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Preface

In the field of formal methods in computer science, concurrency theory is receiving a
constantly increasing interest. This is especially true for process algebra. Although it
had been originally conceived as a means for reasoning about the semantics of con-
current programs, process algebraic formalisms like CCS, CSP, ACP, π-calculus,
and their extensions (see, e.g., [154,119,112,22,155,181,30]) were soon used also
for comprehending functional and nonfunctional aspects of the behavior of commu-
nicating concurrent systems.

The scientific impact of process calculi and behavioral equivalences at the base
of process algebra is witnessed not only by a very rich literature. It is in fact worth
mentioning the standardization procedure that led to the development of the process
algebraic language LOTOS [49], as well as the implementation of several modeling
and analysis tools based on process algebra, like CWB [70] and CADP [93], some
of which have been used in industrial case studies. Furthermore, process calculi
and behavioral equivalences are by now adopted in university-level courses to teach
the foundations of concurrent programming as well as the model-driven design of
concurrent, distributed, and mobile systems.

Nevertheless, after 30 years since its introduction, process algebra is rarely
adopted in the practice of software development. On the one hand, its technicali-
ties often obfuscate the way in which systems are modeled. As an example, if a
process term comprises numerous occurrences of the parallel composition operator,
it is hard to understand the communication scheme among the various subterms. On
the other hand, process algebra is perceived as being difficult to learn and use by
practitioners, as it is not close enough to the way they think of software systems.
For instance, process algebra inherently supports compositionality and abstraction,
but it does not support widespread paradigms like object orientation and component
orientation. As a consequence, process algebra cannot compete with commonly ac-
cepted notations like UML, although it is more robust than them.

Some years ago, we thus began to address the following problem: How to en-
hance the usability of process algebra?

We think that an answer to this question should take the following three issues
into account. Firstly, it is necessary to support a friendly component-oriented way of
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viii Preface

modeling systems with process algebra, so that the software designer can reason in
terms of composable software units without having to worry about process algebra
technicalities. Secondly, it is necessary to provide an efficient component-oriented
way of analyzing functional and nonfunctional properties of systems modeled with
process algebra, and to return component-oriented diagnostic information in the
case that property violations are detected. Thirdly, it is necessary to integrate process
algebra in the software development process, which amounts to single out the phases
in which it can be usefully employed.

Starting from the last issue, we believe that a good choice is that of working at
the software architecture level of design. In fact, a software architecture elucidates
the elements constituting a system, their interactions, and the constraints on those
elements and their interactions that provide a framework in which to satisfy the
requirements and serve as a basis for the subsequent development phases [169,184].
Since the focus is not on algorithms and data structures, but on software components
and connectors, as implicitly demonstrated in [18] this is the right abstraction level
for a formal description technique like process algebra.

We also believe that using process algebra in the architectural design phase is
beneficial for the development process. The architecture of a software system is
typically represented as a document expressed in some graphical modeling notation
or architectural description language. This document, which shows system structure
and behavior at a high level of abstraction, should be shared by all the people who
contribute to the various phases of the software development process. Thanks to its
precise semantics and its verification techniques, process algebra can play a role in
the formalization of this document. In particular, it opens the way to the possibility
of analyzing behavioral properties in the early stages of software development [45],
which has the advantage of avoiding delays and costs that may be incurred due to
the late discovery of errors.

In view of such an architectural upgrade of process algebra, our original question
can be refined as follows: How to transform process algebra into an architectural
description language? How to drive the whole software development process with
the resulting process algebraic architectural description language?

The second part of the book is devoted to answering these two questions.
This is accomplished by constructing a process algebraic architectural description
language and endowing it with a number of methods dealing with component-
oriented functional verification, component-oriented performance evaluation, and
the architecture-level integration of dependability and performance.

The second part comprises of four chapters. In Chap. 4, we provide a number
of guidelines for transforming process algebra into a full-fledged architectural de-
scription language called PADL. In Chap. 5, we illustrate MISMDET, a topologi-
cal reduction process for the detection of architecture-level mismatches, which re-
lies on behavioral equivalences and exploits their congruence properties for effi-
ciency reasons and their modal logic characterizations for diagnostic purposes. In
Chap. 6, we present PERFSEL, a procedure for the performance-driven selection
among alternative architectural designs, which is based on equipping process al-
gebraic architectural descriptions with queueing network models allowing for the
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assessment of system-level and component-level performance measures. Finally, in
Chap. 7 we discuss DEPPERF, a methodology for trading dependability features and
performance indices in the architectural design phase, which builds on equivalence-
checking-based noninterference analysis and standard numerical techniques.

The first part of the book instead provides background material on syntax and
semantics for process calculi as well as on the bisimulation approach [168, 113],
the testing approach [82, 111], and the trace approach [57] to the definition of be-
havioral equivalences. This is useful for a deeper understanding of the second part,
as it reports on many concepts and results of process algebra theory in a quick and
comparative way.

The first part comprises of three chapters. In Chap. 1, we introduce a process cal-
culus in which no notion of time, probability, or priority is associated with actions.
In order to represent real-time systems, in Chap. 2 we discuss two deterministically
timed extensions of the original process calculus. The first one allows for delays
between the execution of consecutive actions, whereas the second one assigns du-
rations to actions, with both delays and durations being expressed through natural
numbers. In order to represent shared-resource systems, in Chap. 3 we illustrate a
stochastically timed extension of the original process calculus, in which actions are
durational. Since durations are quantified through exponentially distributed random
variables, the stochastic process governing the system evolution over time turns out
to be a continuous-time Markov chain.

In Chaps. 1 and 3, we also show congruence properties, sound and complete ax-
iomatizations, modal logic characterizations, and verification algorithms for nonde-
terministic and Markovian versions of bisimulation, testing, and trace equivalences.
Moreover, following and extending [98], both in the nondeterministic case and in
the Markovian case we compare the discriminating power of the considered behav-
ioral equivalences and some of their variants. In contrast, in Chap. 2 we concentrate
only on the properties of the bisimulation approach. Then, we examine different op-
tions related to the representation of time and time passing – durationless actions
versus durational actions, relative time versus absolute time, global clock versus lo-
cal clocks – as well as eager, lazy, and maximal progress interpretations of action
execution, in order to study their expressiveness.

This book is intended for graduate students and software professionals. It covers
different topics such as concurrency theory, software architecture, system modeling
and verification, and dependability and performance evaluation. These topics may
seem unrelated, but in reality they are deeply intertwined and should all be part of
an integrated view in order to manage successfully the increasing complexity of
recent software systems. Although it can be used in a course on formal methods in
computer science, the book does not focus only on theoretical aspects. In fact, it also
addresses methodological issues and contains application examples. Moreover, it
gives the same importance to functional and nonfunctional aspects of systems, in an
attempt to overcome the drawbacks arising from their separate consideration [88].
The book can thus be used also in a course on model-driven design of software
architectures, in which case only its second part may be presented, with concepts of
its first part being recalled whenever necessary.
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Part I
Process Calculi

and Behavioral Equivalences



Process algebra is a very rich theory developed over the last three decades, which
underpins the semantics of concurrent programming and the understanding of con-
current, distributed, and mobile systems (see, e.g., [154, 119, 112, 22, 155, 181, 30])
as well as the tool-assisted modeling and analysis of the various functional and non-
functional aspects of those systems (see, e.g., [49, 70, 93]).

Process calculi are action-based formalisms relying on a small set of powerful
behavioral operators that support compositionality – i.e., the ability to build com-
plex models by combining simpler models – and abstraction – i.e., the ability to ne-
glect certain parts of a model. The meaning of each process term is formally defined
through structural operational semantic rules, which construct the state transition
graph corresponding to the process term. Both syntax-level and semantics-level ma-
nipulations are possible on process terms according to different behavioral equiv-
alences, which capture different variants of the notion of same behavior possibly
abstracting from unnecessary details.

The most studied approaches to the definition of behavioral equivalences are
the bisimulation approach [168, 113], the testing approach [82, 111], and the trace
approach [57]. In the first case, two processes are considered equivalent if they are
able to mimic each other’s behavior stepwise. In the second case, two processes are
considered equivalent if no difference can be discovered when interacting with them
by means of tests and comparing their reactions. In the third case, two processes are
considered equivalent if they are able to execute the same sequences of actions.

In the first part of this book, we consider several process calculi sharing the same
behavioral operators: action prefix, alternative composition, parallel composition,
hiding, restriction, and relabeling. In Chap. 1, we introduce a process calculus in
which no notion of time, probability, or priority is associated with actions. In order
to represent real-time systems, in Chap. 2 we discuss two deterministically timed
extensions of the original process calculus. The first one allows for delays between
the execution of consecutive actions, whereas the second one assigns durations to
actions, with both delays and durations being expressed through natural numbers. In
order to represent shared-resource systems, in Chap. 3 we illustrate a stochastically
timed extension of the original process calculus, in which actions are durational.
Since durations are quantified through exponentially distributed random variables,
the stochastic process governing the system evolution over time turns out to be a
continuous-time Markov chain.

In Chaps. 1 and 3, we also show congruence properties, sound and complete ax-
iomatizations, modal logic characterizations, and verification algorithms for nonde-
terministic and Markovian versions of bisimulation, testing, and trace equivalences.
Moreover, following and extending [98], both in the nondeterministic case and in
the Markovian case we compare the discriminating power of the considered behav-
ioral equivalences and some of their variants. In contrast, in Chap. 2 we concentrate
only on the properties of the bisimulation approach. Then, we examine different op-
tions related to the representation of time and time passing – durationless actions
versus durational actions, relative time versus absolute time, global clock versus lo-
cal clocks – as well as eager, lazy, and maximal progress interpretations of action
execution, in order to study their expressiveness.



Chapter 1
Process Algebra

Abstract Process algebra is a formal tool for the specification and the verification
of concurrent and distributed systems. It supports compositional modeling through
a set of operators able to express concepts like sequential composition, alternative
composition, and parallel composition of action-based descriptions. It also supports
mathematical reasoning via a two-level semantics, which formalizes the behavior
of a description by means of an abstract machine obtained from the application
of structural operational rules and then introduces behavioral equivalences able to
relate descriptions that are syntactically different. In this chapter, we present the
typical behavioral operators and operational semantic rules for a process calcu-
lus in which no notion of time, probability, or priority is associated with actions.
Then, we discuss the three most studied approaches to the definition of behavioral
equivalences – bisimulation, testing, and trace – and we illustrate their congruence
properties, sound and complete axiomatizations, modal logic characterizations, and
verification algorithms. Finally, we show how these behavioral equivalences and
some of their variants are related to each other on the basis of their discriminating
power.

1.1 Concurrency, Communication, and Nondeterminism

A natural approach to the design of applications requiring a high degree of reactivity
to external stimuli is that of structuring computing systems into a set of autonomous
components that can evolve independently of each other and from time to time can
communicate or simply synchronize. Due to the different speeds of the components,
the interaction scheme among the components, and the scheduling policies that are
adopted, the behavior of these communicating concurrent systems may exhibit inter-
esting phenomena such as nondeterminism in the final result or in the computation
itself. As a consequence, it is not appropriate to describe the behavior of these sys-
tems via a function from an input domain to an output domain as in the classic
theory of computation [182].

A. Aldini et al., A Process Algebraic Approach to Software Architecture Design, 3
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4 1 Process Algebra

For systems that cannot be viewed as input–output transformers, the key concern
is that of capturing ongoing behavior and enabled interactions. While a sequential
system executes only one step at a time, and hence can be characterized by a single
current state, the various components of a communicating concurrent system can
be in different current local states constituting the current global state. Moreover,
intermediate states are as important as the initial state and the final state, because
they determine the behavior of larger systems that may include the considered sys-
tem as a component. The importance of taking into account intermediate states is
even more evident when considering systems – like operating systems and embed-
ded control systems – that are not designed to terminate, and hence to yield results,
but to perform tasks endlessly as required by the external environment.

Communicating concurrent systems suffer from the state space explosion prob-
lem, because the number of states grows exponentially with the number of com-
ponents rather than linearly in the number of steps as in sequential systems. This
complexity can be managed only if formal techniques are employed in the modeling
and verification process. This makes it possible to understand which combinations
of local states can be reached and the consequences of the reached combinations,
so that we can hopefully answer questions like: What are the computations that the
system can exhibit? When can we replace a component with another one without
affecting the whole behavior? How can we compose components and what is the
result of their composition?

Several mathematical models have been proposed in the literature for describ-
ing and analyzing the behavior of communicating concurrent systems. One of the
main differences among them is in the way concurrency is conceived. For instance,
in truly concurrent models like the Petri net model [170] and the event structure
model [192] two activities are concurrent if they are causally independent, in which
case they may occur in either order or simultaneously.

In contrast, other models stress that communication and, hence, the ability or
inability to interact with the external environment are the basic concepts in the study
of communicating concurrent systems. Indeed, when composing two systems in
parallel, it is their communication that determines the behavior of the composite
system. These models treat independent activities as occurring in an arbitrary order
but not simultaneously; hence, they are called interleaving models [28]. This yields
a simpler and elegant theory, although it may not give a faithful picture of reality.

Two notable interleaving models are the trace model and the synchronization
tree model. The trace model [119] associates with every system the set of sequences
of actions that can be performed. This model is suitable for detecting all possible
communications, but it is not satisfactory as it is not sensitive to deadlock. The syn-
chronization tree model [153], instead, associates with every system a possibly infi-
nite tree, whose nodes are the states of the system and whose branches are labeled
with actions denoting possible communications with the external environment. Syn-
chronization trees arise naturally when concurrency is reduced to nondeterministic
interleaving, but they often discriminate too much; hence, they need to be factored
by some equivalence in order to abstract from unwanted details.
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In the modeling and verification of concurrent and distributed systems, the pre-
viously mentioned mathematical models need to be complemented by description
notations that provide an adequate linguistic support. A typical description language
having the same formal roots as those mathematical models is process algebra,
where processes represent the behavior of systems. This notation is particularly ap-
propriate as it supports compositional modeling through a restricted set of behav-
ioral operators by means of which it is possible to express fundamental concepts like
sequential composition, alternative composition, and parallel composition of action-
based descriptions, as well as the capability of abstracting from certain aspects of
the behavior. Among the proposals made in the literature we mention CCS [154],
CSP [119], ACP [22], π-calculus [156], and the ISO standard LOTOS [49].

The various calculi that have been developed share the idea of combining actions
by means of behavioral operators. Every action represents a system activity at a cer-
tain level of abstraction. Actions are classified into visible and invisible on the basis
of their observability from an external viewpoint, where observability amounts to
the possibility of being engaged in communications with the external environment.
The communication among visible actions can be a pure synchronization or can sup-
port data exchange, in which case visible actions are further divided into input and
output actions. Whenever actions are not equipped with quantitative information
characterizing the duration, the probability, or the priority of their execution, the
choice among several actions that are simultaneously enabled is nondeterministic.

On the other hand, the proposed calculi differ in the way their specific behavioral
operators are conceived. As an example, the alternative composition operator can
encode an external or internal choice mechanism depending on whether the selection
can be influenced by the external environment or not. Another example is given
by the parallel composition operator and its associated communication mechanism.
For instance, communications can be synchronous or asynchronous depending on
whether they require the simultaneous participation of all the involved parties or
not. Moreover, there can be two-way communications, which are restricted to two
actions only, and multiway communications, which are open to the participation of
an arbitrary number of actions.

Process calculi support mathematical reasoning by means of a two-level seman-
tics. The first level formalizes the behavior of a process term by means of an abstract
machine described as a graph called labeled transition system. In this model, every
vertex represents a state and corresponds to a process term into which the original
process term can evolve, while every edge corresponds to a state transition and is
labeled with the action that determines the corresponding state change. The labeled
transition system is obtained by applying structural operational semantic rules [171],
each associated with a specific behavioral operator, to the process term.

The transitional or step-by-step model produced in the first level is typically too
concrete, because it is very close to the process syntax and hence includes all the
details of the behavior described by the considered process term. For this reason,
the second level introduces behavioral equivalences aimed at relating process terms
that, although syntactically different, represent the same behavior in the sense that
they are not distinguishable by an external observer.
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In addition to their theoretical interest, behavioral equivalences are also useful
from an application viewpoint whenever they are able to convey to the semantic
level the compositionality and abstraction features that are made available by the
syntax. In particular, they can be employed for establishing connections among pro-
cess algebraic descriptions of the same system at different abstraction levels, thus
supporting top-down modeling. Moreover, they can be exploited for manipulating
process algebraic descriptions – e.g., for state space reduction purposes before anal-
ysis takes place – in a way that preserves certain properties.

Many different behavioral equivalences have been defined in the literature, giv-
ing rise to the so called linear-time/branching-time spectrum [98]. The reason for
this heterogeneity is the large number of properties of communicating concurrent
systems that can be interesting to analyze; hence, the large number of angles from
which the behavior of such systems can be considered. The three most studied ap-
proaches to the definition of behavioral equivalences are the trace approach, the
testing approach, and the bisimulation approach.

Taking inspiration from the theory of formal languages, in the trace approach [57]
two process terms are considered equivalent if they are able to execute the same
sequences of actions. This approach completely abstracts from any branching point
possibly occurring in process term behavior. Therefore, it needs some adjustments
in order to be adequate for communicating concurrent systems, as demonstrated by
the fact that its basic version may relate a deadlock-free process term to a process
term that can deadlock.

Such a drawback can also be remedied by distinguishing between sequences of
actions that can be performed and sequences of actions that cannot be refused. This
is the effect achieved by the testing approach [82, 111], in which two process terms
are considered equivalent if no difference can be discovered when interacting with
them by means of tests and comparing their reactions. Sensitivity to divergence is
also naturally achieved, which is intended as the capability of detecting computa-
tions composed of invisible actions only. Unfortunately, this approach requires the
analysis of process term behavior in response to all tests.

An effective proof technique is obtained in the bisimulation approach [168, 113],
in which two process terms are considered equivalent if they are able to mimic each
other’s behavior after each single action execution. With this approach it is in fact
sufficient to exhibit a relation that establishes a connection between any pair of
corresponding states, without having to consider the execution of entire sequences
of actions. However, this approach tends to be more discriminating than necessary,
as it faithfully respects the branching structure of process terms.

Independent of the specific approach that has been followed for its definition
and the consequent discriminating power, a behavioral equivalence should possess
a number of properties. Firstly, it should be a congruence with respect to the be-
havioral operators. In this case compositional reasoning is supported because, given
a process term, the replacement of any of its subterms with an equivalent subterm
results in a modified process term that is equivalent to the original process term.
Secondly, it should have a sound and complete axiomatization, which elucidates
the fundamental equational laws of the equivalence with respect to the behavioral
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operators. These laws can be used as rewriting rules for syntactically manipulating
process terms in a way that is consistent with the equivalence definition. Thirdly, it
should have a modal logic characterization, which describes the behavioral proper-
ties that are preserved by the equivalence. The modal logic formulas can be used for
explaining the reasons behind the inequivalence of two process terms. Fourthly, it
should be able to abstract from invisible actions and be equipped with an efficient
verification algorithm, in order for the equivalence to be of practical interest.

This chapter is organized as follows. In Sect. 1.2, we introduce a producer–
consumer system that is used throughout the first part of the book as a running
example in order to illustrate the definition of process syntax and semantics and the
use of behavioral equivalences. In Sect. 1.3, we present the typical behavioral opera-
tors and operational semantic rules for a process calculus in which no notion of time,
probability, or priority is associated with actions. This calculus includes visible and
invisible actions with no support for data exchange, which are subject to a nonde-
terministic choice mechanism affectable by the external environment as well as a
synchronous and multiway communication mechanism. In Sects. 1.4, 1.5, and 1.6,
we define bisimulation equivalence, testing equivalence, and trace equivalence,
respectively, and we illustrate their congruence properties, sound and complete
axiomatizations, modal logic characterizations, and verification algorithms. Finally,
in Sect. 1.7 we examine the linear-time/branching-time spectrum resulting from the
three considered behavioral equivalences and some of their variants.

1.2 Running Example: Producer–Consumer System

The definition of the syntax and semantics of process terms and the application of
behavioral equivalences is exemplified through various process algebraic descrip-
tions of a producer–consumer system. In general, this system is composed of a pro-
ducer, a finite-capacity buffer, and a consumer. The producer deposits items into the
buffer as long as the buffer capacity is not exceeded. Stored items can then be with-
drawn by the consumer according to some predefined discipline, like first come first
served or last come first served.

For the sake of simplicity, we consider a scenario in which the buffer has only
two positions. We also assume that the items are all identical, so that the specific
discipline that has been adopted for withdrawals is not important from the point of
view of an external observer.

1.3 PC: Process Calculus for Nondeterministic Processes

In this section, we present a process calculus inspired by [154,119] that we call PC,
in which no notion of time, probability, or priority is associated with actions. The
calculus includes visible and invisible actions with no support for data exchange.
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Actions are subject to a nondeterministic choice mechanism affectable by the
external environment as well as a synchronous and multiway communication mech-
anism. The formal definition of the calculus is preceded by an informal discussion
of the role of the actions and of the intended meaning of the behavioral operators.

1.3.1 Syntax: Actions and Behavioral Operators

In PC, action-based descriptions are combined by means of behavioral operators.
Actions represent system activities at a certain abstraction level and are divided into
visible and invisible. The set of visible action names of PC is denoted by Namev. The
special symbol τ is traditionally used for representing any invisible action. A single
symbol is enough as there is no way for distinguishing among invisible actions from
the point of view of an external observer. We then denote by Name = Namev∪{τ}
the set of all action names of PC, which is ranged over by a,b.

Behavioral operators express fundamental concepts like sequential composition,
alternative composition, and parallel composition of processes, which represent in
turn the behavior of systems. More precisely, PC comprises the following behavioral
operators, where P,Q are used as metavariables for the set of processes:

• Inactive process: 0 represents a terminated process.
• Action prefix operator: a .P represents a process that can perform a and then

behaves as P. This operator encodes an action-based sequential composition.
• Alternative composition operator: P1 + P2 represents a process that behaves as

either P1 or P2 depending on which of them executes an action first. If several
actions can be performed, the choice among them is solved nondeterministically
due to the absence of quantitative information associated with them. The choice
is completely internal if the actions that can be performed are all invisible, oth-
erwise the choice can be influenced by the external environment.

• Parallel composition operator: P1 ‖S P2 represents a process that behaves as P1 in
parallel with P2 under synchronization set S⊆ Namev. Actions whose name does
not belong to S are executed autonomously by P1 and P2. In contrast, synchro-
nization is forced between any action executed by P1 and any action executed
by P2 that have the same name belonging to S, in which case the resulting action
has the same name as the two original actions. When S = /0, P1 and P2 can proceed
independently of each other. When S = Namev, P1 and P2 have to synchronize on
every visible action name.

• Hiding operator: P/H represents a process that behaves as P in which every
action whose name belongs to H ⊆Namev is turned into τ . This operator encodes
an abstraction mechanism with respect to certain actions and can be exploited for
preventing a process from communicating with the external environment.

• Restriction operator: P\L represents a process that behaves as P in which every
action whose name belongs to L⊆Namev is prevented from being executed. The
effect of this operator is the same as the effect of a parallel composition with 0 in
which L is used as synchronization set.
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• Relabeling operator: P[ϕ ] represents a process that behaves as P in which every
action is renamed according to a total relabeling function ϕ : Name→ Name that
preserves action visibility, i.e. ϕ−1(τ) = {τ}. We denote by Relab the set of such
relabeling functions. For convenience, a single relabeling can be written a �→ b
meaning that a is renamed b. The relabeling operator would subsume the hiding
operator if relabeling functions were not obliged to preserve action visibility,
and also the restriction operator if relabeling functions had not been total. This
operator is useful for the concise representation of process algebraic descriptions
that differ only for certain action names.

• Recursion: recX : P represents a process that behaves as P in which every free
occurrence of process variable X is replaced by recX : P. A process variable is
said to occur free in a process term if it is not in the scope of a rec binder for that
variable, otherwise it is said to be bound in that process term. A process term is
said to be closed if all of its process variable occurrences are bound, otherwise it
is said to be open. A process term is said to be guarded iff all of its occurrences
of process variables are in the scope of action prefix operators. We denote by Var
the set of process variables, which is ranged over by X ,Y .

The process terms of PC arise from the combination of actions belonging to
Name through the behavioral operators mentioned above. In order to avoid am-
biguity, we assume that the unary operators take precedence over the alternative
composition operator, which in turn takes precedence over the parallel composition
operator. Moreover, we assume that the two binary operators are left associative.

Definition 1.1. The set of process terms of the process language PL is generated
by the following syntax:

P ::= 0 inactive process
| a .P action prefix
| P+ P alternative composition
| P‖S P parallel composition
| P/H hiding
| P\L restriction
| P[ϕ ] relabeling
| X process variable
| recX : P recursion

where a ∈ Name, S,H,L⊆ Namev, ϕ ∈ Relab, and X ∈ Var. We denote by P the set
of closed and guarded process terms of PL .

For modeling purposes, repetitive behaviors are more conveniently described by
means of a set Const of process constants and their defining equations rather than

through process variables and rec binders. A defining equation B
Δ= P establishes

that process constant B behaves as process term P, with P possibly containing pro-
cess constant invocations. In this case, closure amounts to the existence of a defining
equation for every invoked process constant and guardedness amounts to every pro-
cess constant invocation occurring inside the scope of an action prefix operator.
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Example 1.1. Let us model with PC the producer–consumer system introduced in
Sect. 1.2. We adopt the following conventions: action names are expressed through
verbs composed of lower-case letters only, whereas process constant names are ex-
pressed through nouns starting with an upper-case letter.

Since the only observable activities are deposits and withdrawals, the producer–
consumer system can be formalized through the following defining equations:

ProdCons0/2
Δ= deposit .ProdCons1/2

ProdCons1/2
Δ= deposit .ProdCons2/2 + withdraw .ProdCons0/2

ProdCons2/2
Δ= withdraw .ProdCons1/2

where ProdCons0/2 represents the initial state of the system (in which the buffer is
empty), ProdCons1/2 represents the state in which only one position of the buffer is
occupied, and ProdCons2/2 represents the state in which the buffer is full.

The structure-independent process algebraic description provided above can be
viewed as a specification of the producer-consumer system with two positions to
which every correct implementation should conform.

1.3.2 Semantics: Structural Operational Rules

The semantics for PC is formalized through a labeled transition system. This is a
graph (P,Name,−−−→) including all computations and branching points, where:

• P is the set of vertices, each denoting a state corresponding to a process term.
• Name is the set of edge labels, each corresponding to an action.
• −−−→ ⊆ P×Name×P is the set of edges, forming a state transition relation.

Each labeled transition (P,a,P′)∈−−−→ is represented as P
a−−−→P′ to emphasize

its source and target states and the action that determines the corresponding state
change. Given such a transition, we say that P′ is an a-derivative of P.

The labeled transition system above is built by inferring one single transition at a
time through the application of operational semantic rules to the source state of the
transition itself, with the rules being defined by induction on the syntactical structure
of process terms. More precisely, the transition relation−−−→ is the smallest subset
of P×Name×P satisfying the operational semantic rules of Table 1.1. The labeled
transition system for a specific process term P ∈ P is denoted by [[P]] and has P as
initial state. It can be unwound into a synchronization tree in the obvious way.

The operational semantic rules of Table 1.1 are formed each by a premise (above
the horizontal line) and a conclusion (below the horizontal line) and establish which
actions can be performed and when they can be performed for the various behavioral
operators. Since the inactive process cannot execute any action, there is no rule for
it and hence [[0]] turns out to be a single state with no transitions.

The action prefix operator has a single rule with no premise, which means that the
derivation of the transition shown in the conclusion is not subject to the satisfaction
of any precondition. As a consequence, PRE is the basic rule for the entire process



1.3 PC: Process Calculus for Nondeterministic Processes 11

Table 1.1 Operational semantic rules for PC

(PRE)
a .P

a−−−→P

(ALT1)
P1

a−−−→P′1
P1 +P2

a−−−→P′1
(ALT2)

P2
a−−−→P′2

P1 +P2
a−−−→P′2

(PAR1)
P1

a−−−→P′1 a /∈ S

P1 ‖S P2
a−−−→P′1 ‖S P2

(PAR2)
P2

a−−−→P′2 a /∈ S

P1 ‖S P2
a−−−→P1 ‖S P′2

(SYN)
P1

a−−−→P′1 P2
a−−−→P′2 a ∈ S

P1 ‖S P2
a−−−→P′1 ‖S P′2

(HID1)
P

a−−−→P′ a ∈H

P/H
τ−−−→P′/H

(HID2)
P

a−−−→P′ a /∈H

P/H
a−−−→P′/H

(RES)
P

a−−−→P′ a /∈ L

P\L a−−−→P′\L

(REL)
P

a−−−→P′

P[ϕ ]
ϕ(a)
−−−→P′[ϕ ]

(REC)
P{recX : P ↪→ X} a−−−→P′

recX : P
a−−−→P′

of transition derivation. The alternative composition operator has two symmetric
rules ALT1 and ALT2 expressing a nondeterministic choice, which can be external
or internal depending on the visibility of the actions that can be performed. The
action prefix operator and the alternative composition operator are called dynamic
operators as the conclusions of their rules share the fact that the behavioral operator
disappears when moving from the left-hand side to the right-hand side.

In contrast, the parallel composition operator, the hiding operator, the restriction
operator, and the relabeling operator are called static operators as they occur on both
sides of the conclusions of their rules. In particular, the parallel composition operator
conveys information about the structure and the communication scheme inside a
process. Its first two rules PAR1 and PAR2 express the autonomous execution of
actions whose name does not belong to the synchronization set, while its third rule
SYN formalizes a synchronous communication mechanism open to the participation
of several actions having the same name.
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The first two rules of the parallel composition operator encode the interleaving
view of concurrency. As an example, take the following two process terms:

a .0 ‖ /0 b .0
a .b .0 + b .a .0

The first one (concurrent term) executes a in parallel with b, while the second
one (sequential term) executes either a followed by b, or b followed by a. These
two syntactically and structurally different terms are behaviorally identical, as the
application of semantic rules PAR1, PAR2, and PRE to the concurrent term and the
application of semantic rules ALT1, ALT2, and PRE to the sequential term yield
the same labeled transition system, which is shown below:

More precisely, the process terms associated with the various states of this labeled
transition system are a .0 ‖ /0 b .0, 0 ‖ /0 b .0, a .0 ‖ /0 0, 0 ‖ /0 0 for the concurrent term
and a .b .0 + b .a .0, b .0, a .0, 0 for the sequential term. However, these differences
are not important from the point of view of an external observer, as what matters is
given by the actions that are executed and the order in which they are executed.

As far as the unary static operators are concerned, their rules tend to change the
action labeling the transition when moving from the premise to the conclusion. In
the case of the hiding operator, the first rule HID1 transforms into τ every action
whose name belongs to the hiding set, while the second rule HID2 applies no trans-
formation to actions whose name does not belong to the hiding set. The rule RES for
the restriction operator filters only actions whose name does not belong to the re-
striction set. The rule REL for the relabeling operator transforms actions according
to the relabeling function.

The rule REC for recursion unfolds the body of the rec binder by means of a
syntactical substitution that replaces every free occurrence of the process variable
with the recursive process term itself. In general, a syntactical substitution σ is a set
of syntactical replacements each written t ↪→ x to indicate that term t substitutes for
every free occurrence of variable x. The limitation to closed and guarded process
terms guarantees that the unfolding process can take place and generates finitely
many transitions out of any state; hence, the corresponding labeled transition sys-
tems are finitely branching. We also note that the labeled transition system for a
specific process term is finite state, i.e., has finitely many states, as long as the body
of each recursive definition occurring in the process term does not contain static
operators. The rule equivalent to REC for process constants is as follows:

(REC′)
B

Δ= P P
a−−−→P′

B
a−−−→P′



1.4 Bisimulation Equivalence 13

Example 1.2. The labeled transition system [[ProdCons0/2]] for the process algebraic
description of Example 1.1 is depicted below, where also the process term associ-
ated with each state is shown:

deposit withdraw

deposit withdraw

ProdCons0/2

ProdCons1/2

ProdCons2/2

This labeled transition system has been obtained starting from ProdCons0/2 by ap-
plying semantic rules REC′, ALT1, ALT2, and PRE.

1.4 Bisimulation Equivalence

Bisimulation equivalence relates two process terms whenever they are able to mimic
each other’s behavior stepwise. After recalling some basic notions about equiva-
lence relations and preorders, in this section we provide the definition of bisim-
ulation equivalence over P together with a necessary condition and a sufficient
condition [168,113,154]. Then, we show that bisimulation equivalence is a congru-
ence and we present its sound and complete axiomatization, its modal logic charac-
terization, and its verification algorithm [113, 154, 128, 167]. Finally, we illustrate
some variants that abstract from τ-actions [113, 154, 100, 128].

1.4.1 Equivalence Relations and Preorders

Here, we recall some basic notions about equivalence relations and preorders that
are necessary for introducing behavioral equivalences and their properties.

Definition 1.2. A binary relation R over a set U , i.e. R ⊆U×U , is said to be:

• Reflexive iff (u,u) ∈R for all u ∈U
• Symmetric iff (u1,u2) ∈R =⇒ (u2,u1) ∈R for all u1,u2 ∈U
• Antisymmetric iff (u1,u2) ∈R∧ (u2,u1) ∈R =⇒ u1 = u2 for all u1,u2 ∈U
• Transitive iff (u1,u2) ∈R ∧ (u2,u3) ∈R =⇒ (u1,u3) ∈R for all u1,u2,u3 ∈U
• Linear iff (u1,u2) ∈R∨ (u2,u1) ∈R for all u1,u2 ∈U

Definition 1.3. A binary relation R over a set U is said to be:

• An equivalence relation iff it is reflexive, symmetric, and transitive
• A preorder iff it is reflexive and transitive
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• A partial order iff it is reflexive, antisymmetric, and transitive
• A total order iff it is reflexive, antisymmetric, transitive, and linear

Given a binary relation R over a set U , we denote by Rn the composition of R
with itself n ∈ N>0 times and by R+ =

⋃
n∈N>0

Rn the transitive closure of R.
Any equivalence relation R over a set U induces a partition of U ; i.e., a family

of nonempty and disjoint subsets of U whose union coincides with U . This partition
is denoted by U/R and each of its elements is called an equivalence class.

Any preorder R over a set U induces an equivalence relation over U given by
R ∩R−1, where R−1 = {(u2,u1) ∈U ×U | (u1,u2) ∈ R} is the inverse relation
of R. Such an equivalence is called the kernel of the preorder.

Definition 1.4. Let op be an n-ary operation, with n ∈ N>0, over a set U , i.e. op :
U×·· ·×U −→U with n occurrences of U in the domain. A binary relation R over
U is said to be congruent with respect to op iff, whenever (u1,u′1), . . . ,(un,u′n) ∈R,
then (op(u1, . . . ,un),op(u′1, . . . ,u

′
n)) ∈R.

The elements of a set U composed through a family of operations O can be
syntactically manipulated according to a binary relation R over U congruent with
respect to O by means of a suitable deduction system. This includes inference rules
corresponding to the properties of R – like reflexivity, symmetry, and transitivity in
the case of an equivalence relation, plus substitutivity for congruence– as well as a
set X of axioms expressing the basic equational laws of R with respect to O .

The application of the deduction system based on X , which is denoted by
Ded(X ), induces a binary relation RX over U possessing the same properties
as R. The fact that in Ded(X ) it can be inferred that u1,u2 ∈U are related by RX

is written X  (u1,u2) ∈ RX . The two binary relations R and RX coincide iff
Ded(X ) is sound and complete with respect to R. The axiomatization is sound iff,
whenever X  (u1,u2) ∈RX , then (u1,u2) ∈R. The axiomatization is complete
iff, whenever (u1,u2) ∈R, then X  (u1,u2) ∈RX .

1.4.2 Definition of the Behavioral Equivalence

The basic idea behind bisimulation equivalence is that, whenever a process term can
perform a certain action, then any process term equivalent to the given one has to
be able to respond with the same action. Moreover, the derivative process terms into
which all the previous process terms have evolved after executing that action must
still be equivalent to each other, so that this game can go on endlessly.

Definition 1.5. A binary relation B over P is a bisimulation iff, whenever (P1,P2) ∈
B, then for all actions a ∈ Name:

• Whenever P1
a−−−→P′1, then P2

a−−−→P′2 with (P′1,P
′
2) ∈B

• Whenever P2
a−−−→P′2, then P1

a−−−→P′1 with (P′1,P
′
2) ∈B
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Since the union of all the bisimulations can be proved to be the largest bisimula-
tion, the definition below follows.

Definition 1.6. Bisimulation equivalence (or bisimilarity), denoted∼B, is the union
of all the bisimulations.

We observe that ∼B is indeed an equivalence relation and enjoys a very natural
and appealing proof technique. In order to establish whether two process terms P1

and P2 are bisimilar, it is in fact sufficient to exhibit a bisimulation containing the
pair (P1,P2).

Example 1.3. Let us model with PC a concurrent implementation of the producer-
consumer system introduced in Sect. 1.2. In this case the two-position buffer
is implemented as the parallel composition of two independent one-position
buffers:

PCconc,2
Δ= Prod ‖{deposit} (Buff ‖ /0 Buff ) ‖{withdraw}Cons

Prod
Δ= deposit .Prod

Buff
Δ= deposit .withdraw .Buff

Cons
Δ= withdraw .Cons

Is this a correct implementation of the specification provided in Example 1.1? In
order to answer this question, we have to investigate the existence of some relation
between PCconc,2 and ProdCons0/2. The first step consists of comparing [[PCconc,2]]
and [[ProdCons0/2]], which are shown below:

deposit

deposit deposit withdraw

deposit withdraw

ProdCons0/2

ProdCons1/2

ProdCons2/2

deposit

deposit

withdraw withdraw

withdrawwithdraw

P ||{d}(B ||∅ B) ||{w}C

P ||{d}(B ||∅ B) ||{w}C

P ||{d}(B ||∅ B) ||{w}CP ||{d}(B ||∅ B) ||{w}C

In the states of the labeled transition system on the left-hand side, every process
constant and every action has been shortened with its initial. Moreover, B̄ stands for
withdraw .Buff .

What turns out is that PCconc,2 ∼B ProdCons0/2. The bisimulation proving this
fact has been represented graphically by giving the same color to states in the same
equivalence class and different colors to different equivalence classes. The depicted
relation is a bisimulation because in both labeled transition systems:

• A light gray state can only reach a gray state by executing deposit
• A gray state can only reach a dark gray state by executing deposit or a light gray

state by executing withdraw
• A dark gray state can only reach a gray state by executing withdraw
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1.4.3 Conditions and Characterizations

A simple necessary condition for establishing whether two process terms are bisim-
ilar is that they perform the same actions.

Proposition 1.1. Let P1,P2 ∈ P. Whenever P1 ∼B P2, then for all a ∈ Name it holds

P1
a−−−→P′1 iff P2

a−−−→P′2 for some P′1,P
′
2 ∈ P.

We can also derive a sufficient condition based on the notion of bisimulation
up to ∼B. This is useful both for concentrating on the important pairs of process
terms that form a bisimulation – thus ruling out redundant pairs – and for proving
the congruence property of ∼B with respect to recursion.

Definition 1.7. A binary relation B over P is a bisimulation up to ∼B iff, whenever
(P1,P2) ∈B, then for all actions a ∈ Name:

• Whenever P1
a−−−→P′1, then P2

a−−−→P′2 with P′1 ∼B Q1 B Q2 ∼B P′2
• Whenever P2

a−−−→P′2, then P1
a−−−→P′1 with P′1 ∼B Q1 B Q2 ∼B P′2

Proposition 1.2. Let B be a binary relation over P. Whenever B is a bisimulation
up to ∼B, then for all P1,P2 ∈ P:

(P1,P2) ∈B =⇒ P1 ∼B P2

1.4.4 Congruence Property

Bisimulation equivalence is a congruence with respect to all the dynamic and static
operators of PC as well as recursion.

Theorem 1.1. Let P1,P2 ∈ P. Whenever P1 ∼B P2, then:

1. a .P1 ∼B a .P2 for all a ∈ Name.
2. P1 + P∼B P2 + P and P + P1 ∼B P + P2 for all P ∈ P.
3. P1‖S P∼B P2 ‖S P and P‖S P1 ∼B P‖S P2 for all P ∈ P and S ⊆ Namev.
4. P1/H ∼B P2/H for all H ⊆ Namev.
5. P1\L∼B P2\L for all L⊆ Namev.
6. P1[ϕ ]∼B P2[ϕ ] for all ϕ ∈ Relab.

As far as recursion is concerned, we need to extend∼B to open process terms by
considering all possible syntactical substitutions replacing any free occurrence of a
process variable with a closed process term.

Definition 1.8. Let P1,P2 ∈PL be guarded process terms containing free occur-
rences of k ∈ N process variables X1, . . . ,Xk ∈ Var at most. We define P1 ∼B P2 iff
P1{Qi ↪→ Xi | 1≤ i≤ k} ∼B P2{Qi ↪→ Xi | 1≤ i≤ k} for all Q1, . . . ,Qk ∈ P.

Theorem 1.2. Let P1,P2 ∈PL be guarded process terms containing free occur-
rences of k ∈ N process variables X1, . . . ,Xk ∈ Var at most. Whenever P1 ∼B P2,
then recX : P1 ∼B recX : P2 for all X ∈ Var.
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1.4.5 Sound and Complete Axiomatization

Bisimulation equivalence has a sound and complete axiomatization over nonrecur-
sive process terms, given by the set XB of equational laws of Table 1.2.

Axioms XB,1, XB,2, and XB,3 establish that the alternative composition operator
is commutative, associative, and has 0 as neutral element, respectively. Axiom XB,4,
which states that the alternative composition operator is also idempotent, character-
izes ∼B and distinguishes it from synchronization tree isomorphism.

The interleaving view of concurrency is expressed by axioms XB,5 to XB,8,
where I and J are nonempty finite index sets and each summation on the right-hand
side is taken to be 0 whenever its set of summands is empty. In particular, axiom
XB,5 is called the expansion law, as it highlights how the parallel composition of
P ≡ ∑i∈I ai .Pi and Q ≡ ∑ j∈J b j .Q j is rendered through all possible interleavings
of the sequences of actions executable by P and Q. It is worth observing that the
three summands on the right-hand side of the expansion law correspond to the three
operational semantic rules for the parallel composition operator.

Table 1.2 Equational laws for ∼B

(XB,1) P1 +P2 = P2 +P1
(XB,2) (P1 +P2)+P3 = P1 +(P2 +P3)
(XB,3) P+0 = P

(XB,4) P+P = P

(XB,5) ∑
i∈I

ai .Pi ‖S ∑
j∈J

b j .Q j = ∑
k∈I,ak /∈S

ak .

(

Pk ‖S ∑
j∈J

b j .Q j

)

+ ∑
h∈J,bh /∈S

bh .

(

∑
i∈I

ai .Pi ‖S Qh

)

+ ∑
k∈I,ak∈S

∑
h∈J,bh=ak

ak . (Pk ‖S Qh)

(XB,6) ∑
i∈I

ai .Pi ‖S 0 = ∑
k∈I,ak /∈S

ak .Pk

(XB,7) 0 ‖S ∑
j∈J

b j .Q j = ∑
h∈J,bh /∈S

bh .Qh

(XB,8) 0 ‖S 0 = 0

(XB,9) 0/H = 0
(XB,10) (a .P)/H = τ . (P/H) if a ∈H
(XB,11) (a .P)/H = a . (P/H) if a /∈ H
(XB,12) (P1 +P2)/H = P1/H +P2/H

(XB,13) 0\L = 0
(XB,14) (a .P)\L = 0 if a ∈ L
(XB,15) (a .P)\L = a . (P\L) if a /∈ L
(XB,16) (P1 +P2)\L = P1\L+P2\L

(XB,17) 0[ϕ ] = 0
(XB,18) (a .P)[ϕ ] = ϕ(a) . (P[ϕ ])
(XB,19) (P1 +P2)[ϕ ] = P1[ϕ ]+P2[ϕ ]
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The laws related to the unary static operators indicate that these operators are
absorbed by 0 (XB,9, XB,13, XB,17), manifest their effect under the action prefix
operator (XB,10, XB,11, XB,14, XB,15, XB,18), and distribute over the alternative
composition operator (XB,12, XB,16, XB,19).

Theorem 1.3. Let P1,P2 ∈ P be nonrecursive. Then:

P1 ∼B P2 ⇐⇒ XB  P1 = P2

1.4.6 Modal Logic Characterization

Bisimulation equivalence has a modal logic characterization based on the
Hennessy–Milner logic (HML for short). In addition to basic truth values and
propositional connectives, this logic includes an operator called diamond, which
expresses the possibility of executing a certain action and subsequently behaving in
a certain way.

Definition 1.9. The set of formulas of the modal language ML B is generated by
the following syntax:

φ ::= true | ¬φ | φ ∧φ | 〈a〉φ
where a ∈ Name.

Definition 1.10. The satisfaction relation |=B of ML B over P is defined by induc-
tion on the syntactical structure of formulas as follows:

P |=B true
P |=B ¬φ if P �|=B φ
P |=B φ1∧φ2 if P |=B φ1 and P |=B φ2

P |=B 〈a〉φ if there exists P′ ∈ P such that P
a−−−→P′ and P′ |=B φ

where �|=B denotes the complement of |=B with respect to P×ML B.

From the operators above we can derive other operators, among which the dual
of the diamond operator. This modal operator, which expresses the necessity of be-
having in a certain way after executing a certain action, is defined as follows:

[a]φ ≡ ¬〈a〉¬φ

with P |=B [a]φ if for all P′ ∈ P, whenever P
a−−−→P′, then P′ |=B φ .

The definition of HML comprises the modal language ML B and its satisfaction
relation |=B over process terms. This provides a modal logic characterization of∼B,
in the sense that two process terms are bisimilar iff they satisfy the same set of
formulas of HML.

Theorem 1.4. Let P1,P2 ∈ P. Then:

P1 ∼B P2 ⇐⇒ (∀φ ∈ML B.P1 |=B φ ⇐⇒ P2 |=B φ)
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1.4.7 Verification Algorithm

Bisimulation equivalence can be decided in polynomial time by means of a partition
refinement algorithm that exploits the fact that ∼B can be characterized as the limit
of a sequence of successively finer equivalence relations:

∼B =
⋂

i∈N

∼B,i

Relation ∼B,0 is P×P while ∼B,i, i ∈ N≥1, is a binary relation over P defined as
follows: whenever P1 ∼B,i P2, then for all a ∈ Name:

• Whenever P1
a−−−→P′1, then P2

a−−−→P′2 with P′1 ∼B,i−1 P′2
• Whenever P2

a−−−→P′2, then P1
a−−−→P′1 with P′1 ∼B,i−1 P′2

Note that ∼B,1 refines the partition {P} induced by ∼B,0 by creating an equivalence
class for each set of terms satisfying the necessary condition of Proposition 1.1.

Given P1,P2 ∈ P finite state and denoted by NameP1,P2 the set of actions label-
ing the transitions of [[P1]] or [[P2]], the algorithm for checking whether P1 ∼B P2

proceeds as follows:

1. Build an initial partition with a single class including all the states of [[P1]] and
all the states of [[P2]].

2. Initialize a list of splitters with the above class as its only element.
3. While the list of splitters is not empty, select a splitter and remove it from the list

after refining the current partition for each a ∈ NameP1,P2 :

(a) Split each class of the current partition by comparing its states when per-
forming actions of name a that lead to the selected splitter.

(b) For each class split into a nonempty subclass of states reaching the selected
splitter and a nonempty subclass of states not reaching the selected splitter,
insert the smallest subclass into the list of splitters.

4. Return yes/no depending on whether the initial state of [[P1]] and the initial state
of [[P2]] belong to the same class of the final partition or to different classes.

The time complexity is O(m · log n), where n is the total number of states and
m is the total number of transitions of [[P1]] and [[P2]]. We mention that this algorithm
can also be used for minimizing a labeled transition system with respect to ∼B.

1.4.8 Abstracting from Invisible Actions

Bisimulation equivalence does not abstract from invisible actions, which limits its
practical interest in spite of its good properties. Consider for instance process terms
a .b .0 and a .τ .b .0. From the point of view of an external observer, these two pro-
cess terms are indistinguishable, as in both cases what can be observed is the execu-
tion of an a-action followed by the execution of a b-action. Unfortunately, the two
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process terms are not bisimilar, as the τ-action of the second process term cannot be
matched by any action of the first process term.

We now define a weak variant of ∼B that is able to abstract from τ-actions. The
idea is that of relaxing the notion of bisimulation in such a way that, whenever
a process term can perform a certain action, then any process term equivalent to
the given one has to be able to respond with the same action possibly preceded
and followed by arbitrarily many τ-actions. In other words, the weak variant of ∼B

should capture the ability of mimicking each other’s visible behavior stepwise.
This is achieved by extending the transition relation −−−→ to action sequences.

Denoted by Name∗ the set of possibly empty sequences of finitely many actions, we
use ====⇒ to indicate the subset of P×Name∗ ×P such that P

a1...an====⇒P′ iff:

• Either n = 0 and P coincides with P′, meaning that P stays idle
• Or n ∈ N≥1 and there exists {Pi ∈ P | 0 ≤ i ≤ n} such that P0 coincides with P,

Pi−1
ai−−−→Pi for all 1≤ i≤ n, and Pn coincides with P′

In particular,
τ∗====⇒ represents the execution of a possibly empty sequence of

finitely many τ-actions.

Definition 1.11. A binary relation B over P is a weak bisimulation iff, whenever
(P1,P2) ∈B, then:

• Whenever P1
τ−−−→P′1, then P2

τ∗====⇒P′2 with (P′1,P
′
2) ∈B

• Whenever P2
τ−−−→P′2, then P1

τ∗====⇒P′1 with (P′1,P
′
2) ∈B

and for all visible actions a ∈ Namev:

• Whenever P1
a−−−→P′1, then P2

τ∗aτ∗====⇒P′2 with (P′1,P
′
2) ∈B

• Whenever P2
a−−−→P′2, then P1

τ∗aτ∗====⇒P′1 with (P′1,P
′
2) ∈B

Since the union of all the weak bisimulations can be proved to be the largest weak
bisimulation, the definition below follows.

Definition 1.12. Weak bisimulation equivalence (or weak bisimilarity), denoted≈B,
is the union of all the weak bisimulations.

Weak bisimulation equivalence is again an equivalence relation and enjoys prop-
erties similar to those of ∼B, except for congruence with respect to the alternative
composition operator. In particular, the axiomatization of ≈B extends the axiomati-
zation of ∼B shown in Table 1.2 by adding the axioms of Table 1.3. These further
axioms are called τ-laws as they formalize the cases in which ≈B is able to abstract

Table 1.3 Equational laws characterizing ≈B (left) and ≈c
B (right)

τ .P = P
a .τ .P = a .P a .τ .P = a .P

P+ τ .P = τ .P P+ τ .P = τ .P
a . (P1 + τ .P2)+a .P2 = a . (P1 + τ .P2) a . (P1 + τ .P2)+a .P2 = a . (P1 + τ .P2)
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from τ-actions. The modal logic characterization of ≈B is given by a weak variant
of HML in which 〈a〉φ , a ∈ Name, is replaced by 〈〈τ〉〉φ and 〈〈a〉〉φ , a ∈ Namev.

In that case, P |=B 〈〈τ〉〉φ if there exists P′ ∈ P such that P
τ∗====⇒P′ and P′ |=B φ ,

while P |=B 〈〈a〉〉φ if there exists P′ ∈ P such that P
τ∗aτ∗====⇒P′ and P′ |=B φ . The ver-

ification algorithm for ≈B runs in O(n2 ·m · log n) time and is obtained by having
the verification algorithm for∼B preceded by the preprocessing step below:

0. Build the reflexive and transitive closure of
τ−−−→ in [[Pi]] for i = 1,2:

(a) Add a looping τ-transition to each state.
(b) Add a τ-transition between the initial state and the final state of any sequence

of at least two τ-transitions, if the two states are distinct and all the transitions
in the sequence are distinct and nonlooping.

(c) Add an a-transition, a ∈ Namev, between the initial state and the final state
of any sequence of at least two transitions in which one is labeled with a,
if all the other transitions in the sequence are labeled with τ , distinct, and
nonlooping.

The congruence problem of ≈B with respect to the alternative composition op-
erator can be seen by considering process terms a .0 and τ .a .0. These two process
terms are weakly bisimilar, but they can be distinguished in the context of + b .0.
In fact, τ .a .0+ b .0 can perform a τ-action that makes it evolve into a .0, whereas
a .0 + b .0 cannot evolve into a process term weakly bisimilar to a .0. This exam-
ple shows that axiom τ .P = P cannot be freely used in all contexts when the pro-
cess term on its right-hand side is stable; i.e., it cannot perform τ-actions. In fact,
congruence with respect to the alternative composition operator can be restored by
enforcing a matching on initial τ-actions in the equivalence definition.

Definition 1.13. Let P1,P2 ∈ P. We say that P1 is weakly bisimulation congruent
to P2, written P1 ≈c

B P2, iff for all actions a ∈ Name:

• Whenever P1
a−−−→P′1, then P2

τ∗aτ∗====⇒P′2 with P′1 ≈B P′2
• Whenever P2

a−−−→P′2, then P1
τ∗aτ∗====⇒P′1 with P′1 ≈B P′2

Theorem 1.5. ≈c
B is the largest congruence contained in ≈B.

From the equational standpoint, as shown in Table 1.3 axiom τ .P = P is no longer
valid for≈c

B; hence, ≈c
B can abstract only from some intermediate τ-actions.

We also mention that ≈B does not fully retain the property possessed by ∼B

of respecting the branching structure of process terms. Starting from P1 ≈B P2,

if P1
a−−−→P′1 then P2

τ∗====⇒Q
a−−−→Q′ τ∗====⇒P′2 with P′1 ≈B P′2, but we do

not know whether any relation exists between P1 and Q and between P′1 and Q′.
The property can be restored by requiring that P1 be equivalent to Q and that
P′1 be equivalent to Q′. The resulting equivalence is called branching bisimula-
tion equivalence, denoted ≈B,b, and is characterized by a single τ-law stating that
a .(τ .(P1 +P2)+P1) = a .(P1 +P2). It turns out that≈B,b coincides with ≈B on any
pair of process terms with at most one of them reaching unstable process terms.
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Example 1.4. Let us model with PC a pipeline implementation of the producer–
consumer system introduced in Sect. 1.2. In this case, the two-position buffer is im-
plemented as the parallel composition of two communicating one-position buffers:

PCpipe,2
Δ= Prod ‖{deposit} (LBuff ‖{pass} RBuff )/{pass} ‖{withdraw} Cons

Prod
Δ= deposit .Prod

LBuff
Δ= deposit .pass .LBuff

RBuff
Δ= pass .withdraw .RBuff

Cons
Δ= withdraw .Cons

Note that action pass models the passage of one item from the left buffer to the right
buffer and occurs both in the synchronization set and in the hiding set for LBuff and
RBuff . We have decided to hide the execution of pass as it represents an implemen-
tation detail that should not be perceived by an external observer.

Is this a correct implementation of the specification provided in Example 1.1?
Similar to the case of the concurrent implementation presented in Example 1.3, in
order to answer this question we have to investigate the existence of some relation
between PCpipe,2 and ProdCons0/2. The first step consists of comparing [[PCpipe,2]]
and [[ProdCons0/2]], which are shown below:

τ

deposit withdraw

deposit withdrawwithdraw deposit

withdrawdeposit

ProdCons0/2

ProdCons1/2

ProdCons2/2

P ||{d}(LB ||{p} RB)/{p} ||{w}C

P ||{d}(LB ||{p} RB)/{p} ||{w}C P ||{d}(LB ||{p} RB)/{p} ||{w}C

P ||{d}(LB ||{p} RB)/{p} ||{w}C

In addition to the same shorthands as before for process constants and action names
on the left-hand side, we have LB for pass .LBuff and RB for withdraw .RBuff .

Since the labeled transition system on the left-hand side contains a τ-transition
representing the passage of one item from the left buffer to the right buffer while the
labeled transition system on the right-hand side does not contain any τ-transition,
we cannot expect the two labeled transition systems to be related by a bisimulation,
as happened with the concurrent implementation.

What turns out is that PCpipe,2 ≈B ProdCons0/2 (and PCpipe,2 ≈B,b ProdCons0/2
as only [[PCpipe,2]] has τ-transitions). Similar to Example 1.3, the weak bisimula-
tion proving this fact has been represented graphically by giving the same color to
equivalent states and different colors to different equivalence classes. The depicted
relation is a weak bisimulation because in both labeled transition systems:

• A light gray state can only reach a gray state by executing deposit
• A gray state can only reach a dark gray state by executing deposit (possibly

preceded by τ), a light gray state by executing withdraw (possibly preceded by τ),
or a gray state by executing τ or staying idle

• A dark gray state can only reach a gray state by executing withdraw
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1.5 Testing Equivalence

Testing equivalence relates two process terms whenever an external observer is not
able to distinguish between them by interacting with them by means of tests and
comparing their reactions. In this section, we provide the definition of testing equiv-
alence over P based on the distinction between the possibility and the necessity of
passing tests, together with two alternative characterizations [82]. Then, we show
that testing equivalence is a congruence with respect to all operators except for al-
ternative composition and we present its sound and complete axiomatization, its
modal logic characterization, and its verification algorithm [82, 111, 69].

1.5.1 Definition of the Behavioral Equivalence

The basic idea behind testing equivalence is that of discovering differences in the
behavior of process terms by experimenting on them through tests. The testing ap-
proach thus requires defining a set of tests, a procedure to perform tests, and a cri-
terion for interpreting the execution of tests.

The simplest way to represent tests is through process terms. Experiments are
conducted by making tests interact with process terms under test by means of a
parallel composition operator that enforces synchronization on the set Namev of all
visible action names. In order to establish whether a test has been passed or not, we
include in the test syntax a success action ω . The meaning is that success is achieved
whenever a point is reached in which ω can be performed. We denote by T the set
of tests resulting from process terms of P possibly including occurrences of ω .

Testing equivalence is defined as the intersection of two behavioral equivalences,
which are the kernels of two preorders related to the possibility and the necessity
of passing tests, respectively. According to the first preorder, process term P1 is less
than or equal to process term P2 iff, for every test, whenever P1 is able to pass the
test, then also P2 is able to pass the test. In the case of the second preorder, P1 is
less than or equal to P2 iff, for every test, whenever P1 cannot fail the test, then
also P2 cannot fail the test. In addition to being natural, this distinction introduces
sensitivity to divergence caused by the endless execution of τ-actions.

In order to formalize the possibility and the necessity of passing tests, we have
to consider the computations obtained by putting a process term under test in par-
allel with a test. In general, by computation of a process term we mean a sequence
of transitions that can be executed starting from the process term. We say that a
computation is maximal iff the last state it traverses has no outgoing transitions. We
denote by Cm(P) the set of maximal computations of P ∈ P.

This terminology applies to any interaction system P‖Namev T where P ∈ P and
T ∈ T. Each state of [[P‖Namev T ]] is called a configuration, is formed by a process
projection and a test projection, and is successful iff its test projection can per-
form ω . We say that a test-driven computation of P with respect to T – which is a
computation of P‖Namev T – is successful iff it traverses a successful configuration.
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Definition 1.14. Let P ∈ P and T ∈ T. We say that:

• P may pass T iff at least one computation in Cm(P‖Namev T ) is successful.
• P must pass T iff all computations in Cm(P‖Namev T ) are successful.

Definition 1.15. Let P1,P2 ∈ P. We say that:

• P1 is may-testing less than P2, written P1 �T,may P2, iff for all tests T ∈ T, when-
ever P1 may pass T , then P2 may pass T .

• P1 is must-testing less than P2, written P1 �T,must P2, iff for all tests T ∈T, when-
ever P1 must pass T , then P2 must pass T .

Definition 1.16. Let P1,P2 ∈ P. We say that:

• P1 is may-testing equivalent to P2, written P1 ≈T,may P2, iff P1 �T,may P2 and
P2 �T,may P1.

• P1 is must-testing equivalent to P2, written P1 ≈T,must P2, iff P1 �T,must P2 and
P2 �T,must P1.

• P1 is testing equivalent to P2, written P1 ≈T P2, iff P1 ≈T,may P2∧P1 ≈T,must P2.

1.5.2 Conditions and Characterizations

We now present an alternative characterization of �T,may and two alternative charac-
terizations of �T,must (and hence of ≈T), which fully abstract from comparing pro-
cess term behavior in response to tests. All of them are concerned with sequences
of visible actions. Their linearity simplifies equivalence checking. In fact, while it
is sufficient to find a suitable test in order to prove that two process terms are not
testing equivalent, all tests have to be considered for demonstrating that two process
terms are testing equivalent, with tests being arbitrarily branching.

The three characterizations are formalized by resorting to the extended transition
relation ====⇒ . We start with the alternative characterization of �T,may.

Theorem 1.6. Let P1,P2 ∈ P. Then P1 �T,may P2 iff, for all a1 . . .an ∈ (Namev)∗ with

n ∈ N>0, whenever P1
τ∗a1...τ∗an======⇒P′1, then P2

τ∗a1...τ∗an======⇒P′2 for some P′1,P
′
2 ∈ P.

Unlike the operational definition based on tests, the two alternative characteriza-
tions of �T,must make sensitivity to divergence explicit.

Definition 1.17. Let P ∈ P. We say that P diverges, written P ⇑, if P has an infinite
computation of τ-transitions only, otherwise the convergence of P upon performing
α ∈ (Namev)∗ is defined by induction on the syntactical structure of α as follows:

P ⇓ ε if P �⇑
P ⇓ a ◦α ′ if P �⇑ and for all P′ ∈ P, whenever P

τ∗a====⇒P′, then P′ ⇓ α ′

where ε is the empty sequence of visible actions.
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The first characterization of �T,must relies on the process terms reached after per-
forming a sequence of visible actions and their capabilities with respect to enabling
certain visible actions. In the following, we use ◦ for sequence concatenation.

Definition 1.18. Let P ∈ P and α ∈ (Namev)∗. The set of process terms that P can
reach after performing α is defined by induction on the syntactical structure of α as
follows:

after(P,α) =

⎧
⎪⎨

⎪⎩

{P} if α ≡ ε
⋃

P
τ∗a====⇒P′

after(P′,α ′) if α ≡ a◦α ′

This is lifted to subsets of P by taking the union over their process terms.

Definition 1.19. Let P ∈ P and E ⊆ Namev finite. We say that P must execute some

action of E iff for all P′ ∈ P, whenever P
τ∗====⇒P′, then there exist a ∈ E and

P′′ ∈ P such that P′ τ∗a====⇒P′′. We say that a subset of P must execute some action
of E iff each of its process terms must execute some action of E .

Theorem 1.7. Let P1,P2 ∈ P. Then P1 �T,must P2 iff for all α ∈ (Namev)∗, whenever
P1 ⇓ α , then:

• P2 ⇓ α
• For all E ⊆ Namev finite, if after(P1,α) must execute some action of E , then

after(P2,α) must execute some action of E

Corollary 1.1. Let P1,P2 ∈ P. Then P1 ≈T P2 iff for all α ∈ (Namev)∗:

• If α ≡ a1 . . .an with n ∈ N>0, then P1
τ∗a1...τ∗an======⇒P′1 iff P2

τ∗a1...τ∗an======⇒P′2 for some
P′1,P

′
2 ∈ P

• P1 ⇓ α iff P2 ⇓ α and, if both converge upon performing α , then for all
E ⊆ Namev finite it holds that after(P1,α) must execute some action of E iff
after(P2,α) must execute some action of E

A consequence of the alternative characterization of Corollary 1.1 is the identifi-
cation of a set of canonical tests, i.e., a set of tests that are necessary and sufficient
in order to establish whether two process terms are testing equivalent. Each of these
canonical tests admits a main computation leading to a final state, which either de-
notes failure or reaches success in one step after executing any of its actions. The
intermediate states and the final state are able to detect divergence through τ .ω .0.

Definition 1.20. The set Tc,may of canonical may-tests is generated by the following
syntax:

T ::= ω .0 | a .T

where a ∈ Namev. The set Tc,must of canonical must-tests is generated by the fol-
lowing syntax:

T ::= 0 | ∑
a∈E

a .ω .0 | b .T + τ .ω .0 | τ .ω .0



26 1 Process Algebra

where E ⊆ Namev finite and b ∈ Namev. We denote by Tc = Tc,may∪Tc,must the set
of canonical tests.

Corollary 1.2. Let P1,P2 ∈ P. Then:

• P1 �T,may P2 iff for all T ∈ Tc,may, whenever P1 may pass T , then P2 may pass T .
• P1 �T,must P2 iff for all T ∈Tc,must, whenever P1 must pass T , then P2 must pass T .
• P1 ≈T P2 iff for all T ∈ Tc:

– P1 may pass T iff P2 may pass T .
– P1 must pass T iff P2 must pass T .

The second characterization of �T,must directly focuses on the family of sets
of visible actions enabled by the stable process terms reached after performing a
sequence of visible actions. Given P∈ P, we denote by enabled(P) the set of actions
enabled by P, which is finite as P is finitely branching. In our setting, enabled(P)
coincides with the set of actions that can be performed by P, but in general it may
contain further actions present in P that are preempted by other actions of P.

Definition 1.21. Let P ∈ P and α ∈ (Namev)∗. The acceptance set of P after per-
forming α is defined as follows:

AS(P,α) =

{
{enabled(P′) | P τ∗====⇒P′ ∧P′ ∈ Ps} if α ≡ ε
{enabled(P′) | P τ∗a1...τ∗anτ∗

=========⇒P′ ∧P′ ∈ Ps} if α ≡ a1 . . .an

where Ps is the set of stable process terms of P and n ∈ N>0. We call minimized
version of AS(P,α), written ASmin(P,α), the acceptance set obtained from AS(P,α)
by removing each of its elements that contains some of the other elements.

Definition 1.22. Let AS1,AS2 ⊆ 2Namev . We say that AS1 is less nondeterministic
than AS2, written AS1 ⊂⊂ AS2, iff for each element of AS1 there exists an element
of AS2 that is contained in the first element.

Theorem 1.8. Let P1,P2 ∈ P. Then P1 �T,must P2 iff for all α ∈ (Namev)∗, whenever
P1 ⇓ α , then P2 ⇓ α and AS(P2,α)⊂⊂ AS(P1,α).

Corollary 1.3. Let P1,P2 ∈ P. Then P1 ≈T P2 iff for all α ∈ (Namev)∗:

• If α ≡ a1 . . .an with n ∈ N>0, then P1
τ∗a1...τ∗an======⇒P′1 iff P2

τ∗a1...τ∗an======⇒P′2 for some
P′1,P

′
2 ∈ P

• P1 ⇓ α iff P2 ⇓ α and, if both converge upon performing α , then ASmin(P1,α) =
ASmin(P2,α)

Example 1.5. We exploit the alternative characterization of Corollary 1.3 in order to
prove that ProdCons0/2, PCconc,2, and PCpipe,2 – which are defined in Examples 1.1,
1.3, and 1.4, respectively – are testing equivalent.

Firstly, we note that they are may-testing equivalent. In fact, the only sequences
of visible actions that all the three process constants can perform are the prefixes of
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the strings that comply with the following regular expression:

(deposit ◦ (deposit ◦ withdraw)∗ ◦ withdraw)∗

Secondly, observed that none of the states of [[ProdCons0/2]], [[PCconc,2]], and
[[PCpipe,2]] diverges, the three process constants turn out to be must-testing equiva-
lent. In fact, we have that:

• After performing any sequence of visible actions corresponding to a string that
complies with the above mentioned regular expression, the acceptance set is
{{deposit}} for all the reached stable states

• After performing one of the sequences of visible actions of the previous point fol-
lowed by deposit, the acceptance set is {{deposit,withdraw}} for all the reached
stable states

• After performing one of the sequences of visible actions of the previous point fol-
lowed by another deposit, the acceptance set is {{withdraw}} for all the reached
stable states

1.5.3 Congruence Property

Testing equivalence is a congruence with respect to the action prefix operator, all
the static operators of PC, and recursion.

Theorem 1.9. Let P1,P2 ∈ P. Whenever P1 ≈T P2, then:

1. a .P1 ≈T a .P2 for all a ∈ Name.
2. P1‖S P≈T P2‖S P and P‖S P1 ≈T P‖S P2 for all P ∈ P and S ⊆ Namev.
3. P1/H ≈T P2/H for all H ⊆ Namev.
4. P1\L≈T P2\L for all L⊆ Namev.
5. P1[ϕ ]≈T P2[ϕ ] for all ϕ ∈ Relab.

Definition 1.23. Let P1,P2 ∈PL be guarded process terms containing free occur-
rences of k ∈ N process variables X1, . . . ,Xk ∈ Var at most. We define P1 ≈T P2 iff
P1{Qi ↪→ Xi | 1≤ i≤ k} ≈T P2{Qi ↪→ Xi | 1≤ i≤ k} for all Q1, . . . ,Qk ∈ P.

Theorem 1.10. Let P1,P2 ∈PL be guarded process terms containing free occur-
rences of k ∈N process variables X1, . . . ,Xk ∈ Var at most. Whenever P1≈T P2, then
recX : P1 ≈T recX : P2 for all X ∈ Var.

The congruence problem with respect to the alternative composition operator
is similar to the one mentioned for ≈B and is caused by ≈T,must. As an example,
a .0 ≈T,must τ .a .0, but these two process terms can be distinguished if placed in
the context of + b .0. In fact, a .0 + b .0 must pass b .ω .0 because their interac-
tion system has a single maximal computation, which is formed by a b-transition
and is successful. In contrast, τ .a .0+b .0 can fail b .ω .0 because their interaction
system has an unsuccessful maximal computation formed by a τ-transition. Also
in this case, congruence with respect to the alternative composition operator can be
restored by enforcing a matching on initial τ-actions, which has to be introduced in
the definition of ≈T,must.
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Definition 1.24. Let P1,P2 ∈ P. We say that:

• P1 is must-testing congruent to P2, written P1 ≈c
T,must P2, iff P1 +P≈T,must P2 +P

for all P ∈ P.
• P1 is testing congruent to P2, written P1 ≈c

T P2, iff P1 ≈T,may P2∧P1 ≈c
T,must P2.

Theorem 1.11. Let P1,P2 ∈ P. Then, P1 ≈c
T P2 iff the following condition holds in

addition to the two conditions of Corollary 1.1 or 1.3:

• P1 �⇑ iff P2 �⇑ and, if both do not diverge, then P1
τ−−−→P′1 iff P2

τ−−−→P′2 for some
P′1,P

′
2 ∈ P.

Theorem 1.12. ≈c
T (resp. ≈c

T,must) is the largest congruence contained in ≈T (resp.
≈T,must).

1.5.4 Sound and Complete Axiomatization

Testing congruence has a sound and complete axiomatization over nonrecursive
(hence nondivergent) process terms, given by the set X c

T of inequational laws of
Table 1.4.

Due to the presence of inequalities, the corresponding deduction system is
equipped with an additional rule for inferring P1 = P2 from P1 � P2 and P2 � P1.
We also mention that a sound and complete axiomatization for ≈c

T,must can be ob-
tained by adding axiom τ .P1 +τ .P2 � P1. On the other hand, a sound and complete
axiomatization for ≈T,may can be obtained by adding axiom P1 � τ .P1 + τ .P2.

The only difference with respect to the equational laws for∼B shown in Table 1.2
is given by the four additional axioms X c

T,5 to X c
T,8. They are related to τ-actions

and imply the τ-laws for ≈c
B shown in Table 1.3. Moreover, they imply additional

laws stating the extent to which the branching structure of process terms is respected
by ≈T. As an example, for P �≈B Q we have:

~/ B~

~ T~

P Q P Q

b bb

a

b

a a

As can be noted, ≈B is highly sensitive to branching points, whereas ≈T allows
choices to be deferred. This happens in the case of branches that start with the same
action (see the two a-branches on the left-hand side) and are followed by the same
set of actions (see {b} after each of the two a-branches).

Theorem 1.13. Let P1,P2 ∈ P be nonrecursive. Then:

P1 ≈c
T P2 ⇐⇒ X c

T  P1 = P2
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Table 1.4 Inequational laws for ≈c
T

(X c
T,1) P1 +P2 = P2 +P1

(X c
T,2) (P1 +P2)+P3 = P1 +(P2 +P3)

(X c
T,3) P+0 = P

(X c
T,4) P+P = P

(X c
T,5) a .P1 +a .P2 = a . (τ .P1 + τ .P2)

(X c
T,6) a .P1 + τ . (a .P2 +P3) = τ . (a .P1 +a .P2 +P3)

(X c
T,7) τ .P � P

(X c
T,8) P1 + τ .P2 � τ . (P1 +P2)

(X c
T,9) ∑

i∈I
ai .Pi ‖S ∑

j∈J
b j .Q j = ∑

k∈I,ak /∈S
ak .

(

Pk ‖S ∑
j∈J

b j .Q j

)

+ ∑
h∈J,bh /∈S

bh .

(

∑
i∈I

ai .Pi ‖S Qh

)

+ ∑
k∈I,ak∈S

∑
h∈J,bh=ak

ak . (Pk ‖S Qh)

(X c
T,10) ∑

i∈I
ai .Pi ‖S 0 = ∑

k∈I,ak /∈S
ak .Pk

(X c
T,11) 0 ‖S ∑

j∈J
b j .Q j = ∑

h∈J,bh /∈S
bh .Qh

(X c
T,12) 0 ‖S 0 = 0

(X c
T,13) 0/H = 0

(X c
T,14) (a .P)/H = τ . (P/H) if a ∈H

(X c
T,15) (a .P)/H = a . (P/H) if a /∈ H

(X c
T,16) (P1 +P2)/H = P1/H +P2/H

(X c
T,17) 0\L = 0

(X c
T,18) (a .P)\L = 0 if a ∈ L

(X c
T,19) (a .P)\L = a . (P\L) if a /∈ L

(X c
T,20) (P1 +P2)\L = P1\L+P2\L

(X c
T,21) 0[ϕ ] = 0

(X c
T,22) (a .P)[ϕ ] = ϕ(a) . (P[ϕ ])

(X c
T,23) (P1 +P2)[ϕ ] = P1[ϕ ]+P2[ϕ ]

1.5.5 Modal Logic Characterization

Testing equivalence has a modal logic characterization based on a modal language
that, in accordance with the alternative characterization of Corollary 1.1, permits to
check whether certain visible actions may be executed or cannot be refused after
performing a given sequence of visible actions.

This modal language differs from HML because it has two kinds of formula
and comprises a restricted set of logical operators, consistent with the decreased
discriminating power with respect to∼B as regards branching points. In the top-level
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kind of formula, we have a modal operator on sequences of visible actions. In the
bottom-level kind of formula, we have only true, disjunction, and diamond with no
continuation for visible actions. In particular, note that negation is not included.

Definition 1.25. The set of formulas of the modal language ML T is generated by
the following syntax:

φ ::= �α � ψ
ψ ::= true | ψ ∨ψ | 〈〈a〉〉

where α ∈ (Namev)∗ and a ∈ Namev.

Another important difference with respect to HML is the presence of two sat-
isfaction relations instead of one. Consistent with the nature of ≈T, these relations
formalize the fact that a process term may satisfy or cannot refuse to satisfy, respec-
tively, a bottom-level formula after executing a sequence of visible actions.

Definition 1.26. The may-satisfaction relation |=T,may and the must-satisfaction re-
lation |=T,must of ML T over P are defined by induction on the syntactical structure
of formulas as follows:

P |=T,may �a1 . . .an � ψ if there exists P′ ∈ P such that

P
τ∗a1...τ∗an======⇒P′ and P′ |=T,may ψ

P′ |=T,may true
P′ |=T,may ψ1∨ψ2 if P′ |=T,may ψ1 or P′ |=T,may ψ2

P′ |=T,may 〈〈a〉〉 if P′ τ∗a====⇒P′′ for some P′′ ∈ P

P |=T,must �a1 . . .an � ψ if P ⇓ a1 . . .an and for all P′ ∈ P,

whenever P
τ∗a1...τ∗an======⇒P′, then P′ |=T,must ψ

P′ |=T,must true
P′ |=T,must ψ1∨ψ2 if P′ |=T,must ψ1 or P′ |=T,must ψ2

P′ |=T,must 〈〈a〉〉 if for all P′′ ∈ P, whenever P′ τ∗====⇒P′′,
then P′′ τ∗a====⇒P′′′ for some P′′′ ∈ P

where a1 . . .an ≡ ε and P′ ≡ P when n = 0.

Theorem 1.14. Let P1,P2 ∈ P. Then:

P1 ≈T P2 ⇐⇒ (∀φ ∈ML T.P1 |=T,may φ ⇐⇒ P2 |=T,may φ
∧P1 |=T,must φ ⇐⇒ P2 |=T,must φ)

1.5.6 Verification Algorithm

The problem of deciding testing equivalence is PSPACE-complete and can be solved
by exploiting the alternative characterization of Corollary 1.3 through the applica-
tion of the verification algorithm for ∼B to suitable variants of labeled transition
systems.
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These are called acceptance graphs and are a particular class of deterministic
labeled transition systems, so they have no τ-transitions and none of their states
has multiple transitions labeled with the same action. Every state of an acceptance
graph is labeled with two pieces of information, which are a Boolean and a family
of sets of visible actions, respectively. The Boolean is true iff the family of sets of
visible actions is not empty. Moreover, if the Boolean labeling a state is false, then
the Booleans labeling the states reached by the transitions leaving the considered
state are all false.

