables does not alter the transition graph of a module).

Exercise 2.3 {T2} [Transition graph of compound modules] Consider two com-
patible modules P and Q. (a) Assume that the two modules have no pri-
vate variables (privXP = privXQ = ∅), and that the interface variables of one
module are the external variables of the other module (intfXP = extlXQ and
extlXP = intfXQ). Then the two modules and the compound module have the
same state space: ΣP = ΣQ = ΣP‖Q. Prove that the transition action of the
compound module P‖Q is the intersection of the transition actions of the two
component modules P and Q; that is, s →P‖Q t iff s →P t and s →Q t. What
can you say about the initial states of the compound module P‖Q? (b) Assume
that the two modules have no variables in common (XP ∩ XQ = ∅). Then
ΣP‖Q = {s1 ∪ s2 | s1 ∈ ΣP and s2 ∈ ΣQ}. Prove that the transition action
of the compound module is the cartesian product of the transition actions of
the two component modules; that is, (s1 ∪ s2) →P‖Q (t1 ∪ t2) iff s1 →P t1 and
s2 →Q t2. What can you say about the initial states of P‖Q? (c) Now consider
the general case. Consider two states s and t of the compound module P‖Q.
Prove that (1) s ∈ σI

P‖Q
t iff s[XP ] ∈ σI

P and s[XQ] ∈ σI
Q, and (2) s →P‖Q t iff

s[XP ] →P t[XP ] and s[XQ] →Q t[XQ].

The following proposition asserts that the (initialized) trajectories of a com-
pound module are determined by the (initialized) trajectories of the component
modules. In particular, for two compatible modules P and Q, if the two modules
have the same state space, then LP‖Q = LP ∩ LQ.

Proposition 2.2 [Trajectories of compound modules] For every pair P and
Q of compatible modules, a sequence s of states in ΣP‖Q is an (initialized)
trajectory of the compound module P‖Q iff s[XP ] is an (initialized) trajectory
of P and s[XQ] is an (initialized) trajectory of Q.

Proof. Proposition 2.2 follows from part (c) of Exercise 2.3.

Exercise 2.4 {T1} [Least constraining environments] The module Q is a least
constraining environment for the module P if (1) P and Q are compatible,
(2) the compound module P‖Q is closed, and (3) GP‖Q = GP . Prove that for
every module P , if all external variables of P have finite types, then there exists
a least constraining environment for P . Can a module have more than one least
constraining environment?

An interpreter for reactive modules

Following the informal execution model of Chapter 1, we are now equipped to
build an interpreter for reactive modules. The execution of a module for a finite
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number of rounds yields an initialized trajectory of the module. Therefore, if the
interpreter receives as input the module P , it returns as output an initialized
trajectory of P . Since P may have many initialized trajectories, the output
of the interpreter is nondeterministic. Indeed, every initialized trajectory of P
must be a possible output of the interpreter.

The interpreter, Algorithm 2.1, proceeds in three phases. The first phase com-
putes an execution order for the atoms of P . The second phase simulates the
initial round, by executing the initial commands of all atoms in the chosen ex-
ecution order. The third phase simulates a finite number of update rounds, by
iteratively executing the update commands of all atoms in the chosen execution
order. Algorithm 2.1 uses the following notation. The function Execute(Γ, s),
shown below, computes the result of executing the guarded command Γ on the
valuation s. If Γ is a guarded command from X to Y , then s must be a val-
uation for X , and the function Execute returns a valuation t for Y such that
(s, t) ∈ [[Γ]]:

function Execute(Γ, s)
Assume Γ is a guarded command from X to Y ;
Choose a guarded assignment γ of Γ such that s(pγ) = true;
Let t be the valuation for the empty set of variables;
foreach y in Y do t := t[y 7→ s(ex

γ)] od;
return t.

If s is a valuation for a set X ′ of primed variables, we write unprime(s) for
the valuation for the set X of corresponding unprimed variables such that
unprime(s)(x) = s(x′) for all variables x ∈ X .

2.1.3 The Reachability Problem

For a transition graph G that captures the behaviors of a system, we are inter-
ested only in the states of G that occur on initialized trajectories. These states
are called reachable. By deleting the unreachable states from G, we obtain the
reachable subgraph of G. The reachable subgraph can often be significantly
smaller than the complete transition graph.



Invariant Verification 11

Algorithm 2.1 [Module Execution] (schema)

Input: a reactive module P .
Output: an initialized trajectory s1..m of P .

Preparation.
Topologically sort the atoms of P with respect to the precedence
relation ≺≺P , and store the result as (U1, . . . , Un);

Initial round.
Choose an arbitrary valuation s for extlX ′

P ;
for j := 1 to n do s := s ∪ Execute(initUj

, s) od;
s1 := unprime(s);

Update rounds.
Choose an arbitrary positive integer m;
for i := 2 to m do

Choose an arbitrary valuation s for extlX ′
P ;

for j := 1 to n do s := s ∪ Execute(updateUj
, si−1 ∪ s) od;

si := unprime(s)
od.

Reachability

Let G = (Σ, σI ,→) be a transition graph, and let s be a state of G. The state
s is reachable in i transitions, for a nonnegative integer i, if the transition
graph G has an initialized trajectory with sink s and length i + 1. The
state s is a reachable state of G if there is a nonnegative integer i such that
s is reachable in i transitions. The transition graph G is finitely reaching
if there is a nonnegative integer i such that every reachable state of G is
reachable in at most i transitions. The reachable region of G is the set σR of
reachable states of G. The reachable subgraph of G is the transition graph
GR = (σR, σI ,→R), where →R =→ [σR] is the restriction of the transition
action → to the reachable region σR. The transitions of GR are called the
reachable transitions of G.

Example 2.5 [Reachable subgraph] In the simple transition graph Ĝ from Ex-
ample 2.1, the state s1 is unreachable, and so is the transition from s1 to s3.
The reachable subgraph of Ĝ is shown in Figure 2.3.

Example 2.6 [Mutual exclusion] Figure 2.4 shows the reachable subgraph of
the transition graph GPete from Example 2.4 (reflexive transitions are sup-
pressed). It has four initial states, 20 reachable states, and 64 reachable transi-
tions. In other words, 16 of the states in Figure 2.2 are unreachable.
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s0

s2

s3

Figure 2.3: The reachable subgraph of Ĝ

Remark 2.6 [Finite vs. finitely branching vs. finitely reaching] Every finite
transition graph is finitely reaching. If a transition graph G is both finitely
branching and finitely reaching, then the reachable subgraph GR is finite.

The most important questions in computer-aided verification can be phrased
as reachability questions. A reachability question asks if any state from a given
region is reachable in a given transition graph. If the reachable subgraph is finite,
then the reachability question can be solved using graph-traversal algorithms
(see Section 2.3).

Reachability problem

An instance (G, σT ) of the reachability problem consists of (1) a transition
graph G and (2) a region σT of G, which is called the target region. The
answer to the reachability question (G, σT ) is Yes if a state in the target
region σT is reachable, and otherwise No. A witness for a Yes-instance
(G, σT ) of the reachability problem is an initialized trajectory of G whose
sink is in σT .

Remark 2.7 [Emptiness problem for finite automata] The reachability problem
is equivalent to the one-letter emptiness problem for finite automata, which asks
if a given finite automaton with a singleton input alphabet accepts any input
word. To see this, view the target region as an accepting region.

2.2 Invariants

To an observer, only the values of the interface and external variables of a module
are visible. We therefore specify properties of module states by constraints on
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Figure 2.4: The reachable subgraph of GPete

the values of the observable variables. For example, if x is an observable integer
variable, then the constraint x > 5 is satisfied by the states that map x to a
value greater than 5, and the constraint is violated by the states that map x to
a value less than or equal to 5. A constraint r on the observable variables of a
module P is an invariant of P if all reachable states of P satisfy r. If r is an
invariant of P , then it cannot happen that within a finite number of rounds, the
module P moves into a state that violates r. Many important requirements on
the behavior of reactive modules can be expressed as invariants.

Example 2.7 [Mutual exclusion] Peterson’s protocol meets the mutual-exclusion
requirement iff the constraint

rmutex : ¬(pc1 = inC ∧ pc2 = inC )

is an invariant of the module Pete . This constraint asserts that at most one
of the two processes is inside its critical section. Note that the status of each
process can be observed, because both pc1 and pc2 are interface variables. It
is evident from inspecting the reachable subgraph of GPete (see Example 2.6)
that every reachable state of Pete satisfies the constraint rmutex . It follows that
rmutex is an invariant of the module Pete .

2.2.1 The Invariant-Verification Problem

If P is a reactive module, then a constraint on the values of module variables is
called a state predicate for P . We do not allow the occurrence of event variables
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in state predicates, because the value of an event variable in any given state
is immaterial. A state predicate that constrains only the values of observable
variables is called an observation predicate. In particular, observation predicates
cannot constrain the values of private variables.

State predicate

Let P be a reactive module. A state predicate for P is a boolean expression
over the set XP \eventXP of module variables that are not event variables.
The state predicate q is an observation predicate if all free variables of q
are observable variables of P . The observation predicate q is an interface
predicate if all free variables of q are interface variables, and q is an external
predicate if all free variables of q are external variables. Given a state
predicate q for P , we write [[q]]P for the set of states of P that satisfy q.

Remark 2.8 [Regions defined by state predicates] Let P be a module, and let
q and r be two state predicates for P . We say that the state predicate q defines
the region [[q]]P = {s ∈ ΣP | s |= q} of P . The regions of P that are definable
by state predicates form a boolean algebra:

[[true]]P = ΣP and [[false ]]P = ∅;
[[q ∧ r]]P = [[q]]P ∩ [[r]]P and [[q ∨ r]]P = [[q]]P ∪ [[r]]P ;
[[¬q]]P = ΣP \[[q]]P .

Invariant

Let P be a reactive module, and let r be an observation predicate for P .
The predicate r is an invariant of P if all reachable states of P satisfy r.

In other words, given a module P with the reachable region σR, the observation
predicate r is an invariant of P iff σR ⊆ [[r]]P .

Remark 2.9 [Monotonicity of invariants] Let P be a module, and let q and
r be two observation predicates for P . (1) The observation predicate true is
an invariant of P . If q is an invariant of P , and q → r is valid, then r is also
an invariant of P . It follows that every valid observation predicate for P is an
invariant of P . (2) If both q and r are invariants of P , then q ∧ r is also an
invariant of P .

Invariant-verification problem

An instance (P, r) of the invariant-verification problem consists of (1) a
reactive module P and (2) an observation predicate r for P . The answer to
the invariant-verification question (P, r) is Yes if r is an invariant of P , and
otherwise No. An error trajectory for a No-instance (P, r) of the invariant-
verification problem is an initialized trajectory of P whose sink violates r.
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Figure 2.5: Railroad example

If the observation predicate r is not an invariant of the module P , then error
trajectories present evidence to the designer of P as to how the module can end
up in a state that violates r. Error trajectories thus provide valuable debugging
information on top of the answer No to an invariant-verification question.

Example 2.8 [Railroad control] Figure 2.5 shows two circular railroad tracks,
one for trains that travel clockwise, and the other for trains that travel coun-
terclockwise. At one place in the circle, there is a bridge which is not wide
enough to accommodate both tracks. The two tracks merge on the bridge, and
for controlling the access to the bridge, there is a signal at either entrance. If
the signal at the western entrance is green, then a train coming from the west
may enter the bridge; if the signal is red, the train must wait. The signal at the
eastern entrance to the bridge controls trains coming from the east in the same
fashion.

A train is modeled by the asynchronous and passive module Train shown in
Figure 2.6. When the train approaches the bridge, it sends an arrive event to
the railroad controller and checks the signal at the entrance to the bridge (pc =
wait). When the signal is red, the train stops and keeps checking the signal.
When the signal is green, the train proceeds onto the bridge (pc = bridge).
When the train exits from the bridge, it sends a leave event to the controller
and travels around the circular track (pc = away). The traveling around the
circular track, the checking of the signal, and the traveling time across the bridge
each take an unknown number of rounds. There are two trains, one traveling
clockwise and the other traveling counterclockwise. The first train, which arrives
at the western entrance of the bridge, is represented by the module

module TrainW is

Train[pc, arrive , signal , leave := pcW , arriveW , signalW , leaveW ],
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module Train is

interface pc : {away ,wait , bridge}; arrive , leave : E

external signal : {green, red}

lazy atom controls arrive reads pc
update

[] pc = away → arrive !

lazy atom controls leave reads pc
update

[] pc = bridge → leave !

lazy atom controls pc reads pc, arrive , leave , signal awaits arrive , leave
init

[] true → pc′ := away
update

[] pc = away ∧ arrive? → pc ′ := wait
[] pc = wait ∧ signal = green → pc ′ := bridge
[] pc = bridge ∧ leave? → pc ′ := away

Figure 2.6: Train

and the second train, which arrives at the eastern entrance, is represented by
the module

module TrainE is

Train[pc, arrive , signal , leave := pcE , arriveE , signalE , leaveE ].

We are asked to design a passive controller module Controller that prevents
collisions between the two trains by ensuring the train-safety requirement that
in all rounds, at most one train is on the bridge. The module Controller enforces
the train-safety requirement iff the observation predicate

rsafe : ¬(pcW = bridge ∧ pcE = bridge)

is an invariant of the compound module

module RailroadSystem is

hide arriveW , arriveE , leaveW , leaveE in

‖ TrainW

‖ TrainE

‖ Controller .

The external variables of the module Controller should be arriveW , arriveE ,
leaveW , and leaveE .
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module Controller1 is

interface signalW , signalE : {green, red}
external arriveW , arriveE , leaveW , leaveE : E

passive atom controls signalW , signalE
reads signalW , signalE , arriveW , arriveE , leaveW , leaveE

awaits arriveW , arriveE , leaveW , leaveE

init

[] true → signal ′W := green; signal ′E := green
update

[] arriveW ? → signal ′E := red
[] arriveE? → signal ′W := red
[] leaveW ? → signal ′E := green
[] leaveE? → signal ′W := green

Figure 2.7: First attempt at railroad control

pcW away wait bridge away away wait bridge
arriveW 3 3

leaveW 3

pcE away wait wait wait bridge bridge bridge
arriveW 3

leaveW

signalW green green green green green green green
signalE green red red green green red red

Figure 2.8: An error trajectory that violates train safety
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module Controller2 is

private nearW ,nearE : B

interface signalW , signalE : {green, red}
external arriveW , arriveE , leaveW , leaveE : E

passive atom controls nearW

reads nearW , arriveW , leaveW

awaits arriveW , leaveW

init

[] true → near ′
W := false

update

[] arriveW ? → near ′
W := true

[] leaveW ? → near ′
W := false

passive atom controls nearE

reads nearE , arriveE , leaveE

awaits arriveE , leaveE

init

[] true → near ′
E := false

update

[] arriveE? → near ′
E := true

[] leaveE? → near ′
E := false

lazy atom controls signalW , signalE
reads nearW ,nearE , signalW , signalE
init

[] true → signal ′W := red ; signal ′E := red
update

[] nearW ∧ signalE = red → signal ′W := green
[] nearE ∧ signalW = red → signal ′E := green
[] ¬nearW → signal ′W := red
[] ¬nearE → signal ′E := red

Figure 2.9: Second attempt at railroad control
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Figure 2.7 shows a first attempt at designing the railroad controller. Initially,
both signals are green. A signal turns red whenever a train approaches the
opposite entrance to the bridge, and it turns back to green whenever that train
exits from the bridge. If both trains approach the bridge in the same round,
then only one of the two signals turns red (the one that turns red is chosen non-
deterministically), and the other train is admitted to the bridge. Unfortunately,
the resulting railroad system does not have the invariant rsafe . This is evidenced
by the error trajectory shown in Figure 2.8, which leads to a state with both
trains on the bridge. If both trains approach the bridge simultaneously, then
one is admitted to the bridge. When that train exits from the bridge, the other
train is admitted to the bridge. At that point both signals are green. So when
the first train returns while the second train is still on the bridge, the two trains
will collide. It can be checked that the state sequence shown in Figure 2.8 is in
fact the shortest initialized trajectory whose sink violates rsafe .

Exercise 2.5 {P2} [Railroad control] Figure 2.9 shows a second attempt at
designing a railroad controller for Example 2.8. How many states does the
module TrainW ‖TrainE ‖Controller2 have? How many of these states are
reachable? Is there a reachable state with both trains on the bridge? To answer
the latter two questions, draw the reachable subgraph of the transition graph.

2.2.2 From Invariant Verification to Reachability

Given a reactive module P , the execution of P generates a single initialized tra-
jectory of P . By contrast, for solving an invariant-verification question about P ,
we must systematically explore all initialized trajectories of P . This can be done
by solving a reachability question about the underlying transition graph GP .

Proposition 2.3 [Reduction from invariant verification to reachability] The
answer to an instance (P, r) of the invariant-verification problem is Yes iff the
answer to the instance (GP , [[¬r]]P ) of the reachability problem is No. Further-
more, if (P, r) is a No-instance of the invariant-verification problem, then every
witness for the reachability question (GP , [[¬r]]P ) is an error trajectory for the
invariant-verification question (P, r).

It follows that we can answer the question if an observation predicate r is
an invariant of a reactive module P if we can solve the reachability question
(GP , [[¬r]]P ). Furthermore, if r is not an invariant of P , then we can provide
an error trajectory by generating a witness for the Yes-instance (GP , [[¬r]]P )
of the reachability problem. We will discuss several algorithms for solving and
generating witnesses for reachability questions. Yet it is important to clearly
distinguish between the two problems: the input to the invariant-verification
problem is a module and an observation predicate; the input to the reachability
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problem is a transition graph and a region. While the former can be reduced
to the latter, this reduction typically requires exponential amount of work: in-
deed, as we shall see, invariant verification is inherently harder —for finite state
spaces, by an exponential factor— than reachability.

Remark 2.10 [State predicates as invariants] Our formulation of the invariant-
verification problem allows us to check whether r is an invariant of a module P
when r refers only to the observable variables of P . The prohibition of require-
ments that refer to private variables is a good specification discipline, which
can be exploited by reduction techniques such as minimization (see Chapter 5).
However, it should be evident that one can check whether all reachable states
of a module P satisfy a state predicate r by solving the reachability question
(GP , [[¬r]]P ) even when r refers to private variables of P .

Exercise 2.6 {T1} [Transition invariants] Invariants cannot be used to directly
specify module requirements that involve events, because observation predicates
are interpreted over individual states. It is possible, however, to generalize in-
variants from observation predicates to transition predicates, which are inter-
preted over individual transitions and therefore can refer to the presence and
absence of events. Let P be a reactive module. A transition predicate for P is a
boolean expression over the set XP ∪X ′

P of unprimed and primed module vari-
ables, with the restriction that event variables can occur only in subexpressions
of the form x? (which stands for x′ 6= x). A pair (s, t) of states of P satisfies
the transition predicate r′ if (s ∪ t) |= r′. It follows that every transition pred-
icate r′ defines an action [[r′]]P ⊆ Σ2

P , which contains all pairs of states of P
that satisfy r′. The transition predicate r′ is observable if no private variables
(unprimed or primed) of P occur in r′. The observable transition predicate r′ is
a transition invariant of P if all reachable transitions of P satisfy r′; that is, if
→R

P ⊆ [[r′]]P . An instance (P, r′) of the transition-invariant verification problem
consists of (1) a reactive module P and (2) an observable transition predicate
r′ for P . The answer to the transition-invariant question (P, r′) is Yes if r′ is a
transition invariant of P , and otherwise No.

Define a notion of error trajectories for the transition-invariant problem and
reduce the problem, including the generation of error trajectories, to the fol-
lowing transition-reachability problem. An instance (G, αT ) of the transition-
reachability problem consists of (1) a transition graph G and (2) an action αT

of G, which is called the target action. The answer to the transition-reachability
question (G, αT ) is Yes if a transition in the target action αT is reachable, and
otherwise No. The answer Yes can be witnessed by an initialized trajectory of
G of the form s1..m with m ≥ 2 and (sm−1, sm) ∈ αT .
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module MonMonitor is

interface alert : {0, 1}
external x : N

passive atom controls alert reads x awaits x
init

[] true → alert ′ := 0
update

[] x′ ≥ x → alert ′ := 0
[] x′ < x → alert ′ := 1

Figure 2.10: Monitoring monotonicity

2.2.3 Monitors

Invariants can distinguish between two trajectories only if one of the trajectories
contains a state that does not occur on the other trajectory. Hence there are
requirements on the behavior of a reactive module P that cannot be expressed
as invariants of P . However, many such requirements can be expressed as in-
variants of the compound module P‖M , for a monitor M of P . The module M
is a monitor of P if (1) M is compatible with P and (2) intfXM ∩ extlXP = ∅.
If M is a monitor of P , then in every round, M may record the values of the
observable variables of P , but M cannot control any external variables of P .
Thus the monitor M can watch but not interfere with the behavior of P . In
particular, the monitor M may check if P meets a requirement, and it may
signal every violation of the requirement by sounding an observable alarm. The
module P then meets the given requirement iff the compound module P‖M has
the invariant that no alarm is sounded by the monitor M .

Consider, for example, a module P with an interface variable x that ranges
over the nonnegative integers. Assume that, during every update round, it is
ok for P to increase the value of x, or to leave it unchanged, but it is not ok
for P to decrease the value of x. This monotonicity requirement cannot be
expressed as an invariant of P . However, we can design a monitor MonMonitor
of P so that the monotonicity requirement can be expressed as an invariant
of the compound module P ‖MonMonitor . The monitor MonMonitor , shown
in Figure 2.10, has but one variable, alert , which is an interface variable and
ranges over the set {0, 1} of two alertness levels. The monitor MonMonitor
watches for changes in the value of x. In every update round, if the value of x
does not decrease, then the new value of alert is 0, which indicates that there
is no reason for concern; if the value of x decreases, then the new value of
alert is 1, which sounds an alarm. The module P then meets the monotonicity
requirement iff the observation predicate alert 6= 1 is an invariant of the module
P ‖MonMonitor .
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module AltMonitor is

interface alert : {0, 1, 2}
external x : N

atom controls alert reads alert , x awaits x
init

[] true → alert ′ := 0
update

[] x′ ≥ x → alert ′ := 0
[] alert = 0 ∧ x′ < x → alert ′ := 1
[] alert = 1 ∧ x′ < x → alert ′ := 2

Figure 2.11: Monitoring alternation

For a slightly more involved variation of the previous example, assume that it is
ok for P to decrease the value of x occasionally, but it is not ok to decrease the
value of x twice in a row, during two consecutive update rounds. Figure 2.11
shows a monitor of P that checks this alternation requirement. The interface
variable alert of the monitor AltMonitor ranges over the set {0, 1, 2} of three
alertness levels. If the value of x does not decrease during an update round,
then alert = 0, which indicates that there is no immediate danger of P violating
the alternation requirement; if alert = 0 and the value of x decreases during
an update round, then alert = 1, which indicates that there is an immediate
danger of P violating the alternation requirement; if alert = 1 and the value of
x decreases during an update round, then alert = 2, which indicates that P has
violated the alternation requirement. The module P then meets the alternation
requirement iff the observation predicate alert 6= 2 is an invariant of the module
P ‖AltMonitor .

Example 2.9 [Railroad control] This is a continuation of Example 2.8. Fig-
ure 2.9 presents an asynchronous railroad controller that enforces the train-
safety requirement. Yet the module Controller2 is not a satisfactory railroad
controller, because it may keep a train waiting at a red signal while the other
train is allowed to cross the bridge repeatedly. In particular, the resulting rail-
road system does not meet the equal-opportunity requirement that, while a train
is waiting at a red signal, it is not possible that the signal at the opposite en-
trance to the bridge turns from green to red and back to green. Since the
equal-opportunity requirement is violated by trajectories, and not by individual
states, we need to employ monitors. The module

module EqOppMonitorW is

EqOppMonitor [alert , pc, signal 1, signal2 := alertW , pcW , signalW , signalE ]

monitors the equal-opportunity requirement for the train that travels clockwise,
where EqOppMonitor is shown in Figure 2.12. The monitor has four levels of
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module EqOppMonitor is

interface alert : {0, 1, 2, 3}
external pc : {away ,wait , bridge}; signal 1, signal2 : {green, red}
passive atom controls alert reads alert , pc, signal 1, signal2

init

[] true → alert ′ := 0
update

[] alert = 0 ∧ pc = wait ∧ signal 1 = red ∧ signal 2 = green → alert ′ := 1
[] alert = 1 ∧ signal 1 = green → alert ′ := 0
[] alert = 1 ∧ signal 1 = red ∧ signal 2 = red → alert ′ := 2
[] alert = 2 ∧ signal 1 = green → alert ′ := 0
[] alert = 2 ∧ signal 1 = red ∧ signal 2 = green → alert ′ := 3

Figure 2.12: Monitoring equal opportunity

pcW away wait wait wait wait wait wait wait wait
arriveW 3

leaveW

pcE away away wait wait bridge away wait wait bridge
arriveW 3 3

leaveW 3

signalW red red red red red red red red red
signalE red red red green green red red green green

alertW 0 0 0 0 1 1 2 2 3
alertE 0 0 0 0 0 0 0 0 0

Figure 2.13: An error trajectory that violates equal opportunity
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alertness. The alertness level is 0 as long as the train is not waiting at a red
signal while the other signal is green, in which case the alertness level rises
to 1. The alertness level rises to 2 when the other signal turns red, and to 3,
when the other signal turns green again, while the train is still waiting at a red
signal. An alertness level of 3 sounds an alarm that indicates a violation of the
equal-opportunity requirement for the train that travels clockwise. The equal-
opportunity requirement for the train that travels counterclockwise is monitored
by the module

module EqOppMonitorE is

EqOppMonitor [alert , pc, signal 1, signal2 := alertE , pcE , signalE , signalW ]

in the same manner. The module RailroadSystem then meets the equal-opportunity
requirement iff the observation predicate

¬(alertW = 3 ∨ alertE = 3)

is an invariant of the compound module

RailroadSystem ‖EqOppMonitorW ‖EqOppMonitorE .

The error trajectory of Figure 2.13 shows that this is not the case.

Exercise 2.7 {P3} [Mutual exclusion] The first-request-first-in requirement for
mutual-exclusion protocols asserts that the first process to request admission
to the critical section (meaning: pc = reqC ) is the first process with an op-
portunity to enter the critical section (meaning: the guard is true for some
guarded command that updates pc from reqC to inC ). (If both processes re-
quest to enter simultaneously, no order is specified.) (a) Write a monitor that
checks the first-request-first-in requirement for mutual-exclusion protocols, and
reduce the question of whether a mutual-exclusion protocol meets the first-
request-first-in requirement to a invariant-verification question. (b) Does Pe-
terson’s mutual-exclusion protocol (Figure 1.23) meet the first-request-first-in
requirement? What about the synchronous mutual-exclusion protocol from Fig-
ure 1.22? (c) How does the first-request-first-in requirement relate to the acces-
sibility requirement specified in Chapter 1? (Does one imply the other?)

The equal-opportunity requirement for mutual-exclusion protocols asserts that,
while a process is requesting to enter its critical section, it is not possible that
the other process enters its critical section more than once. Equal opportunity,
then, is a weaker requirement than first-request-first-in. Repeat parts (a)–(c)
for the equal-opportunity requirement.

2.3 Graph Traversal

The reachability problem, and therefore the invariant-verification problem, can
be solved by classical graph-search algorithms.
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2.3.1 Reachability Checking

Graph-search algorithms traverse a graph one edge at a time, moving from a
given vertex to its successor (or predecessor) vertices. It is useful to view these
algorithms in terms of the following notions.

Predecessor and successor regions

Let G = (Σ, σI ,→) be a transition graph, and let s be a state of G. The
state t of G is a predecessor of s if t → s, and t is a successor of s if s → t.
The predecessor region preG(s) of s is the set of predecessors of s, and the
successor region postG(s) of s is the set of successors of s. We write pre∗

G(s)
for the so-called source region (∪ i ∈ N | pre i

G(s)) of s, and post∗G(s) for the
sink region (∪ i ∈ N | post i

G(s)).

In other words, given a transition graph G and a state s of G, the source region
pre∗

G(s) contains the sources of all trajectories of G with sink s, and the sink
region post∗G(s) contains the sinks of all trajectories of G with source s.

Terminology. The functions preG, postG, pre∗
G, and post∗G are extended

to regions in the natural way: for a region σ of the transition graph G, let
preG(σ) = (∪ s ∈ σ | preG(s)) —i.e., the region preG(σ) contains the predeces-
sors of all states in σ— let postG(σ) = (∪ s ∈ σ | postG(s)) —i.e., the region
postG(σ) contains the successors of all states in σ— etc. As usual, if the tran-
sition graph underlies a module P , we write preP instead of preGP

, etc. If the
transition graph is understood, we suppress the subscript altogether.

Remark 2.11 [Reachability] Let G be a transition graph with the initial re-
gion σI , let s be a state of G, and let σT be a region of G. The state s is reachable
in i transitions iff s ∈ post i(σI ), and s is reachable iff s ∈ post∗(σI); that is,
post∗(σI ) is the reachable region of G. The transition graph G is finitely reaching
iff there is a nonnegative integer i such that post∗(σI ) = (∪ j ≤ i | post j(σI )).
The answer to the reachability question (G, σT ) is Yes iff post∗(σI ) ∩ σT 6= ∅
or, equivalently, iff σI ∩ pre∗(σT ) 6= ∅.

Enumerative graph search

Algorithm 2.2 shows a generic schema for graph search. As the algorithm finds
new reachable states, they are explored by traversing all transitions to suc-
cessor states. Throughout the algorithm, the multiset τ , which is called the
frontier, contains the states that have been found but not yet explored; the set
σR always contains the states that have been both found and explored. Al-
gorithm 2.2 is said to be enumerative, because the states in the frontier τ are
processed one state at a time. Therefore the multiset τ is best implemented by
an enumeration of its members. If τ is implemented as a queue (when choosing
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Algorithm 2.2 [Enumerative Graph Search] (schema)

Input: a transition graph G = (Σ, σI ,→).
Output: the reachable region σR of G.
Local: a multiset τ of states from Σ.

Initialize σR to ∅;
Initialize τ to σI ;
while τ 6= ∅ do

Choose a state s in τ , and remove s from τ ;
if s 6∈ σR then

Add s to σR;
Add all states in postG(s) to τ
fi

od.

a state from τ , always choose the state that was inserted least recently), then
we obtain breadth-first search. If τ is implemented as a stack (always choose
the state that was inserted most recently), then we obtain depth-first search.
Algorithm 2.2 terminates iff the reachable subgraph GR of the input graph G
is finite. Consider a state s of G with mR

s reachable incoming transitions; that
is, mR

s = |pre(s) ∩ σR|. If s is reachable but not initial, then s is added to the
frontier τ exactly mR

s times; if s is initial, then s is added to τ exactly 1 + mR
s

times; if s is not reachable, then s is never added to τ . Every iteration of the
while loop removes one state from τ . It follows that the while loop is executed
nI + mR times, where nI is the number of initial states of G, and mR is the
number of reachable transitions.

Lemma 2.3 [Enumerative graph search] Let G be a transition graph with nI

initial states and mR reachable transitions. Algorithm 2.2 computes the reach-
able region σR within nI + mR iterations of the while loop.

Remark 2.12 [Backward search] Algorithm 2.2 performs a forward search of
the input graph, starting from the initial region. Symmetrically, the graph may
be searched backward from the target region, using the predecessor operation
pre instead of the successor operation post . While forward search explores only
reachable states, this is not necessarily the case for backward search. Hence the
running time of backward search cannot be bounded by the number of reachable
transitions.
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Algorithm 2.3 [Depth-first Reachability Checking]

Input: a finitely branching transition graph G, and a finite region
σT of G.

Output: Done, if the instance (G, σT ) of the reachability prob-
lem has the answer No; a witness for the reachability question
(G, σT ), otherwise.

input G: enumgraph; σT : enumreg;
local σR: enumreg; τ : stack of state; t: state;
begin

σR := EmptySet ;
τ := EmptyStack ;
foreach t in InitQueue(G) do

if DepthFirstSearch(t) then return Reverse(τ) fi

od;
return Done
end.

function DepthFirstSearch(s): B

local t: state;
begin

τ := Push(s, τ);
if not IsMember(s, σR) then

if IsMember (s, σT ) then return true fi;
σR := Insert(s, σR);
foreach t in PostQueue(s, G) do

if DepthFirstSearch(t) then return true fi;
od

fi;
τ := Pop(τ);
return false
end.
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Depth-first reachability checking

Algorithm 2.3 shows a recursive depth-first implementation of graph search for
solving the reachability problem. The implementation differs from the schematic
Algorithm 2.2 in three respects. First, for checking reachability, the graph search
is aborted when a state in the target region is found. Second, the recursive im-
plementation of depth-first search allows the construction of witnesses without
bookkeeping. Third, the input graph is assumed to be finitely branching and
the input region is assumed to be finite, so that the initial region, the successor
region of each state, and the target region all can be represented as queues of
states. More specifically, Algorithm 2.3 uses the following abstract types. As-
suming a given type state for states, the type of a finitely branching transition
graph is enumgraph, and the type of a finite region is enumreg. The abstract
type enumgraph supports two operations:

InitQueue : enumgraph 7→ queue of state. The operation InitQueue(G) re-
turns a queue that contains the initial states of G, in some order.

PostQueue : state × enumgraph 7→ queue of state. The operation PostQueue(s, G)
returns a queue that contains the successors of s, in some order.

The abstract type enumreg supports three standard set operations:

EmptySet : enumreg. The operation EmptySet returns the empty region.

Insert : state× enumreg 7→ enumreg. The operation Insert(s, σ) returns the
region that results from adding the state s to the region σ.

IsMember : state× enumreg 7→ B. The operation IsMember (s, σ) returns true
if the region σ contains the state s, and otherwise returns false .

If all states in the target region are unreachable and the reachable subgraph of
the input graph is finite, then the algorithm terminates once every reachable
state is found; if some state in the target region is reachable in a finite number
of transitions, then the algorithm may terminate even if the reachable subgraph
is infinite. This is because as soon as a state in the target region σT is found,
the search is aborted. At this point, the stack τ of unexplored states contains a
witness for the given reachability question, in reverse order. To see this, observe
that τ always contains an initialized trajectory of the input graph G, in reverse
order.

Lemma 2.4 [Partial correctness of depth-first reachability checking] If Algo-
rithm 2.3 terminates, then it solves the reachability question (G, σT ) and returns
a witness, if one exists.
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2.3.2 Enumerative Graph and Region Representations

For the analysis of the time and space requirements of Algorithm 2.3, we need to
agree on the representation of the abstract types enumgraph and enumreg.
For this purpose, we restrict ourselves to finite input graphs. We distinguish
between two cases, depending on whether or not the type state is atomic.

• In the state-level model, every variable of type state is stored in constant
space, and constant time is required for every read or write access to a
state. This is the standard model used in the analysis of graph algorithms.
It is appropriate if the number of states is bounded. For example, for com-
puters with 64-bit words, the state-level model is realistic if the number of
states does not exceed 264; otherwise, the storage of a state requires more
than a single word.

• The bit-level model is more detailed and makes no assumptions about the
number of states. If the total number of states is n, then in the bit-
level model, every variable of type state is stored in Θ(log n) space, and
Θ(log n) time is required for every read or write access to a state. The bit-
level model is of particular interest in computer-aided verification, where
we regularly encounter very large state spaces.

In the following analysis, we consider a transition graph G with n states, nI

initial states, and m transitions, and we consider a region σ of G. We first
discuss state-level data structures for representing G and σ, and then we move
on to bit-level data structures.

State-level data structures

The finite transition graph G can be represented using adjacency lists, by a
record {G}se with two components:

enumgraph = (queue of state) × (array[state] of queue of state)

The first component of {G}se is a queue that contains the initial states of G.
The second component of {G}se is an array, indexed by the states of G, which
points, for each state s, to a queue that contains the successors of s. The record
{G}se is called the state-enumerative representation of the transition graph G,
because it is built from atomic components of the type state to facilitate the
enumerative graph operations InitQueue and PostQueue. The state-level data
structure {G}se requires Θ(n+m) space and supports the operations InitQueue
and PostQueue in constant time. The state-enumerative representation of the
region σ is a boolean array, denoted {σ}se , which is indexed by the states of G,
so that a state s is contained in σ iff {σ}se [s] = true:

enumreg = array[state] of B
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The state-level data structure {σ}se requires Θ(n) space and supports the enu-
merative region operations EmptySet , Insert , and IsMember : the first in O(n)
time, the second and third in constant time.

Remark 2.13 [Space-efficient state-level data structures] The state-enumerative
graph and region representations {G}se and {σ}se optimize the running time,
in the state model, of Algorithm 2.3. If we want to optimize, instead, the space
requirements of the data structures, different choices are necessary. We can
define an alternative state-enumerative graph representation {G}T

se which uses
Θ(nI + m) space, and an alternative state-enumerative region representation
{σ}T

se which uses Θ(|σ|) space, both of which are optimal. In both cases, we re-
place the array indexed by states with a balanced binary search tree over states:
the second component of the record {G}T

se is a tree whose nodes represent the
states that have nonempty queues of successors; the nodes of the tree {σ}T

se

represent the states that are members of the region σ. The search-tree imple-
mentations of the abstract data types enumgraph and enumreg support the
operations InitQueue and EmptySet in constant time, the operation PostQueue
in O(log n) time, and the operations Insert and IsMember in O(log |σ|) time.

Bit-level data structures

In the bit-level model, we cannot have arrays indexed by states, as the index
elements are no longer representable by a fixed number of bits. Without loss
of generality, we assume that each state of the transition graph G is identified
by a unique sequence of dlog ne bits. For example, the transition graph GP

of a module with k boolean variables has 2k states, and each state can be
represented by a sequence of k bits denoting the values of the module variables.
The bit-enumerative representation {σ}be of the region σ is a binary tree whose
paths represent the states of G that are members of σ. The height of the
tree is dlog ne, the number of leaves is |σ|, and the total number of nodes is
Θ(|σ| · (1+ logn− log |σ|)) or, less precisely, Θ(min(|σ| · log n, n)). In particular,
if n is a power of 2 and σ contains all n states, then {σ}be is the complete
binary tree with 2n nodes. The bit-enumerative representation {G}be of the
transition graph G is, like the state-enumerative representation, a record whose
first component is a queue of the initial states, and whose second component is
an index structure over states which points to queues of successor states. The
index structure is implemented as a binary tree whose paths represent the states
of G that have nonempty queues of successors. A queue of pairwise distinct
states can be implemented in a space-efficient way by sharing common suffixes
of the bitvector representations of the states in the queue. This is achieved by a
binary tree with child-to-parent pointers, whose leaf-to-root paths represent the
states in the queue, and whose leaves are connected by pointers that represent
the order of the states in the queue. If the queue contains ` states, then the bit-
level queue representation requires Θ(min(`·logn, n)) bits. The following lemma
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completes the space and time analysis of the bit-enumerative data structures.

Lemma 2.5 [Bit-enumerative graph and region representations] Let G be a
transition graph with n states, nI initial states, and m transitions, and let s be
a sequence of dlog ne bits. The bit-enumerative graph representation {G}be uses
Θ(min(nI ·log n, n)+min(m·log n, n2)) space. The operations InitQueue({G}be)
and PostQueue(s, {G}be) require O(1) and O(log n) time, respectively. Let σ be
a region of G. The bit-enumerative region representation {σ}be uses Θ(min(|σ| ·
log n, n)) space. The operation EmptySet requires O(1) time; the operations
Insert(s, {σ}be) and IsMember (s, {σ}be) each require O(log n) time.

Exercise 2.8 {T2} [Proof of Lemma 2.5] Let G be a transition graph whose
states are the bitvectors of length k, and let σ be a region of G. Give for-
mal definitions of the bit-enumerative graph and region representations {G}be

and {σ}be , and prove Lemma 2.5.

Time and space requirements of depth-first reachability checking

To determine the time complexity of Algorithm 2.3, let n be the total number
of states of the input graph, let nI be the number of initial states, and let mR

be the number of reachable transitions. Recall the analysis of the schematic
Algorithm 2.2. In particular, if s is an initial state with mR

s reachable incoming
transitions, then the function DepthFirstSearch is invoked with input state s at
most 1+mR

s times; if s is reachable but not initial, then DepthFirstSearch is in-
voked with input s at most mR

s times; if s is unreachable, then DepthFirstSearch
is never invoked with input s. The first time that DepthFirstSearch is in-
voked with input s, the function call performs O(|post(s)|) state-level work, and
O(log n + |post(s)|) bit-level work, in addition to invoking DepthFirstSearch for
every successor of s. Each subsequent call of DepthFirstSearch with input state
s terminates, after a single membership test IsMember(s, σR), within constant
state-level time and O(log n) bit-level time. It follows that the total time re-
quired by all invocations of DepthFirstSearch is, in the worst case, O(nI + mR)
time in the state-level model, and O((nI +mR)·logn) time in the bit-level model.
The worst case is obtained when no state in the target region is reachable. The
initialization of the region σR requires O(n) state-level time vs. constant bit-
level time. The space complexity of Algorithm 2.3 is dominated by the space
requirements of the input representations. The complete analysis is summarized
in the following theorem.

Theorem 2.1 [Depth-first reachability checking] Let G be a finite transition
graph with n states, of which nI are initial, and m transitions, of which mR are
reachable. Let σT be a region of G. In the state-level model, given the input
{G}se and {σT }se , Algorithm 2.3 solves the reachability question (G, σT ) and
computes a witness, if one exists, in O(n + mR) time and Θ(n + m) space. In
the bit-level model, given the input {G}be and {σT }be, Algorithm 2.3 requires
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O((nI +mR) · log n) time and Θ(min(nI · log n, n)+min(m · log n, n2)+min(|σT | ·
log n, n)) space.

Remark 2.14 [Time complexity of state-level reachability checking] In the
state-level model, the running time of Algorithm 2.3 is proportional to the size
n of the state space, no matter how quickly a state in the target region is found.
This is caused by the initialization of the array {σR}se for representing the re-
gion of explored states. In practice, this behavior is undesirable, and alternative
representations of the region σR are preferred. One such representation, based
on search trees, is studied in Exercise 2.9; another one, based on hashing, and
by far the most popular in practice, will be discussed in Section 2.3.3.

Exercise 2.9 {T2} [Space-efficient state-level data structures] Suppose that
the input to Algorithm 2.3 is given by the alternative state-enumerative graph
and region representations {G}T

se and {σT }T
se introduced in Remark 2.13, and

that the region σR of explored states is stored in the same manner. What is the
resulting time and space complexity of Algorithm 2.3 in the state-level model?
Under which conditions on the input G and σT are the alternative data struc-
tures preferable in order to optimize running time? Under which conditions are
they preferable in order to optimize memory space?

Exercise 2.10 {P2} [Nonrecursive depth-first reachability checking] Write a
nonrecursive, state-level version of Algorithm 2.3 with the same time and space
complexity, assuming that the input (G, σT ) is given by the state-enumerative
graph and region representations {G}se and {σT }se . Be careful with the witness
construction.

Exercise 2.11 {P3} [Breadth-first reachability checking] Algorithm 2.3 tra-
verses the input graph in depth-first fashion. Write a breadth-first algorithm for
reachability checking, including witness construction, assuming that the input
(G, σT ) is given, first, by the state-enumerative graph and region representations
{G}se and {σT }se , and second, by the bit-enumerative representations {G}be

and {σT }be. (Maintain the frontier τ of unexplored states as a queue.) Deter-
mine the time and space requirements of your algorithm in both the state-level
and bit-level models.

Exercise 2.12 {P2} [Transition invariants] Modify Algorithm 2.3, without chang-
ing its state-level and bit-level time and space requirements, to solve the transition-
reachability problem from Exercise 2.6. For this purpose, you must define state-
enumerative and bit-enumerative representations for transition predicates.
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Algorithm 2.4 [Enumerative Invariant Verification] (schema)

Input: a finite module P , and an observation predicate r for P .
Output: Done, if the instance (P, r) of the invariant-verification

problem has the answer Yes; an error trajectory for the
invariant-verification question (P, r), otherwise.

Construct the enumerative graph representation {GP }e;
Construct the enumerative region representation {[[¬r]]P }e;
Return the result of Algorithm 2.3 on the input {GP }e and {[[¬r]]P }e.

2.3.3 Invariant Verification

For finite modules P , invariant-verification questions of the form (P, r) can be
reduced to reachability checking, as is shown in Algorithm 2.4. In terms of the
size of the input (P, r), the asymptotic amount of work for constructing and the
asymptotic amount of space required for storing the enumerative representations
of the transition graph GP and the target region [[¬r]]P are independent of
whether the state-level or bit-level model is used. Hence, as in Algorithm 2.4,
if the argument G is a transition graph that underlies a module, we write {G}e

as a place-holder for either the state-enumerative representation {G}se or the
bit-enumerative representation {G}be; similarly, we write {σ}e if the region σ
is defined by a state predicate. The translation from the module P to the
enumerative graph representation {GP }e, as well as the translation from the
observation predicate r to the enumerative region representation {[[¬r]]P }e, may
involve an exponential amount of work. To make these claims precise, we need
to agree on a syntax for the legal expressions in the initial and update commands
of reactive modules.

Propositional modules

The most basic type is the boolean type. In propositional modeling, we restrict
ourselves to variables of this type, which are called propositions. If all variables
of a module are propositions, then the module is said to be a propositional
module. Every propositional module is finite, and dually, every finite module
can be viewed propositionally —by replacing each variable of a finite type with
k values by dke boolean variables. For the propositional modules, we now agree
on a specific syntax. In particular, all expressions that occur in the textual
description of a propositional module result from combining propositions using
a standard set of logical connectives.
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Propositional module

A proposition is a variable of type boolean. The propositional formulas are
the boolean expressions generated by the grammar

p ::= x | true | false | p1 ∧ p2 | p1 ∨ p2 | ¬p1 | p1 → p2 | p1 ↔ p2,

where x is a proposition, and p1 and p2 are propositional formulas. A propo-
sitional module is a reactive module P such that (1) all module variables of
P are propositions, and (2) every expression that appears in the initial and
update commands of P is a propositional formula.

Remark 2.15 [Transition graphs for propositional modules] If P is a proposi-
tional module with k variables, then the transition graph GP has 2k states and
at most 4k transitions.

From propositional modules to enumerative graph representations

Let P be a propositional module with k variables, and let |P | be the number
of symbols in the textual description of P . Note that |P | > k. In the first step
of Algorithm 2.4, we need to construct the enumerative representation {GP }e

of the underlying transition graph. In the following analysis, it is immaterial
whether or not each of the 2k states can be stored and accessed atomically: in
terms of the parameters |P | and k, an asymptotically equal amount of work
is required to construct, for sufficiently small k (say, k ≤ 64), the state-level
representation {GP }se or, for arbitrary k, the bit-level representation {GP }be ;
we therefore use the notation {GP }e. To construct the queue of initial states
of P , we generate each state s of P and check if s is an initial state of P .
Similarly, for every state s, to construct the queue of successors of s, we generate
each state t of P and check if (s, t) is a transition of P . Since each state of P
is a bitvector of length k, we can generate all states in O(2k) time. The next
lemma shows that each of the 2k initiality checks and each of the 4k transition
checks can be performed in linear time. It follows that the construction of the
enumerative graph representation {GP }e can be completed in O(4k · |P |) time.

Lemma 2.6 [Initial states and transitions for propositional modules] Given a
propositional module P , and two states s and t of P , it can be checked in O(|P |)
time if s is an initial state of P and if (s, t) is a transition of P .

Exercise 2.13 {T2} [Proof of Lemma 2.6] Given a propositional module P ,
construct two propositional formulas qI

P and qT
P , whose lengths are linear in |P |:

the initial predicate qI
P is a boolean expression over the set XP of module vari-

ables so that for every state s of P , the expression qI
P evaluates to true in s iff s

is an initial state of P ; the transition predicate qT
P is a boolean expression over

the set XP ∪ X ′
P of unprimed and primed module variables so that for every
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module Nondet is

interface x1, . . . , xk : B

atom controls x1

initupdate

[] true → x′
1 := true

[] true → x′
1 := false

...
atom controls xk

initupdate

[] true → x′
k := true

[] true → x′
k := false

Figure 2.14: Unconstrained propositional module

pair (s, t) of states of P , the expression qT
P evaluates to true in s ∪ t′ iff (s, t) is

a transition of P . Since each state of P is a bitvector of length k, where k is
the number of propositions of P , and since |P | > k, Lemma 2.6 follows.

The construction time of the enumerative graph representation {GP }e is expo-
nential in the number k of variables. This exponential amount of work cannot
be avoided, as the record {GP }e may require exponentially more space than the
textual description of the module P . Consider the propositional module Nondet
with k boolean interface variables such that all initial values are arbitrary, and
in every update round, the values of all variables can change arbitrarily. If
every variable is controlled by a separate atom, then P can be specified using
Θ(k) symbols, as shown in Figure 2.14. The transition graph GNondet is the
complete graph with 2k states, all of which are initial, and 4k transitions. It
follows that the enumerative graph representation {GNondet}e requires Θ(4k)
space, independent of whether we can use the state-level model or must resort
to the bit-level model.

Propositional invariant verification

If we restrict our attention to propositional modules, then we obtain a special
case of the invariant-verification problem.
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Propositional invariant-verification problem

An instance (P, r) of the invariant-verification problem is propositional if P
is a propositional module and r is a propositional formula. The instances
of the propositional invariant-verification problem are the propositional in-
stances of the invariant-verification problem. The propositional instance
(P, r) has k variables if the module P has k module variables.

Let (P, r) be a propositional instance of the invariant-verification problem with
k variables. The enumerative representation {[[¬r]]P }e of the target region can
be constructed in O(2k · |r|) time, by generating each state s of P and checking
if s satisfies the predicate r. The constructed data structure {[[¬r]]P }e occupies
Θ(2k) space. Both construction time and memory space are independent of
whether we use the state-enumerative region representation {[[¬r]]P }se or the
bit-enumerative region representation {[[¬r]]P }be . Together with Exercise 2.13
and Theorem 2.1, this gives exponential time and space bounds for solving the
propositional invariant-verification problem which are independent of the state-
level vs. bit-level issue.

Theorem 2.2 [Propositional invariant verification] Let (P, r) be a propositional
instance of the invariant-verification problem with k variables. Algorithm 2.4
solves the invariant-verification question (P, r) and computes an error trajec-
tory, if one exists, in O(4k · (|P | + |r|)) time and Θ(4k) space.

Exercise 2.14 {T4} [Equational modules with interpreted constants] An ic-
equational term is either a variable or an interpreted constant. Like variables,
constants are typed. Each interpreted constant denotes a fixed value of its
type. Examples of interpreted constants are the boolean constant true and the
integer constant 19. In particular, for two interpreted constants, it is known
if they denote equal or different values. The ic-equational formulas are the
boolean expressions that are generated by the grammar

p ::= f1 = f2 | p1 ∧ p2 | ¬p1,

where f1 and f2 are ic-equational terms of the same type, and p1 and p2 are
ic-equational formulas. An ic-equational module is a reactive module P such
that (1) every guard that appears in the initial and update commands of P
is an ic-equational formula, and (2) every assignment that appears in the ini-
tial and update commands of P is an ic-equational term. An instance (P, r)
of the invariant-verification problem is ic-equational if P is an ic-equational
module and r is an ic-equational formula. The instance (P, r) is finite if the ic-
equational module P is finite. Suppose we wish to use Algorithm 2.4 for solving
the ic-equational instances of the invariant-verification problem. (a) Given an
ic-equational instance (P, r) of the invariant-verification problem, find a finite
propositional instance (P ′, r′) that has the same answer as (P, r). (b) Write a
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preprocessor that, given the ic-equational module P and the ic-equational for-
mula r, constructs the enumerative graph representation {GP ′}e and the enu-
merative region representation {[[¬r′]]P ′}e. What are the space requirements of
your representations as a function of the size of the input (P, r)? What are the
running times of your preprocessor and of Algorithm 2.4 in terms of the size of
(P, r)? Does it make a difference if the state-level model or the bit-level model
is used?

Exercise 2.15 {P3} [Backward search] Write a backward-search algorithm for
reachability checking, and an invariant-verification algorithm that invokes your
backward-search algorithm. In your algorithms, assume that the abstract type
enumgraph supports the operation

PreQueue : state× enumgraph 7→ queue of state

which, given a transition graph G and a state s of G, returns a queue that
contains the predecessors of s, in some order. Assuming that the state-level
model is adequate, suggest a representation for transition graphs that supports
the three operations InitQueue, PostQueue, and PreQueue in constant time,
and write an algorithm that constructs your representation for the transition
graphs of propositional modules. Give the running time required to construct
and the memory space required to store your representation.

2.3.4 Three Space Optimizations

The exponential space requirements of Algorithm 2.4 (Theorem 2.2) are a serious
obstacle to practical applications. The problem is caused by the enumerative
graph representation {GP }e for the input module P , and by the enumerative
region representations for the sets σT of target states and σR of explored states,
all of which require space at least proportional to the number of states of P .
For many invariant-verification questions, the number of states is too large for
the transition graph and its regions to be stored explicitly. The following three
observations allow us to reduce the space requirements of invariant verification.
First, on-the-fly methods avoid the enumerative representations of the input
graph and target region. Second, state-hashing methods avoid the enumerative
storage of the explored states. Third, latch-reduction methods reduce both the
size and number of frontier states and explored states that need to be stored.

On-the-fly graph and region representations

Consider an instance (P, r) of the invariant-verification problem. Instead of
constructing, at once, the space-intensive enumerative graph representation
{GP }e from the input module P , we can construct portions of the graph only
as needed, whenever the operations InitQueue and PostQueue are invoked in
Algorithm 2.3. Similarly, instead of constructing, at once, the space-intensive
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region representation {[[¬r]]P }e from the input predicate r, we can answer each
query in Algorithm 2.3 of the form IsMember(s, σT ) by evaluating the predicate
¬r in the state s. Such an “on-the-fly” implementation of Algorithm 2.3 relies
on the following data structures for representing the input graph and the target
region.

• On-the-fly representations for graphs are restricted to transition graphs
that underly modules. Given a module P , the on-the-fly representation
{GP }of for the transition graph GP is a queue that contains the atoms of
the module P in some execution order.

• On-the-fly representations for regions are restricted to regions that are
defined by state predicates. Given a module P and a state predicate q
for P , the on-the-fly representation {[[q]]P }of for the region [[q]]P is the
predicate q.

In an on-the-fly implementation of Algorithm 2.3, the input graph G is given by
the queue {GP }of and the input region σT is given by the predicate {[[¬r]]P }of

(the region σR of explored states, which is not defined by a state predicate, has
no on-the-fly representation). Clearly, the space requirements of the on-the-
fly graph and region representations {GP }of and {[[¬r]]P }of are linear in the
input (P, r) to the invariant-verification problem. The overall time and space
requirements of on-the-fly invariant verification for propositional modules are
analyzed in the following exercise.

Exercise 2.16 {P3} [On-the-fly invariant verification for propositional mod-
ules] Consider a propositional module P with k variables, and an observa-
tion predicate r for P . (a) Write an algorithm that computes the on-the-fly
representation {GP }of of the underlying transition graph. What is the run-
ning time of your algorithm? (b) Write algorithms for computing the opera-
tions InitQueue({GP }of ), PostQueue(s, {GP }of ), and IsMember (s, {[[¬r]]P }of ),
where s is a state of P . What are the running times of your algorithms? (c) Us-
ing the state-level array representation {σR}se for the region of explored states,
solve the propositional instance (P, r) of the invariant-verification problem in
O((2k +mR) ·(|P |+ |r|)) time and Θ(2k + |P |+ |r|) space, where mR is the num-
ber of reachable transitions of the transition graph GP . (d) Using the state-level
search-tree representation {σR}T

se or the bit-level representation {σR}be for the
region of explored states, solve the instance (P, r) of the invariant-verification
problem in O((nI + mR) · (|P | + |r|)) time and Θ(nR + |P | + |r|) space, where
nI is the number of initial states and nR is the number of reachable states of
the transition graph GP .

Remark 2.16 [On-the-fly invariant verification for finitely branching modules]
The on-the-fly representation {GP }of of the transition graph does not require
that the input module P is finite. Neither does the on-the-fly representation
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{[[¬r]]P }of of the target region require that the input predicate r evaluates to
true in all but finitely many states of P . Rather, the on-the-fly implementation
of Algorithm 2.3 can be applied to input modules with finitely branching tran-
sition graphs and infinite target regions. As observed earlier, Algorithm 2.3 is
guaranteed to terminate if the reachable subgraph GR

P of the input module P
is finite. The algorithm may terminate even when GR

P is infinite, if it visits a
state that belongs to the target region.

Exercise 2.17 {P3} [Integer modules with addition] The integer terms with
addition are the nonnegative integer expressions generated by the grammar

f ::= x | m | f1 + f2 | f1

.
−f2,

where x is a variable of type N, where m is a nonnegative integer (i.e., an
interpreted constant of type N), and f1 and f2 are integer terms with addition.
The integer formulas with addition are the boolean expressions generated by
the grammar

p ::= f1 ≤ f2 | p ∧ p | ¬p,

where f1 and f2 are integer terms with addition. An integer module with ad-
dition is a reactive module P such that (1) all module variables of P are of
type N, (2) every guard that appears in the initial and update commands of P
is an integer formula with addition, and (3) every assignment that appears in
the initial and update commands of P is an integer term with addition. The
instance (P, r) of the invariant-verification problem is an integer instance with
addition if P is an integer module with addition and r is an integer formula
with addition. (a) Suppose we wish to apply an on-the-fly implementation of
Algorithm 2.3 to the integer instances with addition of the invariant-verification
problem. In order to obtain a finitely branching transition graph, we need to
restrict ourselves to integer modules with addition which are closed. Write al-
gorithms that, given a closed integer module P with addition, computes the
operations InitQueue and PostQueue for the transition graph GP on the fly,
and write an algorithm that, given an integer formula r with addition, com-
putes the operation IsMember for the region [[¬r]]P on the fly. What are the
running times of your algorithms? (b) Give an example of a closed, determinis-
tic integer module P with addition and a state s of P so that the set preP (s) is
infinite. What are the ramifications for on-the-fly backward search for integer
modules with addition?

Hashing of explored states

On-the-fly implementations of Algorithm 2.3 reduce the space required by the
transition graph G and the target region σT , but they do not address the space
required by the region σR of explored states. In particular, in the state-level
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model, neither the array representation {σR}se nor the search-tree representa-
tion {σR}T

se perform satisfactorily in practice: the array representation {σR}e

is exponential in the number of input variables, even if the region σR, which
is initially empty, remains small compared to the size of the state space; the
search-tree representation {σR}T

se is space-optimal, but the rebalancing over-
head involved in the frequent insertions adversely affects the verification time
in practice. State hashing is a compromise which often offers the best practical
performance. In state hashing, the region σR is represented by a hash table
{σR}H

se that consists of (1) a hash function that maps each state s to an integer
between 0 and N , for a suitably chosen nonnegative integer N , and (2) an array
of length N whose i-th entry, for 1 ≤ i ≤ N , points to a queue of states that
are mapped to i by the hash function:

enumreg = (state 7→ {0..N})× (array[0..N ] of queue of state)

The choice of N is determined by the expected number of reachable states and
by the word size of the computer on which the hash table is implemented; for
example, N = 264 − 1. The hash table {σR}H

se is a state-level data structure
which uses Θ(N + |σR|) space. The running time of Algorithm 2.3 depends
crucially on the complexity of the membership test for the hash table {σR}H

se ,
which in turn depends on the choice of hash function and on the ratio of N to
the number of explored states. A detailed analysis of hashing can be found in
[Knuth:Vol.1].

Remark 2.17 [Bit-state hashing] While hashing is an effective technique to
represent the set of explored states, often the number of reachable states is too
large to be stored in memory. In such cases, an approximate strategy, known as
bit-state hashing, can be used. This approach uses a hash table of size N whose
i-th entry, for 1 ≤ i ≤ N , is a single bit. The insertion of a state, which is
mapped to an integer i between 0 and N by the hash function, is implemented
by setting the i-th bit of the hash table to 1. All hash collisions are ignored.
Suppose that two states s and t are mapped to the same integer i, and s is
inserted in the hash table first. When the state t is encountered, as the i-th bit
of the hash table is already set, the membership test returns a positive answer.
Consequently, Algorithm 2.3 does not explore the successors of t. Hence, only
a fraction of the reachable region is explored. The algorithm may return false
negatives (the false answer No for Yes-instances of the reachability problem),
but no false positives (the false answer Yes for No-instances of the reachability
problem). In particular, every error trajectory that is found indeed signals a
violation of the invariant. More general approximation schemes will be discussed
in detail in Chapter 5.

What fraction of the reachable region is visited by bit-state hashing depends
on the choice of table size and hash function. The table size can be increased
iteratively until either an error trajectory is found or all available memory space
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is used. The performance of bit-state hashing can be improved dramatically by
using two bit-state hash tables that employ independent hash functions. Each
explored state is stored in preferably both, but at least in one hash table, so
that a collision occurs only if both table entries are already occupied. If N is the
size of the hash tables, this strategy typically ensures that, if necessary, close to
N reachable states are explored.

Latch reduction for event variables and history-free variables

If, for every state s of a module, the value s(x) of the module variable x is not
needed for determining the successors of s, then in Algorithm 2.2 the value of
x does not have to be stored as part of the frontier τ of unexplored states nor
as part of the region σR of explored states. This is the case for event variables,
whose values in a given state are immaterial, and for variables whose values are
never read, only awaited. The variables whose values are not read are called
history-free; their values in a given state depend (possibly nondeterministically)
on the values of other variables in the same state. The space savings that
arise from not storing the values of event variables and history-free variables
during graph search can be substantial. For example, in synchronous circuits, all
variables that represent input and output wires of gates and latches are history-
free, and only the variables that represent the internal states of the latches need
to be stored. Motivated by this example, we refer to the variables that are
neither event variables nor history-free as latched. The set of latched variables
of a module can be computed easily from the module and atom declarations.
The projection of the transition graph of a module to the latched variables is
called the latch-reduced transition graph of the module.

Latch-reduced transition graph of a module

A variable x of the module P is latched if (1) x does not have the type E,
and (2) x is read by some atom of P . We write latchX P for the set of
latched module variables of P . The latch-reduced transition graph of P is
the transition graph GL

P = (ΣP [latchX P ], σI
P [latchX P ],→L

P ), where sL →L
P

tL iff there is a transition s →P t such that sL = s[latchX P ] and tL =
t[latchX P ].

Example 2.10 [Latch-reduced transition graph for three-bit counter] Recall
the circuit from Figure 1.20 which realizes a three-bit binary counter. For the
module Sync3BitCounter , all variables except the three output bits out0, out1,
and out2, are history-free. Consequently, the latch-reduced transition graph of
Sync3BitCounter has only 8 states, which correspond to the possible values of
the three output bits. Each state of the latch-reduced transition graph encodes
a counter value, and there is a transition from state s to state t iff the value
encoded by t is one greater (modulo 8) than the value encoded by s.
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Exercise 2.18 {P1} [Latch-reduced transition graph for railroad control] Con-
sider the module TrainW ‖TrainE ‖Controller1 of Example 2.8. Which vari-
ables are latched? Draw the latch-reduced transition graph of the module.

Remark 2.18 [Latch-reduced transition graphs] The latch-reduced transition
graph GL

P of a module P may be finite even if the transition graph GP is not,
and GL

P may be finitely branching even if GP is not.

The latched-reduced transition graph of a module can be used for invariant
verification. Let (P, r) be an instance of the invariant verification problem. If
the observation predicate r contains only latched variables —that is, free(r) ⊆
latchX P — then the invariant-verification question (P, r) reduces to the reacha-
bility question (GL

P , [[¬r]]P ). If the observation predicate r refers to some history-
free variables, then a transition-reachability question on the latch-reduced tran-
sition graph GL

P needs to be answered. To see this, we make use of the following
definitions.

Latch-satisfaction of a state predicate

Let P be a module, and let q be a state predicate for P . The initial state
sL of the latch-reduced transition graph GL

P latch-satisfies q if there is an
initial state s of P such that sL = s[latchX P ] and s |= q. The transition
(sL, tL) of GL

P latch-satisfies q if there is a transition (s, t) of P such that
sL = s[latchX P ] and tL = t[latchX P ] and t |= q.

Exercise 2.19 {P2} [Latch-satisfaction] Consider a propositional module P
and a propositional formula q which is a state predicate for P . Implement the fol-
lowing four functions. The function LatchReducedInit({GP }of ) returns a queue
containing the initial states of the latch-reduced transition graph GL

P . Given a
state sL of GL

P , the function LatchReducedPost(sL, {GP }of ) returns a queue con-
taining the successors of sL in the latch-reduced transition graph GL

P . Given an
initial state sL of GL

P , the boolean function InitLatchSat(sL, {GP }of , q) checks
if sL latch-satisfies q. Given a transition (sL, tL) of GL

P , the boolean function
TransLatchSat(sL, tL, {GP }of , q) checks if (sL, tL) latch-satisfies q. What are
the running times of your algorithms in terms of the size of the input (P, q)?

Proposition 2.4 [Latch-reduced invariant verification] The answer to the invariant-
verification question (P, r) is No iff there is an initialized trajectory sL

1..m of the
latch-reduced transition graph GL

P such that either m = 1 and the initial state
sL
1 latch-satisfies r, or m > 1 and the transition (sL

m−1, s
L
m) latch-satisfies r.

Exercise 2.20 {T2} [Proof of Proposition 2.4] Consider a module P and three
states sL, tL, and uL of the latch-reduced transition graph GL

P . Prove that
if sL →L

P tL →L
P uL, then there are three states s, t, and u of P such that

sL = s[latchX P ] and tL = t[latchX P ] and uL = u[latchX P ] and s →P t →P u.
Proposition 2.4 follows.
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Proposition 2.4 gives a recipe for invariant verification using the latch-reduced
transition graph instead of the full transition graph of a module: the invariant
verifier Algorithm 2.4 can call the reachability checker Algorithm 2.3 on the
latch-reduced transition graph GL

P of the input module P , provided that the
membership test IsMember(s, σT ) for the target region is replaced by appro-
priate applications of the boolean functions InitLatchSat and TransLatchSat .
The space savings may be substantial, as the type state needs to store only the
values for the latched variables of P .

Exercise 2.21 {P3} [On-the-fly, latch-reduced transition-invariant verification]
Since the latch-satisfaction of a state predicate is based on transitions, rather
than states, latch reduction lends itself naturally to checking transition in-
variants (cf. Exercise 2.6). Give a detailed algorithm for solving the proposi-
tional transition-invariant verification problem, using both on-the-fly and latch-
reduction techniques. Use the functions LatchReducedInit and LatchReducedPost
from Exercise 2.20, and modify TransLatchSat for transition invariants. Choose
either the state-level or the bit-level model. In either case, for every proposi-
tional instance (P, r′) of the transition-invariant problem, you should aim for the
time complexity O(4k · (|P |+ |r′|)) and the space complexity O(2k + |P |+ |r′|),
where k is the number of latched variables of the input module P .

2.4 State Explosion∗

The exponential difference between reachability checking for transition graphs
(Theorem 2.1) and invariant verification for reactive modules (Theorem 2.2) is
intrinsic and, in general, cannot be avoided: in this section, we formally prove
that the complexity class of the propositional invariant-verification problem is
Pspace, and therefore, in absence of any major breakthroughs in complex-
ity theory, the invariant-verification problem cannot be solved efficiently. The
stark contrast to the complexity class of the reachability problem, Nlogspace,
is caused by the fact that a module provides an exponentially more succinct de-
scription of a transition graph than an enumerative graph representation. This
phenomenon is called state explosion. The source of state explosion is the num-
ber of module variables: for a module P , the number of states of the transition
graph GP grows exponentially with the number of variables of P . State ex-
plosion is the single most important obstacle to verification practice, for two
reasons. First, state explosion does not arise from any peculiarities of our mod-
eling framework —any discrete system with k boolean variables gives rise to
2k states— and therefore is present in all modeling frameworks. Second, state
explosion arises in invariant verification, which asks the simplest kind of global
questions about the dynamics of a discrete system, and therefore is present for
all verification questions. This prominence has thrust state explosion into the
center of verification research. At the same time, the results of this section
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show that all approaches to alleviate the state-explosion problem are ultimately
doomed to be heuristics that work well in certain limited cases. Several of the
next chapters will present such heuristics which have proved useful in practice.

2.4.1 Hardness of Invariant Verification

We first prove that in the propositional case —where all variables are boolean—
the invariant-verification problem is hard for Pspace, and then, that in the
general case —specifically, in the presence of integer variables— the invariant-
verification problem is undecidable. Both proofs are similar, in that reactive
modules are used to simulate Turing machines: polynomial-space Turing ma-
chines in the boolean case; arbitrary Turing machines in the integer case.

Pspace-hardness of propositional invariant verification

The Pspace-hardness of propositional invariant verification follows from the
fact that with a polynomial number of boolean variables, one can simulate the
behavior of a Turing machine that visits a polynomial number of tape cells.

Theorem 2.3 [Hardness of propositional invariant verification] The proposi-
tional invariant-verification problem is Pspace-hard.

Proof. We polynomial-time reduce the acceptance problem for polynomial-
space Turing machines to the propositional invariant-verification problem. We
are given a deterministic Turing machine M that accepts or rejects every input
in polynomial space, and we are given an input word a for M . We need to
construct, in time polynomial in the specification of M and the length of a,
a propositional module PM,a and an observation predicate rM,a so that the
invariant-verification problem (PM,a, rM,a) has the answer Yes iff the Turing
machine M accepts the input a. Since determining whether or not a polynomial-
space Turing machine accepts an input is, by definition, Pspace-hard, it follows
that the propositional invariant-verification problem is also Pspace-hard.

As the given Turing machine M uses only polynomial space, there is a polyno-
mial function p(·) so that M accepts or rejects every input of length i by visiting
at most p(i) tape cells. Let A be the tape alphabet of M , containing the blank
letter, and let Q be the set of control modes of M , containing the initial mode qI ,
the accepting mode qA, and the rejecting mode qR. Let n be the length of the
given input word a. The Turing machine starts in the control mode qI , its read
head at the first tape cell, with the first n tape cells containing the input a,
and the remaining p(n) − n tape cells containing blanks. The Turing machine
accepts the input by entering the control mode qA, and it rejects the input by
entering the control mode qR. Let t be the number of computation steps that
M needs for accepting or rejecting the input a.
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We construct a finite, closed, deterministic module PM,a, which, for simplicity,
is not necessarily propositional; the task of turning PM,a into an appropriate
propositional module is left to the reader (Exercise 2.22). The module PM,a

has p(n) variables, x1, . . . , xp(n), each of the finite type A, and p(n) variables,
y1, . . . , yp(n), each of the finite type Q ∪ {⊥}. The value of xi indicates the
contents of the i-th tape cell. If the read head of M is located at the i-th tape
cell, then the value of yi indicates the control mode of M ; otherwise yi has the
value ⊥. In this way, every state s of the module PM,a, such that s(yi) belongs
to Q for precisely one i between 1 and p(n), encodes a configuration of the
Turing machine M . All variables are interface variables and are controlled by a
single atom, UM,a. The initial and update commands of UM,a ensure that the
unique trajectory of PM,a of length t encodes the computation of M on input a.
The initial command of UM,a contains a single guard assignment, which assigns
the input letter ai to xi for all 1 ≤ i ≤ n, assigns the blank letter to xi for
all n < i ≤ p(n), assigns the initial mode qI to y1, and assigns ⊥ to yi for
all 1 < i ≤ p(n). Then, the unique initial state of PM,a encodes the initial
configuration of M . The Turing machine M is specified by a set of transition
rules, which are tuples in (Q × A) × (Q × A × {left , right}). For example, the
transition rule ((q, a), (q′, a′, right)) specifies that “if the control mode is q and
the tape letter at the read head is a, then switch the control mode to q′, write
letter a′ onto the tape, and move the read head one tape cell to the right.”
For each transition rule of M , the update command of UM,a contains p(n) − 1
guarded assignments, which simulate the effect of the rule. For example, for the
transition rule ((q, a), (q′, a′, right)), for each 1 ≤ i < p(n), the update command
contains the guarded assignment

xi = a ∧ yi = q → x′
i := a′; y′

i :=⊥; y′
i+1 := q′.

Then, for all j ≤ t, the unique initialized trajectory of PM,a of length j encodes
the first j computation steps of M on input a. Consequently, the observation
predicate

rM,a : (∧ 1 ≤ i ≤ p(n) | yi 6= qR)

is an invariant of the module PM,a iff the Turing machine M accepts the input a.
If the specification of M contains |M | symbols, then the textual description of
PM,a has O(|M | · p(n)) symbols, and the predicate rM,a consists of O(p(n))
symbols; so both PM,a and rM,a can be constructed in time polynomial in the
size of (M, a).

Remark 2.19 [Hardness of propositional invariant verification] The module
PM,a constructed in the proof of Theorem 2.3 contains a single atom that con-
trols a polynomial number of variables. Instead, we can construct a module
that has polynomial number of atoms, each of which controls a single variable,
reads a constant number of variables, awaits none, and has initial and update
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commands of constant size. Thus, the state explosion is independent of the num-
ber or complexity of atoms; it occurs when all module variables are controlled
by a single atom, and when each atom controls a single variable. Also note
that, in the proof of Theorem 2.3, nondeterminism plays no role in establishing
Pspace-hardness.

Exercise 2.22 {T3} [Hardness of propositional invariant verification] (a) Com-
plete the proof of Theorem 2.3 by turning the module PM,a and the predi-
cate rM,a, in polynomial time, into a propositional module and a propositional
formula with the appropriate properties. (b) The module PM,a used in the proof
of Theorem 2.3 is synchronous. Prove that the invariant-verification problem is
Pspace-hard even if the problem instances are restricted to propositional mod-
ules with (1) a single atom which is a speed-independent process, and (2) mul-
tiple atoms each of which is a speed-independent process controlling a single
variable.

Undecidability of invariant verification with counters

For infinite modules, the invariant-verification question can be algorithmically
undecidable. To see this, we define a class of reactive modules which make use
of nonnegative integer variables in a very restricted way. A counter is a variable
of type N which can be initialized to 0 or 1, tested for 0, incremented, and
decremented. If all variables of a module are counters, then the module is said
to be a counter module. Thus, the counter modules are a proper subset of the
integer modules with addition from Exercise 2.17.

Counter module

A counter module is a reactive module P such that (1) all module variables
of P are of type N, (2) every guard that appears in the initial and update
commands of P is a finite (possibly empty) conjunction of predicates of the
form x = 0 and x > 0, (3) every assignment that appears in the initial
commands of P is either 0 or 1, and (4) every assignment that appears in
the update commands of P has the form x + 1 or x

.
−1. The variables of

a counter module are called counters. An instance (P, r) of the invariant-
verification problem is a counter instance if P is a counter module and the
predicate r has the form x = 0. The instances of the counter invariant-
verification problem are the counter instances of the invariant-verification
problem.

A classical counter machine is a discrete, deterministic system with a finite num-
ber of control modes and a finite number of counters. Since each control mode
q can be replaced by a counter, whose value is 1 iff the control is in the mode q,
and otherwise 0, every counter machine can be simulated by a closed, determin-
istic counter module. Since every Turing machine can, in turn, be simulated,
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Algorithm 2.5 [Pspace algorithm for invariant verification] (schema)

Input: a propositional module P , and a propositional formula r.
Output: the answer to the instance (P, r) of the invariant-verification

problem.

Let k be the number of module variables of P ;
foreach s, t ∈ ΣP do

if s ∈ σI
P and not t |= r then

if PSpaceSearch(s, t, 2k) then return Yes fi

fi

od;
return No.

function PSpaceSearch(s, t, i): B

if s = t then return true fi;
if i > 1 and s →P t then return true fi;
if i > 2 then

foreach u ∈ ΣP do

if PSpaceSearch(s, u, di/2e) and PSpaceSearch(u, t, di/2e) then

return true
fi

od

fi;
return false .

by a counter machine —in fact, two counters suffice to encode the contents of
an unbounded number of tape cells— it follows that the reachability problem
for counter machines, which asks if a given counter machine ever enters a given
control mode, and therefore also the counter invariant-verification problem, is
undecidable.

Theorem 2.4 [Hardness of counter invariant verification] The counter invariant-
verification problem is undecidable.

2.4.2 Complexity of Invariant Verification

The Pspace lower bound for propositional invariant verification (Theorem 2.3)
can be tightly matched by an upper bound. However, Algorithm 2.3 uses Ω(2k)
space for solving an invariant-verification question with k variables, even if on-
the-fly methods are employed, and independent of state-level vs. bit-level anal-
ysis, because the region σR of explored states may contain up to 2k states. A
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different approach is needed if we wish to use only space polynomial in k. We
now present such an algorithm and give a detailed, bit-level space analysis. (Bit-
level analysis is, strictly speaking, not necessary, as the state-level and bit-level
space requirements of any algorithm can differ at most by a polynomial factor
of k.)

Let P be a propositional module with k variables, and let r be a propositional
formula that is an observation predicate for P . Since P has 2k states, a state s
of P is reachable iff there is an initialized trajectory with sink s and length at
most 2k. This suggests Algorithm 2.5, which performs a binary search to check
reachability on the transition graph GP . Given two states s and t and a positive
integer i, the boolean function PSpaceSearch(s, t, i) returns true iff there is a
trajectory with source s and sink t of length at most i. The function is computed
recursively by attempting to find a state u at the midpoint of the trajectory.
Since every state of P is a bitvector of length k, all pairs of states can be
enumerated one after the other in O(k) space. By Lemma 2.6, given two states
s and t, it can be determined in O(|P | + |r|) time, and therefore linear space,
if s is initial, if t satisfies r, and if t is a successor of s. In Algorithm 2.5, the
space used by the first recursive call of the function PSpaceSearch can be reused
by the second recursive call. Hence, the total space used by Algorithm 2.5 is
O(k ·d+|P |+|r|), where d is the depth of the recursion. Since each recursive call
searches for a trajectory of half the length, starting from length 2k, the depth
of the recursion is bounded by k. Thus, Algorithm 2.5 can be implemented
in O(k2 + |P | + |r|) space, which is quadratic in the size of the input. This
establishes that the propositional invariant-verification problem can be solved
in Pspace.

Theorem 2.5 [Complexity of invariant verification] The propositional invariant-
verification problem is Pspace-complete.

Remark 2.20 [Depth-first search versus Pspace search] Algorithm 2.5 has an
Ω(8k) time complexity, even in the state-level model, and thus pays a price in
running time for achieving polynomial space. In practice, one always prefers
search algorithms whose running time is at worst proportional to the number of
transitions (say, O(4k · (|P | + |r|)) for propositional instances of the invariant-
verification problem with k variables), or better yet, proportional to the number
of states and reachable transitions (as is the case for on-the-fly depth-first-
search).

Remark 2.21 [Nondeterministic complexity of invariant verification and reach-
ability] An alternative, conceptually simpler proof that the propositional invariant-
verification problem belongs to Pspace can be based on the knowledge that de-
terministic and nondeterministic polynomial space coincide (i.e., every nondeter-
ministic polynomial-space Turing machine can be simulated, using only polyno-
mial space, by a deterministic Turing machine). Hence it suffices to give a non-
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Algorithm 2.6 [Npspace schema for invariant verification]

Input: a propositional module P , and a propositional formula r.
Output: one of the nondeterministic runs returns Yes iff the in-

stance (P, r) of the invariant-verification problem has the answer
Yes.

Let k be the number of module variables of P ;
Choose an arbitrary state s ∈ ΣP ;
if not s ∈ σI

P then return No fi;
Choose an arbitrary nonnegative integer m between 0 and 2k;
for i := 1 to m do

Choose an arbitrary state t ∈ ΣP ;
if not s →P t then return No fi;
s := t
od;

if not s |= r then return No fi;
return Yes.

deterministic approach for solving the propositional invariant-verification prob-
lem in polynomial space. Such an approach is outlined in Algorithm 2.6. The
nondeterministic algorithm solves propositional invariant-verification questions
with k variables using only the local variables s, m, i, and t, in Θ(k + |P |+ |r|)
space. Essentially the same nondeterministic algorithm, applied to inputs of the
form (G, σT ), where G is a transition graph and σT is a region of G, shows that
the reachability problem belongs to Nlogspace (i.e., the algorithm uses only
logarithmic space in addition to the space occupied by the input).

2.5 Compositional Reasoning

Complex systems are often built from parts of small or moderate complexity.
For example, circuits are built from individual gates and memory cells. In such
a setting, state explosion is caused by the parallel composition of many modules,
each with a small number of variables. When possible, we want to make use of
the structure inherent in such designs for verification purposes. In particular, the
state-explosion problem may be avoided if an invariant of a compound module
can be derived from invariants of the component modules.
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2.5.1 Composing Invariants

A divide-and-conquer approach to verification attempts to reduce a verification
task about a complex system to subtasks about subsystems of manageable com-
plexity. If the reduction follows the operators that are used in the construction
of the complex system, then the divide-and-conquer approach is called compo-
sitional reasoning. Complex reactive modules are built from simple modules
using the three operations of parallel composition, variable renaming, and vari-
able hiding. Hence, for compositional invariant verification, we need to know
how invariants distribute over the three module operations.

Proposition 2.5 [Compositionality of invariants] If the observation predicate
r is an invariant of the module P , then the following three statements hold.

Parallel composition For every module Q that is compatible with P , the ob-
servation predicate r is an invariant of the compound module P‖Q.

Variable renaming For every variable renaming ρ for the module variables
of P , the renamed observation predicate r[ρ] is an invariant of the renamed
module P [ρ].

Variable hiding For every interface variable x of P , the observation predicate
(∃x | r) is an invariant of the module hide x in P . In particular, if x
does not occur freely in r, then r is an invariant of hide x in P .

Proof. The first part of Proposition 2.5 follows from Proposition 2.2. The
second and third parts are immediate.

The compositionality and monotonicity of invariants (the first part of Propo-
sition 2.5 and Remark 2.9) suggest the following verification strategy, called
compositional invariant verification:

Let P and Q be two compatible modules, and let r be an observation
predicate for the compound module P‖Q. In order to show that r
is an invariant of P‖Q, it suffices to find an observation predicate p
for P , and an observation predicate q for Q, such that (1) p is an
invariant of P , (2) q is an invariant of Q, and (3) the implication
p ∧ q → r is valid.

