

Texts in Computer Science

Editors
David Gries
Fred B. Schneider

For other titles published in this series, go to
www.springer.com/series/3191

V.S. Alagar � K. Periyasamy

Specification
of Software
Systems

2nd edition

Prof. V.S. Alagar
Dept. Computer Science and Software Eng.
Concordia University
St. Catherine Street West 1515
H3G 1M8 Montreal, Québec
Canada
alagar@cs.concordia.ca

Prof. K. Periyasamy
Computer Science Department
University of Wisconsin-La Crosse
State Street 1725
54601 La Crosse, WI
USA
kasi@cs.uwlax.edu

Series Editors
David Gries
Department of Computer Science
Upson Hall
Cornell University
Ithaca, NY 14853-7501, USA

Fred B. Schneider
Department of Computer Science
Upson Hall
Cornell University
Ithaca, NY 14853-7501, USA

ISSN 1868-0941
ISBN 978-0-85729-276-6

e-ISSN 1868-095X
e-ISBN 978-0-85729-277-3

DOI 10.1007/978-0-85729-277-3
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011922494

© Springer-Verlag London Limited 1998, 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: deblik

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface to the Second Edition

This is the second edition of the textbook in which most of the concepts introduced in
the first edition are extended and updated, and a significant amount of new material has
been added. While preserving the original intent of focusing on software specification,
this edition emphasizes the practice of formal methods for specification and verification
activities for different types of software systems and at different stages of developing the
software systems. This expanded view is reinforced both in the organization of the book
and in the presentation of its contents. The primary driving force for writing the second
edition came from Springer-Verlag, London, who expressed a great desire and strong in-
terest in catering to the growing needs of students and researchers in the area of Formal
Software Engineering.

Background and Motivation

Although during the initial stages of formal methods research there was only a marginal
use of formal methods in industry, new languages, techniques and tools developed dur-
ing early 1990s have spurred great interest in adapting formal methods in industries. In
fact, the 1990s witnessed an explosion of new developments in formal methods research.
NASA Langley Research Center was the first hub of formal methods research and practice.
The researchers at Langley focused on large scale commercial projects that are suitable for
injecting formal methods. They felt that the industries were reluctant to use formal meth-
ods because of inadequate tools, inadequate background, and lack of adequate examples.
However, this situation started changing gradually during 1995–2004 when new directions
of research and development of tools in the three areas Software Specification Methods,
Model Checking, and Theorem Proving provided a great spur for formal development ac-
tivity in industries. Most notably, software engineers at nuclear power stations, aerospace
and transportation industries used formal methods to formally specify and verify the prop-
erties of safety critical parts in systems. In 1998, the fully automatic driverless subway was
launched in Paris Metro and, in 2006, the fully automatic driverless shuttle servicing the
various terminals at Roissy Airport, Paris was launched. With success stories such as these

v

vi Preface to the Second Edition

arose a desire in academia and industries to learn formal methods more systematically. In
order to choose a method that is appropriate for a specific application that demands con-
cepts such as causality, concurrency, and conflict avoidance a certain level of expertise in
formal methods education is necessary. Getting to know that it is possible to mix different
abstractions from different languages to model heterogeneous systems is an asset for an
efficient development process. Nowadays formal methods often are bundled up with tools,
many available as open source software, to support architectural principles of generality
and orthogonality. In view of these spectrum of changes and success stories, software en-
gineers now have several case studies to learn from and choose languages and methods
with a rich repertoire of appropriate concepts for their intended applications. In keeping up
with this trend this second edition is offered. In writing this second edition, the expectation
is that formal methods will be well integrated into the teaching of software engineering
programs. In this hope, topics related to the integration of formal methods in software de-
velopment process are discussed quite early in the text and are followed by presentations
of abstraction principles, formalism definitions, notations of formalism, and a wide variety
of fairly detailed specification examples.

What is New in the Second Edition?

Old material has been updated to improve both content and presentation. Some chapters
in the first edition of the text have undergone extensive revisions. In some cases, an old
chapter has been split into two or more chapters and in each of them extensive new ma-
terial have been added. New chapters that discuss Object-Z, B-Method, and Calculus of
Communicating Systems have been added. The entire book has been structured into six
parts. The distinguishing features of this restructured and expanded second edition are as
follows.

Part I The first part of the book introduces specification fundamentals. The material is
presented in four chapters. An elaborate introduction to the role of specification is fol-
lowed by discussions on specification activities and specification qualities. The first part
concludes with a discussion on abstraction principles, illustrated with a domain abstraction
example.

Part II The second part introduces the basics of formalism, automata notations used in
formal languages, study extensions to the basic automata notation, and concludes with a
discussion on the classification of formal specification techniques. This material is pre-
sented in four chapters. The chapters that discuss automata and extended state machine no-
tations are almost self-contained. A variety of examples that arise in software construction
are taken up for formal modeling using different variations of state machines. Top-down
and bottom-up constructions of formal models, their sequential and parallel compositions
are discussed and illustrated with examples.

Preface to the Second Edition vii

Part III The third part of the book is entirely devoted to logic. Propositional logic, pred-
icate logic, and temporal logic are treated in three separate chapters. The presentation fo-
cuses on introducing the logics as formal languages, and hence introduces their syntax,
semantics, and reasoning methods in succession. The expressive power of predicate logic
is illustrated for representing knowledge, policies, as well as serving as axiomatic system
for program verification. For the latter purpose, Hoare axioms are presented and illustrated
by verifying simple sequential programs. Temporal logic chapter gives a detailed discus-
sion of the syntax, and semantics of linear temporal logic. Many examples from reactive
systems and concurrent systems are chosen to emphasize the expressivity of the logic lan-
guages in specifying such systems and their properties. A discussion of axiomatic proof
method and model checking are included.

Part IV Most of the model-based specification languages are based on set theory and
first-order predicate logic. Therefore, it is essential to have a strong background in set
theory and relations. This part of the book includes one chapter on set theory and relations.
Most parts of this chapter are retained from the previous edition of the book.

Part V Three specification methods are discussed to illustrate the property-oriented ap-
proach to specifications. Two of the chapters, Algebraic Specifications and Larch, are left
unchanged. The chapter Calculus of Communicating Systems is new and it discusses Mil-
ner’s algebraic approach to specifying communication and concurrency. Some examples
discussed in Temporal Logic chapter are drawn in here to strike a comparison between the
two approaches. An effort has been made to make the discussion in this chapter simple,
rigorous, and self-contained.

Part VI This part is devoted to model-based specification techniques. Four such tech-
niques are described in detail. These are VDM-SL, Z, Object-Z and the B-Method. Ma-
terial on VDM-SL and Z are retained from the previous edition of the book, while the
bibliographic references have been updated. Two new chapters have been introduced, one
for Object-Z and another for the B-Method. The material for new chapters are presented in
the same style as in the old chapters. Also, the two new chapters include extensive exam-
ples and case studies, and provide a detailed tutorial of the techniques introduced in those
chapters.

How to Use the Book

In the second edition of the book, we have added considerable new material and we have
also restructured the chapters into various parts. Consequently, those who have used the
first edition may see a different layout of the book. The book includes several different
specification techniques grouped into various categories. In addition, it also includes chap-
ters with necessary mathematical background for these techniques. Because of the diverse
nature of these techniques, the book can be used by different groups of people for different
purposes. Below we suggest a few streams of course offerings to fit different curriculum
needs.

viii Preface to the Second Edition

1. Chapters in Part I are required for further reading of the book.
2. Based on Part I, Part II, Chaps. 9, 10 of Part III, and Part IV a one-semester undergradu-

ate course within a software engineering program can be given. This course is intended
to be an Introduction to Formal Software Engineering Methods. The course can be ex-
tended into another semester by covering the material from one of the four specification
languages discussed in Chaps. 16 through 19, and choosing a project in which the stu-
dents would write a complete specification and analyze the specification. The examples
and case studies given in these chapters would help the students to achieve this goal.

3. Chapters in Part II, Part III, and Chap. 15 from Part V can be offered as a one-semester
course for senior undergraduate students or first year graduate students in computer sci-
ence and computer engineering programs. This course is intended to be an Introduction
to Formal Methods.

4. Parts V and VI are devoted to various formal specification techniques. Each chapter in
these parts gives a thorough tutorial of one specification technique. Together with the
mathematical fundamentals described in Part IV, each chapter in Parts V and VI can be
individually used to teach a one-semester course on a particular specification technique.
The course will introduce the formal method in some depth, choosing appropriate tools
suggested in the bibliographic notes of these chapters. It is suitable to teach this course
at senior undergraduate level or at the graduate level provided that the students are ex-
posed to some of the mathematical fundamentals described in Parts I through IV before
taking this course. Alternately, a quick overview of the fundamentals can be covered in
few weeks and the rest of the semester can be spent on the syntax and semantics of the
chosen specification technique.

5. An advanced graduate-level course can be taught using any one of the techniques dis-
cussed in Parts V and VI with emphasis on developing complete specification for a fairly
large problem. This would involve refinement, proof obligation, and implementation.

6. Another option would be to teach an advanced graduate-level course that requires the
students to critically compare the techniques in each group and write a report. For ex-
ample, one course could be taught on model-based specification techniques, all chapters
in Part VI. Students in this course will get an in-depth understanding of the techniques
and also would be able to choose the appropriate technique for a given problem.

7. Practitioners of formal methods, especially those who use formal methods for indus-
trial applications, can use this book as a reference. In particular, the chapters in Parts V
and VI have been written in such a way that a practitioner who is familiar with one tech-
nique can quickly jump start with another technique with little time. The examples and
case studies in each chapter in these two parts provide sufficient information for a prac-
titioner to start writing the specification for a new application without much preparation
time.

Intended Audience

This book is written to serve as a text book for students in Software Engineering, Computer
Science, Computer Engineering and Information Systems Engineering. Software profes-
sionals who want to familiarize themselves with formal methods can use this book as a

Preface to the Second Edition ix

good reference. The wide coverage of various formal specification techniques and the tu-
torial nature of descriptions of each individual technique make the book as a good resource
for formal methods, all in one place. The bibliographic notes given at the end of each
chapter provokes the reader to expand their horizon beyond the materials discussed in that
chapter along with information on tool support.

Acknowledgments

Our sincere thanks go to the editorial board of Springer-Verlag, London whose persistent
persuasion gave us sufficient motivation to engage in this venture. Many people have as-
sisted us in bringing out the second edition of this book. First of all, those who have helped
us during the first edition deserve a second round of applause. During the extensive revi-
sions and additions to the second edition we received great support from Lei Feng, Pankaj
Goyal, Naseem Ibrahim, Diep Mai, Ka Lok Man, Mubarak Mohammad, Shiri Nematol-
laah, and Olga Ormandjieva. We express our sincere thanks for their dedication and timely
support.

Preface

This is a textbook on software specification emphasizing formal methods that are rele-
vant to requirements and design stages of software development. The aim of the book is to
teach the fundamental principles of formal methods in the construction of modular and ver-
ifiable formal specifications. The book introduces several formal specification techniques
and illustrates the expressive power of each technique with a number of examples.

General Characteristics

Traditional textbooks on software engineering discuss the difficulties and challenges that
lie on the path from requirements analysis to implementation of a software product. Most
of these books describe some techniques in detail and give hints on implementation of
these techniques. Only a few among them deal with important software engineering prin-
ciples and techniques, and discuss how a particular technique may be used to implement
a given principle. There is very little exposure in these books to a rigorous approach to,
or a systematic study of, the construction of verifiable software. Those who have acquired
an understanding of the fundamental principles of software engineering from traditional
textbooks will find the following characteristics of this book quite relevant to the practice
of software engineering.

• The book deals with specification.
The principal characteristic of this book is to discuss formalisms that provide a theo-
retical foundation for the principles of software engineering, and are appropriate to the
requirements and design stages of software development. We discuss the concept of ab-
straction, the need for formalism in software development, the mathematical basis of
formal methods, components of a formal system, specification languages, different lev-
els of rigor in applying languages, and the need for tool support to use formal methods
for different stages of software development. We discuss the relationship between spec-
ifications and implementations, as well as subjecting specifications to rigorous analyses
and formal proofs.

xi

xii Preface

• The book emphasizes mathematical principles.
Formal approaches to software development can be understood and practiced by study-
ing the mathematics they use. A primary objective of the book is to relate discrete math-
ematical structures to the study of abstract data types, and to bring students to the level
of mathematical maturity where they can write and reason about small specifications.
Once the students acquire the basic mathematical skills that a formalism is based on,
mastery of formal specification languages, techniques for refinements, and proofs be-
come easy to understand and apply. We believe that the use of tools and techniques
become effective when their underlying principles are properly understood.

• The book teaches formal specification languages.
Unlike many recent books that are devoted to one formal specification language, we
discuss four specification languages to emphasize their design philosophies and their
practical applicability. We also discuss formal specifications based on set theory and
logic without regard to any specification language. The purpose here is to teach the
reader that these mathematical abstractions form the formal basis of the four specifica-
tion languages. The languages discussed in the book are OBJ3, VDM, Z, and Larch. We
illustrate their expressive power for different classes of applications. We expect that our
treatment of the subject will prepare the reader to learn more sophisticated languages and
tools that may be developed in the future. It is our belief that mastery of these languages
will allow the reader to choose the language that is suitable for a given application.

• The book presents proofs.
Informal arguments conducted in conjunction with a formal specification often lead to
a proof construction, which can be presented in a justifiable manner. Proofs ensure a
measure of certainty on claims that can be made of specified system properties. We
present proofs in rigorous as well as in formal styles. We avoid lengthy proofs, and put
more emphasis on modeling, specification, and rigorous reasoning of the specifications.

• The book presents engineering principles.
This book discusses the general principles for data refinement, operation refinement, and
interface specification, and illustrates how these are constructed for particular specifica-
tion languages. The presentation in the book aims to enable the reader to understand why
a particular technique is important and how to apply the technique.

Audience

This book is designed to be used as a textbook by students of computer science, software
engineering, and information engineering. Software professionals who want to learn formal
specification languages and use formal methods in their work will find the material in
the book useful for serious self-study. The sections on bibliographic notes give a broad
account of work related to the topic discussed in each chapter; this should help software
professionals to identify industrial applications and learn from the experience reported on
the use of tools.

Preface xiii

Background Knowledge

The book is designed for undergraduates, and beginning graduate-level students in com-
puter science, computer engineering, software engineering, and information engineering.
We assume that the reader has completed an undergraduate course in discrete mathematics.
The reader must be fluent in programming and must have completed or must be doing a
course in software engineering. An exposure to undergraduate-level theoretical computer
science course, or attainment of a certain level of mathematical maturity which enables the
reader to abstract, conceptualize, and analytically reason about abstracted concepts will be
an asset.

Organization and Content

Several specification languages, formal methods, and tools based on them have been de-
veloped by different research groups. Some of these methods are practiced by industries
and government organizations such as NASA. Books devoted to one particular specifica-
tion language or method have been published recently. Organizing the essential material to
explore four specification languages in one textbook poses a challenge. We have organized
this textbook based on the view that a reader should learn the following:

• where and how to integrate formalism in the development process,
• a mathematical basis, and
• the formal specification methods.

These are organized as follows:

• The first three chapters debate the questions: Why do we study formal specification?
How do we integrate formal methods in a development process? What are the attributes
for a formal specification language?

• Chapters 4 and 5 introduce the concept of abstraction and formalism, and discuss exten-
sions to BNF and finite state machines, the two formal notations that the reader might
have used in earlier courses.

• Chapters 6 and 7 discuss specifications based on logic, set theory and relations, and
include material on proofs. Although the examples subjected to proofs are small, the
structure of formal proofs is brought out clearly. These two chapters must be read care-
fully by those readers who want to review their mathematical knowledge.

• Chapters 8–11 describe the specification languages OBJ3, VDM, Z and Larch. We dis-
cuss the algebraic-specification methodology in Chap. 8, and include a tutorial on OBJ3.
In Chap. 9, we introduce VDM, a model-based specification language. Chapter 10 deals
with Z, another leading model-based notation built around set theoretical foundation.
In Chap. 11, we discuss Larch and Larch/C++ specification languages. Our goal is to
treat specification languages from abstract to concrete levels. Whereas representational
details are ignored in an algebraic-specification language, VDM and Z specification
languages use abstract data types as models for representing information of software

xiv Preface

systems. The Larch family of languages are geared toward interface specification, and
clearly separate the shareable abstraction from the programming language details. In
our opinion, these four languages are representatives of several specification languages
used for specifying sequential systems, and their features can be utilized in different
application areas.

While the material in the first seven chapters should withstand the passage of time, it is
likely that some of the material in Chaps. 8–11 may become outdated because of changes
to the specification languages. The language OBJ3 has been around for a number of years,
and its design principles are sound. The reader is expected to learn these principles; the
syntax of the language or how OBJ3 system interprets a specification are secondary. We
have used the ISO standardized notation for VDM in this book. The Z notation is also being
standardized by ISO; however, the standardization process is not yet complete. Therefore,
we have adopted an earlier version of Z. The Larch Shared Language (LSL), in which
abstractions are developed, resembles an algebraic-specification language. However, the
semantics of LSL is based on first-order logic. Given the impressive LSL library con-
structed by Guttag and Horning, we do not expect the syntax and the semantics of traits in
the library to change much. However, the Larch/C++ interface specification language may
undergo changes. The reader is advised to refer to the web page for Larch/C++ maintained
by Gary Leavens for any update on the language. Since interface specification must be
related to programming, and C++ is widely used in industry, we hope that the choice of
Larch/C++ bridges the gap between design and implementation issues to be resolved by
software professionals.

Exercises

All chapters include a section on exercises. There are three types:

• Exercises based on the basic concepts and aimed at extending the basic knowledge; these
exercises include specifications and simple proofs.

• Extensions to examples discussed in the chapter; these require integration of the material
discussed in the chapter.

• Project-oriented exercises that require complete specifications and proofs.

Case Studies

Case studies are used in Chaps. 8–11 to illustrate the features of OBJ3, VDM, Z, and
Larch specification approaches. Each case study is chosen to demonstrate the integration
of different concepts and features from a particular specification language. For example,
the Window specification discussed in Chap. 8 demonstrates the integrated use of modular
development and parametric specification concepts in OBJ3. This specification can be in-
crementally extended with additional operations, views, and theories toward reusing it in

Preface xv

the design of another window management system. The Network example given in Chap. 9
is a simple version of a communication network. We have given a rigorous proof that the
specification supports safe communication of messages between any two nodes in the net-
work. The Automated billing system example presented in Chap. 10 is an instance of a
real-life commercial application, which can be extended to suit a more complex situation.
The case study in Chap. 11 presents Larch/C++ interface specifications for the two Rogue
Wave library classes RWZone, and RWFile. These two examples are chosen to illustrate
the applicability of Larch/C++ specification language to software products in commercial
class libraries. The case studies may be read at different times and may be adapted or
reused for different purposes.

Lab Components

The material in Chaps. 8–11 may be taught with tool-supported laboratory projects. In
order to ensure that the students use the tool effectively, the instructors must (1) provide
a solid foundation on theoretical issues, and (2) give assignments on simple specifications
which can be done by pencil and paper. This will give students sufficient familiarity with
the subject matter before they start learning to use the tools. The differences in syntactic
conventions, and even minor differences in semantics between the specification language
and the language employed by the tool must be overcome by the student. This implies that
laboratory projects may only be introduced closer to the end of teaching the language; only
then can the students’ knowledge be expected to grow.

How to Use the Book

This book has evolved from the lecture notes prepared by the first author eight years ago.
The notes were revised every year both for content and style. From the experience gained
by both of us from the same notes in teaching different courses at different universities, we
made extensive revisions to the notes in the last two years. However, the overall structure
of the notes has not changed. Since the structure has withstood changes to the specification
language details, such as syntax, we are confident that the different sequences as suggested
below would fit different curriculum needs:

1. Chapters 1 through 3 are required for further reading of the book.
2. Chapters 4 and 5 may be read partially as well as simultaneously.
3. Based on the first seven chapters, a one-semester (13–14 weeks) undergraduate course

within a software engineering program or computer science program or computer engi-
neering program can be given.

4. Depending on the mathematical background of students in an information engineering
program, material from Chaps. 1 through 7 may be selected and supplemented with
basic mathematics to offer a one-semester course.

xvi Preface

5. A two-semester course for graduates or senior undergraduates in software engineering,
computer engineering, computer science, and information engineering programs can be
given as follows:
(a) Chapters 1 through 7 may be covered in semester I. One of the following sequences

for semester II may be followed:

• Chapters 8, 9
• Chapters 8, 10
• Chapters 9, 11
• Chapters 10, 11

6. An advanced graduate-level course can be given by choosing the material from Chaps. 8
through 11 and supplementing it with intensive laboratory sessions requiring the veri-
fied development of a large project. This type of course requires tool support; for exam-
ple, LP can be used with Larch, a theorem prover such as EVES or PVS may be used
with Z or VDM. The material in the book may be supplemented with published papers
in the area.

Acknowledgements

Our sincere thanks go to the many students and people who have helped us to create this
book. We are grateful to the students of COMP 648 Systems Requirements Specification
at Concordia University, and 74.716 Formal Specifications and Design at the University of
Manitoba, for pointing out many of the errors in previous versions of the lecture notes.

Our deepest sense of gratitude go to Darmalingum Muthaiyen, who critically read the
entire book, and gave us valuable feedback and corrections. His thorough reading and
suggestion for presentable style have contributed greatly to the current version of the book.

We sincerely express our thanks to Dennis Lovie, Jonathan Jacky, and Randolph John-
son for reading and providing critical reviews on the Z notation. In particular, we greatly
appreciate Randolph Johnson’s comments on the semantics of some of the notations which
helped us improve the chapter to its current version. We followed up Dennis Lovie’s sug-
gestions on uniformity of names and descriptions in the examples, which enhanced the
readability of the chapter.

Jimmy Cheng and David So helped us in typesetting the first version of lecture notes
eight years ago. Many of the LATEX commands defined by them have been used in typeset-
ting the current version of the book.

Finally, our thanks go toward everyone whose work has inspired us in writing this book.

Contents

Part I Specification Fundamentals

1 The Role of Specification . 3
1.1 Software Complexity . 4

1.1.1 Size Complexity . 6
1.1.2 Structural Complexity . 6
1.1.3 Environmental Complexity 7
1.1.4 Application Domain Complexity 9
1.1.5 Communication Complexity 10

1.2 Software Specification . 11
1.2.1 What is a Specification? . 12
1.2.2 Why Specify? . 12
1.2.3 What to Specify? . 13
1.2.4 When to Specify? . 14
1.2.5 How to Control Complexity? 15
1.2.6 A Critique of Natural Language Specification 18

1.3 Exercises . 18
1.4 Bibliographic Notes . 19

References . 21

2 Specification Activities . 23
2.1 Integrating Formal Methods into the Software Life-Cycle 24
2.2 Administrative and Technical Roles 28

2.2.1 Specification Roles . 28
2.2.2 Design Roles . 29
2.2.3 Implementation Roles . 30

2.3 Exercises . 31
2.4 Bibliographic Notes . 32

References . 32

3 Specification Qualities . 35
3.1 Process Quality . 36

xvii

xviii Contents

3.1.1 Why a Programming Language Cannot Serve as a Specification
Language? . 36

3.1.2 Attributes of Formal Specification Languages 38
3.1.3 A Model of Process Quality 40

3.2 Product Quality and Utility . 40
3.2.1 Conformance to Stated Goals 41
3.2.2 Quality Dimensions and Quality Model 43

3.3 Exercises . 44
3.4 Bibliographic Notes . 45

References . 45

4 Abstraction . 47
4.1 What Is Abstraction? . 47
4.2 Abstractions in Mathematics . 48
4.3 Fundamental Abstractions in Computing 48
4.4 Abstractions for Software Construction 50

4.4.1 Problem Abstractions . 51
4.4.2 Domain Abstraction . 51
4.4.3 Environmental Abstraction . 53
4.4.4 System Abstractions . 54

4.5 Exercises . 55
4.6 Bibliographic Notes . 56

References . 56

Part II Formalism Fundamentals

5 Formal Systems . 61
5.1 Peano’s Axiomatization of Naturals—Formalization in Mathematics . . 62
5.2 Model and Theory . 63

5.2.1 Formalization in Engineering 63
5.2.2 Formalization in Science . 63
5.2.3 Formalization Process in Software Engineering 64

5.3 Components of a Formal System . 65
5.3.1 Syntax . 65
5.3.2 Semantics . 66
5.3.3 Inference Mechanism . 67

5.4 Properties of Formal Systems . 69
5.4.1 Consistency . 70
5.4.2 Completeness . 70
5.4.3 Decidability . 71

5.5 Extended Syntactic Metalanguage . 71
5.6 Exercises . 74
5.7 Bibliographic Notes . 76

References . 76

Contents xix

6 Automata . 77
6.1 Deterministic Finite Accepters . 78

6.1.1 State Machine Modeling . 79
6.2 Nondeterministic Finite Accepters . 85

6.2.1 Finite State Transducers . 93
6.3 Exercises . 101
6.4 Bibliographic Notes . 102

References . 103

7 Extended Finite State Machine . 105
7.1 State Machine Hierarchy . 107

7.1.1 Menu-Driven User Interface Model 110
7.2 Modularity and Bottom-up Construction 113

7.2.1 Simulation . 118
7.3 Transition Points . 119
7.4 Case Study—Elevator Control . 120
7.5 Exercises . 124
7.6 Bibliographic Notes . 127

References . 127

8 Classification of Formal Specification Methods 129
8.1 The Four Pillars . 129
8.2 Classification . 130

8.2.1 Property-Oriented Specification Methods 130
8.2.2 Model-Based Specification Techniques 131

8.3 Languages Chosen for Discussion . 132
8.4 Bibliographic Notes . 133

References . 133

Part III Logic

9 Propositional Logic . 137
9.1 Syntax and Semantics . 137
9.2 Proof . 139

9.2.1 Reasoning Based on Adopting a Premise 139
9.2.2 Inference Based on Natural Deduction 140
9.2.3 Proof by Resolution . 141

9.3 Consistency and Completeness . 143
9.4 Exercises . 144
9.5 Bibliographic Notes . 145

References . 145

10 Predicate Logic . 147
10.1 Syntax and Semantics . 148

10.1.1 Semantics . 149
10.2 Validity, Equality, and Equivalence . 151

xx Contents

10.2.1 Equality and Equivalence . 151

10.3 More on Quantified Expressions . 154

10.3.1 Policy Language Specification 155

10.3.2 Knowledge Representation . 158

10.4 Proofs . 160

10.4.1 Natural Deduction Process . 160

10.4.2 Resolution . 162

10.4.3 Decidability . 165

10.5 Axiomatic Specification Examples . 166

10.5.1 Hoare’s Notation . 166

10.6 Exercises . 171

10.7 Bibliographic Notes . 174

References . 174

11 Temporal Logic . 177

11.1 Temporal Logic for Specification and Verification 178

11.2 Concept of World and Notion of Time 179

11.2.1 Temporal Abstraction . 179

11.2.2 Discrete or Continuous . 180

11.2.3 Linear and Branching Models of Time 181

11.2.4 Further Specializations of Time 181

11.3 Propositional Temporal Logic (PTL) 181

11.3.1 Syntax . 182

11.3.2 Model and Semantics . 183

11.3.3 Formal Semantics . 184

11.3.4 More Temporal Operators . 184

11.3.5 Axioms . 186

11.3.6 Formalizing Properties in PTL 187

11.3.7 Specifications . 189

11.4 First Order Temporal Logic (FOTL) 195

11.4.1 Formalizing Properties in FOTL 196

11.4.2 Temporal Logic Semantics of Sequential Programs 199

11.4.3 Temporal Logic Semantics of Concurrent Systems with Shared
Variables . 201

11.5 Formal Verification . 205

11.5.1 Verification of Simple FOTL Specifications 205

11.5.2 Model Checking . 210

11.5.3 Program Graphs, Transition Systems, and Kripke Structures . . 212

11.5.4 Model Checking using Büchi Automata 217

11.6 Exercises . 221

11.7 Bibliographic Notes . 226

References . 228

Contents xxi

Part IV Mathematical Abstractions for Model-Based Specifications

12 Set Theory and Relations . 233
12.1 Formal Specification Based on Set Theory 233

12.1.1 Set Notation . 234
12.1.2 Reasoning with Sets . 235
12.1.3 A Specification Example . 237

12.2 Formal Specification Based on Relations and Functions 242
12.2.1 Relations and Functions . 242
12.2.2 Functions on Relations . 244
12.2.3 Reasoning . 248
12.2.4 A Specification Example . 251

12.3 Formal Specification Based on Sequences 254
12.3.1 Notation . 254
12.3.2 Sequence Operators . 254
12.3.3 Proofs . 257
12.3.4 A Specification Example . 261

12.4 Exercises . 262
12.5 Bibliographic Notes . 263

References . 264

Part V Property-Oriented Specifications

13 Algebraic Specification . 267
13.1 Algebra and Specification . 267
13.2 Algebras—A Brief Introduction . 270

13.2.1 Homomorphisms . 271
13.3 Abstract Data Types . 273

13.3.1 Presentation . 274
13.3.2 Semantics . 276

13.4 Properties of Algebraic Specifications 277
13.4.1 Reasoning . 277
13.4.2 Extending Many-Sorted Specifications 279
13.4.3 Classification of Operations 280
13.4.4 Adequacy . 281

13.5 Structured Specifications . 282
13.6 OBJ3—An Algebraic Specification Language 286

13.6.1 OBJ3 Basic Syntax . 288
13.6.2 Built-In Sorts and Subsorts 290

13.7 Signature and Equations . 294
13.7.1 Signature of a Module . 295
13.7.2 Equations . 296

13.8 Parameterized Programming . 296
13.8.1 Theories . 297
13.8.2 Views . 298
13.8.3 Parameterized Modules . 298

xxii Contents

13.8.4 Instantiation . 299
13.8.5 Module Expression . 301

13.9 Case Study—A Multiple Window Environment 302
13.9.1 Requirements . 302
13.9.2 Modeling . 303
13.9.3 Formal Specifications . 303

13.10 Exercises . 309
13.11 Bibliographic Notes . 310

References . 311

14 Larch . 313
14.1 The Two Tiers of Larch . 313
14.2 LSL—Larch Shared Language . 315

14.2.1 Equational Specification . 315
14.2.2 More Expressive Specifications and Stronger Theories 319
14.2.3 Composing Traits . 321
14.2.4 Renaming . 321
14.2.5 Stating Checkable Properties 322
14.2.6 Stating Assumptions . 324
14.2.7 Operator Overloading . 326
14.2.8 In-line Traits . 327

14.3 More LSL Examples . 329
14.3.1 File . 330
14.3.2 Date and Zone . 333
14.3.3 Time . 336

14.4 Larch/C++: A Larch Interface Specification Language for C++ 339
14.4.1 Relating Larch/C++ to C++ 341
14.4.2 Function Specification . 346
14.4.3 Additional Function Specification Features 348

14.5 Proofs in LSL . 348
14.5.1 Proof Obligations . 349
14.5.2 LP, the Larch Prover . 351

14.6 Case Study—Two Examples from Rogue Wave Library 355
14.6.1 RWZone Specification . 355
14.6.2 RWFile Specification . 356

14.7 Exercises . 358
14.8 Bibliographic Notes . 363

References . 363

15 Calculus of Communicating Systems . 365
15.1 Why a Specific Calculus for Concurrency Is Necessary? 367
15.2 Informal Introduction to CCS . 368
15.3 CCS—Syntax and Semantics . 377

15.3.1 Syntax . 377
15.3.2 The Operational Semantics of Agents 378

Contents xxiii

15.4 Simulation and Equivalence . 383
15.4.1 Derivation Trees . 384
15.4.2 Milner’s Laws . 387
15.4.3 Labeled Transition Systems—Some Properties 391
15.4.4 Trace Equivalence . 392
15.4.5 Equivalence and Congruence 394

15.5 Exercises . 399
15.6 Bibliographic Notes . 401

References . 402

Part VI Model-Based Specifications

16 Vienna Development Method . 405
16.1 Structure of a VDM Specification . 405
16.2 Representational Abstraction . 406

16.2.1 Identifiers . 407
16.2.2 Simple Types . 407
16.2.3 Composite Types . 409
16.2.4 Patterns, Bindings and Values 416
16.2.5 State Representation . 417
16.2.6 Invariants . 420

16.3 Operational Abstraction . 421
16.3.1 Let Expression . 421
16.3.2 Function Definitions . 422
16.3.3 Operation Definitions . 424

16.4 Statements . 427
16.5 Specification Examples . 430
16.6 Case Study—Computer Network . 440
16.7 Rigorous Reasoning . 447
16.8 Refinement and Proof Obligations . 449

16.8.1 Data Refinement . 449
16.8.2 Example for Data Refinement 451
16.8.3 Operation Decomposition . 453
16.8.4 Example for Operation Decomposition 454

16.9 Exercises . 455
16.10 Bibliographic Notes . 457

References . 458

17 The Z Notation . 461
17.1 Abstractions in Z . 461
17.2 Representational Abstraction . 461

17.2.1 Types . 462
17.2.2 Abbreviation . 464
17.2.3 Relations and Functions . 465
17.2.4 Sequences . 466

xxiv Contents

17.2.5 Bags . 467
17.2.6 Free Types . 470
17.2.7 Schemas . 471
17.2.8 State Representation . 481

17.3 Operational Abstraction . 482
17.3.1 Operations . 482
17.3.2 Schema Decorators and Conventions 484
17.3.3 Sequential Composition . 487
17.3.4 Functions . 488
17.3.5 Generic Functions . 489

17.4 Specification Examples . 490
17.5 Proving Properties from Z Specifications 505

17.5.1 Initial State Validation . 506
17.5.2 Consistency of Operations . 509

17.6 Case Study: An Automated Billing System 513
17.7 Additional Features in Z . 521

17.7.1 Precondition Calculation . 522
17.7.2 Promotion . 524

17.8 Refinement and Proof Obligations . 526
17.8.1 Data Refinement . 527
17.8.2 Proof Obligations . 531

17.9 Exercises . 534
17.10 Bibliographic Notes . 536

References . 537

18 The Object-Z Specification Language . 539
18.1 Basic Structure of an Object-Z Specification 539

18.1.1 Parameterized Class . 542
18.2 Distinguished Features of Object-Orientation 544

18.2.1 Encapsulation . 544
18.2.2 Inheritance . 544
18.2.3 Polymorphism . 547

18.3 Composition of Operations . 548
18.3.1 Sequential Composition Operator 548
18.3.2 Concurrency Operator . 549
18.3.3 Parallel Communication Operator 550
18.3.4 Nondeterministic Choice Operator 551
18.3.5 Environment Enrichment Operator 551

18.4 Specification Examples . 552
18.5 Case Study . 564
18.6 Exercises . 571
18.7 Bibliographic Notes . 573

References . 574

Contents xxv

19 The B-Method . 577
19.1 Abstract Machine Notation (AMN) . 577

19.1.1 Structure of a B Specification 578
19.2 Notations . 582

19.2.1 Arrays . 582
19.3 Nondeterministic Statements . 584

19.3.1 ANY Statement . 584
19.3.2 CHOICE Statement . 585
19.3.3 SELECT Statement . 586
19.3.4 PRE Statement . 586

19.4 Structured Specifications . 587
19.4.1 The INCLUDES Clause . 587
19.4.2 The USES Clause . 591
19.4.3 The SEES Clause . 594

19.5 Refinement . 596
19.5.1 Sequential Composition of Statements 596
19.5.2 Local Variables . 597
19.5.3 Refinement Machine . 597

19.6 Specification Examples . 600
19.7 Case Study—A Ticketing System in a Parking Lot 613
19.8 Proof Obligations . 623

19.8.1 Proof Obligations for INCLUDES Clause 626
19.8.2 Proof Obligations for USES Clause 627
19.8.3 Proof Obligations for SEES Clause 628
19.8.4 Proof Obligations for Refinement 628

19.9 Exercises . 630
19.10 Bibliographic Notes . 631

References . 632

Index . 635

Part I
Specification Fundamentals

Specification is an essential activity that encompasses the different stages of a software
development process. The quality of a Software Requirements Document (SRD) is of ut-
most importance to bring in clarity and completeness to the development of the abstract
model of a software product. The construction of software through the design and imple-
mentation stages also requires specification at a more detailed level. Learning to think with
clarity and learning to abstract from natural language descriptions are hard; however, this
is essential to break complexity barriers in the development of large software systems. In
this part of the book the role of specification, specification activities, specification quali-
ties, and abstractions for software construction are discussed. The learning outcomes from
this module are the following:

• the nature and types of complexities in software construction
• the meaning of specification, why to specify, what to specify, and when to specify
• specification as a means of controlling the complexities
• inherent flaws in natural language specifications and how to avoid them
• what is a formal method, and how to choose one for integration in software development

process
• support roles for administering formal methods in a project
• attributes of a formal specification language
• assessing the quality of a formal specification
• abstractions for software construction

The Role of Specification 1

Software plays a prominent and critical role in large business applications, health care in-

dustry, technical endeavors in space missions, and control systems for airlines, railways

and telecommunications. In turn, software affects every aspect of human endeavor includ-

ing the control and delivery of most of the services that we depend on. The World Wide

Web (WWW) has introduced new opportunities for business and social networking, while

at the same time has raised concerns on security, privacy, and reliability of information

content and its use. Software for managing these applications are complex to construct.

The source of complexity of a software product lies in the identification of a set of ade-

quate functional and non-functional requirements from domain analysis, specifying system

integrity constraints, and gathering the vast amount of knowledge necessary to precisely

describe the expected interaction of the software with its environment. When all require-

ments are not properly understood, recorded, and communicated within the development

team, there is a gap between the documented requirements and the requirements actually

needed for correct functioning of the system. The inability in mastering the complexity

leads to this discrepancy, which is the root cause of software errors. Precise documenta-

tion of domain models and system requirements with sufficient detail to cover unexpected

worst-case scenarios is a good defense against system errors. Formal methods can provide

a foundation for describing complex systems, for reasoning about the behavior of soft-

ware systems, and can be a complimentary approach to traditional software development

methodologies.

More than three decades ago, Brooks [3] recognized the difficulties in developing large

complex software and likened the development of large software system to a great beast

thrashing in a tar pit. It was relatively easy to get hold of any particular component of

the software, but pulling the whole out of the tar was nearly impossible. Ten years later,

Brooks [4] wrote that not only has there been little change, but there is not even a “sil-

ver bullet” in sight: a method, a software tool, development in technology or management

technique that would dramatically improve productivity. This situation was attributed to

the essential difficulties that are inherent in the nature of software: invisibility, complexity,

conformity, changeability. Since then the software industry has met many of these chal-

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_1, © Springer-Verlag London Limited 2011

3

1

4 1 The Role of Specification

lenges and made enormous progress in adapting to new techniques while on their way to
successfully developing and deploying several large systems. While this was happening,
the industry had to meet the demand for new software in complex application domains,
such as nuclear and chemical process control, imaging and analysis, and pervasive com-
puting. These applications demand dependable software, in the sense that the software be
reliable, safe, and secure, in addition to being correct. The recent National Research Coun-
cil report on “Software for Dependable Systems” [17] emphatically states that “a system
is dependable when it can be depended upon to produce the consequences for which it
was designed, and no adverse effects, in its intended environment”. In social computing
applications the effect of software is felt in the “human, physical, and organizational en-
vironment in which it operates”. Consequently dependability should be understood in the
broader context of environmental interactions, not just conformance to local system prop-
erties. The goal must be to define dependability criteria for a software at the outset and
include that as a goal in the software development process activities. Accepting that there
may be no “silver bullet” in this area, one of the promising approaches is to intensify the
rigor with which requirements are gathered, analyzed, specified, and rigorous methods are
integrated with the development life-cycle activities. Formal methods can play an effective
role in not only tackling complexity but also help to achieve provably dependable systems.

Requirements engineering and domain analysis deal with gathering and analysis of re-
quirements which eventually lead to a decision on “what to build”. Each deserves serious
study in its own right. We turn our attention to a study of specification as a means of deal-
ing with the inherent difficulties stated above. After a discussion on software complexity,
we explain the notion of specification and explain what aspects of software complexity can
be controlled. The chapter concludes with a critique on natural language specification.

1.1
Software Complexity

Very large software systems contain several million lines of source code, and voluminous
documentation. In the future, rarely will such systems be built from scratch. They will
incorporate existing software components and will require numerous intermediate steps
in putting them together. This process is reliable only when the behavior and interface
of the integrated pieces are well understood. The details of such a large design do not
and cannot be comprehended by one single person. Curtis et al. [11] define this scenario
as psychological complexity. Basili [2] defines software complexity as “. . . a measure of
the resources expended by another system while interacting with a piece of software”.
Both authors remarked then that the underuse of structured programming techniques seem
to increase the difficulty of comprehension for a software engineer. Currently, automated
tools that conform to standard coding practice and other techniques prevent use of non-
structured programming. Also, most newer languages (relative to 1979/1980) would make
it very hard to write non-structured code. Unfortunately neither structured programming
nor recent programming practices would adequately address all the concerns related to
complexity elimination. We discuss below factors that contribute to software complexity.

1.1 Software Complexity 5

An understanding of the sources of complexity will help the software developer look for
means of reducing the overall complexity and introduce simplicity in the construction of
large software systems.

Structured programming techniques, which promoted the use of pre- and post-
conditions, Hoare axioms, predicate transformers, and top-down design methodologies,
provided some help to practitioners of those classical “formal” techniques. However, these
techniques have not totally eliminated all the problems afflicting software development.
The main reason is that these methods do not provide the structuring and encapsulation
necessary to synthesize large-grain software components. Although new development
methods are being practiced today, it still remains difficult to ensure the expected per-
formance of a system in a context where the system will be used. This is attributed to the
ever increasing complexity of developing software.

In order to be deemed useful, every software system should exhibit a certain behavior
that is observable when the system is functioning in its environment. This observational
behavior is the external projection of its internal effect. The correct behavior of the com-
ponents and their interactions within the system structure cause the external acceptable
interactions. When the components can be modeled in a simple way and the interactions
are governed by well-defined deterministic rules, the overall behavior of the system be-
comes predictable to a high degree of accuracy. A system whose behavior is completely
predictable from the properties of its individual parts is a simple system. Simplicity in
this context does not rule out algorithmic complexity or software complexity as defined
by Basili [2] and Curtis [11]; simple systems are characterized by total predictability and
perhaps by short programs.

In contrast to simple systems, there are systems whose behaviors are not completely
predictable. A system composed of many interconnected components may exhibit one or
more properties which are not obvious from the properties of the individual components.
This happens when either some of the components are difficult to model accurately or the
interactions of components are governed by laws that are not well defined. As a result,
the overall behavior of the system can only be predicted with some degree of uncertainty.
Clearly, such systems are complex systems.

Different complex systems behave with varying degrees of complexity. For example, a
weather forecasting system is complex due to the difficulty of formulating laws governing
atmospheric storms; a software for monitoring and predicting the performance of stocks is
complex due to the fact that there is no accurate model for economic trends. When such
uncertainties are based on information-theoretic interpretation, the definition of complexity
given by Parnas [27] matches the notion of (un)predictability applied to these systems.

Complex systems may be open, may evolve, may be nested, and may be adaptive. Ex-
amples of complex adaptive systems include nuclear process control and monitoring sys-
tems, financial systems, weather prediction systems, autonomic systems that self-monitor,
self-protect, and self-repair, and human social networking systems. An important feature
of complex system is emergence, the way complexity arises out of simple initial inter-
actions. Congestion in Internet traffic is an emergent property. In the WWW almost any
pair of pages may be indirectly connected through a diverse set of short direct links. This
emergent property is a factor that rates the WWW as a complex system.

1

6 1 The Role of Specification

1.1.1
Size Complexity

Large software systems are built with a number of parts (modules). The size of such a
system refers to the number of parts in the system, the number of requirements to describe
each part, the number of interactions between parts, and the number of quality constraints
on the collective behavior of the parts. According to Parnas [27], a system is complex if the
shortest description of the system is long. Size is an important factor causing technical and
psychological setbacks in the early stages of the software life cycle, and causing design
and implementation errors at later stages of the software life cycle. The vast amount of
information to be gathered and analyzed during the requirements specification stage can
cause incorrect, and incomplete information to leak through the review process. Accord-
ing to Leveson [21], almost all accidents involving computerized process control systems
are due to this kind of error caused by the size factor. In fact, understanding the dynamics
and the conditions under which software systems grow is a major challenge for the infor-
mation technology industry. The behavior of large sized systems is not only governed by
the behavior of the individual parts but also by the collective interaction among the parts.
The properties of these parts and the laws governing their interactions must be understood
before linking other parts that interact with them. Removing conflicting properties and
ensuring completeness of properties are hard to achieve in a large system. The classical
“formal” techniques used for small programs do not scale up to suit these tasks in the
production of large software systems.

1.1.2
Structural Complexity

There are two aspects to structural complexity: management and technical. Software pro-
cess models suggest only the highest level system decomposition. Each phase in a life
cycle is assigned a specific goal. People assigned to the different phases interact and over-
see the production of products as dictated by the dependencies among the phases. Within
each phase, the target product may be developed either in a top-down manner or by reusing
and combining existing software. The breadth and depth of the hierarchy of the develop-
ment team organizing and managing the development activities determine the structural
complexity of managing the system. In addition, traditions and policies in a software de-
velopment firm may regulate information flow between certain groups, thereby increasing
the structural complexity.

The level of interaction, known as coupling, among the modules of a software system
is another measure of its structural complexity. The number of levels in the hierarchy of
coupling and the span of control reflect the amount of changes that may be required in
dependent modules due to changing requirements. The way that modules are connected
determine the structural complexity and it has a great impact on the usability, modifiability,
and performance of the system.

1.1 Software Complexity 7

1.1.3
Environmental Complexity

In computing, the term “environment” refers to the overall physical, systematic, or logical
structure within which a computer or program can operate. Software environment is the
term commonly used to refer to the particular combination of operating system, software
tools, interface, database system, etc., through which a user operates or programs a system.
Software environment is the sum total of requirements specification environment, design
environment, implementation environment, testing and verification environment, and the
deployment environment. In this discussion by “environmental complexity” we mean the
complexity of the objects and their interactions in the deployment environment, the envi-
ronment in which the software system is utilized. The complexity of this environmental
aspect makes it hard to correctly determine the dependability attributes safety, security,
and availability of the software. The complexity of other environments have an impact
mainly on the functional correctness of the software, and this has been studied in some
depth by computer science community. For dependable systems, such as reactive systems
and safety-critical systems, functional correctness is only a part of the overall behavior.
The fulfillment of the dependability contract between the system and its deployment envi-
ronment squarely rests on how well the environment complexity is dealt with.

The client of a program is its environment, which can be either a user or another pro-
gram. In the simplest situation the output from a program can be either a value to be con-
sumed by the environment, or a state change in it. In either case the execution of a program
affects the environment in which it is effective. A software’s utilization in the environment
that best fits its functional requirements may expose the weakness of the software, due
to the non-fulfillment of the promised quality attributes. In order to earn the trust of the
clients of the software, who are part of its environment, the attributes and constraints of
the environment that regulate the acceptable software behavior in its environment must be
included in the requirements and they must be rigorously analyzed during software devel-
opment activities. Many software systems, such as the one described below, may affect our
lives by causing injury if environmental constraints are not satisfied by system execution.
Environmental analysis is absolutely essential for them, although the environmental con-
straints themselves may be complex to understand and specify. It is best to integrate the
environment and system as one engineered artifact.

• Reactive Systems: A reactive system is different from traditional input–output systems.
It may receive input at any time during its execution, provide outputs at different stages,
and may be non-terminating. The two important properties of a reactive system are stim-
ulus synchronization and response synchronization. Stimulus synchronization refers to
the feature that the system accepts every stimulus (input) whenever it is received. Re-
sponse synchronization refers to the ability of the system to respond to a stimulus in a
timely fashion, in the sense that when the system response is received by the environ-
ment it is still in a position to use it. When the system responses are regulated by time
constraints the system is called real-time reactive system. Violating time constraints
may eventually lead to unsafe executions and deliver responses to the environment in

1

8 1 The Role of Specification

Table 1.1 Environment for safety-critical systems

Software System System Objects Environmental Objects Nature of Complexity

Railway signaling
system

Network of controllers Trains, Gates,
Actuators, Living
Beings

Heterogeneous nature
of objects, Time
constrained and
concurrent
communication

Flight-guidance
and Air-traffic
control system

On-ground and
on-board controllers,
Navigation subsystem

Sensors for detecting
atmospheric
conditions, Unknown
flying objects, Weather
monitoring units,
Humans

Asynchronous
communication,
Uncertainty in
measurements,
Unknown behavior of
flying objects, failure
prevention mechanisms

Nuclear power
plants

Boiling water reactor
controller, Waste and
radiation manager,
Corrosion detector
and reducer

Humans, Places,
Power Networks

Knowledge of and
technology transfer
from Nuclear Science
and Nuclear Medicine,
Automatic shutdown
mechanism of power
networks, and disaster
control

untimely manner. Systems in which safe executions are paramount are called safety-
critical systems. Examples of such systems include railway signaling systems, flight-
guidance system and air-traffic control systems, and control systems for nuclear power
plants. Table 1.1 describes three reactive systems that are safety-critical, the objects in
each system, a set of environmental objects with which the system objects interact, and
the nature of complexity for these systems.

In all examples cited in Table 1.1, environmental complexity, largeness, and inability
to enforce timeliness in execution platforms add to the difficulty of constructing provably
correct systems. Software systems that monitor atmospheric changes and predict the
occurrences of floods, earthquakes, tornadoes, and hurricanes are life-critical systems.
They communicate in real-time with systems that manage emergency relief operations.
Thus, telephony and emergency health care are also associated with life-critical systems.
A communication failure to connect a 911 call in an emergency may result in the loss of
several lives.

• Ubiquitous Computing Systems: Ubiquitous computing refers to the invisible computa-
tion in the environment we are situated. Many devices in the environment surrounding
the user compute results and convey responses by automatically tracking the activities
of the user. The user by herself does not program, but may only hold a preprogrammed
device to obtain the results of interest from the embedded computing and other devices.
Most importantly the user may be unaware that she is being tracked in a computation
scenario. The devices in the environment include sensors, controllers, and actuators.
They are in general heterogeneous, with differing capabilities and complementary func-
tionalities.

1.1 Software Complexity 9

• Context-aware Systems: Context awareness is a term that originated with ubiquitous
(also called pervasive) computing. Context-aware systems are not only pervasive but
may have to deal with linking system changes with environmental changes subject to
safety, security, privacy, and timeliness constraints. Understanding these constraints, for-
malizing them, and analyzing their impact on the software functionality must precede
the development of software. Contexts that originate from the environment carry with
them the knowledge about the environment. The abstraction of context, formal repre-
sentation of it, and tracking context evolution are necessary for monitoring application
behavior with respect to different contexts. Context, being related to human factors and
environment, must be studied with great care for an application.

In a formal approach to software development, it is necessary to

• formalize the environmental objects, their attributes and constraints and include them in
the system specification,

• integrate the system and environmental model into one model in which each can observe
the other and interact,

• verify that the system interaction with the environment does not violate the environmen-
tal constraints.

1.1.4
Application Domain Complexity

A domain refers to a particular field of knowledge. Banking, health care, transportation,
communication and control, payroll, and E-commerce are some examples of domains.

Domain complexity arises from the essential intricacy of the knowledge in that domain.
In early 90’s (and in times earlier than that) business software were using only common
software solutions. Now, custom solutions are demanded. For example, E-commerce so-
lutions must be customized. When business complexity grows, the custom software for
a business application, which imbibes the complexity of the business domain, also in-
creases. In many business applications, given the complexity of business model, “simple”
software solutions will not adequately solve the problem. This means that a business soft-
ware that provides a reasonably acceptable solution must necessarily be complicated. This
complexity cannot be removed, but should be controlled. The software process model and
the methods used in its different phases for constructing the business software brings in
extraneous complexity through them. Incomplete models, inappropriate design, inefficient
programming language, inaccurate programming, and incomplete validation are sources
that bring in extraneous complexity. This second kind of complexity should be removed
altogether. Formal domain modeling and domain analysis can help minimize this complex-
ity. For example, in a software for business computing, business rules and business models
can be formalized. This in turn will help to ensure the consistency of dynamically evolving
business laws.

Other sources that give rise to domain complexity are the following.

1

10 1 The Role of Specification

• Interrelated domains: Often software for application in one domain will require knowl-
edge from other interrelated domains. For example, to seek a medication in the domain
of on line health care system, a user interface domain is required, queries to database do-
main (patient database, medical database) are required, and a reference to on line health
care policy domain is required. Thus, domain complexity is characterized by the num-
ber of interrelated domains, and the depth of the hierarchical relationship, involved in a
software application in that domain.

• Fuzzy boundary: In many situations, an entity may belong to many domains. It is hard to
delimit the operational ability for an entity and draw a strict boundary for an application
in a domain.

• Knowledge gathering and representation: In general, it is impossible to know all objects
in a domain, and all information about a known object. Thus knowledge acquisition
for an application in a domain will necessarily be incomplete. In order to faithfully
represent acquired knowledge, we need to invent a medium and it may be hard to invent
such a medium. As an example, to automate a human enterprise, as is attempted in
cognitive and behavioral sciences, the software cannot dodge this kind of complexity.
The objects manipulated by the software are only models of the real objects belonging to
the application domain. How to abstract those aspects of reality that should be part of the
model on which the software construction can be based? For some application domains,
the models can only be approximate. This may be due to an incomplete knowledge
of the domain objects, or a severe limitation of the model, or a combination of both.
Engineering applications use well-tested models that are supported by sound scientific
theories. However, there is no cognitive model for a user; there is no exact model to
represent the geometry, topology and properties of physical objects; there may not be
an exact final model for weather as characterized by atmospheric ambiguities. In the
absence of exact knowledge, it is very likely that many aspects of the domain may not
be observable in the software; moreover, a number of observations projected by the
software constructed from approximate models may not reflect reality.

1.1.5
Communication Complexity

The general communication problem involves knowledge (information) distributed among
many parties (people, processors) and the need for the parties to communicate with each
other in order to perform a task. The simplest version of communication problem is the
two party scenario in which both know the task to perform, each party has a fixed amount
of information I to share, and they communicate according to an agreed upon protocol
P in attempting to perform the task. The communication in the protocol is a sequence
of information exchanges, called a run. At each stage of the run, the protocol should de-
termine whether the run terminates. If it terminates the protocol must specify the task
accomplished. If the run does not terminate the protocol specifies which party should send
information. The information sent at each stage will depend solely on the information ex-
changed by the parties until that stage. The communication complexity of this two party

1.2 Software Specification 11

scenario for a given protocol P is the maximum amount of communication involved in
the protocol P , the maximum is computed over all possible I . The communication cost of
performing the task is the minimum cost of a protocol that performs the task, the minimum
is computed over all possible protocols.

In a general software development factory, due to the size, the large number of internal
structures and the heterogeneous nature of interrelated domains of the application domain,
a group of people rather than just two persons will be assigned the task of developing
a software system. Each person may play one or more roles in the activities associated
with the development process. Describing, even informally, the protocol for information
exchange in this scenario and specifying the amount of communication exchange in a run
become hard. The complexity of protocols for cross-organizational development effort is
much harder to assess.

The medium of communication can be one or more of verbal, graphical or textual.
Sometimes, much of the information required during the early stages of software develop-
ment is tacit. It is important that people involved in different phases communicate among
themselves without ambiguity. When natural language is used for “written” technical re-
ports, it is difficult to precisely state all the essential attributes of the product under de-
velopment. When specification is expressed in a natural language and the design contains
graphical constructs, it becomes difficult to relate descriptions in different media. When
people use different notations within one phase, or different notations are used for different
phases, due to semantic gaps agreements are hard to reach. Thus discovering a communi-
cation protocol and specifying it for guaranteed termination are hard tasks.

An immediate consequence of an imperfect protocol is that errors arise at early stages
of the software life cycle. It is known that such errors are very likely to remain undetected
until later stages and get amplified in the development process. Several empirical studies
have confirmed that errors made in the requirements analysis phase are indeed significant.
Moreover, design errors triggered by errors in the requirements analysis phase are more
difficult to detect and correct; in fact, they cannot be fixed without first identifying their
source in the requirements and then correcting the source.

1.2
Software Specification

Can software complexity be controlled by any systematic technique? We answer this ques-
tion in two parts: (1) a proper specification can control and adequately contain certain types
of complexity; (2) without specification software complexity is uncontrollable, especially
for safety-critical systems. The second part of the answer is justified by the remarks of
Brooks [4]. To justify the first part of the answer, we discuss below “what is a specifica-
tion, why we need to specify, what to specify, and when to specify”. The question “how to
specify” is taken up in later chapters.

1

12 1 The Role of Specification

1.2.1
What is a Specification?

According to Chambers 20th century dictionary specific means that pertaining to a par-
ticular species, specify means to be specific and specification is the act of specifying. In
Physical Sciences, terms such as specific gravity, specific heat and specific inductive ca-
pacity are defined to convey particular properties and characterize the behavior of physical
substances in any context of their usage. In Engineering and in Architecture, the word
specification refers to a statement of particulars describing the structural and behavioral
details of the product to be developed. In the context of software development, all of the
above meanings for specification can be carried over. In particular, software specification
denotes a precise description of the system objects, a set of methods to manipulate them,
and a statement on their collective behavior for the duration of their existence in the system
to be developed.

1.2.2
Why Specify?

One of the main goals of software engineering is the production of software which success-
fully works in the environment where it is intended to be used. The development process of
a large complex software system necessitates the gathering and the management of a vast
amount of data on the application domain, processes, people and product descriptions. In
order to cope with the numerous objects that arise and the enormous amount of information
generated while managing them, abstraction and decomposition have been found to be use-
ful tools. The principle of decomposition ensures that properties of the whole system follow
from the properties of its parts. Abstraction principles, which are discussed in greater detail
in Chap. 4, ensure that the specification has only key features, without a description on how
they can be realized. For example, when several people work on a software project, decom-
position and abstraction of tasks would bring forth precision and simplicity in expressing
the interdependence and communication among objects. Therefore, you might choose to
specify because you want a more precise statement or documentation of the requirements
and system’s interfaces, and would benefit members of software development groups by
an abstract description of system design. That is, a specification provides a clear, concise
medium of communication between designers, developers, and implementors. Tools can
be applied to formal specifications to help find errors in the design and uncover boundary
cases left unspecified. Other reasons would be

• Completeness: All situations, including exceptions and error handling, are to be specified
for a communication protocol.

• Controlling Complexity: The system design is too large. It is necessary to decompose it,
specify each part individually, and a method of putting them back together, known as
composition, should be specified.

• Contract Specification: The user interface to a system (or program) is a contract and
should be unambiguously specified.

1.2 Software Specification 13

• Controlling Environment: The system’s obligation to its environment needs to be pre-
cisely stated in order that the client of the system can verify the satisfaction of this
obligation after an interactive session terminates.

1.2.3
What to Specify?

Software life-cycle models decompose the entire development process into a series of
phases and associate a specific task with each phase. Although the boundaries and the
ordering of these phases differ in different models, the specification activity in each phase
produces a more precise definition of system attributes. Hence, for each object its descrip-
tion, properties, and operations must be specified. For every pair of objects it is necessary
to specify their interaction rules. Wing [34] stresses the distinction between required, and
permitted behavior for system objects. Since a specification may allow different imple-
mentations, and the behaviors of implementations are not likely to be identical, it is safe
to associate a specification with describing permitted behavior. Any one implementation
may not capture all behaviors, but no implementation should be allowed to have a behavior
outside the set of permitted behaviors. Wing [34] lists the following what list.

• Properties of Objects: An object in a specification is either simple or structured. Asso-
ciate each object (entity) with a type. Investigate ordering, a simple form of relation,
among objects. Associate abstract types with structured objects and thus define access
methods. Specify the permitted sequence of access methods. State boundedness and in-
variant properties.

• Correctness Condition: A software system should maintain some global correctness con-
dition. Examples include deadlock freedom and bounded growth of critical variables.
Correctness condition should be verifiable at every stage of the development life cycle.
If it cannot be verified at a certain stage, then one or more of the following situations
have cropped up:

1. The correctness condition is not expressed well in the specification notation. Change
the notation or invent another syntax.

2. The correctness condition is too strong. Back off and formulate a weaker condition
with which the system development can progress.

3. The stage that you are in the development process is not consistent with the previous
stage in which the correctness condition was verified successfully.

• Observable Behavior: A system’s interaction with its environment is observable. As
an example, the error output from a C++ compiler makes an internal error, such as
a register overflow, observable. A debugger may provide a deeper illumination of the
observed behavior. Hence, what is observable is dependent upon the level of formalism
that you use. A functional requirement may be specified by a set of functions. For each
function the interface specifies “how to invoke the function” (pre-condition), and “what
the output will be” (post-condition) when it is correctly invoked. State machines and
defining state invariants on them are standard ways to specify the observable behavior
of system entities and their interactions.

1

14 1 The Role of Specification

Fig. 1.1 A simple life-cycle model with specification phases

1.2.4
When to Specify?

From requirements to final implementation and delivery, system objects and their inter-
actions are transformed from a high-level of abstraction successively through increasing
levels of concreteness to an executable program. Hence, we may regard specification as a
multi-stage activity rather than a one-time activity. We discuss here the specification activ-
ities with respect to a simplified life-cycle model shown in Fig. 1.1. In Chap. 2, we discuss
a life-cycle model in which formal methods is integrated in all phases of development
activity, from domain analysis to run-time environment.

In the simplified model, after the first phase of requirements gathering and analysis, a
software requirements document (SRD) is prepared. This serves as a contract between the
customer and the supplier. The first level software specification based on the objectives
stated in the SRD is a precise and unambiguous description of the behavior of the desired
system in terms of externally observable functional characteristics. Constraints of the sys-
tem, if any, can also be specified as properties of the system. These remain independent
of any implementation or execution of the system. This first level specification is termed
behavioral specification, shown as BS in Fig. 1.1.

Following the behavioral specification, which describes WHAT is expected of the sys-
tem, the next stage is to specify the operational characteristics and the internal structure of
the system. This specification level contains more details than the behavioral specification;
however, every care must be taken to ensure that external behavior as defined earlier is
preserved. This specification level, called design specification (DS), preserves the proper-
ties stated in the previous specification level, contains more details, probably motivated by
certain needs, and provides mechanisms needed to produce such a behavior. We may view
this specification as a more concrete description of the behavioral specification.

The first level design specification can be refined further by adding more and more de-
tails on data, action, control, and exception. Moreover, for each component in the design,
interaction between components and component interfaces can be specified in more detail
and further refined into a series of specifications. We consequently arrive at an interface

1.2 Software Specification 15

specification and a detailed design specification, which can be implemented as a program.
The implementation language and the hardware configuration for its installation are chosen
at the interface specification stage. Thus the specification exercise encompasses more than
one phase of the software life cycle. We must keep in mind that modifying existing spec-
ifications and/or including new specifications may become necessary during any stage of
system evolution. Specifications are subject to validation to ensure that they remain faith-
ful to the intended need, as expressed in the requirements document and as required by the
usage context.

The essential properties that characterize specifications created during the software de-
velopment cycle are summarized as follows:

1. It must be possible to define the observable behavior.
2. The interface of a software component must be precise and simple.
3. The behavior of the whole must be expressible in terms of the behavior of the parts.

Stated otherwise, it must be possible to compose specifications.
4. It must be possible to develop a program from the detailed design specification.
5. The design specification must contain a description of all behaviors expressed by the

behavioral specification.
6. It must be possible to test for conformance—that a program satisfies its specification.
7. It must be possible to subject a specification to rigorous analysis; for example, given a

specification and a property, it must be possible to determine whether or not the property
is a consequence of the specification.

1.2.5
How to Control Complexity?

The most common and effective technique for dealing with complexity is abstraction. Dif-
ferent levels of abstractions will have to be employed to deal with system aspects (size,
structure, operations), environment, domain, and communication. The software develop-
ment team does not have much control over environment and application domain complex-
ities. Application domain models, and knowledge-base support for environmental theories
are necessary to help developers cope with these two complexities. The chosen abstrac-
tion should allow incremental absorption of requirements that emerge during the software
development process or when the software is operational. Domain experts and environ-
mental scientists should provide support for modeling interactions arising from evolving
requirements.

Controlling Size Complexity
Software developers can deal with size through modular decomposition techniques

which partition the world of objects into manageable collections. This allows the under-
standing of both the individual and the collective behavior of objects at a sufficiently high
level of abstraction. Another approach is to use top-down functional decomposition with
recursive definitions for abstracting the depth of a hierarchy in a structure chart. The depth
of the hierarchy can be reduced by resorting to incremental abstraction. In this approach,

1

16 1 The Role of Specification

the developer creates only the most critical details, and then expand them with additional
details to promote user understanding and system needs. Another effective means to deal
with size complexity is to reuse well-defined, well-understood, and well-tested software
components. What is important here is the simplicity and correctness of interface specifi-
cations of reuse objects so that reusable components are best understood by understanding
their interfaces, without having to know how they are implemented.

Controlling Structural Complexity
Structural complexity is best dealt with set theory, relations, and functions abstractions

from Mathematics. Not only they provide an abstract model for structured objects, but also
import with them the theory of sets, relations, and functions from Mathematics. For exam-
ple, to describe a collection of similar, but distinct, objects having some common attributes,
one can use the notion of set, without concern for the representation. If duplicates are al-
lowed then bag (multiset) is an appropriate abstraction. If the objects are to be ordered,
with respect to priority or partial ordering, then sequences or priority queues are appropri-
ate abstractions. Dynamic properties of relational entities or any function or any structured
entity can be abstracted using algebras. For example, the equation

insert(insert(s, e), e) = insert(s, e) (1.1)

asserts that the property of a set that it has no duplicates is preserved by insert operation.
To understand this equation, assume that s′ denotes the set insert(s, e). Now, substituting
s ′ for insert(s, e) in equation 1.1 will rewrite it as in 1.2.

inset(s′, e) = s′ (1.2)

Hence, inserting e in set s′ does not modify the set s ′. Since this is true regardless of the
element e and set s it follows that s′ has no duplicates, hence a set. In specifying operations,
it is best to use declarative rather than operational style. Algebras and Logics provide
the notation with sufficient expressive power. Using quantified expressions, iterations over
structures such as set members, can be specified. Describing specific search procedures can
be postponed to the detailed design stage. Thus, the statement ∀x ∈ X • dof (x), describes
function computations for each member of set X. The scope of quantification in quantified
expressions must be understood. Both the expressions ∃!x ∈ s • P(x) and ∃!x • x ∈ s ∧
P(x) convey the meaning that there exists exactly one element of set s which satisfies the
property P . It is best to keep function interfaces simple, by separating the normal behavior
from error situations. That is, the total operational specification of a function is either its
normal behavior specification or its error specification, but not both. Abstractly this is
translated to (1.3).

TotalOp = NormalOp ∨ ErrorOp (1.3)

Controlling Environmental Complexity
The environment of a software system consists of entities that send stimuli to the system

and receive responses from the system. The complexity of environmental entities and their
interactions with system can be systemized through contexts. A context of the environment
is a situation with a specific property that is true for that context. Discovering contextual
information might help to eliminate a chunk of the environment as unnecessary for the

1.2 Software Specification 17

specific application. In the design of GUIDE [8], an intelligent electronic tour guide, the
environment of the software consists of the following objects:

• user, a visitor to explore a city
• information on the city, which includes places of interest, their locations, operational

constraints, access constraints
• end system with which the user interacts to get environment information, and
• a wireless communication infrastructure.

Personal contexts for the user include her current location and her interests. Environmen-
tal contexts include local time of the day, and locations of city attractions. A property
(constraint) of personal context may be “age of the person is at least 18 and interests are
movies”. A constraint of an environmental context may be “time of day is 17:30 and the
nearest movie house is three blocks away and the movie starts at 18:00 hours”.

Environmental analysis must be done to uncover environmental contexts and their con-
straints. Complexity may be reduced by using contexts as filters to extract system stimuli
relevant to different contexts. The environmental objects may be partitioned such that ob-
jects in one partition have a common end system or require one common system response.
Thus a separation of concerns is achieved for dealing with the size and structure complexity
of the environment. The communication infrastructure for the end system must be chosen
to serve efficiently in all contexts.

Controlling Domain Complexity
Domain engineering, which involves domain analysis and domain modeling leading to

an organization of domain knowledge, is a necessary step to soft land domain complexity
in software development process. Domain analysis involves identification and analysis of
the applications, their detailed requirements, and the relations and data that exist in a spe-
cific domain [28]. The results of the domain analysis is a domain model which consists of
knowledge about the domain and all its applications and its reusable components. For ex-
ample, a car is an entity in the domain of automobile industry. A car contains many control
systems such as cruise control, anti-lock braking system, cooling and heating system, and
security system. A domain analysis for this domain should expose not only the function-
alities and non-functional quality attributes of each individual system but also explore the
role of smart sensors that may be shared by these systems. A common ontology language,
called ontology web language (OWL) [30], can be used to formally represent the results of
domain analysis. An ontology is a content theory about the sorts of concepts, their proper-
ties, constraints, and the relations between concepts that are possible in a specified domain
of knowledge [9]. It provides terms for describing the knowledge about a domain captur-
ing the intrinsic conceptual structure of the domain. The ontology thus represented can be
carried down to design component-based systems.

Controlling Communication Complexity
Humans can follow organizational rules if they are clearly stated. However, rules for

software development are subject to different interpretations. In order to ensure uniform
interpretation of requirements, it is essential that the development team learns effective
modes of communication which include precise notations, including formal notations, to

1

18 1 The Role of Specification

communicate different views for the same entity. Ad-hoc notations, natural language in-
tercepted with graphics, and/or pseudo code are not sufficient to discharge the demands
placed on a design team. With natural languages and graphics, it is very easy to miss some
situations, initial and boundary cases, and exceptions.

1.2.6
A Critique of Natural Language Specification

Specification must be documented using a representation technique that can unequivocally
be understood and acted upon by all software engineers involved in the production of
software. The discussion in Sect. 1.2.1 underlies that specification is not a one-time activity
and clients of the specified product are different at different stages of the development
cycle. There are several drawbacks to using an informal approach and a natural language
description to specify software components intended for these clients. Natural languages
are expressive but imprecise. It is possible to express any software property in a natural
language, but the expression may be given different interpretations, or not understood at all.
Natural language descriptions carry lot of noise, ambiguities, and contradictions, as pointed
out by Meyer [22]. Noise refers to the usage of different words in a text to denote the
same concept. For example, “nonempty sequence” of items is the same as “one or more”
items. Although repetition is avoided in literary writing, in a technical document, observes
Meyer, the same concept should be denoted by the same words, lest the reader be confused.
Silence refers to undefined terms and undefined features of defined terms in a text. It is
hard to analyze a natural language specification to detect this kind of error. Statements
such as “event a happens after event b” is ambiguous, since the terms “happens” and
“after” can be interpreted in more than one way. Another example is the usage of “up
to” in the statement “an identifier can have up to eight characters”. Informal descriptions,
such as diagrams, have no inherent semantics unless accompanied by precise annotations.
After illustrating these pitfalls of natural language descriptions through the text processing
example first developed by Naur [24] and subsequently corrected by Goodenough and
Gerhat [13], Meyer shows how the specification can significantly be improved through
reasonable use of more formal specifications. We take up the study of formal specifications
in later chapters.

1.3
Exercises

1. Give a natural language description of the features and functionalities of any two text
editors you have used. How many deficiencies, as described in the text and in Meyer’s
paper [22], are found in your natural language specification?

2. Take a recipe description from a cook book. Determine the ambiguities, omissions,
imprecision, and contradictions in it. How would you make it more precise? What envi-
ronmental assumptions are necessary to implement the recipes (“bake the cookies”, for
example)?

1.4 Bibliographic Notes 19

3. What is the “domain” for an Automated Teller Machine (ATM)? Investigate the enti-
ties, their roles, properties, and interactions. Identify the different applications in that
domain. Comment on the sufficiency of your domain analysis for these applications.

4. Study an artificial pacemaker, a medical device used to regulate heart beat. A first ref-
erence is http://en.wikipedia.org/wiki/Artificial_pacemaker. Investigate the “environ-
ment” in which it functions. Identify the contexts for its safety, privacy, and reliability.

5. Review a term project you have done and examine the stability of its design when a few
of the requirements are changed. Are you able to do it from your design documentation
and requirements specification? Explain the difficulties. Hint: You may wish to create a
Traceability Matrix, which records and relates the objects from requirements and design
in a meaningful way.

1.4
Bibliographic Notes

Complex physical systems exhibit emergent properties and a formal systematic study of
them have been undertaken by mathematicians and physicists [33]. Complex software sys-
tems, created by the combined efforts of many people, often lack a formal mathematical
model. Consequently, a thorough understanding of the interaction of the entire system is
hard to achieve. The seminal book by Brooks [3] and his observation [4] “one has to accept
that there is no silver bullet in this area” had a significant impact on software engineering
development practices. Beginning from the late 80’s software developers embraced for
more systematic approaches founded on high-level programming paradigms, which are in
turn supported by mathematics, science and engineering. This is described in the report
[29] issued by the Computer Science and Technology Board, research done at SRI [10]
and at NASA [6]. In spite of systematic methods used in software development, modern
software with plug-in capabilities can be viewed as composite products, and hence they
carry the intrinsic product complexities [19] as well as emergent properties of the de-
velopment environment. The challenge to providing a sufficient evidence of dependability
criteria and proving it in order to make claims on dependable software systems is discussed
in the report [17].

With regards to the classification on the sources of software complexity we highlight
the three sources: environment, domain, and communication. The complexity they bring
into software development cannot be removed but should be tamed. In the Technical Opin-
ion section of CACM [32], Wegner and Goldin have pointed out that artificial intelligence,
graphics, and the Internet could not be expressed by Turing machines, the basis of compu-
tation theory in Computer Science. The reasons are that in these areas of study interaction
between the program and the environment takes place during a computation, and are often
concurrent. As observed by Brooks [5], all intelligent systems must be situated in some
world (environment) and exhibit complex interactions if they have to produce any use-
ful result. When such interactions cannot be adequately expressed within a computation
model then clearly a new conceptual framework is required. Milner [23] in his Turing
award lecture eloquently brings out the need for a new platform to express environmental

1

20 1 The Role of Specification

interactions. Consequently, we should agree that at the present level of knowledge environ-
mental interactions cannot be modeled satisfactorily and computed correctly. That is the
source of complexity and is hard to remove. Yet, as demonstrated by the successful devel-
opment and deployment of the automatic train protection of Paris Metro [7], British Rail’s
signaling system [18] and the on-board avionics software for an Israel aircraft [14], a well-
studied and regulated environment can be modeled and integrated faultlessly in software
development.

As early as 1981, Neighbors [25] realized the necessity of modeling domain objects
and analyzing their properties in developing reusable components for all systems in an
application area. Domain-driven design [12] is a design paradigm for tackling the com-
plexity trickling from domain into software development phases. To tackle domain com-
plexity domain experts should be involved, not just at the beginning of domain modeling
and requirements gathering, but throughout the development stages. Domain analysis must
produce dependability criteria and certification standards for software in that domain.

Mobile computing, context awareness, and ubiquitous computing come together in
many systems with which humans interact on a daily basis. Electronic Tour Guide
(ETG) [8] is an example. This is a typical example in which domain complexity is com-
pounded with the environmental complexity. Navigation using a map, retrieving context-
dependent information, booking accommodation while on the go, and communicating with
other visitors who have access to similar tour guides are some of the useful operations on a
ETG. The main domain for ETG is Tourism. The interrelated domains are GUI (Graphical
User Interface), wireless networking, sensor network, database, and navigation algorithms.
As first remarked by Weiser [31], “this is not GUI problem, . . . , the problem is not one of
interface, . . . , this is not a multimedia problem, . . . The challenge is to create a new kind
of relationship of people to computers, one in which the computer would have to take the
lead in becoming vastly better at getting out of the way so people could just go about their
lives.” So, complexity of ubiquitous software, such as ETG, is quite high.

Communication complexity is now formally studied as part of Complexity Theory [20].
Taking lessons from the way the theorists formalize communication complexity, it is evi-
dent that even simple assumptions on the nature of communication and protocol lead to the
conclusion that the complexity is quite steep and is hard to surmount in software develop-
ment process.

With regards to the methods used in specifying software requirements, Alford [1] de-
scribes his Requirements Driven Development (RDD) method of system development
based on a set of graphical and textual representations for capturing requirements and
design. This method to systems engineering is supported by a set of tools for traceabil-
ity analysis, to record design decisions, check consistency, and conduct reviews. It is be-
lieved that this method is widely practiced in industries. For complex systems, Henninger
et al. [15, 16] provide useful checklists. These two papers describe the difficulties encoun-
tered in writing requirements specification for large and complex systems and discuss the
specification techniques that are used for making requirements precise, unambiguous, con-
sistent and complete. Parnas [26, 27] discusses complexity in the context of developing
software for strategic applications and provides practical approaches to follow.

A good critique of natural language specification has been given by Meyer [22]. This
article explains the “seven sins” of a specifier in using a natural language, reviews the

References 21

types of errors uncovered in published papers [13, 24], and proposes a formal specification
approach. The message of this paper is that a natural language specification, even when
corrected and cleaned up by experts, will have flaws.

The article by Wing [34] must be read and re-read by all aspiring to become formal
specification specialists. The merits, advantages, and limitations of most formal specifica-
tion methods you will learn in later chapters of the book are brought out in this article.

References

1. Alford M (1985) SREM at the age of eight. IEEE Comput 18:4
2. Basili VR (1980) Quantitative software complexity models: a panel summary. In: Basili VR

(ed) Tutorial on models and methods for software management and engineering. IEEE Com-
puter Society Press, Los Alamitos

3. Brooks FP Jr (1975) The mythical man-month: essays on software engineering. Addison-
Wesley, Reading

4. Brooks FP Jr (1987) No silver bullet: essence and accidents of software engineering. IEEE
Comput 20(4):10–19

5. Brooks RA (1991) Intelligence without reason. MIT AI Lab Technical Report No 1293
6. Butler RW (1996) An introduction to requirements capture using PVS: specification of a sim-

ple autopilot. In: NASA technical memorandum 110255. Langley Research Center, Hampton
7. Carnot M, DaSilva C, Dehbonei B, Meija F (1992) Error-free software development for critical

systems using the B-Methodology. In: Third international software symposium on software
reliability engineering

8. Cheverst K, Davies N, Mitchell K, Friday A, Efstratiou C (2000) Developing a context-aware
electronic tourist guide: some issues and experiences. CHI Lett 2(1):1–6

9. Chandrasekaran B, Josephson JR, Benjamins VR (1999) What are ontologies and why do we
need them? IEEE Intell Syst 14(1):20–26

10. Crow J, De Vito BL (1996) Formalizing space shuttle software requirements. In: Proceedings
of ACM SIGSOFT workshop on formal methods in software practice, San Diego, CA, January
1996

11. Curtis B, Sheppard SB, Milliman P, Borst MN, Love T (1979) Measuring the psychological
complexity of software maintenance tasks with the Halstead and McCabe metrics. IEEE Trans
Softw Eng SE-5(2):96–104

12. Evans E (2004) Domain-driven design: tackling complexity in the heart of software. Addison-
Wesley, New York

13. Goodenough JB, Gerhart S (1977) Towards a theory of test data selection criteria. In: Yeh RT
(ed) Current trends in programming methodology, vol 2. Prentice-Hall, Englewood Cliffs, pp
44–79

14. Harel D (1992) Biting the silver bullet: toward a brighter future for system development. IEEE
Comput 25(1):8–20

15. Heninger KL (1989) Specifying software requirements for complex systems: new techniques
and their application. IEEE Trans Softw Eng SE-6(1):2–12

16. Heninger KL, Kallander JW, Shore JE, Parnas DL (1980) Software requirements for the A-7E
aircraft (second printing). NRL Memorandum Report No 3876, Naval Research Laboratories,
Washington, DC

17. Jackson D, Thomas M, Millett LI (eds) Committee on Certifiably Dependable Software
Systems, National Research Council, Software for dependable systems: sufficient evidence?
http://www.nap.edu/catalog/11923.html

18. King T (1994) Formalizing British rail’s signalling rules. In: FME’94: industrial benefit of
formal methods. Lecture notes in computer science, vol 873. Springer, Berlin, pp 44–54

1

22 1 The Role of Specification

19. Kries B (2007) The future of product development. In: Proceedings of the 17th CIRP design
conference. Springer, Berlin

20. Kushilevitz E, Nisan N (1996) Communication complexity. Cambridge University Press,
Cambridge

21. Leveson NG (1991) Software safety in embedded computer systems. Commun ACM
34(2):35–46

22. Meyer B (1985) On formalism in specifications. IEEE Softw January:6–26
23. Milner R (1993) Elements of interaction. (Turing award lecture). Commun CACM 36(1):78–

89
24. Naur P (1969) Programming in action clusters. BIT 9(3):250–258
25. Neighbors J (1981) Software construction using components. PhD thesis, Department of Com-

puter and Information Science, University of California, Irvine
26. Parnas DL (1986) Can software for the strategic defense initiative ever be error-free? IEEE

Comput 19:11
27. Parnas DL (1995) Fighting complexity. Invited talk. In: International conference on engineer-

ing complex computer systems, ICECCS’95, Fort Lauderdale, Florida, November 1995
28. Pressman R (2005) Software engineering: a practitioner’s approach. McGraw-Hill, New York
29. Computer Science Technology Board (1990) Scaling up: a research agenda for software engi-

neering. Commun ACM 33(3):281–293
30. Smith MK, Welty C, McGuinness DL (2004) Owl web ontology language guide. W3C rec-

ommendation, February 2004. http://www.w3.org/TR/2004/REC-owl-guide-20040210/
31. Weiser M (1993) Some computer science issues in ubiquitous computing. Commun CACM

36(7):74–84
32. Wegner P, Goldin D (2003) Computation beyond turing machine. Commun CACM 46(4):100–

102
33. Complex System. http://en.wikipedia.org/wiki/Complex_system
34. Wing J (1995) Hints to specifiers. Manuscript CMU-Cs-95-118R

Specification Activities 2

The previous chapter provides a general discussion of the different stages of specification
in the software development process. It was assumed that the discrete steps of the devel-
opment process have been well-defined. That is, the activities, deliverables, reviews, and
analysis procedures associated with each step have already been established. It was sug-
gested that a specification of the products and processes can be added to each step of such
a well-defined development process. This chapter addresses specific issues that should be
considered, activities that should be initiated, and the roles that are to be assumed when
specifications are formal due to the integration of formal methods into the existing software
life-cycle process for a given project.

Formal methods refer to the use of rigorous techniques founded on mathematics, in
particular on abstract algebra, discrete mathematics and logic, in the representation of in-
formation necessary for the construction of software systems. The word “formal” comes
from “formal logic” in which reasoning is done by virtue of “structure” and independent
of “content”. The specifications in formal methods are “well-formed” statements in math-
ematics. Mathematical logic is used to specify a property that needs to be verified in the
specified system. The property is true in the specified system if a set of inference rules
in the logic can derive the property as a logical consequence. Each step of this deduction
procedure follows from the preceding step when an inference rule is applied to it. Because
content is not central to logical deduction, the inference procedure becomes a mechani-
cal calculation. Thus, the verification process can be mechanized which in turn reduces
reliance on human intuition. A formal method is to be preferred not just on its notations,
but in its ability to adequately specify information and verify correctness of properties
specified.

The word “method” comes from the context of engineering discipline and it denotes
the way in which a software process is to be conducted. As stated in [20] in the context of
system engineering, a method is defined to consist of an underlying model of development,
one or more languages, a defined set of ordered steps, and guidance for applying these
in a coherent manner. Model refers to the mathematical representation of the system. It
is suggested by the chosen mathematical notation. For example, if set theory is chosen as
the mathematical basis of formalism, then the expression registered′ = registered ∪ {Tom}
models the update operation when an item is added to a student file. By virtue of set the-

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_2, © Springer-Verlag London Limited 2011

23

2

24 2 Specification Activities

ory semantics registered′ = registered if Tom ∈ registered. Hence a formal specification
language is a mathematically-based language, which has a well-defined syntax and seman-
tics. The specification language must use the underlying mathematical objects as elements
of the language and support formal verification. The expressive power of the language
is brought out in the specification clarity, its support for removal of ambiguity and for-
mal reasoning. These ultimately lead to an understanding of the system under develop-
ment.

During the late 1980s and early 1990s, the initial stages of formal methods development,
a set of ordered steps for system development was left undefined and no guidance (tool
support) to practice safe specification was available. Since then formal methods have been
maturing and several techniques and tools have been made available in public domain [29]
to practice formal methods. They have been used successfully in engineering large complex
systems [2, 3, 29].

2.1
Integrating Formal Methods into the Software Life-Cycle

Formal methods at different levels of formalization can be applied to any or all steps in
the software development process. At some steps it may be sufficient to be rigorous, in
the sense of being systematically precise without using the full power of mathematics and
logic. As an example, in the late 1970s, Heninger and colleagues [14] at the Naval Re-
search Laboratory introduced a tabular method to specify software system requirements.
This method is rigorous, although not formal. In 1990, Van Schouwen [27] described a
mathematical model and formalized the tabular methodology. Given the current matu-
rity of formal [9, 29] methods, modern day software development practice can include
formalization of behavioral specification, design specification, and program specification,
and include a formal analysis of the system as well. Depending upon the type of project,
it is necessary to decide the scope of formal methods to use and the level of formality
desired at a particular phase in the development cycle. Based upon factors such as size
of the project, application domain, scope of formal methods use, and level of formal-
ism to be applied, it is necessary to determine the benefit-to-cost ratio of applying for-
mal methods to the project prior to integrating formal methods in the development pro-
cess.

Figure 2.1 is a process model in which formal method is integrated into all phases of
life-cycle activities. This process model is to suggest the integration of formal methods in
safety-critical systems development. It is assumed that domain experts construct a formal
domain model which includes domain knowledge, concepts and ontologies, constraints
among domain entities, and attributes of entities. A classification of different applications
within the domain may also be included in the domain model. A set of requirements for a
specific application is extracted from the domain model. The environment with which the
system will interact is formalized and is combined with a formal specification of system
requirements. The property to be formally verified in the system is formalized and is for-
mally verified in the formalized system design. The verification is preceded by a formal

2.1 Integrating Formal Methods into the Software Life-Cycle 25

Fig. 2.1 Integrating formalism with process model

validation of system design to ensure that it has captured the stated requirements and en-
vironmental constraints. Such a validation may be an animation of the system being built.
If validation fails the system design is to be redone. If verification fails the validation must
be redone on the redesign. Only after verification is successfully completed the system
implementation begins. Code analysis which includes tracing design units to implemen-
tation parts must be done before the system is deployed. Run-time configuration refers to
the run-time system in the software deployment unit. If run-time analysis exposes errors a
redesign of the system takes place. The level of formality and the choice of formalism are

2

26 2 Specification Activities

important issues, although not part of the process model. The following technical factors
[19, 20] influence the benefit-to-cost ratio.

Type of Application Formal methods may not be suitable for all types of applications.
The characteristics of the problem domain and the complexity of their modeling should be
evaluated to determine the suitability of applying formal methods to a project. If the project
involves domains of high complexity, as discussed in the previous chapter, it may be ad-
vantageous to apply formal methods. However, problems over simple domains are usually
less complex and do not warrant formal methods. Formal methods have been successfully
applied to develop many safety-critical systems, and secure-critical systems [4, 8, 20]. It is
desirable to formalize service-oriented systems, including E-commerce and web services,
when trustworthiness of such systems is paramount.

Size and Structure Size and structural complexities should be evaluated prior to adopt-
ing formal methods in a project. A measure of application size used in industries is
KSLOC, thousands of source lines of code. The NASA report [19] gives the following
statistics:

Programs with size under 10 KSLOC have been subjected to verification. Most of the sub-
systems that have been subjected to design-level specification and verification are in the
range 10 KSLOC to 100 KSLOC. However, precise size figures for requirements specifi-
cation are lacking. A reasonable estimate is that formal specification of requirements have
been attempted on systems that eventually lead to systems on the order of 100 KSLOC.

From these statistics we may conclude that formal methods are effectively applied to sys-
tems of moderate size. It is also reported in [19] that formal methods cannot be applied
in full to systems that use conventional programming techniques. To reap the full bene-
fits of formal methods applied to large systems, they must be well-structured, and remain
decomposable into well-defined components so that only critical components may be sub-
jected to formal methods. When a system is composed of only loosely related components,
which lack cohesion, formalization activity cannot be expected to be fruitful. Greater ben-
efits result when formal reasoning conducted on each component can be composed to draw
conclusions on the composite behavior of the system.

Choice of Formal Method and Type of Analysis The objectives for applying a for-
mal method to a project must be clearly identified and documented. The development of
safety-critical systems require the use of formal methods for specifying and analyzing crit-
ical components and their properties. An application which primarily uses the traditional
structured development techniques may use formal methods only for the purpose of docu-
menting data dictionaries. The objectives of these applications will have different impacts
on the development process and consequently will influence different choices of formal
methods.

Level of Formality Methods such as manual inspection and walk-through conducted
with the help of documents written in a natural language and supplemented by dia-
grams, equations, and pseudo code are not formal. Table-based specifications and diagrams

2.1 Integrating Formal Methods into the Software Life-Cycle 27

used for object-oriented modeling [22] add more precision to natural language descrip-
tions. These are only semi-formal notations. Specification languages such as Larch [11],
VDM [17], and Z [24] have formal syntax and semantics, and also provide some mecha-
nized support for syntax checking, semantic analysis and proofs. Methods such as B [1],
PVS [21], and HOL [10] provide additional support for developing formal specifica-
tions, such as rigorous semantic analysis, refinement, and mechanized formal proof meth-
ods. Object-Z [23] and Alloy [16] integrate formal specification languages with graph-
ical object modeling techniques. From the objectives of a given project, criticality of
the application, project size, and available resources, the degree of formality suitable
for the project must be determined and a choice be made from the above possibili-
ties. The levels of formalization [20], in increasing levels of formality, are defined be-
low.

1. A non-mathematical model of the system, such as data-flow diagrams, English text,
and object diagrams, is translated to a mathematical description using notations from
discrete mathematics and logic. An informal analysis of the specification may be done.

2. Formal specification languages with tools are used for syntactic analysis, pretty print-
ing, and interpretation of the specification. Specification languages usually have built-in
abstract data types that support specifying module interfaces, and object models.

3. Formal specification languages with formal semantics are used for specification. Tool
support for analyzing specifications, say traceability analysis, and proof systems for
mechanized verification are used.

Scope of Use Formal methods can be used in one or more dimensions of the development
process. The degree of formality may also be varied across the different dimensions.

1. Selecting development stages: Although formal methods can be applied to all stages of
the development process, it is usual to apply it only selectively. Depending upon the
level of verification rigor appropriate to a project, a subset of requirements and high-
level design may be chosen to undergo the techniques of a formal method. Integrating
formal methods during the requirements and design stages has the advantage of enhanc-
ing the quality of the software. This is because errors can be detected during the early
stages of the development process, and the precision injected early on leads to formal
verification and validation.

2. Choice of components: Higher levels of rigor may be called for to assess the quality
of safety-critical components. To construct such components, formalism is not only
necessary but a high degree of formality should be applied. Components that are not
critical may be subjected to lower levels of rigor.

3. System functionality: A proof of correctness is required to establish that the system has
the important properties required of it. Whenever the objectives of a project include
such strict requirement, the functionalities of those components designed to meet such
requirements should be formally verified.

Tool It is not possible to apply formal methods with pencil and paper. To apply it with
sufficient rigor, tool support is necessary. Since a tool may address one or more of the
issues, developing a formal specification, syntax checking, semantic analysis, and theorem

2

28 2 Specification Activities

proving, the choice of tools for a project depends on all the factors discussed above. Tool
support and good expertise are required to refine designs into programmable modules and
conduct proofs on the correctness of refinements. Many tools are now available as open
source software [9, 29] for practicing formal methods at almost all stages of the software
development cycle.

2.2
Administrative and Technical Roles

Once a decision has been reached on adopting a formal method to a project, general guide-
lines be put in place to implement this decision before the project begins. The guidelines
include mechanisms for documentation standards for improved communication, configura-
tion management, and reuse of specifications. When the existing development process has
well-defined steps, formal methods can be inserted at relevant steps in the entire process or
it can be applied on a small scale to some of the steps. A pilot study may also be done to
integrate formal methods to understand the steps where it is most effective, and train staff
for these activities. Although the roles and sequence of activities of the staff depend on the
specifics of the process model, a discussion of the roles based on a rough classification of
roles is given below.

2.2.1
Specification Roles

System requirements, environmental objects and their constrained interactions, and the
property to be verified in the software system are specified by those assuming specifica-
tion roles. Naturally, these formal specifications are developed by groups of people who
have a good understanding of the formal languages used for the specifications. A speci-
fier may be the author as well as the analyzer for a specification unit. As an author, the
specifier constructs the specification corresponding to a process or a product in a for-
mal language. This activity involves a good understanding of language abstractions and
the properties of the product or process. As analyzer, the specifier demonstrates the in-
herence of desired properties in the specification. In particular, the analyzer resolves in-
consistencies and demonstrates the coherence of the specification. A specification may
be refined to include more information. Whenever a specification is refined, it is re-
quired to establish the satisfaction of the refined specification to its source. This can be
done by an informal analysis; however, within a strict formal framework, a proof is re-
quired.

In this role some staff are expected to field questions about tools, domain issues, and
sufficiency of coverage, which arise during formalization and validation. They may as-
sist users and other members of the development team in understanding the specifica-
tion document. This may be done through natural language expositions and graphical

2.2 Administrative and Technical Roles 29

illustrations to convey the meaning of formal constructs. In a typical walkthrough ses-
sion, the specification staff shall demonstrate that there exist requirements in the SRD
corresponding to every formal specification unit and vice versa. The goal of such ses-
sions is to have demonstrated to the user that the formal specification document fully
captures the requirements stated in SRD. The staff, in collaboration with other mem-
bers of the team, may develop appropriate tools for traceability and reuse of specifica-
tions.

A formal specification, however, is not a panacea. Constructing a formal specification
involves characterizing the intended correctness conditions. Missing on them, failing to
state them correctly, and stating inappropriate conditions lead to surprising situations. Thus
a specification will not, on its own, insure that no errors will be made, nor that the final
product will be error-free. Since errors in a specification will have a detrimental effect on
all future stages of software development, the specification must be analyzed to eliminate
all errors. The kinds of errors to look for in walkthroughs and other forms of analysis
include the following:

• missing, incorrect, redundant requirements,
• errors due to misuse of the specification language,
• logical errors in specifying correctness conditions,
• inappropriate inclusion of constraints in correctness conditions, and
• incorrect translation of requirements.

The role to be played here is to accumulate sufficient evidence to show that the for-
mal specification is free of these types of errors. This role, commonly known as to val-
idate, must be played with the collaboration of the end users. Ideally, the specification
staff validate the specification by executing the specification in the presence of the cus-
tomer.

Another important activity that the specification staff must undertake is to assist the test
team understand and use the specification for designing functional tests for the software
product. Since, after validation, the specification contains expected and correct functionali-
ties of the product, the test team has the necessary information for testing the final product.
The main advantage in playing out this activity is that the large amount of work involved
during a posteriori error detection is replaced by a more scientific effort spent a priori
during the construction of software.

2.2.2
Design Roles

An important role of a project staff is to be a design engineer. Design is concerned with
constructing artifacts and assembling them together to produce the intended effect of a
software product. Kapor [18] and Holloway [15] liken software designers to architects.
The rationale is that architects have the overall responsibility for constructing buildings
and engineers play a vital role in the process of construction. It is the architect who, upon
receiving the requirements for constructing a house, produces a design which ultimately

2

30 2 Specification Activities

produces a “good” building that “pleases” the client. Engineers, taking directions from
the architect, put things together by choosing components that are well tested. Similarly,
in software systems, the designer is the architect who receives the validated requirements
specification and produces a design to meet the overall needs of the user. In the house case,
the components are the building materials, while in software development they are akin to
the rooms and corridors of a house. The building materials of software development include
previously built, tested and certified, programming languages, utilities, and middleware.

Although the design of the system begins with system requirements analysis, the de-
sign activity takes shape only after the components to be used in building the system are
identified. The design activity proceeds according to project guidelines, and technical con-
siderations planned for integrating formal methods in this stage. A formal design would in-
volve several levels of refinements, starting from requirements specification. At each level,
a refinement adds more details to the specification in the preceding level. The details may
include data structuring details and/or algorithmic details. Part of refinement process is a
proof that shows the behavioral satisfaction of the refinement to its predecessor. However,
when the design is not fully formal the design team should ensure that critical components
of the design are formalized. This is done by inventing state invariants, contracts on inter-
face specifications, and other assertions on the design components, and expressing them in
the same formalism used for requirement specification. This will enable a formal validation
of the critical components in the design. However, if the chosen formalism cannot specify
all aspects of the design, then different specification formalisms may have to be mixed.
In [6], Object-Z and CSP are mixed to specify object-based system design. In [25], Z and
timed CSP are combined to specify safety-critical systems. These two hybrid specification
methods have successfully exploited the state machine semantic domains of Z and CSP. In
situations when the underlying semantic domains are different the design team will face
a difficult task in establishing semantic consistency and proving that design satisfies the
requirements.