Given P1,P2 ∈ P finite state, the algorithm for checking whether P1 ≈T P2 is
obtained by having the verification algorithm for ∼B preceded by the preprocessing

step below, where closureτ (P) = {P′ ∈ P | P τ∗====⇒P′} for any P ∈ P:

0. Build the acceptance graph associated with [[Pi]] for i = 1,2:

(a) The initial state of the acceptance graph is the pair (closureτ (Pi), true).
(b) Initialize a list of states with the above initial state as its only element.
(c) While the list of states is not empty, select a state (closureτ (P), tv) and re-

move it from the list after constructing its labels and deriving its outgoing
transitions:
• Set the Boolean label bl of (closureτ(P), tv) to the truth value tv if none

of the states in closureτ(P) diverges, false otherwise.
• Change tv to bl.
• If bl is true, then set the other label of (closureτ (P),bl) to the minimized

version of {enabled(P′) | P′ ∈ closureτ(P)∩Ps}, /0 otherwise.
• For each a ∈ Namev enabled in some state of closureτ (P):

– Build a transition labeled with a that goes from (closureτ(P),bl) to

(closureτ({Q′ ∈ P | ∃Q ∈ closureτ(P).Q
a−−−→Q′}),bl).

– Insert (closureτ({Q′ ∈ P | ∃Q ∈ closureτ(P).Q
a−−−→Q′}),bl) into

the list of states if it has not been encountered yet.

We also need to modify steps 1 and 2 of the verification algorithm for∼B as follows:

1′. Build an initial partition with a single class for each set of states of the accep-
tance graphs associated with [[P1]] and [[P2]] that are labeled with the same family
of sets of visible actions.

2′. Initialize a list of splitters with all the above classes as its only elements.

1.6 Trace Equivalence

Trace equivalence relates two process terms whenever they are able to perform the
same computations. In this section, we provide the definition of trace equivalence
over P [57]. Then, we show that trace equivalence is a congruence and we present
its sound and complete axiomatization, its modal logic characterization, and its ver-
ification algorithm [57, 69].
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1.6.1 Definition of the Behavioral Equivalence

The basic idea behind trace equivalence is to compare process terms on the basis of
their traces, i.e., the sequences of visible actions that they can execute. In this way,
the branching structure of process terms is completely overridden.

Definition 1.27. Let P ∈ P. The trace set of P is defined as follows:

TS(P) = {ε}∪{a1 . . .an ∈ (Namev)∗ | n ∈ N>0∧∃P′ ∈ P.P
τ∗a1...τ∗an======⇒P′}

where ε is the empty trace.

Definition 1.28. Let P1,P2 ∈ P. We say that P1 is trace equivalent to P2, written
P1 ≈Tr P2, iff:

TS(P1) = TS(P2)

It is easy to see that ≈Tr coincides with language equivalence, provided that we
assume that Namev is our alphabet and that all the states of the labeled transition
systems underlying process terms are accepting. We also point out that≈Tr does not
preserve deadlock. For instance, the deadlock-free process term recX : a .X is trace
equivalent to the process term recX : (a .X + a .0), which can instead deadlock.

Example 1.6. Let us consider again ProdCons0/2, PCconc,2, and PCpipe,2, which
are defined in Examples 1.1, 1.3, and 1.4, respectively. As already observed in
Example 1.5, the only sequences of visible actions that all the three process con-
stants can perform are the prefixes of the strings that comply with the following
regular expression:

(deposit ◦ (deposit ◦ withdraw)∗ ◦ withdraw)∗

Hence, we can immediately conclude that ProdCons0/2 ≈Tr PCconc,2 ≈Tr PCpipe,2.

1.6.2 Congruence Property

Trace equivalence is a congruence with respect to all the dynamic and static opera-
tors of PC as well as recursion.

Theorem 1.15. Let P1,P2 ∈ P. Whenever P1 ≈Tr P2, then:

1. a .P1 ≈Tr a .P2 for all a ∈ Name.
2. P1 + P≈Tr P2 + P and P+ P1 ≈Tr P+ P2 for all P ∈ P.
3. P1‖S P≈Tr P2 ‖S P and P‖S P1 ≈Tr P‖S P2 for all P ∈ P and S ⊆ Namev.
4. P1/H ≈Tr P2/H for all H ⊆ Namev.
5. P1\L≈Tr P2\L for all L⊆ Namev.
6. P1[ϕ ]≈Tr P2[ϕ ] for all ϕ ∈ Relab.
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We observe that, although it abstracts from τ-actions, ≈Tr does not incur the
congruence problem of ≈B with respect to the alternative composition operator.
The reason is the insensitivity of ≈Tr to the branching structure of process terms.

Definition 1.29. Let P1,P2 ∈PL be guarded process terms containing free occur-
rences of k ∈ N process variables X1, . . . ,Xk ∈ Var at most. We define P1 ≈Tr P2 iff
P1{Qi ↪→ Xi | 1≤ i≤ k} ≈Tr P2{Qi ↪→ Xi | 1≤ i≤ k} for all Q1, . . . ,Qk ∈ P.

Theorem 1.16. Let P1,P2 ∈PL be guarded process terms containing free occur-
rences of k∈N process variables X1, . . . ,Xk ∈ Var at most. Whenever P1≈Tr P2, then
recX : P1 ≈Tr recX : P2 for all X ∈ Var.

1.6.3 Sound and Complete Axiomatization

Trace equivalence has a sound and complete axiomatization over nonrecursive pro-
cess terms, given by the set XTr of equational laws of Table 1.5.

The axioms characterizing ≈Tr are XTr,5 and XTr,6, which are not included in
the equational laws for ∼B shown in Table 1.2 and replace the inequational laws
X c

T,5 to X c
T,8 for ≈c

T shown in Table 1.4.
While axiom XTr,6 states that ≈Tr is able to abstract from any τ-action, axiom

XTr,5 states that≈Tr does not respect at all the branching structure of process terms.
As an example, for b �= d we have:

~/ T~

~ Tr~

P Q P Q

dd

a

b

aa

b

As can be noted, ≈Tr permits to postpone all choices whose branches start with the
same action.

Theorem 1.17. Let P1,P2 ∈ P be nonrecursive. Then:

P1 ≈Tr P2 ⇐⇒ XTr  P1 = P2

1.6.4 Modal Logic Characterization

Trace equivalence has a modal logic characterization based on a variant of HML in
which diamond is weakened as for≈B and negation and conjunction are not present.
Its satisfaction relation |=Tr is thus defined as |=B when restricted to its formulas.
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Table 1.5 Equational laws for ≈Tr

(XTr,1) P1 +P2 = P2 +P1
(XTr,2) (P1 +P2)+P3 = P1 +(P2 +P3)
(XTr,3) P+0 = P

(XTr,4) P+P = P

(XTr,5) a .P1 +a .P2 = a . (P1 +P2)
(XTr,6) τ .P = P

(XTr,7) ∑
i∈I

ai .Pi ‖S ∑
j∈J

b j .Q j = ∑
k∈I,ak /∈S

ak .

(

Pk ‖S ∑
j∈J

b j .Q j

)

+ ∑
h∈J,bh /∈S

bh .

(

∑
i∈I

ai .Pi ‖S Qh

)

+ ∑
k∈I,ak∈S

∑
h∈J,bh=ak

ak . (Pk ‖S Qh)

(XTr,8) ∑
i∈I

ai .Pi ‖S 0 = ∑
k∈I,ak /∈S

ak .Pk

(XTr,9) 0 ‖S ∑
j∈J

b j .Q j = ∑
h∈J,bh /∈S

bh .Qh

(XTr,10) 0 ‖S 0 = 0

(XTr,11) 0/H = 0
(XTr,12) (a .P)/H = τ . (P/H) if a ∈ H
(XTr,13) (a .P)/H = a . (P/H) if a /∈H
(XTr,14) (P1 +P2)/H = P1/H +P2/H

(XTr,15) 0\L = 0
(XTr,16) (a .P)\L = 0 if a ∈ L
(XTr,17) (a .P)\L = a . (P\L) if a /∈ L
(XTr,18) (P1 +P2)\L = P1\L+P2\L

(XTr,19) 0[ϕ ] = 0
(XTr,20) (a .P)[ϕ ] = ϕ(a) . (P[ϕ ])
(XTr,21) (P1 +P2)[ϕ ] = P1[ϕ ]+P2[ϕ ]

Definition 1.30. The set of formulas of the modal language ML Tr is generated by
the following syntax:

φ ::= true | 〈〈τ〉〉φ | 〈〈a〉〉φ
where a ∈ Namev.
Theorem 1.18. Let P1,P2 ∈ P. Then:

P1 ≈Tr P2 ⇐⇒ (∀φ ∈ML Tr.P1 |=Tr φ ⇐⇒ P2 |=Tr φ)

1.6.5 Verification Algorithm

The problem of deciding trace equivalence is PSPACE-complete and can be solved
through the application of a slight variant of the verification algorithm for ≈T.
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As regards the preprocessing step preceding the verification algorithm for ∼B,
each of the two acceptance graphs is built by assigning Boolean label false to every
state constructed via τ-closure, so that the other label is the empty set. This sim-
plification is motivated by the fact that ≈Tr is sensitive neither to divergence nor to
the branching structure of process terms. Therefore, in this case the construction of
an acceptance graph coincides with the usual method for building a deterministic
automaton that is language equivalent to a given nondeterministic automaton.

Concerning the two initial steps of the verification algorithm for ∼B, unlike the
case of≈T there is no need to modify them. The reason is that all the states have the
same labels after executing the simplified preprocessing step described above.

1.7 The Linear-Time/Branching-Time Spectrum

In this section, we compare the discriminating power of the considered behavioral
equivalences. Since ≈T is the only one sensitive to divergence, from their axiomati-
zations we can derive some relations if we restrict ourselves to strongly convergent
process terms, i.e., process terms that cannot reach divergent process terms. We de-
note by Pconv the set of strongly convergent process terms of P, and by Pnoτ the set
of process terms of Pconv that cannot reach unstable process terms.

Proposition 1.3. The following holds over Pconv:

∼B ⊂ ≈B,b ⊂ ≈B ⊂ ≈T ⊂ ≈Tr

Proposition 1.4. The following holds over Pnoτ :

∼B = ≈B,b = ≈B ⊂ ≈T ⊂ ≈Tr

With regard to the testing approach, in general ≈T,may and ≈T,must are incompa-
rable, but a relation can be established for strongly convergent process terms.

Proposition 1.5. Let P1,P2 ∈ Pconv. Then:

P1 ≈T,must P2 =⇒ P1 ≈T,may P2

From the alternative characterizations provided in Sect. 1.5.2, it is straightfor-
ward to obtain the following result.

Proposition 1.6. Let P1,P2 ∈ P. Then:

P1 ≈T,may P2 ⇐⇒ P1 ≈Tr P2

In general, concurrency theory distinguishes between linear-time equivalences
and branching-time equivalences. While in the former the behavior of process
terms is determined by their possible computations, in the latter also the branching
structure of process terms is taken into account. Having said this, it turns out that
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≈Tr is the standard example of a linear-time equivalence and ∼B is the standard
example of a branching-time equivalence, whereas ≈T is somewhere in between.

Behavioral equivalences like≈Tr and≈T have the advantage of only distinguish-
ing between process terms that can be told apart by some notion of observation or
testing. In contrast, the mostly used argument for employing a behavioral equiva-
lence like ∼B instead of ≈Tr (resp. ≈T) is a proper treatment of deadlock (resp. the
existence of a simpler proof technique). However, ∼B cannot be considered obser-
vational, in the sense that it makes distinctions between process terms that cannot be
traced [48], unless the external observer is equipped with extraordinary tools such
as the capability of global testing and a copying facility [153, 2].

Several variants of the considered behavioral equivalences have been defined
in the literature. We now recall some of the most representative together with the
linear-time/branching-time spectrum they constitute [98].

Let us start with a variant of ∼B called simulation equivalence [168], whose
characterizing axiom is a .(P1 +P2) = a .P1 +a .(P1 +P2) and whose corresponding
modal language turns out to coincide with HML without negation [113].

Definition 1.31. A binary relation S over P is a simulation iff, whenever
(P1,P2) ∈ S , then for all actions a ∈ Name:

• Whenever P1
a−−−→P′1, then P2

a−−−→P′2 with (P′1,P
′
2) ∈S .

Definition 1.32. Simulation preorder, denoted �S, is the largest simulation.

Definition 1.33. Simulation equivalence, denoted ∼S, is the kernel of simulation
preorder, i.e., ∼S =�S ∩ �−1

S .

Another variant of∼B is ready-simulation equivalence, which is the finest known
behavioral equivalence whose distinctions can be traced by including reasonable
operators in the process language [48]. Its characterizing axiom is the same as for∼S

provided that P1 and P2 can perform the same actions, and its corresponding modal
language turns out to coincide with the one for∼S plus a refusal predicate [136].

Definition 1.34. A binary relation S over P is a ready simulation iff, whenever
(P1,P2) ∈S , then for all actions a ∈ Name:

• Whenever P1
a−−−→P′1, then P2

a−−−→P′2 with (P′1,P
′
2) ∈S

• Whenever P1 cannot perform a, then P2 cannot perform a either

Definition 1.35. Ready-simulation preorder, denoted �RS, is the largest ready
simulation.

Definition 1.36. Ready-simulation equivalence, denoted ∼RS, is the kernel of
ready-simulation preorder, i.e., ∼RS =�RS ∩ �−1

RS.

Then, we introduce five variants of ≈Tr, all of which restore deadlock sensitivity.
The first one, called completed-trace equivalence, compares process terms also with
respect to traces that lead to deadlock. Although more interesting than ≈Tr, it has
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the disadvantage of being no longer a congruence with respect to the parallel com-
position operator. As an example, a .b .0 + a .d .0 is equivalent to a .(b .0 + d .0),
but in the context ‖{a,b,d}a .b .0 the former exhibits a trace leading to deadlock –
resulting from a single transition labeled with a – which is not possessed by the lat-
ter. The next two behavioral equivalences, called failure equivalence [57] and ready
equivalence [164], take into account the set of visible actions that can be refused
or performed, respectively, after executing a trace. The last two behavioral equiva-
lences, called failure-trace equivalence and ready-trace equivalence [21], also take
into account the sets of visible actions that can be refused or performed, respectively,
at each step during the execution of a trace.

Definition 1.37. Let P ∈ P. The completed-trace set of P, denoted CTS(P), is the
set of traces of P such that the process terms reached at the end of their execution
cannot perform any action.

Definition 1.38. Let P1,P2 ∈ P. We say that P1 is completed-trace equivalent to P2,
written P1 ≈Tr,c P2, iff:

TS(P1) = TS(P2)
CTS(P1) = CTS(P2)

Definition 1.39. Let P ∈ P. The failure-pair set of P, denoted FS(P), is the set of
failure pairs (α,F) ∈ (Namev)∗×2Namev such that α ∈ TS(P) and the process terms
reached at the end of the execution of α cannot perform any visible action in the
failure set F .

Definition 1.40. Let P1,P2 ∈ P. We say that P1 is failure equivalent to P2, written
P1 ≈F P2, iff:

FS(P1) = FS(P2)

Definition 1.41. Let P ∈ P. The ready-pair set of P, denoted RS(P), is the set of
ready pairs (α,R) ∈ (Namev)∗ × 2Namev such that α ∈ TS(P) and the set of visi-
ble actions that can be performed by the process terms reached at the end of the
execution of α coincides with the ready set R.

Definition 1.42. Let P1,P2 ∈ P. We say that P1 is ready equivalent to P2, written
P1 ≈R P2, iff:

RS(P1) = RS(P2)

Definition 1.43. Let P ∈ P. The failure-trace set of P, denoted FTS(P), is the set
of failure traces ζ ∈ (Namev× 2Namev)∗ such that the trace projection α of ζ be-
longs to TS(P) and each process term traversed during the execution of α cannot
perform any visible action belonging to the corresponding failure set in the failure
projection of ζ .
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Definition 1.44. Let P1,P2 ∈ P. We say that P1 is failure-trace equivalent to P2,
written P1 ≈FTr P2, iff:

FTS(P1) = FTS(P2)

Definition 1.45. Let P ∈ P. The ready-trace set of P, denoted RTS(P), is the set of
ready traces η ∈ (Namev× 2Namev)∗ such that the trace projection α of η belongs
to TS(P) and the set of visible actions that can be performed by each process term
traversed during the execution of α coincides with the corresponding ready set in
the ready projection of η .

Definition 1.46. Let P1,P2 ∈ P. We say that P1 is ready-trace equivalent to P2, writ-
ten P1 ≈RTr P2, iff:

RTS(P1) = RTS(P2)

Theorem 1.19. The linear-time/branching-time spectrum over Pnoτ is as follows:

~RS

~B

~S~~R ~~FTr

~~Tr,c

~~Tr

~~RTr

~
~~T
~F

where arrows denote strict set inclusion.
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We conclude by mentioning that all these behavioral equivalences coincide in the
case of process terms whose underlying labeled transition systems are deterministic.
This property has been exploited in Sects. 1.5.6 and 1.6.5 for reconducting the veri-
fication of ≈T and of ≈Tr, respectively, to the verification of ∼B.





Chapter 2
Deterministically Timed Process Algebra

Abstract Concurrent and distributed systems are characterized not only by their
functional behavior, but also by their quantitative features. A prominent role is
played by timing aspects, which express the temporal execution of system activ-
ities. There are several different options for introducing time and time passing in
system descriptions: durationless actions or durational actions, relative time or abso-
lute time, global clock or local clocks. In this chapter, we present two timed process
calculi arising from certain combinations of the options mentioned above, which
share a deterministic representation of time and time passing suitable for real-time
systems. Then, we show the impact of eager, lazy, and maximal progress interpreta-
tions of action execution on the expressiveness of timed descriptions and their bisim-
ulation semantics. This is accomplished through a number of semantics-preserving
mappings, which demonstrate how some of the different choices are not irreconcil-
able by providing a better understanding of benefits and drawbacks of the various
time-related options.

2.1 Concurrency, Communication, and Deterministic Time

The process calculus considered in Chap. 1 has no notion of time, probability, or
priority associated with its actions; hence, it is purely nondeterministic. However,
concurrent and distributed systems are characterized not only by their functional
behavior, but also by their quantitative features. In particular, timing aspects play a
fundamental role, as they describe the temporal execution of system activities. This
is especially true for real-time systems, which are considered correct only if the
execution of their activities satisfies certain temporal constraints.

When modeling these systems, time and time passing are represented determin-
istically through nonnegative numbers. In the following we refer to abstract time, in
the sense that we use time as a parameter for expressing constraints about instants
of occurrences of actions. Contrasted to physical time, abstract time permits simpli-
fications that are convenient on the conceptual side and leads to tractable models.

A. Aldini et al., A Process Algebraic Approach to Software Architecture Design, 41
DOI 10.1007/978-1-84800-223-4 2, c© Springer-Verlag London Limited 2010
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Time instants can in general be taken from a dense or discrete time domain,
which is a triple (T ,+,≤) where + is an associative operation over T equipped
with a neutral element and ≤ is a total order over T such that t1 ≤ t2 iff there exists
t ′ ∈T such that t1 + t ′ = t2. For the sake of simplicity, we concentrate on a discrete
time domain, and hence we can use natural numbers for modeling clock ticks.

Many deterministically timed process calculi have appeared in the literature.
Among them we mention temporal CCS [157], timed CCS [199], timed CSP [174],
real-time ACP [20], and urgent LOTOS [50], as well as CIPA [3], TPL [114],
ATP [163], TIC [173], and PAFAS [78]. Due to the presence of several temporal
properties of interest, as observed in [162, 74] these calculi differ on the basis of a
number of time-related options, some of which are recalled below:

• Durationless actions versus durational actions. In the first case, actions are in-
stantaneous events and time passes in between them; hence, functional behavior
and time are orthogonal. In the second case, every action takes a fixed amount
of time to be performed and time passes only due to action execution; hence,
functional behavior and time are integrated.

• Relative time versus absolute time. Assuming that timestamps are associated
with the events observed during system execution, in the first case each times-
tamp refers to the time instant of the previous observation, while in the second
case all timestamps refer to the starting time of the system execution.

• Global clock versus local clocks. In the first case, there is a single clock that
governs time passing. In the second case, there are several clocks associated with
the various system parts, which elapse independent of each other although they
define a unique notion of global time.

In this chapter, we present two different deterministically timed process calculi
obtained by suitably combining the three time-related options mentioned above.
More precisely, the first calculus is inspired by the two-phase functioning principle,
according to which actions are durationless, time is relative, and there is a single
global clock. In contrast, the second calculus is inspired by the one-phase function-
ing principle, according to which actions are durational, time is absolute, and several
local clocks are present.

We then illustrate for these two deterministically timed process calculi different
interpretations of action execution, in terms of whether and when it can be delayed.
We consider the following three interpretations:

• Eagerness, which establishes that actions must be performed as soon as they
become enabled without any delay, thereby implying that actions are urgent.

• Laziness, which establishes that actions can be delayed arbitrarily long before
they are executed.

• Maximal progress, which establishes that actions can be delayed arbitrarily long
unless they are involved in synchronizations, in which case they are urgent.

There are many reasons for presenting both calculi under the three different inter-
pretations. Firstly, this should increase the familiarity with different approaches to
modeling time and time passing. Secondly, it should provide a better understanding
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of the details of the different approaches, so as to emphasize their advantages and
disadvantages. Thirdly, it shows that some of the various choices concerned with
the time-related options are not irreconcilable by presenting a number of semantics-
preserving mappings from one calculus to the other, thus permitting the interchange
of concepts and analysis techniques. Fourthly, it demonstrates that the inessential
differences among the two calculi are indeed inessential, while the important ones
are really important.

The two deterministically timed process calculi have the same behavioral opera-
tors as the process calculus of Sect. 1.3. A variety of time-related behavioral opera-
tors such as timeouts and watchdogs have been proposed in the literature. Here, we
do not take them into account because they do not have any impact on how abstract
time is modeled, nor do they influence the time-related options discussed before.

Unlike Chap. 1, we do not deal with all the three approaches to the definition
of behavioral equivalences, rather we focus on bisimulation equivalence only. The
reason is that in this deterministically timed setting it is more interesting to compare
the expressiveness of the two calculi under the three different interpretations of ac-
tion execution by means of the semantics-preserving mappings mentioned above. As
in Chap. 1, the two calculi and the related bisimulation equivalences are illustrated
through the producer–consumer system running example.

This chapter is organized as follows. In Sect. 2.2, we define syntax and seman-
tics for the two deterministically timed process calculi. In Sect. 2.3, we introduce
a suitable bisimulation equivalence for each of the two calculi, then we show the
properties of the two equivalences. In Sects. 2.4, 2.5, and 2.6, we discuss semantics-
preserving mappings between the two calculi under eagerness, laziness, and max-
imal progress, respectively. Finally, in Sect. 2.7 we compare the expressiveness of
eager, lazy, and maximal progress interpretations of action execution.

2.2 Deterministically Timed Process Calculi

In this section, we present two deterministically timed process calculi with urgent
actions, which are obtained from the process calculus of Sect. 1.3. The timed pro-
cess calculus TPC, which is inspired by [157], adheres to the two-phase functioning
principle. In contrast, the durational process calculus DPC, which is inspired by
[3, 77, 102, 74], complies with the one-phase functioning principle.

2.2.1 TPC: Timed Process Calculus with Durationless Actions

In TPC, actions are durationless, time is relative, and there is a single global clock.
In this setting, actions are instantaneous and time passes in between them. As a
consequence, in addition to the action prefix operator, TPC includes a time prefix
operator for expressing processes like (n) .P, which can evolve into process P after
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exactly n ∈ N>0 time units. Since there is a global clock, these n time units can
elapse only if they can pass in all system parts.

TPC comprises the same behavioral operators as PC plus the time prefix opera-
tor mentioned above, whose delay is ranged over by n,m. We point out that in TPC
the inactive process cannot proceed through time; hence, we denote it by 0 in order
to distinguish it from 0. Moreover, TPC inherits from PC all of its syntactical cat-
egories for actions, relabeling functions, process variables, and process constants.
Guardedness is extended in order to allow for the occurrence of process variables or
constants in the scope of time prefix operators as well.

Definition 2.1. The set of process terms of the process language PL T is generated
by the following syntax:

P ::= 0 timed inactive process
| a .P action prefix
| (n) .P time prefix
| P+ P alternative composition
| P‖S P parallel composition
| P/H hiding
| P\L restriction
| P[ϕ ] relabeling
| X process variable
| recX : P recursion

where a ∈Name, n ∈N>0, S,H,L⊆Namev, ϕ ∈ Relab, and X ∈ Var. We denote by
PT the set of closed and guarded process terms of PL T.

Example 2.1. Let us model with TPC the producer–consumer system introduced in
Sect. 1.2. Assuming that every deposit or withdrawal operation takes place n time
units after the previous operation, it suffices to extend as follows the structure-
independent process algebraic description provided in Example 1.1:

ProdConsT
0/2

Δ= deposit .(n) .ProdConsT
1/2

ProdConsT
1/2

Δ= deposit .(n) .ProdConsT
2/2 + withdraw .(n) .ProdConsT

0/2

ProdConsT
2/2

Δ= withdraw .(n) .ProdConsT
1/2

The semantics for TPC is defined in the usual operational style through two
distinct transition relations: one for action execution and one for time passing. The
first transition relation coincides with the one for PC shown in Table 1.1. The sec-
ond transition relation, denoted −−�, is the smallest subset of PT×N>0×PT satis-

fying the operational semantic rules of Table 2.1. A transition of the form P
n−−�P′

means that P lets n time units pass, then becomes P′. Note that rules DECT and
SUMT allow the passage of time to be decomposed and summed, respectively, while
rule ALTT does not resolve the choice but lets the same amount of time pass in both
alternatives. On the other hand, rule SYNT encodes the global clock. The labeled
transition system for a process term P ∈ PT is denoted by [[P]]T.
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Table 2.1 Time-related operational semantic rules for TPC

(PRET)
(n) .P

n−−� P

(DECT)
n = n1 +n2

(n) .P
n1−−� (n2) .P

(SUMT)
P

n−−� P′

(m) .P
n+m−−� P′

(ALTT)
P1

n−−� P′1 P2
n−−� P′2

P1 +P2
n−−� P′1 +P′2

(SYNT)
P1

n−−� P′1 P2
n−−� P′2

P1 ‖S P2
n−−� P′1 ‖S P′2

(HIDT)
P

n−−� P′

P/H
n−−� P′/H

(REST)
P

n−−� P′

P\L n−−� P′\L

(RELT)
P

n−−� P′

P[ϕ ]
n−−�P′[ϕ ]

(RECT)
P{rec X : P ↪→ X} n−−� P′

recX : P
n−−� P′

The transition relation −−� meets time continuity; i.e., it holds P
n1+n2−−� P′ iff

P
n1−−�Q and Q

n2−−�P′ for some Q ∈ PT. As a consequence, we have P
n−−�P′ iff

there exist P0,P1, . . . ,Pn ∈PT such that P0≡P, Pi−1
1−−�Pi for 1≤ i≤ n, and Pn≡P′.

We also note that 0 and action prefix do not let time progress as there are no time-
related operational semantic rules for them, which in particular implies that actions
are urgent. In contrast, recX : (1) .X is the simplest process term that can let any

amount of time pass as recX : (1) .X
n−−� recX : (1) .X for every n ∈ N>0.

Example 2.2. The labeled transition system [[ProdConsT
0/2]]T for the process alge-

braic description of Example 2.1 is depicted below, where the two different kinds of
transition are represented by means of two different kinds of edge:
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ProdConsT0/2

ProdConsT2/2

ProdConsT1/2

(n).ProdConsT1/2

(n).ProdConsT2/2 (n).ProdConsT1/2

(n).ProdConsT0/2

deposit

withdraw

deposit

withdrawn

n

n

n

For the sake of simplicity, the time transitions shown above are only the ones allow-
ing the entire specified delays to elapse. By virtue of time continuity, for each such
time transition there exists a number of alternative sequences of time transitions,
such that the source state of the first time transition in each sequence and the target
state of the last time transition in each sequence correspond to the source state and
to the target state, respectively, of the considered time transition.

2.2.2 DPC: Timed Process Calculus with Durational Actions

In DPC, actions are durational, time is absolute, and there are several local clocks
associated with the various system parts. In this setting, we assume maximal paral-
lelism; i.e., whenever a system part is activated, there is always some computational
resource available for it, thus avoiding the need of serializing the parallel execution
of the various parts.

In DPC, a timed action is represented as a pair <a,n>, where a ∈ Name is the
name of the action and n ∈ N>0 is the duration of the action. Since the duration of
any action is greater than zero, DPC does not admit Zeno processes; i.e., processes
capable of performing infinitely many actions in a finite amount of time.

The synchronization discipline adopted in DPC is restricted to actions of the
same name that have the same duration and start at the same time. The reason for this
limitation is that synchronizing actions starting at different time instants contradicts
the existence of a unique notion of global time. Moreover, it would be unclear how
to define the duration of the synchronization of actions with different durations.

DPC comprises the same behavioral operators and syntactical categories as PC,
plus the set of actions ActD = Name×N>0 where durations are ranged over by n,m.
A process like <a,n>.P lets exactly n ∈ N>0 time units pass and then evolves into
process P. Similar to the case of TPC, in which the global clock is implicit, also in
DPC local clocks are implicit as they are not part of the process term syntax.
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Definition 2.2. The set of process terms of the process language PL D is generated
by the following syntax:

P ::= 0 inactive process
| <a,n>.P timed action prefix
| P + P alternative composition
| P‖S P parallel composition
| P/H hiding
| P\L restriction
| P[ϕ ] relabeling
| X process variable
| recX : P recursion

where a ∈Name, n ∈N>0, S,H,L⊆Namev, ϕ ∈ Relab, and X ∈ Var. We denote by
PD the set of closed and guarded process terms of PL D.

Example 2.3. Let us model with DPC the producer–consumer system introduced
in Sect. 1.2. Assuming that both deposit and withdraw have duration n so as to be
somehow consistent with Example 2.1, it suffices to extend as follows the structure-
independent process algebraic description provided in Example 1.1:

ProdConsD
0/2

Δ= <deposit,n>.ProdConsD
1/2

ProdConsD
1/2

Δ= <deposit,n>.ProdConsD
2/2 +<withdraw,n>.ProdConsD

0/2

ProdConsD
2/2

Δ= <withdraw,n>.ProdConsD
1/2

The semantics for DPC is defined in the usual operational style, with states for-
malized as process terms preceded by local clocks each holding a value t ∈ N.
These local clocks keep track of the time elapsed in the sequential parts of a process
term.

Definition 2.3. The set of process terms with local clocks of the process language
K L D is generated by the following syntax:

K ::= t ⇒ 0
| t ⇒<a,n>.P
| K + K
| K ‖S K
| K/H
| K\L
| K[ϕ ]
| t ⇒ recX : P

where t ∈ N, a ∈ Name, n ∈ N>0, P ∈ PL D, S,H,L ⊆ Namev, ϕ ∈ Relab, and
X ∈ Var. We denote by KD the set of closed and guarded process terms of K L D.

In order to simplify the definition of the operational semantics for DPC, when
using the shorthand t ⇒ P it is understood that t distributes over all behavioral
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operators till the inactive process, a timed action prefix, or recursion is encountered.
This is formalized through the following clock distribution equations:

t ⇒ (P1 + P2) = (t ⇒ P1)+ (t ⇒ P2)
t ⇒ (P1 ‖S P2) = (t ⇒ P1)‖S(t ⇒ P2)

t ⇒ (P/H) = (t ⇒ P)/H
t ⇒ (P\L) = (t ⇒ P)\L
t ⇒ (P[ϕ ]) = (t ⇒ P)[ϕ ]

The transition relation −−−→D is the smallest subset of KD×ActD×N×KD

satisfying the operational semantic rules of Table 2.2. A transition of the form

K
a,n−−−→D
t

K′ means that K performs an action of name a and duration n at time t,

then becomes K′. We note that rule PRED takes care of updating the local clock
on the basis of the action duration. Rules ALTD,1, ALTD,2, PARD,1, and PARD,2

have a negative premise establishing that one of the two subterms of an alterna-
tive or parallel composition can evolve by performing some action at a certain time
only if the other subterm cannot evolve earlier, which ensures action urgency. Rule
SYND permits synchronizations only among actions of the same name and dura-
tion that are executed at the same time, which guarantees a unique global time in
spite of the presence of several local clocks. Due to the time constraints on ac-
tion synchronization, no negative premise is needed in SYND. The labeled transi-
tion system for a process term P ∈ PD is denoted by [[P]]D and its initial state is
0⇒ P.

The transition relation −−−→D meets well timedness; i.e., K
a′,n′−−−→D

t′
K′ and

K′
a′′,n′′−−−→D

t′′
K′′ imply t ′ ≤ t ′′, meaning that time does not decrease as the execution

proceeds. This is a consequence of the negative premises in rules ALTD,1, ALTD,2,
PARD,1, and PARD,2 as they eliminate the ill-timed phenomenon; i.e., the presence
of computations that do not respect the order given by time. Consider, for instance,
<a,2>.<b,1>.0‖ /0 <d,3>.0. Under maximal parallelism, an external observer can
see the execution of the a-action from time 0 to time 2, the execution of the b-action
from time 2 to time 3, and the execution of the d-action from time 0 to time 3. In the
absence of the negative premises above, after observing the starting of the a-action
at time 0 and then the starting of the b-action at time 2, it is possible to observe the
starting of the d-action at time 0. This is correct from a causality viewpoint, but it is
as if time went back, which does not happen if the starting of the d-action at time 0
is observed before the starting of the b-action at time 2. The negative premises in
Table 2.2 enforce computations that are both well caused and well timed, without
introducing any inconsistency when applying the operational semantic rules.

A consequence of the adoption of absolute time and of the fact that time does
not decrease is that the labeled transition systems underlying process terms of PD

typically have infinitely many states. However, a finite representation of [[P]]D is
possible for all process terms P ∈ PD such that [[P]] has finitely many states, where
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Table 2.2 Time-integrated operational semantic rules for DPC

(PRED)
t ⇒<a,n>.P

a,n−−−→D
t

(t +n)⇒ P

(ALTD,1)
K1

a,n−−−→D
t

K′1 ¬(K2
a′ ,n′−−−→D

t ′
K′2 ∧ t ′ < t)

K1 +K2
a,n−−−→D

t
K′1

(ALTD,2)
K2

a,n−−−→D
t

K′2 ¬(K1
a′ ,n′−−−→D

t ′
K′1 ∧ t ′ < t)

K1 +K2
a,n−−−→D

t
K′2

(PARD,1)
K1

a,n−−−→D
t

K′1 ¬(K2
a′ ,n′−−−→D

t ′
K′2 ∧ t ′ < t) a /∈ S

K1 ‖S K2
a,n−−−→D

t
K′1 ‖S K2

(PARD,2)
K2

a,n−−−→D
t

K′2 ¬(K1
a′ ,n′−−−→D

t ′
K′1 ∧ t ′ < t) a /∈ S

K1 ‖S K2
a,n−−−→D

t
K1 ‖S K′2

(SYND)
K1

a,n−−−→D
t

K′1 K2
a,n−−−→D

t
K′2 a ∈ S

K1 ‖S K2
a,n−−−→D

t
K′1 ‖S K′2

(HIDD,1)
K

a,n−−−→D
t

K′ a ∈ H

K/H
τ,n−−−→D

t
K′/H

(HIDD,2)
K

a,n−−−→D
t

K′ a /∈ H

K/H
a,n−−−→D

t
K′/H

(RESD)
K

a,n−−−→D
t

K′ a /∈ L

K\L a,n−−−→D
t

K′\L

(RELD)
K

a,n−−−→D
t

K′

K[ϕ ]
ϕ(a),n
−−−→D

t
K′[ϕ ]

(RECD)
t ⇒ P{rec X : P ↪→ X} a,n−−−→D

t
K′

t ⇒ recX : P
a,n−−−→D

t
K′
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the latter labeled transition system is the one obtained by applying the operational
semantic rules for PC shown in Table 1.1 when ignoring action durations.

We also point out that in this timed setting with durational actions the interleav-
ing view of concurrency is not fully respected. As an example, take the following
two process terms:

<a,n>.0 ‖ /0 <b,m>.0
<a,n>.<b,m>.0 + <b,m>.<a,n>.0

The first one (concurrent term) executes a having duration n in parallel with b hav-
ing duration m, while the second one (sequential term) executes either a having
duration n followed by b having duration m, or b having duration m followed by
a having duration n. Different from the nondeterministic case, as shown below the
labeled transition systems for the two process terms are not isomorphic:

a, n b, m

a, n

0

b, m

0
a, n b, m

a, n

0

0b, m 0

0

n m

The reason is that in the concurrent term all actions start their execution at time 0,
whereas this is not the case in the sequential term.

Example 2.4. The labeled transition system [[ProdConsD
0/2]]D for the process alge-

braic description of Example 2.3 is depicted below through its finite representation:

k.n =>ProdConsD
0/2

(k+1).n => ProdConsD
1/2

(k+2).n => ProdConsD
2/2

(k+2).n => ProdConsD
0/2

(k+3).n => ProdConsD
1/2(k+1).n

(k+1).n

(k+2).n

deposit, n

deposit, n

withdraw, n

withdraw, n

k.n

where k ranges over N.

2.3 Deterministically Timed Behavioral Equivalences

Among the various approaches to the definition of behavioral equivalences, in the
deterministically timed setting we focus on bisimulation equivalence, which relates
two process terms whenever they are able to mimic each other’s functional and time
behavior stepwise. In this section, we provide the definition of timed bisimulation
equivalence over PT, we show that it is a congruence, and we present its sound
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and complete axiomatization, its modal logic characterization, and its verification
algorithm [157]. Then, we provide the definition of durational bisimulation equiva-
lence over PD and we mention that it is a congruence and has a modal logic charac-
terization [3, 77, 102, 73].

2.3.1 Definition of Timed Bisimulation Equivalence

In the case of durationless actions, the timed extension of bisimulation equivalence
must coincide with∼B as long as action execution is concerned. With regard to time
passing, whenever a process term can let a certain amount of time elapse, then any
process term equivalent to the given one has to be able to let the same amount of
time elapse, with the derivative process terms into which all the previous process
terms have evolved being still equivalent to each other.

Definition 2.4. A binary relation B over PT is a timed bisimulation iff, whenever
(P1,P2) ∈B, then for all actions a ∈ Name and delays n ∈ N>0:

• Whenever P1
a−−−→P′1, then P2

a−−−→P′2 with (P′1,P
′
2) ∈B

• Whenever P1
n−−�P′1, then P2

n−−�P′2 with (P′1,P
′
2) ∈B

• Whenever P2
a−−−→P′2, then P1

a−−−→P′1 with (P′1,P
′
2) ∈B

• Whenever P2
n−−�P′2, then P1

n−−�P′1 with (P′1,P
′
2) ∈B

Since the union of all the timed bisimulations can be proved to be the largest
timed bisimulation, the definition below follows.

Definition 2.5. Timed bisimulation equivalence (or timed bisimilarity), denoted
∼TB, is the union of all the timed bisimulations.

Example 2.5. Let us model with TPC the concurrent implementation considered in
Example 1.3 of the producer–consumer system introduced in Sect. 1.2. The process
algebraic description extended with delays consistent with those of Example 2.1 is
as follows:

PCT
conc,2

Δ= ProdT ‖{deposit} (Buff T ‖ /0 Buff T) ‖{withdraw} ConsT

ProdT Δ= deposit .(n) .ProdT

Buff T Δ= deposit .(n) .withdraw .(n) .Buff T

ConsT Δ= withdraw .(n) .ConsT

It turns out that PCT
conc,2 �∼TB ProdConsT

0/2 because PCT
conc,2 reaches a deadlock

state after the deposit of the first item. In fact:

PCT
conc,2

deposit−−−→
(n) .ProdT ‖{deposit} ((n) .withdraw .(n) .Buff T ‖ /0 Buff T) ‖{withdraw} ConsT
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but the target state cannot let time pass – because ConsT enables action withdraw –
nor can it perform actions – as no synchronization on withdraw can take place. In
contrast, ProdConsT

0/2 can perform action deposit and then can also let time pass:

ProdConsT
0/2

deposit−−−→ (n) .ProdConsT
1/2

n−−� ProdConsT
1/2

The problem with the concurrent implementation of the timed producer–
consumer system is that the other one-position buffer is ready to receive items
immediately, while the producer can deliver items only every n time units. Sim-
ilarly, the consumer is ready to withdraw items immediately, while items can be
in the buffer only every n time units. In order to overcome this synchronization
problem, we may delay the other one-position buffer and the consumer, thereby
revising the process algebraic description above as follows:

PC′Tconc,2
Δ= ProdT ‖{deposit} (Buff T ‖ /0 (n) .Buff T) ‖{withdraw} (n) .ConsT

After performing action deposit, the following state is reached:

(n) .ProdT ‖{deposit} ((n) .withdraw .(n) .Buff T ‖ /0 (n) .Buff T) ‖{withdraw} (n) .ConsT

then n time units pass and the following state is reached:

ProdT ‖{deposit} (withdraw .(n) .Buff T ‖ /0 Buff T) ‖{withdraw} ConsT

Afterwards, this state can perform action withdraw thus reaching:

ProdT ‖{deposit} ((n) .Buff T ‖ /0 Buff T) ‖{withdraw} (n) .ConsT

which then performs action deposit and reaches:

(n) .ProdT ‖{deposit} ((n) .Buff T ‖ /0 (n) .withdraw .(n) .Buff T)‖{withdraw} (n) .ConsT

In other words, PC′Tconc,2 does not deadlock, but at certain points it is able to perform
both deposit and withdraw at the same time, which is not possible in ProdConsT

0/2
where the two actions are separated by a delay or are alternative to each other.

2.3.2 Congruence Property

Timed bisimulation equivalence is a congruence with respect to all the dynamic and
static operators of TPC as well as recursion.

Theorem 2.1. Let P1,P2 ∈ PT. Whenever P1 ∼TB P2, then:

1. a .P1 ∼TB a .P2 for all a ∈ Name.
2. (n) .P1 ∼TB (n) .P2 for all n ∈N>0.
3. P1 + P∼TB P2 + P and P+ P1 ∼TB P + P2 for all P ∈ PT.
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4. P1‖S P∼TB P2‖S P and P‖S P1 ∼TB P‖S P2 for all P ∈ PT and S ⊆ Namev.
5. P1/H ∼TB P2/H for all H ⊆ Namev.
6. P1\L∼TB P2\L for all L⊆ Namev.
7. P1[ϕ ]∼TB P2[ϕ ] for all ϕ ∈ Relab.

Definition 2.6. Let P1,P2 ∈PL T be guarded process terms containing free occur-
rences of k ∈ N process variables X1, . . . ,Xk ∈ Var at most. We define P1 ∼TB P2 iff
P1{Qi ↪→ Xi | 1≤ i≤ k} ∼TB P2{Qi ↪→ Xi | 1≤ i≤ k} for all Q1, . . . ,Qk ∈ PT.

Theorem 2.2. Let P1,P2 ∈PL T be guarded process terms containing free occur-
rences of k ∈ N process variables X1, . . . ,Xk ∈ Var at most. Whenever P1 ∼TB P2,
then recX : P1 ∼TB recX : P2 for all X ∈ Var.

2.3.3 Sound and Complete Axiomatization

Timed bisimulation equivalence has a sound and complete axiomatization over non-
recursive process terms, given by the set XTB of equational laws of Table 2.3.

Apart from the fact that the alternative composition operator is still commutative,
associative, and idempotent and the fact that the parallel composition operator obeys
the usual expansion law for action execution up to a suitable treatment of 0, there
are many differences with respect to the axiomatization of ∼B shown in Table 1.2.
First of all, an axiom like P + 0 = P is not valid as 0 does not let time pass.

Concerning the alternative composition operator, axioms XTB,4 and XTB,5 es-
tablish that 0 behaves as a neutral element in the case of action prefix and as an
absorbing element in the case of time prefix, respectively. Then, axiom XTB,6 em-
phasizes action urgency, while axioms XTB,7 and XTB,8 show how to decompose
and factor delays.

As regards the parallel composition operator, axioms XTB,13 to XTB,17 are a
reformulation of the axioms preceding them when considering time prefix. We note
that having a single time prefix summand without any alternative action or time
prefix summands is enough due to axioms XTB,6 and XTB,8.

Finally, for the unary static operators we have the same equational laws as
Table 1.2 plus axioms XTB,21, XTB,26, and XTB,30 related to time prefix.

Theorem 2.3. Let P1,P2 ∈ PT be nonrecursive. Then:

P1 ∼TB P2 ⇐⇒ XTB  P1 = P2

2.3.4 Modal Logic Characterization

Timed bisimulation equivalence has a modal logic characterization based on a vari-
ant of HML – the modal logic introduced in Sect. 1.4.6 – which includes a diamond
operator for delays too.
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Table 2.3 Equational laws for ∼TB

(XTB,1) P1 +P2 = P2 +P1
(XTB,2) (P1 +P2)+P3 = P1 +(P2 +P3)

(XTB,3) P+P = P

(XTB,4) a .P+0 = a .P
(XTB,5) (n) .P+0 = 0
(XTB,6) a .P+(n) .Q = a .P
(XTB,7) (n1 +n2) .P = (n1) . (n2) .P
(XTB,8) (n) .P1 +(n) .P2 = (n) . (P1 +P2)

(XTB,9) ∑
i∈I

ai .Pi ‖S ∑
j∈J

b j .Q j = ∑
k∈I,ak /∈S

ak .

(

Pk ‖S ∑
j∈J

b j .Q j

)

+ ∑
h∈J,bh /∈S

bh .

(

∑
i∈I

ai .Pi ‖S Qh

)

+ ∑
k∈I,ak∈S

∑
h∈J,bh=ak

ak . (Pk ‖S Qh)

(XTB,10) ∑
i∈I

ai .Pi ‖S 0 = ∑
k∈I,ak /∈S

ak . (Pk ‖S 0)

(XTB,11) 0 ‖S ∑
j∈J

b j .Q j = ∑
h∈J,bh /∈S

bh . (0 ‖S Qh)

(XTB,12) 0 ‖S 0 = 0

(XTB,13) ∑
i∈I

ai .Pi ‖S (m) .Q = ∑
k∈I,ak /∈S

ak . (Pk ‖S (m) .Q)

(XTB,14) (n) .P ‖S ∑
j∈J

b j .Q j = ∑
h∈J,bh /∈S

bh . ((n) .P ‖S Qh)

(XTB,15) (n) .P ‖S (n) .Q = (n) . (P ‖S Q)
(XTB,16) (n) .P ‖S 0 = 0
(XTB,17) 0 ‖S (m) .Q = 0

(XTB,18) 0/H = 0
(XTB,19) (a .P)/H = τ . (P/H) if a ∈H
(XTB,20) (a .P)/H = a . (P/H) if a /∈H
(XTB,21) ((n) .P)/H = (n) . (P/H)
(XTB,22) (P1 +P2)/H = P1/H +P2/H

(XTB,23) 0\L = 0
(XTB,24) (a .P)\L = 0 if a ∈ L
(XTB,25) (a .P)\L = a . (P\L) if a /∈ L
(XTB,26) ((n) .P)\L = (n) . (P\L)
(XTB,27) (P1 +P2)\L = P1\L+P2\L

(XTB,28) 0[ϕ ] = 0
(XTB,29) (a .P)[ϕ ] = ϕ(a) . (P[ϕ ])
(XTB,30) ((n) .P)[ϕ ] = (n) . (P[ϕ ])
(XTB,31) (P1 +P2)[ϕ ] = P1[ϕ ]+P2[ϕ ]
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Definition 2.7. The set of formulas of the modal language ML TB is generated by
the following syntax:

φ ::= true | ¬φ | φ ∧φ | 〈a〉ϕ | 〈(n)〉ϕ

where a ∈ Name and n ∈ N>0.

Definition 2.8. The satisfaction relation |=TB of ML TB over PT is defined by in-
duction on the syntactical structure of formulas as follows:

P |=TB true
P |=TB ¬φ if P �|=TB φ
P |=TB φ1∧φ2 if P |=TB φ1 and P |=TB φ2

P |=TB 〈a〉φ if there exists P′ ∈ PT such that P
a−−−→P′ and P′ |=TB φ

P |=TB 〈(n)〉φ if there exists P′ ∈ PT such that P
n−−� P′ and P′ |=TB φ

where �|=TB denotes the complement of |=TB with respect to PT×ML TB.

Theorem 2.4. Let P1,P2 ∈ PT. Then:
P1 ∼TB P2 ⇐⇒ (∀φ ∈ML TB.P1 |=TB φ ⇐⇒ P2 |=TB φ)

2.3.5 Verification Algorithm
Timed bisimulation equivalence can be decided in polynomial time by means of
the partition refinement algorithm for ∼B presented in Sect. 1.4.7, provided that the
splitting operation is performed also with respect to every delay n labeling the time
transitions of the two process terms under consideration.

2.3.6 Durational Bisimulation Equivalence and its Properties

In the case of durational actions, the timed extension of bisimulation equivalence
must take into account durations and starting times too. Whenever a process term
can perform an action with a certain name and a certain duration starting at a cer-
tain time, then any process term equivalent to the given one has to be able to re-
spond with an action having the same name and the same duration starting at the
same time. Moreover, the derivative process terms into which all the previous pro-
cess terms have evolved after executing that action must still be equivalent to each
other.

Definition 2.9. A binary relation B over KD is a durational bisimulation iff, when-
ever (K1,K2) ∈B, then for all action names a ∈ Name, action durations n ∈ N>0,
and time instants t ∈N:
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• Whenever K1
a,n−−−→D

t
K′1, then K2

a,n−−−→D
t

K′2 with (K′1,K
′
2) ∈B

• Whenever K2
a,n−−−→D

t
K′2, then K1

a,n−−−→D
t

K′1 with (K′1,K
′
2) ∈B

Since the union of all the durational bisimulations can be proved to be the largest
durational bisimulation, the definition below follows.

Definition 2.10. Durational bisimulation equivalence (or durational bisimilarity),
denoted ∼DB, is the union of all the durational bisimulations.

Definition 2.11. Let P1,P2 ∈ PD. We say that P1 is durational bisimulation equiva-
lent to P2, still written P1 ∼DB P2, iff 0⇒ P1 ∼DB 0⇒ P2.

The investigation of the properties of durational bisimulation equivalence is made
complicated by the fact that the underlying operational semantics is not fully inter-
leaving. However, it can be shown that ∼DB is a congruence with respect to all the
dynamic and static operators of DPC as well as recursion, and that it has a modal
logic characterization based on a variant of HML in which the diamond operator
embodies action names, durations, and starting times.

Example 2.6. Let us model with DPC the concurrent implementation considered in
Example 1.3 of the producer–consumer system introduced in Sect. 1.2. The pro-
cess algebraic description extended with action durations consistent with those of
Example 2.3 is as follows:

PCD
conc,2

Δ= ProdD ‖{deposit} (Buff D ‖ /0 Buff D) ‖{withdraw} ConsD

ProdD Δ= <deposit,n>.ProdD

Buff D Δ= <deposit,n>.<withdraw,n>.Buff D

ConsD Δ= <withdraw,n>.ConsD

It turns out that PCD
conc,2 �∼DB ProdConsD

0/2 because, similar to Example 2.5,

PCD
conc,2 reaches a deadlock state after the deposit of the first item. In fact:

0⇒ PCD
conc,2

deposit,n−−−→D
0

n⇒<deposit,n>.ProdD ‖{deposit}
(n⇒<withdraw,n>.Buff D ‖ /0 0⇒<deposit,n>.<withdraw,n>.Buff D)
‖{withdraw} 0⇒<withdraw,n>.ConsD

but the target state cannot perform any action because synchronizations on deposit
or withdraw are not permitted due to the different values of the local clocks of the
involved subterms. In contrast, ProdConsD

0/2 cannot deadlock.
Analogous to Example 2.5, the synchronization problem may be solved by intro-

ducing suitable <τ,n> actions for implementing delays, thereby revising the pro-
cess algebraic description as follows:
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PC′Dconc,2
Δ= ProdD ‖{deposit} (Buff D ‖ /0 <τ,n>.Buff D) ‖{withdraw} <τ,n>.ConsD

but these actions can never be matched by ProdConsD
0/2.

2.4 Semantics-Preserving Mapping for Eagerness

In this section, we present a formal comparison between TPC and DPC; i.e.,
between the two-phase functioning principle and the one-phase functioning prin-
ciple under eager action execution. We first discuss some conceptual differences
between the two deterministically timed process calculi, then we define a semantics-
preserving mapping inspired by [74] showing that the different design decisions at
the base of the two calculi are not irreconcilable.

2.4.1 Differences Between TPC and DPC

We start by contrasting the main operators used to extend the untimed process cal-
culus PC into the deterministically timed process calculi TPC and DPC. There is
a substantial difference between the TPC term (n) .P and the DPC term <τ,n>.P.
This is because <τ,n>.P is just a timed version of the PC term τ .P and, in fact,
<τ,n>.P can be seen as an abbreviation for (<a,n>.0‖{a}<a,n>.0)/{a}. This
immediately leads to distinguish a choice followed by a wait from a wait fol-
lowed by a choice. In particular, <τ,n>.P1 +<τ,n>.P2 is not durational bisimilar
to <τ,n>.(P1 + P2), thus representing a timed version of the distinction between
τ .P1 +τ .P2 and τ .(P1 +P2). On the other hand, TPC does not allow the passage of
time to decide a choice and, in fact, we have that (n) .P1 +(n) .P2 is timed bisimi-
lar to (n) .(P1 + P2), because any initial passage of time must be permitted by both
(n) .P1 and (n) .P2.

Another substantial difference between TPC and DPC is related to their inactive
processes. The one of DPC, which is denoted by 0, behaves as the neutral element
for the alternative composition operator and (to some extent) for the parallel compo-
sition operator. In contrast, the one of TPC, denoted by 0, behaves as an absorbing
element for the alternative composition operator and for the parallel composition
operator when one of the two subterms starts with a time prefix. The reason is that 0
does not let time pass. Consider, for instance, the DPC term 0‖ /0 <a,n>.<b,m>.0.
When starting execution at time 0, this process term can perform an action of name
a and duration n at time 0 followed by an action of name b and duration m at time n.
On a different side, the TPC term 0‖ /0 a .(n) .b .(m) .0 can perform only an a-action
and then reaches the deadlock state described by process term 0‖ /0(n) .b .(m) .0,
which is timed bisimilar to 0. In order to find a TPC term that behaves like the
DPC inactive process 0, we need to avoid the execution of actions while letting any
amount of time pass. An example of such a term is recX : (1) .X .
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The example above illustrates a phenomenon due to the behavior of 0 called
timestop, which arises when a stop of the time passing causes a stop of the system
behavior as a whole. A more dynamic example of timestop can be seen by consider-
ing the TPC term a .d .0‖{a,d}a .(n) .b .(m) .0. It can perform only an a-action and
then reaches the deadlock state described by process term d .0‖{a,d}(n) .b .(m) .0.
Again, this is because the leftmost subterm cannot let time pass, nor can it execute
any action due to the synchronization constraint on d. A similar example based on
the restriction operator is given by the TPC term (d .0)\{d}‖ /0 a .(n) .b .(m) .0.

2.4.2 From DPC to TPC Under Eagerness

When synchronizations and restrictions are left out, it turns out that TPC and DPC
are strictly related despite their differences. To see this, we first define a mapping
Π [[ ]] : PD,srf → PT,srf as the smallest relation satisfying the rules shown in the up-
per part of Table 2.4, where PD,srf and PT,srf are the sets of synchronization- and
restriction-free process terms of PD and PT, respectively. The basic idea is to split a
durational action <a,n> into an a-action prefix followed by an n-time prefix.

Then, we observe that the mapping is semantics preserving; i.e., two process
terms of PD,srf are durational bisimilar iff their corresponding process terms of
PT,srf are timed bisimilar. Since ∼DB is defined over KD, we need to introduce an

Table 2.4 Rules for mapping DPC into TPC under eagerness

Π [[0]] = rec X : (1) .X
Π [[<a,n>.P]] = a . (n) .Π [[P]]

Π [[P1 +P2]] = Π [[P1]]+Π [[P2]]
Π [[P1 ‖ /0 P2]] = Π [[P1]]‖ /0 Πe[[P2]]

Π [[P/H]] = Π [[P]]/H
Π [[P\ /0]] = Π [[P]]\ /0
Π [[P[ϕ ]]] = Π [[P]][ϕ ]

Π [[X]] = X
Π [[recX : P]] = rec X : Π [[P]]

Δ [[0⇒ 0]] = Π [[0]]
Δ [[t ⇒ 0]] = (t) .Π [[0]] if t > 0

Δ [[0⇒<a,n>.P]] = Π [[<a,n>.P]]
Δ [[t ⇒<a,n>.P]] = (t) .Π [[<a,n>.P]] if t > 0

Δ [[K1 +K2]] = Δ [[K1]]+Δ [[K2]]
Δ [[K1 ‖ /0 K2]] = Δ [[K1]]‖ /0 Δ [[K2]]

Δ [[K/H]] = Δ [[K]]/H
Δ [[K\ /0]] = Δ [[K]]\ /0
Δ [[K[ϕ ]]] = Δ [[K]][ϕ ]

Δ [[0⇒ recX : P]] = Π [[recX : P]]
Δ [[t ⇒ recX : P]] = (t) .Π [[recX : P]] if t > 0
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auxiliary mapping Δ [[ ]] : KD,srf→PT,srf, which is formalized as the smallest relation
satisfying the rules in the lower part of Table 2.4.

Theorem 2.5. Let P1,P2 ∈ PD,srf. Then:

P1 ∼DB P2 ⇐⇒ Π [[P1]]∼TB Π [[P2]]

2.5 Semantics-Preserving Mapping for Laziness

So far, we have considered deterministically timed process calculi with urgent
actions–i.e., actions that must be performed as soon as they become enabled–in
which synchronizations can take place only if the participating actions are executed
at the same time. In this context, we have seen that synchronizations and restric-
tions may cause the deadlock of a single system part, which in turn may cause the
deadlock of the entire system because of the timestop phenomenon.

In this section, we reconsider TPC and DPC under lazy action execution; i.e., we
now assume that actions can be delayed arbitrarily long before their are executed.
After revising the semantics for the two calculi in accordance with [158,76], follow-
ing [74] we show that under laziness it is possible to define a semantics-preserving
mapping that includes synchronizations and restrictions too.

2.5.1 Lazy TPC

The lazy variant of TPC has the same syntax as TPC; hence, we still use PT to
denote the set of its closed and guarded process terms.

As far as the operational semantics is concerned, the action transition relation is
unchanged, whereas the time transition relation −−�l is the smallest subset of PT×
N>0×PT satisfying the operational semantic rules shown in Table 2.1 as well as the
semantic rules of Table 2.5 added in order to introduce laziness. Rules NILT,l and
PRET,l establish that the timed inactive process and every action prefix can let any
amount of time pass, so that each process term can let any amount of time pass as
well, and hence the problems discussed in Sect. 2.4.1 no longer arise. In the lazy
case, we denote by [[P]]T,l the labeled transition system for a process term P ∈ PT.

Table 2.5 Additional time-related operational semantic rules for lazy TPC

(NILT,l)
0

n−−�l 0

(PRET,l)
a .P

n−−�l a .P
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The notion of lazy timed bisimulation equivalence (or lazy timed bisimilarity),
denoted ∼TB,l, is defined in the same way as ∼TB and enjoys similar properties.

Example 2.7. Let us reconsider ProdConsT
0/2 and PCT

conc,2 in the lazy setting.
Although their descriptions are unchanged, their underlying labeled transition sys-
tems are different with respect to the eager case due to the two additional semantic
rules.

It turns out that PCT
conc,2 �∼TB,l ProdConsT

0/2. In fact, PCT
conc,2 has no longer the

synchronization problem observed in Example 2.5, because the state reached after
the deposit of the first item can now let time pass, thereby enabling after n time
units a further deposit or withdrawal operation through synchronizations between
suitable subterms. However, at certain points PCT

conc,2 can still perform both deposit

and withdraw at the same time, which is not possible in ProdConsT
0/2 where in any

case the two actions are separated by a delay or are alternative to each other.

2.5.2 Lazy DPC

The lazy variant of DPC has the same syntax as DPC; hence, we still use PD to
denote the set of its closed and guarded process terms.

As far as the operational semantics is concerned, transitions have a starting time
that can now be greater than the value of any local clock because of laziness. More-
over, the syntax of process terms with local clocks that represent states must be
extended in order to record the value of the global clock. This is not necessary in
an eager setting because actions are urgent and hence the local clocks automatically
define a unique notion of global time, whereas in a lazy setting ambiguities may
arise. In order to avoid them, the value of the global clock is assumed to coincide
with the value of the minimum local clock.

A process term with local clocks and global clock is of the form K �gt where K ∈
K L D and gt ∈ N. We denote by K

′
D the set of closed and guarded process terms

with local clocks and global clock. The transition relation −−−→D,l is the smallest
subset of K

′
D×ActD×N×K

′
D satisfying the operational semantic rules of Table 2.6.

Rule PRED,l states that the execution of an action can start at any time greater than
the global clock and the local clock of the process term enabling the action, then
updates the local clock by taking into account the global clock value. Since actions
are no longer urgent, the rules for the alternative and parallel composition operators
no longer include the negative premises contained in the corresponding rules shown
in Table 2.2. The labeled transition system for a process term P ∈ PD is denoted by
[[P]]D,l in the lazy case and its initial state is (0⇒ P)� 0.

The notion of lazy durational bisimulation equivalence (or lazy durational bisim-
ilarity), denoted∼DB,l, is defined in a way similar to∼DB and has similar properties.
The additional constraint to meet is that equivalent process terms with local clocks
and global clock must have the same global clock value.
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Table 2.6 Time-integrated operational semantic rules for lazy DPC

(PRED,l)
gt′ ≥max(gt, t)

(t ⇒<a,n>.P)�gt
a,n−−−→D,l
gt′

((gt′+n)⇒ P)�gt′

(ALTD,l,1)

K1 �gt
a,n−−−→D,l
gt′

K′1 �gt′

(K1 +K2)�gt
a,n−−−→D,l
gt′

K′1 �gt′

(ALTD,l,2)

K2 �gt
a,n−−−→D,l
gt′

K′2 �gt′

(K1 +K2)�gt
a,n−−−→D,l
gt′

K′2 �gt′

(PARD,l,1)

K1 �gt
a,n−−−→D,l
gt′

K′1 �gt′ a /∈ S

(K1 ‖S K2)�gt
a,n−−−→D,l
gt′

(K′1 ‖S K2)�gt′

(PARD,l,2)

K2 �gt
a,n−−−→D,l
gt′

K′2 �gt′ a /∈ S

(K1 ‖S K2)�gt
a,n−−−→D,l
gt′

(K1 ‖S K′2)�gt′

(SYND,l)

K1 �gt
a,n−−−→D,l
gt′

K′1 �gt′ K2 �gt
a,n−−−→D,l
gt′

K′2 �gt′ a ∈ S

(K1 ‖S K2)�gt
a,n−−−→D,l
gt′

(K′1 ‖S K′2)�gt′

(HIDD,l,1)

K �gt
a,n−−−→D,l
gt′

K′ �gt′ a ∈ H

(K/H)�gt
τ,n−−−→D,l
gt′

(K′/H)�gt′

(HIDD,l,2)

K �gt
a,n−−−→D,l
gt′

K′ �gt′ a /∈ H

(K/H)�gt
a,n−−−→D,l
gt′

(K′/H)�gt′

(RESD,l)

K �gt
a,n−−−→D,l
gt′

K′ �gt′ a /∈ L

(K\L)�gt
a,n−−−→D,l
gt′

(K′\L)�gt′

(RELD,l)

K �gt
a,n−−−→D,l
gt′

K′ �gt′

(K[ϕ ])�gt
ϕ(a),n
−−−→D,l

gt′
(K′[ϕ ])�gt′

(RECD,l)

(t ⇒ P{recX : P ↪→ X})�gt
a,n−−−→D,l
gt′

K′ �gt′

(t ⇒ rec X : P)�gt
a,n−−−→D,l
gt′

K′ �gt′
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Example 2.8. Let us reconsider ProdConsD
0/2 and PCD

conc,2 in the lazy setting.
Although their descriptions are unchanged, their underlying labeled transition
systems are different with respect to the eager case because the semantic rules are
different.

It turns out that PCD
conc,2 �∼DB,l ProdConsD

0/2. In fact, PCD
conc,2 has no longer the

synchronization problem observed in Example 2.6, because the state reached after
the deposit of the first item can now permit a further deposit or withdrawal operation
through lazy synchronizations between suitable subterms. However, PCD

conc,2 may
exploit its concurrent structure for starting several actions at the same time, which
is not possible in ProdConsD

0/2. For instance:

(0⇒ PCD
conc,2)� 0

deposit,n−−−→D,l
0

(n⇒<deposit,n>.ProdD ‖{deposit}
(n⇒<withdraw,n>.Buff D ‖ /0 0⇒ Buff D)
‖{withdraw} 0⇒<withdraw,n>.ConsD)� 0

deposit,n−−−→D,l
n

(2 ·n⇒<deposit,n>.ProdD ‖{deposit}
(n⇒<withdraw,n>.Buff D ‖ /0 2 ·n⇒<withdraw,n>.Buff D)
‖{withdraw} 0⇒<withdraw,n>.ConsD)� n

withdraw,n−−−→D,l
n

(2 ·n⇒<deposit,n>.ProdD ‖{deposit}
(2 ·n⇒ Buff D ‖ /0 2 ·n⇒<withdraw,n>.Buff D)
‖{withdraw} 2 ·n⇒<withdraw,n>.ConsD)� n

whereas:

(0⇒ ProdConsD
0/2)� 0

deposit,n−−−→D,l
0

(n⇒ ProdConsD
1/2)� 0

deposit,n−−−→D,l
n

(2 ·n⇒ ProdConsD
2/2)� n

withdraw,n−−−→D,l
2·n

(3 ·n⇒ ProdConsD
1/2)� 2 ·n

with the two withdrawals being started at different time instants in the two systems
and the last two states having different global clock values.



2.6 Semantics-Preserving Mapping for Maximal Progress 63

Table 2.7 Rules for mapping DPC into TPC under laziness and maximal progress

Π ′[[0]] = 0
Π ′[[<a,n>.P]] = a . (n) .Π ′[[P]]

Π ′[[P1 +P2]] = Π ′[[P1]]+Π ′[[P2]]
Π ′[[P1 ‖S P2]] = Π ′[[P1]]‖S Π ′[[P2]]

Π ′[[P/H]] = Π ′[[P]]/H
Π ′[[P\L]] = Π ′[[P]]\L
Π ′[[P[ϕ ]]] = Π ′[[P]][ϕ ]

Π ′[[X]] = X
Π ′[[recX : P]] = rec X : Π ′[[P]]

Δ ′[[(0⇒ 0)�gt]] = Π ′[[0]]
Δ ′[[(t ⇒ 0)�gt]] = (t) .Π ′[[0]] if t > 0

Δ ′[[(0⇒<a,n>.P)�gt]] = Π ′[[<a,n>.P]]
Δ ′[[(t ⇒<a,n>.P)�gt]] = (t) .Π ′[[<a,n>.P]] if t > 0

Δ ′[[(K1 +K2)�gt]] = Δ ′[[K1 �gt]]+Δ ′[[K2 �gt]]
Δ ′[[(K1 ‖S K2)�gt]] = Δ ′[[K1 �gt]]‖S Δ ′[[K2 �gt]]

Δ ′[[(K/H)�gt]] = Δ ′[[K �gt]]/H
Δ ′[[(K\L)�gt]] = Δ ′[[K �gt]]\L
Δ ′[[(K[ϕ ])�gt]] = Δ ′[[K �gt]][ϕ ]

Δ ′[[(0⇒ rec X : P)�gt]] = Π ′[[recX : P]]
Δ ′[[(t ⇒ rec X : P)�gt]] = (t) .Π ′[[recX : P]] if t > 0

2.5.3 From DPC to TPC Under Laziness

We relate lazy TPC and lazy DPC by defining a mapping Π ′[[ ]] : PD → PT as the
smallest relation satisfying the rules shown in the upper part of Table 2.7, together
with an auxiliary mapping Δ ′[[ ]] : K

′
D → PT formalized as the smallest relation

satisfying the rules in the lower part of Table 2.7.
The basic idea is still that of splitting a durational action <a,n> into an a-

action prefix followed by an n-time prefix. Moreover, by virtue of laziness, it is
now possible to translate 0 into 0 and to include synchronizations and restrictions.
Also this mapping is semantics preserving, thus showing that TPC and DPC are in
some sense compatible under laziness as well.

Theorem 2.6. Let P1,P2 ∈ PD. Then:

P1 ∼DB,l P2 ⇐⇒ Π ′[[P1]]∼TB,l Π ′[[P2]]

2.6 Semantics-Preserving Mapping for Maximal Progress

Maximal progress establishes that actions can be delayed arbitrarily long like in
the lazy case, unless they are involved in synchronizations, in which case they are
urgent. In other words, a system part is lazy as long as it does not interact with other
parts, but no delay is admitted if other parts are willing to communicate with it.
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Technically speaking, this amounts to considering visible actions as being lazy
and invisible actions as being urgent, as each τ-action can be thought of as deriving
from the complete synchronization of several actions, like in (a .P1 ‖{a}a .P2)/{a}.
By complete synchronization we mean that all the system parts that are expected to
synchronize actually do, and hence it is not necessary to wait for further parts to be
involved in the synchronization.

In this section, we reconsider TPC and DPC under maximal progress. After
revising the semantics for the two calculi in accordance with [199, 114, 78],
following [74] we show that also in the case of maximal progress it is possible
to define a semantics-preserving mapping.

2.6.1 Maximal Progress TPC

The maximal progress variant of TPC has the same syntax as TPC; hence, we still
use PT to denote the set of its closed and guarded process terms.

As far as the operational semantics is concerned, the action transition relation
is unchanged, whereas the time transition relation −−�mp is the smallest subset of
PT ×N>0× PT satisfying the operational semantic rules of Table 2.8. Note that
rule PRET,mp,2 establishes that only visible actions can be delayed. Moreover, the
negative premise of rule HIDT,mp ensures that visible actions to be hidden are not
delayed, unless they are preceded by a time prefix. In order for this rule to work, we

assume by convention that P
0−−�mp P for all P ∈ PT. In the maximal progress case,

we denote by [[P]]T,mp the labeled transition system for a process term P ∈ PT.
The notion of maximal progress timed bisimulation equivalence (or maximal

progress timed bisimilarity), denoted ∼TB,mp, is defined in the same way as ∼TB

and enjoys similar properties.

Example 2.9. If we reconsider ProdConsT
0/2 and PCT

conc,2 in the maximal progress
setting, their underlying labeled transition systems are unchanged with respect to
the lazy case because they contain no τ-transitions. As a consequence, it turns out
that PCT

conc,2 �∼TB,mp ProdConsT
0/2 for the same reason explained in Example 2.7.

2.6.2 Maximal Progress DPC

The maximal progress variant of DPC has the same syntax as DPC; hence, we still
use PD to denote the set of its closed and guarded process terms.

As far as the operational semantics is concerned, similar to the lazy case
states contain the global clock in addition to local clocks. The transition relation
−−−→D,mp is the smallest subset of K

′
D × ActD ×N×K

′
D satisfying the opera-

tional semantic rules of Table 2.9. Note that rule PRED,mp establishes that only
visible actions can be delayed. Moreover, the negative premises of rules ALTD,mp,1,
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Table 2.8 Time-related operational semantic rules for maximal progress TPC

(NILT,mp)
0

n−−�mp 0

(PRET,mp,1)
(n) .P

n−−�mp P

(PRET,mp,2)
a ∈ Namev

a .P
n−−�mp a .P

(DECT,mp)
n = n1 +n2

(n) .P
n1−−�mp (n2) .P

(SUMT,mp)
P

n−−�mp P′

(m) .P
n+m−−�mp P′

(ALTT,mp)
P1

n−−�mp P′1 P2
n−−�mp P′2

P1 +P2
n−−�mp P′1 +P′2

(SYNT,mp)
P1

n−−�mp P′1 P2
n−−�mp P′2

P1 ‖S P2
n−−�mp P′1 ‖S P′2

(HIDT,mp)
P

n−−�mp P′ ¬(P
m−−�mp Q ∧ m < n ∧ Q

a−−−→Q′ ∧ a ∈H)

P/H
n−−�mp P′/H

(REST,mp)
P

n−−�mp P′

P\L n−−�mp P′\L

(RELT,mp)
P

n−−�mp P′

P[ϕ ]
n−−�mp P′[ϕ ]

(RECT,mp)
P{rec X : P ↪→ X} n−−�mp P′

recX : P
n−−�mp P′

ALTD,mp,2, PRED,mp,1, PRED,mp,2, HIDD,mp,1, and HIDD,mp,2 ensure that invisible
actions or visible actions to be hidden take precedence over actions whose execu-
tion starts later. In the maximal progress case, we denote by [[P]]D,mp the labeled
transition system for a process term P ∈ PD.

The notion of maximal progress durational bisimulation equivalence (or maximal
progress durational bisimilarity), denoted ∼DB,mp, is defined in a way similar to
∼DB,l and has similar properties.
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Table 2.9 Time-integrated operational semantic rules for maximal progress DPC

(PRED,mp)
(a ∈ Namev∧gt′ ≥max(gt, t)) ∨ (a = τ ∧gt′ = t ≥ gt)

(t ⇒<a,n>.P)�gt
a,n−−−→D,mp
gt′

((gt′+n)⇒ P)�gt′

(ALTD,mp,1)
K1 �gt

a,n−−−→D,mp
gt′

K′1 �gt′ ¬(K2 �gt
τ,n′−−−→D,mp
gt′′

K′2 �gt′′ ∧ gt′′ < gt′)

(K1 +K2)�gt
a,n−−−→D,mp
gt′

K′1 �gt′

(ALTD,mp,2)
K2 �gt

a,n−−−→D,mp
gt′

K′2 �gt′ ¬(K1 �gt
τ,n′−−−→D,mp
gt′′

K′1 �gt′′ ∧ gt′′ < gt′)

(K1 +K2)�gt
a,n−−−→D,mp
gt′

K′2 �gt′

(PARD,mp,1)
K1 �gt

a,n−−−→D,mp
gt′

K′1 �gt′ ¬(K2 �gt
τ,n′−−−→D,mp
gt′′

K′2 �gt′′ ∧ gt′′ < gt′) a /∈ S

(K1 ‖S K2)�gt
a,n−−−→D,mp
gt′

(K′1 ‖S K2)�gt′

(PARD,mp,2)
K2 �gt

a,n−−−→D,mp
gt′

K′2 �gt′ ¬(K1 �gt
τ,n′−−−→D,mp
gt′′

K′1 �gt′′ ∧ gt′′ < gt′) a /∈ S

(K1 ‖S K2)�gt
a,n−−−→D,mp
gt′

(K1 ‖S K′2)�gt′

(SYND,mp)

K1 �gt
a,n−−−→D,mp
gt′

K′1 �gt′ K2 �gt
a,n−−−→D,mp
gt′

K′2 �gt′ a ∈ S

(K1 ‖S K2)�gt
a,n−−−→D,mp
gt′

(K′1 ‖S K′2)�gt′

(HIDD,mp,1)
K�gt

a,n−−−→D,mp
gt′

K′�gt′ ¬(K�gt
b,n′−−−→D,mp
gt′′

K′�gt′′ ∧gt′′<gt′ ∧b∈H) a∈H

(K/H)�gt
τ,n−−−→D,mp
gt′

(K′/H)�gt′

(HIDD,mp,2)
K�gt

a,n−−−→D,mp
gt′

K′�gt′ ¬(K�gt
b,n′−−−→D,mp
gt′′

K′�gt′′ ∧gt′′<gt′ ∧b∈H) a /∈H

(K/H)�gt
a,n−−−→D,mp
gt′

(K′/H)�gt′

(RESD,mp)

K �gt
a,n−−−→D,mp
gt′

K′ �gt′ a /∈ L

(K\L)�gt
a,n−−−→D,mp
gt′

(K′\L)�gt′

(RELD,mp)

K �gt
a,n−−−→D,mp
gt′

K′ �gt′

(K[ϕ ])�gt
ϕ(a),n
−−−→D,mp

gt′
(K′[ϕ ])�gt′

(RECD,mp)

(t ⇒ P{recX : P ↪→ X})�gt
a,n−−−→D,mp
gt′

K′ �gt′

(t ⇒ rec X : P)�gt
a,n−−−→D,mp
gt′

K′ �gt′
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Example 2.10. If we reconsider ProdConsD
0/2 and PCD

conc,2 in the maximal progress
setting, their underlying labeled transition systems are unchanged with respect to
the lazy case because they contain no τ-transitions. As a consequence, it turns out
that PCD

conc,2 �∼DB,mp ProdConsD
0/2 for the same reason explained in Example 2.8.