The local invariants p and q represent the guarantees that the components P
and Q make as to jointly maintain the global invariant r. Compositional invari-
ant verification is usually beneficial if the state spaces of P and Q are smaller
than the state space of the compound module P‖Q, which is the typical sce-
nario. It should be noted, however, that the compound module may have fewer
reachable states than either component module, in which case decomposition
does not achieve the desired effect. This happens when the two components are
tighly coupled, strongly restraining each others behaviors, and have few private
variables.
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Example 2.11 [Compositional verification of railroad control] Let us revisit
Example 2.8 and prove that the railroad controller Controller2 from Figure 2.9
enforces the train-safety requirement that in all rounds, at most one train is on
the bridge. More precisely, we wish to establish that the observation predicate

rsafe : ¬(pcW = bridge ∧ pcE = bridge)

is an invariant of the module

module RailroadSystem2 is

hide arriveW , arriveE , leaveW , leaveE in

‖ TrainW

‖ TrainE

‖ Controller2 .

To decompose the verification problem, we observe that the controller ensures
that (1) the train traveling clockwise is allowed to proceed onto the bridge only
when the western signal is green and the eastern signal is red, and symmet-
rically, (2) the train traveling counterclockwise is allowed to proceed onto the
bridge only when the eastern signal is green and the western signal is red. The
conjunction of these two assertions entails the train-safety requirement. The
formal argument proceeds in six steps:

1. We establish that

rsafe
W : pcW = bridge → (signalW = green ∧ signalE = red)

is an invariant of the module TrainW ‖Controller2 .

2. By the second part of Proposition 2.5 (variable renaming in invariants),
we deduce that the renamed predicate

rsafe
E : pcE = bridge → (signalE = green ∧ signalW = red)

is an invariant of the renamed module TrainE ‖Controller2 .

3. By the first part of Proposition 2.5 (compositionality of invariants), we

deduce that both rsafe
W and rsafe

E are invariants of the compound module
TrainW ‖TrainE ‖Controller2 .

4. By the second part of Remark 2.9 (monotonicity of invariants), we de-

duce that the conjunction rsafe
W ∧ rsafe

E is an invariant of the module
TrainW ‖TrainE ‖Controller2 .

5. Since the implication rsafe
W ∧ rsafe

E → rsafe is valid, by the first part of
Remark 2.9 (monotonicity of invariants), we deduce that rsafe is also an
invariant of TrainW ‖TrainE ‖Controller2 .
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module BinArbiter is

private turn : {1, 2}
interface akin1, akin2, out : B

external in1, in2, akout : B

atom controls turn reads turn awaits akout
init

[] true → turn′ := 1
[] true → turn′ := 2

update

[] akout ′ ∧ turn = 1 → turn ′ := 2
[] akout ′ ∧ turn = 2 → turn ′ := 1

atom controls akin1, akin2, out awaits turn, in1, in2, akout
initupdate

[] turn ′ = 1 → akin ′
1 := akout ′; akin ′

2 := 0; out ′ := in ′
1

[] turn ′ = 2 → akin ′
1 := 0; akin ′

2 := akout ′; out ′ := in ′
2

Figure 2.15: Two-bit round-robin arbiter

6. Finally, by the third part of Proposition 2.5 (variable hiding in invariants),
we conclude rsafe is an invariant of the module RailroadSystem2 .

Only the first step requires state-space exploration, namely, the solution of
a reachability problem on the latch-reduced transition graph of the module
TrainW ‖Controller2 . The savings are easy to compute: the latch-reduced tran-
sition graph of TrainW ‖Controller2 has 48 states; the latch-reduced transition
graph of entire system RailroadSystem2 has 144 states.

Exercise 2.23 {P2} [Composing invariants] Consider the two-bit arbiter mod-
ule BinArbiter from Figure 2.15. When the control input akout is high, then
one of the two data inputs in1 and in2 is relayed to the data output out . If in i

is relayed, i = 1, 2, then the corresponding control output akin i is set to 1, and
the other control output, akin3−i, is set to 0. When the control input akout is
low, then both control outputs akin1 and akin2 are set to 0, as to indicate that
none of the data inputs is relayed. The variable turn controls which data input
is relayed and alternates the two choices. (a) Using three two-bit arbiters, we
can build the four-bit round-robin arbiter

module QuadArbiter is

hide in12, in34, akin12, akin34 in

‖ BinArbiter [in1, in2, akin1, akin2 := in12, in34, akin12, akin34]
‖ BinArbiter [out , akout := in12, akin12]
‖ BinArbiter [in1, in2, akin1, akin2, out , akout := in3, in4, akin3, akin4, in34, akin34]
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mnakin3 mnakin4

mnakin1 mnakin2

mnin3 mnin4

mnin1 mnin2

mnakout

mnakin34

mnakin2mnakin1

mnakout

mnQuadArbiter

mnakin12

mnakout

mnakin2mnakin1mnin1 mnin2

mnout

mnin34

mnout

mnin12

mnin1 mnin2

mnout

mnin1, in2, akout ≺ akin1, akin2, out

mnin1, in2, akout ≺ akin1, akin2, outmnin1, in2, akout ≺ akin1, akin2, out

mnBinArbiter

mnBinArbiter mnBinArbiter

Figure 2.16: Abstract block diagram for four-bit round-robin arbiter

whose abstract block diagram is shown in Figure 2.16. Why is QuadArbiter
called a round-robin arbiter? Prove compositionally that the two observation
predicates

p2: (∀ 1 ≤ i ≤ 4 | akin i → out = ini)
q2: akout ↔ (∃ 1 ≤ i ≤ 4 | akin i)

are invariants of the module QuadArbiter . First, find suitable invariants p1 and
q1 for the two-bit arbiter BinArbiter and prove them by inspecting the latch-
reduced transition graph (Proposition 2.4). Then, use compositional reasoning
(Proposition 2.5 and Remark 2.9) to establish the invariants p2 and q2 of the
four-bit arbiter QuadArbiter . (b) Compositional reasoning permits us to prove
invariants for entire module classes, not only individual modules. An example
of this is the class of all 2k-bit round-robin arbiters, for positive integers k,
which are built by connecting 2k − 1 two-bit arbiters to form a binary tree
of height k. The construction of the resulting module schema TreeArbiter is
shown in Figure 2.17. Use compositional reasoning to derive, for all k ≥ 1, the
invariants

pk: (∀ 1 ≤ i ≤ 2k | akin i → out = in i)
qk: akout ↔ (∃ 1 ≤ i ≤ 2k | akin i)
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Figure 2.17: Schematic construction of 2k-bit round-robin arbiter

of the 2k-bit arbiter TreeArbiter from the invariants p1 and q1 of the two-bit
arbiter BinArbiter . The integer k is a parameter that occurs in the module
definition, the invariant definition, and the derivation.

2.5.2 Assuming Invariants

The compositional approach that was advocated in the previous section has
limited applicability. Suppose that the predicate r is an invariant of the com-
pound module P‖Q. A decomposition of the global invariant r into a local
invariant p of P and a local invariant q of Q, which together imply r, may not
be possible. Rather, it is often necessary to make certain assumptions about
the environment of the component P in order for P to do its share in ensuring
the global invariant r by maintaining the local invariant p. The assumptions on
the environment of P need then to be discharged against Q. Symmetrically, Q
may contribute to r by maintaining q only if its environment meets assumptions



Invariant Verification 55

module P1 is module Q1 is

interface x : B interface y : B

external y : B external x : B

atom controls x reads x atom controls y awaits x
init initupdate

[] true → x′ := 0 [] true → y′ := x′

update

[] true → x′ := x

module P2 is module Q2 is

interface x : B interface y : B

external y : B external x : B

atom controls x reads x atom controls y reads x
init init

[] true → x′ := 0 [] true → y′ := 0
update update

[] true → x′ := x [] true → y′ := x

module P3 is module Q3 is

interface x : B interface y : B

external y : B external x : B

atom controls x reads y atom controls y reads x
init init

[] true → x′ := 0 [] true → y′ := 0
update update

[] true → x′ := y [] true → y′ := x

Figure 2.18: Three forms of collaboration to maintain the invariant y = 0
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that can be discharged against P . The situation becomes apparently cyclic if
the environment invariant q is the very assumption necessary for establishing
that p is invariant with respect to P , and the environment invariant p is the
assumption needed to establish the invariance of q with respect to Q.

For a concrete illustration, Figure 2.18 presents a series of small examples. First,
consider the two modules P1, controlling x, and Q1, controlling y. We want to
prove compositionally the invariant y = 0 of the compound module P1 ‖Q1.
This follows from the invariant x = 0 of P1 and the invariant y = x of Q1.
Second, consider the two modules P2 and Q2. In this case, the invariant y = 0
of the module P2 ‖Q2 cannot be established compositionally, because the truth
of y = 0 in one round depends on the truth of x = 0 in the previous round. Still,
the problem can be solved with the help of transition invariants (Exercise 2.6).
The transition invariant y′ = 0 of P2 ‖Q2 follows from the invariant x = 0
of P1 and the transition invariant y′ = x of Q1. Together with the fact that
initially y = 0, this establishes the invariant y = 0 of P2 ‖Q2. Finally, consider
the two modules P3 and Q3. In this case, the invariant y′ = 0 of the module
P3 ‖Q3 cannot be established from the transition invariants y′ = x of P3 and
x′ = y of Q3. In order for Q3 to guarantee the desired invariant y = 0, we
need to assume that the environment of Q3 maintains the invariant x = 0.
Symmetrically, P3 guarantees the invariant x = 0 only under the assumption
that, in turn, the environment of P3 keeps y = 0 invariant. Then, induction
on the length of the initialized trajectories of the compound module P3 ‖Q3

resolves the cyclic interdependence between assumptions and guarantees and
establishes the global invariant x = 0 ∧ y = 0. This kind of compositional
proof strategy is called assume-guarantee reasoning. In this chapter, we restrict
ourselves to both assumptions and guarantees which are invariants.

Let P be a module, and let r be an external predicate for P . The assumption
that the environment of P maintains the invariant r can be represented by
composing P with a simple module whose only purpose is to keep r invariant
and, while doing so, permitting as many initialized traces as possible. The most
permissive module that ensures the invariance of r is called the r-assertion
module.

Assertion module

Let r be a satisfiable boolean expression whose free variables have finite
types. We define the r-assertion module Assert(r) as follows. The sets of
private and external variables of Assert(r) are empty; the set of interface
variables of Assert(r) is the set free(r) of variables which occur freely in r.
The module Assert(r) has a single atom, which controls all variables in
free(r), neither reads nor awaits any variables, and has identical initial and
update commands: for every valuation s of the variables in free(r) which
satisfies r, the initial and update commands contain a guarded assignment
with the guard true and for each variable x ∈ free(r), the assignment s(x).
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Remark 2.22 [Assertion module] The boolean expression r is an interface
predicate and an invariant of the r-assertion module Assert(r). In fact, r is
the strongest invariant of Assert(r); that is, for every invariant q of Assert(r),
the implication r → q is valid. All variables of the r-assertion module Assert(r)
are history-free, and therefore, the latch-reduced transition graph of Assert(r)
has a single state.

The following theorem formalizes our contention that if (1) the module P guar-
antees the invariant p assuming the environment maintains the external predi-
cate q invariant, and (2) the module Q guarantees the invariant q assuming the
environment maintains p invariant, then the compound module P‖Q has both
p and q as invariants. As in the third example from Figure 2.18, the proof will
proceed by induction on the length of the initialized trajectories of P‖Q.

Theorem 2.6 [Assume-guarantee reasoning for invariants] Let P and Q be two
compatible modules. Let p be an external predicate for Q, and let q be an external
predicate for P , such that all free variables of p and q have finite types. If p is
an invariant of P ‖Assert(q), and q is an invariant of Assert(p) ‖Q, then p∧ q
is an invariant of P‖Q.

Proof. Consider two compatible modules P and Q, an external predicate p
for Q, and an external predicate q for P . The free variables of p and q have
finite types, so that the assertion modules Assert(p) and Assert(q) are well-
defined. Assume that p is an invariant of P ‖Assert(q), and q is an invariant
of Assert(p) ‖Q; that is, for every initialized trajectory s of P ‖Assert(q), the
projection s[extlXP ] is an initialized trajectory of Assert(p), and for every ini-
tialized trajectory s of Assert(p) ‖Q, the projection s[extlXQ] is an initialized
trajectory of Assert(q). We show that for every initialized trajectory s of P‖Q,
the projection s[XP ] is an initialized trajectory of P ‖Assert(q), and the pro-
jection s[XQ] is an initialized trajectory of Assert(p) ‖Q. It follows that p ∧ q
is an invariant of P‖Q.

We need to define some additional concepts. Given a module R, a set X ⊆ XR

of module variables is await-closed for R if for all variables x and y of R, if
y ≺R x and y ∈ X , then x ∈ X . For an await-closed set X , the pair (s, t)
consisting of an initialized trajectory s of R and a valuation t for X is an X-
partial trajectory of R if there exists a state u of R such that (1) u[X ] = t, and
(2) su is an initialized trajectory of R. Thus, partial trajectories are obtained
by executing several complete rounds followed by a partial round, in which only
some of the atoms are executed. The following two crucial facts about partial
trajectories follow from the definitions.

(A) The partial trajectories of a compound module are determined by the
partial trajectories of the component modules: for every pair R1 and R2

of compatible modules, every await-closed set X for R1‖R2, every sequence
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s of states of R1‖R2, and every valuation t for X , the pair (s, t) is an X-
partial trajectory of R1‖R2 iff s[XR1

] is an (X ∩ XR1
)-partial trajectory

of R1 and s[XR2
] is an (X ∩XR2

)-partial trajectory of R2. This property
generalizes Proposition 2.2.

(B) If (s, t) is an X-partial trajectory of R, and u is a valuation for a set
Y ⊆ extlXR of external variables of R which is disjoint from X , then
(s, t ∪ u) is an (X ∪ Y )-partial trajectory of R. This property is due the
nonblocking nature of modules; it generalizes Lemmas 2.1 and 2.2.

Let X1, . . . , Xm be a partition of XP‖Q into disjoint subsets such that (1) each
Xi either contains only external variables of P‖Q, or contains only interface
variables of P , or contains only interface variables of Q, and (2) if y ≺P‖Q x
and y ∈ Xi, then x ∈ Xj for some j < i. Define Y0 = ∅, and for all 0 ≤ i < m,
define Yi+1 = Yi∪Xi. Each set Yi is await-closed for P‖Q. For all 0 ≤ i ≤ m, let
Li be the set of Yi-partial trajectories of P‖Q, and let L = (∪ 0 ≤ i ≤ m | Li).
We define the following order < on the partial trajectories in L: for i < m,
if (s, t) ∈ Li and (s, u) ∈ Li+1 and u[Yi] = t, then (s, t) < (s, u); for i = m,
if (s, t) ∈ Li, then (s, t) < (st, ∅). Clearly, the order < is well-founded. We
prove by well-founded induction with respect to < that for all 0 ≤ i ≤ m, if
(s, t) is a partial trajectory in Li, then (s[XP ], t[XP ]) is a (Xi ∩ XP )-partial
trajectory of P ‖Assert(q), and (s[XQ], t[XQ]) is a (Xi ∩XQ)-partial trajectory
of Assert(p) ‖Q. In the following, for simplicity, we suppress projections.

Consider (s, ∅) in L0. If s is the empty trajectory, then (s, ∅) is a trajectory
of all modules. Otherwise, s = tu for some state sequence t and state u of
P‖Q. Then (t, u) is a Ym-partial trajectory of P‖Q, and (t, u) < (s, ∅). By
induction hypothesis, (t, u) is a Ym-partial trajectory of both P ‖Assert(q) and
Assert(p) ‖Q, and hence, (s, ∅) is a Y0-partial trajectory of both P ‖Assert(q)
and Assert(p) ‖Q.

Consider (s, t) in Li+1 for some 0 ≤ i < m. Let u = t[Yi]. Then (s, u) is
a Yi-partial trajectory of P‖Q, and (s, u) < (s, t). By induction hypothesis,
(s, u) is a Yi-partial trajectory of both P ‖Assert(q) and Assert(p) ‖Q. By
fact (A) about partial trajectories, (s, t) is a Yi+1-partial trajectory of P and Q,
and (s, u) is a Yi-partial trajectory of Assert(p) and Assert(q). It suffices to
show that (s, t) is a Yi+1-partial trajectory of both Assert(p) and Assert(q).
Consider Yi+1 = Yi ∪ Xi. Without loss of generality, assume that Xi contains
only interface variables of P . Then clearly, (s, t) is a Yi+1-partial trajectory of
Assert(q). By fact (A), (s, t) is also a Yi+1-partial trajectory of P ‖Assert(q).
By fact (B), there is an initialized trajectory sv of P ‖Assert(q) such that
v[Yi+1] = t. By assumption, sv is an initialized trajectory of Assert(p), which
implies that (s, t) is a Yi+1-partial trajectory of Assert(p).

Remark 2.23 [Assume-guarantee reasoning]∗ For those interested in exactly
which of our modeling choices make assume-guarantee reasoning possible, let us
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review the conditions of Theorem 2.6 by inspecting the proof. The condition
that all variables that occur freely in the predicates p and q must have finite
types is necessary for the assertion modules Assert(p) and Assert(p) to be well-
defined, because the initial and update commands of reactive modules contain
only finitely many choices in the form of guarded assignments. This requirement
of reactive modules, which is useful for other purposes, is not needed for the
soundness of assume-guarantee reasoning. The condition that all variables that
occur freely in the predicate q must not be interface variables of the module P
is necessary for the assertion module Assert(q) to be compatible with P . In this
strong form the condition is not needed for the soundness of assume-guarantee
reasoning, as long as it is ensured that the system P ‖Assert(q) which represents
the component P together with the invariance assumption q is nonblocking —
that is, as long as the assumed invariant q does not prevent the module P from
having in every state at least one successor state. A symmetric comment holds
for the predicate p and the module Q.

Theorem 2.6, in conjunction with the monotonicity of invariants, suggests the
following verification strategy, called assume-guarantee invariant verification:

Let P and Q be two compatible modules, and let r be an observation
predicate for the compound module P‖Q. In order to show that r is
an invariant of P‖Q, it suffices to find an external predicate p for Q,
and an external predicate q for P , such that (1) p is an invariant
of P ‖Assert(q), (2) q is an invariant of Assert(p) ‖Q, and (3) the
implication p ∧ q → r is valid.

While condition (1) holds whenever p is an invariant of P , and condition (2)
holds whenever q is an invariant of Q, either converse may fail. Therefore,
provided one decomposes the desired invariant r of P‖Q into two parts such
that the first part, p, contains no interface variables of Q, and the second part,
q, contains no interface variables of P , assume-guarantee invariant verification
is more often successful than compositional invariant verification as presented
in Section 2.5.1. Furthermore, since the latch-reduced transition graphs of the
assertion modules Assert(p) and Assert(q) each contain only a single state, the
invariant-verification problem (1) depends on the state space of P , and the
invariant-verification problem (2) depends on the state space of Q, but neither
involves the state space of the compound module P‖Q. In fact, after latch
reduction, the reachable states of P ‖Assert(q) are a subset of the reachable
states of P , so that the performance of assume-guarantee invariant verification
can be no worse, only better, than the performance of compositional invariant
verification.

Exercise 2.24 {P2} [Conditional invariant verification] An instance (P, q, r) of
the conditional invariant-verification problem consists of a module P , an exter-
nal predicate q for P , and an observation predicate r for P . The answer to the



Invariant Verification 60

conditional invariant-verification question (P, q, r) is Yes iff r is an invariant of
P ‖Assert(q). Note that in the special case that the condition q is the boolean
constant true, we obtain the standard invariant-verification problem. (a) Define
the conditional reachability problem so that conditional invariant-verification
questions of the form (P, q, r) can be reduced to conditional reachability ques-
tions of the form (GP , [[q]]P , [[¬r]]P ), which do not involve the transition graph of
the compound module P ‖Assert(q). (b) Give a depth-first algorithm for condi-
tional reachability checking and analyze its time and space requirements. Your
algorithm should perform no worse, and in some cases better, than standard
reachability checking.

Example 2.12 []

Exercise 2.25 {T3} [Compositional reasoning with transition invariants] Gen-
eralize Proposition 2.5 and Theorem 2.6 to transition invariants (cf. Exercise 2.6).
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Chapter 3

Symbolic Graph

Representation

3.1 Symbolic Invariant Verification

As the invariant-verification problem is Pspace-hard, we cannot hope to find
a polynomial-time solution. There are, however, heuristic that perform well
on many instances of the invariant-verification problem that occur in practice.
One such heuristic is based on a symbolic reachability analysis of the underlying
transition graph. Symbolic graph algorithms operate on implicit (or symbolic)
—rather than explicit (or enumerative)— representations of regions. While an
enumerative representation of the region σ is a list of the states in σ, a symbolic
representation of σ is a set of constraints that identifies the states in σ. For
example, for an integer variable x, the constraint 20 ≤ x ≤ 99 identifies the
set {20, 21, . . . , 99} of 80 states. A symbolic region representation may be much
more succinct than the corresponding enumerative representation.

1
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3.1.1 Symbolic Search

Consider a transition graph G with the initial region σI . Since the reachable
region σR equals (∪i ∈

�
. post i(σI )), it can be computed from σI by iterating

the function post on regions. This observation leads to a symbolic algorithm for
solving the reachability problem. Unlike enumerative algorithms, the symbolic
algorithm does not need to test membership of a state in a region, nor does it
require to enumerate all states in a region.

We use the abstract type symreg, called symbolic region, to represent regions.
The abstract type symreg supports five operations.

∪ : symreg × symreg 7→ symreg. The operation σ ∪ τ returns the union of
the regions σ and τ .

∩ : symreg × symreg 7→ symreg. The operation σ∩τ returns the intersection
of the regions σ and τ .

=: symreg × symreg 7→ � . The operation σ = τ returns true iff the regions σ

and τ contain the same states.

⊆: symreg × symreg 7→ � . The region σ ⊆ τ returns true iff every state in σ

is contained in τ .

EmptySet : symreg. The empty set of states.

Since σ ⊆ τ iff σ∪ τ = τ , the inclusion test can be implemented using the union
and equality test. Alternatively, the equality test can be implemented using two
inclusion tests: σ = τ iff both σ ⊆ τ and τ ⊆ σ.

The abstract type of transition graphs is changed to symgraph, called symbolic
graph, which supports two operations.

InitReg : symgraph 7→ symreg. The operation InitReg(G) returns the initial
region of G.

PostReg : symreg × symgraph 7→ symreg. The operation PostReg(σ, G) re-
turns the successor region postG(σ).

Algorithm 3.1 searches the input graph in a breadth-first fashion using symbolic
types for the input graph and for regions. After j iterations of the repeat loop,
the set σR equals post≤j(σI ). This is depicted pictorially in Figure 3.2.

Theorem 3.1 [Symbolic graph search] Let G be a transition graph, and let σT

be a region of G. Algorithm 3.1, if it terminates, correctly solves the reachability
problem (G, σT ). Furthermore, if there exists j ∈

�
such that (1) every reachable

state is the sink of some initialized trajectory of length at most j (i.e. σR =
(∪i ≤ j. post i(σI ))), or (2) some state in the target region σT is the sink of
some initialized trajectory of length j (i.e. σT ∩ post j(σI ) is nonempty), then
the algorithm terminates within j iterations of the repeat loop.
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Algorithm 3.1 [Symbolic Search]

Input: a transition graph G, and a region σT of G.
Output: the answer to the reachability problem (G, σT ).

input G: symgraph; σT : symreg;
local σR: symreg;
begin

σR := InitReg(G);
repeat

if σR ∩ σT 6= EmptySet then return Yes fi;
if PostReg(σR, G) ⊆ σR then return No fi;
σR := σR ∪ PostReg(σR, G)
forever

end.

Figure 3.1: Symbolic search

σ
I post

≤1(σI) post
≤2(σI)

Σ

Figure 3.2: Symbolic computation of the reachable region

In particular, if the input graph G is finite with n states, then Algorithm 3.1
terminates within n iterations of the repeat loop.

Exercise 3.1 {T3} [Fixpoint view of breadth-first search] Let G = (Σ, σI ,→)
be a transition graph. The subset relation ⊆ is a complete lattice on the set 2Σ

of regions of G. Let f be a function from 2Σ to 2Σ such that for each region
σ ⊆ Σ,

f(σ) = σI ∪ postG(σ).

(1) Prove that the function f is monotonic,
⋃

-continuous, and
⋂

-continuous.
(2) What is the least fixpoint µf , and what is the greatest fixpoint νf? Conclude
that Algorithm 3.1 can be viewed as a computation of the least fixpoint µf by
successive approximation.
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Exercise 3.2 {T2} [Enumerative region operations] Suppose we implement the
abstract type symreg as a queue of states. Write algorithms that implement
all boolean operations, emptiness test, equality test, and inclusion test. What is
the cost of each operation, and what is the total cost of Algorithm 3.1? Repeat
the exercise assuming that the type symreg is implemented as a boolean array
indexed by states.

Exercise 3.3 {P2} [Witness reporting in symbolic search] Write an algorithm
for symbolic search that, given an input transition graph G and a region σT

of G, outputs Done, if the reachability problem (G, σT ) has the answer No;
and a witness for the reachability problem (G, σT ), otherwise. Assume that the
following two additional operations are supported by our abstract types.

Element : symreg 7→ state. The operation Element(σ) returns a state belong-
ing to σ.

PreReg : symreg × symgraph 7→ symreg. The operation PreReg(σ, G) returns
the predecessor region preG(σ).

3.1.2 Symbolic Implementation

Consider the transition graph over the state space ΣX for a finite set X of
typed variables. Let the type of a variable x be denoted by � x. The type

� X denotes the product type Πx∈X � x. Then, the type state is the product
type � X . The type symreg is parametrized by the state type state, and
we write symreg[state]. A transition is a pair of states, and thus, has type

� X × � X . Equivalently, a transition can be viewed as a valuation for the set
X ∪ X ′, where the values of the unprimed variables specify the source state of
the transition and the values of the primed variables specify the sink state of the
transition. Consequently, the type of a transition is � X∪X′ . Then, the symbolic
representation of the transition graph G with the state space ΣX is a record
{G}s with two components, (1) the initial region {σI}s of type symreg[ � X ]
and (2) the transition relation {→}s of type symreg[ � X∪X′ ].

We consider the operations renaming and existential-quantifier elimination on
the abstract type symreg[ � X ].

Rename : variable × variable× symreg[ � X ] 7→ symreg[ � X[x:=y]]. For variables
x and y of the same type, the operation Rename(x, y, σ) returns the re-
named region σ[x := y].

Exists : variable× symreg[ � X ] 7→ symreg[ � X\{x}]. The operation
Exists(x, σ) returns the region {s ∈ ΣX\{x} | (∃m. s[x := m] ∈ σ)}.
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The operations renaming and existential-quantifier elimination naturally ex-
tend to variable sets. For variable sets X = {x1, . . . xn} and Y = {y1, . . . yn}
such that, for all 1 ≤ i ≤ n, the variables xi and yi are of the same type,
we write Rename(X, Y, σ) for Rename(xn, yn,Rename(. . .Rename(x1, y1, σ))).
Similarly, for a variable set X = {x1, . . . xn}, we write Exists(X, σ) for
Exists(xn,Exists(. . .Exists(x1, σ))). We implicitly use simple forms of type in-
heritence and type polymorphism. For instance, if the set X of variables is a
subset of Y then a region of type � X is also a region of type � Y ; if the region
σ is of type � X and the region τ is of type � Y then the intersection σ ∩ τ has
type � X∪Y .

Consider the symbolic representation ({σI}s, {→}s) of a transition graph G,
and a region σ. Then, to compute a representation of the region postG(σ),
we can proceed as follows. First, we conjunct σ with {→}s to obtain the set
of transitions originating in σ. Second, we project the result onto the set X ′

of variables by eliminating the variables in X . This yields a representation of
the successor region postG(σ) in terms of the primed variables. Renaming each
primed variable x′ to x, then, leads to the desired result. In summary, the
operation PostReg can be implemented using existential-quantifier elimination
and renaming:

PostReg(σ, {G}s) = Rename(X ′, X,Exists(X, σ ∩ {→}s))

A natural choice for a symbolic representation of regions is boolean expressions.
An expression is usually represented by its parse tree, or by a directed acyclic
graph that allows sharing of common subexpressions to avoid duplication of
syntactically identical subexpressions. If X contains only propositions, then we
can represent a region as a propositional formula. The operation ∪ corresponds
to disjunction of formulas, and the operation ∩ corresponds to conjunction of
formulas. Both operations can be performed in constant time. The constant
EmptySet corresponds to the formula false . Renaming corresponds to textual
substitution, and can be performed in constant time. Existential-quantifier
elimination can be performed in linear time:

Exists(x, p) = (p[x := true] ∨ p[x := false ]).

The satisfiability problem for propositional formulas is NP-complete and, there-
fore, the validity problem and the equivalence problem for propositional formu-
las are coNP-complete. The equality test corresponds to checking equivalence,
and the inclusion test corresponds to checking validity of the implication. Thus,
both these operations are coNP-complete.

The representation of regions as propositional formulas is possible for the propo-
sitional invariant-verification problem. Given a propositional module P with the
set X of variables, the symbolic representation of the transition graph GP con-
sists of (1) [the initial predicate] a propositional formula {σI}s = qI over X , and
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(2) [the transition predicate] a propositional formula {→}s = qT over X ∪ X ′.
The lengths of both formulas are linear in the size of the module description.
The initial predicate is obtained by taking conjunction of the initial commands
of all the atoms, and the transition predicate is obtained by taking conjunction
of the update commands of all the atoms.

Remark 3.1 [Module operations for formula representation] The parallel com-
position of modules corresponds to the conjunction of initial and transition
predicates, and the renaming of modules corresponds to the renaming of initial
and transition predicates. The hiding of module variables does not affect the
initial and transition predicates.

Analogously, enumerated formulas can be used as a symbolic representation of
enumerated modules. Such a symbolic representation is linear in the size of the
enumerated module. The complexities of implementing various operations on
regions represented as enumerated formulas are analogous to the correspond-
ing complexities for propositional formulas. In particular, union, intersection,
renaming, and existential-quantifier elimination are easy, but equality and in-
clusion tests are hard, namely, coNP-complete.

Example 3.1 [Mutual exclusion] Recall Peterson’s mutual-exclusion protocol
from Chapter 1. A symbolic representation of the transition graph GP1 has the
set {pc1, pc2, x1, x2} of variables, the initial predicate qI

1 :

pc1 = outC , (qI
1)

and the transition predicate qT
1 :

∨ (pc1 = outC ∧ pc′1 = reqC ∧ x′
1 = x2)

∨ (pc1 = reqC ∧ (pc2 = outC ∨ x1 6= x2) ∧ pc′1 = inC ∧ x′
1 = x1)

∨ (pc1 = inC ∧ pc′1 = outC ∧ x′
1 = x1)

∨ (pc′1 = pc1 ∧ x′
1 = x1).

Given a propositional formula p, PostReg(p) corresponds to

Rename({pc′1, pc
′
2, x

′
1, x

′
2}, {pc1, pc2, x1, x2},Exists({pc1, pc2, x1, x2}, p ∩ qT

1 )).

Consider the computation of PostReg(qI
1). First, we take the conjunction of qI

1

and qT
1 . The resulting formula can be rewritten after simplification as

∨ (pc1 = outC ∧ pc′1 = reqC ∧ x′
1 = x2)

∨ (pc1 = outC ∧ pc′1 = outC ∧ x′
1 = x1).

After eliminating the variables pc1, x1, and x2, we obtain

pc′1 = outC ∨ pc′1 = reqC .

Finally, renaming the primed variables to unprimed ones, yields the expression

pc1 = outC ∨ pc1 = reqC
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which captures the set of states reachable from the initial states in one round.

Exercise 3.4 {P2} [Mutual exclusion] Give the initial predicate and the transi-
tion predicate for Peterson’s protocol P1‖P2. Simulate Algorithm 3.1 for check-
ing that Peterson’s protocol satisfies the mutual-exclusion requirement. For
each iteration of the repeat loop, give the state predicate {σR}s after quantifier
elimination and simplification.

Recall the definition of a latch-reduced transition graph of a module from Chap-
ter 2. The initial and transition predicates of the reduced graph can be ob-
tained from the corresponding predicates of the original graph using existential-
quantifier elimination. Let P be a module with latched variables latchX P ,
initial predicate qI , and transition predicate qT . Then, the initial region of the
reduced transition graph GL

P equals Exists(XP \latchX P , qI), and the transition
predicate of GL

P equals Exists((XP ∪ X ′
P )\(latchX P ∪ latchX ′

P ), qT ).

Exercise 3.5 {P2} [Message passing] Give the initial predicate and the tran-
sition predicate for the reduced transition graph of the send-receive protocol
SyncMsg from Chapter 1.

Exercise 3.6 {P3} [Propositional invariant verification] (1) Write algorithms
that implement the type symreg as propositional formulas supporting the op-
erations ∪, ∩, =, EmptySet , ⊆, Rename, and Exists . (2) Write an algorithm
that, given a propositional module P , constructs the symbolic representation of
the transition graph GP . The size of the symbolic graph representation should
be within a constant factor of the size of the module description.

Exercise 3.7 {P3} [Enumerated invariant verification] Write a symbolic algo-
rithm for solving the enumerated invariant-verification problem. The size of the
symbolic graph representation should be within a constant factor of the size of
the module description.

Exercise 3.8 {T3} [Backward search] (1) Develop a symmetric version of Al-
gorithm 3.1 that iterates the operator pre starting with the target region σT .
Which region operations are used by your algorithm? (2) Given a symbolic
representation {σ}s of the region σ, define a symbolic representation of the re-
gion pre(σ) (use only positive boolean operations and quantifier elimination).
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3.2 Binary Decision Diagrams

Binary decision diagrams (BDDs) provide a compact and canonical represen-
tation for propositional formulas (or, equivalently, for boolean functions). The
BDD-representation of propositional formulas is best understood by first con-
sidering a related structure called an ordered binary decision graph (BDG).

3.2.1 Ordered Binary Decision Graphs

Let X be a set containing k boolean variables. A boolean expression p over
X represents a function from � k to � . For a variable x in X , the following
equivalence, called the Shannon expansion of p around the variable x, holds:

p ≡ (¬x ∧ p[x := false ]) ∨ (x ∧ p[x := true]).

Since the boolean expressions p[x := true] and p[x := false ] are boolean func-
tions with domain � k−1 , the Shannon expansion can be used to recursively
simplify a boolean function. This suggests representing boolean functions as
decision graphs.

A decision graph is a directed acyclic graph with two types of vertices, terminal
vertices and internal vertices. The terminal vertices have no outgoing edges,
and are labeled with one of the boolean constants. Each internal vertex is
labeled with a variable in X , and has two outgoing edges, a left edge and a
right edge. Every path from an internal vertex to a terminal vertex contains,
for each variable x, at most one vertex labeled with x. Each vertex v represents
a boolean function r(v). Given an assignment s of boolean values to all the
variables in X , the value of the boolean function r(v) is obtained by traversing
a path starting from v as follows. Consider an internal vertex w labeled with
x. If s(x) is 0, we choose the left-successor; if s(x) is 1, we choose the right-
successor. If the path terminates in a terminal vertex labeled with 0, the value
s(r(v)) is 0; if the path terminates in a terminal vertex labeled with 1, the value
s(r(v)) is 1.

Ordered decision graphs are decision graphs in which we choose a linear order
≺ over X , and require that the labels of internal vertices appear in an order
that is consistent with ≺.
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Figure 3.3: Ordered Binary Tree for (x ∧ y) ∨ (x′ ∧ y′)

Ordered Binary Decision Graph

Let X be a finite set of propositions, and ≺ be a total order over X . An
ordered binary decision graph B over (X,≺) consists of (1) [Vertices] a finite
set V of vertices that is partitioned into two sets; internal vertices V N and
terminal vertices V T , (2) [Root] a root vertex vI in V , (3) [Labeling] a
labeling function label : V 7→ X ∪ � that labels each internal vertex with
a variable in X , and each terminal vertex with a constant in � , (4) [Left
edges] a left-child function left : V N 7→ V that maps each internal vertex v

to a vertex left(v) such that if left(v) is an internal vertex then label(v) ≺
label(left(v)), and (5) [Right edges] a right-child function right : V N 7→ V

that maps each internal vertex v to a vertex right(v) such that if right(v)
is an internal vertex then label (v) ≺ label (right(v)).

The requirement that the labels of the children are greater than the label of a
vertex ensures that every BDG is a finite and acyclic. Note that there is no re-
quirement that every variable should appear as a vertex label along a path from
the root to a terminal vertex, but simply that the sequence of vertex labels along
a path from the root to a terminal vertex is monotonically increasing according
to ≺. The semantics of BDGs is defined by associating boolean expressions with
the vertices.

Boolean Function of a BDG

Given a BDG B over (X,≺), let r be a function that associates each element
of V with a boolean function over X such that r(v) equals label(v) if v is a
terminal vertex, and equals

(¬label (v) ∧ r(left (v))) ∨ (label (v) ∧ r(right(v)))

otherwise. Define r(B) = r(vI ) for the root vI .
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Figure 3.4: Ordered Binary Decision Diagram for (x ∧ y) ∨ (x′ ∧ y′)

Example 3.2 [Binary decision graphs] A boolean constant is represented by
a BDG that contains a single terminal vertex labeled with that constant. Fig-
ure 3.3 shows one possible BDG for the expression (x ∧ y) ∨ (x′ ∧ y′) with the
ordering x ≺ y ≺ x′ ≺ y′. The left-edges are labeled with 0, and the right-edges
are labeled with 1. The BDG of Figure 3.3 is, in fact, a tree. Figure 3.4 shows a
more compact BDG for the same expression with the same ordering of variables.

Exercise 3.9 {T3} [Satisfying assignments] Write an algorithm that, given a
BDG B over (X,≺), outputs an assignment s to X such that s satisfies r(B).
Write an algorithm that, given a BDG B over (X,≺), outputs the number
of distinct assignments s to X such that s satisfies r(B). What are the time
complexities of your algorithms?

Two BDGs B and C are isomorphic if the corresponding labeled graphs are
isomorphic. Two BDGs B and C are equivalent if the boolean expressions r(B)
and r(C) are equivalent. If B is a BDG over (X,≺), and v is a vertex of B, then
the subgraph rooted at v is also a BDG over (X,≺). Two vertices v and w of
the BDG B are isomorphic, if the subgraphs rooted at v and w are isomorphic.
Similarly, two vertices v and w are equivalent, if the subgraphs rooted at v and
w are equivalent.

Example 3.3 [Isomorphic and equivalent BDGs] The binary decision graphs
of Figures 3.3 and 3.4 are not isomorphic, but are equivalent. In Figure 3.3, the
subgraph rooted at vertex v3 is a BDG that represents the boolean expression
x′ ∧ y′. The subgraphs rooted at vertices v3, v4, and v5, are isomorphic. On
the other hand, the vertices v5 and v6 are not isomorphic to each other.

Remark 3.2 [Isomorphism and Equivalence of BDGs] Let B and C be two
BDGs over a totally ordered set (X,≺). Checking whether B and C are isomor-
phic can be performed in time linear in the number of vertices in B. Isomorphic
BDGs are equivalent. However, isomorphism is not necessary for equivalence,
as evidenced by the two nonisomorphic, but equivalent, BDGs of Figures 3.3
and 3.4.
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3.2.2 Ordered Binary Decision Diagrams

An ordered binary decision diagram (BDD) is obtained from a BDG by applying
the following two steps:

1. Identify isomorphic subgraphs.

2. Eliminate internal vertices with identical left and right successors.

Each step reduces the number of vertices while preserving equivalence. For in-
stance, consider the BDG of Figure 3.3. Since vertices v3 and v4 are isomorphic,
we can delete one of them, say v4, and redirect the right-edge of the vertex v1 to
v3. Now, since both edges of the vertex v1 point to v3, we can delete the vertex
v1 redirecting the left-edge of the root v0 to v3. Continuing in this manner, we
obtain the BDD of Figure 3.4. It turns out that the above transformations are
sufficient to obtain a canonical form.

Ordered Binary Decision Diagram

An ordered binary decision diagram over a totally ordered set (X,≺) is an
ordered binary decision graph B over (X,≺) with vertices V and root vI

such that (1) [No isomorphic subgraphs] if v and w are two distinct vertices
in V , then v is not isomorphic to w, and (2) [No redundancy] for every
internal vertex v, the two successors left(v) and right(v) are distinct.

The next two proposition assert the basic facts about representing boolean ex-
pressions using BDDs: every boolean function has a unique, upto isomorphism,
representation as a BDD.

Proposition 3.1 [Existence of BDDs] If p is a boolean expression over the set
X of propositions and ≺ is a total order over X then there is a BDD B over
(X,≺) such that r(B) and p are equivalent.

Proposition 3.2 [Canonicity of BDDs] Let B and C be two BDDs over an
ordered set (X,≺). Then, B and C are equivalent iff they are isomorphic.

Exercise 3.10 {T5} [Existence and canonicity] Prove Proposition 3.1 and Propo-
sition 3.2.

For a boolean function p and ordering ≺ of variables, let Bp,≺ be the unique
BDD B over (X,≺) such that r(B) and p are equivalent.

Remark 3.3 [Checking Equivalence, Satisfiability, and Validity] Checking equiv-
alence of two BDDs, with the same variable ordering, corresponds to checking
isomorphism, and hence, can be performed in time linear in the number of ver-
tices. The boolean constant 0 is represented by a BDD with a single terminal
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vertex labeled with 0, and the boolean constant 1 is represented by a BDD
with a single terminal vertex labeled with 1. A boolean expression represented
by the BDD B is satisfiable iff the root of B is not a terminal vertex labeled
with 0. A boolean expression represented by the BDD B is valid iff the root of
B is a terminal vertex labeled with 1. Thus, checking satisfiability or validity
of boolean expressions is particularly easy, if we use BDD representation. Con-
trast this with representation as propositional formulas, where satisfiability is
NP-complete and validity is coNP-complete.

The BDD of a boolean expression has the least number of vertices among all
BDGs for the same expression using the same ordering.

Proposition 3.3 [Minimality of BDDs] Let B be an BDD over an ordered set
(X,≺). If C is a BDG over (X,≺) and is equivalent to B, then C contains at
least as many vertices as B.

Exercise 3.11 {T2} [Support sets] Let p be a boolean function over variables
X . The support-set of p contains those variables x in X for which the boolean
functions p[x := true] and p[x := false ] are not equivalent. Show that a variable
x belongs to the support-set of p iff some vertex in the BDD Bp,≺ is labeled
with x.

The size of the BDD may be exponential in the number of variables. Further-
more, one ordering may result in a BDD whose size is linear in the number of
variables, while another ordering may result in a BDD whose size is exponential
in the number of variables.

Example 3.4 [Variable ordering and BDD size] The size of the BDD repre-
senting a given predicate depends on the choice of the ordering of variables.
Consider the predicate (x ↔ y) ∧ (x′ ↔ y′). Figure 3.5 shows two BDDs for
two different orderings.

Exercise 3.12 {T2} [Representation using BDDs] Consider the boolean ex-
pression

(x1 ∧ x2 ∧ x3) ∨ (¬x2 ∧ x4) ∨ (¬x3 ∧ x4)

Choose a variable ordering for the variables {x1, x2, x3, x4}, and draw the re-
sulting BDD. Can you reduce the size of the BDD by reordering the variables?

Exercise 3.13 {T3} [Exponential dependence on variable-ordering] Consider
the set X = {x1, x2, . . . x2k} with 2k variables. Consider the boolean expression

p : (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ · · · ∨ (x2k−1 ∧ x2k).
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Figure 3.5: Two BDDs for (x ↔ y) ∧ (x′ ↔ y′).

Show that (1) for the ordering x1 ≺ x2 ≺ · · · ≺ x2k the resulting BDD has 2k+2
vertices, and (2) for the ordering x1 ≺ xk+1 ≺ x2 ≺ xk+2 ≺ · · · ≺ xk ≺ x2k , the
resulting BDD has 2k+1 vertices.

Given a boolean expression p over X , the linear order ≺ over X is optimal for
p if, for every linear order ≺′ over X , Bp,≺′ has at least as many vertices as
Bp,≺. Choosing an optimal ordering can lead to exponential saving, however,
computing the optimal oredring itself is computationally hard.

Proposition 3.4 [Complexity of optimal ordering] The problem of checking,
given a BDD B over (X,≺), whether the ordering ≺ is optimal for r(B), is
coNP-complete.

There are boolean functions whose BDD representation does not depend on the
chosen ordering, and the BDD representation of some functions is exponential
in the number of variables, irrespective of the ordering.

Example 3.5 [BDD for parity] Let X be a set of propositions. Consider the
parity function Parity : for an assignment s, s(Parity) = 1 if the number of
variables x with s(x) = 1 is even, and s(Parity) = 0 if the number of variables x

with s(x) = 1 is odd. If X contains k variables, then irrespective of the chosen
ordering ≺, BParity ,≺ contains 2k + 1 vertices.

Exercise 3.14 {T3} [BDD for addition] Let X be the set {x0, x1, y0, y1, out0, out1, carry}.
Choose an appropriate ordering of the variables, and construct the BDD for the
requirement that the output out1out0, together with the carry bit carry , is the
sum of the inputs x1x0 and y1y0. Is your choice of ordering optimal?
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Exercise 3.15 {T5} [BDD for multiplication] Let X contain 2k variables
{x0, . . . , xk−1, y0, . . . , yk−1}. For 0 ≤ i < 2k, let Mult i denote the boolean
function that denotes the i-th bit of the product of the two k-bit inputs, one
encoded by the bits xj and another encoded by the bits yj . Prove that, for
every ordering ≺ of the variables in X , there exists an index 0 ≤ i < 2k such
that the BDD BMulti,≺ has at least 2k/8 vertices. This shows that BDDs do not
encode multiplication compactly irrespective of the variable ordering.

Exercise 3.16 {T3} [Deterministic finite automata and BDDs] Given a vari-
able ordering, a boolean formula can be defined as a regular language over � . A
boolean expression p defines the region [[p]] that contains all states s that satisfy
p. Let x1 ≺ . . . ≺ xk be the enumeration of the variables according to ≺. Each
state s is an assignment to the variables in X , and can be represented by the
vector s(x1) . . . s(xk) over � . Thus, [[p]] is a language over � that contains words
of length k. Since [[p]] is a finite language, it is regular, and can be defined by a
deterministic finite automaton (DFA). DFAs also have canonical forms: every
regular language is accepted by a unique minimal DFA. This suggests that we
can use DFAs as a representation of boolean functions. (1) Give an example of a
boolean expression whose DFA representation is smaller than its BDD represen-
tation. (2) Give an example of a boolean expression whose BDD representation
is smaller than its DFA representation.

3.2.3 Operations on BDDs

Let us turn our attention to implementing regions as BDDs. Every vertex of
a BDD is itself a BDD rooted at that vertex. This suggests that a BDD can
be represented by an index to a global data structure that stores vertices of all
the BDDs such that no two vertices are isomorphic. There are two significant
advantages to this scheme, as opposed to maintaining each BDD as an individual
data structure. First, checking isomorphism, or equivalence, corresponds to
comparing indices, and does not require traversal of the BDDs. Second, two
non-isomorphic BDDS may have isomorphic subgraphs, and hence, can share
vertices.

Let X be an ordered set of k propositions. The type of states is then � k .
The type of BDDs is bdd, which is a pointer or an index to the global data
structure BddPool . The type of BddPool is set of bddnode, and it stores
the vertices of BDDs. The vertices of BDDs have type bddnode which equals
([1..k]×bdd×bdd)∪ � . The type bddnode supports the following operations:

Label : bddnode 7→ [1..k]. The operation Label(v), for an internal vertex v, re-
turns the index of the variable labeling v.

Left : bddnode 7→ bdd. The operation Left(v), for an internal vertex v, returns
a pointer to the global data structure BddPool that points to the left-
successor of v.
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function MakeVertex
Input: i : [1..k], B0, B1 : bdd.
Output: B : bdd such that r(B) is equivalent to (¬xi ∧ r(B0)) ∨

(xi ∧ r(B1)).

begin

if B0 = B1 then return B0 fi;
if ¬IsMember ((i, B0, B1),BddPool ) then

Insert((i, B0, B1),BddPool ) fi;
return Index ((i, B0, B1))
end.

Figure 3.6: Creating BDD vertices

Right : bddnode 7→ bdd. The operation Right(v), for an internal vertex v, re-
turns a pointer to the global data structure BddPool that points to the
right-successor of v.

The type set of bddnode, apart from usual operations such as Insert and
IsMember , also supports

Index : bddnode 7→ bdd. For a vertex v in BddPool , Index (v) returns a pointer
to v.

[·] : set of bddnode× bdd 7→ bddnode. The operation BddPool [B] returns
the root vertex of the BDD B.

For such a representation, given a pointer B of type bdd, we write r(B) to
denote the propositional formula associated with the BDD that B points to. To
avoid duplication of isomorphic nodes while manipulating BDDs, it is necessary
that new vertices are created using the function MakeVertex of Figure 3.6. If
no two vertices in the global set BddPool were isomorphic before an invocation
of the function MakeVertex , then even after the invocation, no two vertices in
BddPool are isomorphic. The global set BddPool initially contains only two
terminal vertices, and internal vertices are added only using MakeVertex .

Exercise 3.17 {T3} [BDD with complement edges] A binary decision graph
with complement edges (CBDG) is a binary decision graph B with an addi-
tional component that classifies each right-edge as positive + or negative −.
The predicate r(v), for an internal vertex v, is redefined so that r(v) equals
(¬label (v) ∧ r(left(v))) ∨ (label (v) ∧ r(right(v))) if the right-edge of v is posi-
tive, and (¬label (v) ∧ r(left (v))) ∨ (label (v) ∧ ¬r(right (v))) otherwise. Thus,
when the right-edge is negative, we negate the function associated with the
right-child. For instance, in Figure 3.7, the vertex labeled with y represents the
function y ∧ z, while the root represents the function (x ∧ ¬(y ∧ z)).
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Figure 3.7: A decision graph with complement edges

(1) Define binary decision digrams with complement edges (CBDD) as a subclass
of CBDGs such that every boolean function has a unique representation as a
CBDD. (2) Is there a function whose CBDD representation is smaller than its
BDD representation? (3) Suppose we store vertices of all the functions in the
same global pool. Show that CBDD representation uses less space than BDDs.
(4) Show that the canonicity property is not possible if we allow complementing
left-edges also.

To be able to build a BDD-representation of a given predicate, and to imple-
ment the primitives of the symbolic reachability algorithm, we need a way to
construct conjunctions and disjunctions of BDDs. We give a recursive algorithm
for obtaining conjunction of BDDs. The algorithm is shown in Figure 3.8.

Consider two vertices v and w, and we wish to compute the conjunction r(v) ∧
r(w). If one of them is a terminal vertex, then the result can be determined
immediately. For instance, if v is the terminal vertex labeled with false, then
the conjunction is also false. If v is the terminal vertex labeled with true, then
the conjunction is equivalent to r(w).

The interesting case is when both v and w are internal vertices. Let i be the
minimum of the indices labeling v and w. Then, xi is the least variable in the
support-set of r(v) ∧ r(w). The label of the root of the conjunction is i, the
left-successor is the BDD for (r(v) ∧ r(w))[xi := 0], and the right-successor is
the BDD for (r(v) ∧ r(w))[xi := 1]. Let us consider the left-successor. Observe
the equivalence

(r(v) ∧ r(w))[xi := 0] ≡ r(v)[xi := 0] ∧ r(w)[xi := 0] (1).

If v is labeled with i, the BDD for r(v)[xi := 0] is the left-successor of v. If
the label of v exceeds i, then the support-set of r(v) does not contain xi, and
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the BDD for r(v)[xi := 0] is v itself. The BDD for r(w)[xi := 0] is computed
similarly, and then the function Conj is applied recursively to compute the
conjunction (1).

The above described recursion may call the function Conj repeatedly with the
same two arguments. To avoid unnecessary computation, a table is used that
stores the arguments and the corresponding result of each invocation of Conj .
When Conj is invoked with input arguments v and w, it first consults the table
to check if the conjunction of r(v) and r(w) was previously computed. The
actual recursive computation is performed only the first time, and the result is
entered into the table.

A table data structure stores values that are indexed by keys. If the type of
values stored is value, and the type of the indexing keys is key, then the type
of the table is table of key × value. The abstract type table supports the
retrieval and update operations like arrays: T [i] is the value stored in the table
T with the key i, and the assignment T [i] := m updates the value stored in T

for the key i. The constant table EmptyTable has the default value ⊥ stored
with every key. Tables can be implemented as arrays or as hash-tables. The
table used by the algorithm uses a pair of BDDs as a key, and stores BDDs as
values.

Let us analyze the time-complexity of Algorithm 3.2. Suppose the BDD pointed
to by B0 has m vertices and the BDD pointed to by B1 has n vertices. Let us
assume that the implementation of the set BddPool supports constant time
membership tests and insertions, and the table Done supports constant-time
creation, access, and update. Then, within each invocation of Conj , all the
steps, apart from the recursive calls, are performed within constant time. Thus,
the time-complexity of the algorithm is the same, within a constant factor, of
the total number of invocations of Conj . For any pair of vertices, the function
Conj produces two recursive calls only the first time Conj is invoked with this
pair as input, and zero recursive calls during the subsequent invocations. This
gives an overall time-complexity of O(m · n).

Proposition 3.5 [BDD conjunction] Given two BDDs B0 and B1, Algorithm 3.2
correctly computes the BDD for r(B0) ∧ r(B1). If the BDD pointed to by B0

has m vertices and the BDD pointed to by B1 has n vertices, then the time-
complexity of the algorithm is O(m · n).

Exercise 3.18 {T3} [Quadratic lower bound] The time complexity of Algo-
rithm 3.2 is proportional to the product of the number of vertices in the com-
ponent BDDs. Show that the size of the BDD representing conjunction of two
BDDs grows as the product of the sizes of the components, in the worst case.
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Algorithm 3.2 [Conjunction of BDDs]
Input: B0, B1 : bdd.
Output: B : bdd such that r(B) is equivalent to r(B0) ∧ r(B1).
Local: Done : table of (bdd× bdd) × bdd.

begin

Done := EmptyTable ;
return Conj (B0, B1)
end.

function Conj
input B0, B1 : bdd

output B : bdd

local v0, v1 : bddnode; B, B00, B01, B10, B11 : bdd; i, j : [1 . . . k]

begin

v0 := BddPool [B0];
v1 := BddPool [B1];
if v0 = 0 or v1 = 1 then return B0 fi;
if v0 = 1 or v1 = 0 then return B1 fi;
if Done[(B0, B1)] 6=⊥ then return Done[(B0, B1)] fi;
if Done[(B1, B0)] 6=⊥ then return Done[(B1, B0)] fi;
i := Label(v0); B00 := Left(v0); B01 := Right(v0);
j := Label (v1); B10 := Left(v1); B11 := Right(v1);
if i = j then B := MakeVertex (i,Conj(B00,B10), Conj(B01,B11))
fi;

if i < j then B := MakeVertex (i,Conj(B00,B1),Conj(B01,B1)) fi;
if i > j then B := MakeVertex (j,Conj(B0,B10),Conj(B0,B11)) fi;
Done[(B0, B1)] := B;
return B

end.

Figure 3.8: Conjunction of BDDs
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Exercise 3.19 {T3} [Cost of recomputation] Show that, removing the update
step Done[(B0, B1)] := B from Algorithm 3.2, makes the worst-case time com-
plexity exponential.

Exercise 3.20 {T3} [From expressions to BDDs] Give an algorithm to con-
struct the BDD-representation of a boolean expression given as a propositional
formula. What is the time-complexity of the algorithm?

Exercise 3.21 {T3} [Substitution in BDDs] (1) Let p be a propositional for-
mula, x be a variable, and m ∈ � be a value. Give an algorithm to construct the
BDD representation of p[x := m] from the BDD-representation of p. (2) Give
algorithms for computing the disjunction and existential-quantifier elimination
for BDDs.

Exercise 3.22 {T3} [BDD operations] The control schema underlying Algo-
rithm 3.2 works for both conjunction and disjunction. What are the conditions
on a binary operator on BDDs that make that control schema work?

3.2.4 Symbolic Search using BDDs

We have all the machinery to implement the symbolic search algorithm using
BDDs as a representation for symbolic regions. It can be used immediately to
solve the propositional invariant verification problem, and can be adopted to
solve the enumerated invariant verification problem.

Exercise 3.23 {T3} [Symbolic verification of enumerated modules] An enu-
merated variable whose type contains k values can be encoded by dlog ke boolean
variables. Give an algorithm which, given an enumerated invariant verification
problem (P, p), constructs a propositional invariant verification problem (Q, q)
such that (1) the answers to the two verification problems are identical, and (2)
the description of the problem (Q, q) is at most dlog ke times the description of
(P, p), where every variable of P has an enumerated type with at most k values.

We will consider some heuristics that are useful in different steps of applying
Algorithm 3.1 for solving the invariant verification problem using BDDs.

Given the propositional invariant verification problem (P, p), the first step is to
construct the symbolic representations for the target region p, the initial pred-
icate qI of P , and the transition predicate qT of P . The BDD representations
of a boolean expression can be exponentially larger, and is very sensitive to the
ordering of variables. Heuristics are usually tailored to keep the representation
of qT small.
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Algorithm 3.3 [Symbolic Search using the Frontier]

Input: a transition graph G, and a region σT of G.
Output: the answer to the reachability problem (G, σT ).

input G: symgraph; σT : symreg;
local σR: symreg; σF : symreg;
begin

σR := InitReg(G); σF := σR;
repeat

if σF ∩ σT 6= EmptySet then return Yes fi;
if PostReg(σF , G) ⊆ σR then return No fi;
σF := PostReg(σF , G) \ σR;
σR := σR ∪ σF

forever

end.

Figure 3.9: Symbolic search using the frontier

Computing with the frontier

Recall the symbolic algorithm of Figure 3.2 that searches the input graph in a
breadth-first manner. A modified version of the algorithm is shown in Figure 3.9.
In addition to the region σR containing the states known to be reachable, Algo-
rithm 3.3 maintains an additional region σF called the frontier. In each iteration
of the repeat loop, the frontier σF equals the subset of the reachable region σR

containing only the newly discovered states. More precisely, after j iterations
of the repeat loop, the region σR equals post≤j(σI), and the frontier σF equals
post≤j(σI )\post≤j−1(σI ). Consequently, to find out which states are reachable
in j + 1 rounds, it suffices to compute the successor region of the frontier σF

rather than the reachable region σR. In practice, Algorithm 3.9 typically out-
performs Algorithm 3.2 in terms on computational resource requirements. The
correctness statement for Algorithm 3.3 is identical to the one for Algorithm 3.1.

Theorem 3.2 [Symbolic graph search using the frontier] Let G be a transition
graph, and let σT be a region of G. Algorithm 3.3, if it terminates, correctly
solves the reachability problem (G, σT ). Furthermore, if there exists j ∈

�
such

that (1) every reachable state is the sink of some initialized trajectory of length
at most j (i.e. σR = (∪i ≤ j. post i(σI ))), or (2) some state in the target region
σT is the sink of some initialized trajectory of length j (i.e. σT ∩ post j(σI ) is
nonempty), then the algorithm terminates within j iterations of the repeat loop.
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Remark 3.4 [Optimizing the frontier computation] For the correctness of Al-
gorithm 3.3, it suffices if, after j iterations of the repeat loop, the frontier
σA is any region that contains at least post≤j(σI ) \ post≤j−1(σI ) and at most
post≤j(σI ). That is, the frontier should at least contain the newly discovered
states, and should not contain any state not known to be reachable. This gives
us freedom to choose the frontier so as to reduce the sise of its representation.

Choice of variable ordering

First, we need to choose an ordering ≺ of the variables in XP ∪ X ′
P . One of

the steps in the computation of the successor-region is to rename all the primed
variables to unprimed variables. This renaming step can be implemented by
renaming the labels of the internal vertices of the BDD if the ordering of the
primed variables is consistent with the ordering of the corresponding unprimed
variables. This gives us our first rule for choosing ≺;

Variable Ordering Rule 1: For a reactive module P , choose the order-
ing ≺ of the variables XP ∪X ′

P so that for all variables x, y ∈ XP ,
x ≺ y iff x′ ≺ y′.

As the second rule of thumb to minimize the size of BqT , a variable should
appear only after all the variables it depends on:

Variable Ordering Rule 2: For a reactive module P , choose the or-
dering ≺ of the variables XP ∪X ′

P so that (1) for every atom U

in atomsP , if x ∈ readXU and y ∈ ctrXU then x ≺ y′, and (2) if
the variable y awaits the variable x then x′ ≺ y′.

Since the set of atoms of a module is consistent, there exists an ordering that
satisfies both the above rules.

Exercise 3.24 {T2} [Disjoint Dependence] Let p be a boolean function with
support-set X , and let ≺1= x1, x2, . . . xk be an optimal ordering of X for p.
Let q be a boolean function with support-set Y , and let ≺2= y1, y2 . . . yl be an
optimal ordering of Y for q. Suppose X1 ∩ X2 is empty.

(1) Show that the ordering x1, x2, . . . xk , y1, y2 . . . yl is an optimal ordering for
p ∨ q as well as for p ∧ q. (2) If the optimal BDD for p has m1 vertices and the
optimal BDD for q has m2 vertices, how many vertices does the optimal BDD
for p ∧ q have?

Exercise 3.24 suggests that the variables that are related to each other should
be clustered together. In particular, instead of ordering all the primed variables
after all the unprimed variables, we can try to minimize the distance between a
primed variable and the unprimed variables it depends on.
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Variable Ordering Rule 3: For a reactive module P , choose the or-
dering ≺ of the variables XP ∪X ′

P so as to minimize the sum of
the differences j − i such that j-th variable according to ≺ is a
primed variable x′ that depends on the i-th variable according
to ≺.

Exercise 3.25 {P2} [Ordering of module variables] The BDD for the transi-
tion relation of an atom is the disjunction of the BDDs for individual guarded
assignments in its update command. Give a heuristic to order the variables that
attempts to exploit this structure. Write an algorithm that, given a module P ,
constructs a variable ordering according to the heuristics discussed so far.

Partitioned transition relation

Another approach to constructing the BDD for the transition predicate is to
avoid building it a priori.

Conjunctive Partitioning

A conjunctively-partitioned representation of a boolean expression p is a set
{B1, . . . Bk} of BDDs such that p is equivalent to the conjunction r(B1) ∧
· · · ∧ r(Bk).

The total number of vertices in a conjunctively partitioned representation can be
exponentially smaller than the number of vertices in the BDD for p itself. Since
the transition predicate of a module is the conjunction of the update commands
of its atoms, it leads to a natural conjunctively partitioned representation. This
approach avoids building the BDD for the entire transition relation. Let us
revisit the computation of the reachable region using symbolic search. Starting
from the initial predicate q0 = qI , we successively compute the predicates qi

using

qi+1 = (∃X. qi ∧ qT )[X ′ := X ] (2).

The computation (2) involves obtaining the conjunction qi ∧ qT . If qT is con-
junctively partitioned, qT

1 ∧ · · · ∧ qT
k , then we need to compute the conjunction

qi ∧ qT
1 ∧ · · · ∧ qT

k . Thus, it appears that we have only postponed the complex-
ity of conjoining multiple BDDs, and in fact, we are now required to construct
the conjunction at each step. The advantage is that, the size of Bqi ∧ qT can be
much smaller than the size of BqT . This is because qi contains only reachable
states, and thus constrains the source states for qT . Thus, the conjunctively
partitioned representation is an on-the-fly symbolic representation. While com-
puting the BDD for the conjunction qi ∧ qT

1 ∧ · · · qT
k , we do not need to construct

BqT first. We can compute the conjunction from left to right, starting with the
construction of Bqi ∧ qT

1
.
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Remark 3.5 [Two-level representations] The idea of on-the-fly representation
of the transition relation can be extended further. Each conjunct qT

i , represent-
ing the update command of a single atom, is a disjunction of predicates obtained
from individual guarded assignments. When the number of guarded assignments
in a single update command is large, it may not be suitable to construct the BDD
for the update command, and maintain it in a disjunctively-partitioned form.
It is possible to maintain two-level, or even multi-level, BDD-representation of
the transition predicate, and manipulate it only during the computation of (2).

Early quantifier elimination

Observe the equivalence

∃x. p ∧ q ≡ p ∧ ∃x. q if x is not in the support-set of p

If x is a support variable for q, then B∃x. q can have less number of vertices than
Bq . This implies that to compute B∃x. p∧ q from Bp and Bq, if x is not a support
variable of p, the best strategy is to first compute B∃x. q and then conjoin it with
Bp. This strategy to apply the projection operation before conjunction is called
early quantifier-elimination.

The computation (2) requires the computation of the projection of a conjunction
of BDDs onto a set of variables, and thus, demands the use of early quantifier-
elimination. It is even more effective if we are computing the reachable region of
the reduced transition graph of a module P . Then the transition predicate qT

is itself a projection of the transition predicate of GP onto the latched variables.
The region predicate qi is an expression over the latched variables latchX P , and
(2) is rewritten as

qi+1 = (∃XP . ∃X ′
P \latchX

′
P . qi ∧ qT

1 ∧ · · · ∧ qT
k )[latchX ′

P := latchX P ] (3).

Example 3.6 [Early-quantifier elimination in computing PostReg] Consider a
synchronous 3-bit counter that is incremented in every round. The variables of
the module are out0, out1, out2. The update of the bit out0 is specified by

qT
0 : out ′0 ↔ ¬out0,

of the bit out1 by

qT
1 : out ′1 ↔ out0 ⊕ out1

and of the bit out2 by

qT
2 : out ′2 ↔ (out0 ∧ out1) ⊕ out2,
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where ⊕ denotes exclusive-or operation. The transition predicate is the con-
junction qT

0 ∧ qT
1 ∧ qT

2 . A good variable-ordering according to our rules is

out0 ≺ out ′0 ≺ out1 ≺ out ′1 ≺ out2 ≺ out ′2.

We choose not to construct qT a priori, but to maintain it in a conjunctively
partitioned form. Consider a predicate p, and we wish to compute the predicate

∃{out0, out1, out2}. (p ∧ qT
0 ∧ qT

1 ∧ qT
2 ). (1)

If we first compute the conjunction p ∧ qT
0 , we cannot eliminate any of the

variables. However, since conjunction is associative and commutative, we can
choose the ordering of the conjuncts. In particular, if we first conjunct p and
qT
2 , then none of the remaining conjuncts depend on out2, and hence, we can

eliminate out2. Thus, (1) can be rewritten to

∃ out0. (q
T
0 ∧ ∃ out1. (q

T
1 ∧ ∃ out2. (q

T
2 ∧ p))).

Thus, the support-sets of various BDDs are examined to determine an ordering
of the conjuncts so as to eliminate as many variables as early as possible.

Exercise 3.26 {T3} [Don’t care simplification] This exercise describes an ef-
fective heuristic for simplifying each conjunct of the transition relation with
respect to the current reachable region Given predicates p and q over the set
X of variables, the predicate r over X is said to be a p-simplification of q if
p → (q ↔ r) is valid. Thus, a p-simplification of q must include states that
satisfy both p and q, must exclude states that satisfy p but not q, and can treat
the remaining states as “don’t care” states. Observe that a p-simplification of q

is not unique, and its BDD representation can have much smaller size compared
to the BDD representation of q.

(1) Give an algorithm that computes, given the BDD representations of two
predicates p and q, BDD representation of some p-simplification of q. The
objective should be to reduce the size of the output BDD by exploiting the
freedom afforded by “don’t care” when p is false. (2) Show that the conjunction
q ∧ qT

1 ∧ · · · qT
k during the computation of the successor region can be replaced by

q ∧ r1 ∧ · · · rk where each rj is a q-simplification of the conjunct qT
j . Observe

that this strategy simplifies different conjuncts independently of each other,
rather than sequentially as in early quantifier elimination, and hence, is not
sensitive to the ordering of the conjuncts.

Dynamic variable reordering

As Algorithm 3.1 computes the reachable region using successive approxima-
tions, the BDD representing qi grows with i, and successive applications of
PostReg require more and more time. If the number of vertices exceeds beyond
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a threshhold, we can attempt to reduce its size by choosing a new ordering of
the variables. This step is called dynamic variable reordering.

If we want to switch the ordering of two adjacent variables, its effect on the
BDD is local: if we switch the variables xi and xi+1, then the structure of the
BDD for vertices labeled less than i or greater than i + 1 does not change.

Exercise 3.27 {T4} [Swapping of Variables] Consider a boolean function p,
and its Bp,≺ using the linear order x1 ≺ · · · ≺ xn. For 1 ≤ i < n, let ≺[i/i+1] be
the linear order

x1 ≺[i/i+1] · · · ≺[i/i+1] xi+1 ≺[i/i+1] xi ≺[i/i+1] xi+1 ≺[i/i+1] · · ·xn

obtained by swapping the order of xi and xi+1. Show that (1) a vertex of
Bp,≺ that is labeled with an index j that is greater than i+1 is also a vertex in
Bp,≺[i/i+1]

, and (2) the subgraph of Bp,≺ containing vertices labeled with indices
less than i is isomorphic to the subgraph of Bp,≺[i/i+1]

containing vertices labeled
with indices less than i. Give an algorithm to construct Bp,≺[i/i+1]

. What is the
complexity of your algorithm?

This suggests a variety of greedy heuristics for reordering. Suppose i is the index
such that maximum number of vertices of B are labeled with i. Then, we can
try swapping xi with xi+1 or xi with xi−1. If one of the swaps reduces the size
of the BDD, we choose the resulting order. Alternatively, one can try successive
local swaps till BDD size is reduced. Note that if we update the ordering of
the variables for one BDD, all the other BDDs need to be updated. Thus,
dynamic variable reordering is a costly step, and is invoked only in extreme
cases. Efficient memory management techniques for garbage collection of BDD-
vertices not in use is also essential in practice.
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Appendix: Notation

Orders and fixpoints

A binary relation � over a set A is a preorder if it is reflexive and transitive,
and a partial order if it is reflexive, transitive, and antisymmetric. Let � be a
preorder on A, and let � be the inverse of �. If � is a partial order, then so
is �; if � is an equivalence, then �=�. The preorder � induces the equivalence
� ∩ �, which is called the kernel of �. Given B ⊆ A and a ∈ A, we write
B � a if for all b ∈ B, b � a; in this case, a is an upper �-bound for B. An
upper �-bound for B is called a lower �-bound for B. Moreover, a is a least
upper �-bound for B if (1) a is an upper �-bound for B, and (2) a is a lower
�-bound for the set of upper �-bounds for B. A least upper �-bound is called
a greatest lower �-bound. If � is a partial order, then all least upper �-bounds
and all greatest lower �-bounds are unique. The partial order � is a complete
lattice if all subsets of A have least upper �-bounds (and hence greatest lower
�-bounds); in this case we write

∨
B for the least upper �-bound for B, and∧

B for the greatest lower �-bound for B. Every complete lattice � has the
unique lower �-bound

∨
∅ for A, called bottom, and the unique upper �-bound∧

∅ for A, called top. For example, the subset relation ⊆ is a complete lattice
on the powerset 2C of any set C. In this case, the least upper ⊆-bound for a
set E of subsets of C is the union

⋃
E; the greatest lower ⊆-bound for E is the

intersection
⋂

E; the bottom is the empty set ∅; and the top is the entire set C.

Let � be a complete lattice on A with the bottom ⊥ and the top >, and let
f be a function from A to A. The function f is monotonic if for all a, b ∈ A,
if a � b then f(a) � f(b). The argument a ∈ A is a fixpoint of f if f(a) = a.
If f is monotonic, then � is a complete lattice on the fixpoints of f .1 The
bottom fixpoint, denoted µf , is called the least fixpoint of f ; the top fixpoint,
denoted νf , is the greatest fixpoint of f . A chain is a set B ⊆ A such that for all
a, b ∈ B, either a � b or b � a. The function f is

∨
-continuous if for all chains

B ⊆ A, f(
∨

B) =
∨

f(B), and
∧

-continuous if for all chains B ⊆ A, f(
∧

B) =∧
f(B). If f is monotonic and

∨
-continuous, then µf =

∨
{fκ(⊥) | κ ∈ � }.2 3

If, in addition, A is countable, then µf =
∨
{f i(⊥) | i ∈

�
}; if A is finite, then

there is a natural number i such that µf = f i(⊥). Analogous results apply to
the greatest fixpoint of a monotonic and

∧
-continuous function.

Exercise 3.28 {T4} [Fixpoint theorems] Prove all claims made in the previous
paragraph.

1This is the Knaster-Tarski fixpoint theorem.
2By � , we denote the set of ordinals. For a limit ordinal λ, let fλ(a) =

∨
{fκ(a) | κ < λ}.

3This is the Kleene fixpoint theorem. It is usually stated for complete partial orders

(c.p.o.s), which require only the existence of least upper bounds on chains, and no great-
est lower bounds.
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Chapter 4

Graph Minimization

This chapter defines observational equivalence among states and the resulting
reductions in the state-space.

4.1 Graph Partitions

State-space abstraction decreases the size of a transition graph by collapsing
equivalent states. We begin by defining the quotient graphs induced by equiva-
lence relations on the states.

Let G = (Σ, σI ,→) be a transition graph. An equivalence ∼= ⊆ Σ2 on the
state space is called a G-partition. The quotient of G under ∼=, denoted G/∼=,
is the transition graph (Σ/∼=, σI/∼=,→∼=), where σ →∼= τ iff there are two
states s ∈ σ and t ∈ τ such that s → t.

In other words, the states of the quotient G/∼= are regions of the transition
graph G, namely, the ∼=-equivalence classes. A ∼=-equivalence class is initial
iff it contains an initial state. The ∼=-equivalence class τ is a successor of the
∼=-equivalence class σ iff a state in σ has a successor state in τ .

Let (P, p) be an invariant-verification problem. Instead of solving the reacha-
bility question (GP , [[¬p]]), we choose a GP -partition ∼=, construct the quotient
GP /∼=, and solve the reachability problem (GP /∼=, [[¬p]]/∼=). If the answer to
(GP /∼=, [[¬p]]/∼=) is No, then the answer to the original question (GP , [[¬p]]) is
also No, and p is an invariant of the reactive module P . This verification tech-
nique is called abstraction, because the transition graph GP is abstracted into
the quotient GP /∼= by omitting detail, such as the values of certain variables. If,
on the other hand, the answer to the reachability problem (GP /∼=, [[¬p]]) is Yes,
then p may or may not be an invariant of P . Abstraction, therefore, is a sound
but incomplete verification technique for checking invariants.

1
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s0 s1

t0 t1

u0 u1

{s0, s1}

{t0, t1}

{u0, u1}

Figure 4.1: Quotient graph

Example 4.1 [Quotient graph] Consider the transition graph of Figure 4.1.
The partition ∼= contains 3 equivalence classes {s0, s1}, {t0, t1}, and {u0, u1}.
The corresponding quotient graph G/∼= has 3 states. To check whether the state
s0 is reachable from the state t0 in G, we can check whether the state {s0, s1} is
reachable from the state {t0, t1} in G/∼=, and we get the correct answer No. On
the other hand, to check whether the state u1 is reachable from the state t0 in
G, we can check whether the state {u0, u1} is reachable from the state {t0, t1}
in G/∼=, and we get the wrong answer Yes.

4.1.1 Reachability-preserving Partitions

We are interested in conditions under which quotients preserve the reachability
properties of a transition graph. These quotients, which are called stable, lead
to abstractions that are both sound and complete for checking invariants.

The G-partition ∼= is stable if for all states s, s′, and t, if s ∼= t and s → s′,
then there is a state t′ such that s′ ∼= t′ and t → t′. The quotient G/∼= is
stable if the partition ∼= is stable.

In other words, for two equivalence classes σ and τ of a stable partition ∼=,

some state in σ has a successor in τ

is equivalent to

every state in σ has a successor in τ .
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Example 4.2 [Stable partition] For the transition graph of Figure 4.1, the
partition ∼= is stable. If we add a transition to G, from state t0 to state t1, the
partition ∼= will no longer be stable.

Suppose that ∼= is a stable G-partition, and let σT be a block of ∼=. The
reachability problem (G, σT ) can be reduced to a reachability problem over the
quotient G/∼=, whose state space may be much smaller than the state space
of G. Indeed, Σ/∼= may be finite for infinite Σ.

Theorem 4.1 [Stable partitioning] Let G/∼= be a stable quotient of the tran-
sition graph G, and let σ be a block of ∼=. Then the two reachability problems
(G, σ) and (G/∼=, σ/∼=) have the same answer.

Proof. If the answer to (G, σT ) is Yes, then the answer to (G/∼=, σT /∼=) is
also Yes. This direction does not require ∼= to be stable or σT to be a block of
∼=.

Suppose the answer to (G/∼=, σT /∼=) is Yes. Consider the witness trajectory
σ0 →∼= · · · →∼= σm in G/∼= with σo ∈ σI/∼= and σm ∈ σT /∼=. Since σT is a
block of ∼=, we know that σm ⊆ σT . Choose a state s0 in the intersection
σI ∩ σ0. Since ∼= is stable, we know that whenever τ →∼= υ, for all state s ∈ τ ,
there exists a state t ∈ υ such that s → t. Starting with s0 ∈ σ0, choose states
s1, . . . sm, one by one, such that, for every 1 ≤ i ≤ m, si ∈ σi, and si−1 → si.
Since sm is in the target region σT , the trajectory s0...m is a witness to the
reachability question (G, σT ).

Exercise 4.1 {T2} [Inverse stability] The G-partition ∼= is initialized if the
initial region σI is a block of ∼=. The G-partition ∼= is backstable if for all
states s, s′, and t, if s ∼= t and s′ → s, then there is a state t′ such that
s′ ∼= t′ and t′ → t. Equivalently, ∼= is a backstable G-partition iff ∼= is a stable
G−1-partition.

Let G be a transition graph, let ∼= be an initialized backstable G-partition, and
let σT be a region of G. Prove that the two reachability problems (G, σT ) and
(G/∼=, σT /∼=) have the same answer.

Projecting states of a module to a subset of variables gives a partition of the
underlying transition graph. Let P be a module, and let X be a subset of
its variables. For two states s and t of P , let s ∼=[X] t if X [s] = X [t]. The
equivalence ∼=[X] is a GP -partition.

Example 4.3 [Latched variables] Recall the definition of latched variables latchX P

of a module P . The GP -partition ∼=[latchXP ] is a stable partition, and the re-
duced transition graph GL

P is the resulting quotient graph.
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Thus, projection to latched variables results in a stable partition. An orthogonal
method to obtain a stable partition is to find a set of variables that is closed
under dependencies.

Stable variable sets

Let P be a module. A subset X ⊆ XP of the module variables is stable if
for every variable x ∈ X , if the variable x is controlled by the atom U of P
then both readXU ⊆ X and awaitXU ⊆ X .

Proposition 4.1 [Stable projections] Let P be a module, and let X be a stable
subset of its variables. Then, the GP -partition ∼=[X] is a stable partition.

Exercise 4.2 {T2} [Elimination of redundant variables] Consider the invariant
verification problem (P, p). Let X be a stable set of the module variables. Show
that if the observation predicate p refers only to the variables in X ∩ obsXP ,
then [[¬p]] is a block of the GP -partition ∼=[X]. Then, the invariant verification
problem (P, p) reduces to the reachability problem (GP /∼=[X]

, [[¬p]]).

Give an algorithm to compute the minimal set Xp of variables that contains all
the variables in p and is stable. Notice that the set Xp contains all the variables
whose initialization and update influences the initialization and update of the
variables in p, and thus, the remaining variables XP \Xp are redundant for the
verification of p.

4.1.2 Graph Symmetries

Stable quotients often arise from exploiting the symmetries of a transition graph.
For instance, in the module Pete the individual processes are symmetric, result-
ing in the symmetry in the state-space of GPete . To formalize the reduction
afforeded by symmetries, we beign by defining graph automorphisms. A graph
automorphism is a one-to-one onto mapping from vertices to vertices that pre-
serves the initial region as well as the transitions.

Graph Automorphism

Consider two transition graphs G1 = (Σ1, σ
I
1 ,→1) and G2 = (Σ2, σ

I
2 ,→2).

A bijection f from Σ1 to Σ2 is an isomorphism from G1 to G2 if (1) f(σI
1) =

σI
2 and (2) for all states s, t ∈ Σ1, s →1 t iff f(s) →2 f(t). An isomorphism

from G to G is called a G-automorphism.

Remark 4.1 [Graph Automorphisms] For every transition graph G, the iden-
tity function is a G-automorphism. If f is a G-automorphism, then so is its
inverse f−1. The (functional) composition of two G-automorphisms is a G-
automorphism. The set of all binary functions over the state-space of G forms a
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group under functional composition. The set of G-automorphisms forms a sub-
group. Furthermore, for a set F of G-automorphisms, the subgroup generated
by F contains only G-automorphisms.

The group of G-automorphisms under functional composition is called the sym-
metry group of G. This symmetry group, or any of its subgroups, can be used to
define a stable partition. Given a set F of generators that are G-automorphisms,
we obtain the corresponding symmetric partition by considering all the auto-
morphisms in the subgroup generated by F .

Symmetric Partition

Let G be a transition graph, and let F be a set of G-automorphisms. The
F -symmetric partition ∼=F is defined by: for all states s and t of G, let
s ∼=F t if there is an automorphism f ∈ closure(F ) such that t = f(s).

Stability of the symmetric partition follows immediately from the definitions.

Theorem 4.2 [Symmetric partitioning] Let G be a transition graph, and let F
be a set of G-automorphisms. The induced G-partition ∼=F is stable.

Let G be a transition graph, let σ be a region of G, and let F be a set of G-
automorphisms. If σ is a block of the induced G-partition ∼=F , then the quotient
G/∼=F can be used to solve the reachability problem (G, σ). Notice that σ is a
block of ∼=F iff for all G-automorphisms f ∈ F , f(σ) = σ.

Example 4.4 [Symmetry of mutual exclusion] Recall Peterson’s mutual-exclu-
sion protocol from Chapter 1. Consider the following bijection f on the state
space ΣPete of the underlying transition graph GPete : let t = f(s) iff

x1[t] = x2[s] and x2[t] 6= x1[s], and
pc1[t] = pc2[s] and pc2[t] = pc1[s].

The function f swaps the values of pc1 and pc2, swaps the values of x1 and x2,
and toggles x2. Note that the thruth of the condition x1 = x2 is toggled by the
function f .