Regardless of whether a design is fully or only partially formal, a good design is
one which can easily adapt to changes in the requirements and the environment. To-
ward achieving a good design, the design team should give strong considerations to the
misgivings of domain specialists, even if they cannot substantiate these misgivings [15].
The design team should periodically meet with clients and specification staff to confirm
changes in design caused by changes in specification. Thus, design staff play a pivotal role
in software construction—they interact with clients, specification staff, and programming
teams.

2.2.3
Implementation Roles

The term “implementation” is used in a broad sense to include code generation, code anal-
ysis, and deployment. A staff in implementation team is a programmer whose role will
vary greatly depending upon the level of formality used and tool support. In case code
generation is automated with the use of tools, as in B method, the programmer should

2.3 Exercises 31

undertake a traceability analysis to ensure that code covers the expected behaviors ex-
pressed in the design. Typically the generated code is written in some imperative lan-
guage. For example, in B method the code is written using a B language sub-assembly,
similar to an imperative programming language. In order to facilitate code generation
on any target system, either the programmer has to translate installations or translation
is done automatically to standard programming language. The programs obtained can
then be compiled and assembled on the target machine to produce the executable soft-
ware. In case the code generation is not automatic, the programmer’s task is to take the
designer’s output and write programs consistent with the detailed design. It is the pro-
grammer’s responsibility to ensure both correctness and efficiency in translating the de-
sign decisions into source code. However, it may happen that certain aspects of the de-
sign are difficult or impossible to implement. The programmer brings those design as-
pects which cannot be implemented to the attention of the design and specification staff.
The rationale for unimplementable design aspects may be due to strong constraints and/or
stringent requirements. They may traced back to the design and requirements, and recti-
fied.

The programmer and the test engineer who developed specification-based testing col-
laborate in testing programs. The outcome of testing determines whether or not a program
correctly interprets the requirements of the customer. In case of errors, the specification
team is brought in for consultation. In particular, the programmer will make changes after
the specification staff and the design team work out a new design. Model checking tools
and test case generation tools are available [9] for this purpose. Traceability and run-time
analysis are central to deployment of software. These activities exist even when formal
method is not integrated with the development process.

2.3
Exercises

1. Enumerate the essential requirements of a communication channel between two pro-
cesses. Identify safety and security properties.

2. Assume that software for Automated Teller Machine (ATM) is to be constructed fol-
lowing the process model in Fig. 2.1. Answer the following questions:

• What is the domain of application? Enumerate a few domain entities, the attributes
for each entity, and the relationship among the entities. What properties of entities
govern security? Develop a property to be verified in the software implementing the
ATM.

• Describe the environment for ATM to function. What constraints are to be imposed
by the software on the environment? What constraints the environment may impose
on the software?

• What software components should be formalized? For each formal unit state the
property to be verified in it.

2

32 2 Specification Activities

2.4
Bibliographic Notes

The factors to be considered for choosing specific tasks for formal methods application is
discussed in the NASA reports [19, 20]. These reports outline the technical and admin-
istrative considerations that must be reviewed before integrating formal methods into a
development process. It is stated in the report that for an effective application of formal
methods to a project, the team responsible for applying formal methods must be trained in
formal methods and tools. In a debate held at the Tri-Ada ’94 [26], panel discussion the
panelists argued that the expertise required to use formal methods can be gained through
education and training courses spanning a few weeks. An understanding of the activities,
skills and responsibilities associated with the roles involved in software development using
formal methods is obtained from looking at the success stories [3] as well as learning from
the failures [15].

Analysis and interpretation of formal specifications are enhanced with the help of tools.
Several tools are available as open source software [29]. Tools specific to Z, Object-Z,
VDM, and B method can be found in [9]. For Larch specifications, Guttag et al. [11] de-
scribes a syntax checker and a theorem prover. Larch Prover (LP) is a proof assistant incor-
porating several proof techniques for rewrite-rule theory. PVS [21] provides an integrated
environment, formalism and methods supported by tools, for the analysis and development
of formal specifications. Tool components include parser, type checker, browser, specifi-
cation libraries, and integrated proof checker. The early work by Dick and Faivre [7] on
black-box testing based on VDM specifications and Hierons [13] for generating test cases
from Z specifications have led to study model-based testing methods. The report [12] com-
pares many such tools from industry and academia.

Two excellent treatises on design are the book by Winograd [28], which is a collection of
articles showing the diverse perspectives of software design, and the book by Dasgupta [5],
which explores the logic and methodology of design from the computer science perspec-
tive. Holloway [15] draws lessons to software engineering from design failures in building
physical structures, such as bridges and rockets. They are

• Lesson 1: Relying heavily on theory, without adequate confirming data, is unwise.
• Lesson 2: Going well beyond existing experience is unwise.
• Lesson 3: In studying existing experience, more than just the recent past should be in-

cluded.
• Lesson 4: When safety is concerned, misgivings on the part of competent engineers

should be given strong consideration, even if the engineers cannot fully substantiate
these misgivings.

• Lesson 5: Relying heavily on data, without an explanatory theory, is unwise.

References

1. Abrial J-R (1996) The B-book: assigning programs to meanings. Cambridge University Press,
Cambridge

References 33

2. Clarke EM, Wing J (1996) Formal methods: state of the art and future directions. ACM Com-
put Surv 28(4):626–643

3. Craigen D, Gerhart S, Ralston T (1995) Industrial applications of formal methods to model,
design and analyze computer systems

4. Crow J, De Vitto BL (1996) Formalizing space shuttle software requirements. In: ACM SIG-
SOFT workshop on formal methods in software practice, San Diego, USA

5. Dasgupta S (1991) Design theory and computer science. Cambridge tracts in theoretical com-
puter science. Cambridge University Press, Cambridge

6. Derrick J, Boiten E (2002) Combining component specifications in object-Z and CSP. Form
Asp Comput, pp 111–127

7. Dick J, Faivre A (1993) Automating the generation and sequencing of test cases from model-
based specifications. In: Woodcock JCP, Larsen PG (eds) FME93: industrial-strength for-
mal methods, formal methods Europe. Lecture notes in computer science, vol 670. Springer,
Berlin

8. De Vito BL, Roberts L (1996) Using formal methods to assist in the requirements analysis
of the space shuttle GPS change request. NASA Report 4752, Prepared for Langley Research
Center

9. Formal methods web page. http://formalmethods.wikia.com/wiki/Z_notation, May 2010
10. Gordon MJC, Melham TF (eds) (1993) Introduction to HOL. Cambridge University Press,

Cambridge
11. Guttag JV, Horning JJ, Garland SJ, Jones KD, Modet A, Wing JM (1993) Larch: languages

and tools for formal specifications. Springer, Berlin
12. Hartman A AGADIS: model-based generation tools. Technical report. http://www.agedis.de/

documents/ModelBasedTestGenerationTools_cs.pdf
13. Hierons RM (1997) Testing from a Z specification. Softw Test Verif Reliab 7:19–33
14. Heninger KL et al. (1978) Software requirements for the A-7E aircraft. NRL Report 3876,

Naval Research Laboratory
15. Holloway CM (1999) From bridges and rockets: lessons for software systems. In: 17th inter-

national system safety conference, Orlando, Florida, USA, pp 598–607
16. Alloy DJ (2002) A lightweight object modeling language. ACM Trans Softw Eng Methodol,

11(2):256–290
17. Jones CB (1990) Systematic software development using VDM, 2nd edn. Prentice-Hall Inter-

national, Englewood Cliffs
18. Kapor M (1996) A software design manifesto. In: Winograd T (ed) Bringing design to soft-

ware. ACM Press, New York, pp 1–9
19. Formal methods specification and verification guidebook for software and computer systems,

vol I: Planning and technology insertion. NASA Report NASA-GB-002-95, Release 1.0, July
1995

20. Formal methods specification and analysis guidebook for the verification of software and com-
puter systems, vol II: A practitioner’s companion. NASA Report NASA-GB-001-97, Release
1.0, May 1997

21. Owre S, Rushby JM, Shankar N (1992) PVS: a prototype verification system. In: Kapur D
(ed) Proceedings of the eleventh international conference on automated deduction (CADE),
Saratoga, New York, June 1992. Lecture notes in artificial intelligence, vol 607. Springer,
Berlin, pp 748–752

22. Rumbaugh J, Blaha M, Pramerlani W, Eddy F, Lorenson W (1991) Object-oriented modeling
and design. Prentice-Hall, Englewood Cliffs

23. Smith G (2000) The object-Z specification language. Kluwer Academic, Norwell
24. Spivey JM (1988) Understanding Z, a specification language and its formal semantics. Cam-

bridge University Press, Cambridge
25. Sühl C (2000) Applying RT-Z to develop safety-critical systems. Lecture notes in computer

science, vol 1783. Springer, Berlin
26. TRI-Ada ’94 formal methods panel summary. http://shemesh.larc.nasa.gov/fm/paper-tri-ada.

html (04/16/2010)

2

34 2 Specification Activities

27. van Schouwen AJ (1990) The A-7 requirements model: re-examination of real-time systems
and an application to monitoring systems. Technical report 90-276, Department of Computing
and Information Science, Queens University, Kingston, Canada

28. Winograd T (1996) Bringing design to software. Addison Wesley, New York
29. Wheeler DA (2010) High assurance (for security or safety) and Free-Libre/Open Source Soft-

ware (FLOSS) . . . with lots on formal methods/software verification. http://www.dwheeler.
com/essays/high-assurance-floss.html (04/16/2010)

Specification Qualities 3

The process model introduced in Chap. 2 integrates the practice of formal method into all
phases of life-cycle activities. Given the current maturity of formal methods, it is reason-
able to assume that this process model is both practical and justified. Software development
activity in this process model includes the formalization of software requirements specifi-
cation, design specification, program specification, domain and environment specification,
and analysis at different stages. The goal of this chapter is to explore the quality character-
istics of these specifications that depend on the formal methods and the processes used in
creating them.

The report IEEE 830 [9] recommends a standard practice for writing software require-
ments specification. It has enumerated many characteristics that taken together assess the
quality of requirements specification. The report ISO/IEC 9126 [8], although intended as
an OO design quality model, has influenced the development of general information quality
benchmarks [10]. These information quality attributes seem to include the characteristics
enumerated in IEEE830 [9]. In addition, the approach [10] can be adapted to assess the
content of specification documents produced in the formalized life-cycle model and the
quality of formalized content. This is the focus of discussion in this chapter.

Application of a formal method to software development activities results in a formal
specification of those activities, and is used in subsequent stages of development. Thus,
specifications arise from a need and are used to fulfill that need. Writing a formal spec-
ification for a given task requires a formal specification language in which the task is
expressed. Thus the process involved in formalization is the choice of formal specification
language and abstracting the given task in it. The product of this exercise is either a model
or a theory of the task in the language. Thus, a quality seal on specification depends upon
the utility factors of the specification document from the consumer perspective, product
qualities of the model and theory expressed in the document from the system developer
point of view, and process qualities of the language from specification developer point of
view. In this three-way classification, we are assuming the performance quality to be part
of product quality in virtue of the verifiable model created for it, and manageability and
operability qualities to be absorbed by the utility factor. This chapter explores these three
quality perspectives.

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_3, © Springer-Verlag London Limited 2011

35

3

36 3 Specification Qualities

3.1
Process Quality

In this section we first discuss the distinguishing characteristics of programming and spec-
ification languages and explore the attributes for a specification language, and then define a
process quality model. Most specification languages may include only a subset of these at-
tributes. Consequently, when a formal method that has a limited repertoire of the attributes
is chosen by the specifier it may be impossible to express all the properties or behaviors of
the system in that specification language. The language may simply be too weak, or it may
not have the necessary constructs for specifying a particular feature of a particular sys-
tem. It is therefore essential that the specifier diligently chooses an appropriate language to
specify the problem on hand. If the specifier is trained in using the formal language which
has sufficiently many attributes to meet the goals of formalization, then the quality of the
process can be expected to be high.

3.1.1
Why a Programming Language Cannot Serve as a Specification Language?

At requirements specification level, the specification expresses only what is to be done and
at later stages the specifications should address the issue how to do the tasks stated earlier.
It is clear from this distinction that a specification language should have declarative, rather
than control-centric expressive power. Both specifications and programs are formal objects.
A specification and the program that it specifies portray the behavior of some phenomena;
the only difference between the portrayals is in the level of detail. Whereas a specification
describes a property through a desired effect, a program conforming to this specification
achieves the desired effect thereby demonstrating the presence of the desired property in
the final product. This subtle relationship between a specification and a program satisfying
it should be maintained during all the stages of software development; otherwise many
decisions on data type structuring and control details may be taken too early and constrain
the development process. In terms of levels of abstraction, a program is a specification of
machine execution and a specification of the program is a statement on what that program
does without giving the details how it is accomplished.

Imperative programming languages, such as C++, are control-centric; functional lan-
guages, such as LISP, are declarative, and in between lie wide-spectrum languages [3, 4].
A brief description of their level of formalism and a comparison of their roles in program-
ming and specification are given below.

Imperative Programming Languages
Imperative programming languages, such as C++, and Java, require algorithmic details,

execution sequence and data structure representations to be explicit in program descrip-
tions. The program formally states a particular solution to the problem and may even state
the format in which the solution should be delivered to the user. We can consider a pro-
gram as a model expressing the behavior of some entity—an algebraic formula, the square

3.1 Process Quality 37

root function, a banking system or an animation. Even at this level, the program may be
regarded as a behavioral specification of its execution. So, programming languages are also
specification languages at a certain level of abstraction. However, they cannot be used as
specification languages throughout the software development process, for the following
reasons:

1. Procedural programming languages do not separate functionality from implementation.
2. There is no referential transparency in imperative programming.
3. The data manipulated by a program must have a particular representation. If the repre-

sentation is changed, a different program may be required. The representation of data
has consequences for their access.

4. Both data and control spaces are deterministic. For example, the semantic interpretation
of the abstract parse tree of a program can generate a behavior, and execution sequences,
only if data and control information are complete. An analysis of the program with
partial description is impossible.

5. Even if a program is modular and parameterized, strict type conformance may prevent
the program from being extendible or reusable.

6. Over-specification is an aftermath in programming languages.

Declarative Programming Languages
A typical declarative language is LISP. LISP programs are declarative and consequently

may be regarded as specifications. Such specifications, considered as functional programs,
are executable. Historically, LISP has proved itself most useful in the task of creating
working versions (prototypes) of complex systems. The language can be learnt easily and
can be used effectively in describing complex problems and their solutions. Nondetermin-
ism, selection and recursion are expressible in LISP. Moreover, LISP provides a small
set of powerful constructs that can be combined to produce an abstract program. Such
an abstract program is a high-level model with no consideration of control, sequencing
or choice implied in an implementation. Functions written in this style have no side ef-
fects; that is, they correspond to the mathematical notion of a function—they produce
the same value whenever invoked with the same arguments. A specification in pure LISP
is easy to construct, understand and modify. It is easy to construct because of the small
number of language constructs and rules. It is easy to understand because every use of
a variable, within certain limits, yields the same value. This property, known as refer-
ential transparency, is a fundamental convention in the use of mathematical functions
and expressions. Consequently, one does not require complex data flow analysis to deter-
mine what value a particular usage of that variable represents. This provides a conducive
foundation for reasoning and verification. Another major advantage of pure LISP specifi-
cation is its declarative nature—there is no over-specification. In particular, unnecessary
sequentiality will not be expressed. This, combined with nondeterminism, facilitates the
introduction of parallelism in lower-level programs. In spite of several attractive features,
LISP cannot adequately serve as a language for specifying software systems. It lacks en-
capsulation, modularity, and extensibility, which are essential to contain design complex-
ity.

3

38 3 Specification Qualities

Wide-Spectrum Languages
A specification can be executable, if suitable control abstractions are declaratively stated

in the language. An executable specification is animated through this implementable fea-
ture. The concept of a wide-spectrum language was introduced by Bauer [3, 4] to serve
this purpose. Declarative constructs in the language are used to write specifications and
subsequent refinements toward concrete programs are obtained through binding and trans-
formation. In essence, a wide-spectrum language consists of a base language plus syn-
tactic extensions for various high-level constructs. The two-level framework is based on
a formal semantics. It is machine-representable and interpretable. Programs in the verifi-
cation system Eves [5] are specified, implemented, and proved using the wide-spectrum
language Verdi, a variant of classical set-theory and an imperative programming language.
One drawback of wide-spectrum languages is that they require many diverse language
constructs to be defined within the same language consistently. A more severe drawback is
that the language cannot forbid a specifier using control-centric features prematurely, thus
over-constraining the specification.

3.1.2
Attributes of Formal Specification Languages

From the above discussion and the discussion in Chaps. 1 and 2 on the role of specifi-
cation and specification activities, we conclude that a specification language embody the
following characteristics:

Formalism The semantic domain of the language is mathematics. Being a language for
software development, it has a well-defined syntax for presenting the specification in a
structured manner. The formal grammar of the language drives the well-defined syntactic
units. A well-defined syntactic unit can be mapped to a semantic entity in the underlying
mathematics. For example, the term x ∈ S is a syntactic unit in Z language and its cor-
responding semantic entity is a value in {true, false}. The syntactic structures make the
specification easy to read and comprehend, aid the specifier to state what needs to be stated
within a structuring, and organize the specification into structured modular units.

Abstraction The language has powerful primitives for defining and manipulating infor-
mation and data at the logical level. Logical data definition should not imply any partic-
ular data representation. The language provides the definition of objects independent of
the notions of “value” or “boundary”. It should be possible to define an object by the set
of associations through which it interacts with other objects. The language provides ab-
stract operations that create, destroy, access and relate objects. For example, the predicate
s ′ = s � 〈x〉 means that element x is added to the rear of a sequence. Thus, abstraction in
the language promotes definitional (declarative) specification.

Abstraction can be applied incrementally to any desired level of detail. The language
abstraction should allow the specification of normal behavior, error behavior, exceptions,
and failures independent of each other, and provide constructs for composing these behav-
iors.

3.1 Process Quality 39

Using abstraction we can build models as well as theories, but that depends upon the
specification language elements. A model is constructed by using mathematical structures,
such as sets, relations, and sequences. By using a structure in a model, all mathematical
operations of the structure become free for use, in the sense that the specifier does not have
to define them. The language might use the same definitional symbols from mathematics.
The advantage is that they are already defined and any one exposed to discrete mathematics
can understand the specifications. The disadvantage is that the specifier may find some of
the operations or properties as irrelevant for the application. An attempt by the user of
the specification to introduce an irrelevant operation, although mathematically sound, may
have unacceptable effect on the behavior specified.

As opposed to models, a theory builds only the properties that are expected in a system
without borrowing heavily the structures from mathematics. For most of theory building,
it is sufficient to borrow the fundamental theories, such as theory of natural numbers, the
theory of reals, and the theory of ordering from mathematics. In theory building, a theory
may be imported from a repository of theories, if there exists one. Importing theories may
require discharging proofs in the theory being built.

A most celebrated example of theory for software engineers is a theory of stacks, cap-
tured by the two equations

pop(push(s, x)) = s, top(push(s, x)) = x (3.1)

The only subtlety here is that this is a theory of infinite (sized) stacks. For stacks of finite
size, an elegant theory does not exist. In fact, theories are apt to describe infinite state
systems. A finite state system can be described by a compact model.

Modularity The language provides constructs for extending a specification through en-
richment and composition. These features allow the construction of large and complex
specifications by assembling smaller specifications; they also support modular design.
Modularity combined with incremental specifications adds more expressive power to the
language.

Nondeterminism As part of its abstraction feature, the language may provide nonde-
terministic constructs for indirect data access and unrestricted choice from a specific list
of actions. Descriptive reference for data is a nondeterministic construct in which the ref-
erence to an object is made through a list of attributes. So, nondeterminism gives more
freedom at design level.

Inference Mechanism The language allows inferring the behavior of objects in the
model using system laws and defined actions. The inference mechanism “evaluates well-
formed expressions” in the language and provides “meaning to the behavior displayed by
the system”.

Historical References The language may provide facilities for time-dependent object
interactions or action specification. This capability requires the ability to specify time, and
associate time with object operations. By suitable extension, it may be possible to describe
and analyze timed sequences of system states, and further reason about time-constrained

3

40 3 Specification Qualities

Table 3.1 Process quality
specification categories

Level of Formality Quality Vectors

1 {〈1,1, k11〉|0 < k11 ≤ 1}
{〈2,1, k21〉|0 < k21 ≤ 1}
{〈3,1, k31〉|0 < k31 ≤ 1}

2 {〈2,2, k22〉|0 < k22 ≤ 1}
{〈3,2, k32〉|0 < k32 ≤ 1}

3 {〈3,3, k33〉|0 < k33 ≤ 1}

system properties at some or all future states. Without explicit mention of time tempo-
ral, operators may exist in the language to specify temporal properties of communicating
objects.

3.1.3
A Model of Process Quality

The process quality is composed of the expertise of the specifier, the formal level chosen for
the project, and the extent to which the specification tasks are completed. In Chap. 2, three
levels of formal methods were defined. The level of formality chosen for the project is the
level of the formal specification language. The attributes of the specification language are
determined by the level of formality. The extent of coverage is the proportion of documents
formally specified at any stage, and is a consequence of the set of attributes of the language
and the expertise of the specifier. Thus, the process quality specification can be a vector
〈i, j , k〉, where i is the expertise level of the specifier, j is the level of formality, and k is the
proportion of tasks formally specified. The expert level of the specifier can vary from 0 to
3. The first constraint on the vector 〈i, j , k〉 is i ∈ {0,1,2,3}, j ∈ {1,2,3}, and 0 < k ≤ 1.

The constraint can be strengthened because the expertise level of the specifier should
at least match or exceed the formality level of the project. That is, i ≥ j is an additional
constraint on the process quality specifier. As the formality level increases, is it reasonable
to expect the coverage level to increase? This need not be the case for all projects. That is
why no constraint relating to the extent of coverage is imposed. Thus the process quality
model has six categories of specification vectors. These are shown in Table 3.1.

3.2
Product Quality and Utility

The specification document is an outcome of the specification process. Its quality is to be
assessed by investigating the extent to which the initial set of goals can be met. Assume
that the following goals were set by the specifier:

• [G1] To succinctly state that a property holds.

3.2 Product Quality and Utility 41

• [G2] To precisely describe the interface of a component.
• [G3] To contain design complexity.
• [G4] To analyze hidden behaviors.
• [G5] To demonstrate that all required behaviors are inherent in the design.
• [G6] To localize the effects of change.
• [G7] To prove that a final product meets its requirements.

The assessment procedure is a validation, whether manual or using tools, to critically ana-
lyze the specification document and determine how much of the stated goals have been met
and how well they have been met. The goal of validation process is to assess the quality of
the specification document with respect to

• conformance of the specification document (model, theory) to stated goals, and
• its level of use and usability.

3.2.1
Conformance to Stated Goals

The following steps are essential for a fair assessment of specification document qualities.

Parsing This form of analysis uncovers syntactic errors. At best it guarantees that a
specification conforms to the syntactic rules of the formal specification language.

Type Correctness Model-based specification languages and languages based on higher-
order logic have strict typing conventions. Type checking uncovers semantic anomalies and
inconsistencies. A consistent specification does not contain conflicting terms, conflicting
attributes, and contradictory expressions. This form of analysis improves the quality of the
specification document to the extent that every well-defined syntactic unit has a “value” in
the semantic domain.

Once the specification document has successfully passed the above two steps, the rest
of the analysis can focus on determining, either through inspection or using tools, the
fulfillment of the stated goals.

Sufficient Completeness Every requirement that needs to be described should have been
expressed within the confines of the specification language. Implicit assumptions must
be avoided; instead they must be stated explicitly either as axioms or constraints. The
specifications should articulate through correctness conditions the environment or context
in which input/output are to be given.

Precision The specification must use appropriate language features to precisely and ac-
curately portray the characteristics of the problem. Atomic operations, rather than complex
operations, should be the norm in specifying system functionalities, because correctness
conditions of atomic operations are simple to state and easy to verify. Composition rules
provided by the language must have been used in specifying complex operations.

3

42 3 Specification Qualities

Structuring Although there is no ordering in the specified units, it is better to organize
the specifications into many hierarchical structures. A node in a hierarchy uses or requires
the specifications of its children. This helps to eliminate undefined terms and concepts, and
improves the accessibility of the specification document.

Operational Completeness All possible behaviors, normal, errors and exceptions, must
be part of an operational specification. Interface specifications become a contract between
the user of a system and its implementer. The completeness property here is that the con-
tract tells the user everything necessary to use the module and must tell the implementer
everything necessary to implement it. A contract specification should be flexible so that at
least one implementation becomes possible. It is better to use declarative style and intro-
duce nondeterminism in specifying an operation. Every operation in the specification must
eventually lead to an implementation.

Frame Problem A specification language gives only the structuring needed to write
down what the specifier wants. Often, in some specification languages what the specifier
ignores or forgets to write has a hidden meaning. This implicit meaning has severe conse-
quences on the local behavior of the specified unit where something was ignored, but on the
behavior of the rest of the system. This is called frame problem, and must be thoroughly
investigated in analyzing specifications. As an example, consider the precondition x >

0∧y > 0 and the postcondition x′ < 10 for a function specification. If the language seman-
tics is “silent” on the scope of state variable y which is not present in the postcondition, then
it is a frame problem. If the language semantics explicitly states that every state variable
not part of a postcondition is not modified by the operation then there is no frame problem.

Animation Simulation, animation, and direct execution offer the analyzer options to un-
cover errors, and execution-time inconsistencies. If the specification language is directly
executable or can be interpreted faithfully then the set of executions should be examined
for stated properties. This might lead to either strengthening or weakening or changing
many specified constraints.

Logical Reasoning It is possible to conduct logical calculations from the specification
to ascertain whether certain properties are consequences of the requirements, and whether
requirements have been interpreted correctly in the derivation of design and programs. The-
orem proving, model checking, and proof checking are different forms of formal analysis
to detect design faults, algorithmic errors, and internal inconsistencies.

Parsing and type checking are prerequisites to other analysis steps. Table 3.2 shows a
correspondence between the stated goals and the assessment steps that achieve them.

Table 3.2 Analysis steps for stated goals

G1 G2 G3 G4 G5 G6 G7

Logical
Reasoning
(is it stated
correctly?)

Operational
Complete-
ness

Structuring,
Precision,
Sufficient
Complete-
ness

Animation,
Reasoning

Animation Frame
Problem
Analysis

Sufficient
Complete-
ness,
Logical
Reasoning

3.2 Product Quality and Utility 43

Table 3.3 Product Quality Dimensions

Dimensions Explanation

Accessibility This refers to the extent to which information in the specification
document is easily accessible or quickly retrievable for an
application. As an example, given a stimulus (permitted by a
requirement) it may be required to retrieve the specification for its
response. (Structuring)

Adaptability This refers to reuse of specification. Is it possible to apply the
information content, either in parts or whole, to different tasks? Is it
modifiable incrementally? (Precision)

Appropriate Coverage The specification may say too little, that is, it is incomplete, or it can
say too much, that is, it over-specifies (prescriptive rather than
declarative), or it can be totally be irrelevant. (Sufficient
Completeness)

Completeness This refers to the extent to which the information in the specification
document is not missing in the stated goals. (This includes both
sufficient completeness and operational completeness.)

Concise Representation The information is represented precisely and structured well. There
is no redundancy and anomaly in the representation. (Precision)

Consistent Representation There is no internal inconsistency, both in the language level and at
the logical level. (Logical Reasoning)

Domain Conformance The information in the document is credible and is fully supported
by the domain knowledge.

Correctness Is the information correct with respect to stated requirements? If the
specification is executable, does it produce the intended behavior?
(Animation, Logical Reasoning)

Interpretability Is the specification language adequately expressive for the stated
tasks? Is the information interpretable by a compiler and a program
transformation tool? (Parsing, Type Checking)

Relevance This refers to the applicability of the specification for design, or test
case generation, and/or code generation activities?

Trust Does the information include specification of non-functional
requirements such as safety, security, privacy, and reliability criteria?

Timeliness Is the information outdated or recent?

Understandability How well the information in the document can be communicated to
members of the development team?

Value Will it eliminate further errors from creeping in? Will it decrease the
cost of development?

3.2.2
Quality Dimensions and Quality Model

Specification document has two views: one as information source and another as a service.
The information in the document, developed within the framework of a project, must be
useful to subsequent stages of development in the same project. If possible it must also be

3

44 3 Specification Qualities

Table 3.4 Product quality perspective

Product-Service Quality Conformance Utility

Product Quality Soundness Useful Information

• Completeness • Appropriate Coverage

• Concise Representation • Relevance

• Correctness • Understandability

• Consistent Representation • Interpretability

Service Quality Dependable Information Usable Information

• Trust • Domain Conformance

• Timeliness • Accessibility

• Adaptability

• Value

• Interpretability

usable (reuse) in other projects that share the same domain as the original project. Both use
and usability are utility factors which are closely related to product quality. Since quality
itself has been defined as fitness for use, or the extent to which the product serves the
purposes of consumers (clients) it is appropriate to include use and usability factors along
with the conformance attributes discussed earlier in defining product quality dimensions.
Table 3.3 shows the dimensions for product quality model. The relationship between a
dimension and the conformance attributes are explicitly shown in the table.

The choice of dimensions, as in Table 3.3, and the perspective of the product-utility
quality factors shown Table 3.4 are suggested by the work of Khan et al. [10] on infor-
mation quality model. The quality dimensions that are not directly related to conformance
attributes have a relationship to service quality attributes. All factors that depend only
upon the conformance attributes, otherwise are independent of how the information will
be used, are divided into soundness and dependability quadrants. The soundness quadrant
lists factors that assess the soundness of information in the specification product. The de-
pendability quadrant is to assess the non-functional aspects associated with the information
in the specification document. The factors that determine how the product will be used are
split into usefulness and usability quadrants. Usability refers to the way the document may
be used in general contexts, namely reuse of the product, whereas usefulness is restricted
to the framework that mandated the specification task.

3.3
Exercises

1. Apply the attributes of a specification language to UML and document your experience.
2. Is UML a wide-spectrum language? Justify your answer.
3. Investigate the extent to which the analysis steps stated in Table 3.2 can be done for a

UML specification that you have done.

3.4 Bibliographic Notes 45

4. Evaluate the quality of UML diagrams (use cases, class structure, statechart etc.) using
the dimensions enumerated in Table 3.3.

5. Which subset of Java can be used as a specification language? Illustrate with examples.

3.4
Bibliographic Notes

There is not much work reported in assessing formal specification qualities. In [6], there is
a brief discussion on the quality metrics to assess the formalization process undertaken for
“requirements analysis of the space shuttle GPS change request”. A change request (CR)
will add new capabilities to the shuttle, based on Global Positioning System (GPS).

The classic work [2] on determining the goals of specification languages is the basis for
the exposition of the attributes of specification languages in this chapter. The classification
of process, product, utility qualities in the assessment of specification quality is largely
suggested by the work of Khan et al. [10]. The book by Hauser [7] is quite helpful in
formulating precisely the assessment factors of specifications. One of the earliest works on
wide-spectrum languages for software development is that of Bauer [3, 4]. A similar work
is the Program Development System (PDS) [11], based on EL1 (Extensible Language 1).
The major difference between these works is their design principle—PDS provides an
integrated prototyping environment, and Bauer’s language leads to an implementation.

Several notions on (in)completeness in specifications are examined in [1]. This paper
gives a classification of incompleteness based on the potential sources of errors in specifi-
cations. Wing [12] is a source of useful tips for the specifiers, analyzers, and teachers.

References

1. Alagar VS, Kourkopoulos D (1994) (In)completeness in specifications. Inf Softw Technol
36(6):331–342

2. Balzer R, Goldman N (1981) Principles of good software specification and their implications
for specification languages. In: National computer conference, pp 393–400

3. Bauer FL (1976) Programming as an evolutionary process. In: Proceedings of the second
international conference on software engineering, San Francisco, CA, pp 223–234

4. Bauer FL, Bauer M, Partsch P, Pepper P (1981) Report on a wide-spectrum language for
program specification and development. Technical Report TUM-18104, Technical University,
Munich, May 1981

5. Craigen D (1990) The Verdi reference manual. Technical Report TR-90-S429-09, Odyssey
Research Associates, February 1990

6. De Vito BL, Roberts L (1996) Using formal methods to assist in the requirements analysis
of the space shuttle GPS change request. NASA Report 4752, Prepared for Langley Research
Center

7. Hausen HL (2007) Quality specification, testing and certification of bespoken, open source and
commercial off-the-shelf systems. In: IFIP international federation for information processing.
Springer, Boston

3

46 3 Specification Qualities

8. ISO (1991) ISO/IEC:9126 information technology-software product evaluation-quality char-
acteristics and guidelines for their use. International Organization for Standardization (ISO)

9. IEEE (1998) IEEE recommended practice for software requirements specifications. IEEE Std
830-1998 (revision of IEEE Std 830-1993)

10. Kahn BK, Strong DM, Wang RY (2002) Information quality benchmarks: product and service
performance. Commun ACM 45(4):184–192

11. Klausner A, Konchan TE (1980) Rapid prototyping and requirements specification using PDS.
In: Gehani N, McGettrick AD (eds) Software specification techniques. Addison Wesley, Read-
ing

12. Wing J (1995) Hints to specifiers. Manuscript CMU-Cs-95-118R

Abstraction 4

The concept of abstraction is imprecise. It cannot possibly be defined, but the notion of
abstraction can be explained, illustrated, modeled, and understood. We begin this chapter
by discussing different kinds of abstractions that have been proposed in mathematics and
computer science. Next, we bring out the necessity of abstraction for software engineering
and suggest different kinds of abstractions to learn for formalizing software development
activities.

4.1
What Is Abstraction?

Some of the common forms for communicating our thoughts are speech, text and graphics.
Of course there are other means of communications such as a sign language. Thoughts
are abstract and exist in a subtle abstract medium. Spoken words, textual writings, and
drawings are concrete expressions of thoughts. Abstraction is inherent to human nature,
although bringing it to the right level of expression is hard. The issues involved in de-
veloping an abstraction can be summarized as follows. One thought can be described by
different sets of words, and different textual writings denoting the same object may have
originated from a single thought. In other words, abstraction is a one-to-many map. The
medium in which an abstract object is specified has more constraints. For example, the syn-
tax and semantics of the language used to describe the object impose certain constraints on
the description. Consequently, representational details are ignored in abstractions. Finally,
an abstraction cannot be fully understood by an observer unless the context in which the
object originates is properly depicted. That is, abstraction implies generality and exists in
an idealized mental state of the creator of the abstraction.

The need to create abstraction has existed for a long time. Abstraction has enabled
artists, philosophers, mathematicians and scientists to capture essential features pervading
several phenomena in abstract concepts. In modern times, engineers and business experts
have realized that abstraction is a vital tool in coping with the design of large complex
systems. The principal advantages of abstraction in software engineering are the attainment

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_4, © Springer-Verlag London Limited 2011

47

4

48 4 Abstraction

of simplicity, generality, and precision in the software development process and possibly
completeness and correctness in the resulting product.

4.2
Abstractions in Mathematics

Abstractions by themselves have very little practical value until they are contextually re-
lated to real-world entities. In mathematics, abstract notations and concepts are invented
to generalize and unify more concrete concepts. For example, in “abstract algebra” all the
unifying properties of real numbers, complex numbers, and rational numbers are studied
under the banner “fields”; the abstract generalization of algebraic properties of integers is
studied under the title “rings”. These are idealized abstractions. Real numbers correspond
to mental idealizations of a mathematician; there is no tangible manifestation of a real
number. The essential property of real numbers that “in between any two real numbers
there is a real number” cannot realistically hold for angles, distances and time intervals
that we measure in practice.

As opposed to idealized abstractions, there are mathematical abstractions that provide
precision and expressivity to scientific and engineering descriptions. Concepts such as
point, line and natural numbers are abstractions of the physical concepts “atom”, “light
rays” and “age”. Vectors and tensors are abstractions used to deal with force and elasticity
in engineering. These kinds of abstraction serve as mathematical models for certain aspects
of real-world phenomena.

4.3
Fundamental Abstractions in Computing

The three most fundamental abstract concepts in computing are algorithm, Turing machine
and computability. An algorithm is an idealization of a systematic mechanical process. The
concept can be traced back to as far as the time of Euclid (300BC). It is remarkable that
such a mechanical procedure has been conceptualized several centuries before computers
were invented. In spite of its antiquity, the concept of algorithm came to be understood
in a more universal fashion only after Alan Turing (1937) described this computational
abstraction with the Turing machine.

A Turing machine is a piece of abstract mathematics and does not bear any resemblance
to a physical machine. This abstract machine is obtained by ignoring all structural and
physical properties of computing devices and focusing only on the common useful func-
tionalities of these devices. Turing invented this abstraction to solve Hilbert’s tenth problem
characterized by the question “does there exist a general mechanical procedure which can
solve any well-defined mathematical problem stated in a suitable format?”. Turing gave a
specification for stating the components of abstract machines and the rules governing the
operations that can be performed on the machines corresponding to the stated problems.

4.3 Fundamental Abstractions in Computing 49

Following the specification for any specific problem, the Turing machine for mechanically
solving that problem can be realized. For example, Turing machines for performing arith-
metic operations, symbolic comparisons, or any other complicated task can be constructed
from a Turing specification, provided that these tasks can be described within the Turing
abstraction framework. By composing such constructions, Turing specified a universal ma-
chine, which can simulate the behavior of any particular Turing machine. Finally, Turing
showed that there is no mechanical procedure for deciding whether or not the universal
Turing machine stops. The conclusion arrived at is that there can be no one algorithm ap-
plicable to all problems, nor for all Turing machines and for all their input. Thus, Turing
concluded that Hilbert’s tenth problem has no solution. This conclusion has a profound
impact on related mathematical issues.

From Turing’s abstraction principle, computer scientists and software engineers can
learn the following essential benefits for software development.

1. Abstraction leads to an insight for a family of related problems and a class of algorithms;
2. abstraction is the basis for specification; and
3. simple solutions can be composed to obtain a result of far-reaching consequences.

The specification of a Turing machine uses terms such as “tape” and “internal states” that
seem to correspond to the magnetic tape and the states of a real computer. This analogy
helps us define a sequence of abstract machines (m0,m1, . . . ,mk). Each abstract machine
consists, as in the case of Turing machines, of a set of states and transformations for effect-
ing state changes. In a programming language, the state is the set of program variables and
the transformations are the statements affecting the states. Thus, Turing machines are not
only abstract machines but also serve as abstract models of programming languages and
operational models of the algorithm concept.

The concepts abstract machine, abstract program, abstract programming language,
specification and algorithm are all related to one another. Moreover, the concept of com-
putability formulated by the logician Alonzo Church [1] is also related to the above con-
cepts. The notion of “mechanical procedure” is fully abstracted in Church’s thesis. The
computability notion is a powerful functional and data abstraction achievable through
“lambda calculus”. Using this notion, abstract programs can be written as functions. The
effect of these functions are derived from the rules of lambda calculus.

To capture computational behavior in a layer unconstrained by considerations of a ma-
chine architecture, Church considered a universe of objects called functions and provided
a syntax for writing them. The arguments of functions are themselves functions. That is,
functions and data are treated with no distinction. There exists a set of rewriting rules for
manipulating function applications. Thus f = gh implies that the result of the function
g applied to the function h is another function f . This extends to self-application of a
function. So, the lambda-calculus approach demonstrates the effect of recursion without
explicitly writing recursive equations.

The Greek letter λ (lambda) is used to denote the abstraction of a function from the
argument used to evaluate it. The letter x immediately following λ is a dummy variable
in the expression λx · f (x) and lambda binds this variable with its occurrences within
its scope. That is, x is a place-holder into which any other entity (e.g. function) may be
substituted.

4

50 4 Abstraction

Thus the notation λx ·f (x) abstracts the function f , which when acting on an argument
a in the domain of f yields f (a). That is,

(λx · f (x))(a) = f (a),

and consequently λx ·f (x) = f . This captures the function for a range of values of the da-
tum x; in Church’s theory, the datum is viewed as a function. Similarly, λf ·f (x) abstracts
the datum x and allows the set of functions to vary. Thus lambda expressions provide both
function and data abstraction. For the expression f (x), the lambda binding serves both
syntactic and semantic roles. It states what is to remain fixed and what is allowed to vary.
Because both syntax and semantics are succinctly conveyed, the lambda notation is formal
and function application becomes a mechanical procedure.

The notation λx · f (x) gives rise to abstraction by parameterization at the program
level. For example, the expression λx · (x3) abstracts the “cubing” function for which
there is no standard mathematical notation. However, if we set C = λx · (x3) then C(a) =
a3,C(a + 2) = (a + 2)3 = a3 + 6a2 + 12a + 8. So we can interpret C to be the body of a
procedure which evaluates the cube of its argument and x is its formal parameter. We can
move toward more concrete notions by requiring the values of x to be integers and write
the cubing function for integers by the lambda expression λx: integer ·(x3).

As remarked earlier, the power of lambda calculus lies in its ability to treat all objects
as functions. A function can be composed with itself in a nested function. For example,
the expression λf · λx · f (f (x)) abstracts x first and then abstracts f . As a consequence,
it denotes a function which when applied to arguments g and a produces g(g(a)). Let us
call this function TWO; that is,

TWO = λf · λx · f (f (x)),

(TWO(g))(a) = λx · g(g(x))(a)

= g(g(a)).

If g = C, then (TWO(C))(a) = C(C(a)) = C(a3) = (a3)3 = a9.
Using these abstractions, Church showed that every mechanical operation done in a

Turing machine can also be done by using a suitable lambda expression. Hence Church’s
notion of computability, which is functional, is the same as that of Turing’s mechanical
operation, which is operational. This establishes a fundamental relationship between ma-
chines and functions.

4.4
Abstractions for Software Construction

The abstraction process contributes to almost all the activities of software life-cycle, as
discussed in Chap. 2. Because of the heterogeneous nature of objects involved in software
development process, no uniform method of abstraction can be practiced at all develop-
ment stages. Jackson’s remark [2] “Abstractions are inverses of interpretations and pro-
vide a bridge between the informal domain and the abstract machine. The bridge must be
carefully sited and chosen as narrow as possible.” is central to the requirements genera-
tion stage from a domain model. In general, the kinds of abstractions we need for software

4.4 Abstractions for Software Construction 51

development include problem abstraction, domain abstraction, environmental abstraction,
interaction abstraction, data abstraction, control abstraction, process abstraction, com-
munication abstraction, and temporal abstraction.

4.4.1
Problem Abstractions

Albert Einstein once said “If I had one hour to save the world I would spend the first 55
minutes in defining the problem.” Problem definition should be precise, state the input, the
constraints, and the output desired. Inventing models to represent real-world problems, and
inventing efficient algorithms as part of models are key to problem abstraction. A model,
usually a mathematical model, is a substitute for the real world. The model will have the
“input information”, and will have to be associated with “an information processor” to
get “an output of expected results”. As an example, graphs are appropriate models for
problems in network, and communication domains. Input information and constraints in
the problem will define the graph structure. Graph algorithms are processors and the result
from the processor is the output to the problem. As an example of graph models consider
“animals containment problem”: the locations of n animals are given and it is required
to construct a fence around these locations such that the cost of fencing is a minimum.
The locations are input, and are abstracted as points in a plane. A fence is abstracted as
a polygon in the plane. The constraint is that every point must be in the interior of the
polygon, which translates to the requirement that the line segment joining any two points
must be entirely within the polygonal boundary. The processor for finding the solution
is an algorithm which constructs this polygon, called convex hull. It is necessary that the
algorithm constructs a minimum convex hull, in which the perimeter of the polygon is the
least possible. The output is the sequence of vertices of the polygon.

4.4.2
Domain Abstraction

Often a family of problems exist in a domain and a software solution for each one of
them may be required. The problems in a domain are often related, sharing domain objects
and their characteristics. Analyzing the domain, identifying its concepts, entities and their
relationship, and understanding the critical properties of the domain are essential steps
before extracting the requirements for a specific application in the domain.

Figure 4.1 shows the steps and artifacts in modeling a domain. The issues to be studied
in domain analysis include:

• What entities and which properties of the entities are relevant for the specific applica-
tion?

• How to abstract a chosen entity and its properties?
• What aspects cannot be abstracted and should be left to expert interpretation?

4

52 4 Abstraction

Fig. 4.1 Domain modeling

The result of domain analysis is a domain model, in which objects that may be shared by
different applications within a domain are represented. The relationship of objects within
each application, the boundaries between applications, and object semantics across bound-
aries are part of the domain model. From the domain model a domain architecture is de-
veloped. This is a high-level hierarchical description of different applications. One branch
of this hierarchy is a specific application. Separating that branch and adding further de-
tails to it, one gets the application architecture, which in turn will lead to the concepts
of domain components. Both functional and nonfunctional requirements gathered during
domain analysis and classified in the application architecture are formally specified in do-
main components. Important types of nonfunctional requirements concern safety, security,
timeliness, and reliability. Thus the domain model is the knowledge about the intended
applications. We briefly explain these aspects through an example from Mohammad [3].

The example deals with the domain of automotive industry which will design, man-
ufacture, and market motor vehicles. The domain model of the automotive industry will
provide the domain description for design, manufacturing, and marketing. In the design of
a car, many control systems such as cruise control, stability control, anti-lock braking, and
fingerprint-based security may exist. As part of design description, the domain model will
include descriptions for these control systems, the interaction (interference) among these
systems, and nonfunctional (in particular criticality properties) aspects of the constituents
of each system. In constructing software for one specific application, the domain model
of that specific application becomes the feeder for requirements and design necessary for
constructing that software. Such an application domain specific knowledge is abstracted
through a content theory, known as ontology.

From the list of applications cited above for car domain, the ontology for cruise control
application from Mohammad [4] is chosen for illustration in Fig. 4.2. The entity chosen
for this example is the controller. The controller contains individual requirements instan-
tiated from the functional and nonfunctional concepts. Relations between individuals are
represented by properties. Two kinds of properties exist in the model: has-property and
request-property. The controller has six functionalities: enable, disable, resume, set speed,
accelerate, and decelerate. The quality attributes and constraints of these functionalities
are given by a set of nonfunctional constraints. For example, there is a safety constraint
that states “the cruise control is enabled only if the speed limit is between 30 mph and
90 mph”. The request-property relation relates an individual of type entity to an individual

4.4 Abstractions for Software Construction 53

Fig. 4.2 Car ontology example focusing on the cruise control system

of type functional to indicate that the former is requesting the function provided by the
latter.

The chosen abstraction of the domain results in one view of the domain, which will
characterize the quality of software artifacts in subsequent stages of software construction.
The view, as Jackson [2] calls it “chosen as narrow as possible”, limits the information
available in succeeding stages of the software development process. The critical conse-
quence of this choice is a form of incompleteness—that is, the system would not be able to
provide services on aspects that have not been included in this view.

4.4.3
Environmental Abstraction

Systems operate in some environment and in order to serve the clients in the environment
systems must make assumptions about the environment. Often these assumptions may not

4

54 4 Abstraction

be stated correctly, some assumptions might have been ignored or missed, and not all as-
sumptions may be known for an environment. A proof of correctness of the system in-
evitably depends upon the complete and correct statement of environmental assumptions.
They must be stated formally in order that a formal proof of the system may be attempted.

For many systems, such as online banking and social security, the authentication of an
individual is a must. The identification abstraction in secure critical applications may be
based upon the information released by certified authorities. For example, in accessing
tax files online, the identification required will be social insurance number, and for bor-
der petrol and immigration, the identity will be passport and visa information. In several
other applications, the identification abstraction for validation of the individual should be
based on a set of attributes of the individual, and should not require information such as
social insurance number or passport number which the user will not reveal. There are other
aspects of security, such as confidentiality and integrity of data that should be abstracted.
We need to find abstractions of the environmental objects so that secure communication
based on cryptographic transformations can be set up between the system and the environ-
ment. Privacy of the client in the environment and timeliness of response demanded by the
environment can be abstracted in first order logic.

An assumption, expressed in natural language, is a policy. Logic is a medium to formal-
ize policies. Formalized policies can be transferred to become system’s internal constraints.
However, the chosen logical framework may not have constructs to express all policies. As
an example, consider the two policies “P1: a user may receive the response only if the user
plays a role r”, and “P2: the system should respond within a maximum delay of 5 units
of time from the instant the stimulus is received from the environment”. Suppose the use
of the word “may” is interpreted as “the relevant item is optional”, then it is not possible
to state the policy P1 in standard logic. Similarly, if the word “should” is interpreted to
mean that under some exceptional circumstances the relevant item can be ignored, then
the policy P2 cannot be stated in standard logic. It is essential to agree upon some natural
language semantics so that policies can be interpreted without ambiguity and meaningful
logical constraints can be written down.

Certain assumptions about the environment cannot be formalized. These include poli-
cies involving terms like awareness, belief, and honest. There is nothing gained by invent-
ing predicates such believes(honest(A),aware(B, valid(x))) to mean “A is honest, A be-
lieves that B is aware that x is valid”. This kind of formalism does not read very different
from the natural language and is hard to be transferred into constraints internal to the sys-
tem.

4.4.4
System Abstractions

Abstraction at the requirements and design specification is suggested by the specification
language of the chosen formal method. Data and function abstractions are ingrained in
specification languages such as Z and VDM. These languages provide a means of ab-
stracting observable state entities and specifying the operations to access or modify them.

4.5 Exercises 55

Control abstraction necessary in these operations are abstracted through declarative con-
structs. Many specification languages provide notations to achieve operational complete-
ness and enable incremental construction. The schema calculus feature in Z and Larch’s
signal clause can abstract exceptions and error situations. Refinement is a method to add
more representational details to an abstraction. Schema refinements lead to parameterized
procedures in implementation.

The state of the system is an abstract part of the observable behavior of the system.
A state is transformed by the performance of an action. State transition rules are action
abstractions. Each transition rule specifies the behavior of the system either with respect
to an internal event or with respect to an environmental event. The overall behavior of the
system is understood by following the sequence of transitions. Such a sequence is called a
thread of control.

Process abstraction describes what an abstract machine does and not how it works.
A process is an abstraction of a single thread of control. Specification languages such as
Z, VDM, and B model sequential computations. That is, every computation is a single
thread of control. Control abstractions must be included to explain the relevant flow of
information. Control constructs can be abstracted in two ways:

1. The familiar programming language control constructs (such as for and if then else) are
declaratively cast over arbitrary data types. For example, the construct “∀ x ∈ S ∧ P(x)

• do A” defines the action A for those elements in the set S satisfying a predicate P .
The type and ordering are not of concern here.

2. New constructs can be introduced and their semantics defined using the specification
language constructs; however, their implementation details are postponed to later stages.

The main difference between a process abstraction and a data abstraction is that the
former is active whereas the latter is passive. All operations in a data abstraction can be
passively accessed. However, process abstraction controls when or where an operation can
be accessed. Both data and process abstractions require that access be made only through
explicit interfaces. The interface specification of an abstraction describes the unchanging
aspects of that abstraction.

Abstraction is also an invaluable tool for program specification, in which algorithmic
and implementation-level data structures and controls need to be specified. A suitable
choice of notation for algorithm specification is a combination of data abstraction, control
abstraction, function abstraction and elements of logic. An implementation specification,
often termed as pseudo code, can be written in an implementation language without strictly
following the syntactic rules of the language. When the missing syntactic details and the
input/output functions are inserted, the implementation specification becomes the source
code in the chosen language.

4.5
Exercises

1. Give definitions using lambda abstraction for the following functions:

4

56 4 Abstraction

(a) one third of cubing;
(b) THREE, which takes a function f as an argument and produces a function which

applies three times to itself;
(c) addition, multiplication, and raising to power n;
(d) composition of functions;
(e) the characteristic function Ψ , which associates for every subset A of X the predicate

whose value is true over A and false otherwise.
2. Provide control abstraction for iterators of a binary tree.
3. Give ontologies, as in Fig. 4.2, for a cooling-heating system and an anti-lock braking

system in the car domain. State the criticality properties of these two systems.

4.6
Bibliographic Notes

Abstraction for different stages of software development activity is discussed by Zim-
mer [10]. An account of abstraction process for software engineers in setting up the
relationship among specification, application, and program is given by Turski and
Maibaum [9]. Abstraction is described by Jackson [2] as a link between a description and
the phenomena it describes. It should help the developer to look inward at the descriptions
from the application domains and justify that the descriptions are faithful.

Domain analysis and modeling requires inventing abstractions that are appropriate for
the domain of interest. Mohammad [3, 4] has given a rigorous approach to domain mod-
eling. The approach constructs an ontology template, and uses it to formally derive com-
ponents. The Protege tool [7] can be used to automate the process of generating OWL
language [5] specification for the ontology. Since the ontology includes criticality proper-
ties of the domain of application, the components derived from the ontology inherit those
domain-specific nonfunctional properties. That is, the “link”, as described by Jackson [2],
is strongly founded in the formal methodology of Mohammad [3, 4].

An excellent account of Turing machine and Church’s lambda-calculus abstractions
can be found in Penrose [6]. For an understanding of the seminal works of Turing [8], and
Church [1], the reader can refer to any text book on Theory of Computation or Formal
Languages.

References

1. Church A (1941) The calculi of lambda-conversion. In: Annals of mathematical studies, Cam-
bridge, Mass

2. M. Jackson, Description is our business. Invited talk. In: VDM ’91 Formal Software Develop-
ment Methods; published as Prehn S, Toetenel WJ (eds) (1991) In: Lecture notes in computer
science, vol 551, Springer, Noordwijkerhout

3. Mohammad M (2009) A formal component-based software engineering approach for devel-
oping trustworthy systems. PhD thesis, Department of Computer Science and Software Engi-
neering, Concordia University, Montreal, Canada

References 57

4. Mohaamad M, Alagar V (2010) A component-based development process for trustworthy
systems. J Softw Maint Evol, Res Pract, 1–20

5. Web ontology language. http://www.w3.org/2004/OWL/
6. Penrose R (1989) The emperor’s new mind. Oxford University Press, London
7. Stanford University (2009) Protege. Stanford University/University of Manchester, Stan-

ford/Manchester. Available at: http://protege.stanford.edu
8. Turing A (1937) On computable numbers with an application to Entscheidungsproblem. Proc

Lond Math Soc (ser 2), 42:230–265
9. Turski WM, Maibaum T (1987) The specification of computer programs. Addison-Wesley,

Reading
10. Zimmer JA (1985) Abstraction for programmers. McGraw-Hill, New York

Part II
Formalism Fundamentals

The term “formal method” refers to a package of a formal language, a formal development
method, and tools to practice the formalism enshrined in the language and the method.
In this part of the book a brief exposition to formalism is given, and it is followed by
a discussion of the formal notation automata and its extensions. A broad classification
of formal methods with a summary of tools available to practice them are included. The
learning outcomes from this module are the following:

• formal systems, definition and examples
• automata, fundamental abstract machines
• extensions to automata
• examples of software models
• property-oriented vs. model-based specification languages

Formal Systems 5

Scientific experiments are of two kinds: (i) processes undertaken to discover things not
yet known, (E1); and, (ii) processes undertaken to demonstrate things that are known,
(E2). Scientific properties that have been observed will hold whenever the experiments
are repeated with the same specifications, and under the same conditions. The results are
independent of the scale on which the experiments are performed. Demonstrating the prop-
erties of a software system is analogous to conducting experiments of type E2. This can
be done on a small scale, while establishing the properties of the software system through
experiments on a reduced model of the system. However, the software development pro-
cess is analogous to conducting experiments of type E1. This cannot be done on a small
scale, or by employing a reduced model of the system. It is almost impossible to establish
all the properties of a software system through the reduced model. It is therefore essential
that software engineers get a direct exposure of the full-scale development process. On the
other hand, a direct exposure of the full-scale development process may not be sufficient
to reveal hidden properties of the system. A mid-way alternative is to adopt a certain de-
gree of formality in software development. The motivation to espouse formal systems is
driven by the quest for a foundation that is theoretically sound. A framework grounded
on this foundation would contain the size and structural complexity of the system, pro-
vide a precise and unequivocal notation for specifying software components, and support
a rigorous analysis of the relevant system properties. These observations are confirmed by
the successful integration of formal methods in the development of large complex systems
[3, 12].

A formal system consists of a formal language and a deductive system. The language
may be introduced either informally or using a metalanguage. The metalanguage defines
grammatical rules for formulating syntactically legal terms out of the symbols introduced
in the formal language. The semantics of the language maps each syntactically legal term
to a value in the chosen semantic domain. The language includes an “assertion part”, usu-
ally some form of predicate logic. Assertions are used to write down precisely the behavior
of the system under specification. Both syntax and semantics play a crucial role in the in-
terpretation of assertions. A deductive system is part of the formalism. It is a machinery for
conducting inferences in the construction of proofs from logical assertions. A sound deduc-
tive approach must include only correct representations, and correct mathematical reason-

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_5, © Springer-Verlag London Limited 2011

61

5

62 5 Formal Systems

ing. Any slight deviation from the syntax and semantics may lead to paradoxical assertions.
This must be avoided in the formal system; otherwise it will lead to self-contradictory con-
clusions in the deductive process. The challenge is to build formal systems in which syntax,
semantics, and deductive mechanism do not allow contradictions to arise.

This chapter outlines the essential characteristics of a formal system. After a brief re-
view of some of the formal systems studied in mathematics, science, and engineering, we
discuss the components and properties of formal systems.

5.1
Peano’s Axiomatization of Naturals—Formalization in Mathematics

Recall that abstraction “ignores details” and “generalizes” the domain being studied. With
generalization, abstraction eliminates representational details; for example, Peano’s ax-
ioms generalize natural numbers. The formal system of Peano [9], as stated below, uses set
theory as the formal language, and logical axioms as the basis of inference.

Example 1 From the general point of view, natural numbers are the counting numbers.
Our experience tells us that the set of natural numbers is infinite, and that for every natu-
ral number there is a unique next element. These observations are generalized by Peano’s
axioms which postulate the existence of a set P together with the map succ : P → P sat-
isfying the following axioms:

A1 (axiom of infinity) The map succ is injective but not surjective. There is a bijec-
tion between P and P ′, where P ′ = {y|y = succ(x), x ∈ P }.

A2 (axiom of induction) If S ⊆ P ,S �⊂ P ′ and S ′ ⊂ S, then S = P , where S′ =
{y|y = succ(x), x ∈ S}.

To understand the meaning of these axioms, one needs to invoke the semantics of terms
such as injective, surjective and subset from the language of set theory and derive conclu-
sions. There are four characteristics revealed in axiom A1:

1. P cannot be the empty set, because the empty set has no proper subsets.
2. An injective map from a finite set X to itself is also surjective. So, P cannot be finite.
3. Each element x ∈ P is uniquely determined by the image succ(x), since succ is injec-

tive.
4. P − P ′ is nonempty, for the map succ is not surjective.

The following facts can be derived from axiom A2:

1. Since S′ ⊂ S, S cannot be finite.
2. Since S �⊂ P ′, S contains an initial segment of P .
3. S has a least element.
4. If x ∈ S, the integer succ(x) also lies in S. The conclusion is that S must be all of P .

�

Mathematical formalisms can be imported into a formal method. The consequence is
that the axioms of the mathematical formalism will constrain the specifications.

5.2 Model and Theory 63

5.2
Model and Theory

One of the roles of abstraction, as discussed in Chap. 4, is to produce mathematical models
and theories of the objects of concern. The strength of models and theories depend on the
language used to build them. In this section, we compare the models and theories studied in
Science, and Engineering. In Natural Science, Physical Science, Engineering, and Social
Sciences, formal models are built by ignoring irrelevant details.

5.2.1
Formalization in Engineering

The foundation for building theories in Engineering is Applied Mathematics. For example,
a mechanical engineer studies fluid dynamics using Navier–Stokes equation relating the
velocity, density, pressure and the viscosity of a fluid. The formal representation of their
relation is a partial differential equation and is the model of the fluid flow. This model is suf-
ficient to understand the properties of fluid flow. However, the differential equation being
non-linear is difficult to solve even with the use of powerful computers. Super-computers
are being used as dedicated processors to analyze, understand and predict the behavior
of fluid motion modeled by this equation. This is an example where the validation of a
sound model may be extremely difficult. The predictive power of the model is constrained
by an incomplete knowledge of the parameters of fluid flow and the limited computing
power.

5.2.2
Formalization in Science

Scientists start their experiments by creating a formal representation of the domain. The
representation includes a description of the domain objects and a rule-based discussion of
the observed properties and behavior of domain objects. The descriptive part is the model of
the domain and the rule-based discussion part represents the theory for the domain model.
Informally, the theory of a model is a set of statements that can be made about the modeled
domain. In practice, the set of all facts may be too large to enumerate. Consequently, only a
subset of the facts is explicitly stated in the theory; the rest can be derived by exercising the
rules underlying the model. Confidence in the model grows as theory predictions coincide
with observed facts. Whenever a new observation contradicts the theory, both the theory
and the model need to be modified or abandoned in favor of new ones.

An ancient model of the universe due to Ptolemy considered the Earth as stationary
with the Sun, the Moon, the planets and the stars moving in circular orbits around the
Earth. The theory of this model did not match the observed positions of the planets. The

5

64 5 Formal Systems

Ptolemic model was then replaced by the Copernicus model in which the Sun was consid-
ered stationary, and the Earth and the planets moved around the Sun in circular orbits. Sub-
sequently, Kepler modified the theory of Copernicus by postulating that the Earth and the
planets moved in elliptic orbits around the Sun. The theoretical predictions of this revised
model closely matched the celestial observations. Newton’s laws of motion and theory of
gravity generalized the previous predictive schemes. The axioms of Newton’s theory of
gravity were verified through experiments on the dynamics of terrestrial bodies, as well as
through the observed outcomes in celestial mechanics. Other theories, such as Einstein’s
theory of relativity, accurately predicted the outcome of experiments well before the ex-
periments became feasible. This evolutionary formalization process shows that scientific
theories are acceptable only if they are found to be sound and free of contradictions.

Models in Social Sciences and Economics may also be formal, although they may lack
accurate predictive power because of approximate modeling and incomplete knowledge.
A naive solution is to exhaustively capture all the features of the modeled objects. Such a
model goes against the principles of abstraction and defeats the purpose of theory build-
ing; the theory may even include contradictions. Hence, one has to compromise between
the simplicity of the model on one hand, wherein only essential objects are modeled and
essential axioms are stated, and the robustness of the model on the other hand, wherein the
detailed features of the conceptual domain are captured.

5.2.3
Formalization Process in Software Engineering

The problem description, the specification of domain objects and their interdependence,
and the program satisfying the specification represent models at different levels of abstrac-
tion. There is an underlying relationship among the models: A program characterizes how a
solution to the given problem is arrived at. The specification is a higher level representation
of the program it specifies. Representational and control details included in the program
are not described by the specification. The description of a problem is part of the model
describing the solution, it is integrated in the specification layer; that is, the specification
layer describes both the model and the theory underlying the problem and its solution.

The specification thus serves the same purpose as a physicist’s or an engineer’s model.
Therefore, a framework for building models and theories for software systems must be
formal. The adequacy of the constructed model and theory must be established by showing
that every intended behavior implied in the requirements is captured by the theory. Hence,
in software engineering, formalization is a multi-step and repetitive activity:

1. Choose a formal framework within which specifications are to be built.
2. Construct a specification within the constraints of the syntax and semantics of the spec-

ification language.
3. Validate the specification against the requirements it is supposed to capture. If the in-

tended properties are not consequent from the theory, the specification is modified, and
the validation process is repeated until all the properties can be inferred from the spec-
ification. If a property cannot be deduced from the specification, step 2 is repeated.

5.3 Components of a Formal System 65

If a requirement or property cannot be captured by the model, then the formalism is
inadequate. In such a case, we go back to step 1 to choose another formalism.

5.3
Components of a Formal System

In this section the components of a formal system are explained with examples. The dis-
cussion is not specific to any formal language; rather it is to motivate the purpose behind
the components.

5.3.1
Syntax

The syntax of a formal language is defined by a set of rules in a syntactic metalanguage.
The set of rules, called grammar, depicts how basic objects, called alphabet, and constructs
of the language, called sentences, are resolved and how more complex expressions, called
well-formed formulas, may be constructed.

We use the standardized BNF [1, 8] convention for metalanguage notation. An alpha-
bet is specified by writing the symbols within curly brackets {. . .}, separated by commas.
A symbol can be a character, or glyph, or mark. A symbol is uninterpreted, in that it has no
meaning in itself. Letters from various alphabets, digits, and special characters are often
used as symbols. If an alphabet is clear from the context, we omit it in the description;
otherwise we explicitly write it. As an example, X = {a, b, c} is an alphabet with three
symbols, a, b and c.

The grammar for a language is described by a number of rules. A rule names parts of
the language, called non-terminal symbol of the language, and then defines it in terms of
other non-terminal symbols and the symbols in the alphabet. The symbols of the alphabet
are called terminals. They are atomic and cannot be refined by any definition.

Each non-terminal is introduced with a unique name, solely for the purpose of referring
to it in other rules; the names are not part of the formal language. A non-terminal entity
is followed by the symbol ‘=’, the definition for the entity, and a semi-colon. A definition
may consist of a sequence of items, where each item is either an alphabet or a non-terminal,
and the items are separated by commas. A symbol from the alphabet is written within
double quotes. When a non-terminal can be defined in more than one way, the different
possibilities are listed and are separated by the symbol ‘|’. Examples 2, 3, and 4 introduce
different elements, called strings, of a formal language.

Example 2 The entities digit, and digits describe strings with one or more digits.

digit = “0”|“1”|“2”|. . . |“9”|;
digits = digit | digit,digits; �

5

66 5 Formal Systems

Example 3 The entities twodigits, and threedigits describe strings of a specific length.

digit = “0”|“1”|“2”| . . . |“9”|;
twodigits = digit,digit;
threedigits = digit,twodigits;

�

We need n + 1 rules to generate strings of length n > 1. However, we use a concise
notation to denote strings of a specific length; for example, digits(10) denotes strings of
exactly 10 digits.

We use meaningful identifiers to denote certain entities in the examples to follow. They
are constructed according to the formal definition given in Example 4.

Example 4 We define two entities, letter and digit, and use them to create the entity iden-
tifier.

letter = “a”|“b”|“c”| . . . |“z”|;
digit = “0”|“1”|“2”| . . . |“9”|;
identifier = letter | identifier,digit | identifier,identifier;

�

The examples illustrate the following features of the syntax definition method.

1. A formal syntax definition has three distinct uses:

• it names the syntactic units through non-terminal symbols;
• it defines the valid sentences of the formal language;
• it shows the syntactic structure of any sentence in the language.

2. A grammar defines only one language.
3. The language being defined is linear. For example, a language to describe a knitting

pattern cannot be defined under the metalanguage conventions described above.

5.3.2
Semantics

The sentences in the language defined by a grammar need to be attributed some meaning, if
they are to be of any use. A formal system is useful only if each symbol and construct of its
language component are meaningful. The semantics of a language determines how well-
formed formulas can characterize certain properties by distinguishing those statements that
are true of the conceptual domain. The definition of semantics boils down to a relationship
between sentences and expressions specified in such a way that their truth values can be
systematically extended to any statement in the language. In the context of a programming
language, the structure of a program is determined by the syntax, and the nature of the
computations is determined by the semantics of the language. However, the semantics
of the language component of a formal system has more implication than programming

5.3 Components of a Formal System 67

language semantics. An important issue in the use of formal systems is pragmatics, which
refers to the way in which the formal system is used. It is concerned with the different
interpretations that can be given to associations between entities in the abstract model
within the formal system and real-world objects. An interpretation of the formalization can
be deemed faithful to its corresponding real entity, only if each property of that entity has
been assigned a truth value by the semantics. In essence, the semantics of a language L

is given by a structure (U, I), where U is a value domain (e.g., integers, real numbers,
boolean) and the interpretation I is a mapping I : L → U .

In Example 2, we can interpret each digit to correspond to the natural number it repre-
sents, and interpret a digit next to another as the usual decimal system. Under this inter-
pretation, the well-formed formulas become the set of all natural numbers. However, other
interpretations can be given to this language. Consider the case where we interpret each
digit as a character, and the adjacent symbols as a concatenation of characters. This inter-
pretation assigns a value from the domain of sequences to each well-formed formula of the
language. However, every interpretation must remain consistent with the way the objects
are manipulated according to the semantics of the language.

5.3.3
Inference Mechanism

The syntactic manipulation of well-formed formulas with little concern for their meaning
is achieved by adding a deductive mechanism to the formal language. This deductive capa-
bility allows the derivation of new well-formed formulas from those that are present in the
language. Deductive systems of interest for validation of system specifications are called
axiom systems. The two components of an axiom system are the axioms and the inference
rules. An axiom is a well-formed formula that is inherently valid within the formal system;
it can be specified without reference to any other well-formed formula. The set of axioms
forms a basis of the formal system allowing any other valid formula to be generated from
the set by a systematic mechanical application of inference rules. An inference rule permits
the generation of well-formed formulas as a consequence of other well-formed formulas.

Let L denote a formal language, and x ∈ L be an axiom or any other well-formed for-
mula. When applied to x, the inference rules produce zero or more well-formed formulas
in L. We choose an arbitrary string x from the resulting language L, and repeat the process
of applying inference rules. This will result in either an infinite number of new well-formed
formulas being added to L, or the process to terminate after a finite number of iterations.
We are interested only in those formal systems for which the language L is closed under
this process. In this case, the resulting set L is called the consequence closure of the formal
system.

Let σ denote the consequence closure operator, such that ∀x ∈ L, σ(x) denotes the
set of all well-formed formulas which can be derived from x through successive applica-
tions of the inference rules. Clearly σ maps sets of well-formed formulas in L into sets of
well-formed formulas in the consequence closure of L. The following properties hold on σ :

5

68 5 Formal Systems

Containment ∀A ⊂ L,A ⊆ σ(A)

Monotonicity ∀A,B ⊂ L, if A ⊆ B then σ(A) ⊆ σ(B)

Closure ∀A ⊂ L, σ(A) = σ(σ (A))

A theory in a formal system is a set of statements A, A ⊆ L, such that σ(A) = A.

Example 5 We define a formal system to describe the unary representation for integers and
addition and multiplication laws. The alphabet consists of the symbols 1, e, + and ◦. The
well-formed formulas are defined by the following grammar:

nat = e|string of ones;
string of ones = suc(e)|suc(string of ones);
suc(e) = 1;
suc(string of ones) = string of ones,1;
sentence = (nat = nat + nat;)|(nat = nat ◦ nat); |(sentence);

Axioms

1. a = e + a

2. e = e ◦ a

3. (x 1) ◦ a = x ◦ a + a

4. (x 1) + a = (x + a 1)

Inference Rules

1. If a+b = c is a well-formed formula, then (i) suc(a)+b = suc(c), and (ii) a+suc(b) =
suc(c) are also well-formed formulas.

2. If a ◦ b = c is a well-formed formula, then (i) a ◦ suc(b) = c + a and (ii) suc(a) ◦ b =
c + b are also well-formed formulas.

The sentence 111 = 11 + 1 is a well-formed formula in the language. By the first infer-
ence rule, we have suc(11) + 1 = suc(111). An application of the grammar rule gives the
well-formed formula 111 + 1 = 1111. This is, therefore, an immediate consequence of the
assumption that 111 = 11+1 is a well-formed formula. From the second part of the first in-
ference rule, another immediate consequence is that 1111 = 11 + 11 is also a well-formed
formula. Assuming that 11 ◦ 111 = 111111 is a well-formed formula, an application of the
second rule gives 11◦suc(111) = 111111+11. By expanding suc(111) and using Axiom 4
twice, we get 11 ◦ 1111 = 11111111 as another well-formed formula in the language. If
we interpret e to be the digit zero, ‘1’ to be the digit 1, a sequence of n 1’s to be the natural
number n, then it is straightforward to verify that + and ◦ as defined here correspond to
the addition and multiplication operations over natural numbers. �

As remarked earlier, the consequence closure of a formal system is the union of a set of
axioms and a set of derivations of every subset for well-formed formulas using inference
rules. The subset of well-formed formulas that we start with is called premises or hypoth-
esis, and the well-formed formulas obtained by direct consequence of applying inference
rules are called derivations. A statement is provable in a formal system if it has a proof
constructed from the axioms using the inference rules. Within a formal system, the text of a
formal proof consists of the hypothesis and the derivations, with logical steps, representing

5.4 Properties of Formal Systems 69

the application of inference rules, in between. Each logical step is an axiom or an imme-
diate consequence of a previous step as determined by an inference rule. The conclusion
represented by the last step of the proof is called a theorem. All axioms are true statements
within the formal system. Every theorem other than an axiom requires a formal proof.

Example 6 Prove the theorem

111 ◦ 111 = 111111111

within the formal system of Example 5. �

Proof

Step 1 (x 1) ◦ a = x ◦ a + a Axiom 3
Step 2 (e 1) ◦ 111 = e ◦ 111 + 111 Substitution for x(= e) and a(= 111)

Step 3 (e 1) ◦ 111 = e + 111 Axiom 2
Step 4 (e 1) ◦ 111 = 111 Axiom 1
Step 5 1 ◦ 111 = 111 Definition of e

Step 6 suc(1) ◦ 111 = 111 + 111 Inference Rule 2 applied to Step 5
Step 7 (11) ◦ 111 = 111 + 111 Definition of suc
Step 8 (11) ◦ 111 = 11 + 1111 Axiom 4
Step 9 (11) ◦ 111 = 1 + 11111 Axiom 4
Step 10 (11) ◦ 111 = e 1 + 11111 Definition of e

Step 11 (11) ◦ 111 = e + 111111 Axiom 4
Step 12 (11) ◦ 111 = 111111 Axiom 1
Step 13 suc(11) ◦ 111 = 111111 + 111 Inference Rule 2 applied to Step 12
Step 14 111 ◦ 111 = 111111 + 111 Definition of suc

Now apply Axiom 4 repeatedly to Step 14 and finally use definition of e followed by Ax-
iom 1 to get the final result. �

It is clear from this example that the well-formed formulas are manipulated strictly ac-
cording to the grammar rules, axioms and inference rules. That is, there is no interpretation
assigned to the structures or their derivations. When the meaning for a string of n 1’s is
provided as the natural number n and e denotes 0, the formal operations provide the usual
laws of addition and multiplication on natural numbers.

5.4
Properties of Formal Systems

A formal system is often constructed to fulfill a need and consequently the specifications
within the system are subjective. The usefulness and validity of a formal system depend
on the circumstances that called for the system. As opposed to mathematical models that
may not exist in reality, entities within a formal system model real-world objects. In soft-
ware engineering context, properties of a formal system such as consistency, completeness,

5

70 5 Formal Systems

and decidability, determine the expressiveness of abstractions, as well as the ability to in-
fer properties of conceptual domain objects from the deductive mechanism of the formal
system.

An essential feature of a formal system, as discussed earlier, is its use in deriving a
formal proof for certain assertions that can be made within the system. The primary ad-
vantage of a formal proof is that each step in the proof is a derivation of one of the avail-
able well-formed formulas and consequently the proof process can be automated. In other
words, checking the validity of a proof is a computable process. It can be done algorithmi-
cally and no evidence external to the formalized notions should be considered in deriving
a proof. The consequence closure contains all the truth statements relevant to the formal
system. However, it may not be complete in the sense that what is known to be true may
not be provable within the formal system. Two factors contribute to this characteristic of
incompleteness. The first comes from an incomplete formalization of knowledge about the
application domain. The second is a form of incompleteness that is inherent in every formal
system. These notions give rise to three important concepts: consistency, completeness, and
decidability.

5.4.1
Consistency

The inference mechanism associated with a formal system enables us to determine whether
or not a sentence x is derivable as a consequence of well-formed formulas in the formal
system. Consider a formal system F = (L,σ) where L is the formal language and σ is
the consequence closure operator. If x ∈ σ(L) we write F
 x. The symbol
 is called the
syntactic turnstile. A formal system is said to be syntactically consistent if for any given
sentence x, F
 x and F
 ∼ x cannot occur simultaneously. In other words, at most one
of the sentences x or ∼ x can be deduced in F . In general, syntactic consistency is hard to
establish. A formal system is semantically consistent if for each interpretation of a sentence
there exists no mapping whose result produces both true and false. Semantic consistency
is in general impossible to establish. Consequently, from a practical point of view, tool
support is essential to examine inconsistency.

5.4.2
Completeness

It may happen that neither x nor ∼ x belongs to σ(L). This occurs when x is a property not
captured within the formal system. In such cases, we say x is independent of F . Whenever
an essential property x is independent of F , x can be included in the formal system F , as
an axiom, without violating the consistency of F . Thus, F can be extended by including
sentences that are independent of F . Because axioms in F form a basis for F , a state is
ultimately reached where the addition of one more axiom will violate the syntactic consis-
tency of F . Every sentence in F is either derivable or refutable. This leads to the concept

5.5 Extended Syntactic Metalanguage 71

of syntactic completeness. That is, F is syntactically complete if for any given sentence x,
either F
 x or F
 ∼ x. A formal system is semantically complete if for each interpre-
tation of a sentence, every mapping of the sentence is either true or false. Completeness
relates to the extensibility of a formal system, and consequently, its ability to capture more
meaningful entities from its conceptual domain. Evaluating the completeness of a formal
system is indeed a daunting task.

5.4.3
Decidability

In 1931, Gödel showed that any reasonable formal theory contains sentences that cannot
be proved or disproved. This implies that it is impossible to certify that a formal system
does not contain statements that are neither provable nor disprovable through its inference
mechanism. There is no decision procedure to provide proofs for all true statements in
a formal system, and some true statements do not have a proof within the system. Thus,
the truth values of such sentences are undecidable. This result sets limits on deductive
reasoning capabilities as applied to formal specifications. At the same time, the undecid-
ability result guides the software engineer in specification building and reasoning. The
software engineer cannot reject anything that is not deducible from axioms. On the con-
trary, a useful property that is not a consequence of the axioms should be added to the
system specification and checked for consistency. If the added information is never used in
subsequent design stages of the formal system, then it can be removed. Since the formal
system must necessarily be broad, and hence is bound to be incomplete in Gödel’s terms,
the goal in designing a formal system focuses on consistency rather than on completeness.
The construction of a formal system starts with a small and consistent set of axioms. The
process progresses by discovering unspecified facts through formal deduction, gathering
more knowledge on the domain, determining the independence of new facts, and augment-
ing the system with new facts.

5.5
Extended Syntactic Metalanguage

For many applications, such as specifying file formats, and document and protocol struc-
tures, the full power of a formal method is not necessary. A formal definition of syntax is
sufficient. However, the syntax introduced in Sect. 5.3.1 is too simple to handle the com-
plexities in document structures. In this section, an extended syntactic metalanguage is
discussed for such purposes. We illustrate the metalanguage constructs for formally defin-
ing the syntax of complex documents.

The extensions to the syntactic metalanguage consist of adding one or more of the fol-
lowing items with each grammar rule: (1) an action; (2) a predicate; (3) metasymbols. We
use upper-case letters for the metasymbol; for example, DIGITS(6), CHAR(10), and CIR-
CLE. These denote pre-defined object types. We assume that the grammar generating these
entities have been defined already and are available for use in creating other entities. An-

5

72 5 Formal Systems

other abbreviation used is { }n, which denotes n ≥ 1 repetitions of the symbol within curly
parentheses. Thus, {WORDS}n denotes an entity representing a sequence of n WORDS.

Recently, a software in Visual Prolog has been developed by Axon [2] to provide an en-
vironment for Idea Processor (IP). In 1985, Hershey [6] introduced the commercial prod-
uct Idea Processor to collect notes in the form of chunks of text, and rearrange them in
groups to form an outline for an eventual expansion into a report. In 1986 Henderson [5]
simplified many aspects of IP and gave a prototype in a functional programming language.
We build on Henderson’s simple concept that IP is defined as a collection of related ideas
under a single title and introduce in Example 7 an extended metalanguage notation for
formalizing the notion of ideas, and valid documents that can be processed by an Idea
Processor.

Example 7 An idea within a document is a header and its associated text. The header is
composed of an identifier and a name. The text associated with an idea consists of sub-
ideas, and one or more paragraphs with text and diagrams. Each diagram has an identifier
and a caption. An idea may have zero or more sub-ideas where each sub-idea has the same
structure as that of an idea. A set of keywords is associated with an idea. For example, the
following notes might be present in an idea processor document:

1. “specification in a natural language”
2. “ambiguities in natural language specifications”
3. “algebraic specification method”

• “syntax and semantics of an algebraic specification language”
• “an example”
• “executing algebraic specifications”

The notes may include diagrams for illustration. The following interpretation is assumed
for the upper-case symbols used in the formalism: NL denotes a new line; T denotes a tab
(indentation). These actions are not explicitly described in the grammar. All other upper-
case symbols are meaningful identifiers for pre-defined entities; for example, DIAG_ID
means diagram identifier. �

The formal definition of document given in Example 7 can be used to enforce the con-
struction of structurally correct idea processor documents. However, the ideas expressed
within a section should undergo a separate semantic validation.

The next example introduces a formal language for specifying electronic forms. In this
example, an electronic form is a visual interface entity used for recording laboratory test
results for the patients of a hospital.

Example 8 An electronic form, called test_request_form, records information on med-
ical tests conducted on patients at different labs in a hospital. Although the details re-
garding the visual display of these forms may vary, their essential format can be ab-
stracted sufficiently well to provide a screen specification for an electronic form. A typ-
ical test_request_form used in hospitals will have three sections: test_information, pa-
tient_information and lab_information. Within each section the data are grouped in a cer-
tain format. Figure 5.1 shows a typical form used in hospitals; Table 5.2 gives the grammar

5.5 Extended Syntactic Metalanguage 73

Table 5.1 Grammar for Idea Processor documents

document = NL, DOC_TITLE, NL, {idea}n;

idea = header, NL, text, NL, keyword;

header = HEADER_NUMBER, HEADER_NAME;

text = {sub − idea|paragraph,diagram|diagram,paragraph}n;

sub-idea = T, idea;

keyword = {WORDS}n;

paragraph = line | line, NL, paragraph;

line = WORDS | WORDS, line;

diagram = drawing, NL, DIAG_ID, diag_cap;

drawing = CIRCLE | RECTANGLE | DFD | FLOWCHART;

diag_cap = {WORDS}4;

Fig. 5.1 Test_Request_Form
as seen on the screen

for the form. The grammar uses symbols from an alphabet, and pre-defined entities whose
interpretations are as follows: the symbols 〈L〉, 〈R〉 force the visual display of the entities
to which they are bound to occur, respectively, left-justified, or right-justified on the screen.
The visual display of the entity test_request_form is characterized by a well-formed for-
mula from this grammar. Some grammar rules involve the specification of actions. These
correspond to the semantic interpretations for the rules. For instance, the semantic inter-
pretation for test_request_form at the completion of expanding the rule for lab corresponds
to the action CREATE_LABLAYOUT associated with lab. This action activates the proce-
dures for displaying on the screen the part of the form corresponding to the layout for the
lab information.

5

74 5 Formal Systems

Table 5.2 Grammar for Test_Request_Form

test_request_form = test, NL, patient, NL, lab;

{action: CREATE_WINDOW}

test = TEST, NL, test_code: 〈L〉, order#: 〈R〉, NL, type: 〈L〉,
status: 〈R〉, NL, date: 〈R〉, NL, time_ordered: 〈R〉, NL;

{action: CREATE_TESTLAYOUT}

patient = PATIENT, NL, name: 〈L〉, reg#: 〈R〉, NL, ward_name: 〈L〉, bed#:〈 R 〉, NL;

{action: CREATE_PATIENTLAYOUT}

lab = LAB, NL, lab#: 〈L〉, name: 〈R〉, NL, address: 〈L〉, NL, phone#: 〈L〉, NL;

{action: CREATE_LABLAYOUT}

test_code = TESTCODE, NAT(6);

order# = ORDER#, NAT(20);

type = TYPE, CHAR(15);

status = STATUS, BITS;

date = DATE, CHAR(8);

time = TIME, CHAR(6);

name = NAME, CHAR(20);

reg# = REG#, NAT(8);

ward_name = WARDNAME, CHAR(15);

bed# = BED#, NAT(4);

lab# = LAB#, NAT(3);

address = street, town, country, postal_code;

street = STREET, NAT(6), CHAR(20);

town = TOWN, CHAR(10);

country = COUNTRY, CHAR(10);

postal_code = ZIP_CODE, CHAR(7);

phone# = PHONE#, NAT(3), “ ”, NAT(3), “ ”, NAT(4);

In this example, neither the grammar nor the actions indicate how the electronic form is
to be used; it only defines the structure of the form. The formal model can be “executed” to
mimic the ways in which the form can be used in real-life situations. In Chap. 7, we con-
struct a behavior model to demonstrate the correct user interactions and the corresponding
responsiveness of the test_request_form software. �

5.6
Exercises

1. Let A = {a, b} be the alphabet. Define a grammar over the alphabet A for which the
language includes the strings ab, bba, and all strings that have ab and bba as substrings.

5.6 Exercises 75

2. Let A = {0,1} be the alphabet. Define a grammar over the alphabet A for which the
language includes only strings of even length.

3. Let A = {“0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”, “ − ”, “.”} be the alphabet. The
grammar is defined as follows:

F = ’-’ FN | FN
FN = N | N ’.’ N
N = D | D, N
D = ‘‘0’’|‘‘1’’|‘‘2’’|‘‘3’’|‘‘4’’|‘‘5’’|‘‘6’’|‘‘7’’|

‘‘8’’|‘‘9’’

The different symbols here are all abbreviations: F is the entity to be defined, FN is a
fractional number, N is a sequence of digits, and D is a digit. Which of the following
strings are produced by the grammar?
1. 5.26
2. -7.77
3. 3.-14
4. 4-5.16

4. There are two commands, send, and reply, for a simple electronic mailing system. As-
suming that each message has a unique name, give specifications in extended BNF for
these commands. The requirements are:

• A message can be sent by a user to one or more users in the system.
• A user can reply to only one mail at a time. The effect of reply is to compose a

message, assign a unique name, assign a time-stamp, and send the message to the
user from whom the original message was received.

5. Specify the structure of a service contract, as defined below, using extended BNF no-
tation. A service contract has three sections. In the first section, a maximum of three
services are listed. Each service has a name, a parameter list, date when the service is to
be provided, and its cost. In the second section, one legal constraint pertaining to each
of the services is stated. A constraint names a service and assigns a legal code (maxi-
mum four digits) to it. The third section lists the location (address) where each service
included in the contract is to be provided.

6. Give an extended BNF for generating an electronic form for an Automobile Registration
System, similar to the electronic form discussed in Example 8. The requirements are as
follows:

• The form should have three sections: Vehicle, Owner, Administration.
• The information in the Vehicle section should include the make, model, year, serial

number, engine capacity, factory price, and color.
• The Owner information should include the name, address, and phone numbers of the

principal owner of the vehicle. It should also include the date of purchase and the
purchase price of the vehicle.

• The Administration section should include the status of the vehicle (pleasure or busi-
ness), date and place of current registration, registration number of the vehicle, reg-
istration fee, and expiry date of registration.

5

76 5 Formal Systems

5.7
Bibliographic Notes

The metalanguage notation used in the text is derived from BNF (Backus Naur Form), a
notation invented by Backus [1] and Naur [8], to define the syntax of Fortran and Algol
60 programming languages. The extended BNF, known as EBNF, is due to Wirth [11] and
has been standardized by Scowen [11]. The YACC parser generator [4] produces transla-
tors for programming languages based on BNF descriptions. An interesting use of formal
grammars for prototyping was suggested by Reisner [10] who used certain properties of
the BNF notation to predict the complexity of a user interface. Many textbooks that treat
comprehensively formal language theory use some variant of BNF, for example see [7].
The standardized EBNF manual provides a means to extend the standard EBNF, a useful
feature to introduce new constructs in the syntactic metalanguage for formalizing complex
structures.

Bringing in mathematical formalism into software development practices requires that
true statements about the domain for which the software is developed must become axioms
in the formal system. That is, the strings in the formal language are to be interpreted in such
a way that if they become true in the domain then we have to accept that as theorems. The
interpretation of every theorem must be a true statement. Choosing the right formalism is
often problematic, because the axiom systems to be studied are suggested by the demands
of the particular application domain.

References

1. Backus JW (1957) The FORTRAN automatic coding system. In: Proceedings of the AFIPS
Western joint computer conference, pp 188–198

2. Bok C (2006) Developing an idea processor in prolog. Presented at the VIP-ALC Conference.
http://web.singnet.com.sg/~axon2000

3. Formal Methods Web page, http://formalmethods.wikia.com/wiki/Z_notation, May 2010
4. Johnson SC (1975) Yacc: yet another compiler. Computer science technical report No 32, Bell

Labs, Murray Hill, NJ
5. Henderson P (1986) Functional programming, formal specification, and rapid prototyping.

IEEE Trans Softw Eng SE-12(2):241–250
6. Hershey W (1985) Idea processors. Byte 10(4)
7. Martin J (2003) Introduction to languages and the theory of computation, 3rd edn. McGraw-

Hill, New York
8. Naur P (ed) (1963) Revised report on the algorithmic language Algol 60. Commun ACM

6(1):1–17
9. Peano G (1967) The principles of arithmetic, presented by a new method. In: van Heijenoort

J (ed) From Frege to Gödel: a sourcebook of mathematical logic. Harvard University Press,
Cambridge

10. Reisner P (1981) Formal grammar and human factors design of an interactive graphics system.
IEEE Trans Softw Eng SE-7(2):229–240

11. Scowen RS (1998) Extended BNF—a generic base standard. Draft paper. http://www.cl.cam.
ac.uk/~mgk25/iso-14977-paper.pdf (May 2010)

12. Wheeler DA (2006) High assurance (for security or safety) and Free-Libre/Open Source Soft-
ware (FLOSS) . . . with lots on formal methods/software verification. http://www.dwheeler.
com/essays/high-assurance-floss.html (04/16/2010)

Automata 6

An automaton is an abstract machine that performs a task according to a specified set of in-
structions. It captures the behavior of a computer through its ability to read input, perform
a sequence of step-by-step operations, and produce an output. Each step in a computation
sequence is called a state. Given an input string, the machine reads the first (leftmost) sym-
bol in its initial state and the state of the machine changes. The machine reads the next
symbol at the new state and changes its state again. This process continues until the last
symbol of the string has been read. The final state is the state reached by the machine after
reading the last symbol from the input string. The last state characterizes the input string
with respect to the machine. In general, an automaton, by virtue of states, is a useful ab-
straction for characterizing the behavior of a broad class of software and hardware systems.
An automaton itself can be classified based on different perspectives:

• finite or infinite,
• deterministic or nondeterministic,
• accepter or transducer.

Finite automata are machines that have zero or a finite amount of memory, independent
of input size. Since the number of states is finite and only a finite amount of information can
be retained in each state, finite automaton cannot deal with situations in which information
required is unbounded.

A deterministic automaton is one in which a state change leads to a unique next state.
In a nondeterministic automaton, a state change leads to a state within a set of possible
next states. It is known [7] that both deterministic and nondeterministic automata have
the same computational power. Nondeterminism is a powerful tool in formal modeling
and usually leads to a higher level of abstraction than deterministic models. In general,
nondeterminism provides design freedom whereas deterministic model may constrain the
design too early in the development process. Another merit of nondeterminism is that an
implementation may be done in a concurrent or parallel computing environment. Formal
methods for concurrent systems have constructs to specify nondeterminism. We will study
one such formal method in Chap. 15.

An automaton whose output is either “yes” or “no” is called an accepter. For an input
string, if the automaton outputs “yes”, it means that the string is accepted (recognized)

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_6, © Springer-Verlag London Limited 2011

77

6

78 6 Automata

by the automaton; if it outputs “no”, it means that the string is rejected by the automaton.
This capability is sufficient for reasoning because, in formal reasoning, we are interested
in knowing whether or not a property is true of the modeled system. An automaton which
is capable of outputting a string of symbols, in response to an input string of symbols,
is called transducer. In modeling the interaction of the environment with the system our
interest will be to know the nature of system responses to environmental stimuli. We need a
transducer to model such observable behavior. A finite automaton, whether it is an accepter
or transducer, is called a finite state machine.

In this chapter we discuss the basic concepts of finite automata, and different notations
used in modeling systems with finite state machines.

6.1
Deterministic Finite Accepters

The basic concepts of deterministic finite accepters are discussed in this section. The two
important factors that characterize them are the lack of memory (or fixed memory inde-
pendent of input size) and the predictable behavior at each state.

Definition 1 A deterministic finite accepter or dfa is defined by the tuple

M = (Q,Σ,q0,F , δ),

where

Q(�= ∅) is a finite set of states,
Σ is a finite set of input alphabet,
q0 ∈ Q is the initial state,
F ⊆ Q is the set of accepting states,
δ : Q × Σ → Q is the transition function, where for every state q ∈ Q and for every
symbol x ∈ Σ , q ′ = δ(q, x) ∈ Q.

An automaton can be represented either by a graph or by a table, which help follow
the transitions. The graphical representation in Fig. 6.1 for the automaton in Example 1
is called the state diagram. In a state diagram, states are represented by rectangles, and
directed arcs are used to represent transitions. The initial state is depicted with an incoming
unlabeled arrow. A rectangle with two bounded lines is used to denote an accept state. For
qi, qj ∈ Q, if δ(qi , x) = qj is the transition definition for state qi , then in the graph the
edge from state qi to state qj is labeled x. A dfa operates by starting from its initial state,
recognizes the next input symbol, and makes a transition to the next state as defined by
δ function. When all the symbols in the input string have been processed, the string is
accepted if the machine is in one of its accept states; otherwise it is rejected.

Example 1 Consider the dfa

M = ({A,B,C,D}, {0,1},A, {A,B,C}, δ),

6.1 Deterministic Finite Accepters 79

Fig. 6.1 State diagram of Example 1

where δ is given by

δ(A,0) = B δ(A,1) = C

δ(B,0) = D δ(B,1) = C

δ(C,0) = B δ(C,1) = D

δ(D,0) = D δ(D,1) = D

This dfa accepts every binary string which does not have two consecutive 0’s or two con-
secutive 1’s. From the initial state A, the machine either transits to state B or state C

depending upon the input being 0 or 1. If, in state C, the input symbol is 0, the machine
has encountered two consecutive 0’s, which must be rejected. This is why the transition at
state B for input symbol 0 takes the machine to state D which has no outgoing edge. The
state D is called a trap state, or an empty state denoted ∅. The transition from state C to
state D is a mirror image of the transition from state B to state D. The transitions between
states B and C are symmetric, allowing alternating 0’s and 1’s to be accepted. �

The set of strings formed over the alphabet Σ is denoted Σ∗. From Example 1, it is
clear that a dfa M defines a set of strings L(M) ⊂ Σ∗ accepted by it. The set L(M) of
accepted strings is the language associated with the accepter M . It is also clear that the
string acceptance process is “algorithmic”, and hence can be programmed. The interesting
issue in formal methods is the dual of recognition, namely constructing a dfa model to
solve a problem.

6.1.1
State Machine Modeling

A finite state machine (FSM) is formal and control-driven. With a formal state machine
model, whether it is for a hardware or software module, it is possible to formally ana-
lyze it for the acceptance or rejection of a specified property. The only prerequisites are
that the property to be verified is represented as a string of symbols, and the states with
state transitions are precisely stated. In modeling systems, the notations and conventions
of Definition 1 may not be followed strictly, as illustrated with the examples below.

6

80 6 Automata

Fig. 6.2 State diagram of
switch: Example 2

Fig. 6.3 State diagram of light switch: Example 2

6.1.1.1
Simple Switches

Switches are designed in many ways. In Example 2, we model two kinds of switches. In
both models, the transition symbols are actions (stimuli from the environment). In this
example, there is someone who “presses” the switch.

Example 2 The simplest switch we can think of is a “toggle switch”, the one on a computer
or its monitor. The device is either “off” or “on”. When the switch is “on” and is pressed,
it becomes “off”, and the inverse operation is valid too. This behavior is shown in Fig. 6.2.
For this example, the states are off and on, the alphabet has only one symbol, and the
symbol is the “action” press. So, the first notational deviation is that transition symbols
may be actions or events which may come from the environment.

For a light switch that is still designed in the old fashioned way, the switch can be
“moved up” to switch on the light, and the switch is “moved down” to switch off the
light. If the switch is moved up, any attempt to move it up should not cause any change
in the state of the light. The behavior of this kind of light switch is shown in Fig. 6.3. The
transition labels are the actions move-up, and move-down. �

6.1.1.2
Language Recognizer

In constructing an automaton for recognizing a language, we use some form of reasoning
similar to programming in a high-level language. Example 3 illustrates the logic for con-
structing the automaton in Fig. 6.4 for a language that includes all strings in alphabetical
order over the alphabet {a, b, c}. Here the pattern is expressed by the property “alphabetic
order”. In constructing the dfa, notice that transitions are only partial in each state, which
deviates from the definition of δ in Definition 1.