2.6.3 From DPC to TPC Under Maximal Progress

Maximal progress TPC and maximal progress DPC can be related by means of the
mapping for the lazy versions of the two calculi shown in Table 2.7. Therefore, TPC
and DPC turn out to be somehow compatible under maximal progress too.

Theorem 2.7. Let P1,P2 ∈ PD. Then:

P1 ∼DB,mp P2 ⇐⇒ Π ′[[P1]]∼TB,mp Π ′[[P2]]

2.7 Expressiveness of Eagerness, Laziness, Maximal Progress

In the last three sections, we have contrasted by means of semantics-preserving
mappings the two deterministically timed process calculi based on the two-phase
functioning principle and on the one-phase functioning principle, respectively. In
this section, we study instead the semantic relationships among the different inter-
pretations of action execution. Following [75], we concentrate on the expressiveness
of eagerness, laziness, and maximal progress in the context of DPC in order to com-
pare the discriminating power of ∼DB, ∼DB,l, and ∼DB,mp.

The study is conducted by focusing on different variants of DPC that are signifi-
cant from the point of view of action urgency or patience. In particular, we consider
the following linguistic features related to synchronization of actions, choice among
actions, and number of actions that can be executed in a finite amount of time:

• The language admits only independent executions of actions or also action syn-
chronizations.

• The language admits choices only at the same time or also at different times.
The former case refers to timed alternative compositions (e.g., having a snack
or lunch now), where choices involve only system functionality. In contrast, the
latter case refers to alternative timed compositions (e.g., having a snack now or
lunch at noon), where choices involve timing as well.

• The language admits processes that can perform only finitely many actions in a
finite amount of time or also infinitely many actions.

The outcome of the comparison is that ∼DB, ∼DB,l, and ∼DB,mp turn out to coin-
cide only in the case of sequential processes; i.e., systems with a single local clock.
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This demonstrates that eagerness, laziness, and maximal progress are primitive
concepts in deterministically timed process calculi, in the sense that in general they
are not able to simulate each other.

2.7.1 Synchronization Issues

Considering different synchronization capabilities shows that ∼DB, ∼DB,l, and
∼DB,mp are in general incomparable.

Proposition 2.1. There exist P,Q∈ PD such that P∼DB Q but neither P∼DB,l Q nor
P∼DB,mp Q.

Take for example the following two process terms:

P ≡ <a,1>.0

Q ≡ <a,1>.<b,1>.0‖{b}<b,1>.<d,1>.0

They are durational bisimilar, but they are neither lazy nor maximal progress dura-
tional bisimilar. Indeed, in the eager case, the following transition:

0⇒<a,1>.0
a,1−−−→D
0

1⇒ 0

can be matched by the following transition:

0⇒<a,1>.<b,1>.0‖{b}0⇒<b,1>.<d,1>.0
a,1−−−→D
0

1⇒<b,1>.0‖{b}0⇒<b,1>.<d,1>.0

The state reached by the second transition cannot perform any further action be-
cause the two parallel subterms are not able to synchronize on b at the same time, as
required by rule SYND of Table 2.2. In contrast, the synchronization is possible ac-
cording to the operational semantic rules of Tables 2.6 and 2.9 for the lazy case and
the maximal progress case, respectively, as they allow the right-hand side subterm
to delay the execution of its b-action.

Proposition 2.2. There exist P,Q ∈ PD such that P∼DB,l Q and P∼DB,mp Q but not
P∼DB Q.

Take, for example, the following two process terms:

P ≡ <a,1>.(<b,1>.0‖{b}<b,1>.<d,1>.0)
Q ≡ <a,1>.<b,1>.0‖{b}<b,1>.<d,1>.0

They are lazy and maximal progress durational bisimilar, but not durational bisimi-
lar. Indeed, in the lazy (and maximal progress) case, the following transition:
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(0⇒<a,1>.(<b,1>.0‖{b}<b,1>.<d,1>.0))� 0
a,1−−−→D,l
0

(1⇒<b,1>0‖{b}1⇒<b,1>.<d,1>.0)� 0

can be matched by the following transition:

(0⇒<a,1>.<b,1>.0‖{b}0⇒<b,1>.<d,1>.0)� 0
a,1−−−→D,l
0

(1⇒<b,1>.0‖{b}0⇒<b,1>.<d,1>.0)� 0

where the two reached states are lazy durational bisimilar as they both permit a syn-
chronization on b. In contrast, this synchronization is not possible in the eager case
for the second reached state because its two local clocks are different.

Proposition 2.3. There exist P,Q ∈ PD such that P∼DB,mp Q but not P∼DB,l Q.

Take, for example, the following two process terms:

P ≡ <τ,3>.<a,1>.<b,1>.0‖{a}<τ,1>.(<τ,1>.0+<a,1>.0)
Q ≡ <τ,3>.0‖ /0 <τ,1>.<τ,1>.0

They are maximal progress durational bisimilar, but not lazy durational bisimilar.
Indeed, in the maximal progress case P has the following sequence of transitions:

(0⇒<τ,3>.<a,1>.<b,1>.0‖{a}0⇒<τ,1>.(<τ,1>.0+<a,1>.0))� 0

τ,3−−−→D,mp
0

(3⇒<a,1>.<b,1>.0‖{a}0⇒<τ,1>.(<τ,1>.0+<a,1>.0))� 0

τ,1−−−→D,mp
0

(3⇒<a,1>.<b,1>.0‖{a}1⇒<τ,1>.0+<a,1>.0)� 0

where a synchronization on a is not possible since the a-action in the right-hand side
subterm cannot be delayed till time 3 due to the presence of an alternative τ-action
whose execution starts at time 1. In contrast, in the lazy case P has the following
sequence of transitions at the end of which a synchronization on a is possible:

(0⇒<τ,3>.<a,1>.<b,1>.0‖{a}0⇒<τ,1>.(<τ,1>.0+<a,1>.0))� 0

τ,3−−−→D,l
0

(3⇒<a,1>.<b,1>.0‖{a}0⇒<τ,1>.(<τ,1>.0+<a,1>.0))� 0

τ,1−−−→D,l
2

(3⇒<a,1>.<b,1>.0‖{a}3⇒<τ,1>.0+<a,1>.0)� 2

We now mention a positive result, which establishes that ∼DB,l is strictly finer
than ∼DB,mp.
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Proposition 2.4. Let P1,P2 ∈ PD. Then:

P1 ∼DB,l P2 =⇒ P1 ∼DB,mp P2

Unless stated otherwise, in the following we consider only visible actions, hence
τ-actions are not permitted and the hiding operator reduces to / /0. Under this limita-
tion, ∼DB,mp turns out to coincide with ∼DB,l. Furthermore, we consider only inde-
pendent executions of actions. As a consequence, in order to avoid synchronizations
and all kinds of restriction, the parallel composition operator reduces to ‖ /0 and
the restriction operator reduces to \ /0. We denote by P

′
D the corresponding set of

process terms of PD.

2.7.2 Choosing at Different Times

Systems that allow different alternatives to be chosen at different times are not ex-
pressible in DPC. However, they can be included by adding the time prefix operator
of TPC together with the following three operational semantic rules for the eager
case, the lazy case, and the maximal progress case, respectively:

(DELD)
t + n⇒ P

a,n′−−−→D
t′

K′

t ⇒ (n) .P
a,n′−−−→D

t′
K′

(DELD,l)

((t + n)⇒ P)� gt
a,n′−−−→D,l
gt′

K � gt′

(t ⇒ (n) .P)� gt
a,n′−−−→D,l
gt′

K � gt′

(DELD,mp)

((t + n)⇒ P)� gt
a,n′−−−→D,mp
gt′

K � gt′

(t ⇒ (n) .P)� gt
a,n′−−−→D,mp
gt′

K � gt′

With this operator we can now express both alternative timed compositions of the
form (n1) .P1 +(n2) .P2, where n1 �= n2 and P1 and P2 do not contain time prefixes
at the top level, and timed alternative compositions of the form (n) .(P1 +P2). These
two choices are conceptually different, because the latter involves only system func-
tionality, whereas the former involves timing aspects as well.

In this durational setting extended with the time prefix operator, it turns out that
∼DB,l is strictly finer than ∼DB.
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Proposition 2.5. Let P1 and P2 be obtained from process terms of P
′
D by possibly

including occurrences of the time prefix operator. Then:

P1 ∼DB,l P2 =⇒ P1 ∼DB P2

To see why the inclusion is strict, consider the following two process terms:

P ≡ (<a,1>.0‖ /0(1) .<b,1>.0)+<a,1>.<b,1>.0
Q ≡ <a,1>.0‖ /0(1) .<b,1>.0

They are durational bisimilar because the delay preceding two of the b-actions is
equal to the duration of the a-actions. However, they are not lazy durational bisimi-
lar. Indeed, in the lazy case, when P does the following transition:

((0⇒<a,1>.0‖ /0 0⇒ (1) .<b,1>.0)+ 0⇒<a,1>.<b,1>.0)� 0
a,1−−−→D,l
1

(2⇒<b,1>.0)� 1

then Q responds with the following transition:

(0⇒<a,1>.0‖ /0 0⇒ (1) .<b,1>.0)� 0
a,1−−−→D,l
1

(2⇒ 0‖ /0 0⇒ (1) .<b,1>.0)� 1

At this point, the minimum time at which the state reached by Q can perform a
b-transition is 1, whereas the minimum time at which the state reached by P can
perform a b-transition is 2.

In order to try to reduce the discriminating power of ∼DB,l, in the following we
consider only choices taking place at the same time, as is the case with P

′
D.

2.7.3 Performing Infinitely Many Actions at the Same Time

We now focus on the number of actions that can be performed in a finite amount of
time. Let us consider the following two process terms:

P ≡ ∏
i∈N

<a,1>.0 and Q ≡ ∑
i∈N

<a,1>.0‖ /0 . . .‖ /0 <a,1>.0
︸ ︷︷ ︸

i times

On the one hand, P can perform an infinite sequence of a-actions all starting at
time 0, as it is the parallel composition of infinitely many subterms each of which
can perform only an a-action. The same effect can be achieved by means of an un-
guarded process term like recX : (X ‖ /0 <a,1>.0). On the other hand, Q can perform
infinitely many finite sequences of a-actions, as it is the alternative composition of
infinitely many subterms each constituting a finite approximation of P.
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Even if we allow for infinite parallel composition and unguarded recursion, it
turns out that ∼DB,l is strictly finer than ∼DB.

Proposition 2.6. Let P1 and P2 be obtained from process terms of P
′
D by admitting

infinite parallel composition and unguarded recursion. Then:

P1 ∼DB,l P2 =⇒ P1 ∼DB P2

To see why the inclusion is strict, consider the following two process terms:

P ≡ <b,2>.< f ,1>.0‖ /0 <d,1>.P∞
Q ≡ <b,2>.0‖ /0 <d,1>.P∞

where P∞ denotes any process term that can perform infinitely many a-actions all
starting at time 0. The two process terms are durational bisimilar, but not lazy du-
rational bisimilar. Indeed, in the eager case, they must both perform a b-action and
a d-action at time 0, after which they reach states 2 ⇒ < f ,1>.0‖ /0 1 ⇒ P∞ and
2⇒ 0‖ /0 1⇒ P∞, respectively. Since actions are urgent and P∞ can immediately per-
form infinitely many actions, the first reached state cannot execute the f -action, and
hence the two reached states are equivalent. The f -action can instead be executed in
the lazy case; hence, in that case the two reached states are not equivalent.

2.7.4 Performing Finitely Many Actions at the Same Time

Not even the exclusion of infinite parallel composition and unguarded recursion
reduces the discriminating power of ∼DB,l.

Proposition 2.7. Let P1,P2 ∈ P
′
D. Then:

P1 ∼DB,l P2 =⇒ P1 ∼DB P2

To see why the inclusion is strict, consider the following two process terms:

P ≡ <a,1>.<d,1>.0‖ /0 <b,1>.0
Q ≡ <a,1>.0‖ /0 <b,1>.<d,1>.0

They are durational bisimilar, but not lazy durational bisimilar. Indeed, in the eager
case, they must both perform an a-action and a b-action at time 0, after which they
reach states 1⇒<d,1>.0‖ /0 1⇒ 0 and 1⇒ 0‖ /0 1⇒<d,1>.0, respectively. These
two states are clearly equivalent. However, in the lazy case, when P does the fol-
lowing transition:

(0⇒ P)� 0
a,1−−−→D,l
0

(1⇒<d,1>.0‖ /0 0⇒<b,1>.0)� 0
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then Q responds with the following transition:

(0⇒ Q)� 0
a,1−−−→D,l
0

(1⇒ 0‖ /0 0⇒<b,1>.<d,1>.0)� 0

The two reached states are not lazy durational bisimilar because the former can
perform a d-action while the latter cannot.

2.7.5 Coincidence Result for Sequential Processes

All the previous examples demonstrate that, in order to reduce the discriminating
power of ∼DB,l, we need to remove the parallel composition operator. In fact, if
we restrict ourselves to sequential processes, it turns out that the three considered
behavioral equivalences coincide, as in the presence of a single local clock the power
of laziness and maximal progress is not observable. We denote by P

′′
D the set of

process terms of P
′
D containing no occurrence of the parallel composition operator.

Theorem 2.8. Let P1,P2 ∈ P
′′
D. Then:

P1 ∼DB P2 ⇐⇒ P1 ∼DB,l P2 ⇐⇒ P1 ∼DB,mp P2





Chapter 3
Stochastically Timed Process Algebra

Abstract Timing aspects of concurrent and distributed systems can be expressed
not only deterministically, but also probabilistically, which is particularly appropri-
ate for shared-resource systems. When these aspects are modeled by using only
exponentially distributed random variables, the stochastic process governing the
system evolution over time turns out to be a Markov chain. From a process alge-
braic perspective, this limitation results in a simpler mathematical treatment both
on the semantic side and on the stochastic side without sacrificing expressiveness.
In this chapter, we introduce a Markovian process calculus with durational actions,
then we discuss congruence properties, sound and complete axiomatizations, modal
logic characterizations, and verification algorithms for Markovian versions of bisim-
ulation equivalence, testing equivalence, and trace equivalence. We also examine
a further property called exactness, which is related to Markov-chain-level aggre-
gations induced by Markovian behavioral equivalences. Finally, we show how the
linear-time/branching-time spectrum collapses in the Markovian case.

3.1 Concurrency, Communication, and Stochastic Time

In Chap. 2, we have seen how to represent time and time passing in a process
algebraic context. This has been accomplished through nonnegative numbers, which
express action durations or delays between the execution of consecutive actions.
This enables the modeling of real-time systems and the verification of temporal
constraints. However, it is not the only way of describing timing aspects, nor are
real-time systems the only systems where time plays a fundamental role.

An important alternative way is to make use of nonnegative random variables.
This is particularly appropriate when the time taken for executing an action is not
known in advance, but fluctuates according to some probability distribution. For in-
stance, this is the case with shared-resource systems, in which there is a variable
number of demands competing for the same resources, which cause mutual interfer-
ence, delays due to contention, and service quality varying over time. In this setting,

A. Aldini et al., A Process Algebraic Approach to Software Architecture Design, 75
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relevant properties are, e.g., average performance measures like system throughput
and resource utilization as well as the probability of satisfying temporal constraints.

Although there are many probability distributions that can be used for modeling
timing aspects, most of the work appeared in the literature in the field of stochasti-
cally timed process algebra has concentrated on exponential distributions. Since in
this case the underlying stochastic process governing the system evolution over time
turns out to be a Markov chain [188], the resulting languages are called Markovian
process calculi. Among them we mention TIPP [104, 116], PEPA [118], MPA [59],
EMPAgr [44, 40], Sπ [172], IMC [115], and PIOA [187].

The reason for using only exponential distributions is that they yield a simpler
mathematical treatment both on the semantic side and on the stochastic side:

• A Markov chain can be represented as a labeled transition system
• Its memoryless property fits well with the interleaving view of concurrency
• State sojourn times and transition probabilities can be easily computed

without sacrificing expressiveness:

• Exponential distributions are adequate for modeling the timing of many real-life
phenomena like arrival processes, failure events, and chemical reactions

• An exponential distribution is the most appropriate stochastic approximation in
the case in which only the average duration of an activity is known [79]

• Proper combinations of exponential distributions, called phase-type distribu-
tions [161], can approximate most of general distributions arbitrarily closely

The direct handling of arbitrary distributions requires adopting semantic models
richer than labeled transition systems [80] or abandoning the interleaving seman-
tics framework [54]. Since this results in a much more complicated theory without
bringing a significant advantage in terms of expressiveness, we address stochasti-
cally timed process algebra where timing aspects are quantified only through expo-
nentially distributed random variables. Each such variable is concisely represented
as a positive real number called a rate, which uniquely identifies the probability
distribution of the values of the variable.

Markovian process calculi differ for the action representation and the synchro-
nization discipline. Like in the case of deterministically timed process algebra, we
have two options for action representation. The first option, called orthogonal time,
is to consider actions as being instantaneous; hence, their execution is separated
from time passing and the choice among several enabled actions is nondeterministic.
The second option, called integrated time, is to consider actions as being durational,
so that time passing is embedded into action execution and the choice among several
enabled exponentially timed actions is solved probabilistically.

While in the orthogonal time case action synchronization is governed as in the
absence of timing information, in the integrated time case action synchronization
can be handled in different ways. Thanks to the memoryless property of exponential
distributions, unlike deterministically timed process algebra with durational actions
it is not necessary to require that synchronizing actions start at the same time. More-
over, they can have different durations, in which case a natural choice for deciding
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the duration of their synchronization is to take the maximum of their exponentially
distributed durations, but unfortunately it is not exponentially distributed.

In order to restrict ourselves to exponentially distributed random variables in the
integrated time case, there are two possibilities. The first possibility, called symmet-
ric synchronization, consists of assuming that the duration of a synchronization is
exponentially distributed. In this case, the rate at which the synchronization takes
place is defined through an associative and commutative operator applied to the
rates of the participating exponentially timed actions. The second possibility, called
asymmetric synchronization, is to introduce actions whose duration is undefined,
called passive actions, and impose that an exponentially timed action can synchro-
nize only with those actions, thus determining the overall duration.

Regardless of the specific synchronization discipline, in the integrated time case
an important issue is that the rate at which an action is carried out should not increase
when synchronizing that action with other actions possibly alternative to each other.
This conservative law, called the bounded capacity assumption [117], guarantees
a safe handling of synchronization rates and is naturally respected in asymmetric
synchronizations, whereas it requires the application of suitable operators on rates
in symmetric synchronizations.

In this chapter, we focus on a Markovian extension of the process calculus in-
troduced in Sect. 1.3, in which we adopt integrated time and an asymmetric syn-
chronization discipline obeying the bounded capacity assumption. In this stochastic
setting, the choice of integrated time cuts off nondeterminism in favor of a more nat-
ural modeling style in which actions are durational. On the other hand, the choice of
an asymmetric synchronization discipline restores some nondeterminism via passive
actions and is dictated by its frequent use in the modeling practice.

The resulting Markovian process calculus is the basis for introducing Markovian
versions of bisimulation equivalence, testing equivalence, and trace equiva-
lence [118, 31, 194]. As in Chap. 1, for each such Markovian behavioral equiva-
lence we present its congruence property, its sound and complete axiomatization,
its modal logic characterization, and its verification algorithm. Moreover, both the
calculus and the three equivalences are illustrated through the producer–consumer
system running example.

In addition, we discuss one more property called exactness. This property refers
to aggregations induced at the Markov chain level by Markovian behavioral equiv-
alences. It is desirable that such aggregations be exact, which means that the tran-
sient/stationary probability of being in a macrostate of an aggregated Markov chain
is the sum of the transient/stationary probabilities of being in one of the constituent
microstates of the original Markov chain. Exactness guarantees the preservation of
performance characteristics when going from the original Markov chain to the ag-
gregated one induced by a Markovian behavioral equivalence.

We also highlight how the linear-time/branching-time spectrum changes in the
Markovian setting. Unlike the scenario examined in Sect. 1.7, where bisimulation
equivalence, testing equivalence, trace equivalence, and some of their variants con-
stitute a lattice-like structure for nondeterministic processes, the spectrum for the
Markovian versions of the same behavioral equivalences collapses into a line.
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This chapter is organized as follows. In Sect. 3.2, we recall some basic notions
from Markov chain theory, then we define syntax and semantics for a Markovian
process calculus with durational actions that adopts an asymmetric synchronization
discipline respecting the bounded capacity assumption. In Sects. 3.3, 3.4, and 3.5,
we introduce Markovian bisimulation equivalence, Markovian testing equivalence,
and Markovian trace equivalence, respectively, and we illustrate their congruence
properties, sound and complete axiomatizations, modal logic characterizations, and
verification algorithms. In Sect. 3.6, we discuss the exactness of the three Markovian
behavioral equivalences. Finally, in Sect. 3.7 we show the collapse of the linear-
time/branching-time spectrum in the Markovian setting.

3.2 MPC: Markovian Process Calculus with Durational Actions

In this section, we present a Markovian process calculus inspired by [40] that we
call MPC, which is obtained from the process calculus of Sect. 1.3 by associating
with each action a rate that uniquely identifies its exponentially distributed duration.
We also add passive actions for enforcing an asymmetric synchronization discipline
consistent with the bounded capacity assumption. The formal definition of the cal-
culus is preceded by some notions about Markov chains [188].

3.2.1 Markov Chains

A stochastic process describes the evolution of some random phenomenon over
time. Formally, it is a set of random variables, one for each time instant. A spe-
cial case of stochastic process is a Markov process, which is characterized by a state
space and the memoryless property. The state space is the set of values that the
random variables constituting the process can take on. The memoryless property es-
tablishes that the probability of moving from one state to another does not depend
on the particular path that has been followed in the past to reach the current state. In
other words, the past history is completely summarized by the current state.

In a process algebraic framework the state space is discrete; hence, we are con-
cerned with discrete-state Markov processes. These stochastic processes are com-
monly termed Markov chains.

Definition 3.1. A discrete-state stochastic process {RV(t) | t ∈ R≥0} is a Markov
chain iff for all n∈N, time instants t0 < t1 < · · ·< tn < tn+1, and states s0,s1, . . . ,sn,
sn+1 ∈ S:

Pr{RV(tn+1) = sn+1 | RV(t0) = s0∧RV(t1) = s1∧ . . .∧RV(tn) = sn}
= Pr{RV(tn+1) = sn+1 | RV(tn) = sn}

where sn is the current state and sn+1 is the next state.
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A Markov chain can be represented as a labeled transition system or as a
state-indexed matrix. In the first case, each transition is labeled with some prob-
abilistic information describing the evolution from the source state to the target
state. In the second case, the same information is stored into the entry of the ma-
trix corresponding to the two states. The value of this probabilistic information is a
function that depends on the time at which the state change takes place. For the sake
of simplicity, we restrict ourselves to time-homogeneous Markov chains, so that the
considered information is simply a number.

The solution of a time-homogeneous Markov chain is the probability distribution
π() of being in the various states of the Markov chain at a certain time instant. State
probabilities form the basis for deriving typical performance measures as weighted
sums, where weights highlight those states contributing to the measures and the
extent to which they contribute. The way π() is computed depends on whether
the Markov chain is a discrete-time Markov chain (DTMC) or a continuous-time
Markov chain (CTMC).

The names DTMC and CTMC have historical reasons. A more precise terminol-
ogy would call time-abstract a Markov chain of the former type, as time does not
come into play, and time-aware a Markov chain of the latter type, due to the ex-
plicit reference to time. A discrete-time interpretation is appropriate only in settings
where all state changes occur at equidistant time points.

In the case of a time-homogeneous DTMC, state transitions are described by a
probability matrix P whose entry pi, j ∈ R[0,1] represents the probability of going
from state si to state s j through a single transition, hence all rows sum up to 1. The
sojourn time in any state is geometrically distributed: if p ∈ R]0,1[ is the sum of
the probabilities of the transitions that depart from s and do not return to s, then the
probability of leaving s after executing k ∈N>0 transitions is given by (1− p)k−1 · p.
For a time-homogeneous DTMC we have that:

• Given π(0), the transient solution π(n) after the execution of n∈N>0 transitions
is computed in the following way:

π(n) = π(0) ·Pn

• The stationary solution π = limn→∞ π(n) is obtained (if any) by solving:

π = π ·P
∑

s∈S
π [s] = 1

In the case of a time-homogeneous CTMC, state transitions are described by a
rate matrix Q whose entry qi, j ∈ R≥0, i �= j, represents the speed at which it is
possible to go from state si to state s j through a single transition, while qi,i is set to
−∑ j �=i qi, j, thus causing all rows to sum up to 0. The sojourn time in any state is
exponentially distributed: if q ∈ R>0 is the sum of the rates of the transitions that
depart from s and do not return to s, then the probability of leaving s within time
t ∈ R>0 is given by 1− e−q·t. For a time-homogeneous CTMC we have that:
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• Given π(0), the transient solution π(t) at time t ∈ R>0 is obtained by solving:

π(t) ·Q = dπ(t)
dt

• The stationary solution π = limt→∞ π(t) is obtained (if any) by solving:

π ·Q = 0
∑

s∈S
π [s] = 1

We observe that every CTMC has an embedded DTMC, whose probability ma-
trix is obtained from the rate matrix of the CTMC by dividing the rate of each
transition by the sum of the rates of the transitions that depart from the source state.
We also point out that the family of geometrically (resp. exponentially) distributed
random variables is the only family of discrete (resp. continuous) random variables
satisfying the memoryless property:

Pr{RV ≤ v + v′ | RV > v′} = Pr{RV ≤ v}

3.2.2 Syntax and Semantics

In MPC, an exponentially timed action is represented as a pair <a,λ>, where
a ∈ Name is the name of the action and λ ∈ R>0 is the rate of the exponen-
tially distributed random variable Exp quantifying the duration of the action, i.e.,
Pr{Exp ≤ t} = 1− e−λ ·t for t ∈ R>0. The average duration of the action is equal
to the reciprocal of its rate, i.e., 1/λ . When several exponentially timed actions are
enabled, the race policy is adopted: the action that is executed is the fastest one.

The sojourn time associated with a process term P is thus the minimum of the ran-
dom variables quantifying the durations of the exponentially timed actions enabled
by P. Since the minimum of several exponentially distributed random variables is
exponentially distributed and its rate is the sum of the rates of the original variables,
the sojourn time associated with P is exponentially distributed with rate equal to the
sum of the rates of the actions enabled by P. Therefore, the average sojourn time
associated with P is the reciprocal of the sum of the rates of the actions it enables.
The probability of executing one of those actions is given by the action rate divided
by the sum of the rates of all the considered actions.

Passive actions of the form <a,∗w> are also included in MPC, where w∈R>0 is
the weight of the action. The duration of a passive action is undefined. When several
passive actions are enabled, the reactive preselection policy is adopted. This means
that, within every set of enabled passive actions having the same name, each such
action is given an execution probability equal to the action weight divided by the
sum of the weights of all the actions in the set. Instead, the choice among passive
actions having different names is nondeterministic. Likewise, the choice between a
passive action and an exponentially timed action is nondeterministic.
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MPC relies on an asymmetric synchronization discipline, according to which an
exponentially timed action can synchronize only with a passive action having the
same name. In other words, the synchronization between two exponentially timed
actions is forbidden. Following the terminology of [99], the adopted synchronization
discipline mixes generative and reactive probabilistic aspects. Firstly, among all the
enabled exponentially timed actions, the proposal of an action name is generated
through a selection based on the rates of those actions. Secondly, the enabled passive
actions that have the same name as the proposed one react by means of a selection
based on their weights. Thirdly, the exponentially timed action winning the gen-
erative selection and the passive action winning the reactive selection synchronize
with each other. The rate of the synchronization complies with the bounded capac-
ity assumption as it is given by the rate of the selected exponentially timed action
multiplied by the execution probability of the selected passive action. Multiway
synchronizations are allowed provided that they involve at most one exponentially
timed action, with all the other actions being passive.

Similar to DPC, MPC comprises the same behavioral operators and syntactical
categories as PC, plus the set of actions ActM = Name×Rate where Rate = R>0∪
{∗w | w ∈ R>0} is the set of action rates, which is ranged over by λ̃ , μ̃ .

Definition 3.2. The set of process terms of the process language PL M is generated
by the following syntax:

P ::= 0 inactive process
| <a,λ>.P exponentially timed action prefix
| <a,∗w>.P passive action prefix
| P+ P alternative composition
| P‖S P parallel composition
| P/H hiding
| P\L restriction
| P[ϕ ] relabeling
| X process variable
| recX : P recursion

where a ∈Name, λ ,w ∈R>0, S,H,L⊆ Namev, ϕ ∈ Relab, and X ∈ Var. We denote
by PM the set of closed and guarded process terms of PL M.

Example 3.1. Let us model with MPC the producer–consumer system introduced
in Sect. 1.2. Assuming that items are produced at rate λ and consumed at rate μ ,
thanks to the memoryless property of exponential distributions it suffices to ex-
tend as follows the structure-independent process algebraic description provided in
Example 1.1:

ProdConsM
0/2

Δ= <deposit,λ>.ProdConsM
1/2

ProdConsM
1/2

Δ= <deposit,λ>.ProdConsM
2/2 +<withdraw,μ>.ProdConsM

0/2

ProdConsM
2/2

Δ= <withdraw,μ>.ProdConsM
1/2
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We point out that λ is the speed of the producer in isolation and μ is the speed of
the consumer in isolation. The actual number of items deposited per unit of time is
less than λ and the actual number of items withdrawn per unit of time is less than μ .
The reason is that the finite capacity of the buffer may sometimes block the pro-
ducer, which is more likely to happen if λ > μ . Similarly, the consumer is blocked
when the buffer is empty, which is more likely to happen if μ > λ .

The semantics for MPC is defined in the usual operational style by taking into
account that the alternative composition operator is not idempotent. For instance,
process term <a,λ>.0 +<a,λ>.0 is not the same as <a,λ>.0, because the aver-
age sojourn time associated with the latter, i.e., 1/λ , is twice the average sojourn
time associated with the former, i.e., 1/(λ +λ ). In order to assign distinct semantic
models to process terms like the two considered above, it is sufficient to keep track
of the multiplicity of each transition, intended as the number of different proofs for
the transition derivation. Therefore, we define the multitransition relation −−−→M

as the smallest multiset of elements of PM×ActM×PM satisfying the operational
semantic rules of Table 3.1, in which {| and |} denote multiset parentheses. Thanks
to the memoryless property of exponential distributions, unlike DPC it is not neces-
sary to label transitions with their starting time. The labeled multitransition system
for a process term P ∈ PM is denoted by [[P]]M.

In addition to the presence of rates in the transition labels, the operational se-
mantic rules in Table 3.1 have two characteristics. The first one is that there are two
rules for the action prefix operator: one for exponentially timed actions, PREM,1,
and one for passive actions, PREM,2. The second one is that there are three rules for
synchronization: SYNM,1 and SYNM,2 formalize generative–reactive synchroniza-
tions between an exponentially timed action and a passive action, while SYNM,3

formalizes reactive–reactive synchronizations between two passive actions.
As far as parallel composition is concerned, we observe that exponential distri-

butions fit well with the interleaving view of concurrency. In fact, due to their mem-
oryless property, the execution of an exponentially timed action can be thought of as
being started in the last state in which the action is enabled. Moreover, due to their
infinite support, the probability that two concurrent exponentially timed actions ter-
minate simultaneously is zero. As an example, take the following two process terms:

<a,λ>.0 ‖ /0 <b,μ>.0
<a,λ>.<b,μ>.0 + <b,μ>.<a,λ>.0

The first one (concurrent term) executes a at rate λ in parallel with b at rate μ , while
the second one (sequential term) executes either a at rate λ followed by b at rate μ ,
or b at rate μ followed by a at rate λ . These two syntactically and structurally dif-
ferent terms are behaviorally identical, as they are represented by the same labeled
multitransition system, which is shown below:

a,λ b, μ

b, μ a, λ
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Table 3.1 Time-integrated operational semantic rules for MPC

(PREM,1)
<a,λ>.P

a,λ−−−→M P
(PREM,2)

<a,∗w>.P
a,∗w−−−→M P

(ALTM,1)
P1

a,λ̃−−−→M P′1

P1 +P2
a,λ̃−−−→M P′1

(ALTM,2)
P2

a,λ̃−−−→M P′2

P1 +P2
a,λ̃−−−→M P′2

(PARM,1)
P1

a,λ̃−−−→M P′1 a /∈ S

P1 ‖S P2
a,λ̃−−−→M P′1 ‖S P2

(PARM,2)
P2

a,λ̃−−−→M P′2 a /∈ S

P1 ‖S P2
a,λ̃−−−→M P1 ‖S P′2

(SYNM,1)
P1

a,λ−−−→M P′1 P2
a,∗w−−−→M P′2 a ∈ S

P1 ‖S P2

a,λ · w
weight(P2 ,a)

−−−−−−−−−−−−−−−−−−→M P′1 ‖S P′2

(SYNM,2)
P1

a,∗w−−−→M P′1 P2
a,λ−−−→M P′2 a ∈ S

P1 ‖S P2

a,λ · w
weight(P1 ,a)

−−−−−−−−−−−−−−−−−−→M P′1 ‖S P′2

(SYNM,3)
P1

a,∗w1−−−→M P′1 P2

a,∗w2−−−→M P′2 a ∈ S

P1 ‖S P2

a,∗norm(w1 ,w2 ,a,P1,P2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→M P′1 ‖S P′2

(HIDM,1)
P

a,λ̃−−−→M P′ a ∈H

P/H
τ,λ̃−−−→M P′/H

(HIDM,2)
P

a,λ̃−−−→M P′ a /∈ H

P/H
a,λ̃−−−→M P′/H

(RESM)
P

a,λ̃−−−→M P′ a /∈ L

P\L a,λ̃−−−→M P′\L

(RELM)
P

a,λ̃−−−→M P′

P[ϕ ]
ϕ(a),λ̃
−−−→M P′[ϕ ]

(RECM)
P{recX : P ↪→ X} a,λ̃−−−→M P′

rec X : P
a,λ̃−−−→M P′

weight(P,a) = ∑{|w ∈ R>0 | ∃P′ ∈ PM.P
a,∗w−−−→M P′ |}

norm(w1,w2,a,P1,P2) = w1
weight(P1 ,a) · w2

weight(P2 ,a) · (weight(P1,a)+weight(P2,a))
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In the initial state, both actions are enabled, hence the average sojourn time is
1/(λ + μ). Then, <a,λ> can be executed with probability λ/(λ + μ), while
<b,μ> can be executed with probability μ/(λ + μ). Note that there is no transition
going directly from the initial state to the final one as, in the case of the concurrent
term, <a,λ> and <b,μ> cannot terminate simultaneously. Suppose that <a,λ>
terminates first. Then, a state is reached – the leftmost in the figure – in which only
<b,μ> is enabled. The question arises as to what rate should label the b-transition
departing from that state, given that in the concurrent term <b,μ> started executing
in the initial state and some time has elapsed on the way from the initial state to
the current one. Thanks to the memoryless property, we can forget about the time
elapsed before reaching the current state, and hence the rate labeling the considered
transition is simply μ . Therefore, concurrent exponentially timed actions can freely
interleave without the need of adjusting the rates of the corresponding transitions.

The time-homogeneous CTMC underlying a process term P ∈ PM can be eas-
ily derived from [[P]]M by (1) discarding action names from transition labels and
(2) collapsing all the transitions between any two states into a single transition
whose rate is the sum of the rates of the original transitions. However, this pro-
cedure can be applied only to performance-closed process terms; i.e., process terms
whose semantic model has no passive transitions. We denote by PM,pc the set of
performance-closed process terms of PM.

Example 3.2. The labeled multitransition system [[ProdConsM
0/2]]M for the process

algebraic description of Example 3.1 is depicted below:

withdraw,μ

withdraw,μ

deposit,λ

deposit,λ

ProdConsM0/2

ProdConsM1/2

ProdConsM2/2

The corresponding time-homogeneous CTMC is simply obtained by eliminating
action names deposit and withdraw from all transition labels.

3.3 Markovian Bisimulation Equivalence

Markovian bisimulation equivalence relates two process terms whenever they are
able to mimic each other’s functional and performance behavior stepwise. In this
section, we provide the definition of Markovian bisimulation equivalence over PM

based on process term exit rates, together with a necessary condition, a sufficient
condition, and an alternative characterization [118, 40, 56, 24]. Then, we show that
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Markovian bisimulation equivalence is a congruence and we present its sound
and complete axiomatization, its modal logic characterization, and its verification
algorithm [118,116,40,56,65,84]. Finally, we illustrate a variant that abstracts from
τ-actions with zero duration [115, 176, 35].

3.3.1 Exit Rates and Exit Probabilities

The exit rate of a process term P∈ PM is the rate at which P can execute actions of a
certain name that lead to a certain set of terms and is given by the sum of the rates of
those actions due to the race policy. We consider a two-level definition of exit rate,
where level 0 corresponds to exponentially timed actions and level −1 corresponds
to passive actions.

Definition 3.3. Let P ∈ PM, a ∈ Name, l ∈ {0,−1}, and D ⊆ PM. The exit rate at
which P executes actions of name a and level l that lead to destination D is defined
through the following nonnegative real function:

ratee(P,a, l,D) =

⎧
⎨

⎩
∑{|λ ∈ R>0 | ∃P′ ∈ D.P

a,λ−−−→M P′ |} if l = 0

∑{|w ∈ R>0 | ∃P′ ∈ D.P
a,∗w−−−→M P′ |} if l =−1

where each summation is taken to be zero whenever its multiset is empty.

By summing up the rates of all the actions of a certain level that a process term
P can execute, we obtain the total exit rate of P at the considered level.

Definition 3.4. Let P ∈ PM and l ∈ {0,−1}. The total exit rate of P at level l is
defined as follows:

ratet(P, l) = ∑
a∈Name

rateo(P,a, l)

where:

rateo(P,a, l) = ratee(P,a, l,PM)

is the overall exit rate of P with respect to a at level l. We also denote by rateo(P,N, l)
the sum of the overall exit rates of P with respect to all a ∈ N ⊆ Name at level l.

If P is performance closed, then ratet(P,0) coincides with the reciprocal of
the average sojourn time associated with P. Instead, rateo(P,a,−1) coincides with
weight(P,a).

Similarly, we can define the exit probability of a process term P as the probability
with which P can execute actions of a certain name and level that lead to a certain
set of terms. Following the terminology of [99], in the case of exponentially timed
actions we have a generative probability, whereas in the case of passive actions we
have a reactive probability.
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Definition 3.5. Let P ∈ PM, a ∈ Name, l ∈ {0,−1}, and D ⊆ PM. The exit
probability with which P executes actions of name a and level l that lead to
destination D is defined through the following R[0,1]-valued function:

probe(P,a, l,D) =
{

ratee(P,a, l,D)/ratet(P, l) if l = 0
ratee(P,a, l,D)/rateo(P,a, l) if l =−1

where each division is taken to be zero whenever its divisor is zero.

3.3.2 Definition of the Behavioral Equivalence

The basic idea behind Markovian bisimulation equivalence is that, whenever a
process term can perform actions with a certain name that reach a certain set of
terms at a certain speed, then any process term equivalent to the given one has to
be able to respond with actions with the same name that reach an equivalent set of
terms at the same speed. This can be easily formalized through the comparison of
the process term exit rates when executing actions of the same name and level that
lead to the same set of equivalent terms, rather than in terms of individual transitions
as it has been done for ∼B in Sect. 1.4.2.

Definition 3.6. An equivalence relation B over PM is a Markovian bisimulation iff,
whenever (P1,P2) ∈B, then for all action names a ∈ Name, levels l ∈ {0,−1}, and
equivalence classes D ∈ PM/B:

ratee(P1,a, l,D) = ratee(P2,a, l,D)

Since the union of all the Markovian bisimulations can be proved to be the largest
Markovian bisimulation, the definition below follows.

Definition 3.7. Markovian bisimulation equivalence (or Markovian bisimilarity),
denoted ∼MB, is the union of all the Markovian bisimulations.

It turns out that ∼MB is strictly finer than ∼B. Take, for instance, the following
two process terms:

<a,λ>.P +<b,μ>.Q
<a,μ>.P +<b,λ>.Q

where a �= b and λ �= μ . Then, the two process terms are bisimilar – as rates do
not come into play – but they are not Markovian bisimilar. The reason is that the
a-action and the b-action are different from each other and have different rates in
the two terms. Therefore, if we perform the comparison of the exit rates with respect
to a (resp. b) at level 0 towards the equivalence class containing P (resp. Q), then
we end up with different values, and hence the check for exit rate equality fails.

Likewise, it turns out that ∼MB is strictly finer than probabilistic bisimulation
equivalence [136]. Take, for instance, the following two process terms:
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<a,λ>.P +<b,μ>.Q
<a,2 ·λ>.P +<b,2 ·μ>.Q

Then, the two process terms are probabilistic bisimilar – as they have the same exit
probabilities λ/(λ + μ) towards the class containing P and μ/(λ + μ) towards the
class containing Q – but they are not Markovian bisimilar. Here the reason is that
the average sojourn time 1/(λ + μ) in the first process term is twice the average
sojourn time 1/(2 ·λ + 2 · μ) in the second process term; hence, the check for exit
rate equality fails since the second term is twice faster than the first one.

Example 3.3. Let us model with MPC the concurrent implementation considered
in Example 1.3 of the producer–consumer system introduced in Sect. 1.2. The
process algebraic description extended with action rates consistent with those of
Example 3.1 is as follows:

PCM
conc,2

Δ= ProdM ‖{deposit} (Buff M ‖ /0 Buff M) ‖{withdraw} ConsM

ProdM Δ= <deposit,λ>.ProdM

Buff M Δ= <deposit,∗1>.<withdraw,∗1>.Buff M

ConsM Δ= <withdraw,μ>.ConsM

All the actions occurring in the buffer are passive, consistent with the fact that the
buffer is a passive entity in the context of the producer–consumer system, in the
sense that it can only wait for items to be deposited or withdrawn.

The labeled multitransition systems [[PCM
conc,2]]M and [[ProdConsM

0/2]]M are shown
below, where the usual shorthands for process constants and action names have been
used on the left-hand side:

PM||{d}(B
M||∅BM)||{w}C

M

PM||{d}(B
M||∅BM)||{w}C

M

PM||{d}(B
M||∅BM)||{w}C

M

PM||{d}(B
M||∅BM)||{w}C

M

ProdConsM0/2

ProdConsM1/2

ProdConsM2/2

withdraw,μ withdraw,μwithdraw,μ

deposit,λ

deposit,λ

withdraw,μdeposit,λdeposit,λ

2
λdeposit,

withdraw
2
μ withdraw

2
μ

2
λdeposit,

We observe that the initial state (resp. bottom state) of the labeled multitransition
system on the left-hand side has both outgoing transitions labeled with λ/2, not λ
(resp. μ/2, not μ). The reason is that the exponentially timed action <deposit,λ> of
the producer (resp. <withdraw,μ> of the consumer) can synchronize either with the
passive action <deposit,∗1> (resp. <withdraw,∗1>) of the first one-position buffer
or with the passive action <deposit,∗1> (resp. <withdraw,∗1>) of the second one-
position buffer. Since each such passive action has execution probability 1/2 in the
initial state (resp. bottom state), the two transitions resulting from the two synchro-
nizations are labeled with λ/2 (resp. μ/2). This is a consequence of the bounded
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capacity assumption, according to which the average sojourn time in the initial state
(resp. bottom state) must be 1/λ (resp. 1/μ) as in that state there is only one enabled
exponentially timed action and its rate is λ (resp. μ).

What turns out is that PCM
conc,2 ∼MB ProdConsM

0/2. Like in Example 1.3, we
have used state coloring for graphically representing the equivalence classes of
the Markovian bisimulation proving this fact. The depicted relation is a Markovian
bisimulation because in both labeled multitransition systems:

• A light gray state can only reach the class of gray states by executing exponen-
tially timed actions of name deposit at total rate λ

• A gray state can only reach the class of dark gray states by executing exponen-
tially timed actions of name deposit at total rate λ or the class of light gray states
by executing exponentially timed actions of name withdraw at total rate μ

• A dark gray state can only reach the class of gray states by executing exponen-
tially timed actions of name withdraw at total rate μ

3.3.3 Conditions and Characterizations

A simple necessary condition for establishing whether two process terms are
Markovian bisimilar is that they have the same overall exit rates with respect to all
action names and levels.

Proposition 3.1. Let P1,P2 ∈ PM. Whenever P1 ∼MB P2, then for all a ∈ Name and
l ∈ {0,−1}:

rateo(P1,a, l) = rateo(P2,a, l)

Similar to ∼B, we can derive a sufficient condition based on the notion of
Markovian bisimulation up to ∼MB. This is constructed in a slightly different way
with respect to its nondeterministic counterpart due to the necessity of working with
equivalence classes.

Definition 3.8. A binary relation B over PM is a Markovian bisimulation up to∼MB

iff, whenever (P1,P2) ∈B, then for all action names a ∈ Name, levels l ∈ {0,−1},
and equivalence classes D ∈ PM/(B ∪ B−1 ∪ ∼MB)+:

ratee(P1,a, l,D) = ratee(P2,a, l,D)

Proposition 3.2. Let B be a binary relation over PM. Whenever B is a Markovian
bisimulation up to ∼MB, then for all P1,P2 ∈ PM:

(P1,P2) ∈B =⇒ P1 ∼MB P2



3.3 Markovian Bisimulation Equivalence 89

We conclude by presenting an alternative characterization of ∼MB in which time
and probability – usually subsumed by rates – are kept separate. The alternative
characterization makes use of exit probabilities; hence, it relies on probabilistic
bisimulation equivalence [136] over embedded DTMCs.

Definition 3.9. An equivalence relation B over PM is a separate Markovian bisim-
ulation iff, whenever (P1,P2) ∈B, then for all action names a ∈ Name and levels
l ∈ {0,−1}:

rateo(P1,a, l) = rateo(P2,a, l)

and for all equivalence classes D ∈ PM/B:

probe(P1,a, l,D) = probe(P2,a, l,D)

Since the union of all the separate Markovian bisimulations can be proved to be
the largest separate Markovian bisimulation, the definition below follows.

Definition 3.10. Separate Markovian bisimulation equivalence (or separate
Markovian bisimilarity), denoted ∼MB,s, is the union of all the separate Markovian
bisimulations.

Proposition 3.3. Let P1,P2 ∈ PM. Then:

P1 ∼MB,s P2 ⇐⇒ P1 ∼MB P2

3.3.4 Congruence Property

Markovian bisimulation equivalence is a congruence with respect to all the dynamic
and static operators of MPC as well as recursion.

Theorem 3.1. Let P1,P2 ∈ PM. Whenever P1 ∼MB P2, then:

1. <a, λ̃>.P1 ∼MB <a, λ̃>.P2 for all <a, λ̃> ∈ ActM.
2. P1 + P∼MB P2 + P and P + P1 ∼MB P+ P2 for all P ∈ PM.
3. P1 ‖S P∼MB P2 ‖S P and P‖S P1 ∼MB P‖S P2 for all P ∈ PM and S⊆ Namev.
4. P1/H ∼MB P2/H for all H ⊆ Namev.
5. P1\L∼MB P2\L for all L⊆ Namev.
6. P1[ϕ ]∼MB P2[ϕ ] for all ϕ ∈ Relab.

Definition 3.11. Let P1,P2 ∈PL M be guarded process terms containing free oc-
currences of k ∈N process variables X1, . . . ,Xk ∈ Var at most. We define P1 ∼MB P2

iff P1{Qi ↪→ Xi | 1≤ i≤ k} ∼MB P2{Qi ↪→ Xi | 1≤ i≤ k} for all Q1, . . . ,Qk ∈ PM.

Theorem 3.2. Let P1,P2 ∈PL M be guarded process terms containing free occur-
rences of k ∈ N process variables X1, . . . ,Xk ∈ Var at most. Whenever P1 ∼MB P2,
then recX : P1 ∼MB recX : P2 for all X ∈ Var.
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3.3.5 Sound and Complete Axiomatization

Markovian bisimulation equivalence has a sound and complete axiomatization over
nonrecursive process terms, given by the set XMB of equational laws of Table 3.2.

Noted that the alternative composition operator is commutative, associative, and
has 0 as neutral element like in the nondeterministic case, axioms XMB,4 and XMB,5

represent the race policy and the reactive preselection policy, respectively. They

Table 3.2 Equational laws for ∼MB

(XMB,1) P1 +P2 = P2 +P1
(XMB,2) (P1 +P2)+P3 = P1 +(P2 +P3)
(XMB,3) P+0 = P

(XMB,4) <a,λ1>.P+<a,λ2>.P = <a,λ1 +λ2>.P
(XMB,5) <a,∗w1>.P+<a,∗w2>.P = <a,∗w1+w2>.P

(XMB,6) ∑
i∈I

<ai, λ̃i>.Pi ‖S ∑
j∈J

<b j, μ̃ j>.Q j

= ∑
k∈I,ak /∈S

<ak, λ̃k>.

(

Pk ‖S ∑
j∈J

<b j, μ̃ j>.Q j

)

+ ∑
h∈J,bh /∈S

<bh, μ̃h>.

(

∑
i∈I

<ai, λ̃i>.Pi ‖S Qh

)

+ ∑
k∈I,ak∈S,λ̃k∈R>0

∑
h∈J,bh=ak,μ̃h=∗wh

<ak, λ̃k · wh
weight(Q,bh)>.(Pk ‖S Qh)

+ ∑
h∈J,bh∈S,μ̃h∈R>0

∑
k∈I,ak=bh,λ̃k=∗vk

<bh, μ̃h · vk
weight(P,ak)

>.(Pk ‖S Qh)

+ ∑
k∈I,ak∈S,λ̃k=∗vk

∑
h∈J,bh=ak,μ̃h=∗wh

<ak,∗norm(vk ,wh,ak,P,Q)>.(Pk ‖S Qh)

(XMB,7) ∑
i∈I

<ai, λ̃i>.Pi ‖S 0 = ∑
k∈I,ak /∈S

<ak, λ̃k>.Pk

(XMB,8) 0 ‖S ∑
j∈J

<b j, μ̃ j>.Q j = ∑
h∈J,bh /∈S

<bh, μ̃h>.Qh

(XMB,9) 0 ‖S 0 = 0

(XMB,10) 0/H = 0
(XMB,11) (<a, λ̃>.P)/H = <τ , λ̃>.(P/H) if a ∈H
(XMB,12) (<a, λ̃>.P)/H = <a, λ̃>.(P/H) if a /∈ H
(XMB,13) (P1 +P2)/H = P1/H +P2/H

(XMB,14) 0\L = 0
(XMB,15) (<a, λ̃>.P)\L = 0 if a ∈ L
(XMB,16) (<a, λ̃>.P)\L = <a, λ̃>.(P\L) if a /∈ L
(XMB,17) (P1 +P2)\L = P1\L+P2\L
(XMB,18) 0[ϕ ] = 0
(XMB,19) (<a, λ̃>.P)[ϕ ] = <ϕ(a), λ̃>.(P[ϕ ])
(XMB,20) (P1 +P2)[ϕ ] = P1[ϕ ]+P2[ϕ ]
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constitute the most important difference with respect to the axiomatization of ∼B

shown in Table 1.2, where axiom XB,4 states instead the idempotency of the alter-
native composition operator.

The interleaving view of concurrency supported by the memoryless property of
exponential distributions is expressed by axioms XMB,6 to XMB,9, where I and
J are nonempty finite index sets and each summation on the right-hand side is
taken to be 0 whenever its set of summands is empty. In particular, axiom XMB,6

is the expansion law for the parallel composition of P ≡ ∑i∈I <ai, λ̃i>.Pi and
Q ≡ ∑ j∈J <b j, μ̃ j>.Q j when enforcing generative–reactive and reactive–reactive
synchronizations.

Finally, for the unary static operators we have the same equational laws as
Table 1.2 up to the presence of action rates.

Theorem 3.3. Let P1,P2 ∈ PM be nonrecursive. Then:

P1 ∼MB P2 ⇐⇒ XMB  P1 = P2

3.3.6 Modal Logic Characterization

Markovian bisimulation equivalence has a modal logic characterization based on a
Markovian variant of HML, the modal logic introduced in Sect 1.4.6.

The diamond operator of the new modal language is decorated with a lower
bound on the rate (resp. weight) with which exponentially timed (resp. passive)
actions with a certain name should be executed. Enriching individual action-based
modal operators with quantitative information is consistent with the fact that ∼MB

captures step-by-step behavior mimicking.

Definition 3.12. The set of formulas of the modal language ML MB is generated
by the following syntax:

φ ::= true | ¬φ | φ ∧φ | 〈a〉λ φ | 〈a〉∗wφ

where a ∈ Name and λ ,w ∈ R>0.

Definition 3.13. The satisfaction relation |=MB of ML MB over PM is defined by
induction on the syntactical structure of formulas as follows:

P |=MB true
P |=MB ¬φ if P �|=MB φ
P |=MB φ1∧φ2 if P |=MB φ1 and P |=MB φ2

P |=MB 〈a〉λ φ if ratee(P,a,0,sat(φ)) ≥ λ
P |=MB 〈a〉∗wφ if ratee(P,a,−1,sat(φ)) ≥ w

where sat(φ) = {P′ ∈ PM | P′ |=MB φ}.
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Theorem 3.4. Let P1,P2 ∈ PM. Then:

P1 ∼MB P2 ⇐⇒ (∀φ ∈ML MB.P1 |=MB φ ⇐⇒ P2 |=MB φ)

3.3.7 Verification Algorithm

Markovian bisimulation equivalence can be decided in polynomial time by means
of a variant of the partition refinement algorithm for ∼B presented in Sect. 1.4.7,
which exploits – as in the nondeterministic case – the fact that ∼MB can be charac-
terized as the limit of a sequence of successively finer equivalence relations:

∼MB =
⋂

i∈N

∼MB,i

Relation ∼MB,0 is PM×PM while ∼MB,i, i ∈ N≥1, is an equivalence relation over
PM defined as follows: whenever P1 ∼MB,i P2, then for all a ∈ Name, l ∈ {0,−1},
and D ∈ PM/∼MB,i−1:

ratee(P1,a, l,D) = ratee(P2,a, l,D)

Note that ∼MB,1 refines the partition {PM} induced by ∼MB,0 by creating an
equivalence class for each set of terms satisfying the necessary condition of
Proposition 3.1.

Given P1,P2 ∈ PM finite state and denoted by NameP1,P2 the set of action names
labeling the transitions of [[P1]]M or [[P2]]M, the algorithm for checking whether
P1 ∼MB P2 proceeds as follows:

1. Build an initial partition with a single class including all the states of [[P1]]M and
all the states of [[P2]]M.

2. Initialize a list of splitters with the above class as its only element.
3. While the list of splitters is not empty, select a splitter and remove it from the list

after refining the current partition for each a ∈ NameP1,P2 and l ∈ {0,−1}:
(a) Split each class of the current partition by comparing the exit rates of its

states when performing actions of name a and level l that lead to the selected
splitter.

(b) For each class that has been split, insert into the list of splitters all the result-
ing subclasses except for the largest one.

4. Return yes/no depending on whether the initial state of [[P1]]M and the initial state
of [[P2]]M belong to the same class of the final partition or to different classes.

The time complexity is still O(m · log n), where n is the total number of states and
m is the total number of transitions of [[P1]]M and [[P2]]M, provided that a splay tree
is used for storing the subclasses arising from the splitting of a class. This necessity
is due to the fact that, unlike the nondeterministic case, such subclasses can be more
than two. We mention that this algorithm can also be used for minimizing a labeled
multitransition system with respect to ∼MB.
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3.3.8 Abstracting from Invisible Actions with Zero Duration

Markovian bisimulation equivalence has no abstraction capability as τ-actions are
durational in MPC. These actions would be completely unobservable if they had
duration zero. Unfortunately, this cannot be the case. Although combinations of
exponential distributions can approximate many arbitrary distributions, some useful
distributions like the one representing a zero duration are left out.

However, it is advisable to support zero durations for several reasons. From a
theoretical point of view, the possibility of expressing zero durations constitutes
the performance counterpart of the functional abstraction mechanism given by the
invisible action name τ . This mechanism is appropriate to handle systems encom-
passing activities that are several orders of magnitude faster than the activities that
are important for the evaluation of certain performance measures. From a modeling
standpoint, there are situations in which using zero durations is unavoidable. This is
the case with choices among logical events – like, e.g., the reception of a message
vs. its loss – as no timing can be associated with them.

We now extend MPC with actions having zero duration, which are called imme-
diate actions, and then we define a weak variant of∼MB that is able to abstract from
immediate τ-actions in several cases. In this framework, immediate actions are in-
spired by immediate transitions of generalized stochastic Petri nets [5], and hence
allow for prioritized/probabilistic choices too.

An immediate action is of the form <a,∞l,w>, where l ∈N>0 is the priority level
of the action and w∈R>0 is the weight of the action. An immediate action has dura-
tion zero, as expressed by its infinite rate, and takes precedence over exponentially
timed actions. Whenever several immediate actions are enabled, the generative pre-
selection policy is adopted. This means that the lower priority immediate actions are
discarded, whereas each of the highest priority immediate actions is given an exe-
cution probability equal to the action weight divided by the sum of the weights of
all the highest priority immediate actions. Consistent with the adopted asymmetric
synchronization discipline, an immediate action can synchronize only with a passive
action having the same name. The rate of the resulting action is given by the rate
of the immediate action, whose weight is multiplied by the execution probability of
the passive action.

In the calculus resulting from the introduction of immediate actions, we also
associate priority constraints l′ ∈ N with passive actions. These actions thus be-
come of the form <a,∗l′,w> and are subject to a reactive preselection policy that
takes priority constraints into account besides action names. Passive actions with
l′=0 can synchronize only with exponentially timed actions having the same name.
Passive actions with l′ ≥ 1 can instead synchronize only with immediate actions
having the same name and priority level equal to l′. Priority constraints are useful
to achieve congruence for weak variants of∼MB, as they locally convey information
about the global priority structure.

In the extended calculus MPCx, we denote by ActM,x = Name×Ratex the set of
actions, where Ratex = R>0∪{∞l,w | l ∈N>0∧w∈R>0}∪{∗l′,w | l′ ∈N∧w∈R>0}
is the set of action rates. We then denote by PL M,x the set of process terms and
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by PM,x the set of closed and guarded process terms. The multitransition relation
−−−→M,x , and hence the labeled multitransition system [[P]]M,x for a process term
P ∈ PM,x, are defined on the basis of a variant of the operational semantic rules
for MPC shown in Table 3.1 in which passive actions are extended with priority
constraints and functions weight and norm are given a further parameter related to
priority constraints, plus the following additional rules:

(PREM,3)
<a,∞l,w>.P

a,∞l,w−−−→M,x P

(SYNM,4)
P1

a,∞l,w−−−→M,x P′1 P2

a,∗l,v−−−→M,x P′2 a ∈ S

P1‖S P2

a,∞l,w· v
weight(P2,a,l)

−−−−−−−−−−−−−−−→M,x P′1‖S P′2

(SYNM,5)
P1

a,∗l,v−−−→M,x P′1 P2

a,∞l,w−−−→M,x P′2 a ∈ S

P1‖S P2

a,∞l,w· v
weight(P1,a,l)

−−−−−−−−−−−−−−−→M,x P′1‖S P′2

Denoted by PM,x,pc the set of performance-closed process terms of PM,x, we ob-
serve that the stochastic process underlying a process term P ∈ PM,x,pc is a time-
homogeneous CTMC possibly extended with immediate transitions. States having
outgoing immediate transitions are called vanishing as the sojourn time in these
states is zero. In order to retrieve a pure CTMC stochastically equivalent to an ex-
tended CTMC, we need to eliminate all vanishing states. This is accomplished by
making as many copies of every transition entering a vanishing state as there are
highest priority immediate transitions departing from the vanishing state. Then, each
copy is directly connected to the destination state of one of the highest priority im-
mediate transitions leaving the vanishing state. The rate of each copy is given by the
rate of the original incoming transition multiplied by the execution probability of
the highest priority immediate transition corresponding to the copy.

On the basis of the extended calculus MPCx, we can define a weak variant
of ∼MB that abstracts from immediate τ-actions.

The first step consists of extending the notion of exit rate to immediate actions.
Since these actions may have different priorities and passive actions may have dif-
ferent constraints, we need a multilevel definition of exit rate. The level of an action
is encoded through a number in Z, which is 0 if the action is exponentially timed, l if
the action rate is ∞l,w, −l′ −1 if the action rate is ∗l′,w. Given P ∈ PM,x, a ∈ Name,
l ∈ Z, and D⊆ PM,x, we let:

ratee(P,a, l,D) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑{|λ ∈ R>0 | ∃P′ ∈D.P
a,λ−−−→M,x P′ |} if l = 0

∑{|w ∈R>0 | ∃P′ ∈ D.P
a,∞l,w−−−→M,x P′ |} if l > 0

∑{|w ∈R>0 | ∃P′ ∈ D.P
a,∗−l−1,w−−−→M,x P′ |} if l < 0
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When comparing process term exit rates, we have to take into account that
immediate actions take precedence over exponentially timed actions. If the name
of an immediate action is not τ , then that action may be prevented from being ex-
ecuted in a parallel composition or restriction context; thus, we cannot neglect the
exit rate comparison for lower priority actions. If instead its name is τ , then exe-
cuting that action may be hampered only by an alternative immediate action having
an equal or higher priority. Therefore, the exit rate comparison should be conducted
only in the absence of higher priority immediate τ-actions, as they preempt all the
lower priority actions. We denote by priτ∞(P) the priority level of the highest priority
immediate τ-action enabled by a process term P∈ PM,x, and we set priτ∞(P) = 0 if P
does not enable any immediate τ-action. Moreover, given l ∈Z, we use no-pre(l,P)
to denote that no action of level l can be preempted in P. Formally, this is the case
whenever l ≥ priτ∞(P) or −l−1≥ priτ∞(P).

The second step consists of weakening the notion of exit rate. The idea is that,
if a given class of process terms is not reached directly after executing an action
of a certain name and level, then we have to explore the possibility of reaching
that class by performing a finite-length sequence of immediate τ-actions starting
from the term reached after executing the considered action. If this is possible, the
probability of executing those action sequences has to be taken into account too.

Definition 3.14. Let P ∈ PM,x and l ∈ N>0. We say that P is l-unobservable iff
priτ∞(P) = l and P does not enable any immediate visible action with priority level
l′ ≥ l, nor any passive action with priority constraint l′ ≥ l.

Definition 3.15. Let n ∈N>0 and P1, . . . ,Pn+1 ∈ PM,x. A computation c of length n:

P1

τ,∞l1,w1−−−→M,x P2

τ,∞l2,w2−−−→M,x . . .
τ,∞ln,wn−−−→M,x Pn+1

is unobservable iff for all i = 1, . . . ,n process term Pi is li-unobservable. In that case:

prob(c) =
n
∏
i=1

wi
rateo(Pi,τ,li)

Definition 3.16. Let P∈ PM,x, a∈Name, l ∈Z, and D⊆ PM,x. The weak exit rate at
which P executes actions of name a and level l that lead to destination D is defined
through the following nonnegative real function:

ratee,w(P,a, l,D) = ∑
P′∈Dw

ratee(P,a, l,{P′}) ·probw(P′,D)

where Dw is the weak backward closure of D:
Dw = D∪{Q ∈ PM,x−D | Q can reach D via unobservable computations}

and probw is a R]0,1]-valued function representing the sum of the probabilities of all
the unobservable computations from a process term in Dw to D:

probw(P′,D) =

{
1 if P′ ∈ D

∑{|prob(c) | c unobs. comp. from P′ to D |} if P′ ∈ Dw−D
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When comparing process term weak exit rates, besides taking preemption into
account, we also have to skip the comparison for classes that contain certain
unobservable process terms. More precisely, we distinguish among observable, ini-
tially unobservable, and fully unobservable process terms:

• An observable process term is a term that enables a visible action that cannot be
preempted by any enabled immediate τ-action.

• An initially unobservable process term is a term in which all the enabled visible
actions are preempted by some enabled immediate τ-action, but at least one of
the computations starting at this term with one of the higher priority enabled
immediate τ-actions reaches an observable process term.

• A fully unobservable process term is a term in which all the enabled visible
actions are preempted by some enabled immediate τ-action, and all the compu-
tations starting at this term with one of the higher priority enabled immediate
τ-actions are unobservable.

The weak exit rate comparison with respect to observable and fully unobservable
classes must obviously be performed. In order to maximize the abstraction power in
the presence of quantitative information attached to immediate τ-actions, the com-
parison should be conducted with respect to all fully unobservable classes together;
i.e., the whole set PM,x,fu of fully unobservable process terms of PM,x should be con-
sidered. In contrast, the comparison with respect to initially unobservable classes
should be skipped, otherwise process terms like the following would not be weakly
Markovian bisimilar to each other:

<a,λ>.<τ,∞l1,w1>.<b,μ>.0
<a,λ>.<τ,∞l2,w2>.<b,μ>.0
<a,λ>.<b,μ>.0

In fact, the initially unobservable process term <τ,∞l1,w1>.<b,μ>.0 reached by
the first one is not weakly Markovian bisimilar to the initially unobservable process
term <τ,∞l2,w2>.<b,μ>.0 reached by the second one if l1 �= l2 or w1 �= w2, with
neither of those initially unobservable process terms being reached by the third one.

Definition 3.17. An equivalence relation B over PM,x is a weak Markovian bisim-
ulation iff, whenever (P1,P2) ∈B, then for all action names a ∈ Name and levels
l ∈ Z such that no-pre(l,P1) and no-pre(l,P2):

ratee,w(P1,a, l,D) = ratee,w(P2,a, l,D) for all obs. D ∈ PM,x/B
ratee,w(P1,a, l,PM,x,fu) = ratee,w(P2,a, l,PM,x,fu)

Definition 3.18. Weak Markovian bisimulation equivalence (or weak Markovian
bisimilarity), denoted ≈MB, is the union of all the weak Markovian bisimulations.

Weak Markovian bisimulation equivalence enjoys properties similar to those
of ∼MB, except for congruence with respect to the parallel composition operator. In
order to restore compositionality, we have to restrict ourselves to a well-prioritized
subset of PM,x,nd, the set of nondivergent process terms of PM,x.
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The problem with divergence, intended as the capability of reaching a point at
which only an infinite unobservable computation can be executed, has to do with
different interactions with time passing that are possible within the set of fully unob-
servable process terms. While some of them can terminate (like <τ,∞l,w>.0), others
keep performing immediate τ-actions forever (like recX : <τ,∞l,w>.X ). These two
families of fully unobservable terms can be considered equivalent in an untimed
framework, but can always be distinguished in a timed setting by placing them in
parallel with process terms that can perform actions whose duration is greater than
zero. In fact, terms of the first family allow sooner or later the considered actions to
be executed – and hence time to advance – whereas this is not the case with terms
of the second family – as endless preemption prevents time from passing.

The problem with priorities is that, when composing each of two weak
Markovian bisimilar process terms in parallel with a third process term, the degree
of observability of the states underlying the two terms as well as the preemption
scheme for their transitions may change differently in the two terms. This may
expose parts of the behavior of the two terms that have not been considered when
applying the weak exit rate comparison to the two terms; hence, those parts may
not be equivalent to each other. A set of terms of PM,x is well prioritized if, taken
two arbitrary terms P1 and P2 in the set, any immediate/passive transition of each of
[[P1]]M,x and [[P2]]M,x has priority level/constraint less than the priority level of any
highest priority immediate τ-transition departing from an unobservable state of the
other one.

We conclude with the axiomatization of ≈MB over a well-prioritized subset of
PM,x,nd, which extends the axiomatization of ∼MB shown in Table 3.2 by replacing
axioms XMB,4 and XMB,5 with those of Table 3.3. The first three laws represent the
race policy, the generative preselection policy, and the reactive preselection policy,
respectively. The next three laws express the preemption exercised by higher priority
immediate τ-actions over lower priority actions. The last three laws (where I is a
nonempty finite index set) describe the capability of abstracting from immediate
τ-actions and encode the procedure for removing vanishing states. Note that, as a

Table 3.3 Equational laws characterizing ≈MB

〈a,λ1〉.P+ 〈a,λ2〉.P = 〈a,λ1 +λ2〉.P
〈a,∞l,w1〉.P+ 〈a,∞l,w2〉.P = 〈a,∞l,w1+w2〉.P〈a,∗l,w1〉.P+ 〈a,∗l,w2〉.P = 〈a,∗l,w1+w2〉.P

〈τ ,∞l,w〉.P+ 〈a,λ 〉.Q = 〈τ ,∞l,w〉.P
〈τ ,∞l,w〉.P+ 〈a,∞l′,w′ 〉.Q = 〈τ ,∞l,w〉.P if l > l ′
〈τ ,∞l,w〉.P+ 〈a,∗l′,w′ 〉.Q = 〈τ ,∞l,w〉.P if l > l ′

〈a,λ 〉. ∑
i∈I
〈τ ,∞l,wi〉.Pi = ∑

i∈I
〈a,λ ·wi/ ∑

k∈I
wk〉.Pi

〈a,∞l′,w′ 〉. ∑
i∈I
〈τ ,∞l,wi〉.Pi = ∑

i∈I
〈a,∞l′,w′·wi/ ∑

k∈I
wk
〉.Pi

〈a,∗l′,w′ 〉. ∑
i∈I
〈τ ,∞l,wi〉.Pi = ∑

i∈I
〈a,∗l′,w′·wi/ ∑

k∈I
wk
〉.Pi
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consequence of the fact that Definition 3.16 requires the execution of at least one
action, ≈MB does not permit to abstract from initial immediate τ-actions; hence, it
does not incur the congruence problem with respect to the alternative composition
operator discussed in Sect. 1.4.8 for ≈B.

Example 3.4. Let us model with MPC the pipeline implementation considered
in Example 1.4 of the producer–consumer system introduced in Sect. 1.2. The
process algebraic description extended with action rates consistent with those of
Example 3.1 is as follows:

PCM
pipe,2

Δ= ProdM ‖{deposit} (LBuff M ‖{pass} RBuff M)/{pass} ‖{withdraw} ConsM

ProdM Δ= 〈deposit,λ 〉.ProdM

LBuff M Δ= 〈deposit,∗0,1〉.〈pass,∞1,1〉.LBuff M

RBuff M Δ= 〈pass,∗1,1〉.〈withdraw,∗0,1〉.RBuff M

ConsM Δ= 〈withdraw,μ〉.ConsM

Note that action pass is immediate in the left buffer, as it has been assumed that its
execution takes a negligible amount of time compared to deposits and withdrawals.

The labeled multitransition systems [[PCM
pipe,2]]M,x and [[ProdConsM

0/2]]M,x are
shown below, where the usual shorthands for process constants and action names
have been used on the left-hand side:

ProdConsM0/2

ProdConsM1/2

ProdConsM2/2

withdraw,μ withdraw,μ

withdraw,μwithdraw,μ

deposit,λ

deposit,λ

deposit,λ

deposit,λ

PM||{d}(LBM||{p} RBM)/{p}||{w}C
M

PM||{d}(LBM||{p} RBM)/{p}||{w}C
M

PM||{d}(LBM||{p} RBM)/{p}||{w}C
M PM||{d}(LBM||{p} RBM)/{p}||{w}C

M
τ, 1,1

Note that all the states are observable except for the leftmost state of the labeled
multitransition system on the left-hand side, which is initially unobservable.

Since the labeled multitransition system on the left-hand side contains an imme-
diate τ-transition representing the passage of one item from the left buffer to the
right buffer while the labeled multitransition system on the right-hand side does not
contain any immediate τ-transition, similar to Example 1.4 we cannot expect the
two labeled multitransition systems to be related by a Markovian bisimulation, as
happened with the concurrent implementation.

What turns out is that PCM
pipe,2 ≈MB ProdConsM

0/2. Like in Example 1.4, we have
used state coloring for graphically representing the observable equivalence classes
of the weak Markovian bisimulation proving this fact. The depicted relation is a
weak Markovian bisimulation because in both labeled multitransition systems:

• A light gray state can only reach the class of observable gray states by executing
exponentially timed actions of name deposit at total rate λ (possibly followed by
〈τ,∞1,1〉)
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• An observable gray state can only reach the class of dark gray states by executing
exponentially timed actions of name deposit at total rate λ or the class of light
gray states by executing exponentially timed actions of name withdraw at total
rate μ

• A dark gray state can only reach the class of observable gray states by executing
exponentially timed actions of name withdraw at total rate μ (possibly followed
by 〈τ,∞1,1〉)

3.4 Markovian Testing Equivalence

Markovian testing equivalence relates two process terms whenever an external ob-
server is not able to distinguish between them from a functional or performance
viewpoint by interacting with them by means of tests and comparing their reac-
tions. In this section, we provide the definition of Markovian testing equivalence
over PM,pc based on quantitative information associated with test-driven compu-
tations of process terms, together with a necessary condition and four alternative
characterizations [31, 42, 34]. Then, we show that Markovian testing equivalence is
a congruence and we present its sound and complete axiomatization, its modal logic
characterization, and its verification algorithm [31? , 34].

3.4.1 Probability and Duration of Computations

We recall that a computation of a process term is a sequence of transitions that
can be executed starting from the process term. The length of a computation is
given by the number of transitions occurring in it. We denote by Cf(P) the multiset
of finite-length computations of P ∈ PM. We say that two distinct computations
are independent of each other iff neither is a proper prefix of the other one. In the
following, we focus on finite multisets of independent, finite-length computations.

Below we define the concrete trace, the probability, and the duration of an ele-
ment of Cf(P), using ◦ for sequence concatenation and | | for sequence length.

Definition 3.19. Let P ∈ PM and c ∈ Cf(P). The concrete trace associated with c
is the sequence of action names labeling the transitions of c, which is defined by
induction on the length of c through the following Name∗-valued function:

tracec(c) =

{
ε if |c|= 0

a◦ tracec(c′) if c≡ P
a,λ̃−−−→M c′

where ε is the empty trace. We denote by trace(c) the visible part of tracec(c), i.e.,
the subsequence of tracec(c) obtained by removing all the occurrences of τ .
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Definition 3.20. Let P ∈ PM,pc and c ∈ Cf(P). The probability of executing c is the
product of the execution probabilities of the transitions of c, which is defined by
induction on the length of c through the following R]0,1]-valued function:

prob(c) =

{
1 if |c|= 0

λ
ratet(P,0) ·prob(c′) if c≡ P

a,λ−−−→M c′

We also define the probability of executing a computation in C ⊆ Cf(P) as:

prob(C) = ∑
c∈C

prob(c)

whenever C is finite and all of its computations are independent of each other.

Definition 3.21. Let P ∈ PM,pc and c ∈ Cf(P). The stepwise average duration of c is
the sequence of average sojourn times in the states traversed by c, which is defined
by induction on the length of c through the following (R>0)∗-valued function:

timea(c) =

{
ε if |c|= 0

1
ratet(P,0) ◦ timea(c′) if c≡ P

a,λ−−−→M c′

where ε is the empty stepwise average duration. We also define the multiset of
computations in C ⊆ Cf(P) whose stepwise average duration is not greater than
θ ∈ (R>0)∗ as:

C≤θ = {|c ∈C | |c| ≤ |θ | ∧∀i = 1, . . . , |c|. timea(c)[i]≤ θ [i] |}

Moreover, we denote by Cl the multiset of computations in C⊆Cf(P) whose length
is equal to l ∈ N.

Definition 3.22. Let P ∈ PM,pc and c ∈ Cf(P). The stepwise duration of c is the
sequence of random variables quantifying the sojourn times in the states traversed
by c, which is defined by induction on the length of c through the following random-
variable-sequence-valued function:

timed(c) =

{
ε if |c|= 0

Expratet(P,0) ◦ timed(c′) if c≡ P
a,λ−−−→M c′

where ε is the empty stepwise duration while Expratet(P,0) is the exponentially dis-
tributed random variable with rate ratet(P,0) ∈ R>0. We also define the probability
distribution of executing a computation in C⊆Cf(P) within a sequence θ ∈ (R>0)∗
of time units as:

probd(C,θ ) =
|c|≤|θ |

∑
c∈C

prob(c) ·
|c|
∏
i=1

Pr{timed(c)[i]≤ θ [i]}
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whenever C is finite and all of its computations are independent of each other, where
Pr{timed(c)[i]≤ θ [i]}= 1−e−θ [i]/timea(c)[i] is the cumulative distribution function of
the exponentially distributed random variable timed(c)[i], whose expected value is
timea(c)[i].