Verify that the function f is a GPete -automorphism. The composition f ◦ f
simply toggles both x1 and x2: t = f ◦ f(s) iff

x1[t] 6= x1[s] and x2[t] 6= x2[s], and
pc1[t] = pc1[s] and pc2[t] = pc2[s].

The composition f ◦ f ◦ f is the inverse of f : t = f ◦ f ◦ f(s) iff

x1[t] 6= x2[s] and x2[t] = x1[s], and
pc1[t] = pc2[s] and pc2[t] = pc1[s].
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It follows that f4 equals the identity map. Consequently, the subgroup closure(f)
generated by the automorphism f equals {f, f ◦f, id, f−1}, where id the identity
function. Consider the four initial states—s1, s2, s3, and s4—of Pete

s1(pc1) = outC , s1(x1) = true, s1(pc2) = outC , s1(x2) = true;
s2(pc1) = outC , s2(x1) = true, s2(pc2) = outC , s2(x2) = false ;
s3(pc1) = outC , s3(x1) = false , s3(pc2) = outC , s3(x2) = true;
s4(pc1) = outC , s4(x1) = false , s4(pc2) = outC , s4(x2) = false .

Verify that s2 = f(s1), s3 = f(s2), s4 = f(s3), and s1 = f(s4). In the partition
∼=f , two states are equivalent if one can be obtained from the other by applying
one of the automorphisms in closure(f). In particular, all the four initial states
are equivalent. Verify that while GPete contains 36 states, the partition ∼=f

contains 9 classes; while the reachable subgraph of GPete contains 20 states, the
number of reachable classes of ∼=F is 5.

The region [[¬(pc1 = inC ∧ pc2 = inC )]] is invariant under the function f ,
and hence, is a block of the stable partition ∼=f . It follows that the quotient
GPete/∼=f can be used to check that the protocol Pete enforces mutual exclusion.

In practice, the communication topology among different components yields
graph automorphisms. Two typical examples are:

• Star Topology: The system consists of a module P (server) communicat-
ing with modules P1, . . . Pn (clients). The client modules P1, . . . Pn are
renamed copies of each other, and thus, there is a one-to-one correspon-
dence between the controlled variables of two client modules. Two client
modules do not have any common variables, and thus, each client mod-
ule communicates only with the server. In this situation, swapping the
values of the controlled variables of two client modules results in an auto-
morphism. In particular, the set F of generators contains for every pair
1 ≤ i, j ≤ n, the automorphism fij that swaps the values of the controlled
variables of Pi with the values of the corresponding controlled variables of
Pj .

• Ring Topology: The system consists of modules P1, . . . Pn connected in
a ring, that is, every module Pi communicates only with its neighboring
modules Pi−1 and Pi+1 (where increments and decrements are modulo
n). All the modules are renamed copies of each other. In this situation,
every rotation of the indices yields an automorphism. That is, for every
i, the function fi is an automorphism, where t = fi[s] if the values of the
controlled variables of the module Pj in state t equal the values of the
corresponding controlled variables of the module Pj+i in state s.



Graph Minimization 7

Exercise 4.3 {T2} [Symmetry in Railroad controller] Consider the module Rail-
roadSystem from Chapter 2. Find a suitable set F of automorphisms. What is
the equivalence ∼=F induced on the state-space?

To apply symmetric reduction to the invariant verification problem (P, p), we
first find a suitable set of GP -automorphisms. The next step is to find a map-
ping rep that maps every state s to a unique representative of the equivalence
class of ∼=F that contains s: if s ∼=F t, then rep(s) = rep(t). If we have such
a function rep, then the depth-first search algorithm is modified so that only
the representative states are explored. This is achieved by replacing the initial
region σI by the set rep(σI ) of representative initial states, and replacing the
successor function post by the function rep ◦post that considers only representa-
tive states. Consequently, the complexity of the search is proportional the size
of the quotient graph with respect to ∼=F .

Exercise 4.4 {T3} [Representative states in mutual exclusion] Consider the
automorphism f , and the induced equivalence ∼=f , on the state-space of the
module Pete considered in Example 4.4. Suggest a suitable set of representative
states and the function rep that maps each state to its representative.

4.2 Partition Refinement

Suppose we wish to solve multiple verification problems involving a transition
graph G. Then, it is prudent to find a stable G-partition ∼= such that there are
as few ∼=-equivalence classes as possible. Then the quotient G/∼= can be used to
solve the verification problems concerning G.

4.2.1 The Structure of Stable Partitions

If ∼=1 and ∼=2 are stable partitions of a transition graph, then so is their join:

Lemma 4.1 [Union-closure of stable partitions] Let G be a transition graph. If
E is a set of stable G-partitions, then the join

⋃

∗

E is a stable G-partition.

Proof. Let G be a transition graph, let E is a set of stable G-partitions, and
let ∼= be the join

⋃

∗

E of all partitions in E. Suppose s ∼= t and s → s′. Since
∼= is the transitive closure of the union of the equivalence relations in E, there
are states s0, . . . sn and partitions ∼=1,∼=n in E such that s0 = s, sn = t, and
si−1

∼=i si for 1 ≤ i ≤ n. Let s′0 = s′. We have s0 → s′0. Since each partition ∼=i

is stable, by induction on i, there exist states s′1, . . . s
′

n such that for 1 ≤ i ≤ n,
si → s′i and s′i−1

∼=i s′i. Choose t′ = s′n. We have t → t′ and s′ ∼= t′.

Corollary 4.1 [CPO of stable partitions] For every transition graph G, the
refinement relation � is a complete lattice on the stable G-partitions.
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Exercise 4.5 {T2} [Complete lattice of stable partitions] Consider the com-
plete lattice � on the stable G-partitions of the transition graph G. Let E be
a set of stable G-partitions. The least upper �-bound for E is the join

⋃

∗

E.
What is the greatest lower �-bound for E?

Let ∼= be a partition of the transition graph G. Consider the set E of all stable
partitions that refine ∼=. The join

⋃

∗

E, which is guaranteed to exist, is a stable
partition. Furthermore, since every partition in E refines ∼=, so does

⋃

∗

E.
Consequently, the join

⋃

∗ E is the coarsest partition that is both stable and is
finer than ∼=.

Let G be a transition graph, and let ∼= be a G-partition. The coarsest stable
refinement of ∼=, denoted minG(∼=), is the join of all stable G-partitions that
refine ∼=. The quotient G/min(∼=) is called ∼=-minimal.

It follows that min(∼=) is a stable G-partition that refines ∼=, and that all stable
G-partitions that refine ∼= also refine min(∼=).

Remark 4.2 [Refinement of identity and universal partitions] If ∼= is the iden-
tity partition (i.e. all equivalence classes of ∼= are singletons), then min(∼=)
equals ∼=. If G is a serial transition graph, and ∼= is the universal partition (i.e.
contains a single equivalence class containing all states), then min(∼=) equals ∼=.

The partition-refinement problem

An instance (G,∼=I) of the partition-refinement problem consists of (1) a
transition graph G and (2) [the initial partition] a G-partition ∼=I . The
answer to the partition-refinement problem (G,∼=I) is the coarsest stable
refinement min(∼=I) of the initial partition ∼=I .

Example 4.5 [Coarsest stable refinement] Consider the transition graph of Fig-
ure 4.1. Suppose the initial partition ∼=I contains two regions; {s0, s1, t0, t1} and
{u0, u1}. The initial partition itself is not stable. Its coarsest stable refinement
contains three regions {s0, s1}, {t0, t1}, and {u0, u1}.

Minimal reachability-preserving quotients

Let G be a transition graph with the state space Σ. For a region σ of G, let
∼=σ denote the binary G-partition {σ, Σ\σ}. The partition ∼=σ is the coarsest
partition that has σ as a block. The ∼=σ-minimal quotient G/min(∼=σ) of the

transition graph G can be used to solve the reachability problem (G, σ), because
min(∼=σ) is stable and σ is a block of min(∼=σ). For a set R of regions, let ∼=R

denote the G-partition (∩σ ∈ R. ∼=σ). The ∼=R-minimal quotient G/min(∼=R)
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can then be used to solve all reachability problems of the form (G, σ) for σ ∈ R.
For example, let P be a module. Copnsider the equivalence ∼= on the state-space
of P induced by the observations: s ∼= t iff obsXP [s] = obsXP [t]. Then, two
∼=-equivalent states satisfy the same set of observation predicates. The quotient
GP /min(∼=) can then be used to solve all invariant-verification problems for the
module P .

Exercise 4.6 {T3} [Reachable portion of minimal quotients] Let G be a transi-
tion graph, and let σ be a region of G. To solve the reachability problem (G, σ),
it suffices to consider the reachable region σR of G. We may first find a minimal
quotient of G and then construct the reachable subquotient, or we may first
construct the reachable subgraph of G and then find a minimal quotient. Both
methods lead to isomorphic results. Let G1 be the reachable subgraph of the
∼=σ-minimal quotient G/min(∼=σ) of G. For ∼== {σR ∩ σ, σR\σ}, let G2 be the
∼=-minimal quotient GR/min(∼=) of the reachable subgraph GR of G. Prove that
the two transition graphs G1 and G2 are isomorphic.

Exercise 4.7 {T4} [Inverse minimal quotients] Let G = (Σ, σI ,→) be a tran-
sition graph, and let ∼= be a G-partition. The coarsest backstable refinement
of ∼=, denoted min−1(∼=), is the join of all backstable G-partitions that refine ∼=.
The quotient G/min−1

(∼=σI )
of the transition graph G can be used to solve the

reachability problem (G, σ), for any region σ of G. Prove that the unreachable

region Σ\σR is a min−1(∼=σI

)-equivalence class.

Let σ be a region of G. To solve the reachability problem (G, σ), we may
compute (the reachable portion of) a stable refinement of ∼=σ , or a backstable

refinement of ∼=σI

. Depending on the given reachability problem, either method
may be superior to the other method. Consider two state spaces: (A) the
quotient σR/min(∼=σ) of the reachable region σR with respect the coarsest stable

refinement min(∼=σ); (B) the coarsest backstable refinement min−1(∼=σI

). Give
an example of a reachability problem for which state space (A) is finite and
state space (B) is infinite, and an example for which state space (A) is infinite
and state space (B) is finite.

Exercise 4.8 {T3} [Symbolic reachability versus partition refinement] Let G
be a transition graph, and let σ be a region of G. Prove that for all nat-
ural numbers i, the region pre i(σ) is a block of the coarsest stable refine-
ment min(∼=σ), and the region post i(σI ) is a block of the coarsest backstable

refinement min−1(∼=σI

). Conclude that if the coarsest backstable refinement

min−1(∼=σI

) is finite, then the transition graph G is finitely reaching.
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4.2.2 Partition-refinement Algorithms

We first develop a schematic algorithm for solving the partition-refinement prob-
lem, and prove it correct. For a running-time analysis, we then present several
concrete instantiations of the schematic partition-refinement algorithm.

A region characterization of stability

Let G be a transition graph, and let σ and τ be two regions of G. The region σ
is stable with respect to the region τ if either σ ⊆ pre(τ) or σ ∩ pre(τ) = ∅. Let
∼= be a G-partition. The partition ∼= is stable with respect to the region τ if all
∼=-equivalence classes are stable with respect to τ . This region-based definition
gives an alternative characterization of stability.

Lemma 4.2 [Stability with respect to regions] Let G be a transition graph,
and let ∼= be a G-partition. Then ∼= is stable iff ∼= is stable with respect to all
∼=-equivalence classes.

Stabilization of a partition with respect to a region

Partition-refinement algorithms stabilize the given initial partition by repeatedly
splitting equivalence classes. Consider a partition ∼=. If ∼= is not stable, then,
by Lemma 4.2, there are two equivalence classes σ and τ of ∼= such that σ is not
stable with respect to τ . In such a case, we can split σ into two regions, one that
contains states which have successors in τ and the other one that contains states
with no successors in τ . That is, we split σ at the boundary of the predecessor
region of τ .

Let τ be a region of the transition graph G. For a region σ of G, let

Split(σ, τ) =

{

{σ} if σ ⊆ τ or σ ∩ τ = ∅,
{σ ∩ τ, σ\τ} else,

be the result of splitting σ at the boundary of τ . For a G-partition ∼=, let

Split(∼=, τ) = (∪σ ∈∼= .Split(σ, τ))

be the result of splitting ∼= at the boundary of τ . The result Split(∼=, τ) is a G-
partition that refines ∼= and contains at most twice as many equivalence classes
as ∼=. To stabilize ∼= with respect to τ , we split ∼= at the boundary of pre(τ):

Stabilize(∼=, τ) = Split(∼=, pre(τ)).

The stablization of a region σ with respect to τ is depicted pictorially in Fig-
ure 4.2. The Stabilize operation can be implemented either symbolically or
enumeratively.

Symbolic stabilization. Suppose that the region τ is given by a symbolic
region representation {τ}s, and the partition ∼= is given by a list 〈{σ}s | σ ∈∼=〉



Graph Minimization 11

σ τ

σ ∩ pre(τ)

σ\pre(τ)

Figure 4.2: Stabilizing one region with respect to another

of symbolic region representations. The operation Stabilize(∼=, τ) can then be
performed using boolean operations, emptiness checking, and the pre operation
on symbolic region representations.

Enumerative stabilization. We are given an abstract data type partition

that maintains a collection of nonempty, disjoint subsets of the state-space. The
data type partition is like set of region, but supports the following additional
operations:

Find : For a state s and a partition ∼=, the operation Find(s,∼=) returns the
(name of) the region that contains s, if such a region exists; otherwise
Find(s,∼=) returns nil .

Create : For a state s and a partition ∼=, the operation Create(s,∼=) removes s
from any existing region in ∼=, creates a singleton set containing s, and re-
turns the newly created set. Note that Create(s,∼=) destructively updates
the partition ∼=.

Move : For a state s, a partition ∼=, and a set σ in ∼=, the operation Move(s, σ,∼=)
removes s from any existing set in ∼= and adds s to the set σ; if the result
of removing s from an existing set results in an empty set, that set is
destroyed.

Exercise 4.9 {P2} [Abstract data type partition] Implement the abstract data
type partition so that each of the three operations Find , Create , and Move
take constant time.

Let G be a finite transition graph. Suppose that the region τ is given by
a list {τ}e of states, and the partition ∼= is given using the abstract data
type partition. Furthermore, with each state s we are given a list of all pre-
decessor states in pre(s), and with each set σ in partition we are given the
name new(σ) of another set in partition. When stabilizing the region σ with
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respect to τ , the states in σ ∩ pre(τ) are moved to the set new(σ). Initially,
all new pointers are nil , and they are reset after stabilization. The operation
Stabilize(∼=, τ) can then be performed as follows:

foreach s ∈ τ do foreach t ∈ pre(s) do Update(t,∼=) od od;
foreach s ∈ τ do foreach t ∈ pre(s) do Reset(t,∼=) od od,

where both

Update(t,∼=):
if new(Find (t,∼=)) = nil

then new(Find (t,∼=)) := Create(t,∼=)
else Move(t,new(Find(t,∼=)),∼=)
fi

and

Reset(t,∼=):
new(Find(t,∼=)) := nil

take constant time. Let nτ be the number of states in the region τ , and let
mτ be the number of transitions whose target lies in τ . The time required
by the operation Stabilize(∼=, τ) is stabcost(τ) = O(mτ + nτ ). We charge the
stabilization cost stabcost(τ) to the individual states in τ . If ms is the number
of transitions with target s (i.e. ms = |pre(s)|), then we charge stabcost(s) =
O(ms + 1) to each state s ∈ τ . Then stabcost(τ) = (+s ∈ τ. stabcost(s)).

Iterative stabilization of a partition

The key properties of the operation of stabilizing a partition with respect to a
region are summarized in the next lemma.

Lemma 4.3 [Stabilization for partition refinement] Let G be a transition graph,
let ∼= be a G-partition, and let τ be a region of G. (1) If τ is a block of ∼=, then
min(∼=) � Stabilize(∼=, τ). (2) Every G-partition that refines Stabilize(∼=, τ) is
stable with respect to τ .

Exercise 4.10 {T2} [Stabilization for partition refinement] Prove Lemma 4.3.

Lemma 4.3 suggests a partition-refinement algorithm that, starting from the
given initial partition, repeatedly stabilizes the partition with respect to one
of its blocks. Part (1) ensures that stabilization with respect to a block never
causes unnecessary splitting. Part (2) ensures that every block needs to be
considered for stabilization at most once. The resulting scheme is shown in
Figure 4.3.

In Algorithm 4.1, at the beginning of each execution of the while-loop, we know
that
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Algorithm 4.1 [Schematic Partition Refinement]

Input: a transition graph G = (Σ, σI ,→) and an initial G-partition ∼=I .
Output: the coarsest stable refinement min(∼=I).
Local: a G-partition ∼= and a region set done .

∼=:=∼=I ; done := {Σ};
while ∼= 6 ⊆ done do

{assert min(∼=I) refines ∼=, and ∼= is stable w.r.t. all regions in done}
Choose a block τ of ∼= such that τ 6∈ done ;
∼=:= Stabilize(∼=, τ);
done := Insert(τ, done)
od;

return ∼=.

Figure 4.3: Partition refinement

1. the coarsest stable refinement min(∼=I) is a refinement of the current par-
tition ∼=,

2. every region in the set done is a block of the current partition ∼=, and

3. the current partition ∼= is stable with respect to every region in done .

Algorithm 4.1 terminates iff min(∼=I) has finitely many equivalence classes. Sup-
pose that min(∼=I) has n equivalence classes and, therefore, 2n blocks. With
every iteration of the while-loop, a block of min(∼=I) is added to the set done .
It follows that the while-loop is executed at most 2n times.

Theorem 4.3 [Schematic partition refinement] Let G be a transition graph,
and let ∼=I be a G-partition. If the coarsest stable refinement min(∼=I) is finite,
then Algorithm 4.1 solves the partition-refinement problem (G,∼=I).

A quadratic partition-refinement algorithm

If we carefully choose the region τ in each iteration of Algorithm 4.1, we ob-
tain polynomial-time implementations. A quadratic running time is achieved if,
during consecutive iterations, we systematically stabilize the initial partition ∼=I

first with respect to all ∼=I -equivalence classes, then with respect to all equiva-
lence classes of the resulting partition, etc. The resulting algorithm is shown in
Figure 4.4.

Observe that during the execution of the for-loop, every equivalence-class of
∼=prev is a block of the current partition ∼=, and at the beginning of the while-
loop the current partition ∼= is stable with respect to every region in ∼=prev . Thus,
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Algorithm 4.2 [Quadratic Partition Refinement]

Input: a transition graph G = (Σ, σI ,→) and an initial G-partition ∼=I .
Output: the coarsest stable refinement min(∼=I).
Local: two G-partitions ∼= and ∼=prev .

∼=:=∼=I ; ∼=prev := {Σ};
while ∼= 6=∼=prev do

{assert min(∼=I) refines ∼=, and ∼= is stable w.r.t. all regions in ∼=prev}
∼=prev :=∼=;
for each τ ∈∼=prev do ∼= := Stabilize(∼=, τ) od

od;
return ∼=.

Figure 4.4: Quadratic algorithm for partition refinement

Algorithm 4.2 is an instance of Algorithm 4.1, and its correctness follows im-
mediately. With every iteration of the while-loop, the number of ∼=-equivalence
classes increases. Hence, if min(∼=I ) has n equivalence classes, the while-loop is
executed at most n times. The for-loop can be implemented either symbolically
or enumeratively. Consider an enumerative implementation of Algorithm 4.2 for
an input graph G with n states and m ≥ n transitions. Then the coarsest stable
refinement min(∼=I) has at most n equivalence classes, and the time required by
the for-loop is

(+τ ∈∼=prev . stabcost(τ)) = (+s ∈ Σ. stabcost(s))
= (+s ∈ Σ. O(ms + 1))
= O(m).

Theorem 4.4 [Quadratic partition refinement] Let G be a finite transition
graph with n states and m transitions. The running time of Algorithm 4.2
on input G is O(m·n).

Exercise 4.11 {P3} [Quadratic partition refinement] Write a program that im-
plements Algorithm 4.2 symbolically, and a program that implements Algo-
rithm 4.2 enumeratively. For your symbolic program, assume that the input
graph G is given by a symbolic graph representation {G}s, and the input par-
tition ∼=I is given by a list 〈{σ}s | σ ∈∼=I〉 of symbolic region representations.
For your enumerative program, assume that the input graph G is given by an
enumerative graph representation {G}e, and the input partition ∼=I is given by
a list 〈{σ}e | σ ∈∼=I〉 of enumerative region representations. The asymptotic
running time of your enumerative program should be quadratic in the size of
the input.
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Algorithm 4.3 [Paige-Tarjan Partition Refinement]

Input: a transition graph G = (Σ, σI ,→), and an initial G-partition ∼=I .
Output: the coarsest stable refinement min(∼=I).
Local: two G-partitions ∼= and ∼=done .

∼=:=∼=I ; ∼=done := {Σ};
while ∼=⊂∼=done do

{assert min(∼=I) �∼=, and ∼= is stable w.r.t. all regions in ∼=done}
Choose σ ∈ (∼=done \ ∼=);
Choose τ ∈∼= such that τ ⊆ σ and |τ | ≤ |σ|/2;
∼=:= Stabilize(Stabilize(∼=, τ), σ\τ);
∼=done := Insert(σ\τ, Insert(τ,Delete(σ,∼=done)))
od;

return ∼=.

Figure 4.5: Paige-Tarjan algorithm for partition refinement

The Paige-Tarjan partition-refinement algorithm

To improve the time complexity of partition refinement, we need an improved
strategy to choose the splitting block. The number of stabilization operations
required can equal the number of equivalence-classes in the coarsest stable re-
finement, which can, in turn, be equal to the number of states in the transition
graph, in the worst case.

Exercise 4.12 {T3} [Worst-case for quadratic partition refinement] Give an
instance (G,∼=I) of the partition refinement problem such that the execution of
Algorithm 4.1 on this instance, requires n iterations of the while-loop, irrespec-
tive of the choices of the splitting blocks τ .

If, at each iteration of Algorithm 4.1, we carefully choose a “small” block τ of
∼= for the operation Stabilize(∼=, τ), we arrive at a subquadratic running time.
A suitable criterion for “small” is that τ is a ∼=-equivalence class that contains
at most half the states of any ∼=-block σ if ∼= is known to be stable with respect
to σ. This criterion is enforced by maintaining a second partition, ∼=done , such
that ∼= refines ∼=done and is stable with respect to all ∼=done -equivalence classes.
The algorithm is shown in Figure 4.5. Observe that Algorithm 4.3 is an instance
of Algorithm 4.1.

Consider an enumerative implementation of Algorithm 4.3 for an input graph
G with n states and m ≥ n transitions. Since the number of ∼=done-equivalence
classes increases with every iteration, the while-loop is executed at most n times.
Let σi and τi denote the equivalence classes of ∼=done and ∼=, respectively, that
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are chosen in the i-th iteration of the while-loop. An appropriate choice of τi

can be performed by maintaining for each ∼=-equivalence class υ a counter that
indicates the number of states in υ. Suppose that a state s ∈ Σ belongs to both
τi and τj , for j > i. Since σj ⊆ τi and |τj | ≤ |σj |/2, also |τj | ≤ |τi|/2. It follows
that there are at most log n + 1 iterations i such that s ∈ τi.

The i-th iteration of the while-loop consists of two stabilizing operations, one
with respect to τi and one with respect to σi\τi. Since each state belongs only to
O(log n) many regions τi, the cumulative cost of the stabilization operations with
respect to all regions τi is (+s ∈ Σ. O(log n)·stabcost(s)) = O(m·log n). A state,
however, may belong to O(n) many regions of the form σi\τi. The following
lemma states that to stabilize ∼= with respect to σi\τi, instead of splitting ∼=
with respect to pre(σi\τi), we can split it with respect to pre(τi)\pre(σi\τi),
thereby, avoiding the computation of pre(σi\τi). This observation allows us to
implement the operation Stabilize(∼=, σi\τi) in time stabcost(τi), that is, at the
same cost as the operation Stabilize(∼=, τi).

Lemma 4.4 [Efficient stabilization for Paige-Tarjan] Let G be a transition graph,
let ∼= be a G-partition, and let σ and τ be two blocks of ∼=. If ∼= is stable with
respect to σ and τ , then

Stabilize(∼=, σ\τ) = Split(∼=, pre(τ)\pre(σ\τ)).

Exercise 4.13 {T3} [Efficient stabilization for Paige-Tarjan] Prove Lemma 4.4.

For every state s ∈ Σ and every ∼=done-equivalence class σ, we maintain a counter
tcount(s, σ) that indicates the number of transitions from s to a state in σ; that
is, tcount(s, σ) = |σ ∩ post(s)|. The operation Stabilize(∼=, σ\τ) can then be
performed in time stabcost(τ) = O(mτ + nτ ):

foreach s ∈ τ do

foreach t ∈ pre(s) do tcount(t, τ) := 0 od

od;
foreach s ∈ τ do

foreach t ∈ pre(s) do tcount(t, τ) := tcount(t, τ) + 1 od

od;
foreach s ∈ τ do

foreach t ∈ pre(s) do

tcount(t, σ\τ) := tcount(t, σ) − tcount(t, τ);
if tcount(t, σ\τ) = 0 then Update(t,∼=) fi

od

od;
foreach s ∈ τ do foreach t ∈ pre(s) do Reset(t,∼=) od od.
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If we charge the cost of both parts of the operation Stabilize(Stabilize(∼=, τ), σ\τ)
to the states in τ , it follows that the time required by Algorithm 4.3 is

(+s ∈ Σ. O(log n)·2·stabcost(s)) = O(m·log n).

Theorem 4.5 [Paige-Tarjan partition refinement] Let G be a finite transition
graph with n states and m transitions. The running time of Algorithm 4.3 on
input G is O(m·log n).

Exercise 4.14 {P2} [Mutual exclusion] Recall Peterson’s mutual-exclusion pro-
tocol from Chapter 1. In the initial partition ∼=I , two states are equivalent iff
they agree on all the observation predicates: s ∼=I t iff pc1[s] = pc1[t] and
pc2[s] = pc2[t]. Construct the ∼=I -minimal quotient of GPete using first Algo-
rithm 4.2 and then Algorithm 4.3. In both cases, show the intermediate results
after each iteration of the while-loop.

4.3 Reachable Partition Refinement∗

Consider a transition graph G = (Σ, σI ,→) and an initial partition ∼=I . The ∼=I -
minimal quotient is the graph G/min(∼=I) with state space Σ/min(∼=I ) and initial

states σI/min(∼=I). For verification, we need to compute only the reachable

states of the ∼=I -minimal quotient. This suggests reformulating the partition
refinement problem to account for reachability.

Minimal reachable quotient

Let G be a transition graph and let ∼= be a G-partition. The reachable
stable partition of ∼=, denoted minR(∼=), is the reachable region of the ∼=-
minimal quotient G/min(∼=). The reachable subgraph of G/min(∼=) is called
the ∼=-minimal-reachable quotient.

Remark 4.3 [Minimal reachable quotient] Let G be a transition graph with
states Σ and reachable region σR. Let ∼= be a G-partition. The region σR

need not be a block of min(∼=). The reachable stable partition minR(∼=) is a
partitioning of some region σ of G such that σR ⊆ σ ⊆ Σ. Thus, minR(∼=) is
not necessarily a G-partition, nor a refinement of ∼=. A region τ in minR(∼=) is
contained in some ∼=-equivalence class, and is stable with respect to every region
in minR(∼=).

To solve a reachability problem for the transition graphs, it suffices to con-
struct the minimal-reachable quotient with respect to a suitably chosen initial
partition.

Proposition 4.2 [Reachability] Let G be a transition graph, ∼= be a G-partition,
and σ be a block of ∼=. Then, the answer to the reachability problem (G, σ) is Yes

iff σ ∩ τ is nonempty for some τ ∈ minR(∼=).
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Algorithm 4.4 [Minimization with reachability]

Input: a transition graph G = (Σ, σI ,→) and a G-partition ∼=I .
Output: the answer to the reachable-partition-refinement problem

(G,∼=I).

∼=:=∼=I ; σR := ∅
repeat

{assert min(∼=I) is a refinement of ∼= }
∼=R:= {σ ∈∼= | σ ∩ σR 6= ∅}
{assert σR ⊆ post∗(σI ), and for σ ∈∼=R, |σ ∩ σR| = 1 }
U := {σ ∈∼= \ ∼=R | σ ∩ (σI ∪ post(σR)) 6= ∅}
V := {(τ, υ) ∈∼=R × ∼= | τ is unstable with respect to υ}
Search: or Split:
Choose σ ∈ U Choose (τ, υ) ∈ V
Choose s ∈ σ ∩ (σI ∪ post(σR)) ∼= := Delete(τ,∼=)
σR := Insert(s, σR) ∼= :=∼= ∪Split(τ, pre(υ))

until U = ∅ and V = ∅
return ∼=R.

Figure 4.6: Simultaneous minimization and reachability

Reachable partition refinement

An instance (G,∼=I) of the reachable-partition-refinement problem consists
of (1) a transition graph G and (2) [the initial partition] a G-partition ∼=I .
The answer to the reachable-partition-refinement problem (G,∼=I) is the
reachable stable partition minR(∼=).

One possible solution to the reachable-partition-refinement problem is to first
compute the ∼=I -minimal quotient and then analyze reachability. However, there
are instances of the problem for which min(∼=I) contains large, or even infinite,
number of regions, but only a small number of them are reachable. Thus, the
problem demands a solution that performs both the stabilization and reacha-
bility analysis simultaneously. An alternative strategy is shown in Figure 4.6.

As in the previous partition refinement algorithms, Algorithm 4.4 maintains a
current partition ∼=. The set σR contains states reachable from σI (at most
one state per region of ∼=). The set ∼=R contains those regions of ∼= that are
already known to be reachable. The algorithm computes the set U of regions
that can be added to ∼=R and the set V of unstable pairs of regions. A region
σ belongs to U if it contains an initial state or a successor of a state already
known to be reachable. A pair (τ, υ) belongs to the set V if τ is known to be
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Figure 4.7: Example for computing minimal-reachable quotient

reachable, and is unstable with respect to υ. The algorithm either updates the
reachability information for some region in U , or stabilizes some pair (τ, υ) in V
by splitting τ . Thus searching is interleaved with stabilization in an arbitrary
fashion. Stabilization involves splitting a reachable region τ with respect to
pre(υ) for some ∼=-equivalence class υ. Observe that a region is split only if it is
known to be reachable. The algorithm terminates when neither search nor split
is enabled. As in partition refinement, the coarsest stable partition min(∼=I) is a
refinement of the current partition ∼=. Upon termination, ∼=R is a subset of the
coarsest stable partition min(∼=I), and contains its reachable states. However,
∼= may contain unstable unreachable regions, and thus, need not equal min(∼=I).

Theorem 4.6 [Minimization with reachability] On an instance (G,∼=I) of reachable-
partition refinement problem, if Algorithm 4.4 terminates, it outputs the reach-
able stable partition minR(∼=I).

The size of σR, and hence, the number of regions in ∼=R, is nondecreasing, and
is bounded by the number of regions in the output minR(∼=I). Every iteration
either adds one more state to σR, or one more region to the partition ∼=. It
follows that if the coarsest stable refinement min(∼=I) has finitely many regions,
then Algorithm 4.4 is guaranteed to terminate. The algorithm may terminate
even if min(∼=I) has infinitely many regions. However, there are cases when
minR(∼=I) has finitely many regions, and yet, the algorithm may execute forever.
While the output does not depend upon the strategy used to choose between
searching and splitting, the final partition ∼=, and the number of iterations before
termination, depend on the strategy.

Exercise 4.15 {P3} [Computing minimal-reachable quotient] Consider a sym-
bolic transition graph with four boolean variables x, y, z, and w. The ini-
tial predicate is x = true ∧ y = false . The transition predicate is (w′ =
x) ∧ (x′ = ¬y) ∧ (y′ = w ∨ z). The initial partition contains two regions
[[x ∨ y]] and [[¬x ∧ ¬y]]. Compute the minimal-reachable quotient by executing
Algorithm 4.4. How many regions does the output have?

Exercise 4.16 {T2} [Worst-case scenario for computing minimal-reachable quo-
tient] Consider the symbolic transition graph shown in Figure 4.7. The graph
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has two variables, the location variable pc that ranges over the set {0 . . . 10},
and a variable x that ranges over {0 . . . 31}. The transitions are as shown. The
assignments require that the updated value lies in the range {0 . . . 31} (e.g., the
assignment x := x+1 stands for the guarded assignment x < 31 → x := x+1).
The initial predicate is pc = 0 ∧ x = 0. The initial partition ∼=I contains one
region [[pc = i]] per location 0 ≤ i ≤ 10. How many regions does a ∼=I -minimal-
reachable quotient have? Consider an execution of Algorithm 4.4, where split-
ting is preferred over searching. Show that, upon termination, for every value
0 ≤ i ≤ 31 of x, the partition ∼= contains the singleton region pc = 0 ∧ x = i.

Lee-Yannakakis algorithm

The Lee-Yannakakis algorithm for constructing the minimal-reachable quotient
modifies Algorithm 4.4 by imposing a deterministic strategy for searching and
splitting. The algorithm is shown in Figure 4.8. The type of a graph partition
is partition, and it supports insertion (Insert), deletion (Delete), enumeration
(foreach), and the mapping Find .

Each iteration of the outer repeat-loop in Algorithm 4.5 consists of a searching
phase, followed by the splitting phase. Search is performed until no more regions
can be found reachable, thus, search has a priority over splitting.

As in Algorithm 4.4 the set σR contains reachable states, at most one per region
of ∼=. In the searching phase, the algorithm constructs the reachable regions ∼=R

by exploring the successors of states in σR. The set E contains the edges between
the reachable regions. The search is performed in a depth first manner using
the stack U .

The computation of the algorithm can be understood from the illustration of
Figure 4.9. The partition contains 7 regions σ0, . . . σ6. The regions σ0, σ1, σ4

and σ5 are found to be reachable in the searching phase. Each reachable region
has a unique representative state in σR, for example, state s0 for region σ0. The
reachability information is computed by considering the initial regions and by
exploring successors of the representatives. Thus, at the end of the searching
phase, we are guaranteed that the regions σ2, σ3 and σ6 contain neither initial
states nor successors of the representative states of the reachable regions.

In the splitting phase, the algorithm computes, for each reachable region σ, the
subregion σ′ that is stable with respect to the partition ∼=prev , and contains the
reachable state σR ∩ σ. Instead of splitting σ with respect to each region of
∼=prev , σ is split in at most two regions to avoid proliferation of regions.

To understand the splitting, reconsider the illustration of Figure 4.9. For the
region σ0, the algorithm computes the subregion σ′

0 (shown by the dotted lines)
that contains states that agree with the representative s0: for every state t in
σ′

0, post(t) intersects with σ1 and σ4, and does not intersect with σ0, σ2, σ3, σ5
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Algorithm 4.5 [Lee-Yannakakis Algorithm]

Input: a transition graph G = (Σ, σI ,→) and a G-partition ∼=I .
Output: the answer to the reachable-partition-refinement problem

(G,∼=I).

local ∼=,∼=prev : partition; σR, σ, τ, υ, σ′: region; E: set of

region×region; s, t: state, U : stack of state
∼=:=∼=I ; σR := EmptySet
foreach σ in ∼=I do

if σ ∩ InitQueue(G) 6= ∅ then

Insert(Element(σ ∩ InitQueue(G)), σR) fi od

repeat

Search:
U := EmptyStack ; E := EmptySet ; ∼=R := EmptySet
foreach s in σR do

U := Push(s, U); ∼=R:= Insert(Find(s,∼=),∼=R) od

while not EmptySet(U) do

s := Top(U); U := Pop(U); σ := Find(s,∼=)
foreach t in PostQueue(s, G) do

τ := Find(t,∼=); E := Insert((σ, τ), E)
if not IsMember(τ,∼=R) then

σR := Insert(t, σR); U := Push(t, U);
∼=R:= Insert(τ,∼=R) fi

od

od

Split:
∼=prev :=∼=
foreach σ in ∼=R do

σ′ := σ; τ := PostQueue(σ, G)
foreach (σ, υ) in E do σ′ := σ′∩PreQueue(υ, G); τ := τ\υ od

σ′ := σ′\pre(τ)
if σ 6= σ′ then
∼=:= Insert(σ′, Insert(σ\σ′,Delete(σ,∼=)))
if σ\σ′ ∩ InitQueue(G) 6= ∅ then

σR := Insert(Element(σ\σ′), σR) fi fi

od

od

until ∼=prev =∼=
return ∼=R.

Figure 4.8: Lee-Yannakakis algorithm for partition refinement
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Figure 4.9: Computation of Lee-Yannakakis Algorithm

and σ6. Clearly, σ′

0 is nonempty as it contains s0. Furthermore, σ′

0 is known
to be reachable with the representative state s0. If it differs from σ0, then σ0

is split at the boundary of σ′

0. If the split part σ0\σ
′

0 contains an initial state,
then it is declared reachable by choosing a representative state.

Lemma 4.5 [Stabilization in Lee-Yannakakis algorithm] Let ∼=prev be the value
of the partition at the beginning of the splitting phase during some iteration of
Algorithm 4.5. Let σ be a region in ∼=R, and let s be the unique state in σR ∩σ.
Then, the subregion σ′ computed at the end of the for-loop contains precisely
those states t such that t →G τ iff s →G τ for all τ in ∼=prev .

Exercise 4.17 {T3} [Stabilization in Lee-Yannakakis] Prove Lemma 4.5.

Once the subregion σ′ is computed, the region σ is split at the boundary of σ′.
The crucial aspect of the splitting strategy is that all regions are given a fair
chance, in a round-robin order, to split.

Exercise 4.18 {P2} [Computing minimal-reachable quotient by Lee-Yannakakis]
Execute Algorithm 4.5 on the input of Exercise 4.16. How many iterations are
required before termination?

Suppose the reachable stable partition minR(∼=I) has n regions. During the
execution of Algorithm 4.5, the number of regions that contain some reachable
state of G is bounded by n. The convergence is established by the following
lemma.

Lemma 4.6 [Convergence] At the end of an iteration of the repeat-loop of Al-
gorithm 4.5, the number of regions σ in ∼= with σ ∩ post∗G(σI ) 6= ∅ either equals
the number of regions in minR(∼=I), or exceeds the number of regions τ in ∼=prev

with τ ∩ post∗G(σI ) 6= ∅.
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Proof. Let υ = post∗G(σI) be the reachable region of G. During the splitting
phase each region σ in ∼=R is split into two regions σ′ and σ\σ′ such that σ con-
tains a reachable state and is stable with respect to each τ in ∼=prev (Lemma 4.5).
There are two cases to consider.

Case 1: for some σ in ∼=R, σ\σ′ contains a state in υ. Then, the number of
regions in the new partition containing reachable states exceeds the number of
regions in the old partition containing reachable states.

Case 2: for all regions σ ∈∼=R, σ\σ′ does not contain a state in υ. Let ∼=′

R

be the set of regions σ′. We show that every region of the reachable stable
partition minR(∼=I) is contained in a region of ∼=′

R, and thus, the sets ∼=R, ∼=′

R,
and minR(∼=I) have the same cardinality.

First, we prove that every state in υ belongs to some σ′. We already know that,
for all σ in ∼=R, (σ\σ′) ∩ υ is empty. It suffices to show that for every region τ
in ∼=prev \ ∼=R, τ ∩ υ is empty. Consider a region τ in ∼=prev \ ∼=R. Whenever
a newly created region contains an initial state, one of its state is added to σR,
and hence, the region gets added to ∼=R. Hence, τ ∩ σI is empty. During the
searching phase, all successors of all the states in σR are explored, and hence,
τ ∩ post(σR) is empty. Since every σ′ in ∼=′

R is stable with respect to τ , and
contains a state in σR, it follows that τ ∩ post(σ′) is empty for all σ′ in ∼=′

R. It
follows that τ ∩ υ is empty.

For every σ′ in ∼=′

R, let σ′′ = σ′ ∩ υ. Consider two regions σ and τ in ∼=R. We
know that σ′ is stable with respect to τ . It follows that σ′′ is also stable with
respect to τ . Since σ′′ ⊆ υ, post(σ′′) ∩ τ = post(σ′′) ∩ τ ′′. It follows that σ′′ is
stable with respect to τ ′′. We conclude that the final output minR(∼=I) contains
as many regions as ∼=R.

The running time of the algorithm depends upon the time complexity of the
primitive operations on regions and partitions. If the number of successors of
a state in G is bounded by k, then each searching phase requires at most kn
operations. The number of operations during a splitting phase is bounded by
the number of regions in ∼=R and the number of edges in E. If the number of
edges in the minimal-reachable quotient is m, then the size of E is bounded
by m, and the splitting phase requires at most m + n primitive operations. If
min(∼=I) has ` equivalence classes then Algorithm 4.5 is guaranteed to terminate
after ` iterations.

Exercise 4.19 {T3} [Optimization of Lee-Yannakakis algorithm] The search-
ing phase of Algorithm 4.5 builds the graph (∼=R, E) from scratch in each itera-
tion. Suggest a modification so that the computation of one iteration is reused
in the next.
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Figure 4.10: Reachable semistable quotient

Early termination

Lemma 4.6 ensures that the size of ∼=R does not change after n iterations.
Indeed, the graphs (∼=R, E) computed in searching phases are isomorphic after
the n-th iteration. The splitting phase only removes subregions from each of
the regions in ∼=R without influencing the structure of the graph.

Reachable semistable quotient

Let G be a transition graph and let ∼=I be a G-partition. The pair (∼=, E),
for a set ∼= of regions of G and a set E ⊆∼= × ∼= of edges between the regions
of ∼=, is a reachable ∼=I -semistable quotient of G if (1) every region σ of the
reachable stable partition minR(∼=I) is contained in a region f(σ) of ∼=, and
(2) for two regions σ and τ of the reachable stable partition minR(∼=I),
σ →min(∼=I) τ iff (f(σ), f(τ)) ∈ E.

To understand the definition consider Figure 4.10 which shows a transition of
a reachable semistable quotient of a transition graph G. Each region τi of
a reachable semistable quotient contains a nonempty region σi that contains
reachable states of G (the union of all σi equals the reachable region of G). The
definition requires the transition from τ0 to τ1 to be stable with respect to the
reachable subregions σi: from every state s in σ0, postG(s) ∩ σ1 is nonempty.
However, there may be a state s ∈ τ0\σ0 such that postG(s) ∩ τ1 is empty.

Example 4.6 [Semistable quotient] Consider the symbolic graph G with an
integer variable x and a variable y that ranges over the interval [0, 1] of real
numbers. The initial predicate is x = 0 ∧ y = 0, and the transition predicate is

(x′ = x + 1) ∧ (2y ≤ 1 → y′ = 2y).

The initial partition ∼=I contains the single region with all the states. In this
case, min(∼=I ) has infinitely many regions. The reachable region is [[y = 0]],
and contains infinitely many states. However, the minimal-reachable quotient
is finite: for σ = [[y = 0]], the graph with the single state σ, and the single
transition from σ to σ, is the minimal-reachable-quotient. There are infinitely
many reachable semistable quotients. Executing Algorithm 4.5 for i iterations
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yields the semistable quotient that contains a single region [[y = 1/2i]] with a
single self-loop.

It follows that for a given transition graph and an initial partition, the cor-
responding reachable semistable partition is not uniquely defined. Two such
reachable semistable partitions are isomorphic graphs. To solve a reachabil-
ity problem for the transition graphs, it suffices to construct any reachable
semistable quotient with respect to a suitably chosen initial partition.

Proposition 4.3 [Reachability and semistable quotients] Let G be a transition
graph, ∼=I be a G-partition, and σ be a block of ∼=I . If (∼=, E) is a reachable
∼=I -semistable quotient of G, then the answer to the reachability problem (G, σ)
is Yes iff σ ∩ τ is nonempty for some τ in ∼=.

The Lee-Yannakakis algorithm is guaranteed to compute a reachable semistable
quotient after linearly many iterations.

Theorem 4.7 [Computation of semistable partition] Given an instance (G,∼=I)
of reachable-partition-refinement, if the reachable stable partition minR(∼=I ) has
n regions, the pair (∼=R, E) at the end of the n-th iteration of the repeat-loop of
Algorithm 4.5 is a reachable ∼=I -semistable quotient of G.

Exercise 4.20 {T3} [Convergence to semistable quotient] Modify the proof of
Lemma 4.6 to prove Theorem 4.7.

Since it suffices to compute a reachable semistable quotient to solve reachability
problems, the execution of Algorithm 4.5 can be aborted, if there is a procedure
that determines whether (∼=R, E) is a reachable semistable quotient. Observe
that deciding whether (∼=R, E) is a reachable semistable quotient is an easier
(static) problem compared to the dynamic problem of constructing one. While
there are no general algorithms for this purpose, specialized solutions can be
employed to exploit the structure of the update commands.

Exercise 4.21 {T4} [Cylinder-based refinement computation] Consider an in-
stance (P,∼=I) of the reachable-partition-refinement problem with the following
characteristics. The module P is a ruleset with a single enumerated variable x
and k real-valued variables Y . Thus, the state-space ΣP is the produce

�
x× � k .

A rational interval I is a convex subset of � with rational endpoints. A region
σ of P is convex if for all s and t in σ with s(x) = t(x), for all 0 ≤ δ ≤ 1, the
state u is also in σ, where u(pc) = s(pc) and u(y) = δ · s(y)+(1− δ) · t(y) for all
y ∈ Y . A region σ of P is a cylinder if there exist a value m ∈

�
x and intervals

Iy for variables y ∈ Y such that a state s of P belongs to σ iff s(x) = m and
s(y) ∈ Iy for y ∈ Y . Assume that the initial region σI

P is a cylinder, and every
region in the initial partition ∼=I is a cylinder. Furthermore, for every guarded
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assignment γ in the update command of P , the guard pγ is a cylinder, and for

all y ∈ Y , ey′

γ is of the form az+b for some rational numbers a, b, and a variable
z ∈ Y .

(1) Show that if a region σ of P is a cylinder, then postP (σ) is a finite union of
cylinders, and preP (σ) is a finite union of cylinders. (2) Show that every region
in min(∼=I) is convex. (3) Show that every region in min(∼=I) is a cylinder. (4)
Show that the problem of checking whether (∼=, E) is a reachable ∼=I -semistable
quotient can be formulated as a linear programming problem. What is the
time-complexity of your test for semistability?
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Appendix: Notation

Equivalences and partitions

A partition of a set A is a set of nonempty, pairwise disjoint subsets of A whose
union is A. There is a one-to-one correspondence between the equivalences on
A and the partitions of A. Given an equivalence ∼= on A and an element a ∈ A,
we write a/∼= for the ∼=-equivalence class {b ∈ A | b ∼= a} of a. The set A/∼=
of ∼=-equivalence classes is a partition of A. In this way, each partition of A
is induced by a unique equivalence on A. Therefore, whenever we refer to a
partition of A, we use a notation like A/∼=, which indicates the corresponding
equivalence. We also freely attribute properties and derivatives of equivalences
to partitions, and vice versa.

Let ∼= be an equivalence on A. The equivalence ∼= is finite if ∼= has finitely
many equivalence classes. A union of ∼=-equivalence classes is called a block
of ∼=. If ∼= is finite with n equivalence classes, then ∼= has 2n blocks. Given two
equivalences ∼=1 and ∼=2 on A, the equivalence ∼=1 refines the equivalence ∼=2,
written ∼=1�∼=2, if a ∼=1 b implies a ∼=2 b. If ∼=1 refines ∼=2, then every block of
∼=2 is a block of ∼=1. For a set E of equivalence relations on A, the join

⋃

∗

E
is the transitive closure of the union

⋃

E of the relations in E; the join
⋃

∗

E is
an equivalence on A. The refinement relation � is a complete lattice on the set
of equivalences on A. The least upper �-bound for a set E of equivalences on
A is the join

⋃

∗

E; the greatest lower �-bound for E is the intersection
⋂

E.

Exercise 4.22 {} [Partition theorems] Prove all claims made in the previous
paragraph.

Groups

A goup is a set A with a binary function ◦ : A2 7→ A, called the multiplication
operation, such that (1) ◦ is associative, (2) there exists an element that is
identity for ◦, and (3) every element of A has an inverse with respect to ◦.
Consider a group (A, ◦). A subgroup of A is a subset B ⊆ A such that (B, ◦) is a
group. For a subset B ⊆ A, the subgroup generated by B, denoted closure(B),
is the smallest subgroup of (A, ◦) that contains B. The elements in B are called
generators for the group closure(B).
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Chapter 5

Real-Time Modules

In reactive modules, the progress of time is abstracted into a sequence of rounds.
The abstraction of time in this fashion is convenient in many circumstances.
First, every round may represent a clock cycle, as in our model of synchronous
circuits. Second, a special tick event may represent a clock cycle, with an
arbitrary number of rounds between ticks, as in our model of timed asynchronous
circuits. Third, quantitative time may be irrelevant altogether to the problem
at hand, as in our model of mutual-exclusion protocols, whose correctness ought
to be independent of the relative speeds of the processes. Sometimes, however,
it is necessary to take a more accurate, real-numbered view of time. For this
purpose, we introduce an extension of reactive modules called real-time modules.

While the behavior of a reactive module is a sequence of update rounds, the
behavior of a real-time module is a sequence of update and delay rounds. Dur-
ing an update round, the values of variables are updated; during a delay round,
the values of ordinary variables remain unchanged, while the values of special
variables called clocks measure the amount of time that elapses. We assume
the synchrony hypothesis, that no time elapses during update rounds. The syn-
chrony hypothesis is a modeling assumption; it simply asserts that all time de-
lays must be modeled explicitly by delay rounds. For example, if an assignment
to a variable takes 1 time unit, it must be modeled as a delay round of dura-
tion 1 followed by an update round that changes the value of the variable. For
mathematical purposes, it will be convenient to separate updates from delays
in this fashion.

1
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5.1 Clock Variables

Real-time modules have two kinds of variables: discrete variables and clock

variables (or clocks, for short). Discrete variables are updated by guarded as-
signments, as before. Clock variables range over the nonnegative real numbers,
and may change in two different ways. First, like a discrete variable, a clock
may be updated by a guarded assignment. Second, while time elapses, the value
of a clock increases, measuring the progress of time. We declare clock variables
using the type

�
; all other declared variables are discrete by default. A reactive

module, then, is simply the special case of a real-time module without clocks.

Consider two sets X and Y of typed variables with Y ⊆ X . A guarded delay γ
from X to Y is a boolean expression pγ over X , written

γ → wait.

Informally, the guarded delay γ can be executed if the boolean expression pγ

evaluates to true. The execution of γ leaves the value of each discrete variable
in Y unchanged, and advances the value of each clock variable in Y by some
uniform real value δ such that the truth value of pγ remains true throughout
the advancement. Given a valuation s for X , and a real number ε, by s + ε we
denote the valuation for X that maps each discrete variable x in X to x[s], and
each clock variable y in X to y[s] + ε. The guarded delay γ defines a ternary
relation [[γ]] ⊆ ΣX × � ≥0 × ΣY : (s, δ, t) ∈ [[γ]] iff (1) t = Y [s] + δ and (2) for
every nonnegative real ε ≤ δ, the valuation s + ε satisfies γ.

A guarded real-time command Γ from X to Y is a finite set {γi | i ∈ I} of
guarded assignments and guarded delays from X to Y such that the disjunction
(∨i ∈ I. pγi

) of the guards is valid. The guarded real-time command Γ defines
a ternary relation [[Γ]] ⊆ ΣX × � ≥0 ×ΣY : (s, δ, t) ∈ [[Γ]] iff for some i ∈ I , either
(1) γi is a guarded assignment, δ = 0, and [[γi]](s) = t, or (2) γi is a guarded
delay and (s, δ, t) ∈ [[γi]].

Real-time modules

A real-time atom is an atom whose controlled variables are read, and whose
update command is a guarded real-time command. A real-time module is a
reactive module whose atoms are real-time atoms.

Each real-time module defines a transition graph. The states of a real-time
modules are the valuations for the module variables. Since the values of clock
variables are real numbers, the state space of a real-time module is usually in-
finite. A real-time module has two kinds of transitions. Update transitions
correspond to guarded assignments, which update the values of discrete and
clock variables, and time transitions correspond to guarded delays, which ad-
vance the values of clock variables and leave the values of discrete variables
unchanged.
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Transition relation of a real-time module

Let P be a real-time module, let s and t be two states of P , and let
t′ = t[XP := X ′

P ]. The state pair (s, t) is a transition of P if there is a
nonnegative real δ such that for every atom U of P ,

(readXU [s] ] awaitX ′
U [t′], δ, ctrX ′

U [t′]) ∈ [[updateU ]],

and if δ > 0, then for every external discrete variable x of P , x[t] = x[s],
and for every external clock variable y of P , y[t] = y[s] + δ. If δ = 0, then
(s, t) is an update transition; if δ > 0, then (s, t) is a time transition of

duration δ.

Remark 5.1 [Time transitions] If (s, t) is a time transition of duration δ, then
t = s + δ. Moreover, for each nonnegative real ε < δ, (s, s + ε) is also a time
transition. It follows that the transition graph of a real-time module is usually
infinitely branching.

Operationally, in each update round the atoms of a module are sorted topolog-
ically with respect to the precedes relation. In each subround, an atom either
updates its controlled variables, or proposes a time delay (the proposed time
delay is not known to the other atoms). After all subrounds, if some atom has
updated its controlled variables, then the module moves instantaneously to the
next update round. If, on the other hand, all atoms have proposed time delays,
then the module waits for the amount of time equal to the minimum of the
proposed time delays, before moving to the next update round.

Example 5.1 [Real-time counter] The following module increments a counter
x every 3 to 5 time units:

module RealTimeCount

interface x : �
private y :

�

atom controls x, y reads x, y
init

[] true → x′ := 0; y′ := 0
update

[] y ≥ 3 → x′ := x + 1; y′ := 0
[] y ≤ 5 → wait

5.2 Real-time Invariant Verification

The invariant verification problem is decidable for an interesting class of real-
time modules, because we can construct finite stable partitions of the infinite
state spaces.
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module RealTimeTrain

interface pc : {far ,near , gate}; arrive : �
private x :

�

atom controls pc, x, arrive reads pc, x, arrive
init

[] true → pc′ := far

update

[] pc = far → pc′ := near ; arrive !; x′ := 0
[] pc = far → wait

[] pc = near ∧ x ≥ 3 → pc ′ := gate ; x′ := 0
[] pc = near ∧ x ≤ 5 → wait

[] pc = gate ∧ x ≥ 1 → pc ′ := far

[] pc = gate ∧ x ≤ 2 → wait

module RealTimeGate

external arrive : �
interface pc : {open , closing , closed}
private y :

�

atom controls pc, y reads pc, y, arrive awaits arrive

init

[] true → pc′ := open

update

[] pc = open ∧ arrive? → pc ′ := closing ; y′ := 0
[] pc = open ∧ ¬arrive? → wait

[] pc = closing ∧ y ≥ 1 → pc ′ := closed ; y′ := 0
[] pc = closing ∧ y ≤ 2 → wait

[] pc = closed ∧ y ≥ 7 → pc ′ := open

[] pc = closed ∧ y ≤ 7 → wait

Figure 5.1: Real-time railroad gate control
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Propositional real-time modules

The clock constraints are the boolean expressions generated by the grammar

p ::= x ≤ c | c ≤ x | x + c ≤ y + d | p ∧ p,

where x and y are clock variables, and c and d are integer constants. A
clock formula is a boolean combination of propositional formulas and clock
constraints. A propositional real-time module is a real-time module P such
that (1) all discrete variables of P are propositions, and (2) every expression
that appears in the guards of initial and update commands of P is a clock
formula, and (3) every expression that appears in the assignments of initial
and update commands of P is a propositional formula or an integer constant.

Propositional real-time invariant verification

An instance (P, r) of the propositional invariant-verification problem con-
sists of a propositional real-time module P and a clock formula r that is
an observation predicate for P . The instance (P, r) has k boolean variables

and l clock variables and maximal constant cmax if the module P has k
boolean variables and l clock variables, and the maximal integer constant
that occurs in either P or r is cmax .

Example 5.2 [Real-time train] Figure 5.1 shows an example of two proposi-
tional real-time modules that model a train and a gate controller. Consider the
train system

module RailRoadXing is RealTimeTrain [pc := pcT ] ‖RealTimeGate [pc := pcG].

We want to show that the clock formula

pcT = gate → pcG = closed

is an invariant of RailRoadXing .

5.2.1 Partition Refinement

Theorem 5.1 [Propositional real-time modules] [Alur and Dill] Let P be a

propositional real-time module, and let ∼=I be a finite partition of GP such that

every equivalence class of ∼=I can be defined by an observation predicate for P
that is a clock formula. Then the coarsest stable refinement min(∼=I) has finitely

many equivalence classes.

Proof. Let c be the largest constant occuring in P and the formulas that
define the equivalence classes of ∼=I . Define the region equivalence s ∼= t iff
(1) for all discrete variables x of P , x[s] = x[t]; (2) for all clock variables y
of P , either by[s]c = by[t]c and dy[s]e = dy[t]e, or dy[s]e > c and dy[t]e > c; and
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(3) for all clock variables y and z of P , 〈x[s]〉 < 〈y[s]〉 iff 〈x[t]〉 < 〈y[t]〉 (where
〈x〉 = x − bxc). Then ∼= is a stable refinement of ∼=I .

It follows that symbolic backward reachability checking and symbolic partition
refinement terminates on the transition graphs of propositional real-time mod-
ules. The number of equivalence classes is O(2k+l · l! · (cmax + 1)), which is
exponential in the size of the module P .

Corollary 5.1 [Real-time invariant verification] The propositional real-time in-

variant verification problem can be solved in exponential time.

Exercise 5.1 {T3} [PSPACE invariant verification] Prove that the proposi-
tional real-time invariant verification problem can be solved polynomial space.

Exercise 5.2 {P2} [Region graph] The quotient graph GP /π, where P is a
propositional real-time module and π is the equivalence relation from the proof
of Theorem 5.1, is called the region graph of P . Draw the region graph of the
real-time module RailRoadXing .

Exercise 5.3 {P3} [Coarsest stable refinement] Consider again the real-time
module RailRoadXing and the initial partition π̂, with two equivalence classes,
that separates the states in which the train is inside a non-closed gate from all
other states. (1) Step through partition refinement to find the coarsest stable
refinement of π̂. (2) Step through the Lee-Yannakakis algorithm.

5.2.2 Symbolic Analysis of Propositional Real-time Mod-

ules

The transition predicates of real-time modules can be constructed using quan-
tifiers over the reals. For example, the transition predicate of the module Real-

TimeTrain is

∨ (pc = far ∧ pc′ = near ∧ x′ = 0 ∧ arrive ′ 6= arrive)
∨ (∃δ ≥ 0. pc′ = pc ∧ x′ = x + δ ∧ arrive ′ = arrive ∧ (∀0 ≤ ε ≤ δ. pc = far))
∨ (pc = near ∧ x ≥ 3 ∧ pc ′ = gate ∧ x′ = 0 ∧ arrive ′ = arrive)
∨ (∃δ ≥ 0. pc′ = pc ∧ x′ = x + δ ∧ arrive ′ = arrive ∧ (∀0 ≤ ε ≤ δ. pc = near ∧ x + ε ≤ 5))
∨ (pc = gate ∧ x ≥ 2 ∧ pc ′ = far ∧ x′ = x ∧ arrive ′ = arrive)
∨ (∃δ ≥ 0. pc′ = pc ∧ x′ = x + δ ∧ arrive ′ = arrive ∧ (∀0 ≤ ε ≤ δ. pc = gate ∧ x + ε ≤ 2))

This transition predicate is not a clock formula, because it contains existen-
tial quantifiers, and subformulas of the form x′ = x + δ, which are not clock
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constraints. By eliminating the existential quantifiers, we obtain the equivalent
formula

∨ (pc = far ∧ pc′ = near ∧ x′ = 0 ∧ arrive ′ 6= arrive)
∨ (pc = far ∧ pc′ = far ∧ x′ ≥ x ∧ arrive ′ = arrive)
∨ (pc = near ∧ x ≥ 3 ∧ pc ′ = gate ∧ x′ = 0 ∧ arrive ′ = arrive)
∨ (pc = near ∧ pc′ = near ∧ x ≤ x′ ≤ 5 ∧ arrive ′ = arrive)
∨ (pc = gate ∧ x ≥ 2 ∧ pc ′ = far ∧ x′ = x ∧ arrive ′ = arrive)
∨ (pc = gate ∧ pc′ = gate ∧ x ≤ x′ ≤ 2 ∧ arrive ′ = arrive).

While this is a clock formula, this need not be the case. To see this, consider the
propositional real-time module with two clocks, x and y, and the single guarded
delay true → wait. The transition predicate of this module is

(∃δ ≥ 0. x′ = x + δ ∧ y′ = y + δ)

or equivalently, after quantifier elimination,

x′ ≥ x ∧ x′ − x = y′ − y.

The synchronization of the two clocks introduces a constraint between clock
differences.

Exercise 5.4 {T3} [Real-time transition predicates] (1) Given a real-time mod-
ule P , define the transition predicate of P . (2) A clock difference formula is like
a clock formula, only that atomic subformulas may have the form x−y = z−u,
for clock variables x, y, z, and u. Prove that for every propositional real-time
module, the transition predicate is equivalent to a clock difference formula (use
existential-quantifier elimination for δ). (3) How expensive is it to construct the
clock difference formula that is equivalent to the transition predicate of P ?

Consider a propositional real-time module P . Suppose you are given a clock
formula p (over the unprimed variables X , which contain both propositions
and clocks) which defines a region σ, and a clock difference formula q (over
the unprimed and primed variables X ∪ X ′) which is equivalent to the tran-
sition predicate of P . Then the region pre(σ) is defined by the formula r =
(∃X ′.p[X := X ′] ∧ q) (and the region post(σ) is defined by the formula r′ =
(∃X.p ∧ q)[X ′ := X ]). By Theorem 5.1, the formula r is again a clock for-
mula. (What about r′?) This formula can be found by existential-quantifier
elimination.

Exercise 5.5 {T3} [Reals with addition] The first-order theory of the reals with

addition contains all atomic formulas that are either boolean variables or have
the form t ∼ c, where t is a sum of clock variables, ∼ is either ≤ or ≥, and c is
an integer constant. In particular, all clock difference formulas are quantifier-
free formulas of the first-order theory of the reals with addition. (1) Show that
this theory permits quantifier elimination; that is, for every formula there is
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an equivalent quantifier-free one. What is the complexity of your quantifier-
elimination procedure? (2) Show that this theory has a decidable satisfiability
problem. What is the complexity class of the satisfiability problem?

Exercise 5.6 {P3} [Real-time reachability analysis] Give a symbolic forward
reachability algorithm for propositional real-time modules. Represent all regions
that are computed by your algorithms using clock formulas. Step your forward
algorithm through a proof that the train RealTimeTrain is never in the gate
when the gate RealTimeGate is closed. Here “stepping through a proof” means
to list the clock formulas for σI , post(σI ), post2(σI ), etc., for the real-time
module RailRoadXing .

Exercise 5.7 {T3} [Forward reachability analysis] Symbolic backward reacha-
bility analysis is guaranteed to terminate for propositional real-time modules,
because every region constructed by the algorithm is a block of the region equiv-
alence (which has only finitely many blocks). The same cannot be said for for-
ward analysis. (1) Give a simple propositional real-time module for which sym-
bolic forward reachability analysis does not terminate. (2) Modify the forward
algorithm so that it is guaranteed to terminate on all propositional real-time
modules.

Exercise 5.8 {P3} [Real-time mutual exclusion] If clocks are available, mutual
exclusion can be guaranteed in a quite simple way. Formalize the following
protocol as propositional real-time modules, and step a forward-reachability
algorithm through a proof that the protocol ensures mutual exclusion. In your
protocol, assume that each assignment requires 2 time units. The two competing
processes share a variable k whose value is initially 0, and always either 0, 1,
or 2. When the first (second) process wants to enter its critical section, it waits
until k = 0, then sets k to 1 (resp. 2), then waits for 3 time units, then enters
its critical section if k is still 1 (resp. 2); if the value of k is no longer 1, the
process repeats the sequence starting from waiting until k = 0. Upon leaving
its critical section, the process resets k to 0. (Since k is a write-shared variable,
you must model it as a separate module.)

5.2.3 Difference-bound Matrices

For representing the regions of a propositional real-time module which can be
defined by clock formulas, a more efficient symbolic representation is based on
difference-bound matrices. For a region R, let timepre(R) the set of all states
from which a state in R can be reached by a time step; that is, timepre(R) =
{s | ∃t ∈ R. ∃δ ≥ 0. t = s + δ}. For a clock formula p, let timepre(p) be the
formula (∃δ ≥ 0. p + δ), where p + δ is obtained from p by replacing each clock
variable x with x + δ. Define timepost similarly.
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Exercise 5.9 {T3} [Clock formulas] (1) Prove that the clock constraints are
closed under timepre, timepost , and existential-quantifier elimination, and have
a decidable satisfiability problem. What is the cost of each operation? (2) Re-
peat the exercise for clock formulas.

Suppose you are given a clock formula p (over the unprimed variables X , which
contain both propositions and clocks) which defines a region σ, a clock formula
formula q (over the unprimed and primed variables X ∪ X ′) which defines the
discrete transitions of P , and a clock formula formula r (over the unprimed
variables X) which defines the time invariant of P (i.e., the disjunctions of
all guards of guarded delays). Then the region pre(σ) is defined by the clock
formula r = (∃X ′.p[X := X ′] ∧ q) ∨ (timepre(p) ∧ r), and the region post(σ) is
defined by the clock formula r = (∃X.p ∧ q)[X ′ := X ] ∨ (timepost(p) ∧ r). This,
together with the previous exercise, gives us symbolic backward and forward
reachability algorithms which do not rely on arbitrary formulas of the first-
order theory of the reals with addition, but only on clock formulas. And for
clock formulas, there is an efficient symbolic representation.

Exercise 5.10 {T3} [Difference-bound matrices (DBMs)] Represent clock con-
straints with n clocks by integer square matrices with n + 1 rows and n + 1
columns. For two clocks x and y, the (x, y) entry contains a tight upper bound
on the clock difference x − y (or ∞, if there is no such upper bound). The
(x, n+1) entry contains a tight upper bound on the value of x, and the (n+1, x)
entry contains a tight upper bound on −x. Every matrix entry also contains a
“bit” indicating if the bound is strict (<) or weak (≤). (1) Is this representation
canonical? If not, how would you make it canonical? (2) Give algorithms for
computing conjunction, equivalence checking, satisfiability checking, renaming,
existential-quantifier elimination (for clock variables), timepre and timepost on
the matrix representation of clock constraints. What is the cost of each opera-
tion?

Exercise 5.11 {T3} [Combining boolean state and DBMs] Devise a “semi-
symbolic” representation for clock formulas. Clock formulas result from clock
constraint by adding both disjunction and propositions. Every clock formula
can be thought of as a set of boolean states (valuations for the propositions), and
for each boolean state, a set (disjunction) of clock constraints represented by
DBMs. This representation is called semi-enumerative, because boolean state is
represented enumeratively and only clock state is represented symbolically (by
DBMs). Give algorithms for the boolean operations, satisfiability checking, im-
plication and equivalence checking, renaming, existential-quantifier elimination
(for both propositions and clocks), timepre and timepost on your representation
of clock formulas. You may use the algorithms from the previous exercise as
black-box subroutines. What is the cost of each operation?
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Exercise 5.12 {T4} [Combining BDDs and DBMs] Devise a “fully-symbolic”
representation for clock formulas. Represent the boolean part of a clock formula
as a BDD such that each leave does not point to 0 or 1, but to a set (disjunction)
of BDMs. As in the previous exercise, give algorithms for the boolean opera-
tions, satisfiability checking, implication and equivalence checking, renaming,
existential-quantifier elimination (for both propositions and clocks), timepre

and timepost on your representation of clock formulas. What is the cost of each
operation?
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Chapter 6

Temporal Safety

Requirements

6.1 Logical Requirements of Reactive Modules

The invariant-verification problem allows us to check if all reachable states of a
reactive module satisfy an observation predicate. Not all module requirements
can be formulated as invariants. For instance, for the mutual-exclusion proto-
cols of Chapter 2, we may wish to check the first-request-first-in requirement,
that the first process to request admission to the critical section is the first
process allowed to enter the critical section. As was discussed in Chapter 2,
the first-request-first-in requirement can be checked by composing the mutual-
exclusion protocol with a monitor and verifying an invariant of the compound
module. The introduction of monitors has the disadvantage of increasing the
state space of a module. Here we discuss the alternative of enriching the specifi-
cation language so that module requirements such as first-request-first-in can be
formulated without the use of monitors. For this purpose, we present a class of
formal languages called state logics. While invariants refer to static observation
snapshots of reactive modules, the formulas of state logics refer also to dynamic
observation sequences. The observation sequences of a module are captured by
an observation structure.

1
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Figure 6.1: Observation structure

6.1.1 Observation Structures

An observation structure is a transition graph whose states are labeled with
observations. It is required that there are only finitely many initial states with
a given observation, and every state has only finitely many successors with a
given observation.

Observation structure

An observation structure K consists of (1) a transition graph (Σ, σI ,→),
(2) [the observation alphabet ] a set A of observations, and (3) [the observa-

tion function] a function 〈〈·〉〉 : Σ → A that maps each state s to an observa-
tion 〈〈s〉〉 such that for every observation a ∈ A, (i) the set {s ∈ σI | 〈〈s〉〉 = a}
is finite, and (ii) for every state s ∈ Σ, the set {t ∈ postG(s) | 〈〈t〉〉 = a} is
finite.

Example 6.1 [Observation structure] Figure 6.1 shows an observation struc-
ture with the state space {s0, s1, s2, s3} and the observation alphabet {p, q, r}.

We freely attribute properties and derivatives of transition graphs to observation
structures. For example, an observation structure inherits the trajectories of
the underlying transition graph, and the reachable subgraph of the underlying
transition graph gives the reachable substructure of an observation structure.

The observation structure of a module

Every reactive module P defines the transition graph GP . An observation of P
is a valuation to the set obsXP = intfXP ∪ extlXP of observable variables of P .
The observation alphabet is, then, the set of all observations. The observation
function maps a module state s to the projection s[obsXP ] to the observable
variables. There are only finitely many ways to initialize the controlled state of
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a module: for every valuation t of the external variables extlXP , there are only
finitely many initial states s such that s[extlXP ] = t. It follows that σI

P [obsXP ]
is finite. Similarly, there are only finitely many ways to update the controlled
state of a module: for a state s and a valuation t of the external variables extlXP ,
there are only finitely many states u such that s →P u and u[extlXP ] = t. It
follows that postP (s)[obsXP ] is finite for every state s of the module.

Observation structure of a module

The reactive module P defines the observation structure KP =
(GP ,ΣobsXP

, ·[obsXP ]).

Example 6.2 [Observation structure of Pete] Recall Peterson’s mutual exclu-
sion protocol from Chapter 2. The observable variables for the module Pete are
the location variables pc1 and pc2. The observation alphabet of the observation
structure KPete is

Σ{pc
1
,pc

2
} = {inC , reqC , outC} × {inC , reqC , outC}.

The reachable substructure of KPete has the transition graph of Figure 3.4, and
each state is labeled with the value of pc1 and pc2. Note that the transition
graph of the module P1 ‖P2 is identical to the transition graph of the module
Pete = hide x1, x2 in P1 ‖P2, but the observation structures KP1 ‖P2

and
KPete have different observation alphabets, and thus, are nonisomorphic.

6.1.2 State Logics

The formulas of state logics are called state formulas, because they are inter-
preted over the states of observation structures; that is, a state formula is true
or false in a given state of a given observation structure. Before we study spe-
cific state logics, let us define concepts generic to all state logics. A state logic
is defined by specifying the rules to build formulas of the logic, and the rules to
interpret formulas at states of an observation structure. A state logic Φ consists
of two components:

Syntax A set PΦ of formulas. Formulas are defined inductively from atomic
formulas using boolean and temporal connectives. The formulas in PΦ are
called Φ-formulas.

Semantics Given a Φ-formula φ, an observation structure K is said to be a
φ-structure if each observation of K is a valuation for a superset of the
variables appearing in the atomic formulas of φ. Every Φ-formula φ is
interpreted over the states of the φ-structures. The satisfaction relation
s |=K φ specifies when the state s of the φ-structure K satisfies the Φ-
formula φ.
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The satisfaction relation specifies the truth of a formula at a state of an obser-
vation structure. An observation structure satisfies a formula if all its initial
states do.

Satisfiability

Let φ be a state formula, and let K be a φ-structure with the state space
Σ and the initial region σI . The characteristic φ-region of K is the region

[[φ]]K = {s ∈ Σ | s |=K φ}

of states in Σ that satisfy the formula φ. The observation structure K
satisfies the formula φ, written K |= φ, if all initial states in σI satisfy φ;
that is, σI ⊆ [[φ]]K . The state formula φ is satisfiable if there is a φ-structure
that satisfies φ. The state formula φ is valid if all φ-structures satisfy φ.

The satisfiability problem for a state logic is to decide whether a given formula
is satisfiable, and the validity problem is to decide whether a given formula is
valid. Let φ and ψ be two state formulas. If the observation structure K is
both a φ-structure and a ψ-structure, we say that K is a (φ, ψ)-structure. The
state formula φ implies the state formula ψ if for every (φ, ψ)-structure K, the
region [[φ]]K is a subset of the region [[ψ]]K . The two state formulas φ and ψ are
equivalent if for every (φ, ψ)-structure K, the regions [[φ]]K and [[ψ]]K are equal.

Exercise 6.1 {T2} [Weak equivalence of state formulas] Let φ and ψ be two
state formulas. The two state formulas φ and ψ are weakly equivalent if for
every (φ, ψ)-structure K, the formula φ is K-valid iff the formula ψ is K-valid.
Prove that φ and ψ are equivalent iff they are weakly equivalent.

The model-checking problem

The model-checking problem for Φ asks if φ is satisfied by a given φ-structure.

Model-checking problem for state logics

An instance (K,φ) of the model-checking problem for the state logic Φ con-
sists of (1) a Φ-formula φ and (2) a φ-structure K. The answer to the
model-checking problem (K,φ) is Yes if K satisfies φ, and otherwise No.

The verification problem for a state logic is to check whether the observation
structure of a module satisfies a given formula. It can be reduced, at an ex-
ponential cost, to the model-checking problem, similar to the way in which the
invariant-verification problem can be reduced to the reachability problem.
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Verification problem for state logics

An instance (P, φ) of the verification problem for the state logic Φ consists
of (1) a reactive module P with the set obsXP of observable variables, and
(2) a Φ-formula φ such that the set of variables appearing in the atomic
formulas of φ is a subset of obsXP . The answer to the verification problem
(P, φ) is the answer to the model-checking problem (KP , φ).

6.2 Safe Temporal Logic

Temporal logics extend observation logic with connectives that refer to obser-
vation sequences of reactive modules.

6.2.1 Syntax and Semantics of Stl

Safe temporal logic has two temporal connectives: the unary connective possibly-

next, written ∃©, and the binary connective possibly-until, written ∃U .

Safe temporal logic: Syntax

Safe temporal logic (Stl) is the state logic whose formulas are generated by
the grammar

φ ::= p | φ ∨ φ | ¬φ | ∃© φ | φ∃Uφ,

for atomic formulas p.

The satisfaction of an atomic formula p at a state s depends on the observation
of s. The meaning of the boolean connectives is the usual one. Consider two
observation predicates p and q for a reactive module P . The state s of the
observation structure KP satisfies the formula ∃© p if some successor of s
satisfies p. The state s satisfies the formula q∃Up if there is a source-s trajectory
whose states satisfy p or q, and whose sink satisfies p. In other words, the formula
∃© p asserts that it is possible to execute a single round of the module P so
that the observation predicate p becomes true. The formula q∃Up asserts that
it is possible to execute finitely many rounds of P so that p becomes true, and
throughout the execution the observation predicate p ∨ q is true.
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Safe temporal logic: Semantics

The satisfaction relation for Stl is defined inductively by the following
clauses:

s |=K p iff 〈〈s〉〉 |= p;
s |=K φ ∨ ψ iff s |=K φ or s |=K ψ;
s |=K ¬φ iff s 6|=K φ;
s |=K ∃© φ iff there is a state t ∈ postK(s) such that t |=K φ;
s |=K ψ∃Uφ iff there is a source-s trajectory s0..m of K such that

(1) sm |=K φ and
(2) for all 0 ≤ i ≤ m, si |=K φ ∨ ψ.

where p is an atomic formula, φ and ψ are Stl-formulas, K is a (p, φ, ψ)-
structure, and s is a state of K.

The propositional connectives ∧ (conjunction), → (implication), and ↔ (equiv-
alence) can be defined using the connectives ∨ (disjunction) and ¬ (negation)
of state logics, and we freely use the defined connectives as abbreviations.

Remark 6.1 [Until connective] Equivalently, s |=K ψ∃Uφ iff there is a source-s
trajectory s0..m of K such that (1) sm |=K φ and (2) for all 0 ≤ i < m, si |=K ψ.
In particular, if s |=K φ, then s |=K ψ∃Uφ.

Example 6.3 [Safe temporal logic] Recall the observation structure shown in
Figure 6.1. There, s0 |= ∃© q and s0 |= (p ∨ q)∃Ur.

When all the atomic formulas are propositional formulas, that is, boolean ex-
pressions over boolean variables, the temporal logic Stl is called propositional

Stl.

Defined temporal connectives

Using the connectives ∃© and ∃U , we can define additional temporal connectives
in Stl:

Inevitably-next ∀© φ for ¬∃©¬φ;
Possibly-eventually ∃3φ for true ∃Uφ;
Inevitably-always ∀2φ for ¬∃3¬φ;
Inevitably-waiting-for φ∀Wψ for ¬((¬ψ)∃U¬(φ ∨ ψ)).

Consider two observation predicates p and q for a reactive module P . The state
s of the observation structure KP satisfies the formula ∀© p if every successor
of s satisfies p. The state s satisfies the formula ∃3p if some state in the sink
region of s satisfies p, and s satisfies ∀2p if every state in the sink region of
s satisfies p. In other words, the formula ∀© p asserts that after executing a
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Figure 6.2: The temporal connectives of Stl

single round of the module P the observation predicate p becomes true. The
formula ∃3p asserts that it is possible to execute finitely many rounds of P
so that p becomes true, and the formula ∀2p asserts that p is an invariant
of P . It follows that the invariant-verification problem is a special case of the
verification problem for Stl: the invariant-verification problem (P, p) and the
Stl-verification problem (P, ∀2p) have the same answer.

Exercise 6.2 {T2} [Waiting-for connective] Let φ and ψ be two Stl formulas,
let K be a (φ, ψ)-structure, and let s be a state of K. Prove that s |=K φ∀Wψ
iff for all source-s trajectories s0..m of K either for all 0 ≤ i ≤ m, si |=K φ; or
there is a natural number j with 0 ≤ j ≤ m such that (1) sj |=K ψ and (2) for
all 0 ≤ i < j, si |=K φ. That is, in every source-s trajectory of K, a state that
violates φ coincides with or is preceded by a state that satisfies ψ.

Figure 6.2 graphically illustrates the requirements that are imposed by the tem-
poral connectives of Stl. When writing Stl formulas, we freely use the defined
temporal connectives as abbreviations. We suppress parentheses, assuming that
the binary connectives ∃U and ∀W associate to the right; that is, we write
φ∃Uψ∃Uχ for φ∃U(ψ∃Uχ).

Exercise 6.3 {T2} [Nested until connectives] Let φ, ψ, and χ be three Stl

formulas. Let K be a (φ, ψ, χ)-structure, and let s be a state of K. Prove that
s |=K φ∃U(ψ∃Uχ) iff there is a source-s trajectory s0..m of K and a natural
number i with 0 ≤ i ≤ m such that (1) sm |=K χ, (2) for all i ≤ j < m,
sj |=K ψ, and (3) for all 0 ≤ j < i, sj |=K φ.

Prove or disprove that (φ∃Uψ)∃Uχ implies φ∃U(ψ∃Uχ), and vice versa. What
about (φ∀Wψ)∀Wχ vs. φ∀W(ψ∀Wχ)?
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Exercise 6.4 {T2} [Dual version of Stl] Suppose that the Stl∀ formulas are
generated by the grammar

φ ::= p | φ ∨ φ | ¬φ | ∀© φ | φ∀Wφ.

Define the temporal connectives ∃© and ∃U in this logic; that is, for every Stl

formula give an equivalent Stl∀ formula.

6.2.2 Specifying requirements using Stl

Example 6.4 [Mutual exclusion] Recall Peterson’s mutual-exclusion protocol
from Chapter 2. The mutual-exclusion requirement is specified by the Stl

formula

∀2¬ (pc1 = inC ∧ pc2 = inC ), (φmutex )

which is equivalent to the Stl formula

¬∃3 (pc1 = inC ∧ pc2 = inC ).

The Stl formula φfifo specifies the first-request-first-in requirement that if pro-
cess P1 attempts to enter the critical section when process P2 is in its noncritical
section , then P2 cannot overtake P1 to enter the critical section:

∀2((pc1 = reqC ∧ pc2 = outC ) → (pc2 6= inC )∀W(pc1 = inC )).

The Stl formula φdl free specifies the deadlock-freedom requirement that if pro-
cess P1 attempts to enter the critical section, then there is a trajectory that
leads P1 into its critical section:

∀2(pc1 = reqC → ∃3(pc1 = inC )). (φdl free)

Symmetric first-request-first-in and deadlock-freedom requirements can be as-
serted for process P2.

Exercise 6.5 {P1} [Equal opportunity] Recall Peterson’s mutual-exclusion pro-
tocol from Chapter 2. Write an Stl formula φbd ot that specifies the equal-
opportunity requirement that if process P1 attempts to enter the critical sec-
tion when process P2 is in its noncritical section, then P2 may enter its critical
section at most once before P1 is allowed to enter its critical section.