Example 3 Let Σ = {a, b, c}. A string σ ∈ Σ∗ is monotonic non-decreasing (monotonic,
for short) if the characters in σ are in alphabetical order. Examples of monotonic strings in

6.1 Deterministic Finite Accepters 81

Fig. 6.4 Alphabetic pattern recognizer: Example 3

Σ∗ are aaa, abb, abcc, bbc, ccc, whereas strings abba, and ccb are not monotonic. The
problem is to construct a dfa over Σ which recognizes monotonic strings in Σ∗. An empty
string is monotonic. Thus the initial state in the dfa is an accept state. All strings with only
one character are monotonic. The first character of a monotonic string of length > 1 can
be any one of a, b, c. Hence, from the initial state I , the automaton goes to state A, if the
input symbol is a, goes to state B if the input symbol is b and goes to state C if the input
symbol is c. The states A, B , and C are accept states. In state A, if the input symbol is a

the transition should be from A to itself; if the input symbol is b the transition should be
from A to B , and if the input symbol is c the transition should be from A to C. In state B , if
the input symbol is a then it should be rejected. So we create a trap state D and define the
transition from B to it for input a. In state B , either input b or c should lead, respectively,
to accept states B and C. In state C, only input symbol c should lead to accept state C,
and for other input symbols the transition should lead to state D. In state D, every input
symbol should lead to D itself. The full dfa is shown in Fig. 6.4. �

6.1.1.3
Pattern Matching

State machine is the natural formalism for constructing language parsers and text editing
software. In text editing, pattern matching is a basic activity. A pattern is a fixed string
of finite length. Pattern matching problem is “given a pattern p and a string s, find all
substrings of s that match p”. The two well-known solutions are Boyer–Moore [2] and
Knuth–Morris–Pratt [6] (KMP) algorithms. The KMP algorithm constructs a finite state
machine for the pattern p and then runs the string s on it to extract the matches. Example 4
explains a simple version of the method for the specific pattern “mummy”. Definition 1 is
adapted in many ways in this example: each state acts like a “memory bank”, transitions
in each state are only partial, and the label “other” denotes a set of symbols, and is used in
the model to minimize the number of transitions in a state.

6

82 6 Automata

Fig. 6.5 “mummy” pattern recognizer: Example 4

Example 4 The given pattern is “mummy”. We want to construct an automaton which
will recognize this pattern, if it exists in any input string. We need to determine the states
first. The information in a state should determine the substring recognized so far in the
automaton. If we matched a part of the string so far that information is relevant for the state.
Initially no string is recognized. Hence the initial state information is “empty string”. Let
us call the initial state empty. The automaton should stay in the initial state until it receives
the input “m”. When it receives “m” in state empty, it recognizes the substring “m” and
hence makes a transition to the next state, say m. That is, at state m, it has recognized the
prefix of length 1 of the pattern “mummy”. Arguing like this, it is reasonable to conclude
that we want the states to be partial matches to the pattern. The possible partial matches
are “empty string”, “m”, “mu”, “mum”, “mumm”, and “mummy”. These are the prefixes
of the string “mummy”. So, the states are empty, m, mu, mum, mumm, mummy. Next,
we must determine the input symbols and transitions. The three symbols in the pattern
“mummy” are “m”, “u”, and “y”. The input string may contain symbols other than the
symbols in the pattern, and let us collectively call them other. For the sake of simplicity,
we combine all transitions labeled by symbols from the set other into one single transition
labeled by other. So, essentially there are a maximum of four possible transitions in a state,
one for each pattern symbol and other. The transitions for the four cases in state mumm are
discussed below:

1. If the symbol “y” is input in state mumm, we have a complete match, and so the au-
tomaton transits to state mummy and stays there. That is, a match is found in the input
string and the rest of the input string is ignored.

2. If the symbol is “u” then the longest prefix of pattern that matches the suffix of the
string “mummu” is “mu”. Hence the automaton should transit to the state mu.

3. If the symbol is “m” then the longest prefix of pattern that matches the suffix of the
string “mummm” is “m”. Hence the automaton should transit to the state m.

4. If the symbol is from the set other then the longest prefix of pattern that matches the
suffix of the string “mummx”, where x ∈ other is “empty”. Hence the automaton should
transit to the state empty.

Arguing similarly for each state, we determine the transitions of the automaton. The au-
tomaton constructed for matching the pattern “mummy” in any string over the alphabet
{a, b, . . . , z} is shown in Fig. 6.5. �

6.1 Deterministic Finite Accepters 83

Fig. 6.6 Traffic-light model:
Example 5

6.1.1.4
Traffic Light

A traffic light can be in one of the states {red,green, yellow} at any instant. Initially the
traffic light may be in state red or in state green or in state yellow. Let us make an arbitrary
choice and make red the initial state. After some time, it changes to green. It stays green
for a while before changing to yellow. After staying yellow for a while, it changes to red
again. This behavior is repeated forever. That is, initial state of the automaton is chosen
arbitrarily from the set of states of the traffic light and the automaton has no final (accept)
state. This is an important change that we have made now in dfa definition. Some external
agent, called controller is necessary to control the duration of its stay in each state and
finally to stop it from functioning. Here is an example where the entities controller and
light have to communicate with each other. We will discuss this model of communication
in Sect. 6.2.1. For the present, we model only the forever behavior of the light.

Example 5 The state names and transition labels are chosen to reflect meaningful terms in
the application domain. The automaton has states Q = {red,green, yellow}, and its initial
state is q0 = red. The alphabet is the set events received by the traffic light from the con-
troller. Σ = {stay, to-green, to-yellow, to-red}. At each state either the automaton “waits”
in that state or transits to the next state. The language recognized by this automaton is σ �,
where σ is the sequence 〈 stay, to-green, stay, to-yellow, stay, to-red 〉 and � denotes 0 or
more repetitions. If we replace the transition labels by the state names we get the sequence
τ ∗, where τ = 〈red, green, yellow〉. We call σ� the trace and τ � “the execution sequence”
of the automaton shown in Fig. 6.6. �

6.1.1.5
Finite Container

A container is an abstract data type for a collection of items. In many applications actual
container size is not known in advance, yet a dynamic storage allocation algorithm allo-
cates a fixed amount of container size. We can model such a bounded container by a state

6

84 6 Automata

Fig. 6.7 Finite container model: Example 6

machine model. The number of states in the model is determined by the maximum allo-
cated container size. At each state, except the initial state and final state, transitions are
total. The transition labels are actions that modify the container state.

Example 6 We must abstract the container states. In the abstraction, the actual elements
in the container are not of concern. Dynamically an item (request or data) is added to the
container or removed from the container. Hence a state of the container is container-size.
Initially, container is empty. If M is the maximum size of the container there is a state for
size M (full container). Consequently, there are M + 1 states. Let us denote these states
by Con[0],Con[1], . . . ,Con[M]. By putting one element in the container state Con[k],
0 ≤ k < M , the size of the container increases by one, which is the next state Con[k +1] of
the container. No element can be put when the container state is Con[M]. An item can be
removed only when the container is not empty. There is no accept state. Figure 6.7 shows
the container dfa, and its formal definition is given below.

Container = (Q,Σ,q0, δ),

where

Q = {Con[0],Con[1], . . . ,Con[M]}
Σ = {put,get}
q0 = Con[0] is the initial state,
δ : Q × Σ → Q is the transition function defined as
δ(Con[k],put) = Con[k + 1], 0 ≤ k < M ,
δ(Con[k],get) = Con[k − 1], 0 < k ≤ M

�

6.1.1.6
Window Manager

A minimal set of operations for a window manager should be the creation of a new window,
minimizing the window, maximizing the window, restoring the window, and closing the
window. These are the requirements to be modeled. So, all the labels to the automaton are
external actions that fulfill these requirements. Transitions in each state are only partial.
The model is shown in Fig. 6.8.

Example 7 The states are suggested by the set of requirements. We need a state to ab-
stract “new (standard size) window”, a state to abstract “maximized window”, we need
two states to “hide” the new and maximized window, and one state to abstract “the

6.2 Nondeterministic Finite Accepters 85

Fig. 6.8 Window-manager model: Example 7

end of window session”. Hence the state machine consists of the set of states Q =
{stdo, stdh,maxo,maxh,dead} to, respectively, abstract the above situations. The initial
state is q0 = stdo. The set of actions is Σ = {maximize,minimize, restore,hide, close}.
There is no accept state, and dead is a trap state. The state transitions are defined as fol-
lows:

δ(stdo,maximize) = maxo δ(std,minimize) = stdh
δ(maxo, standard) = stdo δ(maxo,minimize) = maxh
δ(stdh, restore) = stdo δ(maxh, restore) = maxo
δ(maxo, close) = dead

The action close may also be defined in state stdo. The model may be extended with more
states and transitions. For example, if “resizing” is required then a set of resize options
must be specified. Corresponding to each resize option a new state is to be introduced.
Transitions to new states can be defined as appropriate. Notice that in this high-level model
the state variables which undergo change are hidden. It is possible to make them explicit
and derive a new model, from which an implementation is possible. �

6.2
Nondeterministic Finite Accepters

A dfa is generalized in two ways:

• A string may label a transition.
• The transition function is generalized to a relation.

The second kind of generalization introduces nondeterminism, a powerful concept that of-
ten reduces the complexity in modeling and analysis. The generality of a nondeterministic
finite acceptor (nfa) is brought out in the following ways:

• More than one transition in a state may have the same label. That is, transition δ in a
state q for an input symbol x produces a subset of states δ(q, x) ⊂ Q.

• A transition may be labeled by an empty string ε. Such a transition is a silent transition.
• A state ∅ is introduced for transition completeness.

Figure 6.9 shows a nfa with two accept states. Nondeterminism forces a choice for transi-
tions at state A and at state F . The string 011 and 010 are both accepted at state D. The

6

86 6 Automata

Fig. 6.9 Nondeterministic finite state automaton

Fig. 6.10 String acceptance in
nondeterministic finite state
automaton

strings of type 010, 01010, 0101010, . . . are accepted at state E. So the nfa accepts the set
of strings {(01)n0 | n ≥ 1} ∪ {011}.

To determine whether a nfa would accept a given string, we start at the initial state and
construct all the states the nfa could be in for successive symbols in the input string. Upon
reaching the end of the string if the accept state is a member of the final set constructed
then the string is accepted. For the nfa in Fig. 6.10, the strings ε, 0, and 1 are not accepted.
Strings 00 and 11 are accepted. For the string 101101, the history of the set of states a is
{A}, {A,C}, {A,B}, {A,C}, {A,C,D}, {A,B,D}, and {A,C,D}. The accept state D is in
the final set of history, and hence the string 101101 is accepted by the nfa.

Apart from the nondeterminism introduced by the δ definition, there is another kind of
nondeterminism in nfas. This is due to the ε transition in a state q . The semantics is that
whenever state q is reached by some partial execution, the nfa makes another transition
without reading any input symbol. It is always possible to eliminate ε-transitions while
transforming a nfa to an equivalent dfa. The resulting dfa is in general more complex to
comprehend. Example 8 explains this transformation process for the nfa in Fig. 6.11.

Example 8 We construct the dfa in Fig. 6.12 that is equivalent to the nfa in Fig. 6.11. In
this construction, a state at which a progression for a symbol cannot be made is retained,
while the state at which a progression is made will be replaced. That is, if X = {s1, s2}
is a state and δ(s1, a) = {s3, s4} and δ(s2, a) is not defined then δ(X,a) = {s3, s4, s2}.
This convention is somewhat similar to the “product automata” transition definition. Alter-
nately, we could have defined δ(X,a) = {s3, s4}. This approach is somewhat similar to the
convention of “synchronous product automata” construction. We discuss product automata

6.2 Nondeterministic Finite Accepters 87

Fig. 6.11 Nondeterministic
finite state automaton with ε

transitions: Example 8

Fig. 6.12 Deterministic finite
state automaton equivalent to
Fig. 6.11 without ε

construction later on in the section as well as in later chapters. Either way we will end up
with an automata with no ε transitions.

• Construct Initial State: The initial state for the dfa is labeled with the set of all states
reachable by reading only ε input in the initial state of the nfa. The states A, B , and D

are reachable from the initial state A of the nfa through only ε transitions. Therefore,
the initial state of the dfa in Fig. 6.12 is labeled {ABD}.

• Recursively Construct other States For each state in the dfa and for input symbol in the
alphabet, construct next states. The rule is to consider all states reachable through direct
transitions as well as after any number of ε-transitions. Hence, at the initial state symbol
{ABD} of the dfa
– if the input symbol is a the next state is the set {BCDE},
– if the input symbol is b the next state ∅, the trap state, and
– if the input symbol is c the next state is {C}.
Repeating this step for each new state created in the dfa we get the dfa in Fig. 6.12. In
the result there is no ε-transition. �

From software modeling perspective, nondeterminism is a powerful concept. Both ∅
states and ε-transitions may be suppressed, because transitions reflect only acceptable be-
havior. In Fig. 6.13, the behavior of an unbounded stack is modeled by a nondeterministic
automata. A stack is either empty or nonempty. These two situations are abstracted as the
states of the automaton. Removing an item from a nonempty stack may result either in an
empty stack or a nonempty stack. The action remove in state nonempty is nondeterministic.

Composing nfas In software modeling “divide and conquer” is a good solution approach
to follow. The problem to be modeled is divided into many sub-problems and a state ma-
chine model for each sub-problem is developed. The state machine model of the problem

6

88 6 Automata

Fig. 6.13 Nondeterministic finite state automaton of an unbounded stack

Fig. 6.14 Choice composition
for automata

is obtained by putting together the state machine models of the sub-problems. The way in
which they are put together defines the “composition” rule and it is directed by the ini-
tial partitioning of the problem and the desired interaction between the sub-problems. In
a composition, ε-transitions play an important role. In Fig. 6.14, two dfas with different
behaviors are combined into a nfa with two ε-transitions. This is an example of “choice”
composition, the resulting nfa has either the behavior of one or the other. Choice composi-
tion is one of many different compositions, as discussed below.

When a nfa has multiple accept states, it can be converted to one with a single accept
state. This is achieved by relabeling all accept states as normal states and connecting them
to a new accept state using ε-transitions. So we may assume that the nfas we consider have
just one accept state.

Sequence We want to construct the nfa M that performs the computation of nfa M1

followed by the computation of the nfa M2. The construction is done as follows:

• Define a new start state q0 and a new accept state qf .
• Add an ε-transition from q0 to the start state of M1.
• Add an ε-transition from the accept state of M1 to the start state of M2.
• Add an ε-transition from the accept state of M2 to qf .
• Change the original accept states of M1 and M2 to normal states.

Choice We want to construct the nfa M that performs either the computation of nfa M1

or the computation of the nfa M2, but not both. The construction is done as follows:

• Define a new start state q0 and a new accept state qf .
• Add an ε-transition from q0 to the start state of M1 and to the start state of M2.

6.2 Nondeterministic Finite Accepters 89

• Add an ε-transition from the accept state of M1 to qf .
• Add an ε-transition from the accept state of M2 to qf .
• Change the original accept states of M1 and M2 to normal states.

Repetition We want to construct the nfa M∗ that repeatedly performs the computation
of nfa M . The construction is done as follows:

• Define a new start state q0 and a new accept state qf for M∗.
• Add an ε-transition from q0 to the start state of M .
• Add an ε-transition from the accept state of M to qf .
• Add an ε-transition from q0 to qf .
• Add an ε-transition from the accept state of M to the start state of M .
• Change the original start and accept states of M to normal states.

Example 9 A state machine model of a vending machine which dispenses chips, choco-
lates, and drinks is constructed by composing three simple machines chips machine (CS),
chocolate machine (CE), and drinks machine (DS). In the composition, both choice and
repetition constructions are used. The CS machine dispenses three kinds of chips, each
costing 75 cents. Its behavior is modeled as a nfa, shown in Fig. 6.15(a). The labels “75c”
and “press” are user actions and refer, respectively, to the user “inserting 75 cents” in the
machine slot and “pressing a button” to get the chosen chips. The ε-transitions from state
chips-ready to states corn, potato, and banana are simultaneously taken. The ε-transition
from state chips-basket to chips is an internal transition. The transition labeled “other” is
taken in the start state if 75 cents is not deposited in the machine slot. Although the state
chips-basket is the accept state, the CS machine’s behavior is indefinitely repetitive. The
behavior of CE and DS machines, shown, respectively, in Fig. 6.15(b) and Fig. 6.15(c),
can be understood in a similar manner. They repeatedly perform the actions of receiving
exact change and the stimulus “press”, and deliver the chosen product. Figure 6.15(d) uses
the choice construction to compose the machines CS, CE, and DS into a nfa that models a
general vending machine that repeatedly dispenses one of chips, chocolates, and drinks in
each cycle of its operation. �

Intersection We consider two machines M1 = (Q1,Σ1, q10, q1f , δ1), and M2 =
(Q2,Σ2, q20, q2f , δ2), without ε-transitions and define M = M1 ∩ M2, which accepts a
string x only if x is accepted by both M1 and M2. That is, the machine M simulates both
M1 and M2. The construction of M = (Q,Σ,q0,F , δ) is done as follows.

• Set of states: Q = {(p, r) | p ∈ Q1, r ∈ Q2}, all pairs of states, one from Q1 and one
from Q2

• Alphabet: Σ = Σ1 ∩ Σ2, symbols common to Σ1 and Σ2

• Initial state: (q10, q20), the pair of the start states of M1 and M2

• Accept state: (q1f , q2f), the pair of the accept states of M1 and M2

• Transitions: δ((p, r), x) = (δ1(p, x), δ2(q, x)), defined only for symbol x that labels a
transition at state p of M1 and a transition at state r of M2.

6

90 6 Automata

Fig. 6.15 Nondeterministic composition of vending machines: Example 9

Figure 6.16(c) shows the intersection of the dfa in Fig. 6.16(a) and the nfa in Fig. 6.16(b).
This example illustrates the principle that if one of the automaton in the intersection is
a nfa then the resulting machine is necessarily a nfa. Definition of intersection may be
relaxed by letting Σ1 �= Σ2, and Σ1 ∩ Σ2 �= ∅. The only change in the previous definition
of intersection is in the definition of transitions.

6.2 Nondeterministic Finite Accepters 91

Fig. 6.16 Intersection—synchronous product

Generalized Intersection We consider two machines M1 = (Q1,Σ1, q10, q1f , δ1), and

M2 = (Q2,Σ2, q20, q2f , δ2), without ε-transitions and define M = M1 ∩ M2, which ac-

cepts (1) strings accepted by both M1 and M2, (2) strings accepted by M1, but not accepted

by M2, and (3) strings accepted by M2, but not accepted by M1. That is, the machine M

still simulates both M1 and M2. The construction of M = (Q,Σ,q0,F , δ) is done as fol-

lows.

• Set of states: Q = {(p, r) | p ∈ Q1, r ∈ Q2}, all pairs of states, one from Q1 and one

from Q2

• Alphabet: Σ = Σ1 ∪ Σ2, symbols from both alphabets Σ1 and Σ2

• Initial state: (q10, q20), the pair of the start states of M1 and M2

• Accept state: F = {(q1f , �2)} ∪ {�1, q2f }, where �1 can be some arbitrary state of M1

and �2 can be some arbitrary state of M2

6

92 6 Automata

Fig. 6.17 Producer–consumer
model

• Transitions: Let Σ ′ = Σ1 ∩ Σ2.

δ((p, r), x) =
⎧
⎨

⎩

(δ1(p, x), δ2(r, x)) if x ∈ Σ ′
(δ1(p, x), r) if x ∈ Σ1 \ Σ ′
(p, δ2(r, x)) if x ∈ Σ2 \ Σ ′

The action symbols in Σ1 \Σ ′ are internal actions of machine M1 and the symbols in Σ2 \
Σ ′ are internal actions of machine M2. The symbols in Σ ′ are shared by the two machines.
The shared symbols are abstractions for synchronous actions (or communications) between
the two machines. The “intersection” operation is also called the synchronous “product”
operation.

The intersection operation is symmetric. That is, M1 ∩ M2 = M2 ∩ M1. For any three
machines M1, M2, and M3 the transitive property (M1 ∩ M2) ∩ M3 = M1 ∩ (M2 ∩ M3)

holds only when the alphabets of the machines are identical, that is, if Σ1 = Σ2 = Σ3.
The transitive property does not hold for the generalized intersection operation. This is
illustrated in Example 10.

Example 10 A producer process P generates data, and as it generates a datum it puts it
in a buffer Q. A consumer process C removes one datum at a time from the buffer Q for
its consumption. The synchronization here must ensure that process C does not consume
more items than have been produced. Producer P should not add data into the buffer if it
is full and that consumer C will not try to remove data from an empty buffer. The state
machines MP , MQ, and MC in Fig. 6.17, respectively, model the behavior of the three
processes P , Q and C. The state machine model MQ abstracts a buffer of size 1. The action
put is shared between the models MP and MQ, and the action get is shared between the
models MC and MQ. When process P produces an item, it attempts to “put” it into the
buffer and it succeeds only when the buffer is empty. When process C attempts to “get”
an item from the buffer, it succeeds only when the buffer is not empty. Consequently, in

6.2 Nondeterministic Finite Accepters 93

Fig. 6.18 Producer-buffer product: see Fig. 6.17

the product of the three machines MP , MQ, and MC , there cannot be a transition labeled
“put” in a state where “full” is part of state definition, and there cannot be a transition
labeled “get” in a state where “empty” is part of state definition. Since process P starts the
production before it can be consumed by process C, the synchronous product is defined by
(MP ∩ MQ) ∩ MC . Figure 6.18 shows the intersection (MP ∩ MQ). In constructing this
machine, the action restp is internal to machine MP , and actions get and restc are internal
to machine MQ. Figure 6.19 shows the intersection (MP ∩ MQ) ∩ MC . In constructing
this machine, the action restc is internal to machine MC , and actions put and restp are
internal to machine MP ∩ MQ. Notice that in the product machine (MP ∩ MQ) ∩ MC

action “put” never happens in states (−, full,−), and action “get” never happens in states
(−, empty,−), where the symbol ‘−’ stands for arbitrary states of MP and MC . �

6.2.1
Finite State Transducers

An automaton that generates output symbols is called a transducer. Transducers in which
output symbols are associated with transitions are known as Mealy machines [8]. Alter-
nately, if the states in a transducer are associated with output symbols, the machine is
known as a Moore machine [9]. We will continue to use the term finite state machines
for transducers as well. From the state machine model, it is easy to recognize the type of
machine that we use in the model.

Definition 2 A finite state transducer is a FSM

M = (Q,Σ1,Σ2, q0, δ),

where

Q(�= ∅) is a finite set of states,
Σ1 is the input alphabet,
Σ2 is the output alphabet,
q0 ∈ Q is the initial state,

6

94 6 Automata

Fig. 6.19 Producer-buffer-consumer product: see Figs. 6.17 and 6.18

δ : Q × Σ1 → P(Q × Σ2), where for every state q ∈ Q and for every symbol x ∈ Σ ,
δ(q, x) defines a set of pairs {(q ′, y)}. That is, the transition from state q to state q ′

produces the output y. This is also denoted by q
x/y−−→ q ′.

In Fig. 6.20(a), the next state is uniquely defined for a given state, input, and output. Such a
machine is called pseudo nondeterministic FSM. The nondeterministic FSM in Fig. 6.20(b)
is equivalent to the deterministic FSM Fig. 6.20(c).

Modeling Controllers with Discrete and Continuous Behaviors Finite state machine
models are often used to model the behavior of controllers. A controller may interact with
several objects in its environment. So, controller models must be constructed in order that
its interaction models can be understood by manual inspection as well as reasoned about
by mechanical means. Transducer models are helpful for user interactions. The interactions
between a controller and its environmental objects may be either discrete or continuous.
Two examples are discussed below to illustrate the features of typical controllers.

6.2 Nondeterministic Finite Accepters 95

Fig. 6.20 Finite state
transducers

Example 11 We consider a 60-minute parking-meter example and give a model of inter-
action between the parking meter and a user, and a different model of interaction between
the parking meter and a police officer.

A parking meter accepts 25 cents and one dollar coins. Feeding the machine with coins
of these types are denoted by the actions “25c” and “1d”. The parking meter rejects all other
coin types. For 25 cents the parking time is 5 minutes and for 1 dollar the parking time is
20 minutes. The maximum parking time that can be bought at one instant cannot exceed
60 minutes. Each time the user feeds a coin into the parking meter, the user must be able
to observe the pre- and post-states of the parking meter. The parking meter should also
display at any instant the amount of parking time remaining. For the sake of simplicity,
we assume that the dial of the parking meter displays time in units of 5 minutes. This
assumption is justified because the minimum duration of parking time that can be rented
by the user is 5 minutes. The display handle’s movement is atomic, happening once every
5 minutes. With these assumptions let us consider the set of states, input alphabet, output
alphabet, and transitions.

6

96 6 Automata

Fig. 6.21 Parking-meter model for user interaction

States: At any instant, the machine should display i, i ∈ {0,5,10, . . . ,60}, where i is

the time remaining for legal parking. So, the set of states is Q = {Park[0],Park[5], . . . ,
Park[60]}
Initial State: Park[0]
Input: The user actions are feeding coins, denoted by 25c and 1d . In the absence of a user

interaction, the machine stays in its initial state by repeatedly triggering the ε-transition.

The other parking-meter action is to decrement time (internally), denoted by dec. Although

the time is continuously changing, due to the atomicity assumption, its internal action dec

is made visible only at every 5 minutes. Hence Σ1 = {25c,1d,dec, ε}, where 25c and 1d

are user actions in feeding the parking meter, and dec is the action of the parking meter.

Output: The output generated by the parking meter in every state is the amount of time

left for parking. The signal “expired” indicates that no more parking time is left. Thus,

Σ2 = {expired,5,10, . . . ,60}.

6.2 Nondeterministic Finite Accepters 97

Transitions: The parking-meter model is a deterministic finite state machine. In the de-
scription below, assume i ∈ {0,5,10, . . . ,60}.

δ(Park[i], x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Park[0], expired) if x = ε ∧ i = 0

(Park[0], expired) if x = dec ∧ i = 5

(Park[i − 5], i − 5)) if x = dec ∧ i > 5

(Park[i + 5], i + 5) if x = 25c ∧ (0 ≤ i < 60)

(Park[60],60) if x = 25c ∧ i = 60

(Park[i + 20], i + 20) if x = 1d ∧ (0 ≤ i ≤ 40)

(Park[60],60) if x = 1d ∧ (45 ≤ i ≤ 60

A police officer’s view of the parking meter does not have to show all the states; instead
it should project the view whether or not the parking time bought by a user has expired. It
is sufficient to model the parking meter with three states Park[0], Park[5], and Park[∞],
where Park[0] is the initial state, Park[5] is the state in which 5 minutes of parking remains,
and Park[∞] is the state where more than 5 minutes of parking remains. The rationale for
this choice of states is that a policeman should monitor the parking meter when the time
remaining is not more than 5 minutes. The input alphabet is the same as in the previous
model. The output alphabet Σ2 is redefined as the set {red,green} with two signals. The
transitions are redefined as follows:

δ(Park[i], x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Park[0], red) if x = ε ∧ i = 0

(Park[0], red) if x = dec ∧ i = 5

(Park[5],green) if x = dec ∧ i = ∞
(Park[∞],green) if x = dec ∧ i = ∞
(Park[5],green) if x = 25c ∧ (i = 0)

(Park[∞],green) if x = 1d ∧ i = 0

(Park[∞],green) if (x = 25c ∨ x = 1d) ∧ (i = 1 ∨ i = ∞) �

Figure 6.21(a) shows part of the deterministic finite state machine model for user inter-
action (car driver parking a car), and Fig. 6.21(b) shows the nondeterministic finite state
machine model for policeman’s comprehension to perform his duty.

The parking-meter models have several incompleteness. They do not reveal how it will
be used in ticketing a parking violation. In order to enforce ticketing for a parking viola-
tion, we need a model of policeman’s monitoring the parking meter and require that only
one car can be parked in the parking space associated with the parking meter. The police-
man should issue the ticket only if the parking space is occupied when the parking meter
displays “red”. In order to enforce this property, we need to compose the three machines:
(1) the state machine that models the policeman’s view of the parking meter, (2) the state
machine model of the policeman’s duty, and (3) the state machine that models the police-
man’s view of the parking space. Below we sketch some of the details involved, leaving
the rest for exercises.

Figure 6.22(a) shows a simple model of the policeman’s monitoring behavior. It is a
pseudo nondeterministic finite state machine with states {idle,active}. The initial state is

6

98 6 Automata

Fig. 6.22 Policeman’s view of the parking space

idle. The transitions from state idle to state active are labeled by the action wakes with
outputs ticket and ignore. The transitions from state active to state idle are labeled by the
action sleeps with output symbols noticket and ignore.

A model of the policeman’s view of the parking space is shown in Fig. 6.22(b). It
is a finite state machine with two states {free,occupied}. The transition from state free
to state occupied is labeled by the action arrives. The transition from state occupied to
state free is labeled by the action leaves. Since the policeman should watch the parking
machine and the parking space as a whole, the “police man machine” should be composed
(in any order) with the nondeterministic “parking-meter machine” and the “parking space
machine”. The “intersection rule” for composition of state machines should be adapted to
include the output of one machine with the other. We explain the procedure in Example 12.
From the way composition is defined, it is understood that composition of state machines
with outputs is not in general commutative. With the partial interaction scenario of the
policeman monitoring the parking meter shown in Fig. 6.23, we should combine the arrival
and departure of cars in the parking space in order to get the total interaction among the
objects policeman, parking meter, and parking space.

Example 12 States:

Q = {(idle,Park[0]), (idle,Park[5]), (idle,more), (active,Park[0]), (active,Park[5]),
(active,more)}

Initial state: (idle,Park[0])
Input: Every input is a pair of labels, one that labels a transition of the “policeman ma-
chine” (PO) and the other that labels the “parking-meter machine” (PA).
Output: The output symbols are the output symbols of the “policeman machine”, be-
cause the result of monitoring the parking meter is an action by the policeman. Σ2 =
{ticket,noticket, ignore}.
Transitions:

δ(idle,Park[0]), (wakes, x) =

⎧
⎪⎪⎨

⎪⎪⎩

((active,Park[0]), ticket) if x = dec/red
((active,Park[0]), ignore) if x = ε/red
((active,Park[5]), ignore) if x = �/green
((active,more), ignore) if x = �/green

6.2 Nondeterministic Finite Accepters 99

Fig. 6.23 Interaction between policeman and parking meter: Example 12

δ(idle,Park[5]), (wakes, x) =
{

((active,Park[5]), ticket) if x = dec/red
((active,more), ignore) if x = �/green

δ(idle,more), (wakes, x) = {
((active,more), ignore) if x = �/green

δ(active,Park[0]), (sleeps, x) =
⎧
⎨

⎩

((idle,Park[0]),noticket) if x = �/red
((idle,Park[5]), ignore) if x = �/green
((idle,more), ignore) if x = �/green

δ(active,Park[5]), (sleeps, x) =
{

((idle,Park[0]),noticket) if x = dec/red
((idle,more), ignore) if x = �/green

δ(active,more), (sleeps, x) = {
((idle,more), ignore) if x = �/green �

An important feature to be observed of the parking-meter model is its discrete time behav-
ior. Clock or timer is not explicitly modeled; instead we assumed that in each state there is
a timer which runs for 5 minutes. When a state is entered through dec transition, the timer
in that state starts decreasing, and when the state is entered through 25c,1d transitions, the
timer is initialized to 5 minutes.

In Example 13, we model the hybrid behavior of a controller that continually monitors
the level of water in a tank and at discrete time instances commands the drain and water
valves to open or close. The FSM model of the controller abstracts the continuous passage
of time, not with timers, but with events. The nature of “water flow” is continuous. The flow
of water into a tank is stopped or allowed through the actions of “opening” and “closing” of
valves. These actions happen “instantaneously”, and hence are “discrete time” events. Thus
the FSM model in Example 13 captures the hybrid behavior of the water-level monitor.

6

100 6 Automata

Fig. 6.24 Finite state machine for a water-level controller

Fig. 6.25 Finite state machines for source valve, drain valve, and alarm

Example 13 The controller that monitors water level in a tank must ensure at all times that
the water level is maintained between specified limits [low, high] in a tank. Whenever the
level of water is at its maximum (denoted “high”), the controller should command the valve
to open in order to drain the water. Whenever the level of water is at its minimum (denoted
“low”), the controller should command the valve to close in order to allow the water to
flow into the tank. Since water flow is a continuous phenomena, the monitoring act is a
continuous action. Based on these requirements, the states and transitions are chosen for
the FSM model in Fig. 6.24.

In its initial state, it may detect water flowing into the tank or flowing out of the tank. In
the former case, it changes its state to monitoring-high, and in the latter case, it changes its
state to monitoring-low. It stays in the monitoring-high state as long as the level of water
is in the range [low, high]. If the water level exceeds high, it changes its state to control-
close, wherein it will close the valve of the water pipe and open the valve of the drain pipe.
This triggers the event flow-out, which takes the controller to the state monitoring-low. The
controller stays in this state as long as the water level is above low. When the water level
goes below low, it transits to the state control-open, where it will ensure that the valve for
drain pipe is closed and the valve for water pipe is open. This triggers the event flow-in and
the controller transits to the state of monitoring the water level at monitoring-high. Hence,
the controller cycles through the activities of monitoring water levels, and controlling the
valves of the source and the drain. �

6.3 Exercises 101

The FSM model in Fig. 6.24 includes assumptions about the behavior of the source
valve and the drain valve. We specify their behaviors independently in Fig. 6.25. We add
an alarm subsystem in the water-level control system to enrich the model and compose
these models with the controller machine shown in Fig. 6.24. The semantics of composi-
tion clarifies the behavior of the composite machine whose components are the controller,
source-valve, drain-valve, and alarm. When the water level is detected to be above high,
the event above causes simultaneous transitions in four machines as follows: the controller
machine changes state from monitoring-high to control-close; the source-valve changes
state from on to off, signifying the closing of the water pipe; the drain-valve changes state
from closed to open, to let the water flow out of the tank; the alarm changes state from
stop-ringing to start-ringing. The system monitors the water level and the alarm is off
while the water is flowing out. When the water level is detected to be below low, the event
below causes simultaneous transitions in the four machines, causing the alarm to sound,
the drain valve to close, and the source valve to open. The system returns to the state of
monitoring the water-level while the water flows in, and consequently, the alarm stops.

6.3
Exercises

1. Construct a nfa with a single final state that accepts the set of strings {x} ∪ {yn | n ≥ 1}.
2. A safe has a combination lock that can be in one of four positions 1, 2, 3, and 4. The dial

can be turned clockwise (C) or anticlockwise (A). Assume that the correct combination
to the lock is the sequence 〈1C,4A,3C,2A〉 and that any other combination will trigger
an alarm. Devise a finite state machine to specify the behavior of the lock.

3. Construct a finite state machine for recognizing the pattern “raininspain”.
4. Convert the nfa defined below to an equivalent dfa.

States: Q = {q0, q1, q2}
Initial State: q0

Accept State: q2

Transitions:

δ(q0, a) = q1 δ(q0, ε) = q2

δ(q1, a) = q1 δ(q1, a) = q2

δ(q1, b) = q0 δ(q2, a) = q2

δ(q2, b) = q2 δ(q2, ε) = q1

5. Define state variables max, hide, and active of type Boolean for the state machine
model of the window manager in Example 7. For each state in Fig. 6.8, specify the
values for the state variables.

6. Give a state machine model of ATM with the following functionalities:

• it reads a bank card
• if it is a valid card, it provides two options for the user: deposit, withdrawal
• if the option deposit is chosen, the following sequence of actions are possible:

6

102 6 Automata

– the machine gives three options: $20, $50, $100, and the user is allowed to choose
only one option

– if the user chooses $20 option then a $20 must be fed into the machine, if the user
chooses $50 option then a $50 must be fed into the machine, if the user chooses
$100 option then a $100 must be fed into the machine, and any other action is
illegal which will terminate user session and the card is returned

– if the option is exercised correctly, the machine returns a receipt and the card
• if the option withdrawal is chosen, the following sequence of actions are possible:

– the machine gives three options: $40, $100, $200, and the user is allowed to choose
only one option

– choosing any other action is illegal which will terminate user session and the card
is returned

– if the option is exercised correctly, the machine returns cash, a receipt and the card

7. Assume that a machine produces chips and stores it in a warehouse (buffer). Whenever
the chips (vending) machine CS in Example 9 dispenses a chip, it automatically gets a
replacement from the warehouse. Discuss the interaction behavior between chips pro-
ducer, buffer, and CS machine. What assumptions are necessary to ensure that the CS
vending machine will always get replacement chips?

8. Specify the behavior of a printer and its monitor which function synchronously: the
printer is controlled by the monitor to print one job at a time; the printer prints the
header of a file and then prints its contents; while the printer is printing, all requests are
received by the monitor, which maintains a queue of jobs; the monitor removes the first
job in the queue when the printer is ready for printing.

9. Construct the state machine that shows the interaction between the policeman-parking-
meter machine (Fig. 6.23) and parking lot machine (Fig. 6.22). In the model verify
informally that when the parking space is occupied, the parking meter shows red, the
policeman gives a ticket to the parked vehicle.

6.4
Bibliographic Notes

Automata and the variants of finite state machines have been studied for a long time in
language theory, and formal specifications. Automata theory, languages, and Turing ma-
chine, which is an automaton with a tape, have been discussed in many books, most notably
in [5]. It is known that every nfa has an equivalent dfa [5], yet nondeterministic finite state
machines have more clarity and expressive power than deterministic finite state machines
to model software interactions with its environment. The sound theory behind finite state
machines lends to reasoning about a variety of issues such as reachability, recognition, and
regulated executions. Their graphical representations, often called state diagrams, appeal
both to the theorists as well as to practitioners. The size complexity, often experienced in
graphical representations can be overcome by resorting to the pure algebraic representa-
tions. Conversely, when state diagrams are necessary to elucidate a theoretical investigation

References 103

the graphical representation becomes an aid for better comprehension and deeper insight.
Since state diagrams are graphs, the full power of graph theory is available for a formal
analysis of its properties.

Many extensions to basic automaton have been studied during the last 50 years. Some
of these we studied in this chapter, and another extension called “extended finite state
machines” will be studied in the next chapter. The other kinds of automata that have the
expressive power to model complex systems are probabilistic automata (PA), Büchi au-
tomata (BA), and timed automata (TA), and real-time automata (RTA). The probabilistic
automaton (PA) introduced by Rabin [10] is a generalization of the nondeterministic finite
automaton. A transition includes the probability that it might happen. Thus the automata is
turned into a transition matrix or stochastic matrix. A probabilistic automaton recognizes
Markov chains. PAs are useful for modeling evolving systems for which exact predictive
rules may not exist. In 1962 Büchi [3] introduced a new automaton which is an extension
of a finite state automaton to infinite inputs. It accepts an infinite input sequence if and only
if there exists a run of the automaton which visits at least one of the final states infinitely
often. Recall that in case of a deterministic automaton, there is exactly one possible run to
the final state. The theory of Büchi automata is the basic formalism for model checking,
which we study in Chap. 15. Alur and Dill [1] introduced TA, a variant of dfa that includes
the notion of time. In this model, each input symbol occurs at a certain time. A state transi-
tion depends both on the symbol and the time at which the symbol is input. Time values are
modeled by natural numbers. A TA includes a finite number of synchronous clocks and a
boolean constraint on the clock values for each transition. A real-time automaton [4] (RTA)
is a TA with only one clock that represents the time delay between two consecutive events.
A transition is constrained by a guard, an interval of time within which the transition must
be fired.

References

1. Alur R, Dill D (1991) The theory of timed automata. In: de Bakker JW, Huizing C, de Roever
WP, Rozenberg G (eds) Real-time: theory in practice. LNCS, vol 600, pp 74–106

2. Boyer RS, Moore JS (1977) A fast string searching algorithm. Commun ACM 20:762–772
3. Büchi JR (1989) Finite automata, their algebras and grammars: towards a theory of formal

expressions. Springer, New York. Published posthumously
4. Dima C (2001) Real-time automata. J Autom Lang Comb 6(1):3–23
5. Hopcroft J, Ullman J (1979) Introduction to automata theory, languages, and computation.

Addison Wesley, Reading
6. Knuth D, Morris JH Jr., Pratt V (1977) Fast pattern matching in strings. SIAM J Comput

6(2):323–350
7. Martin J (2003) Introduction to languages and the theory of computation, 3rd edn. McGraw-

Hill, New York
8. Mealy GH (1955) A method to synthesizing sequential circuits. Bell Syst Tech J 1045–1079
9. Moore EF (1956) Gedanken-experiments on sequential machines. Automata studies. Ann

Math Stud 34:129–153
10. Rabin MO (1963) Probabilistic automata. Inf Control 6:230–245

Extended Finite State Machine 7

The FSM models we have considered, in spite of many extensions to basic automaton, fall
short in many aspects. They have to be extended further, as broadly outlined below, in order
to model complex system behavior.

• State space: The previous models become difficult to comprehend when the number of
states and transitions increase. We need a notation to contain the state space complexity
and help us develop state diagrams in modular and hierarchical fashion. Modularity
helps encapsulation and hierarchy introduces refinement.

• State variables: The previous models do not allow variables in the model. We need to be
able to introduce state variables in FSM models, and manipulate them in different states
according to the transition logic. Introducing a state variable in the container model dis-
cussed in Example 6, Chap. 6, will enable us to observe the container size as a computed
value, rather than just guess it from the state name. The model extended with variables
will allow us to define a range of arithmetic and logical operators to manipulate state
variables and trigger transitions based on logical primitives. It should also be possible to
transfer variable values from one model to another model. In a sequential composition, a
value output by one machine can be consumed by the other machine in the composition.

• Generality of transitions: The previous models allow only symbols or actions (events)
as transition labels. With this convention, we cannot model requirements that involve
conditions. With the introduction of variables, conditions may be used to label transi-
tions with or without transition labels. As an example, with the introduction of the timer
variable in the parking-meter model discussed in Example 11, Chap. 6, we can assert
that the transition dec should be enabled when timer = 0. We can replace the label dec,
if necessary, with the condition timer = 0.

• Introducing output actions: In a state, the output should be allowed to be any instruction
or action rather than just symbol. Output instructions are internal to the model and output
actions may be shared with another FSM model. It is better to use declarative, rather than
operational, style for specifying actions.

The prime virtue of the FSM approach is that it can be used to model several layers
of abstractions. We want to emphasize this aspect further in this chapter by introducing
“top-down” and “bottom-up” FSM development. In a top-down approach, a state may be

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_7, © Springer-Verlag London Limited 2011

105

7

106 7 Extended Finite State Machine

replaced with a finite state machine. If we want to prune a state machine view, we can
combine states into a super-state, combine transitions as a result of it, and provide access
points (selectors) for navigating specific transitions in the pruned FSM. Such an approach
is similar to the transformation of a nondeterministic FSM to a deterministic FSM. These
extended notations when combined with the operators “choice”, “repetition”, and “inter-
section” provide us with a rich language for modeling complex systems in a bottom-up
manner. A FSM extended as explained above will be called an Extended Finite State Ma-
chine and has the following definition.

Definition 1 An Extended Finite State Machine (EFSM) is defined by the tuple

M = (Q,Σ1,Σ2, I ,V ,Λ),

where

1. Q(�= ∅) is a finite set of states. A state may be simple (atomic) or composite.
2. Σ1 is a finite set of events.
3. I ⊂ Q is the set of initial states. Every composite state will have an initial state.
4. V is the set of state variables. Every variable x ∈ V is a global variable and can be

accessed at every state q ∈ Q.

5. Λ is a finite set of transitions. A transition λ ∈ Λ is q
e[g]/a−−−→ q ′, where e ∈ Σ1, g is

a condition, called guard, and a ∈ Σ2 is an action. An action is either internal to the
machine or a shared action. An action may be specified declaratively, say as a predicate.
More than one action may be specified as a conjunction of predicates or just listing them
within parentheses {. . .}. The guard must involve only constants and variables defined
in (pre-)state q . In (post-)state q ′ the action a, if specified as a condition, must hold.
If a is specified as an action then in state q ′ the result of the action must satisfy the

state variables. A variable x affected in the transition specification q
e[g]/a−−−→ q ′ will be

denoted x ′ in state q ′.

All parts of a transition label are optional. For example, (1) if the label of a transition is
e/a then g is interpreted to be true, and the transition is enabled when e occurs; (2) if the
label of a transition is [g]/a then the transition may be labeled by ε and is enabled only if
g is true in state q; and (3) if the label of transition is e then the transition is enabled when
e occurs in state q and there is no change in the variables at state q .

In models where the actions are specified as assertions involving the state variables,
we ignore Σ2 in the specification. A bounded buffer model is discussed in Example 1. It
illustrates many of the extended notations mentioned above.

Example 1 A buffer is a queue of items, in which insertions are done at the rear of the
queue and deletions are done at the front of the queue. So, in modeling a finite buffer, we
need to introduce two variables r (rear) and f (front) of type N0, the set of non-negative
integers, and a positive integer constant M that denotes the maximum size allocated for
the buffer. The only two observable states of interest in modeling a buffer are those that,
respectively, correspond to empty buffer and nonempty buffer. The condition r = 0∧f = 0

7.1 State Machine Hierarchy 107

Fig. 7.1 State diagram of
Example 1

must be true in state empty. In state nonEmpty, the condition 0 < r ≤ M is true. An item can
be put in the buffer only if 0 ≤ r < M . Hence the put operation can be done in both states,
the exception is when r = M , which happens in state nonEmpty. An item can be removed
with get operation, if there is at least one item in the queue. That is, a get operation cannot
be done in state empty. In state nonEmpty, a get operation will make the queue empty if
the queue had only one item; otherwise the queue will be nonempty after get operation is
done. After every put operation, the value of variable r is to be incremented by 1, and after
every get operation, the value of variable f is incremented by 1. Hence the EFSM model
shown in Fig. 7.1 is the tuple B = (Q,Σ,q0,V ,Λ), where

Q = {empty,nonEmpty}
Σ = {put,get}
q0 : empty
V = {size}, size : N0

M ∈ N is a constant.
Λ : Transition Specifications

1.
/{f=0∧r=0}−−−−−−−→ empty

2. empty
put/r′=r+1−−−−−−→ nonEmpty

3. nonEmpty
put[r<M]/r′=r+1−−−−−−−−−−→ nonEmpty

4. nonEmpty
get[r≥f+1∧r<M]/f′=f+1−−−−−−−−−−−−−−→ nonEmpty

5. nonEmpty
get[f+1=M]/{r′=0∧f′=0}−−−−−−−−−−−−−−→ empty

�

7.1
State Machine Hierarchy

A state machine M at one level of abstraction can be refined to another machine M ′ at
a more concrete level by replacing a state q in M with a state machine qM . Such a state
where refinement takes place is called a complex state. A state that cannot be refined further
is called a simple state. In a refinement of state q of machine M , all incoming transitions
to state q can be dealt with in two ways: (1) they become transitions to the initial state
(newly created) of the machine qM , (2) they become direct transitions to sub-states of q .
The outgoing transitions from q of machine M are replaced with new transitions, going out

7

108 7 Extended Finite State Machine

Fig. 7.2 Basic telephone and
first refinement of state
ringing: Example 2

of the states of the machine qM , to states in machine M . The resulting machine M ′ displays
a more detailed behavior of the machine M . That is, state refinement leads from an abstract
model to a concrete model and incrementally adds behavior. Example 2 discusses a simple
abstract model of a telephone, and shows the refinements of two of its states.

Example 2 Figure 7.2(a) shows the EFSM of a basic telephone. The telephone is activated
or deactivated by a user. In its initial state idle, if the telephone is activated by the event
offHook, a call is initiated through an interaction with telephone exchange. The activity
related to initiation of a call goes on in the state initCall. After a call is completed, the
event OnHook returns the telephone from state initCall to idle state. During an incoming
call, the telephone starts ringing at state idle and it may stop ringing after a while. The
events ring and stop may happen alternately unless the telephone is picked up while it
is ringing. The activity related to receiving a call goes on in the state rcvCall when the
transition labeled offHook is enabled in state ringing. This basic behavior model is shown
in Fig. 7.2(a). In this model, it is possible to refine all states. We discuss two successive
refinements of state ringing and one refinement of state idle; rest are left for exercises.

First refinement of state ringing
State ringing can be refined by introducing an “answer” feature. That is, after a time delay
an answering machine responds to the call with a message. The refined EFSM is shown
in Fig. 7.2(b). The state ringing becomes a new EFSM with two states wait and answer.
The state wait is its initial state, in which the machine waits for two units of time before
the transition start takes it to state answer. In state answer, a message MSG is output.
Therefore the basic telephone model is enriched as follows:

7.1 State Machine Hierarchy 109

1. Constant Introduction: MSG: constant
2. Variable Introduction: timer : N

3. New Transition Specifications:

idle
ring/timer=0−−−−−−−→ wait

wait
start[timer>2]/MSG−−−−−−−−−−−→ answer

With the semantics that the incoming transition to the complex state ringing becomes the
incoming transition to the initial state wait, and an outgoing transition from state ringing
will become an outgoing transition from every state in the refinement, only one of follow-
ing behaviors is possible in the refined model.

• message completed: the answering machine outputs the message MSG and transition
stop occurs to take the phone to the idle state, or

• message interrupted: while the message MSG is being output transition offHook occurs
to begin the activity of receiving the call in state revCall, or

• message not entered: before transition start is enabled the transition offHook occurs that
begins the activity of receiving the call in state revCall.

Refinement of state idle and second refinement of state ringing
The new state answer obtained in the first refinement of state ringing is refined to model

both the announcement of the recorded message and the recording of the user message. The
initial state in the refinement is announce and the other state is record. A new transition
labeled by the event toRecord from state announce to state record is introduced. A variable
msgIn of type Bool is introduced. The event toRecord should occur within one to five
time units from the instant the announcement was started by start event. Its effect is to
set the value of msgIn to true, signifying the presence of a recorded message. Hence, the
refinement of state answer changes the transition specification

wait
start[timer>2]/MSG−−−−−−−−−−−→ answer

to

wait
start[timer>2]/{MSG,msgIn′=false}−−−−−−−−−−−−−−−−−−−−→ answer

The new transition introduced by the refinement is

announce
toRec[timer<5]/msgIn′=true−−−−−−−−−−−−−−−−→ record

In order that a user can check for recorded messages in the idle state, we refine it to an
EFSM with three states: noMessg (initial state), Messg, and playing. The status of the
Boolean variable msgIn determines the state change at state noMessg. Figure 7.3 shows
the refinements. �

7

110 7 Extended Finite State Machine

Fig. 7.3 Second refinement of state ringing: Example 2

7.1.1
Menu-Driven User Interface Model

EFSM is an appropriate formalism for modeling interactive systems. The grammar of elec-
tronic test_request_form in Table 5.2, Chap. 5 can be expanded in a top-down manner to
understand the user-interaction points in its structure. Although the form may be used in
different ways, an EFSM model can be given to constrain user-interaction behavior in
completing the electronic form in a manner that is consistent with the grammar. So, the
model that we construct includes states for user-interaction points, in addition to system
states induced by the grammar. The purpose of user-interaction points is to explicitly show
the stages of user interaction, a prime concept in user interface design. A user-interaction
point is an environmental state, and must be distinguished from an object state. In the
EFSM model, a circle is used to denote user-interaction points. A state representing a root
of a hierarchy of states is shown as a rectangle with two borders; all other states are shown
as simple rectangles. A rectangle containing an asterisk symbol denotes an initial state.

Initial Model
A test_request_form constructed according to the state transition diagram in Fig. 7.4 con-
forms to the rules of the grammar described in Table 5.2, Chap. 5. Corresponding to each
non-terminal of the grammar, there exists a transition leading to a state in the state tran-
sition diagram. For example, the transition test leading into test-layout corresponds to the
non-terminal test. Terminals are not included in the state transition diagram; they can be
mapped to concrete representations at the time of user interaction. Additional states, such
as refresh and display, and user-interaction points such as choose are included in the state
transition diagram to illustrate the steps in the design process.

7.1 State Machine Hierarchy 111

Fig. 7.4 State transition diagram for Test_Request_Form

When the event enter_test_request_form occurs in the initial state, the new state re-
fresh and display is entered. The behavior in this state is the presentation of a refreshed
window to the user. The transition from this state to the user-interaction point choose
occurs automatically, where a user has a choice of creating one of the three layouts in
test_request_form. The action CREATE_TESTLAYOUT is performed in state S3: test-
layout; the action CREATE_PATIENTLAYOUT is performed in state S4: patient_layout;
and the action CREATE_LABLAYOUT is performed in state S5: lab_layout. These three
states are super-states, and can be refined. The states S6: close_form, S7: check_form, and
S8: display_form do not correspond to grammar rules. These states correspond to the de-
sign steps describing the actions performed on the test_request_form after exiting from the
process of completing the components of the test_request_form.

Refinement
Having developed a high-level model, the next step is to refine composite states. The re-
finement of the composite state S3 is shown in Fig. 7.5. The terminal TEST in the grammar

7

112 7 Extended Finite State Machine

Fig. 7.5 Refinement of super-state S3 in Fig. 7.4

rule for test is mapped to the concrete textual representation “TEST” in the form. At the
user-interaction point entered from the initial state create test-layout, the user can choose
one of several options for creating this part of the form. Choosing an option other than exit
causes the object to enter one of the super-states—3.3: code inf, 3.4: type inf, 3.5: order
inf, 3.6: status inf, 3.7: date inf, 3.8: time inf. These super-states are the states caused by
transitions labeled by events corresponding to the non-terminals in the grammar rule for
test. These super-states can be refined further using the grammar rules. The states close
text, check text, and display text do not correspond to grammar rules; instead, they corre-
spond to the design steps requiring further action on the completed form. Each super-state
is further refined to a state transition diagram. This process continues until we arrive at
state transition diagrams containing only simple states. See Fig. 7.6(b), which shows a
refinement of the state 3.3: code info.

Adding More Details
When semantically incorrect information or syntactically incorrect information is entered
in the test_request_form, there needs to be a way of recovering from the error and con-
tinuing the activity from the latest valid state entered. This can be done by introducing a
new state abort, and adding transitions from all other states to the abort state. Although the
inclusion of this new state adds only little information to the model, the complexity of the
model is significantly increased with the introduction of a large number of transitions. Once
again, these can be resolved using hierarchical state structures as shown in Fig. 7.6(a). The
highest level of the machine has two states, a simple state abort, and a super-state normal.

7.2 Modularity and Bottom-up Construction 113

Fig. 7.6 Refining composite states

The super-state normal corresponds to the state machine shown in Fig. 7.4, and is further
refined in Figs. 7.5 and 7.6(b). There are two initial transitions in Fig. 7.6(a) showing that
normal is the initial state at the top level, and it also contains an initial state among its
sub-states. At every level of refinement there is an initial state. The transition labeled error
is from the super-state normal, and hence from all its sub-states, to the state abort. The
transition labeled recover is from the state abort to the initial state of the state normal. The
transition labeled abandon is from the state abort to the terminal state done.

7.2
Modularity and Bottom-up Construction

In many applications, there exists a strong interaction among domain objects, and the large
number of domain objects and their features will make the interaction model quite com-
plex. For example, in telephony if the handset of the telephone with a speaker phone at-
tached to it is off the hook, both a busy dial tone and speaker noise are possible. In con-
trast, the interaction between the chips vending machine and the drinks vending machine
modeled in Chap. 6 is weak, because if one of them is out of order it does not affect the
outcome of the other machine. As in software design, modular modeling will help to re-
duce the complexity of modeling strong interactions. In case of weak interactions between
objects, modular modeling is the natural choice. In general, modular modeling is the key
for bottom-up construction of large models. Modularity reduces the complexity in model-
ing complex interactions and is likely to achieve completeness in the model. Example 3
illustrates this point.

A modular modeling starts at the domain level, where a model for each object is devel-
oped by exclusively focusing on its possible uses in the family of related applications in
that domain. All objects that have potential interactions with a specific object are identified,
and the nature of interactions are specified in the model. Each object may be encapsulated
as a software component. A formal component definition, as given in [12, 13], will include
the requirements specification and the desired properties of the object encapsulated in it.
The component models of objects may be refined to bring out the detailed nature of in-
teraction explicit in the models. These are achieved by introducing shared events, shared

7

114 7 Extended Finite State Machine

variables, and compatible constraints on them. The behavior for each component is spec-
ified using the extended state machine formalism. If two objects interact then their corre-
sponding components should be composed. The behavior of the composed component is
given by the composition of the extended state machines corresponding to the components
in the composition. In Chap. 6, compositions for the operators choice, sequential compo-
sition, repetition, and product are given. We use the term “product” to denote generalized
“intersection”.

Example 3 While discussing domain abstraction in Chap. 4, a view of the car domain
consisting of the four applications anti-lock braking, cruise control, stability control, and
fingerprint security was introduced. The domain modeling phase for each application will
produce a model for each entity of interest for that application and its relationship to dif-
ferent functional and nonfunctional requirements of that application. For each object in
each application in the model, a component is designed. The behavior of each component
is specified by an extended finite state machine. Below we illustrate these steps for the two
applications cruise control and anti-lock braking systems, which have interacting events.

Cruise Control System (CCS)
The cruise control system (CCS) in a car is a multi-function computer system which auto-
matically manages the speed of the car. It consists of four parts: Accelerator pedal (AP),
Brake pedal (BP), Dashboard (DB), and Controller (CO). By stepping on to the AP the
vehicle goes faster, and by releasing the pedal the vehicle slows down. So, AP has two
states, which are named idle and goFaster as in Fig. 7.7(a). The transition specifications
are

idle
accelerate−−−−−→ goFaster

goFaster
accelerate−−−−−→ goFaster

goFaster
releasePedal−−−−−−→ idle

BP has two states corresponding to ‘brake is not applied’ and ‘brake is applied’ as in
Fig. 7.7(b). Its transition specifications are similar to that of AP.

DB is the interface to interact with CCS. It has four buttons with the following func-
tionalities.

• On and Off : The on button gets the car ready to accept a cruising control command. The
off button turns the cruise control off.

• Set-Accel: The Set-Accel has a dual function. If the car is at the enabling state, which
means the On button has been pushed, then the cruising control will start and CCS will
fix and maintain the speed that the car is currently driving. If the car is in cruise control
state and the Set-Accel button is hit, then holding down the Set-Accel button will make
the car accelerate faster.

• Resume-Decel: If the car driver hits the brake pedal while in cruising state, CCS will be
at disable state. Hitting the Resume-Decel button at the disable state will command the
car to accelerate back to the most recent speed setting. If the car is in cruise control state
and the Resume-Decel button is hit, then holding down the Resume-Decel button will
make the car decelerate.

7.2 Modularity and Bottom-up Construction 115

Fig. 7.7 Cruise control system

The transition specifications of DB are given below.

idle
on−→ turnOn

idle
off−→ turnOff

turnOn
ε−→ idle

turnOn
ε−→ idle

idle
setAccel−−−−→ turnSA

idle
resumeDecel−−−−−−−→ turnRD

turnSA
ε−→ idle

7

116 7 Extended Finite State Machine

turnRD
ε−→ idle

turnSA
setAccel−−−−→ turnSA

turnRD
resumeDecel−−−−−−−→ turnRD

The complete behavior of DB is shown in Fig. 7.7(c).
When CCS in the car is activated through DB the controller, CO manages the correct

behavior of CCS. When the accelerator pedal is pressed, CCS is disabled and the speed
increases. When the accelerator is released, the CCS resumes at its last set speed. If at any
point of time during acceleration the CCS speed is set, CCS replaces the old set speed with
the new speed. The controller CO has the following safety features:

• CCS is automatically disabled when the car speed is either below 45 kmph or above 160
kmph.

• CCS is automatically disabled when the Anti-Lock Brake system is activated.

Figure 7.7(d) shows the extended finite state machine of the controller for CCS. The transi-
tion specifications, as shown in the figure, can be written down. It is left as an exercise. The
behavior of CCS is the combined behavior of the four state machines shown in Fig. 7.7.

Anti-lock Brake System (ABS)
ABS is a safety system which prevents the wheels from locking up while braking. ABS
senses the driver’s situation (braking or not braking), the status of the car’s wheel (locked or
rotating), the road conditions and other information. Once it detects the locking of a wheel,
it reduces the braking force repeatedly until the wheel starts rotating again. ABS consists
of the components Speed sensor, Valve, Pump, and ABS controller. Their functionalities
are given below:

• Speed sensor provides information about the rotational speed of a wheel. If the wheel is
experiencing a rapid deceleration then the wheel is about to lock up.

• Valve component controls the pressure that is flowing into the brake. It operates in three
modes, open, block, and release. If the valve is in open mode then the pressure will pass
through to the brake. This means the pressure will increase. If the valve is in release
mode then the pressure will be released from the brake. This means that the pressure
will decrease. If the valve is in block mode then the pressure is prevented from raising
further in case the driver pushes the brake pedal harder.

• Pump applies pressure.
• ABS controller component monitors the speed sensors and controls the system.

The ABS system works as follows. Every wheel has a rotational speed sensor which in-
forms ABS when the wheel is locked due to heavy brake or sliding. ABS constantly mon-
itors the speed sensors looking for decelerations in the wheels that are out of the ordinary.
Just before a wheel locks up, it will experience a rapid deceleration. When ABS detects a
wheel rotating significantly slower than the others, it actuates the valves to reduce hydraulic
pressure to the brake at the affected wheel by switching to release mode. Thus it reduces
the braking force on that wheel. The wheel then rotates faster. When the ABS detects that
one wheel is turning significantly faster than the others, it instructs the pump to apply pres-
sure and instructs the valve to switch to open mode. Therefore, the hydraulic pressure to

7.2 Modularity and Bottom-up Construction 117

Fig. 7.8 Anti-lock brake system

the wheel is increased. Consequently, the braking force is reapplied and the wheel slows.
This process is repeated continuously. This gives the system maximum braking power. The
extended finite state machines for these component behaviors are shown in Fig. 7.8. Their
transition specifications can be formally written down. See Exercise.

The event brake is common to both CCS and ABS models. When the event brake is trig-
gered the ABS system will disable the cruise control. This happens when the ABS receives
the event wheelLocked. The transition labeled by wheelLocked issues the event brake as an
output response, which causes the cruise control to go to disable state. Therefore, if cruise
control is active when the car is driven through an icy road and skidding happens then the
ABS is automatically activated and it will apply the brake on the wheels, which eventually
disables the cruise control. �

7

118 7 Extended Finite State Machine

Fig. 7.9 Extended finite state machine model of timed parking meter

7.2.1
Simulation

A modular model is a grey box. Only those states, transitions, and variables that are neces-
sary for an interaction are made observable. Rest of the details are hidden, usually in states
or in internal transitions. Refinement of a modular model can add more details without
affecting the interaction behavior. More details are added by the introduction of variables,
new states while refining a complex state, and adding new transitions. So, a refinement
simulates the behavior of the original model. In general, an EFSM M ′ simulates the be-
havior of an EFSM M , if M ′ can replace M in every environment of its interaction. The
environment cannot distinguish between M ′ and M . We illustrate this principle for the
Parking-Meter model in Fig. 6.21(b), Chap. 6.

We rename the state more by Park[∞]. Informally, we want the new model of Park-
ing Meter to allow any amount of parking time, provided coins are fed to satisfy park-
ing requirement. The event dec is removed from the model; instead variable feed of type
Boolean, and variables timer of type N are introduced in the refined model. The variable
feed will be set to true whenever the Parking Meter is fed with a coin. The variable timer
is assumed to mimic the behavior of a real timer, as in a stop watch. Once a time is set,
the clock in the timer starts winding down. The specification of the refined model is given
below. The timed parking-meter model is shown in Fig. 7.9.

PM = (Q,Σ1,Σ2, q0,V ,Λ),

where

Q = {Park[0],Park[5],Park[∞]}
Σ1 = {ε,25c,1d}
Σ2 = {green, read}
q0 : Park[0]
V = {timer, feed}, timer : N, feed : Boolean
Λ : TransitionSpecifications

1.
[timer=0∧feed=false]/red−−−−−−−−−−−−−−→ Park[0]

2. Park[0] ε[feed=false]/red−−−−−−−−−−→ Park[0]
3. Park[0] 25c[feed=false]/{(timer′=timer+5),(feed′=true),green}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Park[5]
4. Park[0] 1d[feed=false]/{(timer′=60),(feed′=true),green}−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Park[∞]

7.3 Transition Points 119

Fig. 7.10 Modeling message passing between finite state machines

5. Park[5] 25c[feed=true]/{(timer′=timer+5),green}−−−−−−−−−−−−−−−−−−−−−−−→ Park[∞]
6. Park[5] 1d[feed=true]/{(timer′=60),green}−−−−−−−−−−−−−−−−−−−→ Park[∞]
7. Park[∞] 25c[feed=true]/{(timer′=timer+5),green}−−−−−−−−−−−−−−−−−−−−−−−→ Park[∞]
8. Park[∞] 1d[feed=true]/{(timer′=60),green}−−−−−−−−−−−−−−−−−−−→ Park[∞]
9. Park[∞] [timer>5]/green−−−−−−−−−→ Park[∞]

10. Park[∞] [timer=5]/green−−−−−−−−−→ Park[5]
11. Park[5] [0<timer≤5]/green−−−−−−−−−−→ Park[5]
12. Park[5] [timer=0]/red−−−−−−−→ Park[0]

Transition 11 is new in this model; it reflects the continuous passage of time. In the previous
model, dec occurs only at intervals of 5 units of time. The states Park[5] and Park[∞] are
still abstract because the timer action is not explicit. Hence these two states are complex
states and can be refined to explicitly model the timer behavior, as in a stop watch. See
exercise.

7.3
Transition Points

In refining a state q of machine M , we allow all incoming transitions to state q become
transitions to the initial state (newly created) of the machine qM . An alternate approach is
to allow direct transitions between a sub-state of one super-state and a sub-state of another
super-state. The later semantics will require a transition to cross state boundaries and make
the state diagram cluttered with transitions. To simplify the diagrammatic representation,
transition points have been proposed by Selic, Gulleckson, and Ward [16]. This notation,
illustrated in Fig. 7.10, supports the creation of transition points at the boundaries of super-
states, and use of appropriate naming conventions for events flowing across these points.
The transition e7 from state S21 stops at the transition point e71 in S2. The two transitions

7

120 7 Extended Finite State Machine

e711 and e712 continue from the transition point e71 in S1 to the states S11 and S12. The
semantics signifies that if the transition e7 is triggered while S2 is in state S21, then either
S11 or S12 will be the next state in the composed machine. The bonding between events
e7 and e711 (e712) is established by the common transition point e71. The semantics for
transition e7 at S22 is quite similar.

7.4
Case Study—Elevator Control

We construct a hierarchical state machine model for a simplified version of the elevator-
control problem, attributed to Davis [2]. In arriving at a model, we will have illustrated all
the modeling principles discussed in this chapter.

There are n elevators to service a building with m floors. The problem is to develop a
formal specification describing the movement of elevators between floors while satisfying
the following constraints.

1. Each elevator has a set of buttons, one for each floor. The one pressed lightens up, and
causes the elevator to visit the corresponding floor. The illumination is switched off
when the corresponding floor is reached by the elevator.

2. Each floor, except the ground floor and top floor, has two buttons, one to request for an
elevator to go up, and one to request for an elevator to go down. These buttons illuminate
when pressed. The illumination is switched off when an elevator, which can move in
the desired direction, visits the floor.

3. When there are no requests to service, an elevator remains at the floor where it has been.

An important assumption is that the internal mechanism of the elevators guarantees that
in-between two floors an elevator will keep moving without changing direction. There are
three components to be modeled: elevator buttons, floor buttons, and elevator motion.

Elevator Buttons
The language for specifying the buttons, their states and transitions are defined below:

• ebi,j : the button for j th floor in elevator i.
• eboni,j : the state in which ebi,j lightens up.
• eboff i,j : the state in which ebi,j is not illuminated.
• press_ebi,j : the event-type that triggers the transition that occurs when ebi,j is pressed.
• arrives_ati,j : the event-type that triggers the transition that occurs when elevator i ar-

rives at floor j .

The state transition diagram for elevator button ebi,j is shown in Fig. 7.11.

Floor Buttons
Each floor, except the ground floor and the top floor, has two buttons, one for calling an
elevator to go up, and the other to call for an elevator to go down. The language elements
required are:

• fbb,j : the button at floor j for direction b.

7.4 Case Study—Elevator Control 121

Fig. 7.11 Finite state machine
for the j th floor button in
elevator i

Fig. 7.12 Finite state machine
for the button at floor j for
direction b

• fbonb,j : the button fbb,j lightens up.
• fboff b,j : the button fbb,j is not illuminated.
• call_fbb,j : the event-type that triggers the transition identifying that fbb,j is pressed.
• depart_atb,j : the event-type that triggers the transition that occurs when an elevator

going in direction b leaves floor j .

The state transition diagram for floor button fbb,j is shown in Fig. 7.12. The state tran-
sitions for the buttons at the ground floor and at the top floor are similar to each other and
can be derived from the diagram in Fig. 7.12.

Elevator Motion
The observable scenarios for an elevator, with respect to a floor i, are illustrated in
Fig. 7.13, and enumerated here:

1. The elevator moves upwards without stopping.
2. The elevator moves downwards without stopping.
3. The elevator approaches from below, stops, and then continues upwards.
4. The elevator approaches from above, stops, and then continues downwards.
5. The elevator approaches from below, stops, and then continues downwards.
6. The elevator approaches from above, stops, and then continues upwards.
7. The elevator approaches from below, stops, and then waits in the idle state.
8. The elevator approaches from above, stops, and then waits in the idle state.
9. From the idle state, the elevator moves downwards.

10. From the idle state, the elevator moves upwards.

For an observer at a floor, an elevator can be in one of the following states:

1. wait: waits at that floor with its doors closed.
2. stop-idle: stops at that floor; this happens when there is no outstanding request to pro-

cess.
3. stop-up: stops at the floor during its upward motion.
4. stop-down: stops at the floor during its downward motion.
5. approach-up: approaches the floor during its upward motion.
6. approach-down: approaches the floor during its downward motion.
7. exit-up: leaves the floor in its upward motion.
8. exit-down: leaves the floor in its downward motion.

7

122 7 Extended Finite State Machine

Fig. 7.13 Scenarios for elevator motion observed at one floor

When an elevator stops at a floor, and there is no request to process, its doors remain
open. The model assumes that the internal mechanism has a built-in sensor which slows
(or accelerates) an elevator as required. In its upward motion, an elevator goes through the
states exit-up and approach-up before entering one of the states stop-up or stop-idle. The
transition labeled reduce-speed models this state change. The states approach and exit are
observable when a button changes state.

The three states stop-up, stop-down, and stop-idle are combined to create the super-
state stop; the two states approach-up, and approach-down are combined into the super-
state approach; the two states exit-up, and exit-down are combined into the super-state exit.
After stopping at a floor, an elevator leaves with its doors closed. The transition labeled
close-door from the state stop to the state exit models this state change. Finally, when an
elevator is called at a floor, and at that instant there is some elevator in the wait state, the
elevator is made available. This is modeled by the transition labeled call-fb(–,–) from the
state wait to the state stop. This generic model is shown in Fig. 7.14.

However, this model is inaccurate because of the fact that the semantics for a transition
from a super-state S1 to another super-state S2 implies that the transition is from every sub-
state of S1 to every sub-state of S2. This is remedied by showing the transitions relating all
appropriate sub-states, as illustrated by Fig. 7.15. Whenever there is a call for an elevator,
and there is an elevator in the state stop-idle at that instant, its state changes to either stop-
up or stop-down; when there is no such request, it goes into the wait state. This situation
is captured by the transitions labeled called-from-up, called-from-down, change-direction,
and no-request. Figure 7.15 shows several additional transitions relating the sub-states of
the state wait and the state stop. Note that the states stop-up, and stop-down can be modeled
as complex states, and refined to capture the closing of the door of the elevator, as shown
in Fig. 7.16.

Sequential Composition
The state transition diagrams for the elevator as observed at different floors can be com-
posed cyclically (in the usual sequential composition the first and last machines are also
composed) to obtain the state transition diagram for one elevator servicing a given num-
ber of floors. Let Fi denote the state machine for an elevator as observed at floor i. The

7.4 Case Study—Elevator Control 123

Fig. 7.14 Generic state machine model for elevator observed at one floor

transition from the state exit-up of Fi to the state exit-up of Fi+1 corresponds to the case
when the elevator is not stopping at the (i + 1)th floor in its upward motion. The tran-
sition from the state exit-up of Fi to the state approach-up of Fi+1 corresponds to the
case when the elevator is stopping at the (i + 1)th floor. Similar transitions exist between
the state exit-down of Fi and the states exit-down and approach-down of Fi−1. The state
machines corresponding to the ground and top floors are special cases; the states exit-up
and approach-down do not exist in the machine corresponding to the top floor; the states
exit-down and approach-up do not exist in the machine corresponding to the ground floor.
Figure 7.17 shows the composed machine for an elevator servicing four floors. Only the
states and transitions involved in the composition are shown.

For a building with several elevators with identical functionalities, the state machine
specification for all the elevators is given by the product machine E = E1 ×E2 ×· · ·×Ek ,
where Ei is the composed machine for elevator i, and × is the “generalized intersection”
operation discussed in Chap. 6. The elevator system needs to be managed by a controller

7

124 7 Extended Finite State Machine

Fig. 7.15 Generic state machine model for elevator observed at one floor: refinement of Fig. 7.14

so that all requests are serviced in a fair way. This can be accomplished by the controller
maintaining a queue of requests, so as to coordinate the movement of the elevators effi-
ciently.

7.5
Exercises

1. Refine the state rcvCall in Fig. 7.2(a) to model the features (1) a received call may
be put on hold for period x, 2 ≤ x ≤ 4, and (2) a received call may be connected to a
speaker.

7.5 Exercises 125

Fig. 7.16 Refinement of the states stop-up and stop-down in Fig. 7.15

Fig. 7.17 State transition diagram for an elevator servicing four floors

2. Refine the states Park[5] and Park[∞] in Fig. 7.9 to explicitly model the timer behav-
ior.

3. Modify the traffic light model in Fig. 6.6, Chap. 6 to satisfy the following constraints:

• it stays in state red for three units of time,
• it stays in state green for five units of time, and
• it stays in state yellow for one unit of time.

4. Give an EFSM model for a bounded stack. Assume that the maximum size of the stack
is M > 0.

7

126 7 Extended Finite State Machine

5. Give a user interface specification based on EFSM notation for a small library system
capable of performing the following transactions:

• Books can be added, removed, and searched for.
• Books can be loaned, renewed, and reserved.
• Users can be added, removed, and traced for overdue books and unpaid fines.

6. An Automobile Registration System requires a visual user interface, similar to the
electronic form discussed in Example 8, Chap. 5. The requirements are as follows:

• The form should have three sections: Vehicle, Owner, Administration.
• The information in the Vehicle section should include the make, model, year, serial

number, engine capacity, factory price, and color.
• The Owner information should include the name, address, and phone numbers of

the principal owner of the vehicle. It should also include the date of purchase and
the purchase price of the vehicle.

• The Administration section should include the purpose of the vehicle (pleasure or
business), date and place of current registration, registration number of the vehicle,
registration fee, and expiry date of registration.

Design a form, give an extended BNF grammar for generating the form, and derive the
corresponding EFSM showing the user-interaction points.

7. Give a model of a Cash Box which receives cash, accumulates it and displays the
total. Combine this model with Chips Machine discussed in Example 9 of Chap. 6 to
produce the behavior “after completing each transaction, the chips machine deposits
the money received by it in the cash box”.

8. A communication channel receives two types of message, A-message and B-message.
A message of type A-message is delivered within 3 units of time from the instant the
message was received. A message of type B-message is delivered between [3,5] units
of time from the instant the message was received. All messages are delivered strictly
on a first-in-first-out basis. Give an EFSM model for the communication channel.

9. Write the specifications for the transitions in the extended finite state machines given
in Figs. 7.7(c), 7.7(d), and 7.8.

10. A home-heating system consists of a furnace, a thermostat, and a fan for blowing air.
Temperature control is distributed, so that every room has a controller to maintain its
temperature. When the temperature in a room goes below tr − 2, where tr is the de-
sired room temperature, the furnace is turned on. When the temperature in the furnace
reaches a certain limit T , the furnace is shut off and the fan starts blowing the hot air.
The thermostat registers and monitors the room temperature. When the room temper-
ature reaches tr + 2, the furnace is shut off. The fan runs until the furnace temperature
falls to T − 5. Assuming that tr + 2 ≥ T , give an EFSM specification for the system.

11. Arbiter is a mechanism for allocating resources efficiently in concurrent systems. The
purpose of this exercise is to model an arbiter which allocates resources to two pro-
cesses P and Q in such a way that every process eventually gets the requested re-
source. The following constraints apply for resource sharing between processes:

• R is a finite set of resources

7.6 Bibliographic Notes 127

• for r ∈ R there exists tr ∈ N, denoting the maximum utilization time
• a process can request the arbiter for any resource in R

• arbiter will accept all requests from P and Q

• every resource requested by a process should be allocated to it by the arbiter
• a process which received a resource r at time t must return it to the arbiter before

time t + tr .

7.6
Bibliographic Notes

Extended finite state machines have the expressive power to model complex system be-
havior. In order to use them well, their precise semantics must be understood. The Ptolemy
approach [6] and Ptolemy II development framework [11] provide both semantics and tools
for practical usage.

Statecharts [8] and Roomcharts [16] are the earliest two examples of visual formalisms
for EFSM. Many different semantics [9] for Statechart formalism have been studied. An
object-based variant of statechart, adapted and extended by the Unified Modeling Lan-
guage [14], is now called UML statechart. Instead of using UML statechart facility, it is
shown in [17] that a combination of using case diagrams and UML class diagrams can be
converted to an extended finite state machine model. The resulting EFSM is used for gen-
erating test cases for black-box testing of the system implementing the model. The EFSM
is further extended with a data flow modeling mechanism in [7] to the testing of interactive
systems. The KIEL macro editor [15] (URL: http://rtsys.informatik.uni-kiel.de/~rt-kiel) is
a latest graphical editor for the construction, modification, and revision management of
statecharts.

The guards and variables in EFSM can include time variables that model discrete and
continuous behavior of time. The semantics of real-time automata [4] and timed automata
[1] have been tailored to study timed EFSMs. In [5], a variant of Roomchart has been used
to model real-time behavior in UML.

The EFSM model is also used in behavioral specification of hardware models and in
communication protocol specifications. In [10] communication protocols are modeled as
hardware circuits using EFSMs with multi-way synchronization.

References

1. Alur R, Dill D (1991) The theory of timed automata. In: de Bakker JW, Huizing C, de Roever
WP, Rozenberg G (eds) Real-time: theory in practice. LNCS, vol 600, pp 74–106

2. Davis N (1987) Problem # 4: LIFT. In: Fourth international workshop on software specifica-
tion and design, IEEE Computer Soc, Los Alamitos

3. Denert E (1977) Specification and design of dialogue systems with state diagrams. In: Ribbons
D (ed) International computing symposium. North-Holland, Amsterdam, pp 417–424

4. Dima C (2001) Real-time automata. J Autom Lang Comb 6(1):3–23

7

128 7 Extended Finite State Machine

5. Douglass BP (1999) Doing hard time: developing real-time systems with UML, objects,
frameworks, and patterns. Addison Wesley, Reading

6. Eker J, Janneck JW, Lee EA, Liu J, Ludvig J, Neundorffer S, Xiong Y (2003) Taming
heterogeneity—the Ptolemy approach. Proc IEEE 9(12):127–144

7. Fantinato M, Jino M (2003) Applying extended finite state machines in software testing of
interactive systems. In: DSV-IS 2003. LNCS, vol 2844, pp 34–45

8. Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program
8:231–274

9. Harel D, Pnueli A, Schmidt JP, Sherman R (1987) On the formal semantics of statecharts. In:
Proceedings of the second IEEE symposium on logic in computer science, pp 54–64

10. Katagiriy H, Yasumotoz K, Kitajimay A, Higashinoy T, Taniguchiy K (2000) Hardware, im-
plementation of communication protocols modeled by concurrent EFSMs with multiway syn-
chronization. In: Proceedings of the 37th conference on design automation (DAC’00), Los
Angeles, USA

11. Lee EA (2009) Finite state machines and modal models in Ptolemy II. Technical report No
UCB/EECS-2009-151, University of California at Berkeley, November 2009

12. Mohamad M, Alagar V (2010) A component-based development process for trustworthy sys-
tems. J Softw Maint Evol, Res Pract 1–20

13. Mohamad M, Alagar V (2010) A formal approach to for the specification and verification of
trustworthy component-based systems. J Syst Softw

14. OMG Unified Modeling Language (OMG UML) (2009) Superstructure version 2.2
15. Prochnow S, von Hanxleden R (2007) Statechat development beyond WYSIWYG. In: Interna-

tional conference on model driven engineering languages and systems. ACM/IEEE, Nashville
16. Selic B, Gullekson G, Ward PT (1994) Real-time object-oriented modeling. Wiley, New York
17. Sinha A, Paradkar A, Williams C (2007) On generating EFSM models from use cases. In:

Proceedings of sixth international workshop on scenarios and state machines (SCESM’07),
pp 1–8

18. Zave P (1993) Feature interactions and formal specifications in telecommunications. IEEE
Comput 20–30

Classification of Formal Specification
Methods 8

Formal specification methods use languages with mathematically defined syntax and se-
mantics, and offer methods to describe systems and their properties. The strength of a
formal method rests on the level of formality and expressiveness afforded by its specifica-
tion language, and availability of tools that support the method for developing the system
in strict conformance to the system specification. So, a formal method may be placed in its
category depending upon its strength and practical use, which in turn depend on the four
pillars mathematical basis, type of systems, level of formality, and tools support.

8.1
The Four Pillars

The mathematical basis for a formal specification language is either one of the concepts al-
gebra, logic, set theory, and relations or some combination of them. In order to reap the full
benefits of a formal method, the specification language should provide formal extensional
features to adequately address software engineering concerns and allow specifications to
be composable from simple structured units, to be generic and parameterized, and to have
well-described interfaces.

Systems can be broadly classified as sequential, concurrent, distributed, with or with-
out time dimension. A specification language is often designed to best suit the need of a
family of systems under one category in this broad classification. A reactive system may
involve time constraints and exhibit concurrency. A transaction system, such as database
systems and web-based service-oriented systems, is often distributed and involves tim-
ing constraints. Telephone switching systems, control systems, and transportation systems
involve sequential as well as concurrent behavior and they may be governed by strict tim-
ing constraints. Such systems, because of their complex behavior, require languages that
support constructs for specifying concurrent and time constrained interactions. It is not
uncommon to combine one or more specification languages to specify such systems.

A mathematically based language is formal, yet it may or may not include a reasoning
system for verifying system properties. To reason about system behavior, some form of

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_8, © Springer-Verlag London Limited 2011

129

8

130 8 Classification of Formal Specification Methods

logic is necessary. Two well-established approaches to verification are model checking
and theorem proving. Model checking relies on building a finite model of the system and
algorithmically checking that a desired property holds in the model. Theorem proving is
an axiomatic technique in which the system is expressed as a set of axioms and a set of
inference rules, and the desired property is expressed as a theorem to be proved. The proof
appeals only to the axioms and the inference rules in developing a proof of the theorem. The
verification method afforded by a specification language is closely tied to its mathematical
basis. As an example, if the specification language is based on algebra then axiomatic
verification, rather than model checking, is the choice of verification method.

Tools support is essential for integrating formal method with software development.
The specification must be type checked, checked for syntactic correctness, and semanti-
cally analyzed. A specification that is syntactically and semantically error-free should be
subjected to refinement and verification. The former requires both design-time and run-
time tools. The latter will require either a model checker tool or theorem proving tool.
Many specification languages aim for formal verification, and not for system development.
There are many other specification languages which have development tools, but not verifi-
cation tools. There are a few exceptions, such as PVS (Prototype Verification System) [24],
which offer both development and verification support.

8.2
Classification

Based on the work of Wing [35], formal specification languages are broadly categorized
as property-oriented, and model-oriented, which includes the state-machine-oriented case.
A property-oriented approach builds a theory and it is essential to state everything that
needs to be included in the theory. In a model-based approach, mathematical objects are
used to build the model, and hence the properties of those objects can be freely used in the
model.

8.2.1
Property-Oriented Specification Methods

Property-oriented category can be subdivided into two sub-groups, referred to as axiomatic
and algebraic.

In an axiomatic approach, objects are built from types, and operations on types are given
as assertions in first-order predicate logic. That is, axiomatic formal specification defines
the semantics of functions of objects by a description of the relations between different
objects and functions as axioms (predicate-logical formula). The language Anna [18] uses
assertions to annotate Ada programs. These assertions serve to verify the correctness of
Ada programs. TAM’97 (Trace Assertion Method) [17] is a formal method based on as-
sertions for abstract specification of module interfaces. Axiomatic approaches naturally

8.2 Classification 131

lend to verification based on theorem proving method. HOL (Higher-order Logic) [10] is
a language that uses some kind of logical type theory in which system properties can be
specified and verified. PVS language and tool [24] are based on classical typed higher-order
logic. The Coq proof assistant [3] is widely used for checking assertions and for finding
formal proofs from constructive proofs. Z specification language [31] may be viewed as a
mixture of typed set theory and first-order logic, although Z is accepted as a model-based
specification language.

As opposed to axiomatic approaches where logic enters to enrich an already rich math-
ematical basis, such as types, different kinds of logical specification languages exist. These
are closer to logic than to systems they intend to specify. Examples of such languages in-
clude Temporal Logic [20] for reactive system specification, Interval Temporal Logic [23]
for specifying concurrency, Durational Interval Logic [5] for specifying real-time behavior,
and dL (differential dynamic logic) [25] for hybrid system verification. These languages
extend the classical logic with new constructs, provide formal semantics, and give a set
of axioms for verification. Tools for model checking temporal logic specifications include
EMC [6], SMV (Symbolic Model Verifier) [21], and Spin [16].

In an algebraic approach, theory of objects and processes are defined as algebras. This
method emphasizes the representation-free specification of objects and a declarative style
of specifying their properties. An object is introduced as a set of definitions, and a set
of equations defines the operations on the object. Terms in the language are terms in the
underlying algebra and are uninterpreted. Equations are turned into rewrite rules for gen-
erating new terms in the specification. A property to be verified is to be stated as a term. If
the stated property is a term in the algebra defined by the specification, the property holds
for the specified system. That is, algebraic specification methods provide a language as
well as a proof method. The best known algebraic specification language is OBJ3 [9]. The
OBJ family of languages come with tool support for developing algebraic specifications
and verifying stated properties. OBJ3 affords modularity, genericity through parameteri-
zation, and extendability through theory composition. Many other algebraic specification
languages listed in [36], include ACSR (Algebra of Communicating Shared Resources) and
ADL (Algebraic Design Language). The algebraic languages CCS [22] and μCRL [11] are
widely used for specifying concurrent systems. A toolset for a process algebraic language
is mCRL2 [2].

Larch [12] provides a two-tiered approach to specifying program interfaces. In one
tier, mathematical abstractions introduce a first-order theory written in the conventional
style of equational algebraic specifications. In the other tier, specifications are written in
a predicative language using assertions on pre- and post-states of specified objects. Larch
has a theorem prover, called LP.

8.2.2
Model-Based Specification Techniques

State machine models discussed in Chaps. 6 and 7 can be described as “model-based”.
Both Statecharts [13] and I/O Automata [19] support concurrency models. Statemate [14]

8

132 8 Classification of Formal Specification Methods

is a tool for developing visual models and analyzing their properties. Statestep [4] is a
finite state machine modeling tool which can be used with any state machine formalism.
Disco [29] and Roomcharts [28] are based on statechart notation, and serve as specification
and animation tools for modeling reactive systems.

Every formal specification language builds a “model” of the specified system. The sig-
nificance of “model-based” languages is that the model of the system is built in terms
of mathematical objects like sets, sequences, and relations. They provide an abstract de-
scription of the state of the system, together with a number of operations over that state.
Mathematical objects, such as natural numbers, sets and relations are used to build a state
model. An operation defined in a state is a function that modifies one or more state vari-
ables. Operation definitions use the underlying mathematical theory.

The most widely known model-oriented specification languages are Z [31], the B
Method [1], and VDM [33]. Object-Z [30] is an extension of Z notation for modeling
object-oriented system design. An extensive bibliography on Z and Object-Z are avail-
able in [36]. ProofPower [26] is a commercial tool that supports Z specification devel-
opment and checks correctness properties in the specified system. The B method [1] is
based on abstract machine formalism. The B-Toolkit comprises a suite of fully integrated
software tools. They support formal development of software systems using the B Method.
Rodin [27], an open source software, supports B specification, refinements, and proof. CSP
(Communicating Sequential Processors) [15] is a state-based language for modeling con-
currency. The tool Murphi [8] is both a description language and verifier for finite state
concurrent systems.

8.3
Languages Chosen for Discussion

From the languages mentioned in Sect. 8.2, we have chosen a few to illustrate the full
spectrum of specification languages. The list below includes indexes to the chapters where
they are discussed.

1. Mathematics for Software Construction Chapter 12 demonstrate the usefulness of math-
ematical abstractions such as sets, relations, and sequences in software development. In
particular, they lay the foundation for model-based specification methods.

2. Property-oriented Languages and Methods In Chaps. 9 and 10, we discuss proposi-
tional and predicate logics and illustrate specifications in assertional style. In Chap. 11,
we discuss Temporal logic and use mainly linear temporal logic to specify concurrency
and reactivity. We discuss model checking of temporal properties in state-based mod-
els. Algebraic specification method is introduced in Chap. 13 and OBJ3 specifications
are developed. In Chap. 15, we discuss the elements of CCS, a process calculus for
communicating systems. The two tiers of Larch and LP, Larch Prover, are taken up for
discussion in Chap. 14.

3. Model-based Languages and Methods We have discussed state machine models in
Chaps. 6 and 7. VDM specification language is discussed in Chap. 16, Z notation is
discussed in Chap. 17, Object-Z language is introduced in Chap. 18, and the B Method
is discussed in Chap. 19.

8.4 Bibliographic Notes 133

8.4
Bibliographic Notes

The property-oriented and model-based classification for specification languages is due to
Wing [35]. The web page [36] is constantly updated and should be referred for formal
methods practiced around the world. A set of tools for formal methods that have FLOSS
(open source software) licenses are surveyed in [34].

References

1. Abrial JR (1996) The b-book—assigning programs to meanings. Cambridge University Press,
Cambridge

2. Alexander M, Gardner W (eds) (2008) Process algebra for parallel and distributed processing.
CRC Press, Boca Raton

3. Bertot Y, Castéran P (2004) Interactive theorem proving and program development. Coq’Art:
the calculus of inductive constructions. Texts in theoretical computer science. An EATCS
series, vol XXV. Springer, Berlin

4. Breen M (2005) Statestep specification technique: user guide, Version 2.0/2005-9-30,
http://statestep.com

5. ChaoChen Z, Hoare T, Ravn AP (1991) A calculus of durations. Inf Process Lett 40(5):269–
276

6. Clarke E, Emerson EA (1981) Synthesis of synchronization skeletons for branching time tem-
poral logic. In: Logic of programs: workshop. LNCS, vol 131

7. Cooke J (1992) Formal methods—mathematics, theory, recipes or what? Comput J 35(5):419–
423

8. Dill DL, Drexler AJ, Hu AJ, Yang CH (1992) Protocol verification as a hardware design aid.
In: IEEE international conference on computer design: VLSI in computers and processors.
IEEE Computer Society, Los Alamitos, pp 522–525

9. Goguen J, Einkler T (1988) Introduction to OBJ3. Technical report, SRI-CSL-88-9, SRI In-
ternational, Meno Park, CA

10. Gordon MJC, Melham TF (1993) Introduction to HOL: a theorem proving environment for
higher order logic. Cambridge University Press, Cambridge

11. Groote JF (1997) The syntax and semantics of timed CRL. Technical report SEN-R9709,
CWI, Amsterdam

12. Guttag JV, Horning JJ, Garland SJ, Jones KD, Modet A, Wing J (1993) Larch: languages and
tools for formal specification. Springer, New York

13. Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program
8:231–274

14. Harel D, Lachover H, Naamad A, Pnueli A, Politi M, Sherman R, Shtull-Trauring R, Trakht-
enbrot M (1990) Statemate: a working environment for the development of complex reactive
systems. IEEE Trans Softw Eng 16(4):403–414

15. Hoare CAR (1985) Communicating sequential processes. Computer science. Prentice Hall,
Englewood Cliffs

16. Holzmann G (1991) Design and validation of computer protocols. Prentice-Hall, Englewood
Cliffs

17. Iglewski M, Kubica M, Madey J, Mincer-Daszkiewiczb J, Stencel K (2010) TAM’97: the
trace assertion method of module interface specification (Reference manual). http://w3.uqo.ca/
iglewski/public_html/TAM/SRC/tam-1.html (June 2010)

18. Luckham DC, von Henke FW, Krieg-Brückner B, Owe O (1987) ANNA: a language for an-
notating ada programs (reference manual). LNCS, vol 260

8

134 8 Classification of Formal Specification Methods

19. Lynch N, Tuttle M (1989) An introduction to input/output automata. CWI-Quart 2(3):219–
246

20. Manna Z, Pnulei A (1992) The temporal logic of reactive and concurrent systems: specifica-
tions. Springer, New York

21. McMillan KL (1993) Symbolic model checking: an approach to state explosion problem.
Kluwer Academic, Norwell

22. Milner R (1980) A calculus of communicating systems. LNCS, vol 92
23. Moszkowski B, Manna Z (1983) Reasoning in interval temporal logic. Technical report, Re-

port No STAN-(2-83-969), Stanford University, CA
24. Owre S, Shankar N, Rushby JM, Stringer-Calvert DWJ (1999) PVS system guide, version 2.3.

Technical report, Computer Science Laboratory, SRI International, Menlo Park, CA
25. Platzer A (2008) Differential dynamic logic for hybrid systems. J Autom Reason 41(2):143–

189
26. ProofPower. http://www.lemma-one.com/ProofPower/index/index.html
27. RODIN project. http://www.bmethod.com/php/travaux-r&d-methode-b-projet-RODIN-en.php
28. Selic B, Gullekson G, Ward PT (1994) Real-time object-oriented modeling. Wiley, New York
29. Systä K (2010) DisCo: user manual (draft). http://disco.cs.tut.fi/animation/disco92/

disco_tool_manual.fm.html (June 2010)
30. Smith G (2000) The object-Z specification language. Kluwer Academic, Norwell
31. Spivey JM (1992) The Z notation—a reference manual, 2nd edn. Prentice-Hall International,

Englewood Cliffs
32. http://www.flowgate.net/?lang=en&seccion=herramientas
33. VDM portal. http://www.vdmportal.org/twiki/bin/view
34. Wheeler D (2010) High assurance (for security or safety) and free-libre/open source software

(FLOSS). http://www.dwheeler.com/essays/high-assurance-floss.html (June 2010)
35. Wing JM (1990) A specifier’s introduction to formal methods. IEEE Comput 23(9):8–24
36. Z notation. http://formalmethods.wikia.com/wiki/Z_notation

Part III
Logic

Logic is the basis for reasoning and inference. Logic is studied in its own right as part of
many disciplines, including mathematics, philosophy, and computer science. In software
engineering, logic is viewed as a formal language for modeling systems. Different kinds
of logic are used for representing knowledge of the application domain, formalizing prop-
erties of the system under design, precisely formulating environmental constraints and its
interaction with the system, and reasoning about critical properties in the system model. In
this module, propositional logic, predicate logic, and linear temporal logic are discussed.
The learning outcomes from this module are the following:

• logic as a formal specification language
• formal representation of knowledge and policies
• formal verification of sequential programs
• specifying reactive and concurrent systems
• model checking, a method for formally verifying a modeled system

Propositional Logic 9

Logic is a system for rational enquiry and is founded on axioms and inference rules for
reasoning. Modern mathematical logic dates back to the works of Frege and Peano late in
the 19th century. Examples of logic include classical propositional logic, first-order logic,
modal logics and temporal logics. In this chapter, we investigate propositional logic. The
focus is on how propositional logic can be used as a tool in the analysis and presentation of
system requirements. This requires an investigation of how assertions are formulated and
combined, whether assertions imply intended conclusions, and how to mechanically prove
certain results from the stated axioms without assigning truth values to the formulas. We
include in this chapter only brief and at times informal sketches of the language aspects
of logic; however, we quote important results that are sufficient for the study of logic as a
specification language.

9.1
Syntax and Semantics

A proposition is a statement which is either true or false, but not both. Propositional logic,
the language of propositions, consists of well-formed formulas constructed from atomic
formulas and the logical connectives ∧ (and), ∨ (or), ¬ (not), ⇒ (if . . . then), ⇔ (if and
only if). The atomic formulas of propositional calculus are propositions such as “computer
is intelligent”, “program does not terminate’ and “alarm rings forever”. It is not the string
of symbols in a proposition but the truth value of the assertion that gives meaning to the
proposition. Thus, if P stands for “program does not terminate” and Q stands for “alarm
rings forever”, then P ⇒ Q denotes the compound proposition “if program does not ter-
minate then alarm rings forever”, whose truth value is uniquely determined by the truth
values of P and Q.

Table 9.1 gives the formal syntax of the language for propositional logic. The grammar
does not show all possible names for propositions; for example, subscripted symbols and
strings from the application domain are members of the set of terminals. There is an infinite
collection of symbols that can be used to denote propositions, although only a finite subset

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_9, © Springer-Verlag London Limited 2011

137

9

138 9 Propositional Logic

Table 9.1 Formal language
for propositional logic

terminals = {P ,Q,R, . . . ,∧,∨,¬,⇒,⇔, (,)};
non-terminals = {atomic formula, sentence};
atomic formula = P |Q|R| . . .;
sentence = atomic formula |

(, sentence,) | ¬, sentence|
sentence, ∨, sentence |
sentence, ∧, sentence |
sentence, ⇒, sentence|
sentence, ⇔, sentence;

Table 9.2 Truth table defining
semantics of propositional
logic

P Q ¬P P ∨ Q P ∧ Q P ⇒ Q P ⇔ Q

T T F T T T T

T F F T F F F

F T T T F T F

F F T F F T T

is used at any instant. The logic operators observe precedence according to the following
decreasing order: ¬(highest), {∧,∨},⇒,⇔. The expression P ⇒ Q is sometimes written
Q ⇐ P , and read “Q if P ”. The grammar together with the precedence rules describe what
counts as well-formed formulas.