We conclude by observing that the average duration (resp. the duration) of a
finite-length computation has been defined as the sequence of average sojourn times
(resp. of random variables expressing the sojourn times) in the states traversed by
the computation. The same quantity could have been defined as the sum of the same
basic ingredients, but this would not have been appropriate. Consider, for instance,
the following two process terms:

〈g,γ〉.〈a,λ 〉.〈b,μ〉.0 + 〈g,γ〉.〈a,μ〉.〈d,λ 〉.0
〈g,γ〉.〈a,λ 〉.〈d,μ〉.0 + 〈g,γ〉.〈a,μ〉.〈b,λ 〉.0

where λ �= μ and b �= d. Observed that the two process terms have identical non-
maximal computations, we further notice that the first process term has the following
two maximal computations each with probability 1/2:

c1,1 ≡ .
g,γ−−−→M .

a,λ−−−→M .
b,μ−−−→M .

c1,2 ≡ .
g,γ−−−→M .

a,μ−−−→M .
d,λ−−−→M .

while the second process term has the following two maximal computations each
with probability 1/2:

c2,1 ≡ .
g,γ−−−→M .

a,λ−−−→M .
d,μ−−−→M .

c2,2 ≡ .
g,γ−−−→M .

a,μ−−−→M .
b,λ−−−→M .

If the average duration were defined as the sum of the average sojourn times, then
c1,1 and c2,2 would have the same concrete trace g◦a◦b and the same average du-
ration 1

2·γ + 1
λ + 1

μ , and similarly c1,2 and c2,1 would have the same concrete trace

g◦a◦d and the same average duration 1
2·γ + 1

μ + 1
λ . This would lead to conclude that

the two process terms are equivalent. However, an external observer equipped with
a button-pushing machine displaying the names of the actions that are performed
and the instants at which they are performed would be able to distinguish between
the two process terms [194]. Hence, the necessity of considering the sequence of
average sojourn times rather than their sum.

3.4.2 Definition of the Behavioral Equivalence

The basic idea behind the testing approach is to infer information about the behavior
of process terms by interacting with them by means of tests and comparing their
reactions. In a Markovian setting, we are not only interested in verifying whether
tests are passed or not, but also in measuring the probability with which they are
passed and the time taken to pass them, hence the restriction to PM,pc.
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As in the nondeterministic setting, the most convenient way to represent a test is
through a process term, which interacts with any process term under test by means
of a parallel composition operator that enforces synchronization on the set Namev

of all visible action names. Due to the adoption of an asymmetric synchronization
discipline, a test can comprise only passive visible actions, so that the composite
term inherits performance closure from the process term under test.

From a testing viewpoint, in any of its states a process term under test generates
the proposal of an action to be executed by means of a race among the exponentially
timed actions enabled in that state. If the name of the proposed action is τ , then the
process term advances by itself. Otherwise, the test either reacts by participating
in the interaction with the process term through a passive action having the same
name as the proposed exponentially timed action, or blocks the interaction if it has
no passive actions with the proposed name.

Markovian testing equivalence relies on comparing the process term probabili-
ties of performing successful test-driven computations within arbitrary sequences of
average amounts of time. Due to the presence of these average time upper bounds,
for the test representation we can restrict ourselves to nonrecursive process terms.
In other words, the expressiveness provided by finite-state labeled multitransition
systems with an acyclic structure is enough for tests.

In order not to interfere with the quantitative aspects of the behavior of process
terms under test, we avoid the introduction of a success action ω . The successful
completion of a test is formalized in the text syntax by replacing 0 with a zeroary
operator s denoting a success state. Ambiguous tests including several summands
among which at least one equal to s are avoided through a two-level syntax.

Definition 3.23. The set TR of reactive tests is generated by the following syntax:

T ::= s | T ′
T ′ ::= 〈a,∗w〉.T | T ′+ T ′

where a ∈ Namev and w ∈ R>0.

Given P ∈ PM,pc and T ∈ TR, the interaction system of P and T is process term
P‖Namev T ∈ PM,pc. We remind that each state of [[P‖Namev T ]]M is called a con-
figuration and is formed by a process projection and a test projection, whereas its
transitions constitute the test-driven computations of P with respect to T . We say
that a configuration is successful iff its test projection is s and that a test-driven
computation is successful iff it traverses a successful configuration. We denote by
S C (P,T ) the multiset of successful computations of P‖Namev T .

If a process term P ∈ PM,pc under test has no exponentially timed τ-actions, then
for all reactive tests T ∈ TR it turns out that: (1) all the computations in S C (P,T )
have a finite length due to the restrictions imposed on the test syntax; (2) all the com-
putations in S C (P,T ) are independent of each other because of their maximality;
(3) the multiset S C (P,T ) is finite because P and T are finitely branching. Thus, all
definitions of Sect. 3.4.1 are applicable to S C (P,T ) and also to S C≤θ (P,T ) for
any sequence θ ∈ (R>0)∗ of average amounts of time.
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In order to cope with the possible presence of exponentially timed τ-actions
within P in such a way that all the properties above hold – especially indepen-
dence – we have to consider subsets of S C ≤θ (P,T ) including all successful test-
driven computations of the same length. This is also necessary to distinguish among
process terms comprising only exponentially timed τ-actions – like 〈τ,λ 〉.0 and
〈τ,μ〉.0 with λ �= μ – as there is a single test, s, that those process terms can pass.
The only option is to compare them after executing the same number of τ-actions.

Since no element of S C≤θ (P,T ) can be longer than |θ |, we should consider
every possible subset S C l

≤θ (P,T ) for 0 ≤ l ≤ |θ |. However, it is enough to con-

sider S C
|θ |
≤θ (P,T ), as shorter successful test-driven computations can be taken into

account when imposing prefixes of θ as average time upper bounds.

Definition 3.24. Let P1,P2 ∈ PM,pc. We say that P1 is Markovian testing equivalent
to P2, written P1 ∼MT P2, iff for all reactive tests T ∈ TR and sequences θ ∈ (R>0)∗
of average amounts of time:

prob(S C
|θ |
≤θ (P1,T )) = prob(S C

|θ |
≤θ (P2,T ))

Note that we have not defined a may equivalence and a must equivalence as in
Sect. 1.5.1. The reason is that in this Markovian framework the possibility and the
necessity of passing a test are not sufficient to discriminate among process terms,
as they are qualitative concepts. What we have considered here is a single quan-
titative notion given by the probability of passing a test (within an average time
upper bound); hence, the definition of a single equivalence. This quantitative notion
subsumes both the possibility of passing a test – which can be encoded as the proba-
bility of passing the test being greater than zero – and the necessity of passing a test
– which can be encoded as the probability of passing the test being equal to one.

Although we could have defined Markovian testing equivalence as the kernel
of a Markovian testing preorder, this has not been done. The reason is that such
a preorder would have boiled down to an equivalence relation, because for each
reactive test passed by P1 within θ with a probability less than the probability with
which P2 passes the same test within θ , in general it is possible to find a dual reactive
test for which the relation between the two probabilities is inverted.

Another important difference with respect to ≈T is that the presence of aver-
age time upper bounds makes it possible to decide whether a test is passed or not
even if the process term under test can execute infinitely many exponentially timed
τ-actions. In other words, divergence does not need to be taken into account.

Using the same examples as Sect. 3.3.2, it is easy to see that ∼MT is strictly finer
than ≈T and probabilistic testing equivalence [64, 68].

3.4.3 Conditions and Characterizations

A necessary condition for establishing whether two process terms are Markovian
testing equivalent is that for each computation of any of the two terms there exists a
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computation of the other term with the same concrete trace and the same stepwise
average duration, such that any pair of corresponding states traversed by the two
computations have the same overall exit rates with respect to all action names.

Proposition 3.4. Let P1,P2 ∈ PM,pc. Whenever P1 ∼MT P2, then for all ck ∈ Cf(Pk)
with k ∈ {1,2} there exists ch ∈ Cf(Ph) with h ∈ {1,2}−{k} such that:

tracec(ck) = tracec(ch)
timea(ck) = timea(ch)

and for all a ∈ Name and i ∈ {0, . . . , |ck|}:
rateo(Pi

k,a,0) = rateo(Pi
h,a,0)

with Pi
k (resp. Pi

h) being the ith state traversed by ck (resp. ch).

We now present four alternative characterizations of∼MT. The first three provide
further justifications for the way in which ∼MT has been defined. The first one es-
tablishes that the discriminating power does not change if we consider a set TR,lib

of tests with the following more liberal syntax:

T ::= s | 〈a,∗w〉.T | T + T

provided that in this setting by successful configuration we mean a configuration
whose test projection includes s as top-level summand. Let us denote by∼MT,lib the
resulting variant of ∼MT.

Proposition 3.5. Let P1,P2 ∈ PM,pc. Then:

P1 ∼MT,lib P2 ⇐⇒ P1 ∼MT P2

The second characterization establishes that the discriminating power does not
change if we consider a set TR,τ of tests capable of moving autonomously by exe-
cuting exponentially timed τ-actions:

T ::= s | T ′
T ′ ::= 〈a,∗w〉.T | 〈τ,λ 〉.T | T ′+ T ′

Let us denote by ∼MT,τ the resulting variant of ∼MT.

Proposition 3.6. Let P1,P2 ∈ PM,pc. Then:

P1 ∼MT,τ P2 ⇐⇒ P1 ∼MT P2

While the previous two characterizations justify the restrictions imposed on the
test structure, the third characterization justifies the use of expected values in-
stead of random variables when considering the step-by-step duration of success-
ful test-driven computations. In fact, the third characterization establishes that the
discriminating power does not change if we consider the probability distribution
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of passing tests within arbitrary sequences of amounts of time, rather than the
probability of passing tests within arbitrary sequences of average amounts of time.
In other words, considering the (more accurate) stepwise durations of test-driven
computations leads to the same equivalence as considering the (easier to work with)
stepwise average durations.

Definition 3.25. Let P1,P2 ∈ PM,pc. We say that P1 is Markovian distribution-testing
equivalent to P2, written P1 ∼MT,d P2, iff for all reactive tests T ∈ TR and sequences
θ ∈ (R>0)∗ of amounts of time:

probd(S C |θ |(P1,T ),θ ) = probd(S C |θ |(P2,T ),θ )

Proposition 3.7. Let P1,P2 ∈ PM,pc. Then:

P1 ∼MT,d P2 ⇐⇒ P1 ∼MT P2

The fourth characterization of ∼MT fully abstracts from comparing process term
behavior in response to tests. It is based on traces that are extended at each step with
the set of visible action names permitted by the environment at that step.

Definition 3.26. An element ξ of (Namev×2Namev)∗ is an extended trace iff:

• Either ξ is the empty sequence ε
• Or ξ ≡ (a1,E1)◦(a2,E2)◦· · ·◦(an,En) for some n∈N>0 with ai ∈ Ei and Ei finite

for each i = 1, . . . ,n.

We denote by E T the set of extended traces.

Definition 3.27. Let ξ ∈ E T . The trace associated with ξ is defined by induction
on the length of ξ through the following (Namev)∗-valued function:

traceet(ξ ) =
{

ε if |ξ |= 0
a◦ traceet(ξ ′) if ξ ≡ (a,E )◦ ξ ′

where ε is the empty trace.

Definition 3.28. Let P∈ PM,pc, c∈Cf(P), and ξ ∈ E T . We say that c is compatible
with ξ iff:

trace(c) = traceet(ξ )

We denote by CC (P,ξ ) the multiset of computations in Cf(P) that are compatible
with ξ .

For any computation compatible with ξ ∈ E T , its probability and its dura-
tion have to be calculated by considering only the action names permitted at each
step by ξ .
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Definition 3.29. Let P ∈ PM,pc, ξ ∈ E T , and c ∈ C C (P,ξ ). The probability of
executing c with respect to ξ is defined by induction on the length of c through the
following R]0,1]-valued function:

probξ (c) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if |c|= 0

λ
rateo(P,E∪{τ},0) ·probξ ′(c′) if c≡ P

a,λ−−−→M c′
with ξ ≡ (a,E )◦ ξ ′

λ
rateo(P,E∪{τ},0) ·probξ (c′) if c≡ P

τ,λ−−−→M c′
with ξ ≡ (a,E )◦ ξ ′

λ
rateo(P,τ,0) ·probξ (c′) if c≡ P

τ,λ−−−→M c′ ∧ξ ≡ ε

We also define the probability of executing a computation in C ⊆ CC (P,ξ ) with
respect to ξ as:

probξ (C) = ∑
c∈C

probξ (c)

whenever C is finite and all of its computations are independent of each other.

Definition 3.30. Let P ∈ PM,pc, ξ ∈ E T , and c ∈ CC (P,ξ ). The stepwise average
duration of c with respect to ξ is defined by induction on the length of c through the
following (R>0)∗-valued function:

timea,ξ (c) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε if |c|= 0

1
rateo(P,E∪{τ},0) ◦ timea,ξ ′(c′) if c≡ P

a,λ−−−→M c′
with ξ ≡ (a,E )◦ ξ ′

1
rateo(P,E∪{τ},0) ◦ timea,ξ (c′) if c≡ P

τ,λ−−−→M c′
with ξ ≡ (a,E )◦ ξ ′

1
rateo(P,τ,0) ◦ timea,ξ (c′) if c≡ P

τ,λ−−−→M c′ ∧ξ ≡ ε

where ε is the empty stepwise average duration. We also define the multiset of
computations in C ⊆ CC (P,ξ ) whose stepwise average duration with respect to ξ
is not greater than θ ∈ (R>0)∗ as:

C≤θ ,ξ = {|c ∈C | |c| ≤ |θ | ∧∀i = 1, . . . , |c|. timea,ξ (c)[i]≤ θ [i] |}

Moreover, as before we denote by Cl the multiset of computations in C⊆ CC (P,ξ )
whose length is equal to l ∈ N.

Definition 3.31. Let P1,P2 ∈ PM,pc. We say that P1 is Markovian extended-trace
equivalent to P2, written P1 ∼MTr,e P2, iff for all extended traces ξ ∈ E T and se-
quences θ ∈ (R>0)∗ of average amounts of time:

probξ (C C
|θ |
≤θ ,ξ (P1,ξ )) = probξ (C C

|θ |
≤θ ,ξ (P2,ξ ))
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Theorem 3.5. Let P1,P2 ∈ PM,pc. Then:

P1 ∼MTr,e P2 ⇐⇒ P1 ∼MT P2

A consequence of the structure of extended traces is the identification of a set of
canonical reactive tests; i.e., a set of reactive tests that are necessary and sufficient
in order to establish whether two process terms are Markovian testing equivalent.
Similar to the case of probabilistic testing equivalence [64,68], each of these canon-
ical reactive tests admits a main computation leading to success, whose intermediate
states can have additional computations each leading to failure in one step. In order
to represent failure, we assume that Namev includes an action name z that can occur
within canonical reactive tests but not within process terms under test. We point out
that canonical reactive tests are name deterministic, in the sense that the names of
the passive actions occurring in any of their branches are all distinct.

Definition 3.32. The set TR,c of canonical reactive tests is generated by the follow-
ing syntax:

T ::= s | 〈a,∗1〉.T + ∑
b∈E−{a}

〈b,∗1〉.〈z,∗1〉.s

where a ∈ E , E ⊆ Namev finite, and the summation is absent whenever E = {a}.
Corollary 3.1. Let P1,P2 ∈ PM,pc. Then P1 ∼MT P2 iff for all T ∈ TR,c and
θ ∈ (R>0)∗:

prob(S C
|θ |
≤θ (P1,T )) = prob(S C

|θ |
≤θ (P2,T ))

Example 3.5. We exploit the alternative characterization of Theorem 3.5 in order to
prove that ProdConsM

0/2 and PCM
conc,2 – which are defined in Examples 3.1 and 3.3,

respectively – are Markovian testing equivalent.
Similar to Example 1.5, we observe first of all that the only sequences of visible

actions that the two process constants can perform are the prefixes of the strings that
comply with the following regular expression:

(deposit ◦ (deposit ◦ withdraw)∗ ◦ withdraw)∗

As a consequence, the only significant extended traces to be considered in this sce-
nario are those whose associated traces coincide with the previously mentioned pre-
fixes. Note that their nonempty finite sets of visible actions permitted at the various
steps necessarily contain at least one between deposit and withdraw.

If we take one such extended trace, say ξ , it is easy to see that any two com-
putations of ProdConsM

0/2 and PCM
conc,2, respectively, that are compatible with ξ

traverse states that pairwise enable sets of actions with the same names and total
rates. Therefore, the stepwise average durations with respect to ξ of the considered
computations are identical.

As far as the execution probabilities with respect to ξ of CC (ProdConsM
0/2,ξ )

and CC (PCM
conc,2,ξ ) are concerned, observed that all these computations have the
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same length as none of them includes exponentially timed τ-transitions, we have
four basic cases corresponding to the four shortest nontrivial prefixes of the strings
complying with the regular expression above:

• If ξ ≡ (deposit,E ), then for both sets of computations the execution probability
is 1

• If ξ ≡ (deposit,E1) ◦ (withdraw,E2), then for both sets of computations the
execution probability is 1 if E2 does not contain deposit, μ

λ+μ otherwise

• If ξ ≡ (deposit,E1) ◦ (deposit,E2), then for both sets of computations the
execution probability is 1 if E2 does not contain withdraw, λ

λ+μ otherwise

• If ξ ≡ (deposit,E1) ◦ (deposit,E2) ◦ (withdraw,E3), then for both sets of
computations the execution probability is 1 if E2 does not contain withdraw,

λ
λ+μ otherwise

Since all the other cases are extensions of these four basic cases that comply with
the regular expression above, the corresponding extensions of the two sets of com-
putations compatible with the same extended trace still have the same execution
probability. Therefore, we can conclude that PCM

conc,2 ∼MT ProdConsM
0/2.

3.4.4 Congruence Property

Markovian testing equivalence is a congruence over PM,pc with respect to all the
dynamic and static operators of MPC as well as recursion.

Theorem 3.6. Let P1,P2 ∈ PM,pc. Whenever P1 ∼MT P2, then:

1. 〈a,λ 〉.P1 ∼MT 〈a,λ 〉.P2 for all 〈a,λ 〉 ∈ ActM.
2. P1 + P∼MT P2 + P and P+ P1 ∼MT P + P2 for all P ∈ PM,pc.
3. P1 ‖S P∼MT P2‖S P and P‖S P1 ∼MT P‖S P2 for all P ∈ PM and S ⊆ Namev such

that P1 ‖S P,P2‖S P ∈ PM,pc.
4. P1/H ∼MT P2/H for all H ⊆ Namev.
5. P1\L∼MT P2\L for all L⊆ Namev.
6. P1[ϕ ]∼MT P2[ϕ ] for all ϕ ∈ Relab.

Definition 3.33. Let P1,P2 ∈PL M be guarded process terms containing free oc-
currences of k ∈N process variables X1, . . . ,Xk ∈ Var at most. We define P1 ∼MT P2

iff there exist Q1, . . . ,Qk ∈ PM such that both P1{Qi ↪→ Xi | 1 ≤ i ≤ k} and
P2{Qi ↪→ Xi | 1 ≤ i≤ k} belong to PM,pc and, for each such group of process terms
Q1, . . . ,Qk ∈ PM, it holds P1{Qi ↪→ Xi | 1≤ i≤ k} ∼MT P2{Qi ↪→ Xi | 1≤ i≤ k}.
Theorem 3.7. Let P1,P2 ∈PL M be guarded process terms containing free occur-
rences of k ∈ N process variables X1, . . . ,Xk ∈ Var at most. Whenever P1 ∼MT P2,
then recX : P1 ∼MT recX : P2 for all X ∈ Var.
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3.4.5 Sound and Complete Axiomatization

Markovian testing equivalence has a sound and complete axiomatization over the
set of nonrecursive process terms of PM,pc, given by the set XMT of equational laws
of Table 3.4.

The main difference with respect to the equational laws for ∼MB shown in
Table 3.2 is given by the axiom schema XMT,4, which subsumes axiom XMB,4.

Table 3.4 Equational laws for ∼MT

(XMT,1) P1 +P2 = P2 +P1
(XMT,2) (P1 +P2)+P3 = P1 +(P2 +P3)
(XMT,3) P+0 = P

(XMT,4) ∑
i∈I
〈a,λi〉. ∑

j∈Ji

〈bi, j, μi, j〉.Pi, j = 〈a, Σ
k∈I

λk〉. ∑
i∈I

∑
j∈Ji

〈bi, j,
λi

Σk∈I λk
· μi, j〉.Pi, j

if: I is a finite index set with |I| ≥ 2;
for all i ∈ I, index set Ji is finite and its summation is 0 if Ji = /0;
for all i1, i2 ∈ I and b ∈ Name:

∑
j∈Ji1

{|μi1, j | bi1, j = b |}= ∑
j∈Ji2

{|μi2, j | bi2, j = b |}

(XMT,5) ∑
i∈I
〈ai, λ̃i〉.Pi ‖S ∑

j∈J
〈b j, μ̃ j〉.Q j = ∑

k∈I,ak /∈S
〈ak, λ̃k〉.

(

Pk ‖S ∑
j∈J
〈b j, μ̃ j〉.Q j

)

+ ∑
h∈J,bh /∈S

〈bh, μ̃h〉.
(

∑
i∈I
〈ai, λ̃i〉.Pi ‖S Qh

)

+ ∑
k∈I,ak∈S,λ̃k∈R>0

∑
h∈J,bh=ak,μ̃h=∗wh

〈ak, λ̃k · wh
weight(Q,bh)

〉.(Pk ‖S Qh)

+ ∑
h∈J,bh∈S,μ̃h∈R>0

∑
k∈I,ak=bh,λ̃k=∗vk

〈bh, μ̃h · vk
weight(P,ak)

〉.(Pk ‖S Qh)

+ ∑
k∈I,ak∈S,λ̃k=∗vk

∑
h∈J,bh=ak,μ̃h=∗wh

〈ak,∗norm(vk ,wh,ak,P,Q)〉.(Pk ‖S Qh)

(XMT,6) ∑
i∈I
〈ai, λ̃i〉.Pi ‖S 0 = ∑

k∈I,ak /∈S
〈ak, λ̃k〉.Pk

(XMT,7) 0 ‖S ∑
j∈J
〈b j, μ̃ j〉.Q j = ∑

h∈J,bh /∈S
〈bh, μ̃h〉.Qh

(XMT,8) 0 ‖S 0 = 0

(XMT,9) 0/H = 0
(XMT,10) (〈a, λ̃ 〉.P)/H = 〈τ , λ̃ 〉.(P/H) if a ∈H
(XMT,11) (〈a, λ̃ 〉.P)/H = 〈a, λ̃ 〉.(P/H) if a /∈ H
(XMT,12) (P1 +P2)/H = P1/H +P2/H

(XMT,13) 0\L = 0
(XMT,14) (〈a, λ̃ 〉.P)\L = 0 if a ∈ L
(XMT,15) (〈a, λ̃ 〉.P)\L = 〈a, λ̃ 〉.(P\L) if a /∈ L
(XMT,16) (P1 +P2)\L = P1\L+P2\L
(XMT,17) 0[ϕ ] = 0
(XMT,18) (〈a, λ̃ 〉.P)[ϕ ] = 〈ϕ(a), λ̃ 〉.(P[ϕ ])
(XMT,19) (P1 +P2)[ϕ ] = P1[ϕ ]+P2[ϕ ]
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The simplest instance of XMT,4 is depicted in the figure below for P �∼MB Q:

~MT

~MB/

b,μ b,μ

P Q P Q

a,λ1 a,λ2 a,λ1+λ2

b,_____λ1

λ1+λ2

.μ b,_____λ2

λ1+λ2

.μ

As can be noted, ∼MB is highly sensitive to branching points, whereas ∼MT allows
choices to be deferred. This happens in the case of branches that start with the same
action name (see the two a-branches on the left-hand side) and are followed by sets
of actions having the same names and total rates (see {〈b,μ〉} after each of the two
a-branches).

We also point out that axiom XMT,5 applies to non-performance-closed pro-
cess terms too; e.g., its last addendum is related to reactive–reactive synchroni-
zations.

Theorem 3.8. Let P1,P2 ∈ PM,pc be nonrecursive. Then:

P1 ∼MT P2 ⇐⇒ XMT  P1 = P2

3.4.6 Modal Logic Characterization

Markovian testing equivalence has a modal logic characterization over PM,pc based
on a modal language comprising true, disjunction, and diamond.

This modal language differs in several aspects from the one for ∼MB presented
in Sect. 3.3.6. First of all, similar to the modal language for ≈T introduced in
Sect. 1.5.5, the modal language for ∼MT does not include negation and replaces
conjunction with disjunction, which is consistent with the decreased discriminat-
ing power with respect to ∼MB. Moreover, the considered modal language has a
two-level syntax similar to the one for tests, which simplifies the interpretation of
formulas. Furthermore, the diamonds occurring at the beginning of subformulas of
any disjunction are required to involve distinct sets of action names. This constraint
does not reduce the expressiveness of the modal language, as it is consistent with
the name-deterministic nature of branches within canonical reactive tests.

Definition 3.34. The set of formulas of the modal language ML MT is generated
by the following syntax:

φ ::= true | φ ′
φ ′ ::= 〈a〉φ | φ ′ ∨φ ′

where a ∈ Namev and each formula of the form φ1∨φ2 satisfies:

init(φ1)∩ init(φ2) = /0
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with init(φ) being defined by induction on the syntactical structure of φ as follows:

init(true) = /0
init(φ1∨φ2) = init(φ1)∪ init(φ2)

init(〈a〉φ) = {a}

As can be noted, probabilistic and temporal information no longer decorate any
operator of the modal language, because in the testing case the focus is on entire
computations rather than on step-by-step behavior mimicking. Probability and time
come into play through a quantitative interpretation function inspired by [132] that
replaces the Boolean satisfaction relation. This interpretation function measures
the probability that a process term satisfies a formula quickly enough on average
by executing a certain number of actions. The constraint imposed on disjunctions
guarantees that their subformulas exercise independent computations of the process
term, thus ensuring the correct calculation of the probability of satisfying the overall
formula.

Definition 3.35. The interpretation function [[.]].MT of ML MT over PM,pc× (R>0)∗
is defined by letting:

[[φ ]]|θ |MT(P,θ ) =

⎧
⎪⎨

⎪⎩

0 if |θ |= 0∧φ �≡ true
or |θ |> 0∧ rateo(P, init(φ)∪{τ},0) = 0

1 if |θ |= 0∧φ ≡ true

otherwise by induction on the syntactical structure of φ and on the length of θ as
follows:

[[true]]|t◦θ |MT (P, t ◦θ) =

⎧
⎪⎪⎨

⎪⎪⎩

∑
P

τ ,λ−−−→M P′

λ
rateo(P,τ,0) · [[true]]|θ |MT(P′,θ) if 1

rateo(P,τ,0) ≤ t

0 if 1
rateo(P,τ,0) > t

[[φ1∨φ2]]
|t◦θ |
MT (P, t ◦θ) = p1 · [[φ1]]

|t1◦θ |
MT (Pno-init-τ , t1 ◦θ)+ p2 · [[φ2]]

|t2◦θ |
MT (Pno-init-τ , t2 ◦θ)

+ ∑
P

τ ,λ−−−→M P′

λ
rateo(P,init(φ1∨φ2)∪{τ},0) · [[φ1∨φ2]]

|θ |
MT(P′,θ)

[[〈a〉φ ]]|t◦θ |MT (P, t ◦θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
P

a,λ−−−→M P′

λ
rateo(P,{a,τ},0) · [[φ ]]|θ |MT(P′,θ)

+ ∑
P

τ ,λ−−−→M P′

λ
rateo(P,{a,τ},0) · [[〈a〉φ ]]|θ |MT(P′,θ) if 1

rateo(P,{a,τ},0) ≤ t

0 if 1
rateo(P,{a,τ},0) > t

where Pno-init-τ is P devoid of all of its computations starting with a τ-transition –
which is assumed to be 0 whenever all the computations of P start with a τ-transition
– and for j ∈ {1,2}:
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p j = rateo(P,init(φ j),0)
rateo(P,init(φ1∨φ2)∪{τ},0)

t j = t +
(

1
rateo(P,init(φ j),0) − 1

rateo(P,init(φ1∨φ2)∪{τ},0)

)

In the definition above, p j represents the probability with which P performs ac-
tions whose name is in init(φ j) rather than actions whose name is in init(φk)∪{τ},
k = 3− j, given that P can perform actions whose name is in init(φ1 ∨ φ2)∪{τ}.
These probabilities are used as weights for the correct account of the probabilities
with which P satisfies only φ1 or φ2 in the context of the satisfaction of φ1 ∨φ2. If
such weights were omitted, then the fact that φ1∨φ2 offers a set of initial actions at
least as large as the ones offered by φ1 alone and by φ2 alone would be ignored, thus
leading to a potential overestimate of the probability of satisfying φ1∨φ2.

Similarly, t j represents the extra average time granted to P for satisfying only φ j.
This extra average time is equal to the difference between the average sojourn time
in P when only actions whose name is in init(φ j) are enabled and the average sojourn
time in P when also actions whose name is in init(φk)∪{τ}, k = 3− j, are enabled.
Since the latter cannot be greater than the former due to the race policy – more
enabled actions means less time spent on average in a state – considering t instead
of t j in the satisfaction of φ j in isolation would lead to a potential underestimate of
the probability of satisfying φ1∨φ2 within the given average time upper bound, as P
may satisfy φ1∨φ2 within t ◦θ even if P satisfies neither φ1 nor φ2 taken in isolation
within t ◦θ .

Theorem 3.9. Let P1,P2 ∈ PM,pc. Then:

P1 ∼MT P2 ⇐⇒ ∀φ ∈ML MT.∀θ ∈ (R>0)∗. [[φ ]]|θ |MT(P1,θ ) = [[φ ]]|θ |MT(P2,θ )

3.4.7 Verification Algorithm

Markovian testing equivalence can be decided in polynomial time over PM,pc by ex-
ploiting [121] and the algorithm for probabilistic language equivalence of [191],
together with the fact that ∼MT coincides with the Markovian version of ready
equivalence as we will see in Sect. 3.7.

The reason is that, given two process terms, their underlying CTMCs in which
action names have not been discarded from transition labels are Markovian ready
equivalent iff the corresponding embedded DTMCs in which transitions have been
labeled with suitably augmented names are related by probabilistic ready equiva-
lence. The latter equivalence is known to be decidable in polynomial time through
a suitable reworking of the algorithm for probabilistic language equivalence.

The transformation of a name-labeled CTMC into the corresponding embedded
name-labeled DTMC is carried out by simply turning the rate of each transition
into the corresponding execution probability. Since, in general, Markovian ready
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equivalence is strictly finer than probabilistic ready equivalence, in order to make
the two equivalences coincide on corresponding models we also need to encode the
total exit rate of each state of the original name-labeled CTMC inside the names of
all transitions departing from that state in the associated embedded DTMC.

Given P1,P2 ∈ PM,pc finite state, the algorithm for checking whether P1 ∼MT P2

proceeds as follows:

1. Transform [[P1]]M and [[P2]]M into their equivalent discrete-time versions:

(a) Divide the rate of each transition by the total exit rate of its source state.
(b) Augment the name of each transition with the total exit rate of its source

state.

2. Compute the equivalence relation R that equates any two states of the discrete-
time versions of [[P1]]M and [[P2]]M whenever the two sets of augmented action
names labeling the transitions departing from the two states coincide.

3. For each equivalence class R induced by R, consider R as the set of accept-
ing states and check whether the discrete-time versions of [[P1]]M and [[P2]]M are
probabilistic language equivalent.

4. Return yes/no depending on whether all the checks performed in the previous
step have been successful or at least one of them has failed.

Each iteration of step 3 above requires the application of the algorithm for prob-
abilistic language equivalence. Denoted by NameRealP1,P2 the set of augmented ac-
tion names labeling the transitions of the discrete-time versions of [[P1]]M or [[P2]]M,
the algorithm visits in breadth-first order the tree containing a node for each element
of (NameRealP1,P2)

∗ and studies the linear independence of the state probability vec-
tors associated with a finite subset of the tree nodes:

1. Create an empty set V of state probability vectors.
2. Create a queue whose only element is the empty string ε .
3. While the queue is not empty:

(a) Remove the first element from the queue, say string ς .
(b) If the state probability vector of the discrete-time versions of [[P1]]M and

[[P2]]M after reading ς does not belong to the vector space generated by V ,
then:
(i) For each a ∈ NameRealP1,P2 , add ς ◦a to the queue.

(ii) Add the state probability vector to V .

4. Build a three-valued state vector u whose generic element is:

(a) 0 if it corresponds to a nonaccepting state
(b) 1 if it corresponds to an accepting state of the discrete-time version of [[P1]]M
(c) −1 if it corresponds to an accepting state of the discrete-time version of

[[P2]]M

5. For each v ∈V , check whether v ·uT = 0.
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6. Return yes/no depending on whether all the checks performed in the previous
step have been successful or at least one of them has failed.

The time complexity of the overall algorithm is O(n5), where n is the total num-
ber of states of [[P1]]M and [[P2]]M.

3.5 Markovian Trace Equivalence

Markovian trace equivalence relates two process terms whenever they are able to
perform computations with the same functional and performance characteristics. In
this section, we provide the definition of Markovian trace equivalence over PM,pc

based on quantitative information associated with process term computations, to-
gether with a necessary condition and an alternative characterization [194,31]. Then,
we show that Markovian trace equivalence is a congruence with respect to dynamic
operators and we present its sound and complete axiomatization, its modal logic
characterization, and its verification algorithm [31, 39, 194].

3.5.1 Definition of the Behavioral Equivalence

The basic idea behind the trace approach is to compare process terms on the basis of
their computations, thus abstracting from the branching structure of their behavior.
In a Markovian framework, we are not only interested in verifying whether pro-
cess terms have the same computations, but also in measuring the probability and
the duration of those computations. More specifically, Markovian trace equivalence
relies on comparing the process term probabilities of performing trace-compatible
computations within arbitrary sequences of average amounts of time.

Definition 3.36. Let P∈ PM,pc, c∈Cf(P), and α ∈ (Namev)∗. We say that c is com-
patible with α iff:

trace(c) = α

We denote by CC (P,α) the multiset of computations in Cf(P) that are compatible
with α .

If a process term P ∈ PM,pc has no exponentially timed τ-actions, then for all
traces α ∈ (Namev)∗ it turns out that: (1) all the computations in CC (P,α) are
independent of each other because of their maximality; (2) the multiset CC (P,α)
is finite because P is finitely branching. Thus, recalled that all the computations in
CC (P,α) have finite length by definition, all definitions of Sect. 3.4.1 are applica-
ble to CC (P,α) and also to C C≤θ (P,α) for any sequence θ ∈ (R>0)∗ of average
amounts of time.
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Similar to the case of ∼MT, in order to cope with the possible presence of
exponentially timed τ-actions within P in such a way that all the properties above
hold – especially independence – we have to consider subsets of CC≤θ (P,α) in-
cluding all trace-compatible computations of the same length. This is also necessary
to distinguish among process terms comprising only exponentially timed τ-actions –
like 〈τ,λ 〉.0 and 〈τ,μ〉.0 with λ �= μ – as there is a single trace, ε , with which the
computations of those process terms are compatible. The only option is to compare
them after executing the same number of τ-actions.

Since no element of CC ≤θ (P,α) can be longer than |θ |, we should consider
every possible subset CC l

≤θ (P,α) for 0≤ l≤ |θ |. However, it is enough to consider

CC
|θ |
≤θ (P,α), as shorter trace-compatible computations can be taken into account

when imposing prefixes of θ as average time upper bounds.

Definition 3.37. Let P1,P2 ∈ PM,pc. We say that P1 is Markovian trace equivalent
to P2, written P1 ∼MTr P2, iff for all traces α ∈ (Namev)∗ and sequences θ ∈ (R>0)∗
of average amounts of time:

prob(CC
|θ |
≤θ (P1,α)) = prob(C C

|θ |
≤θ (P2,α))

Using the same examples as Sect. 3.3.2, it is easy to see that∼MTr is strictly finer
than ≈Tr and probabilistic trace equivalence [127].

Example 3.6. Let us consider again ProdConsM
0/2 and PCM

conc,2, which are defined in
Examples 3.1 and 3.3, respectively. Similar to Example 1.6 and as already observed
in Example 3.5, the only sequences of visible actions that the two process constants
can perform are the prefixes of the strings complying with the following regular
expression:

(deposit ◦ (deposit ◦ withdraw)∗ ◦ withdraw)∗

As a consequence, the only significant traces to be considered in this scenario are
those coinciding with the previously mentioned prefixes.

If we take one such trace, say α , it is easy to see that any two computations of
ProdConsM

0/2 and PCM
conc,2, respectively, that are compatible with α traverse states

that pairwise have the same average sojourn time. Therefore, the stepwise average
durations of the considered computations are identical.

As for the execution probabilities of CC (ProdConsM
0/2,α) and CC (PCM

conc,2,α),
observed that all these computations have the same length as none of them includes
exponentially timed τ-transitions, we have four basic cases corresponding to the
four shortest nontrivial prefixes of the strings complying with the regular expression
above:

• If α ≡ deposit, then for both sets of computations the execution probability is 1
• If α ≡ deposit ◦ withdraw, then for both sets of computations the execution prob-

ability is μ
λ+μ
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• If α ≡ deposit ◦ deposit, then for both sets of computations the execution
probability is λ

λ+μ
• If α ≡ deposit ◦ deposit ◦ withdraw, then for both sets of computations the exe-

cution probability is λ
λ+μ

Since all the other cases are extensions of these four basic cases that comply with
the regular expression above, the corresponding extensions of the two sets of com-
putations compatible with the same trace still have the same execution probability.
Therefore, we can conclude that PCM

conc,2 ∼MTr ProdConsM
0/2.

3.5.2 Conditions and Characterizations

A necessary condition for establishing whether two process terms are Markovian
trace equivalent is that for each computation of any of the two terms there exists a
computation of the other term with the same concrete trace and the same stepwise
average duration, such that any pair of corresponding states traversed by the two
computations have the same total exit rate. Note that the last constraint is slightly
looser than the last constraint of the necessary condition for∼MT of Proposition 3.4.

Proposition 3.8. Let P1,P2 ∈ PM,pc. Whenever P1 ∼MTr P2, then for all ck ∈ Cf(Pk)
with k ∈ {1,2} there exists ch ∈ Cf(Ph) with h ∈ {1,2}−{k} such that:

tracec(ck) = tracec(ch)
timea(ck) = timea(ch)

and for all i ∈ {0, . . . , |ck|}:
ratet(Pi

k,0) = ratet(Pi
h,0)

with Pi
k (resp. Pi

h) being the ith state traversed by ck (resp. ch).

Markovian trace equivalence has an alternative characterization that establishes
that the discriminating power does not change if we consider the probability dis-
tribution of executing trace-compatible computations within arbitrary sequences of
amounts of time, rather than the probability of executing trace-compatible computa-
tions within arbitrary sequences of average amounts of time. Thus, similar to ∼MT,
considering the (more accurate) stepwise durations of trace-compatible computa-
tions leads to the same equivalence as considering the (easier to work with) stepwise
average durations.

Definition 3.38. Let P1,P2 ∈ PM,pc. We say that P1 is Markovian distribution-trace
equivalent to P2, written P1 ∼MTr,d P2, iff for all traces α ∈ (Namev)∗ and sequences
θ ∈ (R>0)∗ of amounts of time:

probd(C C |θ |(P1,α),θ ) = probd(C C |θ |(P2,α),θ )
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Proposition 3.9. Let P1,P2 ∈ PM,pc. Then:

P1 ∼MTr,d P2 ⇐⇒ P1 ∼MTr P2

3.5.3 Congruence Property

Markovian trace equivalence is a congruence over PM,pc with respect to all the dy-
namic operators of MPC.

Theorem 3.10. Let P1,P2 ∈ PM,pc. Whenever P1 ∼MTr P2, then:

1. 〈a,λ 〉.P1 ∼MTr 〈a,λ 〉.P2 for all 〈a,λ 〉 ∈ ActM.
2. P1 + P∼MTr P2 + P and P+ P1 ∼MTr P + P2 for all P ∈ PM,pc.

Similar to the probabilistic case [127], ∼MTr is not a congruence with respect to
the parallel composition operator. Consider, for instance, the following two Marko-
vian trace equivalent process terms:

〈a,λ1〉.〈b,μ〉.0 + 〈a,λ2〉.〈d,μ〉.0
〈a,λ1 + λ2〉.(〈b,λ1/(λ1 + λ2) ·μ〉.0+ 〈d,λ2/(λ1 + λ2) ·μ〉.0)

where a,b,d ∈ Namev and b �= d. If each of the two terms is put in the context
‖{a,b,d}〈a,∗1〉.〈b,∗1〉.0, we get two performance-closed process terms, which we

call P1 and P2, that are no longer Markovian trace equivalent.
In fact, trace α ≡ a◦b can distinguish between P1 and P2. The reason is that the

only computation of P1 compatible with α is formed by a transition labeled with
〈a,λ1〉 followed by a transition labeled with 〈b,μ〉, which has execution probability

λ1
λ1+λ2

and stepwise average duration 1
λ1+λ2

◦ 1
μ . In contrast, the only computation of

P2 compatible with α is formed by a transition labeled with 〈a,λ1 + λ2〉 followed
by a transition labeled with 〈b, λ1

λ1+λ2
· μ〉, which has execution probability 1 and

stepwise average duration 1
λ1+λ2

◦ λ1+λ2
λ1·μ .

3.5.4 Sound and Complete Axiomatization

Markovian trace equivalence has a sound and complete axiomatization over the set
of process terms of PM,pc comprising only dynamic operators, given by the set XMTr

of equational laws of Table 3.5.
The main difference with respect to the equational laws for ∼MT shown

in Table 3.4 is given by the axiom schema XMTr,4, which subsumes axiom
schema XMT,4. The simplest instance of XMTr,4 is depicted below for b �= d:
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Table 3.5 Equational laws for ∼MTr

(XMTr,1) P1 +P2 = P2 +P1
(XMTr,2) (P1 +P2)+P3 = P1 +(P2 +P3)
(XMTr,3) P+0 = P

(XMTr,4) ∑
i∈I
〈a,λi〉. ∑

j∈Ji

〈bi, j, μi, j〉.Pi, j = 〈a, Σ
k∈I

λk〉. ∑
i∈I

∑
j∈Ji

〈bi, j,
λi

Σk∈I λk
· μi, j〉.Pi, j

if: I is a finite index set with |I| ≥ 2;
for all i ∈ I, index set Ji is finite and its summation is 0 if Ji = /0;
for all i1, i2 ∈ I:

∑
j∈Ji1

μi1, j = ∑
j∈Ji2

μi2, j

P Q

~MTr

~MT/

b,μ d,μ

P Q

a,λ1 a,λ2 a,λ1+λ2

b,_____λ1

λ1+λ2

.μ
d,_____λ2

λ1+λ2

.μ

As can be noted, ∼MTr is less sensitive to branching points than ∼MT, as it allows
more choices to be deferred. These are the choices whose branches start with the
same action name (see the two a-branches on the left-hand side) and are followed
by process terms having the same total exit rate (see the process terms with total
exit rate μ after each of the two a-branches).

Theorem 3.11. Let P1,P2 ∈ PM,pc comprise only dynamic operators. Then:

P1 ∼MTr P2 ⇐⇒ XMTr  P1 = P2

3.5.5 Modal Logic Characterization

Markovian trace equivalence has a modal logic characterization over PM,pc based
on a modal language comprising only true and diamond.

Definition 3.39. The set of formulas of the modal language ML MTr is generated
by the following syntax:

φ ::= true | 〈a〉φ
where a ∈ Namev.

Like in the case of∼MT, probability and time do not decorate any operator of the
modal language, but come into play through a quantitative interpretation function
measuring the probability that a process term satisfies a formula quickly enough on
average by executing a certain number of actions.

Definition 3.40. The interpretation function [[.]].MTr of ML MTr over PM,pc×(R>0)∗
is defined by letting:
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[[φ ]]|θ |MTr(P,θ ) =

⎧
⎪⎨

⎪⎩

0 if |θ |= 0∧φ �≡ true
or |θ |> 0∧ ratet(P,0) = 0

1 if |θ |= 0∧φ ≡ true

otherwise by induction on the syntactical structure of φ and on the length of θ as
follows:

[[true]]|t◦θ |MTr (P, t ◦θ) =

⎧
⎪⎪⎨

⎪⎪⎩

∑
P

τ ,λ−−−→M P′

λ
ratet(P,0) · [[true]]|θ |MTr(P

′,θ) if 1
ratet(P,0) ≤ t

0 if 1
ratet(P,0) > t

[[〈a〉φ ]]|t◦θ |MTr (P, t ◦θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
P

a,λ−−−→M P′

λ
ratet(P,0) · [[φ ]]|θ |MTr(P

′,θ)

+ ∑
P

τ ,λ−−−→M P′

λ
ratet(P,0) · [[〈a〉φ ]]|θ |MTr(P

′,θ) if 1
ratet(P,0) ≤ t

0 if 1
ratet(P,0) > t

where a summation is taken to be zero whenever there are no transitions labeled
with the considered action name.

Theorem 3.12. Let P1,P2 ∈ PM,pc. Then:

P1 ∼MTr P2 ⇐⇒ ∀φ ∈ML MTr.∀θ ∈ (R>0)∗. [[φ ]]|θ |MTr(P1,θ ) = [[φ ]]|θ |MTr(P2,θ )

3.5.6 Verification Algorithm

Markovian trace equivalence can be decided in polynomial time over PM,pc by ex-
ploiting [121] and the algorithm for probabilistic language equivalence of [191].

Similar to ∼MT, the reason is that, given two process terms, their underlying
CTMCs in which action names have not been discarded from transition labels are
Markovian trace equivalent iff the corresponding embedded DTMCs in which tran-
sitions have been labeled with suitably augmented names are related by probabilistic
trace equivalence, which is known to be decidable in polynomial time through the
algorithm for probabilistic language equivalence.

As before, the transformation of a name-labeled CTMC into the corresponding
embedded name-labeled DTMC is carried out by simply turning the rate of each
transition into the corresponding execution probability. Since, in general, ∼MTr is
strictly finer than probabilistic trace equivalence, in order to make the two equiva-
lences coincide on corresponding models we also need to encode the total exit rate
of each state of the original name-labeled CTMC inside the names of all transitions
departing from that state in the associated embedded DTMC.
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Given P1,P2 ∈ PM,pc finite state, the algorithm for checking whether P1 ∼MTr P2

proceeds as follows:

1. Transform [[P1]]M and [[P2]]M into their equivalent discrete-time versions:

(a) Divide the rate of each transition by the total exit rate of its source state.
(b) Augment the name of each transition with the total exit rate of its source

state.

2. Check whether the discrete-time versions of [[P1]]M and [[P2]]M are probabilistic
language equivalent when all of their states are considered as accepting states.

3. Return yes/no depending on whether the check performed in the previous step
has been successful or not.

Step 2 above requires the application of the algorithm for probabilistic language
equivalence, which has been described in Sect. 3.4.7. The time complexity of the
overall algorithm is O(n4), where n is the total number of states of [[P1]]M and [[P2]]M.

3.6 Exactness of Markovian Behavioral Equivalences

Every Markovian behavioral equivalence induces aggregations of the CTMCs un-
derlying process terms of PM,pc. Useful CTMC-level aggregations are those that are
exact. Given two CTMCs such that the second one is an exact aggregation of the
first one, the transient/stationary probability of being in a macrostate of the second
CTMC is the sum of the transient/stationary probabilities of being in one of the
constituent microstates of the first CTMC. This means that, when going from the
first CTMC to the second CTMC, all the performance characteristics are preserved.
Therefore, due to its reduced state space, the second CTMC can be exploited for a
faster derivation of properties of the first CTMC.

In this section, we show that ∼MB, ∼MT, and ∼MTr induce exact CTMC-level
aggregations; hence, they are all meaningful not only from a functional standpoint,
but also from a performance standpoint [118, 58, 31, 32].

Markovian bisimulation equivalence is consistent with an exact aggregation for
CTMCs known under the name of ordinary lumping. This fact establishes an impor-
tant connection between concurrency theory and Markov chain theory. In particular,
it implies that ordinary lumpability is entirely characterizable in a process algebraic
framework and that a verification/minimization algorithm for it is available.

Definition 3.41. A partition G of the state space of a CTMC is an ordinary lumping
iff, whenever s1,s2 ∈ G for some G ∈ G , then for all G′ ∈ G :

∑{|λ ∈ R>0 | ∃s′ ∈ G′.s1
λ−−−→ s′ |} = ∑{|λ ∈ R>0 | ∃s′ ∈ G′.s2

λ−−−→ s′ |}

Theorem 3.13. The CTMC-level aggregation induced by ∼MB over PM,pc is an or-
dinary lumping, and hence it is exact.
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Markovian testing equivalence and Markovian trace equivalence induce the
same exact CTMC-level aggregation called T-lumping, which is strictly coarser
than ordinary lumping. This aggregation, which was not known in the CTMC field
before, can be graphically defined as follows on the basis of the name-abstract
variant of the equational laws characterizing∼MT and ∼MTr:
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where I is a finite index set with |I| ≥ 2, k ranges over I, Ji is a nonempty finite
index set for all i ∈ I, and for all i1, i2 ∈ I:

∑
j∈Ji1

μi1, j = ∑
j∈Ji2

μi2, j

Theorem 3.14. The CTMC-level aggregation induced by ∼MT (resp. ∼MTr) over
PM,pc is a T-lumping, and hence it is exact.

3.7 The Markovian Linear-Time/Branching-Time Spectrum

As shown in Sect. 1.7, behavioral equivalences such as bisimulation equivalence,
testing equivalence, trace equivalence, and their variants – simulation equiva-
lence, ready-simulation equivalence, completed-trace equivalence, failure equiv-
alence, ready equivalence, failure-trace equivalence, and ready-trace equivalence
– form a lattice-like structure when considering their discriminating power.

In this section, we show that, similar to the probabilistic case [127, 121], the
linear-time/branching-time spectrum formed by the Markovian versions over PM,pc

of those behavioral equivalences collapses into a line [24, 194, 31]. With regard to
the Markovian behavioral equivalences that we have already encountered, we can
easily see from their axiomatizations that ∼MB is strictly contained in ∼MT, which
in turn is strictly contained in ∼MTr.

Let us start with the definition of the Markovian versions of simulation and ready-
simulation equivalences. Although simulation of two process terms is defined in
terms of simulation of their derivative process terms, in a Markovian setting we
need to take rates into account as well. To this purpose, it is convenient to separate
time and probability information subsumed by rates and to view the destination of a
transition as a probability distribution. Then, we need to lift the simulation relation
from states to distributions on states, precisely the next-state distributions encoded
by probe(P,a,0, .). This can be accomplished through weight functions [126], which
relate pairs of distributions in a way that takes into account the simulation relation
on states and preserves the probability mass associated with each state.
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Definition 3.42. Let S be a countable set. A distribution on set S is a function
d : S→ R[0,1] such that:

∑
s∈S

d(s) ≤ 1

which is called a probability distribution whenever:

d(⊥) Δ= 1− ∑
s∈S

d(s) = 0

We denote by Distr(S) the set of distributions on S.

Definition 3.43. Let S1,S2 be countable sets with d1 ∈ Distr(S1), d2 ∈ Distr(S2),
R ⊆ S1×S2, and ϖ : (S1∪{⊥})× (S2∪{⊥})→ R[0,1]. We say that ϖ is a weight
function for d1 and d2 with respect to R iff for all s1 ∈ S1∪{⊥} and s2 ∈ S2∪{⊥}:

ϖ(s1,s2) > 0 =⇒ (s1,s2) ∈R∨ s1 =⊥
d1(s1) = ∑

s2∈S2∪{⊥}
ϖ(s1,s2)

d2(s2) = ∑
s1∈S1∪{⊥}

ϖ(s1,s2)

in which case we write d1 �R d2.

Definition 3.44. A binary relation S over PM,pc is a Markovian simulation iff,
whenever (P1,P2) ∈S , then for all action names a ∈ Name:

rateo(P1,a,0) ≤ rateo(P2,a,0)
probe(P1,a,0, .) �S probe(P2,a,0, .)

Definition 3.45. Markovian simulation preorder, denoted �MS, is the largest
Markovian simulation.

Definition 3.46. Markovian simulation equivalence, denoted ∼MS, is the kernel of
Markovian simulation preorder, i.e., ∼MS =�MS ∩�−1

MS.

Definition 3.47. A binary relation S over PM,pc is a Markovian ready simulation
iff, whenever (P1,P2) ∈S , then for all action names a ∈ Name:

rateo(P1,a,0) ≤ rateo(P2,a,0)
probe(P1,a,0, .) �S probe(P2,a,0, .)

rateo(P1,a,0) = 0 =⇒ rateo(P2,a,0) = 0

Definition 3.48. Markovian ready-simulation preorder, denoted�MRS, is the largest
Markovian ready simulation.

Definition 3.49. Markovian ready-simulation equivalence, denoted ∼MRS, is the
kernel of Markovian ready-simulation preorder, i.e., ∼MRS =�MRS ∩ �−1

MRS.

Then, we proceed with the definition of the Markovian versions of completed-
trace equivalence, failure equivalence, ready equivalence, failure-trace equivalence,
and ready-trace equivalence.
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Definition 3.50. Let P ∈ PM,pc, c ∈ Cf(P), and α ∈ (Namev)∗. We say that c is a
maximal computation compatible with α iff c∈ CC (P,α) and the last state reached
by c has no outgoing transitions. We denote by MCC (P,α) the multiset of maximal
computations in Cf(P) that are compatible with α .

Definition 3.51. Let P1,P2 ∈ PM,pc. We say that P1 is Markovian completed-trace
equivalent to P2, written P1 ∼MTr,c P2, iff for all traces α ∈ (Namev)∗ and sequences
θ ∈ (R>0)∗ of average amounts of time:

prob(C C
|θ |
≤θ (P1,α)) = prob(CC

|θ |
≤θ (P2,α))

prob(MC C
|θ |
≤θ (P1,α)) = prob(MCC

|θ |
≤θ (P2,α))

Definition 3.52. Let P∈PM,pc, c∈Cf(P), and β ≡ (α,F)∈ (Namev)∗×2Namev . We
say that computation c is compatible with the failure pair β iff c ∈ CC (P,α) and
the last state reached by c cannot perform any visible action whose name belongs to
the failure set F . We denote by FC C (P,β ) the multiset of computations in Cf(P)
that are compatible with β .

Definition 3.53. Let P1,P2 ∈ PM,pc. We say that P1 is Markovian failure equivalent
to P2, written P1 ∼MF P2, iff for all failure pairs β ∈ (Namev)∗ × 2Namev and se-
quences θ ∈ (R>0)∗ of average amounts of time:

prob(FC C
|θ |
≤θ (P1,β )) = prob(FC C

|θ |
≤θ (P2,β ))

Definition 3.54. Let P∈ PM,pc, c∈Cf(P), and ρ ≡ (α,R)∈ (Namev)∗×2Namev . We
say that computation c is compatible with the ready pair ρ iff c ∈ CC (P,α) and the
set of names of visible actions that can be performed by the last state reached by c
coincides with the ready set R. We denote by RCC (P,ρ) the multiset of computa-
tions in Cf(P) that are compatible with ρ .

Definition 3.55. Let P1,P2 ∈ PM,pc. We say that P1 is Markovian ready equivalent
to P2, written P1 ∼MR P2, iff for all ready pairs ρ ∈ (Namev)∗ × 2Namev and se-
quences θ ∈ (R>0)∗ of average amounts of time:

prob(RCC
|θ |
≤θ (P1,ρ)) = prob(RCC

|θ |
≤θ (P2,ρ))

Definition 3.56. Let P ∈ PM,pc, c ∈ Cf(P), and ζ ∈ (Namev×2Namev)∗. We say that
computation c is compatible with the failure trace ζ iff c is compatible with the
trace projection of ζ and each state traversed by c cannot perform any visible ac-
tion whose name belongs to the corresponding failure set in the failure projection
of ζ . We denote by FT CC (P,ζ ) the multiset of computations in Cf(P) that are
compatible with ζ .

Definition 3.57. Let P1,P2 ∈ PM,pc. We say that P1 is Markovian failure-trace equiv-
alent to P2, written P1 ∼MFTr P2, iff for all failure traces ζ ∈ (Namev×2Namev)∗ and
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sequences θ ∈ (R>0)∗ of average amounts of time:

prob(FT CC
|θ |
≤θ (P1,ζ )) = prob(FT CC

|θ |
≤θ (P2,ζ ))

Definition 3.58. Let P ∈ PM,pc, c ∈ Cf(P), and η ∈ (Namev×2Namev)∗. We say that
computation c is compatible with the ready trace η iff c is compatible with the trace
projection of η and the set of names of visible actions that can be performed by
each state traversed by c coincides with the corresponding ready set in the ready
projection of η . We denote by RT CC (P,η) the multiset of computations in Cf(P)
that are compatible with η .

Definition 3.59. Let P1,P2 ∈ PM,pc. We say that P1 is Markovian ready-trace equiv-
alent to P2, written P1 ∼MRTr P2, iff for all ready traces η ∈ (Namev×2Namev)∗ and
sequences θ ∈ (R>0)∗ of average amounts of time:

prob(RT CC
|θ |
≤θ (P1,η)) = prob(RT CC

|θ |
≤θ (P2,η))

Theorem 3.15. The linear-time/branching-time spectrum over PM,pc is as follows:

~MB
~MRS
~MS

~MR
~MF
~MT

~MRTr
~MFTr

~MTr,c
~MTr

where arrows denote strict set inclusion.

We conclude by noting that, unlike the nondeterministic case, the trace approach
is deadlock sensitive in the Markovian setting because ∼MTr coincides with ∼MTr,c.
As a consequence, it is not surprising that ∼MTr is not a congruence with respect to
the parallel composition operator.



Part II
Process Algebra

for Software Architecture



An important distinction in the software engineering field is the one between
programming-in-the-large and programming-in-the-small: structuring a large col-
lection of modules to form a system is an essentially different intellectual activity
from that of constructing the individual modules [83]. In the last two decades, the
activity of programming-in-the-large and the consequent necessity of separating de-
sign from implementation have received an ever increasing attention. This has re-
sulted in a new discipline called software architecture, whose focus is on software
components and connectors rather than on algorithms and data structures.

By analogy to building architecture, a model of software architecture can be
defined as consisting of elements, form, and rationale [169]. In the software con-
text, architectural elements are processing, data, or connecting elements. The form
is expressed through properties and relationships that constrain the choice and the
placement of architectural elements. The rationale is the basis for the architecture in
terms of the system requirements and provides motivations for the various choices
made in defining the architecture.

A software architecture thus emphasizes the elements constituting a system, their
interactions, and the constraints on those elements and their interactions that provide
a framework in which to satisfy the requirements and serve as a basis for the sub-
sequent development phases. The software architecture level of design is concerned
with several issues [184]: organization of a system as a composition of components;
global control structures; protocols for communication, synchronization, and data
access; assignment of functionality to design elements; composition of design ele-
ments; physical distribution; scaling and performance; dimensions of evolution; and
selection among design alternatives.

The growing complexity and size of modern software systems can be managed
only by adopting architectural notations producing design documents with a precise
meaning, which should be used as a guide during software development. Such archi-
tectural notations should also enable the rigorous and hopefully automated analysis
of system properties [45], in order to avoid delays and costs that may be incurred
due to the late discovery of errors in the software development process.

In the second part of this book, we show that process algebra can be use-
fully employed in the software architecture design phase, as implicitly suggested
in [18]. In Chap. 4, we provide a number of guidelines for trasforming process
algebra into a fully fledged architectural description language called PADL. In
Chap. 5, we illustrate MISMDET, a topological reduction process for the detection
of architecture-level mismatches, which relies on behavioral equivalences and ex-
ploits their congruence properties for efficiency reasons and their modal logic char-
acterizations for diagnostic purposes. In Chap. 6, we present PERFSEL, a procedure
for the performance-driven selection among alternative architectural designs, which
is based on equipping process algebraic architectural descriptions with queueing
network models allowing for the assessment of system-level and component-level
performance measures. Finally, in Chap. 7 we discuss DEPPERF, a methodology
for trading dependability features and performance indices in the architectural de-
sign phase, which builds on equivalence-checking-based noninterference analysis
and performance evaluation techniques.



Chapter 4
Component-Oriented Modeling

Abstract Using process algebra at the software architecture level of design can be
beneficial both for enhancing the usability of the formalism and for improving the
formality and analyzability of the architectural descriptions. In fact, on the one hand
process algebra is forced to support a friendly component-oriented way of model-
ing systems, while on the other hand the software designer can take advantage of
a notation possessing a precise syntax and semantics as well as automated analy-
sis techniques. In this chapter, we provide a number of guidelines for a principled
transformation of process algebra into a fully fledged architectural description lan-
guage called PADL. The guidelines, which favor specification reuse and insist on
the elicitation of interfaces and communication features, are exemplified through
the modeling of a client–server system and of a pipe–filter system.

4.1 Software Architecture Description Languages

When dealing with nowadays computing systems, designing software soon becomes
an unmanageable and error-prone activity if it is not assisted by adequate modeling
notations and supporting tools. In this context, the use of process algebra at the
software architecture level can be beneficial for several reasons.

On the process algebra side, the maturity of the theory – which we have set out
to some extent in the first part of this book – is unfortunately not accompanied by
a satisfactory degree of usability of the formalism, as witnessed by the fact that
process algebra is rarely adopted in the practice of software development. On the one
hand, the technicalities of process algebra often obfuscate the way in which systems
are modeled. As an example, in a process term comprising numerous occurrences
of the parallel composition operator, it is hard to understand the communication
scheme among the various subterms. On the other hand, process algebra is perceived
as being difficult to learn and use by practitioners as it is not close enough to the way
they think of software systems. For instance, process algebra inherently supports
compositionality and abstraction, but it does not support widespread paradigms like
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object orientation and component orientation. As a consequence, process algebra
cannot compete with commonly accepted notations like UML, although it is more
robust than them.

On the software architecture side, what is produced is a document showing the
system structure and behavior at a high level of abstraction, which should be shared
by all the people contributing to the various phases of the software development pro-
cess. In many cases, this document boils down to an informal box-and-line diagram,
which certainly helps to visualize the system structure and perhaps the functionality
of the various units, but its usefulness is rather limited. On the one hand, in the ab-
sence of a precise syntax and semantics, the document may turn out to be ambiguous
and hence interpretable in different ways, thus leading to potential misunderstand-
ings inside the software development team. On the other hand, an informal docu-
ment cannot be subject to any check, thus preventing system property analyzability
in the early stages of the development process. These drawbacks may negatively
affect time-to-market constraints as well as development and maintenance costs.

Adapting process algebra to the software architecture level of design provides a
twofold opportunity. Firstly, this can be exploited for increasing the degree of us-
ability of process algebra, as it becomes necessary to support a friendly component-
oriented manner of modeling systems with process algebra. In this way, the software
designer can reason in terms of composable software units without having to worry
about process algebra technicalities. Secondly, this can be exploited for increas-
ing the degree of formality and analyzability of architectural descriptions. In fact, it
turns out that the software designer is offered a modeling notation with a completely
defined syntax and semantics, which is equipped with various analysis techniques
that can be reused at the architectural level.

The purpose of this chapter is to set up an architectural upgrade of process al-
gebra that yields a fully fledged architectural description language called PADL.
This transformation is accomplished in a principled way by following a number of
guidelines that we deem to be strictly necessary in order to achieve our objective.
The guidelines are concerned with: (1) the separation of the behavior description
from the topology description, (2) the reuse of the specification of components and
connectors, (3) the elicitation of the interface of components and connectors, (4) the
classification of the synchronicity of communications, (5) the classification of the
multiplicity of communications, (6) the combination of textual and graphical nota-
tions, (7) the revision of dynamic operators and the concealment of static operators,
and (8) the provision of support for architectural styles.

This chapter is organized as follows. In Sect. 4.2, we introduce a client–server
system that is used throughout the chapter as a running example. In Sect. 4.3,
we illustrate the first seven guidelines, which lead to the definition of the syntax
for PADL. In Sect. 4.4, we present the semantics for PADL, which is given by trans-
lation into the process calculus of Sect. 1.3. In Sect. 4.5, we discuss a summarizing
example based on a pipe–filter system, which is also used in the rest of the chapter.
In Sect. 4.6, we illustrate the eighth guideline after recalling the notion of architec-
tural style. Finally, in Sect. 4.7 we compare the obtained process algebraic architec-
tural description language with the related literature.
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4.2 Running Example: Client–Server System

The application of the guidelines is exemplified through the modeling of a client–
server system. In general, this is composed of a possibly replicated server and a
number of clients. The server provides a set of predefined services and the clients
contact it whenever they need some of the available services. The server provides the
requested services to the requesting clients according to some predefined discipline.

For the sake of simplicity, we consider a scenario in which there is a single replica
of the server, which can be contacted at any time by two identically behaving clients.
We assume that the server has no buffer for holding incoming requests and that, after
sending a request, a client cannot proceed until it receives a response from the server.

4.3 Architectural Upgrade of Process Algebra: Guidelines

In this section, we illustrate the first seven guidelines, which are related to the mod-
eling of a single software system and lead to the definition of the syntax for PADL.

4.3.1 G1: Separating Behavior and Topology Descriptions

Given a process term comprising numerous occurrences of the parallel composition
operator, it is hard to understand which subterms communicate with each other. This
is not only a matter of readability. In fact, from the point of view of the designer, se-
lecting the appropriate synchronization sets and the appropriate order for the various
subterms is not a trivial task at all. In essence, the problem arises from the fact that
the parallel composition operator is not simply a behavioral operator, but encodes
both part of the system behavior and the entire system topology.

In order to enhance the usability of process algebra, it is thus necessary to have
two distinct sections: one for describing the system behavior and one for describing
the system topology. At the architectural level, we call them architectural behavior
section and architectural topology section, respectively.

4.3.2 G2: Reusing Component and Connector Specification

In a process algebraic description, there may be several process terms composed in
parallel that differ only for the names of some of their actions or process constants.
In order to avoid specification redundancy and hence to reduce the modeling time, it
is necessary to recognize the presence of repeated behavioral patterns. To this pur-
pose, we introduce the concepts of architectural element type (AET) and architec-
tural element instance (AEI), where by architectural element we mean a component
or a connector introduced for gluing components together.
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The architectural behavior section contains the definition of as many AETs as
there are types of components and connectors in the system. Each of them corre-
sponds to a set of process terms sharing the same behavioral pattern. The architec-
tural topology section contains the declaration of as many AEIs of any previously
defined AET as there are components and connectors of that type in the system.
They correspond to the process terms exhibiting the same behavioral pattern.

Example 4.1. Let us consider the client–server system introduced in Sect. 4.2. In
that case, the architectural behavior section contains the definition of:

• One AET for the server, which we denote by Server Type
• One AET for the two clients, which we denote by Client Type

Notice that a single AET is enough for both clients due to their identical behavior.
Then, the architectural topology section contains the declaration of:

• One instance of Server Type, which we denote by S
• Two instances of Client Type, which we denote by C 1 and C 2, respectively

Both C 1 and C 2 can communicate with S.

4.3.3 G3: Eliciting Component and Connector Interface

The actions occurring in a process term do not play the same role from the commu-
nication viewpoint. In order to make process algebraic descriptions more readable,
it is thus necessary to classify their actions.

First of all, we distinguish between internal actions and interactions. Internal ac-
tions model activities related to the implementation of components and connectors,
whereas interactions are used for communication purposes and hence constitute the
interface of components and connectors. Interactions are further divided into input
interactions and output interactions depending on the direction of the information
flow. All the interactions occurring in the behavior of an AET have to be explicitly
declared within the AET definition as input interactions or output interactions. All
the other actions occurring in the behavior of the AET are intended to be internal.

Then, we distinguish between local interactions and architectural interactions.
The local interactions of an AEI are the input and output interactions inherited from
its AET that are used for communicating with other AEIs inside the system. This is
specified in the architectural topology section by declaring architectural attachments
between pairs of AEI interactions, which are therefore considered to be local. All
the other AEI interactions have to be explicitly declared in the architectural topology
section as architectural interactions. This means that they constitute the interface for
the whole system and hence can be exploited for hierarchical modeling.

A positive side effect of the elicitation of the interface of components and con-
nectors is the derivation of a number of static checks applicable to the attachments
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declared in the architectural topology section. Firstly, while any local interaction
must be involved at least in one attachment, no internal action or architectural in-
teraction can be involved in attachments. Secondly, every attachment must go from
a local output interaction of an AEI to a local input interaction of another AEI.
Thirdly, the examination of the attachments reveals whether the topology is con-
nected or there are groups of isolated AEIs.

4.3.4 G4: Classifying Communication Synchronicity

Distinct interactions can participate in different forms of communication. In par-
ticular, the interactions occurring in a process term are not necessarily involved in
communications with the same synchronicity. In order to improve the readability
of process algebraic descriptions, it is thus necessary to classify the degree of syn-
chronicity with which their interactions participate in communications.

We distinguish between synchronous interactions, semi-synchronous interac-
tions, and asynchronous interactions. Synchronous interactions are blocking. An
AEI wishing to perform an input synchronous interaction cannot proceed until an
output is sent by another AEI. Similarly, an AEI wishing to perform an output
synchronous interaction cannot proceed until another AEI is willing to receive.

In contrast, semi-synchronous interactions and asynchronous interactions are not
blocking. A semi-synchronous interaction of an AEI succeeds if there is another AEI
ready to communicate with it, otherwise it raises an exception and let the first AEI
proceed. An example of semi-synchronous communication is the one between a
graphical user interface and an underlying software application, as the former must
not block whenever the latter cannot do certain tasks requested by the user.

Asynchronous interactions are not blocking because the beginning and the end
of the communications in which they are involved are completely decoupled. An
example of asynchronous communication is given by event notification services. In
this case, the various parties are not synchronized at all as the communication in-
frastructure basically relies on buffers. Publishers advertise events from time to time
by sending messages to a middleware, which in turn delivers event notifications to
the appropriate subscribers, which periodically check for the arrival of notifications.

The degree of synchronicity of every input and output interaction must be ex-
plicitly declared within the AET definition. For each semi-synchronous interaction,
a Boolean variable success is implicitly declared and set, which can be used in
the AET behavior in order to check whether the execution of the semi-synchronous
interaction succeeds or raises an exception. As far as attachments are concerned, all
nine two-by-two combinations are permitted. This means that a local output syn-
chronous, semi-synchronous, or asynchronous interaction of an AEI can be freely
attached to a local input synchronous, semi-synchronous, or asynchronous interac-
tion of another AEI.
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4.3.5 G5: Classifying Communication Multiplicity

The interactions occurring in a process term are not necessarily involved in
communications with the same multiplicity. In order to increase the readability
of process algebraic descriptions, it is also necessary to classify the degree of
multiplicity of the communications in which their interactions participate.

We distinguish between uni-interactions, and-interactions, and or-interactions.
A uni-interaction is mainly involved in one-to-one communications, whereas and-
interactions and or-interactions guide inclusive one-to-many communications and
selective one-to-many communications, respectively.

A local and-interaction communicates with all the local uni-interactions attached
to it, thus realizing a multicast-like communication. In contrast, a local or-
interaction communicates with only one of the local uni-interactions attached to it,
thus realizing a server–clients-like communication. In order to guarantee that a se-
lective one-to-many output is sent by an AEI to the same AEI from which a certain
selective many-to-one input was received, it is necessary to provide support for
or-dependences. In this way, the selection performed by a local output or-interaction
of an AEI can be constrained by the last selection performed by a certain local input
or-interaction of the same AEI.

The degree of multiplicity of every input and output interaction must be ex-
plicitly declared within the AET definition. As regards attachments, further static
checks come into play. While any local uni-interaction can be attached to only one
local interaction, any local and-interaction or or-interaction can be attached only
to local uni-interactions each belonging to a different AEI. Moreover, in the case
of an output or-interaction that depends on an input or-interaction, the output or-
interaction cannot occur before the input or-interaction in the AET behavior, and
both or-interactions must be attached to uni-interactions of the same AEIs if local.

Example 4.2. Let us reconsider the client–server system introduced in Sect. 4.2.
Following the discussion started in Example 4.1, the definition of Server Type
contains:

• One input interaction for receiving requests from the clients, which we denote by
receive request

• One internal action modeling the computation of responses, which we denote by
compute response

• One output interaction for sending responses to the clients, which we denote by
send response

The definition of Client Type contains:

• One internal action modeling the processing of tasks, which we denote by
process

• One output interaction for sending requests to the server, which we denote by
send request

• One input interaction for receiving responses from the server, which we denote
by receive response
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All the interactions of Server Type are or-interactions because S is attached to
both C 1 and C 2 but can communicate with only one of them at a time. Moreover:

• It is necessary to establish a dependence between send response and
receive request, because the responses computed by the server have to
be sent back to the clients that issued the corresponding requests

• receive request is synchronous, because the server stays idle as long as it
does not receive requests from the clients

• send response is asynchronous, so that the server can proceed with further
requests without being blocked by the unavailability of the client that should
receive the response

In contrast, all the interactions of Client Type are uni-interactions because each
of C 1 and C 2 is attached only to S. Moreover:

• send request is semi-synchronous, so that a client wishing to send a request
when the server is busy can keep working instead of passively waiting for the
server to become available

• receive response is synchronous, because after issuing a request a client
cannot proceed until it receives a response from the server

All the interactions of S, C 1, and C 2 are local. More precisely:

• Both send request of C 1 and send request of C 2 are attached to
receive request of S

• send response of S is attached to both receive response of C 1 and
receive response of C 2

4.3.6 G6: Textual and Graphical Notations (PADL Syntax)

Process algebra provides just a textual notation, which may not be enough for the
software designer. This is not only a matter of making the textual notation more
readable by means of some architectural syntactic sugar based on the previous
guidelines. A graphical notation is also necessary, as it provides a visual aid that is
not possible with a textual notation. Moreover, it is desirable to permit an integrated
use of the two notations: the graphical one for representing the system topology, the
textual one for describing the behavior of every architectural element.

Table 4.1 shows the structure of a textual description in the resulting process
algebraic architectural description language PADL. The textual description starts
with the system name and its formal data parameters initialized with default values
(void if absent), then comprises the architectural behavior and topology sections.

The first section describes the behavior of the system by means of its AETs.
The definition of each AET, which starts with its name and its formal data pa-
rameters (void if absent), consists of the specification of its behavior through
simplified process algebraic equations (see Sect. 4.3.7) and of the declaration of its
input and output interactions. Every interaction declaration is accompanied by two
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Table 4.1 Structure of a PADL textual description

ARCHI TYPE �name and initialized formal data parameters�

ARCHI BEHAVIOR
...

...
ARCHI ELEM TYPE �AET name and formal data parameters�
BEHAVIOR �sequence of process algebraic equations

built from verbose dynamic operators only�
INPUT INTERACTIONS �input synchronous/semi-sync./asynchronous

uni/and/or-interactions�
OUTPUT INTERACTIONS �output synchronous/semi-sync./asynchronous

uni/and/or-interactions�
...

...

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES �AEI names and actual data parameters�
ARCHI INTERACTIONS �architecture-level AEI interactions�
ARCHI ATTACHMENTS �attachments between AEI local interactions�

END

qualifiers. The first one establishes whether the interaction is synchronous (qualifier
value SYNC), semi-synchronous (qualifier value SSYNC), or asynchronous (qual-
ifier value ASYNC). The second one establishes whether the interaction is a uni-
interaction (qualifier value UNI), an and-interaction (qualifier value AND), or an
or-interaction (qualifier value OR). Or-dependences can be established by means of
keyword DEP.

The second section describes the topology of the system. It is composed of three
subsections. Firstly, we have the declaration of the AEIs together with their actual
data parameters. Secondly, we have the declaration of the AEI interactions that are
architectural (void if absent). Thirdly, we have the declaration of the architectural
attachments between pairs of local interactions of the AEIs. In this section, every
interaction is expressed through the dot notation; i.e., the name of the interaction
is preceded by the name of the AEI to which it belongs. In this way, no ambiguity
arises when referring to an interaction of an AET of which several instances have
been declared or when interactions of distinct AETs possess the same name.

The graphical notation of PADL is based on enriched flow graphs, an extension
of the graphical formalism adopted in [154]. The basic graphical elements are shown
in Fig. 4.1. As can be seen, in an enriched flow graph, AEIs are depicted as boxes,
local (resp. architectural) interactions are depicted as small black circles (resp. white
squares) on the box border, and each attachment is depicted as a directed edge from
a local output interaction of an AEI box to a local input interaction of another AEI
box. The small circle/square of an interaction is extended inside the AEI box with
an arc (resp. a buffer) if the interaction is semi-synchronous (resp. asynchronous).
The small circle/square of an interaction is extended outside the AEI box with a
triangle (resp. a bisected triangle) if the interaction is an and-interaction (resp. an
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AEI

(local synchronous) and-interaction

(local synchronous) or-interaction

dependence between (local synchronous) or-interactions

local (synchronous uni-)interaction

architectural (synchronous uni-)interaction

attachment between local (synchronous uni-)interactions

(local) semi-synchronous (uni-)interaction

(local) asynchronous (uni-)interaction

Fig. 4.1 Basic elements of PADL graphical notation

or-interaction). Finally, each or-dependence is depicted as a dotted edge between an
input or-interaction and an output or-interaction inside the AEI box.