Example 6.5 [Railroad controller] Recall the module RailroadSystem from Chap-
ter 3. The Stl-formula

∀2¬( pcW = bridge ∧ pcE = bridge )

specifies the safety requirement that both trains should never be simultaneously
on the bridge. The Stl-formula

∀2 ∃3 ( pcW 6= bridge ∧ pcE 6= bridge )

specifies the requirement that from every reachable state there exists a trajectory
leading to a state in which none of the two trains are on the bride.
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Event Stl

The logic Stl specifies requirements of trajectories using atomic formulas that
are interpreted at states. When a module uses events for communication, it
is convenient to use formulas that refer to transitions or pairs of states. For
this purpose, we define the state logic Estl. Unlike Stl, it has two sorts
of formulas: state formulas that are interpreted with respect to states, and
transition formulas that are interpreted with respect to transitions.

Event Stl (Estl) is the state logic whose state formulas are generated by the
grammar

φ ::= p | φ ∨ φ | ¬φ | ϕ∃Uϕ.

for atomic formulas p and transition formulas ϕ. The transition formulas are
generated by the grammar

ϕ ::= φ | ©φ | ϕ ∨ ϕ | ¬ϕ

for state formulas φ. The semantics of the state formulas of Estl is defined as
follows:

s |=K p iff 〈〈s〉〉 |= p;
s |=K φ ∨ ψ iff s |=K φ or s |=K ψ;
s |=K ¬φ iff s 6|=K φ;
s |=K ρ∃Uϕ iff there is a source-s trajectory s0..m of K

with m > 0 such that
(1) (sm−1, sm) |=K ϕ and
(2) for all 0 < i ≤ m, (si−1, si) |=K ϕ ∨ ρ.

The semantics of the transition formulas of Estl is defined as follows:

(s, t) |=K φ iff s |=K φ;
(s, t) |=K ©φ iff t |=K φ;
(s, t) |=K ϕ ∨ ρ iff (s, t) |=K ϕ or (s, t) |=K ρ;
(s, t) |=K ¬ϕ iff (s, t) 6|=K ϕ.

Thus, the transition formulas can refer to the updated values of variables by
using the next operator. If x is a boolean variable of the event type, then we
use x? as an abbreviation for the transition formula (x 6↔ ©x). Suppose that
x and y are two event variables. The following Estl formula asserts that no
event x is followed by an event y:

∀2(x? → ©∀2¬y?).

Example 6.6 [Synchronous 3-bit Counter] Recall the synchronous module
SCountThree of Example 2.19 that models a 3-bit counter. The desired spec-
ification of the counter is that in every update round, if the start command is
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present (start ′ = 1), then the counter should be reset to 0, and if the increment
command is present, then the counter should be incremented by 1 (module 8),
and otherwise, the counter should stay unchanged. The following Estl formula
expresses the desired update of the bit out0:

∀2





©start → ¬© out

¬© start ∧ ©inc → out ↔ ¬© out

¬© start ∧ ¬© inc → out ↔ ©out



 .

The desired update of the remaining two bits can be specified similarly in Estl.

Open modules

Checking existential requirements of an open module is not very meaningful.
Existential requirements over external variables are trivially satisfied, while ex-
istential requirements over interface variables are not preserved under parallel
composition.

Remark 6.2 [Open modules] Let P be a module, and let p and q be boolean
expressions over the external variables of P . Then, for every state s of P ,
s |= ∃© p and s |= p∃Uq.

Exercise 6.6 {T2} [Open modules] Give an example of a module P ‖Q and an
Stl-formula φ such that the answer to the verification problem (P, φ) is Yes,
while the answer to (P ‖Q,φ) is No.

If we restrict ourselves only to the universal formulas, then the compositionality
principle holds. Let ∀Stl be the fragment of Stl generated by the grammar

φ ::= p | ¬p | φ ∧ φ | φ ∨ φ | ∀© φ | φ∀Wφ

The logic ∀Stl is not closed under negation.

The parallel composition operation on modules ensures that the projection of
a trajectory of a compound module onto the variables of a component is a
trajectory of the component. This implies that the compositionality principle
holds for ∀Stl.

Proposition 6.1 [Compositionality for ∀Stl] If the module P satisfies the

∀Stl-formula φ, then for every module Q that is compatible with P , the com-

pound module P ‖Q satisfies φ.

Proof. Let P and Q be two compatible modules, and let φ be a formula ∀Stl.
Let R = P ‖Q. We prove that, for every subformula ψ of φ, for all states s of P ,
if s |=P ψ then for all states t of R, if t[XP ] = s then t |=R ψ. The proof is by
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Figure 6.3: Tree Semantics of Stl

induction on the structure of ψ. Consider a state s of P such that s |=P ψ, and
let t be a state of R with t[XP ] = s. The interesting case is when ψ = χ1∀Wχ2.

Consider a source-t trajectory t0 . . . tm of R. Then, from the properties of the
parallel composition operation, there exists a trajectory s0 . . . sm of P such that
si = ti[XP ] for all 0 ≤ i ≤ m. Since s0...m is a source-s trajectory of P , and
s |=P χ1∀Wχ2, we have either for all 0 ≤ i ≤ m, si |=P χ1; or there is a natural
number j with 0 ≤ j ≤ m such that sj |=P χ2 and for all 0 ≤ i < j, si |=P χ1.
From induction hypothesis, it follows that either for all 0 ≤ i ≤ m, ti |=R χ1;
or there is a natural number j with 0 ≤ j ≤ m such that tj |=R χ2 and for all
0 ≤ i < j, ti |=R χ1.

Tree Semantics

The semantics of Stl can, alternatively, be defined using trees. For an observa-
tion structure K and a state s of K, the s-rooted tree is obtained by unfolding
the source-s trajectories of K into a tree. Figure 6.3 shows the s0-rooted tree
for the transition structure of Figure 6.1.

Formally, for a state s of the observation structure K = (Σ, σI ,→, A, 〈〈·〉〉) the
s-rooted K-tree is another transition structure TK(s):

• The states of TK(s) are the source-s trajectories of K.

• The only initial state TK(s) is its root s.
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• There is a transition from s0...m to t0...n if n = m + 1 and si = ti for
0 ≤ i ≤ m.

• The observation alphabet is A.

• The observation function maps s0...m to 〈〈sm〉〉.

Verify that the structure TK(s) is a tree, that is, every state, except the root s,
has a unique predecessor. The formulas of Stl can be interpreted over the tree
TK(s) instead the structure K:

Proposition 6.2 [Tree property of Stl] Let φ be a Stl-formula, let K be a

φ-structure, and let s be a state of K. For every state s0...m of the tree structure

TK(s),
s0...m |=TK (s) φ iff sm |=K φ.

Exercise 6.7 {T2} [Tree property] Prove Proposition 6.2.

Proposition 6.2 implies that the satisfaction nof Stl-formulas at a state s of an
observation structure depends only upon the substructure of K that is reachable
from s, and is insensitive to the unwinding of the structure.

6.3 Model Checking

We are given an Stl formula φ and a φ-structure K, and we are asked to check
if all initial states of K satisfy φ. For this purpose, we find the characteristic
region [[φ]]K , that is, all states of K that satisfy φ. We proceed inductively on
the structure of the formula φ, by first finding the characteristic regions for the
subformulas of φ.

Subformulas

The set Sub(φ) of subformulas of the Stl formula φ is defined inductively:

Sub(p) = {p} for an atomic formula p;
Sub(ψ ∨ χ) = {ψ ∨ χ} ∪ Sub(ψ) ∪ Sub(χ);
Sub(¬ψ) = {¬ψ} ∪ Sub(ψ);
Sub(∃© ψ) = {∃© ψ} ∪ Sub(ψ);
Sub(ψ∃Uχ) = {ψ∃Uχ} ∪ Sub(ψ) ∪ Sub(χ).

Remark 6.3 [Number of subformulas] The Stl formula φ has at most |φ| sub-
formulas.
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Given the input formula φ, the model-checking algorithm for Stl calls a function
OrderedSub(φ), which returns a queue with the subformulas of φ such that
a formula appears only after all its subformulas. Assuming a type form for
formulas:

function OrderedSub: queue of form

Input: an Stl formula φ.
Output: a queue of the formulas in Sub(φ) such that if ψ ∈ Sub(φ)

and χ ∈ Sub(ψ), then χ precedes ψ in OrderedSub(φ).

Example 6.7 [Subformula ordering] For example, the function call OrderedSub((p∧
q)∃U(¬∃© r)) may return the queue

(p, q, r, p ∧ q, ∃© r,¬∃© r, ((p ∧ q)∃U(¬∃© r))

of formulas.

Exercise 6.8 {T2} [Computing subformulas] Give an algorithm that, given an
Stl-formula φ with ` symbols, computes the function OrderedSub(φ) in O(`)
time.

6.3.1 Enumerative Stl model checking

An enumerative model-checking algorithm computes an enumerative represen-
tation of the characteristic region [[φ]]K from enumerative representations of the
characteristic regions for the subformulas of φ.

Assume that the given observation structure K is finite. An enumerative Stl

model-checking algorithm computes, for each state s of K, the set λ(s) ⊆ Sub(φ)
of subformulas of φ that are satisfied by s. Initially, λ(s) is empty for each
state s. Then, all subformulas of φ are considered in the order given by the
function call OrderedSub(φ). Consider a subformula ψ of φ. For each state
s of K, we must decide whether s satisfies ψ, and update λ(s) accordingly.
Inductively, we know that for every subformula χ of ψ and for each state s, the
formula χ belongs to λ(s) iff s |=K χ. The form of ψ leads to various cases. The
interesting case occurs when ψ has the form χ1∃Uχ2. In this case, we define a
finite transition graph H :

The vertices of H are the states Σ of K. A state s ∈ Σ is an initial
state of H iff the formula χ2 belongs to λ(s). The graph H has an
edge from s ∈ Σ to t ∈ Σ iff (1) K has a transition from t to s and
(2) the formula χ1 belongs to λ(t).

The semantics of the possibly-until connective implies that s |=K χ1∃Uχ2 iff
the vertex s is reachable in the graph H . Consequently, the set of states that
satisfy ψ can be computed by a depth-first search in H .
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Figure 6.4: Reachability analysis for checking possibly-until

Example 6.8 [Model checking] Consider the observation structure of Figure 6.1,
and the possibly-until formula φ = (p ∨ q)∃Ur. Let OrderedSub(φ) = {p, q, r, p ∨
q, φ}. First, the formula p is added to the sets λ(s0) and λ(s2). Then, the for-
mula q is added to the set λ(s1). Then, the formula r is added to the set λ(s3).
Then, the formula p ∨ q is added to the sets λ(s0), λ(s1), and λ(s2). To evaluate
the truth of φ, consider the transition graph of Figure 6.4 with the initial state
s3. All the states are reachable, implying that the formula φ is satisfied in all
the states, and hence, for every state s, φ is added to the set λ(s).

The Stl model-checking algorithm shown in Figure 6.5 considers only the reach-
able substructure of the input structure K. For this purpose, the algorithm
calls the function Reach(K), which returns a queue with the reachable states
of K. The function Reach can be implemented using the techniques from Chap-
ter 3. The abstract type for the input structure K supports also the operations
InitQueue, PreQueue, and PostQueue (see Chapter 3). Given a state s of K,
each function call λ(s) returns a set of formulas. The abstract type set for the
formula sets λ(s) : set of form and the state set σ : set of state supports the
operations EmptySet , Insert , and IsMember . The satisfaction of atomic formu-
las is checked by the function AtomicCheck . For an observation structure K,
a state s of K, and an atomic formula p, AtomicCheck (s, p,K) returns true iff
s |=K p. Checking of the possibly-until formulas employs a depth-first search
using the stack τ and the set σ that stores the states visited by the search.

Lemma 6.1 [Correctness of enumerative model checking] Let φ be an Stl for-

mula, and let K be a φ-structure with a finite reachable substructure. Upon

termination of Algorithm 6.1, for every subformula ψ of φ and each state s
of K, ψ ∈ λ(s) iff s |=K ψ.

Exercise 6.9 {P2} [Mutual exclusion] Consider the module Pete from Chapter
2, and the Stl-formula φfifo of Example 6.4. Execute Algorithm 6.1 on the
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Algorithm 6.1 [Enumerative Stl Model Checking]

Input: an Stl formula φ, and a φ-structure K whose reachable
substructure is finite.

Output: the answer to the model-checking problem (K,φ).

σR := Reach(K);
foreach s in σR do λ(s) := EmptySet od;
foreach ψ in OrderedSub(φ) do

case ψ = p for an atomic formula p:
foreach s in σR do

if AtomicCheck (s, p,K) then λ(s) := Insert(p, λ(s)) fi

od

case ψ = χ1 ∨ χ2:
foreach s in σR do

if IsMember (χ1, λ(s)) or IsMember(χ2, λ(s)) then

λ(s) := Insert(ψ, λ(s)) fi

od

case ψ = ¬χ:
foreach s in σR do

if not IsMember(χ, λ(s)) then λ(s) := Insert(ψ, λ(s)) fi

od

case ψ = ∃© χ:
foreach s in σR do

foreach t in PostQueue(s,K) do

if IsMember (χ, λ(t)) then λ(s) := Insert(ψ, λ(s)) fi

od

od

case ψ = χ1∃Uχ2:
σ := EmptySet ; τ := EmptyStack ;
foreach s in σR do

if IsMember (χ2, λ(s)) and not IsMember(s, σ) then

τ := Push(s, τ); σ := Insert(s, σ) fi;
while not EmptySet(τ) do

t := Top(τ); τ := Pop(τ); λ(t) := Insert(ψ, λ(t));
foreach u in PreQueue(t,K) do

if IsMember (χ1, λ(u)) and not IsMember (u, σ) then

τ := Push(u, τ); σ := Insert(u, σ) fi

od

od

od

end case

od;
foreach s in InitQueue(K) do

if not IsMember(φ, λ(s)) then return No fi

od;
return Yes.

Figure 6.5: Enumerative Stl model checking
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input (KPete , φfifo), and establish that the answer to the verification problem
(Pete , φfifo) is Yes.

If the observation structure K is finite, then K can be represented by a record
{K}e with two components of type enumgraph and array[state] of obs,
where obs is the type of observations. The second component is redundant if
the observation structure K is defined by a reactive module. In this case, the
observation of each state can be obtained from the state itself by ignoring the
values of the private variables. The enumerative structure representation {K}e

supports the operations InitQueue, PreQueue, and PostQueue in constant time,
and Reach can be implemented in time proportional to the number of transitions
of K (see Chapter 3). The function λ can be implemented in constant time
using an array λ : array[state] of set of form, where form ranges over the
subformulas of φ. If the abstract type set of

�
is represented by a boolean

array array[
�
] of � , then the operations Insert and IsMember require constant

time, and the operation EmptySet requires time proportional to the number of
elements in

�
. This representation leads to linear running time of Algorithm 6.1.

Theorem 6.1 [Stl model checking] Let φ be an Stl formula with ` symbols,

and let K be a finite φ-structure with n states and m transitions. Suppose

that every call to the function AtomicCheck requires constant time. Given the

input φ and {K}e, Algorithm 6.1 solves the model-checking problem (K,φ) in

O(` · (n+m)) time.

Remark 6.4 [Space complexity of Stl model checking] Let φ be an Stl for-
mula with ` symbols, and let K be a finite φ-structure with n states. Algo-
rithm 6.1 requires O(` · n) space. It is possible to solve the model checking
problem in recursively top-down manner to save space. In particular, there is a
nondeterministic algorithm that requires space O(` · log n) space. If the Stl-
formula φ is small, that is, bounded by a constant, then the complexity class of
the model checking problem (K,φ) is NLOGSPACE.

The Stl-verification problem (P, φ), for a finite module P and an Stl for-
mula φ, can be solved by first constructing the enumerative structure represen-
tation {KP }e, and then applying Algorithm 6.1. Since the number of states of
KP may be exponentially larger than the description of P , the resulting cost
for Stl verification is exponential. This cost is unavoidable, because already
the propositional Stl-verification problem is PSPACE-hard (the propositional
invariant-verification problem (P, p) and the Stl-verification problem (P, ∀2p)
have the same answer, and the former was shown to be PSPACE-hard in Chap-
ter 3). In Section 3.2.4, we considered two space optimizations for invariant
verification, using on-the-fly representations and using only the latched vari-
ables. Both these techniques are useful for improving efficiency of Stl model
checking.
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Exercise 6.10 {T3} [Stl verification in PSPACE] Prove that the Stl-verification
problem is in PSPACE.

Exercise 6.11 {T3} [Reduced observation structure] Recall the definition of
the reduced transition graph of a module. Define the reduced observation struc-
ture of a module and use it for an improved solution of the Stl-verification
problem, along the lines of Theorem 3.4.

6.3.2 Symbolic Stl model checking

A symbolic model-checking algorithm computes a symbolic representation of
the characteristic region [[φ]]K from symbolic representations of the character-
istic regions for the subformulas of φ. The symbolic Stl model-checking algo-
rithm shown in Figure 6.6 assumes that the symbolic structure representation
supports the operations InitReg and PreReg , and the symbolic region repre-
sentation supports, in addition to the operations ∪, ∩, and ⊆, also the set
difference operation \. An Stl-verification problem (P, φ) can be solved by first
constructing a symbolic representation of the observation structure KP , and
then applying Algorithm 6.2.

Consider the propositional Stl-verification problem (P, φ). The symbolic rep-
resentation of the observation structure KP consists of (1) the symbolic rep-
resentation of the transition graph GP (which consists of the initial predicate
qI over XP and the transition predicate qT over XP ∪ X ′

P ), and (2) the set
obsXP of observable variables. Binary decision diagrams are suitable for solv-
ing the propositional Stl-verification problem. All the heuristics considered in
Section 5.2.4 to improve the efficiency of BDD-based representations are useful
in Stl-verification.

Exercise 6.12 {T3} [Symbolic region difference] Write an algorithm that com-
putes, given the BDD representation of two propositional formulas p and q, the
BDD representation of the difference [[p]]\[[q]]. What is time complexity of the
algorithm?

Exercise 6.13 {T3} [Event Stl] Write a symbolic model-checking algorithm
for Estl that computes characteristic regions only over the latched variables.

6.4 The Distinguishing Power of Stl

The partition-refinement algorithms presented in Chapter 4 can be used to
reduce the size of an observation structure, while retaining the ability of com-
puting the characteristic regions for Stl formulas. For this purpose, we need
to understand when two states of an observation structure satisfy the same Stl

formulas.
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Algorithm 6.2 [Symbolic Stl model checking]

Input: an Stl formula φ, and a φ-structure K.
Output: the answer to the model-checking problem (K,φ).

foreach ψ in OrderedSub(φ) do

case ψ = p for an atomic formula p: [[ψ]] = [[p]]
case ψ = χ1 ∨ χ2: [[ψ]] = [[χ1]] ∪ [[χ2]]
case ψ = ¬χ: [[ψ]] = [[true]]\[[χ]]
case ψ = ∃© χ: [[ψ]] = PreReg([[χ]],K)
case ψ = χ1∃Uχ2:
σ := [[false ]];
τ := [[χ2]];
while τ 6⊆ σ do

σ := σ ∪ τ ;
τ := PreReg(σ,K) ∩ [[χ1]]
od

end case

od;
if InitReg(K) ⊆ [[φ]] then return Yes else return No.

Figure 6.6: Symbolic Stl model checking
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6.4.1 State Equivalences

A state equivalence ' is a family of relations which contains for each observation
structure K an equivalence 'K on the state space of K (that is, a partition of
the state-space of K). Here are three examples of state equivalences:

1. Within each observation structure K, state equality = distinguishes any
two different states: for every state s of K, s/=K

is the singleton set {s}.

2. Within each observation structure K, observational equivalence ≈ distin-
guishes any two states with different observations: if 〈〈·〉〉 is the observation
function of K, then two states s and t of K are observationally equivalent,
denoted s ≈K t, if 〈〈s〉〉 = 〈〈t〉〉.

3. Within each observation structure K, universal equivalence 'U does not
distinguish any two states: if Σ is the state space of K, then for every
state s of K, s/'U equals Σ.

The refinement relation on equivalences induces a preorder on state equiva-
lences. Let '1 and '2 be two state equivalences. The state equivalence '1 is
as distinguishing as the state equivalence '2, written '2 v '1, if for all obser-
vation structures K, the equivalence '1

K refines the equivalence '2
K . The state

equivalence '1 is more distinguishing than '2, if '2 v '1 and '1 6v '2. The
two state equivalences '1 and '2 are equally distinguishing, if '1 v '2 and
'2 v '1. The two state equivalences '1 and '2 are incomparable if '1 6v '2

and '2 6v '1.

Remark 6.5 [State equality and universal equivalence] Let ' be a state equiv-
alence. The state equivalence ' is as distinguishing as universal equivalence,
and state equality is as distinguishing as '. In other words, the preorder v
has a bottom, the universal equivalence 'U , and a top, the state equality =.

6.4.2 Bisimilarity

Since observational equivalence refers to static observation snapshots for distin-
guishing two states, more distinctions can be made by referring also to dynamic
observation sequences. Bisimilarity is such a state equivalence which, while less
distinguishing than state equality, is more distinguishing than observational
equivalence.

Bisimilarity

Let K be an observation structure. The coarsest stable refinement 'B
K =

minK(≈K) of observational equivalence and the induced state equivalence
'B are called bisimilarity.
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Figure 6.7: Bisimilarity game

Remark 6.6 [Alternative definition of bisimilarity] Let K = (Σ, σI ,→, A, 〈〈·〉〉)
be an observation structure. The equivalence ∼= on the states of K is a bisimu-

lation of K if (1) the partition Σ/∼= is a stable partition of K and (2) ∼= refines
the observational equivalence ≈K . Thus, for all states s and t of K, if s ∼= t
then

(1) 〈〈s〉〉 = 〈〈t〉〉;
(2) if s→ s′, then there is a state t′ such that t→ t′ and s′ ∼= t′;
(3) if t→ t′, then there is a state s′ such that s→ s′ and s′ ∼= t′.

Two states s and t of K are bisimilar iff there is a bisimulation ∼= of K such
that s ∼= t.

It follows that bisimilarity can be characterized game-theoretically. Consider the
following two-player game on the graph of the observation structureK. Player I,
the protagonist, attempts to show that two given states s and t are bisimilar,
while Player II, the adversary, tries to distinguish the two states. If the two
given states have different observations, then the adversary wins immediately.
Throughout the game, there are two active states; initially s and t are active.
Each move of the game consists of two parts —a move by the adversary followed
by a move of the protagonist. The adversary picks one of the two active states
and replaces it by one of its successors, say s′; the protagonist, then, must match
the move of the adversary by replacing the other active state with one of its
successors t′ such that 〈〈s′〉〉 = 〈〈t′〉〉. If the protagonist cannot match a move of
the adversary, then the adversary wins the game. The two initial states s and
t are bisimilar iff the adversary does not have a winning strategy; that is, all of
possible moves of the adversary can perpetually be matched by the protagonist.

Example 6.9 [Bisimilarity game] Consider the observation structure shown in
Figure 6.7. The two states s0 and t0 are not bisimilar. To see this using
the bisimilarity game, consider the following strategy for the adversary. The
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adversary chooses s0 and moves to s1. If, in response, the protagonist decides to
move from t0 to t1, then the adversary moves from s1 to s3, and the protagonist
cannot match this move (because no transition from t1 leads to a state with
observation p). Similarly, if the protagonist decides to move from t0 to t2, then
the adversary moves from s1 to s2, and the protagonist cannot match this move
either. So the adversary has a winning strategy in the bisimilarity game, which
implies that the two states s0 and t0 are not bisimilar. By contrast, it is easy
to check that the two states s0 and u0 are bisimilar.

Exercise 6.14 {T3} [Fixpoint view of bisimilarity] Let K = (Σ, σI ,→, A, 〈〈·〉〉)
be an observation structure. Given a binary relation ∼=⊆ Σ2, we define the
binary relation f(∼=) ⊆ Σ2 such that for all states s and t of K, (s, t) ∈ f(∼=) iff

(1) s ∼= t;
(2) if s→ s′, then there is a state t′ such that t→ t′ and s′ ∼= t′;
(3) if t→ t′, then there is a state s′ such that s→ s′ and s′ ∼= t′.

First, prove that f is a monotonic function on the complete partial order of the
equivalences on Σ under refinement (i.e., if ∼=1�∼=2 for two equivalences ∼=1 and
∼=2 on Σ, then f(∼=1) � f(∼=2)). Second, prove the binary relation ∼=⊆ Σ2 is
a bisimulation of K iff (1) ∼= is an equivalence that refines the observational
equivalence ≈ and (2) ∼= is a fixpoint of f . Third, conclude that bisimilarity
'B

K is the greatest fixpoint of f .

An infinite hierarchy of state equivalences

Bisimilarity —a family of coarsest stable refinements— is defined to be the
least distinguishing state equivalence in the set of state equivalences whose con-
stituents are stable refinements of observational equivalence. Hence, bisimilarity
is defined “from below,” in terms of more distinguishing state equivalences. Al-
ternatively, bisimilarity can be defined “from above,” as the limit of a sequence
of less distinguishing state equivalences. Intuitively, two states are i-step bisim-

ilar, written ≈i for a natural number i, if in the bisimilarity game the adversary
has no winning strategy that requires at most i moves. Then, two states are
bisimilar if they are i-step bisimilar for all natural numbers i.
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i-step bisimilarity

The state equivalences ≈i, called i-step bisimilarity for each natural num-
ber i, are defined inductively. The state equivalence ≈0 coincides with
observational equivalence; that is, ≈0 =≈. For each natural number i, for
every observation structure K = (Σ, σI ,→, A, 〈〈·〉〉), and for all states s and
t of K, let s ≈i+1

K t iff

(1) 〈〈s〉〉 = 〈〈t〉〉;
(2) if s → s′, then there is a state t′ such that t → t′ and

s′ ≈i
K t′;

(3) if t → t′, then there is a state s′ such that s → s′ and
s′ ≈i

K t′.

Remark 6.7 [Weak hierarchy] For each natural number i, the state equivalence
≈i+1 is as distinguishing as ≈i, and bisimilarity is as distinguishing as ≈i.

Exercise 6.15 {T3} [Computation of i-step bisimilarity] Write an algorithm
that, given an observation structure K and a natural number i, computes the
partition K/≈i

K

. What is the asymptotic running time of your algorithm for
finite input structures?

The hierarchy of state equivalences given by i-step bisimilarity is strict and
converges towards bisimilarity.

Proposition 6.3 [Strict hierarchy] For each natural number i, the state equiv-

alence ≈i+1 is more distinguishing than the state equivalence ≈i.
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Proof. The proof is by induction on i. We only give the base case and indicate
the idea behind the inductive step.

For the base case, consider the observation structure K1 shown in Figure 6.8.
To distinguish the two states s and t in the bisimilarity game, the adversary
needs a single move (the adversary chooses the successor of s). It follows that
s ≈0

K1
t and s 6≈1

K1
t; that is, ≈1 is more distinguishing than ≈0.

For the idea behind the inductive step, consider the observation structure K2

shown in Figure 6.9. To distinguish the two states s and t, the adversary needs
two moves (with its first move, the adversary chooses the left successor of s;
with its second move, it chooses the rightmost successor of s′). It follows that
s ≈1

K2
t and s 6≈2

K2
t; that is, ≈2 is more distinguishing than ≈1.

Exercise 6.16 {T3} [Strict hierarchy] Give a complete proof of Proposition 6.3.
Use only finite observation structures to distinguish ≈i+1 from ≈i.

The next proposition gives establishes that bisimilarity coincides with the in-
ductive definition.

Proposition 6.4 [Alternative definition of bisimilarity] Bisimilarity 'B equals

the intersection
⋃

i ∈ � . ≈i of the i-step bisimilarity equivalences.

Proof. We show that the function f from Exercise 6.14 is
⋂

-continuous; that
is, given an observation structure K = (Σ, σI ,→, A, 〈〈·〉〉) and a sequence ∼=0,∼=1

,∼=2, . . . of equivalences on Σ, if ≈�∼=0�∼=1�∼=2� · · ·, then f(∩i ∈ � . ∼=i) equals
∩i ∈ � . f(∼=i). The proposition follows from the Kleene fixpoint theorem.
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By the monotonicity of f (Exercise 6.14), f(∩i ∈ � . ∼=i) � (∩i ∈ � . f(∼=i)).
Conversely, consider two states s and t of K such that for all natural numbers i,
(s, t) ∈ f(∼=i). Let s → s′. Then for all natural numbers i, there is a state
ti with t → ti such that s′ ∼=i ti. Since all the equivalences ∼=i refine the
propositional equivalence ≈, s′ ≈ ti for all i. That is, all the state ti have
identical observations. Since 〈〈post(s)〉〉 is finite, there is a state t′ with t → t′

such that s′ ∼=i t
′ for infinitely many natural numbers i. Since i ≤ j implies

∼=i�∼=j , s
′ ∼=i t

′ for all natural numbers i. Therefore, (s, t) ∈ f(∩i ∈ � . ∼=i).

Remark 6.8 [Finite branching] The requirement that every state has only
finitely many successors per observation is essential for the validity of Propo-
sition 6.4. Otherwise the function f from Exercise 6.14 is not necessarily

⋂

-
continuous, and 'B

K properly refines
⋃

i ∈ � . ≈i.

6.4.3 Requirement-preserving Equivalences

Every state logic induces a state equivalence, namely, the state equivalence that
distinguishes any two states iff there is a state formula that is satisfied by one
state but not by the other state.

Φ-equivalence

Let Φ be a state logic and let K be an observation structure. The two states
s and t of K are Φ-equivalent, denoted s 'Φ

K t, if for all Φ-formulas φ such
that K is a φ-structure, s |=K φ iff t |=K φ. The equivalence 'Φ

K and the
induced state equivalence 'Φ are called Φ-equivalence.

The state equivalences induced by state logics allow us to compare the distin-
guishing power of two state logics. Let Φ and Ψ be two state logics. The state
logic Φ is as distinguishing as the state logic Ψ if 'Ψ v 'Φ, etc. In other
words, the state logic Φ is as distinguishing as the state logic Ψ, if whenever
some Ψ-formula distinguishes between two states, there exists some Φ-formula
that distinguishes between those two states: for every observation structure K,
and for every two states s and t of K, if there exists a Ψ-formula φ such that
s |=K φ but t 6|=K φ, then there there exists a Φ-formula ψ such that s |=K ψ
but t 6|=K ψ.

Abstraction

Consider the model checking problem (K,φ) for a state logic Φ. The notion
of abstraction defines the conditions under which computing the characteristic
region of K for φ can be reduced to computing the characteristic region of a
quotient structure of K.
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Abstraction

The state logic Φ admits abstraction if for every state equivalence ' as
distinguishing as 'Φ, for every Φ-formula φ, and for every φ-structure K,
the characteristic region [[φ]]K is

⋃

[[φ]]K/'
. If Φ admits abstraction and 'Φ

v ', then ' is called an abstract semantics for Φ; if Φ admits abstraction,
then 'Φ is the fully abstract semantics for Φ.

Let Φ be a state logic, let φ be a Φ-formula, and let K be a φ-structure. Suppose
' is an abstract semantics for Φ. Then, any two states that are '-equivalent
satisfy the same set of Φ-formulas. Hence, instead of performing model checking
on the structure K, we can perform model checking on the quotient structure
K/'K

. Since the logic Φ admits abstraction, we know that a state s of K
satisfies a Φ-formula φ iff the '-equivalence class containing s satisfies φ in the
quotient structure. Thus, the model-checking problems (K,φ) and (K/'K

, φ)
have the same answer. The latter problem may be much simpler, because the
state space of the quotient structure K/'K

may be much smaller than the state
space of K.

All the state logics that we study, including the logic Stl, admit abstraction.
However, it is possible to define operators whose truth is not preserved by
quotients.

Proposition 6.5 [Stl abstraction] Stl admits abstraction.

Exercise 6.17 {T2} [Stl abstraction] Prove Proposition 6.5.

Example 6.10 [Abstraction] Consider the state logic Φna whose state formulas
are generated by the grammar

φ ::= p | φ ∨ φ | ¬φ | [even]φ.

The semantics of the operator [even ] is defined by the clause

s |=K [even ]φ iff the characteristic region [[φ]]K has even cardinality.

For instance, [even]p holds in a state of K iff even number of states of K satisfy
p. The logic Φna does not admit abstraction. Verify that the observational
equivalence ≈ is the Φna -equivalence, i.e. no Φna -formula distinguishes between
two states with identical observations. Consider an observation structureK with
states Σ and observations A. The characteristic region [[[even ]true]]K equals Σ
if Σ has even cardinality and ∅ otherwise. The quotient K/≈ has one state
per observation of K. Consequently,

⋃

[[[even ]true]]K/≈
equals Σ if A has even

cardinality and ∅ otherwise. Since |Σ| may be even while |A| is not, Φna does not
admit abstraction. Consequently, we cannot use quotients to solve the model
checking problem for Φna .
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Stl equivalence

To use Proposition 6.5 for Stl model checking, we need to determine abstract
semantics for Stl. The next proposition asserts that no Stl-formula can dis-
tinguish between two bisimilar states.

Proposition 6.6 [Stl abstraction] Bisimilarity is an abstract semantics for

Stl.

Proof. Consider an observation structure K. The bisimilarity partition 'B
K

is the coarsest stable refinement min(≈K) of the observational equivalence. We
need to prove that two bisimilar states satisfy the same set of Stl-formulas.
Let φ be a formula of Stl. The proof is by induction on the structure of φ.
Consider two states s and t such that s 'B t. We want to prove that s |= φ iff
t |= φ.

The base case is when φ is an observation predicate. Since 'B refines the
observational equivalence, we know that s and t have identical observations.
Hence, s and t satisfy the same set of observation predicates. The inductive
case corresponding to logical connectives is straightforward.

Consider the case φ = ψ∃Uχ. By inductive hypothesis, bisimilar states agree
on the truth of ψ and χ. Suppose s |= φ. Then, there is a source-s trajectory
s0..m such that sm |= χ, and si |= ψ for 0 ≤ i < m. Since the partition 'B is
stable, starting with state t0 = t, we can find states t1, t2, . . . , tm such that each
ti 'B si for 0 ≤ i ≤ m, and t0t1 . . . tm is a trajectory of K. From the inductive
hypothesis, tm |= χ and ti |= ψ for 0 ≤ i < m. This implies that t |= φ. From
symmetry, s |= φ iff t |= φ.

The remaining case φ = ∃© ψ is left for the reader to verify.

This suggests that for Stl model checking, it suffices to construct quotients with
respect to bisimilarity. Given an observation structure K = (Σ, σI ,→, A, 〈〈·〉〉),
we first consider the observational equivalence ≈K over the states Σ. The next
step is to construct the coarsest stable refinement min(≈K) using one of the
algorithms from Chapter 4. This yields the bisimilarity equivalence 'B

K and the
minimal quotient K/'B . Then, Stl specifications for the observation structure
K can be checked by model checking over the quotient structure K/'B .

We proceed to establish that bisimilarity is a fully abstract semantics of Stl.
In fact, if bisimilarity distinguishes two states of an observation structure, then
the two states can be distinguished by a Stl formula that employs only the
next connective. For instance, in Figure 6.7, the nonbisimilar states s and t can
be distinguished by the Stl formula ∃© (∃©q ∧ ∃©r). The fragment Stl© of
Stl contains those formulas of Stl that do not contain the until connective ∃U .
The fragment StlU of Stl contains those formulas of Stl that do not contain
the next connective ∃©. Then Stl is as distinguishing as Stl©, and also as
distinguishing as StlU .
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Proposition 6.7 [Stl full abstraction] The equivalence induced by Stl© co-

incides with the bisimilarity 'B.

Proof. Consider an observation structure K. We wish to prove that whenever
two states s and t of K belong to different equivalence classes of 'B

K , there
exists a formula φ of Stl© such that s |=K φ and t 6|=K φ. We prove that, for
every natural number i, for every equivalence class σ of the i-step bisimilarity
≈i

K , there exists a formula φσ of Stl© such that [[φσ ]]K = σ.

Base case i = 0: for an equivalence class σ of the propositional equivalence ≈K ,
the formula φσ is the observation of σ.

Inductive case i = k+ 1: Let σ be an equivalence class of ≈k+1
K . There are only

finitely many equivalence classes τ of the partition ≈k
K such that s→ t for some

s ∈ σ and t ∈ τ . Then, choose

φσ =
∧

{τ∈≈k|σ→τ}

∃© φτ ∧ ∀©
∨

{τ∈≈k|σ→τ}

φτ .

The reader should verify that the characteristic region [[φσ ]]K equals σ.

Exercise 6.18 {T3} [Event Stl] Does Estl admit abstraction? What is the
state equivalence induced by Estl? Prove your answers.

6.4.4 Stutter-insensitive Equivalences

A reactive module stutters when its observable state stays unchanged. An asyn-
chronous module may stutter in every update round. If the number of rounds
for which a module stutters before updating its observation is irrelevant, then
many such rounds can be combined into a single transition. This suggests defin-
ing a closure operation on observation structures that adds a transition from
the state s to the state t whenever there is a trajectory from s to t along which
the observation stays unchanged.

Stutter closure

Let K = (Σ, σI ,→, A, 〈〈·〉〉) be an observation structure. For two states s
and t of K, let s →S t if there is an source-s K-trajectory s0..m such that
(1) for all 0 ≤ i < m, 〈〈si〉〉 = 〈〈s〉〉, and (2) sm = t. The relation →S is
called the stutter-closed transition relation of K. The stutter closure KS is
the observation structure (Σ, σI ,→S , A, 〈〈·〉〉).

Remark 6.9 [Stutter closure] The stutter-closed transition relation is reflex-
ive. The reachable region of the stutter closure of the observation structure K
coincides with the reachable region of K.
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Exercise 6.19 {T2} [Stutter closure] Let K be a finite observation structure
with n states. Give an O(n3) algorithm that computes the stutter closure KS.

Stutter closure operation extends to state equivalences also. For instance, two
check whether states s and t of an observation structure K are equivalent ac-
cording to the stutter-closure of bisimilarity, we first compute the stutter-closure
of K and then check if the two states s and t are bisimilar.

Stutter closure of state equivalences

Let ' be a state equivalence, and let K be an observation structure. For
two states s and t of K, s ∼=K t, for the stutter closure ∼= of ', if s 'KS t.
The induced state equivalence ∼= is called the stutter closure of '. The state
equivalence ' is stutter-insensitive if '=∼=.

Thus, the equivalence ∼=K is same as the equivalence 'KS . For instance, for the
structure K© of Figure 6.11 and the bisimilarity partition Σ/'B containing the
three singleton regions {s}, {t}, and {u}, the stutter closure Σ/∼=B contains the
two regions {s, t} and {u}.

Remark 6.10 [Stutter insensitivity] Observational equivalence is stutter-insensitive,
and bisimilarity is not.

Proposition 6.8 [Stutter closure] Bisimilarity 'B is more distinguishing than

its stutter closure ∼=B .

Exercise 6.20 {T2} [Stutter-insensitive bisimilarity] Prove Proposition 6.8.

Thus, the number of equivalence classes of ∼=B may be much smaller than the
number of equivalence classes of 'B , and thus, employing ∼=B for reduction may
improve the efficiency of verification. Observe that the stutter-closed bisimilar-
ity partition ∼=B

K can be computed by first constructing the stutter closure KS,
and then employing the partition refinement algorithms using the propositional
equivalence as the initial partition.

Example 6.11 [Stuttering equivalence of message passing protocols] Recall the
modules SyncMsg of Figure 2.20 and AsyncMsg of Figure 2.24. Note that the
two modules have identical observations, namely, the produced message msgP

and the consumed message msgC . The two modules are not bisimilar. This is
because the number of rounds it takes for the produced message to appear as
a consumed message are different in the two modules. However, verify the two
modules are stutter-closed bisimilar.
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For the observation structure K© of Figure 6.11, we have s ∼=B t, while the
Stl formula ∃© p is satisfied only by the state t. Intuitively, the next oper-
ator allows us to count the number of rounds, while stutter-closure does not
care about the number of update rounds required to change the observation.
Thus, stutter-closed bisimilarity is not an abstract semantics for Stl. The next
proposition asserts that StlU formulas cannot distinguish among ∼=B-equivalent
states. This implies that the logic StlU is stutter-insensitive, and thus, for
model checking of StlU -formulas, we may use stutter-closed bisimilarity for
reduction.

Proposition 6.9 [StlU abstraction] Stutter-closed bisimilarity ∼=B is an ab-

stract semantics for StlU .

Exercise 6.21 {T3} [StlU ] (1) Prove Proposition 6.9. (2) Show that stutter-
closed bisimilarity is not fully abstract for StlU .

6.5 The Expressive Power of Stl

While the distinguishing powers of the logics Stl and Stl© are identical, they
have different expressive powers.

Let Φ and Ψ be two state logics. The logic Φ is as expressive as the logic Ψ
if for every formula φ of Ψ, there exists a formula ψ of Φ such that for every
observation structure K, the characteristic regions [[φ]]K and [[ψ]]K are identical.
The logic Φ is more expressive than the logic Ψ if Φ is as expressive as Ψ, but
Ψ is not as expressive as Φ. The two logics Φ and Ψ are equally expressive if
Φ is as expressive as Ψ, and Ψ is as expressive as Φ. The expressive powers of
the two logics Φ and Ψ are incomparable if Φ is not as expressive as Ψ, and Ψ
is not as expressive as Φ.

Exercise 6.22 {T2} [Distinguishing vs. expressive power] Let Φ and Ψ be two
state logics. Prove that if Φ is as expressive as Ψ, then Φ is as distinguish-
ing as Ψ. What other relationships between the distinguishing and expressive
powers of state logics can you think of?

The following proposition establishes that the until-connective cannot be ex-
pressed by combining the next-connectives.

Proposition 6.10 [Expressiveness of Until] The logic Stl© is not as expres-

sive as the logic StlU .

Proof. Consider the formula ∃3p of StlU . To prove that the formula ∃3p is
not expressible in Stl©, we need to show that, for every formula φ of Stl©,
there exists an observation structure K such that [[φ]]K differs from [[∃3p]]K .
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Figure 6.10: Expressive power of the eventually operator
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Figure 6.11: Expressive power of the next operator

Consider a formula φ of Stl©, and let k be the number of occurrences of the
operator ∃© in φ. Consider the structure shown in Figure 6.10. We have
s0 |= ∃3p and t0 6|= ∃3p. We claim that for every 0 ≤ i ≤ k, if ψ is a formula of
Stl© with at most i occurrences of the temporal operator ∃©, then either both
sk−i and tk−i satisfy ψ, or both do not satisfy ψ. The proof is by induction on
i.

For i = 0, we need to consider formulas with no occurrences of ∃©, that is,
propositional formulas. Since the states sk and tk have same observations, they
agree on the truth of propositional formulas.

Now consider the case i = j+1 for 0 ≤ j < k. We need to prove that the states
sk−i and tk−i agree on the truth of formulas with at most i occurrences of ∃©
assuming that the states sk−j and tk−j agree on the truth of formulas with at
most j occurrences of ∃©. The proof is straightforward using induction on the
structure of ψ.

In conclusion, since φ has only k occurrences of ∃©, the states s0 and t0 agree
on the truth of φ, and hence, [[φ]] 6= [[∃3p]].

Conversely, the next-connective cannot be expressed by combining the until -
connectives.

Proposition 6.11 [Expressiveness of Next] The logic StlU is not as expressive

as the logic Stl©.

Proof. Consider the formula ∃©p of Stl©, and the observation structure K©

shown in Figure 6.11. We know that t |= ∃© p and s 6|= ∃© p. We claim that
the formula ∃© p is not expressible in the fragment StlU . It suffices to show
that, for the observation structure K©, for every formula φ of StlU , either
both s and t satisfy φ or both do not satisfy φ. The proof is by induction on



Temporal Safety Requirements 31

the structure of φ. Since the states s and t have the same observations, they
satisfy the same set of predicates. The inductive cases for logical connectives
follow immediately. Let us consider the formula φ = φ1∃Uφ2. From inductive
hypothesis, the states s and t agree on the truth of the subformulas φ1 and φ2.
This implies that both s and t satisfy φ precisely under the same conditions,
namely, when they satisfy φ2, or when they satisfy φ1 and u satisfies φ2.

Exercise 6.23 {T3} [Stl without until] Prove that there is no formula φ of Stl

such that (1) φ uses only propositions, logical connectives, and the temporal op-
erators ∃© and ∃3, and (2) for every observation structureK, [[φ]]K = [[p∃Uq]]K .
This implies that the until-operator is not expressible using the next and even-
tually operators.

Exercise 6.24 {T3} [Event Stl] Is Estl more expressive than Stl? Prove
your answer.

Exercise 6.25 {T3} [Strict Until] The logic STL+ has the syntax

φ ::= p | φ ∨ φ | ¬φ | ∃© φ | φ∃U+φ,

where the semantics of the strict-until operator is defined by the clause

s |=K ψ∃U+φ iff there is a source-s trajectory s0..m of K such that (1) m > 0
(2) sm |=K φ and
(3) for all 0 ≤ i ≤ m, si |=K φ ∨ ψ.

Thus, while p∃Uq can be satisfied in a state s by satisfying q in s, satisfaction of
p∃U+q in a state s requires a source-s trajectory that is of at least length 2 and
leads to a state satisfying q. Is the logic Stl as expressive as the logic STL+?
Is the logic STL+ as expressive as the logic Stl?
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Chapter 7

Automata-theoretic Safety

Verification

Automata provide an alternative to temporal logic for specifying requirements of
reactive modules. In the automata-theoretic approach to verification, a module
is viewed as a generator of a formal language over the set of observations. The
requirement is specified by an automaton that accepts only the desired behav-
iors. The verification problem, then, reduces to a language-inclusion problem:
whether every sequence of observations generated by the module is accepted by
the requirements automaton.

7.1 Automata

Languages over observations

The execution of a transition graph G results in a trajectory of G, which is a
finite sequence of states. The execution of an observation structure K results in
a trajectory of the underlying transition graph, and each state of the trajectory
has an associated observation. The resulting finite sequence of observations is
called a trace of K. The set of traces corresponding to initialized trajectories is
a language over the set A of observations, and is the language generated by K.

1
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Traces

LetK = (G,A, 〈〈·〉〉) be an observation structure. A trace ofK is a nonempty
word a over the alphabet A of observations such that there is a trajectory
s of G with a = 〈〈s〉〉. The word a is a source-s trace of K, for a state s
of K, if there is a source-s trajectory s of G with a = 〈〈s〉〉. The word a
is an initialized trace of K if there is an initialized trajectory s of G with
a = 〈〈s〉〉. We write LK(s) for the set of source-s traces of K, and LK for
the set of initialized traces of K. The set LK is called the language of K.
For a module P , the set LKP

is called the language of P .

Example 7.1 [Traces] A possible initialized trace of the observation structure
of Figure 6.1 is the word pqprrrpr. The language of initialized traces is a regular
language specified by the expression p+ (pq((ε+ p)r)∗)+(ε+ p).

The language of the module Pete of Chapter 1 is a regular language over the
alphabet {outC , reqC , inC }×{outC , reqC , inC}. A possible initialized trace of
the module Pete is the word

(outC , outC ), (outC , reqC ), (reqC , inC ), (reqC , inC ),
(reqC , outC ), (reqC , reqC ), (inC , reqC ), (outC , reqC ),
(outC , inC ), (reqC , outC ), (inC , outC ), (outC , outC )

corresponding to the initialized trajectory of Figure 2.1.

Remark 7.1 [Closure properties of trace languages] For every observation struc-
ture K, the language LK is prefix-closed, but not necessarily fusion-closed. For
example, for the observation structure shown in Figure 6.1, both pqrpq and pqp
are initialized traces, but pqpq is not an initialized trace. This simply says that
an observation may be caused by many different states and, by itself, does not
necessarily determine the future behavior of the structure.

Exercise 7.1 {T2} [Prefix-closure] If K is an observation structure with the
observation alphabet A, then the set LK of initialized traces is a prefix-closed
language over the alphabet A. Conversely, let A be an alphabet, and let L be
a prefix-closed language over A. Show that there is an observation structure K
such that L = LK .

From observation structures to automata

Since languages of observation structures are prefix-closed, observation struc-
tures are not closed under complementation. To define languages that are not
prefix-closed, we add acceptance conditions to observation structures.
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Automaton

An automaton M consists of (1) an observation structure K and (2) [the
accepting region] a region σA of K. An initialized trajectory s0..m of K
is accepted by the automaton M if sm ∈ σA. An initialized trace a of K
is accepted by M if a = 〈〈s〉〉 for some initialized trajectory s of K that
is accepted by M . The language LM of the automaton M is the set of
initialized accepted traces of M .

The language of an automaton is a subset of the language of the underlying ob-
servation structure. Let K be an observation structure with the state space Σ.
Declaring every state ofK as accepting, we obtain the automatonMK = (K,Σ).
For every observation structure K, LMK

= LK . Thus, every observation struc-
ture can be considered as an automaton, and sometimes we will not make the
distinction between the observation structure K and the automaton MK .

Remark 7.2 [Automaton definition] Our definition of an automaton is similar
to the common definitions found in the textbooks on formal languages. In
particular, if the automaton M has finitely many states, then the language LM

is regular. In the more common definition of an automaton, the transitions of
the automaton are labeled with alphabet symbols. This is dual to our definition
in which the states are labeled with observations. As a consequence of our
definition, the empty word ε does not belong to the language of any automaton.
For every regular language L over a finite alphabet A, there exists a finite
automaton M such that LM = L\{ε}.

The language-inclusion problem

The language-inclusion problem asks whether every initialized accepted trace of
one automaton is also an initialized accepted trace of another automaton.

The language-inclusion problem

An instance (M1,M2) of the language-inclusion problem consists of two
automata M1 and M2 over the same observation alphabet A. The answer
to the language-inclusion problem (M1,M2) is Yes if LM1

⊆ LM2
, and

otherwise No.

7.2 Safe Automaton Logic

7.2.1 Syntax and Semantics

Automata can be used for specifying requirements of reactive modules. The
observations of the requirements automaton are boolean expressions over the
observable variables of modules. We define the state logic Sal whose formulas
are boolean combinations of such automata.
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truex y

Figure 7.1: The automaton MW

Safe automaton logic

The formulas of the state logic Safe automaton logic (Sal) are generated
by the grammar

φ ::= ∀M | ¬φ | φ ∨ φ

where M is an automaton whose observations are boolean expressions.

Given a formula φ of Sal, an observation structure K is a φ-structure if
each observation of K is a valuation for a superset of the variables appearing
in the observations of all automata occurring in φ.

The satisfaction relation for Sal is defined by:

s |=K ∀M iff for every source-s trajectory s0..m of K
there is a trace a0..m ∈ LM such that
for all 0 ≤ i ≤ m, si |= ai

s |=K φ ∨ ψ iff s |=K φ or s |=K ψ;
s |=K ¬φ iff s 6|=K φ,

where M is an automaton, φ and ψ are Sal formulas, and K is a (M,φ, ψ)-
structure.

In other words, a state s of K satisfies the requirement specified by the formula
∀M if for every source-s trace a of K, we can find an initialized accepting trace
b of M such that every observation in a is consistent with the corresponding
expression in b. The characteristic region of an Sal formula, the satisfaction
of an Sal formula by an observation structure, the model-checking problem for
Sal, and the verification problem for Sal are defined as in case of other state
logics such as Stl.

Example 7.2 [Specifying x∀Wy in Sal] The Sal formula ∀MW for the au-
tomaton shown in Figure 7.1 asserts that, given a state s, along every source-s
trajectory a state that violates x coincides with or is preceded by a state that
satisfies y. The formula ∀MW can be interpreted at states of an observation
structure whose observations assign values to x and y. It follows that the Sal

formula ∀MW is equivalent to the Stl formula x∀Wy.
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pc1 6= inC

∨

pc2 6= inC

Figure 7.2: The mutual-exclusion requirement in Sal

pc1 = inC

∧

pc2 = inC

true true

Automaton M¬mutex

Figure 7.3: The violation of mutual-exclusion requirement in Sal

Example 7.3 [Mutual exclusion] Recall mutual-exclusion protocols from Chap-
ter 1. The mutual-exclusion requirement can be expressed in Sal by the au-
tomaton Mmutex shown in Figure 7.2. That is, the Sal formula ∀Mmutex is
equivalent to the Stl formula ∀2(pc1 6= inC ∨ pc2 6= inC ). Notice that allow-
ing the predicate (pc1 6= inC ∨ pc2 6= inC ) as an observation in the automaton
Mmutex permits a compact description of the property.

Remark 7.3 [Final states] Notice that both automata MW and Mmutex are
really observation structures, because all their states are accepting. This is no
accident. Given an automaton M , let M+ be the automaton that accepts the
maximal prefix-closed subset of LM ; that is, a ∈ LM+ if all prefixes of a are
in LM (how would you construct M+?). Clearly, LM+ can be accepted by
an automaton all of whose states are accepting (remove the states that cannot
reach an accepting state and make all remaining states accepting). If we specify
a requirement of a state s of structure K by the Sal formula ∀M , then s |=K M
iff s |=K M+. So we may specify the same requirement as ∀M+.

We use automata (with accepting states) for specifying existential properties.
Given an automaton M , let −M be the complementary automaton (comple-
mentation requires accepting states; see below). In state s, the Sal formula
¬∀ −M specifies that some trace from s is a trace of M . Therefore, we define
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∃M as ¬∀ −M . For example, mutual exclusion can be specified by the Sal

formula ¬∃M¬mutex , where the automaton M¬mutex of Figure 7.3 accepts all
traces that cause violation of the mutual exclusion requirement.

Exercise 7.2 {T2} [Mutual exclusion] Express in Sal the first-request-first-in
requirement and the equal-opportunity requirement for mutual-exclusion pro-
tocols (see Chapter 6 for the requirements).

Exercise 7.3 {T2} [Specifying ∀2(x∀Wy) in Sal] The automaton of Figure 7.1
expresses a requirement that is equivalent to the Stl formula x ∀W y. Write an
automaton M such that ∀M is equivalent to the Stl formula ∀2(x ∀W y).

Sal model checking

The model-checking problem for Sal can be reduced to the language-inclusion
problem. First, since every Sal formula is a boolean combination of automata,
it is sufficient to consider the problem of checking whether an observation struc-
ture satisfies an automaton specification. For this purpose, we expand each
automaton M of Sal to a larger automaton EM whose observations are valu-
ations to the variables appearing in the observations of M .

Expansion of a Sal automaton

For a Sal automaton M , its expansion EM is another automaton with
the following components. (1) [Observation alphabet] Observations of EM
are the valuations for the variables appearing in the observations of M .
(2) [State space] For every state s of M , EM has a state 〈s, t〉 for each
observation t of EM such that t satisfies the observation of s. (3) [Ini-
tial region] The state 〈s, t〉 is initial in EM if the state s is initial in M .
(4) [Transition relation] There is a transition from 〈s, t〉 to 〈s′, t′〉 in EM
if there is a transition from s to s′ in M . (5) [Observation function] The
observation of 〈s, t〉 is t. (6) [Accepting region] The state 〈s, t〉 is accepting
in EM if the state s is accepting in M .

Example 7.4 [Sal model checking] Figure 7.4 shows the observation structure
EMW for the Sal automaton MW from Figure 7.1 (all states are accepting).

Thus, the observations of the automaton EM completely specify the values
of the variables mentioned in the expressions labeling the original automaton
M . Consider a M -structure K, and a trajectory s0...m of K. There exists a
(initialized accepting) trace a0...m of M such that 〈〈si〉〉 |= ai for 0 ≤ i ≤ m, iff
〈〈s〉〉 is an (initialized accepting) trace of EM . It follows that checking whether
an observation structure satisfies an Sal automatonM is equivalent to checking
whether K satsifies the expanded automaton EM , which in turn corresponds
to checking whether the language of K is contained in the language of EM .
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Figure 7.4: The automaton EMW

Proposition 7.1 [Sal model checking] The Sal model-checking problem (K,M)
and the language-inclusion problem (K,EM) have the same answer.

Exercise 7.4 {T3} [Sal verification vs. invariant-verification with monitors]
Can a given Sal-verification problem always be reduced to an invariant-verification
problem after introducing a monitor (see Chapter 2 for monitors)? What about
the converse?

7.2.2 The Distinguishing Power of Sal

The set of traces associated with a state of an observation structure leads to
a natural way of equating two states: two states s and t of an observation
structure are trace equivalent iff every source-s trace is also a source-t trace,
and vice versa.

Trace equivalence

Two states s and t of an observation structure K are trace equivalent, de-
noted s 'L

K t, if LK(s) = LK(t). The induced state equivalence 'L is also
called trace equivalence.

Example 7.5 [Trace equivalence versus bisimilarity] Consider the observation
structure shown in Figure 7.5. The two states s and t are bisimilar, but not trace
equivalent. This is because, trace equivalence, unlike bisimilarity, disregards the
branching within an observation structure.
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Figure 7.5: Bisimilarity vs. trace equivalence

The next proposition establishes that trace equivalence is less distinguishing
than bisimilarity. This means that two bisimilar states are guaranteed to be
trace equivalent, but not vice versa. Since bisimilarity is sensitive to the branch-
ing nature of the structure, while trace equivalence depends only on the set of
trace generated, bisimilarity is called a branching-time equivalence, and trace
equivalence is called a linear-time equivalence.

Proposition 7.2 [Distinguishing power of trace equivalence] Trace equivalence

is less distinguishing than bisimilarity.

Proof. Let K be an observation structure, and let s and t be two states of
K. If s and t are bisimilar, then for every source-s trajectory s0...m, there
exists a source-t trajectory t0...m such that si 'B ti for all 0 ≤ i ≤ m. Since
bisimilar states have identical observations, it follows that every source-s trace
is also a source-t trace. Hence, s 'L t. This establishes that bisimilarity
is as distinguishing as trace equivalence. Example 7.5 establishes that trace
equivalence is not as distinguishing as bisimilarity.

Like Stl, for model checking of Sal formulas it is fine to consider a quotient
structure obtained by collapsing states that satisfy the same set of Sal formulas.

Proposition 7.3 [Sal abstraction] Sal admits abstraction.

Recall that bisimilarity is a fully abstract semantics for Stl: two bisimilar states
satisfy the same set of Stl formulas, and two non-bisimilar states disagree on
the satisfaction of some Stl formula. The fully abstract semantics for Sal is
trace equivalence: no Sal formula can distinguish between two states that are
trace equivalent, and for every two states that are not trace equivalent, there
exists a Sal formula that is satisfied by only one of the two states.
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Figure 7.7: Stl cannot express ∀Meven

Theorem 7.1 [Distinguishing power of Sal] Trace equivalence is a fully ab-

stract semantics for Sal.

It follows that Sal is less distinguishing than Stl.

Corollary 7.1 [Distinguishing power of Sal vs. Stl] Sal is less distinguishing

than Stl.

It follows that to solve an instance (K,φ) of the model checking problem for
Sal, we can construct the minimal quotient K/'B using one of the algorithms
of Chapter 4, and solve (K/'B , φ).

7.2.3 The Expressive Power of Sal

If a state logic Φ is more distinguishing than a state logic Ψ, then the logic Ψ
cannot be as expressive as Φ.

Example 7.6 [Sal is not as expressive as Stl] Consider Figure 7.5. The states
s and t are trace equivalent, and hence, satisfy the same set of Sal formulas.
On the other hand, for the Stl formula φ = ∀© ∃© p, s 6|= φ and t |= φ. It
follows that no formula of Sal is equivalent to the Stl formula φ.

Even though Stl is more distinguishing than Sal, there are requirements that
are expressible in Sal, but not in Stl.

Theorem 7.2 [Expressive power of Sal vs. Stl] The expressive powers of Sal

and Stl are incomparable.

Proof. We need to establish that Stl is not as expressive as Sal. Consider
the Sal formula φeven = ∀Meven shown in Figure 7.6, where x is a boolean
variable. The Sal formula φeven asserts that, given a state s, along every



Automata-theoretic Safety Verification 10

source-s trajectory x is satisfied in every other state. That is, a state s satisfies
φeven if for every source-s trajectory s0...m, for all 0 ≤ i ≤ m, if the index i is
even, x[si] = 1.

We wish to establish that no Stl formula is equivalent to φeven . Assume, to
the contrary, that there exists an Stl formula ψ such that for every observation
structure K, [[ψ]]K = [[φeven ]]K . Suppose ψ has i subformulas. Consider the
observation structure of Figure 7.7. Observe that only one of the two states s0

and s1 satisfies φeven . We will establish that either both of them satisfy ψ or
none of them satisfies ψ.

We prove that for every subformula χ of ψ, if χ has n subformulas, then the
states s0, . . . si−n+1 agree on the truth of χ. The proof is by induction on n.

Base case n = 1: χ is an atomic formula. The states s0, . . . si have identical
observations, and hence, agree on the truth of χ.

Inductive case n > 1: We consider the case χ = χ1∃Uχ2, and leave the simpler
cases for the reader to verify. Consider two states sj and sk with 0 ≤ j, k ≤
(i−n+1). It suffices to prove that if sj |= χ then sk |= χ. Assume that sj |= χ.
We consider the case when j > k, and the case j < k is left to the reader.

Suppose sj |= χ2. Then, by induction hypothesis, sk |= χ2, and hence, sk |= χ.

Suppose sj 6|= χ2. Then there exists j′ > j such that sj′ |= χ2 and sj′′ |= χ1

for all j ≤ j′′ < j′. Since sj |= χ1, by induction hypothesis, sj′′ |= χ1 for all
k ≤ j′′ ≤ j. Hence, sk |= χ.

Exercise 7.5 {T2} [Attempting to specify even requirement in Stl] Why is
the Stl formula

x ∧ ∀2(x → ∀©¬x) ∧ ∀2(¬x → ∀© x)

not equivalent to ∀Meven?

Exercise 7.6 {T3} [Expressive power of Sal vs. StlU ] Prove that the expres-
sive powers of Sal and StlU are incomparable.

Exercise 7.7 {T4} [Stutter sensitivity] (1) Show that Sal is stutter-sensitive.
(2) Define a stutter-insensitive version of Sal. What is the equivalence induced
by stutter-insensitive Sal? How do the distinguishing power and the expressive
power of stutter-insensitive Sal compare with StlU?

7.3 Operations on Automata

The determinization and product construction for automata are building blocks
for solving the language-inclusion problem.
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7.3.1 Determinization

In deterministic observation structures, there is at most one initial state per
observation, and each state has at most one successor per observation.

Deterministic observation structure

Let K = (G,A, 〈〈·〉〉) be an observation structure. The observation structure
K is deterministic if (1) [deterministic initialization] for each observation a
of K, there is at most one initial state s with 〈〈s〉〉 = a, and (2) [deterministic
update] for each state s and each observation a of K, there is at most one
successor t of s with 〈〈t〉〉 = a.

An automaton is deterministic if its observation structure is deterministic. The
module P is deterministic if the observation structure KP is deterministic. The
module P is deterministic if (1) it is closed, and (2) the initial commands of all
its atoms are deterministic, and (3) the update commands of all its atoms are
deterministic.

Example 7.7 [Deterministic structures] The observation structure shown in
Figure 6.1 is not deterministic. The Sal formulas of Figure 7.1 and Figure 7.2
are deterministic, while the observation structure of Figure 7.4 is not.

Remark 7.4 [Traces define trajectories in deterministic structures] If K is a
deterministic observation structure, and t and u are different trajectories of K
with the same source, then 〈〈t〉〉 6= 〈〈u〉〉. It follows that for each state s of
a deterministic observation structure K, there is a one-to-one correspondence
between the source-s trajectories and the source-s traces.

The region σ of the observation structure K is consistent if for all states in
σ have the same observation: for all s and t in σ, s ≈K t. In other words,
a consistent region is a subset of an ≈K-equivalence class of the propositional
equivalence. Every observation structure, and every automaton, can be deter-
minized by replacing the states with the consistent regions. The determinization
procedure is usually referred to as the subset construction. A state of ∆K is a
set of states of K. Intuitively, the transition relation of ∆K is defined so that
the sink-state of ∆K corresponding to a trace a contains all the sink-states of
initialized trajectories of K corresponding to the trace a. Since our observation
structures have finite nonobservable nondeterminism, during determinization,
it suffices to consider only finite consistent regions.
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{s1} q

{s2} p

{s0} p

{s3} r

{s0, s2} p

Figure 7.8: Determinized structure

Determinization

Let K = (Σ, σI ,→, A, 〈〈·〉〉) be an observation structure. The determinized

structure ∆K is the observation structure (Σ∆, σ
I
∆,→∆, A, 〈〈·〉〉∆), where

(1) [state space] Σ∆ is the set of nonempty finite consistent regions of M ;
(2) [initial region] σ ∈ σI

∆ iff there is an observation a ∈ A such that
σ = {s ∈ σI | 〈〈s〉〉 = a}; (3) [transition relation] σ →∆ τ iff there is an
observation a ∈ A such that τ = {s ∈ post(σ) | 〈〈s〉〉 = a}; (4) [observation
function] s ∈ σ implies 〈〈σ〉〉

∆
= 〈〈s〉〉.

For an automaton M = (K,σA), the determinized automaton ∆M is the
automaton (∆K,σA

∆), where σ ∈ σA
∆ iff σ ∩ σA is nonempty.

Example 7.8 [Determinization] Figure 7.8 shows the result of determinizing
the observation structure from Figure 6.1.

Proposition 7.4 [Determinization] For every observation structure K, the ob-

servation structure ∆K is deterministic and L∆K = LK ; for every automa-

ton M , the automaton ∆M is deterministic and L∆M = LM .

Exercise 7.8 {T2} [Properties of determinization] Which of the following prop-
erties of an observation structure K are inherited by the determinized structure
∆K: serial; finite; finitely-branching; stutter-closed?

Observe that the determinized observation structure has exponentially many
more states than the original structure, and thus, determinization is a compu-
tationally expensive procedure.

Exercise 7.9 {T2} [Cost of determinization] Let K be a finite observation
structure with n states and m transitions. Give a tight bound on the num-
ber of states and transitions of the determinized structure ∆K.
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Exercise 7.10 {T3} [Nondeterminism and exponential succinctness] Consider
the observation alphabet A = {0, 1}. For every natural number m, define the
language

Lm = {a0...2m | ai = ai+m for some 0 ≤ i < m}

(1) Show that for every natural number m, there is a nondeterministic automa-
tonM with 3m states such that LM = Lm. (2) Show that ifM is a deterministic
automaton with LM = Lm then M has at least 2m states.

7.3.2 Boolean Operations

Disjoint union

Two observation structures are disjoint if their state spaces are disjoint.

Disjoint union

Let K1 = (Σ1, σ
I
1 →1, A1, 〈〈·〉〉1) and K2 = (Σ2, σ

I
2 ,→2, A2, 〈〈·〉〉2) be two dis-

joint observation structures. The union K1+K2 is the observation structure
(Σ1 ∪Σ2, σ

I
1 ∪σ

I
2 ,→1 ∪ →2, A1 ∪A2, 〈〈·〉〉), where 〈〈s〉〉 = 〈〈s〉〉

1
if s ∈ Σ1, and

otherwise 〈〈s〉〉 = 〈〈s〉〉
2
.

Let M1 = (K1, σ
A
1 ) and M2 = (K2, σ

A
2 ) be two disjoint automata. The

union M1 +M2 is the automaton (K1 +K2, σ
A
1 ∪ σA

2 ).

Proposition 7.5 [Disjoint union] If K1 and K2 be two disjoint observation

structures then LK1+K2
= LK1

∪LK2
; if M1 and M2 are two disjoint automata,

then LM1+M2
= LM1

∪ LM2
.

Remark 7.5 [Cost of union] Let K1 be a finite structure with n1 states and
m1 transitions. Let K2 be a finite structure with n2 states and m2 transitions.
Assume that K1 and K2 are disjoint. Then, the union M1 + M2 has n1 + n2

states and m1 +m2 transitions. Thus, the cost of union is only additive.

Product

To obtain intersection of the languages of two observation structures or two
automata, we take the cartesian product of the underlying state-spaces.
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Product

Let K1 = (Σ1, σ
I
1 ,→1, A, 〈〈·〉〉1) and K2 = (Σ2, σ

I
2 ,→2, A, 〈〈·〉〉2) be two ob-

servation structures. The product K1 × K2 is the observation structure
(Σ, σI ,→, A, 〈〈·〉〉):

• Σ = {(s1, s2) | s1 ∈ Σ1 and s2 ∈ Σ2 and 〈〈s1〉〉1 = 〈〈s2〉〉2};

• (s1, s2) ∈ σI iff s1 ∈ σI
1 and s2 ∈ σI

2 ;

• (s1, s2) → (t1, t2) iff s1 →1 t1 and s2 →2 t2;

• 〈〈(s1, s2)〉〉 = 〈〈s1〉〉1 = 〈〈s2〉〉2.

Let M1 = (K1, σ
A
1 ) and M2 = (K2, σ

A
2 ) be two automata. The product

M1 ×M2 is the automaton (K1 ×K2, σ
A), where (s1, s2) ∈ σA iff s1 ∈ σA

1

and s2 ∈ σA
2 .

Proposition 7.6 [Product] If K1 and K2 are two observation structures, then

LK1×K2
= LK1

∩ LK2
. If M1 and M2 are two automata, then LM1×M2

=
LM1

∩ LM2
.

Remark 7.6 [Cost of product] Let K1 be a finite structure with n1 states and
m1 transitions. Let K2 be a finite structure with n2 states and m2 transitions.
Then, the product K1 × K2 has at most n1 · n2 states and at most m1 · m2

transitions. Thus, the cost of product is multiplicative.

Exercise 7.1 shows that the class of languages of observation structures is pre-
cisely the class of prefix-closed languages. Since the languages of observation
structures are closed under union and intersection, the union and the intersec-
tion of two prefix-closed languages are prefix-closed.

Exercise 7.11 {T2} [Operations on automata] Which of the following prop-
erties of two observation structures K1 and K2 are inherited by the disjoint
union K1 + K2 and the product K1 ×K2: reflexive; finite; finitely-branching;
stutter-closed; deterministic? Which laws govern the interplay of the operations
stutter closure ·S , determinization ∆, union +, and product × on observation
structures?

Symbolic representation

Let P be a module. Then, the corresponding observation structure KP is sym-
bolically represeted by (1) the set XP of variables, (2) the set obsXP of observ-
able variables, (3) the initial predicate qI

P , and (4) the transition predicate qT
P .

If P and Q are two modules, then the union KP +KQ has the initial predicate
qI
P ∨ qI

Q and the transition predicate qT
P ∨ qT

Q, and the product KP ×KQ has the
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initial predicate qI
P ∧ qI

Q and the transition predicate qT
P ∧ qT

Q. Thus, the union
and product operations are easily implemented on the symbolic representations.

Exercise 7.12 {P2} [Symbolic determinization] Write an algorithm that con-
structs, given the symbolic representation of an observation structure K, the
symbolic representation of the determinized structure ∆K.

7.3.3 Complementation

Let M1 and M2 be two automata with the same set A of observations. The
automaton M2 is a complement of M1 if LM2

= A+\LM1
. Complementing a

deterministic automaton involves two steps: completion and inversion.

In a deterministic automaton, there is at most one initial state per observation,
and each state has at most one successor per observation. In a complete au-
tomaton, on the other hand, there is at least one initial state per observation,
and each state has at least one successor per observation.

Complete automaton

Let M = (Σ, σI ,→, A, 〈〈·〉〉, σA) be an automaton. The automaton M is
complete if (1) 〈〈σI 〉〉 = A and (2) for each state s, 〈〈postM (s)〉〉 = A.

An incomplete automaton can be completed, without changing its language, by
adding a dummy nonaccepting state for each observation.

Completion

Let M = (Σ, σI ,→, A, 〈〈·〉〉, σA) be an automaton. The completion ΓM is
the automaton over the alphabet A with the following components

• every state of M is a state of ΓM , and in addition, for every observa-
tion a ∈ A, ΓM has the state sa;

• every initial state of M is an initial state of ΓM , and in addition, for
every observation a ∈ A such that a 6∈ 〈〈σI 〉〉, the state sa is an initial
state of ΓM .

• every transition of M is a transition of ΓM , for all observations a, b ∈
A, ΓM has a transition from the state sa to the state sb, and for every
state s of M and an observation a ∈ A such that a 6∈ 〈〈postM (s)〉〉,
ΓM has a transition from the state s to the state sa;

• for s ∈ Σ, the observation of s in ΓM is 〈〈s〉〉, and for an observation
a ∈ A, the observation of sa in ΓM is a.

• the accepting region of ΓM equals σA.
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Proposition 7.7 [Automaton completion] For every automaton M , the com-

pletion ΓM is complete and LΓM = LM .

If an automaton M is deterministic, then so is the automaton ΓM . The second
step of complementation corresponds to inverting the accepting region.

Inversion

Let M = (K,σA) be an automaton with the state space Σ. The inversion

−M is the automaton (K,Σ\σA).

Inversion corresponds to complementation for complete deterministic automata.

Proposition 7.8 [Automaton inversion] Let M be a deterministic and complete

automaton. Then the inversion −M is a complement of M .

Consequently, determinization, followed by completion, and then by inversion
results in complementation.

Corollary 7.2 [Automaton complementation] For an automaton M , the au-

tomaton −Γ∆M is a complement of M .

Exercise 7.13 {P1} [Automaton complementation] Apply the completion and
inversion operations to the determinized structure of Figure 7.8, and verify that
the language of the resulting automaton is the complement of the language of
the observation structure of Figure 6.1.

Exercise 7.14 {T2} [Properties of complementation] Which of the following
properties of a deterministic automaton M are inherited by the complement
−ΓM : serial; finite; finitely-branching; stutter-closed?

As mentioned earlier, the class of languages defined by observation structures
is not closed under complementation, and thus, complementing an observation
structure results in an automaton.

7.4 Model Checking

Now we are ready to address the language-inclusion problem for automata,
and consequently, the model checking question for Sal. To check whether the
language one automaton M1 is contained in that of another automaton M2, it
suffices to check whether the language of M1 has an empty intersection with the
complement of the language of M2.

Proposition 7.9 [Automaton language inclusion] Let M1 and M2 be two au-

tomata. Then LM1
⊆ LM2

iff the language LM1×−Γ∆M2
is empty.
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Since we already know how to construct the automaton M1 × −Γ∆M2 from
the automata M1 and M2, we have reduced the language-inclusion problem to
that of checking language emptiness. Checking emptiness of the language of an
automaton is a reachability problem.

Proposition 7.10 [Automaton language emptiness] Let M be an automaton

with the transition graph G and the accepting region σA. Then LM is empty iff

the answer to the reachability problem (G, σA) is No.

This immediately suggests a decision procedure for the language-inclusion prob-
lem. Algorithm 7.1 solves the language-inclusion problem using a depth-first-
search on the state space of the product M1 × ∆M2. The completion and
inversion steps are applied only implicitly. The abstract data type for automata
supports, in addition to the operations InitQueue and PostQueue, the operation
Accept , that, given an automaton M returns the accepting region of M , and
the operation Obs , that, given an automaton M and a state s of M returns the
observation of s.

Theorem 7.3 [Language inclusion] Let M1 be a finite automaton with n1 reach-

able states and m1 reachable transitions, and let M2 be a finite automaton with

n2 states. Algorithm 7.1 solves the language-inclusion problem (M1,M2) in time

O((n1 +m1) · 2
n2).

Remark 7.7 [Space complexity of language inclusion] Solving the language-
inclusion problem (M1,M2) requires searching the state-space of M1×−Γ∆M2,
which can be performed in space logarithmic in the number of states of M1 ×
−Γ∆M2. Consequently, the language-inclusion problem (M1,M2) can be solved
in space O(n2 · log n1). Thus the space complexity of the language-inclusion
problem is Pspace. The problem is Pspace-hard in the number of states of K2.
The language-inclusion problem (K1,K2) for observation structures is Pspace-
complete in the number of states of K2.

Exercise 7.15 {P2} [Witness reporting in language inclusion] If the answer to
the language inclusion problem (M1,M2) is No, then a witness trace is a trace
in LM1

\LM2
. Modify Algorithm 7.1 so that when it answers No, it also returns

a witness trace.

Sal model checking

Consider the model checking problem (K, ∀M), where M is a specification au-
tomaton. As discussed earlier, the model checking problem (K, ∀M) can be
solved by solving the language-inclusion problem (K,EM). Suppose M has n
states and the observations of M are boolean expressions over a set X of propo-
sitional variables. According to the definition of EM , a state of EM consists of
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Algorithm 7.1 [Language inclusion]

Input: two automata M1 and M2.
Output: the answer to the language-inclusion problem (M1,M2).

s, t: state; σ, τ : region;
σR: set of state × region;
F : stack of state × region;

F := EmptyStack ;
σR := EmptySet ;
foreach s in InitQueue(M1) do

σ := EmptySet ;
foreach t in InitQueue(M2) do

if Obs(s,M1) = Obs(t,M2) then σ := Insert(t, σ) fi

od;
if IsMember (s,Accept(M1) and IsEmpty(σ ∩ Accept(M2))

then return No fi;
if not IsMember((s, σ), σR) then

F := Push((s, σ), F );
σR := Insert((s, σ), σR)
fi

od;
while not IsEmpty(F ) do

(s, σ) := Top(F );
F := Pop(F );
foreach t in PostQueue(s,M1) do

τ := EmptySet ;
foreach u in PostQueue(σ,M2) do

if Obs(t,M1) = Obs(u,M2) then τ := Insert(t, τ) fi

od;
if IsMember (t,Accept(M1)) and IsEmpty(τ ∩ Accept(M2))

then return No fi;
if not IsMember((t, τ), σR) then

σR := Insert((t, τ), σR);
F := Push((t, τ), F )
fi

od

od;
return Yes.

Figure 7.9: Checking language inclusion
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a state of M and a valuation for the variables in X . Thus, the automaton EM
has n ·2k states if X has k propositional variables. However, there is no need to
construct EM explicitly. As usual, we will use on-the-fly representation, that
is, implement the functions InitQueue and PostQueue. Verify that during the
execution of Algorithm 7.1, a state (s, t) of EM will be visited only if t is an
observation of some reachable state of K. Secondly, during determinization of
the automaton EM , a consistent region of EM contains at most n states, and
the automaton ∆EM has at most 2n ·2k states. Thus, the number of consistent
subsets is exponential in the size of the specification automaton M , rather than
exponential in the size of the expansion EM . These two observations lead to
the following bound on the Sal model checking.

Theorem 7.4 [Sal model checking] Let K be a finite observation structure

with n reachable states and m reachable transitions, and let M be a finite Sal

specification automaton with k states. Algorithm 7.1 solves the model-checking

problem (K, ∀M) in time O((n +m) · 2k).

Remark 7.8 [Space complexity of Sal model checking] The Sal model check-
ing problem (K,φ) is Pspace-complete in the size of φ.

While the cost of Sal model checking is high compared to Stl model checking,
this is so only in terms of the size of the specification. Since, in practice, the size
of the observation structure is a computational bottleneck, while specifications
are small, it is fruitful to note the model complexity of the model checking
problem, namely, the parametric complexity in terms of the size of the structure
assuming constant-size specifications.

Remark 7.9 [Model complexity of Sal model checking] Algorithm 7.1 yields
a solution to the Sal model checking problem (K,φ) with linear-time model
complexity. This coincides with the model complexity of the enumerative Stl

model checking algorithms of Chapter 5. The model complexity of Sal model
checking, as well as Stl model checking, is Nlogspace.

Sal verification

The Sal verification problem (P, ∀M) is propositional if P is a propositional
module, M is a finite automaton, and the observations of M are propositional
formulas. Algorithm 7.1 can be used to solve the Sal verification problem
(P, ∀M) for an automaton specification M whose observations are boolean ex-
pressions over obsXP . First, we construct on-the-fly representations of the ob-
servation structures KP and EM , and then, use Algorithm 7.1 to test language
inclusion. The complexity is exponential in both the number of variables of P
and the number of states of M . As usual, the verification problem is exponen-
tially harder than the corresponding model checking problem.
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Remark 7.10 [Space complexity of Sal verification] The Sal verification prob-
lem (P, ∀φ) is Pspace-complete both in the size of the description of P and in
the number of states of φ.

Deterministic specifications

The exponential complexity of the test for language-inclusion (M1,M2) disap-
pears if M2 is deterministic. When M2 is deterministic, then Algorithm 7.1
solves the language-inclusion problem (M1,M2) in time O((n1 +m1) ·n2). Con-
sequently, the Sal model checking problem (K, ∀M) is computationally easier
when the expansion EM is deterministic. The expansion EM is guaranteed to
be deterministic if

1. the observations of every pair of initial states of M are mutually exclusive
(i.e. if s and t are initial states, the observation of s is the expression p,
and the observation of t is the expression q, then the conjunction p ∧ q is
an unsatisfiable formula), and

2. for every state s of M , the observations of every pair of successor states
of s are mutually exclusive.

In such a case, the complexity of Sal model checking (K, ∀M) is O(|K| · |M |).

There is another advantage of restricting to deterministic specification automata:
the language-inclusion problem (M1,M2) can be solved symbolically if the au-
tomaton M2 is deterministic.

Exercise 7.16 {P3} [Symbolic language inclusion] Consider the language-inclusion
problem (K1,K2) when the observation structure K1 is represented symboli-
cally, and the observation structure K2 is represented enumeratively. Write an
algorithm for solving the language-inclusion problem that combines symbolic
reachability analysis of K1 with determinization of K2.

Complemented specifications

Example 7.3 shows two ways of writing a requirement in Sal. A mutual-
exclusion protocol satisfies the exclusion requirement if it satisfies the Sal for-
mula ∀Mmutex , or equivalently, the formula ¬∃M¬mutex . Checking whether an
observation structure satisfies ∀Mmutex requires complementing Mmutex , and
hence, determinizing it. On the other hand, an observation structure satisfies
¬∃M¬mutex if the product structure K × EM¬mutex has an empty language,
and thus, can be checked without determinization. This holds whenever the
Sal specification is given as a negation of an automaton that accepts the un-
desirable behaviors.

Proposition 7.11 [Checking negated automata] The answer to the Sal model

checking problem (K,¬∃M) is Yes iff the language LK×EM is nonempty.
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Consequently, the Sal model checking problem (K,¬∃M) can be solved in time
O(|K| · |M |) by exploring the product of K and EM on-the-fly. Thus, requiring
the user to specify the automaton accepting the undesirable behaviors, rather
than the automaton accepting desirable behaviors, simplifies the model checking
task.
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Chapter 8

Hierarchical Verification

In hierarchical design, we construct various models of a system at different levels
of detail. The key verification issue, then, is to check that a detailed model P of
the system conforms with a more abstract model Q. If both P and Q are reactive
modules, then our notion of conformance requires that every finite sequence of
observations a that may result from executing the detailed module P may also
result from executing the more abstract module Q. In this case, we say that the
module P implements the module Q.