The semantics for propositional logic is obtained through a model, which assigns truth
values, true (T) or false (F), to atomic propositions. The sentences in the language are
evaluated in a model according to the interpretation shown in Table 9.2. A sentence is true
in a model if the sentence under the truth assignment in the model evaluates to true. The
interpretations in Table 9.2 hold even when P and Q are replaced by any formula in the
language.

Two well-formed formulas P and Q are equivalent, written P ≡ Q, if and only if they
have the same truth values under every interpretation. Notice that ≡ is a metasymbol and
is not part of the language. For example, (P ⇒ Q) ≡ (¬P ∨ Q) can be verified using a
truth table. There exist a number of equivalence rules that are useful in simplifying a well-
formed formula. These include the distributive laws and DeMorgan’s laws [1]. A sentence
F is satisfiable if there is an assignment of truth values to the atomic propositions in F

for which F is true. A sentence which is not satisfiable is contradictory. If, for a list of
sentences L, every assignment that makes the sentences in L true also makes the sentence
P true, we say P is a semantic consequence of L and write L |� P . The metasymbol
|� is termed semantic turnstile. If a sentence is true for every assignment F , it is termed
a tautology, and we write |� F . For example, P ∨ false ⇒ P ∧ true is a tautology, and
P ∨ true ⇒ P ∧ false is a contradiction. The statement P ∧ true ⇒ P ∧ false is contingent;
its truth value may be true or false depending on the truth values of its constituents.

9.2 Proof 139

9.2
Proof

A proof is a mechanism for showing that a given claim F is a logical conclusion of some
set S of premises. In Chap. 5, we have introduced the notation S 	 F (F can be derived
from S) to mean that there is a sequence of formulas F1, . . . ,Fn, with F = Fn, such that

• Fi is an axiom, or
• Fi ∈ S , or
• Fi is obtained from two previous Fj s in the sequence F1, . . . ,Fn by an application of

modus ponens.

The sequence F1, . . . ,Fn is called an S -derivation (or S -proof) of F . A ∅-derivation is
simply a derivation. The axioms are tautologies. The proof system in propositional logic is
sound in the sense

if 	 F then F is a tautology,

and complete in the sense that

if F is a tautology then 	 F .

The purpose of a proof is to make explicit what is already implicitly present. A proof
is presented in several steps, where each step logically follows from the preceding steps,
and an axiom. The final step of the proof is the demonstration of the truth of the claim Q.
A formal proof requires that all implicit assumptions are made explicit and the steps in the
proof are shown with reference to the sources used in deriving each step.

There are two aspects in proving a result: proof construction, and proof presentation.
The construction phase is often informal, and the presentation phase must be rigorous,
if not fully formal. Although gaps may exist in a rigorous proof, they are usually easy
to fill. Proof methods and their formal presentation in propositional logic framework are
discussed below.

9.2.1
Reasoning Based on Adopting a Premise

Truth tables provide an exhaustive proof method for propositional logic. To prove a claim
Q from the premises P1,P2, . . . ,Pk , one constructs a truth table (all models) and verifies
whether or not in every row of the truth table Q is true. That is, the relationship

P1,P2, . . . ,Pk |� Q

must be verified in every model. Rewriting this statement as

P1 ∧ P2 ∧ · · · ∧ Pk ⇒ Q

≡ ¬(P1 ∧ P2 ∧ · · · ∧ Pk) ∨ Q

it is shown to be a tautology.

9

140 9 Propositional Logic

9.2.2
Inference Based on Natural Deduction

The natural deduction inference rules describe valid steps in a deduction process. A valid
step is a pair (P ,Q) of sentences such that Q logically follows from P . This is a purely
syntactic method for deriving well-formed formulas from those that already exist. It is
based on two sets of rules—one set introduces connectives and hence the rules are called
introduction rules, and the other set eliminates connectives and hence the rules are called
elimination rules.

Introduction Rules

∨-Introduction α
α∨β

and β
β∨α

∧-Introduction α,β
α∧β

and α,β
β∧α

¬-Introduction α	false
¬α

⇒-Introduction α	β
α⇒β

⇔-Introduction α⇒β,β⇒α
α⇔β

Elimination Rules

∨-Elimination α∨β,α	γ,β	γ
γ

∧-Elimination α∧β
α

and α∧β
β

¬-Elimination ¬¬α
α

, α,¬α

F
⇒-Elimination α,α⇒β

β

⇔-Elimination α⇔β
α⇒β

and α⇔β
β⇒α

Consider, for example, the first introduction rule for disjunction. This states that un-
der the assumption that α has been proved, the disjunction of α with any other logical
expression β is also proved. The validity of this inference rule comes from truth table
interpretation: a disjunction is true in every interpretation where one of its disjuncts is true.

The introduction rules for conjunction and two-sided implication require individual
proofs for their conjuncts. The conjunction elimination rules state that if α ∧ β has been
proved, then both α and β are proved. Once again, the validity of this rule can be traced
to truth table interpretation. To eliminate a disjunction, one has to have more information:
the logical consequence of each disjunct. The implication elimination rule is also called
the law of excluded middle.

Since these inference rules hold for arbitrary expressions α and β , whenever a proof
step has expressions matching the pattern of the antecedent of a proof rule, that rule can
be applied. For example, from P ∨ Q,¬P , and an application of conjunction introduc-
tion rule, infer (P ∨ Q) ∧ ¬P . Apply the distribution law and simplify the consequence
to (P ∧ ¬P) ∨ (¬P ∧ Q). This expression reduces further to ¬P ∧ Q. An application of
conjunction elimination rule proves ¬P and Q. A more complex proof is shown in Ex-
ample 1. Finding an appropriate proof strategy for proving results using these rules is not
easy; it requires some expertise to choose the proper rule at each step.

9.2 Proof 141

Example 1 Show that

P ∨ (Q ∧ R) 	 (P ∨ Q) ∧ (P ∨ R)

Derivation steps:

1 P premise
2 P ∨ Q ∨-Introduction
3 P ∨ R ∨-Introduction
4 (P ∨ Q) ∧ (P ∨ R) ∧-Introduction and from 2 and 3
5 Q ∧ R premise
6 Q ∧-Elimination
7 P ∨ Q ∨-Introduction
8 R ∧-Elimination and 5
9 P ∨ R ∨-Introduction

10 (P ∨ Q) ∧ (P ∨ R) ∧-Introduction and from 7 and 9
11 P 	 (P ∨ Q) ∧ (P ∨ R) from 1 to 4
12 Q ∧ R 	 (P ∨ Q) ∧ (P ∨ R) from 5 to 10
13 P ∨ (Q ∧ R) 	 (P ∨ Q) ∧ (P ∨ R) ∨-Elimination and from 11, 12

�

The strategy of natural deduction proofs is bottom-up. In Example 1, we first recognize
that β = (P ∨ Q) ∧ (P ∨ R) is to be derived from α = P ∨ (Q ∧ R), and so we start with
α. Noticing the structure of α, we attempt ∨-elimination rule and attempt the proofs for
P 	 β and Q ∧ R 	 β . We then attempt the two subproofs. The difficult part of the proof
process is to find the most appropriate elimination or introduction rule for an application.
That is, a program which attempts to prove a theorem may have to exhaustively search
through the rules and apply all those whose patterns match. This strategy inevitably gen-
erates all the relevant theorems. In principle, there can be an infinite number of theorems
and consequently bottom-up proofs cannot be efficiently automated.

9.2.3
Proof by Resolution

A literal is an atomic formula or the negation of an atomic formula. In the former case, the
literal is positive, and in the latter case it is negative. If Pij , for i = 1, . . . , n; j = 1, . . . ,m,
are literals, the disjunctions Ci = Pi1 ∨ · · · ∨ Pim, denoted by

∨m
j=1 Pij , are clauses. The

formula F = C1 ∧ · · · ∧ Cn, denoted by
∧n

i=1 Ci , is in conjunctive normal form (CNF).
For example, the sentence (P ∨ R) ∧ (Q ∨ R) ∧ (P ∨ S) ∧ (Q ∨ S) is in CNF. For every
formula F , there is an equivalent formula G which is in CNF.

Resolution is a simple syntactic transformation that can be applied to CNF formulas.
For two clauses C1 and C2 of a formula F in CNF, the resolvent is defined as R = (C1 −
{L}) ∪ (C2 − {L̄}), where

L̄ =
{

¬Pi if L = Pi

Pi, if L = ¬Pi

9

142 9 Propositional Logic

The formulas F and F ∪{R} are equivalent. The resolution inference rule consists of three
parts:

resolution:
α ∨ P ,β ∨ ¬P

α ∨ β
(eliminate P),

chain rule:
¬α ⇒ P ,P ⇒ β

¬α ⇒ β
(eliminate P),

modus ponens:
P ,P ⇒ α

α
(eliminate P).

The rules eliminate an atom P from two formulas. These rules are suitable for constructing
a proof by contradiction. To establish

P1,P2, . . . ,Pn 	 Q

the proof proceeds by negating the conclusion Q (that is, by assuming that Q is false) and
assigning the value true to each premise and showing a contradiction as a consequence of
these assumptions. The contradiction establishes that P1,P2, . . . ,Pn,Q cannot all be true
simultaneously. The proof steps are:

1. Transform each premise and the negated conclusion (introduced as a new premise) into
conjunctive normal form. Now each premise is a conjunction of one or more clauses
and each clause is true.

2. Identify pairs of clauses which contain complementary literals; one contains an atom
and the other contains its negation. Apply resolution to obtain the resolvent.

3. Apply repeatedly Step 2 until P and ¬P are derived for some P , showing a contradic-
tion. This completes the proof.

Example 2 Assuming that P ⇒ Q, and R ∨ P are axioms, show that R ⇒ S 	 S ∨ Q.

Proof

1. The premises are P ⇒ Q,R ∨ P ,R ⇒ S.
2. In conjunctive normal form the premises are ¬P ∨ Q,R ∨ P ,¬R ∨ S.
3. The negation of the conclusion in conjunctive normal form is ¬S,¬Q.

Clauses:

1. ¬P ∨ Q premise
2. R ∨ P premise
3. ¬R ∨ S premise
4. ¬S ∧ ¬Q negation of conclusion
5. ¬S ∧-elimination
6. ¬Q ∧-elimination
7. R ∨ Q (1), (2), resolution
8. ¬R (3), (5)
9. Q (7), (8)

10. NIL (6), (9)

Let us interpret the propositions in Example 2 as follows:

9.3 Consistency and Completeness 143

P: program does not terminate
Q: alarm rings forever
R: computer in not intelligent
S: computer runs forever

Now, the axioms are interpreted as follows:

1. If the program does not terminate, then the alarm rings forever.
2. Either the computer is not intelligent or the program does not terminate.

From this reasoning, we formulate a theorem: if “the computer runs forever” is implied by
the fact that it is not intelligent, then either the computer runs forever, or the alarm rings
forever. �

9.3
Consistency and Completeness

Propositional logic is both consistent and complete:

1. Consistency or Soundness—All provable statements are semantically true. That is, if a
set of premises S syntactically entails a proposition P , then there is an interpretation in
which P can be reasoned about from S. Formally, if S 	 P , then S |� P . In particular,
every theorem is a tautology.

2. Completeness—All semantically true statements are provable. That is, if a set of
premises S semantically entails a proposition P , then P can be derived formally (syn-
tactically) within the formalism. Formally, if S |� P , then S 	 P .

There are two important consequences of completeness:

1. Compactness—If S |� P , then there is a finite subset S ′, S′ ⊆ S such that S ′ |� P .
2. Decidability—Given a finite set of propositions S and a proposition P , there is an

algorithm which determines whether or not S |� P .

When a specification S is created within the propositional logic formalism, the decidability
result confirms that S can be analyzed to demonstrate whether a property P holds in S or
not. In Example 3, a set of requirements for checking out a book from a library is specified
and analyzed for certain properties.

Example 3 The requirements for borrowing and returning a specific book from a school
library are first stated informally and then formalized in propositional logic. The book can
be in any one of the following four states: on_stack, on_reserve, on_loan, and requested.
These are modeled by the propositions

• S—the book is on the stacks
• R—the book is on reserve
• L—the book is on loan
• Q—the book is returned

9

144 9 Propositional Logic

The constraints are

1. The book can be in only one of the three states S, R, L.
2. If the book is returned then it is on the stacks or on the reserve.

The propositional logic formulas for the constraints are:

1. S ⇒ ¬(R ∨ L)

2. R ⇒ ¬(S ∨ L)

3. L ⇒ ¬(S ∨ R)

4. Q ⇒ S ∨ R

Transforming the above formulas into CNF, we get the following four clauses:

1. ¬S ∨ ¬R

2. ¬S ∨ ¬L

3. ¬R ∨ ¬L

4. ¬Q ∨ S ∨ R

We can derive the clauses shown in the table below.

(c1) ¬Q from (1) and (4)
(c2) ¬Q ∨ ¬L ∨ S from (2) and (4)
(c3) ¬Q ∨ ¬R ∨ S from (3) and (4)

No further clauses can be derived by resolution. Thus the empty clause cannot be de-
rived and the set of formulas describing the requirements are satisfiable. Hence, the re-
quirements are consistent.

Suppose we want to prove that the statement “if a book is on loan then it is not returned”
is a consequence of the requirements. This is achieved by including the negation of the
formula L ⇒ ¬Q in the premises and applying the steps of the resolution principle to the
clauses. Resolving ¬(¬L ∨ ¬Q) with the premise we get the two additional clauses

(c4) L

(c5) Q

From (c1) and (c5) we derive the empty clause NIL. Hence the statement “if a book is
on loan then it is not returned” is true in the model. �

9.4
Exercises

1. Give a proof based on natural deduction for each of the following claims:
(a) (P ∧ Q) ∧ R 	 P ∧ (Q ∧ R)

(b) (P ∨ Q) ∧ (P ∨ R) 	 P ∨ (Q ∨ R)

(c) P ∧ (Q ⇔ R) 	 (P ∧ Q) ⇔ (P ∧ R)

(d) 	 (P ⇒ (Q ⇒ R)) ⇔ ((P ∧ Q) ⇒ R)

(e) (¬P ⇒ Q) ∧ (R ⇒ (S ∨ T) ∧ (R ⇒ ¬S) ∧ (P ⇒ ¬S) 	 R ⇒ Q

9.5 Bibliographic Notes 145

2. Use Proof by Resolution to prove

R ⇒ P ∨ Q,¬(R ∧ Q) 	 R ⇒ P

3. In a departmental store, a cell phone is either in stock or out of stock. If it is in stock
then either it can be put on display or it can be sold. A display model cannot be sold.
A sold cell phone may be returned. A returned phone cannot be put on display, instead
it is added to the stock. A cell phone can be in only one possible state at any instant.
Give propositions for formalizing the constraints on cell phone and determine whether
or not the stated requirements for selling a cell phone are consistent.

4. A formula φ is stronger than formula ψ if in every interpretation φ ⇒ ψ is true and
ψ ⇒ φ is false. Which of the following statements are true?

• P ∧ Q ⇒ P is stronger than P ∨ Q

• P ∨ Q is stronger than P ∧ Q

• P ⇒ (Q ⇒ R) is stronger than P ∧ Q ⇒ R

• P ⇒ R is stronger than (P ⇒ Q) ∧ (P ∧ Q ⇒ R)

5. Given a propositional logic formula � and an interpretation I that assigns a truth value
for every proposition P ∈ � . Write an abstract program that evaluates G under I .

9.5
Bibliographic Notes

Without logic it is hard to imagine the existence of computers and software systems. The
impact of logic on programming and databases is discussed in [2], and different kinds
of logics for modeling and reasoning in Artificial Intelligence is discussed in [3]. For a
concise description of propositional logic, see the book by Priest [4].

Logic is at the core of rational thinking and human inference. Propositional logic is
a simple vehicle to introduce basic properties of objects. A property, stated as an atomic
statement, cannot be validated in the logic. Instead, propositional logic allows us to evalu-
ate the validity of compound statements given the validity of its atomic components. Thus,
a conclusion whose value is true may be drawn from an invalid statement or argument, and
one whose value is false, from a valid sequence. Relational properties and properties of a
collection of objects cannot be expressed in propositional logic.

References

1. Barwise J, Etchemendy J (1995) The language of first-order logic, 3rd edn. Center for the Study
of Language and Information, Stanford

2. Grant J, Minker J (1992) The impact of logic programming and databases. Commun ACM
35(3):67–81

3. Hueth M (2004) Logic in computer science: modelling and reasoning about systems, 2nd edn.
Cambridge University Press, Cambridge

4. Priest G (2000) LOGIC—a very short introduction. Oxford University Press, London

Predicate Logic 10

Although assertions can be combined in propositional logic, an intrinsic relationship to the
primitive propositions cannot be stated. In this chapter, we introduce the first-order pred-
icate logic with equality in which the intrinsic relationship of objects, and their attributes
can be formalized. Formulas can be interpreted over structures rather than on simple val-
ues.

A predicate is a property or a relation that holds between individual objects within a
specified world. Besides, operations are defined in predicate logic such that the result of an
operation performed on one or more objects is an object in the same world. An example
of operation on a set of individuals is “father-of”. Because objects in the world can be
individually or collectively accessed, we can make assertions about one or more objects in
the world.

Predicate logic, like propositional logic, uses symbols to represent knowledge. These
symbols represent constants, predicates, variables, and functions. A constant, such as com-
puter, or mary, or dense, is intended to represent a specific object in the world or a specific
property in the problem domain. A function symbol denotes an operation that may be per-
formed on a (sequence of) individual objects to yield another object. A predicate symbol
denotes a property or relation that holds for (a sequence of) individual objects. Every func-
tion and predicate symbol has an arity, indicating the number of arguments it requires. In
addition, a symbol may be a variable intended to denote different individual objects.

Informally, the syntactic structure of a predicate is analogous to a parameterized pro-
cedure. It has a name and a set of arguments, which may be constants, variables, or func-
tions. When the arguments are given values from certain domains, the predicate becomes
a proposition which can be assigned true or false under a certain model. For example,
mammal(x) is a unary predicate. When the variable x is initialized to a value from the uni-
verse of mammals, the predicate mammal(x) evaluates to true; for all other values of x, the
predicate evaluates to false. Predicates having n-arguments express a certain relationship
among the n objects modeled by the arguments. For example, lessthan(a, b), parent(x, y),
likes(a, b), and ancestor(x, y) express binary relations; the predicate quotient(a, b, c) de-
fined by c = a div b captures the ternary relation that c is the quotient when b divides a.
The predicate friends(father(x), mother(y)) states that the father of x and the mother of y

are friends. Here, father and mother are function symbols. All propositions are predicates.

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_10, © Springer-Verlag London Limited 2011

147

10

148 10 Predicate Logic

10.1
Syntax and Semantics

We assume the existence of predefined domains, IDENTIFIER, VARNAME, and
CONSTANT . An uppercase letter P ∈ IDENTIFIER denotes a predicate name, a lower case
letter f ∈ IDENTIFIER denotes a function name, and lower case letters x ∈ VARNAME
and c ∈ CONSTANT , respectively, denote a variable and a constant. Although some or all
of the domains may be infinite, only a finite number of symbols from them will be used in
constructing the predicate logic.

The formal language of predicate logic consists of terms and well-formed formulas
(wff) or well-formed expression. The syntax of predicate logic defines terms and well-
formed formulas. Terms are constants, variables, and functions f (t1, . . . , tk), where f is a
function symbol, and tis are terms. Formally, terms are recursively defined, as below.

t ::= x | c | f (t1, t2, . . . , tn)

An expression P(t1, . . . , tn) where P is a predicate symbol of arity n, and t1, . . . , tn are
terms is a well-formed formula. In general, a well-formed formula φ is recursively defined
as shown below.

φ ::= P(t1, . . . , tn) | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ ⇒ φ) | (∀xφ) | (∃xφ)

The symbols ∀ (for all) and ∃ (exists) are quantifiers. Both quantifiers and negation (¬)
bind most tightly in the expressions. Some examples of well-formed formulas of predicate
logic are

∀x • ∃y• (less(square(x), y)),
∀x • ∀y• (likes(x, y) ⇒ marry (x, y)),
∃x • ∃y• (airline(x) ∧ city(y) ∧ flies(x, y)),
∀x • ∃y, z• (airline(x) ∧ city(y) ∧ city(z) ∧ flies(x, y) ∧ flies(x, z) ⇒ (y = z)).

The last formula above asserts that every airline x flies to only one city. The meta symbol
∃! may be used as a short hand to express uniqueness. That is, ∀x • ∃!y• (airline(x) ∧
city(y) ∧ flies(x, y)) expresses the same fact as the last formula above.

Constants, which are simple proposition symbols, and connectives are interpreted as in
propositional logic. Each n-ary predicate is a boolean n-ary relation, with the name of the
predicate usually designating a real-world object. Predicates are always used with the exact
number of arguments. The existential (∃) and universal (∀) quantifiers are used for contex-
tual binding. The domain of interest for which a variable is bound can be made explicit. The
occurrences of x, y in the predicate ∀x : jobs • ∃y : queues • (¬executing(x) ⇒ has(y, x))

are bound. In the formula ∃y • on(x, y), the variable y is bound but x is “free”. Formulas
in which every variable is bound are called closed formulas. Every closed formula can be
interpreted as a proposition.

10.1 Syntax and Semantics 149

10.1.1
Semantics

The meaning to predicates and function symbols is assigned relative to a nonempty do-
main D. This domain is assumed to include all values that can be assigned to all variables
in the language. The interpretation of an n-ary predicate p is a function that takes an as-
signment of values to the n arguments of p and returns true or false. An interpretation for
a formula F assigns values to each free variable in F , and interprets each predicate in the
formula as above. Thus, the meaning of a formula is an assignment of a truth value for each
interpretation. The meaning of a formula is derived from the meanings of its subformulas:

1. If the formula is an atomic predicate p(t1, . . . , tn), the terms ti are constants or free
variables, the chosen interpretation assigns values to the variables, and then evaluates
the predicate to true or false.

2. If the formula involves functions, these are evaluated to reduce the arguments of the
predicates to constants before the predicate is evaluated.

3. An expression E = E1 op E2, where E1 and E2 are unquantified, is inductively evalu-
ated — E1 and E2 are evaluated under the chosen interpretation and the semantics of
op is applied to their truth values.

4. In an expression E of the form ∀x • E1, E1 is evaluated and if the truth value remains
the same for every value in the domain of interpretation, then E is true; otherwise E is
false.

5. In an expression E of the form ∃x • E1, the domain of interpretation for E1 is obtained
by assigning a value from the domain of interpretation for E to x, and is used to eval-
uate E1 inductively. If there exists at least value one value of x for which this process
evaluates E1 to true, the formula E also evaluates to true; otherwise, E evaluates to
false.

Example 1 Consider the following predicate logic formula:

G(x,y) ⇒ ∃z • (G(x, z) ∧ G(z,y))

We discuss four different interpretations for the predicate G.

Interpretation I1

1. The domain D is the set of integers.
2. G(r, s) is true if r > s.

The interpretation assigns to G the infinite collection of ordered pairs on integers (r, s),
such that r > s.

For this interpretation, the formula states that for any pair of integers x and y, if x > y,
then there is some other integer z with the property x > z and z > y. That is, z strictly lies
between y and x. If x = y or y > x, then G(x,y) is false, and consequently, the formula
is true. If x = y + 1, G(x,y) is true; however, there is no integer z in between y and
x = y +1; hence, the formula has the value false. The formula is true for all interpretations,
except when x = y + 1.

10

150 10 Predicate Logic

Interpretation I2

1. The domain D is the set of positive integers.
2. The predicate G(r, s) is true whenever r is a divisor of s.

For this interpretation, the formula states that for any pair of integers x and y, if x is a
divisor of y, then there is some z ∈ D with the property that x is a divisor of z, and z is
a divisor of y. For x > y, the predicate G(x,y) is false, and consequently, the formula
is true. For some pair of positive integers x, y, x ≤ y, assume that G(x,y) is true. The
formula states that there is some positive integer z such that x divides z and z divides y.
That is, z satisfies three properties:

• x < z < y;
• x divides z and y;
• z divides y.

If x = 8, y = 24, G(x,y) is true, but there is no z satisfying the above three conditions.
However, if x = 4, y = 24, G(x,y) is true, and there exists z = 8 for which G(x, z) and
G(z,y) are both true, and hence the formula is true. In general, the formula is false for
some pairs (x, y), and is true for some other pairs (x, y). It is important to note that there
are only a finite number of interpretations for the formula, because only finite number of
values can be assumed by z in between x and y.

Interpretation I3

1. The domain D is the set of real numbers.
2. G(x,y) is true whenever x ≥ y.

In between any two real numbers, there are infinitely many real numbers. Hence, the for-
mula is true for all pairs x, y of real numbers. That is, there are infinitely many inter-
pretations for the formula based on any pair of values assigned to the variables x, y of
predicate G.

Interpretation I4

This interpretation is based on natural numbers and their cartesian products.

1. D = N ∪ E, where N is a subset of natural numbers, and E = N × N .
2. The predicate G(x,y) is true, if x ≤ y ∧ (x, y) ∈ E.

Under this interpretation, the formula states that if (x, y) ∈ E, then for some z ∈ N the
pairs (x, z), x ≤ z, and (z, y), z ≤ y also belong to E. If we choose

N = {1,2,3}, and E = {(1,2), (1,3), (2,3)}

then the formula is true for x = 1, y = 3, and z = 2. For several other assignments, such
as x = 2, y = 1, and z = 3, the formula is false. In general, the formula is true if the free
variables are assigned values from the domain {x, y : R|x ≤ y}. �

10.2 Validity, Equality, and Equivalence 151

10.2
Validity, Equality, and Equivalence

An interpretation of a well-formed formula is called a model if the well-formed formula
is true under that interpretation. A well-formed formula is valid if the formula is true
under all interpretations. A formula is invalid if it is not valid. An example of a valid
formula is ∃y • ∀x • P(x, y) ⇒ ∀x • ∃y • P(x, y). An example of an invalid formula is
∃x • P(x) ⇒ ∀x • P(x). To determine the validity of a first-order formula, normal forms
are helpful. We discuss normal forms in Sects. 10.3 and 10.4.2.

A well-formed formula is satisfiable if there exists a model for it. All valid formulas
are satisfiable, while some invalid formulas may be satisfiable. A well-formed formula is a
contradiction or unsatisfiable if and only if it is false under all interpretations. In particular,
a negation of a valid formula is unsatisfiable.

In software engineering, we use predicate logic formalism to formalize requirements,
their properties, make assertions on state variables, and formally state invariant properties
of the application domain. That is, in software engineering, a model is built “from out-
side the logic into the logic formalism”, whereas in mathematical logic, a model is sought
“from inside the logic to outside the logical realm”. Keeping this distinction in mind, we
affirm that formulas constructed by a software engineer are the software engineer’s mod-
els of system requirements and the domain of interpretation of the logical formulas is the
application domain in which the requirements arise. Thus for requirements specification
using predicate logic, we may define the notions satisfiability and validity as follows:

• A formula in the specification is satisfiable if it can be interpreted to match a requirement
in the requirements document.

• A formula in the specification is valid if it satisfies the stated properties in the application
domain.

• A formula is invalid if it fails to satisfy the stated properties in the application domain.
• A formula is contradictory if its interpretation matches some requirements and fails to

satisfy some others in the requirements document.

10.2.1
Equality and Equivalence

We introduce the binary infix predicate = in the predicate logic. If s and t are terms,
then (s = t) is an atomic formula which may be true or false. This predicate satisfies the
following equational axioms:

1. Reflexivity ∀x • x = x;
2. Commutativity ∀x, y • (x = y) ⇒ (y = x);
3. Transitivity ∀x, y, z • ((x = y) ∧ (y = z)) ⇒ (x = z);

The operation of substituting one variable for another is a common practice in mathematics.
In predicate logic, this must be done with some care. Formally, if S is a formula, t a term

10

152 10 Predicate Logic

and x a variable, we define S[t/x] (read “S with t for x”) to be the formula obtained from
S on replacing every free occurrence of x by t , provided no free variable of t is bound in S.
If some free variable of t is bound in S, then each bound variable must be renamed so that
it is not bound in S. When the substitution [x/y] is applied to the formula S : ∀x • (x >

4) ∧ (y2 = 4x) ⇒ (x > y), the bound variable x needs to be renamed, say to w, and then
y is replaced by x in S. The expression S[x/y] is ∀w • (w > 4) ∧ (x2 = 4w) ⇒ (w > x).

Two formulas F and G are equivalent, written as F ≡ G, if they have the same truth
value for all interpretations that are suitable for both F and G. If F ≡ G, and x = y, where
x is a free variable in F and y is a free variable in G, then F [t/x] ≡ G[t/y]. That is,
equivalent formulas remain equivalent when free terms in them that are equal are replaced
by the same variable.

Example 2 We describe a predicate logic theory with equality for a projective plane in
which lines and points satisfy the following properties: (1) two lines meet at a unique
point, and (2) there is a unique line through any two points. A formula in extending this
theory, in order to be valid, should not contradict any of the stated formulas.

The unary predicates point(x) (x is a point) and line(x) (x is a line) introduce points
and lines. The binary predicate lies_on(x, y) relates the incidence property of point x to
line y. The predicate logic formulas enforcing the properties are:

1. domain distinction
(a) ∀x • (point(x) ∨ line(x));
(b) ∀x • (¬(point(x) ∧ line(x)));

2. incidence
∀x, y • (lies_on(x, y) ⇒ (point(x) ∧ line(y)));

3. equality for lines
∃x1, x2 • (¬(x1 = x2) ∧ lies_on(x1, y1) ∧ lies_on(x1, y2) ∧ lies_on(x2, y1) ∧
lies_on(x2, y2)) ⇒ y1 = y2;

4. unique line
∀x, y • ((point(x) ∧ point(y) ∧ ¬(x = y)) ⇒ ∃!z • (lies_on(x, z) ∧ lies_on(y, z)));

5. unique intersection
∀x, y • ((line(x) ∧ line(y) ∧ ¬(x = y)) ⇒ ∃!z • (lies_on(z, x) ∧ lies_on(z, y))).

�

In Example 3, some truth-functional properties of a light switch are described in pred-
icate logic. In doing it, the following points on translating natural language requirements
are clarified.

• temporal relations: Words such as “sometimes”, and “during” refer to the existence of
some times at which a predicate is true of the objects of concern. Choose natural numbers
for modeling discrete time and real numbers to model continuous time.

• not both vs both not: If we say that P and Q are “not both” true we need P ∧ Q to be
false. If we say that P and Q are “both not” true then both P and Q are false.

• universe of discourse: Quantifiers implicitly refer to objects in the universe of discourse
defined for the model. In actual expressions, explicit reference to the universe of dis-
course may be absent.

10.2 Validity, Equality, and Equivalence 153

• quantification: Universally quantified expressions typically involve conditionals. Exis-
tentially quantified negated conditionals are acceptable; however, existentially quanti-
fied conditionals should be avoided.

• bound variables: Bind all variables.

Example 3 This example specifies the sequence of discrete events affecting a light switch.
A switch can be on or off at different times of a day. The status of the switch cannot
be both on and off at the same time. Let switch_on(x) and switch_off (x) be predicates
denoting that the status of the switch is on, and off, respectively, at time x. The universe
of discourse is the same as domain of interpretation which is discrete time, assumed to be
the set of natural numbers. Consequently, in any finite interval, there can be only a finite
number of state changes for the switch. A translation of the requirements into predicate
logic is given below:

1. The switch is in only one state at any time.
(a) ∀x • (switch_on(x) ∨ switch_off (x));
(b) ∀x • ¬(switch_on(x) ∧ switch_off (x)).

2. The predicate on(x, y) denotes the property that the switch is on at the time points
x, x + 1, . . . , y − 1. The predicate off (x, y) denotes the property that the switch is off
at the time points x, x + 1, . . . , y − 1.
(a) on(x, y) ≡ switch_on(x) ∧ ¬∃z • (lessthan(x, z) ∧ lessthan(z, y) ∧ switch_off (z));
(a) off (x, y) ≡ switch_off (x)∧¬∃z • (lessthan(x, z)∧ lessthan(z, y)∧ switch_on(z)).

3. If the state of the switch is on (off) at time y and the previous time it was in the same
state was at time x, then the switch stays off (on) throughout the interval (x, y).
a. ∀x, y • (switch_on(x) ∧ switch_on(y) ∧ lessthan(x, y)) ∧ ¬∃z • (switch_on(z) ∧

lessthan(x, z) ∧ lessthan(z, y)) ⇒ off (x + 1, y);
b. ∀x, y • (switch_off (x) ∧ switch_off (y) ∧ lessthan(x, y)) ∧ ¬∃z • (switch_off (z) ∧

lessthan(x, z) ∧ lessthan(z, y)) ⇒ on(x + 1, y).
4. The predicate from_off _to_on(u1, v2) denotes the property that the switch is off at time

u1, and on at time v2, where u1 < v2, and either (1) the switch remained off for the
time points u1, u1 + 1, . . . , v2 − 1, or (2) every switch on is followed by a switch off in
the interval (u1, v2). The predicate from_on_to_off (u1, v2) denotes the complementary
property for the switch, when it is on at time u1 and off at time v2. We define the
predicate off _on(u1, v2) to denote the property that every switch on is followed by a
switch off, and the predicate on_off (u1, v2) to denote the property that every switch off
is followed by a switch on and use them in defining the two predicates from_off _to_on,
and from_on_to_off .
(a) off _on(u1, v2) ≡ ∃v1, u2 • (lessthan(u1, v1)∧ lessthan(v1, u2)∧ lessthan(u2, v2)∧

off (u1, v1) ∧ off (u2, v2) ∧ on_off (v1, u2));
(b) on_off (v1, u3) ≡ ∃u2, v2 • (lessthan(v1, u2)∧ lessthan(u2, v2)∧ lessthan(v2, u3)∧

on(v1, u2) ∧ on(v2, u3) ∧ off _on(u2, v2));
(c) from_off _to_on(x, y) ≡ switch_on(y) ∧ (off ((x, y) ∨ off _on(x, y)));
(d) from_on_to_off (x, y) ≡ switch_off (y) ∧ (on(x, y) ∨ on_off (x, y)).

5. If the state of the switch is on (off) at times x and y, x ≥ y, then either it is on (off)
throughout [x, y] or every switch off (on) is followed by a switch on (off) in the interval
[x, y]. The predicates on_on(x, y), and off _off (x, y) denote these properties.

10

154 10 Predicate Logic

(a) on_on(x, y) ≡ on(x, y) ∨ ∃z • (on_off (x, z) ∧ off _on(z, y));
(b) off _off (x, y) ≡ off (x, y) ∨ ∃z • (off _on(x, z) ∧ on_off (z, y)).

�

10.3
More on Quantified Expressions

In writing predicate logic expressions for requirements, multiple quantifiers are often nec-
essary. For example, the requirement “all printing jobs are assigned to one printer queue”
can be translated to

∀j : JOBS • ∃p : PRINTERQUEUE • assign(j,p)

To simplify the presentation of formulas, where the types of variables are obvious, the
reference to types may be omitted. Thus,

∀j • ∃p • assign(j,p)

is a shorthand for the formula above. Whenever all variables in a formula are universally
quantified, the quantifiers may be dropped altogether from the presentation of the formula.
For example, ∀x, y • P(x, y) is a closed formula, and can be written P(x, y). Universal
(existential) quantifier is a generalized conjunction (disjunction) operator. Consequently,
negation can be moved in and out of quantified formulas by generalizing de Morgan’s laws
applicable to conjunction and disjunction. To enhance understandability, quantifiers can be
interchanged or moved in front of a formula. Rules governing the movement of quantifiers
are summarized below:

1. Moving negation out of quantifiers:
(a) ¬∀x • P(x) ≡ ∃x • ¬P(x)

(b) ¬∀x • ¬P(x) ≡ ∃x • P(x)

(c) ∀x • ¬P(x) ≡ ¬∃x • P(x)

(d) ∀x • P(x) ≡ ¬∃x • ¬P(x)

2. Driving quantifiers in front—If x does not occur free in Q then the following equiva-
lences hold:
(a) ∀x • P ∧ Q ≡ ∀x • (P ∧ Q)

(b) ∀x • P ∨ Q ≡ ∀x • (P ∨ Q)

(c) ∃x • P ∧ Q ≡ ∃x • (P ∧ Q)

(d) ∃x • P ∨ Q ≡ ∃x • (P ∨ Q)

3. Moving quantifiers out—The following equivalences hold when x is bound in both P

and Q:
(a) (∀x • P ∧ ∀x • Q) ≡ ∀x • (P ∧ Q)

(b) (∃x • P ∨ ∃x • Q) ≡ ∃x • (P ∨ Q)

4. Interchanging the order of quantification:
(a) (∀x • ∀y • P) ≡ (∀y • ∀x • P)

(b) (∃x • ∃y • P) ≡ (∃y • ∃x • P)

10.3 More on Quantified Expressions 155

The quantifier rules can be used to put expressions with multiple quantifiers in prenex
normal form, in which all quantifiers come first. As an example, the requirement “every
procedure used by a program is stored in a reuse directory” has the predicate logic transla-
tion

∀x • ((procedure(x) ∧ ∃y • (program(y) ∧ used_by(x, y)))

⇒ ∃y • (reuse_direc(y) ∧ stored_in(x, y))).

When the quantifier rules are applied, the predicate logic expression is transformed to

∀x • ∃y • ∃z • ((procedure(x) ∧ program(y) ∧ used_by(x, y))

⇒ (reuse_direc(z) ∧ stored_in(x, z))).

10.3.1
Policy Language Specification

First-order predicate logic is the basis for Prolog [7] language, Datalog [6] programming
for deductive database systems, and for several policy languages [1, 2, 4, 5]. We illustrate
a few specification examples for role based access controls from Cassandra [1]. Access
controls for heterogeneous distributed systems, such as electronic health records which
are distributed large-scale databases, cannot be entirely based on the identification and
authorization of individuals. This is because subjects may change their roles, may share
files and resources and may wish to collaborate. Cassandra is a high-level policy language
which is expressive, flexible and formal. Its semantics is based on Datalog, which is a
subset of Prolog and both Datalog and Prolog are based on predicate logic.

A request to access a record or perform an action, or play a role must be authorized
by the system. Based upon the submitted credentials and the policies, the system must
deduce the request as a consequence in order to grant a request; otherwise the request
is denied. This deduction process is driven by the inference engine in Datalog, which is
somewhat similar to the proof by resolution discussed in Sect. 10.4.2. The basic opera-
tions are encoded as predicates and five of these special predicates are listed below. Any
other operation or request in the system will be authorized only if it can be reduced to a
subset of these special predicates which in turn should be resolved to be true. In the exam-
ples below both predicates and variables are shown in italics and constants are shown in
typewriter font.

1. permits(e,a) indicates that the entity e is permitted to perform action a. If it is possible
to infer

permits(Alice, download(Clinical))

from the policy base then the access control engine will grant Alice to perform the
action of downloading the requested file.

10

156 10 Predicate Logic

2. canActivate(e,r) indicates that the entity e can activate role r . The property

CanActivate(Alice, Technician(pediatrics, Royal Victoria))

must be inferred in the system in order to validate the role of Alice as a technician
in pediatrics lab of Royal Victoria hospital.

3. hasActivated(e,r) indicates that the entity e has successfully activated role r . If the prop-
erty

CanActivate(Alice, Technician(pediatrics, Royal Victoria))

is inferred in the system then

hasActivated(Alice, Technician(pediatrics, Royal Victoria))

is true in the system, and can be added temporarily to the policy base. This fact will be
removed from the system when Alice terminates her interaction with the system.

4. canDeactivate(e1 ,e2,r) indicates that the entity e1 can deactivate role r of entities e2, if
e2 is currently active in role r . If

hasActivated(Alice, Technician(pediatrics, Royal Victoria))

is true and a superior Bob of Alice has the right in the system to suspend the role of
Alice then

canDeActivate(Bob, Alice, Technician(pediatrics, Royal Victo-
ria))

can be inferred in the system.
5. isDeactivated(e,r) indicates an automatic revocation of role r , if e had been active in

role r . If

hasActivated(Alice, Technician(pediatrics, Royal Victoria))

is true a system trigger might deactivate the role of Alice, thus making

deActivated(Alice, Technician(pediatrics, Royal Victoria))

true in the system.

The basic syntax in Cassandra for defining a policy H is H ← B where H is a predicate
and B is a conjunction of predicates. A policy definition is a rule that has the interpretation
“apply policy H whenever B is true”. Cassandra uses Datalogic syntax with constraints,
involving a few extensions to predicate logic syntax. For example, the language uses the
symbol “,” instead of the “∧” symbol. The significance of Cassandra language is the provi-
sion of a set of basic policy Idioms, which are templates that occur repeatedly in specifying
different policies. Below is an extract from [1].
Auxiliary roles: A logged-in user can read a file provided that the system can deduce she
is the owner of that file. Ownership is here expressed with the auxiliary Owner role that
need not be activated.

permits(x,Read(file)) ←
hasActivated(x,Login()),

canActivate(x,Owner(file))

10.3 More on Quantified Expressions 157

Role validity period: A certified doctor, with certification issued at time t, can act in the
role Doc() for a maximum period of one year.

canActivate(x,Doc()) ←
canActivate(x,CertDoc(t)),

CurTime() − Years(1) ≤ t ≤ CurTime()

Separation of duties: A payment transaction requires two phases, initiation and autho-
rization. Those phases have to be executed by two different people. The rule implementing
the separation of duties states that an Authoriser of a payment must not have acti-
vated the Initiator role for the same payment. This restriction is implemented by the
user-defined countInitiators predicate. Its definition is given by the second rule below. The
count(z) function counts how many different values of z satisfy the body. Therefore, the
parameter n is 0 only if x has not activated the Initiator role for the same payment.

canActivate(x,Authoriser(payment)) ←
countInitiators(n, x,payment), n = 0

countInitiators(count(z), x,payment) ←
hasActivated(z,Initiator(payment)), z = x

Role delegation: An administrator can delegate her role to somebody else by activating
the DelegateAdm role for the delegatee. The delegatee can then subsequently activate the
administrator role. The first parameter of the administrator role specifies who the delegator
was. The second parameter n is an integer for restricting the length of the delegation chain:
the delegatee can activate the administrator role only with a “rank” n′ that is strictly less
than the delegator’s rank n but must be at least 0.

canActivate(x,DelegateAdm(y,n)) ←
hasActivated(x,Adm(z, n))

canActivate(y,Adm(x,n′)) ←
hasActivated(x,DelegateAdm(y,n)),0 ≤ n′ < n

With the following rule, the delegated role is automatically revoked if the delegation role
of the delegator is deactivated.

isDeactivated(y,Adm(x,n′)) ←
isDeactivated(x,DelegateAdm(y,n))

We also need to specify who is allowed to deactivate a delegation role. In the first rule be-
low, only the delegator herself has this power. In the second rule below, every administrator,
with at least as high rank as the delegator, can deactivate the delegation.

canDeactivate(x, z,DelegateAdm(y,n)) ← x = z

canDeactivate(x, z,DelegateAdm(y,n)) ←
hasActivated(x,Adm(w,n′)), n ≤ n′

10

158 10 Predicate Logic

Automatic trust negotiation and credential discovery: The following rule is part of the
policy of a server holding the electronic health records (EHR) for some part of the UK’s
population. To activate the doctor role, x must be a certified doctor in some health organi-
zation org, and the organization must be certified.

canActivate(x,Doc(org)) ←
auth:canActivate(x,CertDoc(org)),

org � auth:canActivate(org,CertHealthOrg()),

auth ∈ RegAuthorities()

In the rule above, there is no location prefix in front of the first body predicate, so the
doctor certification credential is required to already be in the local policy or have been sub-
mitted by x together with the role activation request. On the other hand, there is a location
prefix org� in front of the second body predicate. The health organization credential is au-
tomatically requested from org. However, the health organization will allow this retrieval
request only if its canReqCred policy allows it. With the following rule, the health orga-
nization specifies that it is willing to reveal its CertHealthOrg credential to certified
EHR servers.

canReqCred(x, y.canActivate(z,CertHealthOrg())) ←
x � auth:canActivate(x,CertEHRServ()),

z = Royal Victoria,

auth ∈ RegAuthorities()

10.3.2
Knowledge Representation

Structured system analysis, a graphical technique introduced in the 1970s by DeMarco
[9], uses informal descriptions to explain graphical representations, and data dictionaries
to explain the meaning and representation of data to be used in the software development
process. Predicate logic formulas can be used to formalize data dictionary definitions and
their integrity constraints. More generally, predicate logic formalism can be used to repre-
sent knowledge and reason about the represented knowledge. In Artificial Intelligence [8],
knowledge structures are more complex and more expressive forms of logic are required
for their representation and reasoning. We illustrate, in Example 4, the use of predicate
logic to express the meaning of data, their constraints, and ability to query on the repre-
sented information in database studies.

Example 4 Let us consider a snapshot of World Cup 2010 database, which includes infor-
mation on players, coaches, teams, games, and schedules. This database is quite large and
certainly more advanced database tools than predicate logic tools are necessary to man-
age data and respond to queries. The list of teams is defined by a predicate team(x). By

10.3 More on Quantified Expressions 159

Table 10.1 A partial schedule
of matches

Team Team Date Venue

USA Slovakia 18 June Johannesburg

Slovakia Italy 24 June Johannesburg

Portugal North Korea 21 June Cape Town

Germany Serbia 18 June Port Elizabeth

instantiating x over all participating countries, we get a collection of propositions, which
are facts about participating teams. That represents teams database. As an example the set
of propositions team(USA), team(Portugal), team(Slovenia), team(Slovakia), team(Italy),
team(North Korea), team(Germany), and team(Serbia) is a representation of “knowledge”
on teams participating in 2010 World Cup. Similarly, unary predicates city(x), date(x),
player(x), and coach(x) should be introduced to model the knowledge on venues, dates,
players, and coaches for games in World Cup 2010. Instantiating each predicate over re-
spective domains would give sets of propositions that model knowledge on venues, dates,
players, and coaches.

A game is played when there exist two teams who play on a day in a city. Knowledge
on a game is captured by the predicate game(x, y, z,w), where x, y are teams, z is a date
and w is a city. Table 10.1 shows a partial list of games played. Similar n-ary predicates
should be defined to capture other relationship that will exist in the database.

Representing knowledge using predicates

1. memberof(x,y) indicates that the player x is a member of the team y.
2. coach(x,y) indicates that the coach of the team y is x.
3. game(x,y,z,w) indicates that the teams x and y play on the date z at the city w.
4. schedule(x,y,z) indicates that the team x is scheduled to play on the date y at the venue z.
5. plays(x,y) indicates that the player x is to play on the date y.

Specification of the integrity constraints on data

1. A player is a member of only one team in the league.
memberof (x, y) ∧ memberof (x, y ′) ⇒ y ′ = y.

2. A coach coaches only one team; a team has only one coach.
coach(x, y) ∧ coach(x, y ′) ⇒ y = y ′.
coach(x, y) ∧ coach(x′, y) ⇒ x = x ′.

3. A team plays at most one game a day.
schedule(x, y, z) ∧ schedule(x, y, z′) ⇒ (z = z′).

4. No player of a team can be the coach of the team.
memberof (x, y) ∧ ¬coach(x, y).

5. Every game played by a team should appear in the schedule.
game(x, y, z,w) ⇒ scedule(x, z,w) ∧ schedule(y, z,w).

6. For every game, there are some players who do not play on the day of the game.
game(x, y, z,w) ⇒ ∃p,q • (memberof (p, x) ∧ memberof (q, y) ∧ ¬plays(p, z) ∧
¬plays(q, z)).

7. There are players in every team who do not play consecutively scheduled games.

10

160 10 Predicate Logic

(schedule(x, y1, z1) ∧ schedule(x, y2, z2) ∧ ∀y • ((y1 < y) ∧ (y < y2) ∧
¬∃z • schedule(x, y, z))) ⇒ ∃p • (member(p, x) ∧ ¬(plays(p, y1) ∧ plays(p, y2))).

Querying the knowledge base

Database queries can be answered by using logic and set notation. As an example, the set
{x | plays(x,10 April)} gives the set of players who play on 10 April. To know which teams
play on 10 April, we need to use the universal quantifier on venue to gather teams that
play at different venues. This is best achieved using the “resolution” principle discussed
in Sect. 10.4.2. An alternative approach is to use set theory notation and define the set
CITY = {c | city(c)}, and use it in defining the set

⋃

∀c∈CITY

{x | schedule(x,10 April, c)} �

10.4
Proofs

To illustrate the generalization of the axiomatic deduction system of propositional logic, let
us revisit Example 2 and reason about the claims. Let a, b, c be three distinct points. That
is, point(a),point(b),point(c), ¬(a = b),¬(a = c),¬(b = c) are true. From the incidence
assertion and the generalized inference rule “from p and (p ⇒ q) infer q”, we deduce
that there exists unique lines z1, z2, z3 such that the points a and b lie on z1, the points
a and c lie on z2, and the points b and c lie on z3. From the uniqueness property stated
in the incidence assertion, z1 �= z2, z1 �= z3, z2 �= z3. In addition to such proof rules of
propositional logic, the predicate logic contains rules to deal with equality and quantifiers.

We now discuss two proof methods: natural deduction, and resolution. An essential step
in a proof is syntactic substitution, which is described in Sect. 10.2.1 under the heading
Equality and Equivalence.

10.4.1
Natural Deduction Process

Natural deduction involves four inference rules that correspond to the elimination and in-
troduction of quantifiers.

Rules for universal quantification

1. Universal Generalization

(∀-Introduction)
c ∈ X � P(c)

∀x • P(x)
where c is arbitrary.

If we choose an arbitrary element c of the domain X and prove P(c) then we can infer
∀x • P(x). For example, if for an arbitrary student from the domain of students, it is
proved that the student is registered in at least one course, then this property holds for
every student in the domain.

10.4 Proofs 161

2. Universal Instantiation

(∀-Elimination)
∀x ∈ X • P(x), c ∈ X

P(c)
where c is arbitrary.

If P holds for all elements of the domain X, then it is true for any arbitrary element of
the domain. The conclusion states that P can be treated as a proposition. For example,
if X is the domain of prime numbers satisfying the property that every number from X

can be written in the form 2p − 1, where p is a prime, then a prime number p can be
found for any arbitrary element of X.

Example 5 Given the premises P(a) and ∀x • (P (x) ⇒ ¬Q(x)), prove ¬Q(a). The steps
are as follows:

1. P(a) premise
2. ∀x • (P (x) ⇒ ¬Q(x)) premise
3. P(a) ⇒ ¬Q(a) ∀-Elimination in step 2
4. ¬Q(a) modus ponens, steps 1, 3

�

Rules for existential quantification

1. Existential Generalization

(∃-Introduction)
c ∈ X,P (c)

∃x ∈ X • P(x)
where c is arbitrary.

The rule establishes a disjunction over the elements of X, the domain of interest. The
first hypothesis is that the set X is not empty, and the second hypothesis is that the
property holds for some element of X. For example,

pigeon ∈ {dolphin, cat,pigeon} ∧ bird(pigeon) � ∃x

∈ {dolphin, cat,pigeon} • bird(x).

2. Existential Instantiation

(∃-Elimination)
∃x ∈ X • P(x)

P (c)
for some c in the domain of interest.

In practice, it may be difficult to determine the particular value c from the domain for
which P(c) holds.

Example 6 Given the premises ∃x •P(x) and ∀x • (P (x) ⇒ Q(x)), prove ∃x •Q(x). The
steps are as follows:

1. ∃x • P(x) premise
2. ∀x • (P (x) ⇒ Q(x)) premise
3. a, P(a) ∃-elimination in step 1
4. P(a) ⇒ Q(a) ∀-Elimination in step 2
5. Q(a) modus ponens, step 3, step 4
6. ∃x • Q(x) ∃-introduction in step 5

�

10

162 10 Predicate Logic

Example 7 This example models the behavior of a queue which always contains at least
one item, and which is never full. The proof steps using universal elimination and existen-
tial generalization are shown. We will show that ∃x • (queued(x) ∧ next_to(x, c)) follows
from the following three premises:

1. ∀x • (received(x) ⇒ queued(x)): every message received is put in a queue.
2. ∀x • (queued(x) ⇒ next_to(x, c)): the received message is next to message c in the

queue.
3. received(m): message m is received.

The proof steps are:

1. Using universal elimination from the first two premises, derive
(a) received(m) ⇒ queued(m) . . . premises (1) and (3).
(b) queued(m) ⇒ next_to(m, c) . . . premises (2) and (3).

2. Apply modus ponens to premise(3) and formula 1(a) to derive queued(m).
3. Apply modus ponens to premise (2) and formula 1(b) to derive next_to(m, c)

4. Apply ∧- introduction rule to the results of steps (2) and (3) to derive
queued(m) ∧ next_to(m, c).

5. Apply ∃- introduction rule to derive the conclusion
∃x • (queued(x) ∧ next_to(x, c)). �

In Example 7, we can weaken the third premise to ∃x • received(x) and keep the other
two premises. Still, we can obtain the same conclusion. The proof requires ∃-elimination
in the third premise, in order to follow the proof steps shown above. In applying existential
quantification, a name that is not already in use should be substituted for the quantified
variable. Otherwise, the proof may conclude with an irrelevant result.

10.4.2
Resolution

The resolution principle for propositional logic is extended to deal with predicate logic by
considering quantified expressions in clausal forms and using unification, a substitution
method for variables to obtain resolvent.

10.4.2.1
Clausal Forms

In order to apply resolution principle to first-order logic, the formulas must be in clausal
form. A clause is a disjunction of literals with no literal appearing twice, and no existential
quantifier and all universal quantifiers are at the left. We may omit universal quantifiers
and bullets in writing clausal forms. An empty clause, denoted Nil, is unsatisfiable. A unit
clause contains just one literal. An example of a clause is

∀x∀y∀z(P (x, z) ∨ ¬Q(z) ∨ R(y, z))

Existential quantifiers in a formula are removed by a process known as skolemization,
which preserves satisfiability, but not validity. A variable x quantified by ∃x• which is

10.4 Proofs 163

not itself within the scope of a universal quantifier, is replaced by a new constant (called
a Skolem constant) in the domain of interest. However, if ∃x• is within the scope of uni-
versal quantifiers, say ∀y∀z•, then x is replaced by f (y, z) where the Skolem function f

represents the existence of a unique x for every pair of y and z. The following examples
illustrate existential quantifier elimination by skolemization.

Example 8 In this example variable naming is done before skolemization.

∀x∃y hasmother(x, y) ∧ ∃x∀y¬mother(y, x) given formula
∀x∃y hasmother(x, y) ∧ ∃w∀z¬mother(z,w) renaming
∀x hasmother(x,f (x)) ∧ ∀z¬mother(z, c) skolemization

�

Example 9 In this example implication is eliminated before skolemization.

∀x∃y person(x) ⇒ hasmother(x, y) given formula
∀x∃y ¬person(x) ∨ hasmother(x, y) implication elimination
∀x ¬person(x) ∨ hasmother(x,mom(x)) skolemization

�

After skolemizing a formula, it is transformed to prenex normal form, in which the univer-
sal quantifiers are at the left. As an example, the prenex normal form of the formula

∀x[P(x) ∨ [∀y[P(y) ∨ P(f (x, y))] ∧ [Q(y,g(y)) ∧ ¬P(g(y))]]]
is

∀x∀y[P(x) ∨ [[P(y) ∨ P(f (x, y))] ∧ [Q(y,g(y)) ∧ ¬P(g(y))]]]
The expression obtained by removing all the universal quantifiers in a prenex normal is
called the matrix of the given formula. This matrix is transformed into a conjunctive normal
form by applying distributive laws. As an example, applying the distributive laws to the
matrix in the above prenex normal form we get

∀x∀y[[P(x) ∨ P(y) ∨ P(f (x, y))] ∧ [P(x) ∨ Q(y,g(y))] ∧ [P(x) ∨ ¬P(g(y))]]]
The three clauses in this expression are

{{P(x),P (y),P (f (x, y))}, {P(x),Q(y,g(y))}, {P(x),¬P(g(y))}}
Example 10 illustrates a resolution proof of validity.

Example 10 To prove the validity of a formula using resolution principle, the negation
of the formula is converted to a CNF expression and then show that the clauses do not
contradict. Consider the formula

∀x[P(x,f (x)) ⇒ ∃yP (y, a)]
The negation of the above formula is

∃x[P(x,f (x)) ∧ ∀y¬P(y, a)]

10

164 10 Predicate Logic

Eliminating ∃x will introduce a skolem constant c in the prenex form:

∀y[P(c,f (c)) ∧ ¬P(y, a)]
The matrix in the normal norm has the following clauses:

{{P(b,f (b))}, {¬P(y, a)}}
These two clauses do not contradict in any substitution for the variable y. That is, there is
no contradiction. Therefore, we conclude that the formula

∀x[P(x,f (x)) ⇒ ∃yP (y, a)]
is valid. �

10.4.2.2
Unification

The resolution method requires that clauses be transformed so that two literals of opposite
sign will have identical atoms. However, atoms may contain variable parameters. In this
case, they can be made identical only when transformed by suitable substitutions. The
process of finding a substitution and applying it to the clauses to be resolved so that the
atoms in complementary literals are identical, is called unification.

Unification is applied to clausal forms. So, the set of expressions to which unification
is applied consists only of atomic formulas or terms. It is known that for a given set of
clausal forms, there exists a unique most general unifier (mgu). The algorithms that com-
putes the mgu for a set of clauses iteratively builds up the mgu, by finding substitutions for
one variable at a time. Unification is necessary for a general proof by resolution. For ex-
ample, applying the substitution [f(t)/x] to the clauses {P(x),¬Q(x,y)} and {¬P(f (t))}
allow us to resolve them to obtain the resolvent ¬Q(f (t), y). Suppose we have the clause
L(x,y),P (y, z),R(z,w) ⇒ S(x,w), and three known assertions L(1,3),P(3,5), R(5,7),
then the substitution [1/x, 3/y, 5/z] gives the new assertion S(1,7). The proof steps in Ex-
ample 11 illustrate how the unifier is found for resolving clauses.

Example 11 The formula

C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7,

where

C1 = Q(w) ∨ ¬T (a,w),
C2 = ¬Q(v) ∨ ¬P(v),
C3 = ¬Q(u) ∨ ¬S(u),
C4 = R(u) ∨ S(u) ∨ P(g(u)),
C5 = R(u) ∨ S(u) ∨ T (u,g(u)),
C6 = Q(a),
C7 = ¬R(a),

is not satisfiable.

10.4 Proofs 165

Proof:
Using resolution, the proof steps are:

1. Q(a) clause C6.
2. ¬Q(u) ∨ ¬S(u) clause C3.
3. ¬S(a) substitution [a/u] and applying resolution to steps 1

and 2.
4. R(u) ∨ S(u) ∨ P(g(u)) clause C4.
5. R(a) ∨ P(g(a)) substitution [a/u] and applying resolution to steps 3

and 4.
6. ¬R(a) clause C7.
7. P(g(a)) applying resolution to steps 5 and 6.
8. R(u) ∨ S(u) ∨ T (u,g(u)) clause C5.
9. S(a) ∨ T (a,g(a)) substitution [a/u] and applying resolution to steps 6

and 8.
10. T (a,g(a)) applying resolution to steps 3 and 9.
11. Q(w) ∨ ¬T (a,w) clause C1.
12. Q(g(a)) substitution [g(a)/w] and applying resolution to

steps 10 and 11.
13. ¬Q(v) ∨ ¬P(v) clause C2.
14. ¬P(g(a)) substitution [g(a)/v] and applying resolution to

steps 12 and 13.
15. NIL applying resolution to steps 7 and 14.

�

10.4.3
Decidability

As in propositional logic, there is a distinction between what is true and what is prov-
able. A statement that is true under all interpretations may or may not be provable using a
certain proof method. Provability depends on the proof method used, such as natural de-
duction or resolution. However, predicate logic is both sound and complete with respect to
interpretations:

the Soundness Theorem If S � p, then S |� p. That is, if p is provable from S, then it is a
true statement.

the Completeness Theorem If S |� p, then S � p. Every statement that is true in all models
is also provable from the rules and axioms of the proof method.

Whereas propositional logic is decidable, predicate logic is algorithmically undecidable.
That is, showing the validity of expressions and proving the satisfiability of an arbitrary
predicate logic formula are much harder, because one has to consider all possible meanings
to terms from the underlying structure, which may be infinite. There are predicate logic
formulas that are satisfiable, but they do not have any model of finite size. This limits the
extent to which proofs can be automated. In particular, mechanical theorem provers may
not be able to derive proofs for certain complex programs. Strong heuristics to select proof
strategies and methods to avoid complex predicate expressions that lead to undecidability
are both essential in designing theorem provers.

10

166 10 Predicate Logic

10.5
Axiomatic Specification Examples

An axiomatic specification involves assertions based on variables of concern bound to the
specified object. In Anna specification language, axioms are annotations to Ada statements.
The annotated program in Example 12 is taken from [12]. In it, package searching in-
troduces a type intarray and some operations on it. Each line of annotations in Anna uses
the symbols “-”, “|”. The symbols =, <, <=, >= respectively denote the mathematical
notations for “equality”, “less than”, “less than or equal to”, and “greater than or equal
to”. These symbols are chosen to distinguish between Ada operators and Anna annota-
tions. Annotations are formal statements relating the semantics of the program to first-
order sentences, called verification conditions. Proving that the verification conditions are
true is sufficient to prove the correctness of programs. The proofs in [12] are carried out
using Hoare–Floyd [10, 14] logic, which we discuss in the next section. The IN clause
expresses an entry condition; in this case the values in array a is sorted from m to n. The
RETURN clause constrains the value returned by the function, including any side effects
stated in RAISE clause. If there is no side effect, the exit clause OUT is used in Anna. In
Example 12, the RAISE clause means that if the program terminates without meeting the
condition in RETURN clause then the signal not_present is issued.

Example 12 PACKAGE Searching

TYPE intarray IS ARRAY(integer) OF integer;
FUNCTION bin_search(a:intarray; m,n,x:integer;

RETURN integer;
--|WHERE
--| IN sorted(a,m,n);
--| RETURN k such that
--| k >= m and k <= n and a[k] = x;
--| RAISE not_present <=> IN not present(x,a,m,n);
--|END WHERE
--| ...

END searching;
�

10.5.1
Hoare’s Notation

In the seminal paper [14], Hoare introduced an axiomatic method for computer program-
ming. In this section, we briefly survey this notation for specifying some imperative pro-
grams. The notation of Hoare, as currently used, is {P }S{Q} where

10.5 Axiomatic Specification Examples 167

• S is a program from an imperative programming language, similar to the style of Pascal,
and

• P and Q are conditions on the variables used in program S.

The expression {P }S{Q} is a specification of program S. This specification is correct,
equivalently the expression {P }S{Q} is true, if an execution of S starting in a state satis-
fying the condition P terminates, and the state in which the program S terminates satisfies
the condition Q. P is called the precondition and Q is called the postcondition of the
expression {P }S{Q}. For {P }S{Q} to be true, the termination of program S is not nec-
essary. So specification {P }S{Q} is called partial. By establishing partial correctness and
termination of program S separately, one proves the total correctness of program S.

Specification {P }S{Q} serves to construct formal proofs of partial correctness once we
observe that P ∧ S ′ ⇒ Q, where S ′ is the logical version of S. The deductive system due
to Hoare [14] achieves this by building up proofs for every programming construct and
logically putting them together. The notation � S from logic is used to mean that program
statement S has a proof. In general, a rule in Hoare logic is of the form

� S1, . . . ,� Sn

� S

where the hypotheses S1, . . . , Sn may include some theorems from mathematics in addition
to Hoare logic theorems.

The assignment axiom The assignment axiom asserts the correctness of the assignment
statement V := E, where V is a program variable and E is a well-formed expression. It
asserts the fact that the value of V in the state after executing the assignment statement
equals the value of expression E in the state before executing it.

The assignment axiom

� {P [E/V]}V := E{P }

In specification refinement, it is necessary to strengthen the precondition and weaken
the postcondition. The rules for strengthening the precondition and weakening the post-
condition in the specification axiom are

Precondition strengthening

� P ⇒ P ′,� {P ′}S{Q}
� {P }S{Q}

Postcondition weakening

� Q′ ⇒ Q,� {P }S{Q′}
� {P }S{Q}

Conjunction and disjunction of specifications Two specifications about the same pro-
gram can be split or combined using the following rules.

10

168 10 Predicate Logic

Conjunction of specifications

� {P1}S{Q1},� {P2}S{Q2}
� {P1 ∧ P2}S{Q1 ∧ Q2}

Disjunction of specifications

� {P1}S{Q1},� {P2}S{Q2}
� {P1 ∨ P2}S{Q1 ∨ Q2}

In order to prove the claim � {P1 ∨ P2}S{Q} using the disjunction rule, a proof for
� {P1}S{Q} may be attempted first, and if it fails then a proof for � {P2}S{Q} must be
carried out.

The sequencing axiom A sequential composition of two programs S1 and S2, denoted
S1 ◦ S2, is a program S which starts execution with S1 and after its termination, continues
execution of S2. A partial specification for S is derived from specifications of S1 and S2.

Sequential composition of specifications

� {P }S1{Q},� {Q}S2{R}
� {P }S1 ◦ S2{R}

The conditional axioms The specification of conditional programs are given below. Let
U denote the statement if C then S, and V denote the statement if C then S1 else S2.
Assume that {P }S{Q} is a specification for program S.

Axiom for conditional specifications

� {P ∧ C}S{Q},� {P ∧ ¬C} ⇒ Q

� {P }U{Q}
� {P ∧ C}S1{Q},� {P ∧ ¬C}S2{Q}

� {P }V {Q}

The repetition axiom The while construct used to repeatedly execute a program uses a
loop invariant for program termination. Let U denote the program while C do S, and {P }
be the invariant of S whenever C holds. If the condition P holds once the execution of S

begins then it holds in every execution of S. This implies that P must hold for U to begin
execution, P ∧ C must hold to begin execution of S, P should hold during every execu-
tion including when program U stops execution, and P ∧ ¬C must hold when program U

terminates.

Axiom for while program

� {P ∧ C}S{P }
� {P }U{P ∧ ¬C}

We discuss two simple programs below illustrating partial correctness criteria.

Program Exchange Given X = a∧Y = b in the initial state of the program BEGIN Z :=
X;X := Y ;Y := Z END, we want to prove that after termination of the program the con-

10.5 Axiomatic Specification Examples 169

dition X = b ∧ Y = a is true. Let P : X = a ∧ Y = b and Q : X = b ∧ Y = a. Using the
sequential composition rule, the result is established if we have proofs for � {P }S1{Q1},
� {Q1}S2{Q2}, � {Q2}S3{Q} for suitable Q1 and Q2, where S1, S2 and S3 are, respec-
tively, the assignment statements Z := X, X := Y , and Y := Z. Applying the assign-
ment axiom on the specification {Q2}S3{Q}, we derive Q2 : X = b ∧ Z = a. Applying
the assignment axiom on the specification {Q1}S2{Q2}, we derive Q1 : Y = b ∧ Z = a.
Applying once again the assignment axiom on the specification {P }S1{Q1}, we derive
P : Y = b ∧ X = a.

Program Division Assume that a ≥ b and b > 0 are integers. The quotient q and re-
mainder r when b divides a satisfies the equation a = b × q + r , 0 ≤ r < b. A simple
program that uses additions to achieve division is

BEGIN

r := a

q := 0

while b ≤ r

BEGIN

r := r − b;q := q + 1;
END

END

The precondition for the program is {P ′ : a ≥ b ∧ b > 0}. The postcondition to be verified
is Q : (a = b × q + r) ∧ r < b. The postcondition after executing the first two assignment
statements is r = a ∧ q = 0 ∧ a ≥ b > 0, which satisfies the condition P : a = b × q + r ,
and the loop condition C : b ≤ r . In order to prove {P ∧C}S{P }, where S is the body of the
loop, it is sufficient to prove that P is a loop invariant. It is necessary to distinguish between
the values of the variables prior to and after an operation, and is done by suffixing the
variables with a prime to denote their values in the state after the operation. The substitution
rule supports the renaming of variables in assertions. Write P as P(q, r) to explicitly show
its variation with q and r . After one iteration of the loop r ′ = r − b and q ′ = q + 1, where
r ′, q ′ denote the post state variables of r,p. P(q ′, r ′) : b×q ′ +r ′ = b× (q +1)+ (r −b) =
b × q + r = a. This proves the claim that P is loop invariant. Applying the while axiom,
we derive the postcondition {P ∧ ¬C}, which equals a = b × q + r , 0 ≤ r < b.

The Hoare notation is widely used in specifying interface specifications [13], and in
specifying acceptable behaviors of abstract datatype operations [15]. Example 13 uses this
assertions style to formally describe the status of a sequential file system before and after
execution of statements modifying its status.

Example 13 A file is assumed to be a linear sequence of records, where the notion of
record is primitive. The records of the file are sequentially numbered from zero. Thus
file0,file1, . . . ,filek−1 are the k records of a file at any instance. If k < 1, the file is empty
and filej ,0 ≤ j ≤ k − 1, refers to the j -th record of the file. Let position denote the current
position of a cursor which is considered to be between two adjacent records. There is a

10

170 10 Predicate Logic

sequence of records, LP, to the left of position, and a sequence of records, RP, to the right
of position. If length denotes the number of records in the file, the statement

S(position) : 0 ≤ position ≤ length

is an invariant assertion. That is, S(position′) is true after every operation affecting posi-

tion.

EMPTY_FILE position = 0 ∧ length = 0
MOVE_LEFT The cursor is moved to the left end of the previous record; if the file is

empty the operation has no effect.

precondition : position > 0
postcondition : (position′ = position − 1)∧

(length′ = length) ∧ (file′ = file)

MOVE_RIGHT The cursor is moved to the right end of the following record; if the cursor
is already at the right end of the last record in the file, the operation has no effect.

precondition : position < length
postcondition : (position′ = position + 1)∧

(length′ = length) ∧ (file′ = file)

INSERT_RIGHT Insert a new record r in the file so that the sequence of records to the left
of the new position is {LP} and the sequence of records to the right of the new position
is {r,RP}.

precondition : position < length
postcondition : (position′ = position) ∧ (length′ = length + 1)∧

∀p • ((0 ≤ p < position) ⇒ file′
p = filep∧

(p = position) ⇒ file′
p = r∧

(position ≤ p < length) ⇒ file′
p+1 = filep)

INSERT_LEFT Insert a new record r in the file so that the sequence of records to the
right of the new position is {RP} and the sequence of records to the left of the new
position is {LP, r}. The postcondition is similar to the previous operation except that
position′ = position + 1. The precondition is position ≥ 0.

DELETE_LEFT Delete the record r to the immediate left of the cursor. If the file is empty,
or if the cursor is at the left end of the first record in the file, then the operation has no
effect.

precondition : position ≥ 1
postcondition : (position′ = position − 1) ∧ (length′ = length − 1)∧

∀p • ((0 ≤ p < position′) ⇒ file′
p = filep∧

(position′ ≤ p < length′) ⇒ file′
p = filep+1)

10.6 Exercises 171

DELETE_RIGHT Delete the record r to the immediate right of the cursor. If the cursor is
at the right end of the last record in the file, or if the file is empty, then the operation
has no effect.

precondition : 0 ≤ position < length
postcondition : (position′ = position) ∧ (length′ = length − 1)∧

∀p • ((0 ≤ p < position′) ⇒ file′
p = filep∧

(position′ ≤ p < length′) ⇒ file′
p = filep+1)

�

10.6
Exercises

1. Consider the two formulas ∀x∃yP (x, y) and ∃y∀xP (x, y).

• Give an interpretation for which both formulas are true.
• Give an interpretation for which the first formula is true and the second formula is

false.

2. For each formula below determine whether or not it is valid.
(a) ∀xP (x) ⇒ P(a).
(b) (∃xP (x) ⇒ ∀xQ(x)) ⇒ ∀x(P (x) ⇒ Q(x)).
(c) ∀x∃yP (x, y) ⇒ ∃y∀xP (x, y).
(d) ∀x(P (x) ∨ Q(x)) ⇒ (∀xP (x) ∨ ∀xQ(x))

3. Give rules in Cassandra style for the following actions:

• Alice owns the file GRADES. She delegates the Read right to all those who rank
higher than her in the system.

• A person x delegates her role of Administrator() to y for a period of 30 days.
During this period y can activate this role but cannot delegate that role to anybody
else.

• All students of Loyola University get 15% savings on books purchased in ABC
Stores during the month of September. In order to benefit from this promotion,
student credentials will be validated automatically by the system.

• Allow the deactivation of Admin() role of a person if the person is playing that role
currently and has activated any other role.

4. Prove or disprove the claims below, using (i) natural deduction, and (ii) proof by reso-
lution.
(a) The following premises are given:

(i) ∀x • (student(x) ∨ teacher(x))

(ii) ∀x • (student(x) ⇒ (tall(x) ∧ loves(c, x))

(iii) ∀x • (¬small(x) ⇒ teacher(x))

(iv) claim: small(c)
(b) ∀x • P(x) � ∃x • ¬P(x)

(c) � ∃x • (P (x) ⇒ ∀y • P(y))

10

172 10 Predicate Logic

(d) P(a, b) ∧ ∀x • (∃y • P(y, x) ∨ P(x, y) ⇒ P(x, x)) � P(x, a)

5. The statements given below relate to computer accounts for students. Translate each
sentence into a predicate logic formula; then transform each formula into an equivalent
prenex normal form; finally, give the equivalent CNF for each formula:
(a) Every student has a unique user name and password.
(b) Every student owns 200 MB of disk space.
(c) No student can have two different disk spaces.
(d) A student may erase the disk space he/she owns.
(e) A student may give the disk space to some other student, but not to two students

simultaneously.
(f) A student who receives the disk space from another student cannot erase the con-

tents of the disk space.
6. From the premises

(a) ∀x • (P (x) ⇒ Q(x))

(b) ∀x • ¬Q(x)

prove that ∀x • ¬P(x).
7. A directed graph is a 3-tuple (V ,E, I), where V is a finite set of vertices, E is a finite

set of edges, and I is a set of assertions denoting the incidence relationships between
vertices and edges. For every vertex v ∈ V , the predicate vertex(v) is true, and for every
edge e ∈ E, the predicate edge(e) is true. The predicates first(x, e) and second(y, e)

denote the properties that the edge e is directed from vertex x to vertex y. Give a set of
axioms and/or rules to specify the following properties:

• There is a path from vertex x to vertex y.
• There is a path between every pair of vertices in the graph.
• There exists a path of length k from vertex x to vertex y.
• There exists a partition of V into V1, V2, and V3 such that V1 �= ∅, V2 �= ∅, V3 = {c},

V1 ∪ V2 ∪ V3 = V , and every path between a member of V1 and a member of V2

passes through c.

8. Assume the relationship as stated in the Parent Database shown below.

Child Parent

alice bob
mary bob
lisa andrew
edward smith
bob charles
smith philip
andrew charles

(a) Express the Parent Database knowledge as propositions.
(b) Assuming the constraints

parent(x, y) ⇒ ¬parent(y, x)

parent(x, y) ∧ parent(y, z) ⇒ ¬grandparent(x, z)

determine all grandparents in the database.

10.6 Exercises 173

(c) Write rules in Cassandra style for enforcing the following policies:

• Every action permitted to be performed by a child can be performed by the parent,
and not by the grandparent.

• Actions permitted to siblings of a parent must be different.
• A parent can delegate a role to only one of her children.

9. Write pre and postcondition for the following operations on the file modeled in Exam-
ple 13:
(a) EXCHANGE—The operation has no effect if position is either before the first record

or after the last record in the file; otherwise, the records on either side of position
are swapped.

(b) COPY_LEFT(k)—The operation has no effect if position is before the first record
or k ≤ 0; otherwise, the first k records to the left of position are copied to the right
of position in the same order.

(c) COPY_RIGHT(k)—The operation has no effect if position is after the last record in
the file or k ≥ 0; otherwise, the first k records to the right of position are copied to
the left of position in the same order.

10. Formally apply Hoare axioms to each program specification below and determine its
correctness.

(a)

� {X = a ∧ Y = b}X := X − Y ;Y := X + Y ;X := Y − X;
{Y = a ∧ X = b}

(b) Assume that you are given the theorems:

� X ≥ Y ⇒ max(X,Y) = X, and

� Y ≥ X ⇒ max(X,Y) = Y .

Derive a proof for the program specification

� {T }If X ≥ Y then MAX := X else MAX := Y

{MAX = max(X,Y)}
(c) The precondition for the following program is X = a ∧Y = b ∧S = 0, where a and

b are non-negative integers. Assume that even(X) is true if X is an even integer,
and div is integer division operation. Prove that the program terminates and the
postcondition is S = a × b.

while X ≥ 0 do
begin

while even(X) do
begin Y := 2 × Y ;X := X div 2; end;

S := S + Y ;
X := X − 1;

end

10

174 10 Predicate Logic

10.7
Bibliographic Notes

First-order predicate logic is a subject of great importance for software development where
its formal notation and deductive systems are used to axiomatically specify system prop-
erties. Many automated theorem provers are based on predicate logic. For instance in the
proof assistant Coq [3], formal proofs for proposition and predicate logic can be devel-
oped. Programming language Prolog [7] is built on top of Horn clauses, which express
a subset of predicate logic. Prolog execution engine is driven by the unification principle.
Several policy languages that use predicate logic formalism are surveyed in [4]. Specifying
policies for heterogeneous open distributed systems that offer services to a large section of
society, and proving that policies are respected in every system transaction are formidable
tasks. Cassandra [1] with its formal foundation provides the scope of formally proving
such system properties.

No axiom system in first-order logic is strong enough to fully describe infinite structures
such as the natural numbers or the real line. In first-order logic, quantified variables range
over individual elements, whereas in second-order logic, these variables can range over
predicates and sets of individuals. Higher-order logic is the basis for powerful theorem
proving tools such as HOL [11] and Isabelle [16].

References

1. Becker MY (2005) Cassandra: flexible trust management and its application to electronic
health records. Technical report, UCAM-CL-TR-648, University of Cambridge, United King-
dom

2. Becker MY, Sewell P (2004) Cassandra: distributed access control policies with tunable ex-
pressiveness. In: POLICY ’04: proceedings of the fifth IEEE international workshop on poli-
cies for distributed systems and networks. IEEE Press, New York, pp 159–168

3. Bertot Y, Castéran P (2004) Interactive theorem proving and program development. Texts in
theoretical computer science. Springer, Berlin

4. Bonatti PA, Shahmehri N, Duma C, Olmedilla D, Nejdl W, Baldoni M, Baroglio C, Martelli
A, Coraggio P, Antoniou G, Peer J, Fuchs NE (2004) Rule-based policy specification: state
of the art and future work. Technical report, Dipatimento di Scienze Fisiche, Universit a di
Napoli, Complesso Universitario di Monte Sant Angelo

5. Chen F, Sandhu RS (1996) Constraints for role-based access control. In: RBAC ’95: proceed-
ings of the first ACM workshop on role-based access control. ACM, New York, pp 39–46

6. Ceri S, Gottlob G, Tanca L (1989) What you always wanted to know about Datalog (and never
dared to ask). IEEE Trans Knowl Data Eng 1(1):146–166

7. Clocksin WF, Mellish CS (1984) Programming in prolog using the ISO standard. Springer,
New York

8. Davis R, Shrobe H, Szolovits P (1993) What is a knowledge representation? AI Mag 14(1):17–
33

9. DeMarco T (1978) Structured analysis and system specification. Yourdon Press, New York
10. Floyd R (1967) Assigning meaning to programs. In: Mathematical aspects of computer sci-

ence, XIX. American Mathematical Society, Washington, pp 19–32
11. Gordon MJC, Melham TF (1993) Introduction to HOL: a theorem proving environment for

higher order logic. Cambridge University Press, Cambridge

References 175

12. Guaspari FD, Marceau C, Polak W (1990) Formal verification of Ada programs. IEEE Trans
Softw Eng 16(9):1044–1057

13. Garland SJ, Guttag JV, Horning JJ (1990) Debugging Larch shared language specifications.
IEEE Trans Softw Eng 16(9):1058–1075

14. Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM
12(10):576–583

15. Hoare CAR (1972) Proof of correctness of data representations. Acta Inform 1(1):271–281
16. Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL: a proof assistant for higher order

logic, LNCS, vol 2283. Springer, Berlin

Temporal Logic 11

In classical logic, the predicate P in “if P ∧ (P ⇒ Q) then Q” retains its truth value
even after Q has been derived. In other words, in classical logic the truth of a formula is
static. However, real-life implications are causal and temporal. To handle these, it must
be possible to specify that “an event happened when P was true, moments after that Q

became true, and now “P is not true and Q is true”. This may also be stated using “states”.
We associate predicates with states such that a predicate is true in some state S and false
in some other states. For example, the statements

P the train is approaching the gate,
P ⇒ Q if the train approaches the gate, the gate is lowered,
Q the gate is lowered before the train is in the gate, and
R the gate remains closed until the train crosses the gate

describe changes to the states of a control system that continuously maintains an ongoing
interaction with the environmental objects train and gate. The program controlling the train
and the gate, according to the specification stated above, is a reactive program. Reactive
system refers to the reactive program together with its environment. Such systems are typ-
ically non-terminating, read input and produce output on a continuous basis at different
system states, interact with other systems and devices in its environment, exhibit concur-
rent behavior and may have to obey strict timing constraints. For example, the statements
P and R denote continuous activities, the statement Q involves the temporal ordering of
the actions “gate closing” and “train arriving at the crossing”, and the statements P and
Q imply concurrency. Such statements cannot be formalized in classical logic. In order to
formalize these statements in logic, we need to introduce constructs such as next, always,
after, since, and until and provide semantics to terms involving them. With proper seman-
tics, these terms can express ordinal, temporal, and causal relationships on events and state
transitions, without reference to the actual times at which they happen. Temporal logic was
developed by Pnueli [22] to describe such orderings. Many kinds of temporal logics exist
today, some in which one can add timing constraint like “the gate must be lowered within
3 seconds after receiving the message that the train is approaching”. The temporal logics
introduced in the following sections are simple extensions of propositional and first order
logic and do not involve real-time measurements.

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_11, © Springer-Verlag London Limited 2011

177

11

178 11 Temporal Logic

11.1
Temporal Logic for Specification and Verification

Temporal logics can support specification and reasoning at different levels of abstractions.
They provide unified logical systems in which behavior specification, design specification,
and implementation level details can be expressed and related in an intuitive manner.

1. Requirements Description: At the requirements level, propositions and predicates are
determined to model the problem requirements, and temporal formulas are constructed
to formalize the temporal properties of the requirements. In particular, functionalities
that must be present “always”, or “at some future instance”, or “always from some
future instance” can be stated as temporal logic formulas [15].

2. Design Level Specification: At the design level, the behavior of an object can be charac-
terized by a sequence of states, and the events triggering the successive state transitions.
Temporal logic formulas are used to assert properties that hold over (1) all sequences
of states, (2) some sequences of states, and (3) some future state in some sequence.
Temporal logic can be used to interpret sequential and concurrent actions [16, 17, 22].

3. Program Specification: An interpretation of a program using temporal logic becomes a
temporal specification of the program [19, 22, 24]. Verification of program properties
can be done by stating each property as a temporal formula and then showing that the
specification satisfies the formula.

4. Formal Verification: The rules of temporal logic proof calculus are applied to show
the correctness of a temporal logic specification with respect to more abstract system
specifications [5–7, 16]. Even when the design specifications use a different formal
notation, temporal logic may be brought in at formal verification stages, as done in
model checking.

Many types of concurrent and reactive systems can be modeled in temporal logic and the
critical properties of the system can be formally verified in the model. In particular, in
the specification of concurrent or reactive systems, three important behavioral properties,
termed safety, liveness, and fairness by Owiciki and Lamport [20], can be formally ex-
pressed.

• Safety: Informally, a safety property implies that something bad will not happen. Typical
examples are:

1. the gate will remain closed while a train is crossing the gate
2. water level in the boiler should be at least 3 meters, and the reactor temperature must

be less than 3000 degrees.

Other examples of safety properties include

3. partial correctness—the program does not produce stack overflow
4. mutual exclusion—two processes are not simultaneously in the critical section
5. deadlock-freedom—the program does not reach the state of deadlock.

• Liveness: Liveness property implies that something good will eventually happen. Typical
examples are:

11.2 Concept of World and Notion of Time 179

1. whenever the gate is directed to raise, it will eventually do so
2. program terminates eventually.

• Fairness: Fairness property implies that whenever an attempt is made to perform an
action or request a service, it will eventually succeed. Typical examples are:

1. starvation-freedom, where a process does not wait forever to be serviced
2. progress, where every message sent in a channel is eventually received.

11.2
Concept of World and Notion of Time

The term “world” means a frame or a state and is characterized by a set of dimensions
such as time, space, audience, and events. Natural language expressions are interpreted in
intentional logic [4] by evaluating the expression over different modes that are worlds. In
Example 1, taken from Wan [30], a pair (month, location) determines a world, which is a
unit of time/space.

Example 1 An evaluation of the expression

E ′: the average temperature this month here is greater than 0°C

can be obtained by interpreting it along the dimensions month and location. The table be-
low gives only a partial evaluation because there exists many locations not included in the
table.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Montreal F F F F T T T T T F F F
Ottawa F F F T T T T T T F F F
Toronto F F T T T T T T T T F F
Vancouver F T T T T T T T T T T T

�

In temporal logic, “world” refers only to time points. A world is like a model at a specific
moment in time that assigns truth values to atomic propositions. To navigate between the
different worlds, an accessibility relation needs to be defined. With this relation as we
navigate through the worlds, we are moving through time. So, when we refer to “time” we
are not referring to absolute time (or clock time) but we are emphasizing only the temporal
relation defined by the accessibility relation.

11.2.1
Temporal Abstraction

The accessibility relation may be explained through temporal abstraction. We describe
this notion following the discussion in [18]. As we move from requirements specification,

11

180 11 Temporal Logic

which is abstract, to a design specification, which is concrete, more details are added. An
abstract specification may specify a component behavior as a state machine, emphasiz-
ing only on the correct sequence of actions. The times at which these actions must occur
might have been left out, and may be added during the design of the component. In some
cases, time information might be stated at the abstract level only at some states which are
considered time-critical. The details of time left unspecified at other intermediate states
should not affect the overall behavior of the component, in particular during the design
stage when more detailed time information may be added. Even at the design stage, the
stated times may not be the exact time points, rather only the time points that are relative
to the stages through which the timed behavior evolves. The abstract specification repre-
sents a temporal abstraction of the more detailed behavior given by the design. Continuing
this discussion, it is understood that the design represents a temporal abstraction of the
program. A correctness condition should establish a relationship between these different
formal representations of time.

In many problems such as hardware specifications and reactive system specification,
each unit of time in an abstract specification corresponds to an interval of time in its con-
crete counterpart. It may be that a particular moment at the abstract level corresponds to
some moment within an interval or to a set of adjacent time moments in the concrete level.
Consequently, a correctness condition formulated at the abstract level, which involves only
“coarse-grained” time must be consistent with the “fine-grained” time scale in the concrete
level. This correspondence between the time scales is described by a function f , that as-
signs for every ta in the abstract level a time point tc = f (ta) at the concrete level such that
the order of time is preserved:

� ∀ta, t
′
a.(ta < t ′a) ⇒ (tc < t ′c)

The properties of time that should hold in the design will determine the function f . The
inverse of f need not be a function, because many possible designs exist for an abstract
specification. If f denotes the mapping from the requirements to the design and g denotes
the mapping from the design to the implementation then the function f ◦ g is the time
map from the requirements to the implementation. The advantage of temporal abstractions
include

• irrelevant details about intermediate states are suppressed in the abstract level, and
• time scale is not absolute, and consequently a specification can focus on relative time

points without being specific about “which” time points are in fact of interest.

11.2.2
Discrete or Continuous

When certain computations or actions need to be described as continuously varying, a
dense model of time is appropriate. In such a case, the topology of time is that of real
numbers or a subset of real numbers. When a property is present over a sequence of inter-
vals, and in each interval the property persists in every sub-interval, then an interval and

11.3 Propositional Temporal Logic (PTL) 181

continuous model of time are used. When dealing with properties that are present only at
certain time instants, a discrete model of time is chosen. In this case, the model of time is
isomorphic to a subset of natural numbers.

11.2.3
Linear and Branching Models of Time

One may want to postulate that for any state (moment in time) there is either exactly one
next state or several possible next states. The former case is called the linear model of time,
and the latter case is called the branching model of time. The branching model is useful
to handle uncertainty, and hence possible alternative futures. Properties such as “p is true
throughout every possible future”, “p is true at the next time in some possible future”, “p is
true eventually in every possible future”, and “p is true eventually in some possible future”
can be stated and reasoned about in branching time temporal languages.

11.2.4
Further Specializations of Time

In distributed computing and communication over shared networks, there is a need to make
a distinction between global and local times. The other possibilities include bounded time
and interval time. A bounded time applies to dense (discrete) model when a finite subset of
real numbers (natural numbers) is chosen to model time. An interval time model has a dis-
crete time structure, so that the next and previous intervals can be referred to. Within each
interval, a property may hold in every sub-interval or only at specific discrete points. In
addition, time modeled as intervals may be bounded or unbounded. As a result of this clas-
sification, many different models of time can be realized. Some of these include “discrete
linear global time”, “discrete branching local time”, and “continuous branching interval
time”.

11.3
Propositional Temporal Logic (PTL)

PTL is a discrete linear-time temporal logic introduced by Pnulei [22]. The primary fea-
tures are that (1) time structure at the abstract level is the set of non-negative integers, (2)
for every moment in time there is only one future moment in time, and (3) only proposi-
tions are allowed in formulas.

In PTL, the set of propositional logic operators is extended with the temporal operators
� (always), ♦ (eventually) and © (next). Intuitive meanings of temporal operators used in
first order formulas ϕ and ψ are given in the table below.

11

182 11 Temporal Logic

Formula Intuitive meaning

�ϕ ϕ is true in all future moments
♦ϕ ϕ is true at some future moment in time
©ϕ ϕ is true in the next moment in time
ϕ U ψ ϕ is true up and until some future

moment when ψ becomes true

With the above intuitive meanings, we can formalize a few requirements as in Example 2.

Example 2

• Always, if an email is sent through the network, then it will eventually be delivered.

�(send_email ⇒ ♦delivered)

• If a car is parked and the meter has expired, then at the next moment it will be ticketed.

(parked ∧ meter_expired) ⇒ © ticket_for_violation

• The university library never closes.

�library_open

• Always, after the machine gets a coin and the user press a button, it gives coffee or tea.

�(coin ∧ ©press_Button ⇒ ♦(serve_Coffee ∨ serve_Tea))

• Always, after pressing a button the machine will serve coffee and then tea immediately
afterward.

�(press_Button ⇒ (serve_Coffee ∧ © serve_Tea))

• The gate remains closed until the train leaves the crossing.

gate_closed U train_exits
�

11.3.1
Syntax

The vocabulary of temporal logic consists of a finite set PROP of propositional symbols.
The logical connectives true, false, ∨, ∧, and ⇒ together with the temporal connectives
©, ♦, �, and U are added to the vocabulary.

The unary operators bind stronger than binary ones. Operators ¬, ©, �, and ♦ bind
equally strong. As an example, the formula ¬P U Q is interpreted as (¬P)U Q. Temporal
binary operators have stronger precedence over ∧, ∨, and ⇒. The formula P ∨ QU R is
parsed as P ∨ (QU R). Parentheses should be inserted to override precedence.

11.3 Propositional Temporal Logic (PTL) 183

The set of well-formed formulas of PTL, denoted wff T , is inductively defined as the
smallest set of formulas satisfying the following rules.

1. We add a special proposition symbol start which is true only at the beginning of time.
It is not meaningful to use start at any other state.

2. Every proposition P in PROP is in wff T .
3. The constants true, false, and start are in wff T .
4. If ϕ is in wff T , then (ϕ) and T (ϕ), where T is a temporal operator, are also in wff T .

The formulas ¬(ϕ),�(ϕ),♦(ϕ) and ©(ϕ) are well-formed.
5. If ϕ and ψ are in wff T , then so are (ϕ ∨ ψ), (ϕ ∧ ψ), and (ϕ ⇒ ψ).

As an example, the formulas ϕ ⇒ �♦(ψ ∨ χ), and ϕ ∧ ♦(ψ ⇒ ϕ) are well-formed,
whereas the formulas ψ♦ϕ, and ϕ ∧ �χ © ψ are not well-formed. Stating well-formed
formulas in natural language may be quite cumbersome. For example, stating the formula
�((ϕ ⇒ ©ψ) in natural language is not that difficult: it states that at every moment in
time the property “if ϕ is true then at the next moment ψ is true” holds. However, stating
the formula �(ϕ ∧♦ψ) ⇒ � (ϕ ⇒ ©χ) in natural language is more difficult. A semantic
model helps us to precisely interpret formulas and understand their meanings.

11.3.2
Model and Semantics

The time structure for PTL is N0, the set of non-negative integers. Each state i ∈ N0 is
associated with a set of propositions that are true in that state. That is, the formal basis
of the semantic interpretation of PTL is a sequence of propositional models. Formally, the
models of PTL is defined by

M = 〈N0,π〉,

where π maps state i ∈ N0 to π(i) = si ⊂ PROP. M is called model variety. An alternate
representation of the model variety is

M = 〈s0, s1, s2, . . .〉

A pictorial representation of M is given below.

Discrete Linear Model

−→ • −→ • −→ • −→ • −→ • −→ • −→ • −→ • −→ • −→ • −→ • −→ • −→
↑ ↑ ↑

{P ,Q} {Q} {P ,R}

11

184 11 Temporal Logic

11.3.3
Formal Semantics

The semantics of PTL formulas for a model M is an interpretation relation

|= (M × N0) �→ B

where B = {true, false}. For a formula ϕ

〈M, i〉 |= ϕ

is true if ϕ is satisfied at state si within the model M. This satisfaction relation is built
inductively, defined first for propositions, next for formulas involving classical logic con-
nectives, and finally for general temporal formulas.

1. Semantics of Propositions: A proposition P ∈ PROP satisfies 〈M, i〉 iff P ∈ si . For-
mally,

〈M, i〉 |= P iff P ∈ si

The proposition start is true only at the beginning of time.

〈M, i〉 |= start iff (i = 0)

2. Semantics of Standard Logic Formulas: We consider formulas involving {¬,∧,∨,⇒}.
〈M, i〉 |= ¬ϕ iff 〈M, i〉 |= ϕ is not true.

〈M, i〉 |= ϕ ∧ ψ iff both 〈M, i〉 |= ϕ and 〈M, i〉 |= ψ are true.

〈M, i〉 |= ϕ ∨ ψ iff either 〈M, i〉 |= ϕ is true or 〈M, i〉 |= ψ is true.

〈M, i〉 |= ϕ ⇒ ψ iff if 〈M, i〉 |= ϕ is true then〈M, i〉 |= ψ is true.

3. Semantics of Temporal Logic Formulas: We consider formulas involving ©,�,♦, U .

〈M, i〉 |= ©ϕ iff 〈M, i + 1〉 |= ϕ

〈M, i〉 |= �ϕ iff ∀j(j ≥ i)〈M, j〉 |= ϕ holds

〈M, i〉 |= ♦ϕ iff ∃j(j ≥ i)〈M, j〉 |= ϕ holds

〈M, i〉 |= ϕU ψ iff ∃j(j ≥ i) and 〈M, j〉 |= ψ,and

∀k(i ≤ k < j)〈M, k〉 |= ϕ holds

11.3.4
More Temporal Operators

We describe three more temporal operators below. Manna and Pnueli [17] includes an
exhaustive list of temporal operators.

11.3 Propositional Temporal Logic (PTL) 185

The Unless Operator W
The formula ϕ W ψ (read ϕ unless ψ) states that ϕ is true unless ψ becomes true. The
difference between Until and Unless operators is that in the former case ψ is guaranteed
to be true at some future state, whereas in the latter case ψ may never become true. Con-
sequently, ϕ W ψ specifies two scenarios: (1) ψ becomes true at some future state and the
behavior is identical to the until operator, and (2) ψ never becomes true and consequently
ϕ is true forever. Thus the formal semantics is

〈M, i〉 |= ϕ W ψ iff either 〈M, i〉 |= ϕ U ψ or 〈M, i〉 |= �ϕ

The Since Operator S
The formula ϕ S ψ (read ϕ since ψ) states that ψ has happened sometime in the past and
ϕ has continuously held since then. Notice that in the model for PTL there is no moment
in time that is less than 0. Thus the formal semantics is

〈M, i〉 |= ϕ S ψ iff ∃j(0 ≤ j < i)〈M, j〉 |= ψ and

∀k(k ≥ j)〈M, k〉 |= �ϕ

The Release Operator R
The formula ϕ R ψ (read ϕ release ψ) states that ψ has to be true at all states until and
including the state at which ϕ first becomes true. If ϕ never becomes true then ψ must
remain true forever. Notice that if ϕ becomes true at state si then ψ is not true from state
si+1 (unless something else happens), but we cannot assert anything about ψ after state si .
Recognize that the Release operator is the inverse of the Unless operator.