4.3.7 G7: Dynamic and Static Operators

The behavioral operators provided by process algebra are not all equally easy to
use. In particular, static operators like parallel composition, hiding, restriction, and
relabeling are harder to use than dynamic operators like action prefix and alterna-
tive composition. Therefore, for the sake of usability, it is appropriate to conceal
static operators and to make available to the designer only the dynamic operators
for describing the behavior of AETs.

Moreover, the operators made available need to be revised. Some of them need
to become more verbose. For example, in PADL the inactive process 0 is repre-
sented through the more intuitive stop. Other operators need to avoid semantic
overloading. For instance, in PADL the alternative composition operator + is more
appropriately represented as choice. Similar to process algebra in which com-
munications allow data to be exchanged, in PADL actions are divided into input
actions and output actions and can be preceded by Boolean guards establishing con-
ditions under which the actions are enabled. The supported data types are Boolean,
(bounded) integer, real, list, array, record, and generic object.

Each process algebraic equation that can occur in the definition of the behavior
of an AET has the following form:

B( formal data parameter list; data variable list) = P
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where each of the two lists can be empty (keyword void) and the process term on
the right-hand side of the equation is generated by the following revised syntax:

P ::= stop inactive process
| B(actual data parameter list) process constant
| cond(bool expr) -> a .P action prefix
| cond(bool expr) -> a?(var list) .P input action prefix
| cond(bool expr) -> a!(expr list) .P output action prefix
| choice{P, . . . ,P} alternative composition

with cond guard being optional.
Since the first process algebraic equation occurring in the definition of the

behavior of an AET is the entry point of the AET, its formal data parameters have
to be initialized by possibly making use of the formal data parameters of the AET.
Data variables are instead necessary within process algebraic equations for storing
values received via input actions. In that case, they have to be declared in the header
of the process algebraic equations in which the input actions occur.

As far as static operators are concerned, they are not available for modeling pur-
poses but are somehow present in PADL. Static operators different from parallel
composition are implicitly used in the behavioral modification section, the optional
third section of a textual description. This section is useful for carrying out certain
analyses in which some actions – whose name is expressed in dot notation – have to
be hidden, prevented from occurring, or renamed:

BEHAV MODIFICATIONS

BEHAV HIDINGS �names of actions to be hidden�
BEHAV RESTRICTIONS �names of actions to be restricted�
BEHAV RENAMINGS �names of actions to be changed�

Furthermore, static operators are transparently used in the translation semantics
for PADL (see Sect. 4.4). More precisely, the parallel composition operator is used
for causing AEIs to communicate with each other according to the declared attach-
ments. This is made possible by the relabeling operator, which is used for converting
to the same name local interactions that are attached to each other.

Example 4.3. On the basis of the considerations of Examples 4.1 and 4.2, the PADL
textual description of the client–server system introduced in Sect. 4.2 is as follows,
where we recall that void denotes the absence of formal data parameters in the
architectural description header and in the header of all AETs, the absence of formal
data parameters and data variables in the header of all process algebraic equations,
and the absence of architectural interactions in the architectural topology section:

ARCHI_TYPE Client_Server(void)

ARCHI_BEHAVIOR
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ARCHI_ELEM_TYPE Server_Type(void)

BEHAVIOR
Server(void; void) =
receive_request . compute_response .

send_response . Server()

INPUT_INTERACTIONS SYNC OR receive_request
OUTPUT_INTERACTIONS ASYNC OR send_response

DEP receive_request
ARCHI_ELEM_TYPE Client_Type(void)

BEHAVIOR
Client_Internal(void; void) =
process . Client_Interacting();
Client_Interacting(void; void) =
send_request .
choice
{
cond(send_request.success = true) ->

receive_response . Client_Internal(),
cond(send_request.success = false) ->

keep_processing . Client_Interacting()
}

INPUT_INTERACTIONS SYNC UNI receive_response
OUTPUT_INTERACTIONS SSYNC UNI send_request

ARCHI_TOPOLOGY

ARCHI_ELEM_INSTANCES
S : Server_Type();
C_1 : Client_Type();
C_2 : Client_Type()

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM C_1.send_request TO S.receive_request;
FROM C_2.send_request TO S.receive_request;
FROM S.send_response TO C_1.receive_response;
FROM S.send_response TO C_2.receive_response

END

Note the presence of a further internal action, keep processing, in the second
process algebraic equation of Client Type.

The corresponding PADL graphical description is shown in Fig. 4.2.
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C_1:Client_Type()

send_request receive_response

C_2:Client_Type()

receive_responsesend_request

receive_request send_response

S:Server_Type()

Fig. 4.2 Enriched flow graph of the client–server system

4.4 Translation Semantics for PADL

The semantics for PADL is given by a two-step translation into the process calcu-
lus of Sect. 1.3. The meaning of a PADL description is a process term stemming
from the parallel composition of the process algebraic specifications of the behavior
of the AEIs declared in the description, whose synchronization sets are determined
by the attachments declared in the description.

In the first step (Sect. 4.4.1), the focus is on the semantics of each AEI, which
is defined to be the behavior of the corresponding AET with all the action occur-
rences being preceded by the name of the AEI and the AET formal data parameters
being substituted for by the corresponding AEI actual data parameters. If the AEI
contains local or-interactions, each of them must be replaced by as many fresh lo-
cal uni-interactions as there are attachments involving the considered or-interaction.
Every occurrence of this or-interaction present in the behavior of the AEI must then
be suitably rewritten on the basis of the fresh local uni-interactions, in order to re-
flect the fact that an or-interaction can result in several alternative communications.
Moreover, if the AEI contains local asynchronous interactions, each of them must be
equipped with as many additional implicit AEIs as there are attachments involving
the considered asynchronous interaction, which behave as unbounded buffers.

In the second step (Sect. 4.4.2), the semantics of the whole architectural descrip-
tion is derived by composing in parallel the semantics of its AEIs according to the
declared attachments and by taking into account the specified behavioral modifica-
tions. This is achieved by transparently exploiting all the static operators: parallel
composition, hiding, restriction, and relabeling. Since attached local interactions
do not necessarily have the same name while the parallel composition operator of
Sect. 1.3 requires that synchronizing actions have the same name, first of all it is
necessary to relabel every set of attached local interactions to the same fresh action
name. These fresh action names then constitute the synchronization sets among the
process terms representing the semantics of the declared AEIs. Additional semantic
rules are also introduced for handling exceptions that may be raised by local semi-
synchronous interactions. Hiding, restriction, and relabeling operators are finally
used for enforcing possible behavioral modifications.
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4.4.1 Semantics of Individual Elements

The first step of the translation semantics defines the meaning of any individual AEI.
Let C be an AET with m ∈ N≥0 formal data parameters fp1, . . . , fpm and behavior
given by a sequence E of process algebraic equations obeying the revised syntax.
Let C be an AEI of type C with as many actual data parameters ap1, . . . ,apm consis-
tent by order and type with the formal data parameters. The kernel of the semantics
of C is given by C.E , in which every action name a becomes C.a. Then, every occur-
rence of fp j is substituted for by apj, 1≤ j ≤m. However, every local or-interaction
and every local asynchronous interaction of C requires a specific treatment.

As it guides a selective one-to-many communication, each local or-interaction
of C has to be replaced by as many fresh local uni-interactions as there are attach-
ments involving the considered or-interaction. As shown in Fig. 4.3, these fresh uni-
interactions are then attached to the local uni-interactions of other AEIs to which
the local or-interaction was originally attached. On the behavioral side, a function
called or-rewrite manipulates the right-hand side of the sequence of process alge-
braic equations of C on the basis of the fresh uni-interactions.

More precisely, the rewriting is applied only to those local or-interactions of C
such that the number attach-no( ) of attachments involving them is greater than 1. In
the rewriting process, or-dependences are dealt with by keeping track of the initially
empty set FI of fresh local input uni-interactions currently in force, arising from
local input or-interactions on which some local output or-interaction depends. Here
are the four essential clauses of the inductive definition of or-rewrite, where for
simplicity actions are devoid of dot notation, cond guards, and data exchange:

il

i1

o1

ol

i
C C

CC
o

Fig. 4.3 Topological management of local (synchronous) or-interactions
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• If a is an or-interaction of C such that attach-no(C.a)≤ 1 (if 0 then architectural)
or a uni-/and-interaction or an internal action:

or-rewriteFI(a .P) = a .or-rewriteFI(P)

• If a is a local input or-interaction of C on which no local output or-interaction
depends or a local output or-interaction that does not depend on any local input
or-interaction and attach-no(C.a) = l ≥ 2:

or-rewriteFI(a .P) = choice{a1 .or-rewriteFI(P),...
al .or-rewriteFI(P)}

• If i is a local input or-interaction of C on which a local output or-interaction
depends and attach-no(C.i) = l ≥ 2:

or-rewriteFI(i .P) = choice{i1 .or-rewriteFI−{i j |1≤ j≤l}∪{i1}(P),
...

il .or-rewriteFI−{i j |1≤ j≤l}∪{il}(P)}

Note that in this case set FI has to be updated in every branch of the choice due
to the or-dependence.

• If o is a local output or-interaction of C that depends on the local input or-
interaction i and attach-no(C.i) = attach-no(C.o)≥ 2 and i j ∈ FI:

or-rewriteFI(o .P) = o j .or-rewriteFI(P)

Note that no choice is generated in this case due to the or-dependence.

Then, we have the clauses for the remaining operators that can occur in the right-
hand side of the considered process algebraic equations:

or-rewriteFI(stop) = stop
or-rewriteFI(B(actual data par list)) = BFI(actual data par list)

or-rewriteFI(choice{P1, . . . ,Pn}) = choice{or-rewriteFI(P1),...
or-rewriteFI(Pn)}

where BFI ≡ B for FI = /0, whereas for FI �= /0:

BFI(formal data par list; data var list) = or-rewriteFI(P)

if B(formal data par list; data var list) = P.
As far as local asynchronous interactions are concerned, the decoupling of the be-

ginning and the end of the communications in which these interactions are involved
is managed by means of suitable buffers. More precisely, after the or-rewriting pro-
cess, for each local asynchronous uni-/and-interaction of C we have to introduce
additional implicit AEIs that behave like unbounded buffers, as shown in Fig. 4.4.
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Fig. 4.4 Topological management of local asynchronous uni-/and-interactions

As can be noted, in the case of a local asynchronous and-interaction, it is necessary
to introduce as many additional implicit AEIs as there are attachments involving the
considered interaction.

Each additional implicit input asynchronous queue (IAQ) and output asyn-
chronous queue (OAQ) is of the following type, where arrive is an always-
enabled input synchronous uni-interaction while depart is an output synchronous
uni-interaction enabled only if the buffer is not empty:

ARCHI_ELEM_TYPE Async_Queue_Type(void)

BEHAVIOR
Queue(int n := 0;

void) =
choice
{
cond(true) -> arrive . Queue(n + 1),
cond(n > 0) -> depart . Queue(n - 1)
}

INPUT_INTERACTIONS SYNC UNI arrive
OUTPUT_INTERACTIONS SYNC UNI depart
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In the case of a local input asynchronous uni-/and-interaction i of C, each
local output uni-interaction originally attached to i is implicitly re-attached to the
arrive interaction of one of the additional implicit IAQs. In contrast, the depart
interaction of each additional implicit IAQ is implicitly attached to i, which is im-
plicitly converted into a semi-synchronous interaction. Note that i becomes semi-
synchronous because the communications between the depart interactions and i
must not block C whenever some buffers are empty.

In the case of a local output asynchronous uni-/and-interaction o of C, this inter-
action is implicitly converted into a synchronous interaction and re-attached to each
arrive interaction of the additional implicit OAQs. Note that o is never blocked
because all arrive interactions are always enabled. In contrast, the depart
interaction of each additional implicit OAQ is attached to one of the input inter-
actions originally attached to o.

We conclude by providing the formal definition of the semantics of an individual
AEI, which is essentially given by the or-rewriting of the sequence of its process
algebraic equations composed in parallel with the behavior of each additional im-
plicit AEI associated with its local asynchronous interactions. Since the name of a
local asynchronous interaction may be different from the names of the local inter-
actions of the additional implicit AEIs to which the considered interaction has been
re-attached, we need to relabel all these names to the same name in order to cause
the corresponding interactions to communicate through the parallel composition op-
erator of Sect. 1.3. Moreover, the name must be new in order not to interfere with
other communications. This is easily achieved by concatenating the original names
of all the involved interactions through symbol #.

Definition 4.1. Let C be an AET with m ∈N≥0 formal data parameters fp1, . . . , fpm
and behavior given by a sequence E of process algebraic equations. Let C be an AEI
of type C with m ∈N≥0 actual data parameters ap1, . . . ,apm consistent by order and
type with the formal data parameters and:

• h ∈ N≥0 local input asynchronous uni-interactions i1, . . . , ih handled through the
related additional implicit AEIs IAQ1, . . . , IAQh

• h′ ∈ N≥0 local input asynchronous and-interactions i′1, . . . , i
′
h′ , where each i′j

is handled through the attach-no(C.i′j) = il j related additional implicit AEIs
IAQj,1, . . . , IAQj,il j• k ∈ N≥0 local output asynchronous uni-interactions o1, . . . ,ok handled through
the related additional implicit AEIs OAQ1, . . . ,OAQk

• k′ ∈ N≥0 local output asynchronous and-interactions o′1, . . . ,o
′
k′ , where each o′j

is handled through the attach-no(C.o′j) = ol j related additional implicit AEIs
OAQj,1, . . . ,OAQ j,ol j

Then the isolated semantics of C is the result of a cascade of function applications:

[[C]] = o-andk′
olk′ (. . .o-and1

ol1
(o-unik(i-andh′

ilh′ (. . . i-and1
il1

(i-unih(C)) . . .))) . . .)
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where, denoted by f (C) the current result, we define:

i-uni0(C) = or-rewrite /0(C.E {ap1 ↪→ fp1, . . . ,apm ↪→ fpm}) [ϕC,async]
i-uni j(C) = IAQj.Queue(0) [ϕC,async]

‖{IAQj .depart#C.i j} (i-uni j−1(C)) 1≤ j ≤ h

i-and j
1( f (C)) = IAQj,1.Queue(0) [ϕC,async] 1≤ j ≤ h′

‖{IAQj,1.depart#...#IAQj,il j
.depart#C.i′j} ( f (C))

i-and j
j′( f (C)) = IAQj, j′ .Queue(0) [ϕC,async] 2≤ j′ ≤ il j

‖{IAQj,1.depart#...#IAQj,il j
.depart#C.i′j}

(i-and j
j′−1( f (C)))

o-uni0( f (C)) = f (C)
o-unij( f (C)) = (o-unij−1( f (C)))‖{C.o j #OAQj .arrive}

OAQj.Queue(0) [ϕC,async] 1≤ j ≤ k

o-and j
1( f (C)) = ( f (C))‖{C.o′j #OAQj,1.arrive#...#OAQj,ol j

.arrive} 1≤ j ≤ k′

OAQj,1.Queue(0) [ϕC,async]

o-and j
j′( f (C)) = (o-and j

j′−1( f (C)))
‖{C.o′j#OAQj,1.arrive#...#OAQj,ol j

.arrive}
OAQj, j′ .Queue(0) [ϕC,async] 2≤ j′ ≤ ol j

with relabeling function ϕC,async transforming the originally asynchronous local in-
teractions of C and the local interactions of the additional implicit AEIs attached to
them into the respective fresh names occurring in the synchronization sets above.

Example 4.4. In the case of the PADL description of the client–server system shown
in Example 4.3, we have that [[C 1]] (resp. [[C 2]]) coincides with the sequence of
process algebraic equations of Client Type where action names are preceded
by C 1 (resp. C 2). The reason is that there are no formal data parameters, local
or-interactions, and local asynchronous interactions.

Instead, due to the presence of two dependent local or-interactions each involved
in two attachments, the construction of [[S]] requires first of all the application of
function or-rewrite to the only process algebraic equation of Server Type where
action names are preceded by S, which thus becomes:

Server’(void; void) =
choice
{
S.receive_request_1 . S.compute_response .

S.send_response_1 . Server’(),
S.receive_request_2 . S.compute_response .

S.send_response_2 . Server’()
}
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Then, it requires two additional implicit OAQs for the two fresh local output asyn-
chronous uni-interactionsS.send response 1 and S.send response 2. As
a consequence:

[[S]] = Server’[S.send response 1 �→ S.send response 1#OAQ 1.arrive,
S.send response 2 �→ S.send response 2#OAQ 2.arrive]

‖{S.send response 1#OAQ 1.arrive}
OAQ 1.Queue(0)[OAQ 1.arrive �→ S.send response 1#OAQ 1.arrive]

‖{S.send response 2#OAQ 2.arrive}
OAQ 2.Queue(0)[OAQ 2.arrive �→ S.send response 2#OAQ 2.arrive]

4.4.2 Semantics of Interacting Elements

The second step of the translation semantics defines the meaning of any set of AEIs
{C1, . . . ,Cn}, and hence of an entire architectural description. Fixed an AEI Cj in the
set, let L I Cj be the set of local interactions of Cj and L I Cj ;C1,...,Cn ⊆L I Cj be
the set of local interactions of Cj attached to {C1, . . . ,Cn}. Since local or-interactions
and local asynchronous interactions have been suitably transformed, here by local
interactions of Cj we mean:

• Its original local nonasynchronous uni-/and-interactions
• Its fresh local nonasynchronous uni-interactions that replace its original local

nonasynchronous or-interactions
• The local interactions of its additional implicit AEIs that are not attached to its

originally asynchronous local interactions

In order to make the process terms representing the semantics of these AEIs
communicate in the presence of attached interactions having different names, we
need a set S (C1, . . . ,Cn) of fresh action names, one for each pair of attached local
uni-interactions in {C1, . . . ,Cn} and for each set of local uni-interactions attached
to the same local and-interaction in {C1, . . . ,Cn}. Similar to Definition 4.1, every
fresh name is obtained by concatenating all the original names in a maximal set
of attached local interactions. For instance, Cj.o#Cg.i is the fresh action name for
the case in which the local output uni-interaction o of Cj is attached to the local
input uni-interaction i of Cg. Then, we need suitable injective relabeling functions
ϕCj ;C1,...,Cn mapping each set L I Cj ;C1,...,Cn to S (C1, . . . ,Cn) in such a way that
ϕCj ;C1,...,Cn(Cj.a1) = ϕCg;C1,...,Cn(Cg.a2) iff Cj.a1 and Cg.a2 are attached to each
other or to the same and-interaction.

Definition 4.2. The interacting semantics of Cj ∈ {C1, . . . ,Cn} with respect to
{C1, . . . ,Cn} is defined as follows:

[[Cj]]C1,...,Cn = [[Cj]] [ϕCj ;C1,...,Cn ]
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The interacting semantics of {C′1, . . . ,C′n′ }⊆{C1, . . . ,Cn}with respect to {C1, . . . ,Cn}
is the parallel composition of the interacting semantics of the individual AEIs:

[[C′1, . . . ,C
′
n′ ]]C1,...,Cn = [[C′1]]C1,...,Cn ‖S (C′1,C′2;C1,...,Cn)

[[C′2]]C1,...,Cn ‖S (C′1,C′3;C1,...,Cn)
⋃

S (C′2,C′3;C1,...,Cn)

. . . ‖n′−1⋃

i=1
S (C′i ,C′n′ ;C1,...,Cn)

[[C′n′ ]]C1,...,Cn

where S (C′j;C1, . . . ,Cn) = ϕC′j ;C1,...,Cn
(L I C′j ;C1,...,Cn

) is the synchronization set

of C′j with respect to {C1, . . . ,Cn}, S (C′j ,C′g;C1, . . . ,Cn) = S (C′j;C1, . . . ,Cn) ∩
S (C′g;C1, . . . ,Cn) is the pairwise synchronization set of C′j and C′g with respect to
{C1, . . . ,Cn}, and the unions of pairwise synchronization sets are consistent with the
left associativity of the parallel composition operator of Sect. 1.3.

For a correct management of local semi-synchronous interactions in the interact-
ing semantics, it is necessary to introduce some additional semantic rules. While a
local semi-synchronous interaction s executed by an AEI C gives rise to a transition
labeled with C.s within [[C]] – and hence to the setting of the related success vari-
able to true (see end of Sect. 4.3.4) – in an interacting context this transition has to be
relabeled as an exception if s cannot immediately participate in a communication.

Suppose that the local output interaction o of an AEI C1 is attached to the local
input interaction i of an AEI C2, whereC1.o#C2.i is their fresh name. Let P1 (resp. P2)
be the process term representing the current state of [[C1]]C1,C2 (resp. [[C2]]C1,C2 ) and
S = S (C1,C2;C1,C2). If o is synchronous and i is semi-synchronous, then the fol-
lowing additional semantic rule is necessary for handling exceptions:

P1 �C1.o#C2.i−−−−−−→P′1 P2
C1.o#C2.i−−−−−−→P′2

P1 ‖S P2
C2.i exception−−−−−−−−−−−−→P1 ‖S P′2 C2.i.success= false

In the symmetric case in which o is semi-synchronous and i is synchronous, the
following additional semantic rule is necessary for handling exceptions:

P1
C1.o#C2.i−−−−−−→P′1 P2 �C1.o#C2.i−−−−−−→P′2

P1 ‖S P2
C1.o exception−−−−−−−−−−−−→P′1 ‖S P2 C1.o.success= false

In the case in which both o and i are semi-synchronous, we need the previous two
additional semantic rules together. Note that the two rules encode a context-sensitive
variant of the relabeling operator, with respect to which behavioral equivalences are
congruent (see Sect. 1.4.1) if corresponding actions have the same qualifiers.

In Fig. 4.5, we summarize the semantic treatment of the nine forms of com-
munications resulting from the attachment of a local output synchronous, semi-
synchronous, or asynchronous interaction o of an AEI C1 whose interacting
semantics is process term P1 to a local input synchronous, semi-synchronous,
or asynchronous interaction i of an AEI C2 whose interacting semantics is process
term P2.
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Fig. 4.5 Semantic treatment of the forms of communication synchronicity available in PADL

Definition 4.3. Let A be an architectural description whose complete set of AEIs
is {C1, . . . ,Cn}, and let H , R, and ϕ be possible behavioral modifications of A
enforcing action hiding, action restriction, and action renaming, respectively. Then
the semantics of A is defined as follows:

[[A ]]bbm = [[C1, . . . ,Cn]]C1,...,Cn

[[A ]]abm = [[A ]]bbm /H \R [ϕ ]

depending on whether it is intended before or after behavioral modifications.

Example 4.5. On the basis of the isolated semantics of the individual AEIs discussed
in Example 4.4, the semantics of the entire PADL description of the client–server
system shown in Example 4.3 is given by the following process term:

[[S]][S.receive request 1 �→ C 1.send request#S.receive request 1,
OAQ 1.depart �→ OAQ 1.depart#C 1.receive response,
S.receive request 2 �→ C 2.send request#S.receive request 2,
OAQ 2.depart �→ OAQ 2.depart#C 2.receive response]

‖{C 1.send request#S.receive request 1,
OAQ 1.depart#C 1.receive response}

[[C 1]][C 1.send request �→ C 1.send request#S.receive request 1,
C 1.receive response �→ OAQ 1.depart#C 1.receive response]

‖{C 2.send request#S.receive request 2,
OAQ 2.depart#C 2.receive response}

[[C 2]][C 2.send request �→ C 2.send request#S.receive request 2,
C 2.receive response �→ OAQ 2.depart#C 2.receive response]
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4.5 Summarizing Example: Pipe–Filter System

Before moving to the last guideline, we illustrate the enhancement of usability with
respect to process algebra by means of a further example in which we model a
pipe–filter system. In general, this is composed of a number of filters, each of which
reads streams of row data on its inputs, applies them a transformation, and produces
streams of processed data on its outputs, thus realizing an incremental process. Fil-
ters are connected through pipes, each of which transmits outputs of one filter to in-
puts of another filter. For simplicity, the scenario we consider includes four identical
filters, each equipped with a finite buffer. All filters are connected through a single
pipe that forwards any item received from the upstream filter to one of the three
downstream filters according to the availability of free positions in their buffers.

Let us first model this system with process algebra. The model is given by the par-
allel composition of five process terms representing the four filters – whose buffers
are initially empty and can hold up to ten items – and the pipe:

Pipe Filter
Δ= Upstream Filter0/10‖{output accept item}

Pipe‖{forward input item1}
Downstream Filter1

0/10‖{forward input item2}
Downstream Filter2

0/10‖{forward input item3}
Downstream Filter3

0/10

In this model, it is not clear which process term communicates with which process
term, nor can there be confidence about the correctness of the synchronization sets
associated with the occurrences of the parallel composition operator. Furthermore,
the degree of synchronicity and multiplicity of the communications is completely
obscure and cannot be easily inferred.

Then, we have the set of equations defining Upstream Filter0/10 (1≤ j ≤ 9):

Upstream Filter0/10
Δ= input item . transform item .Upstream Filter1/10

Upstream Filter j/10
Δ= input item . transform item .Upstream Filter j+1/10

+output accept item .Upstream Filter j−1/10

Upstream Filter10/10
Δ= output accept item .Upstream Filter9/10

In these equations, it is not clear which actions are part of the interface of the up-
stream filter and which actions represent internal activities (it can only be guessed).
Moreover, the designer is forced to use a name like output accept item for the action
describing the communication between the upstream filter and the pipe, because the
parallel composition operator of Sect. 1.3 requires names of synchronizing actions
to coincide. A more natural name from the viewpoint of the upstream filter (resp. the
pipe) would have been output item (resp. accept item). A solution to this problem
could be the use of relabeling functions.
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Here is the only equation defining Pipe:

Pipe
Δ= output accept item .(forward input item1 .Pipe

+forward input item2 .Pipe
+forward input item3 .Pipe)

Besides the same problem with action names as before, there is a problem with
scalability. In fact, for a different number of downstream filters, the intervention of
the designer is required in order to modify the part of the defining equation enclosed
in parentheses.

The set of equations defining Downstream Filter1
0/10 (1≤ j ≤ 9) given by:

Downstream Filter1
0/10

Δ= forward input item1 . transform item .

Downstream Filter1
1/10

Downstream Filter1
j/10

Δ= forward input item1 . transform item .

Downstream Filter1
j+1/10

+output item .Downstream Filter1
j−1/10

Downstream Filter1
10/10

Δ= output item .Downstream Filter1
9/10

the set of equations defining Downstream Filter2
0/10 (1≤ j ≤ 9) given by:

Downstream Filter2
0/10

Δ= forward input item2 . transform item .

Downstream Filter2
1/10

Downstream Filter2
j/10

Δ= forward input item2 . transform item .

Downstream Filter2
j+1/10

+output item .Downstream Filter2
j−1/10

Downstream Filter2
10/10

Δ= output item .Downstream Filter2
9/10

and the set of equations defining Downstream Filter3
0/10 (1≤ j ≤ 9) given by:

Downstream Filter3
0/10

Δ= forward input item3 . transform item .

Downstream Filter3
1/10

Downstream Filter3
j/10

Δ= forward input item3 . transform item .

Downstream Filter3
j+1/10

+output item .Downstream Filter3
j−1/10

Downstream Filter3
10/10

Δ= output item .Downstream Filter3
9/10

are similar to each other and to the set of equations defining Upstream Filter0/10, as
they differ only for the names of the process constants and of some actions. In order
to avoid this redundancy, suitable relabeling functions should have been used. In
any case, there is a problem with scalability. For a different number of downstream
filters, the intervention of the designer is required in order to add the necessary
defining equations or relabeling functions.
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Let us now model the same pipe–filter system with PADL. Here is the header:

ARCHI_TYPE Pipe_Filter(const integer pf_buffer_size := 10)

It provides explicit support for data parameterization at the beginning of the de-
scription. The initialization values are the default actual values for the formal data
parameters of the whole description. These values can be used in the architectural
topology section when passing actual data parameters in the declaration of AEIs.

The architectural behavior section starts with the definition of the filter AET:

ARCHI_ELEM_TYPE Filter_Type(const integer buffer_size)

BEHAVIOR
Filter(integer(0..buffer_size) item_num := 0;

void) =
choice
{
cond(item_num < buffer_size) ->
input_item . transform_item . Filter(item_num + 1),
cond(item_num > 0) ->
output_item . Filter(item_num - 1)

}

INPUT_INTERACTIONS SYNC UNI input_item
OUTPUT_INTERACTIONS SYNC UNI output_item

The definition of a single AET for the four filters is enough, as they are identi-
cal. Due to the use of formal data parameters and Boolean guards, a single process
algebraic equation suffices. Furthermore, the distinction between interactions and
internal actions is made explicit, and their names have been freely chosen.

We also note that the declaration of each formal data parameter of the entire
description or of a single AET is preceded by keyword const. This reminds us
that the value of such a formal data parameter is constant, whereas this is not the
case with formal data parameters of process algebraic equations inside AETs.

Then, we have the definition of the pipe AET:

ARCHI_ELEM_TYPE Pipe_Type(void)

BEHAVIOR
Pipe(void; void) =
accept_item . forward_item . Pipe()

INPUT_INTERACTIONS SYNC UNI accept_item
OUTPUT_INTERACTIONS SYNC OR forward_item

Scalability has been achieved by declaring forward item as an or-interaction.
Here is the architectural topology section:

ARCHI_ELEM_INSTANCES
F_0 : Filter_Type(pf_buffer_size);
P : Pipe_Type();



150 4 Component-Oriented Modeling

F_1 : Filter_Type(pf_buffer_size);
F_2 : Filter_Type(pf_buffer_size);
F_3 : Filter_Type(pf_buffer_size)

ARCHI_INTERACTIONS
F_0.input_item;
F_1.output_item; F_2.output_item; F_3.output_item

ARCHI_ATTACHMENTS
FROM F_0.output_item TO P.accept_item;
FROM P.forward_item TO F_1.input_item;
FROM P.forward_item TO F_2.input_item;
FROM P.forward_item TO F_3.input_item

From this description the communication scheme is clear, with F 0 being the up-
stream filter and F 1, F 2, and F 3 being the downstream filters. We point out that
the input item interaction of the upstream filter and the output item inter-
actions of the downstream filters have been declared as architectural interactions.
This allows for future structural extensions of the pipe–filter system, which will be
discussed in Sect. 4.6 together with how to describe the topology more concisely.
The topology of the pipe–filter system is even better illustrated by the graphical
description shown in Fig. 4.6.

As far as the translation semantics of the PADL description of the pipe–filter sys-
tem is concerned, it turns out that it closely resembles the process algebraic model
of the same system provided at the beginning of this section. Here is the isolated
semantics of the various AEIs:

[[F 0]] = F 0.Filter{10 ↪→ buffer size}
[[F 1]] = F 1.Filter{10 ↪→ buffer size}
[[F 2]] = F 2.Filter{10 ↪→ buffer size}
[[F 3]] = F 3.Filter{10 ↪→ buffer size}

[[P]] = or-rewrite /0(P.Pipe)

P:Pipe_Type()

input_item

output_item

accept_item

input_item

output_item output_item output_item

forward_item

input_item input_item

F_0:Filter_Type(10)

F_1:Filter_Type(10) F_2:Filter_Type(10) F_3:Filter_Type(10)

Fig. 4.6 Enriched flow graph of the pipe–filter system
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where or-rewrite /0(P.Pipe) is given by:

Pipe’(void; void) =
P.accept_item . choice

{
P.forward_item_1 . Pipe’(),
P.forward_item_2 . Pipe’(),
P.forward_item_3 . Pipe’()

}

The semantics of Pipe Filter(10) is given by the following process term,
which is isomorphic to Pipe Filter up to action names:

[[F 0]][F 0.output item �→ F 0.output item#P.accept item]
‖{F 0.output item#P.accept item}

[[P]][P.accept item �→ F 0.output item#P.accept item,
P.forward item 1 �→ P.forward item 1#F 1.input item,
P.forward item 2 �→ P.forward item 2#F 2.input item,
P.forward item 3 �→ P.forward item 3#F 3.input item]

‖{P.forward item 1#F 1.input item}
[[F 1]][F 1.input item �→ P.forward item 1#F 1.input item]
‖{P.forward item 2#F 2.input item}

[[F 2]][F 2.input item �→ P.forward item 2#F 2.input item]
‖{P.forward item 3#F 3.input item}

[[F 3]][F 3.input item �→ P.forward item 3#F 3.input item]

The items processed by the pipe–filter system that we have modeled are all iden-
tical. However, it might be the case that the items are different from each other,
which can be formalized by giving each of them an identifier. In this case, we have
to revise the previous description, as we have to keep track of the order in which
items arrive at buffers. This can be accomplished by exploiting the data exchange
capability of PADL together with the data types it supports.

Here is the new header, where only the name of the description has changed:

ARCHI_TYPE Pipe_Filter_Id(const integer pf_buffer_size := 10)

Then, we have the redefinition of the filter AET:

ARCHI_ELEM_TYPE Filter_Type(const integer buffer_size)

BEHAVIOR
Filter(list(integer) item_list := list_cons();

local integer id) =
choice
{
cond(length(item_list) < buffer_size) ->
input_item?(id) . transform_item .

Filter(concat(item_list, list_cons(id))),
cond(length(item_list) > 0) ->
output_item!(first(item_list)) . Filter(tail(item_list))

}

INPUT_INTERACTIONS SYNC UNI input_item
OUTPUT_INTERACTIONS SYNC UNI output_item
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In order to manage items correctly, an initially empty list-typed parameter has been
used for holding the identifiers of the various items according to the order of their
arrival. Several operations on lists are supported by PADL, among which we men-
tion function list cons() for constructing a list, function length() which
returns the number of values in a list, function concat() for concatenating two
lists, function first() which returns the first value in a nonempty list, and func-
tion tail() which returns a list without its first value.

An input action prefix operator has been used for modeling item arrival, whereas
an output action prefix operator has been used for modeling item departure. The
variable occurring in the input action is declared as a local variable in the header of
the process algebraic equation. This declaration is preceded by keyword local.

Here is the redefinition of the pipe AET, where a local variable has been used in
order to preserve the identity of items throughout the system:

ARCHI_ELEM_TYPE Pipe_Type(void)

BEHAVIOR
Pipe(void;

local integer id) =
accept_item?(id) . forward_item!(id) . Pipe()

INPUT_INTERACTIONS SYNC UNI accept_item
OUTPUT_INTERACTIONS SYNC OR forward_item

Finally, the architectural topology section, the enriched flow graph, and the struc-
ture of the process term formalizing the semantics for this variant of the pipe–filter
system are the same as those for the original system.

4.6 G8: Supporting Architectural Styles

Since certain software organizational principles are frequently recurring in practice,
they have been classified as architectural styles [169, 184]. Examples of fami-
lies of software systems sharing specific organizational principles are call-return
systems(main program and subroutines, object-oriented programs, hierarchical
layers, client–server systems), dataflow systems (pipe–filter systems, compilers),
repositories (databases, hypertexts), virtual machines (interpreters), and event-based
systems (publish–subscribe systems).

An architectural style defines a vocabulary of components and connectors to-
gether with a set of constraints on how they should behave and be combined. Ideally,
architectural styles should enable the designer to capitalize on codified principles
and experience to specify, analyze, plan, and monitor the construction of software
systems with high levels of efficiency and confidence. For this reason, it is important
to provide support for architectural styles in PADL.

Unfortunately, the concept of architectural style is hard to formalize. In fact,
there are at least two degrees of freedom: the variability of the architectural element
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behavior and the variability of the architectural topology. These variabilities can be
interpreted in different ways, with their interpretation possibly changing from style
to style. In order to keep the task manageable, we introduce an approximation of the
concept of architectural style, which we call architectural type.

In this section, after introducing the notions of architectural type and architectural
invocation (Sect. 4.6.1), we first concentrate on the simplest form of architectural in-
vocation in order to illustrate hierarchical modeling (Sect. 4.6.2). Then, we present
the notion of behavioral conformity for architectural invocations comprising actual
AETs different from the corresponding formal AETs (Sect. 4.6.3). Finally, we ex-
amine the admitted topological variations for architectural invocations including an
actual topology different from the formal topology (Sects. 4.6.4, 4.6.5, and 4.6.6).
All forms of architectural invocation are exemplified through variants of the client–
server system and of the pipe–filter system.

4.6.1 Architectural Types

An architectural type (AT) is a family of software systems in which the behavior of
the architectural elements and the overall topology of the system can vary in a con-
trolled way inside the family. The controlled variability of the behavior is achieved
by allowing only the internal behavior of corresponding AETs to vary from instance
to instance of an AT. The controlled variability of the topology is achieved by admit-
ting only exogenous, endogenous, and multiplicity variations. The first ones permit
to add certain AEIs by attaching some of them to architectural interactions. The
second ones are concerned with changes of the number of certain AEIs in certain
positions of the topology. The third ones allow the number of certain AEIs attached
to certain local and-/or-interactions to change from instance to instance of an AT.

The instances of an AT are generated via architectural invocations of the defini-
tion of the AT, which consists of a PADL description. An architectural invocation
passes both data parameters and architectural parameters, as it comprises:

• Actual values for formal data parameters, which replace the default values
• Actual AETs preserving the observable behavior of the formal AETs
• An actual topology including a group of actual AEIs, a group of actual archi-

tectural interactions, a group of actual attachments, and a group of topological
variations complying with the formal topology

• Actual behavioral modifications divided into three groups
• Actual names for architectural interactions, needed for hierarchical modeling

Symbol @ is used as separator of groups of actual parameters. When omitted from
an architectural invocation, a group of actual architectural parameters is intended to
coincide with the corresponding group of formal architectural parameters occurring
in the PADL description of the AT. The semantics of an instance of an AT is built in
the same way as the semantics of the definition of the AT, by using actual parameters
instead of formal ones and relabeling architectural interactions to their actual names.
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4.6.2 Hierarchical Modeling

In the simplest form of architectural invocation, all the actual architectural
parameters coincide with the corresponding formal architectural parameters and
only actual data parameters are passed (if any). This form of invocation does not
introduce any behavioral or topological variation with respect to the definition of the
invoked AT. However, it is useful for hierarchical modeling purposes, if we extend
PADL in such a way that an AET can be defined as an instance of a previously
defined AT.

In this case, the AET behavior is given by the semantics of the AT instance
and the AET interactions are unified with the AT architectural interactions. More
precisely, the AET interactions become the actual names for the AT architectural
interactions, whose synchronicity and multiplicity qualifiers are overridden. In an
enriched flow graph, any instance of this AET is represented as a box with double
border and the unification between AEI interactions and AT architectural interac-
tions is represented through dashed edges.

Example 4.6. Let us consider a variant of the client–server system of Sect. 4.2 where
the server has the same structure and behavior as the pipe–filter system of Sect. 4.5.

Here is the architectural description header, where formal data parameters
are now necessary with respect to the original client–server system modeled in
Example 4.3:

ARCHI_TYPE H_Client_Server(const integer hcs_buffer_size := 10)

In this variant of the client–server system, it is not possible to exploit the or-
dependence mechanism. The reason is that this mechanism no longer works inside
an architectural element resulting from the combination of other elements, as their
interleaving may alter the relationships between local output or-interactions and lo-
cal input or-interactions. As a consequence, in order to ensure that responses are sent
to the clients that issued the corresponding requests, each request needs to carry the
client identifier. Hence, the client AET and the server AET are redefined as follows
(remind that @ separates groups of actual parameters, which may be empty):

ARCHI_ELEM_TYPE Client_Type(const integer id)

BEHAVIOR
Client_Internal(void; void) =
process . Client_Interacting();

Client_Interacting(void; void) =
send_request!(id) .
choice
{
cond(send_request.success = true) ->

receive_response . Client_Internal(),
cond(send_request.success = false) ->

keep_processing . Client_Interacting()
}
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INPUT_INTERACTIONS SYNC UNI receive_response
OUTPUT_INTERACTIONS SSYNC UNI send_request

ARCHI_ELEM_TYPE Server_Type(const integer buffer_size)

BEHAVIOR
Server(void; void) =
Pipe_Filter_Id(buffer_size @

@ /* reuse formal AETs */
@ @ @ @ /* reuse formal topology */
@ @ @ /* no behavioral modifications */
UNIFY F_0.input_item WITH receive_request;
FOR_ALL 1 <= j <= 2
UNIFY F_1.output_item!(j),

F_2.output_item!(j),
F_3.output_item!(j)

WITH send_response[j])

INPUT_INTERACTIONS SYNC OR receive_request
OUTPUT_INTERACTIONS ASYNC UNI send_response[1];

send_response[2]

The only architectural input interaction of Pipe Filter Id has been unified
with the only input interaction of Server, thus causing the input item inter-
action of the upstream filter to become an or-interaction. In contrast, the three ar-
chitectural output interactions of Pipe Filter Id have been unified with the
two output interactions of Server, thus causing the output item interactions
of the three downstream filters to become asynchronous. More precisely, they
have been unified with send response[1] when they output value 1 and with
send response[2] when they output value 2, so as to establish a correct call
back. Unification has been expressed concisely thanks to the FOR ALL construct.

Here is the architectural topology section:

ARCHI_ELEM_INSTANCES
S : Server_Type(hcs_buffer_size);
C_1 : Client_Type(1);
C_2 : Client_Type(2)

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM C_1.send_request TO S.receive_request;
FROM C_2.send_request TO S.receive_request;
FROM S.send_response[1] TO C_1.receive_response;
FROM S.send_response[2] TO C_2.receive_response

which is graphically illustrated in Fig. 4.7.
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P:Pipe_Type()

output_item

accept_item

input_item

output_item output_item output_item

input_item

forward_item

input_item

F_0:Filter_Type(10)

F_1:Filter_Type(10) F_2:Filter_Type(10) F_3:Filter_Type(10)

C_1:Client_Type(1)

send_requestsend_requestreceive_response

C_2:Client_Type(2)

input_item

receive_request

!2

send_response[2]

receive_response

send_response[1]

S:Server_Type(10)

!1

Fig. 4.7 Enriched flow graph of the hierarchical client–server system

4.6.3 Behavioral Conformity

We now abandon the simplest form of architectural invocation and hence we assume
that actual architectural parameters are passed that are syntactically different from
the corresponding formal architectural parameters of the invoked AT. In particular,
we consider the case of actual AETs syntactically different from the corresponding
formal AETs, with the actual topology introducing no variations with respect to the
formal topology.

According to the definition of AT, an AT instance A1 behaviorally conforms to
another AT instance A2 if both exhibit the same observable behavior. The concept of
behavioral conformity lends itself to be formalized by means of a behavioral equiv-
alence. This should be able to abstract from internal actions, as they play no role in
behavioral conformity. The equivalence should also be a congruence with respect to
static operators, so as to ease the derivation of AT-level behavioral conformity from
AET-level behavioral conformity. Finally, the equivalence should be not too coarse,
in order to preserve many properties of interest. A natural candidate turns out to be
weak bisimulation equivalence≈B (see Sect. 1.4.8).

The properties mentioned above imply that the cost of the AT-level behavioral
conformity check is linear in the number of AETs, instead of being exponential in
the number of AEIs. Since an actual AET and the corresponding formal AET can
give different names to related interactions, during the check it is necessary to find
suitable relabeling functions. In contrast, internal actions are simply hidden.

Definition 4.4. Let C1,C2 be two AETs with:

• D1,D2 being the sets of their formal data parameters
• E1,E2 being the sequences of their process algebraic equations
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• N1,N2 be the sets of their internal actions
• I1,I2 be the sets of their interactions

Assume that parameters in D1,D2 are consistent by number, order, and type and
that interactions in I1,I2 are consistent by number, order, and qualifiers. We say
that C1 behaviorally conforms to C2 iff there exist two injective relabeling functions
ϕ1,ϕ2 for I1,I2, respectively, which have the same codomain and are qualifier-
consistent, such that for all syntactical substitutions σ of D1,D2:

(E1 σ)/N1 [ϕ1] ≈B (E2 σ)/N2 [ϕ2]

Definition 4.5. Let A1,A2 be two AT instances. We say that A1 (strictly) behav-
iorally conforms to A2 iff:

• Their actual data parameters are consistent by number, order, and type (and
value)

• Their AETs are consistent by number, order, and behavioral conformity
• Their AEIs are consistent by number, order, and type and have actual data pa-

rameters consistent by number, order, and type (and value)
• Their architectural interactions are consistent by number, order, qualifiers, and

AEI membership
• Their attachments are consistent by number, order, and qualifiers and AEI mem-

bership of the involved local interactions

Proposition 4.1. Let A1,A2 be two AT instances with:

• N1,N2 being the sets of internal actions of their AEIs
• I1,I2 being the sets of interactions of their AEIs

Whenever A1 strictly behaviorally conforms to A2, then there exist two relabeling
functions ϕ1,ϕ2 for I1,I2, which are injective at least on local interactions, have
the same codomain, and are qualifier-consistent, such that:

[[A1]]bbm /N1 [ϕ1] ≈B [[A2]]bbm /N2 [ϕ2]

Example 4.7. Let us consider a variant of the pipe–filter system of Sect. 4.5 in which
filters can fail and be subsequently repaired. This can be obtained through the fol-
lowing invocation of AT Pipe Filter, in which the AET Filter Type is re-
placed by the new AET Faulty Filter Type passed as actual parameter:

Pipe_Filter(@ /* reuse default values of data parameters */
Faulty_Filter_Type;
Pipe_Type @
F_0 : Faulty_Filter_Type(pf_buffer_size);
P : Pipe_Type();
F_1 : Faulty_Filter_Type(pf_buffer_size);
F_2 : Faulty_Filter_Type(pf_buffer_size);
F_3 : Faulty_Filter_Type(pf_buffer_size) @
@ @ @ /* reuse rest of formal topology */
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@ @ @ /* no behavioral modifications */
) /* reuse names of actual arch. interacts */

Suppose that the faulty filter AET is defined as follows:

ARCHI_ELEM_TYPE Faulty_Filter_Type(const integer buffer_size)

BEHAVIOR
Faulty_Filter(integer(0..buffer_size) item_num := 0;

void) =
choice
{
cond(item_num < buffer_size) ->
input_item . transform_item . Faulty_Filter(item_num + 1),
cond(item_num > 0) ->
output_item . Faulty_Filter(item_num - 1),
fail . repair . Faulty_Filter(item_num)
}

INPUT_INTERACTIONS SYNC UNI input_item
OUTPUT_INTERACTIONS SYNC UNI output_item

As can be noted, there are two more internal actions, which are fail and repair.
The question now arises as to whether the architectural invocation generates a

legal instance of the AT Pipe Filter. The answer is positive because, observed
that there are no topological variations, the AT instance originated by the architec-
tural invocation strictly behaviorally conforms to the AT instance originated by the
AT definition.

In fact, besides having the same data parameters and consistent AEIs, ar-
chitectural interactions, and attachments, the two AT instances have behav-
iorally conformant AETs. Apart from the pipe AET, which is the same in both
AT instances, it turns out that Faulty Filter Type and Filter Type
have the same data parameters and interactions. Moreover, ≈B relates the pro-
cess term Faulty Filter(0)/{transform item,fail,repair} to
process term Filter(0)/{transform item} for all values assigned to
buffer size. Using the identical relabeling function for interactions is enough
in this case.

4.6.4 Exogenous Variations

We finally examine the case of an architectural invocation that, besides possibly
passing actual AETs syntactically different from the corresponding formal AETs,
introduces topological variations. Here, we consider the addition of AEIs obtained
by attaching some of them to the topological frontier of the invoked AT, which is
the set of its architectural interactions. This is called an exogenous variation.
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Syntactically, an exogenous variation is expressed within the actual topology by
means of keyword EXO followed by four parameters:

• A set of additional AEIs, which must be instances of the actual AETs
• A set of replacements of some of the actual architectural interactions with new

architectural interactions belonging to the additional AEIs
• A set of additional attachments involving all additional AEIs and all replaced

actual architectural interactions, which thus become local
• Possible nested exogenous variations

The resulting AT instance topologically conforms to the invoked AT if, with re-
spect to a portion of the formal topology of the invoked AT, the addendum is com-
plete and contains no new kinds of attachment.

Definition 4.6. An exogenous variation (strictly) topologically conforms to the for-
mal topology of the invoked AT iff there exists an injective function corr defined
from the set of additional AEIs to the set of actual AEIs such that:

• C and corr(C) have the same type (and the same actual data parameter values)
• For all interactions a of an arbitrary additional AEI C:

– C.a is local (resp. architectural) iff corr(C).a is local (resp. architectural)
– There is an additional AEI C′ with an additional attachment from C.a to

C′.a′ (resp. from C′.a′ to C.a) iff there is an attachment from corr(C).a to
corr(C′).a′ (resp. from corr(C′).a′ to corr(C).a)

– There is an additional attachment from C.a to the replaced architectural in-
teraction K.b (resp. from K.b to C.a) iff there is an actual AEI K′ of the
same type as K with an attachment from corr(C).a to K′.b (resp. from K′.b to
corr(C).a)

Example 4.8. Let us extend the pipe–filter system of Sect. 4.5. Its topological fron-
tier is composed of the architectural input interaction F 0.input item and the
architectural output interactions F 1.output item, F 2.output item, and
F 3.output item. An exogenous variation at F 0.input itemmust replicate
the defined topology by viewing F 0 as a downstream filter. Similarly, an exogenous
variation at F 1.output item, F 2.output item, or F 3.output item
must replicate the defined topology by viewing F 1, F 2, or F 3, respectively, as
an upstream filter.

Here is an architectural invocation producing an exogenous variation taking place
at F 2.output item, where an additional pipe P 1 has the already existing AEI
F 2 as upstream filter and the new AEIs F 4, F 5, and F 6 as downstream filters:

Pipe_Filter(@ /* reuse default values of data params */
@ /* reuse formal AETs */
@ @ @ /* reuse formal AEIs, ar. ints, and atts */
EXO(P_1 : Pipe_Type();

F_4 : Filter_Type(pf_buffer_size);
F_5 : Filter_Type(pf_buffer_size);
F_6 : Filter_Type(pf_buffer_size) @
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Fig. 4.8 Enriched flow graph of an exogenous variation of the pipe–filter system

REPLACE F_2.output_item WITH F_4.output_item,
F_5.output_item,
F_6.output_item @

FROM F_2.output_item TO P_1.accept_item;
FROM P_1.forward_item TO F_4.input_item;
FROM P_1.forward_item TO F_5.input_item;
FROM P_1.forward_item TO F_6.input_item @
) @ /* no nested exogenous variations */

@ @ @ /* no behavioral modifications */
) /* reuse names of actual arch. inters */

which is graphically illustrated in Fig. 4.8. In this case, function corr exists and
maps P 1 to P, F 4 to F 1, F 5 to F 2, and F 6 to F 3.

4.6.5 Endogenous Variations

A different kind of topological variation is the one that takes place inside the topo-
logical frontier. We call it an endogenous variation when it changes the number
of AEIs of certain types in certain positions of the topology, without altering the
number of attachments in which local and-/or-interactions are involved.

Syntactically, an endogenous variation is expressed through data parameters of
the AT, each representing the variable number of AEIs of one of the involved types,
together with an indexing mechanism based on the FOR ALL construct. This can
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be used in the architectural topology section of the AT definition for the concise
declaration of arbitrarily many AEIs of the same type, of their architectural interac-
tions, and of the attachments involving them.

Unlike exogenous variations, all endogenous variations conform to the formal
topology by construction. Moreover, they permit new kinds of attachment with re-
spect to the formal topology, which may be created when varying the number of
AEIs of some of the involved types from one to more than one.

Example 4.9. Let us consider a ring of pipe–filter systems, each identical to that
of Sect. 4.5. Every pipe–filter system in the ring waits for items from the previous
system in the ring, processes them, and then sends them to the next system in the
ring. We assume there is an initial component accepting items from the outside and
returning them after they have performed an entire traversal of the ring.

When modeling the ring, it is desirable to allow for a variable number of pipe–
filter systems. For this reason, the architectural description header includes such a
number as a formal data parameter:

ARCHI_TYPE Pipe_Filter_R(const integer pfr_system_num := 3,
const integer pfr_buffer_size := 10)

The initial component AET is defined as follows, where in the first state it waits
for new items coming from the outside or old items coming from the final pipe–filter
system in the ring, while in the second state it sends a new item to the initial
pipe–filter system in the ring if the ring has not saturated:

ARCHI_ELEM_TYPE Init_Comp_Type(void)

BEHAVIOR
Init_Comp_In(void; void) =
choice
{
accept_item . Init_Comp_New(),
receive_item . return_item . Init_Comp_In()

};
Init_Comp_New(void; void) =
choice
{
send_item . Init_Comp_In(),
receive_item . return_item . Init_Comp_New()

}

INPUT_INTERACTIONS SYNC UNI accept_item; receive_item
OUTPUT_INTERACTIONS SYNC UNI return_item; send_item

The pipe–filter system AET is defined as follows by means of an invocation of
the pipe–filter AT:

ARCHI_ELEM_TYPE PF_System_Type(const integer buffer_size)

BEHAVIOR
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PF_System(void; void) =
Pipe_Filter(buffer_size @

@ /* reuse formal AETs */
@ @ @ @ /* reuse formal topology */
@ @ @ /* no behavioral modifications */
UNIFY F_0.input_item WITH receive_item;
UNIFY F_1.output_item,

F_2.output_item,
F_3.output_item WITH send_item)

INPUT_INTERACTIONS SYNC UNI receive_item
OUTPUT_INTERACTIONS SYNC UNI send_item

The architectural topology section is parameterized with respect to the value of
pfr system num and is concisely expressed thanks to the FOR ALL construct
already encountered in Example 4.6:

ARCHI_ELEM_INSTANCES
IC : Init_Comp_Type();
FOR_ALL 1 <= j <= pfr_system_num
PFS[j] : PF_System_Type(pfr_buffer_size)

ARCHI_INTERACTIONS
IC.accept_item; IC.return_item

ARCHI_ATTACHMENTS
FROM IC.send_item TO PFS[1].receive_item;
FOR_ALL 1 <= j <= pfr_system_num - 1
FROM PFS[j].send_item TO PFS[j + 1].receive_item;
FROM PFS[pfr_system_num].send_item TO IC.receive_item

Figure 4.9 shows Pipe Filter R(4, 10 @ @ @ @ @ @ @ @ @), which
is the endogenous variation obtained when changing the number of pipe–filter sys-
tems from the default value 3 to 4. Note that a new kind of attachment is created
when passing from one pipe–filter system to several pipe–filter systems, which is
the attachment from a send item interaction of a PF System Type instance to
a receive item interaction of another PF System Type instance.

IC:Init_Comp_Type()

accept_item return_item

PFS[1]:PF_System_Type(10)

PFS[2]:PF_System_Type(10)
send_item

receive_item

send_item

send_item receive_item

receive_item
PFS[3]:PF_System_Type(10)

send_item

PFS[4]:PF_System_Type(10)

send_item

receive_item

receive_item

Fig. 4.9 Enriched flow graph of an endogenous variation of the pipe–filter ring
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4.6.6 Multiplicity Variations

Another kind of topological variation taking place inside the topological frontier is
the one that changes the number of AEIs of certain types that are attached to certain
local and-/or-interactions. This is called a multiplicity variation.

Syntactically, a multiplicity variation is expressed in the same way as an endoge-
nous variation; i.e., through data parameters of the AT representing the variable
numbers of involved AEIs and an indexing mechanism based on the FOR ALL con-
struct to be used in the architectural topology section of the AT definition.

With respect to endogenous variations, multiplicity variations cannot create new
kinds of attachment when changing the number of involved AEIs. Moreover, a mul-
tiplicity variation is admissible iff the involved local and-/or-interactions support
variability. We say that a local and-/or-interaction of an AEI supports variability
if the AEI is not attached with uni-interactions to any of the AEIs attached to the
considered local and-/or-interaction. If this were not the case, when increasing the
number of AEIs attached to the local and-/or-interaction, the new AEIs could not be
attached to the uni-interactions.

Example 4.10. Let us consider once more the pipe–filter system of Sect. 4.5. When
modeling this system, it is desirable to allow for a variable number of down-
stream filters. This can be achieved by introducing topological variability at the
or-interaction forward item of the pipe.

Here is the new architectural description header:

ARCHI_TYPE OV_Pipe_Filter(const integer ovpf_downstr_num := 3,
const integer ovpf_buffer_size := 10)

Observed that the definitions of the filter AET and of the pipe AET do not change,
the architectural topology section is expressed as follows:

ARCHI_ELEM_INSTANCES
F[0] : Filter_Type(ovpf_buffer_size);
P : Pipe_Type();
FOR_ALL 1 <= j <= ovpf_downstr_num
F[j] : Filter_Type(ovpf_buffer_size)

ARCHI_INTERACTIONS
F[0].input_item;
FOR_ALL 1 <= j <= ovpf_downstr_num
F[j].output_item

ARCHI_ATTACHMENTS
FROM F[0].output_item TO P.accept_item;
FOR_ALL 1 <= j <= ovpf_downstr_num
FROM P.forward_item TO F[j].input_item

It is worth noting that the FOR ALL construct could have been exploited in Sect. 4.5
already for getting a more concise description of the topology of the original pipe–
filter system.
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Fig. 4.10 Enriched flow graph of a multiplicity variation of the pipe–filter system

Figure 4.10 shows OV Pipe Filter(4, 10 @ @ @ @ @ @ @ @ @),
which is the multiplicity variation obtained when changing the number of down-
stream filters from the default value 3 to 4.

4.7 Comparisons

The design choices and the guidelines leading to the development of the syntax and
of the semantics for the process algebraic architectural description language pre-
sented in this chapter are taken from [41, 7, 38]. In order to highlight the features of
PADL with respect to the related literature, in this section we perform a comparison
with process algebra (Sect. 4.7.1), parallel composition operators (Sect. 4.7.2), and
other software architecture description languages (Sect. 4.7.3).

4.7.1 Comparison with Process Algebra

PADL has been specifically structured on the basis of a set of guidelines aimed
at improving usability with respect to process algebra. Perhaps the most important
guideline is the one prescribing the presence of two distinct sections for behavior de-
scription and topology description. This significantly eases the task of the designer,
as the two descriptions are no longer intertwinedly encoded through the parallel
composition operator, but are sharply separated.

Another remarkable difference with respect to process algebra is that in PADL
the intended use of every action is made clear via a set of explicit qualifiers, so
that in particular the actions modeling interaction activities have no longer to be in-
ferred from the occurrences of the parallel composition operator. This is then com-
plemented by the fact that communicating interactions have to be explicitly related
by means of attachments, thus removing any constraint on synchronizing action
names. As a consequence of the interface elicitation and of the explicit communica-
tion scheme, error-prone situations can be easily detected via static checks.
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Among the various behavioral operators offered by process algebra, PADL
makes available to the designer only dynamic operators as they are simpler to use,
whereas static operators are implicitly employed in the behavioral modification
section and transparently exploited in the translation semantics. The textual nota-
tion is then accompanied by a graphical notation based on enriched flow graphs.
We also mention the higher degree of specification reuse achieved at the com-
ponent level through the concept of AET and at the system level through the
concept of AT.

4.7.2 Comparison with Parallel Composition Operators

Depending on the qualifiers associated with the interactions, the communication
mechanism of PADL implements one-to-one or inclusive/selective one-to-many
connections where each of the involved parties can communicate in synchronous,
semi-synchronous, or asynchronous mode. Due to its simplicity and its expressive-
ness, this mechanism turns out to be more adequate for modeling purposes than
typical parallel composition operators.

In fact, the parallel composition operator of CCS [154] supports only two-way
synchronizations, where the two synchronizing actions are required to have com-
plementary names. The use of the restriction operator is then necessary to enforce
synchronization, as having complementary names is not enough for two actions
to synchronize. The parallel composition operator of CSP [119] supports multiway
synchronizations, but synchronizing actions are required to have the same name.
In order to establish which actions must synchronize, explicit synchronization sets
have then to be associated with the occurrences of the parallel composition operator,
whose contents depend on the operator associativity and the order of the subterms
composed in parallel. The parallel composition operator of ACP [22] overcomes the
previously mentioned drawbacks by means of the definition of a communication
function over the set of action names. However, the use of the restriction operator is
again necessary to enforce synchronization.

In [94], a more friendly parallel composition operator has been proposed, which
is n-ary instead of binary and requires the explicit declaration of interfaces. The
operator is then extended in order to deal with m-among-n synchronizations
(2≤ m≤ n), which take place when n process terms synchronize m by m on
the same action. It is worth noting that an inclusive one-to-many communication
coincides with an n-among-n synchronization, whereas a selective one-to-many
communication coincides with a 2-among-n synchronization.

In [103], an alternative approach has been taken, which requires the specification
of the sets of actions that can synchronize with each other and, within each set,
the indication of those groups of actions that result in complete synchronizations.
Although more flexible, this approach cannot enforce m-among-n synchronizations,
because it assumes that complete synchronizations are closed with respect to set
inclusion and adopts a rule that favors the largest complete synchronizations.
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4.7.3 Comparison with Other Software Architecture Languages

We conclude by comparing PADL with other process algebraic architectural
description languages that have appeared in the literature, among which we mention
Wright [18,17], Darwin/FSP [141,142], LEDA [61], and π-ADL [166]. First of all,
PADL deals only with static architectures, whereas the other languages can manage
dynamic architectures – in which architectural elements can be created/destroyed
and attachments can be reconfigured at run time – and some of them also mobile
architectures – in which architectural elements can migrate at run time. The choice
of restricting PADL to static architectures is motivated by the need of developing
effective analysis techniques like those of the next three chapters, so as to achieve
an acceptable balance between expressiveness and analyzability.

We then observe that the textual notation and the translation semantics for PADL
are inspired by Wright. However, there is a couple of differences that are worth
mentioning. First, Wright distinguishes between components and connectors, while
in PADL there are just architectural elements, each of which can be interpreted
as a component or a connector depending on the specific system. This avoids the
presence of trivial connectors in the architectural descriptions. Second, in Wright
the representation of each component/connector is accompanied by the specification
of its ports/roles, whereas in PADL the interface of each architectural element is
simply expressed through actions. Since ports/roles can be retrieved by applying the
hiding operator to the behavior of the related components/connectors, avoiding their
specification simplifies the architectural descriptions.

Furthermore, PADL introduces a number of new features with respect to the
mentioned process algebraic architectural description languages. One of them is the
adoption of specific qualifiers for eliciting interaction synchronicity and multiplic-
ity and keywords for declaring dependences between interactions. Then, we have
the possibility of expressing behavioral modifications, which is useful for conduct-
ing certain kinds of analysis. Another important characteristic is the notion of AT,
which opens the way to the formal description of families of software systems and
provides support for hierarchical modeling via the architectural invocation mech-
anism. This approximation of the notion of architectural style limits the variabil-
ity within any system family to internal behavioral variations respecting behavioral
conformity and to a restricted number of topological variations. Once again, the
reason for these limitations is related to analyzability.

The process algebraic formalization of architectural styles based on ATs is quite
different from other approaches. For instance, in [1] a formal framework has been
provided for precisely defining architectural styles and analyzing within and be-
tween different architectural styles. This is accomplished by means of a small set
of mappings from the syntactic domain of architectural descriptions to the seman-
tic domain of architectural meanings, following the standard denotational approach
developed for programming languages. As another example, in [81] a syntactic the-
ory of software architecture has been presented that is based on set theory, regular
expressions, and context-free grammars. Architectural styles have been categorized
through the typing of the nodes and of the connections in the diagrammatic syntax,



4.7 Comparisons 167

which is accompanied by a pattern matching mechanism. A different direction has
been taken in [159], where architectural styles have been represented as logical
theories and a method has been introduced for the stepwise refinement of an abstract
architecture into a relatively correct lower level architecture. As a final example,
in [138] architectural styles have been formalized as context-free graph grammars,
which produce all the architectures topologically conforming to the various styles.
In this setting, software architectures have to be described as graphs whose nodes
represent computational entities and whose edges represent communication links,
then a coordinator has to be expressed in terms of conditional graph rewriting in
order to manage the creation and the removal of entities and links.

For the sake of completeness, we point out that many architectural description
languages have been proposed that are not process algebraic. We have for instance
Aesop [95], UniCon [183], Rapide [140], SADL [159], C2 [148], and Acme [97],
as well as approaches based on Z [1], CHAM [123], UML [149], and Java [16].
Comparing PADL – or the class of process algebraic architectural description lan-
guages – with each of these different architectural description languages is outside
the scope of this chapter. We rather refer the interested reader to survey papers
like [150].





Chapter 5
Component-Oriented Functional Verification

Abstract Enhancing the usability of process algebra on the modeling side must be
accompanied by an analogous effort on the verification side. At the architectural de-
sign level, it is important to detect mismatches stemming from the inappropriate as-
sembly of several software units, which are correct when considered in isolation. In
this chapter, we present a topological reduction process based on behavioral equiv-
alences called MISMDET, which exploits their congruence properties for efficiency
reasons and their modal logic characterizations for diagnostic purposes. It investi-
gates the absence of architectural mismatches in a component-oriented fashion by
examining star-shaped and cycle-shaped topological portions. The application of the
two techniques corresponding to the two topological formats, called architectural
compatibility check and architectural interoperability check, is exemplified through
the verification of a compressing proxy system and of a cruise control system.

5.1 MISMDET: Architecture-Level Mismatch Detection

As argued at the end of the previous chapter, for modeling purposes PADL is much
easier to use than process algebra. As far as the verification of functional proper-
ties is concerned, PADL inherits all the analysis techniques applicable to process
algebraic descriptions, like equivalence checking [71] and model checking [67].
However, what we need to verify at the software architecture level of design is the
absence of mismatches stemming from the inappropriate assembly of several soft-
ware units, which are correct when considered in isolation. If these architectural
mismatches are not revealed in the early design stages, then a lack of coordination
among architectural elements will emerge at run time [96].

For efficiency reasons, the detection of architectural mismatches should proceed
in a component-oriented manner. In other words, the absence of architectural mis-
matches within the description of a software system should be inferred from the
properties of its individual architectural elements. Whenever an architectural mis-
match is encountered, diagnostic information should be produced in order to enable
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the identification of the architectural elements responsible for well-formedness
violations. In the case of component-based software systems, this should then lead
to the modification of the design of in-house components or to the synthesis of mod-
els of wrappers/adaptors for off-the-shelf components [198, 53, 190].

In this chapter, we tackle the problem introduced above by means of a topological
reduction process called MISMDET. Given an architectural description, MISMDET

relies on an architectural compatibility check for star-shaped portions of the topol-
ogy and on an architectural interoperability check for cycle-shaped portions of the
topology, both of which are based on behavioral equivalences (see Chap. 1). Each
portion of the topology passing the related check is replaced by a single architec-
tural element whose observable behavior is equivalent to that of the original portion,
then the application of the two checks continues on the reduced topology.

The various basic portions of the topology can be considered in isolation –
and hence the generation of the entire state space underlying the architectural de-
scription can be avoided – provided that the employed behavioral equivalence is a
congruence with respect to static operators. Whenever a check is not passed, the
modal logic characterization of the employed behavioral equivalence can be ex-
ploited in order to derive diagnostic information. As can be noted, the activity of
architectural mismatch detection conducted with MISMDET makes use of process
algebraic machinery only.

An important characteristic of MISMDET is scalability. In fact, under certain
conditions, the absence of architectural mismatches verified in basic portions of the
topology extends to the whole topology and also to the entire architectural type.

This chapter is organized as follows. In Sect. 5.2, we outline the class of prop-
erties we are interested in verifying, together with the detection strategy on which
MISMDET is based. In Sect. 5.3, we introduce the architectural compatibility check
for star-shaped topologies, which is exemplified through the verification of a com-
pressing proxy system. In Sect. 5.4, we present the architectural interoperability
check for cycle-shaped topologies, which is exemplified through the verification of a
cruise control system. In Sects. 5.5 and 5.6, we generalize the previous process alge-
braic techniques for mismatch detection to arbitrary topologies and to architectural
types, respectively. Finally, in Sect. 5.7 we compare the considered equivalence-
checking-based topological reduction process with the related literature.

5.2 Class of Properties and Detection Strategy

Properties related to the absence of architectural mismatches can be formalized in
terms of the possibility/necessity of executing certain local interactions in a certain
order. The reason is that internal actions and architectural interactions are not in-
volved in communications; hence, architectural mismatches can be generated only
by the wrong interplay of local interactions. An action-based modal or temporal
logic is thus a good candidate for specifying such properties. We restrict ourselves
to logical formulas in which negation does not occur, as this simplifies the derivation
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of the validity of a property for an architectural description – where certain actions
may not be hidden – from a topologically reduced variant of that description – where
the same actions may be hidden.

MISMDET focuses on the class Ψ of properties P expressible in terms of the
possibility/necessity of executing certain local interactions in a certain order, for
which there exist behavioral equivalences≈P satisfying the following constraints:

• ≈P must preserve P – i.e., it cannot relate two models such that one of them
enjoys P whereas the other one does not – which is fundamental for enabling
the topological reduction process.

• ≈P must be a congruence with respect to static operators, which allows the
topological reduction process to be applied to single portions of the topology of
an architectural description without affecting the possible validity of P .

• ≈P must be weak, which permits to get rid of unimportant activities, especially
the ones that are not local interactions.

• ≈P must have a modal logic characterization, which is necessary for producing
diagnostic information in case of failure of the topological reduction process.

A typical example of property related to architectural well-formedness is
deadlock freedom. It is included in Ψ because it is preserved by weak bisimu-
lation equivalence ≈B, which is congruent with respect to static operators and
characterized by weak Hennessy–Milner logic (see Sect. 1.4.8). Since any negation-
free formula of weak Hennessy–Milner logic is preserved by ≈B, the considered
class Ψ also includes all properties expressible through such formulas.

Given an architectural description, MISMDET works on an abstract variant of its
enriched flow graph, where vertices correspond to AEIs and two vertices are linked
by an edge iff attachments have been declared among the interactions of their cor-
responding AEIs. In other words, MISMDET abstracts from the direction and the
number of the attachments between any two AEIs. The resulting graph is an arbi-
trary combination of possibly intersecting stars and cycles, which are thus viewed
as basic topological formats. This graph is assumed to be strongly connected.

The detection strategy of MISMDET consists of applying specific checks locally
to all stars/cycles of AEIs occurring in the abstract graph. Given a property P ∈Ψ ,
each check verifies whether the star/cycle contains an AEI that is ≈P-equivalent
to the whole star/cycle, in which case the star/cycle can be replaced by that AEI.
MISMDET successfully terminates when the whole graph has been reduced to a sin-
gle ≈P -equivalent AEI, as at that point it is sufficient to verify whether that AEI
satisfies P or not. In case of failure, the mentioned checks provide diagnostic in-
formation through a formula of the modal logic characterizing≈P , which is useful
to pinpoint AEIs responsible for possible mismatches within a single star/cycle.

Before applying the check to a star/cycle given by the set of AEIs {C1, . . . ,Cn},
for each AEI Cj in the set we have to hide all of its internal actions and archi-
tectural interactions as well as all of its local interactions that are not attached to
{C1, . . . ,Cn}. The reason is that these actions cannot result in mismatches within the
star/cycle, but may hamper the topological reduction process if left visible. For each
AEI Cj in the set we also have to exclude all of its additional implicit AEIs that are
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not attached to {C1, . . . ,Cn}, as those additional implicit AEIs are necessary only in
the presence of the AEIs not in {C1, . . . ,Cn} to which they are attached.

Therefore, the only actions that remain observable are those in L I Cj ;C1,...,Cn

(see beginning of Sect. 4.4.2) and those in OA L I Cj . The latter set contains the
originally asynchronous local interactions of Cj together with the local interac-
tions of the related additional implicit AEIs to which they have been re-attached,
including the exceptions that may be raised by the local input semi-synchronous
interactions in the set corresponding to local input asynchronous interactions. We
point out that OA L I Cj is disjoint from L I Cj , as it essentially comprises the
action names forming the composite names occurring in the synchronization sets of
Definition 4.1.

In order to set the visibility of each action according to the needs of MISMDET,
we introduce a partially closed variant of the interacting semantics of Definition 4.2.
Since in many cases we also have to hide all the actions in OA L I Cj , we introduce
a totally closed variant too. Both variants are parameterized with respect to a set of
AEIs {C′′1 , . . . ,C′′n′′ }, n′′ ∈N, determining the additional implicit AEIs to be included.

Definition 5.1. Let C be an AET with m ∈ N≥0 formal data parameters fp1, . . . , fpm
and behavior given by a sequence E of process algebraic equations. Let Cj ∈
{C1, . . . ,Cn} be an AEI of type C with m ∈N≥0 actual data parameters ap1, . . . ,apm
consistent by order and type with the formal data parameters. The interacting seman-
tics of Cj with respect to {C1, . . . ,Cn}without buffers for its originally asynchronous
local interactions is defined as follows:

[[Cj]]wob
C1,...,Cn

= or-rewrite /0(Cj.E {api ↪→ fpi | 1≤ i≤ m}) [ϕCj ,async] [ϕCj ;C1,...,Cn ]

We denote by [[Cj]]
#C′′1 ,...,C′′

n′′
C1,...,Cn

the variant of [[Cj]]wob
C1,...,Cn

including the buffers for the
originally asynchronous local interactions of Cj attached to {C′′1 , . . . ,C′′n′′ }.
Definition 5.2. The partially closed interacting semantics of Cj ∈ {C1, . . . ,Cn} with
respect to {C1, . . . ,Cn} including its buffers attached to {C′′1 , . . . ,C′′n′′ } is defined as:

[[Cj]]
pc;#C′′1 ,...,C′′

n′′
C1,...,Cn

= [[Cj]]
#C′′1 ,...,C′′

n′′
C1,...,Cn

/(Name−VCj;C1,...,Cn)

with VCj ;C1,...,Cn = ϕCj ;C1,...,Cn(L I Cj ;C1,...,Cn)
⋃

ϕCj ,async(OA L I Cj ) and we write

[[Cj]]
pc;wob
C1,...,Cn

if n′′ = 0. The partially closed interacting semantics of {C′1, . . . ,C′n′ } ⊆
{C1, . . . ,Cn} with respect to {C1, . . . ,Cn} including their buffers attached to
{C′′1 , . . . ,C′′n′′ } is defined as follows:

[[C′1, . . . ,C
′
n′ ]]

pc;#C′′1 ,...,C′′
n′′

C1,...,Cn
= [[C′1]]

pc;#C′′1 ,...,C′′
n′′

C1,...,Cn
‖S (C′1,C′2;C1,...,Cn)

[[C′2]]
pc;#C′′1 ,...,C′′

n′′
C1,...,Cn

‖S (C′1,C′3;C1,...,Cn)
⋃

S (C′2,C′3;C1,...,Cn)

. . . ‖n′−1⋃

i=1
S (C′i ,C′n′ ;C1,...,Cn)

[[C′n′ ]]
pc;#C′′1 ,...,C′′

n′′
C1,...,Cn

where the synchronization sets are built as in Definition 4.2.
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Definition 5.3. The totally closed interacting semantics of Cj ∈ {C1, . . . ,Cn} with
respect to {C1, . . . ,Cn} including its buffers attached to {C′′1 , . . . ,C′′n′′ } is defined as:

[[Cj]]
tc;#C′′1 ,...,C′′

n′′
C1,...,Cn

= [[Cj]]
pc;#C′′1 ,...,C′′

n′′
C1,...,Cn

/ϕCj ,async(OA L I Cj )

and we write [[Cj]]tc;wob
C1,...,Cn

if n′′ = 0. The totally closed interacting semantics of
{C′1, . . . ,C′n′ } ⊆ {C1, . . . ,Cn} with respect to {C1, . . . ,Cn} including their buffers at-
tached to {C′′1 , . . . ,C′′n′′ } is defined as follows:

[[C′1, . . . ,C
′
n′ ]]

tc;#C′′1 ,...,C′′
n′′

C1,...,Cn
= [[C′1]]

tc;#C′′1 ,...,C′′
n′′

C1,...,Cn
‖S (C′1,C′2;C1,...,Cn)

[[C′2]]
tc;#C′′1 ,...,C′′

n′′
C1,...,Cn

‖S (C′1,C′3;C1,...,Cn)
⋃

S (C′2,C′3;C1,...,Cn)

. . . ‖n′−1⋃

i=1
S (C′i ,C′n′ ;C1,...,Cn)

[[C′n′ ]]
tc;#C′′1 ,...,C′′

n′′
C1,...,Cn

where the synchronization sets are built as in Definition 4.2. The variant totally

closed up to {C′′′1 , . . . ,C′′′n′′′ } ⊂ {C′1, . . . ,C′n′ }, i.e., in which [[C′′′j ]]
pc;#C′′1 ,...,C′′

n′′
C1,...,Cn

is con-

sidered in place of [[C′′′j ]]
tc;#C′′1 ,...,C′′

n′′
C1,...,Cn

, is denoted by [[C′1, . . . ,C
′
n′ ]]

tc;#C′′1 ,...,C′′
n′′ ;C

′′′
1 ,...,C′′′

n′′′
C1,...,Cn

.