8.1 Implementation of Reactive Modules

Given a reactive module P , an initialized trace of P is an initialized trace of
the observation structure KP , and the language LP of the module P is the
language LKP

of the corresponding observation structure. The interaction of a
module P with its environment is completely determined by the set intfXP of
interface variables, the set extlXP of external variables, the awaits dependencies
among the observable variables, and the set LP of traces. Two modules that
agree on these components will interact with other modules in the same way
irrespective of their branching structures. This is illustrated by the following
proposition which asserts that the traces of a compound module are completely
determined by the traces of its components. In particular, if P and Q have
identical observations then LP ‖Q equals LP ∩ LQ.

Proposition 8.1 [Traces of compound modules] Let P and Q be compatible
modules, and let a be a word over the observations of the compound module
P ‖Q. Then, a belongs to the language LP ‖Q iff the projection obsXP [a] belongs
to LP and the projection obsXQ[a] belongs to LQ.

1
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Exercise 8.1 {t2} [Traces of compound modules] Prove Proposition 8.1.

This leads to a natural way of comparing two modules.

Implementation

The reactive module P implements the reactive module Q, denoted P �L Q,
if

1. every interface variable of Q is an interface variable of P : intfXQ ⊆
intfXP ,

2. every external variable of Q is an observable variable of P : extlXQ ⊆
obsXP ,

3. for all variables x in obsXQ and y in intfXQ, if y ≺Q x then y ≺P x,
and

4. if a is an initialized trace of P then the projection a[obsXQ] of a onto
the observable variables of Q is an initialized trace of Q.

The two modules P and Q are trace equivalent, denoted P 'L Q, if P �L Q

and Q �L P .

Intuitively, if P �L Q then the module P is as complex as the module Q: P

has possibly more interface and external variables than Q, P has more await
dependencies among its observable variables, and has less traces than Q, and
thus, more constraints on its execution. The superscript L in the implemen-
tation relation �L indicates that this relation is based on the languages of the
modules.

Remark 8.1 [Implementation preorder] The implementation relation �L on
modules is reflexive and transitive.

Example 8.1 [Synchronous versus asynchronous mutual exclusion] The mod-
ule SyncMutex of Figure 1.22 gives the synchronous solution to the mutual
exclusion problem, and the module Pete of Figure 1.23 gives the asynchronous
solution. Both the modules have identical interface variables, no external vari-
ables, and no await dependencies. Verify that every trace of SyncMutex is a
trace of Pete, and thus, SyncMutex �L Pete. However, the two modules are
not trace equivalent. The word

(pc1 = pc2 = outC ), (pc1 = reqC , pc2 = outC ), (pc1 = pc2 = reqC )

is a trace of Pete, but is not a trace of SyncMutex . Intuitively, the asynchronous
solution is more abstract, and admits more traces.
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Example 8.2 [Nondeterministic versus deterministic scheduling] Recall the mod-
ule Scheduler from Figure 1.4 consisting of atoms A3, A4, and A5. Consider
the atom A6

A6: atom controls proc reads task 1, task2

update

[] task1 = 0 ∧ task2 = 0 → proc′ := 0
[] task2 > 0 → proc′ := 2
[] task1 > 0 → proc′ := 1

When both the tasks are pending the atom A6 assigns the processor to one
of them in a nondeterministic fashion. The module NonDetScheduler is like
Scheduler with the atom A5 replaced by the atom A6 (NonDetScheduler no
longer needs the private variable prior). The two modules Scheduler and Non-
DetScheduler have identical interface and external variables, and identical awaits
dependencies among their observable variables. Verify that every trace of Sched-
uler is a trace of NonDetScheduler , but not vice versa. We have, Scheduler �L

NonDetScheduler . The module Scheduler is an implementation of the specifica-
tion NonDetScheduler . The specification only requires that if one of the tasks
is pending, then the processor should be assigned to a pending task, but does
not specify a policy to resolve the contention when both tasks are pending. The
implementation refines the specification by implementing a deterministic policy
using the variable prior .

Example 8.3 [Binary counter specification] Recall the example of the sequen-
tial circuit for three-bit binary counter from Example 1.16. The counter takes
two boolean inputs, represented by the external variables start and inc, for
starting and incrementing the counter. The counter value ranges from 0 to 7,
and is represented by three interface binary variables out0, out1, and out2.
The specification of the counter is the module Sync3BitCounterSpec of Fig-
ure 8.1. The module Sync3BitCounter of Figure 1.19 is a possible implementa-
tion. The correctness of the design Sync3BitCounter with respect to the speci-
fication Sync3BitCounterSpec is expressed by the fact that the two modules are
trace-equivalent.

Exercise 8.2 {P2} [Zero-delay vs. unit-delay vs. buffered vs. lossy squaring]
Recall the definitions of the modules SyncSquare, SyncSquare2 , AsyncSquare,
and LossyAsyncSquare (see Example 1.10, and Example 1.11) all of which com-
pute squares of input numbers. Which pairs of modules among these four mod-
ules are related by the implementation relation �L?

Exercise 8.3 {P2} [Synchronous vs. asynchronous message passing] Consider
the module SyncMsg of Figure 1.25 for synchronous message passing, and the
module AsyncMsg of Figure 1.30 for asynchronous message passing. Does
SyncMsg implement AsyncMsg? Are the two modules trace equivalent?
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module Sync3BitCounterSpec is

interface out0, out1, out2

external start , inc
atom controls out0 reads out0 awaits start , inc

update

[] start ′ = 1 → out ′0 := 0
[] start ′ = 0 ∧ inc′ = 1 → out ′0 := ¬out0

atom controls out1 reads out0, out1 awaits start , inc
update

[] start ′ = 1 → out ′1 := 0
[] start ′ = 0 ∧ inc′ = 1 → out ′1 := out0 ⊕ out1

atom controls out2 reads out0, out1, out2 awaits start , inc
update

[] start ′ = 1 → out ′2 := 0
[] start ′ = 0 ∧ inc′ = 1 → out ′2 := (out0 ∧ out1) ⊕ out2

Figure 8.1: Specification of three-bit counter

Composing two modules using parallel composition creates a module that is
more complex than its components, while hiding a variable creates a simpler
module with less number of observable variables.

Proposition 8.2 [Module operations and implementation] (1) For compatible
reactive modules P and Q, P ‖Q �L P . (2) For a variable x and a reactive
module P , P �L hide x in P .

Exercise 8.4 {T1} [Module operations and implementation] Prove Proposi-
tion 8.2.

The implementation problem

The implementation problem asks whether one module implements another
module.

The implementation problem

An instance (P, Q) of the implementation problem consists of two reactive
modules P and Q. The answer to the implementation problem (P, Q) is
Yes if P implements Q, and otherwise No.

Recall that the module P implments the module Q if (1) intfXQ ⊆ intfXP ,
(2) extlXQ ⊆ extlXP , (3) for all x in obsXQ and y in intfXQ, if y ≺Q x then
y ≺P x, and (4) if a is a trace of P then a[obsXQ] is a trace of Q. Checking
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first three conditions is easy, and the fourth condition reduces to the language
inclusion problem. Thus, the implementation problem relates to the language-
inclusion problem in the same way in which the invariant-verification problem
relates to the reachability problem, and in which the Stl verification problem
relates to the Stl model-checking problem.

Consider two modules P and Q such that the first three conditions for P to
implement Q are met. Let P ′ = hide (obsXP \obsXQ) in P . Then P ′ and Q

have identical observable variables. The module P implements Q if every trace
of P ′ is also a trace of Q, that is, if the answer to the language-inclusion problem
(KP ′ , KQ) is Yes. The complexity of solving the language-inclusion question
is exponential in its second argument. The next theorem concerning checking
implementation relation between two propositional modules follows.

Theorem 8.1 [The implementation problem] Let P be a propositional module
with k propositional variables and let Q be a propositional module with ` proposi-
tional variables. The propositional implementation problem (P, Q) can be solved

using the language-inclusion algorithm in time O(4k · 22`

).

Remark 8.2 [Space complexity of implementation problem] The propositional
implementation problem (P, Q) is Expspace hard in its second argument. Check-
ing implementation requires searching the product of the observation structure
of P and the determinization of the the observation structure of Q, and can
be performed in space O(k · 2`) if P has k variables and Q has ` variables. It
follows that propositional implementation problem is complete for Expspace.

If Q is an observably-deterministic module, then so is the observation structure
KQ. In this case, the language inclusion question (KP ′ , KQ) can be solved
without determinization.

Theorem 8.2 [Deterministic case of implementation problem] Let P be a propo-
sitional module with k propositional variables and let Q be a propositional observably-
deterministic module with ` propositional variables. The propositional imple-
mentation problem (P, Q) can be solved in time O(4k+`).

Remark 8.3 [Deterministic case of space complexity of implementation proble
] If Q is observably-deterministic, then the propositional implementation prob-
lem (P, Q) is Pspace-complete.

8.1.1 From Bisimilarity to Implementation

Given two observation structures K1 and K2, because the language-inclusion
problem (K1, K2) is hard, in practice, it is important to find sufficient conditions
for LK1

⊆ LK2
that can be checked efficiently. One such sufficient condition is

bisimilarity.
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State preorders

A state preorder � is a family of preorders, one preorder �K on the of each
observation structure K. The trace preorder �L is the following state preorder:
for two states s and t of an observation structure K, let s �L

K t iff LK(s) ⊆
LK(t).

A state preorder allows us to compare states. To compare two observation
structures with identical observations using a state preorder, we consider the
disjoint union of the two structures, and check if every initial state of one is
related to some initial state of the other. It also leads to a way of comparing
two reactive modules.

Structure and module preorders of a state preorder

Let � be a state preorder. Let K1 and K2 be two disjoint observation
structures. Let σI

1 be the initial region of K1, and let σI
2 be the initial

region of K2. Then, K1 � K2 if for all states s ∈ σI
1 , there is a state t ∈ σI

2

such that s �K1+K2
t.

For two modules P and Q, P � Q if (1) every interface variable of Q is
an interface variable of P , (2) every external variable of Q is an observable
variable of P , (3) for all variables x in obsXQ and y in intfXQ, if y ≺Q x

then y ≺P x, and (4) KP ′ � KQ for P ′ = hide (obsXP \obsXQ) in P .

Observe that the structure preorder relates two structures only when they have
identical observations, and hence, when comparing two modules we use hiding
before we compare the corresponding observation structures. For the bisimilar-
ity relation, K1 �B K2 means that every initial state of K1 is bisimilar to some
initial state of K2.

Remark 8.4 [Bisimulation preorder] Since bisimilarity is an equivalence rela-
tion over states, if K1 �B K2 and both structures have unique initial states,
then K2 �B K1. If the two modules P and Q have identical interface and
external variables, and unique initial states, then if P �B Q then Q �B P .

Exercise 8.5 {T1} [Checking bisimilarity preorder] Given two observation struc-
tures K1 and K2, what is the time complexity of checking K1 �B K2?

For the trace preorder, the induced preorder over observation structures is lan-
guage inclusion, and the induced preorder over modules is implementation.
Since bisimilar states have identical languages, proving bisimilarity preorder is
a sufficient condition for proving implementation. However, it is not a necessary
condition, because bisimilarity is more distinguishing than language equivalence.
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Proposition 8.3 [Trace and bisimilarity preorders] For two observation struc-
tures K1 and K2, if K1 �B K2, then K1 �L K2. For two reactive modules P

and Q, if P �B Q then P �L Q.

Example 8.4 [Trace and bisimilarity preorders] In Example 8.1, we noted that
SyncMutex �L Pete. However, SyncMutex �B Pete does not hold.

In Example 8.2, we noted that Scheduler �L NonDetScheduler . Hopwever,
Scheduler �B NonDetScheduler does not hold.

In Example 8.3, we noted that Sync3BitCounter and Sync3BitCounterSpec are
trace-equivalent. Verify that the two modules are equivalent according to the
bisimilarity preorder also.

8.2 Compositional Reasoning

8.2.1 Compositionality

If we prove that a module P implements another module Q, can we substitute P

for Q in all contexts? Compositional proof rules admit such deductions, thereby
reducing reasoning about compound modules to reasoning about the component
modules.

Compositionality

The preorder � on reactive modules is compositional if for all modules P

and Q, if P � Q then

1. for every reactive module R that is compatible with P , R is compatible
with Q and P‖R � Q‖R;

2. for variable x of P , hide x in P � hide x in Q;

3. for every variable renaming ρ, P [ρ] � Q[ρ].

A compositional equivalence on modules is called a module congruence.

Remark 8.5 [Congruence] If � is a compositional preorder on modules, then
the symmetric closure of � is a module congruence.

Theorem 8.3 [Compositionality of implementation] The implementation pre-
order �L on modules is compositional.

Proof. Consider two reactive modules P and Q such that P �L Q. The cases
corresponding to the operations of hiding and renaming are straightforward.
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We consider only parallel composition. Let R be a reactive module that is
compatible with P .

First, we need to establish that Q and R are compatible. Since intfXP ∩ intfXR

is empty, and intfXQ ⊆ intfXP , we conclude that intfXQ ∩ intfXR is empty.
Asymmetricity of (≺Q ∪ ≺R)+ follows from (1) (≺P ∪ ≺R)+ is asymmetric, and
(2) for two variables x, y ∈ obsXQ, if x ≺Q y then x, y ∈ obsXP with x ≺P y.

Next, we establish that every initialized trace of P ‖R is also an initialized trace
of Q ‖R. Let a be an initialized trace of P ‖R. From Proposition 8.1, obsXP [a]
is an initialized trace of P and obsXR[a] is an initialized trace of R. Since
P �L Q, obsXQ[a] is an initialized trace of Q. Again, from Proposition 8.1,
obsXQ ‖R[a] is an initialized trace of Q ‖R.

Corollary 8.1 [Congruence of trace equivalence] Trace equivalence is a module
congruence.

Suppose that we wish to prove that a compound module P1‖P2 implements the
abstraction Q1‖Q2, where Q1 is an abstraction of P1 and Q2 is an abstraction
of P2. By Theorem 8.3, it suffices to prove separately that (1) the component
module P1 implements Q1, and (2) the component module P2 implements Q2.
Both proof obligations (1) and (2) involve smaller state spaces than the original
proof obligation.

Example 8.5 [Compositional proof] Consider the synchronous message-passing
protocol

SyncMsg = hide ready , transmit ,msgS in SyncSender ‖Receiver

and the asynchronous message passing protocol

AsyncMsg = hide ready , transmit ,msgS in AsyncSender ‖Receiver .

Suppose we wish to establish that the synchronous protocol is an implementation
of the asynchronous one:

SyncMsg �L AsyncMsg .

Then, since �L is compositional, it suffices to establish that

SyncSender �L AsyncSender .

Verify that synchronous sender SyncSender indeed is an implementation of the
asynchronous sender AsyncSender .

Exercise 8.6 {T3} [Bisimilarity congruence] Prove that the bisimulation pre-
order �B is compositional.

It also follows that the state logic Sal is compositional:

Corollary 8.2 [Compositionality of Sal] If a reactive module P satisfies an
Sal formula φ, then every compound module P ‖Q also satisfies the Sal formula
φ.
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8.2.2 Assume-guarantee Reasoning

Compositional proof rules, while useful, may not always be applicable. In partic-
ular, P1 may not implement Q1 for all environments, but only if the environment
behaves like P2, and vice versa. In this case, assumption-guarantee proof rules
are needed. An assume-guarantee proof rule asserts that in order to prove that
P1‖P2 implements Q1‖Q2, it suffices to prove (1) P1‖Q2 implements Q1, and
(2) Q1‖P2 implements Q2. Both proof obligations (1) and (2) typically involve
smaller state spaces than the original proof obligation, because the compound
module P1‖P2 usually has the largest state space involved. Observe the circular
nature of the assume-guarantee reasoning. Its correctness depends crucially on
the fact that a module does not constrain the behavior of its environment, and
thus, interacts with other modules in a non-blocking way.

Theorem 8.4 [Assume-guarantuee reasoning] Let P1 and P2 be two compatible
reactive modules, and let Q1 and Q2 be two compatible reactive modules. If
P1‖Q2 �L Q1, Q1‖P2 �L Q2, and every external variable of Q1‖Q2 is an
observable variable of P1‖P2, then P1‖P2 �L Q1‖Q2.

Proof. Consider four modules P1, P2, Q1, and Q2 such that

1. P1 and P2 are compatible,

2. Q1 and Q2 are compatible,

3. every external variable of Q1‖Q2 is an observable variable of P1‖P2,

4. P1‖Q2 �L Q1, and

5. Q1‖P2 �L Q2.

We wish to establish that P1‖P2 �L Q1‖Q2. The definition of implementation
has four requirements. Let us consider these four goals one by one.

Goal 1: To show that every interface variable of Q1‖Q2 is an interface variable
of P1‖P2, let x be an interface variable of Q1‖Q2. Due to symmetry, it suffices
to consider the case that x is an interface variable of Q1. By assumption (4), x

is an interface variable of P1‖Q2. The assumption (2) implies that x is not an
interface variable of Q2. It follows, from the definition of parallel composition,
that x is an interface variable of P1, and hence, of P1‖P2.

Goal 2: The second requirement that every external variable of Q1‖Q2 is an
observable variable of P1‖P2 is assumption (3).

Goal 3: We wish to show that if y ≺Q1‖Q2
x then y ≺P1‖P2

x. Since ≺Q1‖Q2
is

the transitive closure of the union ≺Q1
and ≺Q2

, and by symmetry, it suffices
to prove that if y ≺Q1

x then y ≺P1‖P2
x.
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Consider an interface variable y and an observable variable of x of Q1 such that
y ≺Q1

x. From assumption (4), we have y ≺P1‖Q2
x. We know that ≺P1‖Q2

is
the transitive closure of the union of ≺P1

and ≺Q2
. Hence, whenever y ≺Q1

x,
there is a finite chain of awaits dependencies such that

y ≺P1
y1 ≺Q2

y2 ≺P1
· · · x (†)

Similarly, if y ≺Q2
x, then there exists a chain of awaits dependencies

y ≺P2
y1 ≺Q1

y2 ≺P2
· · · x (‡)

By repeatedly applying (†) and (‡), since the awaits relations are acyclic, and
the number of variables is finite, if y ≺Q1

x, then there exists a finite chain of
awaits dependencies

y ≺P1
y1 ≺P2

y2 ≺P1
· · · x

and thus, y ≺P1‖P2
x.

Goal 4: We wish to establish that every trace of P1‖P2 is also a trace of Q1‖Q2.
We start by defining some additional concepts. For simplicity, in the following
we omit explicit projections. For instance, if X is a superset of obsXP , and
s is sequence of valuations for X such that s[obsXP ] is a trace of P , then we
consider s also to be a trace of P .

Given a module P , a subset X ⊆ obsXP of the observable variables is awaits-
closed if, whenever y ≺P x and y ∈ X , then x ∈ X . For an awaits-closed set X ,
the pair (s0...m, t) consisting of a trace s0...m ∈ LP of P and a valuation t for X

is said to be a X-partial-trace of P if there exists an observation sm+1 such that
(1) sm+1[X ] = t, and (2) s0...(m+1) ∈ LP . Thus, partial-traces are obtained by
executing only some of the subrounds of the last update round. The following
facts about partial-traces follow from the definition of reactive modules.

1. If P �L Q and X is awaits-closed for P , then X is awaits-closed for Q. If
P �L Q, and (s, t) is a X-partial-trace of P , then (s, t) is a X-partial-trace
of Q. Thus, inclusion of traces is equivalent to inclusion of partial traces.

2. The partial-traces of a compound module are determined from the partial-
traces of the components: (s, t) is a X-partial-trace of P‖Q iff it is a
X-partial-trace of both P and Q.

3. If (s, t) is a X-partial-trace of P , and u is a valuation for a subset Y of
the external variables of P , then (s, t∪ u) is a (X ∪ Y )-partial-trace of P .
This property is due the nonblocking nature of reactive modules.

Let X1, . . .Xk be a partitioning of obsXP1‖P2
into disjoint subsets such that

(1) each Xi either contains only external variables of P1‖P2 or contains only
interface variables of P1 or only interface variables of P2, and (2) x ≺P1‖P2

y
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and x ∈ Xi then y ∈ Xj for some j < i. Let Y0 = ∅, and for 0 ≤ i < k,
Yi+1 = Yi ∪Xi. Each such set Yi is awaits-closed. Let L be the set of pairs (s, t)
such that (s, t) is a X-partial-trace of P1‖P2 for X = Yj for some 0 ≤ j ≤ k.
Define an ordering < over L: if (s, t) is a Yj-partial-trace with j < k, and
(s, u) is a Yj+1-partial-trace with u[Yj ] = t then (s, t) < (s, u); and (s, t) is a
Yk-partial-trace then (s, t) < (s · t, ∅). Clearly, the ordering < is well founded.
By well-founded induction with respect to <, we prove that every partial-trace
in L is a partial-trace of Q1‖Q2.

Consider (s, ∅) in L. If s is the empty trace, then (ε, ∅) is a partial-trace of all
modules. Otherwise, s is nonempty: s = t · u. Then (t, u) is a Yk-partial-trace
of P1‖P2. Since (t, u) < (s, ∅), by induction hypothesis, (t, u) is a partial-trace
of Q1‖Q2, and hence, so is (s, ∅).

Consider (s, t) in L such that t is a valuation for Yj+1 for some 0 ≤ j < k. Let
u = t[Yj ]. Then, (s, u) < (s, t). By induction hypothesis, (s, u) is a Yj-partial-
trace of Q1‖Q2. By the property (2) of partial-traces, (s, u) is a Yj-partial-trace
of both Q1 and Q2. Consider Yj+1 = Yj ∪ Xj . We know that Xj contains
interface variables of at most one of P1 and P2. Without loss of generality, let
us assume that Xj contains no interface variables of P2, and hence, no interface
variables of Q2. By property (3) of partial-traces, the Yj-partial-trace (s, u)
of Q2 can be extended with any valuation for Xj . In particular, (s, t) is a
Yj+1-partial-trace of Q2. Hence, (s, t) is a Yj+1-partial-trace of P1‖Q2. Since
P1‖Q2 �L Q1, and by property (1) of partial-traces, (s, t) is a partial-trace of
Q1. Again, by property (2) of partial-traces, (s, t) is a partial-trace of Q1‖Q2.

Example 8.6 [Assume guarantee reasoning] To illustrate the application of as-
sume guarantee reasoning, we consider a simple version of the alternating-bit
protocol. The sender process is the module ABPSender of Figure 8.2. The
private variable x indicates the bit to be sent with the next message. The mes-
sage is transmitted by issuing the interface event transmitS , and updating the
variables abp and msg to the message contents. The acknowledgements issued
by the receiver are stored in the private buffer z. After sending the message, the
process removes an acknowledgement from z. If the acknowledgement equals
the current value of the alternating-bit x, the sender concludes a correct delivery
of the message, and updates the alternating-bit x.

The receiver process ABPReceiver is symmetric, and is shown in Figure 8.3
The messages received from the sender are stored in the private buffer z (for
simplicity, the message is ignored, and the alternating-bit is stored). The process
removes the first message in z in the variable x, which is, then, issued at a later
time along with the interface event transmitR.

Consider the module ABP = ABPSender ‖ABPReceiver . The observable be-
havior of ABP is very regular: first the sender issues transmitS with the bit 0,
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module ABPSender is

interface transmitS :
�
; abp : � ; msg : �

external transmitR :
�
; ack : �

private consume :
�
; pc : {send ,wait}; x : � ; z : queue of �

passive atom

controls z

reads consume, transmitR

awaits consume, transmitR, ack
init

[] true → z′ := EmptyQueue
update

[] consume? ∧ transmitR? → z′ := Enqueue(ack ′,Dequeue(z))
[] consume? ∧ ¬transmitR? → z′ := Dequeue(z)
[] ¬consume? ∧ transmitR? → z′ := Enqueue(ack ′, z)

lazy atom

controls consume, x

reads pc, z, x, consume
init

[] true → x′ := 0
update

[] pc = wait ∧ z 6= EmptyQueue ∧ x = Front(z) → consume!
[] pc = wait ∧ z 6= EmptyQueue ∧ x 6= Front(z) → consume!; x′ := ¬x

passive atom

controls pc
reads pc, consume, transmitS

awaits consume, transmitS

init

[] true → pc′ := send
update

[] pc = send ∧ transmitS? → pc′ := wait
[] pc = wait ∧ consume? → pc ′ := send

lazy atom

controls transmitS ,msg , abp
reads pc, transmitS , x

update

[] pc = send → transmitS !; abp ′ := x; msg ′ := �

Figure 8.2: Sender process of Alternating-bit Protocol



Hierarchical Verification 13

then the receiver issues transmitR with the acknowledgement 0, then the sender
issues transmitS with the bit 1, then the receiver issues transmitR with the
acknowledgement 1.

Figure 8.4 shows simpler abstract versions of the sender and receiver. The
module AbstractSender differs from the module ABPSender in two ways. It
assumes that (1) it will always recieve the correct acknowledgements, and (2)
the acknowledgement events issued by the receiver strictly alternate with the
events issued by the sender. Consequently, it does not read the values of the
acknowledgements, and it does not buffer the acknowledgements. The process
AbstractReceiver is a similar simplification of ABPReceiver .

Suppose we wish to establish that

ABPSender ‖ABPReceiver �L AbstractSender ‖AbstractReceiver . (†)

Compositionality cannot simplify this goal, becuase neither ABPSender im-
plement AbstractSender , nor does ABPReceiver implement AbstractReceiver .
However, verify that both

ABPSender ‖AbstractReceiver �L AbstractSender ,

and

AbstractSender ‖ABPReceiver �L AbstractReceiver

hold. Then, by assume-guarantee theorem we can conclude the obligation (†).

Exercise 8.7 {T2} [Side condition in assume-guarantee rule] Show that the
assumption that every external variable of Q1‖Q2 is an observable variable of
P1‖P2 is essential (i.e. it does not follow from the assumptions (1), (2), (4), and
(5) in the proof of the assume-guarantee theorem.

Exercise 8.8 {T3} [Assume-guarantee for bisimilarity] Does Theorem 8.4 hold
for the bisimulation preorder �B?

8.3 Simulation Relations

Establishing trace preorder between two observation structures is computation-
ally hard. While bisimilarity of two structures is a sufficient condition to es-
tablish trace preorder, bisimilarity over structures in an equivalence relation,
and does not admit the implementation to have less traces than the specifica-
tion. Simulation relations offer a practical alternative: on one hand, computing
simulation relations is computationally easier than establishing trace preorder,
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module ABPReceiver is

external transmitS :
�
; abp : � ; msg : �

interface transmitR :
�
; ack : �

private consume :
�
; pc : {send ,wait}; x : � ; z : queue of �

passive atom

controls z

reads consume, transmitS

awaits consume, transmitS , abp
init

[] true → z′ := EmptyQueue
update

[] consume? ∧ transmitS? → z′ := Enqueue(abp ′,Dequeue(z))
[] consume? ∧ ¬transmitS? → z′ := Dequeue(z)
[] ¬consume? ∧ transmitS? → z′ := Enqueue(abp ′, z)

lazy atom

controls consume, x

reads pc, z

update

[] pc = wait ∧ z 6= EmptyQueue → consume!; x′ := Front(z)
passive atom

controls pc
reads pc, consume, transmitR

awaits consume, transmitR

init

[] true → pc′ := wait
update

[] pc = send ∧ transmitR? → pc′ := wait
[] pc = wait ∧ consume? → pc ′ := send

lazy atom

controls transmitR, ack
reads pc, transmitR, x

update

[] pc = send → transmitR!; ack ′ := x

Figure 8.3: Receiver process of Alternating-bit Protocol
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module AbstractSender is

interface transmitS :
�
; abp : �

external transmitR :
�

private pc : {send ,wait}; x : �
passive atom

controls pc
reads pc, transmitS , transmitR

awaits transmitR, transmitS

init

[] true → pc′ := send
update

[] pc = send ∧ transmitS? → pc′ := wait
[] pc = wait ∧ transmitR? → pc′ := send

lazy atom

controls x, transmitS , abp
reads pc, x, transmitS

init

[] true → x′ := 0
update

[] pc = send → transmitS !; abp ′ := x; x′ := ¬x

module AbstractReceiver is

external transmitS :
�

interface transmitR :
�
; ack : �

private pc : {send ,wait}; x : �
passive atom

controls pc
reads pc, transmitS , transmitR

awaits transmitR, transmitS

init

[] true → pc′ := wait
update

[] pc = send ∧ transmitR? → pc′ := wait
[] pc = wait ∧ transmitS? → pc′ := send

lazy atom

controls x, transmitR, ack
reads pc, x, transmitR

init

[] true → x′ := 0
update

[] pc = send → transmitR!; ack ′ := x; x′ := ¬x

Figure 8.4: Abstract Sender and Receiver of Alternating-bit Protocol
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while on the other hand, existence of simulation relations is much less stringent
requirement compared to bisimilarity.

Simulation

Let K = (Σ, σI ,→, A, 〈〈·〉〉) be an observation structure. A simulation � of
K is a binary relation on the state space such that for all states s and t

of K, if s � t then (1) 〈〈s〉〉 = 〈〈t〉〉 and (2) if s → s′, then there is a state
t′ such that t → t′ and s′ � t′. The state t simulates the state s, denoted
s �S

K t, if there is a simulation � such that s � t.

From the definition of simulation relations, it follows that the union of two
simulation relations is also a simulation relation.

Proposition 8.4 [Union-closure of simulation relations] Let K be an observa-
tion structure with state-space Σ. For two simulation relations �1 and �2, their
union �1 ∪ �2 is a simulation relation.

It follows that the set of simulation relations forms a complete partial-order
with respect to the subset relation.

Corollary 8.3 [Maximal simulation] For an observation structure K, the rela-
tion �S

K is a simulation of K, and equals the union of all simulation relations
of K.

The maximal simulation relation �S
K is reflexive and transitive, and thus, a state

preorder. This follows from the fact that reflexive-transitive closure a simulation
is also a simulation.

Proposition 8.5 [Simulation preorder] For an observation structure K, if �
is a simulation of K, then so is its reflexive-stransitive closure �∗.

Exercise 8.9 {T2} [Simulation preorder] Prove Proposition 8.5.

Recall the alternative definitions of bisimilarity from Chapter 6. Similarity
relation can be also be explained in various ways. Let us consider the similarity
game on the graph of the observation structure K. Player I, the protagonist,
attempts to show that the state t simulates the state s, while Player II, the
adversary, tries to establish otherwise. If the two given states have different
observations, then the adversary wins immediately. Throughout the game, each
player has an active state. Initially, the active state of the adversary is s, and
the active state of the protagonist is t. In each move of the game, the adversary
replaces its active state by one of its successors, say s′; the protagonist, then,
must replace its own active state with one of its successors t′ such that s′ and t′

have identical observations. If the protagonist cannot find such a replacement,
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then the adversary wins the game. The state t simulates the state s iff the
adversary does not have a winning strategy; that is, all of possible moves of the
adversary can perpetually be matched by the protagonist. Contrast this game
with the bisimilarity game: the bisimilarity game has two active states at each
step, the adversary chooses one of the two active states, and replaces it by one
of its successors, and the protagonist is required to find a replacement for the
other active state. Thus, similarity game is like bisimilarity game in which, the
adversary starts playing from s and never switches sides.

Example 8.7 [Simulation game] Let us revisit the bisimilarity game of Exam-
ple 6.9 (See Figure 6.7). States s0 and u0 are bisimilar, and hence, similar.
States s0 and t0 are not bisimilar. Now let us consider the similarity game.
Suppose initially the active state of the adversary is s0, while the active state of
the protagonist is t0. Verify that the adversary has a winning strategy in this
case. Consequently, the state t0 does not simulate the state s0, and s0 6�S t0.
On the other hand, suppose initially the active state of the adversary is t0 and
the active state of the protagonist is s0. In this case, the protagonist can match
every move of the adversary. In fact, {(t0, s0), (t1, s1), (t2, s1), (t3, s2), (t4, s3)}
is a simulation relation. Consequently, the state s0 does simulate the state t0,
and t0 �S s0.

Remark 8.6 [Simulation vs. bisimulation] Recall that an equivalence relation
∼= on the states of an observation structure K is a bisimulation iff whenever
s ∼= t, (1) 〈〈s〉〉 = 〈〈t〉〉, and (2) if s → s′, then there is a state t′ such that t → t′

and s′ ∼= t′. It follows that the bisimulations of K are precisely the symmetric
simulations of K; that is, the equivalence ∼= on the states of K is a bisimulation
iff both ∼= and ∼=−1 are simulations of K.

To prove that the language of a state s is included in the language of a state t,
it suffices to prove that t simulates s.

Theorem 8.5 [Simulation vs. language inclusion] Let s and t be two states of
an observation structure K. If s �S

K t, then s �L
K t.

Proof. Consider two states s and t of K such that s �S
K t. Consider a

source-s trajectory s0...m. Let t0 = t. For i = 1, . . .m, by induction on i,
since si−1 �S

K ti−1 and si−1 → si, there exists a state ti such that si �S
K ti

and ti−1 → ti. Thus, t0...m is a source-t trajectory of K. Furthermore, for all
0 ≤ i ≤ m, 〈〈si〉〉 = 〈〈ti〉〉, and hence, 〈〈s0...m〉〉 is also a source-t trace of K.

The simulation preorder allows comparing two observations structures: for two
observation structures K1 and K2 with disjoint state-spaces and identical ob-
servations, K1 �S K2 if for every initial state s of K1, there exists an initial
state t of K2 such that s �S

K1+K2
t.
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Corollary 8.4 [Simulation preorder vs. trace preorder] For two observation
structures K1 and K2, if K1 �S K2, then K1 �L K2.

Remark 8.7 [Simulation of reachable states] If K1 �S K2 then for every reach-
able state s of K1, there exists a reachable state t of K2 such that t simulates
s.

It follows that the language-inclusion problem (K1, K2) can be solved by ex-
hibiting a simulation � of K1 +K2 such that for every initial state s of K1 there
is an initial state t of K2 with s � t.

8.3.1 Similarity

Similarity

The state equivalence 'S induced by the simulation preorder �S is called
similarity.

Thus, s 'S t for two states s and t of the observation structure K if there
exists a simulation �1 of K with s �1 t and a simulation �2 of K with t �2 s.
To observe that the similarity is more distinguishing than trace equivalence,
consider states s and t of Figure 6.8 We have s 'L t, but t does not simulate s.

Example 8.8 [Similarity vs. bisimilarity] To observe that the bisimilarity is
more distinguishing than similarity, consider states s0 and t0 of Figure 8.5. The
two states are not bisimilar. Observe that the relation

{(s0, t0), (s1, t2), (s2, t4), (s3, t5)}

is a simulation relation, and hence, t0 simulates s0. The relation

{(t0, s0), (t1, s1), (t2, s1), (t3, s2), (t4, s2), (t5, s3)}

is also a simulation relation, and hence, s0 simulates t0. Thus, the two states
s0 and t0 are similar.

The relationship among various state equivalences is summarized in Theorem 8.6.

Theorem 8.6 [Distinguishing power of state equivalences] ≈ � 'L � 'S

� 'B � =.

Exercise 8.10 {T4} [i-step similarity] (1) Define i-step trace equivalence and
i-step similarity. Show that i-step similarity lies strictly between i-step trace
equivalence and i-step bisimilarity on one hand, and between (i − 1)-step simi-
larity and (i + 1)-step similarity on the other hand. (2) Give a fixpoint charac-
terization of similarity.
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Figure 8.5: Comparing similarity and bisimilarity

Exercise 8.11 {T3} [Backward simulation] Let K = (Σ, σI ,→, A, 〈〈·〉〉) be an
observation structure. A backward simulation � of K is a binary relation on
the state space such that for all states s and t of K, if s � t then (1) 〈〈s〉〉 = 〈〈t〉〉
and (2) if s′ → s, then there is a state t′ such that t′ → t and s′ � t′. The state
t backward simulates the state s if there is a backward simulation � such that
s � t.

Prove that the language-inclusion problem (K1, K2) has the answer Yes if
there is a backward simulation � of K1 + K2 such that (1) for every state s of
K1 there is a state t of K2 with s � t, and (2) if s is initial and s � t, then t is
initial.

Prove that similarity and backward similarity are incomparable state equiv-
alences.

Exercise 8.12 {T4} [Forward-backward simulation] (1) Prove that simulations
and backward simulations are closed under relational composition, and show
that the composition of a simulation with a backward simulation may be neither
a simulation nor a backward simulation. (2) The composition of a simulation
with a backward simulation is called a forward-backward simulation, and the
composition of a backward simulation with a simulation is a backward-forward
simulation. In this manner, we can define an infinite family of state equivalences.
Prove that all members of this family lie strictly between trace equivalence and
bisimilarity in distinguishing power.

8.3.2 Universal and existential Stl

Universal and existential Stl are the fragments of Stl whose formulas do not
contain quantifier switches. Since quantifier switches correspond to switching
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sides in the bisimilarity game, universal and existential Stl cannot distinguish
between similar states.

Let us recall the definition of universal Stl (∀Stl) from Chapter 6. The for-
mulas of ∀Stl are generated by the grammar

φ ::= p | φ ∨ φ | φ ∧ φ | ∀© φ | φ∀Wφ.

Proposition 6.6 states that Stl cannot distinguish between bisimilar states.
Now, we establish that ∀Stl cannot distinguish between similar states.

Proposition 8.6 [Simulation and Universal Stl] Let s and t be two states of
an observation structure K, and let φ be a formula of ∀Stl. Then, if s �S

K t

and t |= φ then s |= φ.

Exercise 8.13 {T2} [Simulation and Universal Stl] Prove Proposition 8.6.

Corollary 8.5 [Similarity and Universal Stl] Similarity is an abstract seman-
tics for ∀Stl.

It follows that it suffices to construct quotients with respect to similarity for
model checking of ∀Stl requirements. Since similarity is a coarser equivalence
than bisimilarity, the quotient with respect to similarity can be smaller than
the quotient with respect to bisimilarity.

Recall that bisimilarity is a fully abstract semantics for STL: the equivalence
induced by Stl coincides with bisimilarity. A similar result holds for ∀Stl and
similarity: two states of an observation structure K that are not similar can be
distinguished by an ∀Stl-formula.

Proposition 8.7 [∀Stl full abstraction] Similarity is a fully abstract semantics
for ∀Stl.

Exercise 8.14 {T3} [Distinguishing non-similar states with ∀Stl] Show that
two non-similar states of a finitary observation structure can be distinguished
by an ∀Stl-formula that uses only the next-time operator ∀©. Proposition 8.7
follows.

Exercise 8.15 {T3} [Existential Stl] The formulas of existential Stl (∃Stl)
are generated by the grammar

φ ::= p | φ ∨ φ | φ ∧ φ | ∃© φ | φ∃Uφ.

(1) Let s and t be two states of an observation structure K, and let φ be a
formula of ∃Stl. Prove that if s �S

K t and s |= φ then t |= φ. It follows that
two similar states satisfy the same ∃Stl formulas, and similarity is an abstract
semantics for ∃Stl. (2) Let s and t be two non-similar states of an observation
structure K. Prove that there exists an ∃Stl-formula that is satisfied by only
one of the two states. It follows that the equivalence induced by ∃Stl coincides
with similarity.
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State Equivalence Complexity Logic
Trace equivalence 'L O(m · 2n)/Pspace Sal

Similarity 'S O(m · n) ∀Stl, ∃Stl

Bisimilarity 'B O(m · log n) Stl

Figure 8.6: Summary of state equivalences

8.4 Computing Similarity

We proceed to study algorithms for deciding whether one structure simulates
another. As in case of partition refinement, both enumerative and symbolic
algorithms are considered. The complexity of deciding the similarity relation
on a finite observation structure is quadratic (O(m · n)). Contrast this with
O(m · log n) complexity of deciding the bisimilarity relation, which is finer than
similarity, and Pspace complexity of deciding language equivalence, which is
coarser than similarity.

The results concerning the three state equivalences, trace equivalence, similarity,
and bisimilarity, are summarized in Figure 8.6. The second column shows com-
plexity of deciding equivalence of two states in a structure with n states and m

transitions, while the third column list the logic(s) for which the corresponding
equivalence is fully abstract.

Let K be an observation structure, and let s be a state of K. Then, the simulator
set sim(s) of s is the set of states that simulate s.

An instance of the similarity-checking problem consists of a finite observa-
tion structure K. The answer to the similarity-checking problem is the set
of simulator sets sim(s), for each state s of K.

Remark 8.8 [Simulator sets] Let K be an observation structure. Similar states
have identical simulator sets: for two states s and t of K, if s 'S t then
sim(s) = sim(t). The simulator set of every state is a block of the partition 'S:
for every state s, sim(s) is a union of equivalence classes of 'S .

Once the similarity-checking problem K is solved, then s 'S t iff s ∈ sim(t) and
t ∈ sim(s). Similarity-checking problem can be used to decide if one observation
structure simulates another.

8.4.1 Enumerative Similarity Checking

We develop our enumerative algorithm in three steps.
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Algorithm 8.1 [Schematic Similarity]

Input: a finite observation structure K = (Σ, σI ,→, A, 〈〈·〉〉).
Output: for each state s ∈ Σ, the simulator set sim(s).

foreach s ∈ Σ do sim(s) := {t ∈ Σ | 〈〈t〉〉 = 〈〈s〉〉} od;
while there are three states t, s, and u such that

s ∈ post(t), u ∈ sim(t), and post(u) ∩ sim(s) = ∅ do

sim(t) := Delete(u, sim(t))
{I0: assert for all s, t ∈ Σ, if t simulates s then t ∈ sim(s)}
od.

Figure 8.7: Enumerative similarity checking

Schematic similarity

We start with the schematic algorithm shown in Figure 8.7. For each state s,
the set sim(s) contains states that are candidates for simulating s. Initially,
sim(s) contains all states with the observation of s. If t → s and u ∈ sim(t),
but there is no v ∈ sim(s) such that u → v, then u cannot simulate t and is
removed from sim(t), without violating the invariant assertion I0. In this case,
we say that sim(t) is sharpened with respect to the transition (t, s). It is easy
to check that if no transitions allow a sharpening of sim(t) for any state t, then
for all s, all states in sim(s) can simulate s.

Theorem 8.7 [Schematic similarity] Given a finite observation structure K,
Algorithm 8.1 correctly solves the similarity-checking problem.

If the input structure has n states, there can be at most n2 iterations of the while
loop. A naive implementation of the schematic algorithm therefore requires
time O(m2n3), where m ≥ n is the number of transitions of the input structure.
We will improve the running time to O(mn).

Refined similarity

The algorithm of Figure 8.8 refines the schema of Algorithm 8.1. The key idea
of the refinement is the introduction of a set prevsim(s) for each state s. For
each state s, the set prevsim(s) is a superset of sim(s) and contains states that
once were considered candidates for simulating s. The crucial invariant I2 of
the while loop allows us to sharpen sim(t) with respect to the transition (t, s)
by looking only at states in prevsim(s) when checking if a state u ∈ sim(t) has
a successor in sim(s). Moreover, once v ∈ prevsim(s)\sim(s) is examined once,
v is removed from prevsim(s) forever.
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Algorithm 8.2 [Refined Similarity]

Input: a finite observation structure K = (Σ, σI ,→, A, 〈〈·〉〉).
Output: for each state s ∈ Σ, the simulator set sim(s).

foreach s ∈ Σ do

prevsim(s) := Σ;
if post(s) = ∅

then sim(s) := {t ∈ Σ | 〈〈t〉〉 = 〈〈s〉〉}
else sim(s) := {t ∈ Σ | 〈〈t〉〉 = 〈〈s〉〉 and post(t) 6= ∅}
fi

od;
while there is a state s ∈ Σ such that sim(s) 6= prevsim(s) do

{I1: assert for all s ∈ Σ, sim(s) ⊆ prevsim(s)}
{I2: assert for all t, s, u ∈ Σ, if t → s and u ∈ sim(t),

then post(u) ∩ prevsim(s) 6= ∅}
remove := pre(prevsim(s))\pre(sim(s));
foreach t ∈ pre(s) do sim(t) := sim(t)\remove od;
prevsim(s) := sim(s)
od.

Figure 8.8: Refined similarity checking
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The initial for loop of Algorithm 8.2 performs, in addition to the work of the
initial for loop of Algorithm 8.1, also some of the work of the while loop of
Algorithm 8.1. For each state s, the set prevsim(s) is initialized to contain all
states, and sim(s) is initialized to contain all states with the same observation
as that of s, and that have a successor if s does. This initialization establishes
the two invariants I1 and I2. In each iteration of the while loop, we nonde-
terministically pick a state s for which sim(s) improves on prevsim(s), and we
sharpen sim(t) for all predecessors t of s with respect to the transition (t, s).
By I2, all states in sim(t) have successors in prevsim(s), and we can find all
states in sim(t) that do not have successors in sim(s) by looking at the prede-
cessor set of prevsim(s). These states are collected in the set remove and deleted
from sim(t). Once all predecessors of s have been processed in this fashion, we
update prevsim(s) to sim(s). If sim(s) = prevsim(s) for all states s, then I2
implies the termination condition of the while loop of Algorithm 8.1.

Quadratic similarity checking

The algorithm of Figure 8.9 implements the scheme of Algorithm 8.2 using two
data structures. First, instead of recomputing the set remove in each itera-
tion of the while loop, the algorithm dynamically maintains for each state s a
set remove(s) that satisfies the invariant I3. If remove(s) = ∅ for all states s,
then I1 and I3 imply the termination condition of the while loop of Algo-
rithm 8.2. Second (not shown in the figure), we maintain a two-dimensional
array count [1..n, 1..n] of nonnegative integers such that count [v, t] = |post(v) ∩
sim(t)| for all states v and t. The array count is initialized in time O(mn).
Whenever a state u is removed from sim(t), then the counters count [v, t] are
decremented for all predecessors v of u. The cost of these decrements is ab-
sorbed in the cost of the innermost if statement. With the array count , the test
post(v) ∩ sim(t) = ∅ of that if statement can be executed in constant time, by
checking if count [v, t] = 0.

The initialization of sim(s) for all s requires time O(n · (m + n)). The initial-
ization of remove(s) for all s requires time O(mn). Given two states s and u,
if the test u ∈ remove(s) is positive in iteration i of the while loop, then the
test u ∈ remove(s) is negative in all iterations j > i. This is because (1) in
all iterations, u ∈ remove(s) implies that u 6∈ pre(sim(s)), (2) the value of
prevsim(s) in all iterations j > i is a subset of the value of sim(s) in itera-
tion i, and (3) invariant I1. It follows that the test u ∈ sim(t) is executed
ΣsΣu|pre(s)| = O(mn) times. The test u ∈ sim(t) is positive at most once
for every u and t, because after a positive test u is removed from sim(t) and
never put back. Therefore the body of the outer if statement in the while loop
contributes time ΣuΣt(1 + |pre(u)|) = O(mn). This gives a total running time
of O(mn).
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Algorithm 8.3 [Quadratic Similarity]

Input: a finite observation structure K = (Σ, σI ,→, A, 〈〈·〉〉).
Output: for each state s ∈ Σ, the simulator set sim(s).

foreach s ∈ Σ do

{let prevsim(s) := Σ}
if post(s) = ∅

then sim(s) := {t ∈ Σ | 〈〈t〉〉 = 〈〈s〉〉}
else sim(s) := {t ∈ Σ | 〈〈t〉〉 = 〈〈s〉〉 and post(t) 6= ∅}
fi;

remove(s) := pre(Σ)\pre(sim(s))
od;

while there is a state s ∈ Σ such that remove(s) 6= ∅ do

{I3: assert for all s ∈ Σ, remove(s) = pre(prevsim(s))\pre(sim(s))}
foreach t ∈ pre(s) do

foreach u ∈ remove(s) do

if u ∈ sim(t) then

sim(t) := Delete(u, Sim(t));
foreach v ∈ pre(u) do

if post(v) ∩ sim(t) = ∅ then remove(t) := Insert(v, remove(t)) fi

od

fi

od

od;
{let prevsim(s) := sim(s)}

remove(s) := ∅
od.

Figure 8.9: Efficient similarity checking



Hierarchical Verification 26

Theorem 8.8 [Enumerative similarity checking] Given a finite observation struc-
ture with n states and m transitions, Algorithm 8.3 solves the similarity checking
problem in time O(mn).

Corollary 8.6 [Checking similarity of states] The similarity of two states of a
finite observation structure can be decided in time O(mn).

8.4.2 Symbolic Similarity Checking

Symbolic procedures operate on regions, rather than states. Instead of com-
puting simulator sets for individual states, we compute simulator sets for entire
regions. Recall that if two states are similar, then their simulator sets are iden-
tical, and the simulator set of every state is a block of the similarity relation 'S.
This suggests that we should compute simulator sets of equivalence classes of
'S , rather than simulator sets of individual states. These two facts lead us to
the following definition.

Symbolic simulator sets

Given an observation structure K, and a K-partition ∼=, the simulator func-
tion for ∼= is the function Sim that maps each region σ in ∼= to the union⋃

s∈σ sim(s). The symbolic simulator structure for K is the pair ('S ,Sim)
consisting of the similarity partition 'S and the simulator function Sim for
'S .

Constructing the symbolic simulator structure suffices to answer the similarity
checking problem: if ('S ,Sim) is the symbolic simulator structure for K, then
for a state s of K, sim(s) = Sim(σ) where σ is the equivalence class of 'S that
contains s.

For an observation a, let Σa = {s ∈ Σ | 〈〈s〉〉 = a} be the region of states with the
observation a. Thus, the collection {Σa | a ∈ A} defines the partition induced
by the propositional equivalence ≈. We develop our procedure in two steps.

Revised schematic similarity

We start with the schema shown in Figure 8.10, which relaxes the schema of
Algorithm 8.1. The initial for loops are identical, and establish the two invari-
ants I4 and I5. The invariant I5 asserts that whenever a simulator set sim(s)
contains a state u′, and u′′ simulates u′, then sim(s) contains also u′′. Assum-
ing I5, if u ∈ sim(t), u′ ∈ sim(s), and t → u′, but there is no u′′ ∈ sim(s)
such that u → u′′, then u cannot simulate t. This is because in order for u to
simulate t, some successor of u would have to simulate u′, which is not possible,
because by I5 all states that simulate u′ are contained in sim(s). We can there-
fore remove u from sim(t), maintaining both invariants, even if Algorithm 8.1
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Algorithm 8.4 [Revised Schematic Similarity]

Input: an observation structure K = (Σ, σI ,→, A, 〈〈·〉〉).
Output: for each state s ∈ Σ, the simulator set sim(s).

foreach s ∈ Σ do sim(s) := {t ∈ Σ | 〈〈t〉〉 = 〈〈s〉〉} od;
while there are three states s, t, and u such that

post(t)∩ sim(s) 6= ∅, u ∈ sim(t), and post(u)∩ sim(s) = ∅ do

{I4: assert for all s ∈ Σ, s ∈ sim(s)}
{I5: assert for all s, t, u ∈ Σ, if t �S u and t ∈ sim(s), then u ∈ sim(s)}
sim(t) := Delete(u, sim(t))
od.

Figure 8.10: Revised scheme for similarity checking

would not have allowed us to do so. In this case, we say that sim(t) is freely
sharpened with respect to the transition (t, u′). If the transition (t, s) allows a
sharpening of sim(t), then I4 implies that (t, s) also allows a free sharpening
of sim(t). Consequently, if no transitions allow a free sharpening of sim(t) for
any state t, then the termination condition of Algorithm 8.1 is satisfied. This
implies the partial correctness of the revised scheme.

Theorem 8.9 [Revised schematic similarity] Given a finite observation struc-
ture K, Algorithm 8.4 correctly solves the similarity-checking problem.

Symbolic algorithm

The symbolic procedure, shown in Figure 8.11, is an instance of the schema
of Algorithm 8.4. The symbolic algorithm uses a symbolic representation of
regions. The only primitive operations it needs are boolean operations and the
pre-operation on regions, and emptiness checking of regions. Thus, it is not
restricted to finite observation structures, but rather to those structures that
support an effective symbolic representation of regions. If the similarity relation
'S of the input structure is finite, then it has only finitely many blocks, and
the invariant I7 ensures that Algorithm 8.5 terminates. If 'S is infinite, then
the partition ∼= needs to be refined infinitely often, and the procedure does not
terminate.

In implementing Algorithm 8.5, we can enforce the invariant that for all regions
σ ∈∼=, the region Sim(σ) is a block of ∼=, by refining the partition ∼= whenever
this becomes necessary due to the creation of a new simulator set. Such an
implementation maintains a finite partition ∼= of the state space Σ together
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Algorithm 8.5 [Symbolic Similarity]

Input: an observation structure K = (Σ, σI ,→, A, 〈〈·〉〉).
Output: the symbolic simulator structure ('S ,Sim) of K.

∼= := {Σa | a ∈ A and Σa 6= ∅};
foreach σ ∈∼= do Sim(σ) := σ od;
while there are two regions σ, τ ∈∼= such that σ ∩ pre(Sim(τ)) 6= ∅

and Sim(σ)\pre(Sim(τ)) 6= ∅ do

{I6: assert for all σ ∈∼= and all s ∈ σ, sim(s) = Sim(σ)}
{I7: assert for all σ ∈∼=, both σ and Sim(σ) are blocks of 'S}
σ′ := σ ∩ pre(Sim(τ)); σ′′ := σ\pre(Sim(τ));
∼=:= Insert(σ′,Delete(σ,∼=));
Sim(σ′) := Sim(σ) ∩ pre(Sim(τ));
if σ′′ 6= ∅ then ∼=:= Insert(σ′′,∼=); Sim(σ′′) := Sim(σ) fi

od.

Figure 8.11: Symbolic similarity checking

with pointers from each region σ in ∼= to all regions υ in ∼= with υ ⊆ Sim(σ),
without representing the simulator set Sim(σ) explicitly.

Theorem 8.10 [Symbolic similarity checking] Given an observation structure
K with a finite similarity relation, Algorithm 8.5 terminates and computes the
symbolic simulator structure for K.

8.5 Hierarchical Reasoning

Establishing that a reactive module P implements another module Q is compu-
tationally hard. In this section, we consider simulation relations as a sufficient
condition for establishing the implementation relation between two modules.

8.5.1 Simulation preorder over modules

Every state preorder for observation structures leads to a preorder over modules.
Thus, the simulation preorder �S can be used to compare one module with
another. The reactive module Q simulates the reactive module P , denoted
P �S Q, if (1) every interface variable of Q is an interface variable of P :
intfXQ ⊆ intfXP , (2) every external variable of Q is an observable variable of
P : extlXQ ⊆ obsXP , (3) for all variables x in obsXQ and y in intfXQ, if y ≺Q x

then y ≺P x, and (4) the observation structure KQ simulates the observation
structure KP ′ for P ′ = hide (obsXP \obsXQ) in P .
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As in case of the implementation preorder, if P �S Q, then the module P is
more constrained than P . The fourth requirement can informally be read as
“whatever P does is allowed by Q.” Again, we can think of Q as the (more
abstract) specification, and P as the (more detailed) implementation. The re-
lationship between simulation preorder and language preorder over states leads
to:

Proposition 8.8 [Simulation and implementation] For two reactive modules P

and Q, if P �S Q then P �L Q.

Remark 8.9 [Simulation and ∀Stl] Suppose P �S Q, and let φ be a formula
of ∀Stl. If the answer to the verification problem (Q, φ) is Yes, then the answer
to the verification problem (P, φ) is also Yes.

Given two modules P and Q such that obsXQ ⊆ obsXP , a state t of the module
P simulates a state s of P , if s �S t in the observation structure KP ′ + KQ for
P ′ = hide (obsXP \obsXQ) in P . If P �S Q then every reachable state of P is
simulated by some reachable state of Q.

Example 8.9 [Nondeterministic versus deterministic scheduling] Recall the mod-
ules Scheduler and NonDetScheduler from Example 8.2. For a state s of Sched-
uler and a state t of NonDetScheduler , let s � t if the two states assign the same
values to the variables task 1, task2, proc, new1, and new2. Verify that � is a
simulation relation: every transition of Scheduler is allowed by NonDetSched-
uler .

Example 8.10 [Synchronous versus asynchronous mutual exclusion] Let us re-
visit the two solutions to the mutual exclusion problem, namely, the modules
SyncMutex and Pete. In Example 8.1, we established that SyncMutex �L

Pete. However, SyncMutex �S Pete does not hold. To see this, first note that
if a state t of Pete simulates a state s of SyncMutex then pc1[s] = pc1[t] and
pc2[s] = pc2[t]. Consider the following trajectory of SyncMutex :

s0 : (outC , outC ) → s1 : (outC , reqC ) →
s2 : (outC , inC ) → s0 : (outC , outC ) →
s3 : (reqC , reqC ) → s4 : (inC , reqC )

If s3 �S t3, then x1[t3] 6= x2[t3]. This is because in Pete if both processes are
requesting and x1 = x2, then P2 enters the critical section first, and hence,
cannot match the transition from s3 to s4. This implies that if s0 �S t0, then
x1[t0] = x2[t0] (since t0 is required to be a predecessor of t3). Continuing this line
of reasoning, if s2 �S t2, then x1[t2] = x2[t2]; if s1 �S t1, then x1[t1] = x2[t1].
Now there is no transition between t0 and t1, and thus, no such simulation
exists.
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Exercise 8.16 {P2} [Synchronous vs. asynchronous message passing] Recall
the modules SyncMsg and AsyncMsg for synchronous and asynchronous mes-
sage passing protocols. Does SyncMsg �S AsyncMsg hold?

8.5.2 Compositional reasoning

Consider the implementation problem of verifying that a module implements
its specification. As explained in Section 8.2, this task can be decomposed into
subtasks using the compositional and modular properties of the implementation
preorder. To verify a particular subtask P �L Q, we can try to prove the
stronger goal P �S Q. To establish P �S Q, we can use the symbolic algorithms
for similarity checking.

It turns out that the simulation preorder itself is compositional. Thus, if P �S Q

then P‖R �S Q‖R. This helps in decomposing the verification problem for
∀Stl: if P �S Q then all ∀Stl formulas satisfied by Q‖R are also satisfied by
P‖R.

Proposition 8.9 [Compositionality of simulation] The simulation preorder �S

on modules is compositional.

Proof. Consider two reactive modules P and Q such that P �S Q. The cases
corresponding to the operations of hiding and renaming are straightforward.
We consider only parallel composition. Let R be a reactive module that is
compatible with P . For a state s of P‖R and a state t of Q‖R, let s � t iff (1)
XR[s] = XR[t], and (2) XQ[t] simulates XP [s].

We first show that � is a simulation relation. Consider s � t and s′ be a
successor of s in P‖R. Then, XQ[t] simulates XP [s], and XP [s′] is a successor
of XP [s]. Since P �S Q, there exists a state t′ of Q such that t′ is a successor
of XQ[t] in Q, and t′ simulates XP [t]. Let t′′ be the state of Q‖R such that
XQ[t′′] = t′ and XR[t′′] = XR[t]. By definition, s′ � t′′. Since XR[s′] is a
successor of XR[s] in R, it follows that XR[t′′] is a successor of XR[t] in R.
Thus, t′′ is a successor of t in Q‖R.

Along the same lines, we can establish that for every initial state s of P‖R,
there is an initial state t of Q‖R such that s � t.

Exercise 8.17 {T5} [Assume-Guarantee for Simulation] Does the assume-guarantee
theorem for implementation preorder (Theorem 8.4) hold for the simulation pre-
order �S?

8.5.3 Refinement mappings

Refinement maps, or homomorphisms, are special types of simulation relations.
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Figure 8.12: Refinement maps versus simulation relations

Refinement maps

Let K1 = (Σ1, σ
I
1 ,→1, A, 〈〈·〉〉1) and K2 = (Σ2, σ

I
2 ,→2, A, 〈〈·〉〉2) be two

observation structures. A refinement mapping hom from K1 to K2 is a
function from the reachable region σR

1 of K1 to Σ2 such that (1) for all
s ∈ σR

1 , 〈〈hom(s)〉〉2 = 〈〈s〉〉1, (2) for every reachable transition s →1 t of K1,
hom(s) →2 hom(t), and (3) for all s ∈ σI

1 , hom(s) ∈ σI
2 .

If hom is a refinement map from K1 to K2 then the set {(s, hom(s)) | s ∈ σR
1 }

is simulation relation over the union K1 + K2.

Proposition 8.10 [Refinement maps and simulations] If there exists a refine-
ment mapping from the observation structure K1 to K2 then K1 �S K2.

For two observation structures K1 and K2, if there exists a refinement map
from K1 to K2, then K1 �S K2, and hence, K1 �L K2. Thus, we can establish
implementation relation between two modules by supplying a refinement map
from the states of the detailed module to the states of the abstract module. Ex-
istence of simulation relation between two modules, however, does not guarantee
existence of refinement maps.

Example 8.11 [Nondeterministic versus deterministic scheduling] Recall the
modules Scheduler and NonDetScheduler from Example 8.9. Given a state s

of Scheduler , let hom(s) be the state of NonDetScheduler obtained by simply
discarding the value of the variable prior . In this case, this projection map is a
refinement map, and establishes that Scheduler �S NonDetScheduler .

Example 8.12 [Refinement map vs. simulation] Consider the two observation
structures K1 and K2 shown in Figure 8.12. The relation {(s1, s2), (t1, t2), (u1, u2), (u1, u

′
2)}
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is a simulation relation, and thus, K1 �S K2. However, there is no refinement
map from K1 to K2. Observe that there is a refinement map from K2 to K1,
and K2 �S K1.

Exercise 8.18 {T4} [Completeness of refinement mappings] Let P and Q be
two reactive modules such that P �L Q. Prove that there is a monitor R for P

such that there is a refinement mapping from KP‖R to KQ.

Exercise 8.19 {P3} [Verifying refinements] Write an algorithm that given two
observation structures K1 and K2 and a mapping hom from the states of K1 to
the states of K2 verifies whether or not hom is a refinement map.

8.6 Stutter-closed Implementation

In Chapter 6, we saw how each state equivalence leads to its stutter-closed
version obtained by adding extra transitions that obliterate the distinction due
to the number of rounds for which an observation stays unchanged. In the same
manner, every state preorder leads to a stutter-closed version: two states of an
observation structure K are related according to the stutter-closed version of a
preorder �, if those two states are related according to � in the stutter-closure
of K.

Stutter closure of state preorders

Let � be a state preorder, and let K be an observation structure. For two
states s and t of K, s�

K
t, for the stutter closure � of �, if s �KS t. The

induced state preorder � is called the stutter closure of �.

Remark 8.10 [Alternative characterization of stutter closure of trace preorder]
Let A be a set of symbols. Let a0...m be a word over A. A stutter-extension of
a is a word that can be obtained from a by repeating each symbol of a finitely
many times: a word b over A is a stutter-extension of a iff there exist positive
integers i0, i1, . . . im such that b = ai0

0 ai1
1 . . . aim

m . For two states s and t of an
observation structure K, s�L t holds if for every source-s trace a there exists a

source-t trace b and a word c such that c is a stutter-extension of a and is also
a stutter-extension of b.

Stutter closure of trace equivalence is the weakest equivalence we have con-
sidered so far: it is less distinguishing than trace equivalence, and it is less
distinguishing than weak bisimilarity.

The stutter closure of the trace preorder over observation structures leads to a
way of comparing two modules, called weak implementation, denoted �L.
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Example 8.13 [Equivalence of synchronous vs.asynchronous message passing]
Recall the modules SyncMsg and AsyncMsg for synchronous and asynchronous
message passing protocols. The two modules are not trace equivalent, however,
they are equivalent according to the equivalence induced by weak implementa-
tion.

The weak-implementation relation plays an important role in reasoning about
asynchronous systems.

Remark 8.11 [Stutter-extensions and asynchronous modules] If P is an asyn-
chronous module, then its language LP is closed under stutter-extension: if a is
a trace of P then every stutter-extension of a is also a trace of P .

The weak implementation relation is compositional as long as we use only asyn-
chronous modules.

Theorem 8.11 [Compositionality of weak implementation] For two modules P

and Q, if P �L Q then (1) for variable x of P , hide x in P �L hide x in Q;

(2) for every variable renaming ρ, P [ρ]�LQ [ρ]. For asynchronous modules P ,

Q, and R, if P �L Q and R is compatible with P , then R is compatible with Q

and P‖R�L Q‖R.

Exercise 8.20 {T3} [Compositionality of weak implementation] Prove Theo-
rem 8.11. Show that the preorder �L is not compositional with respect to
parallel composition with all modules; that is, find modules P , Q, and R such
that P �L Q, but P‖R�L Q‖R does not hold.

The assume-guarantee theorem for the implementation relation holds for the
weak-implementation relation provided we consider only asynchronous modules.

Theorem 8.12 [Assume-guarantuee reasoning for weak implementation] Let
P1 and P2 be two compatible asynchronous reactive modules, and let Q1 and Q2

be two compatible asynchronous reactive modules. If P1‖Q2 �
L Q1, Q1‖P2 �

L Q2,
and every external variable of Q1‖Q2 is an observable variable of P1‖P2, then
P1‖P2 �

L Q1‖Q2.

Exercise 8.21 {T3} [Assume-guarantuee for weak implementation] Prove The-
orem 8.12.

Weak similarity

The stutter closure �S of simulation preorder is called weak simulation, and the

stutter closure ∼=S of similarity is called weak similarity.
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Figure 8.13: Relationship among state equivalences

Remark 8.12 [Weak simulation] Weak simulation (and weak similarity) can be
defined directly without considering the stutter closure operation on structures
explicitly. Let K = (Σ, σI ,→, A, 〈〈·〉〉) be an observation structure. A weak-
simulation � ⊆ Σ2 of K is a binary relation on the state space such that for all
states s and t of K, if s� t then (1) 〈〈s〉〉 = 〈〈t〉〉 and (2) if s → s′, then there is
a state t′ such that s′ � t′ and there exists a trajectory t0...m of K with t0 = t,
tm = t′, and 〈〈ti〉〉 = 〈〈t〉〉 for 0 ≤ i < m. The state t weakly-simulates the state s

if there is a weak simulation � such that s� t. Now, s�S t if t weakly-simulates
s.

We know that similarity is more distinguishing than trace equivalence, but less
distinguishing than bisimilarity. Analogously, weak similarity is more distin-
guishing than weak trace equivalence, but less distinguishing than weak bisim-
ilarity.

Exercise 8.22 {T3} [Weak similarity vs. trace equivalence] Establish that
weak similarity and trace equivalence are incomparable.

Exercise 8.23 {T4} [Weak similarity and waiting-for fragment of ∀Stl] Let
∀StlW be the fragment of ∀Stl that contains no next-time operators, that is,
its formulas are generated by the grammar

φ ::= p | φ ∨ φ | φ ∧ φ | φ∀Wφ.

Establish that weak similarity is a fully abstract semantics for this fragment.
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Chapter 9

Fair Modules

9.1 Safety versus Liveness

So far, we have considered safety requirements of reactive modules. Intuitively,
a safety requirement is a requirement that can be violated by a finite trace.
For example, the mutual-exclusion and equal-opportunity requirements can be
violated by finite traces. More generally, all Sal requirements can be violated
by finite traces. Why would we care about requirements that cannot be violated
by finite traces? Such requirements would not be violated within the next year,
nor within our lifetime, nor within the lifetime of the universe. The answer is
convenience in system and requirement description.

Let us assume, for the sake of argument, that there is no truly nondeterminis-
tic physical process. Even with this assumption, the nondeterministic update
command

update x

[] true → x′ := 0
[] true → x′ := 1

is useful for describing systems that assign 0s and 1s to x, because the non-
determinism frees us from the responsibility of being specific when x is 0, and
when x is 1. The actual law that determines the value of x in each round may
be arbitrarily complex, and yet irrelevant for our purposes of proving certain
system requirements. Similarly, it is often convenient to assert that an event
will happen, without giving detailed information on when it will happen. For
example, we may want to assert that x never stays 0, and it never stays 1, with-
out being specific on how many rounds can expire between consecutive changes
in the value of x. No finite trace can violate this assertion, yet an infinite trace

1
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can violate it by having one the value of x remain unchanged after some round.
We use the notion of fair update choices for enforcing the eventual execution of
particular guarded assignments of a nondeterministic update command:

update x weaklyfair a, b

[] true
a
→ x′ := 0

[] true
b
→ x′ := 1

The declaration weakly fair a ensures that the update choice a, which sets x

to 0, cannot be neglected forever, and the declaration weakly fair b ensures
the same for the update choice b, which sets x to 1.

Requirements that can be violated by infinite traces only are called liveness

requirements. Trajectories and traces of reactive modules are finite sequences
of states and observations, respectively. In order to specify whether a module
satisfies or violates a liveness requirement, we need to define infinite trajectories
and infinite traces, called ω-trajectories and ω-traces.

9.1.1 ω-Words and ω-Languages

Let A be a set of symbols. An ω-word a = a0a1a2 · · · over the alphabet A is
an infinite sequence of symbols ai from A. We write Aω for the set of ω-words
over A. An ω-language L over the alphabet A is a set of ω-words over A; that
is, L ⊆ Aω.

For a word b ∈ A∗ and an ω-word a, by b · a we denote the ω-word that results
from concatenating the two. The word a is a prefix of the ω-word b if there
exists an ω-word c such that b = a · c, and a is a suffix of b if there exists a word
c such that b = c · a. The set of prefixes of the ω-word a is denoted by pref (a).
For an ω-language L, pref (L) is the language (∪a ∈ L. pref (a)). For a language
L ⊆ A∗, the ω-language Lω consists of ω-words a such that a = a0 · a1 · a2 · · ·
with ai ∈ L for all i ≥ 0. In other words, the ω-words in Lω are obtained
by concatenating infinitely many words in L. Consequently, we freely use the
superscript ω in regular expressions.

An ω-word a is periodic if there is a word b such that a = b
ω
, that is, a is

obtained by concatenating infinitely many copies of the finite word b. An ω-
word a is eventually periodic if it has a periodic suffix. An eventually periodic
word is of the form a · b

ω
for two words a and b.

The ω-language L is suffix-closed if for every ω-word a in L, all suffixes of a are
also in L. The ω-language L is fusion-closed if for all symbols a, if b · a · c and

b
′
·a · c′ are in L, then so is b ·a · c′. An ω-word a is called a limit of the language

L if pref (a) ⊆ L. An ω-word a is a limit of the ω-language L if it is a limit
of pref (L). In other words, a is a limit of L if every finite prefix of a can be
extended to an ω-word in L. The ω-language L is limit-closed if it contains all
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its limits: for all ω-words a ∈ Aω, if pref (a) ⊆ pref (L), then a ∈ L; that is, if
every prefix of a can be extended to an ω-word in L, then a itself is also in L.

Example 9.1 [ω-languages] Let A = {a, b}. Consider the ω-language L1 con-
sisting of all ω-words a ∈ (a + b)ω that contain infinitely many a symbols:
L1 = (b∗a)ω. Then, pref (L1) = (a + b)∗. The language L1 is suffix-closed and
fusion-closed. However, L1 is not limit-closed: the ω-word bω is a limit of L1,
but is not in L1.

Consider the ω-language L2 consisting of all ω-words a such that ai = a for all
odd positions i: L2 = ((a + b)a)ω. The language L2 is limit-closed, but neither
suffix-closed nor fusion-closed.

The ω-language L2 contains the periodic ω-word (ba)ω. It also contains the
eventually periodic ω-word bababaω. Not all ω-words in L2 are eventually peri-
odic, for instance, the ω-word baba3ba5ba7ba9 . . ..

Consider the ω-language L3 that is the complement of the language L1 (with
respect to Aω). The ω-word a belongs to L3 iff it contains only finitely many a

symbols. Thus, L3 = (a + b)∗bω and pref (L3) = (a + b)∗. The language L3 is
suffix-closed, fusion-closed, but not limit-closed.

Remark 9.1 [Limit-closed ω-languages] A limit-closed ω-language L is com-
pletely characterized by its prefix language pref (L): L = {a | pref (a) ⊆
pref (L)}.

9.1.2 The safety-liveness distinction

Consider an ω-language L. If for every ω-word a it can be checked whether a

belongs to L by looking only at the finite prefixes of a, then the ω-language L
is called safe. If for every ω-word a it cannot be checked whether a belongs to
L by looking at any finite prefix of a, then the ω-language L is called live.

Safety, liveness, and machine closure

Let A be a set of symbols, and let L be an ω-language over the alphabet A.
The ω-language L is safe if L is limit-closed. The ω-language L is live if
pref (L) = A∗. Given a safe ω-language LS and a live ω-language LL over A,
the pair (LS ,LL) is machine-closed if pref (LS∩LL) = pref (LS). If the pair
(LS ,LL) is machine-closed and the ω-language L equals LS ∩ LL, then the
pair (LS ,LL) is said to be a machine-closed specification of L.

Remark 9.2 [Safe and live language] The ω-language Aω is the only ω-language
over the alphabet A that is both safe and live.
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If L is a safe ω-language, and a is an ω-word, then a ∈ L iff all finite prefixes of
a can be extended to ω-words in L. If L is a live ω-language, and a is a word,
then a can be extended to an ω-word in L. If (LS ,LL) is a machine-closed pair
of ω-languages, then all finite words that can be extended to ω-words in LS can
also be extended to ω-words in LS ∩ LL.

Example 9.2 [Safety, liveness, and machine closure] Let A = {a, b}. The ω-
language L1 = (b∗a)ω is not safe, but is live. On the other hand, the ω-language
L2 = ((a+ b)a)ω is safe, but not live. The pair (L2,L1) is machine-closed, since
L1∩L2 = L2. The ω-language L3 = A∗bω is live, but not safe. The pair (L2,L3)
is not machine-closed, since L2 ∩ L3 is the empty language.

Consider the language L4 = aω +bω. The language L4 is safe. The pair (L4,L1)
is not machine-closed: no prefix of bω can be extended to an ω-word in L4 ∩L1.

As we will see later, the desired set of infinite trajectories of a module will be
specified by a machine-closed pair of ω-languages. The safety component is
specified by the transition relation, and the liveness component is specified by
fairness assumptions about update choices. Machine-closure ensures that the
fairness assumptions constrain only what is allowed in the limit, and can be
ignored while verifying safety properties of the system. This aspect of machine-
closure is captured by the following proposition.

Proposition 9.1 [Safety verification] Let (LS ,LL) be a machine-closed speci-

fication of the ω-language L, and let L′ be a safe language. Then, L ⊆ L′ iff

LS ⊆ L′.

Exercise 9.1 {T2} [Safety verification] Prove Proposition 9.1.

Requiring machine-closure is not restrictive since every ω-language can be spec-
ified by a machine-closed pair:

Theorem 9.1 [Safety-liveness decomposition] Let A be a set of symbols. Every

ω-language L over the alphabet A can be specified by a machine-closed pair

(LS ,LL) consisting of a safe ω-language LS and a live ω-language LL over A.

Proof. Let LS be the limit closure of L; that is, LS contains all the limits of
L. Thus, LS is completely characterized by pref (L), and is safe. Let LL be
(Aω\LS) ∪ L; that is, LL contains all ω-words, except the limits of L not in L.
Every word is either a prefix of L, or not a prefix of LS , and hence, a prefix
of (Aω\LS). It follows that pref (LL) = A∗, and LL is live. Since L ⊆ LS ,
LS ∩ LL = L, and (Ls,LL) is machine-closed.
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9.1.3 The safety-progress hierarchy

To understand the structure of ω-languages, we consider various ways of building
ω-languages from languages over finite words.

Safety languages

Given a language L ⊆ A∗, the corresponding safety language consists of all
ω-words whose all prefixes belong to L.

Safety

For a language L ⊆ A∗ over an alphabet A, safe(L) is the ω-language
{a | ∀i ≥ 0. a0..i ∈ L}. The ω-language L ⊆ Aω is a safety language if there
is a language L ⊆ A∗ such that L = safe(L).

Remark 9.3 [Safety] If L = safe(L) then L = pref (L). This implies that both
definitions of safety coincide: L is limit-closed iff L = safe(L) for some language
L.

While specifying requirements of a reactive module, the alphabet A corresponds
to the set of observations. A safe language safe(L), then, can be used to specify
that “nothing bad ever happens” as the specification requires every possible
finite trace to be in the set L. A classical safety property is the mutual exclusion
property of resource allocation algorithms that requires that the same resource
is not allocated to two different processes simultaneously.

Example 9.3 [Safe languages] Let A = {a, b}. The ω-language L2 = (Aa)ω is
safe, and equals safe((Aa)∗+(Aa)∗A). The empty language is safe: ∅ = safe(∅).
The universal language Aω is safe: Aω = safe(A∗). The ω-language consisting
of ω-words a such that for all i ≥ 0, if i is a prime number, then ai = a, is safe.
The ω-language L1 = (b∗a)ω is not safe. The ω-language consisting of the single
ω-word aω is safe; however, its complement A∗bAω consisting of ω-words with
at least one b symbol, is not safe.

The next proposition asserts that union of two safe languages is safe, and inter-
section of two safe languages is also safe. The complement of a safe language
need not be safe, as illustrated in Example 9.3.

Proposition 9.2 [Closure for safety languages] Safety languages are closed un-

der union and intersection, but not under complementation.

Proof. Consider L1 = safe(L1) and L2 = safe(L2). An ω-word a is in L1 ∩L2,
iff a ∈ L1 and a ∈ L2, iff for all i ≥ 0, a0...i ∈ L1 and a0...i ∈ L2, iff for all
i ≥ 0, a0...i ∈ L1 ∩ L2, iff a ∈ safe(L1 ∩ L2). This establishes that L1 ∩ L2 =
safe(L1 ∩ L2), and hence, L1 ∩ L2 is safe.
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To establish closure under union, let L′
1 be the language {a | pref (a) ⊆ L1}

consisting of words all of whose prefixes are in L1. Similarly, let L′
2 = {a |

pref (a) ⊆ L2}. We prove that L1 ∪ L2 = safe(L′
1 ∪ L′

2).

Consider an ω-word a ∈ L1 ∪ L2. Without loss of generality, suppose a ∈ L1.
Then, for all i ≥ 0, a0...i ∈ L1. Hence, for all i ≥ 0, for all 0 ≤ j ≤ i, a0...j ∈ L1.
Hence, for all i ≥ 0, a0...i ∈ L′

1. Hence, a ∈ safe(L′
1 ∪ L′

2).

Consider an ω-word a ∈ safe(L′
1 ∪ L′

2). Then, for all i ≥ 0, a0...i ∈ L′
1 ∪ L′

2.
Without loss of generality, for infinitely many positions i, a0...i ∈ L′

1. This
implies for all i ≥ 0, a0...i ∈ L1 (for, if a0...j 6∈ L1 for some j, then for all i ≥ j,
a0...i 6∈ L′

1). Hence, a ∈ safe(L1). Hence, a ∈ L1 ∪ L2.

Exercise 9.2 {T2} [safe does not distribute over union] Show that safe(L1) ∪
safe(L2) is not necessarily equal to safe(L1 ∪ L2).

Guarantee languages

Given a language L ⊆ A∗, the corresponding guarantee language consists of all
ω-words whose some prefix belongs to L.

Guarantee

For a language L ⊆ A∗ over an alphabet A, guar(L) is the ω-language
{a | ∃i ≥ 0. a0..i ∈ L}. The ω-language L ⊆ Aω is a guarantee language if
there is a language L ⊆ A∗ such that L = guar(L).

Remark 9.4 [Guarantee] The ω-language L ⊆ Aω is a guarantee language iff
there is a language L ⊆ A∗ such that L = L · Aω.

While specifying requirements of a reactive module, a guarantee language guar(L)
can be used to specify that “something good eventually happens” as the speci-
fication requires the module to produce a trace in L after executing for finitely
many steps. A classical guarantee property is the termination requirement that
a program eventually produces an output.

Example 9.4 [Guarantee languages] Let A = {a, b}. The empty language is a
guarantee language: ∅ = guar(∅). The universal language Aω is also a guarantee
language: Aω = guar(A+). The ω-language A∗bAω consisting of ω-words with
at least one b symbol, is a guarantee language: A∗bAω = guar(A∗b).

The safety and guarantee languages are closely related, namely, they are duals
of each other: the complement of a safe language is a guarantee language, and
the complement of a guarantee language is a safe language.

Proposition 9.3 [Duality of safety and guarantee] The ω-language L is a

safety language iff the complementary language Aω\L is a guarantee language.
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Exercise 9.3 {T2} [Duality of safety and guarantee] Prove that L = safe(L)
iff Aω\L = guar(A+\L). Proposition 9.3 follows.

Exercise 9.4 {T2} [Safe and guarantee languages] Characterize the class of
ω-languages that are both safety and guarantee languages.

Since safe languages are closed under union and intersection, it follows that so
are guarantee languages.

Proposition 9.4 [Closure for guarantee languages] Guarantee languages are

closed under union and intersection, but not under complementation.

Remark 9.5 [Closure for guarantee languages] The closure properties of guar-
antee languages can be established directly also:

guar(L1) ∪ guar(L2) = guar(L1 ∪ L2),

and

guar(L1) ∩ guar(L2) = guar((L1 · A
∗) ∩ (L2 · A

∗)).

Exercise 9.5 {T2} [Obligation languages] Obligation languages are obtained
by boolean combinations of safety or guarantee languages. In other words, the
set of obligation languages is the least set that contains all safety languages,
and is closed under union, intersection, and complementation. Every obligation
language can be expressed in a normal form:

⋃
0 ≤ i ≤ k.safe(Li) ∩ guar (L′

i).
For example, for A = {a, b}, the ω-language a∗baω consisting of ω-words with
precisely one b symbol, is an obligation language: safe(a∗ba∗ + a∗)∩ guar(a∗b).
Show that the obligation language a∗baω is neither a safety language nor a
guarantee language.

Response languages

Given a language L ⊆ A∗, the corresponding response language consists of all
ω-words whose infinitely many prefixes belong to L.

Response

For a language L ⊆ A∗ over an alphabet A, recur(L) is the ω-language
{a | ∀j ≥ 0. ∃i ≥ j. a0..i ∈ L}. The ω-language L ⊆ Aω is a response

language if there is a language L ⊆ A∗ such that L = recur(L).

While specifying requirements of a reactive module, a response language recur(L)
is used to specify that “something good happens repeatedly” as the specification
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requires infinitely many traces to be in the set L. A classical response property
is the progress requirement for resource allocation algorithms: if some process
is requesting a resource then some process is eventually granted the resource.