Example 3 The formulas below are interpreted according to the above semantics.

1. water_level_high ⇒ ©alarm_rings: if the water level is high in state si , i ≥ 0, then at
state si+1 alarm rings.

2. ¬(�(get_rank ∧ excel_in_sports): getting a rank in studies and excelling in sports is
not always possible.

3. system_down ⇒ ♦system_up: if the system is down at state si then at some future state
sj , j ≥ i the system will be come back up.

4. file_front ∧ printer_on ⇒ (♦start_print ∧ printing U file_end): if the printer is on and
the front of a file is received by it at state si then the printer will start printing the file at
some future state sj , j ≥ i, and continue printing until the end of file is reached at some
state k, k > j .

5. execute_program W stackoverflow: the program execution is continued unless there is
stack overflow.

6. cross_gate S gate_open: the gate remains open since the train crossed the gate.
7. arrived_at_terminal R driver_on_duty: upon arrival of train at the terminal the driver

on duty is released. �

11

186 11 Temporal Logic

11.3.5
Axioms

A sample set of axioms for PTL is given here. A set of axioms are grouped under a law.
An axiom gives the equivalence between two PTL formulas. In general, many formulas
equivalent to a given formula may exist. The axioms provide a basic set, using which
the number of equivalent formulas may be reduced to those shown in the list below. For
a complete list of axioms, principles of soundness, completeness, and axiomatization of
systems consult [10, 17, 26, 29].

• Absorption Axioms: The absorption law removes operators whose effect are absorbed by
other operators in a formula. If, always, it is true that ϕ is true infinitely often in a future
time moment then it must be true at every future state starting at time 0. The converse is
also true.

Absorption Law

♦�♦ϕ ≡ �♦ϕ

�♦�ϕ ≡ ♦�ϕ

• Distributive Axioms: The distributive law for ♦ distributes over disjunction, the dis-
tributive law for � distributes over conjunction, and these laws are dual to each other.
It should be noted that ♦ does not distributes over conjunction, and � does not dis-
tribute over disjunction. Informally this can be reasoned about. For example, the for-
mula ♦ϕ ∧ ♦ψ asserts that eventually a state in which ϕ holds and a state in which ψ

holds will be reached. But that does not mean that a state in which both ϕ and ψ are
true will be reached. However, the operator © distributes over conjunction and U (until).

Distributive Law

♦(ϕ ∨ ψ) ≡ ♦ϕ ∨ ♦ψ

�(ϕ ∧ ψ) ≡ �ϕ ∧ ♦ψ

©(ϕ ∧ ψ) ≡ (©ϕ) ∧ (©ψ)

©(ϕU ψ) ≡ (©ϕ) U (©ψ)

• Duality Axioms: The duality rule for the next-step operator © says that it is dual to it-
self. Read it as “it is not the case that ϕ is true in the next step is equivalent to saying that
it is the case that ϕ is not true in the next step”. The duality rule for the future operator ♦
involves the always operator �, and conversely the duality rule for the always operator
� involves the future operator ♦. Read the duality rule for � operator as “it is not the
case that ϕ is always true is equivalent to saying that at some future time point ϕ is not
true”. Interchange the operators � and ♦ in a rule to get (read) the other rule.

11.3 Propositional Temporal Logic (PTL) 187

Duality Law

¬�ϕ ≡ ♦¬ϕ

¬♦ϕ ≡ �¬ϕ

¬ © ϕ ≡ ©¬ϕ

• Expansion Axioms: Expansion axioms provide an inductive definition of temporal oper-
ators. As an example, if ♦ϕ holds in the beginning, then either ϕ is true or ©♦ϕ is true
in the beginning. In general, each law will assert the truth of a formula which does not
involve a temporal operator in the current state, and it asserts the truth of the formula in
the next state using the next state operator ©.

Expansion Law

�ϕ ≡ ϕ ∧ ©�ϕ

♦ϕ ≡ ϕ ∨ ©♦ϕ

ϕ U ψ ≡ ψ ∨ (ϕ ∧ ©(ϕ U ψ)

• Idempotent Axioms: The idempotent axioms eliminate the superfluous operator from a
formula. For example, it is not necessary to say that “always a formula is always true”.

Idempotent Law

��ϕ ≡ �ϕ

♦♦ϕ ≡ ♦ϕ

ϕ U (ϕ U ψ) ≡ ϕ U ψ

(ϕ U ψ) U ψ ≡ ϕ U ψ

• Induction Axiom: The axiom is similar to expansion law, applied to “implication”. It
asserts that temporal logic provides an inductive rule for proving assertions.

Induction Law

� �(ϕ ⇒ ©ϕ) ⇒ (ϕ ⇒ �ϕ)

It is instructive to verify the equivalence of two formulas by proving that the semantic
models of the formulas are identical. See exercises.

11.3.6
Formalizing Properties in PTL

We give examples showing propositional temporal logic characterizations for safety, live-
ness and fairness properties.

11

188 11 Temporal Logic

Example 4 Consider the mutual exclusion problem for two processes P1 and P2. A process
has (1) a critical section, (2) a non-critical section, and (3) a section where it waits before
entering the critical section. Let waiti denote that process Pi is in its waiting phase, and
critii denote that Pi is in its critical section. The safety property stating that P1 and P2

never simultaneously have access to their critical sections is expressed by the formula

�(¬criti1 ∨ ¬criti2)

The liveness property stating that each process Pi is infinitely often in its critical section is
expressed by the formula

(�♦criti1) ∧ (�♦criti2)

A fairness property is that every waiting process will eventually enter its critical section.
This property is also called starvation freedom. It can be expressed by the formula

(�♦wait1 ⇒ �♦criti1) ∧ (�♦wait2 ⇒ �♦criti2) �

Example 5 This example, called Dining Philosophers, is due to Dijkstra [8]. Five philoso-
phers are sitting at a round table with a bowl of rice in the middle. The philosophers think,
eat, and may have to wait before they eat. In between two neighboring philosophers there
is only one chopstick. To take some rice out of the bowl and eat, a philosopher needs
two chopsticks (eating by hand is forbidden!). So, a philosopher must take the chopsticks
from the left and right side in order to eat. But if one philosopher keeps both chopsticks,
the two neighbors will starve. The problem is to design a protocol for the dining so that
the complete system is deadlock-free. That is, at least one philosopher can eat and think
infinitely often. Additionally, some fairness is needed—every philosopher should be able
to eat and think infinitely often. To specify deadlock-freedom, let us denote the philoso-
phers by 0,1,2,3,4. Let waiti be the proposition meaning that philosopher i is waiting.
Let occupiedi be the proposition that chopstick i is in use. The formula that expresses
deadlock-freedom is

�¬
(∧

0≤i<5

waiti ∧
∧

0≤i<5

occupiedi

)

�

Example 6 This example describes the temporal properties of a traffic light with phases
R (red), G (green), and Y (yellow). We can consider the phases as “instances” (atomic).
That is, a traffic light in phase R will go to the next phase G. That is, there is “nothing” in
between R and G. We are not interested at “how long” the light will be red before turning
yellow. With this assumption, the formula that expresses the “transition from state (phase)
R to state (phase) G is

�(R ⇒ ©G)

However, if you want to consider durations, then “the traffic light remains red for sometime
before turning green”. Since we do not know for how long it will remain red, we can only

11.3 Propositional Temporal Logic (PTL) 189

state that eventually the light will become green.

�(R ⇒ ♦G)

If we want to be more descriptive of the behavior, we may say “once green, the light
eventually becomes red after being yellow for sometime”.

�(G ⇒ ©(GU (Y ∧ ©(Y U R))))

The traffic light is green infinitely often.

�♦G

The traffic light is red only in a finite number of states.

♦�¬R �

11.3.7
Specifications

In this section, we discuss methods for specifying communication and concurrency, and
illustrate them in specifying reactive systems.

11.3.7.1
Communication and Concurrency

We consider a system involving several objects (components or agents) who may interact
among themselves in order to achieve their goals. Essentially, each object is independent
of the other, except when it needs a resource or information from another object in order to
continue its activity. In a discrete time model, all components have a common global clock
and have the same definition of next moment. In the discussion below, we let SpecA and
SpecB , respectively, denote the specifications of components A and B , 〈N0,π1〉 denote the
model of SpecA and 〈N0,π2〉 denote the model of SpecB .

True Concurrency The execution of components progress independently and simul-
taneously through the same sequence of states. This type of concurrency is called syn-
chronous. There is no interaction between the propositions/formulas in SpecA and the
propositions/formulas in SpecB . The specification of the combined system that execute
concurrently and synchronously is SpecA ∧ SpecB , whose model is 〈N0,π〉, where π(i) =
π1(i) ∧ π2(i), for i ∈ N0.

11

190 11 Temporal Logic

Example 7

SpecA : �
⎡

⎣
start ⇒ P∧
P ⇒ © © Q∧
Q ⇒ ©P

⎤

⎦

SpecB : �
⎡

⎣
start ⇒ A∧
A ⇒ ©B∧
B ⇒ © © A

⎤

⎦

The model for SpecA is 〈N0,π1〉, where

π1(i) =
{

P if i = 3k, k ≥ 0
Q if i = 3k + 2, k ≥ 0

The model for SpecB is 〈N0,π2〉, where

π2(i) =
{

A if i = 3k, k ≥ 0
B if i = 3k + 1, k ≥ 0

The model for SpecA ∧ SpecB is 〈N0,π〉, where

π(i) =
⎧
⎨

⎩

A ∧ P if i = 3k, k ≥ 0
B if i = 3k + 1, k ≥ 0
Q if i = 3k + 2, k ≥ 0 �

Interleaving Executions Two components execute independently; however, only one of
the components can execute during a certain period of time. The model 〈N0,π〉 of this
behavior is given by

π(i) =
{

π1(i) if A is executing
π2(i) if B is executing

Executions Triggered by Messages Message passing can be specified in one of three
possible ways.

• Peer-to-peer communication: An object A sends a message directly to another object B .
• Broadcast Communication: An object sends a message to several objects; however, it

does not know the recipients of the message.
• Multicast Communication: This is a restricted form of broadcast, which specifies a con-

straint based on which the set of recipients are characterized. The sender does not know
the actual recipients of the message.

Messages are sent through channels, which have the following characteristics:

• channel is unidirectional,
• channel does not lose messages, and
• messages are delivered in the order they are sent.

11.3 Propositional Temporal Logic (PTL) 191

To specify interaction between components A and B through message passing, it is nec-
essary to have two channels, one for component A to send messages to component B ,
and another for component A to receive messages from component B . We view the set
of propositions in each specification to be partitioned into three sets input, output, and
internal. A proposition P ∈ outputA and a proposition P ∈ inputB are related by the con-
nective ⇒ to show the direction of flow of the message from component A to compo-
nent B . Similarly, a proposition Q ∈ outputB and a proposition Q ∈ inputA are related by
the connective ⇒ to show the direction of flow of the message from component B to com-
ponent A. Depending upon the type of communication, quality of service criteria (QoS)
and the medium of communication, the message is delivered in one of the following ways:

• the message is delivered instantaneously: �[P ⇒ P̄]
• the message is delivered at the next moment: �[P ⇒ ©P̄]
• the message is delivered at some future moment �[P ⇒ ♦P̄].
There exist other possibilities such as “the message is delivered at a specific time”, or “the
message is delivered within a certain interval of time” which we do not consider.

In Example 8, send_msg ∈ outputA and rcv_msg ∈ inputB , and the communication
specification states that message send_msg is sent by component A to component B . When
it is received at the next moment in time, the proposition rcv_msg becomes true.

Example 8

SpecA : �

⎡

⎢
⎢
⎣

start ⇒ P∧
P ⇒ © © Q∧
Q ⇒ ©P∧
Q ⇒ send_msg

⎤

⎥
⎥
⎦

SpecB : �
⎡

⎣
rcv_msg ⇒ A∧
A ⇒ ©B∧
B ⇒ © © A

⎤

⎦

The communication specification is
SpecAtoB:

�[send_msg ⇒ ©rcv_msg]

The specification of the message passing system is

SpecA ∧ SpecB ∧ SpecAtoB

The behavior of the specification is best described by looking at its model. Component
A is executed starting in its initial state. In the initial state P is true. The second line of
SpecA ensures that Q becomes true at time point 2. The third and fourth lines of SpecA

assert that the proposition send_msg is made true at time point 2, and P is made true at
time point 3. From this moment on, P is true at time points 6,9, . . . , Q is true at time
points 5,8, . . . , and send_msg is true whenever Q is true. The interaction specification

11

192 11 Temporal Logic

send_msg ⇒ ©rcv_msg ensures that the proposition rcv_msg becomes true the moment
after send_ msg is true. Since the proposition send_msg is true at time points 2,5, . . . , the
proposition rcv_msg becomes true at time points 3,6, The first line of SpecB ensures
that proposition A is true whenever proposition rcv_msg is true. The second line of SpecB

affirms that proposition B is true the moment after proposition A is true. The last line of
SpecB affirms that the behavior described thus far is repeated. Consequently, proposition
A is true at time pints 3,6, . . . , and proposition B is true at time points 4,7, Notice
that in the combined specification, the propositions send_msg and rcv_msg do not arise.
That is, propositions in the sets outputA and inputB “cancel out”, leaving the combined
behavior to be described only by the propositions in innerA and innerB . The models of
specifications SpecA, SpecB , and SpecA ∧ SpecB ∧ SpecAtoB are given below.

Model of SpecA

πA(i) =
⎧
⎨

⎩

P if i = 3k, k ≥ 0
Q if i = 3k + 2, k ≥ 0
send_msg if i = 3k + 2, k ≥ 0

Model of SpecB

πB(i) =
⎧
⎨

⎩

A if i = 3k, k ≥ 1
B if i = 3k + 1, k ≥ 1
rcv_msg if i = 3k + 1, k ≥ 1

Model of (SpecA ∧ SpecB ∧ SpecAtoB)

π(i) =

⎧
⎪⎪⎨

⎪⎪⎩

P if i = 0
P ∧ A if i = 3k, k ≥ 1
Q if i = 3k − 1, k ≥ 1
B if i = 3k + 1, k ≥ 1 �

11.3.7.2
Reactive System Specification: Rail Road Crossing Problem

We consider a rail road crossing instance of a reactive system in which event orderings are
specified using temporal operators. In a general version of the problem, multiple trains are
allowed to run in parallel while crossing gates and the communication between trains and
controllers of the gates at the crossings have strict real-time constraints. But we consider a
simple version in which time is abstracted by the “time moments (states)”. Because in PTL
only individual objects can be specified, we assume that there is one train which wishes
to cross one gate which is monitored by one controller. When the train is approaching the
gate, it informs the controller, which in turn instructs the gate at the crossing to close. The
gate, upon receiving the instruction from the controller, closes before the train is in the
crossing. When leaving the crossing, the train informs the controller, which instructs the
gate to open. The gate, upon receiving the instruction from the controller, raises until it

11.3 Propositional Temporal Logic (PTL) 193

is fully open. The specification of this system should ensure the safety property “the gate
remains closed while the train is in the crossing”. The significant aspects of this problem
are

• reactivity, whereby the controller interacts with the environmental objects train and con-
troller,

• concurrency, whereby train actions and controller actions may overlap, and
• asymmetry, in the interaction pattern

Many specifications that satisfy the safety property can be given for this problem. Be-
low one such specification is given, and an informal proof of the safety property is given.
The events in the system are modeled as propositions, shown in the table below.

Train Gate Controller

tr1: approaching g1: lowered ct1: receives “approaching” message from the train
tr2: in the crossing g2: closed ct2: sends message “lower” to the gate
tr3: is crossing g3: raised ct3: receives “exit” message from the train
tr4: crossed the gate g4: open ct4: sends “raise” message to the gate

We need to specify the relationships among the events modeled as propositions. There exist
many possible orderings of events which can characterize a safe system. Let us postulate
the following behavior. We use the notation ©k to denote the kth next.

Behavior of Train

Spectrain : �

⎡

⎢
⎢
⎣

tr1 ⇒ ©3 tr2 ∧
tr2 ⇒ tr3 U tr4 ∧
tr1 ⇒ ©6 � tr4

⎤

⎥
⎥
⎦

Behavior of Controller

Speccontroller : �
[

ct1 ⇒ © ct2 ∧
ct3 ⇒ © ct4

]

Behavior of Gate

Specgate : �
[

g1 ⇒ © (g2 U g3)∧
g3 ⇒ ©g4

]

Two types of interactions exist in the system: interaction between train and controller and
interaction between controller and gate. We need to specify these interactions. The inter-
action specification Spectrain-controller models the communication that takes “one unit of
time”, whereas the interaction specification Speccontroller-gate models the communication
that is “instantaneous”. The rationale is that the gate object is “tightly coupled” to the
controller and hence the message sent by the controller reaches the gate instantaneously,
whereas the train object is quite independent from the controller object and hence the mes-
sage sent by the train needs some time (>0) to reach the controller.

11

194 11 Temporal Logic

Behavior of Train–Controller Interaction The train informs the controller that it is
approaching and this information is received at the “next moment” in time by the controller.
The train also informs the controller that it has crossed the gate and this information is
received at the “next moment” by the controller. This interaction specification is specified
below.

Spectrain-controller : �
[

tr1 ⇒ © ct1

tr4 ⇒ © ct3

]

Behavior of Controller–Gate Interaction The controller informs the gate to close and
this information is received instantaneously by the gate. The controller informs the gate
to raise and this information is also received instantaneously by the gate. This interaction
specification is specified below.

Speccontroller-gate : �
[

ct2 ⇒ g1

ct4 ⇒ g3

]

Initially start is true. At sometime in future the train is approaching. So the initial state
specification is

Specinit : start ⇒ ♦tr1

Thus the full specification of the rail road crossing problem is obtained by “combining”
the above specification units, which we write as

Specrailroad ≡ Spectrain ∧ Speccontroller ∧ Specgate ∧ Spectrain-controller ∧
Speccontroller-gate ∧ Specinit

We need to verify in this specification the safety property “whenever the train is in the
crossing the gate remains closed”. From the semantics of start♦tr1, we infer that there
exists i ≥ 0 such that

〈M, i〉 |= tr1.

Applying the formal semantics to specifications, as shown in the box below, we get a for-
mal semantic model of the railroad specification. In the box below we see that whenever
tr3 is true, g2 is true. This proves the safety property for the given specification.

Model for rail road specification

〈M,i〉 |= tr1

〈M,i + 1〉 |= cr1

〈M,i + 2〉 |= ct2 ∧ g1

〈M,i + 3〉 |= tr2 ∧ tr3 ∧ g2

〈M,j〉 |= tr3 ∧ g2, j = i + 5, i + 6, i + 6, i + 7
〈M,i + 8〉 |= tr4 ∧ ct3 ∧ g2

〈M,i + 9〉 |= tr4 ∧ ct4 ∧ g3

〈M,k〉 |= tr4 ∧ g4, k > i + 10

11.4 First Order Temporal Logic (FOTL) 195

11.3.7.3
Refinement

A specification Spec′
A of component A is a refinement of SpecA of component A if every

model of Spec′
A is a subset of a model of SpecA. Informally, a refinement reduces the

number of possible models that satisfy a specification. Hence, successive refinements will
lead to a fewer models and hence to a fewer implementations that are possible to verify. In
PTL specification, any communication that involves ♦ can be replaced by © operator to
get a refinement. In particular, Spec′

A : P ⇒ ©4Q, Spec′′
A : P ⇒ ©2Q, and Spec′′′

A : P ⇒
©Q are some of the refinements of the specification SpecA : P ⇒ ♦Q. Depending upon
the design goal, a suitable refinement must be chosen.

11.4
First Order Temporal Logic (FOTL)

The alphabet of PTL is extended to include a set of predicate variables, a set of function
symbols, and a set of constants. In addition to the connectives in PTL, we add the universal
quantifier ∀, and the existential quantifier ∃. We consider only a partial FOTL. A full
account of FOTL can be found in [11, 17, 26].

The well-formed formulas in FOTL are defined as in Sect. 11.3.1, by letting predi-
cates of arity ≥ 0 in wff T and inductively defining the formulas in wff T . Operator prece-
dence remains the same as in PTL. Quantification over temporal formulas involves only
one variable. As an example, we consider formulas such as ∀x • p(x) ⇒ ©q(x), and
∀x • (head(x) ≥ 6) ∧ (tail(x) �= null). Such formulas are called monadic. In full FOTL, a
formula can have quantification over more than one variable, even allowing quantification
over arbitrary structures such as sets and trees.

The semantics of FOTL formulas involve “interpretation” as in predicate logic and tem-
poral semantics as in PTL. The time structure is still N0 and we consider only global time.
Thus a model for FOTL formulas is

〈N0,π, I 〉

where I is an interpretation which assigns for every formula element a value in a certain
domain. Thus, for each time moment i ∈ N0, π(i) = si is the state in which the formulas
are to be evaluated using the interpretation I . Denoting the value of a variable x (expression
e, predicate p, formula f) in a state s by s[x] (s[e], s[p], s[f]), the evaluation steps for
formulas, not involving temporal operators, in an interpretation I are described below:

1. Step 1—Evaluating Expressions
(a) An expression e is evaluated in a state s by assigning values to all free variables and

associating meaning to basic constructs. The value of the expression e = 2x − 3y

in a state s is s[e] = 2s[x] − 3s[y].
2. Step 2—Evaluating Predicates

11

196 11 Temporal Logic

(a) For the predicate p(t1, . . . , tn), where t1, . . . , tn are terms, define s[p(t1, . . . , tn)] =
p(s[t1], . . . , s[tn]).

(b) Predicate formulas
(i) s[¬p] = ¬s[p]

(ii) s[p ∨ q] = s[p] ∨ s[q]
(iii) s[p ∧ q] = s[p] ∧ s[q]
(iv) s[p ⇒ q] = s[p] ⇒ s[q]
(v) s[p ⇔ q] = s[p] ⇔ s[q]

3. Step 3—Evaluating Quantified Formulas
(a) s[∀x • p] = ∀x • s[p].
(b) s[∃x • p] = ∃x • s[p].

For example, consider the interpretation I : 〈x = −1, y = 3, z = 1〉 in state s for the for-
mula (x + y > z) ⇒ ©(y ≤ 2 ∗ z). Since s[(x + y > z) is true in state s, in the next state it
is asserted that (y ≤ 2 ∗ z) must become true. That is, in the next state there must exist an
interpretation that makes the formula (y ≤ 2 ∗ z) true.

11.4.1
Formalizing Properties in FOTL

In Sect. 11.3.6, we discussed formalization of safety, liveness, and fairness properties in
PTL. In this section, we illustrate through examples formalization of some properties us-
ing quantified FOTL formulas. Example 9 formalizes some properties of a bi-directional
communication channel. Example 10 is a formal specification of safety and liveness re-
quirements of a queue module that may be shared between different processors.

Example 9 Consider the problem of sending and receiving messages over a communica-
tion channel. Let {a, b} denote the set of end-points of a channel, and e ∈ {a, b}. Let

e =
{

a if e = b

b if e = a

Let M denote the set of messages and m ∈ M be any arbitrary message transmitted over the
channel 〈a, b〉. The temporal logic formulas, given below, involve atomic formulas such as
accept(m, e) and deliver(m, e) and temporal operators. They are quantified over the set of
messages M ′ = M \ {DISCONNECT}, considered as a set of constants.

1. To state that a channel is operational at all time, it is sufficient to state that both end-
points are accepting messages all the time.

∃m,m′ • � (channel_on(a, b) ⇔ accept(m,a) ∧ accept(m′, b)).

2. A channel cannot copy messages; if a message was delivered at some time, then it
cannot be redelivered unless it was accepted again.

∀m • (deliver(m, e) ⇒ ©�(¬deliver(m, e) W accept(m, e))).

11.4 First Order Temporal Logic (FOTL) 197

3. A channel cannot accept two different messages at the same end-point at the same time:

∀m,m′ • � (accept(m, e) ∧ accept(m′, e) ⇒ m = m′)

4. A message accepted at e will be delivered at e, unless e has accepted a disconnect
message at a preceding time.

∀m • � (accept(m, e) ⇒
♦(¬((¬accept(DISCONNECT, e) U (deliver(m, e)))∧
((¬(deliver(m, e)) S accept(DISCONNECT, e)))))

5. This axiom asserts the safety property that there can be no loss of messages in an ac-
tive channel and that all messages accepted are eventually delivered. The messages are
delivered at the end-point e in the same order in which they were accepted at the end-
point e:

∀m • � (accept(m, e) ∧ ©♦accept(m′, e)∧
¬(accept(DISCONNECT, e) U deliver(m′, e))

⇒ ♦((deliver(m, e) ∧ ©♦deliver(m′, e)))

6. When a disconnect message is either accepted or delivered at one end, the channel stops
functioning at that end.

((accept(DISCONNECT, e) ∨ deliver(DISCONNECT, e)) ⇒
¬∃m • (©�(¬accept(m, e) ∧ ¬deliver(m, e)))) �

Example 10 is from Lamport [16]. It illustrates FOTL formalization of safety and live-
ness properties of a finite queue based on its states. The queue is a shared data type and
hence PUT and GET operations may be initiated concurrently by more than one process.
With the atomicity assumption and modeling concurrency as the interleaving of atomic
operations, only one operation can occur on the queue at any specific time. That is, given
the current contents of the queue, only one process can perform the PUT or GET operation
on this state. A process uses GET to fetch a value at an instant; when the queue is empty,
the process waits until another process puts a value in the queue.

Example 10 The capacity of the queue is max. The functions characterizing the queue
states are defined below and the variables in the post-state are distinguished by suffixing
them with a prime.

cur_queue: the current state of the queue
putval: argument to PUT. The precondition for PUT is putval �= nil and the post-

condition is putval′ = nil.
getval: argument to GET. The precondition for GET is getval = nil and the post-

condition is getval′ �= nil.

11

198 11 Temporal Logic

enter(PUT), enter(GET), exit(GET) and exit(PUT) are boolean-valued functions signaling
the initiation and termination of the operations.

Liveness Properties

1. The liveness property for the PUT operation is that it terminates. The element putval is
inserted only if it does not cause an overflow; the symbol ‘∗’ denotes insertion at the
rear.

enter(PUT) ∧ (length(cur_queue) < max) ⇒
♦(exit(PUT) ∧ (cur_queue′ = cur_queue ∗ putval))

enter(PUT) ∧ (length(cur_queue) = max) ⇒
♦(exit(PUT) ∧ (cur_queue′ = cur_queue))

2. The liveness property for the GET operation is that it terminates only when a value is
fetched from the queue. That is, if the queue is empty the operation waits until a value
is put in the queue and then fetches the value.

enter(GET) ∧ ¬empty(cur_queue) ⇒
♦(exit(GET) ∧ (getval ∗ cur_queue′ = cur_queue))

enter(GET) ∧ empty(cur_queue) ⇒ enter(GET) U exit(PUT)

3. When the queue is empty, some process will eventually put a value in the queue.

empty(cur_queue) ⇒ ♦enter(PUT)

Safety Properties
Safety properties assert what may or may not happen to the queue due to the actions PUT
and GET. The state of the queue changes under the following situations:

1. putval �= nil, and PUT is invoked by some process on a queue that is not full;
2. GET is invoked by some process, and cur_queue is not empty.

Situation 1. Let (enter(PUT) ∧ putval �= nil) hold for cur_queue. The next state is
cur_queue′ which is the same as cur_queue when the queue is full or cur_queue′ =
cur_queue ∗ putval. So, the temporal logic formula is

�((enter(PUT) ∧ putval �= nil) ⇒
(((length(cur_queue) = max) ∧ (cur_queue′ = cur_queue))

∨((length(cur_queue) < max) ∧ (cur_queue′ = cur_queue ∗ putval)))).

Situation 2. Let (enter(GET) ∧ getval = nil) hold for cur_queue. The next state is
cur_queue′ which is the same as cur_queue when the queue is empty, or cur_queue =
getval ∗ cur_queue′. So, the temporal logic formula is

�((enter(GET) ∧ getval = nil) ⇒ ((empty(cur_queue) ∧ empty(cur_queue′))

11.4 First Order Temporal Logic (FOTL) 199

∨(¬empty(cur_queue) ∧ (cur_queue = getval ∗ cur_queue′)))). �

11.4.2
Temporal Logic Semantics of Sequential Programs

In this section, we consider the temporal logic semantics for simple sequential programs
whose elements are the following:

• Assignment Statement: x := e

• Composition of Statements: S1;S2

• Conditional Selection: if e then S1 else S2

• Repetition: while e do S

Their formal meanings under Hoare logic have been discussed in Chap. 10. Below we
give FOTL semantics to these constructs. The function [[−−]] assigns for each program
element a well-formed formula in FOTL.

Semantics of Assignment Statement Informally, this asserts that

• before the assignment is executed there exists some state si where an interpretation Isi

exists,
• expression e is evaluated in the interpretation Isi , as si [e] explained earlier, and
• the result of this evaluation is the result of interpretation Isi+1 applied to x, as si+1[x] in

state si+1.

The states si and si+1 need not be shown explicitly; instead the © operator may be used.

Semantics—assignment statement

[[x := e]] = ∃Isi+1 • si+1[x] = si [e]
or

[[x := e]] = ©(x = e)

Semantics of Composition Informally it asserts that at current moment the first state-
ment is evaluated and the moment next to the termination of the first statement, the second
statement is evaluated.

Semantics—sequential composition of statements

[[S1;S2]] = [[S1]] ∧ ©[[S2]]

Semantics of Conditional Statement Let I(e) denote the evaluation of test expression
at state si , and assume that the evaluation does not take any time. If I (si [e]) is true then
the expression [[S1;S3]] is assigned a meaning in state si . If I (si [e]) is false then the ex-
pression [[S2;S3]] is assigned a meaning in state si .

Semantics—conditional statement

[[(if e then S1 else S2);S3]] = (I (e) ⇒ [[S1;S3]]) ∧ (¬I (e) ⇒ [[S2;S3]])

11

200 11 Temporal Logic

Example 11 We derive a temporal formula for capturing the semantics of the following
program:

begin
x:=2;
if (x>2) then x:=x-2 else x:=x+1;
y:=1/x;
end
Let Prog denote the program. Then

[[Prog]] = ©((x = 2) ∧ [[if . . .]])
[[Prog]] = ©((x = 2) ∧ ((x > 2) ⇒ [[x := x − 2]]) ∧ ((x ≤ 2) ⇒ [[x := x + 1 . . .]]))
[[Prog]] = ©((x = 2) ∧ [[(x := x + 1) . . .]])
[[Prog]] = ©((x = 2) ∧ ©((x = 3) ∧ [[y := 1/x . . .]]))
[[Prog]] = ©((x = 2) ∧ ©((x = 3) ∧ ©((y = 1/3) ∧ [[end]])))
[[Prog]] = ©((x = 2) ∧ ©((x = 3) ∧ ©((y = 1/3) ∧ true)))

[[Prog]] = ©((x = 2) ∧ ©((x = 3) ∧ ©((y = 1/3))))

[[Prog]] = ©(x = 2) ∧ © © (x = 3) ∧ © © ©(y = 1/3) �

Semantics of Repetition Statement The semantics is given by recursively using the
conditional statement axiom.

Semantic—while statement

[[(while e do S1);S]] = (I (e) ⇒ [[(S1; (while e do S1))]]) ∧ (¬I (e) ⇒ [[S]])

Example 12 We derive a temporal formula that gives the semantics of

x := 1; while (x < 3) do x := x + 1; end

[[x := 1; while (x < 3) do x := x + 1; end]]
= ©((x = 1) ∧ [[while . . .]])
= ©((x = 1) ∧ ((x < 3) ⇒ [[x := x + 1; while . . .]]) ∧ ((x ≥ 3) → [[end]]))
= ©((x = 1) ∧ [[x := x + 1;while . . .]])
= ©((x = 1) ∧ ©((x = 2) ∧ [[while . . .]]))
= ©((x = 1) ∧ ©((x = 2) ∧ ((x < 3) ⇒

[[x := x + 1;while . . .]]) ∧ ((x ≥ 3) → [[end]])))
= ©((x = 1) ∧ ©((x = 2) ∧ ©((x = 3) ∧ (x ≥ 3) → [[end]])))
= ©((x = 1) ∧ ©((x = 2) ∧ ©((x = 3) ∧ [[end]])))
= ©((x = 1) ∧ ©((x = 2) ∧ ©((x = 3) ∧ true)))

= ©(x = 1) ∧ © © (x = 2) ∧ © © ©(x = 3) �

11.4 First Order Temporal Logic (FOTL) 201

11.4.3
Temporal Logic Semantics of Concurrent Systems with Shared Variables

We add to the communication primitives discussed in Sect. 11.4.2 a new one, called com-
munication through shared variables. We are still restricting to global discrete linear time
model. When two components A and B share some variables, we must specify how such
variables are to be accessed and modified by each component. It is necessary that each
component sees exactly the same values for the shared variables at every state; otherwise
there will be anomalies in the computation. We should allow components to see modifica-
tions to the variables at any state, and read from and write to these variables, subject to the
following restrictions:

1. Read and write operations are atomic, in the sense that these operations take unit amount
of time and cannot be interrupted.

2. Only one component can write at any moment in time.
3. When a component is reading from a variable (writing on it) the other component cannot

write on it (read from it).

11.4.3.1
Component Specification

We restrict to a single variable x shared between components A and B and use the notations
xA and xB to denote the same variable x in respective components. With this convention,
the communication specification for the shared variable x between components A and B

will include �(xA ⇔ xB). We specify restriction (3) as

�¬(writing_to(A,xA) ∧ writing_to(B,xB))

and include it in the communication specification. The program region where the shared
variable is accessed is the critical region of the program. Hence, restriction (3) is also
equivalent to �(¬(criti1 ∧criti2)) (see Example 4). Thus, the communication specification
for a single shared variable x is

�(xA ⇔ xB) ∧ �¬(writing_to(A,xA) ∧ writing_to(B,xB))

The concurrent specification of components A and B interacting through a shared variable
x, denoted SpecA‖xB , is

SpecA ∧ SpecB ∧ (�(yA ⇔ yB)

∧ �¬(writing_to(A,yA) ∧ writing_to(B,yB)))

We illustrate a mixture of communication mechanisms in the following two examples.

11

202 11 Temporal Logic

Example 13 Consider components A and B which share a variable y. Their specifications
are given below:

SpecA : �

⎡

⎢
⎢
⎣

start ⇒ (x = 5 ∧ yA = 14)∧
even(yA) ⇒ ©(yA = (yA − x)∧
writing_to(A,yA))

⎤

⎥
⎥
⎦

SpecB : �

⎡

⎢
⎢
⎣

start ⇒ (w = 9)∧
odd(yB) ⇒ ©(yB = yB + w)∧
writing_to(B,yB))

⎤

⎥
⎥
⎦

Let us denote the concurrent specification of components A and B as SpecA‖yB . To un-
derstand the behavior of SpecA‖yB we need to calculate the predicates that are true at time
points starting from 0. From the specifications SpecA and SpecB and the shared variable
principle, the predicate (x = 5) ∧ (yA = 14) ∧ (yB = 14) ∧ (w = 9) is true at time 0.
Hence, the predicate even(yA) is true at time 0. Consequently, the second statement in
SpecA is to be executed. This makes the predicate (x = 5)∧ (yA = 9)∧ (yB = 9)∧ (w = 9)

true in state 1. Notice that the values of x and w remain unchanged, although this is not
explicitly stated in the specification. In state 1, the predicate odd(yB) is true and conse-
quently the second statement of specification SpecB is executed. This makes the predicate
(x = 5)∧ (yA = 18)∧ (yB = 18)∧ (w = 9) true in state 2. Continuing the analysis for suc-
cessive states, we notice that in even numbered states the predicate even(yA) is true, and
the second statement of SpecA is executed. As a consequence, the value of yA is decreased
by 5, an odd amount, which makes yA (and yB) odd at the next state. In odd numbered
states the predicate odd(yB) is true, and the second statement of SpecB is executed. As a
consequence, the value of yB is increased by 9, an odd amount, which makes yB (and (yA)
even at the next state. Consequently the behavior of SpecA‖yB is infinite, only one of the
components is active at any one time, and the values of x and w do not change. After some
calculations, the model 〈N0,π〉 of the concurrent specification SpecA‖yB can be succinctly
determined as shown below.

π(i) =
{

(x = 5) ∧ w = 9 ∧ y = 14 + 4k) if i = 2k, k ≥ 0
(x = 5) ∧ w = 9 ∧ y = 5 + 4k) if i = 2k − 1, k ≥ 1 �

Example 14 In this example, we simulate the behavior of a game played by two persons
Alice and Bob with a slot machine M . Both Alice and Bob interact with a slot machine
M ; however, they do not interact between themselves. The time points of their interac-
tions overlap; however, the slot machine responds to them only after receiving input from
both of them. The slot machine responds to both of them simultaneously, according to the
following rules.

• The slot machine does not accept any amount less than $5.
• Both Alice and Bob specify amounts (> $5) they want to bet.
• Alice bets at every moment in time.
• Bob bets at the beginning and at every second moment in time.

11.4 First Order Temporal Logic (FOTL) 203

• The slot machine M waits until both bets are received, and then does the following:

It determines the winner at the next moment (the moment after both bets are received), and
sends an amount x subject to the constraint (max − min ≤ x ≤ max), where max and min,
respectively, denote the maximum and minimum of the two amounts bet by Alice and Bob.

11.4.3.2
Specifications

SpecAlice : �
⎡

⎢
⎣

start ⇒ req_game(Alice, n)∧
req_game(Alice, n) ⇒ ©req_game(Alice, n)∧
♦got_result(Alice, n′)

⎤

⎥
⎦

SpecBob : �

⎡

⎢
⎢
⎢
⎢
⎣

start ⇒ req_game(Bob,m)∧
req_game(Bob,m) ⇒ wait∧
wait ⇒ ©req_game(Bob,m)∧
♦got_result(Bob,m′)

⎤

⎥
⎥
⎥
⎥
⎦

SpecM : �

⎡

⎢
⎢
⎢
⎢
⎣

[rcv_bet(Alice, n̄) ∧ rcv_bet(Bob, m̄)] ⇒
©[choose(x ∈ {max(n̄, m̄) − min(n̄, m̄), . . . ,max(n̄, m̄)}) ⇒
©((give_result(Alice, x) ∧ give_result(Bob,0))∨
(give_result(Bob, x) ∧ give_result(Alice,0)))]

⎤

⎥
⎥
⎥
⎥
⎦

The predicate choose(x ∈ S), where S is a set, asserts that a value x is chosen from the
set, but does not specify exactly which element of the set is chosen and how it is chosen.
Such a predicate introduces nondeterminism in the design. In SpecM the second line uses
the predicate choose to specify that a value in the range [max − min,max] is determined
nondeterministically. The third line in SpecM states that once x is determined then in the
next moment there is a choice of announcing the winner. The choice operator ∨ is intro-
duced in the right hand side of ⇒. The communication specifications are given below.

Communication Specifications

Comms(Alice,M) : �(req_game(Alice, n) ⇒ ♦rcv_bet(Alice, n̄)) ∧ �(n̄ ⇔ n)

Comms(Bob,M) : �(req_game(Bob,m) ⇒ ♦rcv_bet(Bob, m̄)) ∧ �(m̄ ⇔ m)

Comms(M,Alice) : �(give_result(Alice, m̄) ⇒ ♦got_result(Alice, n′)) ∧ �(m̄ ⇔ n′)
Comms(M,Bob) : �(give_result(Bob, n̄) ⇒ ♦got_result(Bob,m′)) ∧ �(n̄ ⇔ m′)

The full specification is

SpecAlice ∧ SpecBob ∧ SpecM ∧ Comms(Alice,M) ∧ Comms(Bob,M)∧
Comms(M,Alice) ∧ Comms(M,Bob) �

In Examples 13 and 14, the communication specification fixes the interaction point of
the components. The programs corresponding to such components, assuming that they start

11

204 11 Temporal Logic

at the same time and execute at the same speed, are expected to reach the specified inter-
action point at the same instant for “hand shaking”. When programs that run at different
speeds share variables and the interaction specification states only mutual exclusion princi-
ple, a more thorough analysis of the shared variables becomes necessary. That is, different
interleaving executions must be analyzed. For a full account of the temporal semantics of
concurrent programs consult Pnueli [23].

Example 15 Programs Prog1 and Prog3 share the variable x, programs Prog2 and Prog3

share the variable y, and programs Prog1 and Prog2 have no shared variable. Assume that
the programs are started simultaneously at time 0. In these programs, the shared variables
are accessed only at the statements P1, P2, and P3 as shown below.

Prog1 :

⎡

⎢
⎢
⎣

...

P1 :: x := x + 2;
...

⎤

⎥
⎥
⎦

Prog2 :

⎡

⎢
⎢
⎣

...

P2 :: y := y + 2;
...

⎤

⎥
⎥
⎦

Prog3 :

⎡

⎢
⎢
⎢
⎢
⎢
⎣

...

P3 ::
{

x := x − y + 1;
x := x + y + 1;

...

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Using the temporal semantics (Sect. 11.4.2) for each program Progi , we create the tem-
poral logic formulas T (Progi). We may regard T (Progi) as temporal specifications of the
component whose implementation is Progi . In such a specification, we can ignore variables
that are not accessed in the critical sections and identify T (Progi) with T (Pi). We can use
the semantics discussed above for the specifications T (P1), T (P2), and T (P3) to provide
a model of the concurrent execution of the program statements P1, P2, P3. The program
P1 ‖ P2 exhibits pure concurrency, for they have no shared variables. Hence the model of
P1 ‖ P2 is the model of T (P1) ∧ T (P2). The model for the concurrent program P1 ‖x P3

is calculated below from the model T (P1) ∧ T (P3), subject to the interaction points. The
temporal specifications of P1 and P3 are

T (P1) = ∃u ∈ Val1(i). © (x = u + 2)

T (P3) = ∃a, b ∈ Val3(j). © ((x′ = a − b + 1) ∧ ©(x ′′ = x′ + b + 1)),

where Val1(i) and Val3(j), respectively, denote the set of values of state variables of pro-
gram statements P1 and P3 at times i and j . We need to consider two situations: i + 1 < j ,
which states that P1 writes on variable x before P3 commences execution, and i > j + 1,

11.5 Formal Verification 205

which states that P3 completes writing on variable x before P1 starts execution. In the
former case the behavior is

state i + 1 (x = u + 2)

state j (x = u + 2)

state j + 1 (a = u + 2) ∧ (x = u − b + 3)

state j + 2 (a = u + 2) ∧ (x = u + 4)

In the latter case the behavior is

state j (x = a) ∧ (x ′ = a − b + 1)

state j + 1 (x′ = a − b + 1) ∧ (x ′′ = a + 2)

state i − 1 (x = a + 2)

state i (x = a + 4) �

11.5
Formal Verification

Formal verification for temporal logic is of two kinds, known as axiomatic and algorithmic.
In an axiomatic approach, a set of general axioms and a proof calculus [17] are formulated.
They form the kernel to which more domain specific axioms and inference rules may be
added. These axioms and inference rules are then applied to show the correctness of tempo-
ral logic specification with respect to more abstract system specification. In an algorithmic
approach, a model of the system is constructed and an algorithm is developed to prove that
the model satisfies the property, stated as a temporal logic formula. These two approaches
are separate systems of studies in itself, which we pursue only in a small measure. The
goal in this section is to outline the basic characteristics of these methods for FOTL and
PTL and illustrate with simple examples.

In Sect. 11.5.1, we illustrate a version of axiomatic verification, that closely follows
Hoare style axiomatization, applied to a simple planning system specified in FOTL. In
Sect. 11.5.2, we introduce a model of the system specified by PTL formulas and give the
algorithmic approach for verifying properties in the model.

11.5.1
Verification of Simple FOTL Specifications

We restrict to a simple subsystem of FOTL which consists of quantified temporal formulas
that involve only the temporal operators �, ♦, and ©. Since FOTL specifications are
interpreted over linear states, in order to prove a property in the system it is sufficient to
verify that the property holds at every system state. Let us write ϕ(i) to mean that ϕ is true
at the ith state of M, the semantic model of the specification. If we can show

• ϕ(0) is true, and

11

206 11 Temporal Logic

Fig. 11.1 Towers of Hanoi

• for any i establish ϕ(i + 1), knowing that ϕ(i) is true,

then we know by induction Axiom (see Sect. 11.3.5) that ϕ(i) is true for all i ∈ N0. It is this
principle that we will use for formally verifying invariant properties, such as safety. We can
recast the induction result using pre- and postconditions for actions at states. Let a1, a2, . . .

be a sequence of actions performed at states s1, s2, If Pi is a precondition and Qi is
the postcondition for action ai at state si , and T (ai) is the temporal logic specification
of the system at state si , it is necessary to verify that Pi ∧ T (ai) ⇒ Qi , and Qi ⇒ Pi+1,
where Pi+1 is the precondition for action ai+1 at state si+1. This formulation is similar
to the Hoare style axioms for verifying correctness of sequential programs discussed in
Chap. 10.

Example 16 Planning problems require the construction of a series of actions such that the
goal can be achieved by executing those actions in a certain order. Temporal logic can be
used to specify actions and their ordering in planning problems. We consider the Tower of
Hanoi problem to illustrate the methodology.

Three pegs p1,p2, and p3 and three disks A,B and C are available. Initially the three disks
are stacked on peg p1, with the smallest disk A on top and largest disk C at the bottom. It
is required to plan a move of the disks from peg p1 to peg p3, using peg p2 as a temporary
storage area, such that after every single move, the disks are ordered with the largest one at
the bottom.

A configuration refers to the collection of pegs and the ordering of disks on them. The
initial and final configurations are shown in Fig. 11.1. We assume that each peg p has a
“largest” disk D attached to its bottom. This disk cannot be moved. Denoting the size of a
disk x by size(x) we have the constraint

size(A) < size(B) < size(C) < size(Dp) = ∞

We abstract each peg with disks stacked in it in increasing order of size from its top to its
bottom as a stack of linearly ordered items. All actions on a peg, according to the problem
requirement, should satisfy this property. That is, “items from top to bottom in a stack
are linearly ordered, in decreasing order” is an invariant property of the Hanoi system.
Once this is recognized, we want to provide a temporal logic specification of a stack that
satisfies this invariant property, and then use the stack operations to define the move actions
for solving the Hanoi problem.

11.5 Formal Verification 207

Stack Specification Let (D,≺) be a linearly ordered domain. That is, for any two values
v1, v2 in D, either v1 ≺ v2 or v2 ≺ v1 can hold. A stack contains elements from (D,≺),
subject to the invariant property stated above. Assume that D has an infimum −∞, and
a supremum ∞. That is, ∀v, v ∈ D the property −∞ < v < ∞ holds. Stack operations
should satisfy the invariant property. In the stack specification shown below, curr_stack

denotes the current stack configuration.

Operation Specification

TOP argument is curr_stack
it returns a value v ∈ D.
precondition is true
let ϕ denote the predicate
v = ∞ if curr_stact is empty
v = TOP(curr_stack) if curr_stack is not empty
in the postcondition
ϕ ∧ (curr_stack′ = curr_stack)

ADD adds an element to the current stack.
arguments to ADD are addval ∈ D, and curr_stack.
precondition is addval ≺ TOP(curr_stack)
postcondition is TOP(curr_stack′) = addval∧

(curr_stack′ = addval ∗ curr_stack)
REMOVE removes the element from top of the stack

argument is curr_stack.
precondition is curr_stack is not empty.
postcondition is (TOP(curr_stack) ∗ curr_stack′ = curr_stack)

Proving Invariant Property Let I(s) denote the invariant property of the stack: “items
from top to bottom in a stack s are linearly ordered, in decreasing order”. I (empty) is
trivially true. We need two basic axioms on ordered sequences to prove that stack oper-
ations preserve the invariant property I(s). Let σ = 〈v1, v2, . . . , vk〉, vi ∈ D be a strictly
monotonic increasing sequence. That is

v1 ≺ v2 ≺ · · · ≺ vk−1 ≺ vk

If v ≺ v1 then the sequence v ∗ σ , where ∗ denotes insertion at the front of the sequence,
is also strictly monotonically increasing. This follows from the transitive property of ≺. If
the element v1 (in general, any vi) is removed from the sequence, the rest of the sequence
remains ordered. These properties are stated below for insertion and deletion of items in a
stack of ordered items.

Ordered Stack—Insertion Axiom
I(s), x ≺ TOP(s)

I (x ∗ s)

11

208 11 Temporal Logic

Ordered Stack—Deletion Axiom
I(s), s = x ∗ s ′

I(s′)

From the postcondition of TOP operation, infer curr_stack′ = curr_stack. Hence, it fol-
lows that TOP operation preserves the invariant property:

I(curr_stack′) = I(curr_stack)

When the precondition of the ADD operation

I(curr_stack) ∧ (addval ≺ TOP(curr_stack))

is satisfied from the insertion axiom, it follows that I(curr_stack′) holds after termination
of ADD operation.

The precondition of REMOVE specification is curr_stack is not empty. So, we infer

curr_stack = x ∗ curr_stack′,

where x = TOP(curr_stack). Combining I(curr_stack) with this result, we derive

(curr_stack = x ∗ curr_stack′) ∧ I(curr_stack),

and from the deletion axiom we derive I(curr_stack′).

Hanoi Specification We give a temporal specification of actions. The basic action is a
move, which is described using stack operations. Each move is atomic, in the sense that
its execution cannot be interrupted and it takes one unit of time to complete it. The move
action has parameters x and y which represent, respectively, the configurations of the peg
from which the top disk is moved and the configuration of the destination peg in which
the disk is placed. It is advantageous to have the notation x = TOP(x) ∗ rest_of (x) for a
nonempty configuration. If the configuration x is empty then x = TOP(x) = Dx .

Move Action:: move(x,y)

〈v = TOP(x); ADD(v, y); REMOVE(x)〉
Using the stack specification, the meaning of action move(x, y) can be formally written as

move(x, y) ⇒ ©((TOP(y ′) = TOP(x)) ∧ (rest_of (y′) = y) ∧ (x′ = rest_of (x))),

where x′ and y ′ denote the post states of peg configurations x and y. For the sake of
simplicity, we use a “horizontal notation” to display the status of a (stack) peg x, as in
u ∗ w ∗ Dx , for which TOP(x) = u as and rest_of (x) = w ∗ Dx .

1. Initial Configuration:
Initially, disks A, B and C are in peg p1, with A at the top, on top of disk B , disk B on
top of disk C which is on top of the bottom disk Dp1 . The pegs p2 and p3 are empty.

11.5 Formal Verification 209

Initial Configuration

p1 : A ∗ B ∗ C ∗ Dp1

p2 : Dp2 p3 : Dp3

I(p1) ∧ I (p2) ∧ I (p3)

2. Goal Specification:
The goal is to have disks A, B and C stacked on peg p3 in the same order as in the
initial state. The goal configuration is specified as follows:

Goal Configuration

p1 : Dp1 p2 : Dp2

p3 : A ∗ B ∗ C ∗ Dp3

I(p1) ∧ I (p2) ∧ I (p3)

3. Planning:
Starting with the initial configuration, the goal configuration is achieved by a sequence
of moves as specified below.

move(p1,p3) ∧ ©move(p1,p2) ∧ ©2move(p3,p2)∧
©3move(p1,p3) ∧ ©4move(p2,p1) ∧ ©5move(p2,p3)∧
©6move(p1,p3)

4. Verification:
For each move operation, we have to (1) verify that the precondition is true, (2) calculate
the postcondition, and (3) prove that the invariant is preserved. We should also prove
that when all the moves are completed, the goal configuration is reached.

Verification for the first move: move(p1,p3).

We substitute [p1/x,p3/y] in move(x, y) definition.

First Move Action:: move(p1,p3)

〈v = TOP(p1); ADD(v,p3); REMOVE(p1)〉

Initially, p1 is not empty. From the postcondition of TOP operation, infer v =
TOP(p1) = A. Since TOP(p3) = Dp3 , and size(A) < size(Dp3) is true, the precon-
dition of the operation ADD(v,p3) is true. From the postcondition of ADD(v,p3) we
infer TOP(p′

3) = v ∧ p′
3 = v ∗ p3. By atomicity assumption, we have the result

©((TOP(p′
3) = A) ∧ (rest_of (p′

3) = p3) ∧ (p′
1 = rest_of (p1)))

Notice that we could have obtained the above result directly from the temporal speci-
fication of move(x, y). Applying deletion axiom for REMOVE(p1) we get I (p′

1), and

11

210 11 Temporal Logic

Table 11.1 Hanoi Configurations

Time Action Configuration Time Action Configuration

0 move(p1,p3) p1 : A ∗ B ∗ C ∗ Dp1 4 move(p2,p1) p1 : Dp1

p2 : Dp2 p2 : A ∗ B ∗ Dp2

p3 : Dp3 p3 : C ∗ Dp3

1 move(p1,p2) p1 : B ∗ C ∗ Dp1 5 move(p2,p3) p1 : A ∗ Dp1

p2 : Dp2 p2 : B ∗ Dp2

p3 : A ∗ Dp3 p3 : C ∗ Dp3

2 move(p3,p2) p1 : C ∗ Dp1 6 move(p1,p3) p1 : A ∗ Dp1

p2 : B ∗ Dp2 p2 : Dp2

p3 : A ∗ Dp3 p3 : B ∗ C ∗ Dp3

3 move(p1,p3) p1 : C ∗ Dp1 7 p1 : Dp1

p2 : A ∗ B ∗ Dp2 p2 : Dp2

p3 : Dp3 p3 : A ∗ B ∗ C ∗ Dp3

applying insertion axiom for ADD(v,p3) we get I (p′
3). Since the move operation does

not change the state of p2, I(p′
2) = I(p2). Thus, we have calculated the configuration

at time moment 1, and proved that the first move operation preserves the invariance
property I(p1) ∧ I(p2) ∧ I(p3).

Starting at the configuration at time 1 and following the above steps for the operation
move(p1,p2), we will arrive at the second configuration and will prove the invariant
property I(p1) ∧ I(p2) ∧ I(p3). Calculations at successive time points are shown in
Table 11.1. �

11.5.2
Model Checking

Model checking is an algorithmic technique for verifying finite state concurrent systems.
Model checking method has successfully been applied to verify hardware designs, com-
munication protocols, and reactive system properties. It is a rich field of study in which
theory blends with practical techniques to verify safety and liveness properties of complex
systems. Because model checking can be automated, it may be preferred to axiomatic ver-
ification method. However, model checking has some limitations as well. In this section,
we discuss some basic principles of model checking with PTL and FOTL formulas.

The first step toward model checking is to create a formal model of the system and
specify the property to be verified in the model. The formal model that is used for reactive
systems is a state transition graph, called Kripke structure (KS). A KS resembles a state
machine that we have seen in Chaps. 6 and 7, yet they are more general. Essentially, a KS
has a set of states, a set of initial states, a set of transitions between states, and for each

11.5 Formal Verification 211

state a set of properties that are true in that state. Every state must have a transition. There
is no accepting state. The language used to describe the properties in each state and label
the transitions go toward defining the richness of the KS. In reactive and concurrent system
models, input may be received at more than one state and the program need not terminate.
This is why in KS there is no accepting state and more than one input state is allowed. In
our study, we will restrict to PTL and simple FOTL formulas for stating the properties and
labeling the transitions. Example 17 informally explains the construction of KS for a set of
FOTL formulas. We use the notation x′ to denote the variable x in a post state.

Example 17 We want to formally represent the computation of the program P

〈x ′ = (x + y) mod 3;y ′ = (y + 1) mod 3〉

over the domain V = {0,1,2} as a Kripke structure. The two program statements are to
be executed as an atomic unit. A state represents “variable-value” pairs. That is, 〈x =
v1, y = v2〉, where v1, v2 ∈ V is a state, which is written (v1, v2). We associate the formula
x = v1 ∧ y = v2 with the state (v1, v2). Thus the set of all states for the given variables
over the domain V is

V × V = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)}.

Let (x = 0 ∧ y = 2) be the initial state. Program P that defines the relationship between
(x, y) and (x′, y ′) is the transition relation for the KS. That is, executing the program at the
initial state gives the next state x′ = 2 ∧ y′ = 0. So, in KS, there is a transition from state
(x = 0 ∧ y = 2) to (x = 2 ∧ y = 0). The transition relation for the KS is the set of ordered
pairs of vertices related by the execution of P . So, the KS that models the computation P

is

• set of states: S = V × V

• set of initial states: S0 = {(0,2)}
• transition relation:

R = {((0,2), (2,0)), ((2,0), (2,1)), ((2,1)(0,2)), ((0,0), (0,1)), ((0,1), (1,2)),

((1,2), (0,0)), ((1,1), (2,2)), ((2,2), (0,0)), ((0,0), (1,1))}

• properties:

L((0,0)) = {x = 0 ∧ y = 0}
L((1,0)) = {x = 1 ∧ y = 0}
L((2,0)) = {x = 2 ∧ y = 0}

∣
∣
∣
∣
∣
∣

L((0,1)) = {x = 0 ∧ y = 1}
L((1,1)) = {x = 1 ∧ y = 1}
L((2,1)) = {x = 2 ∧ y = 1}

∣
∣
∣
∣
∣
∣

L((0,2)) = {x = 0 ∧ y = 2}
L((1,2)) = {x = 1 ∧ y = 2}
L((2,2)) = {x = 2 ∧ y = 2} �

Formally a Kripke structure over a set of atomic propositions AP is a four tuple KS =
(S,S0,R,L) where

11

212 11 Temporal Logic

1. S is a finite set of states.
2. S0 ⊂ S is the set of initial states.
3. R is a total transition relation on S, that is, for every s ∈ S there is an s′ such that

R(s, s ′).
4. L associates with each state s, a set L(s) ⊂ AP of propositions that are true in that state.

A path in the structure KS from state s is an infinite sequence of states 〈s0, s1, s2, . . .〉,
where s = s0, and R(si, si+1) holds for all i ≥ 0. Every state in KS is reachable from
the initial state. In Example 17, the only path that starts in the initial state (0,2) is
(0,2)(2,0)(2,1).

11.5.3
Program Graphs, Transition Systems, and Kripke Structures

In computing literature, especially in the field of formal modeling and verification, many
different, but related, models are constructed. Program graph (PG) is a directed graph
model constructed from a program description [1]. The vertices are program states, and a
directed edge formalizes state change under a constraint. The semantics of state transitions
is the “guard/action” paradigm that was introduced for EFSMs in Chap. 7. So, for all prac-
tical purposes, a PG is a EFSM in which typed variables appear as guards for transitions.
In PG, the program statements are the interpretation functions which define evaluation of

variables in a state. The semantics of the transition s
[g/α]−−−→ s′ is that a nondeterministic

choice is made at state s to select a transition that satisfies g, the action α is executed ac-
cording to the evaluation defined by I , and the transition results in state s ′. Program graphs
can be combined exactly the same way that EFSMs are combined, except that for con-
current programs the proper semantics of concurrency must be followed to combine their
respective graphs. Program graphs of concurrent programs with shared variables must be
combined using the interleaving semantics. That is,

s1
[g/α]−−−→ s ′

1

(s1, s2)
[g/α]−−−→ (s ′

1, s2)

s2
[g/α]−−−→ s ′

2

(s1, s2)
[g/α]−−−→ (s1, s

′
2)

and the interpretation combines the interpretations of the two programs. We denote the
interleaving program graph of PG1 and PG2 by PG1|||PG2. Example 18 illustrates this
principle.

Example 18 The program graphs PG1 and PG2 corresponding to the program statements
P1 : x := x + 2, and P2 : x := x ∗ x are shown in Fig. 11.2. The programs P1 and P2

have the shared variable x. Interleaving semantics apply for shared variables. Applying the
semantics for interleaving we get the graph PG : PG1|||PG2 shown in Fig. 11.2. �

11.5 Formal Verification 213

Fig. 11.2 Program graphs and
their product: Example 18

A transition system (TS) over a set of propositions AP is almost identical to the Kripke
structure (KS) over AP, the only exception is that a TS may be infinite. The states of TS
are called locations, and the state transitions are caused by atomic actions. In an infinite
TS, the set of locations S, the set of propositions AP, and the set of actions are infinite.
The semantics of a transition from location s to location s′, written s

α−→ s′, is that a tran-
sition from state s is selected nondeterministically, the action α is performed, and the
location s′ is reached. The outcome of this selection process cannot be predicted a priori.
Similarly, if the TS has more than one initial state, the start state is selected nondetermin-
istically.

Because a finite TS is a KS, every location of TS is a tuple containing evaluations of
variables. In general, a location of TS is of the form 〈s,p1,p2, . . . , pk, 〉, where pi are
propositions (or simple predicates of the form b = 1) that are true in that location, and s is
a local name for the location. Comparing the semantics of PG and TS, it is evident that the
state transition semantics can be given to transitions in PG and get the transition system
TSPG of a program graph PG, as described below:

• For each location s of PG create the locations {〈s, (vi , ai)〉 | vi ∈ V } of TSPG, where ai

is the evaluation of a variable vi in location s.

• Corresponding to a transition s
[g/a]−−→ s′ in PG, g must satisfy the evaluation of variables

at s and a must satisfy the evaluation of variables at s ′. Let p1,p2, . . . , pk denote the
evaluations that satisfy g at s, and q1, q2, . . . , qk denote the result of applying the action
α on p1,p2, . . . , pk , the transition rule becomes

s
[g/α]−−−→ s ′

〈s,p1,p2, . . . , pk〉 α−→ 〈s ′
1, q1, q2, . . . , qk〉

The transition systems TSPG1 TSPG2 , and TSPG1|||PG2 of the program graphs constructed in
Example 18 are shown in Fig. 11.3.

Notice that

TSPG1 |||TSPG1 �= TSPG1|||PG2

The reason is that the interleaving product of transition systems assume that the programs
are truly concurrent, and share no variable. Therefore, in model checking systems with
shared variables, we should compute the interleaving program graphs from the programs

11

214 11 Temporal Logic

Fig. 11.3 Transition graphs corresponding to the program graphs in Fig. 11.2

Fig. 11.4 Program graphs for
the mutual exclusion
programs in Example 19

and then create its transition system. With this background we now look at the mutual

exclusion algorithm of Peterson [21].

In Example 19, processes P1 and P2 share the three variables x of type {1,2}, and b1

and b2 of type Boolean. In order to enter the critical section, a process waits, gets the to-

ken, enters the critical section and performs its action, releases the token and exits into

noncritical section. The main interest is on the shared variables in order to prove the safety

property, as stated in Example 4, Sect. 11.3.6. So we abstract away from the computations

in noncritical sections and focus only on the conditions for performing the action in the

critical section. The situations are abstractly denoted with states containing the proposi-

tions ci, ni ,wi , as explained below:

ci : process Pi is in the critical section
ni : process Pi is not in the critical section
wi : process Pi is waiting to enter the critical section

Thus, for the program graph PGi of process Pi , the locations are ci , ni,wi , and the set

of variables is Vi = {x, b1, b2}, i = 1,2. The variables bi indicate the current location of

process Pi . That is, bi = wi ∨ ci , and is set when Pi wants to wait. Initially we assume

b1 = b2 = false. If x = i then process Pi may enter its critical section. The program-

graphs generated from the program descriptions of P1 and P2 in Example 19 are shown in

Fig. 11.4.

11.5 Formal Verification 215

Example 19

P1: P2:
loop forever loop forever
(*noncritical actions*) (*noncritical actions*)
...

...

(*request to enter critical section*) (*request to enter critical section*)
〈b1 := true;x := 2〉 〈b2 := true;x := 1〉
(*waiting*) (*waiting*)
wait until (x = 1 ∨ ¬b2) wait until (x = 2 ∨ ¬b1)

(*(action in critical section*) (*(action in critical section*)

do critical section od do critical section od
(*release*) (*release*)
b1 := false; b2 := false;
(*noncritical section*) (*noncritical section*)
...

...

end loop end loop

The specification of the program graphs PG1 and PG2, in the notation of EFSM, are given
below.

PGi = {Qi,Σi,Vi,Λi}, i = 1,2

where

Qi = {ci , ni ,wi}
Σi = {}
Vi = {x, b1, b2}, x ∈ {1,2}, b1, b2 ∈ {true, false}
Λ1 : Transition Specifications for PG1

1. n1
[true/(b1=true∧x=2)]−−−−−−−−−−−−→ w1

2. w1
[(¬b2∨x=1)/...]−−−−−−−−−→ c1

3. c1
[true/(b1=false)]−−−−−−−−−→ n1

Λ2 : Transition Specifications for PG2

4. n2
[true/(b2=true∧x=1)]−−−−−−−−−−−−→ w2

5. w2
[(¬b1∨x=2)/...]−−−−−−−−−→ c2

6. c2
[true/(b2=false)]−−−−−−−−−→ n2

Figure 11.5 shows the program graph PG which is the product of the program graphs PG1

and PG2 given in Fig. 11.4. The graph PG is constructed using the interleaving semantics
on PG1 and PG2. In this graph, we find that the only ways to reach the state 〈c1, c2〉
are to try transitions from states 〈w1, c2〉 and 〈c1,w2〉. However, in state 〈c1,w2〉, x =
1 ∧ b2 = true is true, whereas the guard condition for transition (labeled 5) at that state is
¬b1 ∧ x = 2, which is false. Similarly, in state 〈c2,w1〉, x = 2 ∧ b1 = true is true, whereas
the guard condition for transition (labeled 2) at that state is ¬b2 ∧ x = 1, which is false.

11

216 11 Temporal Logic

Fig. 11.5 Product of program
graphs for the mutual
exclusion programs in
Example 19

Fig. 11.6 Transition System for the mutual exclusion programs in Example 19

Consequently the state 〈c1, c2〉 is not reachable. That is, in all states of the program graph
PG the property ¬(c1 ∧ c2) is true. This proves the safety property of Peterson’s mutual
exclusion algorithm. �

The transition system for the program graph in Fig. 11.5 is shown in Fig. 11.6. Notice
that the state (n1, n2) of the program graph corresponds to the two states 〈n1, n2, x = 1〉
and 〈n1, n2, x = 2〉 of the transition system. This is due to the reason that in the noncritical
section n1, the variable x is set to 2 and in the noncritical section n2, the variable x is set
to 1, and consequently in the combined state (n1, n2), the variable x can take either value.
The transition specifications for both figures are identical.

In summary, a KS is a TS, a PG can be transformed to a TS, and a EFSM is a TS. That
is, a TS, also called labeled transition systems (LTS), is the most general formal model for
describing concurrent and reactive systems. When we start with a program, we construct
its PG and then derive its TS. When we start with a model, say EFSM, then we may regard
it as a PG and then derive the corresponding TS. Since we are dealing only with finite state
concurrent and reactive systems, we will be dealing only with finite transition systems,
which are Kripke structures.

A model checking algorithm is a decision procedure, which for a given model and a
property should output “YES”, if the model satisfies the property or output “NO” if the
model fails to satisfy the property. When a Kripke structure is the formal model, we need
to include “accept” states in it in order that the algorithm may recognize the acceptance

11.5 Formal Verification 217

Fig. 11.7 Büchi automaton:
Example 20

of the stated property. Moreover, the property itself may be stated as “something never
happens”, which requires a verification for infinite number of time points. The structure,
known as Büchi Automaton (BA) [3], has the following attractive properties necessary for
model checking.

• A Kripke structure can be transformed into a BA by simply making every state in KS an
accepting state, and adding a new initial state.

• A BA is a finite state automaton extended to accept/reject infinite strings. Consequently,
PTL formulas which are infinite strings can be recognized by a BA.

• PTL properties can be turned into Büchi automata.
• It is easier (linear time) to check if a BA accepts any string at all.
• It is known that Büchi automata are closed under union, intersection and complementa-

tion. This means that there exists an automaton that recognizes exactly the complement
of a given language, and an automaton that recognizes the intersection of two automata.
An equivalent statement is that the class of Büchi recognizable languages is closed under
boolean operations.

11.5.4
Model Checking using Büchi Automata

A Büchi automaton is a finite state machine A = (Q,Σ,q0,F , δ) which accepts infinite
strings. The notation (ab)ω denotes the infinite repetition of the finite string ab, and the
notation (ab)∗ denotes any arbitrary, but finite, repetitions of string ab. A run σ is an
infinite sequence of states s0, s1, . . . , sn, . . . , where s0 is an initial state, and (si , si+1) is a
transition in the BA. For a run σ , let Inf (σ) denote the set of states that occur infinitely
often in σ . The run σ is accepted by the BA if Inf (σ)∩F �= ∅, where F is the set of accept
states of the BA. That is, some accept state must be visited infinitely often in the run σ .

Example 20 The automaton in Fig. 11.7 is a BA which has one accept state s3. Example
runs are sω

1 , s∗
1 s2s

ω
3 , and s∗

1 s∗
4 sω

3 . For the run σ1 = s∗
1 s2s

ω
3 , Inf (σ1) = {s3} and hence the run

σ1 is an accepting run. For σ2 = s∗
1 s∗

4 s∗
3 sω

2 , Inf (σ2) = {s2}, and Inf (σ2) ∩ {s3} = ∅. Hence
the run σ2 is not an accepting run. The string that corresponds to the accepting run s∗

1 s2s
ω
3

is q∗qpω . It is easy to verify that the automaton accepts the strings in which both p and q

appear infinitely often. �

11

218 11 Temporal Logic

Fig. 11.8 Büchi automaton corresponding to a Kripke structure

The language L(A) is the set of strings accepted by A. Every PTL formula is accepted
by a Büchi Automaton. Consequently, a PTL formula can be expressed as a Büchi automa-
ton. However, the converse is not true, because Büchi automaton can capture properties not
expressible by PTL.

A Kripke structure (S,R,S0,L), where L : S → 2AP, can be transformed to a Büchi
automaton (Q,Σ,q0,F , δ) as follows:

states: Q = S ∪ {i}, (all states of the Kripke structure plus one new state are
the states of the automaton)

alphabet: Σ = 2AP (alphabet is the set of propositions used in the labelings of
the transition system)

initial states: q0 = {i} (initial state is the new state created in Q)
accept states: F = S (all states of the Kripke structure become final states of the

automaton)
transitions: δ(s,α) = s ′, s, s′ ∈ Q if and only if (s, s′) is a transition in R and

L(s ′) = α

Figure 11.8 gives a Kripke structure and its corresponding Büchi automaton. The prop-
erty to be verified can also be given as Büchi automata. Figure 11.9 shows the basic PTL
formulas and their corresponding BAs. To reduce the number of transitions in a BA rep-
resentation, we annotate the transitions as in Fig. 11.8. We can use boolean expressions,
rather than a subset of propositions for annotation. Each transition annotated in this manner
actually represents several transitions, where each transition corresponds to a truth assign-
ment for AP that satisfies the boolean expression. As an example, when AP = {p,q, r}, a
transition labeled p ∧ ¬r matches labeled with {p,q} and ¬r .

Model Checking Procedure Model checking is an algorithmic way of determining
whether or not a system satisfies a stated property. There are several model checking pro-
cedures [6]. One of them, called automata theoretic method, is based on the following
observation. A system modeled as Büchi automata S satisfies the property specified as
another Büchi automata P when

L(S) ⊂ L(P) (11.1)

11.5 Formal Verification 219

Fig. 11.9 Büchi automata corresponding to PTL formulas

That is, the behavior of the modeled system is contained within the behaviors allowed by
the property. The relation (11.1) can be rewritten as

L(S) ∩ L(P) = ∅ (11.2)

This means that any behavior disallowed by the property is not contained within the be-
haviors of the system. If the intersection in (11.2) is not empty, any behavior in it is a
counterexample to the claim.

Computing Product of Büchi Automata The method for computing the intersection
of finite automata does not work for computing the product of Büchi automata. Finite au-
tomata accept only finite words, whereas Büchi automata accept infinite words. An infinite
word that is accepted by the product of two Büchi automata should visit the accept states
of each automaton infinitely often. It is therefore necessary to record in every state of the
product machine a tag indicating whether the product automaton is checking for an accept
state of the first automaton or the second automaton. The product automaton accepts the
string only if it switches the focus (as indicated by the tags) from the second to the first (or
equivalently, from the first to second) infinitely often. That is, the accept states of the prod-
uct automaton are precisely those where “switching back and forth” happens. The formal
construction is given below.

The product of two Büchi automata Ai = (Qi,Σ,q0i , Fi, δi), i = 1,2, is A =
(Q,Σ,q0,F , δ), where

• states: Q = Q1 × Q2 × {1,2}
• initial states: q0 = {(s1, s2,1) | s1 ∈ q01, s2 ∈ q02}

11

220 11 Temporal Logic

Fig. 11.10 Product of two Büchi automata

• transitions: For a ∈ Σ ,

(s1, s2,1)
a−→ (s′

1, s
′
2,1) if s1

a−→ s′
1, s2

a−→ s′
2, and s1 /∈ F1.

(s1, s2,1)
a−→ (s′

1, s
′
2,2) if s1

a−→ s′
1, s2

a−→ s′
2, and s1 ∈ F1.

(s1, s2,2)
a−→ (s′

1, s
′
2,2) if s1

a−→ s′
1, s2

a−→ s′
2, and s2 /∈ F2.

(s1, s2,2)
a−→ (s′

1, s
′
2,1) if s1

a−→ s′
1, s2

a−→ s′
2, and s2 ∈ F2.

• accept states: F = Q1 × F2 × {2} (or F1 × Q2 × {1})
We write A1

⊗
A2 to denote the product automaton of the Büchi automata A1 and A2.

Figure 11.10 shows two Büchi automata and their product.
When we transform a Kripke structure to a Büchi automaton, we make every state of

the Büchi automaton an accepting state. Therefore, in this approach we ignore the tags. In
general, tags are necessary for computing the product of any two Büchi automata. When we
use boolean expressions to label the transitions of the automata, the transition relation is to
be modified to reflect the equivalence of boolean expression for simultaneous transitions.

That is, for the transitions s1
α1−→ s′

1, and s2
α2−→ s′

2, the simultaneous transition (s1, s2)
α−→

(s′
1, s

′
2) exists in the product automata if and only if α1 ≡ α2 ≡ α.

Based on our discussion so far, the model checking procedure using Büchi automata is
as follows:

1. Construct the Büchi automaton Asys for the system.
2. Construct the Büchi automaton A¬ϕ for negation of the property ϕ to be verified.

11.6 Exercises 221

Fig. 11.11 Büchi automata
corresponding to the formula
ϕ = �(p ⇒ ©♦q)

3. Compute the product Asys
⊗

A¬ϕ .
4. If there is no accepting run (a cycle through an accepting state) in the product automata,

declare that the property ϕ is true in the system sys. This is justified by (11.2). Other-
wise, the property ϕ is not true in the system sys, and every accepting run in the product
automata is a counterexample to the claim.

Example 21 illustrates the model checking steps using the emptiness criteria in the
product of two Büchi automata.

Example 21 We want to verify the property ϕ = �(p ⇒ ©♦q) in the Büchi automaton
shown in Fig. 11.8. The steps are shown below:

1. Let Bsys be the Büchi automaton in Fig. 11.8.
2. We need to transform ¬ϕ into a normal form in which all negations are pushed inside

the temporal operators. We use the duality axioms (see Sect. 11.3.5) successively:

ϕ = �(p ⇒ ©♦q)

¬ϕ = ¬�(p ⇒ ©♦q)

= ♦¬(p ⇒ ©♦q)

= ♦(p ∧ ¬ © ♦q)

= ♦(p ∧ ©¬♦q)

= ♦(p ∧ ©�¬q)

The Büchi automaton B♦(p∧©�¬q) is shown in Fig. 11.11.
3. We construct the product automaton. In the state t2 of the automaton B¬ϕ , the only

transition is labeled by ¬q , which is not a label of any transition in the automaton Bsys.
Hence, in the product automaton, there is no transition from any state (∗, t1), where ∗
is a state of Bsys. The transition t0

true−−→ t0 matches with any transition in Bsys, and the

transition t0
p−→ t1 labeled p can be taken simultaneously with the transitions in Bsys

that have label p. The product automata Bsys
⊗

B¬ϕ , as shown in Fig. 11.12, can be
constructed in this manner. Since there is no cycle through the accepting states in the
product automaton, we conclude that the property ϕ is true in the Büchi automaton
shown in Fig. 11.8. �

11.6
Exercises

1. Express (♦ϕ) using U operator. Express �ϕ using ♦ operator.
2. Give natural language statements for the following formulas:

11

222 11 Temporal Logic

Fig. 11.12 Product of the
Büchi automata in Figs. 11.8
and 11.11

• ♦(ϕ1 U ϕ2)

• ♦ϕ1 U ϕ2

• �ϕ ⇒ ♦ψ

• ¬�(x > 1)

• (¬qU p) ∨ �p

• ♦(ϕ ∧ ©¬ϕ)

3. Give temporal logic formulas for the following statements:
(a) It is always true that at some future moment only one of ϕ or ψ becomes true.
(b) Initially x > 0, y > 0, at some future moment x > y is true and it stays true unless

y becomes negative.
(c) A printer completes the printing of a file within a finite amount of time.
(d) Only one user can use the printer at a time.
(e) The gate eventually opens after the train exits from the crossing, provided the gate

does not receive close message from the controller within 3 time units from the
instant the train exits.

(f) It is not the case that the channel delivers two identical messages in successive
steps.

(g) Whenever the input number is odd, the execution never terminates.
(h) Whenever the parity bit is 1 in a register, the register contents do not change for

the next two steps.
(i) Events p and q alternate infinitely often.
(j) Event p should eventually followed by event q or event r but not by both.

4. Write a fairness condition for Dining Philosopher’s problem (Example 5) in PTL.
5. Prove or disprove the following equivalences:

• �ϕ ≡ ©(�ϕ)

• ♦(ϕ ∧ ψ) ≡ ♦ϕ ∧ ♦ψ

• ©♦ϕ ≡ ♦ © ϕ

• �(ϕ ⇒ ψ) ≡ (�ϕ ⇒ �♦ψ)

• (©ϕ ⇒ ψ) ⇒ ©(ϕ ⇒ ψ)

6. Prove the equivalences stated in Sect. 11.3.5.
7. Define the temporal operator N (atnext [14]), to be used as ϕN ψ , using the basic

temporal operators. It has the meaning “ϕ holds at the nearest future time point where
ψ holds”. Either prove or give a counterexample for the following formulas:

• �ϕ ⇒ ϕN ψ

11.6 Exercises 223

• �(ϕ ⇒ ϕN ψ)
• �(ϕN ψ) ⇒ �♦ψ

8. Below is a temporal specification for two components A and B that communicate
through messages.

SpecA : �

⎡

⎢
⎢
⎣

start ⇒ ϕ

∧ϕ ⇒ ©ψ

∧ψ ⇒ ©ϕ

∧ψ ⇒ © © send_ msg

⎤

⎥
⎥
⎦

SpecB : �
⎡

⎣
rcv_msg ⇒ ©ϑ

∧ϑ ⇒ ©η

∧η ⇒ ©ϑ

⎤

⎦

Give a model of the following concurrent specifications:

(1) Spec1 :: SpecA ∧ SpecB ∧ �[send_msg ⇒ ©rcv_msg]
(2) Spec2 :: SpecA ∧ SpecB ∧ �[send_msg ⇒ ♦rcv_msg]

Prove that Spec1 is a refinement of Spec2.
9. In the previous question suppose send_msg is changed to send_msg(t), where t is a

token and it is either 0 or 1. Component B should send an acknowledgement (a simple
message with no parameter) to component A if the value of token is 1. With this
change, rewrite the concurrent specifications in Exercise 8.

10. With respect to the rail road crossing specification in Sect. 11.3.7.2 do the following:
(a) Give formal semantics for the following formulas:

(i) g4 W tr1

(ii) g4 S tr3

(iii) tr1 R g4

(b) Modify the railroad problem requirements: The system allows two trains, one con-
troller, and one gate. When one train is in the crossing or busy crossing the gate,
and the controller receives “approaching” message from the other train the con-
troller should instruct the gate closed until both trains exit the crossing. However,
both trains should not share the crossing at any moment. Give a specification for
this problem.

11. Specify a signal object with the behavior that in the initial state it is red. When it
receives a message at some time it changes to yellow at the next instant. It stays yellow
until it receives a message to turn green. It stays green unless it receives a message that
will turn it red. This behavior is repeated infinitely often. Modify the requirements of
the rail road crossing problem in Sect. 11.3.7.2 as follows:
(a) The controller informs the signal about the status of the gate through different

messages.
(b) If the signal is red and it receives the message from the controller that “the gate is

open”, it continues to stay in that state. When it receives the message that the “gate
is lowered”, it turns yellow in the next time moment. When the signal is yellow,

11

224 11 Temporal Logic

if it receives the message “gate is closed” from the controller, it turns green at the
same time moment. When it receives the message “gate is raised” it changes to
yellow at the next time moment. If it receives the message “gate is open” when it
is yellow, it changes to red at the same moment.

(c) The train observes the signals and modifies its behavior. If it observes red signal
it will stop before reaching the crossing. If it observes yellow it will slow down
before reaching the gate. If it observes green it will either maintain its normal
speed or resume_normal speed.

Give a formal specification for the reactive behavior of train, controller, signal, and
gate components. Give a formal model of the system and informally infer from your
model the satisfaction of the safety property.

12. This exercise is concerned with specifying a plain old telephone system: a system
consisting of a finite number of telephones, where communication between two tele-
phones is possible through a channel. All telephones are connected to one channel.
Each telephone has a unique number. The state of a telephone is determined by the
truth values of the following set of predicates: on-hook(x), off-hook(x), dial-tone(x),
ringing(x), busy-tone(x). A user can perform the following actions: lift-handset(x),
replace-handset(x), dial-number(x,y). When a number y is dialed in a telephone x,
either there is a busy tone at the telephone y, or the telephone y rings. In the latter
case, either the phone is eventually picked up or it is not picked up. If the telephone is
picked up, the telephone is said to be connected, and if the telephone is not picked up
there is no connection. In such an operation no other telephone is affected.
(a) Give temporal logic formulas for a set of constraints on the telephone system.

Example constraints are “a telephone is either on-hook or off-hook, but not both”,
and “a phone cannot have a busy tone and not be connected to some number”.

(b) Give a temporal logic specification for placing a call that results in a successful
connection. Give a channel specification, as complete as possible, so that you can
provide the full specification of processing a telephone call. Verify using the for-
mal model of the system that every call made by a telephone is connected unless
the telephone at the destination is busy.

13. Give temporal logic semantics for the program below:

begin
x:=0;
y:=3;
while (x <= y) do
{
if even(x) then <y:=y+x; x;=x+1>

else <y:=y-2;x:=y+x;>
}
end

14. Modify the requirements of Example 14 as follows: the slot machine sends a randomly
chosen amount x, which is either (max − 2) or (min + 2), as long as the cash balance
in the slot machine remains greater than (max + min) (of the previous round). Once
the balance falls below this limit it continues to send an amount 0, until its balance is

11.6 Exercises 225

once again at least (max + min). This behavior is repeated forever. Give the complete
specification of the slot machine interaction with its players.

15. Craps is a gambling game which eventually terminates. A player, say Alice, plays
the game using a machine that generates random numbers to simulate the roll of a
pair of dice. The rules of the game and declaring the result of the game rest with a
referee (R), an automatic device, with whom Alice and her random number generating
(RAG) device communicate. Each time Alice asks RAG for a number, RAG delivers
the referee R an integer in the range [1,7] and the name Alice. To simulate a throw on
a pair of dice, Alice will ask RAG at two successive moments. The device RAG takes
one moment of time to generate the number and one moment of time to deliver it to R.
Two moments after the judge receives the necessary information, it will announce the
result to Alice, and Alice will receive the result the moment after it is sent by R. The
referee has set down the following rules for playing the game.

• Let a and b denote the random numbers received after Alice requests for it.
• Let s = a + b

• If s = 7 or s = 11, R announces that Alice is the winner. The game is over.
• If s = 2 or s = 3 or s = 12, R announces that Alice is the loser. The game is over.
• In all other cases R requests Alice to play again.
• Alice should request RAG at two successive moments to get new numbers.
• Let a′ and b′ be the numbers received by R.
• Let s ′ = a′ + b′.
• If s′ = 7 the referee announces that Alice is the loser. The game is over.
• If s ′ = s the referee announces that Alice is the winner. The game is over.
• The referee follows the rules from Step 5 until the game is decided.

Give a temporal logic specification for playing this game. HINT: Define the operator
while :: ϕ W ψ meaning “ϕ holds at least as long as ψ holds”, and use it to specify the
loop.

16. In software design, the publisher–subscriber design pattern is often used. This prob-
lem is on modeling the behavior of publisher–subscriber. Component Cp is publisher
of information, and components Csi , i ≥ 0 are subscribers to information published by
Cp . Give a model of the following behavior.

• subscribe: A component repeatedly sends message enroll() to the publisher Cp

until it receives an acknowledgment enrolled(i). The publisher assigns the ID i to
the component, and is named Csi .

• publish: The publisher Cp sends out (broadcasts) information ϑ at odd time mo-
ments t ≥ 3, to all components who are enrolled at time k, k < t .

• release: A component Csi repeatedly sends message release(i) to the publisher Cp

until it receives an acknowledgment released(i). The publisher removes ID i.
• membership: A component that received an acknowledgment enrolled(i) is a sub-

scribed member from the moment of enrollment to the moment of release.

Prove the following properties:

• safety property: Only subscribers should receive the information published by the
publisher.

11

226 11 Temporal Logic

• liveness property: All subscribers receive the same information.

17. Construct the program graph and the transition system corresponding to the program

begin
while (x > 1)
if (x > y) then x:=x-y;
if (x <= y) then y:=y-x;
}
end

18. Consider the two actions

P1 :: 〈y := y − x;x := x + 2〉
P2 :: 〈x := y + x;x := x − 2〉

as programs that share the variables x and y. Construct

• the program graph PG1 and PG2 of the programs P1 and P2

• the program graph of PG1|||PG2

• the transition systems TSPG1 , TSPG2 and TSPG1|||PG2 corresponding to program
graphs PG1, PG2, and PG1|||PG2

Is TSPG1 |||T SPG2 = T SPG1|||PG2

19. Model check the formula ♦(r ⇒ p∨¬q) on the Büchi automaton model shown below.

20. Transform the Kripke structure (S,R,S0,L) defined below to a Büchi automaton and
model check the formula ♦(p ∨ t) in it.

S = {s0, s1, s2, s3, s4},
R: s0

α1−→ s1, s2
α2−→ s1, s2

α3−→ s4, s3
α2−→ s0, s3

α1−→ s2, s4
α3−→ s0

L: L(s0) = {p, s}, L(s1) = {r, s}, L(s2) = {q, r}, L(s3) = {p,q},
L(s4) = {p, t}, where p,q, r, s, t are propositions.
S0 := {s0, s4}

11.7
Bibliographic Notes

Modal logics [4, 13] and temporal modalities [25] are the foundations on which the tem-
poral logics are based. Linear temporal logic was introduced by Pnueli [22]. Since then a

11.7 Bibliographic Notes 227

variety of temporal logics have been studied, most notably CTL (Clock Temporal Logic)
[2, 9], CTL∗, and Lamport’s Temporal Logic of Actions [16]. Both CTL and CTL∗ are
branching time logics. CTL∗ subsumes both CTL and LTL. There are logics based on
them for industrial usage. These include IBM Sugar based on CTL, Intel FORSpec based
on LTL, PSL (IEEE-1850 standard) that incorporates features from CTL∗, and the TLA+2
tools. In PSL, it is possible to write both property-oriented and model-based specifications.

Temporal logic is most suited for specifying the behavior of reactive and concurrent
systems. The behavior of such systems, considered as traces, are collections of infinite
words which constitute an ω-language over an alphabet. This connection between LTL
formulas and ω-languages was first studied by Sistala et al. in [27]. This seminal work lead
to model checking using Büchi automata which recognizes ω-languages.

The term model checking refers to a collection of methods for the automatic analysis
of properties, such as safety, liveness, and fairness in reactive and concurrent systems. The
input to model checkers are always abstract models of the system. A positive verdict from
a model checker is of “limited value” because of possible (and potential) incompleteness
in the model, approximations that might have lead to contain the complexity of the model,
and limitations imposed by available resources. The positive aspect of getting a negative
verdict is that the counter-examples produced by the model checker are invaluable in de-
bugging complex systems. Testing community use model checkers just for this feature. On
the whole, model checking has the following strengths:

1. It is a systematic approach and is an automatic verification procedure.
2. Many tools are available; for example SPIN system developed by Holzmann [12] re-

ceived an award for its outstanding performance. Consequently, model checking has
become portable and scalable to industrial applications, requiring only a moderate level
of expertise in the formal notations used.

3. Many systems, some fairly large, have been model checked. It is now done routinely on
a widespread basis for verifying properties of large systems composed of both hardware
and software.

4. There is a wide networking community of users, researchers, and developers. They
continue to produce new techniques and tools.

However, there are still a few problems with this approach.

1. It supports only partial verification. That is, only one property can be checked at any
one time. In order to check fairness and safety, two independent invocations to a model
checker is necessary.

2. Positive verdict of one property cannot guarantee that the system is free of other errors.
3. It is restricted to verifying stated properties in finite state models, and not on actual

systems.
4. It is not suitable for infinite state systems. Many real world systems may not be finite

state systems. Many techniques, such as predicate abstraction, partial order reduction,
and symbolic representations are known [1, 6] to reduce infinite state systems to finite
state systems. Not all these techniques are fully automated.

5. State explosion is a common problem. A reactive system may not terminate and a con-
current system may have many asynchronous processes. The formulas required to rep-

11

228 11 Temporal Logic

resent the state spaces of such systems are usually quite complex, making the state space
hard to contain within manageable size.

The result of Sistala and Clarke [28] on the complexity of LTL model checking sets limits
on what is practically feasible. Model checking is done only on an abstract model which
cannot be built automatically. Because of the disadvantages listed above, standard valida-
tion procedures such as testing are necessary to ensure that the implementation adequately
reflects the properties verified by a model checker as well as properties that are not model
checked.

References

1. Baier C, Katoen JP (2007) Principles of model checking. MIT Press, Cambridge
2. Ben-Ari M, Pnueli A, Manna Z (1983) The temporal logic of branching time. Acta Inform

20:207–226
3. Büchi JR (1960) On a decision method in restricted second order arithmetic. Z Math Log

Grundl Math 6:66–92
4. Carnap R (1947) Meaning and necessity. Chicago University Press, Chicago. Enlarged Edition

1956
5. Clarke EM, Emerson EA, Sistala AP (1986) Automatic verification of finite state concurrent

systems using temporal logic specifications. ACM Trans Program Lang Syst 8(2):244–263
6. Clarke EM, Grumberg O, Peled DA (1999) Model checking. MIT Press, Cambridge
7. Courcoubetis C, Vardi M, Wolper P, Yannakakis M (1992) Memory efficient algorithms for

the verification of temporal logic properties. Form Methods Syst Des 1:275–288
8. Dijkstra E (1965) Solutions of a problem in concurrent programming control. Commun ACM

8(9):569
9. Emerson EA, Clarke EM (1980) Characterizing correctness properties of parallel programs

using fixpoints. In: Automata, languages, and programming. Lecture notes in computer sci-
ence, vol 85, pp 169–181

10. Gabbay D, Pnueli A, Stavi J (1980) The temporal analysis of fairness. In: Proceedings of the
seventh ACM symposium on principles of programming languages, January 1980, pp 163–
173

11. Gabbay D, Hodkinson I, Reynolds M (1994) Temporal logic: mathematical foundations and
computational aspects. Oxford logic guides, vol 1. Clarendon, Oxford

12. Holzmann G (2003) The SPIN model checker: primer and reference manual. Addison-Wesley,
Reading

13. Kripke SA (1963) Semantic considerations on modal logic. Acta Philos Fenn 16:83–94
14. Gröger F (1986) Temporal logic of programs. EATCS monographs on theoretical computer

science. Springer, Berlin
15. Lamport L (1983) What good is temporal logic. In: Proceedings of IFIP’83 congress, infor-

mation processing. North-Holland, Amsterdam, pp 657–668
16. Lamport L (1994) The temporal logic of actions. ACM Trans Program Lang Syst 16(3):872–

923
17. Manna Z, Pnueli A (1992) The temporal logic of reactive and concurrent systems—

specifications. Springer, New York
18. Melham TF (1989) Formalizing abstraction mechanisms for hardware verification in higher

order logic. PhD thesis, University of Cambridge, August 1989
19. Moszkowski B (1986) Executing temporal logic programs. Cambridge University Press, Cam-

bridge

References 229

20. Owiciki S, Lamport L (1982) Proving liveness properties of concurrent programs. ACM Trans
Program Lang Syst 4(3):455–495

21. Peterson GL (1981) Myths about the mutual exclusion problem. Inf Process Lett 12(3):115–
116

22. Pnueli A (1977) The temporal logic of programs. In: Proceedings of the eighteenth symposium
on the foundations of computer science, Providence, USA

23. Pnueli A (1981) The temporal semantics of concurrent programs. Theor Comput Sci 13:45–
60

24. Pnueli A (1986) Applications of temporal logic to the specification and verification of reactive
systems: a survey of current trends. Lecture notes in computer science, vol 224

25. Prior A (1957) Time and modality. Oxford University Press, London
26. Rescher N, Urquhart A (1971) Temporal logic. Springer, Berlin
27. Sistala AP, Vardi M, Wolper P (1983) Reasoning about infinite computation paths. In: Pro-

ceedings of the 24th IEEE FOCS, pp 185–194
28. Sistala AP, Clarke EM (1985) The complexity of linear propositional temporal logic. J ACM

32(3):733–749
29. Stirling C (1992) Modal and temporal logics. In: Handbook of logic in computer science.

Oxford University Press, London
30. Wan K (2006) Lucx: Lucid Enriched with context. PhD thesis, Concordia University, Mon-

treal, Canada

Part IV
Mathematical Abstractions

for Model-Based Specifications

Model-based specification techniques not only provide a mechanism to construct an ab-
stract model of the application being specified but also give refinement techniques to derive
design and implementation from the model. In order to construct such an abstract model,
to reason about the model and to provide sufficient syntactic structures for refinement,
most model-based specification techniques use set theory notation and first-order predicate
logic. A chapter in Part III of the book covers predicate logic. Set theory and relations are
discussed in detail in this part. The following are the learning outcomes from this part:

• notations for sets, relations and functions
• simple specifications using sets
• reasoning with sets
• various types of relations and functions
• examples of specifications using relations and functions
• sequences and their representations
• examples of specifications using sequences

Set Theory and Relations 12

The main goal of this chapter is to demonstrate the usefulness of mathematical abstractions

such as sets, relations, functions, and sequences in software development. In particular,

the chapter lays the foundation for the specification languages presented in the next four

chapters.

Software systems deal with real-world objects, their attributes, and their interactions.

Collections of such objects are abstracted as sets or sequences, and the interactions between

pairs of objects are abstracted as relations or functions. When such abstractions are not

created and used in software development, the modeling of real-world objects may be

influenced by implementation details.

Sets correspond to structures for providing truth values to propositions and predicates.

Each n-ary predicate P(x1, x2, . . . , xn) is interpreted over a structure R ⊆ Un, where U

is the universal set, such that the predicate is true for tuples in R. The domain R consists

of all relations r(x1, x2, . . . , xn) for which P(x1, x2, . . . , xn) is true. For a unary predicate

p(x) the domain is the set of values of the argument x for which p(x) is true. This view of

sets of objects, and relations, implicitly defined by predicates over the objects, is useful in

introducing the notion of type and defining type invariants in the specification of software

systems.

12.1
Formal Specification Based on Set Theory

The vocabulary, the syntax, and the semantics of the formalism are borrowed from set

theory. The syntax includes the notation for set presentation, set membership, and set ex-

tension. The semantics conduces to reasoning about specifications based on the notation.

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_12, © Springer-Verlag London Limited 2011

233

12

234 12 Set Theory and Relations

12.1.1
Set Notation

A set may be presented by enumerating its elements. Thus,

status = {idle,on,off }
introduces the set status whose elements describe the three possible states of a process.
To introduce a set which cannot be enumerated but whose membership criterion can be
asserted, we use the “let” construct. For instance, we describe sets using the following
statements: “Let Person denote the set of all persons registered in an employment regis-
tration bureau” and “ Let P denote the set of printers”. Such definitions may be used in
defining other sets. We also use standard mathematical notations such as N to denote the
set of natural numbers.

The set comprehension notation is used to introduce sets obtained by specializing
nonempty sets that have already been defined. For example, the set

{x : N|1 < x < 1000 ∧ prime(x)}
introduces the finite set of prime numbers in the range 1. . . 1000. The set

retired = {e : Person|age(e) ≥ 65}
refers to the set of persons who have reached the age of 65.

In this chapter, we adopt the notion that types are maximal set of values. In general,
specification languages have built-in types; some provide facilities to construct complex
types. An object is associated with a type, and an identifier is used to denote the object.
When a type denotes a maximal set of values, an object can belong to only one type.
Within this framework there is no notion of subtyping. The set constructors, ∪, ∩, −−
are also used as type constructors. The expression x : retired ∩ male introduces a variable
denoting a male retired person. The two expressions x ∈ retired, and x : retired have the
same meaning.

The powerset of a set S, denoted by PS, represents the set of all subsets of S. It serves
as the type for collections of objects. To formalize statements such as “let X and Y denote
two sets of retired people”, it is sufficient to write X,Y : P retired. The set membership
operation ∈ may be used to determine subset relationships. For instance, (∀e : X • e ∈
Y) ⇒ X ⊂ Y . If T is a type and S ⊂ T , we assert that P(x) is true for some x ∈ S, by
writing

∃x : T • x ∈ S ∧ P(x), or

∃x : S • P(x)

The declaration e : X − Y introduces a variable of type X − Y , that is, a variable whose
values belong to the set X, but not to the set Y .