5.3 Architectural Compatibility of Star-Shaped Topologies

A star is a portion of the abstract enriched flow graph of an architectural description
A , which is not part of a cyclic subgraph. It is formed by a central AEI K and a
border BK = {C1, . . . ,Cn} including all the AEIs attached to K. In the case of a star,
MISMDET investigates the validity of a property P ∈Ψ by analyzing the interplay
between the central AEI K and each of the AEIs in the border, as there cannot be
attachments among AEIs in the border. In order to achieve a correct coordination
between K and Cj ∈BK , the actual observable behavior of Cj should coincide with
the observable behavior expected by K. In other words, the observable behavior of
K should not be altered by the insertion of Cj into the border of the star.

Definition 5.4. Given an architectural description A and a property P ∈Ψ , let K
be the central AEI of a star of A , BK = {C1, . . . ,Cn} be the border of the star, Cj

be an AEI in BK , HK,Cj be the set of interactions of additional implicit AEIs of K
that are attached to interactions of Cj , and EK,Cj be the set of exceptions that may be
raised by semi-synchronous interactions involved in attachments between K and Cj.
We say that K is P-compatible with Cj iff:

([[K]]pc;#Cj
A ‖S (K,Cj ;A ) [[Cj]]tc;#K

K,BK
)/(HK,Cj

⋃
EK,Cj ) ≈P [[K]]pc;wob

A

All possible originally asynchronous local interactions of Cj and all of its inter-
actions possibly attached to AEIs outside the star have been hidden by taking the
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totally closed interacting semantics of Cj with respect to the AEIs inside the star.
We also observe that HK,Cj

⋃
EK,Cj = /0 whenever there are no nonsynchronous in-

teractions involved in attachments inside the star, in which case all partially closed
interacting semantics between [[K]]pc;#A

A and [[K]]pc;wob
A coincide with [[K]]tc;wob

A .

Proposition 5.1. Given an architectural description A and a property P ∈Ψ , let
K be the central AEI of a star of A , BK = {C1, . . . ,Cn} be the border of the star, and
HK,Cj and EK,Cj be the same sets as Definition 5.4. Whenever K is P-compatible
with every Cj ∈BK, then:

[[K,BK ]]tc;#K,BK ;K
K,BK

/ n⋃

j=1
(HK,Cj

⋃
EK,Cj ) ≈P [[K]]pc;wob

A

hence [[K,BK ]]tc;#K,BK ;K
K,BK

/
⋃n

j=1(HK,Cj

⋃
EK,Cj ) satisfies P iff so does [[K]]pc;wob

A .

Based on the sufficient condition established by the proposition above, in the case
of a star the architectural compatibility check for a property P ∈Ψ is applied to
any pair of AEIs composed of the central AEI K and one of the AEIs in BK . If the
check is passed by all such pairs of AEIs, then the whole star can be reduced to its
central AEI K and the validity of P can be verified on this single AEI. In contrast,
if the check is not passed with respect to some Cg ∈BK , then this reveals a potential
lack of coordination between K and Cg.

We observe that the cost of the compatibility-check-based verification of P
grows linearly with the size of BK , while the cost of directly verifying the whole
star against P grows exponentially with the size of {K}⋃

BK .

5.3.1 Case Study: Compressing Proxy System

We now illustrate an application of the architectural compatibility check to the
compressing proxy system examined in [124]. The purpose of this system is to
improve the performance of a Unix-based web browser over a slow network by
causing the HTTP server to compress data with the gzip program before sending
them across the network. Since this system is the result of the combination of an
HTTP server with the gzip program, it must be designed in such a way to ensure
deadlock freedom.

The HTTP server is a series of filters strung together, which communicate
through a function-call-based stream interface that allows an upstream filter to push
data into a downstream filter. The gzip program is instead a Unix filter commu-
nicating through pipes. An important difference between the two software units is
that the gzip program explicitly chooses when to get data, while the HTTP filters
are forced to read when data are pushed to them. Moreover, the gzip program may
attempt to output a portion of the compressed data before finishing getting all the
input data, which may happen when its internal buffer becomes full.

The compressing proxy system must be assembled from the existing HTTP
server and the gzip program without modifying them. The only solution is to
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implement a software adaptor between two consecutive filters of the HTTP server,
which redirects to the gzip program data coming from the upstream filter and deliv-
ers to the downstream filter compressed data produced by the gzip program.

Let us model the system with PADL. Here is the architectural description header:

ARCHI_TYPE Compressing_Proxy(void)

As far as the HTTP server is concerned, it is enough to consider the upstream
filter and the downstream filter between which data compression takes place via the
gzip program; hence, the definition of the following two AETs:

ARCHI_ELEM_TYPE U_Filter_Type(void)

BEHAVIOR
U_Filter(void; void) =
write_data . U_Filter()

INPUT_INTERACTIONS void
OUTPUT_INTERACTIONS SYNC UNI write_data

ARCHI_ELEM_TYPE D_Filter_Type(void)

BEHAVIOR
D_Filter(void; void) =
read_data . D_Filter()

INPUT_INTERACTIONS SYNC UNI read_data
OUTPUT_INTERACTIONS void

The adaptor can be in one of the following states: waiting for data from the up-
stream filter, passing packets of data to be compressed to the gzip program, waiting
for packets of compressed data from the gzip program, or sending compressed data
to the downstream filter. Here is the definition of the adaptor AET:

ARCHI_ELEM_TYPE Adaptor_Type(void)

BEHAVIOR
Adaptor_From_Filter(void; void) =
receive_from_filter . put_to_gzip . Adaptor_To_Gzip();

Adaptor_To_Gzip(void; void) =
choice
{
put_to_gzip . Adaptor_To_Gzip(),
put_eoi_gzip . get_from_gzip . Adaptor_From_Gzip()
};

Adaptor_From_Gzip(void; void) =
choice
{
get_from_gzip . Adaptor_From_Gzip(),
get_eoo_gzip . Adaptor_To_Filter()
};
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Adaptor_To_Filter(void; void) =
send_to_filter . Adaptor_From_Filter()

INPUT_INTERACTIONS SYNC UNI receive_from_filter;
get_from_gzip; get_eoo_gzip

OUTPUT_INTERACTIONS SYNC UNI send_to_filter;
put_to_gzip; put_eoi_gzip

Then, we have the definition of the gzip AET, whose state changes upon receiving
end-of-input messages and upon sending end-of-output messages:

ARCHI_ELEM_TYPE Gzip_Type(void)

BEHAVIOR
Gzip(void; void) =
get_data . Gzip_In();

Gzip_In(void; void) =
choice
{
get_data . Gzip_In(),
get_eoi . compress . put_data . Gzip_Out(),
saturate_buffer . compress . put_data . Gzip_Out()
};

Gzip_Out(void; void) =
choice
{
put_data . Gzip_Out(),
put_eoo . Gzip()
}

INPUT_INTERACTIONS SYNC UNI get_data; get_eoi
OUTPUT_INTERACTIONS SYNC UNI put_data; put_eoo

Finally, we have the architectural topology section, which is graphically illus-
trated in Fig. 5.1:

ARCHI_ELEM_INSTANCES
UF : U_Filter_Type();
DF : D_Filter_Type();
A : Adaptor_Type();
G : Gzip_Type()

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM UF.write_data TO A.receive_from_filter;
FROM A.put_to_gzip TO G.get_data;
FROM A.put_eoi_gzip TO G.get_eoi;
FROM G.put_data TO A.get_from_gzip;
FROM G.put_eoo TO A.get_eoo_gzip;
FROM A.send_to_filter TO DF.read_data
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A:Adaptor_Type()

G:Gzip_Type()

get_data

put_to_gzip put_eoi_gzip get_from_gzip get_eoo_gzip

get_eoi put_data put_eoo

receive_from_filter

write_data

UF:U_Filter_Type() DF:D_Filter_Type()

read_data

send_to_filter

Fig. 5.1 Enriched flow graph of the compressing proxy system

Having formalized the architecture of the compressing proxy system with PADL,
we can proceed with deadlock freedom analysis. First of all, we observe that the
abstract variant of the enriched flow graph in Fig. 5.1 subsumes all the attachments
between A and G with a single edge, so that its topology precisely coincides with a
star whose central AEI is A. Based on the considerations of Sect. 5.2, we apply the
architectural compatibility check by exploiting weak bisimulation equivalence≈B.
Since there are no local nonsynchronous interactions, the check can be applied by
taking the totally closed interacting semantics without buffers of the various AEIs.

Unfortunately, it turns out that A is not deadlock-freedom-compatible with G be-
cause [[A]]tc;wob

A,UF,DF,G‖S (A,G;A,UF,DF,G) [[G]]tc;wob
A,UF,DF,G �≈B [[A]]tc;wob

A,UF,DF,G. In order to understand
the origin of the potential architectural mismatch, we can exploit the following dis-
tinguishing formula of weak Hennessy–Milner logic generated when checking for
weak bisimulation equivalence:

〈〈UF.write data#A.receive from filter〉〉
〈〈A.put to gzip#G.get data〉〉

¬〈〈A.put eoi gzip#G.get eoi〉〉 true

The formula above says that it may happen that the adaptor, after receiving some
data from the upstream filter, starts sending data packets to the gzip program but is
not able to send the end-of-input message. Since this can only be due to the satura-
tion of the internal buffer of the gzip program, the current description of the com-
pressing proxy system can deadlock when G autonomously decides to start sending
compressed data back to A. In fact, this creates a circular waiting because G can
send compressed data to A iff A has signaled end of input to G.

In order to solve this problem, A must be redesigned in order to account for the
possibility of receiving compressed data from G before signaling end of input. On
the other hand, G must inform A about its intention to start sending compressed data
in advance.
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Here is the redefinition of the adaptor AET, where a new state has been added
in which activities are suspended in order to allow the gzip program to empty its
internal buffer:

ARCHI_ELEM_TYPE Adaptor_Type(void)

BEHAVIOR
Adaptor_From_Filter(void; void) =
receive_from_filter . put_to_gzip . Adaptor_To_Gzip();

Adaptor_To_Gzip(void; void) =
choice
{
put_to_gzip . Adaptor_To_Gzip(),
put_eoi_gzip . get_from_gzip . Adaptor_From_Gzip(),
notified_buffer_full . get_from_gzip . Adaptor_Suspended()
};

Adaptor_Suspended(void; void) =
choice
{
get_from_gzip . Adaptor_Suspended(),
get_eoo_gzip . put_to_gzip . Adaptor_To_Gzip()
};

Adaptor_From_Gzip(void; void) =
choice
{
get_from_gzip . Adaptor_From_Gzip(),
get_eoo_gzip . Adaptor_To_Filter()
};

Adaptor_To_Filter(void; void) =
send_to_filter . Adaptor_From_Filter()

INPUT_INTERACTIONS SYNC UNI receive_from_filter;
get_from_gzip; get_eoo_gzip;
notified_buffer_full

OUTPUT_INTERACTIONS SYNC UNI send_to_filter;
put_to_gzip; put_eoi_gzip

Then, we have the redefinition of the gzip AET, where a new interaction has been
elicited:

ARCHI_ELEM_TYPE Gzip_Type(void)

BEHAVIOR
Gzip(void; void) =
get_data . Gzip_In();

Gzip_In(void; void) =
choice
{
get_data . Gzip_In(),
get_eoi . compress . put_data . Gzip_Out(),
notify_buffer_full . compress . put_data . Gzip_Out()
};
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Gzip_Out(void; void) =
choice
{
put_data . Gzip_Out(),
put_eoo . Gzip()
}

INPUT_INTERACTIONS SYNC UNI get_data; get_eoi
OUTPUT_INTERACTIONS SYNC UNI put_data; put_eoo;

notify_buffer_full

Finally, we have the redeclaration of the attachments:

ARCHI_ATTACHMENTS
FROM UF.write_data TO A.receive_from_filter;
FROM A.put_to_gzip TO G.get_data;
FROM A.put_eoi_gzip TO G.get_eoi;
FROM G.notify_buffer_full TO A.notified_buffer_full;
FROM G.put_data TO A.get_from_gzip;
FROM G.put_eoo TO A.get_eoo_gzip;
FROM A.send_to_filter TO DF.read_data

With this revised description of the compressing proxy system, it turns out
that A is deadlock-freedom-compatible with G. Since A is also deadlock-freedom-
compatible with UF and DF, we can conclude that Compressing Proxy is dead-
lock free from the fact that A is deadlock free, without having to generate the state
space underlying the entire architectural description.

5.4 Architectural Interoperability of Cycle-Shaped Topologies

The architectural compatibility check is not enough when dealing with cycles. As
shown in the following example inspired by [124], the AEIs in a cycle cannot be
considered two-by-two because each of them may interfere with any of the others.

Example 5.1. A party involves three kinds of actor: guest, host, and waiter. For in-
stance, suppose that after arriving at the party place, the guest can ask the host for an
orange juice or a pineapple juice. Of course, the host is expected to tell the waiter to
bring the requested drink. What if the host is absentminded or malicious, and hence
tells the waiter to bring a drink different from the one requested by the guest? This
scenario is depicted in Fig. 5.2.

The question arises as to whether the party can deadlock. This corresponds
to the embarrassing situation in which the guest receives a drink different from
the requested one, as the guest may then be led to refrain from asking for fur-
ther drinks. If we apply the architectural compatibility check, it turns out that H
is deadlock-freedom-compatible both with W and with G. From the fact that H is
deadlock free, we should then conclude that the party cannot deadlock. Unfortu-
nately, this is not true, as can be seen in Fig. 5.2 by considering the case in which G
asks H for an orange juice but H tells W to bring a pineapple juice to G.
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G:Guest_Type()

}

{
choice

Guest(void; void) =

W:Waiter_Type()

}

{
choice

Waiter(void; void) =

ask_orange.served_orange.Guest(),
ask_pineapple.served_pineapple.Guest()

told_orange.serve_orange.Waiter(),
told_pineapple.serve_pineapple.Waiter()

H:Host_Type()

}
}
tell_orange.Host()
tell_pineapple.Host(),

asked_pineapple.choice{
},
tell_pineapple.Host()
tell_orange.Host(),

asked_orange.choice{
{
choice

Host(void; void) =

ask_orange ask_pineapple

asked_pineapple

asked_orange

served_orange served_pineapple

serve_pineapple

serve_orange

tell_orange

told_orange

tell_pineapple

told_pineapple

Fig. 5.2 Enriched flow graph of the guest analogy integrated with behavioral description

The point is that in this case the abstract enriched flow graph is a cycle, whereas
Proposition 5.1 holds under the constraint that the considered AEIs form a star.
In conclusion, this example demonstrates that the architectural compatibility check
does not suffice in the presence of cycles.

A cycle is a closed simple path in the abstract enriched flow graph of an archi-
tectural description A , which traverses a set Y = {C1, . . . ,Cn} of n ≥ 3 AEIs. In
the case of a cycle, MISMDET cannot investigate the validity of a property P ∈Ψ
by analyzing the interplay between pairs of AEIs, because of the possible presence
of arbitrary interferences among the various AEIs in the cycle. In order to achieve
a correct coordination inside the cycle, the actual observable behavior of any AEI
Cj in the cycle should coincide with the observable behavior expected by the rest of
the cycle. In other words, the observable behavior of Cj should not be altered by the
insertion of Cj itself into the cycle.

Definition 5.5. Given an architectural description A and a property P ∈Ψ , let
Y = {C1, . . . ,Cn} be the set of AEIs traversed by a cycle of A , Cj be an AEI in
the cycle, HCj ,Y be the set of interactions of additional implicit AEIs of Cj that
are attached to Y , and ECj ,Y be the set of exceptions that may be raised by semi-
synchronous interactions involved in attachments between Cj and Y . We say that
Cj P-interoperates with the other AEIs in the cycle iff:

[[Y ]]tc;#Y ;Cj
A /(Name−VCj ;A )/(HCj ,Y

⋃
ECj ,Y ) ≈P [[Cj]]

pc;wob
A
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Similar to Definition 5.4, all possible originally asynchronous local interactions
of the other AEIs in the cycle and all of their interactions that are not attached to Cj

have been hidden by taking the totally closed interacting semantics of those AEIs
and by leaving visible only the actions in VCj ;A . We also observe that, whenever Cj

has no local nonsynchronous interactions and is not attached to semi-synchronous
interactions of other AEIs in the cycle, then HCj ,Y

⋃
ECj ,Y = /0 and both [[Cj]]

pc;#Y
A

and [[Cj]]
pc;wob
A coincide with [[Cj]]tc;wob

A .
Interoperability is an adaptation of compatibility to cycles, as can be viewed by

developing for all 1≤ j ≤ n the equivalence established in Definition 5.5:

([[C1]]
pc;#Y
A ‖S1,n

[[C2, . . . ,Cn]]tc;#Y
A )/NV1 ≈P [[C1]]

pc;wob
A

...
...

...
([[C1, . . . ,Cj−1]]tc;#Y

A ‖S j−1 [[Cj]]
pc;#Y
A ‖S j,n

[[Cj+1, . . . ,Cn]]tc;#Y
A )/NV j ≈P [[Cj]]

pc;wob
A

...
...

...
([[C1, . . . ,Cn−1]]tc;#Y

A ‖Sn−1 [[Cn]]
pc;#Y
A )/NVn ≈P [[Cn]]

pc;wob
A

where:

• S j,n =
j⋃

f=1

n⋃

g= j+1
S (Cf ,Cg;A )

• S j =
j⋃

g=1
S (Cg,Cj+1;A )

• NV j = (Name−VCj ;A )
⋃

(HCj ,Y
⋃

ECj ,Y )

Proposition 5.2. Given an architectural description A and a property P ∈ Ψ ,
let Y = {C1, . . . ,Cn} be the set of AEIs traversed by a cycle of A . Whenever
there exists Cj ∈ Y that P-interoperates with the other AEIs in the cycle, then

[[Y ]]tc;#Y ;Cj
A /(Name−VCj ;A )/(HCj ,Y

⋃
ECj ,Y ) satisfies P iff so does [[Cj]]

pc;wob
A ,

where HCj ,Y and ECj ,Y are the same sets as Definition 5.5.

Based on the sufficient condition established by the proposition above, in the case
of a cycle the architectural interoperability check for a property P ∈Ψ is applied to
any AEI in the cycle. As soon as an AEI Cj ∈Y is found that passes the check, then
the whole cycle can be reduced to Cj and the validity of P can be verified on this
single AEI. In contrast, if the check is not passed by any Cg ∈Y , then this reveals a
potential lack of coordination among the AEIs in the cycle.

The cost of the interoperability-check-based verification of P grows exponen-
tially with the size of Y . However, due to the numerous actions that have to be
hidden in the cycle, this cost can be mitigated if the state space of the cycle is built
compositionally and minimized at each step with respect to ≈P by taking into ac-
count the interfaces of the various AEIs in the cycle [105].

Different from the architectural compatibility check, whenever no AEI in a cy-
cle passes the architectural interoperability check, it is not immediately clear which
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AEIs are responsible for possible well-formedness violations. In this case, the fol-
lowing cycle shrinking algorithm can be employed:

• Consider an AEI Cg ∈Y that does not P-interoperate with the other AEIs in the
cycle.

• Use the modal-logic diagnostic information coming from the failure of the P-
interoperability check for Cg in order to determine where the source of a potential
well-formedness violation is.

• If the source is within Cg, modify Cg and repeat the P-interoperability check.
• Otherwise shrink the cycle by replacing Cg−1, Cg, and Cg+1 with a new AEI

whose behavior is the parallel composition of the interacting semantics of the
three original AEIs, then repeat the P-interoperability check.

The principle at the basis of the cycle shrinking algorithm, i.e., considering sets
of adjacent AEIs in a cycle instead of single AEIs, can be exploited in order to
improve the effectiveness of the architectural interoperability check.

Example 5.2. Let us revisit the guest analogy scenario of Example 5.1. Suppose
that the party now involves four kinds of actor: couple of guests, host, and waiter.
As before, whenever a guest wants something to drink, the guest has to ask the
host. Different from before, the drink mentioned to the waiter by the host always
coincides with the drink requested by the guest.

Some conflicts may arise in this new scenario: one inside the couple of guests
and another one between the host and the waiter. The first conflict happens if the
wife wants to dance with her husband, whereas her husband wants to go home.
We assume that this conflict can be solved by means of an agreement on having
another drink, which will be ordered by the husband. The second conflict takes
place if the host asks the waiter to work one more hour because the couple has no
intention to leave the party yet, whereas the waiter asks the host to quit working
earlier due to tiredness. We assume that this conflict cannot be solved, but drink
requests are always satisfied in spite of possible disagreements between the host
and the waiter. The new scenario is depicted in Fig. 5.3, where only the conflictual
part of the behavior of the various actors is exposed.

Let us investigate whether the party can deadlock. If we apply the architec-
tural interoperability check, it turns out that none of the AEIs deadlock-freedom-
interoperates with the other AEIs in the cycle because of the wife–husband and
host–waiter conflicts. However, the AEI obtained from the combination of G1 and
G2 – by taking the parallel composition of their interacting semantics – deadlock-
freedom-interoperates with H and W, from which we derive that the party does not
deadlock. In conclusion, this example demonstrates that the outcome of the archi-
tectural interoperability check depends on the number of adjacent AEIs that are
considered during the application of the check.

The architectural interoperability check can be generalized as follows when con-
sidering sets of adjacent AEIs in a cycle. For symmetry reasons, the size of each
such set can be limited to half of the number of AEIs traversed by the cycle.
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}

{
choice

G1:Wife_Type()

Wife(void; void) =

want_dance.asked_home.Wife(),
want_drink.served_drink.Wife()

{
choice

G2:Husband_Type()

Husband(void; void) =

want_home.asked_dance.Husband(),

}
served_drink.Husband()

want_drink.ask_drink.

asked_home

want_home

want_dance

asked_dance

want_drink

want_drink

served_drink ask_drinkserved_drink

serve_drink asked_drink

W:Waiter_Type()

}

{
choice

Waiter(void; void) =

want_less.asked_more.Waiter(),
{
choice

H:Host_Type()

Host(void; void) =

want_more.asked_less.Host(),

}

want_less

want_more

asked_more

asked_drink.tell_drink.Host()

tell_drink

told_drinktold_drink.serve_drink.Waiter()

asked_less

Fig. 5.3 Enriched flow graph of the revisited guest analogy integrated with behavioral description

Definition 5.6. Given an architectural description A and a property P ∈Ψ , let
Y = {C1, . . . ,Cn} be the set of AEIs traversed by a cycle of A , J = {C′1, . . . ,C′l}
be a set of 1 ≤ l ≤ n/2 adjacent AEIs in the cycle, T = Y −J be the set of the
other AEIs in the cycle, HC′j ,T be the set of interactions of additional implicit AEIs

of C′j ∈J that are attached to T , and EC′j ,T be the set of exceptions that may be

raised by semi-synchronous interactions involved in attachments between C′j ∈J
and T . We say that J = {C′1, . . . ,C′l} P-interoperates with the other AEIs in the
cycle iff:

[[Y ]]tc;#Y ;J
A

/

(Name−
l⋃

j=1
VC′j ;A )

/
l⋃

j=1
(HC′j ,T

⋃
EC′j ,T ) ≈P [[J ]]pc;#J

A

Proposition 5.3. Given an architectural description A and a property P ∈Ψ , let
Y = {C1, . . . ,Cn} be the set of AEIs traversed by a cycle of A . Whenever there
exists J = {C′1, . . . ,C′l} ⊆ Y , 1 ≤ l ≤ n/2, that P-interoperates with the other

AEIs in the cycle, then [[Y ]]tc;#Y ;J
A /(Name−⋃l

j=1 VC′j ;A )/
⋃l

j=1(HC′j ,T
⋃

EC′j ,T )

satisfies P iff so does [[J ]]pc;#J
A , where T , HC′j ,T , and EC′j ,T are the same sets as

Definition 5.6.

5.4.1 Case Study: Cruise Control System

We now illustrate an application of the architectural interoperability check to the
cruise control system examined in [131]. Once the engine has been turned on, this
system is governed by the two standard pedals of the automobile – accelerator and
brake – and by three additional buttons – on, off, and resume. When on is pressed,
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the cruise control system records the current speed and maintains the automobile
at that speed. When the accelerator, the brake, or off is pressed, the cruise control
system disengages but retains the speed setting. If resume is pressed later on, then
the cruise control system accelerates or decelerates the automobile to the previously
recorded speed.

The cruise control system is formed by four software units communicating with
each other: a sensor, a speed detector, a speed controller, and a speed actuator. The
sensor detects the driver commands and forwards them to the speed controller. The
speed detector periodically measures the number of wheel revolutions per time unit
and communicates it to the speed actuator. The speed controller triggers the speed
actuator on the basis of the driver commands that are received from the sensor.
Finally, the speed actuator adjusts the throttle on the basis of the triggers received
from the controller and of the speed measured by the detector. Since this system is
the result of the combination of several software units, it must be designed in such
a way to ensure deadlock freedom.

Let us model the system with PADL. Here is the architectural description
header:

ARCHI_TYPE Cruise_Control(void)

The sensor AET is defined as follows, where two states are distinguished de-
pending on whether the engine is off or on:

ARCHI_ELEM_TYPE Sensor_Type(void)

BEHAVIOR
Sensor_Off(void; void) =
detected_engine_on . turn_engine_on . Sensor_On();

Sensor_On(void; void) =
choice
{
detected_accelerator . press_accelerator . Sensor_On(),
detected_brake . press_brake . Sensor_On(),
detected_on . press_on . Sensor_On(),
detected_off . press_off . Sensor_On(),
detected_resume . press_resume . Sensor_On(),
detected_engine_off . turn_engine_off . Sensor_Off()
}

INPUT_INTERACTIONS SYNC UNI detected_engine_on;
detected_engine_off;
detected_accelerator;
detected_brake;
detected_on; detected_off;
detected_resume

OUTPUT_INTERACTIONS SYNC UNI press_accelerator; press_brake;
press_on; press_off; press_resume

AND turn_engine_on; turn_engine_off
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The speed detector AET is defined as follows, where once again two states are
distinguished depending on whether the engine is off or on:

ARCHI_ELEM_TYPE Detector_Type(void)

BEHAVIOR
Detector_Off(void; void) =
turned_engine_on . Detector_On();

Detector_On(void; void) =
choice
{
measure_speed . signal_speed . Detector_On(),
turned_engine_off . Detector_Off()
}

INPUT_INTERACTIONS SYNC UNI turned_engine_on;
turned_engine_off

OUTPUT_INTERACTIONS SYNC UNI signal_speed

The speed controller can be in one of the following states: inactive (when the
engine is off), active (when the engine is on), cruising (after pressing the on button in
the active/suspended state or the resume button in the suspended state), or suspended
(after pressing any pedal or button different from on/resume in the cruising state).
Here is the definition of the speed controller AET:

ARCHI_ELEM_TYPE Controller_Type(void)

BEHAVIOR
Inactive(void; void) =
turned_engine_on . Active();

Active(void; void) =
choice
{
pressed_accelerator . Active(),
pressed_brake . Active(),
pressed_on . trigger_record . Cruising(),
pressed_off . Active(),
pressed_resume . Active(),
turned_engine_off . Inactive()
};

Cruising(void; void) =
choice
{
pressed_accelerator . trigger_disable . Suspended(),
pressed_brake . trigger_disable . Suspended(),
pressed_on . Cruising(),
pressed_off . trigger_disable . Suspended(),
pressed_resume . Cruising(),
turned_engine_off . Inactive()
};

Suspended(void; void) =
choice
{
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pressed_accelerator . Suspended(),
pressed_brake . Suspended(),
pressed_on . trigger_record . Cruising(),
pressed_off . Suspended(),
pressed_resume . trigger_resume . Cruising(),
turned_engine_off . Inactive()
}

INPUT_INTERACTIONS SYNC UNI turned_engine_on;
turned_engine_off;
pressed_accelerator;
pressed_brake;
pressed_on; pressed_off;
pressed_resume

OUTPUT_INTERACTIONS SYNC UNI trigger_record; trigger_resume;
trigger_disable

The speed actuator can be in one of the following states: disabled (until the
on/resume button is pressed) or enabled (until any pedal or button different from
on/resume is pressed). Here is the definition of the speed actuator AET:

ARCHI_ELEM_TYPE Actuator_Type(void)

BEHAVIOR
Disabled(void; void) =
choice
{
signaled_speed . Disabled(),
triggered_record . record_speed . Enabled(),
triggered_resume . resume_speed . Enabled()
};

Enabled(void; void) =
choice
{
signaled_speed . adjust_throttle . Enabled(),
triggered_disable . disable_control . Disabled()
}

INPUT_INTERACTIONS SYNC UNI triggered_record;
triggered_resume;
triggered_disable;
signaled_speed

OUTPUT_INTERACTIONS void

Finally, we have the architectural topology section, which is graphically illus-
trated in Fig. 5.4:

ARCHI_ELEM_INSTANCES
S : Sensor_Type();
D : Detector_Type();
C : Controller_Type();
A : Actuator_Type()
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triggered_record triggered_disable

trigger_disabletrigger_resume

triggered_resume

trigger_record

C:Controller_Type()

A:Actuator_Type()

press_resume

press_off

press_on

press_brake

press_accelerator

pressed_on

pressed_off

pressed_accelerator

pressed_brake

pressed_resume

signal_speed
D:Detector_Type()

signaled_speed

turned_engine_on turned_engine_off

turn_engine_offturn_engine_on
turned_engine_off

turned_engine_on

S:Sensor_Type()detected_on

detected_brake

detected_accelerator

detected_off

detected_resume

detected_engine_on detected_engine_off

Fig. 5.4 Enriched flow graph of the cruise control system

ARCHI_INTERACTIONS
S.detected_engine_on; S.detected_engine_off;
S.detected_accelerator; S.detected_brake;
S.detected_on; S.detected_off; S.detected_resume

ARCHI_ATTACHMENTS
FROM S.turn_engine_on TO D.turned_engine_on;
FROM S.turn_engine_on TO C.turned_engine_on;
FROM S.turn_engine_off TO D.turned_engine_off;
FROM S.turn_engine_off TO C.turned_engine_off;
FROM S.press_accelerator TO C.pressed_accelerator;
FROM S.press_brake TO C.pressed_brake;
FROM S.press_on TO C.pressed_on;
FROM S.press_off TO C.pressed_off;
FROM S.press_resume TO C.pressed_resume;
FROM D.signal_speed TO A.signaled_speed;
FROM C.trigger_record TO A.triggered_record;
FROM C.trigger_resume TO A.triggered_resume;
FROM C.trigger_disable TO A.triggered_disable

Having formalized the architecture of the cruise control system with PADL, we
can proceed with deadlock freedom analysis. First of all, we observe that the abstract
variant of the enriched flow graph in Fig. 5.4 subsumes all the attachments between
S and D, between S and C, and between C and A with a single edge, respectively,
so that its topology precisely concides with a cycle. Based on the considerations
of Sect. 5.2, we apply the architectural interoperability check by exploiting weak
bisimulation equivalence≈B. Since there are no local nonsynchronous interactions,
the check can be applied by taking the totally closed interacting semantics without
buffers of the various AEIs.

Although all the AEIs are deadlock free, none of them deadlock-freedom-
interoperates with the others; hence, we can suspect that some mismatch exists.
Looking carefully at the PADL description, we discover that Cruise Control is
deadlock free because speed signaling activities take place endlessly between D and
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A as long as the engine is running. If we hide those activities, a deadlock shows up.
Those activities are hidden in the interoperability checks for S and for C, so we can
try to derive useful diagnostic information from such checks.

For instance, if we apply the deadlock-freedom-interoperability check to S, the
check is not passed because [[S,D,C,A]]tc;wob

S,D,C,A/(Name−VS;S,D,C,A) �≈B [[S]]tc;wob
S,D,C,A.

Here is the distinguishing formula of weak Hennessy–Milner logic generated when
checking for weak bisimulation equivalence:

〈〈S.turn engine on#D.turned engine on#C.turned engine on〉〉
〈〈S.press on#C.pressed on〉〉
〈〈S.turn engine off#D.turned engine off#C.turned engine off〉〉
〈〈S.turn engine on#D.turned engine on#C.turned engine on〉〉
〈〈S.press on#C.pressed on〉〉
¬〈〈S.press brake#C.pressed brake〉〉 true

The formula above says that, if we turn the engine on and off and in the meanwhile
we press on, then the speed actuator remains enabled instead of being disengaged.
This may result in an extremely dangerous situation in which the cruise control
system is no longer sensitive to brake pressure.

This problem can be solved by modifying the cruising behavior of the speed
controller AET so that a disabling trigger is sent also when the engine is turned off,
as shown below:

Cruising(void; void) =
choice
{
pressed_accelerator . trigger_disable . Suspended(),
pressed_brake . trigger_disable . Suspended(),
pressed_on . Cruising(),
pressed_off . trigger_disable . Suspended(),
pressed_resume . Cruising(),
turned_engine_off . trigger_disable . Inactive()
}

With this modification of the cruise control system, it turns out that S deadlock-
freedom-interoperates with the other AEIs. Since S is deadlock free, we can con-
clude that Cruise Control is now deadlock free even if we hide the speed
signaling activities.

5.5 Generalization to Arbitrary Topologies

The abstract enriched flow graph underlying an architectural description may con-
tain arbitrarily many stars and cycles. In accordance with the detection strategy
outlined in Sect. 5.2, in that case MISMDET applies the compatibility and interoper-
ability checks several times in a way that hopefully converges towards the reduction
of the entire topology to a single architectural element, which is finally checked
against some property P ∈Ψ of interest.
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In this general setting, a prominent role is played by AEIs that belong to the
intersection of cycles with acyclic portions of the topology or other cycles, where
acyclic portions are intended not to be in cyclic subgraphs. The reason is that each
of these AEIs is part of the frontier of the cycle to which it belongs; hence, it can
be exploited for reduction purposes. In contrast, the reduction to any AEI in a cycle
that does not interact with AEIs outside the cycle leads the process to a dead end.

Definition 5.7. Let A be an architectural description and {C1, . . . ,Cn} be a set of
AEIs of A . The frontier of {C1, . . . ,Cn} is defined as follows:

FC1,...,Cn = {Cj ∈ {C1, . . . ,Cn} |L I Cj ;C1,...,Cn �= L I Cj}

Moreover, we denote by CU Cj the cyclic union of Cj, which is the union of the sets
of AEIs traversed by a cycle that traverses also Cj.

The topological reduction process for an arbitrary topology can take place in
several different ways depending on the interleaving of applications of the architec-
tural compatibility and interoperability checks. In turn, this depends on the order in
which the various stars and cycles of the topology are considered by MISMDET. In
any case, all cycles have to be taken into account sooner or later, as the reduction
process tends to transform an arbitrary topology into an acyclic topology.

The cycles of an architectural description A can be managed by means of a cycle
covering algorithm like the following, which relies on the notion of cyclic union:

1. All the AEIs of A are initially unmarked.
2. While there are unmarked AEIs in the cycles of the abstract enriched flow graph

of A :

(a) Pick out one such AEI, say C.
(b) Mark all the AEIs in CU C.

The result of a cycle covering algorithm κ is a set C U (κ) of cyclic unions
that include every AEI belonging to a cycle in the abstract enriched flow graph
of A . Any two cyclic unions in CU (κ) are connected at most through a single
shared AEI or through the attachments between a single AEI of one cyclic union
and a single AEI of the other cyclic union. The cycle covering algorithm is said
to be total iff the topology becomes acyclic after replacing every cyclic union
Y = {C1, . . . ,Cn} ∈ CU (κ) with an AEI whose behavior is given by:

[[Y ]]
tc;#Y ;FC1,...,Cn
A

/
(Name− ⋃

Cj∈FC1,...,Cn

VCj ;A )
/ ⋃

Cj∈FC1,...,Cn

(HCj ,Y
⋃

ECj ,Y )

Given a property P ∈Ψ , MISMDET addresses arbitrary topologies by combin-
ing the sufficient condition for stars given by Proposition 5.1 with the sufficient
condition for cycles given by Proposition 5.2, as formalized by the theorem below.
The importance of AEIs belonging to the frontier of cyclic unions is emphasized
by the fact that each of these AEIs must be P-compatible with every AEI attached
to it that belongs to an acyclic portion of the topology and, at the same time, must
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P-interoperate with the other AEIs in the cyclic union to which it belongs. Al-
though appropriate for certain properties like deadlock freedom, it is not required
that all the AEIs satisfy P in order for the entire architectural description to satisfy
P . In fact, it is sufficient for P to be satisfied by some suitable AEI – the one
obtained at the end of the topological reduction process.

Theorem 5.1. Let A be an architectural description and P ∈Ψ be a property for
which the following two conditions hold:

1. For each K ∈ A belonging to an acyclic portion or to the intersection of some
cycle with acyclic portions of the abstract enriched flow graph of A , K is P-
compatible with every C ∈BK−CU K

2. If A is cyclic, then there exists a total cycle covering algorithm κ such that for
each cyclic union {C1, . . . ,Cn} ∈ CU (κ):

(a) If FC1,...,Cn = /0, then there exists Cj ∈ {C1, . . . ,Cn} that P-interoperates with
the other AEIs in the cyclic union

(b) If FC1,...,Cn �= /0, then every Cj ∈ FC1,...,Cn P-interoperates with the other
AEIs in the cyclic union

(c) If no Cj ∈FC1,...,Cn is such that [[Cj]]
pc;wob
A satisfies P and there exists Cg ∈

{C1, . . . ,Cn}−FC1,...,Cn such that [[Cg]]
pc;wob
A satisfies P , then at least one

such Cg P-interoperates with the other AEIs in the cyclic union

Then [[A ]]pc;#A
bbm satisfies P iff so does [[C]]pc;wob

A for some C ∈A .

5.5.1 Case Study: Simulator for the Cruise Control System

We now illustrate an application of the generalization of the architectural com-
patibility and interoperability checks to arbitrary topologies, in which we consider
the design of an applet-based simulator for the cruise control system examined in
Sect. 5.4.1. The applet must contain a panel with seven software buttons – corre-
sponding to turning the engine on/off, the two pedals, and the three hardware but-
tons – and a text area showing the sequence of buttons successfully pressed so far.
Each of the seven software buttons can be pressed at any time. When pressing one of
them, the corresponding operation either succeeds or fails. In the first case, the panel
can interact with the sensor and the text area is updated accordingly. In the second
case – think, e.g., of pressing the accelerator button when the engine is off – the
panel cannot interact with the sensor, rather it emits a beep. Also for this cruise
control system simulator, the objective is to ensure deadlock freedom.

Let us model the simulator with PADL. Here is the architectural description
header:

ARCHI_TYPE Cruise_Control_Simulator(void)
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Thanks to the architectural interactions provided by the sensor, the definition of
the architectural type Cruise Control of Sect. 5.4.1 can be reused through the
following architectural invocation, where the only actual parameters that occur are
the actual names of the previously mentioned architectural interactions:

ARCHI_ELEM_TYPE Cruise_Control_System_Type(void)

BEHAVIOR
Cruise_Control_System(void; void) =
Cruise_Control(@ /* no data parameters */

@ /* reuse formal AETs */
@ @ @ @ /* reuse formal topology */
@ @ @ /* no behavioral modifications */
UNIFY S.detected_engine_on WITH engine_on;
UNIFY S.detected_engine_off WITH engine_off;
UNIFY S.detected_accelerator WITH accelerator;
UNIFY S.detected_brake WITH brake;
UNIFY S.detected_on WITH on;
UNIFY S.detected_off WITH off;
UNIFY S.detected_resume WITH resume)

INPUT_INTERACTIONS SYNC UNI engine_on; engine_off;
accelerator; brake;
on; off; resume

OUTPUT_INTERACTIONS void

As far as the applet is concerned, interactions have to be provided in order to
allow the user to start/stop the applet itself. Its panel has to send the user commands
to the sensor, which then propagates them inside the cruise control system. In or-
der not to block the simulator when the pressure of a software button fails, certain
interactions have to be semi-synchronous, as shown below:

ARCHI_ELEM_TYPE Panel_Type(void)

BEHAVIOR
Unallocated(void; void) =
init_applet . start_applet . Active();

Active(void; void) =
choice
{
signal_engine_on . Checking(signal_engine_on.success),
signal_accelerator . Checking(signal_accelerator.success),
signal_brake . Checking(signal_brake.success),
signal_on . Checking(signal_on.success),
signal_off . Checking(signal_off.success),
signal_resume . Checking(signal_resume.success),
signal_engine_off . Checking(signal_engine_off.success),
stop_applet . Inactive()
};
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Checking(boolean success; void) =
choice
{
cond(success = true) -> update . Active(),
cond(success = false) -> beep . Active()
};

Inactive(void; void) =
choice
{
start_applet . Active(),
destroy_applet . Unallocated()
}

INPUT_INTERACTIONS SYNC UNI init_applet; start_applet;
stop_applet; destroy_applet

OUTPUT_INTERACTIONS SSYNC UNI signal_engine_on;
signal_engine_off;
signal_accelerator;
signal_brake; signal_on;
signal_off; signal_resume

Finally, we have the architectural topology section, which is depicted in Fig. 5.5:

ARCHI_ELEM_INSTANCES
P : Panel_Type();
CCS : Cruise_Control_System_Type()

ARCHI_INTERACTIONS
P.init_applet; P.start_applet; P.stop_applet; P.destroy_applet

ARCHI_ATTACHMENTS
FROM P.signal_engine_on TO CCS.engine_on;

signal_engine_on signal_engine_off signal_accelerator signal_brake signal_on signal_off signal_resume

engine_on engine_off accelerator brake on off resume

D:Detector_Type()

CCS:Cruise_Control_System_Type()

P:Panel_Type()

init_applet start_applet stop_applet destroy_applet

detected_accelerator

detected_brake

detected_on

detected_off

detected_resume

A:Actuator_Type()

S:Sensor_Type()

detected_engine_offdetected_engine_on

C:Controller_Type()

Fig. 5.5 Enriched flow graph of the cruise control system simulator
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FROM P.signal_engine_off TO CCS.engine_off;
FROM P.signal_accelerator TO CCS.accelerator;
FROM P.signal_brake TO CCS.brake;
FROM P.signal_on TO CCS.on;
FROM P.signal_off TO CCS.off;
FROM P.signal_resume TO CCS.resume

As far as deadlock freedom analysis is concerned, we observe that all the AEIs
are deadlock free and that the abstract variant of the flattened version of the en-
riched flow graph in Fig. 5.5 is an intersection of a cycle and a star, where the cycle
traverses AEIs S, D, C, and A. From Sect. 5.4.1 we know that S deadlock-freedom-
interoperates with D, C, A; hence, the cycle can be reduced to [[S]]tc;wob

P,S,D,C,A. Moreover,
it is easy to see that the only AEI in the frontier of the cycle, i.e., S, is deadlock-
freedom-compatible with P, the only AEI in the only acyclic portion of the topol-
ogy – remember that all exceptions that P may raise are hidden when applying the
check. Therefore, we can conclude that Cruise Control Simulator is dead-
lock free from the fact that S is deadlock free.

5.6 Generalization to Architectural Types

The process algebraic techniques for architectural mismatch detection discussed so
far are not only useful for deriving information about the correct coordination within
an arbitrary architectural description from star-shaped and cycle-shaped portions of
its topology. In fact, these techniques can also be exploited for deducing information
about the correct coordination within an entire architectural type from one of its
instances. This avoids the cost resulting from the application of the architectural
compatibility and interoperability checks to every single instance of the considered
architectural type.

In this section, we show the conditions under which the absence of architec-
tural mismatches investigated by means of MISMDET scales from a single archi-
tectural description to the architectural type of the description. More precisely, we
present suitable extensions of Theorem 5.1 dealing with internal behavioral vari-
ations (Sect. 5.6.1) as well as with exogenous variations (Sect. 5.6.2), endogenous
variations (Sect. 5.6.3), and multiplicity variations (Sect. 5.6.4). All the extensions
of the theorem are illustrated through the corresponding examples of Sect. 4.6 based
on variants of the pipe–filter system.

5.6.1 Generalization to Internal Behavioral Variations

Two AT instances behaviorally conform to each other if they exhibit the same ob-
servable behavior according to weak bisimulation equivalence≈B. When introduc-
ing internal behavioral variations, the absence of architectural mismatches is then
preserved for each property P ∈Ψ such that ≈P is coarser than ≈B.
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Corollary 5.1. Let A be an AT instance and P ∈Ψ be a property for which the
two conditions of Theorem 5.1 hold. Whenever≈B⊆≈P , then for each AT instance

A ′ that strictly behaviorally conforms to A it turns out that [[A ′]]pc;#A ′
bbm satisfies P

iff so does [[C]]pc;wob
A for some C ∈A .

Example 5.3. Let us consider the architectural type Pipe Filter of Sect. 4.5.
This is deadlock free, because from the topological viewpoint it is a star and its
central AEI P is deadlock free and deadlock-freedom-compatible with F 0, F 1,
F 2, and F 3. Then we can immediately derive that its strictly behaviorally confor-
mant instance of Example 4.7, in which the AET Filter Type is replaced by the
new AET Faulty Filter Type, is deadlock free too.

5.6.2 Generalization to Exogenous Variations

An exogenous variation of an AT instance consists of adding AEIs outside the topo-
logical frontier, with some of these AEIs being attached to architectural interactions.

In this case, there are two issues to be taken into account. The first issue is that
all the architectural interactions at which an exogenous variation takes place be-
come local interactions; hence, they must be left visible when applying the architec-
tural compatibility and interoperability checks. This is accomplished by introducing
suitable variants of the partially and totally closed interacting semantics and of the
notion of frontier, which coincide with the respective original definitions in the ab-
sence of architectural interactions. Then, the notions of architectural compatibility
and interoperability have to be revised accordingly, in such a way that the new ones
imply the respective original ones when hiding architectural interactions, thanks to
the congruence property of ≈P , P ∈Ψ , with respect to static operators. In the
following, we denote by A I Cj the set of architectural interactions of Cj.

Definition 5.8. The partially semi-closed interacting semantics of Cj ∈ {C1, . . . ,Cn}
with respect to {C1, . . . ,Cn} including its buffers attached to {C′′1 , . . . ,C′′n′′ } is defined
as follows:

[[Cj]]
psc;#C′′1 ,...,C′′

n′′
C1,...,Cn

= [[Cj]]
#C′′1 ,...,C′′

n′′
C1,...,Cn

/(Name−VCj ;C1,...,Cn −A I Cj )

and we write [[Cj]]
psc;wob
C1,...,Cn

if n′′ = 0. The partially semi-closed interacting semantics
of {C′1, . . . ,C′n′ } ⊆ {C1, . . . ,Cn} with respect to {C1, . . . ,Cn} including their buffers
attached to {C′′1 , . . . ,C′′n′′ } is defined as follows:

[[C′1, . . . ,C
′
n′ ]]

psc;#C′′1 ,...,C′′
n′′

C1,...,Cn
= [[C′1]]

psc;#C′′1 ,...,C′′
n′′

C1,...,Cn
‖S (C′1,C′2;C1,...,Cn)

[[C′2]]
psc;#C′′1 ,...,C′′

n′′
C1,...,Cn

‖S (C′1,C′3;C1,...,Cn)
⋃

S (C′2,C′3;C1,...,Cn)

. . . ‖n′−1⋃

i=1
S (C′i ,C′n′ ;C1,...,Cn)

[[C′n′ ]]
psc;#C′′1 ,...,C′′

n′′
C1,...,Cn

where the synchronization sets are built as in Definition 4.2.
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Definition 5.9. The totally semi-closed interacting semantics of Cj ∈ {C1, . . . ,Cn}
with respect to {C1, . . . ,Cn} including its buffers attached to {C′′1 , . . . ,C′′n′′ } is defined
as follows:

[[Cj]]
tsc;#C′′1 ,...,C′′

n′′
C1,...,Cn

= [[Cj]]
psc;#C′′1 ,...,C′′

n′′
C1,...,Cn

/ϕCj ,async(OA L I Cj )

and we write [[Cj]]tsc;wob
C1,...,Cn

if n′′ = 0. The totally semi-closed interacting semantics
of {C′1, . . . ,C′n′ } ⊆ {C1, . . . ,Cn} with respect to {C1, . . . ,Cn} including their buffers
attached to {C′′1 , . . . ,C′′n′′ } is defined as follows:

[[C′1, . . . ,C
′
n′ ]]

tsc;#C′′1 ,...,C′′
n′′

C1,...,Cn
= [[C′1]]

tsc;#C′′1 ,...,C′′
n′′

C1,...,Cn
‖S (C′1,C′2;C1,...,Cn)

[[C′2]]
tsc;#C′′1 ,...,C′′

n′′
C1,...,Cn

‖S (C′1,C′3;C1,...,Cn)
⋃

S (C′2,C′3;C1,...,Cn)

. . . ‖n′−1⋃

i=1
S (C′i ,C′n′ ;C1,...,Cn)

[[C′n′ ]]
tsc;#C′′1 ,...,C′′

n′′
C1,...,Cn

where the synchronization sets are built as in Definition 4.2. The vari-
ant totally semi-closed up to {C′′′1 , . . . ,C′′′n′′′ } ⊂ {C′1, . . . ,C′n′ }, i.e., in which

[[C′′′j ]]
psc;#C′′1 ,...,C′′

n′′
C1,...,Cn

is considered in place of [[C′′′j ]]
tsc;#C′′1 ,...,C′′

n′′
C1,...,Cn

, is denoted by

[[C′1, . . . ,C
′
n′ ]]

tsc;#C′′1 ,...,C′′
n′′ ;C

′′′
1 ,...,C′′′

n′′′
C1,...,Cn

.

Definition 5.10. Given an architectural description A and a property P ∈Ψ , let
K be the central AEI of a star of A , BK = {C1, . . . ,Cn} be the border of the star,
Cj be an AEI in BK , HK,Cj be the set of interactions of additional implicit AEIs
of K that are attached to interactions of Cj, and EK,Cj be the set of exceptions that
may be raised by semi-synchronous interactions involved in attachments between
K and Cj . We say that K is P-semi-compatible with Cj iff:

([[K]]psc;#Cj
A ‖S (K,Cj ;A ) [[Cj]]tc;#K

K,BK
)/(HK,Cj

⋃
EK,Cj ) ≈P [[K]]psc;wob

A

Definition 5.11. Given an architectural description A and a property P ∈Ψ , let
Y = {C1, . . . ,Cn} be the set of AEIs traversed by a cycle of A , Cj be an AEI in
the cycle, HCj ,Y be the set of interactions of additional implicit AEIs of Cj that
are attached to Y , and ECj ,Y be the set of exceptions that may be raised by semi-
synchronous interactions involved in attachments between Cj and Y . We say that
Cj P-semi-interoperates with the other AEIs in the cycle iff:

[[Y ]]tsc;#Y ;Cj
A /(Name−VCj;A −A I Cj )/(HCj ,Y

⋃
ECj ,Y ) ≈P [[Cj]]

psc;wob
A
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Definition 5.12. Let A be an architectural description and {C1, . . . ,Cn} be a set of
AEIs of A . The semi-frontier of {C1, . . . ,Cn} is defined as follows:

S FC1,...,Cn = {Cj ∈ {C1, . . . ,Cn} |L I Cj ;C1,...,Cn �= L I Cj ∨A I Cj �= /0}

which coincides with FC1,...,Cn plus other AEIs having architectural interactions.

The second issue to be taken into account is that an exogenous variation may
alter the set of original cyclic unions, in which case nothing can be deduced from the
absence of architectural mismatches in the original AT instance whenever new kinds
of cycle are generated. Think, e.g., of an exogenous variation of a pipe–filter system
whose only pipe has not only several downstream filters, but also several upstream
filters. Below we introduce the concept of topological equivalence for cyclic unions.

Definition 5.13. Given an architectural description A , let C U 1 and CU 2 be two
cyclic unions of A . We say that CU 1 is (strictly) topologically equivalent to CU 2

iff there exists a bijection between them that preserves the type (and the actual data
parameter values), the attachments within the cyclic union, and the membership to
the frontier of the cyclic union of corresponding AEIs.

The cycles of an AT instance A ′ resulting from a strictly topologically confor-
mant exogenous variation of an AT instance A can be managed by means of the
following exogenous variation of a total cycle covering algorithm κ for A :

1. All the AEIs of A ′ are initially unmarked.
2. For each cyclic union CU A

C ∈ CU A (κ):

(a) Pick out C.
(b) Mark all the AEIs in CU A ′

C .

3. While there is an unmarked additional AEI C in the cycles of the abstract
enriched flow graph of A ′ such that there exists CU A

C′ ∈ CU A (κ) with

C′ = corr(C) and CU A ′
C strictly topologically equivalent to CU A

C′ :

(a) Pick out C.
(b) Mark all the AEIs in CU A ′

C .

We say that A ′ is exo-coverable by κ iff all the AEIs in the cycles of the abstract
enriched flow graph of A ′ are marked, the exogenous variation of κ is total, and
for each C ∈ A such that CU A

C ∈ CU A (κ) it holds CU A ′
C = C U A

C . In that
case, each cyclic union generated by the exogenous variation of κ for A ′ is strictly
topologically equivalent to a cyclic union generated by κ for A . Therefore, if A is
acyclic, then none of its cyclic exogenous variations is exo-coverable. Moreover, no
exo-coverable exogenous variation of A can be a cyclic union with empty frontier.

Corollary 5.2. Let A be an AT instance and P ∈Ψ be a property for which the
two conditions of Theorem 5.1 hold. Let A ′ be an AT instance resulting from a
strictly topologically conformant exogenous variation of A for which the following
additional conditions hold:
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3. For each K ∈ A belonging to an acyclic portion or to the intersection of some
cycle with acyclic portions of the abstract enriched flow graph of A , if K is of
the same type as an AEI having architectural interactions at which the exogenous
variation takes place, then K is P-semi-compatible with every C∈BK−CU A

K .
4. If A ′ is cyclic, then A ′ is exo-coverable by κ and for each Cj ∈ S FC1,...,Cn

with {C1, . . . ,Cn} ∈ CU A (κ), if Cj is of the same type as an AEI having
architectural interactions at which the exogenous variation takes place, then
Cj P-semi-interoperates with the other AEIs in {C1, . . . ,Cn}.

Then [[A ′]]pc;#A ′
bbm satisfies P iff so does [[C]]pc;wob

A for some C ∈A .

Example 5.4. Consider again the architectural type Pipe Filter of Sect. 4.5.
Then, we can immediately derive that its exogenous variation of Example 4.8, which
takes place at F 2.output item by means of an additional pipe P 1 having the
already existing AEI F 2 as upstream filter and the new AEIs F 4, F 5, and F 6 as
downstream filters, is deadlock free too.

5.6.3 Generalization to Endogenous Variations

An endogenous variation of an AT instance consists of changing the number of AEIs
of certain types in certain positions of the original topology – without altering the
number of attachments in which local and-/or-interactions are involved – by adding
new AEIs of those types or removing existing AEIs of those types.

Also in this case, there are two issues to be taken into account. The first issue
is that an endogenous variation may create new kinds of attachment that are not
present in the original topology, which may compromise compatibility within some
altered acyclic portion. Similarly, an endogenous variation may cancel existing at-
tachments – like those involving removed AEIs or those broken to allow for added
AEIs – that are important for the validity of P ∈Ψ . In such situations, nothing
can be deduced from the absence of architectural mismatches in the original AT
instance.

The second issue is that an endogenous variation may alter the set of original
cyclic unions, in which case nothing can be deduced from the absence of archi-
tectural mismatches in the original AT instance whenever new kinds of cycle are
generated or interoperability is compromised along some altered cycle.

The cycles of an AT instance A ′ resulting from an endogenous variation of an
AT instance A can be managed by means of the following endogenous variation of
a total cycle covering algorithm κ for A :

1. All the AEIs of A ′ are initially unmarked.
2. For each cyclic union CU A

C ∈ CU A (κ):

(a) Pick out C.
(b) Mark all the AEIs in CU A ′

C .
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3. While there is an unmarked additional AEI C in the cycles of the abstract en-
riched flow graph of A ′ such that there exists CU A

C′ ∈ C U A (κ) with C′ of the

same type as C and CU A ′
C strictly topologically equivalent to C U A

C′ :

(a) Pick out C.
(b) Mark all the AEIs in CU A ′

C .

We say that A ′ is endo-coverable by κ iff all the AEIs in the cycles of the ab-
stract enriched flow graph of A ′ are marked, the endogenous variation of κ is total,
and for each C ∈ A such that C U A

C ∈ CU A (κ) it holds CU A ′
C = CU A

C up to
added/removed AEIs.

Corollary 5.3. Let A be an AT instance and P ∈Ψ be a property for which the
two conditions of Theorem 5.1 hold. Let A ′ be an AT instance resulting from an
endogenous variation of A for which the following additional conditions hold:

3. For each attachment in A ′ from interaction o of an AEI C′1, which belongs to an
acyclic portion or to the intersection of some cycle with acyclic portions of the
abstract enriched flow graph of A ′, to interaction i of an AEI C′2 ∈BC′1−CU A ′

C′1
,

there exists an attachment in A from interaction o of an AEI C1 of the same type
as C′1, with C1 belonging to an acyclic portion or to the intersection of some cycle
with acyclic portions of the abstract enriched flow graph of A , to interaction i
of an AEI C2 ∈BC1 −CU A

C1
of the same type as C′2.

4. No local interaction occurring in P is involved in attachments canceled by the
endogenous variation.

5. If A or A ′ is cyclic, then A ′ is endo-coverable by κ and for each cyclic
union CU A ′

C generated by the endogenous variation of κ:

(a) No local interaction of the AEIs of CU A
C that P-interoperate with the other

AEIs in CU A
C by virtue of condition 2 of Theorem 5.1 is involved in attach-

ments canceled by the endogenous variation.
(b) No possibly added AEI in CU A ′

C belongs to the frontier of CU A ′
C .

(c) If C ∈ A , then [[CU A ′
C ]]pc;#CU A ′

C

CU A ′
C

/H ≈P [[CU A
C ]]pc;#CU A

C

CU A
C

/H where H

contains all local interactions of the added/removed AEIs as well as those
attached to them.

Then [[A ′]]pc;#A ′
bbm satisfies P iff so does [[C]]pc;wob

A for some C ∈A .

Example 5.5. Let us consider the architectural type Pipe Filter R of
Example 4.9, which is given by a ring of systems each having the same structure and
behavior as the architectural type Pipe Filter of Sect. 4.5. This ring is deadlock
free, because from the topological viewpoint it is a cyclic union and each of its in-
stances of AET Pipe Type is deadlock free and deadlock-freedom-interoperates
with the other AEIs in the cyclic union. Then, we can immediately derive that its
endogenous variation of Example 4.9, in which the number of pipe–filter systems
changes from 3 to 4, is deadlock free too.
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5.6.4 Generalization to Multiplicity Variations

A multiplicity variation of an AT instance consists of changing the number of AEIs
of certain types that are attached to certain local and-/or-interactions, by adding new
AEIs of those types or removing existing AEIs of those types.

In this case, there are various issues to be taken into account. A multiplicity vari-
ation may cancel existing attachments that are important for the validity of P ∈Ψ .
Moreover, when involving or-interactions, it may not support the scaling of archi-
tectural well-formedness. This happens when those or-interactions are attached to
uni-interactions that may raise exceptions or are enabled a number of times that does
not allow all the uni-interactions attached to them to be executed.

Similar to exogenous and endogenous variations, a multiplicity variation may
alter the set of original cyclic unions. When that happens, nothing can be deduced
from the absence of architectural mismatches in the original AT instance.

Corollary 5.4. Let A be an AT instance and P ∈Ψ be a property for which the
two conditions of Theorem 5.1 hold. Let A ′ be an AT instance resulting from a
multiplicity variation of A for which the following additional conditions hold:

3̃. No local interaction occurring in P is involved in attachments canceled by the
multiplicity variation.

4̃. No local or-interaction involved in the multiplicity variation is attached to a
semi-synchronous uni-interaction or to an input asynchronous uni-interaction.

5̃. Each local or-interaction involved in the multiplicity variation is enabled in-
finitely often.

6̃. If A or A ′ is cyclic, then C U A (κ) = CU A ′
(κ).

Then [[A ′]]pc;#A ′
bbm satisfies P iff so does [[C]]pc;wob

A for some C ∈A .

Example 5.6. Let us consider the architectural type OV Pipe Filter of
Example 4.10. This is a variant of the architectural type Pipe Filter of Sect. 4.5
allowing for a variable number of downstream filters; hence, it can be shown to be
deadlock free with the same argument used in Example 5.3. Then, we can immedi-
ately derive that its multiplicity variation of Example 4.10, in which the number of
downstream filters changes from 3 to 4, is deadlock free too.

5.7 Comparisons

The equivalence-checking-based topological reduction process presented in this
chapter is taken from [41, 7, 38]. Apart from [62], where a generic notion of com-
posability has been addressed, other mismatch detection techniques based on behav-
ioral equivalences are specifically concerned with deadlock freedom. In contrast, the
techniques discussed in this chapter are more general because they focus on an en-
tire class of properties – including deadlock freedom – rather than on individual
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properties. These techniques are also more flexible, as they make use of property-
specific behavioral equivalences instead of a single general behavioral equivalence
and exploit the hiding operator in order to highlight only the parts of the system
behavior that are important for well-formedness verification.

MISMDET can be viewed as a generalization of other techniques previously pro-
posed in the literature. For instance, the topological format that has been addressed
in [18] is limited to pairs of software units from the point of view of a specific com-
munication involving both of them. In that case, the activity of mismatch detection
is conducted by comparing any two software units each projected onto one of its in-
teractions, where the two selected interactions are attached to each other. In this way
it is only possible to check for the correct combination of two software units with
respect to individual communications.

In [124, 122], a more liberal topological format has been investigated, in which
pairs of software units are viewed from the standpoint of all the communications
involving both of them. Mismatch detection is carried out by extracting from the
description of each software unit the assumptions made about the behavior of the
rest of the system and by trying to match expected behaviors with actual behaviors.
In this way, it becomes possible to check for the presence of interferences among the
various communications in which two software units are involved. As an example,
in the compressing proxy system, the adaptor and the gzip program seem to interact
properly as long as the information flow from the adaptor to the gzip program and
the information flow from the gzip program to the adaptor are examined separately.
However, a mismatch is revealed as soon as the interplay between the two informa-
tion flows is taken into account.

The natural generalization of the latter topological format is the star, which has
been handled through the introduction in MISMDET of the architectural compatibil-
ity check. As demonstrated by the guest analogy scenario, this check is not sufficient
when dealing with cycles, as each of the various software units may interfere with
any of the others. This has led to the introduction in MISMDET of the architec-
tural interoperability check. Both checks rely on suitable variants of the interacting
semantics of a software unit and take care of details related to nonsynchronous com-
munications. Afterwards, the scalability to arbitrary topologies and to architectural
types, respectively, of the absence of architectural mismatches inferred from the ap-
plication of architectural compatibility and interoperability checks to single stars
and cycles have been studied.

We conclude by mentioning that the architectural checks constituting MISMDET

can provide useful information to be exploited in the subsequent stages of the soft-
ware development process.

As an example, in [36, 37, 52] an architecture-driven code generation approach
has been set up, which translates PADL descriptions into multithreaded Java pro-
grams by respecting the communication model adopted in PADL. Due to the dif-
ferent levels of abstraction characterizing an architectural description language like
PADL and an object-oriented programming language like Java, the code synthesis
cannot be complete. For instance, while interactions are fully handled by the trans-
lation process, internal actions are managed by generating stubs that the software
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developer will have to fill in. In that case, conditions have been obtained that guaran-
tee the preservation at the code level of the absence of well-formedness mismatches
demonstrated at the architectural level through the application of compatibility and
interoperability checks.

As another example, in [46,47] an architecture-driven approach to the generation
of integration tests has been proposed, which derives test plans from the labeled tran-
sition system underlying an architectural description. The identification of classes
of behaviors that are important for testing purposes is conducted by creating abstract
views of the labeled transition system. Each such view corresponds to an abstract
path in the labeled transition system, which emphasizes communications among cer-
tain software units while hiding other communications. The concrete paths related
to the abstract path are then retrieved and refined into code-level integration tests.
In that case, the diagnostic information returned by the application of compatibility
and interoperability checks can be employed in order to single out critical paths in
the labeled transition system, which are worth testing.





Chapter 6
Component-Oriented Performance Evaluation

Abstract The functional verification of software systems should not be separate
from system performance evaluation. Any software architecture should be designed
by having in mind the satisfaction of functional and nonfunctional requirements,
and efforts should be made in order to understand whether the performance of a
specific design can be improved. In addition to that, performance criteria should
guide the choice among several alternative designs each of which is functionally
correct. In this chapter, we present a procedure for the prediction, improvement, and
comparison of the performance of architectural designs called PERFSEL. It relies
on the combined use of process algebraic architectural descriptions and queueing
network models for assessing typical performance indices both at the system level
and at the component level. Its application is exemplified through the performance
comparison of three different architectures for a compiler system.

6.1 PERFSEL: Performance-Driven Architectural Selection

A crucial issue in the software development process is that of taking into account
nonfunctional aspects since the early stages, which is motivated by several reasons.
As an example, for a given system a number of alternative architectural designs may
be developed, each of which is functionally correct. In that case, we need to establish
criteria for deciding which architectural design is more appropriate. Similarly, for
a given set of functionalities there may be several off-the-shelf components that
provide what is required. Also in that case, some suitable criterion is necessary.

Performance requirements and constraints are certainly among the most influen-
tial factors that drive design choices in the cases mentioned above. Moreover, also
a specific architectural design may be subject to an investigation based on perfor-
mance criteria. In order for the performance investigation to be effective, similar
to functional verification it should proceed in a component-oriented fashion and
should return diagnostic information useful for determining whether, how, and to
what extent the performance of the considered design can be improved.

A. Aldini et al., A Process Algebraic Approach to Software Architecture Design, 203
DOI 10.1007/978-1-84800-223-4 6, c© Springer-Verlag London Limited 2010
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In this chapter, we present a procedure for the prediction, improvement, and
comparison of the performance of architectural designs called PERFSEL. The proce-
dure consists of a number of phases at the end of which typical performance indices
are assessed in different scenarios for the various architectural designs both at the
system level and the component level. On the basis of those indices, it can be de-
cided to discard some designs, improve others, or select the one to be implemented.

In order to achieve component orientation, PERFSEL relies on the combined use
of process algebraic architectural descriptions and queueing networks. Different
from MISMDET, it does not make use of behavioral equivalences, because these
are qualitative means for establishing whether distinct elements possess the same
properties or not. PERFSEL needs instead to quantify the extent to which proper-
ties are satisfied. This is accomplished by equipping process algebraic architectural
descriptions with quantitative semantics.

On the modeling side, PERFSEL employs a performance-aware variant of PADL
called ÆMILIA, which builds on the Markovian process calculus of Sect. 3.2
extended as in Sect. 3.3.8. On the analysis side, PERFSEL instead employs queueing
networks [130, 137], as they are structured performance models providing sup-
port for establishing a correspondence between their constituent elements and the
components of architectural descriptions. Moreover, some families of queueing
networks, called product-form queueing networks [27], are equipped with efficient
solution algorithms that do not require the construction of the underlying state space.

The combined use of the two formalisms in PERFSEL is made possible by a trans-
formation that associates a queueing network model with every ÆMILIA description
satisfying certain constraints. The presence of such constraints has a twofold motiva-
tion. Firstly, although they share a certain degree of component orientation, the two
formalisms are quite different from each other. On the one hand, ÆMILIA is a com-
pletely formal, general-purpose architectural description language handling both
functional and performance aspects, whose basic ingredients are actions and behav-
ioral operators. On the other hand, queueing networks are instances of a queue-based
graphical notation for performance modeling purposes only, in which some details
like the queueing disciplines are usually expressed in natural language. Secondly,
the components of an ÆMILIA description cannot be precisely mapped to the ser-
vice centers of a queueing network model, but on finer parts that we call queueing
network basic elements and represent arrival processes, buffers, service processes,
fork processes, join processes, and routing processes.

This chapter is organized as follows. In Sect. 6.2, we outline the class of perfor-
mance indices we are interested in assessing, together with the selection strategy
on which PERFSEL is based. In Sect. 6.3, we define ÆMILIA as an extension of
PADL with performance aspects. In Sect. 6.4, we recall some of the most important
concepts and properties in the field of queueing systems and queueing networks.
In Sect. 6.5, we present the transformation of ÆMILIA descriptions into queueing
networks that enables the combined use of the two formalisms. In Sect. 6.6, we il-
lustrate an application of PERFSEL to the performance comparison of three different
architectures for a compiler system. Finally, in Sect. 6.7 we compare the considered
performance-driven architectural selection procedure with the related literature.
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6.2 Class of Measures and Selection Strategy

PERFSEL focuses on the following four typical average indicators, which refer to
both system level and component level and give insights into the overall perfor-
mance:

• Throughput, which is the mean number of tasks executed by a system/component
per unit of time. This is a measure of the productivity of a system/component. It
provides information useful for singling out bottleneck components, i.e., compo-
nents that are responsible for degrading the system performance and hence must
be redesigned.

• Utilization, which is the mean fraction of time during which a system/component
is running. This is a measure of the relative usage of the computational resources
by a system/component. It provides information useful at deployment time for a
balanced distribution of the workload among the computational resources.

• Mean queue length, which is the mean number of items in a system/component
handling data. This is a measure of the space complexity of data repositories. It
provides information useful for setting their dimension in such a way to avoid
component execution blocking due to under-sized buffers as well as waste of
memory due to over-sized buffers.

• Mean response time, which is the mean time needed by a system/component to
complete or repeat its execution. This is a measure of the time complexity of a
system/component. It provides information useful for predicting the quality of
service that will be perceived by the software user on average.

The selection strategy of PERFSEL is illustrated in Fig. 6.1. It is composed of the
following nine phases, which support the prediction, improvement, and comparison
of the performance of alternative architectural designs of a certain system:

1. Given a set of functional and performance requirements that should be satisfied
by the software system to be implemented, the designer devises a certain number
d ∈ N>0 of alternative designs, which we assume to be functionally correct.

2. Each such architectural design is then formalized as an ÆMILIA description in
order to enable the evaluation of its performance.

3. The ÆMILIA description of some of the considered software architectures may
not obey the constraints that make it possible to transform the description into a
queueing network model. In that case, the ÆMILIA description is replaced by an
approximating ÆMILIA description obeying the constraints. The approximation
may result in the modification of the behavior of certain AEIs as well as in the
replacement of existing AEIs with groups of new AEIs.

4. The possibly approximate ÆMILIA description of each architectural design is
subsequently transformed into a queueing network model.

5. The queueing network model associated with some of the considered software
architectures may not be in product form, thus hampering a quick computation
of the four average performance indicators. In that case, the queueing network
model is replaced by an approximating product-form queueing network model.
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Fig. 6.1 Models and phases of PERFSEL

The approximation may result in the modification of interarrival time distribu-
tions, buffer capacities, service time distributions, and customer classes.

6. The possibly approximate product-form queueing network model associated
with each architectural design is then evaluated in order to derive the four av-
erage performance indicators both at the system level and the component level.
The evaluation is done in several different scenarios considered significant
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for the assessment of the various architectural designs. This requires the
parameterization of the derived product-form queueing network model and
the characterization of its workload, which in turn may require the introduction
in the corresponding ÆMILIA description of suitable AEIs representing arrival
processes. As examples of scenarios, it is interesting to study the differences
in the value of the four average performance indicators under light load and
heavy load conditions. Similarly, it is worth investigating those differences when
the service centers provide service at the same rate and when one of them is
slower/faster than the others.

7. The previously obtained performance figures are subsequently interpreted on
the ÆMILIA description of the various architectural designs. For each of them
a decision has to be made as to whether the design is satisfactory, should be
discarded, or can be improved. In the last case, it is necessary to go back to
phase 2.

8. When the predict–improve cycle is terminated for all the considered architectural
designs, a comparison takes place in the various scenarios among the last groups
of performance figures obtained for the architectural designs that have not been
discarded. The comparison should be fair, in the sense that the alternative designs
should be given comparable workloads in each scenario. Since the outcome of
the comparison may be different from scenario to scenario, in order to select
the architecture to be implemented it may be necessary to take into account the
frequency with which every examined scenario can arise in practice.

9. The selected architecture is finally checked against the specific performance re-
quirements of the system to be implemented. Such requirements can be formal-
ized through different notations like those mentioned in [66,23,8], which rely on
logical formulas combined with reward structures [120,180,109]. If the outcome
of the check is positive, then the application of PERFSEL terminates, otherwise
the designer has to go back to step 1 and also reconsider the performance require-
ments, as they may have turned out to be impossible to meet.

We conclude by noting that the final check is necessary for at least two reasons.
Firstly, the selection is made on the basis of general performance indicators, which
are not necessarily connected in any way to the specific performance requirements.
Secondly, the product-form queueing network model associated with the selected
architecture or the ÆMILIA description from which it has been derived may have
been subject to approximations. Although the perturbation of the four performance
indicators introduced by the approximations cannot be easily quantified, it is worth
recalling from [137] that queueing network models are in general robust, in the sense
that even their approximate analysis is in any case useful to get some insights about
the performance of the systems they represent.

The consideration of a restricted set of general performance indicators and
the possibility of introducing approximations are justified at the architectural de-
sign level by the fact that the objective is that of getting a quick feedback about
how to improve the performance of a certain design, or making a rapid com-
parison of the performance of alternative designs, rather than a precise perfor-
mance evaluation. This is conducted anyhow, but only in the last phase and only
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on the selected architecture, so as to achieve a tradeoff between saving time and
ensuring that the selected architecture actually meets the specified performance
requirements.

6.3 ÆMILIA: Extending PADL with Performance Aspects

PERFSEL enables the modeling of nonfunctional aspects of architectural designs by
resorting to a performance-aware variant of PADL called ÆMILIA. This is an archi-
tectural description language based no longer on the process calculus of Sect. 1.3,
but on the Markovian process calculus of Sect. 3.2 extended as in Sect. 3.3.8 by
introducing immediate actions together with priorities for passive actions.

In ÆMILIA, every action is thus composed of a name – like in PADL – and a
rate – which determines the speed of the action. Actions are divided into exponen-
tially timed, immediate, and passive. An exponentially timed action is denoted by
<a, exp(r)>, where a is the name of the action and r is a positive real number
expressing the rate of the exponentially distributed random variable that quantifies
the duration of the action. An immediate action is denoted by <a, inf(l, w)>,
where l is a positive natural number representing the priority level of the action and
w is a positive real number representing the weight of the action. A passive action
is denoted by <a, (l, w)>, where l is a natural number representing the re-
active priority constraint of the action and w is a positive real number representing
the reactive weight of the action. Passive actions with reactive priority constraint 0
can synchronize only with exponentially timed actions, while passive actions with
reactive priority constraint l greater than 0 can synchronize only with immediate
actions having priority level equal to l. The use of inf and alone is permitted, in
which case priorities and weights assume their default value 1.

ÆMILIA descriptions can be parameterized also with respect to rates, priorities,
and weights. The corresponding parameters are preceded by the keywords rate,
prio, and weight, respectively, in the architectural header and in the headers of
the AETs. The occurrences of an action name within the behavior of an AET must
be all exponentially timed, all immediate, or all passive. Moreover, every set of local
interactions attached to each other can contain at most one nonpassive local inter-
action, due to the synchronization discipline adopted by the parallel composition
operator of the underlying Markovian process calculus.

ÆMILIA inherits from PADL the structure of the descriptions, which comprises
an architectural behavior section, an architectural topology section, and an optional
behavioral modification section. As a consequence, ÆMILIA also inherits the con-
struction of the translation semantics, which starts with the various AEIs in isolation
and then makes them interact on the basis of the attachments through suitable appli-
cations of the relabeling operator and of the parallel composition operator.

With regard to the functional verification techniques of Chap. 5, they can be ap-
plied as they are to ÆMILIA descriptions that cannot execute immediate actions. For
the other ÆMILIA descriptions, it is necessary to take into account the preemption
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possibly exercised by immediate actions on lower priority actions. Performance
analysis can instead be conducted only in the case of performance-closed ÆMILIA

descriptions. The stochastic process governing the time behavior of each such archi-
tectural description turns out to be a continuous-time Markov chain. This is obtained
by discarding rates from the transitions of the labeled multitransition system under-
lying the architectural description, and can be solved as explained in Sect. 3.2.1.

Example 6.1. Let us consider a performance-aware variant of the pipe–filter system
of Example 4.10, which has one upstream filter, a connecting pipe, and an arbitrary
number of downstream filters.

In this system, there is only one activity that introduces nonnegligible de-
lays, which is item transformation. For a correct performance modeling, item
transformation must be separated from item buffering. This can be accomplished
by means of two distinct AETs for representing a single filter, where one AET is for
the item buffering and the other AET is for the item transformation.

As far as performance parameters are concerned, we assume different transfor-
mation rates for the various filters. Moreover, we assume different forward proba-
bilities towards downstream filters as a consequence of the fact that the pipe is most
likely to forward items to faster downstream filters with free positions.