Example 9.5 [Response languages] Let A = {a, b}, and let L = (a∗b)∗. Then,
recur(L) = (a∗b)ω is the corresponding response language, and consists of all
ω-words with infinitely many b symbols. Observe that recur(L) is neither a
safety language nor a guarantee language.

The next proposition asserts that union of two response languages is a response
language, and intersection of two response languages is also a response language.
However, the response languages are not closed under complementation.

Proposition 9.5 [Closure for response languages] Response languages are closed

under union and intersection, but not under complementation.

Proof. Consider L1 = recur(L1) and L2 = recur(L2). An ω-word a is in
L1 ∪L2, iff a ∈ L1 or a ∈ L2, iff for infinitely many i, a0...i ∈ L1 or for infinitely
many i, a0...i ∈ L2, iff for infinitely many i, a0...i ∈ L1∪L2, iff a ∈ recur(L1∪L2).
This establishes that L1∪L2 = recur(L1∪L2), and hence, L1∪L2 is a response
language.

For closure under intersection, consider the language L12 that contains a word
a0...m iff (1) a0...m ∈ L2, and (2) there exits i < m such that a0...i ∈ L1 and
a0...k 6∈ L2 for i < k < m. We prove that L1 ∩ L2 = recur(L12).

Consider an ω-word a ∈ recur(L12). There exists an infinite increasing sequence
of integers i0, i1 . . . such that for all j ≥ 0, a0...ij

is in L12. By definition of L12,
for all j ≥ 0, (1) a0...ij

is in L2, and (2) there exists i′j such that ij−1 ≤ i′j < ij
and a0...i′

j
is in L1. Thus, a ∈ recur(L1), and a ∈ recur(L2). Hence, a ∈ L1∩L2.

Consider an ω-word a 6∈ recur(L12). Then there exists a position i such that
for all j ≥ i, a0...j 6∈ L12. We wish to establish a 6∈ L1 ∩ L2. Assume to the
contrary. Since a ∈ recur(L1), there exists a position k ≥ i such that a0...k ∈ L1.
Let k′ be the least position such that k′ > k and a0...k′ ∈ L2 (such a position
exists since a ∈ recur(L2)). By definition of L12, it contains a0...k′ , leading to a
contradiction.

For non-closure under complement, let A = {a, b}. Let L = (a∗b)∗. The re-
sponse language recur(L) consists of all ω-words with infinitely many b symbols.
Consider the complement of recur(L), that is, the ω-language L = (a + b)∗aω

that contains ω-words with only finitely many b symbols. We prove that L is
not a response language. Suppose, to the contrary, L = recur(L′). We show
that there exists a sequence of integers i0, i1, . . . such that for all j ≥ 0, the
word ai0bai1b · · ·aij is in L′. The proof is by induction.
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The ω-word aω is in L. Hence, infinitely many prefixes of it are in L′, and hence,
there exists an integer i0 such that ai0 ∈ L′.

Assume that there exist integers i0, i1, . . . ik such that for all 0 ≤ j ≤ k, the
word ai0bai1b · · ·aij is in L′. Consider the ω-word ai0bai1b · · ·aikb aω. Since it
belongs to L, it has infinitely many prefixes in L′, and in particular, there exists
an integer ik+1 such that ai0bai1b · · ·aikbaik+1 is in L′.

Now consider ω-word ai0bai1b · · ·. It has infinitely many prefixes in L′, but it
contains infinitely many b symbols, and is not in L.

Exercise 9.6 {T3} [recur does not distribute over intersection] Show that recur(L1)∩
recur(L2) is not necessarily equal to recur(L1 ∩ L2).

Proposition 9.6 [Hierarchy of languages] Every safety language and every guar-

antee language is a response language.

Proof. To establish that every safety language is a response language, verify
that safe(L) = recur(pref (L)). To establish that every guarantee language is a
response language, verify that guar(L) = recur(L · A∗).

It follows that every obligation language is also a response language.

Exercise 9.7 {T4} [From guarantee to response] Prove that the ω-language L
is a response language iff L is the intersection of countably many guarantee
languages.

Exercise 9.8 {T3} [ω-repetition and response] Show that for every language
L ⊆ A∗, the ω-language Lω is a response language.

Persistence languages

Given a language L ⊆ A∗, the corresponding persistence language consists of
all ω-words whose all, but finitely many, prefixes belong to L.

Persistence

For a language L ⊆ A∗ over an alphabet A, persist(L) is the ω-language
{a | ∃j ≥ 0. ∀i ≥ j. a0..i ∈ L}. The ω-language L ⊆ Aω is a persistence

language if there is a language L ⊆ A∗ such that L = persist(L).

While specifying requirements of a reactive module, a persistence language
persist(L) is used to specify that “something good happens eventually, and
stays unchanged” as the specification requires all, but finitely many, traces to
be in the set L. A classical persistence property is the eventual stabilization
requirement for self-stabilizing algorithms: the system eventually attains the
stable state, and stays stable.



Fair Modules 10

Example 9.6 [Persistence languages] Let A = {a, b}, and let L = A∗a∗. Then,
persist(L) = A∗aω is the corresponding persistence language, and consists of all
ω-words with only finitely many b symbols. Observe that persist(L) is neither
a safety language nor a guarantee nor a response language, and its complement
is a response language.

The response and persistence languages are closely related, namely, they are
duals of each other: the complement of a response language is a persistence
language, and the complement of a persistence language is a response language.

Proposition 9.7 [Duality of response and persistence] The ω-language L is a

response language iff the complementary language Aω\L is a persistence lan-

guage.

Exercise 9.9 {T2} [Duality of response and persistence] Prove that L = recur(L)
iff Aω\L = persist(A∗\L). Proposition 9.7 follows.

It follows that every safety or guarantee language is a persistence language.

Exercise 9.10 {T4} [Response and persistence languages] Show that an ω-
language is both a response language and a persistence language iff it is an
obligation language. Show that the response language (a∗b)ω is not an obli-
gation language, and thus, the persistence language A∗aω is not an obligation
language.

Since response languages are closed under union and intersection, it follows that
so are persistence languages.

Proposition 9.8 [Closure for persistence languages] Persistence languages are

closed under union and intersection, but not under complementation.

Exercise 9.11 {T3} [From safety to persistence] Prove that the ω-language L
is a persistence language iff L is the union of countably many safety languages.

Reactivity languages

Reactivity languages are obtained by boolean combinations of response and
persistence languages. In other words, the set of reactivity languages is the least
set that contains all response languages, and is closed under union, intersection,
and complementation.
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Reactivity

The ω-langauge L ⊆ Aω is a 1-reactivity language if there exists a persis-
tence language L1 and a response language L2 such that L = L1 ∪L2. The
ω-langauge L ⊆ Aω is a k-reactivity language, for a natural number k, if
there exist k 1-reactivity languages L1, . . .Lk such that L = L1 ∩ · · · ∩ Lk.
The ω-langauge L ⊆ Aω is a reactivity language if it is a k-reactivity lan-
guage for some natural number k.

Remark 9.6 [Disjunctive form of reactivity] Every reactivity language L can,
alternatively, be expressed in a disjunctive normal form:

⋃
0 ≤ i ≤ k.recur(Li)∩

persist(L′
i).

A typical 1-reactivity requirement is the conditional repetition: if the symbol
a repeats infinitely often, then the symbol b also repeats infinitely often. As
we will see shortly, reactivity languages are useful in specification of fairness
requirements for reactive modules: an individual strong fairness requirement is
a 1-reactivity language.

Example 9.7 [Reactivity languages] Let A = {a, b, c}. The ω-language con-
sisting of ω-words with infinitely many b symbols or only finitely many a symbols
is a 1-reactivity language: recur((A∗b)∗) ∪ persist(A∗(b + c)∗). The ω-language
consisting of ω-words with infinitely many b symbols and only finitely many a

symbols is a 2-reactivity language: recur((A∗b)∗) ∩ persist(A∗(b + c)∗).

Exercise 9.12 {T5} [Hierarchy of reactivity languages] Show that there is a
1-reactivity language that is neither a response language nor a persistence lan-
guage. Then, show that, for every natural number k, there is a k-reactivity
language that is not a (k − 1)-reactivity language.

By definition, reactivity languages are closed under all boolean operations.

Proposition 9.9 [Closure for reactivity languages] Reactivity languages are

closed under all boolean operations.

All the ω-languages of interest to us will be reactivity languages. Let us recap the
construction of ω-languages starting from languages of words. A safety language
is the set of limits of a language over words. Safe languages are closed under
union and intersection, but complementing a safe language gives a guarantee
language. By considering intersection of infinitely (countable) many guarantee
languages, we obtain response languages. Response languages are closed under
union and intersection, but complementing a response language gives a per-
sistence language. Equivalently, persistence languages are obtained by infinite
unions of safety languages. Boolean combinations of persistence and response
languages give reactivity languages. The relationship among these classes is
illustrated in Figure 9.1.
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Safety Guarantee

Obligation

Response Persistence

Reactivity

Figure 9.1: Classes of ω-languages

Exercise 9.13 {T5} [Topological characterization] Consider a metric on ω-
words such that the distance between two ω-words shrinks exponentially with
the length of the longest common prefix. In particular, define the metric d over
the set Aω such that d(a, b) equals 0 if a = b, and 2−i otherwise, where i is the
maximum integer j such that a0...j = b0...j . (1) Prove that the safe languages
are precisely the closed sets of the resulting topology on ω-words. (2) Prove that
the live languages are precisely the dense sets. (3) Which languages correspond
to the open sets?

Exercise 9.14 {T4} [Machine closure in safety-progress hierarchy] Prove that
every C-language is the machine-closed intersection of a safe C-language and
a live C-language, where C is one of the following classes: safety; guarantee;
obligation; response; persistence; reactivity.

9.1.4 ω-Trajectories

The execution of a transition graph G for finitely many steps results in a tra-
jectory of G, which is a finite sequence of states. The execution of a transition
graph for infinitely many steps results in a ω-trajectory of G, which is an infinite
sequence of states.

ω-trajectory

Let G = (Σ, σI ,→) be a transition graph. An ω-trajectory of G is an ω-
word s = s0s1s2 . . . over the alphabet Σ of states such that for all i ≥ 0,
si → si+1. The first state s0 is the source. The ω-trajectory s is initialized

if s0 ∈ σI . The ω-language LG of the transition graph G is the set of
initialized ω-trajectories of G.

Remark 9.7 [Seriality] Let G be a serial transition graph. Then, for every state
s of G, there is a source-s trajectory of G. The ω-language LG is nonempty.
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Remark 9.8 [Safety of graph languages] The ω-language LG of the transition
graph G is safe, and equals safe(LG).

Exercise 9.15 {T3} [ω-languages of transition graphs] Prove that the ω-language
LG of a transition graph G is limit-closed and fusion-closed. Conversely, let L
be a limit-closed and fusion-closed ω-language over the alphabet A. Prove that
there exists a transition graph G with states A such that LG = L.

Example 9.8 [ω-trajectories of mutual exclusion protocol] Let us revisit the
asynchronous solution to the mutual exclusion problem (Figure 1.23). The
initialized ω-trajectories of Pete can be obtained from the reachable subgraph of
GPete (see Figure 2.4). One possible ω-trajectory Pete is the periodic trajectory

[(o0o0)(r0o0)(i0o0)]ω

in which process P1 repeatedly requests and enters its critical section, while
process P2 stays idle. Another possible ω-trajectory is the periodic trajectory

[(o0o0)(r0o0)(i0o0)(o0r1)(o0i1)(r1o1)(i1o1)(o1r0)(o1i0)(r0o0)(i0o0)]ω

in which both processes alternately request and enter thir critical sections. Since
all the atoms of Pete are lazy, each state has a transition to itself. Consequently,
(o0o0)ω is also a ω-trajectory of Pete. Finally, consider the eventually periodic
ω-trajectory (o0o0)(r0o0)ω in which process P1 requests the critical section, but
never enters the critical section.

9.2 Fairness

Fair modules are obtained from modules by adding two types of fairness require-
ments.

9.2.1 Weak Fairness

A nondeterministic update command may offer, for a given state, several choices
for updating the variables. For instance, consider the module AsyncCount :

module AsyncCount is

interface Count :
�

atom controls count

init

[] true → count ′ := 0
update

[] true
α
→ count ′ := count + 1

[] true
β
→ count ′ := count
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The counter is initially zero. The update action of the module has two guarded
assignments. The guarded assignment α is enabled in every update round, and
increments the counter. The guarded assignment β is also enabled in every
update round, and leaves the counter unchanged. During the execution of the
module, the choice between executing α and executing β is nondeterministic.
Thus, for every natural number i, the counter may stay unchanged for the first
i update rounds, and get updated to 1 in the round (i+1). This is a convenient
abstraction of the assumption that the rate at which the counter is incremented
is unknown (or irrelevant). However, consider the limit ω-trajectory s in which
the counter never gets updated: for every i ≥ 0, si[count ] = 0. The ω-trajectory
s is unfair to the update choice α; the choice α is enabled in every round, and
never executed.

Definition of fair modules provides a way to rule out the ω-trajectory s = 0ω.
This is achieved by requiring that the resolution of the update choices be weakly

fair to the choice α. The module FairCount is a fair version of the asynchronous
counter AsyncCount :

module FairCount is

interface Count :
�

atom controls count

init

[] true → count ′ := 0
update weaklyfair α

[] true
α
→ count ′ := count + 1

[] true
β
→ count ′ := count

The annotation weaklyfair α requires that the guarded command α is executed
infinitely often. The ω-trajectories that satisfy this requirement will be called
fair trajectories. The ω-trajectory s = 0ω is not a fair trajectory of FairCount .
The ω-trajectory t = 012345ω in which the counter is not incremented beyond
5, is also not a fair trajectory of FairCount . On the other hand, consider the
ω-trajectory u = 0123 · · · in which the counter is incremented in every round.
The update choice β is always enabled, but never executed, and yet, the ω-
trajectory u is a fair trajectory of FairCount . This is because FairCount makes
no assumption about fairness towards the choice β.

In general, an update choice α for an atom U of a module P is a subset of the
update action updateU . Consider an ω-trajectory s of P . For i ≥ 1, consider the
update round i in which the state si is determined from the state si−1. Recall
that the atom U is executed only after the updated values of the variables in
awaitXU have been determined. The update choice α is said to be available in
round i, if the state si−1, together with the values of the awaited variables in
state si, satisfies the guard pγ of some guarded assignment γ in α. The update
choice is said to be executed in round i, if the values of the controlled variables
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in state si are determined by executing some available guarded assignment γ in
α. The ω-trajectory s is weakly fair with respect to α, if there is no round i

such that the choice α is available in every round after i, and is not executed in
any round after i. Intuitively, a weakly fair update choice cannot be available
forever without being executed.

9.2.2 Strong Fairness

Weak fairness requires that a choice that is continuously available is eventually
executed. Suppose a choice is available in all even rounds, and unavailable in all
odd rounds, and is never executed. This scenario meets the requirement of weak
fairness, but may not be a reasonable scenario in certain cases. For example,
consider the module LossyBuffer :

module LossyBuffer is

interface y : �
external x : �
passive atom controls y reads x, y awaits x

update

[] x?
α
→ y?

[] x?
β
→

In every round in which the external event x is present, both the update choices
α and β are available. If the choice α is executed, then the interface event y is
issued, and if the choice β is executed, then the module stutters without issuing
the event y. The module LossyBuffer can be viewed as an abstraction of a lossy
buffer, that either outputs the input event, or loses the input event. Consider
the periodic ω-trajectory

s = [(y = 0, x = 0)(y = 0, x = 1)]ω;

in every update round the external event x is present, but the module always
executes the update choice β. Requiring weak fairness for the choice α will rule
out the ω-trajectory s. Now consider the periodic ω-trajectory

t = [(y = 0, x = 0)(y = 0, x = 0)(y = 0, x = 1)(y = 0, x = 1)]ω;

the external event x is present only in alternate rounds, and the module always
executes the update choice β. Note that the ω-trajectory t is weakly fair with
respect to the choice α, because the choice α is unavailable in infinitely many
rounds. If we wish to model the assumption that only some, but not all, mes-
sages are lost, then we would like to rule out the ω-trajectory t also. This can be
achieved by requiring that the resolution of the update choices be strongly fair

to the choice α: if α is available in infinitely many round, then α is executed



Fair Modules 16

in infinitely many rounds. The module FairBuffer is a fair version of the buffer
LossyBuffer :

module FairBuffer is

interface y : �
external x : �
passive atom controls y reads x, y awaits x

update stronglyfair α

[] x?
α
→ y?

[] x?
β
→

The annotation stronglyfair α classifies an ω-trajectory to be fair if either
the update choice α is executed infinitely often, or is available only finitely
often. Consequently, the ω-trajectory t is not a fair trajectory of FairBuffer .
Intuitively, a strongly fair update choice cannot be available infinitely often
without being executed.

A fair module may declare, for each atom, some of its choices to be weakly fair,
and some to be strongly fair. An update choice of a reactive module P is a
subset of the update command updateU , for some atom U ∈ atomsP .

Fair module

A fair module P consists of (1) a reactive module P , (2) [weak fairness] a
finite set WeakF P of update choices of P , and (3) [strong fairness] a finite
set StrongFP of update choices of P .

Since one of the components of a fair module is a reactive module, we freely
attribute the properties of a reactive module to a fair module. For instance,
every fair module P = (P,WeakF P ,StrongFP ) defines the transition graph
GP = GP . Different classifications of modules, such as finite versus infinite,
closed versus open, apply to fair modules also. For instance, an asynchronous
fair module is a fair module all of whose interface variables are controlled by
lazy atoms.

9.3 Fair Graphs

We define the semantics of a fair module by associating a fair graph with it.
In Chapter 7, we defined automata by augmenting observation structures with
accepting regions. The accepting region of an automaton classifies trajecto-
ries into accepting and non-accepting, and consequently, automata can define
languages that are not necessarily prefix-closed. Now we wish to augment a
transition graph with an accepting condition that will classify its ω-trajectories
into accepting and non-accepting. By considering only accepting ω-trajectories,
we will be able to define live ω-languages.
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Figure 9.2: Fair graph

Let G = (Σ, σI ,→) be a transition graph. An action of G is a subset of the
transition relation →. For an action α of G, we write s

α
→ t if the transition (s, t)

belongs to α. A fairness constraint f for a transition graph G is a pair (α, β)
of actions of G, and a fairness assumption F for G is a finite set of fairness
constraints for G.

Fair graph

A fair graph G consists of (1) a transition graph G, and (2) [fairness] a
fairness assumption F for G.

Intuitively, a fairness constraint (α, β) requires that if the action α repeats
infinitely often then the action β also repeats infinitely often. Fair trajectories
of a fair graph are those ω-trajectories that meet the requirements stipulated
by all the fairness constraints.

Fair trajectory

Let G be a transition graph. An ω-trajectory s of of G is α-fair , for an
action α of G, if si

α
→ si+1 for infinitely many natural numbers i. The ω-

trajectory s is f -fair, for a fairness constraint f = (α, β) of G, if either
s is not α-fair, or s is β-fair. The ω-trajectory s is F -fair, for a fairness
assumption F of G, if s is f -fair for all fairness constraints f in F . A fair

trajectory of a fair graph G = (G, F ) is an F -fair ω-trajectory of G. The
fair language LG of a fair graph G is the set of initialized fair trajectories of
G.

Remark 9.9 [Fair graphs] Let G = (G, F ) be a fair graph. The ω-language LG

is a subset of the safe language LG. Furthermore, if the fairness assumption F

is an empty set then every ω-trajectory is fair, and LG equals LG.

Fair languages are not necessarily safe languages, and different fairness assump-
tions can be used to identify different subsets of the ω-trajectories of a transition
graph.

Example 9.9 [Fair graph] Consider the two-state transition graph shown in
Figure 9.2. Both states are initial. The actions α and β contain two transitions
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each, as shown. An ω-trajectory t is α-fair if it contains infinitely many visits
to the state s, and t is β-fair if it contains infinitely many visits to the state t.
Consider the fairness constraint f1 = (→, β). The ω-trajectory t is f1-fair if it
contains infinitely many visits to the state t. Thus, the fair language of the fair
graph (G, {f1}) is (s∗t)ω (note that this is a response language).

Different fairness constraints can define the same language. For instance, for
the fairness constraint f2 = (α, β), the ω-trajectory t is f2-fair iff it is f1-fair.
Thus, the fair languages of (G, {f1}) and (G, {f2}) coincide.

Let f3 = (→, α). Then, an ω-trajectory is f3-fair if it contains infinitely many
visits to the state s. The fair language of the fair graph (G, {f1, f3}) contains
ω-trajectories that have infinitely many visits to both the states, and equals
(s∗t)ω ∩ (t∗s)ω (note that this is a reactivity language).

Consider the fairness constraint f4 = (α, ∅). Observe that there is no ∅-fair
trajectory. Thus, an ω-trajectory t is f4-fair iff it is not α-fair; that is, if it
contains only finitely many visits to the state s. The fair language of the fair
graph (G, {f4}) is (s + t)∗tω (note that this is a persistence language).

The above example shows that fair languages of fair graphs can be reactivity
languages. Can fair graphs define more complex languages? The answer is no.

Proposition 9.10 [Languages of fair graphs] If G is a fair graph, then the

language LG is a reactivity language.

Proof. Let G be a transition graph. For an action α, let Lα be the set of
initialized trajectories s0...m of G such that sm−1

α
→ sm. Now, an initialized ω-

trajectory s of G is α-fair iff s belongs to the response language recur(Lα). For
a fairness constraint f = (α, β), an initialized ω-trajectory s of G is f -fair iff it
is either α-unfair or β-fair; that is, iff it belongs to (Σω\recur(Lα))∪ recur(Lβ).
Thus, the set of f -fair ω-trajectories is a union of a persistence and a response
language, that is, a 1-reactivity language.

Consider the fair graph G = (G, F ). Verify that LG equals

⋂
(α, β) ∈ F. (Σω\recur(Lα)) ∪ recur(Lβ).

It follows that if F has k fairness constraints then LG is a k-reactivity language.

Types of fairness constraints

We consider three types of fairness constraints.
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Weak-fair constraint

Let G = (Σ, σI ,→) be a transition graph. A fairness constraint (α, β) for
G is a weak-fair constraint if α equals →. A weak-fair graph is a fair graph
(G, F ) such that F contains only weak-fair constraints.

While a fairness constraint specifies infinite repetition of an action conditioned
upon the repetition of another, a weak-fair constraint specifies unconditional
repetition of an action.

Remark 9.10 [Weak-fair constraints] For a weak-fair constraint f = (→, β),
f -fair trajectories are precisely the β-fair trajectories. For a weak-fair graph
G = (G, F ), LG is the response language

⋂
(→, β) ∈ F. recur(Lβ).

Sometimes we consider actions that are defined by regions. For a region σ of
a transition graph G, the action ασ = {(s, t) | s ∈ σ and s → t} contains
all transitions with source in σ. Consequently, we will use regions in place of
actions when there is no cause for confusion. For instance, an ω-trajectory s is
σ-fair, for a region σ, if it is ασ-fair, or equivalently, if si ∈ σ for infinitely many
i. For two regions σ and τ , the fairness constraint (ασ , ατ ) will be denoted,
more concisely, as (σ, τ).

Machine closure

A fair graph G is said to be machine-closed if every trajectory of G can be ex-
tended to a fair trajectory. Machine closure ensures that a stepwise simulator for
fair graphs cannot paint itself into a corner from which the fairness constraints
cannot be satisfied. Machine closure for fair graphs is the analog of seriality for
transition graphs.

Machine-closed fair graph

A fair graph G is machine-closed if for every state s of G there exists a
source-s fair trajectory of G.

Remark 9.11 [Machine-closed fair graph] If G = (G, F ) is machine-closed then
pref (LG) = pref (LG) = LG.

Remark 9.12 [Machine-closure] Recall the definition of machine-closure from
Section 9.1.2: for a safe language LS and a live language LL, the pair (LS ,LL) is
machine-closed if every prefix of LS can be extended to an ω-word in LS ∩ LL.
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The above definition of machine-closure has the same spirit. To be precise,
consider a fair graph (G, F ). Let LS be the set of all ω-trajectories of G (this
is a superset of LG that contains only initialized ω-trajectories). Verify that
the set LS is safe. Let LL be the set of all ω-words s over the alphabet ΣG

that are f -fair for every fairness constraint f ∈ F . This set includes all fair
trajectories of G, along with ω-words that are not necessarily ω-trajectories of
G. Alternatively, the set LL is the fair language of a fair graph with state-space
ΣG, initial region ΣG, transition relation ΣG ×ΣG, and fairness assumption F .
Verify that the set LL is live. Now, the pair (LS ,LL) is machine-closed, that is,
pref (LS ∩ LL) = pref (LS) iff the fair graph G is machine-closed, that is, every
state is the source of some fair trajectory.

Exercise 9.16 {T3} [Intersection and machine-closure] Suppose f1 and f2 are
two fairness constraints for a transition graph G. Prove or disprove the claim
that (G, {f1, f2}) is machine-closed iff both the fair graphs (G, {f1}) and (G, {f2})
are machine-closed.

Local fairness

A local fairness constraint is a type of fairness constraint that, intuitively, stip-
ulates a fair resolution of choice, and nothing more.

Local fairness

Let G = (Σ, σI ,→) be a transition graph. A fairness constraint (α, β) is
local if for all s

α
→ t, there is a state u ∈ Σ such that s

β
→u. A locally-fair

graph is a fair graph (G, F ) such that (1) G is serial, and (2) F contains
only local fairness constraints.

For a locally-fair constraint f = (α, β), whenever the action α is available, so is
β. Consequently, in every α-fair ω-trajectorry, the choice to execute β is also
available infinitely often, and thus, an f -unfair trajectory can be produced only
by continuously ignoring the choice to execute β.

Figure 9.3 shows an interpreter for producing fair trajectories of a locally-fair
graph. The input to the interpreter is a locally-fair graph G, and a state s of
G. The algorithm uses two subroutines. The subroutine Available(α, s) takes
an action α and a state s as input, and returns Yes if there is a state u such
that the pair (s, u) belongs to the action α. The subroutine Execute(α, s) takes
an action α and a state s such that Available(α, s) holds, and returns a state u

such that the pair (s, u) belongs to the action α.

The algorithm maintains a queue of the fairness constraints. The queue is
initialized to contain all the fairness constraints of G in some arbitrary order.
Let us say that a fairness constraint f = (α, β) is enabled in a state if the action
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Algorithm 9.1 [Execution of locally fair graph]

Input: a locally fair graph G = (Σ, σI ,→, F ) and a state s;
Output: a source-s fair trajectory s of G.

Queue: a queue of fairness constraints

Initialization

s0 := s;
Queue contains all the fairness constraints in F in some order.

Update rounds.
for i := 0 to ∞ do

Let Queue be f1f2 . . . fn with fk = (αk, βk) for 1 ≤ k ≤ n;
if Available(αk, si) for some 1 ≤ k ≤ n then

j := min{k | Available(αk , si)};
si+1 := Execute(βj , si);
Queue := f1 . . . fj−1fj+1 . . . fnfj

else si+1 := Execute(→, si)
fi

od.

Figure 9.3: An interpreter for locally fair graphs
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α is available. At every step, the algorithm checks if there is some fairness
constraint that is enabled at the current state. If no such constraint exists, an
arbitrary successor of the current state is chosen to be the next state (since G

is serial, each state has at least one successor). If there are one or more enabled
fairness constraints, then the algorithm chooses the constraint f = (α, β) such
that f is enabled, and all the constraints that appear before f in the queue are
disabled. Since f is local, availability of α implies availability of β, and the
algorithm extends the trajectory by choosing some β-successor of the current
state. Finally, the constraint f is moved from its current position in the queue to
the end of the queue so that the other constraints get priorities in the subsequent
rounds.

Proposition 9.11 [Execution of locally fair graph] Given a locally-fair graph

G and a state s, Algorithm 9.1 produces a source-s fair trajectory of G.

Proof. Let s be the ω-trajectory produced by the algorithm of Figure 9.3 in
the limit. For every fairness constraint f = (α, β) of G, and for every natural
number i, let Unfair (f, i) be true iff (si, si+1) 6∈ β; let StrongUnfair(f, i) be true
iff Unfair (f, i) and Available(α, si); and let Rank(f, i) be the position 1 ≤ k ≤ n

of the constraint f in the queue at the beginning of round i. Observe that if
Unfair (f, i) then, in round i, the constraint f is not moved to the end of the
queue, and thus, its rank cannot increase.

(1) For all f ∈ F and i ≥ 0, if Unfair (f, i) then
Rank(f, i + 1) ≤ Rank(f, i).

If a fairness constraint f is enabled in round i, then it is executed unless some
other constraint f ′ with Rank(f ′, i) < Rank(f, i) is also enabled, in which case
the constraint with least rank among the enabled constraints is executed, and
moved to the end of the queue, which decreases the rank of f . This leads to:

(2) For all f ∈ F and i ≥ 0, if StrongUnfair(f, i) then
Rank(f, i + 1) < Rank(f, i).

We wish to establish that s is a fair trajectory of G. Consider f = (α, β). We
prove that if s is not β-fair then it is not α-fair. Suppose s is not β-fair. Then,
there exists i ≥ 0 such that for all j ≥ i, Unfair (f, j) holds. By (1), for all j ≥ i,
Rank(f, j + 1) ≤ Rank(f, j). Since for all j ≥ 0, Rank(f, j) ≥ 1, there can be
only finitely many rounds j such that Rank(f, j + 1) < Rank(f, j). By (2),
there can be only finitely many rounds j such that StrongUnfair(f, j). Hence,
the action α is available only in finitely many rounds, and s is α-unfair.

The execution strategy to produce fair trajectories also implies the following
proposition.

Proposition 9.12 [Machine closure of local fairness] Every locally-fair graph

is machine-closed.
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Exercise 9.17 {T3} [Execution of weak-locally-fair graphs] Let G be a locally-
fair weak-fair graph. Show that, to produce a fair trajectory of G, it suffices to
maintain a modulo-|F | counter, instead of the queue used by the interpreter of
Figure 9.3.

9.4 Fair Modules

We associate a fair graph with every fair module by mapping the weak and
strong fairness constraints of the module to the fairness constraints for the
associated transition graph. Towards this goal, we associate with every update
choice a of P , two actions of the graph GP . The availability action of an update
choice a contains a transition s →P t if the choice a is enabled according to the
values of the read variables in s and the awaited variables in t. The execution

action of an update choice a contains a transition s →P t if the values of the
controlled variables in t are assigned by executing the choice a.

Actions of an update choice

Let P be a module, and a be an update choice of an atom U of P . The
availability action avail a contains a transition s →P t of P iff there is a
guarded assignment γ in a such that

(readXU [s] ∪ awaitX ′
U [t′]) ∈ [[pγ ]].

The execution action execa contains a transition s →P t of P iff there is a
guarded assignment γ in a such that

(readXU [s] ∪ awaitX ′
U [t′], ctrX ′

U [t′]) ∈ [[a]].

Remark 9.13 [Actions of an update choice] For every update choice a of a
module P , the action execa is a subset of the action avail a.

Example 9.10 [Actions of an update choice] Consider the update choice α of
the module AsyncCount . The availability action avail α contains all transitions
of AsyncCount . The execution action execα contains the transition s → t if
count [t] = count [s] + 1.

Consider the update choice α of the module LossyBuffer . The availability action
availα contains the transition s → t iff x[t] 6= x[s]. The execution action execα

contains the transition s → t iff x[t] 6= x[s] and y[t] 6= y[s].

Weak fairness for a choice a requires that the choice cannot be available forever
without being executed, and strong fairness for a choice a requires that if the
choice is available infinitely often then it is executed infinitely often.
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Fairness constraints of an update choice

Let P be a module, and a be an update choice of P . The weak-fairness

constraint fW
a of a is the pair (→P , execa ∪ (→P \availa)). The strong-

fairness constraint fS
a of a is the pair (availa, execa).

An ω-trajectory s of P is weakly fair to the update choice a precisely when it
is fW

a -fair: for infinitely many rounds i ≥ 0, (si, si+1) ∈ execa or (si, si+1) 6∈
availa. An ω-trajectory s of P is strongly fair to the update choice a precisely
when it is fS

a -fair: if for infinitely many rounds i ≥ 0, (si, si+1) ∈ availa, then
for infinitely many rounds j ≥ 0, (sj , sj+1) ∈ execa.

Remark 9.14 [Strong fairness implies weak fairness] Let P be a module, a be
an update choice of P , and s be an ω-trajectory of P . If s is fS

a -fair then s is
fW

a -fair. The converse does not hold.

Remark 9.15 [Local fairness] Let P be a module, and a be an update choice
of P . Both the fairness constraints fS

a and fW
a are local fairness constraints on

the transition graph GP .

The fair graph of a reactive module is obtained by adding all the fairness con-
straints corresponding to the declaration of weak and strong fair update choices.

Fair graph of a fair module

For a fair module P = (P,WeakF P ,StrongFP ), the fairness assumption FP

is the set

{fW
a | a ∈ WeakFP } ∪ {fS

a | a ∈ StrongFP }

of fairness constraints of GP . The fair module P defines the fair graph
GP = (GP , FP).

A fair trajectory of a fair module P is a fair trajectory of the fair graph GP .

Remark 9.16 [Fair trajectories of a fair module] The set of fair trajectories of
a fair module P is a reactivity language. Furthermore, if the module employs
only weak fairness, that is, for every atom U , the set StrongFU is empty, then
the graph GP is weak-fair, and the set of fair trajectories of a fair module is a
response language.

9.4.1 Operations on Fair Modules

As in case of reactive modules, we combine fair modules using three operations
—parallel composition, variable renaming, and variable hiding.
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Parallel Composition

The composition operation combines two fair modules into a single fair module
whose behavior captures the interaction between the two component modules.
Again, composition is the key operation that allows modular descriptions of
complex systems. Two fair modules can be composed only if their modules are
compatible. Observe that for compatible reactive modules P and Q, an update
choice of P is also an update choice of P‖Q. Consequently, to compose two
compatible fair modules, we simply compose their reactive modules, and take
union of the respective weak and strong fairness constraints.

Fair module composition

If P = (P,WeakF P ,StrongFP ) and Q = (Q,WeakFQ,StrongFQ) are com-
patible fair modules, then the parallel composition P‖Q is the fair module
(P‖Q,WeakFP ∪ WeakF Q,StrongFP ∪ StrongFQ).

The composition operator over fair modules has all the properties listed for the
composition operator over modules in Chapter 1. For instance, the composition
operator is commutative and associative.

Variable Renaming

As in modules, we can rename variables to avoid name-conflicts among private
variables, and to create multiple copies. To apply a variable renaming to a fair
module, we simply apply the renaming to each of its components.

Renaming of fair module

Given a fair module P = (P,WeakF P ,StrongFP ), and a renaming ρ for the
set XP of module variables, the renamed module P [ρ] is the fair module
with the module P [ρ], the set {a[ρ] | a ∈ WeakF P } of weakly-fair update
choices, and the set {a[ρ] | a ∈ StrongFP } of strongly-fair update choices.

Variable Hiding

The hiding of interface variables of a fair module allows abstractions at different
levels of details. Hiding of an interface variable of fair modules changes only its
variable declaration.

Hiding of fair module

Given a fair module P = (P,WeakF P ,StrongFP ), and a typed variable x, by
hiding x in P we obtain the fair module (hide x in P,WeakF P ,StrongFP ),
denoted hide x in P .
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9.4.2 Machine Closure and Receptiveness

We know that the transition graph of a module is serial. This means that a step-
wise interpreter of a module never gets stuck, and can always extend a trajectory
by adding one more step. The analog of seriality in the case of ω-trajectories is
machine-closure. It says that every finite trajectory can be extended to a fair
trajectory. In particular, there is a strategy to systematically resolve the choices
so that the limit ω-trajectory is a fair one. Proposition 9.12 asserts that every
locally-fair graph is machine-closed. Since the fairness constraints of an update
choice are local, it follows that the fair graph of a fair module is locally-fair, and
hence, machine-closed.

Proposition 9.13 [Machine closure of fair modules] The fair graph GP of a

fair module P is locally-fair, and hence, machine-closed.

Exercise 9.18 {P2} [Fair module execution] Recall the interpreter for reactive
modules from Chapter 2. Using the strategy outlined in Figure 9.3 for executing
locally-fair graphs, write an interpreter for fair modules. The input to the
interpreter should be a fair module P , and it should produce a fair trajectory
of P , if we let it execute forever.

For reactive modules, the property of seriality is preserved under parallel com-
position. It means that every trajectory of a module can be extended by adding
another state no matter how the environment updates the external variables.
The same applies to machine-closure also. Every finite trajectory of a fair mod-
ule can be extended to a fair trajectory, no matter how the environment updates
the external variables in each round. Thus, the ability to produce a fair trajec-
tory does not demand cooperation from the environment. This fact is captured
by the next proposition.

Proposition 9.14 [Receptiveness] Let P be a fair module, s be a state of P,

and Q be a module that is compatible with P. There exists an ω-trajectory t of

the composition P‖Q such that XP [t0] = s and XP [t] is a fair trajectory of P.

Proof. By definition of composition, there is a state t of P‖Q such that XP [t] =
s. By Proposition 9.13, the fair module P‖Q is machine-closed, and hence, has
a source-t fair trajectory.

The ability to produce a fair trajectory in the face of an adversarial environment
is known as receptiveness. Consider a module P and a set L of ω-trajectories
of P . Consider a two-player game in which the protagonist attempts to produce
an ω-trajectory in L, while the adversary tries to prevent this. Initially, the ad-
versary chooses a trajectory s0..m of P . In each round, the adversary chooses the
new external state, and then the protagonist extends the current trajectory by
choosing the new controlled state. The choices of the protagonist are constrained
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by the transition relation of the module P . The protagonist wins the game if the
resulting infinite ω-trajectory belongs to L. The ω-languageL is receptive for the
module P if the protagonist has a winning strategy. Now, Proposition 9.14 can
reformulated to assert that for every fair module P = (P,WeakF P ,StrongFP )
the set LP of fair trajectories is receptive for P .

9.5 Examples of Fair Modules

We revisit examples of modules, and add appropriate fairness constraints.

9.5.1 Shared-variables Protocols

Our canonical example of a shared-variable protocol is mutual exclusion. So far
we have considered only the mutual exclusion requirement of such protocols,
namely, that the two processes are not inside their critical sections simultane-
ously. When we consider ω-trajectories, the parallel composition of the two
processes should also meet the deadlock-freedom requirement: if some process
requests an entry to its critical section, then some process eventually enters
its critical section. Consider a protocol that never allows any process to enter
the critical section; that is, none of its guarded assignments assign the value
inC to pc. Such a protocol satisfies the mutual exclusion requirement, but
not the deadlock-freedom requirement, and hence, is not an acceptable solu-
tion to the problem. An even stronger requirement for the problem is the
starvation-freedom property that: if a process requests an entry to its critical
section, then the same process eventually enters its critical section. Thus, while
deadlock-freedom admits solutions that always prefer one process over the other,
starvation-freedom requires a fair resolution of the choice.

Both deadlock-freedom and starvation-freedom are liveness properties, and can-
not be violated by trajectories. Requiring all ω-trajectories to satisfy such re-
quirements is too strong, as it would rule out asynchronous solutions like Pete.
For instance, the eventually periodic ω-trajectory (o0o0)(r0o0)ω of Pete does
not meet the deadlock-freedom requirement. Instead, we will add reasonable
fairness assumptions, and require that all the fair trajectories satisfy the live-
ness properties.

Our formulation of the problem allows each process to remain outside the critical
section for an arbitrary number of rounds, and to remain inside the critical
section for an arbitrary number of rounds. Consequently, the update of pc

from outC to reqC is nondeterministic. We do not add any fairness on the
resolution of this choice: an ω-trajectory in which some process never requests
an entry, is an acceptable scanario. The update of pc from inC to outC is also
nondeterministic. To model the assumption that a process may not stay inside
its critical section forever, we add weak fairness for the choice to exit the critical
section.
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Synchronous mutual exclusion

For the synchronous solution SyncMutex the update from reqC to inC is de-
terministic. Consequently, the only fairness assumption concerns the choice
to leave the critical section. The resulting fair modules are shown in Fig-
ure 9.4. In Chapter 9, we will present an algorithm to verify that the module
FairSyncMutex satisfies both the liveness requirements of deadlock-freedom and
starvation-freedom.

Asynchronous mutual exclusion

The asynchronous solution Pete uses nondeterminism to model the assumption
that the two processes execute at independent speeds. We would like to add
fairness to rule out executions in which stuttering is always preferred over an-
other available choice. For instance, if a choice to update pc from reqC to inC

is available, then it should eventually be executed. The resulting fair modules
are shown in Figure 9.5.

9.5.2 Circuits

Synchronous circuits

Recall the definitions of the logic gates SyncAnd and SyncNot from which all
combinational circuits can be built. Both these modules are deterministic: in
every round, once the values of the awaited external variables are determined,
precisely one guarded assignment is available. Consequently, there is no need to
add fairness constraints in the definitions of the logic gates. Our basic unit for
memory cell is the module SyncLatch (Figure 1.17) with two boolean inputs set

and reset . In every round, if the updated values of both the inputs set and reset

are 1, then the private state of the latch is updated nondeterministically. In this
case, both the guarded assignments are available, and the next state may be
either 0 or 1. Nondeterminism, in this context, models the fact that the behavior
of the latch is unknown, and we expect the latch to be used in an environment
that never sets both set and reset simultaneously to 1. Consequently, we do not
add any fairness constraint to SyncLatch.

Asynchronous circuits

Recall the modeling of asynchronous logic gates from Section 1.3.4. An asyn-
chronous logic gate is unstable when its output is not according the desired
function of the inputs. The gate can stay unstable for an arbitrary number
of rounds, and then, it becomes stable by changing its output. Now, we can
use fairness to ensure that the gate does not stay unstable forever. The asyn-
chronous And gate with fairness is shown in Figure 9.6. It requires weak fairness
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module Q1 is

interface pc1 : {outC , reqC , inC}
external pc2 : {outC , reqC , inC }
atom

controls pc1

reads pc1, pc2

init

[] true → pc′1 := outC

update weaklyfair α1

[] pc1 = outC →
[] pc1 = outC → pc′1 := reqC

[] pc1 = reqC ∧ pc2 6= inC → pc′1 := inC

[] pc1 = inC →
[] pc1 = inC

α1→ pc′1 := outC

module Q2 is

interface pc2 : {outC , reqC , inC}
external pc1 : {outC , reqC , inC }
atom

controls pc2

reads pc1, pc2

init

[] true → pc′2 := outC

update weaklyfair α2

[] pc2 = outC →
[] pc2 = outC → pc′2 := reqC

[] pc2 = reqC ∧ pc1 = outC → pc′2 := inC

[] pc2 = inC →
[] pc2 = inC

α2→ pc′2 := outC

FairSyncMutex = Q1 ‖Q2

Figure 9.4: Fair synchronous mutual exclusion
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module P1 is

interface pc1 : {outC , reqC , inC}; x1 : �
external pc2 : {outC , reqC , inC }; x2 : �
lazy atom

controls pc1, x1

reads pc1, pc2, x1, x2

init

[] true → pc′1 := outC

update weaklyfair α1, β1

[] pc1 = outC → pc′1 := reqC ; x′
1 := x2

[] pc1 = reqC ∧ (pc2 = outC ∨ x1 6= x2)
β1
→ pc′1 := inC

[] pc1 = inC
α1→ pc′1 := outC

module P2 is

interface pc2 : {outC , reqC , inC}; x2 : �
external pc1 : {outC , reqC , inC }; x1 : �
lazy atom

controls pc2, x2

reads pc1, pc2, x1, x2

init

[] true → pc′2 := outC

update weaklyfair α2, β2

[] pc2 = outC → pc′2 := reqC ; x′
2 := ¬x1

[] pc2 = reqC ∧ (pc1 = outC ∨ x1 = x2)
β2
→ pc′2 := inC

[] pc2 = inC
α2→ pc′2 := outC

FairPete = hide x1, x2 in P1 ‖P2

Figure 9.5: Fair asynchronous mutual exclusion
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module FairAnd is

private pc : {stable, unstable, hazard}
interface out : �
external in1, in2 : �
lazy atom controls out reads pc, out

update weaklyfair α

[] pc = unstable
α
→ out ′ := ¬out

[] pc = hazard → out ′ := ¬out

passive atom controls pc reads pc, out awaits in ′
1, in

′
2, out ′

init

[] And(in ′
1, in

′
2, out ′) → pc′ := stable

[] ¬And(in ′
1, in

′
2, out ′) → pc′ := unstable

update

[] pc = stable ∧ ¬And(in ′
1, in

′
2, out ′) → pc ′ := unstable

[] pc = unstable ∧ And(in ′
1, in

′
2, out ′) ∧ out ′ 6= out → pc ′ := stable

[] pc = unstable ∧ And(in ′
1, in

′
2, out) ∧ out ′ = out → pc ′ := hazard

Figure 9.6: Fair asynchronous And gate

for the update choice to toggle the output when the state variable pc equals the
unstable value.

9.5.3 Message-passing Protocols

Our canonical example of a distributed system of agents communicating via
messages consists of a sender and a receiver.

Synchronous communication

Let us first consider the module SyncSender of Figure 1.25. The messages
are produced by the asynchronous atom Producer, which requires an unknown
number of rounds to produce a message. The atom Producer has two choices,
one to produce a message and another to stutter, available in every round. We
do not impose any fairness on the resolution of this choice, because a scenario in
which no message is ever produced is acceptable. On the other hand, consider
the atom Consumer of the receiver that consumes the messages. Again, the
atom Consumer is asynchronous, and requires an unknown number of rounds
to consume a message. We would like to use fairness to ensure that once the
message is ready to be consumed (pc = consume), the event doneC is eventually
issued and the message is copied into msgC . Weak fairness suffices for this
purpose. Similarly, we use fairness to rule out a scenario in which the receiver
is ready for reception of the message (pc = receive), but delays issuing the
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module FairReceiver is

private pc : {receive, consume}; msgR : � ; doneC : �
interface ready : � ; msgC : �
external transmit : � ; msgS : �
passive atom

controls pc,msgR

reads pc, transmit , doneC

awaits transmit ′,msg ′
S , done ′

C

init

[] true → pc′ := receive

update

[] pc = receive ∧ transmit? → msg ′
R := msg ′

S ; pc′ := consume

[] pc = consume ∧ doneC? → pc′ := receive

lazy atom controls ready

update weaklyfair α

[] pc = receive
α
→ ready !

lazy atom Consumer

controls doneC ,msgC

reads pc, doneC ,msgR

update weaklyfair β

[] pc = consume
β
→ doneC !; msg ′

C := msgR

FairSyncMsg = hide ready , transmit ,msgS in SyncSender ‖FairReceiver

Figure 9.7: Fair synchronous message passing

event ready forever. The receiver with these fairness assumptions is shown in
Figure 9.7. The fair module FairSyncMsg is obtained by composing the fair
receiver with SyncSender and hiding the variables used for communication.

Exercise 9.19 {P2} [Fair asynchronous sender] What are the appropriate fair-
ness constraints for the module AsyncSender of Figure 1.30. Define the fair
version of the modules AsyncSender and AsyncMsg .

Exercise 9.20 {P3} [Fair timed message passing] The protocol for timed mes-
sage passing (Figure 1.32) refers to the external clock AsyncClock for mea-
suring time. Define a fair version of the clock AsyncClock so that every ω-
trajectory contains infinitely many tick events. Define a fair version of the
module TimedMsg by adding appropriate fairness assumptions to TimedSender

and TimedReceiver .
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module FairStick is

private pc : {free, left , right}
interface grantL, grantR : �
external reqL, releaseL, reqR, releaseR : �
passive atom

controls pc, grantL, grantR

reads pc, reqL, grantL, releaseL, reqR, grantR, releaseR

awaits req ′
L, release ′

L, req ′
R, release ′

R

init

[] true → pc′ := free

update stronglyfair αL, αR

[] pc = free ∧ reqL?
αL→ grantL!; pc ′ := left

[] pc = free ∧ reqR?
αR→ grantR!; pc′ := right

[] pc = left ∧ releaseL? → pc′ := free

[] pc = right ∧ releaseR? → pc′ := free

Figure 9.8: A fair chopstick for the dining philosophers

Dining philosophers

Recall the problem of dining philosophers from Exercise 1.13, and consider the
module Stick . When both the philosophers on the two sides of a chopstick re-
quest the chopstick simultaneously, it is granted to either one of them nondeter-
ministically. To model the assumption that if some philosopher requests a par-
ticular chopstick repeatedly, it is eventually granted, we can use strong fairness.
Such a fair chopstick is shown in Figure 9.8. Observe that even if the philosopher
reissues the request in every round until the chopstick is granted, the choice to
grant the request is not always available (due to the conjunct pc = free in the
guard). Consequently, the weaker assumption that some philosopher requests
a particular chopstick continuously, it is eventually granted, is not captured by
requiring weak fairness for the choices αL and αR.

Exercise 9.21 {P3} [Fair dining philosophers] Consider your definitions of the
modules that describe philosophers, together with guards, in Exercise 1.13. Re-
place the chopstick by the fair chopstick of Figure 9.8. Add fairness assumptions
to each philosopher to ensure that once the philosopher has both the chopsticks,
(s)he will eventually release both of them. Define the fair module FairDine4

consisting of four copies of fair chopsticks and fair philosophers. Does your so-
lution satisfy starvation-freedom, that is, is there fair trajectory of FairDine4

in which some philosopher, after some round, waits forever?
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Chapter 10

Response Verification

10.1 Response Requirements

10.1.1 The fair emptiness problem

The basic problem in the analysis of transition graphs is to determine whether
some state in a target region is reachable. The corresponding basic problem in
the analysis of fair graphs is to determine whether a fair graph has an initialized
fair trajectory.

Fair emptiness problem

An instance of the fair-emptiness problem is a fair graph G. The answer to
the fair-emptiness problem G is Yes if the ω-language LG is nonempty, and
No otherwise.

Remark 10.1 [Fair emptiness for machine-closed graphs] If G is a machine-
closed fair graph then the answer to the fair-emptiness problem G is Yes.

1
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Figure 10.1: Fair Cycles

The fair cycle problem

To establish that the ω-language of a fair graph is empty, we need to find an
initialized fair trajectory. Our algorithms will search for initialized fair trajec-
tories of a special form, namely, the eventually periodic ones. This is because
eventually periodic trajectories can be represented in a finite manner using cy-
cles.

A cycle of the transition graph G is a trajectory s0..m such that sm = s0.
Fairness of a cycle with respect to an action, fairness constraint, and a fairness
assumption is defined by considering all the actions involved in the cycle.

Fair cycle

Let G be a transition graph. The cycle s0..m of G is α-fair, for an action α

of G, if si
α
→si+1 for some 0 ≤ i < m. The cycle s0..m is f -fair for a fairness

constraint f = (α, β) of G, if it is either β-fair or not α-fair. The cycle
s0..m is F -fair, for a fairness assumption F of G, if it is f -fair for all fairness
constraints f in F .

A fair cycle of the fair graph (G, F ) is a F -fair cycle of G.

Remark 10.2 [Fair trajectory of a fair cycle] If s0...m is a fair cycle of the fair
graph G, then the periodic ω-trajectory (s0...m−1)

ω is a fair trajectory of G.

Example 10.1 [Fair cycles] Consider the fair graph of Figure 10.1 with F =
{(α1, β1), (α2, β2)}. The cycle s0s1s3s4s2s0 is not F -fair. Similarly, the cycle
s1s3s4s2s1 is not F -fair. On the other hand, the cycle s2s3s4s2 is F -fair.

To solve the fair-emptiness problem, we look for fair cycles that are reachable.
The cycle s0..m of a transition graph G is reachable if the state s0 is reachable,
or equivalently, each si, for 0 ≤ i ≤ m, belongs to the reachable region σR of G.
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Fair cycle problem

An instance of the fair-cycle problem is a fair graph G. The answer to the
fair-cycle problem is Yes if there exists a reachable fair cycle of G, and
No otherwise. A witness for the fair-cycle problem G consists of (1) an
initialized trajectory s0...m of G, and (2) a source-sm fair cycle t0...k of G.

Consider a fair graph G. Suppose the answer to fair-cycle problem is Yes, and
let (s0...m, t0...k) be a witness to the fair-cycle problem. Then, the eventually
periodic ω-trajectory s0...m−1(t0...k−1)

ω is an initialized fair trajectory of G, and
thus, the answer to the fair-emptiness problem G is Yes. Conversely, existence
of an initialized fair trajectory guarantees the existence of a reachable fair cycle,
provided that the graph is finite.

Proposition 10.1 [Fair cycle vs. fair trajectory] Let G be a finite fair graph,

and let s be a state of G. Then, there exists a source-s fair cycle of G iff there

exists a source-s fair trajectory of G.

Exercise 10.1 {T2} [Fair cycle vs. fair trajectory] (1) Prove Proposition 10.1.
(2) Show that Proposition 10.1 does not hold for infinite fair graphs.

Corollary 10.1 [Fair emptiness vs. fair cycle problems] For a finite fair graph

G, the answer to the fair-emptiness problem G coincides with the answer to the

fair-cycle problem G.

10.1.2 The recurrence verification problem

The basic problem in the analysis of modules is invariant verification which asks
whether a given predicate is an invariant of the module. The basic problem in
the analysis of fair modules is recurrence verification.

Recurrent

Let P be a fair module, and let p be an observation predicate for P . The
predicate p is a recurrent of P if every fair ω-trajectory of P is p-fair

In other words, given fair module P with fairness assumption F , the observation
predicate p is a recurrent of P iff every fair trajectory of P is guaranteed to
contain infinitely many p-states: for every F -fair ω-trajectory s, for infinitely
many positions i, the state si satisfies the observation predicate p.

Recurrence-verification problem

An instance (P , p) of the recurrence-verification problem consists of (1) a
fair module P and (2) an observation predicate p for P . The answer to the
recurrence-verification problem is Yes if p is a recurrent of P , and otherwise
No.
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Example 10.2 [Starvation freedom of mutual exclusion] Let us revisit the mu-
tual exclusion problem from Chapter 1. A liveness requirement for the mutual
exclusion algorithms is the starvation freedom property which asserts that if
a process requests the critical section, then that process eventually enters the
critical section. Requiring starvation freedom rules out solutions that always
prefer one process over the other. Starvation freedom for process i corresponds
to checking whether the predicate pci 6= reqC is recurrent. Verify that the
answers to both the recurrence-verification problems (SyncMutex , pc1 6= reqC )
and (FairPete , pc2 6= reqC ) are Yes.

Exercise 10.2 {P2} [Starvation freedom for railroad controller] Recall the rail-
road example from Chapter 2. Show that the requirement that a train does not
wait at the signal forever can be formulated as a recurrence-verification problem.
Does RailroadSystem satisfy the requirement?

From recurrence verification to fair emptiness

The answer to the recurrence-verification problem (P , p) is No when there is
a fair trajectory of P that is not [[p]]-fair. Observe that an ω-trajectory is not
σ-fair, for a region σ, iff it is (σ, ∅)-fair. Consequently, to solve recurrence veri-
fication problem (P , p) we consider the fair graph GP , add the region-constraint
([[p]], ∅), and check whether the resulting fair graph has an initialized fair tra-
jectory. For an instance (P , p) of the recurrence-verification problem, the fair
graph (GP , F ∪ {([[p]], ∅)} is denoted GP,p.

Proposition 10.2 [Recurrence-verification to fair emptiness] The answer to

the recurrence-verification problem (P , p) is Yes iff the answer to the fair empti-

ness problem GP,p is No.

As discussed earlier, to solve a fair emptiness problem, we solve the correspond-
ing fair cycle problem. Thus, to solve the recurrence-verification problem (P , p),
we solve the fair-cycle problem GP,p If the answer to fair cycle problem is Yes,
the answer to the recurrence-verification problem is No; if the answer to the
fair-cycle problem is Yes, and the module is finite, then the answer to the
recurrence-verification problem is Yes.

When the answer to the fair-cycle problem GP,p is Yes, the corresponding wit-
ness can be reported as an error trajectory for the recurrence-verification prob-
lem. It consists of an initialized trajectory s0...m of P , and a source-sm fair
cycle t0...k of P such that ti does not satisfy p for all 0 ≤ i ≤ k. The fair cycle
t0...k corresponds to a loop in which all fairness requirements of P are satisfied,
but the predicate p never holds. Thus, it corresponds to a “bad” cycle in the
execution. The initialized trajectory s0...m is an evidence that the bad cycle is
reachable. Together, they provide useful information for debugging.
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Exercise 10.3 {T3} [Eventual Invariants] Let P be a fair module, and let p

be an observation predicate for P . The observation predicate is an eventual

invariant of P if for every fair trajectory s of P , for some i ≥ 0, si |= p for all
j ≥ i. Thus, p is an eventual invariant of P if every fair trajectory of P has a
suffix all of whose states satisfy p. The eventual-invariant verification problem
is to check, given a fair module P and an observation predicate p for P , whether
or not p is an eventual invariant of P .

Show that the eventual-invariant verification problem (P , p) can be reduced to
fair emptiness problem.

10.1.3 The response verification problem

An observation predicate p is a recurrent of a fair module P if every fair trajec-
tory contains infinitely many p-states. A more general and common requirement
is the response requirement that stipulates that every request be followed by an
eventual response.

Response

Let P be a fair module, and let p and q be two observation predicates of P .
The predicate q is said to be a response to the predicate p in P , denoted
p ;P q, if for every fair trajectory s of P , for all i ≥ 0, if si |= p then for
some j ≥ i, si |= q.

Intuitively, if p denotes a request, and q denotes the fulfillment of the request,
then “q is a response to p” corresponds to “every request is eventually fulfilled.”
In particular, every fair trajectory that contains infinitely many p-states must
contain infinitely many q-states.

Remark 10.3 [Transitivity of response] Let P = (P, F ) be a fair module, and
let p, q, and r be observation predicates of P . (1) If p ;P q then p ;P q. (2)
If p → q is an invariant of P (i.e., for every reachable state s of P , if s satisfies
p, then s satisfies q) then p ;P q. (3) If p ;P q and q ;P r, then p ;P r.

Response verification

An instance (P , p, q) of the response-verification problem consists of (1) a
fair module P , (2) [request predicate] an observation predicate p for P , and
(3) [response predicate] an observation predicate q for P . The answer to the
response-verification problem (P , p, q) is Yes if p ;P q, and otherwise No.

Remark 10.4 [Invariant verification as response verification] Let P be a mod-
ule, and let p be an observation predicate of P . The predicate p is an invariant
of the module P iff ¬p ;P false . Thus, the invariant verification problem (P, p)
reduces to the response verification problem (P,¬p, false).
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Remark 10.5 [Recurrence verification as response verification] Let P be a fair
module, and let p be an observation predicate of P . The predicate p is a
recurrent of P iff true ;P p. Thus, the recurrence-verification problem (P, p)
reduces to the response verification problem (P, true , p).

Example 10.3 [Mutual exclusion] Let us revisit the mutual exclusion problem.
The observation predicate

preqC = (pc1 = reqC ) ∨ (pc2 = reqC )

characterizes the states in which some process is requesting the critical section.
The observation predicate

pinC = (pc1 = inC ) ∨ (pc2 = inC )

characterizes the states in which some process is inside the critical section.
Checking absence of deadlocks corresponds to checking whether pinC is a re-
sponse to preqC . Verify that the answer to the response verification problem
(SyncMutex , preqC , pinC ) is Yes. The answer to the response verification prob-
lem (Pete , preqC , pinC ) is No (why?). However, along every fair trajectory of
FairPete a state satisfying preqC is eventually followed by a state satisfying pinC ,
and thus, the answer to the response verification problem (FairPete , preqC , pinC )
is Yes. Observe that requiring pinC to be a response to preqC is a weaker re-
quirement than requiring pc1 6= reqC to be recurrent (why?).

Example 10.4 [Fair synchronous communication] Consider the fair module
FairSyncMsg obtained by composing the fair receiver with SyncSender and
hiding the variables used for communication (see Section 9.5). A response re-
quirement for the module FairSyncMsg stipulates that every message produced
by the sender is eventually consumed by the receiver. If v is a value of the type

�
, then we can use msgP = v as the request predicate, and msgC = v as the

response predicate. Verify that the answer to the response verification problem
(FairSyncMsg ,msgP = v,msgC = v) is Yes.

Exercise 10.4 {P2} [Dining philosophers] Recall the fair version of the din-
ing philosophers problem from Chapter 9. Formulate the starvation freedom
requirement for an individual philosopher as a response verification problem.

From response-verification to recurrence-verification

Response-verification problem can be reduced to a recurrence-verification prob-
lem by adding monitors. Consider the response-verification problem (P , p, q).
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Consider the reactive module ResponseMonitor :

module ResponseMonitor is

external p, q

private alert : �
atom controls alert reads p, q

init

[] true → alert ′ := 0
update

[] alert = 0 ∧ p ∧ ¬q → alert ′ := 1
[] alert = 1 ∧ q → alert ′ := 0

The monitor ResponseMonitor observes the behavior of the module P and up-
dates its private state alert accordingly. In the description of ResponseMon-

itor , the declaration external p, q stands for external x1, x2, . . . xk, where
x1, x2, . . . xk are the variables appearing in the predicates p and q. The value of
the private variable alert is initially 0. When a state that satisfies the request
predicate p, but not the response predicate q, is encountered, the variable alert

is updated to 1. Thus, alert = 1 indicates a situation in which the request has
been issued, but the subsequent response has not been issued. Once a state
satisfying the response predicate is encountered, the variable alert is reset to 0.
The following proposition asserts that q is a response to p in P iff alert = 0 is
a recurrent of the compound module P ‖ResponseMonitor .

Proposition 10.3 [From response-verification to recurrence-verification] The

answer to the response-verification problem (P , p, q) coincides with the answer

to the recurrence-verification problem (P ‖ResponseMonitor , alert = 0).

Proof. Consider a ω-trajectory s of P . Since the update of the state of Re-

sponseMonitor is deterministic, and from the definition of the parallel compo-
sition, there exists a unique ω-trajectory t of P ‖ResponseMonitor such that
si = XP [ti] for all i ≥ 0. Furthermore, s is a fair-trajectory of P iff t is a fair
trajectory of P ‖ResponseMonitor .

From the initialization and update commands for the variable alert , for all i ≥ 0,
alert [ti] = 1 iff there exists j < i such that sj |= p and sk 6|= q for i ≤ k < j.
Consequently, every p-state is followed by an q-state along s (i.e. for all i ≥ 0,
if si |= p then there some j ≥ i, sj |= q) iff for infinitely many indices i ≥ 0,
alert [ti] = 0. Consequently, q is a response to p in P iff every fair trajectory of
P ‖ResponseMonitor is (alert = 0)-fair.

Exercise 10.5 {T2} [Response-verification for action predicates] In our formu-
lation of the response-verification problem, the request and the response predi-
cates define regions. Formulate a variant of the problem in which the request and
the response predicates for a module P are predicates over obsXP ∪obsX ′

P , and
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Figure 10.2: Strongly connected components

define actions of P . Show that this variant of the response-verification problem
can be reduced to a recurrence-verification problem by adding an appropriate
monitor.

10.2 Enumerative Search

In this section, we present a solution to the fair cycle problem based on classical
enumerative graph-search algorithms. A naive way to solve the fair-cycle prob-
lem (G, F ) would be to find all reachable cycles in the graph G, and check if
any of them is F -fair. This is not efficient, since the number of cycles in a graph
can be exponential in the number of its states. A more reasonable approach is
to consider cycles of a special form, namely, the strongly connected components
of the graph.

10.2.1 Strongly connected regions

Two states of a transition graph are strongly connected if there is a cycle that
contains both of them. A strongly connected component is a maximal set of
states that are strongly connected to one another.

Strongly connected component

Let G be a transition graph. Two states s and t of G are strongly connected,
written s ∼=scc t, iff s ∈ post∗(t) and t ∈ post∗(s). A region σ of G is strongly

connected if s ∼=scc t for all states s and t in σ. A region σ of G is a strongly

connected component if (1) σ is strongly connected, and (2) [maximality] no
strongly connected region of G is a strict superset of σ.

Remark 10.6 [Strongly connected components] The relation ∼=scc is an equiv-
alence relation on the state space of G. A strongly connected component is an
equivalence class of ∼=scc.
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Example 10.5 [Strongly connected components] For the transition graph of
Figure 10.1, there is a single strongly connected component σ that contains all
the states. Consider the transition graph of Figure 10.2. It has three strongly
connected components: σ0 = {s0, s1, s3}, σ1 = {s2, s4}, and σ2 = {s5}.

Figure 10.3 shows an algorithm to compute the partition ∼=scc in time linear in
the number of states and transitions. The algorithm involves two depth first
searches. The first search involves the function DepthFirstSearch. For every
reachable state s, there is precisely one invocation of DepthFirstSearch with
input s. Let us order states in σR according to the termination times of the cor-
responding invocations of DepthFirstSearch: with each state s ∈ σR, associate
a number 1 ≤ dones ≤ |σR| such that if DepthFirstSearch(s) terminates before
DepthFirstSearch(t) then dones < donet. Verify that at the end of the first
search, the stack E contains all reachable states ordered in reverse according to
the numbering done .

For every state s, the forefather of s, denoted forefather s, is the state t ∈
post∗(s) such that for all u ∈ post∗(s), doneu ≤ donet. Thus, forefather of
a state s is the state for which DepthFirstSearch terminates last among all
the states reachable from s. States belonging to the same strongly connected
component share the forefather:

Lemma 10.1 [Forefather and strongly connected component] For two states s

and t in σR, s ∼=scc t iff forefather s = forefather t.

Exercise 10.6 {T3} [Forefather and strongly connected component] Prove Lemma 10.1.

Now consider the state s with the highest value of dones. Clearly, s is its
own forefather, and furthermore, if s ∈ post∗(t), then forefather t = s. By
Lemma 10.1, the strongly connected component containing s contains precisely
those states from which s is reachable, that is, states in pre∗(s). The second
depth first search begins by invoking DFS2 (s) since s is on top of the stack, and
searches the graph to compute pre∗(s). When DFS2 (s) terminates, the region
τ equals pre∗(s), and is the first strongly connected component. The remaining
strongly connected components are computed in the same fashion.

Theorem 10.1 [Strongly connected components] Let G be a finite transition

graph. Algorithm 10.1 correctly computes the strongly connected components of

the reachable region of G.

Example 10.6 [Computation of strongly connected components] Figure 10.4
illustrates a possible execution of Algorithm 10.1 on the transition graph of
Figure 10.2. The value of done and forefather is listed along with each state.
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Algorithm 10.1 [Strongly connected components]

Input: a finite transition graph G = (Σ, σI ,→).
Output: the partition πscc of the reachable region σR of G into

strongly connected components.

input G: enumgraph

local σ, τ : enumreg; E: stack of state; s: state; π: partition

begin

σ := EmptySet ;
π := EmptySet ;
E := EmptyStack ;
foreach s in InitQueue(G) do

if not IsMember(s, σ) then DepthFirstSearch(s) fi

od;
σ := EmptySet ;
while not EmptyStack(E) do

s := Top(E);
E := Pop(E);
if not IsMember(s, σ) then

τ := EmptySet ;
DFS2 (s);
π := Insert(τ, π)
fi

od;
return π

end.

function DepthFirstSearch

input s: state;
local t: state;
begin

σ := Insert(s, σ);
foreach t in PostQueue(s, G) do

if not IsMember(t, σ) then DepthFirstSearch(t) fi

od;
E := Push(s, E)
end.

function DFS2

input s: state;
local t: state;
begin

σ := Insert(s, σ);
τ := Insert(s, τ);
foreach t in PreQueue(s, G) do

if not IsMember(t, σ) then DFS2 (t) fi

od;
end.

Figure 10.3: Computing strongly connected components
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Figure 10.4: Computation of strongly connected components

The undotted edges correspond to the edges that lead to exploration of states for
the first time. At the end of the first depth-first search, s0 is on top of the stack E

with dones0
= forefather s0

. The first strongly connected component equals σ0 =
pre∗(s0) = {s0, s1, s3}. Once DFS2 (s0) terminates, the value of σ equals σ0, and
the state s5 is on top of the stack with dones5

= forefather s5
. Consequently, the

second strongly connected component equals σ2 = pre∗(s5)\σ0 = {s5}. Once
DFS2 (s5) terminates, the value of σ equals σ0 ∪ σ2, and the state s4 is on
top of the stack with dones4

= forefather s4
. Consequently, the third strongly

connected component equals σ1 = pre∗(s4)\(σ0 ∪ σ2) = {s2, s4}.

Given an enumerative representation of the transition graph G, Algorithm 10.1
can be implemented so that it requires time O(n + m), where n is the number
of states in G and m is the number of transitions in G. For this purpose,
in the second depth first search, the computation of PreQueue needs to be
efficient. Given an adjacency list representation of a transition graph that gives,
for every state s, a list of states in post(s), one can construct, in linear time, a
representation that gives, for every state s, a list of states in pre(s).

The optimization techniques discussed in Section 2.3.4 can be applied to improve
the performance of Algorithm 10.1. In particular, we can use an on-the-fly
representation of a graph.

Exercise 10.7 {P3} [Computing predecessor region] Consider the on-the-fly
representation of the transition graph GP of a propositional module P . Write
an algorithm for computing the operation PreQueue for the on-the-fly represen-
tation. What is the running time of your algorithm?

Exercise 10.8 {T3} [Tarjan’s algorithm] Algorithm 10.1 uses two separate depth
first searches to compute strongly connected components. An alternative strat-
egy is to explicitly compute the forefather of every state. Then, the strongly
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connected components can be computed in the first search itself. During the
call DepthFirstSearch(s), once all the successors of s are explored, the forefather
of s can be computed from the forefathers of its successors. The set τ is used
to store the current strongly connected component, and the set π is used to
store all the strongly connected components computed so far. Once forefather s

is determined, s is added to τ . If s is its own forefather, then we can conclude
that τ is a strongly connected component, add it to π, and reinitialize τ to
the empty region. Write an algorithm that implements this strategy. Unlike
Algorithm 10.1, this strategy does not require implementation of the operation
PreQueue, but it needs to store forefathers explicitly. In an on-the-fly imple-
mentation, this strategy would require O(n log n) memory (that gets accessed
randomly) as opposed to O(n) memory required by Algorithm 10.1.

10.2.2 Fair components

For a region σ of a transition graph G, a σ-cycle is a cycle s0..m of G such
that si ∈ σ for each 0 ≤ i ≤ m. A strongly connected region σ is F -fair for
the fairness assumption F if there exists a F -fair σ-cycle. Since every strongly
connected region is a subset of a strongly connected component, if σ is a F -fair
strongly connected region, then the strongly connected component that contains
σ is also F -fair.

Proposition 10.4 [Fair components] A fair graph (G, F ) has a reachable fair

cycle iff some strongly connected component of the reachable subgraph is F -fair.

Thus, to solve the fair cycle problem, it suffices to compute the strongly con-
nected components of the reachable subgraph, and check if one of them is F -fair.
For a single fairness constraint f = (α, β), the strongly connected component
σ is f -fair precisely when either one of the following two conditions holds: (1)
(s, t) ∈ β for two states s and t in σ, or (2) there is a σ-cycle s0..m such that
(si, si+1) 6∈ α for all 0 ≤ i < m. Each of these conditions may be tested us-
ing a depth-first search of the region σ. For a fairness assumption with several
constraints, checking the fairness of a strongly connected component is trickier.

Exercise 10.9 {T3} [Fair regions] Let (G, F ) be a finite fair graph, and σ be a
strongly connected component of G. Prove or disprove the claim: σ is F -fair iff
σ is f -fair for each fairness constraint f ∈ F . Is the claim true when F is local?

Consider a strongly connected component σ of G. If σ is β-fair for every (α, β)
in F then σ is F -fair. Let f = (α, β) be a fairness constraint in F . If there are
no two states s and t in σ such that s

β
→ t, then σ cannot contain a β-fair cycle.

Consequently, for a σ-cycle to be F -fair, it needs to be α-unfair. This implies
that to search for F -fair σ-cycles, we can delete all the transitions in α. After
this transformation we no longer need to consider the constraint f . However,
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Algorithm 10.2 [Fair strongly connected components]

function FSCC

Input: a finite transition graph G = (Σ, σI ,→), and a fairness as-
sumption F for G.

Output: Yes if there is a F -fair strongly connected component of
G, and No otherwise.

foreach σ ∈ SCC (G) do

→′ := {(s, t) | s → t and s, t ∈ σ};
F ′ := ∅;
if →′ 6= ∅ then

foreach (α, β) ∈ F do

if →′ ∩β 6= ∅
then F ′ := Insert((α, β), F ′)
else →′ :=→′ \α
fi

od;
if F ′ = F

then return Yes

else if FSCC (σ, σ,→′, F ′) = Yes then return Yes fi

fi

od;
return No.

Figure 10.5: Computing fair strongly connected components

following this transformation, σ may no longer be strongly connected, hence,
we need to compute strongly connected components of σ again. Algorithm 10.5
presents a recursive scheme that implements this strategy.

The fair components are computed by the recursive function FSCC . It uses the
subroutine SCC that, given an input transition graph, returns the list of its
strongly connected components. The function SCC can be implemented using,
for instance, Algorithm 10.1.

Proposition 10.5 [Fair components] Let G be a transition graph with finitely

many reachable states, and let F be a fairness assumption for G. Algorithm 10.2

computes the F -fair strongly connected components of G.

Example 10.7 [Computation of fair components] Consider the transition graph
of Figure 10.1. The fairness assumption F contains two fairness constraints
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Figure 10.6: Computation of fair components

(α1, β1) and (α2, β2). The original graph contains a single strongly-connected
component σ. Since σ does not contain any transition in β2, all the transitions in
α2 are deleted along with the fairness constraint (α2, β2). Consequently, FSCC

calls itself recursively on the graph shown in Figure 10.6 with a single fairness
constraint (α1, β1). Observe that this graph is no longer strongly connected, and
has two strongly connected components σ1 = {s0, s1}, and σ2 = {s2, s3, s4}.

The component σ1 does not contain any transition in β1. So the algorithm
deletes the α1-transition from s0 to s1. A recursive call would split σ1 into two
singleton components {s0} and {s1}, and since both of these do not contain any
transitions, FSCC ({s0, s1}, {s0, s1}, {(s1, s0)}, ∅) returns No.

The component σ2 contains a transition in β1, and hence, is fair.

Exercise 10.10 {P3} [Fair cycle computation] Write an algorithm to solve the
fair-cycle problem. The input to the algorithm is a finite fair graph G, and if
the answer to the fair-cycle problem G is Yes, it should return a witness.

Observe that in Algorithm 10.2, every time FSCC calls itself recursively, at
least one fairness constraint is removed. Consequently, the depth of recursion is
bounded by the number of fairness constraints in the original fairness assump-
tion.

One possible way to implement Algorithm 10.2 is to employ an enumerative
representation of the transition graph, and to represent each action of each
fairness constraint as a list of pairs of states.

Theorem 10.2 [Enumerative fair components] Let G be a finite transition

graph with n states and m transitions, and let F be a fairness assumption with `

constraints. Algorithm 10.2 computes the F -fair strongly connected components

of G in time O((n + m) · `2).
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As in case of invariant verification, instead of computing the transition graph
of a module a priori, one can use an on-the-fly representation. Each fairness
constraint of a fair module is represented by its update choice and its type
(i.e. weak versus strong). The request and the response regions are represented
by the corresponding predicates. The computation within the function FSCC

involves deletion of transitions. Instead of performing this deletion explicitly, it
suffices to remember which actions have been deleted, and pass this information
to SCC .

10.3 Recurrence Verification for Weak Fairness

Consider the recurrence verification problem (P , p) where the module P has only
weak-fairness constraints. Then, the graph GP,p has weak-fairness constraints
with an additional constraint ([[p]], ∅). In this case, the fair-cycle problem can
solved more efficiently without explicitly computing the strongly-connected com-
ponents.

10.3.1 Single Büchi constraint

A weak-fairness constraint is of the form (→, α). When the action α is specified
by a region, then the weak-fairness constraint is called Büchi constraint. Thus,
a Büchi constraint for a transition graph G is specified by a region σT of G, and
an ω-trajectory s is fair if it is σT -fair (i.e. si ∈ σT for infinitely many i ≥ 0).

Let us consider the special case of the fair-cycle problem (G, F ) when the fair-
ness assumption F contains a single Büchi constraint specified by the region
σT . The fair-cycle problem is, thus, to decide if there exists a reachable cycle
that contains some state in σT . One solution is to first compute the reach-
able strongly connected components of G, and then check if the region σT has
nonempty intersection with some strongly connected component. However, in
this special case, there is no need to explicitly compute the strongly connected
components. The algorithm of Figure 10.7 presents an improved solution.

The algorithms involves two nested searches, a primary search performed by the
function DepthFirstSearch and a secondary (or nested) search performed by the
function NDFS . The states encountered during the primary search are stored in
the set σ, while the states visited during the secondary search are stored in the
set τ . As in a standard depth first search, for every reachable state s of G, the
function DepthFirstSearch is invoked at most once with input state s. Once the
primary search originating at s terminates, if the state s belongs to the target
region σT , then a secondary search is initiated by calling NDFS with input s.
The objective of this secondary search is to find a cycle starting at the state s.
When NDFS (s) is invoked, the stack E contains an initialized trajectory leading
to state s. Thus, if the secondary search visits a state belonging to the stack,
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then it concludes that there is a cycle that contains s. This establishes that
whenever the algorithm returns the answer Yes the graph contains a reachable
cycle containing a state in σT .

Let us again order the states according the termination times of the primary
search: with each state s ∈ σR, associate a number 1 ≤ dones ≤ |σR| such
that if DepthFirstSearch(s) terminates before DepthFirstSearch(t) then done s <

donet. Suppose the graph G contains a reachable cycle containing some state in
the target region σT . Let s0, . . . sk be the ordering of states in σT ∩σR according
to the numbering done . Let si be the first state in this ordering that belongs
to a cycle, and let υ = ∪0 ≤ j < i. post∗(sj). Verify that si does not belong
to υ (otherwise, there is a cycle containing some sj for j < i). In fact, the
cycle that contains si is disjoint from υ. When the primary search from state
si is over, the set τ containing the states visited by the secondary search so far
equals υ. Consequently, NDFS will be invoked with input si, and will find a
cycle containing si.

Proposition 10.6 [Nested search for single Büchi] Let G be a transition graph

with finitely many reachable states, and let σT be a region of G. Then Algo-

rithm 10.3 solves the fair cycle problem (G, {(Σ, σT )}).

For complexity analysis of Algorithm 10.3, for a reachable state s, both the
routines DepthFirstSearch and NDFS are invoked at most once with input s.
Using a standard enumerative representation, the algorithm can be implemented
with linear running time.

Theorem 10.3 [Fair-cycle for single Büchi] Let G be a finite transition graph,

and let σT be a region of G. Given the input {G}e and {σ}e, Algorithm 10.3

solves the fair-cycle problem (G, {(Σ, σT )}) in O(n + m) time and Θ(n + m)
space, where n is the number of states and m is the number of transitions of G.

Observe that, unlike the solution to the fair cycle problem from the previous
section, Algorithm 10.3 does not involve computation of PreQueue, and may
terminate even before visiting all the reachable states of the graph.

Exercise 10.11 {T3} [Witness reporting] Given an input graph G and a region
σT , suppose Algorithm 10.3 terminates with answer Yes. Let s0...m be the
contents of the stack E, in reverse order, upon termination of the algorithm.
Show that s0...m is an initialized trajectory of G, and si ∈ post(sm) for some
0 ≤ i ≤ m. Modify Algorithm 10.3 so that it returns either the answer No or a
witness to the fair-cycle problem.

Exercise 10.12 {P3} [Nested DFS for a single weak-fairness constraint] Algo-
rithm 10.3 solves the fair-cycle problem for a single Büchi constraint specified
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Algorithm 10.3 [Nested Depth-first Search for Single Büchi]

Input: a finitely branching transition graph G, and a finite region
σT of G.

Output: the answer to the fair-cycle problem (G, {(Σ, σT )})

input G: enumgraph; σT : enumreg;
local σ, τ : enumreg; E: stack of state; s: state

begin

σ := EmptySet ; τ := EmptySet ; E := EmptyStack ;
foreach s in InitQueue(G) do

if not IsMember(s, σ) then

if DepthFirstSearch(s) then return Yes fi;
fi;

od;
return No

end.

function DepthFirstSearch: �
input s: state;
local t: state;
begin

E := Push(s, E); σ := Insert(s, σ);
foreach t in PostQueue(s, G) do

if not IsMember(t, σ) then

if DepthFirstSearch(t) then return true fi;
fi;
od;

if IsMember (s, σT ) and not IsMember (s, τ) then

if NDFS (s) then return true fi

fi;
E := Pop(E);
return false

end.

function NDFS : �
input s: state;
local t: state;
begin

τ := Insert(s, τ);
foreach t in PostQueue(s, G) do

if IsMember (t, E) then return true fi;
if not IsMember(t, τ) then

if NDFS (t) then return true fi;
fi;

od;
return false

end.

Figure 10.7: Nested search for a fair cycle with a single Büchi constraint
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by a region. Modify the algorithm to solve the fair-cycle problem for a single
weak-fairness constraint. That is, write an algorithm that takes as input, a
transition graph G and an action α of G, returns the answer to the fair-cycle
problem (G, {(→, α)}).

10.3.2 Multiple weak-fairness constraints

Now, let us consider the fair-cycle problem (G, F ) when F is a weak-fairness
assumption. It is possible to translate this problem to a fair-cycle problem for
a single weak-fairness constraint by augmenting the states of G with a counter
variable. Let α1, . . . α` be an enumeration of the actions in F . The counter is
initially 1, and is incremented from i to i+1, treating `+1 = 1, when transition
in αi is encountered. Visiting all of αi infinitely often corresponds to updating
the counter from ` to 1 infinitely often.

From multiple weak constraints to a single weak constraint

Let G = (Σ, σI ,→, F ) be a weakly-fair graph, where F is a weak-fair as-
sumption with ` weak-fair constraints specified by actions α1 . . . α`. The
fair graph BG has the following components:

• for every state s of G, and for every 1 ≤ i ≤ `, the pair (s, i) is a state
of BG ;

• for every initial state s of G, the pair (s, 1) is an initial state of BG ;

• for every action αi in F , for every transition s
αi→ t in αi, if i < ` then

BG has a transition from (s, i) to (t, i + 1), and if i = ` then BG has
a transition from (s, i) to (t, 1);

• the fairness assumption of BG contains a single weak constraint α: for
every transition s

α`→ t, (s, `)
α
→ (t, 1).