A set cannot represent an ordered collection of objects. Information that require some
ordering are represented using n-tuples. If x and y are elements of sets X and Y then

12.1 Formal Specification Based on Set Theory 235

the ordered pair (x, y) is an element of the Cartesian Product type X × Y . The cartesian
product notion can be generalized:

X1 × X2 × · · · × Xn

is the set of all n-tuples {x1, x2, . . . , xn}, where xi ∈ Xi . Two n-tuples {x1, x2, . . . , xn},
and {y1, y2, . . . , yn, } are equal if (x1 = y1 ∧ x2 = y2 ∧ · · · ∧ xn = yn). The ordering of
components in a cartesian product is meaningful. The cartesian products T × T × T , T ×
(T × T), (T × T) × T correspond to different sets. Set equality is extended to cartesian
products. Two tuples are equal if and only if their corresponding components are equal. If
S,T ⊂ X × Y , then S = T if and only if they have the same tuples. The data type date can
be modeled using cartesian product as follows:

date = Year × Month × Days, where

Year = {x : N | 2000 ≤ x ≤ 4000},
Month = {Jan,Feb,Mar,Apr,May, Jun, Jul,Aug,Sep,Oct,Nov,Dec},
Days = {x : N | 1 ≤ x ≤ 31}.

This type includes some invalid tuples such as (2000,Feb,30). To exclude invalid values
for a type, we need type invariant. These are described in detail in Chap. 16.

12.1.2
Reasoning with Sets

Proofs about sets are constructed from the semantics of set operators introduced in the
previous section. Natural deduction is the frequently used proof technique. It uses the fol-
lowing axioms for set operations.

1. empty set
A basic axiom of set theory is that the empty set, denoted as ∅, exists and has no ele-
ments:

∅
∀x : S • x /∈ ∅

This axiom uses the set membership operator ∈, which is axiomatized next.
2. membership

e ∈ S

S �= ∅
e = x1 ∨ · · · ∨ e = xk

e ∈ {x1, . . . , xk}
∃x : S|P(x) • a[x] = e

e ∈ {x : S|P(x) • a[x]}

12

236 12 Set Theory and Relations

The first axiom states that if there exists an element in a set, then the set is not empty.
The second axiom is applicable for set enumeration. The third axiom applies for set
comprehension.

3. subset

∅ ⊆ S

∀x : S • x ∈ T

S ⊆ T

S ⊆ T ∧ T ⊆ U

S ⊆ U

4. equality

S ⊆ T ∧ T ⊆ S

S = T

5. membership in powerset

S = ∅
PS = ∅
T ⊆ S

T ∈ PS

6. membership in cartesian product

e1 ∈ X1 ∧ · · · ∧ en ∈ Xn

(e1, . . . , en) ∈ X1 × · · · × Xn

7. equality of tuples

x1 = y1 ∧ · · · ∧ xn = yn

(x1, . . . , xn) = (y1, . . . , yn)

8. union, intersection, difference

[union] x ∈ (S ∪ T)

x ∈ S ∨ x ∈ T

[distributed union] x ∈ ⋃
S

∃X : S • x ∈ X

[intersection] x ∈ S ∩ T

x ∈ S ∧ x ∈ T

[distributed intersection] x ∈ ⋂
S

∀X : S • x ∈ X

[difference] x ∈ S − T

x ∈ S ∧ x /∈ T

12.1 Formal Specification Based on Set Theory 237

Example 1 Prove (i) S ⊂ S ∪ {e}, and (ii) if e ∈ S, S = S ∪ {e}.
Proof of (i):

1. S = ∅. From the first axiom for empty set, infer ∅ ⊂ ∅ ∪ {e}.
2. S �= ∅.

• From x ∈ S, infer x ∈ S ∨ x ∈ {e} (∨ − introduction)
• From the union axiom and the previous step, infer x ∈ S ∪ {e}

3. From 1 and 2, infer S ⊂ S ∪ {e}.
Proof of (ii):

1. S ⊂ S ∪ {e} . . . proved in (i).
2. From x ∈ S ∪ {e} and the union axiom, infer x ∈ S ∨ x ∈ {e}.
3. If x = e from the premises and from the second subset axiom, infer S ∪ {e} ⊂ S.
4. If x �= e and x ∈ S ∪ {e}, from the second axiom for set membership infer S ∪ {e} ⊂ S.
5. From set equality axiom, and steps 3 and 4, infer S = S ∪ {e}. �

From Example 1, it follows that sets X = {3,7,3,5,8,5} and Y = {3,5,8,7} are equal.
Reordering or introducing duplicate elements in a set will not create a different set.

12.1.3
A Specification Example

A Computer Assisted Education Tool (CAET) is a multi-user environment for distance
learning. A simplified version of CAET is specified in the following example. The focus
is on abstracting application domain objects such as users, access rights, files, and user
commands.

Example 2 Some of the requirements of CAET are stated informally and formalized using
set notation.

1. User Categories—There are four classes of users: author, teacher, student and admin-
istrator. An author, who can be a teacher but not a student, prepares lessons. A teacher
can be an author but not a student or an administrator. An administrator has special
privileges for managing accounts of students registered for courses offered by CAET
and hence cannot be an author, teacher, or student. The categories of users are modeled
by sets.

Let u denote the set of all user names, and curusers denote the set of all current
users; author, teacher, student and administrator denote the sets of all authors, teachers,
students and administrators in CAET.

(curusers ⊆ u)∧
(curusers = author ∪ teacher ∪ student ∪ administrator)∧
(author ∩ student = ∅)∧

12

238 12 Set Theory and Relations

(teacher ∩ student = ∅)∧
(teacher ∩ administrator = ∅)∧
(student ∩ administrator = ∅)∧
(author ∩ administrator = ∅)

2. File categories—Three are three categories of system files: 1) lessons and quizzes;
2) class list and grade list for students; 3) author list and teacher list. Authors, teach-
ers, and students can access files in the first category; teachers and administrators can
access files in the second category, and only administrators can access files in the third
category. The specification models the structure of the file store, and not the structure
of the files in the file stores.

Let file_store_a denote the type of file store exclusively owned by administrators.
All administrators have the same set of privileges for files in file_store_a. The store is a
collection of ordered pairs:

file_store_a = P(administrator × ad_files),

where ad_files is the type of file names owned by the administrators.
Let file_store_b denote the type of file store jointly owned by teachers and adminis-

trators, containing the set of class lists and grade lists. A class list is created by an ad-
ministrator who authorizes the teacher of the section to read or copy the list. A teacher
can access only the class list of his/her section, and cannot modify the list. The grade list
for the class can be created and modified by the teacher of the section only; an admin-
istrator can only view the grades. File access privileges are asymmetrical with respect
to the class of users. The type of file_store_b corresponds to the union type of two sets
of ordered pairs:

file_store_b = P(administrator × (teacher × class_files))∪
P(teacher × (administrator × grade_files))

where class_files and grade_files are file names for class and grade lists, respectively.
Let file_store_c denote the type of file store that may be jointly accessed by admin-

istrators, teachers and students. The files in this store are exclusively created by authors,
and hence may be modified only by the authors. Students and teachers can read the files
or copy the files into another file store. The file store has the type

file_store_c = P(author × course_no × lesson)∪
P(author × course_no × quiz)

where course_no is the type defining the set of courses, lesson and quiz denote types of
file names containing lessons and quizzes. The implication of this model is that several
lesson files and several quiz files may be created by several authors for one course.
In addition, the authors may own other auxiliary files. The type of auxiliary files is
modeled as collections of ordered pairs (user,file):

aux_file_store = P(curusers × file_names),

12.1 Formal Specification Based on Set Theory 239

where file_names = quiz ∪ lesson ∪ class_files ∪ grade_files ∪ ad_files.
3. File store access rights—Each file category can be accessed by a designated set of users.

This requirement is described by the type

fsar = P(file_store × P(curusers)),

where

file_store = file_store_a ∪ file_store_b ∪ file_store_c ∪ aux_file_store

4. Access rights—The set

privileges = {read,write, edit, copy, execute,nil}
defines all possible access rights in the system. A user can have one or more of these
rights for a file. Thus, access rights for files are described as a collection of triples
(u,f ,A), such that user u has the rights enumerated in set A ⊆ privileges for the file
with name f .

ufar = P(curusers × file_names × P(privileges)).

5. Access rights invariants—
(a) It is a requirement that the access rights granted to users for certain files remain

compatible with the file store rights granted to user categories.

∀x : ufar • ((u,f ,A) ∈ x ⇔
((f ∈ file_store_a ∧ u ∈ administrator)∨
(f ∈ file_store_b ∧ (u ∈ administrator ∨ u ∈ teacher))∨
(f ∈ file_store_c ∧ u ∈ authors)∨
(f ∈ aux_file_store ∧ u ∈ curusers)))

(b) Files containing lessons and quizzes must remain accessible to users of CAET.
The author of a lesson or quiz must be able to read, write, edit, and copy the files
containing the material.

∀x : file_store_c • ((a, c, l) ∈ x ⇒
∃y : ufar • (a, l,A) ∈ y∧
∀z : curusers ∃w : ufar • ((z, l,B) ∈ w ∧ B ⊆ {read, copy})))

A similar assertion can be made for a quiz file in file_store_c.
6. Transferring access rights—For every file in aux_file_store, the owner of the file has

all the privileges on the file. Any user who is not an owner of a file can have the same
privileges if granted by the owner. A user u1 can grant to another user u2 certain priv-
ileges B ⊆ privileges on a file f such that (u1, f) exists in aux_file_store. To describe
accesses granted by users, we introduce the type:

grant_access = P(curusers × curusers × file_names × P(privileges))

12

240 12 Set Theory and Relations

such that

∀g : granted_access • (g = (u1, u2, f ,B) ⇔
B ⊆ privileges ∧ ∃x : aux_file_store • (u1, f) ∈ x)

7. State invariants—The state of CAET at an instant is characterized by a set of users, a
collection of files in the file stores and access rights of users on the files in the stores.
Both file_store_c and aux_file_store may keep different versions of the same file. How-
ever, versioning of files in other file stores are permitted subject to certain constraints.
For example, a lesson prepared by an author may be revised by another author. A re-
vision is an ordered pair ((a, c, l), (a′, c, l′)). Versioning is described by the following
types:

P(L × L), L = P(author × course_no × lesson)

P(Q × Q), Q = P(author × course_no × quiz)

P(A × A), A = P(curusers × file_names)

These types are constrained by the following invariants:

sucl : P(L × L); sucq : P(Q × Q); suca : P(A × A);
sucl ⊆ file_store_c × file_store_c∧
sucq ⊆ file_store_c × file_store_c∧
suca ⊆ aux_file_store × aux_file_store

8. Operations—We specify only two operations, namely file creation, and file deletion.
Other operations are included in the exercises at the end of the chapter. We use unprimed
and primed variables to denote, respectively, the state before and after an operation.
(a) File creation—Let

storea : file_store_a,

storeb : file_store_b,

storec : file_store_c,

auxstore : aux_file_store, and

ur : ufar

denote the status of the stores. Files may be created by any user. For example, an
administrator can create a new file in three different ways:

(i) A file to be used exclusively by administrators is protected from all other user
categories and is maintained in storea. The other file stores are unchanged.
Assuming that the syntax of create command is create userid, file, status, it
has the following effect:

(command = create) ∧ (userid ∈ administrator) ∧ (status = ad_protect)

⇒ (storea′ = storea ∪ {(userid,file)} ∧ (storeb′ = storeb)∧

12.1 Formal Specification Based on Set Theory 241

(storec′ = storec) ∧ (auxstore′ = auxstore)∧
(ur′ = ur ∪ {(userid,file,privileges)}).

(ii) An administrator may create a file to be shared with some teacher and hence
the file is added to storeb. Assuming that the syntax of create command is

create userid1,userid2,file

its effect is specified as follows:

(command = create) ⇒ ((userid1 ∈ administrator)∧
(userid2 = teacher) ⇒ ((storea′ = storea)∧
(storeb′ = storeb ∪ {(userid1, (userid2,file))})∧
(storec′ = storec) ∧ (auxstore′ = auxstore)∧
(ur′ = ur ∪ {(userid1,file, {read, copy}),
(userid2,file, {read, copy})}))).

(iii) An administrator may create a file in auxstore for general usage. Assuming
that the syntax of create command is

create userid,file

its effect is

(command = create) ⇒
(auxstore′ = auxstore ∪ {(userid,file)})∧
(storea′ = storea) ∧ (storeb′ = storeb)

∧ (storec′ = storec)

(b) The delete command is used to remove an existing file from a filestore. Deleting the
file filename requires annulling access rights on the file for user userid and annulling
the granted rights on the file. We use variables storeu and storeg in the following
formulas, where

storeu: ufar

storeg: granted_access

Let remove_privilege(userid, filename) be the predicate

∃B : P privileges•
{userid,filename,B} ∈ storeu ⇒
(storeu′ = storeu − {(userid,filename,B)})∧
∃u : curusers,∃C : P privileges•
({userid, u,filename,C} ∈ storeg ∧ C ⊆ B) ⇒
(storeg′ = storeg − {(userid, u,filename,C)})

12

242 12 Set Theory and Relations

(i) The effect of the delete command on student files is

(command = delete) ∧ (userid ∈ student) ⇒
((auxstore′ = auxstore − {(userid,filename)})∧
(storea′ = storea) ∧ (storeb′ = storeb)∧
remove_privilege(userid,filename)

(ii) An author may delete files from storec or from auxstore:

(command = delete) ∧ (userid ∈ author) ⇒
((∃c : course_no • (storec′ = storec − {(userid, c,filename)})⊕
(auxstore′ = auxstore − {(userid,filename)})∧
(storea′ = storea) ∧ (storeb′ = storeb)∧
(storec′ = storec)) ∧ remove_privilege(userid,filename)

where the operator ⊕ denotes the exclusive-or operation, which enforces that
only one of the two deletions occurs. The effect of the delete command for
other categories of users and files can be described in a similar fashion. �

12.2
Formal Specification Based on Relations and Functions

A direct way to express a relationship between two objects is to construct the ordered pair
of the two objects. When the relationship is specialized, as in the case when only one object
is related to another object, a function is more appropriate to express the relationship.
Relationships among several objects can be expressed as ordered tuples. Symbol tables,
dictionaries, and database information are all instances of relations.

12.2.1
Relations and Functions

Binary relations model objects that relate members of two sets. If X and Y are sets, then
X ↔ Y denotes the set of all relations from X to Y :

X ↔ Y = P(X × Y)

We use the notation r : X ↔ Y to denote a relation r from X to Y . Binary relations can
express one–one, one–many, and many–many dependencies between members of the two
sets. For instance, “an account-holder holds only one current account” is a one–one rela-
tionship between account_holders and current_ accounts, “a student takes several courses”
is a one–many relationship between student and course, and “patients are allocated to dif-
ferent labs for tests” is a many–many relationship between patient and lab.

12.2 Formal Specification Based on Relations and Functions 243

All set operations, except union, can be meaningfully applied to the relations r, s :
(X ↔ Y). The two other operations are

1. inverse—The inverse relation s = inverse(r), of relation r , can be computed by the rule

(x, y) ∈ r ⇔ (y, x) ∈ s

2. composition—The composition rule constructs a new relation from two given relations.
The composite relation w = r ◦ u can be constructed by the rule

r : (X ↔ Y);u : (Y ↔ Z)

w : (X ↔ Z)

(x, z) ∈ w ↔ ∃y ∈ Y • (x, y) ∈ r ∧ (y, z) ∈ u

The composition rule plays a significant role in specifications, especially when relations
defined on a set are applied repeatedly to the set. Let rn be defined as the composition
of rn−1 with r , where r0 is the identity relation. The relation rre = r ∪ r0 is reflexive;
the relation rsy = r ∪ inverse(r) is symmetric; the relation r+ = ⋃

rn is the transitive
closure of r . In fact, r+ is the smallest transitive relation containing r . For instance, if
flies : (city × city) is a relation describing the property that (x, y) ∈ flies if there is a direct
flight from city x to city y, then the transitive closure relation flies+ contains all ordered
pairs such that there is a flight (direct or indirect) between each pair of cities. The relation
fliessy contains the tuples (x, y), such that a direct flight from x to y and from y to x exists.

A total function f from X to Y , written f : X → Y , maps every element of X to exactly
one element of Y . When f is defined on only a proper subset of X, f is called a partial
function. The set of all total functions from X to Y is denoted by X → Y and the set of all
partial functions from X to Y is denoted by X � Y . Functions can be defined recursively,
and functions can take functions as arguments, and functions can return other functions.

A function specification may either be implicit or direct. An implicit specification de-
fines what is to be computed, whereas a direct specification defines explicitly how the
result may be computed. Implicit specifications are more abstract, and shorter in descrip-
tion than direct specifications. Another compelling argument for implicit specification is
that the computational model and algorithms for arriving at the result can be postponed to
later stages of the design process. Implicitly defined function must include preconditions
and postconditions. When the function is applied to arguments satisfying the precondition,
its results should satisfy the postcondition. The function cannot be applied to arguments
not satisfying the precondition. We do not consider the consequences of partial functions
for which certain terms in the precondition are undefined. The appropriate logic dealing
with partial functions is discussed in Jones [2].

The syntax for implicit and direct function specifications vary from one specification
language to another. However, the semantics confirms to the pattern described above. Ex-
ample 3 illustrates the difference in the respective specification styles.

Example 3 The greatest common divisor (gcd) of two positive integers x, y is the largest
integer among the common divisors of x and y. A formal specification for gcd is

gcd : N × N → N

12

244 12 Set Theory and Relations

prex > 0 ∧ y ≥ 0

postd > 0 ∧ ((d div x) ∧ (d div y) ∧ ¬∃s • ((s div x) ∧ (s div y) ∧ d < s))

An implicit definition of the gcd function is constructed from three other function defini-
tions. The predicate divides(x, y) is a truth-valued function, the function common_divisors
maps a pair of nonnegative integers to the set of their common divisors, and max maps a
set of positive integers to their maximum:

divides : N × N → Bool

divides(x, y) == y mod x = 0

common_divisors : N × N → PN

common_divisor(x, y) == S

post∀r ∈ S • (divides(r, x) ∧ divides(r, y))

max : PN → N

max(S) == r

post r ∈ S ∧ ¬∃y • (y ∈ S ∧ r < y)

gcd : N × N → N

gcd(x, y) == r

prex > 0 ∧ y ≥ 0

post r = max(common_divisors(x, y))

A direct function specification for gcd is given below. A proof that the function specifica-
tion satisfies its requirements (definition) is given in Sect. 7.2.4.

gcd(x, y) =
⎧
⎨

⎩

x, if y = 0, x > y

gcd(y, x mod y), if x ≥ y > 0
gcd(y mod x, x), if 0 ≤ x < y �

12.2.2
Functions on Relations

The domain of a relation R : X ↔ Y , written as dom R, is the subset A ⊆ X defined by

A = {x : X | ∃y : Y • (x, y) ∈ R}.

Hence, the domain of a relation can be defined as a function:

dom :(X ↔ Y) → PX.

In particular, when the relation R is a function, the argument of the function dom is R,
a function, and the image of dom is a set. Functions such as dom that take functions as
arguments are called higher-order functions.

12.2 Formal Specification Based on Relations and Functions 245

The range of a relation R : X ↔ Y , written as ran R, is defined similarly as the subset
B ⊆ Y ,

B = {y : Y | ∃x : X • (x, y) ∈ R}.
That is, ran : (X ↔ Y) → PY is also a higher-order function. Example 4 uses higher-order
functions in specifying time-dependent events in a reactive system.

Example 4 Let E denote the set of all event names used in describing a computer system.
An event e ∈ E is said to occur if there is a time interval during which the effect of e is
realized. Assigning values to variables, ringing a bell, and activating a print operation are
examples of events.

1. Event occurrence—An event occurs continuously during an interval of time. Moreover,
an event can occur several times during system execution. To model these requirements,
we need a continuous model of time as discussed in Chap. 11. Let R denote the time
domain. Since occurrence implies discrete instances, the kth occurrence of an event is
associated with a beginning time and an ending time. We conceive the event occurrences
as higher-order functions:

TIME1,TIME2 : E → (N → R)

so that

∀e : E • TIME1(e),TIME2(e) : N → R and

∀n : N • TIME1(e)(n) = tn,TIME2(e)(n) = t ′n with t ′n ≥ tn.

The initiation time of the nth occurrence of event e is tn and its completion time is t ′n.
By including the constraint that t ′n ≥ tn as part of the specification, we satisfy the safety
requirement that terminations can be observed only for initiated events.

2. History of variables—Variables assume different values at different points in time. For
each variable v ∈ V , the function ASSIGN produces the event ASSIGN(v). The event
Assign(v) assigns a value from the domain DOM to the variable v. Since ASSIGN(v)

is an event, it may occur any number of times; for each occurrence, it takes a cer-
tain amount of time to complete assigning a value to v. TIME1(ASSIGN(v))(k) and
TIME2(ASSIGN(v))(k) denote the start and completion times of the kth assignment to
v.

ASSIGN : V → E,

VALUE : V → (N → DOM),

∀v : V • (VALUE(v) : N → DOM),

∀v : V • (∀k : N • (VALUE(v)(k) ∈ DOM))

The value vk ≡ VALUE(v)(k) is the value assigned to variable v during the interval

[TIME1(ASSIGN)(k),TIME2(ASSIGN)(k)].

12

246 12 Set Theory and Relations

Fig. 12.1 Relationship among
VALUE, ASSIGN and TIME
functions

The value vk remains unchanged in the interval

[TIME2(ASSIGN)(k),TIME1(ASSIGN)(k + 1)].

The diagram in Fig. 12.1 shows the relationship among VALUE, ASSIGN, and TIME
functions.

3. Measure of events—The functions COUNT1,COUNT2 are higher-order functions pro-
ducing counting functions for each event e ∈ E. For t : R, COUNT1(e)(t) is the number
of initiations of e strictly before time t , and COUNT2(e)(t) is the number of observed
completions of e strictly before time t .

COUNT1,COUNT2 : E → (R → N)

∀e : E • (COUNT1(e),COUNT2(e) : R → N) ⇒
∀e : E • (∀t : R • (COUNT1(e)(t),COUNT2(e)(t) ∈ N)),

where COUNT2(e)(t) ≤ COUNT1(e)(t).
The higher-order functions LAST1, and LAST2 are defined as follows:

LAST1,LAST2 : E → (R → R).

∀e : E • (∀t : R • (LAST1(e)(t),LAST2(e)(t) ∈ R)

LAST1(e)(t) = t1 if t1 < t and event e was last initiated at time t1. Similarly,
LAST2(e)(t) = t2 if t2 < t and event e was last completed at time t2. An interesting
relationship among these six functions is that

LAST1(e) = TIME1(e) ◦ COUNT1(e),LAST2(e) = TIME2(e) ◦ COUNT2(e)

In database applications, it is sometimes required to construct sets of objects satisfying a
given property, and to redefine attributes on subsets of objects. These operations may be
specified using the restriction and overriding operators.

The operator � restricts the domain, and the operator � restricts the range of relations.
The operators are defined as functions:

� : PX × (X ↔ Y) → (X ↔ Y)

∀S : PX,R : X ↔ Y•
S � R = {(a, b) | a ∈ S ∧ (a, b) ∈ R}

12.2 Formal Specification Based on Relations and Functions 247

� : (X ↔ Y) × PY → (X ↔ Y)

∀T : PY ,R : X ↔ Y•
R � T = {(a, b) | b ∈ T ∧ (a, b) ∈ R}

S � R filters tuples (a, b) ∈ R for which a ∈ S and produces the result relation. R � T

filters (c, d) ∈ R for which d ∈ T and produces the result relation.
Given

rel = {(1, x3), (4, x2), (5, x6), (7, x6), (9, x8)}
S = {4,7,9}
T = {x3, x6}

the expression S � rel corresponds to the relation

{(4, x2), (7, x6), (9, x8)},
and the expression rel � T corresponds to the relation

{(1, x3), (5, x6)}.
Two other useful derived operators are �− and �−, the subtraction operators for the domain
and range of a relation, respectively. S�−R filters tuples (a, b) of R for which a �∈ S. R�−T

filters tuples (c, d) of R for which d �∈ T . The following relationships are observed on the
operators.

S�−R = (X − S) � R

R�−T = R � (Y − T).

It follows from these definitions that S � R and S�−R are complementary and partition the
relation R. That is,

R = (S � R) ∪ (S�−R),

(S � R) ∩ (S�−R) = ∅.

Similarly,

R = (R � T) ∪ (R�−T),

(R � T) ∩ (R�−T) = ∅.

The union (∪), intersection (∩) and difference (−) operators are functions:

∪,∩,− : P(X) × P(X) → P(X)

Union and intersection are commutative and associative; but difference is neither com-
mutative nor associative. Commutativity and associativity allow any number of sets to be

12

248 12 Set Theory and Relations

combined in any order; that is, both union and intersection can be applied to more than
two sets. Although the meaning for intersection and difference applied to relations can be
carried over from set theory, the meaning for union should be given in such a way that it
will ensure that the result is a relation. When dom f ∩ dom g = ∅, the union of the two
relations f ,g : X ↔ Y is the set union f ∪ g. In particular, if f and g are functions, then
h = f ∪ g : X → Y is also a function:

h(x) =
{

f (x), x ∈ dom f ,

g(x), x ∈ dom g.

When dom f ∩ dom g �= ∅ and f and g yield different results for some values in their
common domain, “f overrides g” or “g overrides f ”. The relational overriding f ⊕ g

defines a relation which agrees with f outside the domain of g, and agrees with g in the
domain of g. For functions f and g, the overriding of f with g is the function h = f ⊕ g,
such that

h(x) =
{

g(x), x ∈ dom g

f (x), x ∈ dom f − dom g.

∀f ,g : X → Y • (f ⊕ g = (dom g�−f) ∪ g). �

12.2.3
Reasoning

Functions can be analyzed for various properties: total or partial, injective, surjective, or
bijective, and more importantly for satisfaction of their specifications. In this section, we
focus on the latter aspect, and discuss three methods for reasoning.

12.2.3.1
Proof by Cases

When conditional expressions are used in an explicit function definition, a case by case
analysis is required. This proof technique is used when two functions have to be compared
or composed over their common domain.

Example 5 Prove that neither f (n) > g(n), nor f (n) < g(n), holds for all values of n ≥ 0,
where f ,g : N → N,

f (n) =
{

n2, if 0 ≤ n ≤ 4,

n, if n > 4

and

g(n) = 2n + 3.

12.2 Formal Specification Based on Relations and Functions 249

Proof: To compare the functions in their full domain, it is necessary to compare their defi-
nitions case by case:
Case 1: 0 ≤ n ≤ 4.

f (n) − g(n) = n2 − 2n − 3 = (n − 3)(n + 1).

Hence, for n ≥ 3, f (n) ≥ g(n), and for 0 ≤ n < 3, f (n) < g(n).
Case 2: n > 4.

f (n) − g(n) = −(n + 3) < 0. So, f (n) < g(n).

A case by case proof is useful in showing the satisfaction of a direct function definition to
its specification. Example 6 shows one such proof. �

Example 6 Prove that the specification:

abs : Z → N

v = abs(m)

post v ≥ 0 ∧ (v = m ∨ v = −m)

is satisfied by the direct function definition:

abs(m) == if m < 0 then − m else m

Proof:

1. m ∈ Z.
2. m < 0 ∨ m ≥ 0.
3. from m < 0 and the function definition,

(a) abs(m) = −m.
(b) infer m < 0 ∧ abs(m) = −m.
(c) from the postcondition of the abs function and the previous step infer v = −m∧v ≥

0.
4. from m ≥ 0 and the function definition,

(a) abs(m) = m

(b) infer m ≥ 0 ∧ abs(m) = m.
(c) from the postcondition of the abs function and the previous step infer v = m∧v ≥ 0.

5. m ∈ Z ⇒ (abs(m) ∈ N ∧ ((abs(m) = −m ∧ m < 0) ∨ (abs(m) = m ∧ m ≥ 0)) �

12.2.3.2
Proof by Induction

Mathematical induction is founded on the well-ordering property, which states that every
nonempty set of nonnegative integers has a least element. Induction is applied to prove
propositions of the form ∀nP (n), where the universe of discourse is the set of nonnegative

12

250 12 Set Theory and Relations

integers. We consider two versions of the induction principle below, and a third version in
Sect. 7.3.3.

Induction—version I
An inductive hypothesis P(n) expresses a property to be proved for every nonnegative
integer. The basis step consists of proving P(0), while the inductive step is to prove that
∀nP (n) ⇒ P(n+ 1). From these two steps, we conclude that P(n) is proved for all n ≥ 0.
We express the proof steps as an inference rule

P(0);

[first-ind] m ∈ N,P (m) � P(m + 1)

∀n : N• � P(n)

Example 7 Prove that the function f (n) = n! − 2n is positive for n ≥ 4.
Proof:

1. n ∈ N and P(n) : n! − 2n > 0.
2. P(4) : 4! − 24 > 0 is true.
3. P(m) is true, m ≥ 4.
4. m! − 2m > 0, from step 3.
5. (m + 1)! − 2m+1 = (m + 1).m! − 2.2m.
6. m + 1 > 2, from step 3.
7. (m + 1)(m! − 2m) > m! − 2m, from steps 4 and 5.
8. P(m + 1) is true, from steps 4 and 6.
9. P(m) ⇒ P(m + 1).
10. From steps 2 and 9 infer P(n) is true.

Induction—version II
This version of induction is more powerful than the first version. When it is required to
prove P(m), the inductive hypothesis P(n) is permitted to hold for all predecessors of m.
That is, the inductive proof requires the proof for (P (1) ∧ · · · ∧ P(m)) ⇒ P(m + 1) for
every positive integer m. The rule is

P(0);

[second-ind] m ∈ N, (∀m,m < n ⇒ P(m) � P(n))

∀n ∈ N � P(n)

Although these two versions of induction are equivalent, the second one is more powerful
and simpler to apply. Let us consider the specification for the greatest common divisor
(gcd) function and its direct function definition given in Sect. 7.2.2. The postcondition in
the specification can be rewritten as

gcd(x, y) = d

post divides(d, x) ∧ divides(d, y) ∧ ¬∃s • ((divides(s, x) ∧ divides(s, y) ∧ d < s) �

A proof that the direct definition for gcd satisfies its specification is shown in Example 8.
This example also illustrates the use of induction for recursively defined functions.

12.2 Formal Specification Based on Relations and Functions 251

Example 8 The two basic results that we use are

1. P1: Every non-zero integer is its own divisor and divides 0.
2. P2: For nonnegative integers a and b, where b ≤ a, there are integers q and r such that

a = b.q + r,0 ≤ r < b.

The proof uses these results, and the second version of induction, and proceeds by case
analysis based on the constraints introduced in the function definition.

1. Let P(m,n),m > n be the proposition that the direct function definition for gcd(m,n)
satisfies the postcondition in the specification.

2. Basis: P(m,0), m ≥ 1
(a) from the first case, y = 0 in the function definition, gcd(m,0) = m.
(b) To prove that m satisfies the postcondition:

(i) S = common_divisor(m,0) = {m} · · · from P1.
(ii) ¬∃s • (s ∈ S ∧ m < s) is true.

(iii) infer m satisfies the postcondition.
P(m,0) is proved.

(c) Inductive step: P(m,n) is true. That is, the direct function definition for gcd(m,k)
satisfies the postcondition of the specification for 0 ≤ k ≤ n < m). We must prove
P(m,n + 1).

(i) Rewriting the inductive step

g = gcd(m,n) ∧ divides(g,m) ∧ divides(g,n)∧
¬∃s • (s ∈ S ∧ ∧divides(s,m) ∧ divides(s, n) ∧ g < s).

(ii) From the inductive hypothesis, infer n + 1 ≤ m.
(iii) From P2, if m = (n + 1).q + r , then 0 ≤ r < n.
(iv) Infer from the previous step that if d divides m and n + 1, then d divides r .

Hence, gcd(m,n + 1) = gcd(n + 1, r),0 ≤ r < n + 1.
(v) By the inductive hypothesis, P(n+1, r) is true. That is, gcd(n+1, r) satisfies

the postcondition of the specification.
(vi) Infer that gcd(m,n + 1) satisfies the specification. That is, P(m,n + 1) is

true.
(vii) The inductive step is proved.

(viii) Infer P(m,n) for all n,m > n. �

12.2.4
A Specification Example

Functions are mathematical objects and consequently have the important property of sub-
stitutivity. After a function has been defined, it can be used in any context where it is ap-
propriate. Function composition, overriding, and the possibility of defining functions with
functions as arguments make the functional approach to specification both elegant and ex-
pressive. Example 9 is a simplified and adapted version of the security model discussed by

12

252 12 Set Theory and Relations

McLean [3]. The specification below formally explicates security by constructing formal
models of objects and security policies using relations and functions.

Example 9 A computing environment consists of a set of objects O such as programs, files
and system utilities, and a set of subjects S such as users and programs that access and ma-
nipulate the objects. Security involves the enforcement of rules governing the accessibility
of objects by subjects. Subjects and objects are usually hierarchically classified and the
security level is determined by the position of subject(object) in the hierarchy. Below, the
model and security requirements are stated informally and then specified.

1. Type—A subject is assigned certain rights against an object in the system. So, there is a
ternary relationship to be captured here: the tuple (s, x, a), s ∈ S,x ∈ O,a ∈ A denotes
that s has access a on object o. Hence, M = P(S × O × A) models all access right
combinations.

2. Security functions—Every object has a unique security level classification and every
subject has a unique security level clearance. These may be modeled by functions: there
exist security level functions f : S → N, g : O → N, where f (s) gives the security level
clearance for the subject s ∈ S, and g(o) gives the security level classification for the
object o ∈ O .

3. Information flow—Information flows from lower security levels to higher security lev-
els. If f (s) > f (t), then the subject t can transfer its information knowledge, including
its access rights, to the subject s.

4. System state security—The state of system M is minimally secure only if subjects that
are allowed to access an object have a higher clearance level than the object. Formally,
this security requirement translates to:

∀m : M • ((s, x, read) ∈ m) ⇒ f (s) > g(x).

A stronger security condition for state M is that every subject s having read access to an
object x, and having write access to an object y, must satisfy the constraint g(y) > g(x).
That is, information can be passed from a lower level object x to a higher level object
y. Formally,

∀m,n : M • ((s, x, read) ∈ m) ∧ ((s, y,write) ∈ n) ⇒ g(y) > g(x)

In particular, an object from a lower security level can be copied into an object from a
higher security level by a subject who has read access to the former object. Formally,

∀m : M • ((s, x, read) ∈ m) ∧ ∃y : O • ((g(y) > g(x)) ⇒ copy(s, x, y)

5. Constraints on access rights—We define the following higher-order function to specify
constraints on access rights assigned to subjects.

F : S → (O → A)

∀s ∈ S,Fs : O → A

12.2 Formal Specification Based on Relations and Functions 253

There is a function Fs for each subject s ∈ S, and Fs(o) gives the access rights assigned
to s for object o. The constraint that two subjects s1 and s2 have the same rights for an
object o1 is specified as

Fs1(o1) = Fs2 (o1)

The set of objects for which a given subject s has only “write” access is given by

{s : S,o : O|(Fs(o) = {write}) • o}

Specifying the operation of canceling all access rights assigned to a subject s on the
objects in the set X, X ⊂ O , requires the overriding function. Define the function

Gs(o) =
{∅, o ∈ X

Fs(o), o /∈ X ∧ o ∈ A

The function

H : S → (O → A), such that

Hs = Fs ⊕ Gs

defines the modified access rights.
6. Secure flow of information—Let flows : S ↔ S be a relation on S with the interpreta-

tion that (a, b) ∈ flows or flows(a, b) if f (a) < f (b). That is, information may flow
from a subject of lower security clearance to a subject of higher security clearance.
The relation is reflexive and transitive. The reflexive closure relation flows∗ contains all
tuples (a, b) such that information flows from subject a to subject b either directly or
through a sequence of subjects. The set B = ran(A � flows), such that A ⊂ S, gives the
set of subjects whose information is reachable from members of A. Similarly, the set
C = dom(flows�A) is the set of subjects from whom information can reach members of
A. Information from members of A cannot reach the set of subjects D = ran(A�− flows).
The set E = dom(flows �−A) is the set of subjects whose information can flow to mem-
bers of A. Two subjects s, t belong to the same security level if (s, t) ∈ flows∗ and
(t, s) ∈ flows∗. It is easy to prove that

∀A,A′ : P(S) • (ran(A � flows) ∩ ran(A′ � flows) = ∅ ↔ A ∩ A′ = ∅)

7. Secure object transfer—The content of information flow is an object (file or program)
and it is characterized by a sequence of read, and write. If (a, b) ∈ flows and subject a

owns an object y, then the actual flow of y from a to b can be formalized as

∀(a, b) : flows • (∃m,n : M • (m = (a, y,write)∧
n = (b, z, read) ∧ g(z) > g(y)))

Since a owns y, f (a) > g(y) and n ∈ M implies f (b) > g(z). Hence the constraint
g(z) > g(y), enables the copying of y into z without violating the security constraint
f (b) > f (a). �

12

254 12 Set Theory and Relations

12.3
Formal Specification Based on Sequences

Sets, relations and functions do not imply any ordering on the objects modeled. Sequences
are ordered collections of objects. A sequence is appropriate for modeling container enti-
ties, such as queues, for which the ordering of items is meaningful.

12.3.1
Notation

A sequence is characterized by a function f : N → X. The elements of the sequence can be
enumerated as f (1), f (2), . . . , f (n); it is usual to write fn for f (n). The element fn is the
nth element of the sequence defined by f . Since the images f (i) and f (j) may be equal,
a sequence may include the same element more than once. For instance, let X = {a, b},
and f (i) = a if i is odd, and f (i) = b if i is even. The infinite sequence is composed of
alternate a’s and b’s.

The set of all functions of type N1 → X characterizes the set of all sequences over X:

seq[X] �= f : N1 → X

A finite sequence is a function f whose domain is a finite initial segment of N1.

f : {1,2, . . . , n} → X

The notation seq[X] also denotes the type of sequences defined on a finite set X. When
X = ∅, seq[X] is the empty sequence. If |X| = k(> 0) and the initial segment of N is
{1, . . . , n}, seq[X] consists of all sequences of length n, where each sequence has elements
from the k-element set X. There are kn sequences in seq[X].

One important consequence of the above definitions is that every element of a sequence
s : seq[X] is of type X. A finite sequence can be described by an orderly enumeration of
the elements:

〈s1, s2, . . . , si〉, i ≤ |X|

The number of elements in a finite sequence s is denoted by # s. We also use the notation
si , 1 ≤ i ≤ #s to denote the ith element of the sequence s.

12.3.2
Sequence Operators

Two sequences of the same element type can be composed to form a single sequence in
such a way that the order of each sequence is maintained, and the elements of one sequence

12.3 Formal Specification Based on Sequences 255

follow the elements of the other. The composition operator �, representing concatenation,
is defined as

�: seq[X] × seq[X] → seq[X]
∀s, t : seq[X]
∀i : 1 ≤ i ≤ #s (s � t)i = si

∀i : 1 ≤ i ≤ #t (s � t)i+#s = ti

The function # which assigns to each sequence its number of elements is additive; that is,

#(s � t) = #s + #t

A subsequence of f : {1,2, . . . , n} → X is described by f ◦ r , where r : {1,2, . . . , n} �

{1,2, . . . , n} is an increasing injective partial function. For example, s1 = 〈x3, x4, x5, x6〉,
s2 = 〈x2, x5〉 and s3 = 〈x1, x6, x8〉 are subsequences of s = 〈x1, x2, x3, x4, x5, x6, x7, x8〉;
however, s4 = 〈x6, x3, x7〉 is not a subsequence of s. The sequence s2 is obtained by com-
posing the function f (i) = xi,1 ≤ i ≤ 8 with r(1) = 2, r(2) = 5. There is no function r

which can be composed with f to obtain the sequence s3. If r1, r2, . . . , rk are subsequence
functions with disjoint ranges then the subsequences f ◦ r1, f ◦ r2, . . . , f ◦ rk are disjoint.
The ranges of the functions r1 and r2 defined by r1(1) = 2, r1(2) = 5, r2(1) = 1, r2(2) =
6, r2(3) = 8 are disjoint. Notice that s = f ◦ r1, and s ′ = f ◦ r2 are disjoint sequences.

To compare sequences we must define an order on X and then extend this definition for
sequences of any length. Let (≤,X) be a totally (linearly) ordered set. Using the symbol �
to denote ordering on sequences, we define 〈xi〉 � 〈xj 〉 if xi ≤ xj in X. Sequences having
only one element are comparable and can be sequentially enumerated. For s, t : seq[X], if
s = 〈x1, x2, . . . , xk〉 and t = 〈y1, y2, . . . , yk〉 we define s � t if x1 ≤ y1 and 〈x2, . . . , xk〉 �
〈y2, . . . , yk〉. A strict inequality can be defined:

s ≺ t
�= (#s < #t) ∨ (#s = #t) ∧ (s � t)

Thus, 〈1,3,5〉 � 〈1,3,7〉 ≺ 〈1,3,7,9〉.
Another operation is to rearrange a sequence. If two sequences s, t : seq[X] of length

k have the same elements, there is a permutation p : {1,2, . . . , k} → {1,2, . . . , k} such
that si = tp(i), i ∈ {1,2, . . . ,#s}. For example, for sequences s = 〈1,3,5,3,7〉 and t =
〈3,5,7,3,1〉, there are two permutations; one of them is defined by p(1) = 5,p(2) =
4,p(3) = 3,p(4) = 1,p(5)3. The problem of finding the permutation for a linear ordering
on the elements of a sequence is analogous to sorting. We define below several functions on
sequences. Other functions are defined in the exercises. We denote the nonempty sequence
type by seq1[X].
1. The function first returns the first element of a nonempty sequence.

first : seq1[X] → X

first(s)
�= s1

12

256 12 Set Theory and Relations

2. The function next accepts a nonempty sequence and returns the sequence following its
first element.

next : seq1[X] → seq[X]
(next(s))i = si+1,1 ≤ i ≤ #s − 1

That is, next(s) is the sequence

〈s2, s3, . . . , sk〉.

Notice that next(s) = 〈〉 if #s = 1.
3. The function locate returns true if a given element is an element of the sequence; other-

wise it returns false. Recursive definitions such as the one given below can be shown to
define a unique function.

locate : seq1[X] × X → Boolean

if #(s) = 1 then locate(s, a)
�= s1 = a

if #(s) > 1 then locate(s, a)
�= (first(s) = a) ∨ (locate(next(s), a))

4. The function find returns the smallest index at which a given object is located in the
sequence; if the object is not found, the function returns 0.
find : seq1[X]×X → {0,1, . . . N}, where N denotes the length of the longest sequence
in seq1[X].

find(s, a)
�=

{
0, si �= a, i ∈ 1,2, . . . ,#s

k, si �= a, i ∈ 1,2, . . . , k − 1, sk = a, k ≤ #s

5. The function find_all returns a sequence of indices of a sequence at which locations the
given argument is found.

find_all : seq[X] × X → seq[N1]

where N1 = dom(seq[X]).

find_all(s, a)
�= 〈j1, . . . , jk〉

which describes the sequence of locations in sequence s at which there is a match for a.

Example 10 shows that the function find_all can be recursively defined using the other
functions defined above.

Example 10 The goal is to define find_all(s, a) using functions defined on sequences.
Since an empty sequence contains no element, find_all returns an empty sequence if s is
empty. When s is nonempty, either the given element a is not in s or it is found in one
or more locations. In the former case, the result returned is an empty sequence. In the
latter case, there is a first match at a location k, which is found by the function find(s, a).

12.3 Formal Specification Based on Sequences 257

It is necessary to construct the result as a sequence. We construct an intermediate result
sequence t in which k is inserted. The sequence s is now split at location k, the elements
s1, . . . , sk are discarded, and the sequence s(1) is constructed with the remaining elements
of s. The sequence obtained recursively from find_all(s(1), a), is concatenated to t . This is
not the final answer; to understand why, we illustrate the steps of the function find_all with
an example:
For s = 〈1,3,7,1,8,11,3,4,1,15〉, and a = 1 find_all(s, a) should produce the sequence
r = 〈1,4,9〉.
The steps for constructing r are

1. locate(s, a) = true; find(s, a) = 1; split(s,find(s, a)) = s(1) = 〈3,7,1,8,11,3,4,1,15〉
2. locate(s(1), a) = true; find(s(1), a) = 3; split(s(1), a) = s(2) = 〈8,11,3,4,1,15〉
3. locate(s(2), a) = true; find(s(2), a) = 5; split(s(2), a) = s(3) = 〈15〉
4. locate(s(3), a) = false; 〈〉 is returned
5. The temporary sequence t is 〈1,3,5〉
6. The sequence r is the sequence of partial sums of the sequence t .

A definition for sequence t is

temp : seq[X] × X → seq[N1]
temp(s, a) = t, where

t
�= if locate(s, a) then

〈find(s, a)〉 � find_all(split(s,find(s, a)), a)

else〈〉
The definition for split is

split : seq[X] × {1, . . . ,N} → seq[X]
split(s, k) = s(1), where

s
(1)
i = si+k,1 ≤ i ≤ #(s) − k

The definition for the sequence of partial sums is

part_sum : seq[N1] → seq[N1]
part_sum(t) = if t = 〈〉then〈〉else

if next(t) �= 〈〉then〈head(t)〉 � part_sum(〈head(next(t)) + head(t)〉 �

(next(t))) else〈head(t)〉
Finally, the function find_all(s, a) is defined as the composite function part_sum◦ temp. �

12.3.3
Proofs

The definition of sequences imposes an ordering on the elements of a sequence. We can
thus refer to the first element of a sequence, and to the rest of the sequence. The first el-

12

258 12 Set Theory and Relations

ement of the rest of a sequence is the second element of the sequence. The successive
elements of a sequence are indexed by terms of the form succk(0). This suggests the appli-
cability of induction to structures constructed using a finite number of generators.

The induction rules discussed in Sect. 7.2.3 are based on the generators zero, and succ
for natural numbers. A finite sequence may be viewed as generated by 〈〉 and �. These
two generators are sufficient for generating all finite sequences. For example, the sequence
〈1,5,3〉 may be generated by the successive concatenations:
〈〉; 〈3〉 � 〈〉; 〈5〉 � 〈3〉〈〉; 〈1〉 � 〈5〉〈3〉〈〉
The empty sequence 〈〉 is analogous to zero, and the operator � is analogous to succ. We
consider zero as the index for an empty sequence, and for a sequence of oldindex elements,
we consider succ(oldindex) as the new index concatenated to the sequence. We reformulate
the induction rule first_ind for sequences.

P(〈〉);
[seq_ind] e ∈ X,s ∈ seq[X],P (s) � P(〈e〉 � s)

s ∈ seq[X] � P(s)

A sequence allows multiple occurrences of an element to be distinguished by their order-
ing. A set neither allows multiplicity nor imposes an ordering on its elements. A bag or
a multiset allows multiplicity, but no ordering. When only multiplicities, but not ordering,
are required to be recorded, the bag type should be chosen. In the following discussion, we
develop a simple theory for bags and show its relationship to the theory of finite sets and
sequences.

For a finite set X, the type Bag[X] is the set of all bags defined on X. The definition
b : Bag[X] introduces a bag b, which records ordered pairs of elements from X and their
occurrence counts.

b = {(x1, n1), . . . , (xk, nk)},
where xi ∈ X,ni > 0.

We use the set notation ∈ for bag membership, and ⊥ to denote an empty bag. The follow-
ing functions are defined on bags:

1. Add a member—This function adds an entry (e, k) to a given bag. If a tuple of the kind
(e,n) exists in the bag, the multiplicity of e is incremented by k; otherwise, the given
pair is included in the bag.

add : Bag[X] × (X × N) → Bag[X]
add(⊥, (e, k)) = {(e, k)}
add(b, (e, k)) = b′

post¬(∃(a,n) ∈ b • a = e) → b′ = b ∪ {(e, k)}
∨(∃(a,n) ∈ b • a = e) → b′ = b − {(e, n)} ∪ {(e, n + k)}

2. Test for membership—Given an element e ∈ X, this function returns true if an ordered
pair for e is included in the given bag; otherwise, the function returns false.

locate : B[X] × X → B

12.3 Formal Specification Based on Sequences 259

Fig. 12.2 Setseqbag

locate(b, e) = ∃(a,n) ∈ b • e = a

3. Extract elements from the base domain—This function extracts the elements of the basic
domain for a bag, constructing a set of the elements while ignoring their occurrence
counts.

elemb : Bag[X] → PX

elemb(⊥) = ∅
elemb(add(b, (e, k))) = if locate(b, e) then elemb(b)

else elemb(b) ∪ {e}
4. Multiplicity of a base element—The multiplicity of a base element e in a bag b is 0 if e

is not in elemb(b); otherwise it is determined by a unique entry in b.

count : Bag[X] × X → N

count(⊥) = 0

count(add(b, (e, k)), a) = (e �= a ∧ count(b, a)) ∨ (e = a ∧ (k + count(b, a))

5. Bag construction from a sequence—Given a sequence, this function records the ele-
ments and their occurrence counts as ordered pairs, ignoring the ordering on the ele-
ments of the sequence.

consb : seq[X] → Bag[X]
consb(〈〉) = ⊥
consb(e � s) = add(consb(s), 〈e,1〉)

The elems function constructs a set containing all the elements of a sequence, ignoring the
ordering on the elements and their occurrence counts.

elems : seq[X] → PX

post Y ∈ PX ∧ ∀i • (1 ≤ i ≤ #s ∧ s[i] ∈ Y)

We claim that the three functions elems, elemb, consb are related by the commutative
diagram shown in Fig. 12.2. We consider a simple example before giving a proof by in-
duction for this claim.

X = {a, b, c, d}; s : seq[X]; t : Bag[X]

12

260 12 Set Theory and Relations

s = 〈b, c, b, a, b, a〉
t = { (a,2), (b,3), (c,1)}
elems(s) = {a, b, c} ⊂ X

consb(s) = t

elemb(b) = {a, b, c} ⊂ X

elems(s) = elemb(consb(s)) = (elemb ◦ consb)(s)

Proof:
The proof is by the induction rule [seq_ind] stated previously in this section.

1. Basis step.

elems(〈〉) = ∅ . . . definition of elements

consb(〈〉) = ⊥ . . . definition of consb

elemb(⊥) = ∅ . . . definition of elemb

infer elems(〈〉) = (elemb ◦ consb)(〈〉)
2. Inductive step.

Assume that for s : seq[X], s �= 〈〉
elems(s) = (elemb ◦ consb)(s)

To complete the inductive step, it must be shown that

∀e ∈ X • elems(e � s) = (elemb ◦ consb)(e � s)

There are two cases to consider: e /∈ consb(s) and e ∈ consb(s).
3. Case 1: e /∈ consb(s)

The right-hand side in step 2 is rewritten using the definition for consb:

elemb(consb(e � s)) = elemb(add(consb(s), 〈e,1〉))
Using the definition of elemb, rewrite the right-hand side as

elemb(consb(s)) ∪ {e} = (elemb ◦ consb)(s) ∪ {e}.
By inductive hypothesis, rewrite the right-hand side as

elems(s) ∪ {e} = elems(s) ∪ elems({e}) = elems(e � s).

4. Case 2: e ∈ consb(s)

Since locate(consb(s), e) is true, we rewrite the right-hand side in step 2 as
elemb(consb(s)), using the definition of elemb. By the inductive hypothesis, we rewrite
this as (elemb ◦ consb)(s) = elems(s). Using the equality property of sets, we infer that
elems(s) = elems(e � s).

5. The proof for the inductive step is now complete. By the [seq_ind] principle of induc-
tion, the proof of the claim follows.

12.3 Formal Specification Based on Sequences 261

12.3.4
A Specification Example

In Chap. 5, we introduced formal definitions for the data types involved in an Idea Proces-
sor. In this section, we define several functions on these data types.

Let word be a basic type denoting the set of all words to be included in a dictionary.
A finite sequence of words is a basic unit of ideas, called note. The type of this basic unit
is defined as note = seq[word]. We define the ordering on the words as in a dictionary
such that two words w1,w2 ∈ word can be compared: w1 < w2 if w1 precedes w2 in
the dictionary. This represents a total order on word. The ordering can be extended to
sequences of words, as explained in Sect. 7.3.1. The functions first, next, locate, find and
find_all defined in Sect. 7.3.2 apply to this sequence. An idea is recorded as a set of notes;
that is, idea : PX, where X = {n : note • n} is a collection of note. Based on these data
types, we define functions for manipulating ideas.

create : → idea
add : idea × note → idea
remove : idea × note → idea

create is a null-ary function producing an empty database of type idea. The other functions
are

add(t, n)
�= t ∪ {n}

remove(t, n)
�= t − {n}

Since t is a set type, adding a note which already exists in t , or removing a note which does
not exist in t , produces acceptable behavior. Since the elements of t are of type sequence,
explicit methods can be given for testing membership in t . We introduce these primitives,
empty and is_member, to operate on ideas.

empty : idea → B

is_member : idea × note → B

Since create produces an empty set of ideas, empty(create) is true; however,
empty(add(t, n)) is false. Applying is_member on an empty set of notes has the following
result:

is_member(create, n) = (n = 〈〉)

Using these functions, the definitions of remove and add may be rewritten:

remove(t, n)
�= if is_member(t, n) then t − {n} else t

add(t, n)
�= if is_member(t, n) then t else t ∪ {n}

To define is_member(t, n) for any nonempty set of notes, we need an equality relation for
sequences. We can either use the ordering � defined on sequences or the function find_all.

12

262 12 Set Theory and Relations

In the latter case, the function is_member(t, n) can be specified as follows:

equal : note × note → B

equal(m,n)
�= elems(m) = elems(n)∧

(∀w : word • find_all(n,w) = find_all(m,w))

is_member(t, n)
�= ∃m : note • (m ∈ t ∧ equal(m,n))

From the above functions, we can prove the following properties:

1. add(remove(t, n), n) = t = remove(add(t, n), n)

2. add(add(t, n), n)) = t

3. add(add(t, n1), n2) = add(add(t, n2), n1)

12.4
Exercises

1. Using the set axioms given in Sect. 7.1.2, give a formal proof for the following or
disprove by giving a counterexample:

(a)
A × B = A × C

B = C

(b)
PX = PY

X = Y

(c) (A − B) − C = (A − C) − (B − C)

2. Let S ∈ PX. Define the function:

put : X × S → S

put(e, s) = {e} ∪ s

Prove the following properties on the function put :
(a) S is generated by ∅ and put .
(b) e1 ∈ put(e, s) = (e1 = e) ∨ e1 ∈ s.
(c) put(e1,put(e, s)) = put(e,put(e1, s)).

3. Specify the following constraints and operations for Example 2:
(a) A student can own a maximum of 20 files. The author of a lesson can own a maxi-

mum of 50 files. An administrator can own a maximum of 100 files.
(b) A student is able to read and copy a quiz file. The author of the quiz is able to read,

write, edit, and copy the quiz file.
(c) When the view command is invoked by a user, only the file store for which the

user has access rights can be seen. Moreover, the status of the file store remains
unchanged.

(d) Specify the access rights invariant for quiz files in file_store_c.
(e) Specify an operation to be invoked by a teacher that modifies the contents of a grade

file.

12.5 Bibliographic Notes 263

(f) Specify an operation to be invoked by students to copy a lesson file into a student
auxiliary file.

4. Let courses denote the set of courses offered in a department. Registering for a course
may require prerequisite courses. Write a specification which produces seq_courses, a
sequence of courses from the set courses satisfying the following properties: (1) every
course in courses occurs in the sequence seq_courses; and (2) if c1 = seq_courses[i],
and c2 = seq_courses[j], and i < j , then course c1 is a prerequisite for course c2.

5. Let S denote the set of students in a residential college. The college has k dormitories
d1, . . . , dk . Every student lives in some dormitory, and no student can live in more than
one dormitory. A collection P = {S1, . . . , Sj }, where j ≤ k, Si ⊂ S is the set of students
living in dormitory di , and 1 ≤ i ≤ j , is an instance of a model for students and the
dormitories where they live. Do the following:
(a) Give the type definition for P .
(b) State formally the following constraints: (1) every student lives in some dormitory;

(2) no student lives in more than one dormitory.
(c) Give the specification of a function to remove a student from the dormitory.
(d) Given two students a, b ∈ S, determine the dormitories to which they belong. If

they belong to two different dormitories, then merge the two dormitories into one
dormitory.

6. Prove the following claim made in Example 9:

∀A,A′ : P(S) • (ran(A � flows) ∩ ran(A′ � flows) = ∅ ↔ A ∩ A′ = ∅).

7. For any finite set X and for some n > 0, prove or disprove the claim that

∅ ∪ X ∪ X2, . . . ,Xn

defines all sequences of length not exceeding n on X.
8. For a finite sequence type, define the following functions:

(a) min that finds a minimum among the elements of the sequence.
(b) swap that exchanges the elements in two given locations of the sequence.
(c) rotate that cyclically shifts right the elements in the sequence.
(d) reverse that uses rotate to reverse the ordering of elements in the sequence.
(e) Prove reverse(s1 � s2) = reverse(s2) � reverse(s1).

12.5
Bibliographic Notes

We included a preliminary mathematical review of sets and relations to clarify the specifi-
cation notation. For a more detailed review of the fundamental concepts of discrete math-
ematics, the reader is referred to Alagar [1] and Rosen [4].

Specifications based on sets and relations are model-based, while implicit functional
specifications are property-oriented. The Z notation [5] is based on set theory and the
semantics for Z specifications are assigned from set operations. VDM specifications [2]

12

264 12 Set Theory and Relations

can be written in a pure functional style, with or without sets and relations. These formal
notations are discussed in Chaps. 16 and 17.

References

1. Alagar VS (1989) Fundamentals of computing—theory and practice. Prentice Hall, Englewood
Cliffs

2. Jones CB (1990) Systematic software development using VDM, 2nd edn. Prentice hall inter-
national series in computer science

3. McLean J (1990) The specification and modeling of computer security. IEEE Comput 23(1):9–
16

4. Rosen KH (1990) Discrete mathematics and its applications, 2nd edn. McGraw Hill, New York
5. Spivey JM (1988) Understanding Z: a specification language and its formal semantics. Cam-

bridge University Press, Cambridge

Part V
Property-Oriented Specifications

Specifications based on logic and algebra are known as property-oriented specifications.
In this module, algebraic specification methodology is discussed and illustrated with OBJ3
specification language. The other two specification languages discussed are Larch, a two-
tier language useful for interface specifications, and CCS (Calculus of Communicating
Systems) for specifying communication and concurrency. The learning outcomes from this
module are the following:

• algebraic abstractions
• structuring algebraic specifications
• parameterized algebraic programming
• Larch Shared Language
• Larch Interface Language
• proofs in Larch
• CCS operators
• CCS language-syntax and semantics
• reasoning with equivalence and congruence relations

Algebraic Specification 13

Algebraic specification emerged in the 1970s as a formal specification technique for speci-
fying data structures in an implementation-independent style. This approach has given rise
to several specification methods providing techniques for data abstraction, theory formula-
tion, analyzing specification properties, modular development, and hierarchical composi-
tion. Algebraic specification is founded on equational logic, and the underlying semantics
is derived from algebra, where different mathematical structures such as groups, rings,
and fields are studied. In this chapter we look at how to construct algebras for specifying
various software artifacts.

13.1
Algebra and Specification

An algebra can be considered as a collection of sets, together with operations on the sets. If
we regard sorts (types) as sets, we get the equation Algebra = Sorts(Types)+Operations. If
we represent a system as a collection of sets and describe the functionality of the system by
equations on operations defined on the sets we obtain an algebra. The resulting algebra may
be viewed as an algebraic specification of the system. For instance, we may view a system
as a collection of objects O1,O2, . . . ,On, where each Oi is modeled as a set. We describe
the functionality of object Oj by a set fj of functions. The algebraic specification of a
software system expresses the collective behavior of the objects through a set of equations
on the functions.

The justifications for viewing a system specification as an algebra include the following.

• An abstract axiomatic specification of a program is given by its algebra. To understand
this paradigm, let us consider the conventional view of programs put forth by Wirth [13]:
Algorithms + DataStructures = Programs. An abstraction of the program-level data
structure is obtained by composing sorts, types based on set-theoretic constructs. The
resulting abstractions are termed Abstract Data Types (ADT). We abstract algorithmic
details by disregarding how operations are performed, and emphasizing what they per-
form. This abstraction corresponds to the operations on sorts. We thus obtain the abstrac-
tion Sorts + Operations corresponding to DataStructures + Algorithms. Having defined

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_13, © Springer-Verlag London Limited 2011

267

13

268 13 Algebraic Specification

Algebra as Sorts + Operations, it follows that Algebra is an abstraction of Programs. In
other words, a program can be specified as an algebra.

• The terms of an algebra are free of representation constraints. The effect of operations
on the terms of an algebra are expressed by axioms. Axiomatic definitions are more
abstract than model-based definitions.

• Since an algebra is an abstract model of a program, we are able to describe programming
tasks and reason about them, before deriving a concrete representation of the algebra,
that is, another algebra or program.

• In general, we can derive several concrete representations for an algebra. Consequently,
programs describing dissimilar objects and sharing a common structure correspond to
an algebra.

Example 1 introduces a simple abstract algebra.

Example 1 Let S denote a set with four operations right, left,below,above defined on it.
The axioms constraining these operations are

1. left(right(x)) = x = right(left(x))

2. above(below(x)) = x = below(above(x))

3. right(above(x)) = above(right(x))

4. left(above(x)) = above(left(x))

5. right(below(x)) = below(right(x))

6. left(below(x)) = below(left(x))

The set S together with the operations and the axioms, define an algebra U . We describe
three different concrete structures that are modeled by U ; i.e., U is a specification of the
structures. �

Example 2 gives three algebras which are the concrete representations of algebra U
defined in Example 1.

Example 2 1. Lattice points—Algebra L
Let L = {x, y|x, y ∈ Z} with four operations rightnext, leftnext,abovenext and belownext
defined on it:

∀p ∈ L

rightnext(p) = (x + 1, y)

leftnext(p) = (x − 1, y)

abovenext(p) = (x, y + 1)

belownext(p) = (x, y − 1)

It is easy to verify that the axioms of algebra U are true for this interpretation. The ele-
ments of set L have a representation, and consequently the algebra L is more concrete than
algebra U .

2. Linear Transformations—Algebra T

13.1 Algebra and Specification 269

Let us consider the integer matrix A:

A =
⎛

⎝
1 2 4
3 5 7
6 8 9

⎞

⎠

Let CRS be the cyclical right-shift operation on columns (elements of column 1 are moved
to column 2; elements of column 2 are moved to column 3; elements of column 3 are
moved to column 1).

CRS(A) =
⎛

⎝
4 1 2
7 3 5
9 6 8

⎞

⎠

Let CBS be the cyclical counter-clockwise-shift operation on rows (elements of row 1 are
moved to row 2 and so on). Let CLS denote the cyclical left-shift operation on columns, and
CAS be the cyclical clockwise-shift operation on rows.

CLS(A) =
⎛

⎝
2 4 1
5 7 3
8 9 6

⎞

⎠

CAS(A) =
⎛

⎝
3 5 7
6 8 9
1 2 4

⎞

⎠

CBS(A) =
⎛

⎝
6 8 9
1 2 4
3 5 7

⎞

⎠

The axioms of the algebra U can be verified for these operations applied to matrix A. The
axioms hold when these operations are applied to any n × n matrix. Algebra T , for n × n

matrices with these four operations, is a concrete model of algebra U .

3. Strings—Algebra S
Consider a set S of strings over an alphabet. Define CROT and CLOT to be the cyclical right
shift and cyclical left shift of characters in a string. For instance, CROT(abac) = (caba),
and CLOT(abac) = (baca). The two other operations on set S are identities LID, and RID. It is
straightforward to verify the axioms of algebra U for algebra S under this interpretation. �

The mathematical machinery of algebras and the generality achievable in this frame-
work allow algebraic specifications be written as mathematical objects in an accurate, un-
ambiguous, and implementation-independent manner. The fundamental concepts of alge-
bras are introduced in the next section through their mathematical foundations. We include
an informal introduction to the concepts, avoiding mathematical details, and illustrate the
concepts with several examples.

13

270 13 Algebraic Specification

13.2
Algebras—A Brief Introduction

A many-sorted algebra is an abstract structure consisting of a family S of sets and a family
Ω = {Ω1,Ω2, . . . ,Ωk}, Ωi ∩Ωj = ∅, where Ωi is a set of operations with arguments and
results belonging to the sets in S. The sets in S correspond to sorts, and Ω corresponds to
a family of operator names. The pair 〈S,Ω〉 forms a signature. Each operation in Ωi has
the same type; this type represents the scheme of the operator.

Example 3 In Example 1, algebra U is 1-sorted or homogeneous. The signature of U is
〈T ,Ω〉, where

T = {S}
Ω = {right, left,above,below} : S → S

There is only one sort and one scheme. �

In order to handle ADT’s rigorously in software engineering contexts, we need to con-
sider many-sorted or heterogeneous algebras. For example, the stack structure can be ad-
equately described by considering the set of stacks, the set of element type it holds, for
example integers or strings, and the set of booleans to describe equality relationship on
items. Notice that algebra S in Example 1 is an inadequate description of strings because
many useful operations on strings could not be described in that homogeneous algebra.

Example 4 In this example, we consider a file of records storing some database informa-
tion. The three concepts to be abstracted are file, record, and information. We choose the
three sorts file, record, and infor, each corresponding to one database concept. Some of the
operations that we consider are

• insert: to add a record in a file,
• delete: to remove a record from a file,
• trash: to purge a file, and
• update: to revise information in a record.

A signature for the algebra of transactions is 〈S,Ω〉, where

S = {file, record, infor}
Ω = {{insert,delete} : file × record → file

{update} : file × record × infor → file

{trash} : file → file}
The four operators in this example are grouped into three schemes. �

13.2 Algebras—A Brief Introduction 271

13.2.1
Homomorphisms

A homomorphism is a structure-preserving map between two algebras. We first deal with
homomorphisms of homogeneous algebras and then introduce homomorphisms of hetero-
geneous algebras.

Homogeneous Algebras A homomorphism is a map between two algebras preserving
various algebraic properties. For example, if an operation ∗ is defined on two sets X and Y ,
then the map f : X → Y is a homomorphism if, for all x, y ∈ X,f (x ∗y) = f (x)∗f (y). If
X has an identity element e, satisfying the property x ∗ e = x for all x ∈ X, then f (e) is an
identity for Y . The proof follows from the definition of homomorphism. If X contains an
identity element e, an element x ∈ X may have an inverse x−1 ∈ X satisfying the property
x ∗ x−1 = e. If e′ is the identity in Y which is the image of e in X, then

e′ = f (e) = f (x ∗ x−1) = f (x) ∗ f (x−1).

Hence, f (x−1) ∈ Y and is the inverse of f (x) ∈ Y . Moreover, if the operation ∗ is com-
mutative (associative), then f preserves the commutative (associative) property in Y . The
following theorem summarizes these results.

Theorem If f : 〈X,∗〉 → 〈Y ,∗〉 is a homomorphism and e is an identity for X, then f (e)

is an identity for Y . If for all x ∈ X for which an inverse x−1 ∈ X exists, f (x−1) ∈ Y is an
inverse of f (x) ∈ Y . The map f preserves commutative and associative properties, if any.

Example 5 Consider the set of two-dimensional vectors on real numbers R, with the oper-
ation + (vector addition) defined as

〈x, y〉 + 〈a, b〉 = 〈x + a, y + b〉.
The operation + is both commutative and associative. The vector 〈0,0〉 is the identity
element and 〈−x,−y〉 is the inverse of vector 〈x, y〉. Define f : R → R by

f (〈x, y〉) = 〈Ax + By,Cx + Dy〉,
where A,B,C,D are constants. The map f is a homomorphism. To prove it, show that
f (〈x, y〉 + 〈x′, y ′〉) = f (〈x, y〉) + f (〈x′, y ′〉). Since f (〈0,0〉) = 〈0,0〉, the identity is
mapped onto itself. Since f (〈−x,−y〉) = 〈−Ax −By,−Cx −Dy〉 = −(〈Ax +By,Cx +
Dy〉) = −f (〈x, y〉), f maps the inverse of 〈x, y〉 to the inverse of f (〈x, y〉). The homo-
morphism preserves commutative and associative properties. Notice that f is a linear trans-
formation defined on 2 × 2 matrices. �

If a homomorphism f : X → Y is an onto mapping from X to Y ,f is called an epimor-
phism. For example, consider (N,+), the algebra of integers under addition and (Nn,+),
the algebra of integers under addition modulo n. Define the map f : N → Nn, f (a) =
a mod n. The map is onto; that is, for every k ∈ {0,1, . . . , n − 1}, there is a j ∈ N such that
j mod n = k. For a, b ∈ N, since (a + b) mod n = (a mod n) + (b mod n), the map f is a
homomorphism. Hence f is an epimorphism.

13

272 13 Algebraic Specification

If a homomorphism f : X → Y is one-to-one, it is called a monomorphism. A homo-
morphism which is both an epimorphism and a monomorphism is called an isomorphism.
Isomorphic algebras have essentially the same structure - only their names are different.

Example 6 Consider the set X = {0,1, . . . ,2k − 1} with addition modulo 2k and the set Y

of k-bit binary digits with addition modulo 2. Define the map f : Y → X, where f maps
a binary digit to the natural number it represents. For two binary digits b1 �= b2, f (b1) �=
f (b2). For every number in X there exists only one binary digit. Hence f is an isomor-
phism. �

Example 7 Consider algebra U with operators right, left,above,below and algebra T with
operators CRS, CLS, CAS, CBS defined in Example 1. Define a homomorphism f : U → T ,
which maps an element of algebra U to an n × n matrix of algebra T , and maps operators
as follows:

f (right) = CRS;f (left) = CLS;
f (above) = CAS;f (below) = CBS.

A term of the form above(x) in U will be mapped by f to the term f (above)(f (x)) =
CAS(m) in algebra T . The axioms are mapped accordingly. For example, the ax-
iom above(below(x)) = x = below(above(x)) will be mapped to CAS(CBS(m)) = m =
CBS(CAS(m)). Similarly, we can define homomorphisms from U to L and from U
to T . �

Heterogeneous Algebras The software development process involves designing com-
plex data types composed from basic data types such as integer, boolean, array, and record.
For instance, a database file may be composed from set and record data types. In such
a case, a file operation should preserve the operations on sets and records. This situation
characterizes a heterogeneous homomorphism. Informally, a homomorphism F , from an
algebra A with signature ΣA = 〈SA,ΩA〉 to an algebra B with signature ΣB = 〈SB,ΩB 〉,
maps each sort s ∈ SA to a sort F(s) ∈ SB , and each operator h ∈ ΩA to an operator
F(h) ∈ ΩB , such that each scheme θ of ΩA is mapped to a scheme F(θ) of ΩB , in which
the arity of scheme θ is preserved. For example, if the domain of scheme θ is

S1 × S2 × · · · × Sk,

then

∀x1 ∈ S1, x2 ∈ S2, . . . , xk ∈ Sk,

F (h(x1, x2, . . . , xk)) = F(h)(F (x1),F (x2), . . . ,F (xk))

F preserves the arity and the types of the operators.

Example 8 Consider algebra S with signature 〈S1,Ω1〉, and algebra C with signature
〈S2,Ω2〉, where

13.3 Abstract Data Types 273

S1 = {Stack,Elm}
Ω1 = {{push} : Stack × Elm → Stack

{pop} : Stack → Stack

{top} : Stack → Elm

{newstack} :→ Stack}
S2 = {Container, Item}
Ω2 = {{put} : Container × Item → Container

{get} : Container → Item

{newc} :→ Container}

Define a map F : S2 → S1, such that F(Container) = Stack,F (Item) = Elm,F (put) =
push,F (newc) = newstack, and F(get) = top. It is easy to verify that F is a homomor-
phism from C to S . For example, F maps the term put(newc, i) to push(newstack, e). �

13.3
Abstract Data Types

Informally, an abstract data type D is a set S of data structures and a collection Ω of
services provided by them. The abstract data type D is modeled by an algebra A over the
signature〈S,Ω〉. The set S consists of the sorts needed to construct D. The operations in
Ω correspond to abstract algorithmic procedures manipulating the modeled data.

The syntactic structure of data type D is determined by the signature of algebra A,
and the semantics is derived from the notion of computation structure. The computation
structure is a many-sorted algebra in which all elements of set S can be denoted by ground
terms. A term of a sort may refer to nullary functions, functions defined in the algebra, and
free variables. Every such term must be reduced to a ground term. The conjoint interpre-
tation of all the ground terms give the computation structure of the data type modeled by
algebra A.

Assuming that Elm corresponds to Nat, the sort of natural numbers, some of the ground
terms of algebra S modeling a stack data type in Example 8 are

1. newstack—an empty stack.
2. push(push(newstack, zero), succ(zero))—a stack with two elements, succ(zero) on top

of zero.
3. top(pop(push(push(newstack, zero), succ(succ(zero)))))—the top element of a stack

containing zero.

13

274 13 Algebraic Specification

Fig. 13.1 The data type
Natural

Spec: Natural;
Sorts: Nat;
Operations:

zero :→ Nat;
succ : Nat → Nat;
add : Nat × Nat → Nat;
mult : Nat × Nat → Nat;

Variables:
a, x : Nat;

Axioms:
add(zero, a) = a;
add(succ(x), a) = add(x, succ(a));
mult(zero, a) = zero;
mult(succ(x), a) = add(mult(x, a), a);

Fig. 13.2 The data type Stack Spec: Stack;
Sorts: Stack,Nat;
Operations:

zero :→ Nat;
succ : Nat → Nat;
newstack :→ Stack;
push : Stack × Nat → Stack;
pop : Stack → Stack;
top : Stack → Nat;

Variables:
s : Stack, n : Nat;

Axioms:
pop(newstack) = newstack;
top(newstack) = zero;
pop(push(s, n)) = s;
top(push(s, n) = n;

13.3.1
Presentation

A presentation of an abstract data type is a signature together with a set of axioms. The
axioms characterize the properties of the data type within a many-sorted logical formalism.
Usually, this formalism is restricted to a first-order logic with equality. Frequently, prop-
erties characterized by choices may be written as conditional equations using if-then-else
expressions. The example in Fig. 13.1 is a presentation of the data type of natural numbers;
it is a 1-sorted specification. A presentation for the stack algebra discussed in Example 8
is shown in Fig. 13.2. This presentation includes the sort Nat; it is a 2-sorted specification.

In a presentation, information is organized in the following sequence:

13.3 Abstract Data Types 275

• The name of the presentation, which may include the name of a generic parameter of
some sort, is given in Spec clause.

• The extend by clause is optional; it enumerates the names of presentations introducing
sorts that are required in defining this presentation.

• The Sorts clause introduces the names of sorts defined in the presentation.
• The Operations clause introduces the operations on the sorts. The order of listing the

operations is not important.
• The Variables clause introduces variables of sorts introduced earlier for writing axioms.

The order of listing the variables is not important.
• The Axioms clause lists the axioms constraining the operations. The order of their listing

is not important.

The name of the presentation must be unique. The sort names associated with formal pa-
rameters, if any, must be specified. The name space for sorts and presentations are not
distinct; that is, a sort defined in a presentation may have the same name as the presen-
tation. For instance, the name of the presentation in Fig. 13.2 is Stack which is also the
name of a sort introduced in the presentation. It is more convenient to name the sort differ-
ently from the presentation defining it. The extend by clause is essentially the import list
which includes all presentations of which reference is made in this presentation. The sorts
and operators introduced in these included presentations can be used freely in defining new
sorts. The operator names, introduced as functions, can only refer to the distinguished sorts
defined in the presentation and those that have been introduced in the presentations men-
tioned in the extend by clause. The functions may be partial or total. The axioms define
the operations in terms of their relationships and are universally quantified over the sorts
introduced in the variables clause. An algebra denoted by a presentation satisfies the ax-
ioms in the presentation if for each axiom t1 = t2 the two terms t1 and t2 denote the same
element of the algebra for each possible assignment of values to the variables in the terms.
Hence, the two terms

push(newstack, succ(zero))

and

push(pop(push(newstack, zero)), succ(zero))

are equal. The equality symbol ‘=’ is often overloaded; in the context of “if a =
b then x else y”, ‘=’ is a relational operator. When a and b are terms of the same sort,
the axiom a = b means that a and b are congruent (equivalent, have the same value).
A term a occurring in an expression e can be substituted by a term b to give an expression
e′ equivalent to e. This substitution rule allows rewriting of equations. The axiom a = b

may be viewed as the rewrite rule a ⇒ b meaning that the right-hand side b is substi-
tuted wherever the left-hand side a occurs in expressions. Rewriting can be used to reduce
equations to ground terms, that is, terms with no variables. An expression containing no
variable can be evaluated to a term in the algebra; this term can be associated to a unique
sort. In order to obtain expressions containing only ground terms that cannot be reduced
any further, the specification should have constructors. We discuss such specifications in
the next section.

13

276 13 Algebraic Specification

Fig. 13.3 Specification for a
simple set

Spec: Simpleset;
extend Boolean by
Sorts: S;
Operations:

empty :→ S;
insert : Nat × S → S;
member : Nat × S → Bool;

Variables:
s : S;n,m : Nat;

Axioms:
member(n, empty) = false;
member(n, insert(m,S)) = (m = n) ∨ member(n,S);
insert(n, insert(m,S)) = insert(m, insert(n,S));

13.3.2
Semantics

For a given signature there exists a collection of algebras and several possible homomor-
phisms among them. An algebra I of this collection is an initial algebra if for every other
algebra A in this collection there exists a unique homomorphism from I to A. If an initial
algebra exists in the collection, it is unique up to an isomorphism. That is, if there exists
more than one initial algebra in the collection then there exists an isomorphism between
each pair of initial algebras; see Goguen [6]. The initial algebra can also be understood
through equality of terms in the algebra: in the semantics of the initial algebra two variable-
free terms denote different objects unless it can be proved from the stated axioms that they
denote the same object.

Another frequently used semantic model is the final (terminal) algebra. The final al-
gebra is the term algebra satisfying the stated axioms of the presentation and having the
smallest number of terms. There is a unique homomorphism from any other algebra sat-
isfying the axioms to the final algebra. The final algebra can also be understood through
the inequality of terms: in the semantics of the final algebra, two variable-free terms of
the same sort denote the same object unless it can be proved from the stated axioms that
they denote different objects. The difference between these two semantics is illustrated in
Fig. 13.3, which extends the presentation Boolean in Sect. 13.4.

The initial initial algebra semantics for the presentation in Fig. 13.3 is the bag of nat-
ural numbers. The terms insert(2, S) and insert(2, insert(2, S)) yield different values, and
correspond to the semantics of initial algebra. The final algebra semantics for this pre-
sentation is the set of natural numbers. Two sets are different if the function member gives
different results on the sets for at least one member. Since member(2, insert(2, empty)) and
member(2, insert(2, insert(2, empty))) are both true and member(n, insert(2, empty)) and
member(n, insert(2, insert(2, empty))) are both false for n �= 2, the terms insert(2, empty)
and insert(2, insert(2, empty)) denote the same object, namely the set with only one mem-
ber, the number 2.

13.4 Properties of Algebraic Specifications 277

In this book, the initial algebra semantics is considered in defining algebraic specifica-
tions.

13.4
Properties of Algebraic Specifications

In this section we study reasoning by term rewriting, extension of many-sorted specifica-
tions, classification of operations, and the adequacy of algebraic specifications.

13.4.1
Reasoning

Presentations can be analyzed to establish a property that holds for all objects of a sort
defined in the presentation as well as to identify inconsistent requirements. Equational
reasoning and induction are the techniques frequently used in such analysis. The first-
order axioms serve the role of a verifier for the properties of the data type. The induction
method is quite similar to the structural induction technique discussed in Chap. 12. We
briefly outline equational reasoning based on term rewriting for the data types Nat and
Bool. The presentation for Bool is shown in Fig. 13.4. The two constant functions true and
false are the values of the sort Bool.

Example 9 illustrates the reduction of algebraic equations to some canonical form using
axioms as rewrite rules.

Example 9 An expression with variables is reduced to a variable-free expression by using
the axioms as rewrite rules. In rewriting an expression e, a subexpression f of e is matched
against the left-hand side t1 of an axiom t1 = t2, and if it matches, then f is replaced by
the right-hand side t2.

1. To simplify the expression

add(succ(succ(zero)), succ(succ(a))),

the following steps are done:
(a) Identify the axiom in the presentation Natural that is appropriate for application.

In this case, we choose the axiom add(succ(u), v) = add(u, succ(v)). The term
succ(zero) is matched with u, and the term succ(succ(a)) is matched with v in the
left-hand side of this axiom. When substituted for u and v, the right-hand side of
the axiom when substituted gives the rewritten expression:

add(succ(succ(zero)), succ(succ(a))) ⇒
add(succ(zero), succ(succ(succ(a))))

13

278 13 Algebraic Specification

Fig. 13.4 The data type Bool Spec: Boolean;
Sorts: Bool;
Operations:

true, false :→ Bool;
not : Bool → Bool;
and : Bool × Bool → Bool;
or : Bool × Bool → Bool;
impl : Bool × Bool → Bool;
== : Bool × Bool → Bool;

Variables:
x, y : Bool;

Axioms:
false = not(true);
true = not(false);
false = false and x;
x = true and x;
true = true or x;
x = false or x;
x or y = y or x;
x and y = not(not(x) or not(y));
x impl y = (not x) or y;
x == y = (x impl y) and (y impl x);

(b) One more application of the same axiom, with u matched to zero, and v matched
to succ(succ(succ(a))), rewrites the above expression to

add(zero, succ(succ(succ(succ(a)))))

(c) We then use the first axiom add(zero, a) = a, to get the equivalent expression

succ(succ(succ(succ(a))))

This expression is variable-free and cannot be reduced further.
2. It can be verified from the axioms in the presentation Natural that the expressions:

mult(succ(succ(0)), a) and

add(add(0, a), a)

are equivalent.
3. From the first two axioms of the Boolean presentation given in Fig. 13.4, it can be

proved that

x = not(not(x)),

not(x or y) = not(x) and not(y).

The proof consists of two steps:

13.4 Properties of Algebraic Specifications 279

Fig. 13.5 Data type Ternary
enriches Natural

Spec: Mod3_enrich_natural;
extend Natural by
Sorts: Ternary;
Variables:

x : Ternary;
Axioms:

succ(succ(succ(x))) = x;

(a) Substitute not(x) for x,not(y) for y in the axiom x and y = not(not(x) or not(y)):

not(x) and not(y) = not(not(not(x)) or not(not(y)))

(b) The result x = not(not(x)) is used in the right-hand side:

not(x) and not(y) = not(x or y) �

13.4.2
Extending Many-Sorted Specifications

It is sometimes convenient to reuse an existing specification by incrementally adding more
functions and axioms. Larger presentations can be constructed by reusing already defined
sorts. The extend by clause is used to construct a larger specification with or without the
introduction of new sorts. The extended version inherits the sorts, operations and axioms
defined in the original presentation. If SP1 = 〈〈S1,Ω1〉,E1〉, then the expression

Spec SP = extend SP1 by sorts S Operations Ω Axioms E

denotes the specification 〈Σ,E1 ∪ E〉, where Σ = 〈S1 ∪ S,Ω1 ∪ Ω〉.
The specification given in Fig. 13.5 extends Natural, defined in Fig. 13.1. The new sort

Ternary is a subsort of Nat. The operators zero, succ, add and mult are also defined for
the new sort ternary. There is no new operator defined. The new axiom enforces that every
multiple of 3 is reduced to zero. Instead of the axiom written in Fig. 13.5, we could have
included any one of the following axioms:

succ(succ(succ(zero))) = zero

add(x,add(succ(x), succ(succ(x)))) = zero

An extension of the many-sorted specification Stack given in Fig. 13.2 is shown in
Fig. 13.6. The specification extends the sort Stack with operations size and push1. For
the objects of the sort Bstack all the operations of Stack are available. In the extended
specification, a new element can be pushed onto the stack only if the number of elements
on the stack does not exceed the maximum size M. It would be appropriate to hide the push
operation from the users of the Boundedstack specification.

13

280 13 Algebraic Specification

Spec: Boundedstack;
extend Stack by
Sort: Bstack;
Operations:

M :→ Nat;
size : Bstack → Nat;
push1 : Bstack × Nat → Bstack;

Variables
s : Bstack;n : Nat;

Axioms:
size(newstack) = 0;
push1(s, n) = if size(s) < M then push(s, n) else s;
size(push1(s, n)) = if size(s) < M then 1 + size(s) else M;

Fig. 13.6 Specification for a bounded stack

13.4.3
Classification of Operations

The operations for an abstract data type may be divided into constructors and non-
constructor operations. Informally, constructors are operations that generate objects of
the abstract data type, whereas non-constructor operations describe the functionality of the
objects of the data type. Another way to view this is that constructors provide data ab-
straction, while non-constructors provide procedural abstraction. The operations may be
classified as follows :

1. Primitive constructors: These operations take no input and create objects of their ab-
stract date type. Examples are zero of Natural, empty of Simpleset, true and false of
Boolean, and newstack of Stack.

2. Constructors: These operations take objects of their abstract date type as input and
create other objects of their corresponding abstract data type. For example, succ,add,
and mult are constructors for Natural, and and or impl, and == are constructors for
Boolean.

3. Mutators: These operations modify objects of their abstract data type. For example,
push, and pop are mutators for Stack, and insert is a mutator for Simpleset.

4. Observers: These operations take objects of their abstract data type and zero or more
objects of other abstract data types, and return results of other abstract data types. For
example, member is an observer operation for the objects of the sort Simpleset, and size
is an observer operation for the objects of the sort Bstack.

Primitive constructors create only objects of their type. For example, empty of Simpleset
produces an empty bag. The other objects are produced by constructors and mutators. For
instance, insert of Simpleset produces different objects of the sort Simpleset depending
on the natural numbers inserted in the object. All constructors are assumed to be total
functions.

13.4 Properties of Algebraic Specifications 281

13.4.4
Adequacy

Adequacy is a context-dependent notion. To satisfy the requirements imposed by a context

of usage, sufficient set of operations for a data type should be provided. For example, we

have not provided operations for comparing natural numbers in Natural. When we include

these operations, sufficient axioms to characterize the properties of the additional opera-

tions should be included. From such an enriched specification it is possible to infer more

information about natural numbers. Still, there are other operations such as integer division

producing quotient and remainder that cannot be performed in this extended specification.

In general, we decide whether a specification is adequate by identifying the operations that

are mandated in the user requirements. We then provide

• a sufficient number of operations for describing the objects and their modifications in

the context of their usage; and

• a sufficient number of axioms to capture the behavior of objects.

A rule to achieve a reasonable degree of adequacy, given by Liskov and Guttag [11], is to

include operations from at least three of the four classes discussed in the preceding sec-

tion. An abstract data type specification should include primitive constructors, observers,

and either constructors or mutators. Notice that immutable types such as Natural have

only constructors, whereas mutable types such as Stack have mutators. The axiom part

should include axioms describing the effect of each observer operation over each con-

structor/mutator. We illustrate these concepts in the specification Orderednatural shown in

Fig. 13.7 and in the specification NatTree shown in Fig. 13.8.

The data type Orderednatural extends Natural with three observer operations. The

effect of an observer operation on constructor pairs is shown in Fig. 13.7. For the

data type NatTree the primitive constructor is empty,node is a constructor, the opera-

tions left, right are mutators, and content, isempty, isfound are observers. The effect of

the observer operations on the constructor is described in three axioms. We could in-

clude additional axioms such as content(left(node(x,n, y))) = content(x), but such ax-

ioms are implied by the stated ones. Operations such as content, left, right are not mean-

ingful for an empty binary tree. Hence, although terms of the form content(empty),

content(left(empty)), content(right(empty)), content(left(right(empty))) are in the initial

algebra of NatTree, they do not correspond to any element in Nat. That is, this algebra

does not represent the computation structure of naturals. Informally, terms of the form

content(empty), left(empty), content(right(empty)) denote incorrect function applications.

This can be handled by adding one axiom for each kind of erroneous term. The set of

axioms in Fig. 13.8 is therefore not adequate. An alternative way of remedying this inad-

equacy is to restrict the algebra to contain only terms that are determined by axioms to be

valid. We look at this alternative in Sect. 13.6.

13

282 13 Algebraic Specification

Fig. 13.7 Specification for
orderednatural

Spec: Orderednatural;
extend Natural by
Operations:

eq : Nat × Nat → Bool;
lt : Nat × Nat → Bool;
le : Nat × Nat → Bool;

Variables:
x, y, z : Nat;

Axioms:
eq(zero, zero) = true;
eq(zero, succ(x)) = false;
eq(succ(x), zero) = false;
eq(succ(x), succ(y)) = eq(x, y);
lt(zero, zero) = false;
lt(zero, succ(x)) = true;
lt(succ(x), succ(y)) = lt(x, y);
le(x, y) = eq(x, y) ∨ lt(x, y);

Spec: NatTree;
extend Orderednatural by
Sorts: Tree;
Operations:

empty :→ Tree;
node : Tree × Nat × Tree → Tree;
left, right : Tree → Tree;
content : Tree → Nat;
isempty : Tree → Bool;
isfound : Tree × Nat → Bool;

Variables:
x, y : Tree;n,m : Nat;

Axioms:
isempty(empty);
¬isempty(node(x,n, y));
left(node(x,n, y)) = x;
right(node(x,n, y)) = y;
content(node(x,n, y)) = n;
¬isfound(empty,m);
isfound(node(x,n, y),m) = (m = n) ∨ isfound(x,m) ∨ isfound(y,m);

Fig. 13.8 Specification for a binary tree

13.5
Structured Specifications

It is convenient to design specifications in a structured fashion by refining and composing
existing modules of specifications. The extend by clause may be used for the incremental

13.5 Structured Specifications 283

Fig. 13.9 The data type Word Spec: Primitivesort;
extend Boolean by
Sorts: Word;
Operations:

== : Word × Word → Bool;
≤ : Word × Word → Bool;

development of complex specifications. We select a subset of requirements from the Idea
Processor example discussed by Henderson [10] to illustrate the incremental specification
process.

The primary purpose of an Idea Processing System (IPS) is to support users in organiz-
ing and sharing ideas on different subjects, providing facilities for editing and retrieving
items of cognitive content. An IPS provides editing operations such as add, modify, delete,
and merge, storage and retrieval operations, and a display operation for a selected group of
ideas. Chapter 5 includes a formal grammar for defining the structure of objects in an IPS.
In Chap. 12, we have given a functional specification for some of the operations in IPS.
Neither of these formalisms specified all the data types in an IPS. In the following discus-
sion, we specify all the abstract data types for an IPS; however, we include specifications
for editing functions only.

Requirements and model: An IPS is a database of ideas, where each idea is associated with
one topic of interest. An idea is a collection of major ideas pertaining to that topic, and each
major idea is referred to as a group. We model an idea, which is a collection of groups as
a list. A group may be composed of other major ideas. In order to distinguish between
the major ideas within a group, each group is required to have a heading. The body of a
group may include other major ideas and/or a note, a description of the major idea under
the chosen heading. A note is a sub-idea modeled by a sequence of words. Sub-ideas are
identified by unique keywords. Sub-ideas can be moved around within a group and one or
more sub-ideas can be merged within a group. An IPS allows the creation and manipulation
of ideas toward composing them into a major text.

Primitive sort: We need a primitive data type to capture the notion of words. Let word denote
this sort, in which we define two observer operations “==” (equality) and “≤” (less than
or equal). We interpret w1 ≤ w2 to mean that word w1 precedes w2 in alphabetical order.

Presentation of note: We define note as a sequence of words. We follow the abstraction from
Chap. 12 for data type sequence. Figure 13.10 shows the specification of the sort Note. We
have chosen the representation 0 for zero, 1 for succ(zero), and + for add for the functions
in sort Nat. The operations length, eq, and head are observer operations. The operations
addf, tail, cat are mutators, and empty is the only constructor. Writing one axiom for each
observer operation over each mutator and constructor, we obtain a collection of 12 axioms.
Notice that the effect of the operation tail on an empty sequence is to produce an empty
sequence, and the effect of the operation head on an empty sequence is undefined.

In Chap. 12, we defined the precedence relation for sequences, so as to establish a
partial ordering on all sequences. The following signature and axioms may be added to the
presentation in Fig. 13.10.

13

284 13 Algebraic Specification

Spec: Sequence;
extend Natural,Primitivesort by
Sorts: Note;
Operations:

empty :→ Note;
addf : Word × Note → Note;
tail : Note → Note;
head : Note → Word;
cat : Note × Note → Note;
length : Note → Nat;
eq : Note × Note → Bool;

Variables:
u,v : Note;
x, y : Word;

Axioms:
length(empty) = 0;
length(addf (x,u)) = 1 + length(u);
eq(empty, empty) = true;
eq(empty,addf (x,u)) = false;
eq(addf (x,u), empty) = false;
eq(u, v) = (head(u) == head(v)) and eq(tail(u), tail(v));
head(addf (x,u)) = x;
tail(empty) = empty;
tail(addf (x,u)) = u;
cat(empty, u) = u;
cat(u, empty) = u;
cat(addf (x,u), v) = addf (x, cat(u, v));

Fig. 13.10 The data type Note

pred : Note × Note → Bool;
pred(u,u) = false;
pred(empty,addf (x,u)) = true;
pred(addf (x,u), empty) = false;
pred(u, v) = (head(u) ≤ head(v))∨
(((head(u) == head(v)) ∧ pred(tail(u), tail(v)));

Presentation of sub-ideas: (keyword, note): Each note is associated with a unique keyword
of type word. We focus on specifying the sort (keyword,note) shown in Fig. 13.11. It has
one constructor pair, and three observers eqp,first, and second. The function first extracts
the keyword from a pair (keyword,note), and the function second extracts note from a pair
(keyword,note). The equality operator eqp uses the equality operator “==” defined for the
sort word, and the observer operator eq defined for the sort note.

13.5 Structured Specifications 285

Fig. 13.11 Specification of
Orderedpair 〈word,note〉 Spec: Orderedpair;

extend Sequence by
Sorts: Ordpair;
Operations:

pair : Word × Note → Ordpair;
first : Ordpair → Word;
second : Ordpair → Note;
eqp : Ordpair × Ordpair → Boolean;

Variables:
s : Word; t : Note;p,q : Ordpair;

Axioms:
first(pair(s, t)) = s;
second(pair(s, t)) = t ;
eqp(p, q) = (first(p) == first(q)) and

eq(second(p), second(q));

Presentation of a set of (keyword, note): There are several design options for storing and
manipulating elements of the sort note. One option is to form classes of elements of the
sort note, so that elements in the same class are equivalent, in having the same keyword.
Another alternative is to merge the elements of sort note having the same keywords into a
single note. We follow this option and specify a set of sub-ideas as a set of ordered pairs
(word,note). Figure 13.12 shows the presentation for such a set. The operations include

• the familiar set operations insert,delete,membership,
• an operation match to determine whether or not two sub-ideas have the same keyword,

and
• an operation merge to put together by concatenation those sub-ideas that are related by

a common keyword.

Notice the disadvantage of the merge operation (a mutator)—the two sub-ideas do not
exist anymore as separate entities. To remedy this situation, one can create new sets using
the copy constructor.

Presentation of a group: A group is an ordered pair (note, item), where an item is modeled
as a discriminated union of note and group. The Orderedpair presentation in Fig. 13.11
needs to be modified for the new sorts that make up the group. The operations headline
and body for a group in Fig. 13.13 are similar to the operations first and second defined
for the sort Orderedpair. The two observer operations is_note and is_group distinguish
between the different types of objects within a group.

Finally, the database of ideas is modeled as a list of groups in Fig. 13.14. Each element
in the list is an idea, which can be accessed through the head operation. An idea can be
inserted using the insert operation; an idea can be deleted using the delete operation.

Several other operations for an idea processor have been discussed by Henderson [10];
some of them are mentioned in the exercises.

13

286 13 Algebraic Specification

Spec: Setofpairs;
extend Ordpair by
Sort: Setp;
Operations:

emptyset :→ Setp;
insert : Ordpair × Setp → Setp;
delete : Ordpair × Setp → Setp;
member : Ordpair × Setp → Bool;
size : Setp → Nat;
merge : Ordpair × Ordpair × Setp → Setp;
match : Ordpair × Ordpair → Bool;

Variables:
s, t : Setp;x, y : Ordpair;n : Nat;

Axioms:
member(x, emptyset) = false;
member(x, insert(y, s)) = eqp(x, y) ∨ member(x, s);
match(x, y) = (first(x) = first(y)) ∧ (second(x) �= second(y));
merge(x, y, s) = if member(x, s) ∧ member(y, s)

∧match(x, y) then
insert(ordpair(first(x), cat(second(x), second(y))),

delete(y,delete(x, s)));
size(empty) = 0;
size(insert(x, s)) = if member(x, s) then

size(s) else 1 + size(s);
size(delete(x, s)) = if memeber(x, s) then

size(s) − 1 else size(s);
delete(x, emptyset) = emptyset;
delete(x, insert(y, s)) = if (x == y) then s

else insert(y,delete(x, s));

Fig. 13.12 Specification of a set of sub-ideas

13.6
OBJ3—An Algebraic Specification Language

In the preceding section, we discussed algebraic specifications without restriction to any
specification language. In this section we introduce OBJ3, an algebraic specification lan-
guage described by Goguen and Winkler [7], and illustrate the features of the language
with several examples.