Here is the architectural description header, where function array cons
constructs an array:

ARCHI_TYPE PA_Pipe_Filter(const integer papf_downstr_num := 3,
const integer papf_buffer_size := 10,
const rate papf_tran_rate_0 := 60,
const weight papf_forw_prob_0 := 1,
const array(papf_downstr_num, rate)
papf_tran_rate := array_cons(70,

45,
30),

const array(papf_downstr_num, weight)
papf_forw_prob := array_cons(0.5,

0.3,
0.2))

The filter buffer AET is defined as follows, where parameter forward prob is
used as weight in a passive action and interaction pass item is used for commu-
nicating with the transformation part of the filter:

ARCHI_ELEM_TYPE Filter_Buffer_Type(const integer buffer_size,
const weight forward_prob)

BEHAVIOR
Filter_Buffer(integer(0..buffer_size) item_num := 0;

void) =
choice
{
cond(item_num < buffer_size) ->
<input_item, _(1, forward_prob)> . Filter(item_num + 1),
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cond(item_num > 0) ->
<pass_item, _> . Filter(item_num - 1)

}

INPUT_INTERACTIONS SYNC UNI input_item
OUTPUT_INTERACTIONS SYNC UNI pass_item

While all the actions occurring in the previous AET are passive to reflect the fact
that the activities involving a buffer are originated from the outside, every action
occurring in the filter core AET is exponentially timed or immediate:

ARCHI_ELEM_TYPE Filter_Core_Type(const rate transf_rate)

BEHAVIOR
Filter_Core(void; void) =
<select_item, inf> . <transform_item, exp(transf_rate)> .

<output_item, inf> . Filter_Core()

INPUT_INTERACTIONS SYNC UNI select_item
OUTPUT_INTERACTIONS SYNC UNI output_item

The definition of the pipe AET is as in Sect. 4.5, with the difference that interac-
tion accept item is passive and interaction forward item is immediate:

ARCHI_ELEM_TYPE Pipe_Type(void)

BEHAVIOR
Pipe(void; void) =
<accept_item, _> . <forward_item, inf> . Pipe()

INPUT_INTERACTIONS SYNC UNI accept_item
OUTPUT_INTERACTIONS SYNC OR forward_item

It is worth observing that forward probabilities towards downstream filters have
been encoded in some of the passive actions of those filters rather than in the pipe,
so that a single output or-interaction is still enough when modeling the pipe. The
possibility of associating weights both to immediate actions and to passive actions
is thus convenient for exploiting or-interactions in a performance-aware setting.

Finally, we have the architectural topology section:

ARCHI_ELEM_INSTANCES
FB[0] : Filter_Buffer_Type(papf_buffer_size,

papf_forw_prob_0);
FC[0] : Filter_Core_Type(papf_tran_rate_0);
P : Pipe_Type();
FOR_ALL 1 <= j <= papf_downstr_num
FB[j] : Filter_Buffer_Type(papf_buffer_size,

papf_forw_prob[j]);
FOR_ALL 1 <= j <= papf_downstr_num
FC[j] : Filter_Core_Type(papf_tran_rate[j])
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Fig. 6.2 Enriched flow graph of the performance-aware variant of the pipe–filter system

ARCHI_INTERACTIONS
FB[0].input_item;
FOR_ALL 1 <= j <= papf_downstr_num
FC[j].output_item

ARCHI_ATTACHMENTS
FROM FB[0].pass_item TO FC[0].select_item;
FROM FC[0].output_item TO P.accept_item;
FOR_ALL 1 <= j <= papf_downstr_num
FROM P.forward_item TO FB[j].input_item;
FOR_ALL 1 <= j <= papf_downstr_num
FROM FB[j].pass_item TO FC[j].select_item

This is graphically illustrated in Fig. 6.2.

6.4 Queueing Systems and Queueing Networks

Any performance-closed ÆMILIA description can be analyzed from a quantitative
viewpoint by studying the associated continuous-time Markov chain. However, the
latter is a state-based model that does not keep track of the component-based struc-
ture of the ÆMILIA description; hence, it is not suited for the architectural design
level. For this reason, PERFSEL evaluates nonfunctional aspects of architectural de-
signs by resorting to queueing network models.

A queueing network [130, 137] is a collection of interacting service centers that
represent resources shared by classes of customers, where customer competition
for resources corresponds to queueing into the service centers. Queueing networks
are structured performance models because they elucidate system components and
their connectivity; hence, they can be employed for representing architectural de-
scriptions in a way that preserves their topology.
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The popularity of queueing network models for system performance evaluation
is due to their relatively high accuracy in performance results and their efficiency in
model analysis and evaluation. In particular, queueing networks introduce a number
of advantages with respect to Markov chains in the architectural design phase:

• Typical average performance indicators like those of Sect. 6.2 can be computed
both at the level of an entire queueing network and at the level of its constituent
service centers. Such global and local indicators can then be interpreted back
at the level of an entire architectural description and at the level of its constituent
components, respectively, in order to obtain diagnostic information.

• Specific families of queueing networks are equipped with fast solution algorithms
that do not require the construction of the underlying state space. This provides
support for a performance analysis that scales with respect to the number of com-
ponents in architectural descriptions.

• The solution of a queueing network can be expressed symbolically in the case
of certain topologies. This feature is useful in the early stages of the software
development cycle, since the actual values of system performance parameters
may be unknown at that time.

The simplest queueing network consists of a single service center and is called
queueing system. As depicted below, it includes a source of arrivals, a queue, and a
set of independent servers:

.
.
.

arrivals
queue

departures

servers

Every customer needing a certain service arrives at the queueing system, waits in
the queue for a while, is served by one of the servers, and finally leaves the queueing
system. A queueing system is said to be single class or multiclass depending on the
number of classes of customers, with each class possibly characterized by different
arrival processes and different service demands.

Every queueing system is completely described by the customer interarrival
time distribution, the customer service time distribution, the number of independent
servers, the queue capacity, the customer population size, and the queueing disci-
pline. The first five parameters are summarized by using the following notation:

A/B/m/c/p

with A and B ranging over the set of probability distributions – M for memoryless
distributions, D for deterministic distributions, PH for phase-type distributions, and
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G for general distributions – and m, c, and p being natural numbers. If c and p are
unspecified, they are assumed to be ∞, i.e., to describe an unlimited queue capacity
and an unlimited customer population, respectively.

The sixth parameter, i.e., the queueing discipline, is an algorithm that deter-
mines the order in which the customers in the queue have to be served. Such a
scheduling algorithm may depend on the order in which the customers arrive at the
queueing system, the priorities assigned to the customers, or the amounts of ser-
vice already provided to the customers. Here are some commonly adopted queueing
disciplines:

• First come first served (FCFS): the customers are served in the order of their
arrival. This is the default queueing discipline.

• Last come first served (LCFS): the customers are served in the reverse order of
their arrival.

• Last come first served with preemptive resume (LCFS-PR): same as LCFS, but
each arriving customer interrupts the current service, if any, and begins to be
served; the interrupted service of a customer is resumed when all customers
arrived later than that customer have departed.

• Service in random order (SIRO): the next customer to be served is chosen prob-
abilistically, with equal probabilities assigned to all the waiting customers.

• Nonpreemptive priority (NP): customers are assigned fixed priorities; the wait-
ing customer with the highest priority is served first; if several waiting customers
have the same highest priority, they are served in the order of their arrival;
once begun, a service cannot be interrupted by the arrival of a higher priority
customer.

• Preemptive priority (PP): same as NP, but each arriving higher priority customer
interrupts the current service, if any, and begins to be served; a customer whose
service was interrupted resumes service when there are no higher priority cus-
tomers to be served.

• Round robin (RR): each customer is given continuous service for a maximum
interval of time called a quantum; if the customer service demand is not satisfied
during the quantum, the customer reenters the queue and waits to receive an
additional quantum, repeating this process until the service demand is satisfied;
the waiting customers are served in the order in which they last entered the queue.

• Processor sharing (PS): all the waiting customers receive service simultaneously
with equal shares of the service rate. This is an approximation of RR.

• Infinite server (IS): no queueing takes place as each arriving customer always
finds an available server. In this case, an unbounded number of servers is
needed.

The quantitative behavior of a queueing system can be analyzed during a given
time interval (transient analysis) or after the system has reached a stability con-
dition (steady-state analysis). The solution of a queueing system is the probabil-
ity distribution of the number of customers in the system, which is computed
on the basis of the underlying stochastic process. This solution can then be ex-
ploited for calculating the average indicators of Sect. 6.2, which represent the mean
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number of customers leaving the system per unit of time, the mean fraction of
time during which the servers are used, the mean number of customers in the
system, and the mean response time experienced by the customers visiting the
system.

The stability condition enabling steady-state analysis requires, in general, that the
customer arrival rate be less than the service rate, so as not to saturate the queueing
system. In the specific case of a queueing system M/M/1 with arrival rate λ ∈ R>0

and service rate μ ∈ R>0, the stability condition is λ < μ . Although the stochastic
process underlying this queueing system is an infinite-state continuous-time Markov
chain, the birth–death structure of such a stochastic process implies that the number
N1 of customers in the system is geometrically distributed with the parameter given
by the traffic intensity ρ1 = λ/μ under FCFS, LCFS, LCFS-PR, SIRO, and PS.
Therefore, the probability that there are k ∈ N customers in the system is:

Pr{N1 = k} = ρk
1 · (1−ρ1)

The average indicators for the queueing system M/M/1 above can then be easily
derived in symbolic form as follows:

• The throughput is given by the service rate multiplied by the probability that
there is at least one customer in the system, which turns out to coincide with the
arrival rate:

T 1 = μ ·Pr{N1 > 0} = μ ·ρ1 = λ

• The utilization is given by the probability that there is at least one customer in
the system:

U1 = 1−Pr{N1 = 0} = ρ1

• The mean number of customers in the system is the expected value of the geomet-
rically distributed random variable for the number of customers in the system:

N1 =
∞
∑

k=0
k ·Pr{N1 = k} = ρ1

1−ρ1

• The mean response time is obtained from Little’s law as the ratio of the mean
number of customers in the system to the arrival rate:

R1 = N1/λ = 1
μ·(1−ρ1)

In the slightly more general case of a queueing system M/M/m with arrival rate
λ ∈ R>0, there are m ∈ N>0 identical servers that operate independently and in
parallel each with service rate μ ∈ R>0. In this case, the traffic intensity is defined
by ρm = λ/(m ·μ) and, under the stability condition ρm < 1 and the same queueing
disciplines as before, the average indicators in symbolic form are given by:
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T m =
m−1
∑

k=1
k ·μ ·Pr{Nm = k}+ m ·μ ·Pr{Nm ≥ m} = λ

Um = 1−Pr{Nm = 0} = 1−
(

m−1
∑

k=0

(m·ρm)k

k! + (m·ρm)m

m!·(1−ρm)

)−1

Nm =
∞
∑

k=0
k ·Pr{Nm = k} = m ·ρm + Pr{Nm=0}·ρm·(m·ρm)m

m!·(1−ρm)2

Rm = Nm/λ = 1
μ ·

(
1 + Pr{Nm=0}·ρm·(m·ρm)m−1

m!·(1−ρm)2

)

A queueing network is a set of interconnected service centers, which are queue-
ing systems when considered in isolation and hence for each of them it is necessary
to specify the six parameters mentioned before. In order to complete the description
of a queueing network, it is also necessary to specify its topology by means of a
matrix of routing probabilities governing the customer flow through the network.

Similar to queueing systems, a queueing network is said to be single class or mul-
ticlass depending on the number of classes of customers, with each class possibly
characterized by different arrival processes, different service demands, and different
routing probabilities. Moreover, a queueing network is said to be open, closed, or
mixed depending on the extent to which external arrivals and departures are allowed
for the various classes of customers. In an open queueing network, all customers
arrive from the outside and every customer that completes service at a service cen-
ter immediately enters another service center, reenters the same service center, or
leaves the network. In a closed queueing network, instead, a fixed number of cus-
tomers circulate indefinitely among the service centers.

The solution of a queueing network is the probability distribution of the number
of customers in the network. This number is actually expressed as a tuple holding
the numbers of customers in the various service centers, so as to reflect the structure
of the queueing network. Since the state space of the underlying stochastic process
grows exponentially with the number of service centers, solving a queueing network
can often become unfeasible.

However, there exist families of queueing networks that can be solved composi-
tionally, for which efficient algorithms have been devised. These queueing networks
are called product-form queueing networks because the probability that each such
queueing network contains a given number of customers (k1,k2, . . . ,kn), with n be-
ing the number of its service centers, is the product of the probabilities that every
service center i contains ki customers, up to a normalizing constant in the case of
closed queueing networks. In other words, it is possible to solve each service center
in isolation and then combine their solutions via multiplications.

An important property of product-form queueing networks is exact aggregation,
which allows subnetworks to be replaced with single service centers in such a way
that the resulting queueing network has the same quantitative behavior as the origi-
nal one. Exact aggregation can be exploited for evaluating the average performance
indicators of Sect. 6.2 at different abstraction levels. More precisely, the average
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indicators can be easily obtained at the global level and at the local level for an open
product-form queueing network composed of M/M service centers by using for each
center the corresponding formulas shown earlier. The arrival rates for the various
service centers can be computed by solving the linear system of traffic equations
defined by the routing probabilities. In the case of closed or mixed product-form
queueing networks, the same average indicators can be derived at the global level
and at the local level by applying suitable algorithms [60, 175, 63, 72].

A well known characterization of product-form queueing networks is given
by the BCMP theorem [27], which establishes that an open/closed/mixed single-
class/multiclass queueing network is product form if it has Poisson arrivals (i.e.,
exponentially distributed interarrival times) with possibly state-dependent rates,
Markovian (i.e., history-independent) routing, and service centers featuring a com-
bination of the following queueing disciplines and service time distributions:

• FCFS with the same exponentially distributed service time for all classes of cus-
tomers

• LCFS-PR, PS, or IS with phase-type distributed service time possibly different
for the various classes of customers

In the second case, the values of the average performance indicators do not
change if the phase-type distributed service times are replaced by exponentially dis-
tributed service times with the same expected values. The figure below shows basic
examples of phase-type distributions [161], which describe the time to absorption
in finite-state continuous-time Markov chains having exactly one absorbing state:

. . .

...

λ1
λ1

λ2 λ2
λn

λn

p1 p2 pn

Exp. distrib.  Hypoexponential distribution  Hyperexponential distribution

1
λ

1

Due to the linearity of the expected value operator, it is easy to compute the expected
value of a phase-type distribution. For instance, the expected value of a hypoexpo-
nential distribution is the sum of the expected values of its exponentially distributed
consecutive phases. As another example, the expected value of a hyperexponential
distribution is the sum of the expected values of its exponentially distributed alter-
native phases, each multiplied by the corresponding initial-state probability.

6.5 From ÆMILIA Descriptions to Queueing Networks

PERFSEL employs ÆMILIA descriptions for representing functional and nonfunc-
tional aspects of architectural designs and queueing networks for evaluating their
performance. In this section, we define a transformation that associates queueing
networks with ÆMILIA descriptions.

Apart from producing structured models, we observe that the two formalisms are
quite different from each other. On the one hand, ÆMILIA is a completely formal,
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general-purpose architectural description language handling functional and perfor-
mance aspects, whose basic ingredients are actions and behavioral operators. On the
other hand, queueing networks are instances of a queue-based graphical notation for
performance modeling purposes only, in which some details like the queueing dis-
ciplines are usually expressed in natural language.

As a consequence, only some ÆMILIA descriptions can be transformed into
queueing networks, depending on whether they follow a queue-like pattern or not.
In order to single out a reasonably wide family of ÆMILIA descriptions from which
queueing networks can be derived, we impose a number of general syntactical re-
strictions (Sect. 6.5.1).

Another issue to be taken into account is that, even though an ÆMILIA descrip-
tion obeys all general syntactical restrictions, it is not necessarily the case that its
AEIs can be precisely mapped to the service centers of some queueing network. It
is more reasonable to expect to be able to map groups of AEIs to service centers of
the form PH/PH/m/c/p or, equivalently, to map each AEI to some basic element of
a queueing network. Therefore, we also introduce a number of specific syntactical
restrictions in order to single out those AEIs that can be mapped to queueing net-
work basic elements representing arrival processes, buffers, service processes, fork
processes, join processes, and routing processes (Sect. 6.5.2).

For each ÆMILIA description obeying both the general and the specific
syntactical restrictions, the transformation is accomplished by first mapping the
various AEIs into the corresponding queueing network basic elements and then
composing such elements according to the attachments declared in the ÆMILIA

description. Formally, the transformation is defined through a set of documental
functions (Sect. 6.5.3) and a set of characterizing functions (Sect. 6.5.4).

6.5.1 General Syntactical Restrictions

The aim of the general syntactical restrictions is that of identifying ÆMILIA de-
scriptions from which it is possible to derive queueing networks. Given an ÆMILIA

description, the first general syntactical restriction requires that every AEI conforms
to a queueing network basic element and is suitably connected to the other AEIs in
order to yield a well-formed queueing network, as formalized in more detail by the
specific syntactical restrictions.

The second general syntactical restriction requires that every interaction is im-
mediate or passive. This restriction simplifies the detection of AEIs representing
arrival or service processes, as such processes are built around sets of exponentially
timed activities related to customer arrivals or services.

The third general syntactical restriction requires that no AEI contains exponen-
tially timed actions alternative to each other. This restriction avoids the application
of the race policy within arrival or service processes, which would not be natural
due to the sequential nature of such processes.



218 6 Component-Oriented Performance Evaluation

The fourth general syntactical restriction requires that no AEI contains exponen-
tially timed actions alternative to immediate or passive actions, immediate actions
alternative to passive actions, or interactions alternative to internal actions. This re-
striction simplifies the detection of the phase-type distributed delays associated with
arrival or service processes.

All these restrictions can be automatically checked at the syntax level, with-
out constructing the state space underlying the ÆMILIA description. They preserve
much of the modeling power of ÆMILIA, without hampering the representation
of typical situations like parallel executions, synchronization constraints, priori-
tized/probabilistic choices, and activities whose duration is or can be approximated
with a phase-type distribution.

On the other hand, such restrictions introduce some limitations on the admitted
ÆMILIA descriptions. As an example, preemption cannot be dealt with, as it is not
possible to express the fact that the service of a customer of a certain class is inter-
rupted by the arrival of a customer of another class having higher service priority.
In general, it is possible to address only queueing disciplines with noninterruptable
service for a fixed number of servers, like FCFS, LCFS, SIRO, and NP. We thus
exclude policies in which the service of a customer can be interrupted (LCFS-PR,
PP) or divided into several rounds (RR, PS) as well as policies in which no queueing
takes place as every incoming customer always finds an available server (IS).

6.5.2 Queueing Network Basic Elements

We now present the specific syntactical restrictions by examining the various
queueing network basic elements to which the AEIs of an ÆMILIA description
should conform. For the sake of simplicity, these elements are represented graph-
ically, with the understanding that the interactions occurring in them are part of
process algebraic equations obeying the general syntactical restrictions.

An arrival process is a generator of arrivals of customers of a certain class, whose
interarrival times follow a phase-type distribution. As depicted in Fig. 6.3, we dis-
tinguish between two kinds of arrival process depending on whether the related
customer population is unbounded or finite.

In the first case, the customer interarrival time distribution refers to the whole
population. Therefore, it is not necessary to model explicitly the return of customers
after they have been served. In the second case, the customer interarrival time distri-
bution varies proportionally to the number of customers that are not requesting any
service, hence the return of customers must be explicitly modeled through passive
input interactions. In order to achieve a correct scaling of the interarrival time distri-
bution, the various customers of the considered class have to be represented through
as many instances of the AET associated with the arrival process. The immediate
output (resp. passive input) interactions of these AET instances must consequently
be attached to passive input (resp. immediate output) or-interactions of the same
AEIs. In both cases, the f alternative immediate output interactions modeling the
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Fig. 6.3 Queueing network basic elements representing arrival processes
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Fig. 6.4 Queueing network basic elements representing buffers

departure of customers towards the queueing network comprise routing priorities
and probabilities. Departure can be alternatively represented through a single im-
mediate output or-interaction.

A buffer is a repository of customers of different classes that are waiting to be
served according to some noninterruptable queueing discipline like FCFS, LCFS,
SIRO, or NP. As depicted in Fig. 6.4, we distinguish between two kinds of buffer
depending on the buffer capacity.

In the first case, incoming customers of the h different classes can always be
accommodated inside the buffer. In the second case, incoming customers of class i
can be accommodated only if the buffer capacity ci for that class is not exceeded.
In both cases, all the interactions are passive and no exponentially timed internal
action can occur within the behavior of the AET associated with the buffer.

A service process is a server for customers of different classes, whose service
times follow a phase-type distribution for each class. As depicted in Fig. 6.5, we dis-
tinguish between two kinds of service process depending on the presence or the ab-
sence of a buffer – modeled by another AEI – where customers can wait before
being served.
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Fig. 6.5 Queueing network basic elements representing service processes

In the first case, the description of the service process starts with the selection
of the next customer to be served from the buffer. The immediate input interac-
tions corresponding to the h classes may comprise different selection priorities and
probabilities.

In the second case, the description of the service process starts with the arrival of
the next customer to be served directly from some queueing network basic element
other than a buffer. This is represented through passive input interactions corre-
sponding to the h classes, with selection priorities and probabilities for the various
classes possibly encoded within the attached immediate output interactions.

In both cases, the f1 + · · ·+ fh alternative immediate output interactions mod-
eling the departure of customers comprise routing priorities and probabilities.
Some of these interactions are absent if they are related to the return of cus-
tomers to their unbounded populations. Departure can be alternatively represented
through a single immediate output or-interaction. We also observe that the case
of a service center composed of several servers corresponds to having several
instances of the same AET associated with the service process, with these in-
stances attached to or-interactions of the same AEIs and sharing the same buffer if
present.

A fork process splits requests coming from customers of a certain class into sub-
requests directed to different service centers. As depicted in Fig. 6.6, we distinguish
between two kinds of fork process depending on the presence or the absence of a
buffer – modeled by another AEI – where requests can wait before being split.

In the first case, an immediate input interaction describes the selection of the next
request to be split from the buffer. In the second case, a passive input interaction
describes the arrival of the next request to be split directly from some queueing
network basic element other than a buffer. In both cases, the departure of subrequests
from the fork process can be expressed through f consecutive immediate output



6.5 From ÆMILIA Descriptions to Queueing Networks 221

...
...

fork process without external buffer:

fork process preceded by external buffer:

fork1,inf

forkf,inf

fork1,inf

forkf,inf

select,inf

arrive,_

Fig. 6.6 Queueing network basic elements representing fork processes
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Fig. 6.7 Queueing network basic elements representing join processes

uni-interactions or through a single immediate output and-interaction. Moreover,
no exponentially timed internal action can occur within the behavior of the AET
associated with the fork process.

A join process merges subrequests coming from customers of a certain class after
they have been served at different service centers. As depicted in Fig. 6.7, we distin-
guish between two kinds of join process depending on the presence or the absence of
buffers – modeled by other AEIs – where subrequests can wait before being merged.

In the first case, an immediate input and-interaction describes the selection of the
next subrequests to be merged from the buffers. In the second case, a passive input
and-interaction describes the arrival of the next subrequests to be merged directly
from queueing network basic elements other than buffers. In both cases, the f alter-
native immediate output interactions modeling the departure of customers comprise
routing priorities and probabilities. Some of these interactions are absent if they
are related to the return of customers to their unbounded populations. Departure
can be alternatively represented through a single immediate output or-interaction.
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Fig. 6.8 Queueing network basic elements representing routing processes

Moreover, no exponentially timed internal action can occur within the behavior of
the AET associated with the join process.

A routing process forwards customers of a certain class towards different des-
tinations in the queueing network. As depicted in Fig. 6.8, we distinguish between
two kinds of routing process depending on the presence or the absence of a buffer –
modeled by another AEI – where customers can wait before being forwarded.

In the first case, an immediate input interaction describes the selection of the next
customer to be forwarded from the buffer. In the second case, a passive input inter-
action describes the arrival of the next customer to be forwarded directly from some
queueing network basic element other than a buffer. In both cases, the f alternative
immediate output interactions modeling the forwarding of customers comprise rout-
ing priorities and probabilities. Some of these interactions are absent if they are re-
lated to the return of customers to their unbounded populations. Forwarding can be
alternatively represented through a single immediate output or-interaction. More-
over, no exponentially timed internal action can occur within the behavior of the
AET associated with the routing process.

The attachments declared in an ÆMILIA description must be such that the queue-
ing network basic elements derivable from the various AEIs result in a well-formed
queueing network. This is formalized by imposing the following additional specific
restrictions on connections:

• An arrival process can be followed only by a service or fork process, possibly
preceded by a buffer.

• A buffer can be followed only by a service, fork, join, or routing process.
• A service process can be followed by any queueing network basic element.
• A fork process can be followed only by a service process or another fork process,

possibly preceded by a buffer.
• A join process can be followed by any queueing network basic element.
• A routing process can be followed by any queueing network basic element.
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6.5.3 Documental Functions

Whenever an ÆMILIA description satisfies all general and specific syntactical
restrictions, then each of its AEIs is transformed into a queueing network basic
element. This is formalized by means of two groups of functions, which provide the
attributes that label the resulting queueing network basic elements as depicted in the
figures of Sect. 6.5.2.

The four functions of the first group play a documental role for each AEI and
are subsequently used to assemble the derived queueing network basic elements
according to the attachments declared in the ÆMILIA description:

• Function qnbe specifies the kind of queueing network basic element into which
the AEI is transformed.

• Function name associates the name of the AEI with the corresponding queueing
network basic element.

• Function input associates the local input interactions of the AEI with the incom-
ing arcs of the corresponding queueing network basic element.

• Function output associates the local output interactions of the AEI with the out-
going arcs of the corresponding queueing network basic element.

Example 6.2. Let us consider the performance-aware pipe–filter system of
Example 6.1. Observed that its ÆMILIA description satisfies all the syntactical
restrictions, function qnbe establishes that:

• FB[0], FB[1], FB[2], and FB[3] are buffers
• FC[0], FC[1], FC[2], and FC[3] are service processes each preceded by

a buffer
• P is a routing process not preceded by a buffer

The other functions, i.e., name, input, and output, label the above identified queue-
ing network basic elements as expected.

6.5.4 Characterizing Functions

The five functions of the second group characterize the quantitative aspects of the
queueing network basic elements derived from the AEIs of an ÆMILIA description
obeying all syntactical restrictions:

• Function inter arr time computes the phase-type distribution governing the in-
terarrival times of the customers of a certain class for an AEI transformed into an
arrival process.

• Function capacity computes the capacity for an AEI transformed into a buffer.
• Function queueing disc establishes the queueing discipline for an AEI trans-

formed into a buffer.
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• Function serv time computes the phase-type distribution governing the service
times related to the customers of a certain class for an AEI transformed into a
service process.

• Function routing prob computes the routing probabilities of the customers of a
certain class for an AEI transformed into an arrival, service, join, or routing pro-
cess. It also assigns a value to the return of customers to unbounded populations.

Example 6.3. Let us consider again the performance-aware pipe-filter system of
Example 6.1. Based on the documental functions of Example 6.2, we have that:

• capacity and queueing disc establish that FB[0], FB[1], FB[2], and FB[3]
are finite-capacity FCFS buffers for a single class of customers

• serv time establishes that FC[0], FC[1], FC[2], and FC[3] provide service
according to an exponential distribution for a single class of customers

• routing prob determines the routing probabilities out of P and assigns value 1
everywhere else

The open single-class queueing network resulting from the application of the vari-
ous documental and characterizing functions discussed before is shown in Fig. 6.9.
We point out that an additional arrival process would be necessary in order to
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Fig. 6.9 Queueing network for the performance-aware variant of the pipe–filter system
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characterize the workload, so that the model would become performance closed,
and hence the value of the average performance indicators of Sect. 6.2 could then be
calculated.

6.6 Case Study: Selecting Compiler Architectures

We now illustrate an application of PERFSEL to the performance comparison of the
three different architectures for a compiler system examined in [19]. This system
translates programs written in some programming language into executable code by
means of six well-known phases: lexical analysis, parsing, type checking, interme-
diate code generation, intermediate code optimization, and code synthesis. Not all
the programs have to undergo the same sequence of phases. In particular, we distin-
guish between programs that have to be optimized and programs that do not need to
be optimized.

In this section, we consider a sequential architecture (Sect. 6.6.1), a pipeline ar-
chitecture (Sect. 6.6.2), and a concurrent architecture (Sect. 6.6.3) for the compiler
system, by providing for each of them an ÆMILIA description and the correspond-
ing queueing network. Then, we compare their performance in various scenarios on
the basis of the usual average indicators (Sect. 6.6.4).

6.6.1 Sequential Architecture

In the case of the sequential architecture, only one program at a time can be
compiled. The system thus comprises a buffer in which incoming programs of the
two classes wait before being compiled. We assume that each compilation phase
introduces an exponentially distributed delay, that the buffer is unbounded, and that
the program interarrival times follow an exponential distribution for each class.

Let us model the sequential architecture with ÆMILIA. Here is the architectural
description header:

ARCHI_TYPE Sequential_Compiler(const rate sc_lambda_1 := ,
const rate sc_lambda_2 := ,
const rate sc_mu_l := ,
const rate sc_mu_p := ,
const rate sc_mu_c := ,
const rate sc_mu_g := ,
const rate sc_mu_o := ,
const rate sc_mu_s := )

Note that the description is parameterized with respect to the rates of the various
exponential distributions; however, their default actual values have not been spec-
ified because the performance comparison can be conducted symbolically. In the
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following, we use λ1 and λ2 as symbolic actual values for the arrival rates of the
two classes of programs and 1/μl, 1/μp, 1/μc, 1/μg, 1/μo, and 1/μs as symbolic
actual values for the average durations of the six compilation phases.

The program generator AET is parameterized with respect to the arrival rate of
the specific class of customers:

ARCHI_ELEM_TYPE Program_Generator_Type(const rate lambda)

BEHAVIOR
Program_Generator(void; void) =
<generate_prog, exp(lambda)> . <deliver_prog, inf> .

Program_Generator()

INPUT_INTERACTIONS void
OUTPUT_INTERACTIONS SYNC UNI deliver_prog

The program buffer AET for the two classes of programs is defined as follows:

ARCHI_ELEM_TYPE Program_Buffer_2C_Type(void)

BEHAVIOR
Program_Buffer_2C(integer n_1 := 0,

integer n_2 := 0;
void) =

choice
{
<get_prog_1, _> . Program_Buffer_2C(n_1 + 1, n_2),
<get_prog_2, _> . Program_Buffer_2C(n_1, n_2 + 1),
cond(n_1 > 0) ->

<put_prog_1, _> . Program_Buffer_2C(n_1 - 1, n_2),
cond(n_2 > 0) ->

<put_prog_2, _> . Program_Buffer_2C(n_1, n_2 - 1)
}

INPUT_INTERACTIONS SYNC UNI get_prog_1; get_prog_2
OUTPUT_INTERACTIONS SYNC UNI put_prog_1; put_prog_2

The sequential compiler AET is parameterized with respect to the service rates
of the six compilation phases:

ARCHI_ELEM_TYPE Seq_Compiler_Type(const rate mu_l,
const rate mu_p,
const rate mu_c,
const rate mu_g,
const rate mu_o,
const rate mu_s)

BEHAVIOR
Seq_Compiler(void; void) =
choice
{
<select_prog_1, inf> .
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<recognize_tokens, exp(mu_l)> .
<parse_phrases, exp(mu_p)> .
<check_phrases, exp(mu_c)> .
<generate_icode, exp(mu_g)> .
<optimize_icode, exp(mu_o)> .
<synthesize_code, exp(mu_s)> . Seq_Compiler(),

<select_prog_2, inf> .
<recognize_tokens, exp(mu_l)> .
<parse_phrases, exp(mu_p)> .
<check_phrases, exp(mu_c)> .
<generate_icode, exp(mu_g)> .
<synthesize_code, exp(mu_s)> . Seq_Compiler()

}

INPUT_INTERACTIONS SYNC UNI select_prog_1;
select_prog_2

OUTPUT_INTERACTIONS void

Finally, we have the architectural topology section:

ARCHI_ELEM_INSTANCES
PG_1 : Program_Generator_Type(sc_lambda_1);
PG_2 : Program_Generator_Type(sc_lambda_2);
PB : Program_Buffer_2C_Type();
SC : Seq_Compiler_Type(sc_mu_l, sc_mu_p, sc_mu_c,

sc_mu_g, sc_mu_o, sc_mu_s)

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM PG_1.deliver_prog TO PB.get_prog_1;
FROM PG_2.deliver_prog TO PB.get_prog_2;
FROM PB.put_prog_1 TO SC.select_prog_1;
FROM PB.put_prog_2 TO SC.select_prog_2

Since the ÆMILIA description satisfies all the syntactical restrictions of Sect. 6.5,
from it we can derive a queueing network, which is shown in Fig. 6.10. This is
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Fig. 6.10 Queueing network for the sequential compiler
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a queueing system M/PH/1 for two classes of customers, where PG 1 and PG 2
are two exponential arrival processes, PB is an unbounded FCFS buffer for two
classes of customers, and SC is a hypoexponential service process for two classes
of customers.

In order to exploit the formulas given in Sect. 6.4 for single-class queueing sys-
tems M/M/1, we have to merge the two classes into a single one and then introduce
some average-preserving exponential distributions on the service side. More pre-
cisely, the two arrival processes can be aggregated consistently with the race policy
by taking λ = λ1 +λ2 as cumulative arrival rate. Then, the two hypoexponential ser-
vice times can be converted into two average-preserving exponential service times
with average durations given respectively by

1
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1
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+
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1
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The last step consists of converting the convex combination of the two derived ex-
ponential service times into a single average-preserving exponential service time,
whose average duration is given by

1
μ
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μ1

)
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λ
·
(
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)

Under the stability condition ρseq = λ/μ < 1, the value of the average perfor-
mance indicators of Sect. 6.2 is determined as follows:

• Throughput of the sequential compiler system:

T seq = λ

• Utilization of the sequential compiler system:

Useq = ρseq

• Mean number of programs in the sequential compiler system:

Nseq = ρseq
1−ρseq

• Mean compilation time of the sequential compiler system:

Rseq = 1
μ·(1−ρseq)
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6.6.2 Pipeline Architecture

In the case of the pipeline architecture, the simultaneous compilation of several
programs at different advancing stages is possible. This is achieved by decoupling
the compilation phases by means of intermediate buffers and having the various
phases working on a different program.

Let us model the pipeline architecture with ÆMILIA. Here is the architectural
description header:

ARCHI_TYPE Pipeline_Compiler(const rate pc_lambda_1 := ,
const rate pc_lambda_2 := ,
const rate pc_mu_l := ,
const rate pc_mu_p := ,
const rate pc_mu_c := ,
const rate pc_mu_g := ,
const rate pc_mu_o := ,
const rate pc_mu_s := )

where we use the same symbolic actual values as before.
As far as AETs are concerned, we observe that Program Generator Type

and Program Buffer 2C Type are unchanged, while Seq Compiler Type
needs to be replaced by six new AETs, with each of them corresponding to a differ-
ent compilation phase.

Since intermediate code optimization deals only with the first class of programs,
we also have to introduce a program buffer AET for one class of programs, which
is defined as follows:

ARCHI_ELEM_TYPE Program_Buffer_1C_Type(void)

BEHAVIOR
Program_Buffer_1C(integer n := 0;

void) =
choice
{
<get_prog, _> . Program_Buffer_1C(n + 1),
cond(n > 0) -> <put_prog, _> . Program_Buffer_1C(n - 1)
}

INPUT_INTERACTIONS SYNC UNI get_prog
OUTPUT_INTERACTIONS SYNC UNI put_prog

The AETs for the compilation phases have basically the same structure, as each
of them selects the next program to process from its buffer, works on the program,
and then sends it to the buffer of the next phase.

The lexical analyzer AET is defined as follows:

ARCHI_ELEM_TYPE Lexer_Type(const rate mu)
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BEHAVIOR
Lexer(void; void) =
choice
{
<select_prog_1, inf> . <recognize_tokens, exp(mu)> .

<deliver_tokens_1, inf> . Lexer(),
<select_prog_2, inf> . <recognize_tokens, exp(mu)> .

<deliver_tokens_2, inf> . Lexer()
}

INPUT_INTERACTIONS SYNC UNI select_prog_1;
select_prog_2

OUTPUT_INTERACTIONS SYNC UNI deliver_tokens_1;
deliver_tokens_2

The parser AET is defined as follows:

ARCHI_ELEM_TYPE Parser_Type(const rate mu)

BEHAVIOR
Parser(void; void) =
choice
{
<select_tokens_1, inf> . <parse_phrases, exp(mu)> .

<deliver_phrases_1, inf> . Parser(),
<select_tokens_2, inf> . <parse_phrases, exp(mu)> .

<deliver_phrases_2, inf> . Parser()
}

INPUT_INTERACTIONS SYNC UNI select_tokens_1;
select_tokens_2

OUTPUT_INTERACTIONS SYNC UNI deliver_phrases_1;
deliver_phrases_2

The type checker AET is defined as follows:

ARCHI_ELEM_TYPE Checker_Type(const rate mu)

BEHAVIOR
Checker(void; void) =
choice
{
<select_phrases_1, inf> . <check_phrases, exp(mu)> .

<deliver_cphrases_1, inf> . Checker(),
<select_phrases_2, inf> . <check_phrases, exp(mu)> .

<deliver_cphrases_2, inf> . Checker()
}

INPUT_INTERACTIONS SYNC UNI select_phrases_1;
select_phrases_2

OUTPUT_INTERACTIONS SYNC UNI deliver_cphrases_1;
deliver_cphrases_2
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The intermediate code generator AET is defined as follows:

ARCHI_ELEM_TYPE Generator_Type(const rate mu)

BEHAVIOR
Generator(void; void) =
choice
{
<select_cphrases_1, inf> . <generate_icode, exp(mu)> .

<deliver_icode_1, inf> . Generator(),
<select_cphrases_2, inf> . <generate_icode, exp(mu)> .

<deliver_icode_2, inf> . Generator()
}

INPUT_INTERACTIONS SYNC UNI select_cphrases_1;
select_cphrases_2

OUTPUT_INTERACTIONS SYNC UNI deliver_icode_1;
deliver_icode_2

The code synthesizer AET is defined as follows:

ARCHI_ELEM_TYPE Synthesizer_Type(const rate mu)

BEHAVIOR
Synthesizer(void; void) =
choice
{
<select_oicode_1, inf> .

<synthesize_code, exp(mu)> . Synthesizer(),
<select_icode_2, inf> .

<synthesize_code, exp(mu)> . Synthesizer()
}

INPUT_INTERACTIONS SYNC UNI select_oicode_1;
select_icode_2

OUTPUT_INTERACTIONS void

Slightly different is the intermediate code optimizer AET:

ARCHI_ELEM_TYPE Optimizer_Type(const rate mu)

BEHAVIOR
Optimizer(void; void) =
<select_icode, inf> . <optimize_icode, exp(mu)> .

<deliver_oicode, inf> . Optimizer()

INPUT_INTERACTIONS SYNC UNI select_icode
OUTPUT_INTERACTIONS SYNC UNI deliver_oicode

Finally, we have the architectural topology section:

ARCHI_ELEM_INSTANCES
PG_1 : Program_Generator_Type(pc_lambda_1);
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PG_2 : Program_Generator_Type(pc_lambda_2);
PB_L : Program_Buffer_2C_Type();
L : Lexer_Type(pc_mu_l);
PB_P : Program_Buffer_2C_Type();
P : Parser_Type(pc_mu_p);
PB_C : Program_Buffer_2C_Type();
C : Checker_Type(pc_mu_c);
PB_G : Program_Buffer_2C_Type();
G : Generator_Type(pc_mu_g);
PB_O : Program_Buffer_1C_Type();
O : Optimizer_Type(pc_mu_o);
PB_S : Program_Buffer_2C_Type();
S : Synthesizer_Type(pc_mu_s)

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM PG_1.deliver_prog TO PB_L.get_prog_1;
FROM PG_2.deliver_prog TO PB_L.get_prog_2;
FROM PB_L.put_prog_1 TO L.select_prog_1;
FROM PB_L.put_prog_2 TO L.select_prog_2;
FROM L.deliver_tokens_1 TO PB_P.get_prog_1;
FROM L.deliver_tokens_2 TO PB_P.get_prog_2;
FROM PB_P.put_prog_1 TO P.select_tokens_1;
FROM PB_P.put_prog_2 TO P.select_tokens_2;
FROM P.deliver_phrases_1 TO PB_C.get_prog_1;
FROM P.deliver_phrases_2 TO PB_C.get_prog_2;
FROM PB_C.put_prog_1 TO C.select_phrases_1;
FROM PB_C.put_prog_2 TO C.select_phrases_2;
FROM C.deliver_cphrases_1 TO PB_G.get_prog_1;
FROM C.deliver_cphrases_2 TO PB_G.get_prog_2;
FROM PB_G.put_prog_1 TO G.select_cphrases_1;
FROM PB_G.put_prog_2 TO G.select_cphrases_2;
FROM G.deliver_icode_1 TO PB_O.get_prog;
FROM G.deliver_icode_2 TO PB_S.get_prog_2;
FROM PB_O.put_prog TO O.select_icode;
FROM O.deliver_oicode TO PB_S.get_prog_1;
FROM PB_S.put_prog_1 TO S.select_oicode_1;
FROM PB_S.put_prog_2 TO S.select_icode_2

Since the ÆMILIA description satisfies all the syntactical restrictions of Sect. 6.5,
from it we can derive a queueing network, which is shown in Fig. 6.11. This is an
open network of five queueing systems M/M/1 for two classes of customers and
one queueing system M/M/1 for one class of customers. In particular, PG 1 and
PG 2 are two exponential arrival processes; PB L, PB P, PB C, PB G, and PB S
are unbounded FCFS buffers for two classes of customers; PB O is an unbounded
FCFS buffer for one class of customers; L, P, C, G, and S are exponential service
processes for two classes of customers; and O is an exponential service process for
one class of customers.

In order to exploit the BCMP theorem and the formulas given in Sect. 6.4 for
single-class queueing systems M/M/1, we simply have to merge the two classes into
a single one. Observed that the service rate is uniquely defined for each phase, the
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Fig. 6.11 Queueing network for the pipeline compiler

cumulative arrival rate for all phases excluding optimization is given by λ = λ1 +λ2,
whereas the arrival rate for the optimization phase is λ1. Moreover, we also have to
take into account that the probability that a program leaving the code generator
enters the optimizer (resp. the synthesizer) is λ1/λ (resp. λ2/λ ).

The stability conditions for the phases involving both classes are ρl = λ/μl < 1,
ρp = λ/μp < 1, ρc = λ/μc < 1, ρg = λ/μg < 1, and ρs = λ/μs < 1, whereas for the
optimization phase it is ρo = λ1/μo < 1. Therefore, the overall stability condition
for the entire system is given by λ < min(μl,μp,μc,μg,μo ·λ/λ1,μs).

Under this condition, the value of the average performance indicators of Sect. 6.2
for each phase i is determined as follows:

• Throughput of phase i:

T i = λ if i ∈ {l,p,c,g,s}
T o = λ1

• Utilization of phase i:

Ui = ρi

• Mean number of programs in phase i:

Ni = ρi
1−ρi

• Mean processing time of phase i:

Ri = 1
μi·(1−ρi)
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As a consequence, under the same condition, the value of the same average per-
formance indicators for the entire system is determined as follows:

• Throughput of the pipeline compiler system:

T pipe = T s

• Utilization of the pipeline compiler system:

Upipe = 1−∏
i
(1−Ui)

• Mean number of programs in the pipeline compiler system:

Npipe = ∑
i

Ni

• Mean compilation time of the pipeline compiler system:

Rpipe = λ1
λ ·∑

i
Ri + λ2

λ · ∑
i�=o

Ri

6.6.3 Concurrent Architecture

In the case of the concurrent architecture, the simultaneous compilation of several
programs is possible, thanks to the presence of several replicas of the sequential
compiler. These replicas work independent of each other and share the same buffer
for incoming programs.

Let us model the concurrent architecture with ÆMILIA. Here is the architectural
description header:

ARCHI_TYPE Concurrent_Compiler(const integer cc_seq_num := 2,
const rate cc_lambda_1 := ,
const rate cc_lambda_2 := ,
const rate cc_mu_l := ,
const rate cc_mu_p := ,
const rate cc_mu_c := ,
const rate cc_mu_g := ,
const rate cc_mu_o := ,
const rate cc_mu_s := )

where we use the same symbolic actual values as before and we have an additional
parameter for the number of replicas of the sequential compiler.

This description has the same AETs as the description for the sequential ar-
chitecture, with the only difference that the output interactions put prog 1 and
put prog 2 of the program buffer AET are declared as or-interactions in order to
support multiplicity variations that arise when changing the number of replicas of
the sequential compiler.
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Then, we have the architectural topology section:

ARCHI_ELEM_INSTANCES
PG_1 : Program_Generator_Type(cc_lambda_1);
PG_2 : Program_Generator_Type(cc_lambda_2);
PB : Program_Buffer_2C_Type();
FOR_ALL 1 <= j <= cc_seq_num
SC[j] : Seq_Compiler_Type(cc_mu_l, cc_mu_p, cc_mu_c,

cc_mu_g, cc_mu_o, cc_mu_s)

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM PG_1.deliver_prog TO PB.get_prog_1;
FROM PG_2.deliver_prog TO PB.get_prog_2;
FOR_ALL 1 <= j <= cc_seq_num
FROM PB.put_prog_1 TO SC[j].select_prog_1;
FOR_ALL 1 <= j <= cc_seq_num
FROM PB.put_prog_2 TO SC[j].select_prog_2

Since the ÆMILIA description satisfies all the syntactical restrictions of Sect. 6.5,
from it we can derive a queueing network, which is shown in Fig. 6.12. This is a
queueing system M/PH/2 for two classes of customers, where PG 1 and PG 2 are
two exponential arrival processes, PB is an unbounded FCFS buffer for two classes
of customers, and SC[1] and SC[2] are two identical hypoexponential service
processes for two classes of customers.

In order to exploit the formulas given in Sect. 6.4 for single-class QSs M/M/2,
we have to merge the two classes into a single one and then introduce some average-
preserving exponential distributions on the service side. After making manipulations
similar to those for the sequential compiler, we get λ = λ1 +λ2 as cumulative arrival
rate together with
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Fig. 6.12 Queueing network for the concurrent compiler
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Under the stability condition ρconc = λ/(2 · μ) < 1, the value of the average
performance indicators of Sect. 6.2 is determined as follows:

• Throughput of the concurrent compiler system:

T conc = λ

• Utilization of the concurrent compiler system:

Uconc = 2·ρconc
1+ρconc

• Mean number of programs in the concurrent compiler system:

Nconc = 2·ρconc
1−ρ2

conc

• Mean compilation time of the concurrent compiler system:

Rconc = 1
μconc ·(1−ρ2

conc)

6.6.4 Scenario-Based Performance Selection

In order to select which of the three architectural designs is more appropriate to
implement, as prescribed by PERFSEL we compare the values of their average per-
formance indicators in various scenarios of interest.

First of all, we point out that the comparison must be fair. This means that identi-
cal actual values of service rates have to be used for each compilation phase across
the three architectures. Moreover, the actual values of the arrival rates for each class
of programs can be different from architecture to architecture, but must ensure that
the frequencies p1 and p2 of the two classes of programs do not vary across the three
architectures. For instance, fairness is simply achieved by using the same symbolic
actual values λ1, λ2, μl, μp, μc, μg, μo, and μs that have already been introduced.

For the sake of simplicity, among the four considered average performance in-
dicators we concentrate on throughput, i.e., on the mean number of programs com-
piled per unit of time. Furthermore, we restrict ourselves to compare the throughput
of the three architectures under heavy load. The reason is that, under light load, the
specific architecture does not really matter, as the relations among the three through-
puts directly depend on the relations among the three cumulative arrival rates.

Under heavy load, each of the three architectures works close to its maximum
throughput, i.e., the cumulative arrival rates are arbitrarily close to their correspond-
ing overall service rates. From the stability conditions we derive that:

T seq,max = μ
T pipe,max = min(μl,μp,μc,μg,μo/p1,μs)
T conc,max = 2 ·μ
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In this setting, the performance comparison is conducted symbolically by exam-
ining three scenarios. In the first one, we assume that all compilation phases have
the same average duration μ−1

avg. In this case:

T seq,max = (5 + p1)−1 ·μavg

T pipe,max = μavg

T conc,max = 2 · (5 + p1)−1 ·μavg

hence:

T pipe,max/T seq,max = 5 + p1

T pipe,max/T conc,max = 2.5 + 0.5 · p1

T conc,max/T seq,max = 2

which implies that the pipeline architecture is the most convenient one under the
assumption above.

In the second scenario, we assume that there is a compilation phase whose aver-
age duration is several orders of magnitude greater than the average duration of the
other phases. Suppose, e.g., that lexical analysis is the bottleneck. In this case:

T seq,max = μl

T pipe,max = μl

T conc,max = 2 ·μl

hence:

T conc,max/T pipe,max = 2
T conc,max/T seq,max = 2
T pipe,max/T seq,max = 1

which implies that the concurrent architecture is the most convenient one under the
assumption above.

Finally, in the third scenario we assume that the average duration of all phases
ranges between μ−1

max and μ−1
min, with the two endpoints possibly being several orders

of magnitude apart. In this case:

(5 + p1)−1 ·μmin ≤ T seq,max ≤ (5 + p1)−1 ·μmax

μmin ≤ T pipe,max ≤ μmin

2 · (5 + p1)−1 ·μmin ≤ T conc,max ≤ 2 · (5 + p1)−1 ·μmax

hence:

(5 + p1) · μmin
μmax ≤ T pipe,max/T seq,max ≤ 5 + p1

(2.5 + 0.5 · p1) · μmin
μmax ≤ T pipe,max/T conc,max ≤ 2.5 + 0.5 · p1

2 ≤ T conc,max/T seq,max ≤ 2
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Therefore, in general, the concurrent architecture is twice more productive than the
sequential one and the pipeline architecture can perform better/worse than the other
two depending on the distance between μmin and μmax.

6.7 Comparisons

The performance-driven architectural selection procedure presented in this chapter
is taken from [43, 25]. On the modeling side, PERFSEL makes use of process al-
gebraic architectural descriptions extended with performance information. Such de-
scriptions provide an integrated view of functional and nonfunctional aspects, which
overcomes the well-known drawbacks related to the insularity of performance mod-
eling [88] and, at the same time, ensures the consistency of the results obtained from
functional verification with the results derived from performance evaluation. In par-
ticular, it enables the application of the architecture-level techniques for mismatch
detection discussed in Chap. 5.

On the analysis side, PERFSEL resorts to queueing networks as they are struc-
tured performance models and hence provide support for relating their constituent
parts with system components. The existence of fast solution algorithms for certain
families of queueing networks and their capability of giving insights both at the
system level and at the component level make them an effective tool in the software
performance engineering field, as already recognized, e.g., in [186, 195].

PERFSEL is not aimed at precisely assessing the performance of architectural
designs. Rather, it focuses on a restricted number of typical average performance
indicators as a means for the rapid prediction, improvement, and comparison of the
quantitative behavior of alternative designs. In order to achieve a tradeoff between
efficiency and accuracy, the verification of the specific performance requirements is
done in detail in the last phase of PERFSEL, once a specific architectural design has
been selected and optimized with respect to the average performance indicators.

With regard to the transformation of process algebraic architectural descriptions
into queueing network models, this is similar in spirit to the derivation of the same
kind of models proposed in [19]. The difference is that queueing networks are ex-
tracted from labeled transition systems rather than process algebraic architectural
descriptions. The advantage is that in this way the transformation method is indepen-
dent from the architectural description language adopted by the software designer.
The disadvantage is that the transformation method is more complicated as it is ap-
plied to a low-level model that does not elucidate the component-based structure of
the system it represents.



Chapter 7
Trading Dependability and Performance

Abstract Modern software systems are often subject to dependability and
performance requirements in conflict with each other. Since it is common to carry
out separately dependability analysis and performance evaluation, the study of
a tradeoff becomes hard to accomplish. In this chapter, we present DEPPERF, a
component-oriented methodology that can be used at the architectural design level
for predicting the qualitative and quantitative impact of individual components on
system dependability and performance. The methodology encompasses the behav-
ioral equivalence approach to noninterference analysis and standard performance
evaluation techniques, in order to reveal functional and nonfunctional dependences
among components and then pinpoint the metrics to investigate for achieving a
balanced tradeoff. The methodology is illustrated through its application to a secure
routing system and to a power-manageable system.

7.1 DEPPERF: Mixed View of Dependability and Performance

In the previous two chapters, we have considered component-oriented analysis
techniques for functional verification and performance evaluation, respectively,
which represent two consolidated tasks contributing to the assessment of the de-
pendability and the efficiency of software architectures. While performance evalu-
ation concentrates on measures of the quality of service like system productivity,
resource usage, and response time for a properly working system, dependability
analysis focuses on different aspects such as reliability, safety, security, and avail-
ability, which are related to the ability of delivering a service that can be justifiably
trusted [135]. In particular, reliability expresses the continuity of the delivery of
correct service, safety regards the absence of catastrophic consequences in case of
improper service, security determines the robustness against malicious intruders,
and availability refers to the promptness of the provision of proper service.

All together, the above mentioned measures and aspects concur in an orthogo-
nal way to the definition of the performability profile of a system. Performability,

A. Aldini et al., A Process Algebraic Approach to Software Architecture Design, 239
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intended as the ability to perform in the presence of faults, was originally moti-
vated by the needs of degradable systems, which are highly dependable systems
that can possibly undergo a tolerable degradation of performance in order to ensure
the provision of service under negative circumstances [151]. The integration of the
assessment of dependability aspects with the evaluation of performance measures
can provide a clear understanding of the interrelations between dependability and
performance requirements.

Achieving a reasonable balance between these often conflicting requirements is
of utmost importance in component-based software design. Components that run
perfect, either in isolation or in a particular configuration, can cause problems in
other combinations or under partial system faults, mainly because of resource de-
pendences, constraint conflicts, and information flow interferences. A systematic
treatment of these problems in the software design process is a major challenge
that requires the combination of several analysis techniques. Unfortunately, different
aspects are usually dealt with by heterogeneous analysis techniques that are applied
separately and, even worse, consider different descriptions of the software architec-
ture, without a clear comprehension of how to validate mutually such descriptions,
how to combine the results obtained through the various analysis techniques, and,
most importantly, how to evaluate the correlation among such results.

These problems are exacerbated in the case of modern computing systems, which
are characterized by interacting software components executing orthogonal activi-
ties over wide-area networks composed of devices performing their tasks in a col-
laborative way. A single component may be dedicated to a sole specific aspect in a
one-to-one fashion, as in the case of power-consumption control [29], or else cross-
cutting aspects may be handled by several different components, as happens for
fault tolerance reasons [152]. In any case, the involved components may interfere
with each other when working for satisfying different requirements. For instance,
mechanisms for controlling power-consumption are typically designed in such a
way to avoid any observable interference with service reliability and, in particular,
with performance indices like response time.

Along the same line, it is commonly recognized that lightweight security is nec-
essary in systems such as mobile computing platforms and wireless networks, where
the securing mechanisms must meet the security needs in face of strict resource con-
straints. Lightweight securing infrastructures like those employed for access control
in the setting of the IEEE 802.11 standard for wireless local area networks [196]
are able to mitigate the impact of the securing mechanisms on quality of service pa-
rameters, such as system throughput and response time, still preserving to a specific
extent the properties for which they are introduced.

These and other examples highlight the importance of integrating the different
qualitative and quantitative views of a system in order to understand whether a rea-
sonable balance can be achieved between the expected quality of service and the
satisfaction of dependability requirements. An integrated view can then be at the
base of a predictive methodology combining both dependability analysis and per-
formance evaluation, with the aim of guiding the system design towards the desired
tradeoff among all the various aspects.
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Fig. 7.1 Models and phases of DEPPERF

In this chapter, we present a methodology called DEPPERF for predicting the
existence, estimating the impact, and mitigating the effect of interferences caused
by some components on the behavior of other components. For this purpose, the
methodology employs an integrated system view and combines different techniques
for dependability analysis and performance evaluation. As illustrated in Fig. 7.1, the
methodology DEPPERF consists of the following two phases:

1. Noninterference analysis, which is carried out to predict the influence of specific
components on system dependability properties, so as to establish the absence
of undesired, direct and indirect information flows through the system [101, 89].
Essentially, it reduces to verify whether system projections in which certain com-
ponents are enabled or disabled are equivalent to each other by applying variants
of the architectural checks of Chap. 5.

2. Performance evaluation, which is conducted to estimate the impact of the pre-
viously revealed interferences and the effect of the corresponding mitigating
strategies on the quality of service. To this aim, standard performance techniques
are employed, including the numerical solution of Markov chain models [188] or
the analysis of queueing network models [130] as discussed in Chap. 6.

The results returned by each phase should help the designer to pinpoint the causes
of system crosscutting anomalies, change the system model, and configure system
parameters, depending on the requirements that should be met.

Each of the two phases of DEPPERF works on a component-oriented formal
description of the system at hand expressed in ÆMILIA, the process algebraic
architectural description language introduced in Chap. 6. The choice of ÆMILIA

guarantees by construction the consistency between functional and performance
models obtained from its descriptions. Moreover, it facilitates the identification of
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the components and of the component behaviors subject to noninterference analysis
in the first phase and performance evaluation in the second phase.

This chapter is organized as follows. In Sect. 7.2, we introduce a simple mul-
tilevel security routing system, which is used in the subsequent two sections as a
running example. In Sects. 7.3 and 7.4, we illustrate the first phase and the second
phase of DEPPERF, respectively. In Sects. 7.5 and 7.6, we discuss the application of
DEPPERF to a real-world multilevel security routing system called NRL pump and
to a power-manageable system for remote procedure calls, respectively. Finally, in
Sect. 7.7 we make some comparisons with the related literature.

7.2 Running Example: Multilevel Security Routing System

The two phases of DEPPERF are illustrated through a simple multilevel security
routing system. Multilevel security refers to the problem of sharing data with dif-
ferent access clearances in the same system or network. The goal is permitting in-
formation to flow freely among users having appropriate security clearances while
preventing leaks to unauthorized users.

For the sake of simplicity, we consider only two access clearance levels, high and
low, and users playing only two different roles, sender and receiver. The communi-
cation between these users is controlled by a router that regulates the exchange of
messages among senders and receivers on the basis of their level. We also assume
that there is only one high (resp. low) sender and only one high (resp. low) receiver.

Let us model this system with ÆMILIA. Here is the architectural description
header:

ARCHI_TYPE ML_Sec_Routing(const rate mlsr_sending_high := 4
const rate mlsr_sending_low := 4
const rate mlsr_trans_high := 5
const rate mlsr_trans_low := 5)

The formal data parameters specify rates expressed in s−1 that are concerned
with the duration of system activities. The average sending time for high and low
senders is 250 ms, while the average transmission time from the routing system to
each receiver is 200 ms. We use four different parameters because when conducting
performance evaluation we will make them vary in different ranges.

The system comprises four AETs: the sender, the buffer, the router, and the re-
ceiver. The sender AET, which repeatedly sends messages, is defined as follows:

ARCHI_ELEM_TYPE Sender_Type(const rate sending_rate)

BEHAVIOR
Sender(void; void) =
<send, exp(sending_rate)> . Sender()

INPUT_INTERACTIONS void
OUTPUT_INTERACTIONS SYNC UNI send
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and the receiver AET, which is waiting for incoming messages, is defined as follows:

ARCHI_ELEM_TYPE Receiver_Type(void)

BEHAVIOR
Receiver(void; void) =
<receive, _(0, 1)> . Receiver()

INPUT_INTERACTIONS SYNC UNI receive
OUTPUT_INTERACTIONS void

The routing system is made of two one-position buffers – one for each level –
and a shared router. The buffer AET is defined as follows:

ARCHI_ELEM_TYPE Buffer_Type(void)

BEHAVIOR
Buffer(void; void) =
<deposit, _(0, 1)> . <withdraw, _(1, 1)> . Buffer()

INPUT_INTERACTIONS SYNC UNI deposit
OUTPUT_INTERACTIONS SYNC UNI withdraw

The router accepts messages arriving from high and low senders and then trans-
mits them to receivers of the corresponding level. The router AET is as follows:

ARCHI_ELEM_TYPE Router_Type(const rate trans_rate_high,
const rate trans_rate_low)

BEHAVIOR
Router(void; void) =
choice
{
<get_high, inf(1, 1)> .
<trans_high, exp(trans_rate_high)> . Router(),
<get_low, inf(1, 1)> .
<trans_low, exp(trans_rate_low)> . Router()

}

INPUT_INTERACTIONS SYNC UNI get_high; get_low
OUTPUT_INTERACTIONS SYNC UNI trans_high; trans_low

The architectural topology section, which is illustrated by the enriched flow graph
of Fig. 7.2, is as follows:

ARCHI_ELEM_INSTANCES
S_High : Sender_Type(mlsr_sending_high);
S_Low : Sender_Type(mlsr_sending_low);
B_High : Buffer_Type();
B_Low : Buffer_Type();
U : Router_Type(mlsr_trans_high,

mlsr_trans_low);
R_High : Receiver_Type();
R_Low : Receiver_Type()
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Fig. 7.2 Enriched flow graph of the multilevel security routing system

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM S_High.send TO B_High.deposit;
FROM S_Low.send TO B_Low.deposit;
FROM B_High.withdraw TO U.get_high;
FROM B_Low.withdraw TO U.get_low;
FROM U.trans_high TO R_High.receive;
FROM U.trans_low TO R_Low.receive

7.3 First Phase of DEPPERF: Noninterference Analysis

The objective of the first phase of DEPPERF is to reveal potential interferences
among system components that may affect the satisfaction of dependability require-
ments. Such interferences arise whenever some components behave in a way that
hampers some other components that intend to ensure dependability. For example,
the first phase can be used for studying the influence of faults triggered by a compo-
nent upon the behavior of other components performing safety-critical applications,
or else for determining the influence of events caused by nontrusted components
upon the behavior of components performing security-critical applications [189].

In this section, we introduce the basics of noninterference theory (Sect. 7.3.1),
we show how to apply it to the general setting of the first phase (Sect. 7.3.2), we
discuss how to make it component oriented (Sect. 7.3.3), and finally we explain how
to interpret the feedback it provides (Sect. 7.3.4).
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7.3.1 Noninterference Theory

The noninterference approach to information flow theory [101] was originally
proposed for the formal verification of security properties (see, e.g., [147] and
the references therein) and is essentially implemented by resorting to equivalence
checking (see, e.g., [90] and the references therein).

The basic idea behind noninterference applies to multilevel security systems and
can be illustrated as follows. A group of high security level users, who perform
confidential operations only, does not interfere with a group of low security level
users, who observe public operations only, if what the former group of users can do
with the confidential operations has no effect on what the latter group of users can
see. Noninterference analysis can reveal direct and indirect information flows that
violate the security policies based on the access clearances assigned to different user
groups. These illegal flows represent a leakage of information from high security
level users to low security level users.

In order to formalize what a user at a certain security level can see, the activi-
ties performed by the system are divided into two disjoint sets: High, representing
system activities at high security level, and Low, representing system activities at
low security level. Then, independent of the specific formalization of the notion of
noninterference, checking noninterference is actually verifying the indistinguisha-
bility of the different low-level views of the system that are obtained by changing
the high-level behavior.

Several notions of noninterference have been designed to analyze sequential pro-
grams and concurrent systems (see, e.g., [193, 92, 144, 125]), in particular also in
the setting of process algebra (see, e.g., [89, 178, 139]). Without loss of generality,
the first phase of DEPPERF concentrates on (variants of) strong nondeterministic
noninterference [89]. This establishes whether the view of the system behavior as
observed by a low-level user when the system interacts with high-level users is the
same – according to weak bisimulation equivalence ≈B (see Sect. 1.4.8) – as that
observed by the low-level user in the absence of high-level users.

Formally, a process term P representing the behavior of a system has no illegal
information leakage if the low system view where the high-level activities are made
unobservable is indistinguishable from the low system view where these activities
are prevented from execution:

P/High ≈B P\High

A weak behavioral equivalence is needed because the noninterference comparison
requires the ability of abstracting from the high-level activities that a low-level user
cannot see directly. In particular,≈B is sufficiently expressive to be sensitive to high-
level interferences causing, e.g., deadlock or violations of properties that depend on
the branching structure of the models. If the two system views to compare do not
behave the same, then a low-level user can detect indirectly the behavior of the high-
level part of the system by observing what happens at the low level. In other words,
an indirect information flow from high level to low level, called covert channel, is
set up by exploiting the distinguishing power of the low-level user.
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Moving to a quantitative framework including fine-grain information, such as
probability distributions associated with event execution, augments the distinguish-
ing power of the observer, as recognized in [146, 106, 179, 11, 12]. A quantitative
notion of noninterference can be based not only on probabilistic information, but
also on temporal information. Several proposals concerned with timed extensions
of noninterference have been made, e.g., in the setting of deterministically timed
process algebra [87, 91], probabilistic timed automata [134, 85], and stochastically
timed process algebra [10], while other time-based aspects of noninterference have
been investigated, e.g., in the context of information theory [145]. As an exam-
ple, a stochastic variant of noninterference that takes into account the exponentially
distributed timing of events can be defined in terms of weak Markovian bisimulation
equivalence≈MB (see Sect. 3.3.8).

In general, the more information is added to a system model, the higher the num-
ber of vulnerabilities revealed through fine-grain notions of noninterference. In this
case, some covert channels that are revealed cannot be completely eliminated with-
out introducing complicated (and perhaps invasive) securing strategies.

7.3.2 Noninterference Verification

The noninterference approach to security analysis can be reused in other frame-
works in order to verify system dependability. The intuition is that a covert channel
reveals an information flow, from a part of the system to another one, which can
unexpectedly alter the behavior of system components. In essence, the basic idea of
noninterference can be generalized by viewing a system execution as an informa-
tion flow. As a consequence, we can say that a group of system components does
not interfere with another group of system components if the behavior of the former
group has no effect on the behavior of the latter group.

The above mentioned reuse of noninterference for dependability assessment pur-
poses is embodied in the first phase of DEPPERF. In fact, first of all the parts of the
component behavior related to the chosen dependability aspect are elucidated. Then,
by rephrasing the security-based classification of activities mentioned in Sect. 7.3.1,
the local interactions occurring in the relevant parts of the component behavior are
divided into two sets, High and Low.

In particular, High contains the interfering local interactions of which we intend
to evaluate the impact, while Low contains the local interactions related to the be-
havior we intend to monitor. High and Low are disjoint sets, while all the remaining,
unclassified activities are simply disregarded by hiding them. Among the unclassi-
fied activities we include the internal actions and the architectural interactions, as
they do not contribute to describe the information flowing through the components
within the system. Moreover, for each pair of attached interactions C1.o and C2.i,
we assume that if one of them is declared to be high (resp. low), then the other
is automatically considered high (resp. low). The reason is that attaching a high
interaction to a low interaction would violate the policy that prohibits any direct
information flow from high level to low level. For instance, if the aim is to evaluate
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the impact of a component C1 on the behavior of a component C2, then the local
interactions of C1 (and those of C2 that are attached to C1) have to be declared high,
while all the remaining local interactions of C2 have to be declared low.

Due to the way in which the semantics of interacting elements has been de-
fined in Sect. 4.4, the local interactions of every component are subject to relabeling
and also to rewriting in the case of or-interactions, so that it is important to de-
fine carefully how the high/low classification is inherited by the semantics of an
architectural description. Formally, with each AEI K of an architectural descrip-
tion A we associate the sets HighK and LowK of its high and low interactions,
respectively. The set HighK is defined as the smallest set satisfying the following
conditions (LowK is defined similarly):

• If K.a ∈L IK is a local nonasynchronous uni-/and-interaction and K.a ∈ High,
then ϕK;A (K.a) ∈HighK

• If K.ai ∈ L IK is a fresh local nonasynchronous uni-interaction among those
replacing the original local nonasynchronous or-interaction K.a and K.a ∈High,
then ϕK;A (K.ai) ∈ HighK

• If K.a is an originally asynchronous local input interaction and K.a ∈High, then
ϕK,async(K.a) ∈ HighK

In the following, we define HighC1,...,Cn
=

⋃n
i=1 HighCi

and LowC1,...,Cn =
⋃n

i=1 LowCi .
Moreover, we denote with HighK#C (resp. LowK#C) the subset of HighK (resp. LowK)
containing the high (resp. low) actions that are obtained from attachments involving
K and C.

In order to clarify, consider the nine attachments reported in Fig. 4.5 and assume
that C1.o,C2.i ∈ High. Then, each action of the form #C2.i is in HighC2

, while
each action of the form C1.o# is in HighC1

iff C1.o is not asynchronous. If C1.o
is asynchronous, then C1.o#OAQ.arrive and OAQ.depart# are not included in
HighC1

. The reason is that asynchronous outputs are nonblocking, and hence do not
reveal any information flow until the completion of the communication [6].

By rephrasing the noninterference property, after classifying the appropriate lo-
cal interactions DEPPERF compares the two system views that can be seen by a
low observer whenever the interfering activities are enabled/disabled. The deriva-
tion of these two views requires in principle the application of hiding and restriction
operators, but in ÆMILIA they can be easily expressed by adding behavioral modifi-
cations to two copies of the architectural description of the system. The comparison
is carried out according to the weak behavioral equivalence, denoted ≈NI, underly-
ing the chosen notion of noninterference. If the comparison establishes that the two
views behave the same, then the absence of any information flow from high level
to low level is guaranteed with respect to ≈NI, otherwise the modal logic formula
returned by the equivalence check can be employed to determine the causes of the
revealed interference, and hence the countermeasures to adopt.

Definition 7.1. Let A be an architectural description and C1, . . . ,Cn be some of its
AEIs. Let {Ch

1 , . . . ,C
h
g} and {Cl

1, . . . ,C
l
j} be two subsets of {C1, . . . ,Cn}. We say that

{C1, . . . ,Cn} is ≈NI-noninterfering with respect to HighCh
1 ,...,Ch

g
and LowCl

1,...,Cl
j

iff:
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[[C1, . . . ,Cn]]
pc;#C1,...,Cn
C1,...,Cn

/(Name−LowCl
1,...,Cl

j
)

≈NI

[[C1, . . . ,Cn]]
pc;#C1,...,Cn
C1,...,Cn

\HighCh
1 ,...,Ch

g
/(Name−LowCl

1,...,Cl
j
)

The first phase of DEPPERF relies on a wide range of fine-grain notions of non-
interference including deterministic ones, nondeterministic ones, probabilistic ones,
timed ones, or a combination of these, whose choice is left to the designer and de-
pends on how strict the dependability requirements are. For example, as already
mentioned the nondeterministic noninterference check is based on weak bisimula-
tion equivalence≈B, while the stochastically timed noninterference check is defined
in terms of weak Markovian bisimulation equivalence≈MB.

Example 7.1. Let us analyze the multilevel security routing system presented in
Sect. 7.2. One dependability aspect of interest is security against the interference
of the high sender on the low receiver. In order to study possible dependences from
component S High to component R Low, we assume that the following classifica-
tion of local interactions accompanies the ÆMILIA description:

HIGH S_High.send
LOW R_Low.receive

Then, supposing to be interested in purely functional covert channels, we check
whether ML Sec Routing is ≈B-noninterfering with respect to HighS High and
LowR Low. The result is positive; i.e., the two system views to compare behave the
same. Intuitively, the availability to transmit low messages is never compromised, so
that the low receiver cannot deduce anything about the behavior of the high sender
in spite of the fact that they interact with the same router.

Now, suppose that fine-grain information based on time is important for security
requirements. The motivation for this stronger verification is that the low receiver
may capture the behavior of the high sender by observing the time needed to receive
a message. The introduction of this fine-grain information causes an information
flow, which is revealed by the violation of the ≈MB-noninterference check with re-
spect to HighS High and LowR Low. In particular, the diagnostic information returned
by this check intuitively reveals two interferences.

Firstly, the presence of S High is detected by the low receiver by observing the
time passage. Indeed, the version of this component with hiding describes a working
process that, according to the race policy, competes with the other durational pro-
cesses, while the version of the same component with restriction does not. Secondly,
from the viewpoint of the low receiver, the time spent by the router to transmit high
messages describes an observable busy-waiting phase. In the following, we show
how to interpret these results in order to make the system secure.
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7.3.3 Component-Oriented Noninterference Check

The formalization of noninterference provided in Definition 7.1 is not adequate to
implement a component-oriented check in the first phase of DEPPERF. For effi-
ciency reasons, the absence of architectural interferences within the description of a
software system should be inferred from the properties of its individual architectural
elements. Most importantly, under certain conditions, the absence of architectural
interferences verified in basic portions of the topology should scale to the entire
topology. Since the noninterference check is based on behavioral equivalences, it
can be turned into an architectural check like the compatibility and interoperability
checks of Chap. 5. This can be accomplished whenever ≈NI is a congruence with
respect to static operators, so as to enable the topological reduction process.

Let us start with acyclic topologies. Observing that Definition 7.1 is based on a
global notion of noninterference, where the set of components under investigation
is considered as a whole, we need a local notion of noninterference that analyzes
the interplay between pairs of components. Consider the central AEI K of a star
including AEIs that perform high activities. While the noninterference notion of
Definition 7.1 establishes the impact of the border of the star, taken as a whole,
on the low behavior of K, the local noninterference notion is intended to verify the
interference of each AEI in the border of the star on the behavior of K.

Definition 7.2. Given an architectural description A , let K be the central AEI of a
star of A and Ci be an AEI in BK performing high activities. We say that Ci does
not locally ≈NI-interfere with K iff:

[[K,Ci]]
pc;#K,Ci
K,BK

/HighK#Ci
≈NI [[K,Ci]]

pc;#K,Ci
K,BK

\HighK#Ci

Based on the notion of local noninterference, the following proposition addresses
star-shaped topologies where some AEIs in the border of the central AEI K are high
components. The proposition states sufficient conditions for ensuring that the inter-
actions among K and these high components do not interfere with the low behavior
of the star by examining local noninterference.

Proposition 7.1. Given an architectural description A , let K be the central AEI of
a star of A and BK = {Ch

1 , . . . ,Ch
g ,C1, . . . ,Cn} be the border of the star, such that

HighK =
⋃g

i=1 HighK#Ch
i

and HighK#Ch
i
∩HighK#Ch

j
= /0 for i �= j. If every Ch

i does

not locally≈NI-interfere with K, then {K}∪BK is ≈NI-noninterfering with respect
to HighK and LowK,C1,...,Cn .

If local noninterference is satisfied by each pair of AEIs composed of the central
AEI K and one of the high AEIs in the border, then we can infer the absence
of interferences in the entire star. This result can be viewed as the counterpart of
Proposition 5.1 for star-shaped topologies.

For these topologies, local noninterference and compatibility are similar – both
are intended to check whether the way in which the central AEI of a star inter-
acts with its border is safe – but not related in any formal way. However, the com-
patibility check can help to conduct component-oriented noninterference analysis.
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Essentially, in order to verify whether the border of a star ≈NI-interferes with the
central AEI K of the star it is sufficient to analyze the interacting semantics of K
alone, provided that K is PNI-compatible with every AEI in the border. Here, PNI

is any property belonging to the class Ψ outlined in Sect. 5.2 that is characterized
by ≈NI. We thus derive the following sufficient condition for noninterference based
on compatibility.

Proposition 7.2. Given an architectural description A , let K be the central AEI of
a star of A and BK = {C1, . . . ,Cn} be the border of the star. If K is PNI-compatible
with every AEI in BK, then {K}∪BK is ≈NI-noninterfering with respect to HighK
and LowK iff:

[[K]]pc;wob
K,BK

/(Name−LowK) ≈NI [[K]]pc;wob
K,BK

\HighK/(Name−LowK)

The application of the component-oriented noninterference check based on a
combination of local noninterference and compatibility can be generalized to ar-
bitrary acyclic topologies in order to reveal undesired interferences from a compo-
nent Kh to a component Kl . In accordance with the topological reduction process of
Chap. 5, the compatibility check is applied several times to reduce the entire acyclic
topology to the path from Kh to Kl , which is unique because the topology is acyclic.
Afterwards, we exploit a variant of the local noninterference check in order to es-
tablish the absence of any interfering information flow from Kh to Kl . In particular,
if there exists a prefix of this path that is noninterfering with respect to the high
activities of Kh and the interactions with the remaining portion of the path, then we
can deduce that no illegal information flow goes from Kh to Kl .

Theorem 7.1. Given an acyclic architectural description A , let Kh and Kl be two
AEIs of A such that C1, . . . ,Cn, with n≥ 0, are the AEIs constituting a path connect-
ing Kh to Kl in the abstract enriched flow graph of A . If every AEI of A is PNI-
compatible with each AEI attached to it and there exists Ci ∈ {C1, . . . ,Cn,Cn+1},
with Cn+1 = Kl, such that:

[[Kh,C1, . . . ,Ci]]
pc;#Kh,C1,...,Ci
A /(Name−Low′Ci)

≈NI

[[Kh,C1, . . . ,Ci]]
pc;#Kh,C1,...,Ci
A \HighKh /(Name−Low′Ci)

where Low′Ci = VCi;Ci+1 for 1 ≤ i≤ n and Low′Ci = LowKl for i = n + 1, then A is
≈NI-noninterfering with respect to HighKh and LowKl .