Proposition 10.7 [Multiple weak-fairness to single weak constraint] For every

weakly-fair graph G, the answer to the fair-cycle problem G coincides with the

answer to the fair-cycle problem BG .

Exercise 10.13 {T2} [Multiple weak-fairness to single weak constraint] Prove
Proposition 10.7.

If the weakly-fair graph G has n states, m transitions, and ` fairness constraints,
the weakly-fair graph BG has n · ` states and m · ` transitions. It follows that
the fair-cycle problem G can be solved in time O((n+m) ·`). Contrast this with
the complexity O((n + m) · `2) of solving the fair-cycle problem in the general
case using Algorithm 10.2.
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10.3.3 Recurrence verification

Now we are ready to present the solution to the recurrence-verification problem
(P , p) when P has only weak-fairness constraints. In this case, to answer pos-
itively to the fair-cycle problem, the algorithm needs to find a reachable cycle
that contains at least one transition from each of the weak-fairness constraints
of P , and does not contain any p-state. This can be formulated as searching for
a F -fair [[¬p]]-cycle. Figure 10.8 shows an algorithm to solve this problem. The
input is a transition graph G together with a set F of weak-fairness constraints
and a region σT . The goal is to find a reachable σT -cycle that is F -fair.

The algorithm is similar in spirit to Algorithm 10.3, and involves two nested
depth-first searches. Multiple weak-fairness constraints are reduced to a single
weak-fairness constraint by adding a counter variable as discussed in Section
10.3.2. If F contains ` constraints, then the modified search space is ΣG ×
{1, . . . `}. The algorithm uses the following operations:

Size : set 7→ integer. The operation Size returns the number of elements in its
set argument.

MultiWeakPost : state × integer× enumgraph × set of action 7→ queue of state× integer.

The operation MultiWeakPost(s, i, G, F ) returns a queue that contains the
successors of the state (s, i) in the fair graph BG,F .

The operation MultiWeakPost(s, i, G, F ) can be implemented from the opera-
tion PostQueue(s, G) and membership test for the actions in F .

The fair graph BG,F has a single weak-fairness constraint α containing tran-
sitions in which the counter is updated from ` to 1. The secondary search is
invoked at the conclusion of the primary search from a source state of some
transition in α. The secondary search is performed by the function NDFS of
Figure 10.9. The goal of the secondary search is to find a fair cycle. Consider
a fair transition from (s, `) to (t, 1). Then, the variable Root is set to s, and
the function NDFS checks if the state (s, `) is reachable from the state (t, 1).
Since the fair cycle is required to stay within the region σT , search is restricted
to the region σT . The correctness of Algorithm 10.4 can be established as in
case of Algorithm 10.3: if (s, `) → (t, 1) and (s′, `) → (t′, 1) are two fair transi-
tions such that (1) the primary search from (s, `) terminates before the primary
search from (s′, `), (2) there is no σT -path from (t, 1) to (s, `), then if there is a
σT -path from (t′, 1) to (s′, `), then it does not contain any state reachable from
(t, 1).

Proposition 10.8 [Recurrence verification for weak-fairness] Let G be a tran-

sition graph with finitely many reachable states, let F be a set of weak-fairness

constraints for G, and let σT be a region of G. Then Algorithm 10.4 solves the

fair cycle problem (G, F ∪ {(¬σT , ∅)}).
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Algorithm 10.4 [Primary Depth First Search for Weak Recurrence Verifica-
tion]

Input: a finitely branching transition graph G, weak fairness as-
sumption F , and a region σT of G.

Output: the answer to the fair-cycle problem (G, F ∪ {(¬σT , ∅)})

input G: enumgraph; F : set of action; σT : enumreg;
local σ, τ : set of state × integer; s,Root : state

begin

σ := EmptySet ;
τ := EmptySet ;
foreach s in InitQueue(G) do

if not IsMember((s, 1), σ) then

if DepthFirstSearch(s, 1) then return Yes fi;
fi;

od;
return No

end.

function DepthFirstSearch: �
input s: state; i: integer;
local t: state;
begin

σ := Insert((s, i), σ);
foreach (t, j) in MultiWeakPost(s, i, G, F ) do

if not IsMember((t, j), σ) then

if DepthFirstSearch(t, j) then return true fi;
fi;

od;
if i = Size(F ) and IsMember (s, σT )

and not IsMember ((s, i), τ) then

Root := s;
foreach (t, j) in MultiWeakPost(s, i, G, F ) do

if j = 1 and IsMember (t, σT )
and not IsMember ((t, j), τ) then

if NDFS (t, j) then return true fi

fi

od;
fi;

return false

end.

Figure 10.8: Primary search for a fair cycle for weak recurrence verification
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function NDFS : �
input s: state; i: integer

local t: state; j: integer

begin

τ := Insert((s, i), τ);
foreach (t, j) in MultiWeakPost(s, i, G, F ) do

if t = Root and j = Size(F ) then return true fi;
if not IsMember((t, j), τ) and IsMember(t, σT ) then

if NDFS (t, j) then return true fi;
fi;

od;
return false

end.

Figure 10.9: Secondary search for a fair cycle for weak recurrence verification

For complexity analysis of Algorithm 10.4, for a reachable state s, and an in-
teger 1 ≤ i ≤ `, both the routines DepthFirstSearch and NDFS are invoked at
most once with input (s, i). Using a standard enumerative representation, the
algorithm can be implemented with running time ((n + m) · `).

Exercise 10.14 {P3} [Witness reporting] Modify Algorithm 10.4 so that it re-
turns either the answer No or a witness to the fair-cycle problem.

Exercise 10.15 {T3} [Modifying the weak recurrence verification algorithm]
Suppose we modify Algorithm 10.4 so that at the conclusion of the primary
search from a state (s, `) 6∈ τ with s ∈ σT , the state (s, `) is added to the set
τ before invoking the secondary search (i.e. add the line τ := Insert((s, i), τ)
immediately after the assignment Root := s in Figure 10.8). Does the modified
algorithm correctly solve the fair-cycle problem?

Exercise 10.16 {P3} [Fair-cycle for single strong fairness constraint] Consider
the fair-cycle problem (G, {(σ, τ)}) with a single strong-fairness constraint. The
goal is, then, to find a reachable cycle that is either τ -fair or not σ-fair. Write
a nested depth first search algorithm to solve this special case.
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Chapter 11

Temporal Liveness

Requirements

Not all liveness requirements of a reactive module can be formulated as a re-
sponse verification problem. In Chapter 5, we studied temporal logics over
observation structures to specify logical safety requirements of a module. Along
the same lines, we now consider temporal logics over observation structures with
fairness constraints to specify logical liveness requirements of a fair module.

11.1 Fair Structures

11.1.1 ω-Traces

A trace of an observation structure is obtained by executing the underlying tran-
sition graph for finitely many steps, and mapping each state to its observation.
Similarly, an ω-trace of an observation structure is obtained by considering an
ω-trajectory of the underlying transition graph, and mapping each state to its
observation.

ω-traces

Let K = (G,A, 〈〈·〉〉) be an observation structure. An ω-trace of K is an ω-
word a over the alphabet A of observations such that there is an ω-trajectory
s of G with a = 〈〈s〉〉. The ω-word a is an initialized w-trace of K if there is
an initialized ω-trajectory s of G with a = 〈〈s〉〉. The ω-language LK of the
observation structure K is the set of initialized ω-traces of K.

Remark 11.1 [Fusion-closure] The ω-language LK of an observation structure
K is not necessarily fusion-closed.

1
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We know that the ω-language of a transition graph is safe. What about the ω-
language of an observation structure? Clearly, if a is an ω-trace of an observation
structure K, then every prefix of a is a trace of K. However, to establish that
the set LK contains every limit of LK , we use the fact that the structure is
finitely-branching over observations: for every observation a, there are only
finitely many initial states with observation a, and every state has only finitely
many successors with observation a.

Proposition 11.1 [Limit closure of ω-traces] Let K be an observation struc-

ture. Then, LK = safe(LK).

Proof. Let K = (Σ, σI ,→, A, 〈〈·〉〉) be an observation structure. If a is an
ω-trace then, by definition, for all i ≥ 0, the prefix a0...i is a trace of K. This
establishes LK ⊆ safe(LK).

We wish to prove that every limit of LK is an ω-trace of K. Consider an ω-
word a over the set of observations of K, and suppose for all i ≥ 0, a0...i is an
initialized trace of K. Let us define a transition graph H . The states of H are
pairs of the form (s, i), for a state s of K and a natural number i, such that
〈〈s〉〉 = ai. The state (s, i) is an initial state of H if s is an initial state of K
and i = 0. The transition graph H has a transition from the state (s, i) to the
state (t, j) if there is a transition from s to t in K and j = i + 1. The graph
H has finitely many initial states, and each state has finitely many successors.
For every i ≥ 0, a0...i is a trace of K, and hence, there exists a trajectory
s0...i of K with 〈〈sj〉〉 = aj for 0 ≤ j ≤ i. Hence, for every i ≥ 0, there is a
trajectory of H of length i. From König’s lemma, the graph H has an infinite
path: (s0, 0)(s1, 1)(s2, 2) · · · The corresponding ω-word s is an ω-trajectory of
K, and 〈〈s〉〉 = a is an ω-trace of K.

Since a safe language is completely characterized by the set of its prefixes, the
next theorem follows.

Theorem 11.1 [Language inclusion] For two observation structuresK1 and K2,

LK1
⊆ LK2

iff LK1
⊆ LK2

. For two reactive modules P1 and P2, LP1
⊆ LP2

iff

LP1
⊆ LP2

.

11.1.2 Fair traces

A fairness constraint and a fairness assumption for an observation structure is
a fairness constraint and a fairness assumption for the underlying transition
graph. Fair structures are obtained from observation structures by adding fair-
ness assumptions.

Fair structure

A fair structure K = (K,F ) consists of an observation structure K and a
fairness assumption F for K.
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If all the fairness constraints in F are weak, then (K,F ) is a weakly-fair struc-
ture.

Fair traces of a fair structure are obtained from fair trajectories by projecting
states to observations.

Fair trace

Let K be a fair structure with observations A and observation function 〈〈·〉〉.
An ω-word a is a fair trace of K if there exists a fair trajectory s of K such
that a = 〈〈s〉〉. An ω-word a is an initialized fair trace of K if there exists
an initialized fair trajectory s of K such that a = 〈〈s〉〉. The fair language

LK of K the set of initialized fair traces of K.

Exercise 11.1 {T3} [Fair traces] Show that the set of fair initialized traces of
a fair structure is not necessarily the intersection of the set of fair traces and
the set of initialized ω-traces.

In Chapter 11, we will study fair structures as a specification formalism for fair
languages.

The fair structure of a fair module

Every reactive module P defines the observation structure KP . The fair struc-
ture of a fair module (P,WeakF P ,StrongFP ) is obtained from the observation
structure KP by adding all the fairness constraints corresponding to the decla-
ration of weak and strong fair update choices.

Fair structure of a fair module

The fair module P defines the fair structure KP = (KP , FP).

Observe that if P has only weak-fairness constraints, then the corresponding
fair structure KP is also weakly fair.

11.2 The Temporal Logic Ctl

We specify requirements of fair modules using fair state logics. The formulas of
fair state logics are interpreted over the states of fair structures, and may refer
to the infinite behavior of fair structures. The satisfaction relation of a fair state
logic defines, for each formula φ and each fair φ-structure K, the characteristic
region [[φ]]K. We start by extending Stl to a fair state logic called Ctl.

Remark 11.2 [State logics vs. Fair state logics] Every state logic is a fair state
logic. For every formula φ of a state logic and a fair structure K = (K,F ), the
characteristic regions [[φ]]K and [[φ]]K coincide. Every fair state logic is also a
state logic: for a formula φ of a fair state logic, an observation structure K, and
a state s of K, s |=K φ iff s |=(K,∅) φ.
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11.2.1 Syntax and Semantics of Ctl

The fair state logic Ctl is obtained from the state logic Stl by adding the
unary temporal connective possibly-always, written ∃2. Consider a state s of a
fair structure K, and let p be an observation predicate of K. The state s satisfies
the formula ∃2p if there is a source-s fair trajectory all of whose states satisfy p.
In other words, the formula ∃2p asserts that it is possible to execute infinitely
many rounds in a fair fashion so that p is satisfied at every step.

Computation tree logic

The formulas of Ctl are defined inductively by the grammar

φ ::= p | φ ∨ φ | ¬φ | ∃© φ | ∃2φ | φ∃Uφ

for atomic formulas p. For a Ctl formula φ, if K = (K,F ) is a fair φ-
structure, and s is a state of K, then

s |=K ∃2φ iff there is an source-s fair trajectory s of K
such that for all i ≥ 0, si |=K φ.

The interpretation of the temporal connectives ∃© and ∃U is the same as in Stl:
a state s satisfies the possibly-next formula ∃© p if some successor of s satisfies
p; a state s satisfies the possibly-until formula p ∃U q if there exists a source-s
trajectory s0...m such that sm satisfies q and si satisfies p for all 0 ≤ i < m. The
temporal connectives ∀©, ∃3, ∀2, and ∀W are defined from ∃© and ∃U as in
Stl. In addition, we define the following temporal connectives in Ctl:

Inevitably ∀3φ for ¬∃2¬φ;
Inevitably-until ψ∀Uφ for ψ∀Wφ ∧ ∀3φ;
Possibly-waiting-for ψ∃Wφ for ψ∃Uφ ∨ ∃2ψ.

The modality ∀3 is the dual of ∃2: a state s of the fair structure K satisfies
the Ctl formula ∀3 p if every source-s fair ω-trajectory contains a p-state.

Exercise 11.2 {T2} [Inevitably-until connective] Let φ and ψ be two Ctl for-
mulas, let K be a (φ, ψ)-structure, and let s be a state of K. Show that
s |=K φ ∀U ψ iff for all source-s fair ω-trajectories s of K, there exists a po-
sition m ≥ 0 such that (1) sm |=K ψ and (2) for all 0 ≤ i < m, si |=K φ.

Remark 11.3 [Fair emptiness] The fair-emptiness problem is a special case of
Ctl model checking: for a fair structure K, the answer to the fair emptiness
problem K is Yes iff s |=K ∃2true for some initial state s of K.

Response verification problem is also a special case of Ctl verification:
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Proposition 11.2 [Response verification in Ctl] Let P be a fair module and

let p and q be two observation predicates of P. Then, p ;P q iff P |= ∀2(p →
∀3 q).

Remark 11.4 [Recurrence verification] Recurrence verification is also a special
case of Ctl verification: The observation predicate p is a recurrent of a fair
structure K if K |= ∀2 ∀3 p.

Example 11.1 [Mutual exclusion] For a mutual-exclusion protocol with weak
fairness, the deadlock-freedom requirement asserts that if a process requests the
critical section, then some process is eventually in the critical section:

φdf : ∀2((pc1 = reqC ∨ pc2 = reqC ) → ∀3(pc1 = inC ∨ pc2 = inC ))

The starvation-freedom requirement asserts that if a process requests the critical
section, then that process eventually enters the critical section:

φsf : ∀2((pc1 = reqC → ∀3pc1 = inC ) ∧ (pc2 = reqC → ∀3pc2 = inC )).

The fair module FairPete satisfies both φdf and φsf . It also satisfies the stronger
until-requirement:

∀2





(pc1 = reqC → (pc1 = reqC )∀U(pc1 = inC ))
∧

(pc2 = reqC → (pc2 = reqC )∀U(pc2 = inC ))



 .

Exercise 11.3 {T2} [Ctl connectives] The Ctl formula φ implies the Ctl

formula ψ if [[φ]]G ⊆ [[ψ]]G for all fair (φ, ψ)-structures G (i.e., the Ctl formula
φ → ψ is valid). Let p be an atomic state formula. Group the 16 Ctl formulas
of the form Q1T1Q2T2 p, where Q1, Q2 ∈ {∀, ∃} and T1, T2 ∈ {2,3}, into eight
pairs (φ, ψ) (any such grouping is fine). Prove or disprove that φ implies ψ for
each of your pairs.

Exercise 11.4 {T3} [Interdefinability of temporal connectives] Assuming that
a fair state logic contains the temporal connective ∃U , show that each of the
connectives ∃2, ∀3, ∀U , and ∃W can be used to define the remaining three.

Every Stl formula is also a Ctl formula. For a Stl formula φ and a fair struc-
ture K = (K,F ), [[φ]]K = [[φ]]K . This implies that to check Stl specifications of
fair structures we can ignore the fairness constraints.
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Remark 11.5 [Fair semantics of Stl] Note that while interpreting Stl formu-
las over states of fair structures, we have retained the original semantics of Stl

over observation structures. To account for the fairness constraints, suppose we
redefine the semantics of Stl over fair structures the following way. The state s
of a fair structure K satisfies the possibly-until formula φ ∃U ψ if there exists a
source-s fair trajectory s of K such that for some m ≥ 0, sm |=K ψ and si |=K φ

for 0 ≤ i < m. For machine-closed fair structures K, since every finite trajectory
is a prefix of some fair ω-trajectory, this new definition of ∃U coincides with the
old definition.

11.2.2 Ctl Model Checking

In the model-checking problem for Ctl, we are given a Ctl formula φ and
a fair φ-structure K. To compute the characteristic region [[φ]]K , we proceed
inductively on the structure of the formula φ, by first finding the characteristic
regions for the subformulas of φ. For this purpose, we first compute the the set
Sub(φ) of subformulas of φ. The function Sub is extended to include the new
connective ∃2:

Sub(∃2ψ) = {∃2ψ} ∪ Sub(ψ).

The function OrderedSub is also redefined so that it accepts a Ctl formula φ as
input, and returns a queue with the formulas in Sub(φ) such that if ψ ∈ Sub(χ)
and χ ∈ Sub(φ), then ψ precedes χ in OrderedSub(φ). As in case of Stl, the
Ctl formula φ has at most |φ| subformulas.

For the enumerative algorithm, assume that the atomic formulas of φ are propo-
sitions, and the fair structure K is finite. The algorithm computes, for each state
s of K, the set λ(s) ⊆ Sub(φ) of subformulas of φ that are satisfied by the state s.
Initially, λ(s) is empty for each state s. The algorithm considers each subfor-
mula ψ, in the order given by OrderedSub(φ), and decides, for every state s,
whether s satisfies ψ, and updates λ(s) accordingly (see Algorithm 5.1 for enu-
merative Stl model checking). The structure of ψ leads to various cases. The
cases corresponding to propositions, logical connectives, and the temporal con-
nectives ∃© and ∃U are handled as in the case of Stl. The case when ψ = ∃2χ

is reduced to the fair-region problem.

The fair-region problem

The fair-region problem is to determine which states belong to the fair ω-
trajectories of a fair graph. Let G be a transition graph, and let F be a fairness
assumption for G. The F -fair region σF of G consists of precisely the states s
such that there is a source-s F -fair ω-trajectory of G.

An instance of the fair-region problem is a fair graph (G,F ). The answer
to the fair-region problem (G,F ) is the F -fair region σF of G.
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Remark 11.6 [Fair-region problem vs. fair-emptiness problem] For a fair graph
G, the answer to the fair-emptiness problem G is Yes iff σI ∩ σF is nonempty.

For Ctl model checking, we need to construct the characteristic region [[∃2χ]]K
from the characteristic region [[χ]]K for the fair structureK = (Σ, σI ,→, A, 〈〈·〉〉, F ).
Let Gχ be the transition graph with the state space [[χ]]K and the transition re-
lation → restricted to [[χ]]K. The region [[∃2χ]]K is precisely the answer to the
fair-region problem (Gχ, F ).

To solve the fair-region problem (G,F ), observe that a state s belongs to the
fair region σF iff there exists a F -fair strongly connected component σ of G
such that post∗(s) ∩ σ is nonempty. Thus,

σF =
⋃

{σ | σ is a F -fair component of G}. pre∗(σ).

Hence, σF can be by first computing the F -fair strongly connected components
of G using Algorithm 9.2, and then computing the region σF by a depth-first
search. IfG has n states andm transitions, and F contains ` fairness constraints,
then the overall time-complexity is O((n +m) · `2).

Exercise 11.5 {P3} [Fair-region problem] Write an enumerative algorithm to
solve the fair-region problem G using an on-the-fly representation of the fair
graph.

Theorem 11.2 [Model checking of Ctl] Let K = (K,F ) be a fair structure,

and let φ be an Ctl formula. Suppose K has n states and m transitions, and

F has ` fairness constraints. The model-checking problem (K, φ) can be solved

in O((n+m) · `2 · |φ|) time.

The algorithms of Section 9.3 that employ nested depth-first search can be used
to solve the fair-region problem when the fairness assumption is of a restricted
form. When the fairness assumption F contains only weak constraints, the
Ctl model-checking problem ((K,F ), φ) can be solved in in time linear in the
number of fairness constraints.

Theorem 11.3 [Model checking of Ctl for weak-fair structures] Let K =
(K,F ) be a weak-fair structure, and let φ be an Ctl formula. Suppose K

has n states and m transitions, and F has ` weak-fairness constraints. The

model-checking problem (K, φ) can be solved in O((n+m) · ` · |φ|) time.

In particular, the Ctl model-checking problem (K,φ) can be solved in O((n+
m) · |φ|) time. Thus, the additional complexity of Ctl model checking over Stl

model checking is not due to the introduction of ∃2 connective in the logic, but
due to the introduction of fairness constraints in the model.
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To solve the Ctl-verification problem (P , φ), for a finite fair module P and
a Ctl specification φ, we can first construct the fair structure KP , and then
employ the model checking algorithm. As usual, since the structure KP may be
exponentially larger than the module description, this results in an exponential
algorithm. As in case of Stl, the Ctl verification problem of determining
whether a fair module satisfies a Ctl-formula is Pspace-complete.

11.2.3 Compositionality and Ctl

As in Stl, satisfaction of existential Ctl-formulas is not preserved under par-
allel composition.

Exercise 11.6 {T3} [Non-compositionality of Ctl] Give an example of a fair
module P ‖Q and an observation predicate p such that the answer to the veri-
fication problem (P , ∃2p) is Yes, while the answer to (P ‖Q, ∃2p) is No.

As in case on Stl, if we restrict ourselves only to the universal formulas, then the
compositionality principle holds. Let ∀Ctl be the fragment of Ctl generated
by the grammar

φ ::= p | ¬p | φ ∧ φ | φ ∨ φ | ∀© φ | φ∀Uφ | ∀2φ

The logic ∀Ctl is not closed under negation. The parallel composition operation
on fair modules ensures that the projection of a fair trajectory of a compound
module onto the variables of a component is a fair trajectory of that component.
This implies that the compositionality principle holds for ∀Ctl.

Proposition 11.3 [Compositionality for ∀Ctl] If the fair module P satisfies

the ∀Ctl-formula φ, then for every fair module Q that is compatible with P,

the compound fair module P ‖Q satisfies φ.

Exercise 11.7 {T3} [Compositionality of ∀Ctl] Prove Proposition 11.3.

11.3 The µ-Calculus

We now introduce a state logic, called µ-calculus , that is more expressive than
Ctl. Before we present syntax and semantics of µ-calculus, two points must
be noted. First, comprehending µ-calculus formulas requires considerable ex-
pertise, and hence, it is not a convenient specification language for writing re-
quirements. On the other hand, its semantics immediately suggests a symbolic
procedure for model checking. The role of of µ-calculus, then, is as an inter-
mediate language which can be analyzed by symbolic algorithms. Second, the
syntax of µ-calculus is expressive enough to specify fairness constraints. Conse-
quently, we consider µ-calculus as a state logic, and interpret its formulas over
states of observation structures.



Temporal Liveness Requirements 9

11.3.1 Syntax and semantics

In µ-calculus, properties are expressed as fixpoints of functions that map regions
to regions. As an example, consider the Stl-formula ∃3p. The characteristic
region [[∃3p]]K consists of all states of the observation structure K from which
a state satisfying p is reachable. Consider the function F∃3p that maps regions
of K to regions of K:

F∃3p(σ) = [[p]]K ∪ preK(σ).

Then, the region [[∃3 p]]K is the least fixpoint of the function F∃3p: it is the
smallest region σ that contains [[p]]K as well as preK(σ). The µ-calculus formula
corresponding to ∃3p is µx. (p ∨ ∃©x). Here, the variable x ranges over regions,
µx. is called the least fixpoint operator, and given a region σ, ∃© σ denotes the
region containing states that have at least one successor in σ.

The dual of the least fixpoint operator is the greatest fixpoint operator νx. As an
example, the characteristic region [[∀2p]]K is the greatest fixpoint of the function
F∀2p that maps regions of K to regions of K:

F∀2p(σ) = [[p]]K ∩ {s | postK(s) ⊆ σ}.

The µ-calculus formula corresponding to ∀2p is νx. (p ∧ ∀© x).

µ-calculus syntax

Let Var be a set of region variables. The formulas of the µ-calculus (Ctµ)
are defined inductively by the grammar

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃© φ | ∀© φ | µx. φ | νx. φ | x,

where p is an atomic formula and x ∈ Var is a region variable.

A Ctµ formula of the form µx. φ is called a µ-formula, and a Ctµ formula of
the form νx. φ is called a ν-formula. A µ-formula or a ν-formula is also called
a fixpoint-formula. The fixpoint operator is like a quantifier in first-order logic.
Every occurrence of a region variable x in a formula is either free or bound, and
if bound, has a unique fixpoint operator that binds it. The Ctµ formula φ is
closed if for all region variables x ∈ Var, each occurrence of x in φ is bound by
a fixpoint operator. The Ctµ formula φ is open if it contains a free occurrence
of a region variable.

The logic Ctµ is a state logic, and its formulas are interpreted over states of
observation structures. As in state logics, for a formula φ of Ctµ, a φ-structure
is an observation structure whose observations give interpretation to the atomic
formulas appearing in φ.
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µ-calculus semantics

Let K = (Σ, σI ,→, A, 〈〈·〉〉) be an observation structure. A region environ-

ment E assigns to each region variable x ∈ Var a region σ ⊆ Σ. Given a
state s ∈ Σ and a region environment E,

s |=K,E p iff 〈〈s〉〉 |= p;
s |=K,E ¬p iff 〈〈s〉〉 |= ¬p;
s |=K,E φ1 ∧ φ2 iff s |=K,E φ1 and s |=K,E φ2;
s |=K,E φ1 ∨ φ2 iff s |=K,E φ1 or s |=K,E φ2;
s |=K,E ∃© φ iff for some state t ∈ postK(s), t |=K,E φ;
s |=K,E ∀© φ iff for all states t ∈ postK(s), t |=K,E φ;

s |=K,E µx. φ iff for all fixpoints σ of Fx,φ
K,E, s ∈ σ

s |=K,E νx. φ iff for some fixpoint σ of Fx,φ
K,E, s ∈ σ

s |=K,E x iff s ∈ E(x).

The function Fx,φ
K,E maps regions to regions: for all regions σ ⊆ Σ and all

states s ∈ Σ,

s ∈ Fx,φ
K,E(σ) iff s |=K,E[x:=σ] φ.

From the following proposition it follows by the Knaster-Tarski fixpoint theorem
that the function Fx,φ

K,E has a least fixpoint as well as a greatest fixpoint.

Proposition 11.4 [Monotonicity in µ-calculus] Let φ be a Ctµ formula and

let E be a region environment. The function Fx,φ
K,E is monotonic; that is, σ ⊆ τ

implies Fx,φ
K,E(σ) ⊆ Fx,φ

K,E(τ).

Exercise 11.8 {T3} [Monotonicity in µ-calculus] Prove Proposition 11.4.

Remark 11.7 [Region environments in µ-calculus] Let φ be a Ctµ formula. If
two region environments E and E′ agree on the values of the region variables
that are free in φ, then s |=K,E φ iff s |=K,E′ φ. In particular, for a closed
formula φ, in the definition of the satisfaction relation |=K,E, the value of E is
not important.

A state s ∈ Σ satisfies the closed Ctµ formula φ, written s |=K φ, if s |=K,E φ

for all region environments E. For notational convenience, we admit regions as
formulas of state logics: for all regions σ ⊆ Σ and all states s ∈ Σ, s |=K σ

iff s ∈ σ. Given a region environment E, a Ctµ formula of the form µx. φ, then,
defines the least fixpoint of the function Fφ

K,E : 2Σ → 2Σ that maps each region
σ ⊆ Σ to the region [[φ[x := σ]]]K,E; that is,

[[µx. φ]]K,E =
⋃

κ∈
�

(Fφ
K,E)κ(∅).
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Exercise 11.9 {T4} [Continuity in µ-calculus] A transition relation → is finitely
branching iff every state has finitely many successors. Let K be an observation
structure. (1) Prove that the function preK that maps regions of K to regions of
K is

⋂

-continuous iff the transition relation of K is finitely branching. (2) Prove

that the function Fx,φ
K,E is both

⋃

-continuous and
⋂

-continuous if the function
preK is

⋂

-continuous. It follows that finite branching of the transition relation

is both a sufficient and necessary condition for continuity of the functions Fx,φ
K,E.

If the transition relation of K is finitely branching, then the function Fφ
K,E is

⋃

-continuous (Exercise 11.9) and, by the Kleene fixpoint theorem,

[[µx. φ]]K,E =
⋃

i∈ �
(Fφ

K,E)i(∅);

that is, the characteristic region [[µx. φ]]K,E is the limit of the infinite approxi-

mation sequence ∅, Fφ
K,E(∅), Fφ

K,E(Fφ
K,E(∅)), etc. We will use this observation

to compute the characteristic regions of Ctµ formulas. For example,

[[µx. (p ∨ ∃© x)]] = [[false ]] ∪ [[p]] ∪ [[∃© p]] ∪ [[∃© ∃© p]] ∪ · · ·

Similarly, a Ctµ formula of the form νx. φ, then, defines the greatest fixpoint
of the function Fφ

K,E:

[[νx. φ]]K,E =
⋂

κ∈
�

(Fφ
K,E)κ(Σ).

If the transition relation of K is finitely branching, then the function Fφ
K,E is

⋂

-
continuous (Exercise 11.9) and the characteristic region [[νx. φ]]K,E is the limit

of the infinite approximation sequence Σ, Fφ
K,E(Σ), Fφ

K,E(Fφ
K,E(Σ)), etc. For

example,

[[νx. (p ∧ ∀© x)]] = [[true]] ∩ [[p]] ∩ [[∀© p]] ∩ [[∀© ∀© p]] ∩ · · ·

11.3.2 Expressive Power

Alternation depth

For a Ctµ formula φ, its nesting depth is the the length of the longest chain
of fixpoint-subformulas of φ that are nested in one another. The alternation

depth, on the other hand, is computed by counting the number of alternations
between µ-formulas and ν-formulas along chains of nested fixpoint-subformulas.
The alternation depth is a better measure of the complexity of Ctµ formulas.
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Alternation depth

The alternation depth ad(φ) of a Ctµ formula φ is defined inductively: If
φ is not a fixpoint-formula then,

ad(φ) = max{ad(ψ) | ψ is a fixpoint-subformula of φ};

else if φ = µx. ψ then

ad(φ) = max{1, ad(ψ), 1 + max{ad(χ) | χ is open ν-subformula of ψ}};

else if φ = νx. ψ then

ad(φ) = max{1, ad(ψ), 1 + max{ad(χ) | χ is open µ-subformula of ψ}}.

For every integer k ≥ 0, the logic Ctµk consists of all Ctµ formulas φ with
ad(φ) ≤ k. The Ctµ formula φ is said to be alternation-free if ad(φ) ≤ 1,
and the logic Ctµ1 is called alternation-free µ-calculus.

Remark 11.8 [Alternation depth] Alternation depth of a Ctµ formula φ is
the maximum integer k ≥ 0 such that there exists a sequence φ1φ2 . . . φk of
fixpoint-formulas such that (1) φ1 is a subformula of φ, (2) for each 1 ≤ j < k,
the formula φj+1 is a subformula of φj , (3) for 2 ≤ j ≤ k, the fixpoint-formula
φj is open, and (4) for each 1 ≤ j < k, the types of φj and φj+1 are different:
φj is a µ-formula iff φj+1 is a ν-formula.

Example 11.2 [Alternation depth] The definition of the alternation-depth is
illustrated by the following examples

ad(µx. p ∨ ∃© x) = 1
ad(µx. ((νy. p ∧ ∀© y) ∨ ∃© x)) = 1
ad(νx. (p ∧ ∃© νy. (q ∧ ∀© y ∨ ∃© x)) = 1
ad(νx. µy. ((p ∧ x) ∨ ∃© y)) = 2

Note that the nesting depth of the first formula is 1, but for all the rest, the
nesting depth is 2.

Closure under negation

While the syntax of the logic Ctµ does not admit negation, it is effectively
closed under negation because every operator has its dual within the logic.

Exercise 11.10 {T3} [Duality of least and greatest fixpoint operators] Let B
be a boolean algebra and let F : B → B be a monotonic function. We write µF
for the least fixpoint of F and F¬¬ for the function that maps each x ∈ B to
¬F(¬x). Prove that ¬µF¬¬ is the greatest fixpoint of F .
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Proposition 11.5 [Closure under negation] Let K be an observation structure,

and let φ be a closed Ctµ formula. Then, there exists a Ctµ formula ψ such

that for every state s of K, s |= φ iff s 6|= ψ. Furthermore, ad(φ) = ad(ψ).

Proof. The proof uses the fact that the logical connectives ∧ and ∨ are duals
of each other, the temporal connectives ∃© and ∀© are duals of each other, and
the fixpoint operators µ and ν are duals of each other. Specifically, define the
function f that maps every Ctµ formula to another Ctµ formula. The function
f is defined inductively:

f(p) = ¬p; f(¬p) = p;
f(φ1 ∧ φ2) = f(φ1) ∨ f(φ2); f(φ1 ∨ φ2) = f(φ1) ∧ f(φ2);
f(∃© φ) = ∀© f(φ); f(∀© φ) = ∃© f(φ);
f(µx. φ) = νx. f(φ); f(νx. φ) = µx. f(φ); f(x) = x.

We prove that for every state s of an observation structure K, and a region
environment E, s |=K,E φ iff s 6|=K,E f(φ). This is proved by induction on the
structure of φ.

Remark 11.9 [Alternative definition of Ctµ syntax] The syntax of Ctµ can
alternatively be defined by the following clauses: (1) every atomic formula is
a Ctµ formula, (2) every region variable is a Ctµ formula, (3) if φ is a Ctµ

formula, then so are ¬φ and ∃©φ, (4) if φ1 and φ2 are Ctµ formulas then so is
φ1 ∨ φ2, and (5) if φ is a Ctµ formula, and x is a region variable that is within
the scope of an even number of negations in φ, then µx. φ is a Ctµ formula.

Alternation-free µ-calculus is as expressive as Ctl

We establish that every Ctl formula is equivalent to an alternation-free Ctµ

formula over observation structures.

Proposition 11.6 [Fixpoint characterization of ∃3] Let K be an observation

structure, and let p be an observation predicate of K. Then, the characteristic

regions [[∃3p]]K and [[µx. (p ∨ ∃© x)]]K are identical.

Proof. Consider the function F∃3p that maps regions of K to regions of K:

F∃3p(σ) = [[p]]K ∪ preK(σ).

Observe that the operator ∃© of Ctµ is same as the function pre , and hence,
[[µx. (p ∨ ∃© x)]]K is the least fixpoint of the function F∃3p. First, we show
that the characteristic region [[∃3p]]K is a fixpoint of the function F∃3p:

[[∃3p]] ⇔ [[p]] ∪ pre([[∃3p]]).

This is established from the definition of the Ctl operator ∃3. Second, we
show that the region [[∃3σ]] is contained in all fixpoints of F∃3p: for all regions
σ ⊆ Σ and all states s ∈ Σ,



Temporal Liveness Requirements 14

if σ = [[p]] ∪ pre(σ) and s |= ∃3p, then s ∈ σ.

So assume that σ = [[p]] ∪ pre(σ) and that there is a source-s trajectory s0..n of
K such that sn |= p. Then sn ∈ σ, and by backward induction on s0..n, si ∈ σ

for all 0 ≤ i ≤ n.

Exercise 11.11 {T2} [µ-calculus vs. Ctl] Which Ctl formula is equivalent
to the Ctµ formula µx. ∃© (x ∨ p)?

Remark 11.10 [Fixpoint characterization of ∃3] Let φ be a Ctµ formula and
ψ be a Ctl formula. If φ and ψ are equivalent, then so are the formulas
µx. (φ ∨ ∃© x) and ∃3ψ.

To obtain fixpoint characterization of the possibly-until connective ∃U , observe
the following equivalence:

(φ ∃U ψ) ↔ ψ ∨ (φ ∧ (φ ∃U ψ).

A state satisfies (φ ∃U ψ) if either it satisfies ψ, or it satisfies φ and has a
successor that is already known to satisfy (φ ∃U ψ). This suggests that ∃U can
be defined as a µ-formula:

Proposition 11.7 [Fixpoint characterization of ∃U ] Let φ1 and φ2 be a Ctµ

formulas, and let ψ1 and ψ2 be Ctl formulas. If the formulas φ1 and ψ1 are

equivalent, and the formulas φ2 and ψ2 are equivalent, then so are the formulas

µx. (φ2 ∨ (φ1 ∧ ∃© x)) and ψ1∃Uψ2.

Finally, let us consider the possibly-always connective ∃2. A state all of whose
successors do not satisfy p cannot satisfy ∃2p. A state all of whose successors are
known not to satisfy ∃2p cannot satisfy ∃2p. This suggests a characterization
of ∃2p as a greatest fixpoint: [[∃2p]] is the maximal region each of whose states
satisfies p and has at least one successor satisfying p.

Proposition 11.8 [Fixpoint characterization of ∃2] Let φ be a Ctµ formula

and ψ be a Ctl formula. If φ and ψ are equivalent, then so are the formulas

νx. (φ ∧ ∃© x) and ∃2ψ.

Theorem 11.4 [From Ctl to Ctµ] Every Ctl formula φ is equivalent to an

alternation-free Ctµ formula of length O(|φ|).

Exercise 11.12 {T4} [Correctness of translation from Ctl to Ctµ] Prove Propo-
sitions 11.7 and 11.8, and then, prove Theorem 11.4 using Propositions 11.5,
11.7 and 11.8.

We can define temporal operators in Ctµ:
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∃3φ for µx. (φ ∨ ∃© x);
φ1∃Uφ2 for µx. (φ2 ∨ (φ1 ∧ ∃© x));
∃2φ for νx. (φ ∧ ∃© x);
∀3φ for µx. (φ ∨ ∀© x);
∀2φ for νx. (φ ∧ ∀© x);
φ1∀Uφ2 for µx. (φ2 ∨ (φ1 ∧ ∀© x)).

Notice that the Ctµ formula (νx. φ ∨ ∃©x) is equivalent to true, and the Ctµ

formula (µx. φ ∧ ∃© x) is equivalent to false .

Distinguishing power of Ctµ

In Section 5.4 we established that bisimilarity is a fully abstract semantics for
Stl; that is, two bisimilar states satisfy the same set of Stl formulas, and
if two states are not bisimilar then some Stl formula distinguishes between
them. Since (alternation-free) µ-calculus is as expressive as Stl, it follows that
it can distinguish between states that are not bisimilar. Furthermore, µ-calculus
cannot distinguish between bisimilar states.

Proposition 11.9 [Ctµ abstraction] Bisimilarity is an abstract semantics for

Ctµ.

Exercise 11.13 {T4} [Ctµ abstraction] Prove Proposition 11.9.

Thus, the distinguishing powers of a variety of state logics, such as Stl©, Stl,
Ctl, Ctµ, Ctµ1, coincide, and all these logics are more distinguishing than the
structure logic Sal.

Alternation-free Ctµ is more expressive than Ctl

The alternation-free µ-calculus is more expressive than Ctl. There are at least
two types of properties that can be specified in Ctµ1, but not in Ctl. The
first type concerns the inability of Ctl to count, while the second one concerns
inability of Ctl to specify game-like properties.

Proposition 11.10 [Ctl vs. Ctµ1] Let p be a proposition. No Ctl formula

is equivalent to the Ctµ1 formula νx. (p ∧ ∀© ∀© x).

Proof. The formula νx. (p ∧ ∀©∀©x) is satisfied by a state s of an observation
structure K iff for every source-s ω-trajectory s, si |= p for all even numbers i.
Thus, the formula νx. (p ∧ ∀© ∀© x) is equivalent to the Sal formula φeven

(see proof of Theorem 6.2). We already know that no Stl formula is equivalent
to φeven . The same proof can be extended to establish that no Ctl formula is
equivalent to φeven .
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Consider an observation structure K with three observations a, b, and c. Con-
sider the following two-player game between a protagonist and an adversary.
The positions of the game is described by a state of K. If the current position s
has observation c, then the protagonist wins the game. Otherwise, the position
of the game is updated to some successor of s. If the observation of s is a, then
the protagonist chooses the successor position, and if the observation of s is b,
then the adversary chooses the successor position. Given an initial position, the
protagonist wins if it has a strategy to force the game to a state with observa-
tion c. Thus, the described game is a standard and-or game, where states with
observations c are winning positions, states with observation a are or-positions
and states with observation b are and-positions. Let σ be the set of winning
initial positions for the protagonist. To get a fixpoint characterization of σ,
observe that (1) all states with observation c belong to σ, (2) for a state s with
observation a, if some successor of s is already known to be winning, then the
protagonist can win from s also, and (3) for a state s with observation b, if all
successors of s are already known to be winning, then the protagonist can win
from s also. Thus, σ is the smallest region that contains [[c]], [[a ∧ ∃© σ]], and
[[b ∧ ∀© σ]]. Thus, the set of winning positions is described by the alternation-
free formula µx. (c∨(a∧∃©x)∨(b∧∀©x)). It turns out that the set of winning
positions cannot be characterized using a Ctl formula.

Proposition 11.11 [Ctl vs. Ctµ1] Let p and q be propositions. No Ctl

formula is equivalent to the Ctµ1 formula µx. (q ∨ (p ∧ ∃©x) ∨ (¬p ∧ ∀©x)).

Fair region for a single Büchi

We turn our attention to characterization of fair regions using µ-calculus. Let
(K,F ) be a fair structure. The fair region σF of K consists of states from
which there exists a F -fair ω-trajectory. For now, let us assume that F contains
a single Büchi constraint specified by the state predicate p. Thus, a state s of
K belongs to σF iff there exits a source-s ω-trajectory that contains infinitely
many states that satisfy p. We use the operator 23 to denote infinite repetition:

s |=K ∃23p iff there exists a source-s ω-trajectory s of K such that
si |=K p for infinitely many positions i.

The formula ∃23p can be expressed in Ctµ using nested fixpoints: it is equiv-
alent to the formula νx. µy. ∃© ((x ∧ p) ∨ y), which can also be written as
νx. ∃3

+(x ∧ p). That is, [[∃23p]] is the maximal region σ such that from every
state in σ, some state in σ ∩ [[p]] is reachable in one or more steps. The i-th
approximation in the computation of νx. ∃3

+(x ∧ p) contains all states from
which there exists a trajectory containing i states satisfying p:

[[νx. ∃3
+(x ∧ p)]] = [[true]] ∩ [[∃3

+p]] ∩ [[∃3
+(p ∧ ∃3

+p)]] ∩ · · ·
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Proposition 11.12 [Fixpoint characterization of ∃23] The Ctµ formula νx. µy. ∃©
((x ∧ p) ∨ y) is equivalent to ∃23p.

Proof. Let K be an observation structure. Consider the function F∃23p that
maps regions of K to regions of K:

F∃23p(σ) = pre+(σ ∩ [[p]]).

It suffices to show that the region [[∃23p]] is the maximal fixpoint of the function
F∃23p. First, we show that [[∃23p]] is a fixpoint of F∃23p:

[[∃23p]] ⇔ pre+([[∃23p]] ∩ [[p]]).

To establish this, for all states s, there is a source-s p-fair trajectory iff there
exists a state t such that (i) t is reachable from s in one or more steps (i.e. s ∈
pre+(t)), (ii) t satisfies p, and (iii) there is a source-t p-fair trajectory. Second,
we need to establish that every fixpoint of F∃23p is contained in [[∃23p]]: for
all regions σ and all states s,

if σ = pre+(σ ∩ [[p]]) and s ∈ σ then s |= ∃23p.

So assume that σ = pre+(σ ∩ [[p]]) and s ∈ σ. We construct an infinite sequence
of states s0s1 . . . as follows. Let s0 = s. Given si ∈ σ, choose si+1 such
that si+1 ∈ σ and si+1 |= p and si+1 ∈ post+(si) (such a state exists since
σ = pre+(σ∩[[p]])). It follows that there exists a source-s ω-trajectory containing
infinitely many states satisfying p.

Exercise 11.14 {T2} [∃23 in µ-calculus] Is the formula νx. ∃3(p ∧ x) equiv-
alent to ∃23p? Is the formula νx. ∃3(p ∧ ∃© x) equivalent to ∃23p?

Exercise 11.15 {T2} [Fixpoint characterization of ∃2p in Büchi structures]
Let K = (K,F ) be a fair structure such that F contains a single Büchi constraint
specified by the predicate q. Write a Ctµ formula φ such that [[φ]]K equals
[[∃2p]]K. That is, s |=K φ iff there is a source-s F -fair ω-trajectory s with
si |= p for all i ≥ 0.

Exercise 11.16 {T3} [∃32 in µ-calculus] Given a state s of an observation
structure K, and a state predicate p, define s |=K ∃32p iff there exist a source-
s ω-trajectory s and an integer i ≥ 0 such that sj |=K p for all j ≥ i. Write
Ctµ formula that is equivalent to ∃32p.

Now let us consider the case when the fairness assumption contains a single
weak-fairness constraint specified by an action α. Suppose the action α is spec-
ified by the action predicate p ∧ q′; that is, s

α
→t iff s |= p and t |= q. We wish

to characterize the fair region by a Ctµ formula. A state s of K satisfies the
Ctµ fromula νx. ∃3(p ∧ ∃© (q ∧ x)) iff there is a source-s ω-trajectory s such
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that for infinitely many positions i, si |= p and si+1 |= q, that is, iff there is
a source-s α-fair trajectory. This leads to the characterization of fair regions
when fairness contains a single weak constraint. In general, the action α will be
specified using a disjunction ∨ 0 ≤ i ≤ k. pi ∧ q′i: s

α
→t iff for some 0 ≤ i ≤ k,

s |= pi and t |= qi.

Proposition 11.13 [Single weak constraint in Ctµ] Let K = (K,F ) be a fair

structure where F contains a single weak constraint α. Let p0, . . . pk and q0 . . . qk
be state predicates of K such that α = [[∨ 0 ≤ i ≤ k. pi ∧ q′i]]K . Then, the fair

region of K equals

[[νx. ∃3 ∨ 0 ≤ i ≤ k. (pi ∧ ∃© (qi ∧ x))]]K .

Exercise 11.17 {T3} [Single weak constraint in µ-calculus] Prove Proposition 11.13.

Exercise 11.18 {T3} [Multiple Büchi constraints] Consider a Büchi structure
(K,F ) where F contains k Büchi constraints specified by predicates p1, . . . pk.
Show that the fair region is characterized by the Ctµ formula

νx. ∃3
+(p1 ∧ ∃3

+(p2 ∧ · · · ∧ ∃3
+(pk ∧ x) · · ·)).

Consider a module P , and let a be an update choice of an atom U of P . The
availability action avail a of the choice a is be described by a predicate qavaila

over
readXU ∪ awaitX ′

U . The execution action execa of the choice a is described by a
predicate qexeca

over readXU ∪ awaitX ′
U ∪ ctrX ′

U . The weak-fairness constraint
of α is, then, described by the predicate qexeca

∨ ¬qavaila
. This predicate can

be rewritten to a form required by Proposition 11.13.

Example 11.3 [Fairness constraints for mutual exclusion] Recall the fair mod-
ule FairPete from Figure 8.5. The module has four weak-fairness constraints
specified by the choices α1, β1, α2, and β2. Let us just consider the choice α1

The weak-fairness constraint corresponding to the update choice α1 is specified
by the action execα1

∪ (→ \availα1
). The execution action execα1

is specified
by the predicate pc1 = inC ∧ pc′1 = outC , and the availability action avail α1

is specified by the predicate pc1 = inC . It follows that the fairness constraint
corresponding to the choice α1 is the disjunction

(pc1 = inC ∧ pc′1 = outC ) ∨ (pc1 6= inC ).

The corresponding fair region, then, is expressed by the Ctµ formula

νx. ∃3 [ (pc1 = inC ∧ ∃© (pc1 = outC ∧ x)) ∨ (pc1 6= inC ∧ ∃© x) ].
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While the operator ∃23 is specifiable in Ctµ2, it is not specifiable in Ctl.

Proposition 11.14 [Ctl cannot express ∃23] There is no Ctl formula that

is equivalent to ∃23p.

Proof. Suppose there is a Ctl formula φ such that for every structure K,
[[∃23p]]K equals [[φ]]K . Suppose the length of φ is k. Consider the observation
structure of Figure 11.1. States that satisfy the atomic formula p are labeled
with p. We first prove the following lemma.

Lemma A. For every Ctl formula ψ, for all integers |ψ| − 1 ≤ i ≤ j ≤ k,
si |= ψ iff sj |= ψ and ti |= ψ iff tj |= ψ.

Proof of Lemma A. The proof is by induction on the structure of the formula
ψ. For 0 ≤ i ≤ k, all the states si satisfy the same atomic formulas, and so
do all the states ti. Hence, the lemma holds if ψ is an atomic formula. When
ψ = ¬χ, or when ψ = χ1 ∨ χ2, the lemma follows from induction.

Case ψ = ∃© χ. For 1 ≤ i ≤ k, si |= ψ iff ti−1 |= χ, and ti |= ψ iff ti |= χ or
si−1 |= χ. For |ψ| − 1 ≤ i ≤ j ≤ k, i ≥ 1 and |χ| ≤ i − 1 ≤ j − 1 ≤ k. By
induction, ti−1 |= χ iff tj−1 |= χ; si−1 |= χ iff sj−1 |= χ; and ti |= χ iff tj |= χ.

Case ψ = ∃2χ. For 1 ≤ i ≤ k, ti |= ψ iff ti |= χ, and si |= ψ iff si |= χ and
ti−1 |= χ. Now we can proceed as in the previous case.

Case ψ = χ1∃Uχ2. Left as an exercise.

Corollary B. For every subformula ψ of φ, sk |= ψ iff sk−1 |= ψ.

The next lemma implies that sk |= φ iff u |= φ. This yields a contradiction,
because sk 6|= ∃23p, but u |= ∃23p.

Lemma C. For every subformula ψ of φ, sk |= ψ iff u |= ψ, and tk |= ψ iff
v |= ψ.

Proof of Lemma C. The proof is by induction on the structure of the formula
ψ. When ψ is an atomic formula, the lemma is immediate as the states sk and
u, and states tk and v have identical observations. When ψ = ¬χ, or when
ψ = χ1 ∨ χ2, the lemma follows from induction.

Case ψ = ∀© χ. sk |= ψ iff tk |= χ iff, by induction, v |= χ iff u |= ψ. tk |= ψ

iff both tk and sk−1 satisfy χ iff, by Corollary B, all of sk, tk, and sk−1 satisfy
χ iff, by induction, all of u, v, and sk−1 satisfy χ iff v |= ψ.

Case ψ = ∃2χ. sk |= ψ iff both sk and tk satisfy χ iff, by induction, both u and
v satisfy χ iff u |= ψ. tk |= ψ iff tk |= χ iff, by induction, v |= χ iff v |= ψ.

Case ψ = χ1∃Uχ2. Left as an exercise.
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Figure 11.1: ∃23 is not expressible in Ctl

Exercise 11.19 {T4} [Alternation-free µ-calculus cannot express ∃23] Prove
that no formula of Ctµ1 is equivalent to ∃23p.

Remark 11.11 [Hierarchy of expressiveness] For every integer i ≥ 0, the frag-
ment Ctµi+1 is more expressive than the fragment Ctµi. Thus, the expressive-
ness of Ctµ strictly increases with increasing alternation depth.

Specifying fair regions

Now we turn our attention to strong fairness constraints. Let F be a fairness
assumption for an observation structure K. Suppose each fairness constraint
f ∈ F is a Streett constraint defined by state predicates p and q: an ω-trajectory
s is f -fair iff if it is q-fair or not p-fair.

Exercise 11.20 {T3} [Fixpoint characterization of single Streett constraint]
Consider an observation structure K and two state predicates p and q of K.
Show that a state s of K satisfies the Ctµ formula ∃3(∃2¬p ∨ ∃23q) iff there
exists a source-s (p, q)-fair trajectory of K.

Exercise 11.20 suggests characterization of fair regions when the fairness as-
sumption has a single fairness constraint. It can be generalized to multiple
Streett constraints. Let F be a Streett assumption for an observation struc-
ture K. Then, a state s belongs to the fair region of K iff there exists a state
t ∈ post∗(s), a subset F ′ of F , and a source-t ω-trajectory (1) that is q-fair for
every (p, q) ∈ F ′, and (2) all of whose states satisfy ¬p for every (p, q) ∈ F\F ′.
This suggests a Ctµ formula whose length is exponential in the number of
Streett constraints in F . However, a polynomial translation is possible.

Proposition 11.15 [Emerson-Lei Fixpoint characterization of Streett assump-
tion] Let K be an observation structure, and let F be a Streett assumption for

K. Then, the fair region of (K,F ) is the characteristic region of the formula

∃3 νx.
∧

(p, q) ∈ F. [ ∃© (x∃U(q ∧ x)) ∨ (¬p ∧ ∃© x) ].
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Proof. Let K be an observation structure. Let F = {(¬p1, q1), . . . (¬pk , qk)}
be a Streett assumption with k Streett constraints. An ω-trajectory s is F -fair
iff for 1 ≤ i ≤ k, either s is qi-fair or it has a suffix containing only pi-states.
This requirement on the ω-trajectory is expressed by the formula

φ =
∧

1 ≤ i ≤ k. (32pi ∨ 23qi).

The fair region is characterized by the formula ∃φ. Define the formula

φ′ =
∧

1 ≤ i ≤ k. (2pi ∨ 23qi).

An ω-trajectory s satisfies φ′ iff for 1 ≤ i ≤ k, either s is qi-fair or contains only
pi-states. A state s satisfies ∃φ′ iff there is source-s ω-trajectory satisfying φ′.
The next two lemmas follow from the definitions of the formulas φ and φ′.

Lemma A. [[∃3∃φ′]] = [[∃φ]].

Lemma B. [[∃3∃φ]] = [[∃φ]].

Now consider the function F that maps regions of K to regions of K:

F(σ) =
∧

1 ≤ i ≤ k. [ ∃© (σ ∃U(qi ∧ σ)) ∨ (pi ∧ ∃© σ) ].

Lemma C. If σ is a fixpoint of F then σ ⊆ [[∃φ]].

Proof of Lemma C. Let σ be a fixpoint of F . Consider s ∈ σ. We will
construct a source-s ω-trajectory that satisfies φ. For every j ≥ 0, we define a
state sj , and a finite trajectory from sj to sj+1 containing only σ-states. Let
s0 = s ∈ σ. Consider sj in σ. Let i be j mod k. Since σ = F(σ), sj satisfies
∃© (σ ∃U(qi ∧ σ)) or pi ∧ ∃© σ. If sj satisfies ∃© (σ ∃U(qi ∧ σ)), then there
exists a source-sj trajectory t0...n with n > 0 containing only σ-states such that
tn |= qi. Choose sj+1 = tn. If sj does not satisfy ∃© (σ ∃U(qi ∧ σ)), then it
must satisfy pi ∧ ∃© σ, and choose sj+1 to be a successor of sj in σ.

Let t be the source-s ω-trajectory obtained by concatenating the finite trajec-
tories from sj to sj+1 defined above. Every state in s belongs to σ. We wish
to establish that t satisfies φ. Consider 1 ≤ i ≤ k. For every n ≥ 0, if si+kn

satisfies ∃© (σ ∃U(qi ∧ σ)) then si+kn+1 satisfies qi. Suppose that there are
infinitely many n such that si+kn satisfies ∃© (σ ∃U(qi ∧ σ)). Then, by con-
struction, t is qi-fair. Otherwise, there exists n ≥ 0 such that si+kn′ does not
satisfy ∃© (σ ∃U(qi ∧ σ)) for n′ ≥ n. Since every state in t satisfies σ, it follows
that there exists n ≥ 0 such that tn′ does not satisfy ∃© (σ ∃U(qi ∧ σ)) for
n′ ≥ n. Since σ is a fixpoint of F , it follows that tn′ satisfies pi ∧ ∃© σ, and
hence, t satisfies 32pi.

Lemma D. [[∃φ′]] ⊆ F([[∃φ′]]).

Proof of Lemma D. Consider a state s ∈ [[∃φ′]]. There exists a source-s ω-
trajectory s such that for 1 ≤ i ≤ k, either s is qi-fair or contains only pi-states.
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Every suffix of s satisfies φ′, and hence, sj |= ∃φ′ for all j ≥ 0. We wish to
establish that s satisfies F([[∃φ′]]). Consider 1 ≤ i ≤ k. We need to prove that s
satisfies either ∃© ([[∃φ′]]∃U(qi ∧ [[∃φ′]])) or pi ∧ ∃© [[∃φ′]]. If s is qi-fair, then s1
satisfies [[∃φ′]]∃U(qi ∧ [[∃φ′]]); otherwise s contains only pi-states, and s satisfies
pi ∧ ∃© [[∃φ′]].

Now we proceed to show that ∃φ is equivalent to ∃3 νx.F(x). Suppose s |=
∃3νx.F(x). By Lemma C, if a state satisfies νx.F(x) then it also satisfies ∃φ.
Hence, s |= ∃3∃φ. By Lemma A, s |= ∃φ. Conversely, suppose s |= ∃φ. By
Lemma B, s |= ∃3∃φ′. By Lemma D, [[∃φ′]] is contained in the maximla fixpoint
of F . Hence, s |= ∃3νx.F(x).

Exercise 11.21 {T3} [Fixpoint characterization of fairness assumption] Con-
sider a fair graph (K,F ). Every constraint is F is a pair of actions, and suppose
every action α is represented by state predicates p0, . . . pk and q0 . . . qk of K such
that α = [[∨ 0 ≤ i ≤ k. pi ∧ q′i]]K . Given this representation of actions, write a
Ctµ formula that characterizes the faire region of (K,F ).

Thus, the fair region of a fair graph can be characterized in µ-calculus using for-
mulas of alternation depth 2. To characterize the region [[∃2p]]K of fair structure,
only a slight modification is required. For instance, for a Streett assumption F ,
the characteristic region [[∃2p]] equals

p ∃U νx. p ∧
∧

(q, r) ∈ F. [ ∃© (x∃U(r ∧ x)) ∨ (¬q ∧ ∃© x) ].

Theorem 11.5 [From Ctl over fair structures to Ctµ] For every Ctl formula

φ and a fair structure K = (K,F ), there exists a formula ψ of Ctµ2 such that

[[φ]]K = [[ψ]]K and |ψ| = O(|φ| · |F |).

Let a be an update choice of a module P . The strong-fairness constraint of a
is the pair (availa, execa) of actions. After writing the two actions avail a and
execa in the form stipulated by Exercise 11.21, we can write a Ctµ formula that
characterizes the fair region of the fair module.

11.3.3 Model checking

We are given a closed Ctµ formula φ and φ-structure K, we are required to
check if all the initial states of K satisfy φ. For this purpose, we compute the
characteristic region [[φ]]K . Assume that the fomula φ has no name-conflicts in
the use of region variables: every variable x is quantified by a unique fixpoint
operator.

The characteristic region [[φ]]K can be computed using a recursive function Eval .
The table E stores, for every region variable x, a region E(x) of K. The function
Eval takes a formula ψ as an argument, and returns the set of states satisfying
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ψ using the table E to evaluate free variables. If ψ is an atomic formula, the
computation of Eval (ψ) is immediate. If ψ is a conjunction of formulas, then
Eval calls itself recursively on the conjuncts, and returns the intersection of
the results. The case of disjunction is similar. When ψ equals ∃© χ, Eval

calls itself recursively on χ, and returns the set of predecessors of the result.
The evaluation of ∀© χ uses the fact that ∃© and ∀© are duals of each other:
∀© = ¬∃© ¬.

To evaluate a subformula µx. χ, the minimal fixpoint is computed by evaluating
χ repeatedly. In the first iteration, E(x) is chosen to be the empty set, and in
each successive iteration, E(x) is chosen to be the value of Eval (χ) from the
previous iteration. The fixpoint is reached when two consecutive iterations yield
the same result. The number of iterations is bounded by the number of states in
the observation structure. The evaluation of νx. χ is similar, but in this case, in
the first iteration, E(x) is chosen to be the set of all states. A naive implemen-
tation of this recursive scheme would make the depth of recursion equal to the
nesting depth of the formula, resulting in an algorithm with time complexity
O(nk), where k is the nesting depth of the formula. Two improvements are
possible.

First, every closed formula needs to be evaluated just once. For example, con-
sider the formula µx. ψ, where χ is a closed fixpoint subformula of ψ. The invo-
cation Eval (µx. ψ) results in repeated calls to Eval(ψ), and hence to Eval (χ),
each time with a different value of E(x). However, χ is a closed formula, and
its value does not depend on E(x). Consequently, it needs to be evaluated only
once. For this purpose, we use a hash-table Done that stores the results of
evaluating closed formulas. Upon invocation, Eval checks if its input formula
is closed, and if so, whether it has already been evaluated by consulting the
hash-table.

Second, consider the formula µx. φ, where ψ = µy. χ is a disjunct of φ. Let σ0

be the empty set. The first iteration in Eval (µx. φ) calls Eval (φ) with E(x) =
σ0. This involves evaluation of the fixpoint formula ψ, which itself involves an
iterative computation of χ during which the region E(y) keeps growing. Let
τ0 = [[ψ]] and σ1 = [[φ]] with E(x) = σ0. If σ0 is a strict subset of σ1, the
second iteration in Eval (φ) calls Eval(ψ) with E(x) = σ1. This would result in
repeated evaluation of χ starting with E(y) to be the empty set until the value
of E(y) becomes stable. Let τ1 = [[ψ]] with E(x) = σ1. However, due to the
monotonicity property, τ0 ⊆ τ1. This implies that, instead of computing τ1 as
a fixpoint starting with E(y) as empty set, we can speed up the convergence
by choosing E(y) to be τ0 in the first iteration. That is, there is no need to
reinitialize E(y) from τ0 to the empty set when E(x) is updated from σ0 to σ1.
With this improved policy, Eval (χ) is called only n times, rather than n2 times.
The validity of this optimization is captured by the following proposition.
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Proposition 11.16 [Optimization in Ctµ model checking] Let K be an ob-

servation structure with finitely branching transition relation, and φ be a Ctµ

formula. Let E and E′ be region environments such that for every region variable

y that is free in µx. φ, E(y) ⊆ E′(y). Then,

[[µx. φ]]E′ =
⋃

i ∈
�
.(Fφ

E′ )
i([[µx. φ]]E),

and

[[νx. φ]]E =
⋂

i ∈
�
.(Fφ

E
)i([[νx. φ]]E′ ).

Proof. We consider the case corresponding to the least fixpoints. Whenever a
function F is

⋃

-continuous, by Kleene fixpoint theorem, its least fixpoint can
be computed by repeatedly applying F to the minimal element–the empty set:
µF =

⋃

i ∈
�
.F i (∅). A slight generalization of the Kleene fixpoint theorem

states that the least fixpoint of F can be computed by repeatedly applying F
to any element that is smaller than the least fixpoint; that is, for any σ ⊆ µF ,
µF =

⋃

i ∈
�
.F i (σ).

If K has a finitely branching transition relation, Fφ
E′ is

⋃

-continuous. hence,

[[µx. φ]]E′ equals
⋃

i ∈
�
. (Fφ

E′ )i(σ) for any region σ ⊆ [[µx. φ]]E′ . It suffices
to show that [[µx. φ]]E ⊆ [[µx. φ]]E′ . This can be proved, by induction on the
structure of φ, using the assumption that for every region variable y that is free
in µx. φ, E(y) ⊆ E′(y).

The reinitialization is necessary only when there is a switch in the fixpoint quan-
tifiers. The resulting algorithm is shown in Figure 11.2. When Eval is invoked
on a fixpoint subformula µx. φ, the if the enclosing fixpoint subformula is a ν-
formula, then E(x), together with the variables corresponding to µ-subformulas
of φ that have no enclosing ν-subformula within φ, are initialized to the empty
set. Otherwise, E(x) is left unchanged, and equals the value returned by the
previous invocation of Eval (φ).

The algorithm uses the following new operations:

Closed? : form 7→ � . Given a Ctµ formula ψ, Closed?(ψ) returns true if ψ is
closed.

Switch? : form× form 7→ � . For Ctµ formulas ψ and φ, Switch?(ψ, φ) returns
true iff there exists a formula χ different from ψ such that (1) ψ is a fixpoint
subformula of χ, (2) χ is a fixpoint subformula of φ, (3) there is no formula
χ′ such that χ′ is a fixpoint subformula of χ and ψ is a subformula of χ′,
and (4) the fixpoint-types of ψ and χ are different.

AtomEval . Given a atomic formula p and an observation structureK, AtomEval(p,K)
returns the characteristic region [[p]]K .
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Algorithm 11.1 [Symbolic Ctµ model checking]

Input: a closed Ctµ formula φ, and a φ-structure K with a finitely-
branching transition relation.

Output: the answer to the model-checking problem (K,φ).

local Done : table of form × region; E : table of var × region

Σ := AtomEval (true,K);
Done := EmptyTable ; E := EmptyTable ;
if InitReg(K) ⊆ Eval (φ) then return Yes else return No.

function Eval

input ψ: form

if Closed?(ψ) and Done[ψ] 6=⊥ then return Done[ψ] fi;
case ψ = p for an atomic formula p: σ := AtomEval(p,K)
case ψ = ¬p for an atomic formula p: σ := Σ \ AtomEval(p,K)
case ψ = χ1 ∨ χ2: σ := Eval(χ1) ∪ Eval (χ2)
case ψ = χ1 ∧ χ2: σ := Eval(χ1) ∩ Eval (χ2)
case ψ = ∃© χ: σ := PreReg(Eval(χ),K)
case ψ = ∀© χ: σ := Σ \ PreReg(Σ \ Eval(χ),K)
case ψ = µx. χ:

if Switch?(ψ, φ) or Closed?(ψ) then Initialize(ψ,mu) fi;
repeat σ := E(x); E(x) := Eval (χ) until σ = E(x);

case ψ = νx. χ:
if Switch?(ψ, φ) or Closed?(ψ) then Initialize(ψ, nu) fi;
repeat σ := E(x); E(x) := Eval (χ) until σ = E(x);

case ψ = x: σ := E(x);
end case

if Closed?(ψ) then Done[ψ] := σ;
return σ

end.

function Initialize

input ψ: form; m : {mu, nu}
case ψ = p for an atomic formula p:
case ψ = ¬p for an atomic formula p:
case ψ = χ1 ∨ χ2: Initialize(χ1,m); Initialize(χ2,m)
case ψ = χ1 ∧ χ2: Initialize(χ1,m); Initialize(χ2,m)
case ψ = ∃© χ: Initialize(χ,m)
case ψ = ∀© χ: Initialize(χ,m)
case ψ = µx. χ:

if m = mu then E(x) := EmptySet ; Initialize(χ,m) fi

case ψ = νx. χ:
if m = nu then E(x) := Σ; Initialize(χ,m) fi

case ψ = x:
end case

end.

Figure 11.2: Symbolic Ctµ model checking
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Theorem 11.6 [Correctness of Ctµ model checking] Given an observation

structureK with finite bisimulation, and a closed Ctµ formula φ, Algorithm 11.1

terminates with the correct answer to the model checking problem (K,φ).

Theorem 11.7 [Complexity of Ctµ model checking] Let K be a finite obser-

vation structure with n states and m transitions, and let φ be a closed Ctµ

formula with length ` and alternation-depth k. Algorithm 11.1 solves the model

checking problem (K,φ) in time O((` · (m+ n))k+1).

If the input structure for Algorithm 11.1 is finite, then all state predicates that
are computed by the algorithm can be viewed as propositional formulas. An im-
plementation of symbolic Ctµ model checking for finite observation structures,
then, may use BDDs. By Theorem 11.5, we can reduce the verification problem
for Ctl over fair modules to the Ctµ verification problem. Consequently, we
have symbolic procedure for Ctl verification.
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Chapter 12

Automata-theoretic

Liveness Verification

In this chapter, we extend the automata-theoretic approach studied in Chapter 8
for safety requirements to liveness requirements. In the automata-theoretic
liveness verification, a fair module is viewed as a generator of an ω-language,
namely, the set of its fair traces, the requirement is specified by an ω-automaton
that accepts only the desired ω-traces, and the verification problem corresponds
to inclusion between these two ω-languages.

12.1 ω-Automata

A fair structure K consists of an observation structure K and a fairness as-
sumption F . Each fair structure defines the ω-language LK over the set of its
observations consisting of the set of ω-traces corresponding to initialized F -fair
ω-trajectories. Fair structures can be used to specify requirements also. In their
role as a specification language, fairness constraints are usually specified using
regions rather than actions. In this role, fairness constraints should be viewed
as accepting conditions that classify ω-trajectories into accepting and rejecting
rather than assumptions about fair resolution of choice. We will concentrate on
two types of accepting conditions: Büchi acceptance and Streett acceptance.

1
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Büchi automata

Finite structures with a single weak-fairness constraint specified by a region are
called Büchi automata.

Büchi automaton

A Büchi automaton M consists of (1) a finite observation structure K and
(2) [the repeating region] a region σA of K. An initialized ω-trajectory s

of K is accepted by the Büchi automaton M if si ∈ σA for infinitely many
positions i ≥ 0. The ω-language LM of the Büchi automaton M is the
set of traces corresponding to initialized accepted trajectories of M. The
Büchi automaton (K, σA) is deterministic if the observation structure K is
deterministic.

Note that syntactically a Büchi automaton is identical to an ordinary automa-
ton. In an ordinary automaton, a (finite) trajectory is accepted if it terminates
in an accepting state; in a Büchi automaton, an ω-trajectory is accepted if its
visits a repeating state infinitely often.

Example 12.1 [Büchi languages] Let A = {a, b}. The Büchi automaton M1

of Figure 12.1 accepts the response language (b∗a)ω consisting of ω-words that
contain infinitely many a symbols. The Büchi automaton M2 of Figure 12.1
accepts the persistence language A∗aω consisting of ω-words with a suffix con-
taining only a symbols. Note that the automaton M2 is nondeterministic (it
guesses the beginning of the suffix containing only a symbols).

Let A = {a, b, c}. The nondeterministic Büchi automaton M3 of Figure 12.1
accepts the reactivity language consisting of ω-words that contain either only
finitely many a symbols or infinitely many b symbols. Note that “finitely many
a or infinitely many b” is equivalent to “infinitely many b or eventually always
c.”

Remark 12.1 [Multi-Büchi automaton] A multi-Büchi automaton M consists
of (1) a finite observation structure K, and (2) a finite set F of repeating re-

gions of K. An initialized ω-trajectory s of K is accepted by the multi-Büchi
automaton M if for every repeating region σ ∈ F , si ∈ σ for infinitely many
positions i ≥ 0. Thus, a multi-Büchi automaton is a weak-fair structure all of
whose weak-fairness constraints are specified by regions.

Exercise 12.1 {P2} [CoBüchi automata] A CoBüchi automaton M consists of
(1) a finite observation structure K and (2) [the stable region] a region σA of
K. An initialized ω-trajectory s of K is accepted by the CoBüchi automaton
M if it has a suffix all of whose states are in the stable region: there exists i ≥ 0
such that sj ∈ σA for all j ≥ i. Note that syntactically a CoBüchi automaton is



Automata-theoretic Liveness Verification 3

c

Automaton M1

Automaton M3

Automaton M2

b

a b

a b

c

Figure 12.1: Sample Büchi automata

like a Büchi automaton or an ordinary automaton. Semantically, the CoBüchi
automaton (K, σA) is like the fair structure (K, {(Σ\σA, ∅)}).

Consider the alphabet A = {a, b}. (1) Find a CoBüchi automaton whose ω-
language is the persistence language A∗aω consisting ω-words with a suffix con-
taining only a symbols. (2) Consider the response language (b∗a)ω consisting of
ω-words with infinitely many a symbols. Can you draw a CoBüchi automaton
that accepts this langauge?

Streett Automata

Finite structures with a fairness constraints specified by regions are called
Streett automata.
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a

Streett Automaton M

Fairness constraint =(s, t)

s t

u

c

b

Figure 12.2: Sample Streett automaton

Streett automaton

A Streett automaton M consists of (1) a finite observation structure K and
(2) [the Streett constraints ] a finite set F of pairs of regions. An initialized
ω-trajectory s of K is accepted by the Streett automaton M if for every
Streett constraint (σ, τ) ∈ F , if s is σ-fair then s is τ -fair. The ω-language

LM of the Streett automaton M is the set of ω-traces corresponding to
initialized accepted ω-trajectories of M.

Remark 12.2 [Büchi as a special case of Streett] A Büchi automaton (K, σA)
can be viewed as the Streett automaton (K, {(Σ, σA)}) with a single Streett
constraint.

Example 12.2 [Streett language] Let A = {a, b, c}. The nondeterministic
Büchi automaton M3 of Figure 12.1 accepts the reactivity language consist-
ing of ω-words that contain either only finitely many a symbols or infinitely
many b symbols. The same ω-language is accepted by the deterministic Streett
automaton M of Figure 12.2. There is a single Streett constraint ({s}, {t}).

Exercise 12.2 {P2} [Rabin automata] A Rabin automaton M is syntactically
identical to a Streett automaton, and consists of (1) a finite observation structure
K and (2) [the Rabin constraints ] a finite set F of pairs of regions. An initialized
ω-trajectory s of K is accepted by the Rabin automaton M if there exists a
Rabin constraint (σ, τ) ∈ F such that s is σ-fair and but not τ -fair. Thus,
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semantically a Rabin automaton is the dual of the Streett automaton: Streett
acceptance has the form

∧
(σ, τ) ∈ F. [¬(σ-fair) ∨ τ -fair ],

while Rabin acceptance requires
∨

(σ, τ) ∈ F. [σ-fair ∧ ¬(τ -fair) ].

Let A = {a, b, c}. Find a deterministic Rabin automaton M accepting the
reactivity language consisting of ω-words that contain either only finitely many
a symbols or infinitely many b symbols.

Exercise 12.3 {T3} [Muller automata] A Muller automaton M is syntactically
like a multi-Büchi automaton, and consists of (1) a finite observation structure
K and (2) [the Muller acceptance] a finite set F of regions of K. An initialized
ω-trajectory s of K is accepted by the Muller automaton M if the set {s ∈ Σ |
si = s for infinitely many i ≥ 0} of states repeating infinitely often along s is
in F . Show that Streett automata as well as Rabin automata are special cases
of Muller automata.

The ω-language-inclusion problem

The ω-language-inclusion problem asks whether every ω-trace accepted by one
ω-automaton is also accepted by another ω-automaton.

The ω-language-inclusion problem

An instance (M1,M2) of the ω-language-inclusion problem consists of two
ω-automata M1 and M2 over the same observation alphabet A. The answer
to the ω-language-inclusion problem (M1,M2) is Yes if LM1

⊆ LM2
, and

otherwise No.

Note that in an instance (M1,M2) of the ω-language-inclusion problem, each
of the ω-automata M1 and M2 may be either a fair structure, or a Büchi
automaton, or a Streett automaton.

Automata as specifications

ω-automata can be used for specifying requirements of fair modules. As in case
of the logic Sal, the observations of the requirements automaton are boolean
expressions over the observable variables of modules. We define the fair state
logic Lal whose formulas are Büchi and Streett automata.
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yx

Figure 12.3: The Lal formula M∀U

pc
1
6= reqC

Figure 12.4: Starvation freedom in live automaton logic

Live automaton logic

A formula of the fair state logic live automaton logic (Lal) is a Büchi or a
Streett automaton M whose observations are boolean expressions.

Given a formula M of Lal, a fair structure K is a M-structure if each
observation of K is a valuation for a superset of the variables appearing in
the observations of M.

The satisfaction relation for Lal is defined by:

s |=K M iff for every source-s fair ω-trajectory s of K
there is an accepting ω-trace a ∈ LM such that
for all i ≥ 0, si |= ai.

In other words, a state s of K satisfies the requirement specified by the ω-
automaton M if for every source-s fair ω-trace a of K, we can find an initialized
accepting ω-trace b of M such that every observation in a is consistent with the
corresponding expression in b.

Example 12.3 [Lal] The Lal formula M∀U shown in Figure 12.3 asserts that,
given a state s, every source-s fair ω-trajectory contains a state satisfying y

which is preceded only by states satisfying x. The formula M∀U can be inter-
preted at states of a fair structure whose observations assign values to x and y.
It follows that the Lal formula M∀U is equivalent to the Ctl formula x∀Uy.
Contrast the specification M∀U with the Sal specification MW corresponding
to the Stl formula x∀Wy (see Example 8.2).
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Example 12.4 [Starvation freedom in live automaton logic] Recall the star-
vation freedom requirement for mutual exclusion protocols. The requirement
that pc1 6= reqC be a recurrent is expressed in Lal by the Büchi automaton of
Figure 12.4.

Lal model checking

The model-checking problem for Lal can be reduced to the ω-language-inclusion
problem. As in case of Sal, we expand each ω-automaton M of Lal to a larger
automaton EM whose observations are valuations to the variables appearing in
the observations of M. Recall the definition of the expansion operator E from
Chapter 8. To obtain expansion of an ω-automaton, we apply the expansion
operation to the underlying observation structure, and modify the accepting
condition appropriately.

Expansion of an Lal automaton

For a Büchi automaton M = (K, σA) given as a Lal formula, the expansion

EM is another Büchi automaton: (1) the observation structure of EM is
EK, and (2) the repeating region of EM is σA ⇑.

For a Streett automaton M = (K, F ) given as a Lal formula, the expansion

EM is another Streett automaton: (1) the observation structure of EM
is EK, and (2) for every (σ, τ) ∈ F , the automaton EM has the Streett
constraint (σ ⇑, τ ⇑).

Exercise 12.4 {P1} [Lal expansion] Draw the expanded Büchi automaton
corresponding to the Lal specification M∀U of Figure 12.3.

It follows that checking whether a fair structure satisfies an Lal automaton
M is equivalent to checking whether K satsifies the expanded ω-automaton
EM, which in turn corresponds to checking whether the fair language of K is
contained in the fair language of EM.

Proposition 12.1 [Lal model checking] The Lal model-checking problem (K,M)
and the ω-language-inclusion problem (K, EM) have the same answer.

12.2 Operations on ω-automata

To solve the ω-language inclusion problem (M1,M2), we first obtain an ω-
automaton that accepts the complement of the ω-language accepted by M2,
then construct its product with M1, and solve the fair emptiness problem on
the resulting ω-automaton.
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12.2.1 Product

Given two ω-automata M1 and M2, we wish to define another ω-automaton
that accepts the intersection of the ω-languages of M1 and M2. For this pur-
pose, we resort to the product construction described in Section 8.3.2 over ob-
servation structures. Consider two observation structures K1 and K2, and let
K1 × K2 be their product. Let s be an ω-trajectory of the product. Then,
by the definition of the product, there exists an ω-trajectory t of K1 and an
ω-trajectory u of K2 such that s = (t0, u0)(t1, u1) · · ·. Observe that, for a region
σ of K1, the ω-trajectory t of K1 is σ-fair iff the ω-trajectory s of the product
is (σ ⇑)-fair. Similarly, for a region σ of K2, the ω-trajectory u of K2 is σ-fair
iff the ω-trajectory s of the product is (σ ⇑)-fair. In other words, fairness with
respect to a region σ in a component translates to fairness with respect to the
lifted region σ ⇑ in the product. Similarly, fairness with respect to an action
α in a component translates to fairness with respect to the lifted action α ⇑ in
the product. This leads to a natural definition of product for ω-automata.

Product of ω-automata

Let M1 = (K1, F1) and M2 = (K2, F2) be two Streett automata. The
product M1 ×M2 is the Streett automaton (K1 ×K2, {(σ ⇑, τ ⇑) | (σ, τ) ∈
F1 ∪ F2}).

Let K1 = (K1, F1) and K2 = (K2, F2) be two fair structures. The product
K1 ×K2 is the fair structure (K1 × K2, {(α ⇑, β ⇑) | (α, β) ∈ F1 ∪ F2}).

Proposition 12.2 [Product of ω-automata] If M1 and M2 are two Streett

automata, then LM1×M2
= LM1

∩ LM2
. If K1 and K2 are two fair structures,

then LK1×K2
= LK1

∩ LK2
.

Remark 12.3 [Cost of product] Let M1 be a Streett automaton with n1 states,
m1 transitions, and `1 Streett constraints. Let M2 be a Streett automaton
with n2 states, m2 transitions, and `2 Streett constraints. Then, the product
M1 ×M2 has at most n1 · n2 states, at most m1 · m2 transitions, and `1 + `2

Streett constraints.

Product of Büchi automata

The product of two Büchi automata (K1, σ
A
1 ) and (K2, σ

A
2 ) can be defined to be

the multi-Büchi automaton (K1×K2, {σA
1 ⇑, σA

2 ⇑}). However, by introducing a
counter, as described in Section 11.3.2, we can define product of Büchi automata
to be a Büchi automaton. The states of the product are, then, of the form
(s, t, i), where s is a state of K1, t is a state of K2, and i is a counter that can
be either 1 or 2. The counter is updated from 1 to 2 when an accepting state
of K1 is visited, and from 2 to 1 when an accepting state of K2 is visited. The
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Product Automaton M1 ×M2

a b

s t

Automaton M2

a b

u v

a b

s, u, 2 t, v, 2

a b

s, u, 1 t, v, 1

Figure 12.5: Product construction for Büchi automata

accepting condition of the product requires infinitely many updates from 2 to
1.