OBJ3 is a wide spectrum functional programming language that is rigorously based upon
order-sorted equational logic. OBJ3 system consists of the OBJ3 specification language, an
interpreter and an environment for executing specifications. The philosophy underlying
the design of OBJ3 is incremental and modular development of specifications that are exe-
cutable, reusable, and composable. This goal is achieved by providing three kinds of en-

13.6 OBJ3—An Algebraic Specification Language 287

Fig. 13.13 The data type
Group

Spec: Nordpair;
extend: Setofpairs by
Sorts: Group;
Operations:

headline : Group → Note;
body : Group → Item;
makeg : Note × Item → Group;
is_note : Item → Bool;
is_group : Item → Bool;

Variables:
n : Note; t : Item;p : Group;

Axioms:
headline(makeg(n, t)) = n;
body(makeg(n, t)) = t ;
is_note(headline(p)) = true;
is_group(body(p)) = ¬is_note(body(p));

Spec: List;
extend Nordpair by
Sorts: Idealist;
Operations:

null :→ Idealist;
insert : Group × Idealist → idealist;
head : Idealist → Group;
tail : Idealist → Idealist;
delete : Group × Idealist → Idealist;
isin : Group × Idealist → Bool;

Variables:
f ,g,h : Idealist;a, b, c : Group;

Axioms:
head(insert(a,null)) = a;
head(insert(a, insert(b,null))) = head(insert(a,null));
tail(insert(a,null)) = null;
tail(insert(b, insert(a,null))) = insert(a, tail(insert(b,null)));
delete(a,null) = null;
delete(a, insert(b,f)) = if a = b then f else insert(b,delete(a,f));
isin(a,null) = false;
isin(a, insert(b,f)) = if a = b then true else isin(a,f);

Fig. 13.14 Specification for a list of ideas

tities in the language: object, theory, and view. An object encapsulates executable code.
A theory defines properties that may be satisfied by another theory or object. The module

13

288 13 Algebraic Specification

obj FLAVORS is sort Flavor .
op first : Flavor Flavor -> Flavor .
op _second_ : Flavor Flavor -> Flavor .
ops Chocolate Vanilla Strawberry : -> Flavor .
vars X Y : Flavor .
eq first(X,Y) = X .
eq X second Y = Y .

endo

Fig. 13.15 Definition of the Object FLAVORS

concept refers to an object or a theory. A view is a binding (mapping) between a theory
and a module. For specification execution, OBJ3 system uses the term rewriting, a reduction
process to evaluate expressions with respect to a defined object.

An OBJ3 specification is an algebra and functionalities of the system are algebraic ex-
pressions, such that every expression is valid in this algebra. OBJ3 follows the initial alge-
bra semantics. To determine whether the system under development conforms to a certain
behavior, we write an algebraic expression characterizing that behavior, and use the inter-
preter to check whether this expression is reducible to true. This procedure is performed in
the OBJ system in two steps:

1. Creation of rewrite rules or equations
An interpreter constructs the rewrite rules from the axioms and introduces them to the
system database.

2. Reduction
A program then extracts the rewrite rules from the database and applies them to the
given expression.

The result of reducing an expression is either an atomic value (true, false, etc.) or a term
which is irreducible in the algebra.

13.6.1
OBJ3 Basic Syntax

The fundamental unit of OBJ3 is the object, which encapsulates executable code. Syntacti-
cally, the definition of an object starts with the keyword obj, and ends with the keyword
endo. The identifier of the object appears immediately after the keyword obj; the key-
word is follows the name; thereafter appears the body of the object.

An example of an unparameterized sort is shown in Fig. 13.15. The specification of an
object consists of the following five components:

1. Defining sorts
The object (module) name FLAVORS, and the sort (type) name Flavor are introduced
in the first line of Fig. 13.15. By convention, object names are written in upper-case

13.6 OBJ3—An Algebraic Specification Language 289

letters and sort names start with an upper-case letter. A sort in OBJ3 is similar to a type
in Pascal or Ada. The object declaration

obj NUMBER is sorts Nat Rat .

introduces the object NUMBER and two sorts with sort names Nat and Rat. Blank
spaces are a requisite.

2. Defining operations
Operations can be defined in three different styles:

• functions (standard form)

op first : Flavor Flavor -> Flavor .

• mixfix operations
This kind of definition uses place-holders, indicated by an “underscore” character,
to indicate where arguments should appear. For example, the following is a mixfix
definition.

op _second_ : Flavor Flavor -> Flavor .

The operation can be used in an expression like X second Y. As another example,
the definition

op _ _ : Bit Bits -> Bits .

can be used to create a bit string. A typical expression using this syntax is 1 011
whose result is 1011.

• constants
A constant is an operation with arity 0. For example,

ops Chocolate Vanilla Strawberry : -> Flavor .

The keyword ops is used for introducing more than one operation. It is more conve-
nient to use parentheses to separate operations in complex cases as in:

ops (_+_) (_-_) : IntExp IntExp -> IntExp .

3. Declaring variables
A variable is declared using the keyword var. More than one variable of the same sort
can be introduced using the keyword vars as in:

vars X Y : Flavor .

By convention, variable names start with an upper-case letter.
4. Defining axioms

Axioms are referred to as equations; the following are examples of axioms.

eq first (X, Y) = X .
eq X second Y = Y .

5. End of specification
The keyword endo marks the end of the specifications for the object. There is NO
period after endo!

13

290 13 Algebraic Specification

The OBJ3 interpreter accepts the specification of the object FLAVORS line by line, parses
it, creates the set of rewrite rules and introduces into the system database under the name
FLAVORS. We have now defined a module FLAVORS. We may define other object modules
with their own respective algebraic specifications. All objects are sequentially introduced
into the OBJ3 database.

13.6.2
Built-In Sorts and Subsorts

OBJ3 is based on strong sorting-every symbol has a sort or can be associated to a sort. Sorts
are introduced in OBJ3 with the syntax

sorts 〈Sortids〉
as in

sorts Nat Int .

13.6.2.1
Built-in Sorts

The OBJ3 system includes a library comprising of several built-in sorts. These represent
frequently used abstract data types, and include the following pre-defined modules:

• TRUTH-VALUE provides the constant truth values true and false.
• TRUTH enriches TRUTH-VALUE with the operations ==, =/=, and if _ then _
else _ fi.

• BOOL provides the boolean logic operators and, or, xor, prefix not, and infix
implies.

• IDENTICAL, which can be used instead of BOOL checks for literal identity of terms
without evaluating them.

• NAT provides natural numbers.
• NZNAT provides non-zero naturals.
• INT provides integers.
• RAT provides rational numbers.
• FLOAT provides floating point numbers.
• ID provides identifiers; it includes lexicographic ordering, and all the operations avail-

able in BOOL.
• QID is similar to ID, except that the identifiers start with an apostrophe symbol; for

example, ’a, ’b, ’1300, and ’anyidentifier. It has no built-in operation.
• QIDL provides identifiers with apostrophes, and includes all the operations available in
BOOL; in addition, it includes lexicographic ordering.

These pre-defined sorts may be imported in the specification of a user-defined module.

13.6 OBJ3—An Algebraic Specification Language 291

13.6.2.2
Order-Sorted Algebra

One of the main features of OBJ3 is the introduction of subsorts. This supports the treatment
of partial operations, multiple inheritance and error handling. OBJ3 can be used to formally
specify a hierarchy of object-oriented software components.

A sort s’ is a subsort of the sort s, written s’ < s, if the value of the domain s
includes that of s’, and the operations of s are available to s’. The basic syntax for a
subsort declaration in OBJ3 is

subsort s’ < s .

The subset partial ordering can be established among locally defined and imported sorts.
For example,

subsort MyRat < MyInt < MyReal .

where MyInt is a subset of MyReal, and MyRat is a subset of MyInt. Thus, any opera-
tion defined for the sort MyReal is available to variables of the sorts Myint and MyRat.
The following examples illustrate the subsort relation:

1. The sort Nznat defining positive integers is a subsort of the sort Nat defining natural
numbers.

subsort NzNat < Nat .

2. A nonempty list is a subsort of a list.

subsort NeList < List .

3. A bounded stack is a subsort of a stack.

subsort BStack < Stack .

4. A nonempty tree of naturals is a subsort of a tree of naturals.

subsort NeNatTree < NatTree .

Subsorting ensures correct function application to variables of appropriate subsorts, and
induces the reasoning process to handle exceptional situations properly:

• The division operator is defined only for NzNat; we thus avoid division by 0.
• The head operation defined for Idealist in Fig. 13.14 can be restricted to a nonempty

list.
• The size operation is meaningful only for a bounded stack Bstack, a subsort of the Stack

sort.
• The operations left, right, content, and isfound defined for the sort NatTree in Fig. 13.8

can be redefined to be restricted to NeNatTree, the sort characterizing nonempty trees of
natural number.

The order-sorted algebra also supports multiple inheritance such that a subsort may have
more than one distinct supersort.

13

292 13 Algebraic Specification

13.6.2.3
Import Clause

An OBJ3 module can be divided into smaller units so that each unit can be understood,
analyzed and reused independently. A hierarchical relationship is explicitly introduced to
bring out the dependency of a module on other modules. Whenever module A has to use
the sorts and operations declared in module B, module B must be explicitly imported in
module A. Since a module can import several other modules, OBJ3 can be used to provide
multiple inheritance, an important feature of object-oriented programming. Notice that in
this hierarchy higher level modules include lower level modules.

OBJ3 incorporates four modes for importing modules, protecting, extending, including
and using. The abbreviations pr, ex, inc, and us can be used to denote the corresponding
modes of importation. By convention, if a module X imports a module Y that imports a
module Z, then module Z is also imported into module X; that is, the imports relation
is a transitive relation. The meaning of the import modes is related to the initial algebra
semantics. The semantics for the four modes are as follows:

• protecting (no junk, no confusion)

obj X is
protecting Y .
. . .

endo

X imports Y, and Y is protected. No new data item of sorts from module Y can be defined
in this module. The signature of module Y cannot be changed; that is, no new operation
with sorts of module Y as domain can be introduced. Moreover, a function already de-
fined in module Y cannot be redefined. However, the signature of module Y can be used
in defining operations in X. That is, there is neither junk data nor confusion introduced in
the imported clause. The module NATTREE in Fig. 13.16 protects the imported modules
NAT and BOOL. The subsort relation asserts is that Nat (naturals) is a subsort of Nebtree
(nonempty binary tree), which in turn is a subsort of Btree (binary tree).

• extending (no confusion)

obj X is
extending Y .
. . .

endo

If module X imports module Y, and module Y is extended, then new data items of sorts
from Y may be defined in module X. However, the operations in module X do not rede-
fine any function already defined in module Y. This implies that new operations can be
added to extend the behavior of module Y in module X. This is illustrated in the module
ORDLIST .

obj ORDLIST is sort List .
extending LIST .
op insert : List Nat -> List .
vars I J : Nat . var L : List .

13.6 OBJ3—An Algebraic Specification Language 293

eq insert(null, I) = (I null) .
cq insert(I L, J) = if I > J then (J I L)

else (I insert(L, J)) .
endo

• using

obj X is

using Y .

. . .

endo

If module X imports module Y in the using mode, then there is no guarantee in the sense
that new data items of sorts from module Y may be created, as well as old data items
of sorts from module Y may be redefined. This import mode is analogous to code reuse
in object-oriented paradigm. OBJ3 implements using by copying the imported module’s
top-level structure, sharing all of the modules that it imports. Hence, the sorts defined
within a given module are required to have distinct names, and all copied operations are
required to be uniquely identified by their name and rank.

• including

obj X is

including Y .

. . .

endo

If module X includes module Y, then module Y is incorporated in module X without
copying. This is the only difference between the using and including modes.

It is important to note that OBJ3 does not check whether the user’s import declarations are
correct. The consequences of an incorrect import declaration can be serious, leading to
incomplete reductions in some cases, and insufficient reductions in others.

13.6.2.4
Declaration of Attributes

It is convenient to consider certain properties of an operation as attributes and declare
them within the syntax of the operation. These properties include axioms like associativity,
commutativity, and identity. Declaring the attributes of an operation influences the order of
evaluation, and parsing.

Associativity and Commutativity The following example illustrates the declaration of
associative operations.

op _or_ : Bool Bool -> Bool [assoc] .
op __ : NeList List -> NeList [assoc] .

13

294 13 Algebraic Specification

Expressions involving an associative operator do not require parentheses; for example, we
can write

(x or y or z)

instead of

(x or (y or z))

Binary infix operations can be declared as commutative with the attribute comm, which
is semantically a commutativity axiom, implemented by commutative rewriting. Axioms
such as

eq x + y = y + x

lead to non-terminating rewrite rules. Care must be exerted to avoid such axioms, and
include the commutativity property as an attribute for the operation eq. A binary operation
can bear both commutative and associative attributes.

Identity The identity attribute can be declared for a binary operation; for example, in

op _or_ : Bool Bool -> Bool [assoc id: false] .

the attribute

id: false

gives the effect of the identity equations

(B or false = B)

and

(false or B = B).

Identity attributes can be constants such as 0 for + and 1 for ∗, as well as ground terms
such as nil for list addition, and emptyset for set union.

13.7
Signature and Equations

An OBJ3 module or theory is constructed following the syntactic conventions explained in
the previous section. The signature includes the definition of subsorts, and the modes for
imported modules. The syntax for expressions should be consistent with the signature of
operations as defined in the module and in the imported modules.

13.7 Signature and Equations 295

obj NATTREE is sorts Nebtree Btree .
protecting NAT .
protecting BOOL .
subsorts Nat < Nebtree < Btree .
op empty : -> Btree .
op node: Btree Nat Btree -> Nebtree .
op left: Nebtree -> Btree .
op right : Nebtree -> Btree .
op content: Nebtree -> Nat .
op isempty: Btree -> Bool .
op isfound : Btree Nat -> Bool .
vars X Y : Btree . vars N M : List .
eq isempty(empty) = true .
eq not isempty(node(X, N,Y).
eq left(node(X,N,Y)) = X.
eq right(node(X,N,Y) = Y.
eq content(node(X,N,Y) = N.
eq not isfound(empty,N).
eq isfound(node(X,N,Y),M) = (M = N) or isfound(X,M)

or isfound(Y,M).
endo

Fig. 13.16 Definition of the binary tree object

13.7.1
Signature of a Module

The signature of an object consists of the sorts, the subsort relations (optional), the import

list of modules (optional), and the operations available on the object. The signature of

module NATTREE in Fig. 13.16 introduces two sorts Nebtree and Btree, representing

a nonempty tree of natural numbers, and a tree of natural numbers. The module NATTREE

imports the built-in modules NAT and BOOL. With the introduction of subsort Nebtree,

the functions left, right, content, and isfound become total functions defined

only for Nebtree. However, all the operations defined for Btree remain available for

Nebtree as well. All the operations defined for Nebtree remain available for its subsort

Nat; however, they are not meaningful for Nat.

Every term in the algebra generated by NATTREE is either a natural number, or a

nonempty tree, or a tree. This ensures the closure property for the algebra. A comparison

of this specification with the specification NatTree shown in Fig. 13.8 reveals that the terms

content(empty), left(empty), right(empty) do not form part of this new

algebra.

13

296 13 Algebraic Specification

13.7.2
Equations

The ability to write equations (axioms) requires an understanding of the operators used.
Similar to the classification of operations discussed in the Sect. 13.4.3, OBJ3 operations can
also be broadly divided into two groups: Constructors and Observers. Notice that no axioms
are defined for basic constructors. An observer cannot modify the values of an object. The
operational semantics corresponds to reduction by term rewriting. The reduction of an
expression is carried out by matching the expression or a sub-expression of the expression
with the left-hand side of an equation, and then replacing the matched sub-expression with
the corresponding right-hand side of the equation. An expression that already contains only
basic constructors cannot be reduced any further. Any other expression can be reduced to
an expression containing only the basic constructors. For example, the expression

content (left (node (node (empty, 1, empty), 3,
node (node (empty, 5, empty), 7, node (empty, 9, empty)))))

is rewritten using the equation

eq left(node(X,N,Y)) = X .

to

content(node(empty,1,empty)) = 1

and then further reduced to 1 by using the equation content(node(X,N,Y)) = N .
A conditional equation may be created using cq instead of eq when declaring the

equation. For example,
cq min(X,Y) = X if X < Y else Y fi.
cq isTriangle(A,B,C) = true if A < B + C and

B < A + C and C < A + B .
The operational semantics for rewriting conditional equations is as follows: first, a match
for the left-hand side of the expression is found; next, the conditional equation is evaluated
by substituting the bindings obtained from the match; if it evaluates to true, then the rewrit-
ing is done as described above for the right-hand side of equations. The evaluation strategy
in the OBJ3 system is guided by the declaration of attributes, which in fact, can affect both
efficiency and termination.

13.8
Parameterized Programming

In Sect. 13.5, we constructed a specification for an Idea Processor using data type spec-
ifications that are specific to the needs of that application. To maximize the potential for
reuse, data type specifications must remain as self-contained and general as possible. In
this section we discuss how OBJ3 specifications can be constructed to have such properties.

Abstract data types such as set and sequence arise as basic building blocks of more com-
plex data types in various applications. Sets of integer, sets of real, and sets of sequences,

13.8 Parameterized Programming 297

Fig. 13.17 A simple theory th TRIV is
sort Elt .

endth

th PREORDERED is
sort Elt .
op _<=_ : Elt Elt -> Bool .
vars E1 E2 E3 : Elt .
eq E1 <= E1 = true .
cq E1 <= E3 = true if E1 <= E2 and E2 <= E3 .

endth

Fig. 13.18 The preordering theory

for instance, do not require separate specifications. The set operations can be abstracted
independently of the element type. It would be convenient to be able to specify a set of ele-
ments of type E by using a parametrized specification module SET[T] where T is a formal
parameter which can be mapped to sort E. OBJ3 provides a parametric specification mech-
anism: types(sorts) are used to parameterize types (sorts), in a way analogous to the use
of types to parameterize functions and procedures in programming languages. The intent
of parameterized programming is to decompose the code into parameterized components.
At the specification level, objects, theories, views and module expressions provide formal
support for writing parametric specifications. A theory can be used to define the interface
and properties of a parameterized module. A view expresses that a certain module satisfies
a certain theory in a certain way by binding actual parameters of a module to a theory. In-
stantiating a parameterized module, using a particular view as an actual parameter, yields a
new module. Module expressions involving interacting modules, can be formally evaluated
with no side-effect.

13.8.1
Theories

Theories express the properties of a module or an object; they provide a means for de-
scribing entities that cannot be defined in terms of objects. OBJ3 theories have the same
structure as objects; they describe sorts, operations, variables and equations. Theories can
import other theories and objects, and can also be parameterized. The difference between
objects and theories is that objects are executable, while theories only define properties.
Figure 13.17 shows the simple theory TRIV, which is pre-defined in OBJ3; TRIV intro-
duces the new sort Elt.

A theory of a pre-ordered set is shown in Fig. 13.18.

13

298 13 Algebraic Specification

view TRIV-TO-FLAVORS from TRIV to FLAVORS is
sort Elt to Flavor .
op newop to first .

endv

Fig. 13.19 Mapping from theory TRIV to object FLAVORS

Fig. 13.20 Mapping from
theory PREORDERED to
NAT

view NATORD from PREORDERED to NAT is
sort Elt to Nat .
vars X Y : Elt .
op X <= Y to X < Y or X == Y .

endv

13.8.2
Views

A view describes the association between a theory and an object, such that the sorts of
the theory are mapped onto the sorts of the object, while preserving the subsort relation.
The operations of the theory are mapped onto the operations of the object. A view is a
homomorphism from the algebra described by the theory to the algebra described by the
object. In Fig. 13.19, TRIV-TO-FLAVORS is the name of the mapping, TRIV is the theory
and FLAVORS is the object. The view NATORD in Fig. 13.20 describes the less-than or
equal-to ordering on NAT .

13.8.3
Parameterized Modules

The theories of parameterized modules must be defined earlier in the sequence modules
that use those theories are presented to OBJ3 system. Parameterized modules are declared
as follows:

obj NAME[X ::THEORY1]

or

th NAME[X ::THEORY1]

With such a declaration, the sorts, operations and equations of THEORY1 become visible to
the module NAME. An example of a parameterized module defining a partial order is shown
in Fig. 13.21. This module imports the object BOOL in protecting mode, and hence the sort
Bool is visible within the module. The two operations introduced in the module define
the partial order and the equality relation on sort Elt belonging to the theory TRIV. The
specification in Fig. 13.14 can be adapted to a parameterized module LIST[X::TRIV].

Modules can have more than one parameter; a two-parameter module has the following
signature:

13.8 Parameterized Programming 299

obj POSET[X :: TRIV] is protecting BOOL .
op _<=_ : Elt Elt -> Bool .
op _=P=_ : Elt Elt -> Bool .
vars X Y Z : Elt .
eq X <= X = true .
eq X =P= X = true .
eq (X <= Y) and (Y <= X) = X =P= Y .
eq (X <= Y) and (Y <= Z) = X <= Z .
endo

Fig. 13.21 The partially ordered parametric object POSET

obj ORD-PAIR[S :: TRIV, T :: TRIV] is sort OrdPair .
protecting POSET[S] .
protecting POSET[T] .
protecting BOOL .
op pair : Elt.S Elt.T -> OrdPair .
op first : OrdPair -> Elt.S .
op second : OrdPair -> Elt.T .
op eqp : OrdPair OrdPair -> Bool [comm] .
var Et : Elt.T . var Es : Elt.S . vars P Q : OrdPair .
eq first(pair(Es, Et)) = Es .
eq second(pair(Es, Et)) = Et .
eq eqp(P, Q) = (first(P) =P= first(Q)) and

(second(P) =P= second(Q)) .
endo

Fig. 13.22 A parameterized module for Orderedpair

obj NAME[X :: THEORY1, Y :: THEORY2]

If the two theories are the same, we can write:

obj NAME[X Y :: THEORY1]

The parameterized module in Fig. 13.22 has two parameters S and T satisfying the theory
TRIV. Notice that this module imports POSET[S], and POSET[T] in protecting mode.
Hence all the properties of partial ordering are available without any change in the module
ORD-PAIR. This module generalizes the Orderedpair specification shown in Fig. 13.11;
it allows the components of the ordered pair to belong to two different sorts.

13.8.4
Instantiation

Instantiation of a parameterized module replaces its formal parameters by the actual pa-
rameters. Each theory is replaced by the corresponding actual module, using the views to
bind the actual parameters to the formal parameters. Instantiation avoids multiple copies

13

300 13 Algebraic Specification

of imported modules. Instantiating the module BAR, with the formal parameter X mapped
to the object FLAVORS, can be carried out using one of the following constructs:

obj BAR[X :: TRIV] is sort Flavor .

by the object FLAVORS, one of the forms given below can be used:

• The view is used as actual parameter:

BAR[TRIV-TO-FLAVORS] .

• An unnamed view is used as actual parameter:

BAR[view from TRIV to FLAVORS is endv] .

• The default view from TRIV to FLAVORS is used as actual parameter:

BAR[FLAVORS] .

When an instantiated algebra is used in several contexts and in reduction, it is convenient
to name the algebra using the make command; for example,

make BAR-FLAVORS is BAR[TRIV-TO-FLAVORS] endm .

where BAR-FLAVORS is the name given to the instantiated object BAR[TRIV-TO-
FLAVORS]. The make command allows us to instantiate a module only once, and sim-
plifies module expressions.

Using the default view from TRIV to NAT the parameterized module ORD-PAIR may
be instantiated with NAT as actual parameter to get a module expression for the object
POINT:

make POINT is ORD-PAIR[NAT,NAT] endm .

Using different default views, from TRIV to NAT, and from TRIV to BOOL, the parame-
terized module ORD-PAIR can be instantiated with the actual parameters NAT, and BOOL
to obtain the module expression:

make PAIR-NATBOOL is ORD-PAIR[NAT,BOOL] endm .

Using the default view from TRIV to POINT, we can obtain the module expression:

make LINE-SEGMENT is ORD-PAIR[POINT,POINT] endm .

In Fig. 13.23, we define the parametric module SEQUENCE, which can be instantiated
to obtain different sequences; for example,

• a sequence of natural numbers is defined by the module:

make SEQUENCE-OF-NAT is SEQUENCE[NAT] endm .

• The word entity in the idea processor example can be modeled using the built-in sort
QID for identifiers. We can then define the data type note as a sequence of words, with
the module:

make SEQUENCE-OF-WORDS is SEQUENCE[QID] endm .

13.8 Parameterized Programming 301

obj SEQUENCE[X :: ELEMS] is sort Seq .
protecting POSET[X] .
protecting NAT .
protecting BOOL .
subsort Elems < Seq .
op empty : -> Seq .
op __ : Seq Seq -> Seq [assoc id: empty] .
op tail : Seq -> Seq .
op head : Seq -> Elems .
op length : Seq -> Nat .
op equ : Seq Seq -> Bool [comm] .
vars U V : Seq . vars X Y : Elems .
eq length(empty) = zero .
eq length(X U) = succ(length(U)) .
eq head(X U) = X .
eq tail(empty) = empty .
eq tail(X U) = U .
eq equ(empty, empty) = true .
cq equ(U, empty) = false if U =/= empty .
cq equ(U, V) = equ(tail(U), tail(V))

if U =/= empty and V =/= empty and head(U) == head(V) .
cq equ(U, V) = false

if U =/= empty and V =/= empty and head(U) =/= head(V) .
endo

Fig. 13.23 A parameterized module for sequence

• the ordered pairs (key,note) in the IdeaProcessor example can be characterized by the
module:

make ORD-PAIR[QID, SEQUENCE[QID]] endm .

13.8.5
Module Expression

A module expression is an expression of an OBJ3 specification which may consist of a
homogeneous or a heterogeneous algebra. Evaluating a module expression involves only
functions applied to arguments; there is no variable, no assignment and no side-effect.
Module expressions form a formal basis for software reuse. They allow the definition, con-
struction, and instantiation of modules, as well as various forms of module modification.
Thus, a given module can be reused in various contexts. The three major combination
modes for modules are: instantiation, renaming, and sum.

• Instantiation is discussed in the previous section.
• Renaming is used to create a new module by renaming the sorts and operations of an

existing one. In Fig. 13.24, the sort Element is renamed to Newelement. In Fig. 13.25,
the sort Flavor is renamed to Vegetable, the operation first is renamed to
newfirst and the operation second to newsecond. Renaming is applied to a mod-
ule expression postfix after the symbol “*”, creating a new module with the specifica-
tions of the preceding module.

13

302 13 Algebraic Specification

th NEWELEMENT is
using ELEMENT * (sort Element to Newelement) .

endth

Fig. 13.24 Renaming sorts

Fig. 13.25 Renaming sorts
and operations

FLAVORS * (sort Flavor to Vegetable .
op first to newfirst .
op _second_ to _newsecond_ .)

• Sum constructs a union of objects; it creates a new module by composing the specifica-
tions of all the components of the sum. The expression A + B creates a module which
incorporates the union of axioms, variables, operations, and sorts of both modules A
and B.

13.9
Case Study—A Multiple Window Environment

We develop an OBJ3 specification for managing a screen with multiple windows, where
each window is associated with a set of geometrical shapes. For the sake of simplicity, the
requirements are restricted to windows associated with squares.

13.9.1
Requirements

A screen is a rectangular area which contains a collection of windows. Each window in
the screen is a rectangle with its sides parallel to the axes of the screen. A window is
associated with the collection of square shapes drawn within it. When the window is moved
to a different location within the screen, the square shapes associated with it are also moved
without any change to their relative positions inside the window. One is required to provide
the following functionalities for window objects and square shapes:

1. Create a window.
2. Determine whether the cursor is within a given window.
3. Select a window identified by the cursor.
4. Move a window to a specified location within the screen.
5. Determine whether two windows overlap.
6. Add a window to the collection of windows.
7. Associate a list of squares with a given window.
8. Add a square to the list of squares associated with a window.
9. Translate a square horizontally within a window.

10. Translate a square vertically within a window.

13.9 Case Study—A Multiple Window Environment 303

Fig. 13.26 Coordinate axes
for window environment

13.9.2
Modeling

We define the coordinates of a point in the screen as a pair of natural numbers. We model
the cursor as a point. A rectangle is constructed from a point indicating its top-left corner,
and two natural numbers denoting its breadth and height. We specialize the rectangle object
by extending it with new operations and axioms to obtain a square object. Similarly, we
specialize the rectangle object to model a window.

We define a parametric object which takes one parameter to model a list of elements of
some sort. This object can be instantiated to obtain lists of squares, and lists of windows.
We model a screen as a list of windows, where each window is associated with a list of
squares.

The position of a point on the screen is given with respect to coordinate axes, where the
origin is at the top-left corner of the screen, the x-axis as the horizontal axis and the y-axis
as the vertical axis, as shown in Fig. 13.26.

13.9.3
Formal Specifications

*** ***
*** SIMPLE WINDOW SYSTEM ***
*** OBJ SPECIFICATION ***
*** ***

*** an object representing the two coordinates of a point.

obj POINT is sort Point .
protecting NAT .

op point : Nat Nat -> Point .
op x : Point -> Nat .
op y : Point -> Nat .

13

304 13 Algebraic Specification

vars A B : Nat .

eq x(point(A,B)) = A .
eq y(point(A,B)) = B .

endo

*** --- ***

*** defining an object representing the click at a point.

obj CURSOR is sort Cursor .
protecting NAT .
protecting POINT .

op cursor : Point -> Cursor .
op move : Cursor Nat Nat -> Cursor .
op x : Cursor -> Nat .
op y : Cursor -> Nat .

vars X Y : Nat . var P : Point .

eq x(cursor(P)) = x(P) .
eq y(cursor(P)) = y(P) .
eq move(cursor(P),X,Y) = cursor(point(X,Y)) .

endo

*** --- ***

*** defining an object representing a rectangle.

obj RECTANGLE is sort Rectangle .
protecting NAT .
protecting POINT .

op rectangle : Point Nat Nat -> Rectangle .
op locate : Rectangle -> Point .
op breadth : Rectangle -> Nat .
op height : Rectangle -> Nat .

op topleft : Rectangle -> Point .
op topright : Rectangle -> Point .
op downleft : Rectangle -> Point .
op downright : Rectangle -> Point .

var P : Point . vars B H : Nat .

eq locate(rectangle(P,B,H)) = P .
eq breadth(rectangle(P,B,H)) = B .
eq height(rectangle(P,B,H)) = H .

eq topleft(rectangle(P,B,H)) = P .
eq topright(rectangle(P,B,H)) = point(x(P) + B, y(P)) .

13.9 Case Study—A Multiple Window Environment 305

eq downleft(rectangle(P,B,H)) = point(x(P), y(P) + H) .
eq downright(rectangle(P,B,H))= point(x(P) + B, y(P) + H) .

endo

*** --- ***

*** defining an object representing a square.

obj SQUARE is
extending RECTANGLE * (sort Rectangle to Square ,

op rectangle to square) .
protecting NAT .
protecting POINT .

op square : Point Nat -> Square .
op side : Square -> Nat .

var P : Point . vars B H S : Nat .

cq locate(square(P,B,H)) = P if B == H .
cq side(square(P,B,H)) = B if B == H .
eq locate(square(P,S)) = P .
eq side(square(P,S)) = S .
cq square(P,B,H) = square(P,B) if B == H .

endo

*** --- ***

*** defining an object representing a window.

obj WINDOW is
extending RECTANGLE * (sort Rectangle to Window ,

op rectangle to window) .
protecting NAT .
protecting BOOL .
protecting POINT .
protecting CURSOR .

op move : Window Point -> Window .
op contains : Window Cursor -> Bool .
op cross : Window Window -> Bool .

vars B H : Nat . vars P : Point . var C : Cursor .
vars W W1 W2 : Window .

*** move window to a specified location.

eq move(W,P) = window(P, breadth(W), height(W)) .

*** true if the window contains the location of the cursor

eq contains(window(P,B,H),C) = x(C) >= x(P) and

13

306 13 Algebraic Specification

x(C) <= (x(P) + B) and
y(C) >= y(P) and
y(C) <= (y(P) + H) .

*** two windows cross each other if one of them has a
*** corner which is contained in the other window.

eq cross(W1,W2) = contains(W1,cursor(topleft(W2))) or
contains(W1,cursor(topright(W2))) or
contains(W1,cursor(downleft(W2))) or
contains(W1,cursor(downright(W2))) .

endo

*** --- ***

*** a parameterized object LIST which takes one parameter.

obj LIST[X :: TRIV] is sort NeList List .
protecting NAT .
protecting BOOL .
subsorts Elt < NeList < List .

op null : -> List .
op __ : List List -> List [assoc id: null] .
op __ : NeList List -> NeList .
op tail _ : List -> List .
op head _ : NeList -> Elt .
op empty? _ : List -> Bool .
op length _ : List -> Nat .
op copy : List List -> List .

var X : Elt . vars L L1 : List .

eq empty? null = true .
eq empty? L = L == null .
eq length null = 0 .
eq length(X L) = length(L) + 1 .
eq head(X L) = X .
eq tail(null) = null .
eq tail(X L) = L .
eq empty?(copy(null,L)) = true .
eq tail(copy((X L),L1)) = L .

endo

*** --- ***

*** defining a view from the pre-defined theory TRIV
*** to the object WINDOW

view WIN from TRIV to WINDOW is
sort Elt to Window .

endv

13.9 Case Study—A Multiple Window Environment 307

*** creating an object representing a list of windows.
*** instantiating the parameterised object LIST.

make WINLIST is
LIST[WIN] * (sort List to Winlist) .

endm

*** --- ***

*** defining an object representing a screen.

obj SCREEN is sort Screen .
protecting BOOL .
protecting CURSOR .
protecting WINDOW .
protecting WINLIST .

op screen : Winlist -> Screen .
op winlist : Screen -> Winlist .
op addwin : Screen Window -> Screen .
op overlap : Screen Window -> Bool .
op select : Screen Cursor -> Window .

var B : Cursor . var W : Window .
var WL : Winlist . var S : Screen .

eq winlist(screen(WL)) = WL .
eq winlist(addwin(S,W)) = W winlist(S) .

eq overlap(screen(null),W) = false .
eq overlap(S,W) = cross(head(winlist(S)),W) or

overlap(screen(tail(winlist(S))),W) .

eq select(screen(WL),B) = if contains(head(WL),B)
then head(WL)
else (select(screen(tail(WL)),B))
fi .

endo

*** --- ***

*** defining a view from the pre-defined theory TRIV
*** to the object SQUARE

view SQUAR from TRIV to SQUARE is
sort Elt to Square .

endv

*** creating an object representing a list of squares.
*** instantiating the parameterized object LIST.

make SQUARELIST is

13

308 13 Algebraic Specification

LIST[SQUAR] * (sort List to Squarelist) .
endm

*** --- ***

*** defining an object representing the shapes in a window.
*** the object associates a window with a list of squares.

obj WINDOWSHAPES is sort Windowshapes
protecting NAT .
protecting BOOL .
protecting POINT .
protecting CURSOR .
protecting WINDOW .
protecting SQUARELIST .

op windowshapes : Window Squarelist -> Windowshapes .
op win : Windowshapes -> Window .
op squarelist : Windowshapes -> Squarelist .
op squarewithin : Square Window -> Bool .
op addsquare : Square Windowshapes -> Windowshapes .
op htranslatesquare : Square Window Nat -> Square .
op vtranslatesquare : Square Window Nat -> Square .

var W : Window . var SL : Squarelist .
var WS : Windowshapes . var S : Square .
var P : Point . vars L X Y : Nat .

eq win(windowshapes(W,SL)) = W .
eq squarelist(windowshapes(W,SL)) = SL .

*** determine if a square fits within a window.

eq squarewithin(square(P,L),W) =
contains(W,cursor(topleft(square(P,L)))) and
contains(W,cursor(topright(square(P,L)))) and
contains(W,cursor(downleft(square(P,L)))) and
contains(W,cursor(downright(square(P,L)))) .

*** add square to list of squares if within the window.

eq addsquare(S,WS) =
if squarewithin(S,win(WS))
then windowshapes(win(WS), (S squarelist(WS)))
else WS fi .

*** translate square horizontally if fits in window
*** at new location.

eq htranslatesquare(square(P,L),W,X) =
if squarewithin(square(point(x(P) + X, y(P)), L), W)
then square(point(x(P) + X, y(P)), L)
else square(P,L) fi .

13.10 Exercises 309

*** translate square vertically if fits in window
*** at new location.

eq vtranslatesquare(square(P,L),W,Y) =
if squarewithin(square(point(x(P), y(P) + Y), L), W)
then square(point(x(P), y(P) + Y), L)
else square(P,L) fi .

endo

*** --- ***

13.10
Exercises

1. Define a homomorphism on the set of n-dimensional vectors of real numbers. Hint: See
Example 5.

2. Give an algebra for representing a queue of elements. Identify the different schemas
needed. Hint: See Example 8.

3. Define a presentation for the algebra characterizing a queue, as requested in Exercise 2,
including a set of axioms.

4. Define the operation position for the data type note shown in Fig. 13.10; the operation
determines the position of a given word in a note. Use the already defined operations in
your definition of position.

5. A collection of sub-ideas is specified as a set in Fig. 13.12. What property is violated
if a copy function, which makes copies of sub-ideas, is introduced? What data type is
appropriate if two sub-ideas having the same key are required and must be considered
together to form a single sub-idea? Rewrite the complete specification for the collection
of sub-ideas with the proposed changes.

6. Use the signature of the specification in Fig. 13.10 to write a function mentionsall,
which takes two arguments n,n′ of type note and returns a sequence composed of words
occurring in note n as well as in note n′.

7. Use the signature of the specification in Fig. 13.10 to write a function replaceall, which
takes three arguments w,w′ of type word, and n of type note, and replaces all occur-
rences of the word w by the word w′ in the note n.

8. Give a parametric specification for a binary tree. Define (1) a view for constructing a
binary tree of natural numbers, and (2) a view for constructing a binary tree of identi-
fiers. Give reductions for printing the contents of the tree in pre-order and post-order
traversals.

9. Extend the specification discussed in the case study for a multiple window environment,
as follows:
(a) Give a specification for constructing ordered pairs of points. Include operations to

determine whether or not the second component of the pair is (1) above, (2) below,
(3) to the left, (4) to the right, (5) above and left, (6) above and right, (7) below and

13

310 13 Algebraic Specification

right, and (8) below and left of the first component. Give sufficient equations for the
axioms.

(b) Give specifications for a line segment object. A line segment is a straight line of
finite length. Include operations for translating a line segment parallel to the coor-
dinate axes.

(c) Use the ORD-PAIR[S::TRIV, T::TRIV] parametric specification given in
the text to derive modules for constructing (1) points, and (2) line segments. Hint:
Construct appropriate views, and use the renaming mechanism.

(d) Include the following operations for the WINDOW object: (1) fulltop to extend the
height of the window upto the top of the screen, (2) fullright to extend the breadth of
the window to the right upto the screen boundary, (3) fulldown to extend the height
of the window up to the bottom of the screen, (4) fullleft to extend the breadth of
the window to the left upto the screen boundary, (5) fullscreen to resize a window
so as to fill the entire screen. Include sufficient axioms.

(e) The rectangles considered in the case study have their sides parallel to the coordi-
nate axes. Consequently, the intersection of two rectangles forms a rectangle. The
parameters P ,B,H of the rectangle, formed by the intersection of any two rectan-
gles R = rectangle(P1,B1,H1), and R′ = rectangle(P2,B2,H2) is determined by
the dimensions and the relative positions of rectangles R and R′. Introduce opera-
tions and axioms for determining the intersection of two rectangles.

(f) Introduce one more sort for the rectangle object to denote its color. Assume that a
window may be white or blue. The color of a window W1 is white when the window
is created. It changes to blue when another window W2 hides part of window W1.
Introduce the notion of hiding and write axioms that are to be satisfied by windows
on a screen.

(g) Use the OBJ3 interpreter to verify that the horizontal and vertical translation axioms
in WINDOSHAPES are commutative and transitive. In addition, verify that vertical
and horizontal translations commute.

(h) Introduce sorts for triangle and circle objects. Make a list of triangle objects, and a
list of circle objects. Associate these lists with window objects.

13.11
Bibliographic Notes

Data abstraction was first discussed within the class concept of the SIMULA programming
language [4]. The algebraic approach to specification of data types can be traced back to
several papers published in mid 70’s, including Goguen, Thatcher, Wagner, and Wright [6],
and Guttag and Horning [9]. A formalization of abstract data types within a many-sorted
algebra based on initial algebra semantics was done by the ADJ-group, and reported in
Goguen, Thatcher, Wagner [5]. Since then, several algebraic specification languages have
been designed, and several books and papers have been written on the theoretical as well
as the practical aspects of algebraic methodology for software specification. Wirsing [12]
gives a comprehensive survey of algebraic specification theory and methods.

References 311

The specification language CLEAR, developed by Burstall and Goguen [3] was the first
language designed for constructing structured algebraic specifications. The seminal paper
of Burstall and Goguen [2] on “putting theories together” has influenced the design of
several other algebraic specification languages, in particular the OBJ family. The design of
OBJ, initiated by Goguen, was carried through by several researchers [7]. The parameteri-
zation concept introduced in the design of OBJ3 was influenced by CLEAR.

References

1. Bergstra JA, Heering J, Klint P (1989) Algebraic specification. ACM, New York
2. Burstall R, Goguen J (1977) Putting theories to make specifications. In: Proceedings fifth

international joint conference on artificial intelligence, pp 1045–1058
3. Burstall R, Goguen J (1981) An informal introduction to specifications using CLEAR. In:

Boyer R, Moore J (eds) The correctness problem in computer science. Academic Press, San
Diego, pp 185–213

4. Dhal OJ, Myhrhang B, Nygaard K (1970) Common base language. Norsk Reguesentral, Oslo
5. Goguen J, Thatcher J, Wagner E (1976) An initial algebra approach to the specification, cor-

rectness and implementation of abstract data types. In: Yeh R (ed) Current trends in program-
ming methodology, vol IV. Prentice-Hall, New York, pp 80–149

6. Goguen JA, Thatcher JW, Wagner EG, Wright JB (1977) Initial algebra semantics and contin-
uous algebras. J ACM 24:68–95

7. Goguen J, Winkler T (1988) Introducing OBJ3. Technical report SRI-CSL-88-9, SRI Interna-
tional, August 1988

8. Guttag J (1975) The specification and application to programming of abstract data types. PhD
thesis, Department of Computer Science, University of Toronto, Ontario, Canada

9. Guttag JV, Horning JJ (1978) The algebraic specification of abstract data types. Acta Inform
10:27–52

10. Henderson P (1986) Functional programming, formal specification, and rapid prototyping.
IEEE Trans Softw Eng SE-12(2):241–250

11. Liskov B, Guttag J (1989) Abstraction and specification in program development. MIT Press,
Cambridge

12. Wirsing M (1990) Algebraic specification. In: van Leeuwen J (ed) Handbook of theoretical
computer science. North-Holland, Amsterdam

13. Wirth N (1976) Algorithms + data structures = programs. Prentice-Hall, New York

Larch 14

A specification of the system under development must include a description of the bound-
ary between the system and its environment. This boundary characterizes the interface of
the system. The components in a system interact with each other through their interfaces. It
is crucial that each interface specification describes precisely the forms of communication
that are permitted at the interface, their causes and effects. Understanding the interface of
a component should provide insight into the nature of the system being specified. This is
particularly important for systems exhibiting similar behavior, with different interfaces.

Each interface language is designed to deal with information that can be observed by
client programs written in a particular programming language. Formal specification lan-
guages studied in the previous three chapters are general-purpose languages; they are suit-
able for design specifications. The refinement techniques associated with model-oriented
specification languages provide a methodology for deriving a detailed specification, close
to the final implementation. However, to be able to use Z, or VDM-SL, as an interface
language, an interface refinement relation is required to bridge the semantic gap between
the specification language and the programming language to be used to implement the re-
fined module. This refinement relation must express assertions about program states, and
implementation specific notions such as exceptions. It is unlikely that all features of a pro-
gramming language can be captured in such an interface refinement relation. To describe
the behavioral characteristics of a software system, we need a language in which the in-
terfaces of the system components and the externally observable behavior of each system
component can be formally specified. The works of Wing [11, 12], and Guttag and Horn-
ing [6] on Larch specification languages are geared toward this goal.

14.1
The Two Tiers of Larch

Larch provides a two-tiered approach to specification of program interfaces:

• In the interface tier, a Larch Interface Language (LIL) is used to describe the behavior
of a program module written in a specific programming language. LIL specifications

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_14, © Springer-Verlag London Limited 2011

313

14

314 14 Larch

provide the information needed to understand and use a module interface. LIL refers
to a family of specification languages. Each specification language in the LIL family is
designed for a specific programming language. Specifications are written in a predicative
language using assertions on the pre- and post-states.

• In the shared tier, the Larch Shared Language (LSL) is used to specify state-
independent, mathematical abstractions which can be referred to in the interface tier.
These underlying abstractions are called traits; a trait defines a multi-sorted first-order
theory, and is written in the conventional style of equational algebraic specification.

The philosophy behind this two-tiered approach is best summarized by Wing [12]:

We believe that for specifications of program modules, the environment in which a mod-
ule is embedded, and hence the nature of its observable behavior, is likely to depend in
fundamental ways on the semantic primitives of the programming languages... Thus we in-
tentionally make an interface language dependent on a target programming language, and
keep the shared language independent of any programming language. To capitalize on our
separation of a specification into two tiers, we isolated programming language dependent
issues—such as side effects, error handling, and resource allocation—into the interface lan-
guage component of a specification.

Larch’s two-tiered approach makes it possible to express programming language dependent
properties using syntax and semantics which corroborate with the underlying programming
language. Constructs are provided for expressing programming language dependent prop-
erties such as parameter passing, side effects, exceptions, and concurrency using the syntax
and semantics of the underlying programming language. Each LIL has a mechanism for
referencing the formal parameters in the specification of an operation using the same syn-
tax and semantics as in the underlying language. The semantics for the primitive terms
used in the interface specification is provided by traits in the shared tier.

Larch’s two-tiered approach has the advantage of providing separation of concerns be-
tween the two tiers. According to Guttag and Horning [6], the complex parts of the spec-
ification are to be kept in the shared tier, where mathematical abstractions necessary for
the interface specifications are defined. Although some of these abstractions may be very
specific to applications, a large number of them will exhibit general characteristics. Such
abstractions may be reused in various applications. The semantics of LSL is simpler than
most of the interface specification languages. Consequently, specifiers are less likely to
make mistakes in LSL traits. The Larch Prover (LP) [6] can be used to verify the validity
of claims about semantic properties of LSL traits. The interface tier may be specialized for
use with a particular programming language. The concepts and constructs of the chosen
programming language may be used to describe resources provided to the module, state
changes, computed results, and exceptions. By understanding the interface specification
and overlooking its implementation, a class can be reused in a black-box fashion. From the
experience reported by Alagar [1] it seems that Larch has the potential for effectively im-
mediately and unintrusively integrated into current industrial processes for effective reuse
of commercial class libraries such as Rogue Wave [10].

Several specification languages for the interface tier have been proposed in recent liter-
ature. These include:

• LCL [6] tailored to the C language,

14.2 LSL—Larch Shared Language 315

• LM3 [7] tailored to Modula-3,
• Larch/Smalltalk [5] for Smalltalk,
• Larch/Ada [3] for Ada, and
• Larch/C++ [8] for C++.

We present a brief tutorial on Larch shared language and discuss some of the salient fea-
tures of Larch/C++ in this chapter. There are some pragmatic considerations in introducing
Larch/C++. C++ provides support for data abstraction, encapsulation, polymorphism, and
inheritance. The widespread use of C++ in industry warrants that any effort to unintru-
sively integrate formal methods in software development as well as reuse of specifications
are most likely to succeed if targeted at C++.

14.2
LSL—Larch Shared Language

This section introduces LSL, Larch Shared Language. The founders of Larch, Guttag and
Horning [6] give an excellent exposé of LSL; we conform to their style and liberally add
several examples.

14.2.1
Equational Specification

The unit of encapsulation in LSL is a trait, which introduces some operators and specifies
some of their properties. There are two kinds of symbols in such a description: operators
and sorts. An operator is similar to the programming language concepts procedure, func-
tion, and method. A sort is analogous to the notion of type in programming languages.
When we discuss a trait, the terms operators and sorts will be used; in the context of
discussing programming language issues, we use the term type. Sorts are disjoint sets of
values, and are used to denote the domain and range of operators. LSL operators are total
functions.

Traits are constructed in a monotonic fashion: we first define basic traits, and then use
them in constructing larger ones. A trait, once constructed, can be put in LSL library and
reused in contexts where their properties are meaningful. The LSL handbook of Guttag
and Horning [6] contains a collection of traits, many of which we reuse in our examples.
Two basic traits that are often required are Boolean and Integer, which, respectively, define
a theory for boolean values and a theory for integers. The logic operators true, false, ¬, ∨,
∧, ⇒, and ⇔, as well as some overloaded operators if_then_else_, = are pre-defined in the
language; that is, the traits defining these operators are implicitly included in every trait.
Figure 14.1 shows an LSL trait SetTrait specifying the properties of a set. The example is
similar to a conventional algebraic specification as introduced in Chap. 13. The name of a
trait is distinct from the names of all sort and operator identifiers defined in the trait, for
example Set.

14

316 14 Larch

SetTrait(Set, E): trait
includes Integer
introduces

emptyset: → Set
insert: E, Set → Set
delete: E, Set → Set
unionn: Set, Set → Set
member: E, Set → Bool
subset: Set, Set → Bool
size: Set → Int

asserts
Set generated by emptyset, insert
Set partitioned by member
∀ x, y : E, s, t : Set

¬(member(x, emptyset))
member(x, insert(y,s)) == (x = y) ∨ member(x,s)
member(x, delete(y,s)) == (x �= y) ∧ member(x,s)
member(x, unionn(s,t)) == member(x,s) ∨ member(x,t)
subset(emptyset, s)
subset(insert(x,s),t) == member(x,t) ∧ subset(s,t)
subset(delete(x,s),t) == subset(s,t)
unionn(s, emptyset) == s
unionn(s, insert(x,t)) == insert(x, unionn(s,t))
size(emptyset) == 0
size(insert(x,s)) == if member(x,s) then size(s) else 1+size(s)

implies
S partitioned by subset
∀ x,y: E, s,t: S
insert(x, insert (x,s) == insert(x,s)
insert(x, insert(y,s)) == insert(y, insert(x,s))
subset(s,t) ⇒ (member(x,s) ⇒ member(x,t))

converts delete, unionn, member, subset
exempting ∀ i : E
delete(i, emptyset)

Fig. 14.1 An LSL trait for finite Sets

A trait contains a collection of operator declarations, or signatures, which follows the
keyword introduces, and a collection of equations, which follows the keyword asserts.
Each operator is a total function that maps a tuple of values from its domain sorts to a value
from its range sort. Every operator used in a trait must have been declared. Signatures are
used to type check the terms in a trait. Sorts are not explicitly declared; they are implicitly
introduced through the signature of the trait.

14.2 LSL—Larch Shared Language 317

The specification of SetTrait includes the trait Integer which is defined in the LSL hand-
book [6]. The included Integer trait gives information about the operators +, –, 0, and 1,
which are used in the right-hand side of equations. The body of the specification is com-
posed of the set of equations, the implies, converts and exempting clauses following the
reserved word asserts.

An equation is of the form x == y, where x and y are terms of the same sort. An
equation of the form x == true can be abbreviated by simply writing x. The first equa-
tion in SetTrait is an abbreviation for ¬(member(x,emptyset)) == true. Similarly the fifth
equation is an abbreviation for subset(emptyset,s)==true. Equations 10 and 11 affirm the
essential property that a nonempty set can contain only distinct elements. Equations 2 to 9
define the mathematical properties of set membership for sets constructed using the basic
constructor insert, and non-basic constructors delete, and unionn (set union).

The semantics of = and == are exactly the same; only their syntactic precedence differs
to ensure that expressions are parsed in an expected manner without the use of parentheses.
The operator = binds more tightly than ==.

All operators in SetTrait are in prefix notation, the familiar notation for function defini-
tion in mathematics. Operators can also be defined in mixfix notation. The symbols “__” in
an operator definition indicates that the operator will be used in mixfix notation. For exam-
ple, the operator member in SetTrait could also be defined using the binary infix operator
∈. The signature for this infix operator is

_ ∈ _ : E,Set → Bool

Using this signature the second equation can be rewritten as

x ∈ insert(y, s) == (x = y) ∨ x ∈ s.

Mixfix operators can be used to enhance the readability of specifications; for example, it
is preferable to use _+_ than to use plus as an operator. Precedence rules in Larch ensure
that terms are parsed as expected. The precedence scheme for operators is given below;
operators are listed such that the ones most tightly bound come first:

• postfix operators consisting of a period followed by an identifier, such as · front,
• all other user-defined operators and built-in boolean negation,
• the built-in equality operators, = and �=,
• the built-in propositional connectives, ∨, ∧, ⇒, and ⇔,
• the built-in conditional connective if _ then _ else_,
• the equation connective ==.

Infix terms with multiple occurrences of an operator at the same level, and without paren-
theses, associate the operators from left to right. For example, the equation

x == y · a · b · c + front(z) = u ∧ v

is equivalent to the term

x == (((((y · a) · b) · c) + front(z)) = u) ∧ v.

A trait is well-formed if it is syntactically correct and the terms in the equations are legal
and are successfully parsed. The semantics of Larch traits is based on multi-sorted first-
order logic with equality, rather than on an initial, terminal or loose algebra semantics as

14

318 14 Larch

Fig. 14.2 Specification of
Abelian groups

Abegroup(+, –, T): trait
introduces

0 : → T
_ + _ : T, T → T
– _ : T → T
_ – _ : T, T → T

asserts
∀ x, y, z : T

x + (-x) == 0
x – y == x + (–y)
x + 0 == x
x + y == y + x
x + (y + z) == (x + y) + z

used by algebraic specification languages. A theory is a set of logical formulas with no free
variable. A well-formed trait denotes a theory in multi-sorted first-order logic with equality.
The theory contains the equations of the trait, the conventional axioms of first-order logic
with equality, and the logical consequences that follow from the axioms. Formulas in the
theory follow only from the presence of assertions in the trait—never from their absence.
The theory associated with a trait including other traits corresponds to the union of its
theory and those of the included traits. For instance, the theory associated with SetTrait
contains all consequences of the equations given in Fig. 14.1 and of the equations defined
for Integer and the traits that implicitly define the logic operators.

SetTrait does not provide all information about sets:

1. It does not state how sets are to be represented.
2. Procedures to implement the operators are not stated.
3. It does not explicitly state all the mathematical properties of sets—some of them can be

inferred from the equations and others cannot be inferred.

The first issue can be settled at the implementation stage. The second issue is taken up dur-
ing the development of interface specifications. The claims made in an LSL specification
can be checked; if they are proved to follow from the specification, then it brings out the
extent of completeness intended by the specifier.

A trait definition need not correspond to the definition of an abstract data type defini-
tion since an LSL trait can define any arbitrary theory of multi-sorted first-order equational
logic. For example, a trait can be used to define abstract states of an object, or a first-
order theory of mathematical abstractions such as partial orders and equivalence relations.
Figure 14.4 shows specifications for pre-ordered sets, partially ordered sets, and totally
ordered sets. The mathematical concept of Abelian group, a set with a binary operation
“+” and its inverse “–”, having 0 as the identity element, is specified in Fig. 14.2. The
algebraic structure of rings having a unit element 1 is specified in Fig. 14.3. This specifi-
cation includes the trait characterizing the Abelian group and adds a binary operation “∗”,
which is transitive and distributive with respect to the binary operation “+”. Notice that
0 is the identity element for the “+” operation, and 1 is the identity element for the “∗”

14.2 LSL—Larch Shared Language 319

Fig. 14.3 Specification of
rings

Ring(*, T): trait
includes Abegroup
introduces

1 : → T
_ * _ : T, T → T

asserts
∀ x, y, z : T

x * (y + z) == (x * y) + (x * z)
x * 0 == 0
x * 1 == x
x * (y * z) == (x * y) * z

operation. The operation “+” is commutative, while the operation “∗” is not defined to be
commutative.

14.2.2
More Expressive Specifications and Stronger Theories

Equational theories are not adequate to specify abstract data types. A trait defining an
abstract data type introduces a distinguished sort, also called the principal sort or data
sort. In such traits, an explicit reference to the operator symbols that generate values of the
data sort and a mechanism to recognize equivalent terms of the data sort can be provided.
These are achieved in LSL by adding generated by and partitioned by clauses.

In SetTrait the generated by clause states that all values of the sort Set can be repre-
sented by terms composed solely of the two operator symbols emptyset and insert. As-
serting that sort S is generated by a set of operators Ops means that each term of sort S
is equal to a term whose outermost operator is in Ops. This corresponds to the “no junk”
principle of the initial algebra semantics of algebraic specification languages. The oper-
ators in Ops are referred to as the generators of sort S. This clause justifies a generator
induction schema for proving properties of the distinguished sort. In the case of natural
numbers, 0 and succ are the generators. These generators combined with the total ordering
property for natural numbers provide the induction scheme. Similarly, the generated by
clause strengthens the theory of SetTrait by adding an inductive rule of inference which
can be used to prove properties for all Set values.

The generated by clause of SetTrait asserts that any value of the sort Set can be con-
structed from the operator emptyset by a finite number of applications of the operator insert.
We can thus use induction to prove the following property:

∀s : Set, size(s) ≥ 0

Basis of Induction:

size(emptyset) = 0 is true.

14

320 14 Larch

Induction step:

∀s : Set, x : E • size(s) ≥ 0 ⇒ size(insert(x, s)) ≥ 0

This claim is proved using the last equation from the theory of SetTrait.
The operators of an abstract data type in Larch can be categorized as generators, exten-

sions, and observers. Generators produce all the values of the abstract data type. Extensions
are the other operators whose range is the distinguished sort. Observers are those operators
whose domain include the distinguished sort and whose range is some other sort. As re-
marked in Chap. 8, a good heuristic for writing axioms is to write one equation defining the
result of applying each observer or extension to each generator. This provides a sufficient
coverage of the abstract data types, as it assumes all possible values.

A partitioned by clause asserts that the operators listed in that clause form a complete
set of observers for the trait. Intuitively, it states that two terms are equal if they cannot
be distinguished by any of the observers. All equal terms form one equivalence class.
Observers partition the set of all terms into equivalence classes so that for any two terms
observers can determine whether or not they belong to the same equivalence class. For the
SetTrait example, this property can be used to show that the order of insertion in the set
is immaterial. The terms insert(x, insert(y, s)) and insert(y, insert(x, s)) are equal for all
values x, y : E, s : Set . A partitioned by clause gives a new axiom justifying a deduction
rule in proving properties about the trait. Hence, the partitioned by clause in SetTrait adds
the deduction rule

∀x : E • (x ∈ s = x ∈ t) ⇒ s = t

This deduction rule can be used to prove the property

∀x : E, s : Set • insert(x, insert(x, s)) == insert(x, s)

To prove this property, we need to discharge the proof

∀y : E • member(y, insert(x, insert(x, s))) = member(y, insert(x, s))

The proof steps are:

1. From Equation (2) in SetTrait, infer

member(y, insert(x, s)) == (x = y) ∨ member(y, s)

2. From Equation (2) in SetTrait, infer

member(y, insert(x, insert(x, s))) == (x = y) ∨ member(y, insert(x, s))

3. Applying Equation (2) again to the right-hand side, we obtain

member(y, insert(x, insert(x, s))) == (x = y) ∨ ((x = y) ∨ member(y, s))

4. The right-hand side of step 3 can be further reduced to

(x = y) ∨ member(y, s)

5. The result follows from step 4 and the right-hand side of step 1.

14.2 LSL—Larch Shared Language 321

14.2.3
Composing Traits

LSL traits can be composed using the includes clause. A trait that includes another trait is
textually expanded to contain all operator declarations, constrains clauses, generated by
clauses, and axioms of the included trait. The meaning of operations and equations in the
including trait are made clear by the meanings of operations and equations in the included
traits. The constants 0, and 1, and the operations “+” in SetTrait are defined in the included
trait Integer. The operator size cannot be defined without this inclusion.

Traits describing specific theories and defined separately can be reused within other
traits where such theories are appropriate. For example, the trait TotalOrder becomes more
structured by including the trait Poset. This is consistent with the mathematical property “if
every pair of elements of a partially ordered set are comparable, then it is a totally ordered
set”. Thus when an ordering such as set inclusion is needed in a theory, the trait Poset can
be included; whereas, when a total ordering theory is to be imposed on structures, the trait
TotalOrder can be included. When both partial order and total order theories are required in
another theory, both Poset and TotalOrder can be included. The LSL handbook available
in Guttag and Horning [6] contains traits built by reusing simpler traits in a monotonic
fashion.

14.2.4
Renaming

While reusing traits, sort names and operator names can be renamed as in parametric sub-
stitutions. The trait Poset shown in Fig. 14.4, is included in the trait TotalOrder. There is
an implicit dependency on the operators < and ≤. Since there are different partial orders
for different sorts, we can rewrite the header of the Poset trait as

Poset(T ,<,≤) : trait.

Now the reference

includes Poset(int for T ,< for <,≤ for ≤)

in the trait TotalOrder gives the theory of a total ordering on integers. Note that the opera-
tors <, and ≤ are overloaded—for any trait T, and for the trait Integer.

Using renaming, a set of integers can be obtained from the trait SetTrait shown in
Fig. 14.1 as follows:

includes SetTrait(S, int for E)

In addition, the operator subset can be replaced by the customary mathematical symbol ⊆,
using the following statement.

includes SetTrait(S, int for E)(⊆ for subset)

14

322 14 Larch

Fig. 14.4 Specifications for
ordering relations

Preorder(�, T): trait
includes Boolean
introduces

_ � _ : T, T → Bool
asserts

∀ x, y, z : T
x � x
x � y ∧ y � z ⇒ x � z

Poset(T): trait
includes Boolean
introduces

_ < _ : T, T → Bool
_ ≤ _ : T, T → Bool

asserts
∀ x, y, z : T

¬ (x < x)
x ≤ x
x < y ∧ y ≤ z ⇒ x < z
x ≤ y ∧ y < z ⇒ x < z
x ≤ y ∧ y ≤ x == x = y
x ≤ z == x < z ∨ x = z

implies
x ≤ y ∧ y ≤ z ⇒ x ≤ z
Preorder(≤ for �)

TotalOrder(T): trait
includes Poset
asserts

∀ x, y : T
x < y ∨ y ≤ x

In general, the syntax for renaming is Tr(x for y), denoting the trait Tr in which every oc-
currence of y is replaced by x, where y is a sort or an operator. The renaming is propagated
in the signature of Tr to the operators where y appears. The theory of a trait is not changed
due to renaming, because the theory is a logical consequence of the assertions in the trait.

14.2.5
Stating Checkable Properties

An LSL trait is a precise formal description of a specifier’s intended object, that is, an
abstract structure or an abstract data type. When an object is not properly conceptualized,

14.2 LSL—Larch Shared Language 323

its specification may not faithfully reflect the intended behavior of the object. An LSL trait,
which is syntactically correct, may have semantic errors. These errors cannot be detected
in the way that programs are debugged, for LSL traits cannot be executed. Consequently,
specifiers are provided with LP, the Larch Proof assistant, using which errors in LSL traits
can be debugged. Nevertheless, there is no basis against which correctness of an LSL trait
can be established.

To gain confidence in LSL traits, the trait should be checked for the satisfaction of
intended properties. Three important properties that should be checked are consistency,
completeness, and theory containment.

14.2.5.1
Consistency

An LSL trait is consistent if and only if its theory does not contain a contradiction; that
is, the theory must not contain the equation true == false. In general, consistency is hard
to prove and is undecidable. The inconsistency of a trait is often much easier to detect.
When an inconsistency is detected the trait must be debugged for errors. However, when
no inconsistency is detected, we cannot assume the specification to be consistent.

14.2.5.2
Theory Containment

If a property which is not explicitly stated as an equation can be shown to be a logical
consequence of the equations, then that property is contained in the theory of the trait. LSL
traits can be augmented with checkable claims in order to verify whether intended conse-
quences actually follow from the axioms of a trait. These checkable claims are specified in
the form of assertions which are included in the implies clause of the trait and which can
be verified using LP. For example, the property

∀s, t : S,x : E • subset(s, t) ⇒ ((member(x, s) ⇒ member(x, t))

can be claimed for the trait SetTrait shown in Fig. 14.1. The assertion can be added to
the trait in the implies clause. Proving this claim increases the confidence in the theory
predictive capability of the trait, and helps to establish other properties in traits that include
this trait. The implies clause can be used to specify a theory with equations, generator
clauses, partitioning clauses, and references to other traits.

14.2.5.3
Completeness

A theory is complete if every sentence in the theory can be reduced to either true or
false. LSL trait theories need not be complete—sometimes, some characteristics of cer-
tain operators may be deliberately omitted. Such intentional incompleteness may provide

14

324 14 Larch

Fig. 14.5 LSL trait for stack StackTrait(E, Stack): trait
introduces

new: → Stack
push: Stack, E → Stack
top: Stack → E
pop: Stack → Stack
isEmpty: Stack → Bool

asserts
Stack generated by new, push
Stack partitioned by top, pop, isEmpty
∀ s: Stack, e: E

top(push(s,e)) == e
pop(push(s,e)) == s
isEmpty(new)
¬ isEmpty(push(s,e))

implies
converts top, pop, isEmpty

exempting top(new), pop(new)

some flexibility in writing interface specifications. However, it is useful to state verifiable
claims about completeness; this is done in the converts clause. The claim converts top,
pop, isEmpty states that the equations in Fig. 14.5 fully define the operators top, pop, and
isEmpty of StackTrait. However, the meaning of the terms pop(new), and top(new) are not
defined. The exempting clause documents the absence of equations for these terms; that
is, it lists the terms that are not claimed to be defined. The converts and exempting clauses
together provide a means of stating that an LSL trait is sufficiently complete. For the Set-
Trait example, intuitively, the converts and exempting clauses assert that the specification
of each of the operators delete, union, member, and subset is complete in the sense that
any term involving these operators can be reduced to a term not involving these opera-
tors. The only exception to this rule is the term delete(x,emptyset). For example, any term t
whose outermost operator is unionn can be reduced to a term s involving only the operators
emptyset and insert, provided that t has no subterms of the form delete(x,emptyset).

14.2.6
Stating Assumptions

Recall that in VDM every operation has pre- and postconditions. The satisfaction of the
precondition is essential for invoking the operation. In Larch we document the precondition
for proper usage of a trait with the assumes clause. Assumptions stated in assumes clause
must be discharged by a formal proof.

The specification of a stack given in Fig. 14.5 is quite general. It can be specialized to
specify an integer stack by renaming the sorts in its definition. For example, the specifica-
tion

14.2 LSL—Larch Shared Language 325

RStackTrait(E, Stack): trait
includes StackTrait, Integer
introduces

count: E, Stack → Int
≤: E, E → Bool

asserts
∀ s: Stack, a,b: E

count(a, new) == 0
count (a, insert(b, s)) == count(s) + (if b ≤ a then 1 else 0)

Fig. 14.6 A specialization of stack

NStackTrait(E, Stack): trait
assumes Totalorder(E)
includes StackTrait, Integer
introduces

count: E, Stack → Int
asserts

∀ s: Stack, a,b: E
count(a, new) == 0
count (a, insert(b,s)) == count(s) + (if b ≤ a then 1 else 0)

implies
∀ a,b:E, s:Stack
a ≤ b ⇒ count(a,s) ≤ count(b,s)

Fig. 14.7 A specialization of stack with assumption clause

IntegerStack : trait

includes Integer,StackTrait(Int,Stack)

introduces a stack of integers. The operators defined in the Integer trait are quite distinct
from the operators in StackTrait. Consequently, there is no inheritance of integer properties
in StackTrait. Therefore, StackTrait(Int, Stack) needs no assumptions on integers.

Let us consider the specification of a stack of integers in which the elements who do not
exceed the integer on top of the stack is of interest. This requires an extension to StackTrait
dealing with integers and an operator for counting the number of elements in the stack hav-
ing the stated property. Writing the specification as shown in Fig. 14.6, the operator ≤ is
used in defining count; however, the properties of ≤ are not stated within the specification.
We should not define ≤ within RstackTrait, because the properties would be required by the
trait that includes RstackTrait. The properties of the operator ≤ are “assumed” in Rstack-
Trait, with an explicit statement in the assumes clause. The specification in Fig. 14.7 states
in the assumes clause that the theory of TotalOrder(E) is assumed. Since TotalOrder(E),
shown in Fig. 14.4, defines the properties of ≤ through its includes clause and its equa-
tion, we do not have to introduce the operator ≤ in NstackTrait. With the assumption that

14

326 14 Larch

E is totally ordered, one can state and prove properties for the operator count; for example,
count is monotonic in its first argument. This is stated in the implies clause.

The theory of the trait NStackTrait is the same as if Totalorder was included in the
trait. The only difference is that whenever NStackTrait is included or assumed in another
trait, the assumption on Totalorder must be discharged with a proof. For example, consider
defining another stack trait which includes NStackTrait and introduces the operator height,
which counts the number of elements in the stack. Intuitively, it is clear that

∀a : E, s : Stack, count(a, s) ≤ height(s)

is true. The proof of this claim requires discharging the proof obligation on the assumed
total order property for integers. Proofs become simpler when included traits include as-
sumed traits—that is, no separate proof is necessary. For example, using the trait Totalorder
from Guttag and Horning [6], we notice that it is also used in the trait Integer which is in-
cluded in NStack(E,Stack), and can therefore discharge the proof syntactically. In other
situations, LP can be used to discharge the proof.

14.2.7
Operator Overloading

In mathematics, operators such =, ≤, and + are often used to denote operations on differ-
ent kinds of objects: for example, A + B, where A and B are integers, reals, rationals, or
matrices. The operators have precise meanings in their contexts of usage. One of the advan-
tages of operator overloading is to avoid excessive proliferation of operators, as this may
limit the extent of understanding and clarity. LSL has several built-in overloaded operators
and operators can also be overloaded by users.

The operators =, �=, and if__then__else are built-in and overloaded; they have consis-
tent meaning in all traits where they can be used. Users can introduce overloaded operators
in the introduces clause and provide equations in the asserts clause to disambiguate their
meaning. For example, consider the trait Rational shown in Fig. 14.8. The operator ≤ is
introduced in the introduces clause; it takes two rational numbers and returns true or false.
Equation 3 in the asserts clause defines the ordering on rationals. The symbol ≤ on the
right-hand side of the equation relates integers. The context of usage unambiguously pro-
vides the meaning of ≤. However, it is also possible to state the context in assertions: for
example, equation 3 could be written as

(r ≤ s) : Rat == (deno(r) �= 0) ∧
(deno(s) �= 0)∧
((nume(r) ∗ deno(s)) : Int ≤ (nume(s) ∧ deno(r)) : Int

The operators +, −, and ∗ can be overloaded to define addition, subtraction, and multipli-
cation, respectively, for rationals.

14.2 LSL—Larch Shared Language 327

Fig. 14.8 LSL trait for
rational

Rational(Int,Int): trait
includes Integer, TotalOrder(Int)
introduces

cons: Int, Int → Rat
deno: Rat → Int
nume: Rat → Int
≤ : Rat, Rat → Bool

asserts
∀ x, y : Int, r, s : Rat

deno(cons(x,y)) == y
nume(cons(x,y)) == x
r ≤ s == (deno(r) �= 0) ∧ (deno(s) �= 0) ∧
(nume(r) * deno(s) ≤ nume(s) * deno(r))

implies
TotalOrder(Rat)
exempting ∀ r : Rat
deno(r)=0

Fig. 14.9 An enumeration
trait

Flavor: trait
introduces

chocolate: → Flavor
vanilla: → Flavor
strawberry: → Flavor

asserts
chocolate �= vanilla
chocolate �= strawberry
vanilla �= strawberry
chocolate ≤ vanilla ≤ strawberry

14.2.8
In-line Traits

LSL provides a shorthand for writing traits in-line. Three such examples are enumerations,
tuples, and union. The trait Flavor shown in Fig. 14.9 defines three distinct constants, and
an operator to enumerate them. This trait can be succinctly defined as

Flavor enumeration of chocolate, vanilla, strawberry

The tuple notation is similar to the notation used for the fixed-size record type in Pascal. It
introduces fixed-size tuples of a sort. The Point trait in Fig. 14.10 introduces a tuple with
three fields. There are two operators associated with each field, one for extracting the field
from the tuple, and another to change the value of the field. A shorthand definition for this
trait is

Point tuple of xcoord, ycoord, zcoord: Int

14

328 14 Larch

Fig. 14.10 A tuple trait Point: trait
introduces

[_,_,_]: Int, Int, Int → Point
xcoord: Point → Int
ycoord: Point → Int
zcoord: Point → Int

asserts
Point generated by [_,_,_]
Point partitioned by xcoord, ycoord, zcoord

∀ x,y,z: Int, p: Point
[x,y,z].xcoord == x
[x,y,z].ycoord == y
[x,y,z].zcoord == z

TransModes: trait
includes

Mode_tag enumeration of atomic_trans, long_trans
introduces

atomic_trans: A → TransModes
long_trans: L → TransModes
_.atomic_trans: TransModes → A
_.long_trans: TransModes → L
tag: Transmodes → Mode_tag

asserts
TransModes generated by atomic_trans, long_trans
TransModes partitioned by .atomic_trans, .long_trans

∀ t:A, T:L
atomic_trans(t).atomic_trans == t
long_trans(T).long_trans == T
tag(atomic_trans(t)) == atomic_trans
tag(long_trans(T)) == long_trans

Fig. 14.11 A union trait

The union shorthand introduces a discriminated union of two sorts, as in the definition
of union types in some programming languages. For a variable of union sort, we need a
tag to identify its individual sort. Consequently, the union sort is finitely generated by the
components of an enumerated sort. The sort TransModes in Fig. 14.11 is the union of two
sorts A and L. The name atomic_trans of sort A and the name long_trans of sort L serve
as the two field names for the sort TransModes. That is, a transaction type TransModes is
either an atomic transaction or a long transaction. A shorthand definition for this trait is

TransModes union of atom_trans: A, long_trans: L

14.3 More LSL Examples 329

String(E, C): trait
includes List
introduces

__ [__] : C, Int → E
prefix : C, Int → C
removePrefix : C, Int → C
substring : C, Int, Int → C

asserts
∀ e : E, s : C, i, n : Int

¬(member(e, emptyset))
tail(empty) == empty
init(empty) == empty
s[0] == head(s)
n ≥ 0 ⇒ s[n + 1] = tail(s)[n]
prefix(empty, n) == empty
prefix(s, 0) == empty
n ≥ 0 ⇒ prefix(e � s, n + 1) = e � prefix(s, n)
removePrefix(s, 0) == s
n ≥ 0 ⇒ removePrefix(s, n + 1) = removePrefix (tail(s), n)
substring(s, 0, n) == prefix(s, n)
i ≥ 0 ⇒ substring(s, i + 1, n) = substring(tail(s), i, n)

implies
IndexOp(� for insert)
C partitioned by len, __ [__]

converts tail, init

Fig. 14.12 LSL trait for string

14.3
More LSL Examples

We discuss four LSL trait examples to illustrate the features of Larch shared tier. The
first example develops a theory of files; the second builds a theory of iterators which can
be used in specifying different C++ collection classes; the last two examples are related
to internationalization issues in software engineering, wherein accommodating different
cultural conventions for representing and dealing with time and date are addressed.

These examples require the LSL library trait String given in Guttag and Horning [6];
for reference, it is reproduced in Fig. 14.12. The trait String models a string as a list of
elements. The sort of string is C, and the sort for elements is E. The trait implicitly includes
the properties of the sort Int, and includes the trait List shown in Fig. 14.14, in which the
operators empty, tail, init, head, and � are defined. The operator � inserts an element to
the front of a given list; the rest of the operators have meanings similar to the list operators
defined in Chap. 5. The operator __ [__] extracts the element from a given position of a
string; the other operations have their intuitive meanings.

14

330 14 Larch

File: trait
includes String(Byte, Data)
File tuple of name:Name, data:Data, mode:Mode
Openfile tuple of file:File, data:Data, mode:Mode, fpointer:Int
Mode enumeration of READ, WRITE, READ_WRITE
readeffect tuple of ofile: OpenFile, reddata:Data
introduces

create: Name, Mode → File
open: File, Mode → OpenFile
flush: OpenFile → OpenFile
error: OpenFile → Bool
read: OpenFile, Int, Int → readeffect
write: OpenFile, Data, Int → OpenFile

asserts
∀ f:File, opf:OpenFile, mode, m:Mode, nm:Name, i, p:Int, dat:Data

create(nm, m) == [nm, empty, m]
open(f, READ) == [f, f.data, READ, 1]
open(f, READ_WRITE) == [f, f.data, READ_WRITE, 1]
open(f, WRITE) == [f, f.data, WRITE, len(f.data)]
¬(error(flush(opf))) ⇒ (opf.data = opf.file.data)
read(opf, i, p).reddata == prefix(removePrefix(opf.data, p), i)
read(opf, i, p).ofile == [opf.file, opf.data, opf.mode, p + i]
write(opf, dat, p) == [opf.file, prefix(opf.data, p) ‖ dat ‖
removePrefix(opf.data, p + len(dat)), opf.mode,
p + len(dat)), opf.mode, p+len(dat)]

implies
∀ opf:OpenFile, dat : Data, i, p : Int
read(write(opf, dat, p), len(dat), p).reddata == dat

converts create, open
exempting
∀ nm : Name, f : File, dat : Data, p: Int
write(open(f, READ), dat, p),
open(create(nm,READ), WRITE),
open(create(nm, READ), READ_WRITE)

Fig. 14.13 LSL Trait for file

14.3.1
File

The trait in Fig. 14.13 specifies properties common to text files. A text file in disk storage,
or in memory can be modeled as a string of bytes. We consider Byte as a basic abstrac-
tion to model fixed-length sequence of characters. The includes clause mentions the trait
String with two parameters of the sorts Byte, and Data as a string of bytes to abstract file
data. A disk file is described by tuple trait File with three fields name: Name, data:Data,
mode:Mode. The trait Mode is defined by the enumeration of three distinct constants
READ, WRITE, READ_WRITE. The abstraction of a file in memory is introduced in the

14.3 More LSL Examples 331

trait Openfile, as a tuple with four fields: file refers to the disk file, data refers to the contents
of the file, mode refers to the mode enumeration, and fpointer corresponds to a position in
the file. The trait readeffect abstracts the effect of reading a file in memory, by resetting the
position in the file to the last byte read. The sorts and operations are:

• File on disk corresponds to the sort File.
• File in memory corresponds to the sort Openfile.
• The data in a file is abstracted as a string of bytes, Data.
• When a file is opened, the data in the file in memory is a copy of the data in the corre-

sponding disk file.
• create—creates a disk file.
• open—opens a disk file in memory with its proper mode set.
• flush—updates a disk file with the data from the corresponding memory file.
• error—returns true if an I/O error occurred in a memory file.
• read—describes the effect of reading a file in memory.
• write—describes the effect of writing a file from memory on to disk.

14.3.1.1
Iterator

An iterator is an object associated with a list, a basic container type. By specializing a list
and its iterator, one can obtain iterators for hash-dictionaries, bags, and tree-dictionaries.
The goal of this example is to construct a theory of iterators. We first extract a simple
theory of finite lists from the theory given in Guttag and Horning [6]; we then construct a
richer theory of lists; finally, we develop a theory of iterators associated with this list type.
The first two steps are motivated by the need for iterator operations in C++ classes in the
Rogue Wave library [10].

List Trait Figure 14.14 shows the LSL trait for a finite list. It has operations to construct
a list by concatenation, and by adding elements at the front or rear of the list. The element
at one end can be extracted and the list following this element can be identified.

Enriching List Trait The trait ListOp shown in Fig. 14.15 includes List(E,C) and in-
troduces the following additional operations:

• isequal—compares two lists for identical elements occurring in the same order.
• movepos—removes a number of elements at one end of the list and returns the rest of

the list; this operation is equivalent to a finite number of successive applications of the
tail operation;

• occurrencesof —determines the number of occurrences of an element in a given list;
• findonlist—returns true if a given element is in the given list, otherwise returns false;
• lastnode—returns the list containing the last node of a given list;
• tailrem—returns the list after removing a given number of elements from its tail;
• sublist—extracts a sublist from the given list;

14

332 14 Larch

Fig. 14.14 An LSL trait for
finite lists

List (E,C): trait
includes Integer
introduces

empty: → C
�: E, C → C
�: C, E → C
head: C → E
tail: C → C
len: C → Int
{_}: E → C
‖: C, C → C

asserts
C generated by empty, �, ‖
C partitioned by len, head, tail
∀e, e1, e2 : E,c, c1, c2 : C

e � empty == empty � e
e1 � (c � e2) == (e1 � c) � e2
head(e � c) == e
tail(e � c) == c
len(empty) == 0
len(e � c) == 1 + len(c)
{e} == empty � e
c ‖ empty == c
(e � c1) ‖ c2 == e � (c1 ‖ c2)

implies
∀ c: C
c = empty ∨ (c = head(c) � tail(c))

converts head, tail, len, ‖, {_}
exempting head(empty), tail(empty)

Iterator The iterator is represented as a tuple composed of the fields Col,Head, where
Col is a pointer to the collection that is to be iterated, and Head points to the current item
in the collection. Consequently, the iterator is modeled as a pair of lists. The following
operations are provided:

• create—returns an iterator to traverse the list in the Col field; the Head field is undefined.
• sizecol—returns the number of items in the collection Col.
• moveiterator—returns the iterator after moving Head by a specified number of posi-

tions; when Head is undefined or when the number of positions is greater than the num-
ber of unvisited elements in the list, the result is undefined.

• reset—returns the iterator as it was at its creation time.
• itemat—returns the element in the list Col at the current position pointed to by Head.
• isfirst—returns true if the current element, as pointed to by Head, is the first element of

Col.
• islast—returns true if the current element, as pointed to by Head is the last element of

the list Col.
• first—returns the iterator with Head pointing to the first element of the list Col.

14.3 More LSL Examples 333

ListOp(E, C): trait
includes List(E, C)
introduces

isequal: C, C → Bool
movepos: C, Int → C
occurrencesof: C, E → Int
findonlist: C, E → Bool
lastnode: C → C
sublist: C, Int, Int → C
tailrem: C, Int → C

asserts
∀c1, c2 : C,n,n1, n2 : Int, e, e1, e2 : E

isequal(empty, empty)
isequal(e1 � c1, e2 � c2) == e1 = e2 ∧ isequal(c1, c2)
movepos(c1, n) == if n = 0 then c1

else if n > 0 ∧ n ≤ len(c1) then
movepos(tail(c1), n − 1)

else empty
occurrencesof(empty, e) == 0
occurrencesof(e1 � c, e) == if e = e1 then 1 + occurrencesof(c, e)

else occurrencesof(c, e)
¬ findonlist(empty, e)
findonlist(e1 � c, e) == (e1 = e) ∨findonlist(c, e)
lastnode(c) == movepos(c, len(c) − 1)
tailrem(empty, n) == empty
tailrem(c, 0) == c
tailrem(c � e, n) == tailrem(c, n − 1)
sublist(c, n1, n2) == if (n1 + n2) ≤ len(c) then

tailrem(movepos(c, n1 − 1), n2)
else empty

Fig. 14.15 LSL trait for an enrichment of list trait

• last—returns the iterator with Head pointing to the last element of the list Col.
• nextitem—returns the iterator with Head pointing to the next item in the list Col, equal

to a given value.

14.3.2
Date and Zone

Database and network programs use date and zone types. A theory for these data types is
described in the traits Date, and Zone. The trait Zone shown in Fig. 14.21 defines the stan-
dard and daylight saving zones and their relationship. The trait Date shown in Figs. 14.19

14

334 14 Larch

Iterator(Iter, C, E): trait
includes ListOp(E, C)
Iter tuple of Col:C, Head:C
introduces

create: C → Iter
sizecol: Iter → Int
moveiterator: Iter, Int → Iter
reset: Iter → Iter
itemat: Iter → E
UND: → E
isfirst: Iter → Bool
islast: Iter → Bool
first: Iter → Iter
last: Iter → Iter
nextitem: Iter, E → Iter
remove: Iter → Iter
removenext: Iter, E → Iter
insertat: Iter, E → Iter

asserts
∀ i:Iter, c:C, n:Int, e:E

create(c).Head == empty
create(c).Col == c
reset(i).Head == empty
reset(i).Col == i.Col
moveiterator(i,0) == i
n > 0 ⇒ (moveiterator(i,n).Head =

(if len(i.Head) = 0 ∧ len(i.Col) > 0
then movpos(i.Col, n-1)

else if len(i.Col) = 0 then empty
else movepos(i.Head,n))

n < 0 ⇒ (moveiterator(i,n).Head =
(if len(i.Head) = 0 ∧ len(i.Col) > 0
then moveiterator(last(i), n-1).Head

else if isequal(i.Head, i.Col) ∧ len(i.Col) = 0 then empty
else if len(i.Col) = 0 then empty
else if ((-n) ≤ (len(i.Col) - len(i.Head))) then

movepos(i.Col, (len(i.Col) - len(i.Head)) + n)
else empty))

Fig. 14.16 An LSL trait for iterators—Part I

and 14.20 models the dates in a Julian calendar, and operations on the dates. A date is ab-
stracted by a fixed length tuple of Day, Month, Year of type Int. Constraints on the fields,
converting the numeric value of a month to a string to denote its name, and the relationship

14.3 More LSL Examples 335

moveiterator(i,n).Col == i.Col
itemat(i) == head(i.Head)
sizecol(i) == len(i.Col)
isfirst(i) == isequal(i.Col, i.Head)
islast(i) == isequal(tail(i.Head),empty)
first(i).Col == i.Col
first(i).Head == i.Col
last(i).Col == i.Col
last(i).Head == lastnode(i.Col)
nextitem(i,e).Head == if (itemat(moveiterator(i,1) = e

∨ itemat(moveiterator(i,1)) = UND) then
moveiterator(i,1).Head

else nextitem(moveiterator(i,1),e).Head
nextitem(i,e).Col == i.Col
i.Head = empty ⇒ itemat(i) = UND
remove(i).Col == sublist(i.Col, (len(i.Col) - len(i.Head))) ‖ tail(i.Head)
remove(i).Head == movepos(remove(i).Col, (len(i) - len(i.Head) - 1))
removenext(i).Head == remove(nextitem(i,e))
insertat(i,e).Col == (sublist(i.Col, len(i.Col) - len(i.Head))) �) ‖ i.Head
insertat(i,e).Head == movepos(remove(i).Col, (len(i.Col) - len(i.Head)))

Fig. 14.17 An LSL trait for iterators—Part II

Fig. 14.18 LSL Trait for local
format

Locale: trait
includes Integer
introduces

Localformat: → Int

between number of days and month are specified in equations shown in Fig. 14.20. The
formatting convention for date is abstracted in the trait Locale shown in Fig. 14.18. Date
can also be represented as a natural number, the number of days elapsed since startDay.
The operations in Date have the following significance.

• today—constructor; creates today’s date.
• date—constructor; composes a date from the given values.
• totalDays—returns the number of days elapsed since startDay until the given date.
• dayConvert—converts the given number of days into date.
• isValid—returns true if the given date is valid.
• week_day—determines which day of the week the given date is.
• startDay—defines which day of the week is the starting date.
• leap—returns true if the given year is a leap year.
• ConvertY—determines the number of days elapsed since startDay, including the current

day.

14

336 14 Larch

• ConvertM—determines the number of days elapsed in a given year up to the given
month, including the given month.

• ConvertD—determines which day of the month the given date is.
• yConvert—converts a given year into the number of days, that is, 366 for a leap year,

and 365 otherwise.
• mConvert—determines the number of days in the given month during the given year.
• dYconvert—converts the given day in a year into the corresponding date; for example,

32 corresponds to February 1.
• dtConvert—converts the given date into the number of days elapsed in the given year.
• validDay—returns true if the given day is valid.
• validMonth—returns true if the given month is valid.
• validYear—returns true if the given year is valid.
• date_string—converts the given date into a string.
• string_date—converts the given string into a date.
• name_month—converts the given name of the month into the corresponding number.
• month_name—converts the given number corresponding to a month into its name.
• name_date—converts the given name of a day into the corresponding number.
• day_name—converts the given number corresponding to a day into its name.
• toLocale—transforms the given date into the given locale format.

The trait Zone in Fig. 14.21 abstracts the time zones the world as a tuple with four fields.
The first two fields assign names to the zone and the Daylight Saving Time (DST) of that
zone; the next two fields refer to the standard time offset and the DST offset.

• standardOffset—an offset from the Greenwich time with no daylight saving time cor-
rection.

• DSTOffset—an offset from the Greenwich time with daylight saving time correction.
• utc—Greenwich time zone.
• local—local time zone with respect to the daylight saving time, if there is any.
• standard—local time zone without daylight saving time correction.

14.3.3
Time

Time stamping information is mandatory for legal contracts and communication protocols.
The LSL trait Time provides necessary abstractions for programming tasks in such applica-
tions. Time is abstracted as observed according to daylight saving conventions in the Julian
calendar. We have abstracted the notion of time zones and dates in the previous example.
These traits are included in the includes clause.

The sort Time shown in Fig. 14.22, models time as a tuple of date, hour, minute, second,
and zone. The local convention for stating time is abstracted in the trait Locale. From the
local format, time is converted to an integer, and converted again to the structure imposed
by the sort Time. In order to do this conversion, we need to know the origin of time.

14.3 More LSL Examples 337

Date : trait
includes Boolean, Integer, Locale, Zone
Weekday enumeration of mon, tue, wed, thu, fri, sat, sun
Date tuple of Day, Month, Year : Int
introduces

today : → Date
date : Int, Int, Int → Date
totalDays : Date → Int
dayConvert : Int → Date
isValid : Date → Bool
week_day : Date → Int
startDay : → Int
leap : Int → Bool
ConvertY : Int → Int
ConvertM : Int, Int → Int
ConvertD : Int → Int
yConvert : Int → Int
mConvert : Int, Int → Int
dYconvert : Int, Int → Date
dtConvert : Date → Int
validDay : Int → Bool
validMonth : Int → Bool
validYear : Int → Bool
date_string : Date → Str
string_date : Str → Date
name_month : Str → Int
month_name : Int → Str
name_day : Str → Int
day_name : Int → Str
toLocale : Date, Locale → Date
min : Date, Date → Date
max : Date, Date → Date

Fig. 14.19 LSL trait for date—Part I

This origin is fixed at midnight of startDay, the abstraction of the first day of the last
millennium. The abstraction for Daylight Saving Time depends on the Zone and Date
abstractions. The operations introduced in Time are the following:

• makeStr—returns a string representation of a given time according to the format speci-
fied by the Locale parameter.

• makeTime—converts a given string to time.
• toZone—converts the given time to time in a different zone.
• observedDST—returns AHEAD if the clock is changed forward;
• observedDST—returns BEHIND if the clock is changed backward.

14

338 14 Larch

asserts
Date generated by date
∀ d: Int, m:Int, y:Int, dt, dt_1:Date, dn : Int

ConvertY(dt.Year) == if (dt.Year = 1) then yConvert(dt.Year)
else yConvert(dt.Year) + ConvertY(dt.Year – 1)

mConvert(m,y) == if (m = 1 ∨ m = 3 ∨ m = 5 ∨ m = 7 ∨
m = 8 ∨ m = 10 ∨ m = 12) then 31
else if (m = 4 ∨ m = 6 ∨ m = 9 ∨ m = 11) then 30
else if leap(y) then 29 else 28

yConvert(y) == if leap(y) then 366 else 365
ConvertM(m, y) == if m = 1 then 31

else mConvert(m, y) + ConvertM(m – 1, y)
dtConvert(dt) == ConvertM(dt.Month – 1, dt.Year) + ConvertD(dt.Day)
validDay(dt.Day) == dt.Day ≤ 31 ∧ dt.Day > 0
validMonth(dt.Month) == dt.Month ≤ 12 ∧ dt.Month > 0
validYear(dt.Year) == dt.Year > 1900
leap(y) == if (y = 1900) then true

else if (y > 1903) then leap(y – 4) else false
week_day(dt) == mod(totalDays(dt)+ startDay, 7)
totalDays(dt) = ConvertY(dt.Year – 1) +

ConvertM(dt.Month – 1, dt.Year) + ConvertD(dt.Day)
isValid(dt) == dt.Month = 1 ∨ dt.Month = 3 ∨ dt.Month = 5 ∨

dt.Month = 7 ∨ dt.Month = 8 ∨ dt.Month = 10 ∨ dt.Month = 12 ∧
dt.Day > 0 ∧ dt.Day ≤ 31

isValid(dt) == dt.Month = 4 ∨ dt.Month = 6 ∨ dt.Month = 9 ∨
dt.Month = 11 ∧ dt.Day > 0 ∧ dt.Day ≤ 30

isValid(dt) == leap(dt.Year) ∧ dt.Day > 0 ∧ dt.Day ≤ 29
∧ dt.Month = 2

isValid(dt) == ¬ leap(dt.Year) ∧ dt.Day > 0 ∧ dt.Day ≤ 28 ∧
dt.Month = 2

min(dt, dt_1) == if totalDays(dt) > totalDays(dt_1) then dt_1 else dt
max(dt, dt_1) == if totalDays(dt) < totalDays(dt_1 then dt_1 else dt
d < mConvert(1, y) ⇒ date(d, 1, y) = dYconvert(d, y)
d < mConvert(m, y) ⇒ date(d – mConvert(m – 1, y), m, y) =

dYconvert(d, y)
implies

∀d_1:Date, d, m, y:Int
validMonth(2) ⇒ ¬ validDay(30)

Fig. 14.20 LSL trait for date—Part II

• observedDST—returns NON if there is no daylight saving clock change in the given
zone for a given year.

• beginDST—returns the time when clock is changed forward.

14.4 Larch/C++: A Larch Interface Specification Language for C++ 339

Zone : trait
includes Integer, String
Zone tuple of standardName, DSTName : String,

standardOffset, DSTOffset : Int
introduces

utc : → Zone
local : → Zone
standard : → Zone
daylightObserved : Zone → Bool

asserts
Zone partitioned by daylightObserved
∀ zn : Zone

utc.DSTOffset == 0
utc.standardOffset == 0
¬ daylightObserved(local) ⇒ local.DSTOffset = standard.DSTOffset
local.standardOffset == standard.standardOffset
¬ daylightObserved(zn) ⇒ zn.DSTOffset = zn.standardOffset
¬ daylightObserved(standard)

Fig. 14.21 LSL trait for zone

• endDST—returns the time when clock is changed backward.
• convert—takes a time representation and converts it to number of seconds.
• reconvert—takes a number of seconds and converts it to a valid time expression.

Figure 14.22 shows the signature of the trait Time, and Fig. 14.23 shows the equations
constraining its operations.

14.4
Larch/C++: A Larch Interface Specification Language for C++

An interface is the place where two independent systems meet and communicate with
each other. An interface specification defines an interface between program components.
Larch/C++ is a formal specification language for specifying C++ program components.
A Larch/C++ specification suggests how to use C++ program modules from within C++
programs. The version of Larch/C++ discussed in this chapter is based on the work of Gary
Leavens [8].

An interface specification is written from the point of view of clients who will use the
module. A C++ class has three interfaces: public, protected, and private. Figure 14.24
shows the public, protected, and private interfaces for a simple module implementing a
data structure for time.

A public interface is used by all clients, including subclasses, member functions of the
class, and friends. A public interface of a class Y derived from the base class X under a

14

340 14 Larch

Time : trait
includes TotalOrder(Time), Date, Integer, Locale, Zone, String(E for E, Str for C)
Time tuple of date:Date, hour, minute, second:Int, zone: Zone
DSTmethod enumeration of AHEAD, BEHIND, NON
introduces

current_time : → Time
convert : Time → Int
reconvert : Int → Time
suc : Time → Time
pred : Time → Time
inc : Time, Int→ Time
dec : Time, Int → Time
max : Time, Time → ime
min : Time, Time → Time
≤ : Time, Time → Bool
≥ : Time, Time → Bool
makeStr : Time, Locale → Str
makeTime : Str, Local → Time
isValid : Time →Bool
toZone : Time, Zone → Time
observedDST : Year, Zone → DSTmethod
beginDST : Year, Zone → Time
endDST : Year, Zone → Time

Fig. 14.22 LSL trait for time—Part I

public subclass relationship includes the public members of X; however, the private and
protected members of X maintain their access level in Y . For example, the public members
of display are also the public members of time; however, the private and protected
members of display maintain their access level in time.

If a class Y is derived from the base class X under a protected subclass relationship,
then the protected interface of class Y consists of the protected members of class Y and
all public and protected members of class X. This interface can be used only by member
functions of the class, friends and subclasses of this class. The public and private members
of date become protected members of time; however, the private members of date retain
their access level in time.

If a class Y is derived from the base class X under a private subclass relationship, then
the private interface of class Y consists of the private members of class Y and all the
members of class X. For example, all members of class zone become private members of
the class time. A private interface can be accessed by member functions and friends only.