Intuitively, the presence of an AEI Ci that satisfies the hypothesis of the theorem
above ensures that every information flow starting from Kh stops without reaching
Kl . From a methodological standpoint, the noninterference check is applied in an
incremental way by starting from C1 and stopping as soon as Ci is found that satisfies
the noninterference condition. If this verification propagates to Kl without success,
then Kh may be able to interfere with the low behavior of Kl .
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Example 7.2. Let us reconsider the analysis of the multilevel security routing system
of Sect. 7.2 from the viewpoint of the component-based verification of nondeter-
ministic noninterference. Since the architectural topology of this system is acyclic,
we can apply Theorem 7.1 in order to analyze the potential interference of com-
ponent S High on component R Low. According to the theorem, the path to ana-
lyze is represented by the AEIs S High, B High, U, and R Low. As can be easily
seen, S High ≈B-interferes with B High, but this pair of components does not
≈B-interfere with the view of U interacting with R Low. Hence, the sufficient con-
dition of Theorem 7.1 holds and the information flow starting from S High stops
in U without reaching R Low.

In the case of cyclic topologies, noninterference can still be analyzed in a
component-oriented fashion if we exploit the interoperability results of Sect. 5.4.
The following proposition establishes sufficient conditions ensuring that the inter-
actions within a cycle do not interfere with respect to the high behavior of the cycle
and the low behavior of an AEI Cj in the cycle.

Proposition 7.3. Given an architectural description A , let Y = {C1, . . . ,Cn} be
the set of AEIs traversed by a cycle of A , such that all the high and low local
interactions of Y are involved in attachments between AEIs in Y . For each Cj ∈Y
that PNI-interoperates with the other AEIs in the cycle, we have that Y is ≈NI-
noninterfering with respect to HighC1,...,Cn

and LowCj iff:

[[Cj]]
pc;wob
A /(Name−LowCj )

≈NI

[[Y ]]pc;#Y
A \HighC1,...,Cn

/(Name−LowCj )

From a methodological standpoint, we observe that it may not be necessary to
consider the interacting semantics of the whole cycle. Indeed, let us assume that
there exists an AEI Ci in the cycle such that all of its local interactions belong to
High. Then, when preventing the high activities from being executed, Ci turns out
to be isolated from the other AEIs in the cycle, i.e., the cycle becomes a chain
because of the removal of Ci. Under this assumption, verifying the condition stated
in Proposition 7.3 reduces to check the compatibility of Cj with respect to such a
chain. Hence, it is sufficient to apply repeatedly the compatibility check for acyclic
topologies in order to shrink the chain and reduce it to Cj.

The application of the component-oriented noninterference check can be gen-
eralized to arbitrary topologies in order to reveal undesired interferences from a
component Kh to a component Kl . The following theorem combines the sufficient
conditions for stars and cycles introduced in this section with those of Theorem 5.1.
In particular, in accordance with the topological reduction process of Chap. 5, the
compatibility and interoperability checks are applied several times until the entire
topology is reduced either to a single cyclic union – including both Kh and Kl – that
satisfies Proposition 7.3, or to a path from Kh to Kl that satisfies Theorem 7.1. In
the latter case, observed that some consecutive AEIs in the path from Kh to Kl may
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be adjacent AEIs in a cyclic union, we can reduce the cyclic union to these adjacent
AEIs iff such AEIs PNI-interoperate with the other AEIs in the cyclic union.

Theorem 7.2. Let A be an architectural description, Kh,Kl be two of its AEIs, and
κ be a total cycle covering algorithm for A if A is cyclic. Assume that the following
conditions hold:

1. For each C ∈ A belonging to an acyclic portion or to the intersection of some
cycle with acyclic portions of the abstract enriched flow graph of A , C is PNI-
compatible with every C′ ∈BC−CU C.

2. For each cyclic union {C1, . . . ,Cn} ∈ CU (κ), every Cj ∈ FC1,...,Cn PNI-inter-
operates with the other AEIs in the cyclic union.

3. If both Kh and Kl belong to a cyclic union Y ∈ CU (κ), then Y satisfies
the equality of Proposition 7.3 with respect to HighKh and LowKl , otherwise there
exists a path connecting Kh to Kl through n ≥ 0 AEIs C1, . . . ,Cn in the abstract
enriched flow graph of A such that:

(a) For each {C′1, . . . ,C′g} ⊆ {Kh,C1, . . . ,Cn,Kl} such that {C′1, . . . ,C′g} are ad-
jacent AEIs in a cyclic union of CU (κ), it holds that {C′1, . . . ,C′g} PNI-
interoperate with the other AEIs in the cyclic union,

(b) There is an AEI in {C1, . . . ,Cn,Kl} satisfying the equality of Theorem 7.1.

Then A is ≈NI-noninterfering with respect to HighKh and LowKl .

7.3.4 Interpretation and Feedback

In the previous section, we have shown that, under certain conditions, the
noninterference check can proceed in a component-oriented manner. Indepen-
dent of the efficiency with which this check can be implemented, its goal is to
reveal information flows within a system, with the ultimate objective of understand-
ing whether the interfering components can compromise the functionalities of the
rest of the system. Consider, e.g., an architectural description with AEIs C1, . . . ,Cn

and analyze the impact of Cj on the behavior of Ci. Based on the chosen notion of
noninterference, if an undesired, direct or indirect, information flow from Cj to Ci

is revealed, then we have the proof that Cj interferes with the monitored behavior
of Ci. In this case, diagnostic information, in the form of a modal logic formula
returned by the equivalence check, reveals the causes of the interference.

If the information flow can be eliminated, then this diagnostic information can be
employed by the designer to modify Cj, Ci, and possibly the rest of the system. Ob-
viously, such modifications must be validated also from a performance standpoint,
in the sense that they should not cause a intolerable degradation of the quality of ser-
vice. This performance-based validation is mandatory even if the two system views
to compare satisfy the strongest property based on the finest information details.
For instance, the satisfaction of the stochastically timed noninterference property
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ensures that no kind of covert channel occurs, but does not provide specific infor-
mation about the delivered quality of service, which may be unsatisfactory because
of the strategies adopted to remove the covert channels.

In contrast, due to their intrinsic nature many covert channels are either unavoid-
able or tolerated, because they would require impractical revisions of the system. In
this case, we have to estimate the impact of these interferences on the system perfor-
mance and dependability. For instance, if the system does not satisfy the stochasti-
cally timed noninterference property, it holds that the two system views to compare
do not behave the same from the viewpoint of a performance-aware notion of equiv-
alence. Hence, they offer different performance measures that must be estimated.

In any case, it is necessary to move on to the second phase of DEPPERF, where
quality of service metrics are evaluated in order to assess the impact on these metrics
of any residual information flow and of any mechanism implemented to minimize
each such flow.

Example 7.3. Let us see how to interpret the feedback obtained in Example 7.1 from
the application of the stochastic noninterference check to the multilevel security
routing system of Sect. 7.2.

The first interference that has been captured in Example 7.1 shows that S High
reveals its behavior when executing high durational activities. To avoid this covert
channel, it is necessary to confine the behavior of the component in order to
hide its impact on the timing of low activities. This can be done by defining a
sort of black box that limits and controls the activities performed by the high
sender. Formally, S High becomes an instance of the high sender AET illus-
trated in Table 7.1, where we assume that h > k > 2. The initial τ-action denotes
the activation of the black box and is technically needed because it allows ≈MB

to abstract from the subsequent immediate τ-actions (see Sect. 3.3.8). Action
high interaction ∈ High denotes the intention by the high sender of sending
a message, while action no high interaction represents the absence of any
activity by the high sender. Because of the chosen priorities, the branch guarded
by no high interaction, which is internal and, therefore, unobservable when
applying the noninterference check, is enabled iff the high sender is prevented from
any interaction with the routing system. The role of this branch is to simulate,
from a temporal standpoint, the presence of the high sender in a way that makes its
absence invisible to the low receiver.

This is not enough to hide completely the interference. Whenever the high sender
is blocked because the high buffer is full and hence not willing to accept further mes-
sages, then the black box does not compete for the resource time. Indeed, in this case
the high sender declares its intention of sending a message and then waits for the
transmission of the message. This observable behavior would reveal to the low re-
ceiver that the high buffer is full. This covert channel can be avoided by introducing
the high buffer AET, of which B High becomes an instance. Such an AET is shown
in Table 7.1, where we assume that the actual rate passed to B High is the same as
that passed to S High, because its role is to simulate the durational activities of the
high sender whenever it is blocked because of buffer saturation.
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Table 7.1 Multilevel security routing system: securing the high sender/buffer types

ARCHI_ELEM_TYPE High_Sender_Type(const rate sending_rate,
const prio h,
const prio k)

BEHAVIOR
High_Sender(void; void) =
<tau, inf(2,1)> .
choice
{
<high_interaction, inf(h, 1)> .
<send, exp(sending_rate)> . High_Sender(),

<no_high_interaction, inf(k, 1)> .
<tau, exp(sending_rate)> . High_Sender()

}

INPUT_INTERACTIONS void
OUTPUT_INTERACTIONS SYNC UNI send; high_interaction

ARCHI_ELEM_TYPE High_Buffer_Type(const rate waiting_rate)

BEHAVIOR
High_Buffer(void; void) =
<deposit, _(0, 1)> .
choice
{
<withdraw, _(1, 1)> . High_Buffer(),
<tau, exp(waiting_rate)> . High_Buffer()
}

INPUT_INTERACTIONS SYNC UNI deposit
OUTPUT_INTERACTIONS SYNC UNI withdraw

The second interference that has been captured in Example 7.1 shows that the
AEI U forces a busy-waiting phase for the low receiver whenever transmitting high
messages. The router can be made transparent to the low receiver by following an
approach borrowed from round-robin scheduling strategies. The intuition is similar
to that underlying the definition of the black box. The routing activities are divided
into temporal slots, each one dedicated to a class of senders in a round-robin fashion.
Independent of the presence of a pending message from a sender of the currently
managed class, the temporal slot is spent. In this way, a low receiver cannot deduce
whether the high slot has been actively exploited. Formally, we replace the AET
Router Type with the round-robin router type of Table 7.2, of which U becomes
an instance.

With these modifications, the system ML Sec Routing now passes the
stochastic noninterference check.
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Table 7.2 Multilevel security routing system: securing the router type

ARCHI_ELEM_TYPE RR_Router_Type(const rate trans_rate_high,
const rate trans_rate_low)

BEHAVIOR
Low_Round(void; void) =
choice
{
<get_low, inf(1, 1)> .
<trans_low, exp(trans_rate_low)> . High_Round(),
<tau, exp(trans_rate_low)> . High_Round()
};

High_Round(void; void) =
choice
{
<get_high, inf(1, 1)> .
<trans_high, exp(trans_rate_high)> . Low_Round(),
<tau, exp(trans_rate_high)> . Low_Round()
}

INPUT_INTERACTIONS SYNC UNI get_high; get_low
OUTPUT_INTERACTIONS SYNC UNI trans_high; trans_low

7.4 Second Phase of DEPPERF: Performance Evaluation

The objective of the second phase of DEPPERF is to provide a performance profile
of the system. The motivations for moving to a quantitative setting are twofold. On
the one hand, all the unavoidable information flows that have been revealed in the
first phase by the noninterference check must be quantitatively analyzed in order to
estimate their negative impact on dependability requirements. For this purpose, the
bandwidth of the covert channels detected in the first phase is quantitatively assessed
in terms of information leakage per unit of time. On the other hand, even in the case
that every covert channel has been eliminated by means of adequate strategies, the
application of these possibly invasive modifications could be made impractical by
hard quality of service constraints.

Therefore, in this phase we trade performance aspects with covert channel band-
width and with each possible solution proposed to mitigate the information leakage.
This is done by observing the performance behavior of the system when disabling
and enabling the interfering components.

In this section, we first discuss how to relate the models considered in the two
phases of DEPPERF (Sect. 7.4.1). Then, we show how to conduct the performance
analysis and exploit the obtained results for tuning system configuration parame-
ters in order to achieve the desired tradeoff (Sect. 7.4.2). Finally, we introduce the
companion notation of ÆMILIA for the component-oriented specification of perfor-
mance measures (Sect. 7.4.3).
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7.4.1 Model Validation

Depending on the chosen fine-grain notion of noninterference, the system model
considered in the first phase of DEPPERF can be nondeterministic, probabilis-
tic, or timed. In contrast, the second phase relies on a performance model that
can be analyzed through standard performance techniques. In particular, in the
following we consider an approach based on the numerical solution of Markov
chains [188].

When applying DEPPERF, it is necessary to ensure the consistency of the
performance model used in the second phase with respect to the model analyzed
in the first phase in order to preserve the same noninterference outcome. Obvi-
ously, if the performance model is already used in the first phase of DEPPERF

to check stochastically timed noninterference, then the same model is analyzed in
the second phase and no validation is actually needed. Instead, validation may be
needed if in the first phase a model different from the performance model has been
employed.

In this case, if all the activity durations are expressed through exponentially dis-
tributed random variables, the performance model turns out to be a continuous-time
Markov chain, which is valid by construction against the corresponding functional
model considered in the first phase. In fact, the nondeterministic and stochasti-
cally timed models have isomorphic state spaces, up to the fine-grain information
attached to state transitions. On the other hand, if the performance model con-
tains general distributions for a better characterization of some delays, then the
consistency with the untimed model used in the first phase is not guaranteed. In-
deed, the use of general distributions no longer having infinite support may al-
ter the state space, thus invalidating the noninterference check. Hence, in order to
ensure consistency of the analysis, the noninterference check should be repeated in
the second phase if some activities are characterized through distributions with finite
support.

7.4.2 Analysis and Tuning

In the second phase of DEPPERF, the analysis is governed by the results obtained in
the first phase. Should the first phase reveal undesired information flows that are un-
avoidable or whose elimination is impractical, an estimate of the related information
leakage is provided in the second phase by evaluating the performance metrics that
are directly related to the bandwidth of each information flow. These metrics pro-
vide different results for the two system views corresponding to the presence and
the absence of the interfering components, respectively, and the difference between
such results represents the amount of information leakage. Similarly, quality of ser-
vice metrics are assessed by analyzing the same system views in order to measure
the impact of any residual covert channel on such metrics.
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The output of this performance comparison is given by the value of some
important efficiency measures of the system together with the bandwidth of its
covert channels, expressed as the amount of information leaked per unit of time.
Such performance figures can be used in the second phase of DEPPERF as a feed-
back to tune system configuration parameters, in a way that lowers the covert chan-
nel bandwidth under a tolerable threshold without jeopardizing the quality of service
delivered by the system. In the case that a reasonable tradeoff cannot be obtained, it
is necessary to adjust the model and restart the analysis.

Since the designer may have to face different requirements such as strict/relaxed
dependability needs or loose/tight quality of service constraints, the adjustment
activity can follow opposite strategies. If the main objective is to preserve
dependability requirements, the designer can modify the system behavior until
the resulting model suffers only from unavoidable covert channels that are quantita-
tively negligible. In this respect, different dependability aspects may again require
opposite strategies. As an example, aiming at perfect security might compromise
service availability, which is one of the most critical factors for the success of
network-based applications. Hence, balancing these different dependability aspects
is of paramount importance, and for this purpose tuning configuration parameters
can be useful to keep the quality of service as high as possible without significantly
altering the dependability constraints.

If instead ensuring quality of service is more important than dealing with depend-
ability issues, the designer can determine a threshold for the performance indices
and then modify the functional and performance system behavior until the resulting
model meets the desired quality of service. In this case, tuning the configuration
parameters is needed to keep the bandwidth of the potential covert channels as low
as possible without jeopardizing the quality of service. In this respect, controlling
the kind and the amount of illegal information flows might be necessary to ensure
dependability properties like, e.g., service availability.

Another significant scenario considers the case in which dependability has been
achieved at the chosen grain level. This means that either the noninterference check
does not reveal any information flow, or all the unwanted interferences among com-
ponents have been eliminated. In complex systems, the strategies adopted to guar-
antee the dependability requirements have an impact on the system performance. In
this case, we need to estimate the impact of these strategies on quality of service
metrics. This performance analysis can be exploited to tune the frequency of the
component activities, in such a way that a reasonable overall system efficiency can
be achieved.

In any case, independent of the particular scenario, the outcome resulting from
the second phase of DEPPERF reveals whether a balanced tradeoff between depend-
ability – in terms of influence of each covert channel upon aspects like, e.g., safety
and security – and performance – in terms of indices like system productivity and
response time – is met or not.
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7.4.3 Measure Specification Language

As far as the specification of performance measures is concerned, in Chap. 6 we have
seen that ÆMILIA is equipped with a translation semantics into a Markovian process
calculus whose underlying stochastic process is a continuous-time Markov chain.
In order to enable the specification of performance metrics in a component-oriented
fashion, ÆMILIA is endowed with a companion notation called Measure Specifica-
tion Language (MSL). This notation builds on a simple first-order logic by means
of which reward structures [120] are associated with the continuous-time Markov
chains underlying component-oriented system models expressed in ÆMILIA. The
notation itself is component oriented because it includes a mechanism for defining
measures that are parameterized with respect to component activities and compo-
nent behaviors. Such a mechanism allows performance metrics to be defined in a
transparent way in terms of the activities that individual components or parts of
their behavior can carry out, or in terms of specific local behaviors that describe the
components of interest, thus facilitating the task for nonexperts.

As an example, the use of the measure expressing system throughput simply re-
quires the designer to specify the component activities contributing to the through-
put. In fact, the measure is defined in MSL as follows:

MEASURE throughput (C1 .a1, . . .,Cn.an)
IS �body �

where body is a first-order logic formula specifying how the component activities
C1.a1, . . . ,Cn.an contribute to the reward structure associated with the metric. In par-
ticular, the throughput formula establishes that each state transition labeled with an
activity in {C1.a1, . . . ,Cn.an} is given a unit reward, which specifies the instanta-
neous gain implied by the execution of the related transition.

MSL provides support for the incremental definition of performance measures.
Basic measures like system throughput can be combined to define derived measures.
The body of a derived measure definition is an expression involving identifiers of
previously defined metrics each denoting the value of the corresponding measure,
as well as arithmetical operators and mathematical functions.

Example 7.4. Let us examine the quantitative impact of the interfering informa-
tion flow from S High to R Low detected in Example 7.1 via the application of
the stochastic noninterference check to the multilevel security routing system of
Sect. 7.2.

From a performance perspective, this interference affects the system productivity
as observed by the low receiver, expressed by the number of actions trans low
executed per unit of time. Hence, the first analysis we conduct aims at estimating
the amount of information leakage for the original version of the multilevel security
routing system. The value of this measure is obtained by evaluating the following
MSL definition:

MEASURE low_prod(U.trans_low)
IS throughput(U.trans_low)
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Fig. 7.3 Performance evaluation of different versions of the multilevel security routing system

in the presence and in the absence of high interferences. The results are depicted in
Fig. 7.3a, where we also report, for the sake of comparison, the number of messages
transmitted to the high receiver whenever the high activities are enabled, which is a
metric expressed by the following MSL definition:

MEASURE high_prod(U.trans_high)
IS throughput(U.trans_high)

The curves refer to the scenario in which the average sending time for the low sender
varies in the range [50,500] ms. The influence of the undesired information flow is
easily estimated by comparing the two thicked curves that are related to the low
system productivity in the presence and in the absence of high interferences.

As shown in Example 7.3, the removal of each covert channel requires the
application of control mechanisms that, as expected, aim at degrading the perfor-
mance of the system in order to make the behavior of the high sender transparent to
the low receiver. In Fig. 7.3b, we estimate the system productivity when activating
all the securing strategies described in Example 7.3. Thanks to these strategies, the
two thick curves of Fig. 7.3a collapse into the same curve– i.e., the low system pro-
ductivity is independent of the high sender behavior– while the high system produc-
tivity becomes constant. However, it is easy to observe the cost that is paid in terms
of decrease of the low system productivity with respect to the scenario of Fig. 7.3a.
In this respect, it is interesting to compare the low system productivity with that of
Fig. 7.3a in the presence of high interferences. The performance degradation expe-
rienced by the low receiver when activating the securing mechanisms is remarkable
if the low sending frequency is high (about 23% for mlsr sending low equal to
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20; i.e., one request every 50 ms). The degradation is reduced when the low sending
frequency decreases and is not perceived anymore for mlsr sending low equal
to 2; i.e., one request every 500 ms.

Hence, depending on the scenario we consider, the securing mechanisms may
or may not have a sustainable impact from a performance perspective. Obviously,
any intermediate tradeoff can be analyzed by removing some of the securing mech-
anisms that are needed to make the system completely secure.

7.5 Case Study I: The Network NRL Pump

Security is a critical requirement of dependable systems and networks. The recent
trends to open, mobile, and real-time computing have shown that a controlled shar-
ing of information is not enough to protect data against undesired information flows.
In practice, many covert channels cannot be eliminated because of the intrinsic na-
ture of this setting [160,177,13,11]. Even if strong securing strategies can contribute
to minimize such covert channels, these solutions are sometimes made impractical
by hard quality of service constraints.

In this section, we apply DEPPERF to a secure routing mechanism called network
NRL pump [129]. This is a trusted device used in multilevel security architectures
to offer replication of information from low security level systems (L for short) to
high security level systems (H for short) with adequate assurance security guaran-
tees. Data replication is a proven approach to strengthen availability [165] and has
a beneficial impact also on security, as users at different security levels access the
same data through different repositories without interfering with each other.

The objective of the NRL pump is thus to ensure data replication by control-
ling each possible security risk with a minor impact on other aspects such as service
availability. Hence, it represents an ideal case study for the application of DEPPERF,
through which we can formally verify the existence of unavoidable covert chan-
nels and their relation with dependability aspects. In the following, we illustrate
the NRL pump system (Sect. 7.5.1), we present its formal description in ÆMILIA

(Sect. 7.5.2), and then we apply the first phase (Sect. 7.5.3) and the second phase
(Sect. 7.5.4) of DEPPERF to this description.

7.5.1 Informal Specification

The NRL pump is configured as a single hardware device that interfaces a low se-
curity level LAN with a high security level LAN. Such an intermediate role played
by the pump is necessary to avoid any insecure information flow in the message
exchange from L to H. Typically, message exchanges in this direction suffer from
subtle covert channels that depend on the feedback that is usually required by the
sender. In fact, in order to offer reliable communications, an acknowledgement (ack
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for short) is sent for each message that is successfully received. The transmission of
an ack from H to L is more than enough to set up a covert communication channel
if the timing of the ack is under the control of H. The main role of the pump is to
act as a delaying buffer between H and L, which pumps data from L to H and then
probabilistically modulates the timing of the ack from H to L in order to make such
a timed covert channel negligible.

The architecture of the NRL pump is illustrated in Fig. 7.4. Each enclave at a
given security level interacts with the pump through an interfacing software called
wrapper, which supports the set of functionalities satisfying application-specific
requirements. The pump is not a general-purpose network router, because an
uncontrolled behavior would cause both security and availability problems. On the
availability side, any low-level application may request to connect to any high-
level repository thus wasting the pump resources. On the security side, a low-level
Trojan horse application could ask high-level Trojan horse processes to reveal their
behavior. To avoid these risks, each process that uses the pump is subject to au-
thentication, which is managed by the pump administration system by means of
a connection table containing registration information. The pump provides both
recoverable and nonrecoverable services. Recoverability safely assumes that any
sent message is delivered to H, even if connection failures occur. For the sake of
simplicity, we concentrate on nonrecoverable applications (like, e.g., FTP), which
provide best-effort reliability of connection.

A connection between L and H through the pump is established as follows.
Initially, L sends a connection request message to the main thread (MT) of the pump,
which authenticates the sending process and the address of the final destination. If
authentication fails, a connection reject message is sent back, otherwise MT sends
a connection valid message to L and then activates a trusted low thread (TLT) and
a trusted high thread (THT), which represent the pump interfaces with L and H, re-
spectively. Registered H processes are always ready to accept a connection from the
pump through the same handshake mechanism described above.

Once a new connection is established, the pump sends a connection grant mes-
sage to both systems with initialization parameters for the communication. During
the connection lifetime, TLT receives data messages from L, stores them in the
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connection buffer, and sends back the acks – which are special data messages with
zero data length – in the same order in which the related data messages are received.
The acks are postponed by introducing an additional stochastic delay computed on
the basis of the average rate at which THT consumes messages. At the same time,
THT delivers to H any data message contained in the connection buffer and then
receives the related ack messages. If H violates this protocol, THT aborts the con-
nection. In this case, as soon as TLT detects that THT aborted, it immediately sends
all the remaining acks and a connection exit message to L. If the connection termi-
nates without exceptions, a connection close message is sent from L to the pump.

In general, the pump is a reliable, secure, one-way communication device from
L to H. On the one hand, the communications from L to H are managed through the
connection buffer by different pump components, each one separately interacting
with enclaves at different security levels. On the other hand, the communications
from H to L are limited to the transmission of the acks. Any dependence between
the transmission of an ack from H and the delivery of an ack to L is broken by the
pump, which also eliminates the related timed covert channel, as formally recog-
nized in [133].

Hence, apparently the pump does not suffer from any security problem. In the
following, we apply DEPPERF in order to refuse formally this claim and study the
consequences of interferences that violate the security requirements.

7.5.2 Architectural Description

The ÆMILIA description of the NRL pump starts with its name and the definition
of its formal parameters:

ARCHI_TYPE NRL_Pump_Type(const integer buffer_size := 1,
const rate conn_gen := 500,
const rate conn_init := 62.5,
const rate data_trans := 125,
const rate ack_trans := 1306.12,
const rate ack_delay := 435.37,
const rate timeout := 57.04,
const weight valid_prob := 0.99)

The formal parameters describe the size of the connection buffer, some rates
modeling exponentially distributed delays, and the probability associated with valid
connection requests.

Since the amount of data sent from L to H does not alter the kind of communica-
tions between them through the pump, without loss of generality we assume that a
single message is to be sent from L to H. Hence, we assume buffer size = 1.

As far as activity durations are concerned, we suppose that all the transmission
delays of messages exchanged by the pump and the wrappers through the network
are modeled as exponentially distributed random variables, while internal com-
munications among pump components are modeled by immediate actions. This is
because the duration of an activity internally performed by the pump is negligible
with respect to the transmission delay of a message.
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The rates of exponentially distributed delays are expressed in s−1. In the fol-
lowing, we assume that the pump uses two 64 Kbps full-duplex lines and, accord-
ing to the NRL pump protocol specification, the mean length of data (resp. ack)
messages is 512 (resp. 49) bits, so that the data (resp. ack) message transmission
rate data trans (resp. ack trans) is equal to 125 (resp. 1306.12), while the
connection initialization rate conn init is equal to 62.5. The connection request
generation rate conn gen corresponds to 2 requests/s. The rate ack delay of the
stochastic delay added by the pump to the transmission of acks to L is assumed to be
equal to 435.37, which corresponds to the transmission time of three ack messages.
This is long enough to hide the fluctuations of the transmission delays of ack mes-
sages propagating from the high wrapper to the pump. The rate timeout, which
is the inverse of the maximum amount of time that the pump waits for an expected
ack, is equal to 57.04, corresponding to doubling the average time needed to send a
data message and to receive the related ack, i.e., about 17 ms.

As far as the last parameter is concerned, for each connection request we abstract
from the authentication operations and we assume valid prob to be 0.99.

The first AET we present is the low wrapper type – see Table 7.3 – which models
the behavior of the low security level wrapper. It sends a connection request to the

Table 7.3 NRL pump model: low wrapper type

ARCHI_ELEM_TYPE LW_Type(const rate conn_gen,
const rate data_trans)

BEHAVIOR
LW(void; void) =
<send_conn_request, exp(conn_gen)> .
choice
{
<receive_conn_valid, _(0, 1)> .
<receive_conn_grant, _(0, 1)> .
<send_msg, exp(data_trans)> .
<receive_low_ack, _(0, 1)> .
choice
{
<receive_conn_exit, _(0, 1)> . LW(),
<send_conn_close, exp(data_trans)> . LW()
},

<receive_conn_reject, _(0, 1)> . LW()
}

INPUT_INTERACTIONS SYNC UNI receive_conn_valid;
receive_conn_grant;
receive_conn_reject;
receive_low_ack;
receive_conn_exit

OUTPUT_INTERACTIONS SYNC UNI send_conn_request;
send_msg;
send_conn_close
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Table 7.4 NRL pump model: main thread type

ARCHI_ELEM_TYPE MT_Type(const rate data_trans,
const weight valid_prob)

BEHAVIOR
MT(void; void) =
<receive_conn_request, _(0, 1)> .
choice
{
<conn_is_valid, inf(1, valid_prob)> .
<wakeup_tht, inf(1, 1)> .
<send_conn_valid, exp(data_trans)> . MT(),

<conn_not_valid, inf(1, 1 - valid_prob)> .
<send_conn_reject, exp(data_trans)> . MT()

}

INPUT_INTERACTIONS SYNC UNI receive_conn_request
OUTPUT_INTERACTIONS SYNC UNI wakeup_tht;

send_conn_valid;
send_conn_reject

pump and then is ready to accept either a connection valid message or a connection
reject message. If a connection is established, the low wrapper receives a grant mes-
sage, sends a data message to TLT, and then waits for the related ack. After the
reception of this ack, the low wrapper can either receive a connection exit message
in the case that the connection is aborted, or send a connection close message in the
case that the connection is correctly terminated.

The AET modeling the MT – see Table 7.4 – describes the initial handshaking
phase between the pump and the low wrapper. In order not to have to introduce a
definition of the pump administrator, the verification of an incoming request is ab-
stracted away by means of a probabilistic choice between two immediate actions,
which is governed by parameter valid prob. In response to a request, either MT
activates THT and sends back a connection valid message, or it sends back a con-
nection reject message.

The initialization of a new connection to the high wrapper is conducted by the
AET modeling the THT – see Table 7.5 – which is spawned by MT during the ini-
tial setup phase. Upon the initialization of THT, the connection setup handshake
between THT and the high wrapper is modeled by means of a single action. Af-
terwards, THT awakens TLT. When a connection is active, THT checks the buffer
for new incoming data messages. Upon reading a message from the buffer, THT
outputs it to the high communication channel. Then, THT waits for the reception
of the ack from the high wrapper. The arrival of an ack message competes with the
timeout defined by THT. If the ack is received before the end of the timeout, THT
removes the message from the buffer and notifies TLT about the correct connection
status. On the other hand, if the timeout expires before the reception of the ack, THT
notifies the timeout expiration, removes the message from the buffer, and informs
TLT about the connection failure.
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Table 7.5 NRL pump model: trusted high thread type

ARCHI_ELEM_TYPE THT_Type(const rate conn_init,
const rate timeout)

BEHAVIOR
THT(void; void) =
choice
{
<receive_high_wakeup, _(1, 1)> .
<init_high_conn, exp(conn_init)> .
<wakeup_tlt, inf(1, 1)> . THT(),

<read_msg, inf(1, 1)> . <forward_msg, inf(1, 1)> .
choice
{
<receive_high_ack, _(0, 1)> . <delete_msg, inf(1, 1)> .
<send_ok_to_tlt, inf(1, 1)> . THT(),
<wait_for_timeout, exp(timeout)> .
<comm_timeout, inf(1, 1)> . <delete_msg, inf(1, 1)> .
<send_abort_to_tlt, inf(1, 1)>. THT()

}
}

INPUT_INTERACTIONS SYNC UNI receive_high_wakeup;
receive_high_ack

OUTPUT_INTERACTIONS SYNC UNI wakeup_tlt;
read_msg;
forward_msg;
delete_msg;
send_ok_to_tlt;
comm_timeout;
send_abort_to_tlt

The AET modeling the TLT is illustrated in Table 7.6. TLT waits for THT to
awaken it and then establishes the connection from L to the pump by sending a con-
nection grant message to the low wrapper. Whenever a connection is activated, TLT
is ready to receive data messages from the low wrapper. Upon receiving a data mes-
sage, TLT stores it in the connection buffer and then sends back the related ack after
a certain delay. At any moment, TLT may receive a message from THT concerning
the status of the connection. In the case of failure, TLT sends a connection exit mes-
sage to the low wrapper. Alternatively, TLT can accept a connection close message
from the low wrapper. If TLT detects the connection failure before sending back the
ack, then TLT immediately transmits the ack and the connection exit message to the
low wrapper.

TLT and THT share the communication buffer, through which data messages
coming from the low wrapper are forwarded to the high wrapper. The definition of
the buffer AET – see Table 7.7 – is parameterized with respect to the maximum
size of the buffer, while its behavior is characterized by the number of messages
that are currently stored, ranging from 0 to the maximum size. The buffer is initially
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Table 7.6 NRL pump model: trusted low thread type

ARCHI_ELEM_TYPE TLT_Type(const rate data_trans,
const rate ack_trans,
const rate ack_delay)

BEHAVIOR
TLT(void; void) =
<receive_low_wakeup, _(1, 1)> .
<send_conn_grant, exp(data_trans)> .
<receive_msg, _(0, 1)> . <store_msg, inf(1, 1)> .
choice
{
<wait_delay, exp(ack_delay)> .
<send_low_ack, exp(ack_trans)> .
choice
{
<receive_abort_from_tht, _(1, 1)> .
<send_conn_exit, exp(data_trans)> . TLT(),
<receive_ok_from_tht, _(1, 1)> .
<receive_conn_close, _(0, 1)> . TLT()

},
<receive_abort_from_tht, _(1, 1)> .
<send_low_ack, exp(ack_trans)> .
<send_conn_exit, exp(data_trans)> . TLT(),

<receive_ok_from_tht, _(1, 1)> .
<wait_delay, exp(ack_delay)> .
<send_low_ack, exp(ack_trans)> .
<receive_conn_close, _(0, 1)> . TLT()

}

INPUT_INTERACTIONS SYNC UNI receive_low_wakeup;
receive_msg;
receive_abort_from_tht;
receive_ok_from_tht;
receive_conn_close

OUTPUT_INTERACTIONS SYNC UNI send_conn_grant;
store_msg;
send_low_ack;
send_conn_exit

empty and is accessed by TLT and THT only. When the buffer is not full, i.e., the
condition msg num < buffer size holds, a new data message can be accepted
from TLT. When the buffer is not empty, i.e., the condition msg num > 0 holds, a
data message can be read or deleted from THT.

The communication link between THT and the high wrapper is explicitly
described through an AET modeling the high channel – see the upper part of
Table 7.8 – because the round-trip delay of a message exchange between THT and
the high wrapper competes with the timeout set by THT. Initially, the high channel
is ready to accept a data message from THT, which is then transmitted to the high
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Table 7.7 NRL pump model: buffer type

ARCHI_ELEM_TYPE Buffer_Type(const integer buffer_size)

BEHAVIOR
Buffer(integer(0..buffer_size) msg_num := 0;

void) =
choice
{
cond(msg_num < buffer_size) ->
<accept_msg, _(1, 1)> . Buffer(msg_num + 1),
cond(msg_num > 0) ->
choice
{
<read_msg, _(1, 1)> . Buffer(msg_num),
<delete_msg, _(1, 1)> . Buffer(msg_num - 1),

}
}

INPUT_INTERACTIONS SYNC UNI accept_msg;
read_msg;
delete_msg

OUTPUT_INTERACTIONS SYNC UNI void

wrapper. After the delivery of the message, the high channel waits for the related
ack to be sent to THT. Such a handshake competes with the notification of the
timeout from THT, which represents a connection abort. In the case of abort, we
assume that the high channel loses each pending message.

The last AET is the high wrapper type – see the lower part of Table 7.8 – which
models the behavior of the high security level wrapper. The high wrapper can accept
a data message from the high channel and, in this case, is expected to transmit an
ack message. It is worth noting that the high wrapper does not execute other opera-
tions, as we abstract away from the communications concerning the high connection
initialization/termination.

The architectural topology of the NRL pump description – see Table 7.9 – is
illustrated by the enriched flow graph of Fig. 7.5, whose abstract variant is made of
a cyclic union – with constituent AEIs LW, MT, THT, B, and TLT – attached to a
star – with constituent AEIs HC and HW.

7.5.3 Noninterference Analysis

We now apply the first phase of DEPPERF to the ÆMILIA description of the NRL
pump, ranging from the ≈B-noninterference analysis of the functional behavior to
the interpretation of a more detailed check based on the timing of events.
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Table 7.8 NRL pump model: high channel type and high wrapper type

ARCHI_ELEM_TYPE HC_Type(const rate data_trans,
const rate ack_trans)

BEHAVIOR
HC(void; void) =
<accept_msg, _(1, 1) .
choice
{
<receive_timeout, _(0, 1)> . HC(),
<transmit_msg, exp(data_trans)> .
choice
{
<receive_timeout, _(0, 1)> . HC(),
<accept_high_ack, _(1, 1)> .
choice
{
<receive_timeout, _(0, 1)> . HC(),
<transmit_high_ack, exp(ack_trans)> . HC()

}
}

}

INPUT_INTERACTIONS SYNC UNI accept_msg;
receive_timeout;
accept_high_ack

OUTPUT_INTERACTIONS SYNC UNI transmit_msg;
transmit_high_ack

ARCHI_ELEM_TYPE HW_Type(void)

BEHAVIOR
HW(void; void) =
<receive_msg, _(0, 1)> . <send_high_ack, inf(1, 1)> . HW()

INPUT_INTERACTIONS SYNC UNI receive_msg
OUTPUT_INTERACTIONS SYNC UNI send_high_ack

The first dependability aspect of interest for the NRL pump system is security.
More precisely, we concentrate on the analysis of any insecure information flow
that reveals to the low security level enclave L the behavior of the high security
level enclave H. As already mentioned, among the potential covert channels, a spe-
cific behavior of H that we intend to avoid is the so-called denial-of-service attack,
which is related to the second important dependability aspect of interest, i.e., service
availability. In particular, the NRL pump should be always able to manage incoming
requests of L independently of the behavior of H. To sum up, the goal of the nonin-
terference check is to establish whether the behavior of H is transparent with respect
to the observations of L.
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Table 7.9 NRL pump model: architectural topology

ARCHI_ELEM_INSTANCES
LW : LW_Type(conn_gen, data_trans);
MT : MT_Type(data_trans, valid_prob);
THT : THT_Type(conn_init, timeout);
TLT : TLT_Type(data_trans, ack_trans, ack_delay);
B : Buffer_Type(buffer_size);
HC : HC_Type(data_trans, ack_trans);
HW : HW_Type()

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM LW.send_conn_request TO MT.receive_conn_request;
FROM MT.send_conn_valid TO LW.receive_conn_valid;
FROM MT.send_conn_reject TO LW.receive_conn_reject;
FROM MT.wakeup_tht TO THT.receive_high_wakeup;
FROM THT.wakeup_tlt TO TLT.receive_low_wakeup;
FROM TLT.send_conn_grant TO LW.receive_conn_grant;
FROM LW.send_msg TO TLT.receive_msg;
FROM TLT.store_msg TO B.accept_msg;
FROM TLT.send_low_ack TO LW.receive_low_ack;
FROM THT.read_msg TO B.read_msg;
FROM THT.forward_msg TO HC.accept_msg;
FROM HC.transmit_msg TO HW.receive_msg;
FROM THT.comm_timeout TO HC.receive_timeout;
FROM HW.send_high_ack TO HC.accept_high_ack;
FROM HC.transmit_high_ack TO THT.receive_high_ack;
FROM THT.delete_msg TO B.delete_msg;
FROM THT.send_abort_to_tlt TO TLT.receive_abort_from_tht;
FROM THT.send_ok_to_tlt TO TLT.receive_ok_from_tht;
FROM TLT.send_conn_exit TO LW.receive_conn_exit;
FROM LW.send_conn_close TO TLT.receive_conn_close

From an architectural description standpoint, the unique AEI including activ-
ities of L is given by the low wrapper LW. Similarly, the unique AEI including
activities of H is given by the high wrapper HW. All the other AEIs model activi-
ties internally performed by the pump like, e.g., the synchronizations between MT
and THT, or between TLT and the buffer.

Formally, we assume that all the action names representing activities per-
formed by LW belong to Low, while all the action names representing activities
performed by HW belong to High. This is expressed in ÆMILIA as follows:

HIGH HW.receive_msg;
HW.send_high_ack

LOW LW.send_conn_request;
LW.receive_conn_valid;
LW.receive_conn_reject;
LW.receive_conn_grant;
LW.send_msg;
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Fig. 7.5 Enriched flow graph of the NRL pump

LW.receive_low_ack;
LW.receive_conn_exit;
LW.send_conn_close

The first noninterference check is intended to reveal nondeterministic covert
channels and, therefore, is based on ≈B and is applied to the functional behavior
of the NRL pump architectural description. On the basis of the topology illustrated
in Fig. 7.5, we apply Theorem 7.2 and we obtain that condition 3 is not satisfied.
Intuitively, we observe that the pair of AEIs (HW, HC) interferes with the frontier of
the cyclic union to which LW belongs, and such an information flow is propagated to
LW. Hence, we do not have any guarantee that the security property is satisfied by
the whole system. Indeed, the result of the noninterference check is negative and the
distinguishing modal logic formula shows what follows.
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If the AEI HW is enabled then each connection can either terminate correctly (syn-
chronization of LW.send conn close with TLT.receive conn close) or
abort because of the timeout mechanism implemented by THT (synchronization
of LW.receive conn exit with TLT.send conn exit). On the other hand,
whenever the interfering component HW is disabled, then each connection is aborted
so that LW.send conn close cannot synchronize anymore.

The covert channel revealed by the nondeterministic noninterference check is
caused by the unavoidable notification feedback from the pump to L, through which
the low wrapper is made aware of the way in which every connection terminates.
In fact, H can manipulate this notification procedure to set up a 1-bit covert channel
guided by the connection status. Because of its functional nature, such an informa-
tion flow cannot be eliminated by simply tuning system configuration parameters.
However, it is worth noting that if we prevent L from observing the result of each
connection (by hiding the actions modeling the connection close/exit messages), we
obtain that the system is secure. This means that the covert channel described above
is the unique nondeterministic information leakage that occurs in the NRL pump.

As far as other dependability issues are concerned, the nondeterministic
noninterference check highlights the availability of the NRL pump in terms of
its ability to deliver the required service under intentional faults caused by H. In
this respect, the noninterference check has pointed out that the unique difference
between the presence and the absence of H is given by the result of the notification
procedure. Hence, the behavior of H, which can be either trusted or nontrusted,
cannot compromise the NRL pump functionalities. Independent of the current con-
nection, the NRL pump is eventually available to accept and manage new incoming
connection requests. More precisely, in the case H cheats by performing a denial-
of-service attack, as modeled by the system view preventing the execution of high
actions, the pump is able to abort the connection by exploiting the timeout mecha-
nism, thus becoming ready for new incoming requests. In other words, the service
offered by the NRL pump satisfies the availability property, even if the functional
analysis is not sufficient to evaluate efficiency issues.

The second noninterference check we apply is intended to reveal stochastically
timed covert channels and, therefore, is based on≈MB. Since the functional model of
the NRL pump description is not secure, it is obvious that the performance model
cannot pass a stronger verification based on stochastic noninterference. However,
the interesting result in this richer setting is that the stochastic noninterference check
is passed not even after removing the communication to L concerning the connection
status. The intuitive reason is that the average time elapsing between two consecu-
tive connections changes depending on the behavior of H. This means that the covert
channel affects the quality of service delivered by the NRL pump in a way that can
be perceived by the low security level enclave.

In conclusion, the lesson we learn from the noninterference analysis is that the
NRL pump suffers from a functional covert channel whose elimination is impracti-
cal. The bandwidth of this unavoidable information flow and its impact on efficiency
issues can be estimated by moving on to the second phase of DEPPERF.



272 7 Trading Dependability and Performance

7.5.4 Performance Evaluation

We then apply the second phase of DEPPERF to the ÆMILIA description of the
NRL pump. The first phase has revealed that H interferes by influencing the
termination/abortion of each connection and, as a consequence, the average time
elapsing between two consecutive connections. Therefore, the number of connec-
tions that can be closed/aborted because of the behavior/misbehavior of H represents
the amount of bits that can be leaked from H to L through this 1-bit covert channel.

From a performance perspective, the indices that represent the covert channel
bandwidth are given by the system throughput in terms of number of connections
that are either closed or aborted per unit of time. These performance metrics can be
expressed through the measure definition mechanism of MSL as follows:

MEASURE closed_connections(LW.send_conn_close)
IS throughput(LW.send_conn_close)

MEASURE aborted_connections(TLT.send_conn_exit)
IS throughput(TLT.send_conn_exit)

The experiments have been conducted by making the connection request generation
rate conn gen vary in the range [1,1000]; i.e., from 1 request/s to 1 request/ms.
Moreover, the timeout delay used by the pump when waiting for the ack from the
high wrapper varies from 2 s to 10 ms. Therefore, the corresponding rate timeout
varies in the range [0.5,100].

Figure 7.6 reports the number of connection close/exit messages observed
per second. In particular, Fig. 7.6a refers to the scenario in which H is enabled.
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Therefore, most connections are normally closed, while aborted connections occur
because of the expiration of the timeout set by the pump. Figure 7.6b refers to the
scenario in which H is disabled, i.e., all the connections abort. For both scenarios,
as the connection request rate increases, the number of closed/aborted connections
increases as well. Note that abortions occur in both figures independently of the
behavior of H. As a consequence, a connection exit message does not reveal the
presence/absence of H. Instead, L deduces the presence of H if a connection is
correctly closed, which is an event that occurs in Fig. 7.6a only. In particular, from
Fig. 7.6a we derive that H succeeds in leaking its presence to L up to 13 times/s.
Note that the difference between the curve of Fig. 7.6b and the corresponding curve
of Fig. 7.6a shows that the number of aborted connections observed per second is
appreciably altered by the absence of H. This means that L can deduce the presence
of H by simply measuring the average number of connection exit messages received
per second.

The number of connections that abort because of the timeout expiration can be
limited by increasing the timeout duration. In Fig. 7.7, we show the tradeoff be-
tween the timeout duration and the pump throughput in terms of the number of
connections served per second. We consider a scenario where both L and H execute
correctly the protocol, a connection request takes place every 50 ms, and the timeout
duration varies in the interval [10,2000] ms, i.e., timeout varies from 100 to 0.5.
The curves show that as the timeout duration increases, the number of connection
exit messages tends to zero, while the number of connection close messages rises
up to 9/s. The most interesting result is that, whenever the timeout expires after
at least 200 ms, it is very likely that an ack sent by H arrives before the expiration
of the timeout. More precisely, if timeout is set to 5 we have 0.412051 abor-
tions/s, while in the limiting scenario where the timeout duration is 2 s we observe
0.0425696 abortions/s, corresponding to 2.554176 abortions/min. In other words, it
is reasonable to predict with good approximation that an aborted connection occurs
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because of a misbehavior of H rather than a timeout expiration. Hence, Hmay exploit
the connection exit message to leak a bit to L, meaning that each connection really
leaks a bit from H to L (e.g., 0 if it succeeds, 1 if it fails).

In order to measure the bandwidth of this 1-bit covert channel, in Fig. 7.8
we report the number of connections served per second whenever H alternatively
completes and blocks (with equal probabilities) each connection in order to ex-
press a sequence of bits to be sent to L. We make the connection request rate
conn gen vary from 1/s to 1/ms. Moreover, the timeout duration is chosen to
be long enough to ensure an exact interpretation of the information leakage; i.e.,
timeout ∈ {0.5,1,5}. With a timeout duration of 200 ms, we observe a num-
ber of closed connections between 0.41382 and 3.23043, and a number of aborted
connections between 0.45022 and 3.51459. This means that if L interprets each
connection termination as a leaked bit, in the worst case the maximum informa-
tion leakage is 6.77633 bits/s. However, we know from the analysis of Fig. 7.7 that
some abortions depend on the timeout expiration. As a consequence, a percent-
age of the bit sequence deduced by L in a second is wrong. In the scenario above
(timeout equal to 5 and conn gen ∈ [1,1000]), such a percentage is 4.043% in-
dependent of the connection request frequency. Obviously, a tradeoff exists between
the number of bits/s that are deduced by L and the accuracy of the deduction. For
instance, in the case that timeout is equal to 1, the maximum information leakage
is 1.82353 bits/s with an error percentage equal to 0.862%, while in the case that
timeout is equal to 0.5, the maximum information leakage is 0.95383 bits/s with
an error percentage equal to 0.435%.

Another remark is in order about the comparison between Fig. 7.7 and the curves
of Fig. 7.8 when conn gen is equal to 20. Whenever timeout is 5, in Fig. 7.8
we observe 2.4219 closed connections per second and 2.63493 aborted connections
per second, corresponding to 5.05683 bits/s, which is appreciably less than 9.59341
– the number of closed connections per second in Fig. 7.7. The main difference is
that in the scenario of Fig. 7.7 H completes all the connections, while in the scenario
of Fig. 7.8 H alternatively completes and blocks the connections. Hence, the band-
width of the covert channel also depends on the sequence of bits that are leaked
from H to L.



7.5 Case Study I: The Network NRL Pump 275

In general, we can quantitatively assess the relation between the amount of
information leaked from H to L and the value of each configuration parameter that
influences the quality of service delivered by the NRL pump. For instance, covert
channel bandwidth and pump throughput intended as the number of connections
served per second are directly proportional. Therefore, the availability of the NRL
pump, expressed in terms of efficiency in responding to incoming requests, is in-
versely proportional to the security degree offered by the NRL pump. As another
example, there is a relation between the timeout duration chosen by the pump and
the amount of information flowing from H to L. The longer the timeout duration, the
more an aborted connection may be interpreted as a leaked bit with high accuracy.

A strategy to reduce the covert channel bandwidth consists of enforcing a min-
imum delay to elapse between subsequent connection establishments. This policy,
which has been suggested in [129], aims at minimizing the effects of connections
that restart their execution with a suspicious frequency. In order to verify formally
this strategy we add an extra delay, exponentially distributed with rate λ/s, after the
abortion of a connection and before its reestablishment. In Fig. 7.9, we report the
effect of this extra delay in the case that H alternatively completes and blocks (with
equal probabilities) the connections, a connection request takes place every 5 ms,
and timeout∈ {1,5}. The extra delay varies from 2 s to 10 ms; i.e., λ ∈ [0.5,100].
As expected, the total number of closed/aborted connections per second decreases
when the artificial delay increases. For instance, in the case that timeout is 5, the
covert channel bandwidth ranges from an upper bound of 6.48454 bits/s to a lower
bound of 0.84203 bits/s. We recall that the covert channel bandwidth in the corre-
sponding scenario of Fig. 7.8 is 6.56608 bits/s. Hence, the bandwidth reduction is
proportional to the extra delay duration. In the case that timeout is 1, the connec-
tions are equally divided into aborted and closed. The information leakage ranges
from 1.80413 bits/s to 0.643281 bits/s.
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In conclusion, the covert channel bandwidth can be reduced under any thresh-
old in spite of a reduction of the quality of service. In practice, a tradeoff exists
between the robustness against the 1-bit covert channel and other dependability is-
sues such as service availability. To reduce the unfavorable side effect of the pro-
posed strategy, which could be unacceptably burdensome, the extra delay mecha-
nism should be carefully activated, e.g., in the case of frequent abortions, which
are an evidence of the misbehavior of H. Hence, an acceptable quality of service
can be guaranteed by monitoring the kind of traffic with the aim of reducing the
waiting time for the trusted users that behave correctly and, instead, adopting the
delay mechanism for the suspicious connections that try to exploit the 1-bit covert
channel.

7.6 Case Study II: Power-Manageable System

A fundamental issue in the design of mobile computing devices is reducing their
power consumption. A commonly used technique is the adoption of a dynamic
power management (DPM) policy, which modifies the power consumption of
battery-powered devices based on certain run-time conditions (see, e.g., [29] and
the references therein). The introduction of DPM may not be transparent, as it may
alter the dependability and performance requirements of the device. Therefore, it is
of paramount importance to assess such an impact before the DPM is introduced,
in order to make sure that the dependability properties required by the system will
not be significantly altered and that the quality of service will not go below an
acceptable threshold.

In this section, we apply DEPPERF to a battery-powered system for remote pro-
cedure calls (RPC) implementing a DPM policy. Firstly, we predict the effect of the
DPM on dependability requirements like reliability. In this respect, we show that an
accurate design of the DPM can make its behavior transparent from the viewpoint
of system functionalities. Secondly, we estimate the impact of the DPM on indices
like energy consumption, system throughput, and client waiting time. In this respect,
we study the tradeoff between energy savings and performance penalties. In the fol-
lowing, we show the power-manageable system (Sect. 7.6.1), we present its formal
description in ÆMILIA (Sect. 7.6.2), and we apply the first phase (Sect. 7.6.3) and
the second phase (Sect. 7.6.4) of DEPPERF to this description.

7.6.1 Informal Specification

Electronic systems are designed to deliver peak performance, but they spend most
of their time executing tasks that do not require such a performance level, as in
the case of cellular phones, which are reactive systems that are usually idle wait-
ing for incoming calls or user commands. In general, these systems are subject to
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time-varying workloads. Since there is a close relation between power consump-
tion and performance, the capability of tuning at run time the performance of a
system to its workload provides great opportunity to save power. DPM techniques
dynamically reconfigure an electronic system by changing its operating mode and
by turning its components on and off in order to provide at any time the min-
imum performance/functionality required by the workload while consuming the
minimum amount of power. Whatever scheme is adopted, the application of DPM
techniques requires power-manageable components providing multiple operating
modes, a power manager having run-time control of the operating mode of the
power-manageable components, and a DPM policy specifying the control rules to
be implemented by the power manager.

The simplest example of power-manageable hardware is a device that can be dy-
namically turned on and off by a power manager that issues shutdown and wakeup
commands according to a given policy. When turned on, the device is active and pro-
vides a given performance at the cost of a given power consumption. When turned
off, the device is inactive, hence provides no performance and consumes no power.
The workload of the device is a sequence of service requests issued by a generic
client. The particular power-manageable system that we consider is concerned with
a battery-powered server for RPC. The overall system is depicted in Fig. 7.10.

The client (C) synchronously interacts with the server (S) through a full-duplex
radio channel implemented by two half-duplex radio channels: RCS, from C to S,
and RSC, from S to C. Channel RCS is used by the client to send remote procedure
calls to the server, while channel RSC is used by the server to send the results back
to the client. The server also interacts with the DPM, which issues shutdown com-
mands in order to put the server in a low power inactive state whenever appropriate.
Two more signals, idle and busy, are used by the server to notify the DPM about
every change of its service state.

In its easiest implementation, the blocking client issues a call, waits for the
results, then takes some time to process the results before issuing the next call. A
simple timeout mechanism can be employed by the client to resend a call whenever
the waiting time exceeds a given threshold. This can happen because the half-duplex
radio channels are not ideal; hence, they may introduce both a long propagation de-
lay and a packet loss probability.

The behavior of the server is characterized through the following four states:

• Idle: the server is waiting for a call to arrive.
• Busy: the server is processing a call.

DPM S

RSC

RCS

C

call call
busy

idle

shutdown

results results

Fig. 7.10 Power-manageable system for remote procedure calls
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• Sleeping: the server has been shut down by the DPM.
• Awaking: the server has been woken up by the arrival of a call.

The server is sensitive to shutdown commands in the idle state. However, the server
may also be sensitive to shutdown commands when busy, in which case a shutdown
can interrupt the call processing. In the sleeping state, the server consumes no power.
The awaking state is a power consuming state in which the server temporarily re-
sides while going from sleeping to busy.

Finally, the DPM sends shutdown commands to the server at certain time instants,
possibly based on the knowledge of the current state of the server. There are two
different policies:

• Trivial policy: the DPM issues shutdown commands with a given frequency,
independent of the current state of the server.

• Timeout policy: shutdown commands are issued by the DPM upon the expiration
of a fixed or random timeout after the server has entered the idle state.

In the following, we apply DEPPERF in order to assess formally the impact of
different DPM policies on system dependability and performance. The objective is
to check that the DPM does not significantly change the system functionality and
does not cause an intolerable degradation of the system efficiency.

7.6.2 Architectural Description

Initially, we consider a simplified version of the power-manageable system in which
the radio channels are perfect (so that the blocking client does not need to use any
timeout mechanism), the DPM sends shutdown commands independent of the cur-
rent state of the server (hence, the server does not need to notify the DPM about its
state changes), and the server is sensitive to shutdown commands both in the idle
state and in the busy state.

The ÆMILIA description of this system starts with its name and the definition of
its formal parameters:

ARCHI_TYPE RPC_DPM(const rate server_proc := 5,
const rate server_awaking := 0.333,
const rate packet_prop := 1.25,
const rate client_proc := 0.103,
const rate dpm_shutdown := 0.1)

The description is parameterized with respect to a set of rates modeling exponen-
tially distributed delays expressed in ms−1. We assume that the average server pro-
cessing time is 0.2 ms, the average server awaking time is 3 ms, the average packet
propagation time is 0.8 ms, the average client processing time is 9.7 ms, and the
average DPM shutdown timeout is 10 ms.
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The blocking client synchronously communicates with the power-manageable
server through the radio channel by repeatedly issuing a call, waiting for the results,
and processing them. The corresponding AET is thus defined as follows:

ARCHI_ELEM_TYPE Client_Type(const rate client_proc)

BEHAVIOR
Client(void; void) =
<send_rpc_packet, inf(1, 1)> .
<receive_result_packet, _(1, 1)> .
<process_result_packet, exp(client_proc)> . Client()

INPUT_INTERACTIONS SYNC UNI receive_result_packet
OUTPUT_INTERACTIONS SYNC UNI send_rpc_packet

The half-duplex radio channel is a perfect link – it does not lose any packet –
so it repeatedly waits for a packet, propagates it, and delivers it. The corresponding
AET is as follows:

ARCHI_ELEM_TYPE Radio_Channel_Type(const rate packet_prop)

BEHAVIOR
Radio_Channel(void; void) =
<get_packet, _(1, 1)> .
<propagate_packet, exp(packet_prop)> .
<deliver_packet, inf(1, 1)> . Radio_Channel()

INPUT_INTERACTIONS SYNC UNI get_packet
OUTPUT_INTERACTIONS SYNC UNI deliver_packet

The behavior of the server AET is given by five process algebraic equations:

ARCHI_ELEM_TYPE Server_Type(const rate server_proc,
const rate server_awaking)

BEHAVIOR
Idle_Server(void; void) =
choice
{
<receive_rpc_packet, _(1, 1)> . Busy_Server(),
<receive_shutdown, _(0, 1)> . Sleeping_Server()
};

Busy_Server(void; void) =
choice
{
<prepare_result_packet, exp(server_proc)> .
Responding_Server(),
<receive_shutdown, _(0, 1)> . Sleeping_Server()
};

Responding_Server(void; void) =
choice
{
<send_result_packet, inf(1, 1)> . Idle_Server(),
<receive_shutdown, _(0, 1)> . Sleeping_Server()
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};
Sleeping_Server(void; void) =
<receive_rpc_packet, _(1, 1)> . Awaking_Server();

Awaking_Server(void; void) =
<awake, exp(server_awaking)> . Busy_Server()

INPUT_INTERACTIONS SYNC UNI receive_rpc_packet;
receive_shutdown

OUTPUT_INTERACTIONS SYNC UNI send_result_packet

The first equation is associated with the idle state, while the second and third ones
represent the busy state. Two equations are necessary for this state because two
activities are carried out – processing the call and sending the results back to the
client – each of which can be interrupted by the reception of a shutdown command
from the DPM. The fourth and the fifth equations are concerned with the sleeping
and the awaking states, respectively.

The DPM issues shutdown commands that are periodically sent to the server even
when this is busy. The corresponding AET is defined as follows:

ARCHI_ELEM_TYPE DPM_Type(const rate dpm_shutdown)

BEHAVIOR
DPM(void; void) =
<send_shutdown, exp(dpm_shutdown)> . DPM()

INPUT_INTERACTIONS void
OUTPUT_INTERACTIONS SYNC UNI send_shutdown

In the architectural topology section, we declare one instance for the server,
client, and DPM types together with two instances of the half-duplex radio chan-
nel type. The declaration of the attachments between the interactions of such AEIs
is as prescribed by Fig. 7.10 up to the busy and idle triggers, which are left out:

ARCHI_ELEM_INSTANCES
C : Client_Type(client_proc);
RCS : Radio_Channel_Type(packet_prop);
RSC : Radio_Channel_Type(packet_prop);
S : Server_Type(server_proc, server_awaking);
DPM : DPM_Type(dpm_shutdown)

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM C.send_rpc_packet TO RCS.get_packet;
FROM RCS.deliver_packet TO S.receive_rpc_packet;
FROM S.send_result_packet TO RSC.get_packet;
FROM RSC.deliver_packet TO C.receive_result_packet;
FROM DPM.send_shutdown TO S.receive_shutdown

We conclude the presentation of the architectural description of the power-
manageable system by illustrating in Fig. 7.11 its enriched flow graph. The abstract
version of this graph is made of a cycle – with constituent AEIs C, RCS, S, and RSC
– attached to the AEI DPM through the frontier AEI S.
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Fig. 7.11 Enriched flow graph of the power-manageable system

7.6.3 Noninterference Analysis

We now apply the first phase of DEPPERF to the ÆMILIA description of the
power-manageable system for RPC. With respect to the case study of Sect. 7.5,
the noninterference analysis reveals both covert channels that can be repaired and
covert channels whose quantitative impact needs to be estimated in the second
phase.

In the setting of the power-manageable system for RPC, the main dependability
aspect is reliability, expressed in terms of the absence of any interference from the
DPM to the client. In other words, we want to assess the transparency of the DPM
from the viewpoint of the client.

From an architectural standpoint, the interfering AEI is DPM, while C is the
unique AEI including the activities that an external observer can monitor in order
to assess the transparency of the DPM. Formally, we assume that the actions rep-
resenting the interactions of C belong to Low, while the action send shutdown
representing the only activity performed by DPM belongs to High. This is expressed
in ÆMILIA as follows:

HIGH DPM.send_shutdown
LOW C.send_rpc_packet;

C.receive_result_packet

The first noninterference check we apply, which is based on ≈B, provides a
negative result. With respect to the topology illustrated in Fig. 7.11, we observe
that the system does not satisfy the conditions of Theorem 7.2. The modal logic
formula stating the interference intuitively shows that, whenever the interfering
component is active, then it is possible to observe a computation along which no
results are returned to the client (synchronization of RSC.deliver packetwith
C.receive result packet) after that the client has issued a call (synchro-
nization of C.send rpc packetwith RCS.get packet), while this computa-
tion does not exist when the AEI DPM is disabled.
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The reason why this interference is revealed is that the DPM, whenever enabled,
can shut down the server while it is processing a call. Since the client is blocking
and does not use any timeout mechanism after sending a call, it may happen that
it will be forever waiting for a response that will never arrive. In fact, only a call
can wake up the server after it has received a shutdown command in the busy state,
but this call cannot be issued by the client as long as the client does not receive
the response to its previous call that the server was processing. Fortunately, this
unwanted interference can be avoided by means of suitable modifications.

Firstly, we recognize that the client should implement a timeout mechanism, so
that it no longer deadlocks. This complicates not only the client but also the server,
as they now must be able to discard old packets due to useless retransmissions. On
the other hand, the timeout mechanism allows the client to cope with a more realistic
radio channel that can lose packets.

Secondly, we recognize that the DPM should not shut down the server while
it is busy, which is achieved by making the server inform the DPM about its
state changes via the busy and idle triggers as shown in Fig. 7.10. Therefore,
the DPM activities are now divided into two classes. In the first class we have
the only DPM activity that modifies the state of the power-manageable device,
i.e., send shutdown, while the activities of the second class are those used
to collect information about the state of the power-manageable device, termed
receive idle notice and receive busy notice. When the DPM can
modify the state of the power-manageable device, i.e., send shutdown can
be executed, we say that the DPM is enabled. On the contrary, when the state-
modifying activity of the DPM cannot be performed, we say that the DPM is
disabled.

The revised version of the architectural type RPC DPM includes two additional
parameters:

const rate client_timeout := 0.5,
const weight packet_loss := 0.02

The former is the average client timeout, which corresponds to 2 ms, while the lat-
ter is the packet loss probability. The revised version of the AETs is illustrated in
Tables 7.10, 7.11, 7.12, and 7.13, while the revised version of the architectural topol-
ogy section includes the following additional attachments, which do not alter the
abstract enriched flow graph of the system:

FROM S.notify_busy TO DPM.receive_busy_notice;
FROM S.notify_idle TO DPM.receive_idle_notice

In order to apply the noninterference check to the revised version of the system,
we assume that the set Low is the same as before, while the set High changes as
follows. The only state-modifying activity of the AEI DPM, i.e., send shutdown,
belongs to High, while the other information-collecting activities of the AEI DPM
can be ignored, because they do not contribute to alter the behavior of the power-
manageable device.
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Table 7.10 Power-manageable system model: revised version of the client AET

ARCHI_ELEM_TYPE Client_Type(const rate client_proc,
const rate client_timeout)

BEHAVIOR
Requesting_Client(void; void) =
choice
{
<send_rpc_packet, inf(1, 1)> . Waiting_Client(),
<receive_result_packet, _(1, 1)> .
<ignore_result_packet, _(1, 1)> . Requesting_Client()

};
Waiting_Client(void; void) =
choice
{
<receive_result_packet, _(1, 1)> . Processing_Client(),
<expire_timeout, exp(client_timeout)> . Resending_Client()
};

Processing_Client(void; void) =
choice
{
<process_result_packet, exp(client_proc)> .
Requesting_Client(),
<receive_result_packet, _(1, 1)> .
<ignore_result_packet, _(1, 1)> . Processing_Client()

};
Resending_Client(void; void) =
choice
{
<send_rpc_packet, inf(1, 1)> . Waiting_Client(),
<receive_result_packet, _(1, 1)> . Processing_Client()
}

INPUT_INTERACTIONS SYNC UNI receive_result_packet
OUTPUT_INTERACTIONS SYNC UNI send_rpc_packet

The revised version of the system meets nondeterministic noninterference. This
means that the introduction of the DPM in the more realistic scenario is transpar-
ent from the functional viewpoint, i.e., it does not alter the behavior of the system
as perceived by the client. In order to formally verify whether such a transparency is
perceived also from the quantitative viewpoint, it is necessary to apply a stochastic
noninterference check, so as to capture possible timed covert channels.

The result of the application of the stochastic noninterference check is negative.
Hence, the two system views under comparison do not behave the same with re-
spect to a performance-aware notion of behavioral equivalence. The intuitive reason
is that the time needed to process a client request changes depending on the activa-
tion/deactivation of the DPM. Therefore, the metrics related to this behavior, as well
as any other metric related to quality of service, have to be analyzed in the second
phase of DEPPERF.
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Table 7.11 Power-manageable system model: revised version of the radio channel AET

ARCHI_ELEM_TYPE Radio_Channel_Type(const rate packet_prop,
const weight packet_loss)

BEHAVIOR
Radio_Channel(void; void) =
<get_packet, _(1, 1)> .
<propagate_packet, exp(packet_prop)> .
choice
{
<keep_packet, inf(1, 1 - packet_loss)> .
<deliver_packet, inf(1, 1)> . Radio_Channel(),
<lose_packet, inf(1, packet_loss)> . Radio_Channel()

}

INPUT_INTERACTIONS SYNC UNI get_packet
OUTPUT_INTERACTIONS SYNC UNI deliver_packet

7.6.4 Performance Evaluation

We then apply the second phase of DEPPERF to the revised ÆMILIA description of
the power-manageable system for RPC. In particular, we estimate the DPM impact
on the quality of service delivered by the system. For this purpose, we concentrate
on three metrics that are critical for the power-manageable system. The first two
are system throughput and the percentage of time spent by the client waiting for
the result, whose choice is a direct consequence of the analysis of the feedback
provided by the stochastic noninterference check. The third one is the energy that
is consumed by the server, which measures the success of the DPM strategy. Such
measures are evaluated for several typical values of the DPM shutdown rate, in order
to get insight in the trend of both the power consumption and the overall system
efficiency.

These performance indices can be expressed through the measure definition
mechanism in MSL. The system throughput is described as follows:

MEASURE system_throughput(C.process_result_packet)
IS throughput(C.process_result_packet)

The percentage of time spent by the client waiting for the result is given by the
probability of being in the Waiting Client behavior of the AEI C. The proba-
bility of being in a specific behavior B of an individual component K of the system
represents a class of performance measures described through the basic MSL mea-
sure behavior prob. This formula is parameterized with respect to the behavior
K.B of interest, while its body establishes that each system state including K.B as
local state gains an additional unit contribution to the rate at which the reward is
accumulated while staying there. This basic MSL measure is employed as follows:

MEASURE client_waiting_time(Waiting_Client)
IS behavior_prob(Waiting_Client)
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Table 7.12 Power-manageable system model: revised version of the server AET

ARCHI_ELEM_TYPE Server_Type(const rate server_proc,
const rate server_awaking)

BEHAVIOR
Idle_Server(void; void) =
choice
{
<receive_rpc_packet, _(1, 1)> .
<notify_busy, inf(1, 1)> . Busy_Server(),
<receive_shutdown, _(0, 1)> . Sleeping_Server()
};

Busy_Server(void; void) =
choice
{
<prepare_result_packet, exp(server_proc)> .
Responding_Server(),
<receive_rpc_packet, _(1, 1)> .
<ignore_rpc_packet, inf(1, 1)> . Busy_Server()

};
Responding_Server(void; void) =
choice
{
<send_result_packet, inf(1, 1)> .
<notify_idle, inf(1, 1)> . Idle_Server(),
<receive_rpc_packet, _(1, 1)> .
<ignore_rpc_packet, inf(1, 1)> . Busy_Server()

};
Sleeping_Server(void; void) =
<receive_rpc_packet, _(1, 1)> . Awaking_Server();

Awaking_Server(void; void) =
choice
{
<awake, exp(server_awaking)> . Busy_Server(),
<receive_rpc_packet, _(1, 1)> .
<ignore_rpc_packet, inf(1, 1)> . Busy_Server()

}

INPUT_INTERACTIONS SYNC UNI receive_rpc_packet;
receive_shutdown

OUTPUT_INTERACTIONS SYNC UNI send_result_packet;
notify_busy;
notify_idle

As far as the energy consumed by the server is concerned, we observe that the
power consumption depends on the probabilities of being in the various server
states. Hence, we employ a generalization of the basic measure behavior prob
in which the parameter K.B of the metric identifier is equipped with a real num-
ber l denoting the value of the power consumption associated with K.B. This
value replaces the unit reward used in the body of the measure behavior prob.
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Table 7.13 Power-manageable system model: revised version of the DPM AET

ARCHI_ELEM_TYPE DPM_Type(const rate dpm_shutdown)

BEHAVIOR
Enabled_DPM(void; void) =
choice
{
<send_shutdown, exp(dpm_shutdown)> . Disabled_DPM(),
<receive_busy_notice, _(1, 1)> . Disabled_DPM()
};

Disabled_DPM(void; void) =
<receive_idle_notice, _(1, 1)> . Enabled_DPM()

INPUT_INTERACTIONS SYNC UNI receive_busy_notice;
receive_idle_notice

OUTPUT_INTERACTIONS SYNC UNI send_shutdown

The obtained metric, called state power consumption, is then used to define
the following derived measure expressing the overall power consumption of the
server:

MEASURE power consumption(K.Idle(li ), K.Busy(lb),

K.Responding(lr ),

K.Sleeping(ls ), K.Awaking(la))

IS state power consumption(K.Idle(li )) +

state power consumption(K.Busy(lb )) +

state power consumption(K.Responding(lr )) +

state power consumption(K.Sleeping(ls )) +

state power consumption(K.Awaking(la ))

Based on the assumption that the energy consumed in the busy state is 50% more
than the energy consumed in the idle and awaking state, while of course no energy
is consumed in the sleeping state, the overall energy consumption can be easily
evaluated through the following measure invocation:

power_consumption(S.Idle_Server(2),
S.Busy_Server(3),
S.Responding_Server(3),
S.Sleeping_Server(0),
S.Awaking_Server(2))

The results of the performance analysis conducted with and without the DPM
are reported in Fig. 7.12, for values of the DPM shutdown timeout between 0 and
25 ms. Dot-dashed lines refer to the system with the AEI DPM disabled, while solid
lines refer to the system with the AEI DPM enabled. Throughput, average waiting
time, and energy per request are plotted as a function of the timeout used by the
DPM to issue shutdown commands. The energy per request is obtained as the ratio
of the energy to the throughput.
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Fig. 7.12 Performance results with and without the DPM component

As expected, the shorter the DPM timeout, the larger the impact of the DPM. The
limiting situations are represented by a DPM that issues a shutdown command as
soon as the server goes idle (timeout = 0) and by a DPM that never issues shutdown
commands (timeout = ∞). In the former case the impact of the DPM is maximum,
while in the latter case the DPM has no effect.

In general, from the analysis of the figure we derive that the DPM is never coun-
terproductive in terms of energy, meaning that the additional energy required to
wake up the server from the sleeping state is compensated, on average, by the en-
ergy saved while sleeping. On the other hand, it is worth noting that energy savings
are always paid in terms of performance penalties – reduced throughput and in-
creased waiting time – so that the DPM is not transparent in terms of quality of
service perceived by the client. In conclusion, depending on the specific scenario –
expressed in terms of the number of clients and of the characteristics of the com-
munication channels and of the server – the designer can decide whether tuning the
DPM configuration parameters is enough to ensure a balanced tradeoff.

7.7 Comparisons

The basic ideas behind the considered predictive methodology for integrating
dependability and performance come from [14], where a version based on proba-
bilistic noninterference [11] and discrete time [55] has been applied to an adaptive
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protocol for the secure transmission of real-time audio over the Internet, and
from [9], where a version dealing with nondeterministic noninterference and con-
tinuous time has been applied to the NRL pump case study. The same approach
used in the latter work has then been employed in [4] for the case study related to
the power-manageable system. The general formal framework for the definition and
analysis of nondeterministic, probabilistic, and stochastic noninterference, which
is at the base of the first phase of DEPPERF as described in this chapter, is taken
from [10].

The first phase of DEPPERF can be viewed as a generalization of the
noninterference approach to information flow theory. The idea that noninterfer-
ence can be profitably used not only in security analysis but also for the assessment
of other aspects of dependability has been addressed in the literature in specific
cases [185, 189, 86], which mainly concentrate on safety and do not employ quan-
titative notions of noninterference. The quantitative analysis of the second phase
of DEPPERF, which is based on performance analysis and tuning, is necessary to
estimate the bandwidth of the covert channels possibly revealed by the noninterfer-
ence analysis, as well as the impact of the mitigating strategies. The notation that
has been used to specify in a component-oriented way the performance metrics of
interest is taken from [8].

The need for an approach integrating qualitative and quantitative analysis of the
dependences among components stems from the fact that real-world systems suf-
fer from information flows that affect both dependability and performance. For
instance, applications based on real-time communications typically require both
critical performance constraints and privacy guarantees. Applications such as these
often offer customized security (choice of the authentication and privacy methods,
tolerance to replay attacks, use of caching and prefetching strategies) to achieve
a customized tradeoff between security and performance (see, e.g., [197, 15]). As
another example, fault- and intrusion-tolerant architectures employing mobile plat-
forms usually need safety-critical functions that may be under the control of faulty
system components, so that it is important to verify to which extent the system is
tolerant against accidental rather than deliberate faults (see, e.g., [26]).

In the literature, several existing approaches tackle the problem of combining
dependability analysis and performance evaluation. Some of them employ differ-
ent modeling techniques to achieve a balanced tradeoff, like, e.g., in [110], where
architecture-workload models and failure-repair models are combined to ensure the
analysis of fault-tolerant parallel computer systems. In other cases, a single formal
framework is employed to build dependability models that can be quantitatively
evaluated. For instance, a unifying framework for dependability and performance
is offered by Markovian models, see, e.g., [23, 108, 143]. While [108, 143] deal
with efficiency issues in the analysis of such models, [23] concentrates on the for-
mal, structured specification of metrics. In particular, a logic-based specification
technique is introduced that facilitates the definition of performance, dependability,
and performability measures. However, these works consider neither component-
oriented analysis nor methodologies for the analysis of the tradeoff between de-
pendability and performance.
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Recently, several efforts have been done to translate high-level design languages
like UML into enriched models that augment UML-based design tools with math-
ematical analysis techniques. For instance, in [51] a transformation from structural
UML diagrams to timed Petri nets is described for the quantitative evaluation of
availability and reliability. The work closest to that presented in this chapter in aim
and techniques is [107], which uses the formal paradigm of stochastic activity net-
works – a high-level language for capturing the stochastic behavior of systems –
to model and evaluate several different intrusion-tolerant server architectures. The
analysis is then conducted by defining a series of relevant metrics characterizing
both dependability aspects, such as service availability, and performance indices,
such as throughput. However, this work does not illustrate a unifying methodology
for singling out the interrelations among dependability and performance through a
formal theory like noninterference.
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