Product of Büchi automata

Let M1 = (Σ1, σ
I
1 ,→1, A, 〈〈·〉〉1, σ

A
1 ) and M2 = (Σ2, σ

I
2 ,→2, A, 〈〈·〉〉2, σ

A
2 )

be two Büchi automata. The product M1 × M2 is the Büchi automaton
(Σ, σI ,→, A, 〈〈·〉〉, σA):

• Σ = {(s1, s2, i) | s1 ∈ Σ1, s2 ∈ Σ2, 〈〈s1〉〉1 = 〈〈s2〉〉2, and i ∈ {1, 2}};

• (s1, s2, i) ∈ σI iff s1 ∈ σI
1 , s2 ∈ σI

2 , and i = 1;

• (s1, s2, i) → (t1, t2, j) iff s1 →1 t1, s2 →2 t2, if i = 1 then if s1 ∈ σA
1

then j = 2 else j = 1, and if i = 2 then if s2 ∈ σA
2 then j = 1 else

j = 2;

• 〈〈(s1, s2, i)〉〉 = 〈〈s1〉〉1 = 〈〈s2〉〉2;

• (s1, s2, i) ∈ σA if i = 2 and s2 ∈ σA
2 .

Proposition 12.3 [Product of Büchi automata] If M1 and M2 are two Büchi

automata, then LM1×M2
= LM1

∩ LM2
.
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{s, u}

b

a

{s} {t}

Figure 12.6: Subset construction does not work for Büchi acceptance

Example 12.5 [Product of Büchi automata] Consider the two Büchi automata
M1 and M2 of Figure 12.5. The automaton M1 accepts all ω-words that
contain infinitely many a symbols, while M2 accepts all ω-words that contain
infinitely many b symbols. The result of applying the product construction
contains 4 states, of which the only accepting state is (t, v, 2). Verify that the
product accepts precise those ω-words that contain infinitely many a symbols
as well as infinitely many b symbols.

Remark 12.4 [Product of deterministic Büchi automata] If M1 and M2 are
deterministic Büchi automata, then so is their product M1 × M2. Thus, the
class of ω-languages definable by deterministic Büchi automata is closed under
intersection.

Exercise 12.5 {T2} [Product of CoBüchi automata] Given two CoBüchi au-
tomata M1 and M2, define a CoBüchi automaton M1 ×M2 that accepts the
intersection of the ω-languages of M1 and M2.

12.2.2 Complementation

We turn our attention to the problem of complementing a Büchi automaton.
Recall that for an ordinary automaton, its complement is constructed by first
determinizing the observation structure using the subset construction, followed
by completion by adding dummy states, followed by inversion of the accepting
condition. Given a Büchi automaton M = (K, σA), can we add accepting
conditions to the determinized structure ∆K without changing the ω-language
accepted by M? The obstacle in such an approach is illustrated by the following
example.

Example 12.6 [Subset construction and Büchi automata] Recall the Büchi au-
tomaton M2 from Figure 12.1 that accepts the persistence language A∗aω. The
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determinized structure obtained by subset construction is shown in Figure 12.6.
Declaring the state corresponding to the subset {s, u} to be repeating does not
preserve the ω-language of M2.

The problem with the subset construction is that states of the determinized
structure may contain both repeating and nonrepeating states. Complementing
a nondeterministic Büchi automaton turns out to be a nontrivial problem. Con-
sequently, existing model checkers do not support nondeterministic ω-automata
as specifications. However, understanding the complementation procedure pro-
vides insights into the structure of ω-automata.

We begin by some preliminary definitions. Let A be a finite alphabet. An
equivalence relation ∼⊆ A∗ ×A∗ over words over A is said to be a congruence

(with respect to concatenation) if for all words a, b, and c, if a ∼ b then a·c ∼ b·c
and c ·a ∼ c ·b. By a finite equivalence relation, we mean an equivalence relation
with finitely many equivalence classes.

Let M = (Σ, σI ,→, A, 〈〈·〉〉, σA) be a Büchi automaton. We are going to establish
that both LM and and its complement can be expressed as finite unions of ω-
languages of the form L1 · Lω

2 , where L1 and L2 are blocks of a certain finite
congruence on A∗.

For two state s and t of M, and a word a0...m over A, define s αT a t

if there is a trajectory s0...m of M such that s0 = s, sm = t, and
〈〈si〉〉 = ai for all 0 ≤ i ≤ m.

That is, s αT a t means that the trace a can lead the automaton from the initial
state s to the final state t.

For two state s and t of M, and a word a0...m over A, define s αT a′ t if
there is a trajectory s0...m of M such that s0 = s, sm = t, 〈〈si〉〉 = ai

for all 0 ≤ i ≤ m, and sj ∈ σA for some 0 ≤ j ≤ m.

That is, s αT a′ t means that the trace a can lead the automaton from the initial
state s to the final state t via a trajectory that visits some repeating state. Now
we are ready to define the desired equivalence relation on A∗ induced by M:

For two words a and b over A, a ∼M b iff for all states s and t of

M, (1) s αT a t iff s αT b t, and (2) s αT a′ t iff s αT b
′
t.

First, we note that the equivalence ∼M is a finite congruence:

Lemma 12.1 [Congruence] The equivalence relation ∼M over A∗ is a congru-

ence with respect to concatenation.

Proof. Left as an exercise.
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Lemma 12.2 [Finiteness] The equivalence relation ∼M over A∗ is finite, and

has at most 22n2

classes if M has n states.

Proof. For every two states s and t of M, let Ls,t be the language containing
words a such that s αT a t, and let L′

s,t be the language containing words a such

that s αT a′ t. Let Π be the set of these 2n2 languages. Now an equivalence class
of ∼M corresponds to a subset of Π: given a subset Π′ ⊆ Π, the intersection

[
⋂

L ∈ Π′. L ] ∩ [
⋂

L 6∈ Π′. A∗\L ]

defines an equivalence class of ∼M. It follows that the number of subsets of Π
is an upper bound for the number of equivalence classes of ∼M.

The next lemma asserts a saturation property of the ∼M-equivalence classes
with respect to the ω-language accepted by M:

Lemma 12.3 [Saturation] Let L1 and L2 be two equivalence classes of the con-

gruence ∼M. Then, if L1 · Lω
2 ∩ LM is nonempty then L1 · Lω

2 ⊆ LM.

Proof. Let L1 and L2 be two equivalence classes of ∼M. Suppose L1 ·L
ω
2 ∩LM

is nonempty, and contains the ω-word a. Since a ∈ L1 · Lω
2 , it is of the form

b0 · b1 · b2 · · ·, where the word b0 is in L1 and for i ≥ 1, the word bi is in L2.
Since a is accepted by M, there exists an initialized accepting ω-trajectory
corresponding to a. Thus, there exist states s0, s1, . . . such that

s0 αT b0 s1 αT b1 s1 αT b2 · · ·

Furthermore, for infinitely many indices i, si αT bi
′
si+1.

Now consider another word c ∈ L1 · Lω
2 . We need to establish that M accepts

c also. The ω-word c is of the form d0 · d1 · d2 · · · such that the word d0 is in L1

and for i ≥ 1, the word di is in L2. Since L1 and L2 are equivalence classes of
∼M, bi ∼M di for all i ≥ 0. It follows that

s0 αT d0 s1 αT d1 s1 αT d2 · · ·

and for infinitely many indices i, si αT di
′
si+1. We conclude that there is an

initialized accepting trajectory corresponding to the ω-word c.

The next lemma asserts that ω-languages of the form L1 ·Lω
2 cover the set of all

ω-words, provided L1, L2 range over equivalence classes of a finite congruence.

Lemma 12.4 [Coverage] Let ∼ be a finite congruence over A∗, and let a be an

ω-word over A. Then, there exist equivalence classes L1 and L2 of ∼ such that

a ∈ L1 · Lω
2 .
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Proof. Let ∼ be a finite congruence relation over A∗, and let a be an infinite
word over A. We say that two indices i and j merge at an index k > i, j if
ai...k ∼ aj...k. For two indices i and j, define i ∼= j if they merge at some index.
Verify that ∼= is an equivalence relation over the set of nonnegative integers.
Furthermore, given a finite subset D of nonnegative integers such that D has
more elements than the number of equivalence classes of ∼, if we choose k such
that k > i for all i ∈ D, then the set {ai...k | i ∈ D} must contain two ∼-
equivalent words. It follows that the equivalence relation ∼= itself is finite (the
number of equivalence classes of ∼= is bounded by the number of equivalence
classes of ∼).

Finiteness of ∼= implies that there exists an infinite sequence i0 < i1 < i2 < · · ·
of indices that are ∼=-equivalent to each other. Note that for every j ≥ 1, all
the indices i0, i1, . . . ij merge at some k > ij . Without loss of generality, we
may assume that for every j ≥ 1, all the indices i0, i1, . . . ij merge at ij+1 (this
is because we can delete indices from the original sequence, and if i0, i1, . . . ij
merge at k then they merge at every k′ > k as ∼ is a congruence). It follows
that there is an infinite sequence i0, i1, i2, . . . of indices such that

1. all the words in {ai0...ij
| j ≥ 1} belong to the same equivalence class of

∼, let this class be L2,

2. for all j < j′ < k, the indices ij and ij′ merge at ik.

From (1), ai0...i1 is in L2. For all j ≥ 1, ai0...ij+1
is in L2 by (1), and ai0...ij+1

is
∼-equivalent to aij ...ij+1

by (2). It follows that for all j ≥ 0, aij ...ij+1
is in L2.

It follows that the suffix ai0... is in Lω
2 . This completes the proof.

Since ∼M is a finite congruence, it follows that the set

{L1 · L
ω
2 | L1, L2 are equivalence classes of ∼M}

covers Aω, and then, by the saturation property, the ω-language accepted by
M corresponds to a subset of this set, and the complement defines the comple-
mentary language.

Corollary 12.1 [Structure of Büchi language] The ω-language LM accepted by

the Büchi automaton M equals
⋃

{L1 · L
ω
2 | L1, L2 are equivalence classes of ∼M and L1 · L

ω
2 ∩ LM 6= ∅},

and the complementary ω-language Aω\LM equals
⋃

{L1 · L
ω
2 | L1, L2 are equivalence classes of ∼M and L1 · L

ω
2 ∩ LM = ∅}.

Proof. Follows from Lemmas 12.1, 12.2, 12.3, and 12.4.

The next proposition asserts that if L1 and L2 are two regular languages then
the ω-language L1 · Lω

2 is accepted by a Büchi automaton.
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Proposition 12.4 [Regular concatenation] If L1 and L2 are two regular lan-

guages over A then the ω-language L1 ·Lω
2 is accepted by some Büchi automaton.

Proof. Let L1 be a regular language accepted by the automaton M1 =
(Σ1, σ

I
1 ,→1, A, 〈〈·〉〉1, σ

A
1 ), and let L2 be a regular language accepted by the au-

tomaton M2 = (Σ2, σ
I
2 ,→2, A, 〈〈·〉〉2, σ

A
2 ). The ω-automaton accepting L1 ·Lω

2 is
obtained by taking disjoint union of the two automata M1 and M2, and adding
transitions from accepting states of M1 to the initial states of M2, and from
accepting states of M2 to the initial states of M2. Specifically, define the Büchi
automaton M over the alphabet M: (1) the state-space of M is Σ1 ∪ Σ2 (as-
suming Σ1 and Σ2 are disjoint sets), (2) the initial region of M is σI

1 , (3) the set
of transitions of M equals →1 ∪ →2 ∪(σA

1 ×σI
2)∪ (σA

2 ×σI
2), (4) the observation

of a state s of M is 〈〈s〉〉1 if s ∈ Σ1 and 〈〈s〉〉2 otherwise, (5) the repeating region
of M is σA

2 . Verify that an ω-word a is accepted by the Büchi automaton M
precisely when it belongs to L1 · L

ω
2 .

Remark 12.5 [Regular concatenation] If the regular language L1 is accepted
by an automaton with n1 states, and the regular language L2 is accepted by an
automaton with n2 states, then L1 ·Lω

2 is accepted by a Büchi automaton with
n1 + n2 states.

Theorem 12.1 [Büchi Theorem on Complementation Closure] Given a Büchi

automaton M, there exists a Büchi automaton M′ such that LM′ = Aω\LM.

Proof. Let M be a Büchi automaton. The languages Ls,t and L′
s,t defined

in the proof of Lemma 12.2 are regular languages. Since regular languages are
closed under complement and intersection, from the proof of Lemma 12.2 it
follows that every equivalence class of ∼M is a regular language. By Proposi-
tion 12.4, for two equivalence classes L1 and L2 of ∼M, the ω-language L1 ·L

ω
2

is accepted by a Büchi automaton. Since Büchi automata are closed under
union, from Corollary 12.1, it follows that Aω\LM is accepted by some Büchi
automaton.

Complexity of Complementation

Let us now analyze the bound on the size of the Büchi automaton accepting
the complement of LM obtained by our construction. Suppose M has n states.
Recall that Ls,t, for two states s and t of M, is the language containing words
a such that s αT a t. It follows that there an automaton accepting Ls,t with n

states (use the same states and transitions of M, but declare s to be initial and
t to be accepting). The language L′

s,t containing words a such that s αT a′ t can
be accepted by an automaton with 2n states (the state-space of M is doubled
to keep track of whether an accepting state has been visited or not). It follows
that the language A∗\Ls,t is accepted by an automaton with 2n states, and
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the language A∗\L′
s,t is accepted by an automaton with 4n states (complemen-

tation may require determinization). Recall that an equivalence class of ∼M

corresponds to a subset Π′ of the set Π containing 2n2 languages Ls,t, L′
s,t. Such

an equivalence class Π′ is defined by the product of the automata accepting L

for L ∈ Π′ and the automata accepting A∗\L for L 6∈ Π′. Consequently, the
bound on the size of the automaton accepting an equivalence class of ∼M is
(2n)n2

· (4n)n2

, which equals 23n3

.

The number of states of the Büchi automaton accepting L1 ·Lω
2 equals the sum

of the number of states of the automata accepting L1 and L2. Thus, for two
equivalence classes L1 and L2 of ∼M, there is a Büchi automaton with 23n3+1

states accepting L1 · Lω
2 .

The number of states of the Büchi automaton accepting the union of ω-languages
equals the sum of the number of states of the Büchi automata accepting the
disjuncts. Since the number of pairs of equivalence classes of ∼M is 24n2

, from
Corollary 12.1, the next theorem follows.

Theorem 12.2 [Complexity of Büchi complementation] Given a Büchi au-

tomaton M with n states, there exists a Büchi automaton M′ with 23n3+4n2+1

states such that LM′ = Aω\LM.

Note that to construct the desired complement automaton, we need to construct,
for every pair L1 and L2 of equivalence classes of ∼M, the Büchi automaton
accepting L1 · Lω

2 , and check if it has a nonempty intersection with LM. We
have already outlined the product construction to obtain intersection of the
languages accepted by two Büchi automata. Algorithms for checking fair cycles
from Chapter 10 can be used to check for emptiness.

Remark 12.6 [Safra’s Construction] The complementation construction pre-

sented here yields an automaton with 23n3+4n2+1 states. Better constructions
are known. In particular, Safra’s complementation algorithm produces an au-
tomaton with 2O(n·log n) states. This is essentially optimal: 2n·log n is a lower
bound on the number of states necessary to define complements of a family of
Büchi automata.

Complementing Streett automata

To establish that a Streett automaton can be complemented, we show that every
Streett automaton has a language-equivalent Büchi automaton.

Proposition 12.5 [From Streett to Büchi] Let M be a Streett automaton over

A. There exists a Büchi automaton M′ over A such that LM = LM′ .

Proof. Let M = (Σ, σI ,→, A, 〈〈·〉〉, F ) be a Streett automaton. Recall that an
ω-trajectory s is F -fair iff there exists a subset F ′ ⊆ F of Streett constraints
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and an index i ≥ 0 such that (1) for every (σ, τ) ∈ F , s is τ -fair, and (2) for
every (σ, τ) 6∈ F , sj 6∈ σ for all j ≥ i.

Suppose F has ` Streett constraints. The Büchi automaton M′ has 2`+1 copies
of the observation structure of M, an initial copy together with a copy for every
subset F ′ ⊆ F of Streett constraints of M. The automaton starts in the initial
copy, and at some point, guesses the set F ′ ⊆ F of Streett constraints (σ, τ)
such that the region τ is going to repeat infinitely many times, and switches to
the copy corresponding to F ′. The copy corresponding to the set F ′ ensures
that, for every (σ, τ) ∈ F ′, τ is visited infinitely often, and for every (σ, τ) 6∈ F ′,
σ is not visited. To enforce that, for every (σ, τ) ∈ F ′, τ is visited infinitely
often, we introduce a counter as in the translation from multi-Büchi constraints
to Büchi constraint. To enforce that, for every (σ, τ) 6∈ F ′, σ is not visited, we
delete the states in σ. The formal definition of M′ is left as an exercise.

Remark 12.7 [From Streett to Büchi] If M is a Streett automaton with n

states and ` Streett constraints, the corresponding language-equivalent Büchi
automaton constructed according to the proof of Proposition 12.5, has n+n·`·2`

states. Thus, simulating a set of Streett constraints by a single Büchi constraint
causes a blow-up exponential in the number of constraints. Such a blow-up can
be shown to be essential.

Given a Streett automaton, we can first construct the equivalent Büchi automa-
ton, and then complement it using the complementation construction for Büchi
automata.

Theorem 12.3 [Complementation of Streett automata] Given a Streett au-

tomaton M with n states and ` Streett constraints, there exists a Büchi au-

tomaton M′ with 2O(n3
·23`) states such that LM′ = Aω\LM.

Exercise 12.6 {T3} [Complementing deterministic Streett automata] Let M =
(K, F ) be a Streett automaton such that K is a deterministic and complete ob-
servation structure. Show that if F is interpreted as a Rabin accepting condition,
then the resulting language is the complement of LM.

12.3 Expressiveness

12.3.1 ω-regular languages

In Chapter 10, we defined different ways of constructing ω-languages from lan-
guages of finite words. In particular, we defined the operators safe, guar, recur,
and persist. If the languages to which these operators are applied are regular,
then the resulting ω-languages are ω-regular.
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ω-regular languages

The ω-language L ⊆ Aω is a regular-safety language if there is a regular
language L ⊆ A∗ such that L = safe(L). The ω-language L ⊆ Aω is
a regular-guarantee language if there is a regular language L ⊆ A∗ such
that L = guar(L). The ω-language L ⊆ Aω is a regular-response language

if there is a regular language L ⊆ A∗ such that L = recur(L). The ω-
language L ⊆ Aω is a regular-persistence language if there is a regular
language L ⊆ A∗ such that L = persist(L).

The ω-language L ⊆ Aω is ω-regular if it is a boolean combination of
regular-response and regular-persistence languages.

Remark 12.8 [Normal form for ω-regular languages] Every ω-regular language
is of the form

⋂
0 ≤ i ≤ k. recur(Li) ∪ persist(L′

i)

for regular languages Li, L′
i.

Thus, the set of regular-safety languages is a subset of the the set of safety
languages, etc. The set of ω-regular languages is a subset of the set of reactivity
languages.

Example 12.7 [ω-regular languages] Let A = {a, b, c}. The ω-language (Aa)ω

is regular-safe; the ω-language A∗aAω is regular-guarantee; the ω-language
(A∗a)ω is regular-response; the ω-language A∗aω is regular-persistence; and the
ω-language consisting of ω-words with infinitely many b symbols or only finitely
many a symbols is ω-regular. The ω-language consisting of ω-words a such that
for all i ≥ 0, if i is a prime number, then ai = a, is safe but not regular-safe.

Closure properties of regular-safety, regular-guarantee, regular-response, regular-
persistence, and ω-regular languages coincide with the corresponding closure
properties of safety, guarantee, response, persistence, and reactivity languages,
respectively. In particular, regular-safety and regular-guarantee classes are du-
als of each other, and so are regular-response and regular-persistence classes.
These properties are summarized in the following proposition, and its proof
follows from the constructions of Section 10.1.3.

Proposition 12.6 [Closure properties of ω-regular languages] Regular-safety

languages, regular-guarantee languages, regular-response languages, and regular-

persistence languages are closed under union and intersection, but not under

complementation. The ω-regular languages are closed under all boolean opera-

tions.
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12.3.2 Expressiveness of ω-automata

The ω-language L ⊆ Aω is said to be a Büchi language if L is accepted by some
Büchi automaton. First, let us note that Büchi languages are closed under all
boolean operations:

Proposition 12.7 [Closure of Büchi languages] The class of Büchi languages

is closed under union, intersection, and complementation.

Since Büchi acceptance is a special case of Streett acceptance, and by Propo-
sition 12.5 is powerful enough to admit translation from Streett constraints, it
follows that

Corollary 12.2 [Streett acceptance vs. Büchi acceptance] The ω-language

L ⊆ Aω is a a Büchi language iff L is accepted by some Streett automaton.

Exercise 12.7 {T3} [Acceptance by fair structures] Show that the ω-language
L ⊆ Aω is a Büchi language iff L is the fair language of some finite fair structure.

Recall that every ω-regular language is a boolean combination of regular-response
languages. Every regular-response language is accepted by a deterministic Büchi
automaton.

Proposition 12.8 [From regular-response to deterministic Büchi] For every

regular language L, there exists a Büchi automaton that accepts the response

language recur(L).

Proof. Let L be a regular language. There exists a deterministic and complete
automaton M = (K, σA) such that LM = L. Consider an ω-word a. There
exists precisely one initialized ω-trajectory s of K such that 〈〈s〉〉 = a. For every
i ≥ 0, the prefix a0...i belongs to L iff si ∈ σA. Hence, the ω-word a belongs to
recur(L) iff the ω-trajectory s is σA-fair. It follows that if we interpret M as a
Büchi automaton it accepts the ω-language recur(L).

Corollary 12.3 [Lower bound on Büchi expressiveness] For every ω-regular

language L, there exists a Büchi automaton that accepts L.

Proof. Follows from the definition of ω-regular languages, Proposition 12.7,
and Proposition 12.8.

Conversely, the language accepted by every ω-automaton is ω-regular:

Proposition 12.9 [Upper bound on Büchi expressiveness] Every Büchi lan-

guage is ω-regular.
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Proof. To be added.

Exercise 12.8 {T4} [Expressiveness of Muller automata] Show that an ω-language
ω-regular iff it is accepted by a Muller automaton.

Exercise 12.9 {T4} [ω-regular expressions] We have been using ω-regular ex-
pressions (e.g. (A∗a)ω) to specify ω-languages. Let us now formally define the
syntax of ω-regular expressions. Given a finite alphabet A, the set of ω-regular
expressions is defined by the grammar

ϕ := a | ϕ · ϕ | ϕ + ϕ | ϕ∗ | ϕω

where a ∈ A. Show that an ω-language L is defined by an ω-regular expression
iff L is ω-regular.

Exercise 12.10 {T3} [Expressiveness of CoBüchi automata] Does the class of
languages accepted by CoBüchi automata coincide with ω-regular languages?

12.3.3 Deterministic ω-automata

We have established that the nondeterministic varieties of different types ω-
automata accept the same class of languages, namely, ω-regular languages. We
proceed to understand the expressive power of different types of deterministic
ω-automata.

The next proposition shows that every ω-regular language is accepted by some
deterministic Streett automaton, and both nondeterministic and deterministic
varieties of Streett automata have the same expressive power, namely, ω-regular
languages.

Proposition 12.10 [Expressiveness of deterministic Streett] For every ω-regular

language L, there exists a deterministic Streett automaton that accepts L.

Proof. Let L be an ω-regular language. Suppose L =
⋂

0 ≤ i ≤ k. (recur(Li)∪
persist(L′

i)) such that the languages Li, L′
i are regular. For 0 ≤ i ≤ k, let Mi =

(Ki, σi) be a complete deterministic automaton accepting the regular language
Li, and let M ′

i = (K ′
i, σ

′
i) be a complete deterministic automaton accepting the

regular language L′
i. Let K be the product of the 2k + 2 observation structures

Ki, K ′
i, for 0 ≤ i ≤ k. Since product construction preserves determinism, K is

deterministic.

Let a be an ω-word. For every 0 ≤ i ≤ k, the structure Ki has precisely one
ω-trajectory si with the corresponding trace a, and the word a ∈ recur(Li) iff
the ω-trajectory si is σi-fair. Similarly, for every 0 ≤ i ≤ k, the structure K ′

i

has precisely one ω-trajectory s′i with the corresponding trace a, and the word
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Figure 12.7: Classes of ω-regular languages

a ∈ persist(L′
i) iff the ω-trajectory si is not σ′

i-fair. The product structure K has
precisely one ω-trajectory s with the trace a. For all 0 ≤ i ≤ k, the ω-trajectory
si of Ki is σi-fair iff the ω-trajectory s of K is (σi ⇑)-fair (recall the definition
of the lifting: σi ⇑ contains all product states whose component corresponding
to the structure Ki is in σi). Similarly, for all 0 ≤ i ≤ k, the ω-trajectory s′i of
K ′

i is σ′
i-fair iff the ω-trajectory s of K is (σ′

i ⇑)-fair.

It follows that the word a belongs to L iff the ω-trajectory s of the product is,
for all 0 ≤ i ≤ k, either (σi ⇑)-fair or not (σ′

i ⇑)-fair. Hence, the deterministic
Streett automaton (K, {(σ′

i ⇑, σi ⇑) | 0 ≤ i ≤ k}) accepts the ω-language L.

Exercise 12.11 {T3} [Expressiveness of deterministic Rabin automata] Show
that an ω-language is ω-regular iff it is accepted by some deterministic Rabin
automaton.

It turns out that Büchi accepting condition is not expressive to capture all ω-
regular languages, if we restrict to deterministic observation structures. The
class of languages accepted by deterministic Büchi automata coincides with the
regular-response languages.

Proposition 12.11 [Expressiveness of deterministic Büchi] The ω-language L ⊆
Aω is accepted by a deterministic Büchi automaton iff it is a regular-response

language.

Proof. By Proposition 12.10, we know that every regular-response language is
accepted by a deterministic Büchi automaton. For converse, consider a deter-
ministic Büchi automaton M = (K, σA). Let L be the regular language accepted
by the automaton with observation strcuture K and accepting region σA. Then,
the Büchi automaton M accepts the regular-response language recur(L).

It follows that deterministic Büchi automata are not closed under complemen-
tation. For instance, the response language “infinitely many a symbols” is ac-
cepted by a deterministic Büchi automaton, but its complement “only finitely
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many a symbols” is a persistence language, and is not accepted by any de-
terministic Büchi automaton. Intuitively, to define the persistence language
consisting of ω-words with a suffix containing only b symbols using Büchi accep-
tance, the automaton must “guess” when the suffix containing only b symbols
has commenced. The relationship between different classes of ω-languages is
summarized in Figure 12.7

Exercise 12.12 {T3} [Union closure of deterministic Büchi automata] Since
response languages are closed under union, from Proposition 12.11, it follows
that deterministic Büchi automata are closed under union. Closure under union
can, alternatively, be established by a direct construction. Give an algorithm to
construct, given two deterministic Büchi automata M1 and M2, a deterministic
Büchi automaton that accepts the union LM1

∪ LM2
.

Appendix: Notation

For two sets A and B, if σ is a subset of A then σ ⇑ denotes the subset {(a, b) |
a ∈ σ} of the product-set A × B; if σ is a subset of B then σ ⇑ denotes the
subset {(a, b) | b ∈ σ} of the product-set A × B. The lifting operator ⇑ can
similarly be applied to binary relations over A to obtain binary relations over
the product-set. The lifting operation generalizes to products of multiples sets
also.
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Chapter 13

Linear Temporal Logic

13.1 Linear Temporal Logic

In the last chapter, we studied how to use ω-automata to specify liveness re-
quirements regarding infinite behaviors of fair modules. Such requirements can
be alternatively, and more succinctly, specified using the temporal logic.

1
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13.1.1 Syntax and Semantics

While the formulas of branching-time logics such as Ctl are interpreted over
trees, the formulas of linear temporal logic (Ltl) are interpreted over ω-words
over observations. As in case of Ctl, the logic Ltl employs temporal modali-
ties such as next , always , eventually , and until. While in Ctl every temporal
connective has two types; existential and universal (e.g. possibly-next ∃© vs.
inevitably-next ∀©), such a distinction is not necessary in Ltl whose formu-
las are interpreted over a fixed ω-word. On the other hand, while Ltl admits
nesting of temporal connectives freely, operators such 23 are not expressible in
Ctl.

Linear Temporal Logic: Syntax

The formulas of Linear Temporal Logic (Ltl) are defined inductively by the
grammar

ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | ©ϕ | ϕUϕ

for observation predicates p.

The Ltl formulas are interpreted over the positions of an infinite sequence
of observations. Consider an ω-word a over the alphabet A whose symbols
give interpretation to the predicates appearing in an Ltl formula. The truth
of an atomic predicate at the position i of a is evaluated according to the
corresponding observation ai of a. The next-formula ©ϕ holds at the position
i of a iff the formula ϕ holds at the next-position i+ 1 of a. The until-formula

ϕ1Uϕ2 holds at the position i of a iff theres exists a later position j ≥ i such
that the formula ϕ2 holds at the position j and the formula ϕ1 holds at all
positions k such that i ≤ k < j.

For an Ltl formula ϕ, the set Aϕ contains the set of all possible valuations to
the atomic predicates appearing in ϕ.
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Linear temporal logic: Semantics

An Ltl formula ϕ is interpreted at the positions of ω-words over the set Aϕ
of observations. For all ω-words a and all i ≥ 0,

i |=a p iff ai |= p;
i |=a ϕ1 ∨ ϕ2 iff i |=a ϕ1 or i |=a ϕ2;
i |=a ¬ϕ iff i 6|=a ϕ;
i |=a ©ϕ iff i+ 1 |=a ϕ;
i |=a ϕ1Uϕ2 iff there is a natural number j ≥ i such that

j |=a ϕ2 and for all i ≤ k < j, k |=a ϕ1.

The ω-word a satisfies the Ltl formula ϕ, written a |= ϕ, if 0 |=a ϕ. The
ω-language Lϕ defined by ϕ is the set {a ∈ Aωϕ | a |= ϕ} of ω-words that
satisfy ϕ. The Ltl formula ϕ is satisfiable if the ω-language Lϕ is nonempty,
and valid if the ω-language Lϕ equals Aωϕ.

The following temporal operators are defined in Ltl:

3ϕ for true U ϕ;
2ϕ for ¬3¬ϕ;
ϕ1Wϕ2 for ϕ1Uϕ2 ∨ 2ϕ1.

The temporal operators ©, 2, 3, U , and W are called next, always, eventually,
until, and wait-for, respectively. The eventually-formula 3ϕ holds at the posi-
tion i of an ω-word a if the formula ϕ holds at some position j ≥ i of a; the
always-formula 2ϕ holds at the position i of an ω-word a if the formula ϕ holds
at all positions j ≥ i of a.

Remark 13.1 [Propositional Ltl] The Ltl formula ϕ is propositional if every
atomic predicate in ϕ is a propositional formula. For a propositional Ltl formula
ϕ, an observation in Aϕ is a valuation for the set Xϕ of boolean variables
appearing in ϕ, and the set Aϕ equals the power-set 2Xϕ .

Example 13.1 [Ltl languages] The Ltl formula 2p defines the safety language
containing ω-words all of whose observations satisfy p. The Ltl formula 3p

defines the guarantee language containing ω-words that contain an observation
satisfying p. The Ltl formula 23p defines the response language containing ω-
words that contain infinitely many observations satisfying p. The Ltl formula
32p defines the persistence language containing ω-words with a suffix with
only observations satisfying p. Thus, the Ltl operators 2, 3, 23, and 32

correspond to the operators safe, guar, recur, and persist, respectively.
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13.1.2 Ltl as a specification logic

We can view Ltl as a fair state logic, by interpreting Ltl formulas over the
states of a given fair structure K.

Ltl semantics over fair structures

Let ϕ be an Ltl formula, and let K be a fair structure with observations
Aϕ. For a state s of K, s |=K ϕ if all source-s fair ω-traces of K satisfy ϕ.
The fair structure K satisfies the Ltl formula ϕ if s |=K ϕ for all initial
states s of K.

Thus, a fair structure K satisfies an Ltl formula ϕ if every fair trace of K
satisfies ϕ: LK ⊆ Lϕ. The model checking problem and verification problem
for Ltl are defined as in other logics.

Remark 13.2 [Interpretation of atoms] Let ϕ be an Ltl formula whose atomic
predicates are boolean expressions over the set Xϕ of variables. Then, the set
Aϕ is the set ΣXϕ

of valuations for Xϕ. We can interpret the formula ϕ over a
fair structure whose observations are valuations for a superset of the variables
Xϕ.

Example 13.2 [Ltl specifications for mutual exclusion] Recall the mutual ex-
clusion problem from Chapter 2. The mutual exclusion requirement is specified
by the Ltl formula

ϕme : 2¬(pc1 = inC ∧ pc2 = inC ).

The first-request-first-in requirement that if process P1 requests an entry to the
critical section while process P2 is outside, then P2 cannot overtake P1 to enter
the critical section, is expressed by the formula

ϕfifo : 2 [ (pc1 = reqC ∧ pc2 = outC ) → (pc2 6= inC )W (pc1 = inC ) ].

Finally, the starvation freedom requirement for process P1 is specified by the
formula

ϕsf : 2 ( pc1 = reqC → 3pc1 = inC ).

Remark 13.3 [Ltl specifications] The observation predicate p is an invariant
of the module P iff the module P satisfies the Ltl formula 2p; the observation
predicate p is a recurrent of the fair module P iff the fair module P satisfies
the Ltl formula 23p; and the observation predicate p is a response to the
observation predicate q for the fair module P iff the fair module P satisfies the
Ltl formula 2(p → 3q).
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Example 13.3 [Producer-consumer requirements] Recall the message-passing
protocols from Section 2.3.3, and their fair versions from Section 9.5.3. Let
us consider the requirement that if the producer produces a message, say with
valuem, then eventually the consumer consumes a message with valuem. Recall
that the producer signals the production of the message by issuing the event
doneP , and the produced message appears in the variable msgP . The consumer
signals the consumption of the message by issuing the event doneC , and the
consumed message appears in the variable msgC . Let doneP ? denote the Ltl

formula (doneP ↔ ©¬doneP ), and for a message value m, let doneP ?m denote
the Ltl formula (doneP ↔ ©¬doneP ) ∧ ©(msgP = m). The abbreviations
doneC? and doneC?m are defined analogously. Then, the desired requirement
is specified by the formula

ϕresp :
∧
m ∈

�
.2 [ doneP ?m → 3 doneC?m ].

Verify that the fair module FairSyncMsg satisfies the requirement ϕresp .

Let us now consider the copy-requirement that, in every round i, if a denotes
the (finite) sequence of messages produced by the producer so far, then (1) the
sequence of messages consumed by the consumer upto round i is a prefix of a,
and (2) there exists a later round j such that the sequence of messages consumed
by the consumer upto round j equals a. The former is a safety requirement,
while the latter is a liveness requirement. The Ltl formula ϕresp is only an
approximation to the liveness part of the copy-requirement. It turns out that
the copy-requirement is not expressible in Ltl. We can approximate it by
verifying ϕresp , and many additional weaker requirements such as

∧
m ∈

�
. [ 23 doneP ?m ↔ 23 doneC?m ],

which requires that the producer produces infinitely many messages with value
m iff the consumer consumes infinitely many messages with value m, and

∧
m ∈

�
. [ (¬doneC?m) W doneP ?m ]

which requires that the consumer does not consume a message with value m
unless at least one such message is produced by the producer.

A requirement stronger than the copy-requirement stipulates strict alternation
between production and consumption starting with the production, and is ex-
pressed by the Ltl formula ϕalternate :

(doneC? W doneP ?)
∧ ∧m ∈

�
.2[ doneP ?m → ©((¬doneP ?)U doneC?m) ]

∧ ∧m ∈
�
.2[ doneC? → ©((¬doneC?)W doneP ?) ]

The fair module FairSyncMsg does not satisfy the requirement ϕalternate even
though FairSyncMsg satisfies the copy-requirement. This is because the pro-
ducer may produce two messages before the consumer has consumed any mes-
sage.



Linear Temporal Logic 6

Exercise 13.1 {P3} [Monitor] Design a monitor module CopyMonitor whose
variables keep track of the produced and consumed messages such that the safety
aspect of the copy requirement reduces to an invariant verification problem for
the compound module SyncMsg ‖CopyMonitor and the liveness aspect of the
copy requirement reduces to a response verification problem for the compound
fair module FairSyncMsg ‖CopyMonitor .

Like µ-calculus, fairness requirements can be specified within Ltl. Let K be an
observation structure, and consider a Büchi constraint specified by the obser-
vation predicate p. Then, an ω-trajectory s is fair iff the ω-trace 〈〈s〉〉 satisfies
the Ltl formula 23p. Suppose the fairness assumption requires fairness with
respect to the action α specified as [[p ∧ q′]] for two observation predicates p
and q. Then, α-fair ω-trajectories are precisely those satisfying the Ltl formula
23(p ∧ ©q).

Now consider the Streett constraint (p, q) specified by two observation predicates
p and q. Fairness of an ω-trajectory with respect to such a Streett constraint is
specified by the Ltl formula 23p → 23q. Fairness with respect to multiple
Streett constraints corresponds to conjunction of Ltl formulas corresponding
to individual Streett constraints.

Proposition 13.1 [Fairness specification in Ltl] Given a fair module P, there

exists an Ltl formula ϕP such that an ω-trajectory s of the module P is a fair

trajectory iff s |= ϕP .

To verify all the fair trajectories of a fair module P satisfy a requirement ψ, we
can verify whether all trajectories of the underlying module satisfy the implica-
tion ϕP → ψ.

Example 13.4 [Specifying fairness assumption in Ltl] Recall the fairness con-
straints of the module FairSyncMutex from Figure 9.4. Requirement of weak
fairness with respect to the update choices α1 and α2 is specified by the Ltl

formula ϕFairSyncMsg :

23 pc1 6= inC ∧ 23 pc2 6= inC

Consider the specification ϕsf of starvation freedom from Example 13.2. The
module SyncMutex does not satisfy the specification ϕsf , but satisfies the for-
mula ϕFairSyncMutex → ϕsf .

Exercise 13.2 {P2} [Mutual exclusion] Recall the fairness constraints of the
module FairPete from Figure 9.5. Write down the Ltl formula ϕFairPete that
captures the weak-fairness constraints of FairPete, and verify that the module
Pete satisfies the Ltl formula ϕFairPete → ϕsf .
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©2q, q

ϕ,©ϕ
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s3

Figure 13.1: Tableau construction for (3p)U (2q)

13.2 Decision procedure

In this section, we give an algorithm for constructing, given an Ltl formula ϕ, a
Büchi automaton accepting the set Lϕ of ω-words satisfying ϕ. This construc-
tion leads to a model checking algorithm for Ltl.

13.2.1 Tableau Decision Procedure

Let ϕ be an Ltl formula. We wish to construct a Büchi automaton Mϕ over
the alphabet Aϕ such that an ω-word a is accepted by Mϕ iff a |= ϕ. States
of the desired automaton are sets of subformulas of ϕ. Such an automaton is
called a tableau.

Sample construction

To illustrate the principles of the tableau construction, let us consider the Ltl

formula ϕ = (3p)U (2q). The states of the tableau are collections of Ltl

formulas derived from ϕ. Each state s is to a set of formulas, and we would like
to ensure that every formula contained in the state s is satisfied by every source-
s ω-trajectory in the tableau. The initial states of the tableau are required to
contain the given formula ϕ. From the semantics of the until-connective, an
initial state satisfies ϕ if either (1) it satisfies 2q, or (2) it satisfies both ©ϕ and
3p. In the former case, to satisfy 2q, the initial state should also satisfy q as well
as ©2q, and this gives the initial state s0 = {ϕ,2q,©2q, q} (see Figure 13.1).
In the latter case, 3p can be satisfied by either p, or by ©3p. The corresponding
initial states are s1 = {ϕ,©ϕ,3p, p} and s2 = {ϕ,©ϕ,3p,©3p}.

To obtain successors of a state, we examine the next-formulas in the state. For
every ©ψ contained in the current state, the successor should contain ψ. Since
s0 contains ©2q, its successor is required to contain 2q, and hence, we add
a transition from s0 to itself. The successors of s1 are required to contain ϕ.
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Since ϕ can be satisfied in three ways, all the initial states are successors of s1.
The successors of s2 are required to contain both ϕ and 3p. The formula ϕ

can be satisfied in three ways, while 3p can be satisfied either by p or by ©3p.
Continuing in this manner, we get the tableau of Figure 13.1 with five states.

We would like to ensure that if t is an infinite trajectory in the tableau, then for
every position i ≥ 0 and every formula ψ ∈ ti, i |=t ψ. This is not quite true yet.
For instance, in the ω-trajectory sω2 that corresponds to looping forever at the
state s2, every state contains 3p, but no state satisfies p. Intuitively, along this
ω-trajectory the choice to satisfy 3p is postponed forever. This can be avoided
by adding Büchi constraints. In this example, we need two Büchi constraints
since there are two eventualities. The first constraint requires that to satisfy
ϕ, one must satisfy 2q eventually. This is expressed by the Büchi constraint
σϕ = {s0, s3, s4} containing states that contain 2q. The second constraint
requires that to satisfy 3p, one must satisfy p eventually. This is expressed by
the Büchi constraint σ3p = {s0, s1, s4} containing states that either contain p

or do not contain 3p. Verify that, for the tableau of Figure 13.1 together with
the multi-Büchi assumption {σϕ, σ3p}, the set of fair trajectories corresponds
to the set of ω-words that satisfy ϕ.

In summary, in a tableau construction, states are subsets of formulas. Each
formula stipulates requirements concerning other formulas that must be satisfied
in the current state. The transition relation ensures propagation of the next-
formulas from one state to its successor. Fairness constraints ensure eventual
fulfillment of eventuality- or until-formulas. We proceed to formalize the tableau
construction. In our example, we treated formulas that do not appear in a state
as “don’t care.” For instance, in the initial state s0, there is no mention of the
formulas 3p and p. In the formal construction, each state assigns a truth to
every subformula.

Closure

The closure Sub(ϕ) of the Ltl formula ϕ is defined inductively as

Sub(p) = {p};
Sub(ϕ1 ∨ ϕ2) = {ϕ1 ∨ ϕ2} ∪ Sub(ϕ1) ∪ Sub(ϕ2);
Sub(¬ϕ) = {¬ϕ} ∪ Sub(ϕ);
Sub(©ϕ) = {©ϕ} ∪ Sub(ϕ);
Sub(ϕ1Uϕ2) = {ϕ1Uϕ2,©(ϕ1Uϕ2)} ∪ Sub(ϕ1) ∪ Sub(ϕ2).

Notice that the closure of a formula ϕ contains more than the syntactic subfor-
mulas of ϕ, namely, if an until-formula ϕ1Uϕ2 is in the closure, then so is the
next-formula ©(ϕ1Uϕ2).

Proposition 13.2 [Size of closure] For every Ltl formula ϕ, ϕ ∈ Sub(ϕ) and

|Sub(ϕ)| ≤ 2|ϕ|.
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Tableau

A subset s ⊆ Sub(ϕ) of the closure of ϕ is consistent if the following conditions
are satisfied:

if (χ1 ∨ χ2) ∈ Sub(ϕ) then (χ1 ∨ χ2) ∈ s iff χ1 ∈ s or χ2 ∈ s,
if ¬χ ∈ Sub(ϕ) then ¬χ ∈ s iff χ 6∈ s,
if (χ1Uχ2) ∈ Sub(ϕ) then (χ1Uχ2) ∈ s iff either χ2 ∈ s or both

χ1 ∈ s and ©(χ1Uχ2) ∈ s.

Ltl Tableau

Given an Ltl formula ϕ the ϕ-tableau is the multi-Büchi automaton Mϕ:

• The state-space of Mϕ is the set Σϕ of consistent subsets of Sub(ϕ).

• The transition relation of Mϕ is the relation →ϕ: for s, t ∈ Σϕ, s→ϕ t

if for all formulas ©χ ∈ Sub(ϕ), ©χ ∈ s iff χ ∈ t.

• A state s ∈ Σϕ is initial iff ϕ ∈ s.

• The set of observations is the set Aϕ of valuations of the atomic pred-
icates in ϕ.

• The observation of a state s is the set of atomic predicates in s (that
is, 〈〈s〉〉 |= p iff p ∈ s).

• For each until-formula (χ1Uχ2) ∈ Sub(ϕ), the fairness assumption of
Mϕ contains the Büchi constraint

{s ∈ Σϕ | χ2 ∈ s or (χ1Uχ2) 6∈ s}.

Proposition 13.3 [Correctness of tableau construction] For every Ltl formula

ϕ, Lϕ equals LMϕ
.

Proof. Let ϕ be an Ltl formula, and let a be an ω-word over the set Aϕ
of observations. Suppose a |= ϕ. For i ≥ 0, let si ⊆ Sub(ϕ) be the set
{χ ∈ Sub(ϕ) | i |=a χ} of formulas true at position i in a. From the definitions,
it follows that (1) for all i, the set si is consistent, (2) for all i, si →ϕ si+1, (3)
the set s0 is an initial state of Mϕ, (4) for all i, the observation of the state si
in Mϕ is ai, and (5) for each (χ1Uχ2) ∈ Sub(ϕ), if i |=a χ1Uχ2 for infinitely
many positions i, then j |=a χ2 for infinitely many positions j. It follows that
s is a fair initialized ω-trajectory of the tableau Mϕ, and a belongs to LMϕ

.

Now consider an initialized fair ω-trajectory s of Mϕ. Let a be the correspond-
ing ω-trace. We want to establish that for all χ ∈ Sub(ϕ), for all i ≥ 0, χ ∈ si
iff i |=a χ. The proof is by induction on the structure of χ, and is left as an
exercise. It follows that a |= ϕ.
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The number of states of the tableau of an Ltl formula is exponential in the
length of the formula: for an Ltl formula ϕ of length k, the automaton Mϕ has
at most 4k states and k Büchi constraints. Checking satisfiability of the Ltl

formula ϕ corresponds to checking whether the fair language of the automaton
Mϕ is nonempty, and thus, can be solved in time 2O(|ϕ|). Checking validity of
the Ltl formula corresponds to checking satisfiability of the negated formula
¬ϕ, and thus, can also be solved in time 2O(|ϕ|).

Exercise 13.3 {T3} [On-the-fly tableau] In our definition of the tableau Mϕ,
every state assigns a truth value to every formula in Sub(ϕ). As indicated in
our example (see Figure 13.1), not every formula needs to be evaluated in every
state. Develop an algorithm to construct a tableau for the input formula that
considers the formulas in the closure only as needed.

13.2.2 Ltl Model Checking

Let K be a fair structure, and let ϕ be an Ltl formula. The model checking
problem (K, ϕ) corresponds to verifying that the ω-language LK is contained
in the ω-language Lϕ, which, by the tableau-construction, corresponds to the
ω-language inclusion problem (K,Mϕ). Observe that the tableau Mϕ is a non-
deterministic ω-automaton, and hence, solving the ω-language inclusion problem
(K,Mϕ) is computationally hard, namely, exponential in the size of the struc-
ture Mϕ.xs However, we can avoid the complementation construction for ω-
automata if, instead of constructing the tableau for ϕ, we construct the tableau
M¬ϕ for the negated formula ¬ϕ. The ω-automaton M¬ϕ accepts all ω-words
that do not satisfy the specification ϕ. Now, the fair structure K satisfies ϕ iff
the intersection of the ω-languages of K and M¬ϕ is empty. This approach of
negating the formula before applying the tableau-construction avoids the need
for complementing the tableau.

Proposition 13.4 [Ltl model checking] The answer to the Ltl model checking

problem (K, ϕ) is Yes iff the answer to the fair-emptiness problem K × M¬ϕ

is Yes.

Since we already know how to obtain product of two ω-automata, and we know
how to solve the fair emptiness problem for finite structures, we have an algo-
rithm for Ltl model checking.

Theorem 13.1 [Ltl model checking] If ϕ is an Ltl formula of length k and K
is a fair structure with n states, m transitions, and ` fairness constraints, then

the Ltl model checking problem (K, ϕ) can be solved in time O((m+ n) · `2 · k ·
2O(k)).
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Remark 13.4 [Ltl model checking of weak-fair structures] If K is a weak-fair
structure, then so is the product K×M¬ϕ. If K has ` weak-fairness constraints,
and Sub(ϕ) has k until-formulas, then the product has `+ k weak-fairness con-
straints. It follows that the the Ltl model checking problem (K, ϕ), for a
weak-fair structure, can be solved in time O((m+ n) · (`+ k) · 2O(k)).

A variety of heuristics can be used to improve the computational requirements of
Ltl model checking. In particular, an on-the-fly representation of the structure
is used, and the product with the tableau is generated only during the search.

Remark 13.5 [Ltlvs. Ctl] Recall that the Ctl model-checking problem (K, φ),
for a Ctl formula φ of length k, can be solved in time O((m+n) · `2 · k). Thus,
while Ctl model checking is linear in the size of the formula, Ltl model check-
ing is exponential in the size of the formula. However, both model checking
problems have identical model complexity.

If P is a propositional fair module with n boolean variables and ϕ is an Ltl

formula of length k, then the Ltl verification problem (P , ϕ) can be solved in
time exponential in n+ k.

13.2.3 Complexity

The Ltl satisfiability problem is to determine whether a given Ltl formula ϕ is
satisfiable. Checking satisfiability of ϕ corresponds to checking emptiness of the
tableau Mϕ. Search for a reachable fair cycle in the tableau can be performed
using space logarithmic in the number of states of the tableau, or equivalently,
linear in the size of the formula ϕ. It follows that the Ltl satisfiability problem is
in PSPACE. It turns out that checking satisfiability of Ltl formulas is PSPACE-
hard.

Theorem 13.2 [Ltl complexity] The satisfiability and the validity problems

for Ltl are PSPACE-complete.

Proof. An Ltl formula ϕ is satisfiable iff the formula ¬ϕ is valid. It remains
to be shown that the satisfiability problem is PSPACE-hard. Proof to be added.

Hardness of the satisfiability problem implies a lower bound for the model check-
ing problem also.

Theorem 13.3 [Ltl model checking comlexity] The Ltl model checking prob-

lem (K, ϕ), for a finite fair structure K, is PSPACE-complete.

Proof. The Ltl model checking problem (K, ϕ), for a finite fair structure K,
reduces to searching for a reachable fair cycle of the product K × M¬ϕ. The
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search can be performed in space logarithmic in the number of states of the
product, and PSPACE upper bound follows.

For lower bound, we reduce the Ltl validity problem to Ltl model checking.

Remark 13.6 [Ltl model complexity] The model complexity of the Ltl model
checking problem is NLOGSPACE. The complexity of the Ltl verification prob-
lem (P , ϕ), for a propositional fair module P , is PSPACE.

Exercise 13.4 {T3} [Ltl without next] Show that the decision and model
checking problems for Ltl without the next operator are still PSPACE-hard.

Exercise 13.5 {T3} [Ltl3] Let Ltl3 result from Ltl by replacing the until
operator U with the eventually operator 3. Prove that the decision problem for
Ltl3 is still PSPACE-hard.

Exercise 13.6 {T3} [Ltl3 without next] Show that if an Ltl3 formula ϕ with-
out next operators is satisfiable, then it is satisfiable by an ω-word of the form
a1a

ω
2 such that |a1a2| ≤ |ϕ|. Then prove that the decision problem for Ltl3

without the next operator is NP-complete.

Exercise 13.7 {T3} [Ltl with past operators] The syntax of Past Ltl is de-
fined as

ϕ ::= p | ϕ1 ∨ ϕ2 | ¬ϕ | ©ϕ | ϕ1Uϕ2 | −©ϕ | ϕ1Sϕ2.

The semantics of the previous and since operators are defined as

i |=a −©ϕ iff i > 0 and i− 1 |=a ϕ;
i |= ϕ1Sϕ2 iff for some j ≤ i, j |=a ϕ2 and for all j < k ≤ i, k |=a ϕ1.

Give a tableau-based decision procedure for Past Ltl and then prove that the
decision problem for Past Ltl is complete for PSPACE.

Exercise 13.8 {T3} [Counting Ltl] The syntax of Counting Ltl is defined as

ϕ ::= p | ϕ1 ∨ ϕ2 | ¬ϕ | ©nϕ | ϕ1Uϕ2

for natural numbers n (represented in logarithmic notation, e.g., binary or dec-
imal). The semantics of the counting operator is defined as

i |=a ©nϕ iff i+ n |=a ϕ.

Give a tableau-based decision procedure for Counting Ltl and then prove that
the decision problem for Counting Ltl is complete for EXPSPACE.
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13.3 Expressiveness

13.3.1 Linear-time versus branching-time

How do the expressive powers of the branching-time logic Ctl and the lin-
ear time logic Ltl compare? We have already seen that Ctl cannot express
operators such as 23, and thus, cannot be more expressive than Ltl. For the
converse, while the state equivalence induced by Ctl coincides with bisimilarity,
the state equivalence induced by Ltl coincides with trace-equivalence:

Proposition 13.5 [State equivalence of Ltl] Trace-equivalence is a fully ab-

stract semantics for Ltl over observation structures.

Since Ctl can distinguish between two states that are trace-equivalent, but not
bisimilar, Ltl cannot be more expressive that Ctl.

Proposition 13.6 [Expressive power of Ltl vs. Ctl] The expressive powers

of the temporal logics Ctl and Ltl are incomparable. In particular, no Ltl

formula is equivalent to the Ctl formula ∀© ∃© p, and no Ctl formula is

equivalent to the Ltl formula 23p.

The deficiency of Ltl compared to Ctl is the lack of existential quantification
over trajectories, while the deficiency of Ctl compared to Ltl is the inability to
nest temporal connectives to express requirements regarding a fixed trajectory.
This motivates the definition of a temporal logic that is more expressive than
both Ctl and Ltl.

Before we define the combination of Ctl and Ltl, let us understand the dis-
tinction between state formulas and trajectory formulas. While the formulas of
a (fair) state logic—state formulas—are interpreted over the states of a (fair)
observation structure, the formulas of a trajectory logic—trajectory formulas—
are interpreted over the ω-trajectories of a (fair) observation structure. We can
view Ctl as a two-sorted logic with state formulas φ and trajectory formulas ϕ:

φ ::= p | ¬φ | φ1 ∨ φ2 | ∃ϕ

ϕ ::= ©φ | φ1Uφ2 | 2φ

where p is an atomic formula. On the other hand, we can view Ltl as a two-
sorted logic with state formulas φ and trajectory formulas ϕ:

φ ::= ∀ϕ

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | φ1Uφ2

where p is an atomic formula. The logic Ctl∗ allows the state-formulas as in
Ctl and trajectory formulas as in Ltl.
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Temporal logic Ctl∗: Syntax

The formulas of Ctl∗ are defined inductively by the two-sorted grammar
with state formulas φ and trajectory formulas ϕ:

φ ::= p | ¬φ | φ1 ∨ φ2 | ∃ϕ

ϕ ::= φ | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1Uϕ2

where p is an atomic formula.

Given a fair structure K whose observations are valuations to the atomic predi-
cates, state-formulas of Ctl∗ are interpreted at states of K, while the trajectory-
formulas of Ctl∗ are interpreted at positions of the fair trajectories of K.

Temporal logic Ctl∗: Semantics

Let K = (K,F ) be a fair structure. For each state s of K,

s |=K p iff 〈〈s〉〉 |= p;
s |=K ¬φ iff s 6|=K φ;
s |=K φ1 ∨ φ2 iff s |=K φ1 or s |=K φ2;
s |=K ∃ϕ iff there is a source-s F -fair ω-trajectory s

of K such that (s, 0) |=K ϕ.

For each ω-trajectory s of K and each position i ≥ 0,

(s, i) |=K φ iff si |=K φ;
(s, i) |=K ¬ϕ iff (s, i) 6|=K ϕ;
(s, i) |=K ϕ1 ∨ ϕ2 iff (s, i) |=K ϕ1 or (s, i) |=K ϕ2;
(s, i) |=K ©ϕ iff (s, i+ 1) |=K ϕ;
(s, i) |=K ϕ1Uϕ2 iff there exist j ≥ i such that (s, j) |=K ϕ2

and for all i ≤ k < j, (s, k) |=K ϕ1.

The fair structure K satisfies the Ctl∗ formula φ if s |=K φ for every initial
state s of K.

The following operators are defined in Ctl∗:

∀ϕ for ¬∃¬φ;
3ϕ for trueUϕ;
2ϕ for ¬3¬ϕ;
ϕ1Wϕ2 for ϕ1Uϕ2 ∨ 2ϕ1.

Remark 13.7 [Ctl∗ vs. Ltl and Ctl] Since every Ctl formula is a Ctl∗

formula, and for every Ltl formula ϕ, the equivalent Ctl∗ formula is ∀ϕ, it
follows that Ctl∗ is more expressive power than both Ltl and Ctl.
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While the expressive power of Ctl∗ is more than Ctl, the equivalence induced
by Ctl∗ coincides with bisimilarity, and thus, its distinguishing power coincides
with Ctl.

Proposition 13.7 [Equivalence induced by Ctl∗] Bisimilarity is a fully ab-

stract semantics of Ctl∗ over observation structures.

Exercise 13.9 {T3} [Ctl+] The formulas of Ctl+ are defined inductively by
the two-sorted grammar

φ ::= p | ¬φ | φ1 ∨ φ2 | ∃ϕ

ϕ ::= ¬ϕ | ϕ1 ∨ ϕ2 | ©φ | φ1Uφ2

where p is an atomic formula. For example, for two propositions a and b, the
Ctl

+ formula ∃(3a ∧ 3b) is equivalent to the Ctl formula

∃3(a ∧ ∃3b) ∨ ∃3(b ∧ ∃3a).

Give a systematic construction that yields for each Ctl+ formula φ an equiva-
lent Ctl formula φ−. For your construction, what is the blowup in the size of
the formula? (If φ has length k, give an asymptotic bound for the length of φ−

as a function of k.)

Exercise 13.10 {T3} [Ctl3] Let Ctl3 be obtained from Ctl by replacing
the binary operator ∃U with the unary operator ∃3, and let Ctl+

3
be obtained

from Ctl+ by replacing the binary operator U with the unary operator 3.
Consider two propositions a and b. Prove that no Ctl3 formula is equivalent
to the Ctl+

3
formula ∃(2a ∧ 3b) over finite observation structures, and that no

Ctl
+
3

formula is equivalent to the Ctl formula a∃Ub. We conclude that Ctl3

≺ Ctl+
3
≺ Ctl ≡ Ctl+ ≺ Ctl∗.

Ctl∗ model checking

Theorem 13.4 [Ctl
∗ model checking] If φ is a Ctl

∗ formula of length k and

K is a fair structure with n states, m transitions, and ` fairness constraints,

then the Ctl∗ model checking problem (K, φ) can be solved in time O((m+ n) ·
`2 · 2O(k)).

Remark 13.8 [Space complexity of Ctl∗] For finite fair structures, the Ctl∗

model checking problem is PSPACE-complete. The structure complexity of
Ctl∗ model checking is NLOGSPACE. Thus, the space complexity of Ctl∗

model checking coincides with the space complexity of Ltl model checking.
The Ctl

∗ verification problem (P , φ) is PSPACE-complete.
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13.3.2 Ltl versus ω-automata

The tableau construction establishes that, for every Ltl formula ϕ, the ω-
language Lϕ is ω-regular. The converse does not hold. In particular, the prop-
erty that requires p to be true at every even position is not specifiable in Ltl,
while it is speciable using automata as indicated in Figure 7.6.

Proposition 13.8 [Ltl cannot express even] For A = {a, b}, the ω-regular

language Leven that contains the ω-word c iff ci = a for all even numabers i, is

not expressible in Ltl.

Corollary 13.1 [Ltl vs. Lal] The live automaton logic Lal is more expressive

than Ltl.

While Lal is more expressive than Ltl, the distinguishing powers of the two
logics coincide, both logics induce trace-equivalence over observation structures.

Exercise 13.11 {T4} [Periodic Ltl] The syntax of Periodic Ltl is defined as

ϕ ::= p | ϕ1 ∨ ϕ2 | ¬ϕ | ©ϕ | ϕ1Unϕ2

for natural numbers n. The semantics of the periodic-until operator is defined
as

i |=a ϕ1Unϕ2 iff for some j ≥ 0, i+ jn |=a ϕ2 and for all 0 ≤ k < j,
i+ kn |=a ϕ1.

(1) Express the property that “proposition x is true at every even position of
an observation sequence” in Periodic Ltl. (2) Give a tableau-based decision
procedure for Periodic Ltl. (3) What is the complexity of the decision problem
for Periodic Ltl if numerals are represented in unary (binary, respectively)?

Exercise 13.12 {T4} [Linear-time µ-calculus] The formulas of the Linear µ-

calculus Ltµ are defined as

ϕ ::= p | ϕ1 ∨ ϕ2 | ¬ϕ | ©ϕ | µX.ϕ′ | X

where p is an observation predicate, X ∈ P is a formula variable, and each
free occurrence of X in ϕ′ occurs within an even number of negations. The
linear µ-calculus is interpreted over infinite observation sequences. Give a formal
definition of the semantics of Ltµ such that (1) the Ltl formula ϕ1Uϕ2 is
equivalent to the Ltµ formula (µX.ϕ2 ∨ (ϕ1 ∧ ©X)) and (2) the Ltµ formula
(νX. y ∧ © © X) is satisfied by the ω-word a iff the proposition y is true at
every even-numbered position of a. When defining the semantics of Ltµ, you
need to show that all required fixpoints exist (What is the underlying c.p.o.?
Why are all definable functions monotonic?) and that (1) and (2) are indeed
the case. Then prove that all definable functions are continuous.
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Monadic second-order logic S1S

The fragment S1S of second-order logic is a classical notation to define ω-
languages. The logic S1S allows first-order variables that range over nonnegative
integers, and its terms are built from the first-order variables using the succes-
sor function “+1” that corresponds to adding 1. The formulas are built using
logical connectives, first-order and second-order quantifiers, comparing terms
using the ordering <, and second-order unary variables.

Formally, the set of terms of S1S is generated by the grammar

e := 0 | i | e+ 1,

where i is a first-order variable. The set of formulas of S1S is generated by the
grammar

ϕ := p(e) | e < e | ¬ϕ | ϕ ∨ ϕ | ∃i. ϕ | ∃p. ϕ,

where p is a second-order variable.

Formulas of S1S are evaluated with respect to environments that map first-
order variables to nonnegative integers and second-order variables to sets of
nonnegative integers. Let E be an environment that maps first-order variables
to � and second-order variables to 2 � . Then, E maps terms of S1S to � :
E(0) = 0 and E(e+ 1) = E(e) + 1. The satisfaction relation |=E for the formulas
of S1S is defined inductively:

|=E p(e) iff E(e) ∈ E(p);
|=E e1 < e2 iff E(e1) < E(e2);
|=E ¬ϕ iff 6|=E ϕ;
|=E ϕ1 ∨ ϕ2 iff |=E ϕ1 or |=E ϕ2;
|=E ∃i. ϕ iff for some j ∈ � , |=E[i:=j] ϕ;
|=E ∃p. ϕ iff for some σ ⊆ � , |=E[p:=σ] ϕ.

The unary predicates in S1S formulas can be viewed as boolean variables. If
X consists of boolean variables, and a is an ω-word over the valuations for X ,
then, for every x ∈ X , the ω-word a specifies the set x[a] = {i ≥ 0 | ai |= x}
of positions. Consequently, a formula ϕ of S1S can be evaluated with respect
to ω-words over observations that evaluate the second-order variables in ϕ. For
instance, the S1S formula

∀i. (p(i) → ∃j. (i ≤ j ∧ q(j)))

specifies the ω-language corresponding to the Ltl formula

2(p → 3q).

Let ϕ be an S1S formula whose free second-order variables are in X , and let a be
an ω-word over the alphabet ΣX . Then, a |= ϕ iff |=E ϕ for every environment
E such that for all p ∈ X and all i ∈ � , i ∈ E(p) iff ai |= p. The ω-language Lϕ
consists of ω-words a over ΣX such that a |= ϕ.
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Exercise 13.13 {T2} [S1S] Define a mapping from Ltl formulas to S1S for-
mulas that preserves the ω-language.

An outstanding theorem due to Büchi establishes that the expressive power of
S1S and Büchi automata coincide:

Theorem 13.5 [Büchi Theorem on S1S vs. automata] Let X be a finite set of

boolean variables, and let L be an ω-language over the alphabet ΣX . Then, L is

ω-regular iff there exists an S1S formula ϕ such that Lϕ = L.

Remark 13.9 [Complexity of S1S] The satisfiability and the validity problems
for S1S are of nonelementary complexity.

First-order fragment of S1S

The logic S1S
fo consists of the fragment of S1S that disallows quantification

over second-order variables. Formally, the set of formulas of S1Sfo is generated
by the grammar

ϕ := p(e) | e < e | ¬ϕ | ϕ ∨ ϕ | ∃i. ϕ,

where i is a first-order variable, p is a second-order variable and e is a term of
S1S. It turns out that the first-order fragment of S1S precisely captures the
expressiveness of Ltl.

Theorem 13.6 [Expressiveness of Ltl] For an ω-language L, there exists an

Ltl formula ϕ with Lϕ = L iff there exists a formula ψ of S1Sfo with Lψ = L.
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Chapter 99

Prerequisite

Notions and Notations

In this appendix we define some of the mathematical concepts that are used
throughout the book. The appendix is not intended as a tutorial on the pertinent
topics in discrete mathematics, but only as a concise reference that formalizes
our use of background terminology in order to avoid ambiguities. We make no
attempt at completeness: many common and (we hope) unambiguous notions,
such as the standard operators of naive set theory and boolean logic, are assumed
to be familiar to the reader.

0
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Types

A type is a set of values together with a set of operations on these values. A
type is finite if the corresponding set of values is finite. When no confusion
arises, we use the same symbol for a type and its set of values. We distinguish
between primitive types and composite types. Our primitive types are the
booleans B = {true, false} (finite), the nonnegative integers N = {0, 1, 2, . . .}
(infinite), and the positive integers N

>0 = N\{0} (infinite), all with the usual
operations. Given a type T, the composite type T⊥ has the set T ∪ {⊥} of
values, which includes the “undefined” value ⊥ 6∈ T, and the operations of T,
which behave strictly on ⊥; that is, every operation that is performed on one or
more undefined arguments returns an undefined result. Other composite types
are queue of T and stack of T. For these two composite types, the values are
the finite (possibly empty) sequences of values of type T; thus they are infinite
types. The queue and stack types differ in their operations.

The type queue of T represents “first-in-first-out” sequences, called queues,
of values in T and supports five operations. In the following, let a be a value
in T, let B be a queue of values in T, and let x be a variable of type T. The
operation EmptyQueue returns the empty queue. The operation Enqueue(a, B)
returns the queue that results from adding the value a to the end of the queue B.
The operation IsEmpty(B) returns true if the queue B is empty, and otherwise
returns false . If B is a nonempty queue, then the operation Front(B) returns
the first element of B and the operation Dequeue(B) returns the queue that
results from removing the first element from B. The implementation of queues
as linked lists supports all five operations in constant time. We use the notation
foreach x in B do to describe a loop whose body is executed once for each
element of the queue B, and during successive executions of the loop body the
variable x is bound to the successive elements of B, beginning with the first
element.

The type stack of T represents “last-in-first-out” sequences, called stacks, of
values in T and supports six operations. In the following, let a be a value
in T and let C be a stack of values in T. The operation EmptyStack returns
the empty stack. The operation Push(a, C) returns the stack that results from
adding the value a to the beginning of the stack C. The operation IsEmpty(C)
returns true if the stack C is empty, and otherwise returns false . If C is a
nonempty stack, then the operation Top(C) returns the first element of C and
the operation Pop(C) returns the stack that results from removing the first
element from C. The operation Reverse(C) returns the stack that contains the
elements of C in reverse order. The implementation of stacks as linked lists
supports all six operations in constant time (doubly linked lists are necessary
for stack reversal).



Prerequisite Notions and Notations 2

Functions and Relations

Functions and relations can be viewed as special kinds of sets. We take this
view only for relations, and consider functions as primitives.

Functions

A function f from a set A to a set B maps each element a ∈ A to a unique
element f(a) ∈ B. The set A is called the domain of f , and B is the range of f .
We write [A → B] for the set of functions with domain A and range B. The
function f is one-to-one if for all a, b ∈ A, if a 6= b, then f(a) 6= f(b), and f is
onto if for all b ∈ B, there is an element a ∈ A such that f(a) = b. A bijection

between A and B is a function that is both one-to-one and onto. The bijections
between A and A are called the permutations on A. A partial function g from
A to B is a function from A to B ∪ {⊥}, whose range includes the undefined
value ⊥ 6∈ B; the partial function g is undefined on a ∈ A iff g(a) = ⊥. To
emphasize that a function is not partial, it may be called total.

The identity function on a set A is the function id ∈ [A → A] such that id(a) = a

for all a ∈ A. The identity function is a bijection. The inverse function f−1 of
a one-to-one function f from A to B is the partial function g from B to A such
that for all b ∈ B, we have g(b) = a if f(a) = b, and g(b) = ⊥ if f(a) 6= b for all
a ∈ A. The inverse function of a bijection is again a bijection. Given a function
f ∈ [A → B] and a function g ∈ [B → C], the compound function g ◦ f is the
function h from A to C such that h(a) = g(f(a)) for all a ∈ A. The composition
of two one-to-one (or onto) functions is again one-to-one (or onto). A function
f on a set A is extended to subsets of A and to finite and infinite sequences
over A in the natural way. Let B ⊆ A, and let a = a0a1 · · · be a sequence of
elements ai from A. Then f(B) = {f(b) | b ∈ B}, and f(a) = f(a0)f(a1) · · ·. A
function from An to A is called an n-ary function on A. Given a unary function
f on A, by f0 we denote the identity function on A, and for all i ∈ N, by f i+1

we denote the compound function f i ◦ f , which is again a unary function on A.

Given a binary function ? on A, and given a, b ∈ A, we usually write a ? b

instead of ?(a, b). The function ? is commutative if a ? b = b ? a for all a, b ∈ A,
and ? is associative if a ? (b ? c) = (a ? b) ? c for all a, b, c ∈ A. The element
a ∈ A is an identity element with respect to ? if a ? b = b ? a = b for all b ∈ A.
An associative binary function on A with an identity element is a monoid , and
A is called the carrier of the monoid. For example, the composition ◦ of the
unary functions on a set B is a monoid (with carrier [B → B]) whose identity
element is the identity function on B. If a is an identity element with respect
to ?, and b ? c = c ? b = a for b, c ∈ A, then b is an inverse element of c with
respect to ?. If each carrier element of a monoid has an inverse element, then
the monoid is a group. For example, the composition ◦ of the permutations on
B is a group (the inverse function of a permutation is an inverse element with
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respect to composition). For associative binary functions ? we use the following
notations. In expressions such as a ? b ? c, we may omit parentheses. If the
arguments a, b, and c are themselves large expressions, we may use a vertical
arrangement

? a

? b

? c

of the arguments, each preceded by the function symbol. Provided that ? has
an identity, if the arguments a, b, and c can be parameterized —say, a = f(0),
b = f(1), and c = f(2)— we may use the function symbol as a quantifier and
write (? 0 ≤ i ≤ 2 | f(i)). If the variable that is bound by the quantifier ?

ranges over an empty set, then the quantified expression denotes the identity
of ?; for example, (+ i ∈ ∅ | . . .) = 0 and (◦ i ∈ ∅ | . . .) = id .

Binary relations

A (binary) relation ∼ between two sets A and B is a subset of A ×B. The set
A × B itself is the universal relation between A and B. For a ∈ A and b ∈ B,
we usually write a ∼ b instead of (a, b) ∈ ∼. Let post∼(a) = {b ∈ B | a ∼ b}.
The relation ∼ is serial if post∼(a) is nonempty for all a ∈ A,1 and ∼ is finitely

branching, if post∼(a) is finite for all a ∈ A. In the following, we assume that
A = B —in this case we refer to ∼ as a binary relation on A. Given B ⊆ A, we
write ∼ [B] for the restriction {(a, b) ∈ B2 | a ∼ b} of ∼ to B. The relation ∼
is reflexive if a ∼ a for all a ∈ A; irreflexive if a 6∼ a for all a ∈ A; transitive, if
for all a, b, c ∈ A, if a ∼ b and b ∼ c, then a ∼ c; symmetric, if for all a, b ∈ A,
if a ∼ b, then b ∼ a; asymmetric, if for all a, b ∈ A, if a ∼ b, then b 6∼ a;
antisymmetric, if for all a, b ∈ A, if a ∼ b and b ∼ a, then a = b; and total,
if for all a, b ∈ A, if a 6= b, then a ∼ b or b ∼ a. A reflexive and transitive
relation is a preorder ; a symmetric preorder is an equivalence (relation); an
antisymmetric preorder is a weak partial order ; an irreflexive, asymmetric, and
transitive relation is a strict partial order; a total (weak or strict) partial order
is a (weak or strict) linear order. For a partial order ∼, a linear order that is a
superset of ∼ is called a linearization of ∼. Every partial order has at least one
linearization, and possibly several.

The identity relation on A, written =, is the smallest reflexive relation on A.
The inverse relation ∼−1 of the relation ∼ is the binary relation ≈ on A such
that for all a, b ∈ A, we have a ≈ b iff b ∼ a. Given two binary relations ∼1 and
∼2 on A, the compound relation ∼1 ◦ ∼2 is the binary relation ≈ on A such
that for all a, b ∈ A, we have a ≈ b iff there is an element c ∈ A such that a ∼1 c

1A serial binary relation ∼ between A and B can be thought of as a nondeterministic

function from A to B which maps each domain element a ∈ A to the set post
∼

(a) ⊆ B of
range elements.
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and c ∼2 b. By ∼0 we denote the identity relation on A, and for all i ∈ N, by
∼i+1 we denote the compound relation ∼i ◦ ∼. The reflexive closure ∼refl of
the relation ∼ is the smallest reflexive superset of ∼; that is, ∼refl = (∼0 ∪ ∼1).
Reflexive closure is a bijection between the strict partial (or linear) orders and
the weak partial (or linear) orders, and therefore, we often do not distinguish
between the weak and strict varieties of orders. The transitive closure ∼+ is
the smallest transitive superset of ∼; that is, ∼+ = (∪ i ∈ N

>0 | ∼i). The
reflexive-transitive closure ∼∗ is the smallest preorder that is a superset of ∼;
that is, ∼∗ = (∪ i ∈ N | ∼i). The symmetric closure ∼symm is the smallest
symmetric superset of ∼; that is, ∼symm = (∼ ∪ ∼−1).

Syntactic Objects

We assume a global universe of typed variables in which each variable has a
unique type. This universe is not fixed, but may change from one example to
the next. For instance, in one example, the variable x may have the type N,
and in another example, x may have the type B. However, we never combine or
relate two syntactic objects (such as two reactive modules) from two different
universes. In every universe we assume that each variable x has a primed twin
x′ of the same type. If X is a set of variables, we denote by X ′ = {x′ | x ∈ X}
the set of all primed variables whose unprimed twins are contained in X .

Expressions and valuations

Let X be a finite set of typed variables. An expression over X is a typed
expression e whose free variables are from X . We write free(e) for the set of
variables that occur freely in the expression e; then free(e) ⊆ X . If the variable
x and the expression d are type-compatible, we write e[x := d] for the expression
over X ∪ free(d) which results from safely substituting d for all free occurrences
of x in e.2 A valuation for X is a function s that maps each variable x ∈ X

to a value s(x) of the appropriate type. By ΣX we denote the set of valuations
for X .3 The function s ∈ ΣX is extended to expressions over X in the standard
way. If y is a variable that may or may not be contained in X , and a is a value
in the type of y, then s[y 7→ a] is the valuation in ΣX∪{y} which maps y to a,
and maps each variable x ∈ X different from y to the value s(x). For a valuation
s ∈ ΣX and a set Y ⊆ X of variables, the valuation s[Y ] ∈ ΣY is the restriction
of s to the domain of variables in Y . For two disjoint sets X and Y of variables,
and two valuations s ∈ ΣX and t ∈ ΣY , the valuation (s ∪ t) ∈ ΣX∪Y maps

2Expressions may contain quantifiers. Safe substitution requires that the bound variables
of e that occur freely in d are suitably renamed before the free occurrences of x are replaced
with d. For example, if e is the boolean expression (∃y | y = x + 1) and d is the integer
expression 2y, then e[x := d] denotes, up to renaming of the bound variable y′, the boolean
expression (∃y′ | y′ = 2y + 1).

3There is precisely one valuation for the empty set of variables.
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each variable x ∈ X to the value s(x), and maps each variable y ∈ Y to the
value t(y).

Let p be a boolean expression over X , and let s be a valuation for X . The
valuation s satisfies the expression p, written s |= p, if s(p) = true; otherwise
s violates p. If s satisfies p, then s is called a model of p. We write [[p]] for the
set of models of p; that is, [[p]] = {s ∈ ΣX | s |= p}. The boolean expression
p is satisfiable if there is a valuation for X that satisfies p; that is, [[p]] 6= ∅.
The expression p is valid, written |= p, if all valuations for X satisfy p; that is,
[[p]] = ΣX . Let q be a second boolean expression over X . The boolean expression
p implies the boolean expression q if every model of p is a model of q; that is,
[[p]] ⊆ [[q]]. The two expressions p and q are equivalent if they have the same
models; that is, [[p]] = [[q]].

Guarded commands

Let X and Y be two finite sets of typed variables. A guarded assignment γ from

X to Y consists of a guard pγ and for each variable y ∈ Y , an assignment ey
γ . The

guard pγ is a boolean expression over X . Each assignment ey
γ is an expression

over X that is type-compatible with y. Informally, the guarded assignment γ

can be executed if the guard pγ evaluates to true, and then each variable y ∈ Y

is updated to the value of the assignment ey
γ . Formally, the guarded assignment

γ defines a partial function [[γ]] from the valuations for X to the valuations
for Y : given s ∈ ΣX , if s |= pγ , then [[γ]](s) maps each variable y ∈ Y to the
value s(ey

γ); otherwise [[γ]](s) is undefined. When writing guarded assignments,
we may suppress assignments that leave the value of a variable unchanged: we
specify the guarded assignment γ using the notation

pγ → y1 := ey1

γ ; . . . ; ym := eym

γ ,

where y1, . . . , ym are pairwise distinct variables from Y (possibly m = 0) such
that ey

γ = y for all variables y ∈ Y that do not appear in the list y1, . . . , ym.

A guarded command Γ from X to Y is a finite set {γi | 1 ≤ i ≤ n} of guarded as-
signments from X to Y such that the disjunction (∨ 1 ≤ i ≤ n | pi) of the guards
is valid4 (this implies that n > 0). Informally, a guarded command nondeter-
ministically chooses one of the guards that evaluates to true, and then executes
the corresponding guarded assignment. Formally, the guarded command Γ de-
fines a serial binary relation [[Γ]] between ΣX and ΣY , namely, (s, t) ∈ [[Γ]] iff
[[γi]](s) = t for some 1 ≤ i ≤ n. The guarded assignment γn ∈ Γ is called a
default assignment if (1) pn = (∧ 1 ≤ i < n | ¬pi) and (2) ey

n = y for all
variables y ∈ Y ; that is, if none of the other guards evaluates to true, then the
values of all variables stay unchanged. When writing guarded commands, we

4Given a guarded assignment γi ∈ Γ, we write pi short for the guard pγi
, and similarly for

the assignments of γi.
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may suppress default assignments: we specify the guarded command Γ using
the notation

γ1 [] · · · [] γn−1

if γn is a default assignment; otherwise we write γ1 [] · · · [] γn. The guarded
command Γ is deterministic if for all guarded assignments γi, γj ∈ Γ and all
valuations s ∈ ΣX , if both s |= pi and s |= pj , then [[γi]](s) = [[γj ]](s). If the
guarded command Γ is deterministic, then [[Γ]] is a (total) function from ΣX

to ΣY . For finite sets T = {a1, . . . , an}, we freely use abbreviations such as
p → y := T for the nondeterministic guarded command

p → y := a1 [] · · · [] p → y := an.

Variable renamings

Let X be a finite set of typed variables. A renaming ρ for X is a one-to-one
function that maps each variable x ∈ X to a type-compatible variable x[ρ].
Given a set Y ⊆ X of variables, we write Y [ρ] for the set {y[ρ] | y ∈ Y }
of renamed variables. Given an expression e over X , we write e[ρ] for the
expression over X [ρ] that results from e by replacing all free occurrences of each
variable x ∈ X with the variable x[ρ] using safe substitution. Renaming extends
to guarded assignments and guarded commands in the natural way, by applying
the renaming to all subexpressions: given a guarded command Γ from X to Y ,
and a renaming ρ for X ∪ Y , we write Γ[ρ] for the renamed guarded command
from X [ρ] to Y [ρ]. We specify the renaming ρ using the notation

x1, . . . , xm := x1[ρ], . . . , xm[ρ],

where x1, . . . , xm are pairwise distinct variables from X (possibly m = 0) such
that x[ρ] = x for all variables x ∈ X that do not appear in the list x1, . . . , xm.

Words and Languages

Let A be a nonempty set of letters. A word a = a1 · · · am over the alphabet A is
a finite sequence of letters ai from A. We write |a| = m for the length of a; that
is, |a| denotes the number of letters in a. By ε we denote the empty word (then
|ε| = 0). By a · b we denote the word that results from concatenating the two
words a and b (then |a · b| = |a| + |b|). By ai..j , for 1 ≤ i ≤ j ≤ m, we denote
the word ai · · · aj that results from a by removing i − 1 initial and m − j final
letters (then |ai..j | = j − i + 1). We write A∗ for the set of words over A, and
A+ for the set of nonempty words. A language L over the alphabet A is a set of
nonempty words over A; that is, L ⊆ A+. The word a is a prefix of the word b

if there exists a word c such that b = a · c; and a is a suffix of b if there exists
a word c such that b = c · a. The language L is prefix-closed if for every word
a in L, all prefixes of a are also in L; and L is suffix-closed if for every word a
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in L, all suffixes of a are also in L. The language L is fusion-closed if for all

letters a, if b · a · c and b
′
· a · c′ are in L, then so is b · a · c′. The language L is

upward stutter-closed if for all letters a, if b · a · c is in L, then so is b · a · a · c.
The language L is downward stutter-closed if for all letters a, if b · a · a · c is
in L, then so is b · a · a · c. The language L is stutter-closed if L is both upward
stutter-closed and downward stutter-closed.
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