Documenting the functions in the public interface of a C++ module provides a clean
separation between the interface and the implementation of the module. Detailed design
decisions can be captured by giving specifications for protected and private interfaces.
For example, the specification of the protected interface is useful for programs based on
subclasses. However, it is very important to specify public interfaces so that the behavior

14.4 Larch/C++: A Larch Interface Specification Language for C++ 341

asserts
Time partitioned by convert
∀ t, t1: Time, d: Date, y: Year, h , m , s: Int, zn,zn1: Zone
i : Int, locale : Locale

isValid(current_time)
current_time.zone == local
isValid(t) == isValid(t.date) ∧ convert(t) > 0
convert(t) == (3600 * 24 * totalDays (t.date)) + (3600 * t.hour) +

(60 * t.minute) + t.second
reconvert(convert(t)) == t
suc(t) == reconvert((convert(t) + 1))
pred(t) == reconvert((convert(t) – 1))
inc(t, i) == reconvert((convert(t) + i))
dec(t, i) == reconvert(convert(t) – i)
t ≥ t1 == convert(t) ≥ convert(t1)
t ≤ t1 == convert(t) ≤ convert(t1)
max(t, t1) = t == t ≥ t1

min(t ,t1) = t == t ≤ t1

toZone(t, zn1).zone == zn1

toZone(toZone(t, zn), t.zone) == t
makeTime(makeStr(t, locale), locale) == t
(observedDST(y, zn) = AHEAD) ⇒

convert(beginDST(y, zn)) < convert(endDST(y,zn))
(observedDST(y ,zn) = BEHIND) ⇒

convert(beginDST(y, zn)) > convert(endDST(y, zn))
(observedDST(y, zn) = NON) ⇒

beginDST(y, zn) = endDST(y,z n)
implies

∀ t : Time
suc (pred(t)) == t

Fig. 14.23 LSL trait for time—Part II

of public members can be understood independent of the specifications of other interfaces.
Henceforth, we focus on the specification of public members.

14.4.1
Relating Larch/C++ to C++

Each Larch/C++ specification is structured similar to a C++ module. It contains the names
of imported modules, traits used from the LSL tier, and specifications.

14

342 14 Larch

class time public display, protected date, private zone {
public:

time(int hours, int minutes, int seconds);
int get_hour();
int get_min();
int get_sec();
void display();

protected:
set_hour(int hours);
set_min(int minutes);
set_sec(int seconds);

private:
int hr,min,sec;

};

Fig. 14.24 C++ class for time

14.4.1.1
The Formal Model of Objects, Values and States

A C++ object is a region of storage or a reference to a storage location. Every object has
an identifier corresponding to the address of the object. Every variable identifier has a type
and is associated with a location of that type. Values stored in memory locations can be
complex or simple, such as the integer 13 or character ‘x’. Complex values can be:

• values of data structures constructed; for example, date(2,10,1995).
• values of set expressions, such as insert(3, insert(2,emptyset)).
• values of attributes which are themselves objects or references to objects; for example

*X, where * indicates that X is a pointer to an object.

Formal parameters passed by value in Larch/C++ are not objects; only formal parameters
passed by reference are objects. Pointers passed by value are not objects, but may point
to objects. An object in Larch/C++ is either mutable or a constant (immutable). Mutable
objects include variables and reference parameters. Objects of sort S are referred to as
Obj[S]; that is, Obj[S] is the object of sort S.

A formal model of objects in Larch/C++ has been developed by Leavens [8]. The trait
MutableObj describes the formal model of mutable objects by adding the mutability to
the trait TypedObj. The trait TypedObj handles the translation between typed objects and
values, and untyped objects and values used in the trait state. The trait ConstObj gives the
formal model of constant objects. Constant objects are modeled by sorts with names of the
form ConstObj[T], the sort of a constant object containing abstract values of sort T.
Traits of interest for Larch/C++ can be built hierarchically by including these library of
traits. For example, the trait specifying a dictionary of items, where each item is a tuple of
Obj[K] and Obj[V], includes MutableObj(K), MutableObj(V), and Iterator(Iter[item]
for Iter, C, item for E).

14.4 Larch/C++: A Larch Interface Specification Language for C++ 343

States are mappings from objects to values. During execution, a program creates objects
and binds values to them. A state captures the set of objects that exist at a specific point in
time and their bindings. The trait State given by Chen [2] gives the formal model of states
used in Larch/C++. It defines the sort State as a mapping between untyped objects of
sort Obj and abstract values of sort Val.

14.4.1.2
Declarations and Declarators

C++ provides various kinds of declarators for every possible declaration. Larch/C++ has
incorporated these declarators both in syntax and semantics. A declaration in Larch/C++
implies that the C++ module that implements the specification must have a matching decla-
ration. There are some minor differences between the syntax of Larch/C++ for declarators
and that of C++; these have been deliberately included in Larch/C++ to resolve some am-
biguities in the C++ grammar.

In a declaration, a declarator defines a single object, a function or a type, giving it a
name. The semantics of each declarator is described by identifying the sort associated with
the variables in the declaration. For instance, when declaring a global variable of type in-
teger Larch/C++ implicitly uses the LSL trait Integer. A declarator may refine an object’s
type using the following operators:

pointer *
pointer to member :: *
reference &
array []
function ()

A variable declared globally, a formal parameter passed to a function, or a quantified vari-
able is of a specific sort. Larch/C++ uses sort generators to automatically introduce certain
auxiliary sorts for modeling some features of C++. An example of sort generator is Obj,
which can be used to generate the auxiliary sort Obj[int], whose abstract values are
of the sort int. Other sort generators in Larch/C++ include Ptr for pointers, Arr for
arrays, and ConstObj for constructs and for functions. Tables 14.1 and 14.2 give a sum-
mary of the sorts that correspond to global variables, and formal parameters. Larch/C++
describes the semantics of these sorts using LSL traits. In these tables a term x of sort
Ptr[Obj[T]] is a pointer that points to an object that contains an abstract value of
sort T. To obtain the object pointed to, the operator ∗ must be used. Therefore, *x is of the
sort Obj[T]. A term x of sort Arr[Obj[T]] is an array of objects that contain abstract
values of sort T . To obtain any of these objects, the operator [] and the integer index of
the particular object are used. A structure or a union declared globally is an object. Since
C++ parameters are passed by value (except for reference parameters), a structure or a
union passed as a parameter to a function is not an object but simply a tuple of the respec-
tive fields. Thus, in Table 14.1 the sort of the global variable of type IntList is Con-
stObj[IntList] and in Table 14.2 the sort of the formal parameter of type IntList
is Val[IntList].

14

344 14 Larch

Table 14.1 Sorts of global
variables

Declaration Sort of x (x is global)

T x Obj[T]

const T x ConstObj[T]

T & x Obj[T]

const T & x ConstObj[T]

T & const x Obj[T]

T * x Obj[Ptr[Obj[T]]]

const T * x Obj[Ptr[ConstObj[T]]]

T * const x ConstObj[Ptr[Obj[T]]]

T x[3] Arr[Obj[T]]

const T x[3] Arr[ConstObj[T]]

IntList x ConstObj[IntList]

int x(int i) ConstObj[cpp_function]

Table 14.2 Sorts of formal
parameters

Declaration Sort of x (x is formal parameter)

T x T

const T x T

T & x Obj[T]

const T & x ConstObj[T]

T & const x ConstObj[T]

T * x Ptr[Obj[T]]

const T * x Ptr[ConstObj[T]]

T * const x Ptr[Obj[T]]

T x[] Ptr[Obj[T]]

const T x[] Ptr[ConstObj[T]]

IntList x Val[IntList]

14.4.1.3
State Functions

An object can be in an infinite number of states through its life-time. Some states may not
be visible to the client of a class interface; in particular, only a limited number of states
are visible. States that are not visible to a client are internal object states. States that are of
particular interest to the class interface are:

• the pre-state, which maps objects to their values just before the function body is run, but
after parameter passing,

• the post-state, which maps objects to their values at the point of returning from the
function call, or signaling an exception, but before the function parameters go out of
scope.

14.4 Larch/C++: A Larch Interface Specification Language for C++ 345

A state function must be used to obtain an object’s abstract value in a particular state,
provided the object is assigned a value in that state. There are four state functions in
Larch/C++:

• \pre or ^ : gives the abstract value of an object in the pre-state,
• \post or ’ : gives the abstract value of an object in the post-state,
• \any : gives the abstract value of an object without reference to any particular state.

This state function is usually used when the object is immutable with the same abstract
value in both the pre-state and the post-state.

• \obj : is used to explicitly refer to an object itself, instead of its abstract value. It is
only used for emphasis.

State functions can only be applied to terms that denote objects and sorts that are either
Obj[T] or ConstObj[T] for some type T. The sort of any object of type T to which
has been applied one of the three state functions \pre, \post, \any is the same as the
sort of the object but without the leading Obj or ConstObj sort generator. When the
\any state function is applied to an object, the sort of the expression is the same as the
sort of the object. For example, if the sort of x is Obj[int] then the sort of x’ is int
and the sort of x\ any is Obj[int].

A type in the interface layer is associated with a sort in the shared layer. The abstract
values of a type are the equivalence classes of the sort with which the type is associated.
For example, the types int, int[5] are mapped to sorts Int, Arr[Int]. However, there
may be no type corresponding to a sort. For instance, there is no C++ type corresponding
to the sort Obj[int].

14.4.1.4
Larch/C++ Syntax—An Example

Figure 14.25 shows a Larch/C++ interface specification for IntSet, a module implementing
sets of integers. For each IntSet operation, the specification consists of a header and a body.
The header specifies the name of the operation, the names and types of parameters, as well
as the return type; it uses the same notation as used in C++. The body of the specification
consists of an ensures clause as well as optional requires and modifies clauses. We discuss
the body of the specification in the next section.

The link between the IntSet interface specification and the LSL tier specification for
SetTrait is indicated by the clause uses SetTrait (IntSet for Set, int for E). The trait used in
IntSet provides the names and meanings of the operators emptyset, insert, delete, unionn,
member, and subset as well as the meaning of the equality symbol, ‘=’, which are referred
to in the pre- and post-states of the operations of IntSet. The uses clause also specifies
the type to sort mapping which indicates which abstract values over which the objects
involved in the specification range. For example, the abstract values of IntSet objects are
represented by terms of the sort Set. In summary, the uses clause defines the mapping
from interface types to LSL sorts; the interface specification is written based on types and
values; the used trait gives the names and meanings of the operators referred to in the
interface specifications, thus providing meaning to values.

14

346 14 Larch

Fig. 14.25 Larch/C++
specification for integer set

class IntSet
{

uses SetTrait(IntSet for S, int for E);
public:

IntSet() {
modifies self;
ensures self’ = emptyset;

}
∼IntSet() {

modifies self;
ensures trashed(self);

}
void add(int i) {

modifies self;
ensures self’ = insert(i, self ^);

}
void remove(int i) {

requires member(i, self ^);
modifies self;
ensures self’ = delete(i, self ^);

}
IntSet* unionn(IntSet* pS) {

ensures (*result) = unionn(self ^, (*pS)^);
}
bool isIn(int x) {

ensures result = member(x, self ^);
}

};

14.4.2
Function Specification

The specification of a function in the interface documents its behavior. This can be under-
stood without reference to other functions in the interface. The body of a function consists
of a number of clauses. Most function specifications contain requires, modifies, and en-
sures clauses. Other clauses are discussed in the next section.

The requires clause defines constraints on the state and parameters at the instance of
function invocation. From the point of view of clients, a function must be invoked only
when the program state satisfies the predicate in the requires clause. Otherwise, the be-
havior of the function is unconstrained. The modifies and ensures clauses state the behav-
ior of the function when it is invoked properly. If a function is called when the program
state satisfies the predicate in the requires clause, the function will terminate in a state that
satisfies the predicate in the ensures clause. Moreover, the program is allowed to change
only those visible objects listed in the modifies clause. Thus, the behavior of a function is

14.4 Larch/C++: A Larch Interface Specification Language for C++ 347

described relative to two states: the state before the function is entered, called the pre-state,
and the state after the function returns, called the post-state. A requires clause refers to
variables in the pre-state. An ensures clause may refer to variables in both the pre- and the
post-state. The modifies clause states that no location visible to the user other than those
listed in the modifies clause may be changed. All these clauses in the function specification
are optional. Omitting either the requires or the ensures clause is equivalent to including
the predicate true in the corresponding clause. If there is no modifies clause, then nothing
visible to the client may be changed.

When a client wants to use the program module implementing a function, then it is the
responsibility of the client to make the requires clause true in its pre-state. Once this is
done, the client may assume the behavior as expressed in the ensures and modifies clauses
upon termination of the function. The implementation must ensure that this behavior is
achieved.

In Fig. 14.25, the identifier self denotes the object which receives the message corre-
sponding to the specified method. The operations add and remove are allowed to change
the state of an IntSet object, but the operations unionn and isIn are not. The predicate in
requires clause of the remove procedure states that the set object from which the integer
i should be deleted must contain it. The names and meaning of the operators in requires
and ensures clauses come from the LSL trait SetTrait.

It is important to note the following points about a Larch/C++ interface specification:

1. The keyword self is a shorthand for (*(this/any)), which is dereferencing the pointer
value of this in some visible state. The state function any stands for either the pre or the
post state. In C++, this represents a pointer to the receiving object, so that

self = ((∗this/any))

is a name representing a pointer to the receiving object itself in some visible state. The
keyword self can be used only in specifications of member functions.

2. A distinction is made between an object and its value. An identifier, such as x denotes an
object. A superscripted object identifier such as x’ or x ^ denotes a value of x: x’ denotes
the value of x in a post-state, and x ^ denotes the value of x in a pre-state. Thus, the
assertion self’ = self ^ says that the value of object self is not changed by the operation.

3. The modifies clause specifies which objects are changed. The changes are asserted in
the ensures clause.

4. Modules defining abstract data type have constructor and destructor functions. For mod-
ule IntSet, these are IntSet() and ∼IntSet(), respectively. The constructor function cre-
ates an instance of the abstract data type. The destructor function deallocates the storage
space associated with the instance of the abstract data type.

5. The keyword result denotes the result of a function call. The type of function unionn
is a pointer to an IntSet object. The argument to the function is a pointer pS to object
IntSet. The predicate in the ensures clause asserts the union as defined by the LSL trait
operator unionn to be an object whose pointer is result. The keyword result cannot be
used in functions with return type void.

14

348 14 Larch

typedef int *ratl;
ratl make_ratl(int num, int den)

requires den �= 0;
ensures assigned(result, post)∧ size(locs(result))= 2 ∧
(result[0])’ = n ∧ (result[1])’ = d ∧
fresh(result[0], result[1]);

Fig. 14.26 Use of fresh in Larch/C++

14.4.3
Additional Function Specification Features

Keywords recently added to Larch/C++ include allocated, assigned, and fresh.
The keyword allocated can be used in a predicate for the requires and ensures
clauses, in order to specify that an object is allocated at a certain state. An object can
be defined without being allocated. The keyword assigned can be used in a predicate
for the requires and ensures clauses, in order to specify that an object has a well-
defined value. The keyword fresh can only appear within a predicate of an ensures
clause; it is used to specify that an object was not allocated in the pre-state, and it is allo-
cated in the post-state. The example in Fig. 14.26 illustrates the use of fresh in function
specifications. Several new clauses have been added lately to Larch/C++. Some of these
allow recording implementation design decisions, and some others provide notational con-
venience.

The constructs clause is equivalent of the modifies clause. Larch/C++ provides this
clause for reading convenience. The clause is used in constructor functions in order to
express that an object is not only modified but there is memory allocated for it, and its
attributes are initialized.

The trashes clause is used for any function that trashes objects. In Larch/C++ the trash-
ing of an object is done whenever the object was assigned in the pre-state and not assigned
in the post-state, or when the object was allocated in the pre-state and not allocated in the
post-state. The trashes clause lists a set of objects that may be trashed from the function.

The claims clause contains a predicate which does not affect the meaning of a function
specification, but rather describes redundant properties which can be checked by a theorem
prover. This is quite similar to the implies clause in LSL tier.

The let clause can appear in any function specification. It can be used in order to abbre-
viate expressions that will be used many times in the function specification, in the requires,
ensures, example clauses. The example in Fig. 14.27 illustrates the use of these clauses.

14.5
Proofs in LSL

All assertions stated in the implies and converts clauses of a trait require proof. When
specifications are composed, the resulting specification must be consistent. The various

14.5 Proofs in LSL 349

void student_account (& gpa g);
requires assigned(a, pre) ∧ allocated(g,pre);
modifies g;
trashes a;
ensures
let new = cumulative(g) in
if new < 2.5 then trashed(a) else set_gpa(a ^, a^.new);
claims new > 2.5 ⇒ ¬ isTrashed(a, pre, post);

Fig. 14.27 Use of allocated, assigned, trashed, let and claims in Larch/C++

proof obligations, proof methods, and the features of LP, the Larch Prover are briefly out-
lined in this section.

14.5.1
Proof Obligations

In general, an LSL specification T consists of a hierarchy of traits. The hierarchy is formed
by the includes and assumes relationships on the traits. These relationships are irreflexive,
and transitive. If the implies clause of a trait T mentions a trait S, then T implies S, and T

cannot transitively include S. Consequently,

• the assertions of T consist of the equations in the asserts clause of T and those of the
traits transitively included in it;

• the assumptions of T are those transitively assumed by it;
• the axioms of T consist of its assertions and its assumptions;
• the theory of T consists of the logical consequence of its axioms.

As mentioned earlier, the generated by clause of the asserts section adds induction rules,
and the partitioned by clause of the asserts section adds deduction rules. The claims
made in the implies, and converts clauses of an LSL trait require proof obligations. The
assertions made in the implies clause must follow from the stated axioms. The converts
clause must follow from its axioms, assertions in its implies clause, and the implies clauses
of the included traits and implied traits.

The proof techniques for LSL traits include natural deduction method and proof by
implication, both discussed in Chap. 10, and proof by structural induction discussed in
Chap. 9. The proofs can be developed using LP, the Larch Prover, which has several built-
in proof strategies. Below, we demonstrate how to develop a proof for the specifications
given in Sect. 14.2.1. The proof steps are not strictly formal.

Example 1 The implies clause in the trait Poset(T) shown in Fig. 14.4 consists of the two
assertions

x ≤ y ∧ y ≤ z ⇒ x ≤ z

Preorder(≤ for �)

14

350 14 Larch

The proof steps for the first claim are:

x ≤ y == x < y ∨ x = y, from equation (6)
y ≤ z == y < z ∨ y = z, from equation (6)
x ≤ y ∧ y ≤ z ≡ [(x < y ∧ y < z) ∨ (x = y ∧ y < z)]

∨ [(x < y ∧ y = z) ∨ (x = y) ∧ y = z)] distributive law
≡ (x < z ∨ x < z) ∨ (x < z ∨ x = z) equation (4)
≡ (x < z ∨ x = z) idempotent
≡ x ≤ z

To prove the second claim, we write the axioms after ignoring the operator < from the
specification Poset(T):

x ≤ x

x ≤ y ∧ y ≤ x == x = y

Substituting � for ≤ in the above assertions and in the implication, we get the assertions

x � x

x � y ∧ y � x == x = y

x � y ∧ y � z ⇒ x � z

Hence, Poset(T ,≤) ⇒ Preorder(≤, T); that is, if ≤ is a partial order on T , then ≤ is also
a preordering on T . �

Example 2 The claim that S is partitioned by subset is made in the implies clause of the
trait SetTrait. To prove this claim, we must show that two sets S and T are equal if they
have the same subsets. Formally stated, it is required to prove the following assertion

∀X • X ⊆ S ∧ X ⊆ T ⇒ S = T

Let X, S and T denote nonempty sets. Use the fact that insert is a generator of SetTrait to
rewrite the left-hand side of the assertion to obtain

subset(insert(e,X′), S) ∧ subset(insert(e,X′), T)

Using equation (6) of SetTrait we rewrite as

member(e, S) ∧ subset(X′, S) ∧ member(e, T) ∧ subset(X′, T)

From this we infer that member(e, S), member(e, T), subset(X′, S), and subset(X′, T)

are true. Continuing with the above two rewriting steps for an element of the set X′, and
repeating until all the elements of X are accounted, the assertion to be proved can be
rewritten as

∀e : X • (member(e, S) == member(e, T) ⇒ S = T

This result has already been proved in Sect. 14.2.2. This completes the proof.
Notice that in the first step of the proof it is shown that

subset(s, t) ⇒ (member(x, s) ⇒ member(x, t))

which is another claim made in the implies clause of SetTrait. �

14.5 Proofs in LSL 351

The implies clause of a trait may include a generated by clause, in which case a proof is
required to show that the set of elements generated by the given operators in the generated
by clause contains all the elements of the sort. We use induction on the set of generators
defined in the generated by clause of the trait. For example, we may introduce { } as a
unary operator in SetTrait with the signature

{} : E → S

and an equation

{e} == insert(e, {}).
The operator constructs a singleton set for every element from E. The claim

generated by{ }, emptyset,unionn

can be included in the implies clause of the trait SetTrait. The proof of this claim is left as
an exercise.

14.5.2
LP, the Larch Prover

Larch Prover (LP) [6] is a theorem prover for a subset of multi-sorted first-order logic. The
basis for proofs in LP is a logical system, consisting of a set of operators, the properties
the operators are axiomatized by equations, rewrite rules, operator theories, induction rules,
and deduction rules. LP is intended as an interactive proof assistant rather than an automatic
theorem prover. LP is designed with the assumption that initial attempts to state a theorem
correctly, and to prove it usually fails. As a result, LP provides useful information about
the reasons for the failure of a proof. This feature of LP is especially important when used
for verification of properties not explicitly stated in the implies clause.

14.5.2.1
LP theories

The basis for proofs in LP is a logical system consisting of a set of operators, the properties
of which are axiomatized by equations, rewrite rules, operator theories, induction rules, and
deduction rules. Each axiom of LP has two semantics, a definitional semantics in first-order
logic and an operational semantics that is sound with respect to the definitional semantics
but not necessarily complete.

LP sort, operator and variable declarations are semantically the same as those of LSL.
LP has built-in sort Bool, as well as the operators true, false, if , not, =, &(and), |(or),
=> (implies), and <=> (if and only if). During a proof, LP can generate local variables,
constants, and operators.

A term in multi-sorted first-order logic consists of either a variable or an operator with
a sequence of terms as arguments. The number of arguments in a term and their sorts agree
with the declaration of the operator.

14

352 14 Larch

Equations The LP theory consists of equations. An equational theory as defined in
Sect. 14.2.1, is a theory axiomatized by a set of equations. The set of terms constructed
from a set of variables and operators is called a free-word algebra or term algebra. A set S

of equations defines a congruence relation on a term algebra. This is the smallest relation
containing the equations in S and that is closed under reflexivity, symmetry, transitivity, in-
stantiation of free variables, and substitution of terms by their equals. An equation t1 == t2

is in the equational theory of S , or is an equational consequence of S, if t1 is congruent
to t2. The notion of congruence is related to reduction to canonical forms and equality of
such reduced terms.

Rewrite Rules LP inference mechanisms requires that equations are oriented into
rewrite rules. The logical meaning of the rewrite rules is identical to that of equations;
however, the operational behavior is different. A rewrite rule is an ordered pair (u, v) of
terms, usually written as u → v, such that u is not a variable and that every variable that oc-
curs in v also occurs in u. A rewriting system is a set of rewrite rules. LP orients equations
into rewrite rules and uses these rules to reduce terms to normal forms.

Informally, starting from a rewrite rule u → v and a substitution q that matches u to
a subterm w of t, we can replace w by q(v) to reduce t to a new term t’. This reduction
process, starting with some term t, can continue until no more reduction is possible. A term
t is irreducible if there is no term t’ to which it can be reduced using the rewrite rules; an
irreducible term is in normal form.

A term can have many different normal forms; a term with only one normal form, is a
canonical term. It is usually essential that the rewriting system is terminating. Although
in general it is undecidable whether the set of rewrite rules is terminating, LP provides
mechanisms that orient sets of the equations into the terminating rewrite system. A termi-
nating rewrite system in which all terms have a canonical form is said to be convergent.
If a rewrite system is convergent, its rewriting theory, that is, the equations that can be
proved by reducing them to identities, is identical to its equational theory. Most rewriting
systems are not convergent. In these systems, the rewriting theory is a proper subset of the
equational theory.

Operator Theories Some equations cannot be oriented into terminating rewrite rules;
these are associativity and commutativity statements. For example, attempting to orient
commutativity equation a + b == b + a into rewrite rules will produce non-terminating
system:

a + b → b + a;
b + a → a + b.

To avoid this LP uses equational term-rewriting to match and unify terms modulo associa-
tivity and commutativity. In equational term-rewriting, a substitution q matches t1 and t2
modulo a set S of equations if q(t1) = t2 is in the equational theory of S. For example, if
+ is associative and commutative, the rewrite rule a ∗ b → c will reduce the term a ∗ c ∗ b

to c ∗ c.

14.5 Proofs in LSL 353

Inductive Rules Inductive rules increase the number of theories that can be axiomatized
using a finite set of assertions. Their syntax and semantics are similar to those of the in-
ductive statements in LSL. An example is Set generated by emptyset, insert. The equation

delete(insert(s, e), e) == s

in SetTrait (see Fig. 14.1) produces an infinite number of equations:

delete(insert(emptyset, e), e) == new);
delete(insert(insert(emptyset, b), e), e) == insert(emptyset, b) . . .

Thus, generated by clause is equivalent to the infinite set of first-order formulas:

(E[emptyset] ∧ (∀s : Set, b : element)(E[s] ⇒ E(insert(s, b)))) ⇒
(∀s : Set) • E[s],

for any well-formed equation E.

Deduction Rules LP uses deduction rules to deduce new equations from existing equa-
tions and rewrite rules. LP produces deduction rules from the LSL partitioned by clause.
For example, LSL statement Stack partitioned by isEmpty, top, pop is reflected in LP
theory as

assert when
top(s1) == top(s2),
pop(s1) == pop(s2),
isEmpty(s1) == isEmpty(s2)
yield s1 == s2

14.5.2.2
Proof Methods

LP provides mechanisms for proving theorems using both forward and backward inference.
Forward inferences produce consequences from a logical system; backward inferences pro-
duce a set of subgoals from a goal whose proof will suffice to establish a conjecture.

Normalization Whenever a new rewrite rule is added to its logical system, LP normal-
izes all equations, rewrite rules, and deduction rules all over again. If an equation or rewrite
rule normalizes to an identity, it is discarded. LP uses normalization in forward inference.
If a new conjecture is to be proved, LP tries to normalize it to an identity. If successful,
the conjecture is proved by normalization; this action is a backward inference applying
normalization.

14

354 14 Larch

Critical-Pair Equations A common problem arises when a set of equations is oriented
into a rewriting system which is not convergent, and hence, there is more than one way to
normalize the logical system. Thus reduction to normal form does not provide a decision
procedure for the equational theory. As a consequence, LP can fail, for example, to reduce
term v and term u to the same normal form, even if v and u are reducible. The critical-
pair command provides a method of extending the rewriting theory to approximate its
equational theory more closely. Each critical-pair equation captures a way in which a pair
of rewrite rules might be used to reduce a single term in two different ways. For example,
critical-pair equation between (x ∗ y) ∗ z → x ∗ (y ∗ z) and i(w) ∗ w → e produces e ∗
z == i(y) ∗ (y ∗ z), when the substitution {i(y)|x, y|w} unifies i(w) ∗ w with subterm of
(x ∗ y) ∗ z.

Instantiation Explicit instantiation of variables in equations, rewrite rules, and deduc-
tion rules may lead to establishing that the conjecture is an identity. For example, to estab-
lish the identity of the theorem x == x ∪ x in a logical system that contains the deduction
rule

when (∀e)e ∈ x == e ∈ y yield x == y

and the rewrite rule

e ∈ (x ∪ y) → e ∈ x|e ∈ y,

we instantiate y by x ∪ x in the deduction rule.

Proof by Case A conjecture can often be simplified by dividing a proof into cases. When
a conjecture reduces to an identity in all cases, it is a theorem. For example, the command
prove 0 < f (c) by case c = 0, will make LP to consider three cases: c = 0, c < 0, and
c > 0. If in all three cases the conjecture is true, then it is a theorem.

Proof by Induction A proof by induction is based on the induction rules. The command
prove e by induction on x using IR directs LP to prove the equation e by induction on
variable x using the induction rule IR. LP generates subgoals for the basic and inductive
steps in a proof by induction as follows. The basic subgoals involve the equations that
result from substituting the basic generators of IR for x in e. Basis generators are those
with no variables of the sort of x. Induction subgoals generate one or more hypotheses
by substituting one or more new constants for x in e. Each induction subgoal involves
proving an equation that results from substituting a non-basic generator of IR for x in e.
For example, consider an induction proof over the sort Nat:

prove i ≤ j => i ≤ (j + k) by induction on j

Conjecture lemma.1: Subgoals for proof by induction on ’j’
Basis subgoal:

lemma.1.1 : (i < 0) => (i < (0 + k)) == true
Induction constant: jc

Induction hypothesis:
lemma.InductHyp.1 : (i < jc) => (i < (jc + k)) == true

Induction subgoal:
lemma.1.2 : (i < s(jc)) => (i < (s(jc) + k))) == true

14.6 Case Study—Two Examples from Rogue Wave Library 355

Proof by Implication The command prove t1 => t2 by => directs LP to prove the
subgoal t’2 using the hypothesis t ′1 == true. In general t’1=t1 and t’2 =t2, but in some
cases LP has to generate new constants instead of variables in t1 and t2 to form t’1 and
t’2 and preserves the soundness of proof. For example: Given the axioms a => b → true
and b => c → true, the command prove a => c by => uses the hypothesis a → true to
normalize the axiom and to reduce it to identity.

14.6
Case Study—Two Examples from Rogue Wave Library

Rogue Wave Tools.h++ class library [10] is a rich, robust and versatile C++ founda-
tion class library of industrial standard. The library classes are well-structured, well-
documented and are usable in isolation.

Tools.h++ consists of a large set of C++ classes that are usable in isolation independent
of other classes. The set consists of simple classes, such as date, zone, time, and string, and
three families of collection classes, namely collection classes based on templates, collec-
tion classes that use preprocessor facilities, and “Smalltalk-like” classes for heterogeneous
collections. The library also consists of a set of abstract data types, and corresponding spe-
cialized classes that provide a framework for persistence, localization, and other issues. All
collection classes have a corresponding iterator.

RWZone is a simple Rogue Wave abstract base class, whose operations are imported
into RWDate and RWTime. We give the interface specifications for the classes RWFile and
RWZone in this section.

14.6.1
RWZone Specification

RWZone is an abstract base class for user-defined zones and accommodates the necessary
methods for the derived class when used with RWTime and RWDate classes. It defines an
interface for issues pertaining to various time zones, such as whether or not daylight sav-
ing time is in use in a specific zone, the offset from GMT (Greenwich Meridian Time)
to the time in a zone, the starting and ending dates for daylight saving time. The Rogue-
Wave library provides rules for constructing zone objects for North American (NoAm), and
Western Europe (WeEu). This feature is modeled as the values of an enumerated type in the
specification. A class such as RWTime, which defines operations on time across different
time zones in the world, inherits these properties.

The informal descriptions of virtual functions of RWZone abstract class are given in
[10]. The basic abstractions for Greenwich time zone, standard and daylight saving time
are defined in the LSL trait Zone shown in Fig. 14.21. Interface specification for RWZone
is given in Figs. 14.28, 14.29, and 14.30. This specification is consistent with the intended
purpose of the virtual functions informally described in [10], and are adequate for specify-
ing the classes RWTime and RWDate.

14

356 14 Larch

typedef int Zone;
typedef int RWCString;
imports typedefs;
struct RWDaylightRule;
extern Zone local;
extern Zone standard;
enum DstRule {NoDST, NoAm, WeEu};
extern RWDaylightRule *rules[3];
enum StdZone {NewZealand = -12, Japan, Greenwich, Hawai,

Europe, USEastern } zone;
abstract class RWZone
{
uses Zone, Time(RWBoolean for Bool), string(RWCString for C);
public:
virtual int timeZoneOffset() {

ensures result = self ^.standardOffset;
}

virtual int altZoneOffset() {
ensures result = self ^.DSTOffset;

}
virtual RWBoolean daylightObserved() {

ensures result = daylightObserved(self ^);
}

virtual RWBoolean isDaylight(const struct tm* tspec) {
requires daylightObserved(self ^) ∧ (*tspec) ^.tm_wday =

week_(day(date((*tspec).tm_day, (*tspec) ^.tm_month,
(*tspec) ^.tm_year)));

ensures ∃ t:Time (result = (t = get((tspec*) ^)) ∧
observedDST(t.year, self ^) <> NON ∧
(observedDST(t.year, self ^)= AHEAD ⇒
(convert(t) ≥ convert(beginDST(t.year, self ^)) ∧
convert(t) ≤ convert(endDST(t.year, self ^)))) ∧
(observedDST(t.year, self ^) = BEHIND ⇒
(convert(t) ≤ convert(beginDST(t.year, self ^)) ∧
convert(t) ≥ convert(endDST(t.year, self ^)))));

}

Fig. 14.28 Larch/C++ interface specification for RWZone—Part I

14.6.2
RWFile Specification

The class RWFile encapsulates binary file operations, using Standard C stream library.
Since this class is intended to encapsulate operations on binary files, it is required that

14.6 Case Study—Two Examples from Rogue Wave Library 357

virtual void getBeginDaylight(struct tm* tspec) {
requires validYear((*tspec) ^.tm_year);
modifies (tspec);
ensures ∃ t:Time((daylightObserved(self) ⇒

(t=beginDST((*tspec) ^.tm_year, self ^) ∧ (*tspec)’=fill(t))) ∧
(¬ daylightObserved(self ^) ⇒ (*tspec)’.all’< 0));

}
virtual void getEndDaylight(struct tm* tspec) {

requires validYear((*tspec) ^.tm_year);
modifies (tspec);
ensures ∃ t:Time((daylightObserved(self) ⇒

(t=endDST((*tspec) ^.tm_year, self ^) ∧ (*tspec)’=fill(t))) ∧
(¬ daylightObserved(self ^) ⇒ (*tspec)’.all’< 0));

}
virtual RWCString timeZoneName() {

ensures result=self ^.standardName;
}

virtual RWCString altZoneName() {
ensures result=self ^.DSTName;

}
static const RWZone& local() {

ensures result=local;
}

static const RWZone& standard() {
ensures result=standard;

}
static const RWZone& utc() {

ensures result=utc;
}

static const RWZone& local(const RWZone* zn) {
modifies local;
ensures local’=(*zn) ^;

}

Fig. 14.29 Larch/C++ interface specification for RWZone—Part II

the file be opened in a binary mode. An adequate formal model is to specify a file as a
sequence of bytes. The memory copy of a file is captured by Open_file, whereas the disk
copy of the file is considered as a global structure. The specification models the memory
copy to be identical to the disk copy when the file is opened. Proper encapsulation in the
class hides the logic of file creation. Different data structures are used to write and read
a file. Since LSL is strongly typed, explicit type casting from a sequence of bytes to the
target type and vice versa is needed. To improve readability of specification parameterized
function is used. The LSL trait File shown in Fig. 14.13 introduces and defines all the

14

358 14 Larch

static const RWZone& standard(const RWZone* zn) {
modifies standard;
ensures standard’=(*zn) ^;

}
static const RWDaylightRule* dstRule(DstRule x = NoAm) {

ensures result = rules[x];
}

Fig. 14.30 Larch/C++ interface specification for RWZone—Part III

abstract operators. The interface specification for RWFile is shown in Figs. 14.31, 14.32,
14.33, and 14.34.

14.7
Exercises

In the following exercises, use the traits defined in this chapter wherever possible.

1. Give an LSL theory for finite directed line segments. A directed line segment is a vector,
with a position and a direction. Include operations so that (i) two vectors can be com-
pared; (ii) the position and orientation of a vector may be obtained; (iii) a vector may be
translated to a new position while maintaining its orientation; and (iv) the inner product
of two vectors can be calculated. Define simple traits and compose them to construct a
trait for directed line segments.

2. Define an LSL theory for triangles; it should include the theory of vectors defined in
Question 1. Include an operation for moving a triangle to a new position without chang-
ing the orientation of its sides. Derive specialized theories for (i) right-angled triangles;
(ii) equilateral triangles; and (iii) isosceles triangles.

3. Give a Larch/C++ specification of the C++ class Triangle, which uses the traits
developed in Question 2.

4. Enrich the theory of Rational given in Sect. 14.2.7 by adding the arithmetic operators
+, and ∗ for rational numbers. Provide a sufficient number of equations.

5. Prove the claims made in the implies clause of the following LSL traits:
(a) Rational shown in Fig. 14.8.
(b) NStackTrait shown in Fig. 14.7.
(c) String shown in Fig. 14.12.
(d) File shown in Fig. 14.13

6. Use the traits discussed in Sect. 14.3 to construct the following Larch traits:
(a) The trait DictIterObj specifies iterators for dictionaries. An item in the dictionary is

an ordered pair Obj[K], Obj[V]. Include operations for (i) advancing the iterator to
the next position where an item whose key matches the given key is found; and (ii)
advancing the iterator to the next position where an item equal to the given item is
found.

14.7 Exercises 359

typedef unsigned size_t;
typedef char* String;
enum MODE { READ, WRITE, READ_WRITE};
struct Mode {MODE create_mode; MODE open_mode};
typedef int RWBoolean;
class RWFile
{
uses File(RWFile for OpenFile,String for Name), Types(char for S);
public:
RWFile(const char* filename, const char* mode = 0) {

modifies self;
ensures if mode = 0

then ∃ f: File, of: OpenFile
if f.name=filename ∧ of=open(f, READ_WRITE) ∧¬ error(of)
then self’ = of
else self’ = open(create(filename,

READ_WRITE),READ_WRITE))
else self’=open(create(filename, create_mode), open_mode);

}
RWFile() {

modifies self;
ensures trashed(flush(self ^));

}
long CurOffset() {

ensures result = self ^.fpointer;
}

RWBoolean Eof() {
ensures result = (self ^.fpointer = len(self ^.date));

}
RWBoolean Erase() {

modifies self;
ensures self’.data = empty ∧ result= ¬ error(self’);

}
RWBoolean Error() {

ensures result = error(self ^);
}

Fig. 14.31 Larch/C++ interface specification for RWFile—Part I

(b) The trait crypt encrypts a string to another string such that no two different strings
have the same image.

(c) The trait filecrypt, which includes the file and crypt traits, creates an encrypted copy
on disk of a given disk file.

14

360 14 Larch

RWBoolean Exists() {
ensures ∃ file:File, name:Name, mode:Mode

(result = ((self ^= open(file, mode)) ∧
file = create(name, READ_WRITE)));

}
RWBoolean Flush() {

ensures result = ¬ error(flush(self ^));
}

const char* GetName() {
ensures result’ = self ^.file.name;

}
RWBoolean ISEmpty() {

ensures result = (self ^.data = empty);
}

RWBoolean isValid() const {
ensures ∃ f:File, m:Mode (result = (self ^= open(f, m)));

}
RWBoolean Read(char& c) {

requires (len(self ^.data) - self ^.fpointer ≥ len(toByte(c ^)));
modifies self.fpointer, c;
ensures result = ¬ error(self’) ∧

(result ⇒ (toByte(c’)= read(self ^, len(toByte(c ^)), self ^.fpointer)));
}

RWBoolean Read(char* i, size_t count) {
requires len(self ^.data) - self ^.fpointer ≥ count*len(toByte((*i) ^))

∧ maxIndex(i)+1 ≥ count;
modifies self.fpointer, *i;
ensures result = ¬ error(self’) ∧∀ ind:Int(¬ error(self’)

∧ ind ≥ 0 ∧ ind ≤ count ⇒ toByte((*(i+ind))’) =
read(self ^, len(toByte((*string) ^)), self ^.fpointer +

ind * len(toByte((*i) ^))));
}

Fig. 14.32 Larch/C++ interface specification for RWFile—Part II

7. Give a Larch/C++ specification of the C++ class Intstack, which uses the StackTrait
given in Fig. 14.5.

8. Give Larch/C++ specifications for the following C++ classes:
(a) The class IntDate has the following constructors and member functions:

(i) IntDate(unsigned day, unsigned year)—constructs a date with
the given day of the year and the given year.

(ii) IntDate(unsigned day, char* month, unsigned year,
const locale)—constructs a date with the given day of the month, the
given month and the given year. The locale argument is used to convert the
month name.

14.7 Exercises 361

RWBoolean Read(char* string) {
requires ∃ l: int(nullTerminated(substring(self ^,self ^.fpointer, l)))

∧ (maxIndex(string)+1 ≥ l*len((*string) ^));
modifies self.fpointer, *string;
ensures result= ¬ error(self’) ∧

∀ ind:Int(ind ≥ 0 ∧ ind ≤ l ∧ result ⇒
toByte((*(string + ind))’)=

read(self ^, len(toByte((*string) ^)),
self ^.fpointer + ind*len((*string) ^)));

}
RWBoolean SeekTo(long offset) {

modifies self.fpointer;
ensures result=(self’.fpointer=offset);

}
RWBoolean SeekToBegin() {

modifies self.fpointer;
ensures result=(self’.fpointer = 1);

}
RWBoolean SeekToEnd() {

modifies self.fpointer;
ensures result=(self’.fpointer=len(self ^));

}
RWBoolean Write(char i) {

requires ∃ f:File (self ^= open(f, WRITE) ∨
self ^= open(f,READ_WRITE));

modifies self;
ensures result = ¬ error(self’) ∧ (¬ error(self’) ⇒

self’ = write(self ^, toByte(i), self ^.fpointer));
}

RWBoolean Write(char* i, size_t count) {
requires maxIndex(i)+1 ≥count ∧

∃ f:File (self ^= open(f, WRITE) ∨
self ^= open(f, READ_WRITE));

modifies self;
ensures result = ¬ error(self’) ∧ (result ⇒

∀ ind:int((ind ≥ 0) ∧ (ind ≤ count) ∧ toByte((*(i+ind)) ^)=
read(self’,len(toByte((*i) ^)),

self ^.fpointer + ind * len(toByte((*i) ^)))));
}

Fig. 14.33 Larch/C++ interface specification for RWFile—Part III

(iii) IntDate(const IntTime& t, const IntZone& zone=

LocalZone)—constructs a date from a time and zone in IntTime.

14

362 14 Larch

RWBoolean Write(const char* string) {
requires ∃ f:File ((self ^= open (f, WRITE) ∨

self ^= open(f, READ_WRITE)) ∧
(∃ l: int (nullTerminated(prefix((*string) ^, l)))));

modifies self;
ensures result= ¬ error(self’) wedge

∀ ind:Int (ind>=0 ∧ ind≤l ∧
result ⇒ toByte((*(string + ind)) ^) =

read(self’,len(toByte((*string) ^)),
self ^.fpointer + ind*len((*string) ^)));

}
RWBoolean Exists(const char* filename) {

ensures ∃ f:File(result =
(filename = f.name ∧ file=create(filename, READ_WRITE)));

}

Fig. 14.34 Larch/C++ interface specification for RWFile—Part IV

(iv) between(const IntDate& a, const IntDate& b) const—
returns true if this IntDate is between a and b.

(v) previous(const char* dayName, const Locale&locale=
LocalFormat) const—returns the date of the previous dayName, for
example, the date of the previous Saturday. The weekday name is interpreted
according to the local conventions in Locale.

(vi) leapyear(unsigned year)—returns true if a given year is a leap year.
(vii) firstdayofmonth(unsigned month)—returns the day of the year

corresponding to the first day of the month in this IntDate’s year.
(a) The class IntTime has the following constructors and member functions:

(i) IntTime(unsigned long x)—constructs a time with x seconds since
00:00:00 January 1, 1901 UTC.

(ii) IntTime(unsigned date, unsigned hour = 0, unsigned
minute = 0, unsigned second = 0, const RWZone&
local)—constructs the time for the given date, hour, minute, and second,
relative to the time zone local, which defaults to local time.

(iii) compare(const IntTime* t)—returns 0 if self ==*t, returns 1 if
self > *t, and returns −1 if self < *t.

(iv) isDST(const RWZone& zone=local) const—returns true if self
is during Daylight Saving Time in the time zone given by zone, false oth-
erwise.

(v) beginDST(unsigned year, const RWZone&zone=local)—
returns the start of Daylight Savings Time for the given year in the given
time zone. Returns a message if DST is not observed in that time zone in that
year.

(vi) seconds() const—returns the number of seconds since 00:00:00 Jan-
uary 1, 1901.

14.8 Bibliographic Notes 363

9. The topology of a communication network may be abstracted as a directed graph with
a finite number of nodes and links; the network is connected. Typical operations on
the network include (i) adding a link between nodes; (ii) adding a node and linking
it to some node in the network; (iii) deleting a node in the network; and (iv) delet-
ing a link in the network. Deletions must preserve the connectedness property. Write a
Larch/C++ interface specification which provides these functionalities. Define a math-
ematical model of the network in the LSL layer, and use it in the interface specification.
Hint: See Network example in Chap. 16.

14.8
Bibliographic Notes

The Larch family of languages originated from the works of Wing [11, 12], and Guttag
and Horning [6]. A specifier can design theories by using and composing the theories
in the mathematical toolkit provided by Guttag and Horning [6]. LP, the Larch Prover
provides an interactive verification support for checking properties of LSL traits. There are
several interface specification languages, each tailored to a specific programming language.
Larch/C++ was designed by Gary Leavens [8].

In a Larch/C++ interface specification, implementation design details that are tailored to
the C++ programming language can be specified. This feature makes Larch/C++ suitable
for industrial applications, where black-box specifications of C++ classes can enhance their
effective reuse. Larch/C++ interface specifications for several classes taken from Rogue
Wave tools.h++ [10] can be found in Alagar et al. [1]. The report summarizes the incom-
pleteness of informal class descriptions in Rogue Wave Library, and the experience gained
in understanding and writing the interface specifications and the corresponding LSL traits.

A classified Larch bibliography can be found at the Larch home page:
http://larch.lcs.mit.edu:8001/larch/index.html

References

1. Alagar VS, Colagrosso P, Loukas A, Narayanan S, Protopsaltou A (1996) Formal specifica-
tions for effective black-box reuse. Technical reports (2 volumes), Department of Computer
Science, Concordia University, Montreal, Canada, February 1996

2. Chen J (1989) The Larch/Generic interface language. SB thesis, Department of Electrical
Engineering and Computer Science, Massachusettes Institute of Technology

3. Cheon Y (1991) Larch/Smalltalk: a specification language for Smalltalk. MSc thesis, Depart-
ment of Computer Science, Iowa State University

4. Colagrosso P (1993) Formal specification of C++ class interfaces for software reuse. M Comp
Sci thesis, Department of Computer Science, Concordia University, Montreal, Canada

5. Guaspari D, Marceau C, Polak W (1990) Formal verification of Ada programs. IEEE Trans
Softw Eng 16(9):1058–1075

6. Guttag JV, Horning JJ (1993) Larch: languages and tools for formal specification. Springer,
Berlin

14

364 14 Larch

7. Jones K (1991) LM3: a Larch interface language for Modula-3: a definition and introduction:
version 1.0. Technical report 72, DEC/SRC, Digital Equipment Corporation, MA

8. Leavens GT (1997) Larch/C++ reference manual, draft: revision 5.1, February 1997
9. Leavens GT, Cheon Y (1992) Preliminary design of Larch/C++. In: Martin U, Wing J (eds)

Proceedings of the first international workshop on Larch. Workshops in computer science
series. Springer, Berlin

10. Rogue Wave (1993) Tools.h++ class library. Version 6.0, Rogue Wave Software
11. Wing J (1983) A two-tiered approach for specifying programs. Technical report TR_299, Mas-

sachusetts Institute of Technology, Laboratory for Computer Science
12. Wing J (1987) Writing Larch interface language specifications. ACM Trans Program Lang

Syst 9(1):1–24
13. Wing J (1990) A specifier’s introduction to formal methods. IEEE Comput 23(9):8–24

Calculus of Communicating Systems 15

In automata theory, a process is modeled as an automaton. In Chaps. 6 and 7, we studied
automata models for simple input/output systems with some extensions. In particular we
discussed interaction of systems modeled by automata in Chap. 7. We modeled compo-
sitions of simple input/output systems as well as composition of reactive systems. In the
latter instance, the composition is based on communication between automata, abstracted
as “shared transitions”. The meaning of composed systems is understood from the behavior
that can be observed. It is known to algebraists [8] that “the principle of compositionality
of meaning requires an algebraic framework.” An algebra that allows equational reasoning
about automata is the algebra of regular expressions. This is true for extended finite state
machine models in which the semantics of concurrency includes all transitions, including
synchronous communications whenever they occur.

In Chap. 11, we discussed program graphs and transition systems to model systems
with shared variables. They have the Kripke structure as basic formal domain. Since a
Kripke structure can be transformed to a Büchi automaton, the algebra here is defined by
the language expressions recognized by Büchi automata. Although reasoning was done by
model checking which is algorithmic in nature, the underlying principle is the recognition
of strings, representing behaviors, by an automata that represents a system. Given that a
temporal logic specification can be transformed to a Büchi automaton, we reckon that the
interaction models that we have studied so far are based on automata, and they have the
basis “algebra on strings”. In this chapter, we explore an algebraic specification method,
called Calculus of Communicating Systems (CCS) for representing and reasoning about
concurrent systems. CCS gives a language for introducing processes, and gives rules (ax-
ioms) for deriving terms in the language. The derivations of terms are subject to equational
laws, similar to but distinct from the equational laws discussed in Chap. 13.

CCS is a process algebra, the term first used by Bergstra and Klop [2]. But CCS is not
just an algebra, it is also a calculus. The word “process” in “Process algebra” refers to a
set of actions that can be performed either sequentially or jointly, and results in a certain
behavior. The word “algebra” in “Process algebra”, denotes that an algebraic/axiomatic
approach is to be taken. That is, in a process algebraic approach, the behavior of a process
will be described algebraically by means of axioms, and a system of equations involving
the terms of the algebra. Thus, process algebra is the study of algebraic specification for

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_15, © Springer-Verlag London Limited 2011

365

15

366 15 Calculus of Communicating Systems

concurrent systems. The word “calculus” refers to a method of doing symbolic calcula-
tions. The calculations in CCS are purely based on axioms, and done on terms that repre-
sent program/system structures. The interpretations of the terms are done over a semantic
domain.

In tracing the history of process algebra as an area of research in concurrency theory,
Baeten [1] discusses the influence of the following four prominent methods.

• Petri nets [11, 12],
• CSP [6, 7],
• CCS [8, 9], and
• ACP [2].

In net theory, the basic abstraction is the concurrency relation over the places (conditions)
and transitions (events) in a system. If two events are in the relation then they are causally

independent, and may occur either simultaneously or in some sequential order. That is
“simultaneous occurrence” of events is observable in Petri net model. However, in CCS
only one event is observable at any moment in time.

CSP is an extension of imperative programming language in which the basic abstrac-
tion is direct communication between modules. Another abstraction in CSP is the way the
global memory is organized, by forbidding a module from altering the value of a variable
mentioned by another module in the system. CCS is not an imperative language, rather
it is an algebraic system allowing expressions to be formed from basic terms according
to a small set of axioms. CCS and CSP are quite close in handling the communication
abstraction and it is expressed in similar notations.

Bergstra and Klop [2] introduced the theory of ACP in which alternative, sequential, and
parallel composition of processes are axiomatically defined. ACP is closely related to CCS,
but with differences in definitions, expressibility, and methodology. In CCS, axioms are
derived after fixing the derivation of the agents in a model. In contrast, ACP is an axiomatic
approach, in which axioms are stated and the models satisfying the axioms are studied.
The three models CSP, CCS, and ACP have different kinds of communication schemes.
The communication scheme in ACP is by means of actions, in CCS, communication is
combined with abstraction, and in CSP, communication is combined with restriction. The
main motivation to single out CCS from this group of three for its study in this chapter
comes from the following characteristics of CCS.

• Simplicity: CCS uses a small number of basic concepts. The underlying process algebra
is simple to build and easy to comprehend.

• Expressivity: CCS offers a richness in expression and also flexibility for manipulation.
• Generality: The basic mechanisms in CCS seem sufficient to represent many of the

relevant concepts of concurrent computations, and build more complex mechanisms.
• Reasoning: The calculus enables the manipulation of terms, yielding equivalent terms.

The behavior of a modeled system can be reasoned within CCS, using the notion “equiv-
alence”.

15.1 Why a Specific Calculus for Concurrency Is Necessary? 367

15.1
Why a Specific Calculus for Concurrency Is Necessary?

The intension of a program or system is in the description of its structure, and program
manipulation yields a term with different intension, called its extension, but they have iden-
tical behaviors. We saw such a transformation in Chap. 11, while introducing modalities
in logic. For sequential programs, such transformations are expressed through input/output
behavior, which require function computations. In Chap. 5, we have seen that the lambda
calculus is computationally complete, in the sense that it can express any computable
function. It is the fundamental abstraction for sequential systems, in which all computa-
tions may be viewed as function computations. The interaction between sequential system
objects is deterministic, which can be expressed by function composition. However, the
lambda calculus is not sufficient to express concurrent computations, because they involve
some aspects that are not expressible as functions. In order to convince ourselves of the
need for a new calculus, let us revisit some of the concepts introduced in Chap. 11.

• Program Interaction: In Chap. 11, we have seen that program interaction possibilities
are much richer for concurrent programs.

• Nature of nondeterminism: The notion of nondeterminism for concurrent systems is
quite different from the one normally understood for sequential systems. Examples of
nondeterministic formalisms for sequential systems include “the nondeterministic Tur-
ing machines”, and “the semantics of logic languages like Prolog”. A nondeterministic
finite state automaton can be transformed to a finite state automaton. In algorithm analy-
sis and complexity theory, nondeterminism serves as a tool to simplify the description of
algorithms. Nondeterminism can be eliminated in algorithmic explorations by resorting
to backtracking or efficient branch and bound techniques. There is no loss of compu-
tational power in removing nondeterminism. More significantly, in complexity theory
it is sufficient to know the existence of a successful computation, that is, failures do
not matter. In concurrent systems, nondeterminism is in the nature of “interesting things
happening in the system”, and cannot be and should not be avoided. Ignoring even some
parts of it would mean a loss of expressive power in the nature of computable results ob-
tained from the interacting objects. However, controlling nondeterminism is essential to
ensure safety and liveness properties. By prematurely ignoring parts of nondeterminism,
we may be landing in an unsafe situation. Eliminating nondeterminism in sequential
systems is possible and its consequence is a loss of efficiency. However, for concurrent
systems, eliminating nondeterminism is impossible, because the control is distributed
and it may be undesirable because of safety, liveness, and fairness criteria. See Exam-
ple 5 in Chap. 11.

• Nature of Communication Abstraction: In Chap. 11, we have seen different kinds of
communications between modules. Depending upon the medium of communication it
can be “through channel”, or “through shared variable”. Each kind of communication
can be further specialized as “broadcasting or peer-to-peer”, or “bounded/unbounded”
or “ordered or unordered”. The important aspects of the communication primitives that

15

368 15 Calculus of Communicating Systems

we have seen in Chap. 11 are that they are not symmetric and need not be synchronous.
In an algebraic setting and a calculus based on it, we would like to have symmetry
of communication and time abstraction. Therefore there is a need to choose the right
communication abstraction primitives for a calculus of concurrency.

15.2
Informal Introduction to CCS

The two key concepts in CCS are observations and synchrony. There exists a system and
an observer of the system. They are independent. For the observer, the system is a black
box, and the observer experiences the system by communicating with it. Communication is
synchronous, meaning that the system and the observer “shake hands” through a message.
That is, communication time is zero. A synchronous composition of the system produces
a larger system in which the observer and the system being observed allow each other to
be observed.

The expressions in the language of CCS are called agents. The agent expression for a
process at any instant expresses actions performed by the process until that moment. We
assume that a process can perform only a finite set of actions; however, an action can be
repeatedly performed. In CCS, there are two kinds of visible actions, called input actions
α, and output actions ′α. The third kind of action is the internal action (also called silent
action) τ . Internal action is not visible.

At any moment in the system’s evolution, an agent may either be idle (perform no
action) or perform an action specified in it. Agent Nil is intended to represent a process
which can do nothing. From Nil we can construct more interesting agents.

Action Prefix In a nontrivial behavior expression, there is some action performed by
the process. The constructor “·”, called action prefixing, acts like concatenation operator
allowing us to specify action sequencing. The action performed is written to the left of the
symbol “·”, and agent name that becomes after performing the action is written to the right
of the symbol “·”. For example, we may describe the behavior of “disposable face mask”
by the expression

wear_mask · Nil

The meaning of the above expression is that the process described by it is capable initially
of performing the action wear_mask and thereafter behaving as the process described by
Nil. The agent expression for describing the mask that can be worn two times, instead of
just once, is

wear_mask · wear_mask · Nil

The agent expression to describe the mask that can be worn k times, where k is arbitrary
but finite, becomes a bit tedious to write. To describe the total behavior of a finite process,

15.2 Informal Introduction to CCS 369

such as face mask, Nil is necessary. The agent expression for the behavior of a process P

that can perform an action α infinitely often is

α.P

Generalizing the above expression for a sequence of actions, we can write the agent ex-
pression for the behavior of the traffic light process in Example 6, Chap. 11 as

′red ·′ green ·′ yellow · P (15.1)

An important assumption in writing the above agent expression is “at the moment of start-
ing to observe the traffic light” it is red, then it is green, then it is yellow, and then it
continues to repeatedly output the actions 〈red,green, yellow〉 in the same order forever. If
the traffic light was first observed to be yellow, instead of red, then the process behavior
expression will be

′yellow ·′ red ·′ green · P (15.2)

The expressions in (15.1) and (15.2) are different. We can expand expressions in (15.1)
and (15.2) as infinite sequences, and observe that they are identical but for a prefix of
length one. This makes us believe that if we continuously observe the behavior over a long
period of time the behaviors of the two agents are indistinguishable. However, the question
as to whether these correspond to two distinct behaviors or two similar behaviors must be
formally answered. In CCS, similarity of behavior is formally defined, which we study in
Sect. 15.4.

Definition We may introduce agents by means of definitions. We can define an agent
Drop_Catch as follows:

Drop_Catch
def= drop_ball · Nil

The intended meaning is that the agent Drop_Catch on the left hand side of
def= is defined

to be the agent expression on the right hand side of
def= . A definition may be recursive. For

example, the traffic light agent in (15.1) may be defined as in (15.3).

TrafficLight
def= ′red ·′ green ·′ yellow · TrafficLight (15.3)

So far, we have been looking at processes that “outputs” without receiving any input.
Consider a door bell. When it is pressed it responds with a sound. The door bell process
receives the input “press” and responds with “buzz” and then stays as a door bell process.
The definition of the agent for this process is given in (15.4).

Doorbell
def= press ·′ buzz · Doorbell (15.4)

15

370 15 Calculus of Communicating Systems

Parameterizations The input to a process, or its output, need not be a “constant” as in
the preceding examples. By parameterizing process its corresponding agent becomes like
a lambda expression. The parameters should be instantiated to invoke the resultant of a
specific input. As an example, the expression in (15.5) has one input parameter x and the
behavior of the process is to increment the input by 1.

Adder
def= x ·′ (x + 1) · Adder (15.5)

An advantage of definition notation is that complex agent expressions can be broken
down into simpler expressions through the introduction of “placeholder agents”. We can
rewrite the definition in (15.5) as shown below.

Adder
def= x · Temp

Temp
def= ′(x + 1) · Temp

A process may receive several inputs before giving an output. As an example, the agent
expression for a vending machine process which receives 1$ and a request c for coffee
before delivering coffee is given in (15.6).

VendingMachine
def= 1$ · c ·′ deliverC · VendingMachine (15.6)

A currency changing machine, on the other hand, receives one input and returns multiple
outputs. The agent expression for a currency changing process that accepts a 50$ bill and
returns two 20$ bills and one 10$ bill in that order is given in (15.7).

CurrencyChange
def= 50$ ·′ 20$ ·′ 20$ ·′ 10$ · CurrencyChange (15.7)

Sum (Choice) Suppose a currency changing machine has two input slots. Through one
slot it can receive a 50$ bill, and through the other slot it can receive a 100$ bill. It gives
the change as described above when it receives 50$. However, when it receives 100$ bill
it returns two 50$ bills. We can write agent expressions for each behavior separately and
“put them together” to describe the full behavior of the currency changer. The constructor
+ is used, as shown below, to conjoin the capabilities of two currency changing agents.

NewCurrencyChange
def= 50$ ·′ 20$ ·′ 20$ ·′ 10$ · NewCurrencyChange

+ 100$ ·′ 50$ ·′ 50$ · NewCurrencyChange

The sum operator + has the same meaning as the choice operator + defined in Chap. 6
for automata. In general, if AP and AQ are agents describing, respectively, the observed
behaviors of processes P and Q then AP + AQ is the agent that describes the capabilities

of both agents AP and AQ. Equivalently, the meaning of expression A
def= AP + AQ is that

A starts performing as AP or as AQ whichever occurs during the observation.

15.2 Informal Introduction to CCS 371

Many extensions are possible when action prefixing is combined with sum operator. For
example, the expression α · AP + β · AQ represents an agent which describes the behavior
of a process performing action α and then behaving as described by the expression AP or
performing action β and then behaving as described by the expression AQ. Suppose there
are two processes with different behaviors but have the common prefix action α, then after
performing α they will behave differently. The expression for the conjoined behavior of
these two processes is

VMD
def= α · (VMD1 + VMD2) (15.8)

In (15.8) let us replace α by coin, and define VMD1 as the “coffee machine” and VMD2 as
the “tea machine”. The resulting agent expression for the vending machine process is

VMD1
def= ′coffee · VMD

VMD2
def= ′tea · VMD (15.9)

VMD
def= coin · (′coffee · VMD +′ tea · VMD)

After the input action coin has occurred in VMD, there is a “choice” between coffee and
tea. That is, the user gets to exercise this choice. Consequently, the expression for VMD
in (15.9) describes a deterministic vending machine. However, the behavior of the process
as given by the agent expression (15.10), is nondeterministic. The reason is that VMD′ can
behave either way.

VMD′ def= coin ·′ coffee · VMD′ + coin ·′ tea · VMD′ (15.10)

Although VMD and VMD′ have some commonality yet their observed behaviors are
distinct. The lesson is that in general

α · (β · VMD + γ · VMD) �= α · β · VMD + α · γ · VMD

The binary operator + is replaced by the sum operator Σ when an arbitrary number of
processes have to be conjoined. That is,

Σk
i=1Ai = A1 + A2 + · · · + Ak

Communication The concept of port is the basis for direct communication between
processes. A port is an abstraction of communication point. Ports are to be defined in com-
plementary pairs. One port in a complementary pair belongs to the process which receives
information (input port) and the other port belongs to the process that sends information
(output port). Thus, a pair of complementary ports cannot belong to the same process. In
CCS, a label is associated with a port and port names are the port labels. Input and output
ports are distinguished by complementary labels. The label of an input port is often called
the input label, and the label of an output port is called the output label.

15

372 15 Calculus of Communicating Systems

Fig. 15.1 Communicating processes—1

Let us denote the labels for a process P as LP , input labels of P as IP , and output labels
of P as OP . The set of all labels through which P actually communicates throughout its
lifetime is denoted sort(P), sort(P) ⊂ LP . We consider labels restricted with the following
properties.

• Finiteness: For a process P , LP is a finite set.
• Uniqueness: Each port must have a unique label. Consequently, LP

⋂
LQ = ∅

• Complementary completeness for communication: Let us use the notation X and X to
denote labels such that for every label in X, its complementary label is in X. In order
for P and Q to communicate in either direction, there must exist nonempty subsets

O′
P ⊂ OP and I ′

Q ⊂ IQ such that O′
P and I ′

Q are complementary sets of labels.
Thus the set L = ⋃

P LP of labels for all processes in the system is partitioned into I ,
the set of input labels and O, the set of output labels such that for every communication
in the system labels are complementarily complete.

The constructor “|” is the composition operator for two processes. The expression P | Q

implies that ports of P and Q with complementary labels are “connected” through “ab-
stract channels” and process P may communicate with process Q through these channels.
The two processes in a composition may proceed independently of the other, and in addi-
tion there is a possibility of communication between them. The composition operator does
not require that the processes must communicate. It allows the possibility of communica-
tion. Without the composition operator, communication is not possible. As a special case
of the definition, we have P | Nil = P . Example 1 illustrates agents for two processes with
ports and the expression for the composition of the two processes.

Example 1 Let receive and send be the input and output port names of process Square.
The process Square receives x and outputs x2, and is defined by the agent

Square
def= receive(x) · send(x2) · Square (15.11)

Let get and put be the input and output port names of process Double. The process Double
receives x and outputs 2x, and is defined by the agent

Double
def= get(x) · put(2x) · Double (15.12)

Let send and get be complementary labels. This allows us to compose process Square
with process Double as in Fig. 15.1. This composed process, denoted SD, has the agent
expression Square | Double. Agent SD may accept a value v at label receive and after

15.2 Informal Introduction to CCS 373

Fig. 15.2 Communicating processes—2

Fig. 15.3 A simple train–controller–gate system

internal communication between the component agents Square and Double may output
the value 2x2 at the label put. If we define in and put as complementary labels, then it is
possible to realize a process as in Fig. 15.2, and its corresponding agent, denoted DS, is
the composition Double | Square. Agent DS may accept a value v at label get and after
internal communication between the component agents Double and Square may output the
value (2x)2 at the label send. �

In general, the value of a parameter to a port label may be an event name, or a message,
or a numeric constant. If a process P has to communicate with k different processes, we
create k different port labels for P and assign the complement of each label to the port
label of the process communicating with P . We illustrate this principle in giving a CCS
specification for the rail road problem discussed in Chap. 11.

Example 2 Train, Gate and Controller are the three processes in a railroad model. The
Controller process needs to communicate with both Train and Gate processes. Both Train
and Gate need to communicate only with Controller process. Figure 15.3 shows the com-
plementary port labels through which the processes may communicate, and the events
associated with the port labels.

Train Gate Controller

T : {′approaching,′ exit} T : {approaching, exit}
G : {close, raise} G : {′close,′ raise}

In specifying the Train, Gate, and Controller processes, we explicitly shown their internal
actions, as defined in Chap. 11. However, we can replace all internal action names by the
silent action τ . The composition is obtained by first composing Train with Controller and
then composing that process with Gate. Agent TGC receives messages from Train, activate
Controller, which in turn monitors Gate.

Train
def= T (′approaching) · in_gate · leave_gate · T (′exit) · Train

15

374 15 Calculus of Communicating Systems

Controller
def= T (approaching) · wake_up · G(′close) · monitor · G(′raise) · Controller

Gate
def= G(close) · down · G(raise) · up · Gate

TGC
def= Train | Controller | Gate �

Restriction After a port label of a process P has been used in a communication it be-
comes unavailable for future use. The constructor \ is used to achieve such a restriction.
Given an agent P and a label l then

P \l,

read as “P restricted on label l ”, is an agent whose behavior is that of P except that the
capability of agent P for communicating through labels l and l have been removed. Note
that P \l and P \l have the same effect. For any label l, we have Nil\l = Nil.

It is possible to restrict an agent on more than one port label. For example, to restrict P

on port labels l1 and l2 one can write

(P \l1)\l2
In general, the restriction of P on set L of labels is written

P \L

The agent TGC in Example 2 can be restricted on the set of ports L = {T ,G}. The resulting
agent TGC\L cannot communicate with any other agent, and hence represents a closed
system in which Train, Controller, and Gate communicate synchronously.

The restriction constructor may be combined with other constructors. For example, in
the expression below

(P + Q)\L

the conjoined agent’s behavior is restricted by the set of ports L. In the expression below

P \L + Q\L

both processes P and Q are restricted by the set of labels L, and then they are conjoined.
Since there is no communication involved between processes and we are dealing only with
conjoined processes, it is reasonable to expect the behavior of these two agents to be the
same. However, the order in which the compositions and restrictions are performed deter-
mines the structure and behavior of the composite system. In general, the agent expressions

(P | Q)\L
(P \L) | (Q\L)

have different effect. Let us illustrate this point with an example.

15.2 Informal Introduction to CCS 375

Example 3 We consider two user programs, denoted U1 and U2, which interact with two
arbiters, denoted A1 and A2. An arbiter receives a request for resource from a user and
sends the requested resource. The port labels are defined below.

Process Port labels

U1 {in1, recv1,out1, send1}
U2 {in1, recv2,out2, send2}
A1 {send1, recv1}
A2 {send2, recv2}
In the composition (U1 | A1), the port labels {send1, recv1} have been used and they are
not available for future use. The available port labels for the agent

U1A1
def= (U1 | A1)\{send1, recv1}

are {in1,out1}. There is no communication possible between the agents in the composition
(U1\{send1, recv1}) | A1. As such they proceed independently and simultaneously. In the
composition (U2 | A2), the port labels {send2, recv2} may have been used and they are not
available for future use. The available port labels for the agent

U2A2
def= (U2 | A2)\{send2, recv2}

are {in1,out2}. Hence, the agents U1A1 and U2A2 can communicate through the comple-
mentary ports {in1, in1}. This composition will give the agent

UAf
def= (U1A1 | U2A2)\{send1, send2, recv1, recv2}

for which the port labels {out1,out2} are available. However, the agent

UAc
def= (U1A1\{out1}) | (U2A2\{out2})

has the same effect as UAf , although it has no available port. �

From the preceding discussion, the question arises as to the meaning of “equality of
effects or equality of behavior”. This question will be answered formally in Sect. 15.4.

Conditional Constructor If P and Q are agents and e is a Boolean expression, then

if e then P else Q

is an agent which behaves like P when e is true, and behaves like Q when e is false. For
example, the agent which squares odd integers and doubles even integers is the expression

if (odd(x)) then receive(x) · Square else get(x) · Double

We can combine conditional construct with other constructs. Some instances are listed
below.

15

376 15 Calculus of Communicating Systems

• conditional action prefix: a · if e then P else Q

• conjoin with one or the other: P + if e then Q else R

• conditional selection of a conjoin: if e then P + Q else P + R

• composition with one or the other: P | if e then Q else R

• conditional selection of a composition: if e then P + Q else P + R

• conditional restriction: if e then (P \L) else P

Relabeling The relabeling operator is a partial function f : L �→ L′, where L is the set
of labels of agent P and L′ is a set of new labels. The process P in which some ports are
relabeled using a function f is written

P [f],

to be read “P relabeled by f ”. For l ∈ L, the function f satisfies the property f (l) = f (l)).
Process P and P [f] have the same behavior because relabeling does not change the events
occurring at the ports. So, relabeling is a tool to construct new identical agents and use them
in modeling different systems.

Example 4 We consider the two systems shown in Fig. 15.4(a) and in Fig. 15.4(b). In
Fig. 15.4(a), there are two train processes Train1, and Train2, one controller process
Controller, and one gate process Gate. The train processes communicate with the con-
troller process, and the controller process communicates with the gate process, all using
the same set of messages as defined in Example 2. The agent expression for this system
configuration is

((Train1 + Train2) | Controller) | Gate

If the trains have the same behavior, we could relabel the ports of Train1 to get Train2. For
a relabeling function f , f (T1) = T2, we can rewrite the above agent expression as

((Train1 + Train1[f]) | Controller) | Gate

In Fig. 15.4(b), the train processes communicate with controller processes on a one-to-
one basis, while the controller processes independently communicate with the gate process.
The agent expression for this system configuration is

((Train1 | Controller1) + (Train2 | Controller2)) | Gate

If the trains have the same behavior and the controllers have the same behavior then using
the relabeling function f , we can rewrite the above agent expression as

((Train1 | Controller1) + (Train1[f] | Controller1[f])) | Gate �

15.3 CCS—Syntax and Semantics 377

Fig. 15.4 Multiple trains/controllers communicating with one gate

15.3
CCS—Syntax and Semantics

In this section, we present a formal syntax and semantics of CCS. The syntactic definition
follows the discussion in Sect. 15.2. The semantics of CCS is based on Labeled Transition
Systems (LTS) discussed in Chap. 11.

15.3.1
Syntax

We use uppercase letters to denote processes and lowercase letters to denote actions.

15

378 15 Calculus of Communicating Systems

P:: Basic agent: Nil the inactive process

Action Prefixing:
a · P

perform the action a and continue as P

If a is an input action it may be parameterized by a variable,
while if it is an output action it may be parameterized by an
expression

Summation (Choice):
P1 + P2

run either P1 or P2

Composition: P1 | P2 run P1 and P2 in parallel

Restriction: P \L restriction on the labels in L (cannot use the letters of L)

Conditional:
if e then P else Q

if expression e is true, run like P , otherwise run like Q

Relabeling: P [f] apply the mapping f on port labels

(P) parentheses may be used to enforce precedence

Recursive Definition:
Agent

def= exp
where exp may contain Agent and may include mutually
recursive agent definitions

15.3.2
The Operational Semantics of Agents

A process goes through different states during an execution. The state of an agent or simply
the state changes at some instant due to the occurrence of certain “events”. As an example,
the behavior of traffic light in Equation 15.3 can be rewritten as follows:

TrafficLightR
def= red · TrafficLightG

TrafficLightG
def= green · TrafficLightY

TrafficLightY
def= yellow · TrafficLightR

We may regard the agents TrafficLightG and TrafficLightR as representing two states of the
traffic light process. In state TrafficLightG, it will output green, and in state TrafficLightY ,
it will output yellow. No input event is required at any of these states. We use the state
transition notation discussed in Chap. 11 for LTS.

TrafficLightR
red−→ TrafficLightG

TrafficLightG
green−−−→ TrafficLightY

TrafficLightY
yellow−−−→ TrafficLightR

The state transition rules are intended to formalize the explanations for process construc-
tors given in Sect. 15.2. Before describing the rules, we must consider the proper notation
for describing the behavior of composite agents. In CCS, the basis of communication in a

15.3 CCS—Syntax and Semantics 379

composition is synchrony: that the two processes “shake hands” on the pair of “comple-
mentary actions” involved in the communication. The complementary action of an action
a is denoted a. If a is an input action then a is the output action ′a, and conversely ′a = a.
Instead of using a and ′a in communication, the notation a and a will be used. The prin-
ciple of “hand-shaking” is that the actions a and a involved in the hand-shaking “cancel
out”, because the internal details of “hand-shaking” are not observable. Consequently, both
a and a will be replaced by τ in a transition. Let us illustrate this for the vending machine
definition in (15.6). We rewrite the definition using transitions.

VendingMachine
1$−→ VendingMachine1

VendingMachine1
c−→ VendingMachine2

VendingMachine2
deliverC−−−−→ VendingMachine

The agent for a person who interacts with the vending machine can be written as

User
def= 1$ User1

User1
def= c User2

User2
def= deliverC User

The definition can be written using transitions as below.

User
1$−→ User1

User1
c−→ User2

User
deliverC−−−−→ User1

When the complementary actions 1$ and 1$ are performed, the agents in the composite
agent VendingMachine | User shake hands, they undergo state changes simultaneously,
which should result in the next state VendingMachine1 | User1. This transition relation is
written

VendingMachine | User
τ−→ VendingMachine1 | User1

Similar reasoning on the next two pairs of complementary actions gives us the transitions

VendingMachine1 | User1
τ−→ VendingMachine2 | User2

VendingMachine2 | User2
τ−→ VendingMachine | User

With this background we are ready to present the transition rules.

Transition rules
But for Nil every other construct has at least one transition rule.

15

380 15 Calculus of Communicating Systems

• Nil: The understanding is that Nil represents a process that does not have any action to
perform. There is no formal rule for Nil.

• Action prefixing: If a is an action and P is an agent then a ·P is an agent which initially
performs the action a, and thereafter behaves like agent P . This is expressed by the rule

Act : Infer a · P a−→ P

written in sequent calculus notation

Act :
a · P a−→ P

(15.13)

Input actions may be parameterized by variables and output actions may be parameter-
ized by expressions. For parameterized input actions, values must be bound to variables
(as in LST) to enable the correct transition. This is expressed by the rule

Act-inputparameter :
a(x) · P a[v/x]−−−→ P

(15.14)

For an output action parameterized by an expression, the expression must evaluate to a
value. This is expressed by the rule

Act-outputparameter :
a(e) · P a[v=e]−−−→ P

(15.15)

• Summation: The agent P + Q has the capabilities of both agents P and Q. This is
expressed by rules Sum1 and Sum2. Rule Sum1 states that if P produces P ′ under the
action a, then P +Q also produces P ′ under the same action. Rule Sum2 states likewise
for Q.

Sum1 : P
a−→ P ′

P + Q
a−→ P ′

(15.16)

Sum2 : Q
a−→ Q′

P + Q
a−→ Q′ (15.17)

• Composition: The agents P and Q in a composition P | Q may act independent of
the other, while P and Q act synchronously together whenever they are able to perform
complementary actions. This behavior is expressed by the rules Compose1, Compose2,
and Compose3. Rules Compose1 and Compose2 express the concurrent behavior of P

and Q. That is, all actions possible for P and Q are admissible for P | Q. In case
P and Q have complementary actions, rule Compose3 expresses the synchronized ac-
tion which produces τ action in P | Q. By introducing τ in the result, the reason for
synchronized action is abstracted. Thus rule Compose3 involves both abstraction and
synchrony.

Compose1 : P
a−→ P ′

P | Q a−→ P ′ | Q
(15.18)

15.3 CCS—Syntax and Semantics 381

Compose2 : Q
a−→ Q′

P | Q a−→ P | Q′
(15.19)

Compose3 : P
a−→ P ′,Q a−→ Q′

P | Q τ−→ P ′ | Q′ (15.20)

• Restriction: The agent P \L behaves like P except that it may not engage in any action
a such that a or a is in the set L. The rule is

Rest : P
a−→ P ′, a, a /∈ L

P \L a−→ P ′\L
(15.21)

Notice that τ cannot be restricted, and P ′ is restricted on L.
• Relabeling: For a relabeling function f , the behavior of agent P [f] is like that of P .

The rule is

Rel : P
a−→ P ′

P [f] f(a)−−→ P ′[f]
(15.22)

Notice that τ cannot be relabeled, and P ′ is relabeled by f .
• Conditional: The agent if e then P else Q is an agent which behaves like P if e

is true, and behaves like Q if e is false. In the rules below we use the definition

R
def= if e then P else Q.

Cond1 : P
a−→ P ′, e

R
a−→ P ′ (15.23)

Cond2 : Q
a−→ Q′,¬a

R
a−→ Q′ (15.24)

• Recursive definition: If P
def= A then the behavior of agent P is that of agent A according

the rule below:

Rec : A
a−→ P ′

P
a−→ P ′

(15.25)

• Reduction for value passing: The reduction rule combines the action rules (15.14),
(15.15), and rule Compose3 of the composition rule (15.18). The interpretation of the
rule is that the value passing is successful only when complementary actions can be
performed. Formally, it is expressed as below:
– The process a(x) ·P send a message x along channel a. The process b(y) ·Q receives

the message on channel b.
– After sending the message x, the process a(x) · P becomes process P . At the same

instant, the process b(y) · Q becomes Q[x/y], which is process Q with y substituted
by x, the data received on channel b.

15

382 15 Calculus of Communicating Systems

Red : a(x) · P · | b(y) · Q
P | Q[x/y] (15.26)

The set of inference rules given above effectively partitions the set of agents into a set of
equivalence classes. Two expressions in a set are indistinguishable, for they have the same
effect. This equivalence relation, called observational equivalence is discussed Sect. 15.4.

Example 5

• Action prefixing: Applying the action-prefix axiom to

P
def= a.(b.(c | (c + d)))

we may write

P
a−→ P ′

P ′ def= (b.(c | c + d))

• Choice: Using the action-prefixing axiom on

P
def= a · (b | b)

we infer

P
a−→ (b | b)

Thus, we may infer

P + Q
a−→ (b | b)

• Composition: The process P that does only one action a is a · Nil. Using the action-
prefixing axiom this is written

P
a−→ Nil

The process Q that does only one action a is a · Nil. Using the action-prefixing axiom
this is written

Q
a−→ Nil

Applying the composition axiom for P and Q we get

P | Q τ−→ Nil | Nil

P | Q a−→ Nil | Q
P | Q a−→ P | Nil

15.4 Simulation and Equivalence 383

• Restriction: Applying restriction on {a} to P | Q in the composition above we get

(P | Q)\{a} τ−→ (Nil | Nil)\{a} = Nil\{a} = Nil

• Reduction: Let us model a producer (P) and consumer (Q) which communicate through
a buffer (B) that can hold only one item. Producer puts items in channel in and items are
received by buffer in channel in. An item placed in the buffer channel out is received in
the channel out by the consumer Q. The agent definitions are

B
def= in(x) · B ′

B ′ def= out(x) · B + in(x) · B
P

def= in(y) · P
Q

def= out(y) · Q
PC

def= (P | B | Q)\{in,out}
• Conditional: We give a specification Ce for a container with capacity M > 0. Agent Ce ,

in its initial empty state, receives an item x and becomes agent Cm, a state in which
the container has at least one item but is not full. Agent Cm may get an input, in which
case either it becomes full or it is less than full. Agent Cf denotes the situation that the
container is full. The predicate Size < M −1 is used in defining Cf . Agent Cm may also
perform an output action and after performing that action either it becomes empty or it
still has at least one item. The predicate size > 1 is used to test this situation. Agent Cf

can perform only an output action, and after performing it becomes agent Cm. Based on
the above behavior the definition of Ce is given below.

Ce
def= in(x) · Cm

Cm
def= if (size < m − 1) then in(x) · Cm else in(x) · Cf

+ if (size > 1) then out(x) · Cm else out(x) · Ce

cf
def= out(x) · Cm �

15.4
Simulation and Equivalence

The transition rules provide an operational semantics for agents of the calculus. Using the
rules, the behavior of an agent can be represented by a labeled tree. To construct the tree
for an agent P , we start with a node, called root, labeled by P . Then for each agent Pi for

which there exists a rule P
ai−→ Pi , we create a node labeled Pi , draw an arc from the node

labeled P to it, and label that arc ai . Then we repeat the process for each agent Pi . This
process may not terminate if the definition of agent P is recursive. This tree is called the
derivation tree for agent P . The sort of an agent P , denoted sort(P), is the set of labels in

L that label the derivation tree.

15

384 15 Calculus of Communicating Systems

Fig. 15.5 Derivation tree for
action-prefixing rule

Fig. 15.6 Derivation tree for
summation rule

Fig. 15.7 Derivation tree for parallel composition rule

Fig. 15.8 Derivation tree for
restriction rule

15.4.1
Derivation Trees

Derivation trees corresponding to the transition rules action prefixing, sum, composition,
restriction, and relabeling are shown, respectively, in Figs. 15.5, 15.6, 15.7, 15.8, and 15.9.
Examples are successively reused in these figures. In all these figures, we use lower case
letters for actions, an action labels an arc, and agents are represented by triangles with
uppercase labels.

15.4 Simulation and Equivalence 385

Fig. 15.9 Derivation tree for
relabeling rule

In Fig. 15.5, action a that prefixes agent B gives rise to the derivation tree with root
labeled by agent A, a node labeled by agent B , and the arc from A to B with label a. We
reuse this tree in Fig. 15.6 to illustrate the construction of the tree for the agent definition

E
def= a · B + b · D. The trees corresponding to a · B and b · D are combined so that they

are the left and right branches of a tree rooted at E. Figure 15.7 illustrates the parallel

composition tree corresponding to the expression H
def= E | b ·F . The tree for the expression

b · F and the tree for E are combined using the three parallel composition rules. Applying
rule Compose1, both a and b actions can be performed independently by E. After a action
is performed, B and G should be composed in parallel. This gives the left most branch in
the tree rooted at H . Likewise, after b is performed D and G should be composed in
parallel. This gives the second branch in the tree rooted at H . Agent G may perform action
b independent from the actions of E. After b is performed E and F must be composed
in parallel. This gives the third branch in the tree rooted at H . Finally, the complementary
actions may occur synchronously, in which case τ action is produced and following it D

and F must be composed in parallel. This gives the right most branch in the tree rooted at
H . The tree corresponding to H\{b} is shown in Fig. 15.8. The effect of restricting H on
{b} is to remove the transitions labeled by b and b in Fig. 15.7. The effect of relabeling the
action a by u is to replace every occurrence of a in the tree for H\{b} by the label u. The
tree after relabeling is shown in Fig. 15.9.

Example 6 We want to construct the derivation tree for the expression

a · A | b · B

The following steps are to be followed.

• Step 1: Let P
def= a · A and Q

def= b · B .
• Step 2: Construct the trees for P and Q (use Fig. 15.5). The trees are shown in

Fig. 15.10(a).
• Step3: Construct the parallel composition of the trees, (use Fig. 15.7). The tree is shown

in Fig. 15.10(b). The unlabeled branches refer to transitions arising from the actions of
agents A and B . �

Example 7 When an agent expression involves only actions, we can construct the full
derivation tree, and understand its total behavior. Consider the expression

a · (b · (c | c) + d)

15

386 15 Calculus of Communicating Systems

Fig. 15.10 Derivation tree for
the agent a · A | b · B

Fig. 15.11 Full derivation of
the agent in Example 7

• Step1: Let R
def= a · P , P

def= b · Q + d , and Q
def= (c | c).

• Step2: Construct the tree for R
def= a · P using action-prefixing tree construction.

• Step3: Construct the two subtrees rooted at P for the expression b · Q + d using sum
tree construction. The subtree for the branch labeled d is Nil. The left subtree is the
action-prefix branch labeled b. The root of the left subtree is Q.

• Step3: Expand Q using parallel tree construction. Three possibilities arise: c and c may
occur independently or they may synchronize. The left branch labeled c has the subtree
Nil | c, the middle branch labeled c has the subtree c | Nil, and the right branch labeled τ

has the subtree Nil | Nil. By performing the c action Nil | c becomes Nil | Nil. Likewise,
c | Nil becomes Nil | Nil by performing the action a.

The full tree is shown in Fig. 15.11. �

15.4 Simulation and Equivalence 387

15.4.2
Milner’s Laws

Milner [8, 9] has given a number of laws that can be used as rewrite rules to transform
agent expressions to some kind of normal form. We can say that two agent expressions are
equal if they can be reduced to identical normal forms. Equality is hard to achieve, rather
“equivalence” is what we should look for. Milner [9] has given several laws of equivalence.
Without dwelling into the rigorous reasoning behind these laws, we reproduce below the
laws propounded by Milner for observational congruence, one of the equivalences for
agents that we will study in Sect. 15.4.5. For the present, understand the equality sign “=”
to mean “agents on both sides” have the same effect. A strict interpretation is that “=” is
the congruence relation as discussed in Sect. 15.4.5.

The laws can be grouped into Dynamic Laws, Static Laws, Expansion Laws, and the
Recursion Laws. The Dynamic Laws express properties of the dynamic constructors, ac-
tion prefixing and summation. The Static Laws describe properties of static constructors,
composition, restriction, and relabeling. The Expansion Principle relates the static and dy-
namic constructors. The Recursion Laws helps to reason with recursively defined agents.
We discuss the Expansion Laws, and the Recursion Laws in Sect. 15.4.5, and the rest of
the laws are given below.

Dynamic Laws

• Laws of Summation: These laws express some properties of the summation operator.

The SUM Laws

1. P + Q = Q + P (commutativity)
2. P + (Q + R) = (P + Q) + R (associativity)
3. P + Nil = P (Nil is unity for +)
4. P + P = P (absorption)

• Laws of Silent Transition: These laws enable us to rewrite agents containing τ action.

The TAU Laws

1. a · τ · P = a · P
2. P + τ · P = (τ · P)

3. a · (P + τ · Q) + a · Q = a · (P + τ · Q)

4. P + τ · (P + Q) = τ · (P + Q)

Notice that P = τ · P and a · (P + Q) = a · P + a · Q are not true in general, and thus are
excluded as laws.

Static Laws

• Laws of Parallel Composition: Parallel composition is both commutative and associa-
tive.

15

388 15 Calculus of Communicating Systems

The COMPOSITION Laws

1. P | Q = Q | P (commutativity)
2. P | (Q | R) = (P | Q) | R (associativity)
3. P | Nil = P (Nil is unity for |)

• Laws of Restriction: The laws are defined for restricting any set L of labels.

The RESTRICTION Laws

1. Nil\L = Nil
2. (P + Q)\L = P \L + Q\L
3. (α · P)\L = Nil, α ∈ L

= α · (P \L), α /∈ L

4. P \L = P , sort(P) ∩ (L ∩ L) = ∅
5. P \L\K = P \(L ∪ K)

6. (P | Q)\L = (P \L | Q\L), (L ∪ L) ∩ sort(P) ∩ sort(Q) = ∅

• Laws of Relabeling: Relabeling laws can be specialized. Thus, if a label that is not in
sort(P) is used to relabel agent P , it has no effect.

The RELABELLING Laws

1. Nil[f] = Nil
2. (P + Q)[f] = P [f] + Q[f]
3. (a · P)[f] = f (a) · P [f]
4. P [I] = P , I is identity function
5. P [f] = P [g], if dom(f) = dom(g) on sort(P)

6. (P [f])[g] = P [(g ◦ f)], ◦ is function composition
7. P [f]\L = (P \f −1(L))[f]
8. (P | Q)[f] = P [f] | Q[f]

An agent expression may be simplified to a normal form (meaning that it cannot be reduced
any further) by a careful application of Milner’s laws. Some useful tips to a simplification
procedure are the following:

1. Using Milner’s laws on an agent expression does not change its semantics. Conse-
quently a step of simplification, meaning “rewrite” of the original expression using
one of Milner’s laws, produces an expression that has the same effect as the original
expression.

2. Both + and | are commutative and associative. Using this property, a given expression
can be “subdivided” and each sub-expression may be simplified.

3. In simplifying expressions involving parallel compositions, such as P | Q | R | S, it is
better that sub-expressions which have maximum interactions are combined earlier in
the reduction process. After applying rule Compose3 to each interaction, the TAU laws
can be applied to reduce an expression.

4. Since the parallel construct | “distributes over” the restriction construct \ for a label not
in the sorts of its arguments, it may be advantageous to restrict first and then compose.

15.4 Simulation and Equivalence 389

Fig. 15.12 Derivation of the agent B | C in Example 8

5. Constructing the derivation tree for an expression and using the reduction laws on the
trees, as illustrated in Figs. 15.5, 15.6, 15.7, and 15.8, might be helpful.

We illustrate the usefulness of these tips in Example 8.

Example 8 We want to simplify the expression

(A | B | C)\{a},

where A
def= a + b, B

def= a + c, and C
def= b. Expressions A and B have an interaction. Like-

wise, expressions A and C have an interaction. By distributive law, the given expression
can be combined either as in (A | B) | C or as in A | (B | C). Since C involves only one
action, it is better to evaluate A | (B | C). We first construct the derivation trees for A,

B , and C, next compute D
def= B | C, and then compute E

def= A | D. We can use Milner’s
laws directly to simplify the given expression. However, using the derivation trees we get
a better grip in the calculation process.

• Step1: Following the construction in Fig. 15.5, the derivation trees for B , and C are
constructed. Following the construction in Fig. 15.7 the parallel composition of B and
C is constructed. These trees are shown in Fig. 15.12. From the resulting derivation tree
the agent expression for D in (15.27) is calculated.

D = B | C
= a · (Nil | C) + c · (Nil | C) + b · (B | Nil)

= a · C + c · C + b · B (15.27)

• Step2: Following the construction in Fig. 15.5, the derivation trees for A is constructed.
Following the construction in Fig. 15.7 the parallel composition of A and D is con-
structed. These trees are shown in Fig. 15.13. Notice that each one of the actions a,
b, c, a, and b may occur independently. In addition, the action pairs (a,a), and (b, b)

may occur synchronously. Thus there are seven branches in the tree rooted at E. In this
tree, we apply the restriction on label a (and a), which removes the subtrees under the
branches labeled by a and a. From the remaining tree, shown in Fig. 15.14, the result
expression is calculated as the sum of five action prefixes, one corresponding to each
subtree. The final expressions are enumerated in the table below.

15

390 15 Calculus of Communicating Systems

Fig. 15.13 Derivation of the
agent A | (B | C) in
Example 8

Fig. 15.14 Derivation of the
agent (A | (B | C))\{a} in
Example 8

1 τ · (Nil | Nil | C)\{a} = τ · b
2 τ · (Nil | B | Nil)\{a} = τ · c
3 b · (Nil | D)\{a} = b · (c · b + b · c)
4 c · (A | Nil | C)\{a} = c · (b · b + b · b + τ)

5 b · (A | B | Nil)\{a} = b · (b · c + c · b + τ)

Notice that expressions in column 2 should be reduced, using either Milner’s laws or the
derivation trees. In (15.28) and (15.29) we, respectively, illustrate the simplification steps
for expressions 3 and 4 in the table.

b · (Nil | D)\{a} = (b · D)\{a}(Composition Law 3)

= b · (c · C + b · B)\{a}(Restrction Law 3 and

Substitution from (15.27))

= b · ((c · C)\{a} + (b · B)\{a})(Restriction Law 2)

= b · (c · (C\{a}) + b · (B\{a}))(Restriction Law 3)

= b · (c · b + b · c)(Definition of Restriction) (15.28)

c · (A | Nil | C)\{a} = c · (A | C)\{a}(Composition Laws 2 and 3)

= c · (A\{a} | C\{a})(Restriction Law 6)

= c · (b | b)(Definition of Restriction)

= c · (b · b + b · b + τ)(Composition Laws) (15.29)

�

The derivation tree TP of an agent P may exhibit a repetitive structure, in which case
the tree becomes a graph, called the transition diagram of agent P . The transition diagram

15.4 Simulation and Equivalence 391

Fig. 15.15 LST for traffic light definition (15.30)

is a labeled transition system (LTS). Thus, corresponding to an agent definition, as defined
by its transition rules, we can construct a derivation tree, an LTS if the derivation tree has a
repetitive structure. Henceforth we discuss simulation and equivalence of agents in terms
of their corresponding LTSs.

As an example, consider definition (15.3) of TrafficLight process. We can rewrite it as
in (15.30).

TrafficLight
def= red · TrafficLightR

TrafficLightR
def= green · TrafficLightG

TrafficLightG
def= yellow · TrafficLightY

TrafficLightY
def= τTrafficLight

(15.30)

Following the construction process for derivation trees from agents, we get the LTS shown
in Fig. 15.15.

15.4.3
Labeled Transition Systems—Some Properties

Recall the formal definition of LTS from Chap. 11. If A is the set of actions associated with
an LTS, let A� denote the set of all finite sequences of actions in A. An element σ ∈ A� is
called an action sequence. For states s, t in the LTS and action sequence σ = a1 . . . ak , k ≥
0, if there exists s0, s1, . . . , sk ∈ S with s = s0, t = sk , and si

ai+1−−→ si+1 for all i, 0 ≤ i < k,
then we denote s

σ−→ t . The set

Tr(s) = {σ ∈ A� | ∃t ∈ S • s
σ−→ t}

is called the set of traces possible from state s. The set Tr(s0) is the set of possible traces
of the LTS.

We may allow τ actions and consider traces between states on which any number of τ

actions occur in between. We introduce a new notation to express transitions that involve

15

392 15 Calculus of Communicating Systems

any sequence of τ actions. Let τ � denote any finite sequence of τ actions. For any states
s and t and action sequence σ ∈ {A\{τ }}� , with σ = a1 . . . an, n ≥ 0, we denote by s

a⇒ t

the fact that there exists s0, s1, . . . , sn ∈ S with s = s0, t = sn, and si
τ�ai+1−−−→ si+1 for all i,

0 ≤ i < n. The set

Trw(s) = {σ ∈ (A \ {τ })� | ∃t ∈ S • s
a⇒ t}

is called the set of weak traces possible from s. The set Trw(s0) denotes the set of all weak
traces possible from the initial state.

In order to complete the definition of LTS of an agent, we let the state in an LTS of an
agent P to include the values of all variables that are parameters to the actions in sort(P).
That is, with every state of TP there exists a state vector (v1 : D1, . . . , vn : Dn) where vi is
a variable name and Di is the domain for variable vi . With this background we can address
the meaning of “equivalence” and “simulation”.

15.4.4
Trace Equivalence

Trace equivalence is very close to language equivalence as studied for deterministic finite
state automata in Chap. 6. Informally, two states are trace equivalent if the possible se-
quences of actions starting from these states are the same. Let TP and TQ, respectively,
denote the LTS corresponding to agents P and Q. Agents P and Q are trace equivalent,
written P ≈tr Q, if and only if sort(P) = sort(Q), and Tr(s0) = Tr(s′

o). That is, the two
agents P and Q perform the same sequence of actions. We may also write TP ≈tr TQ

instead of P ≈tr Q.
An LTS may be refined by making explicit in the model some internal actions. A re-

fined LTS is necessary to reason about the functional correctness of the modeled process.
Suppose TQ is a refined LTS of TP then it is necessary that both TP and TQ have the
observable behavior and sort(Q) = sort(P) ∪ {τ }. Thus, we are led to consider the equiv-
alence of traces of TQ, which involve τ actions and TP which involve only observable
actions. This equivalence, called weak trace equivalence, is defined in terms of equality of
weak traces. Agents P and Q are weakly trace equivalent, written P ≈wtr Q or equiva-
lently as TP ≈wtr TQ, if and only if Trw(s0) = Trw(s′

o). It is easy to see that if two LTSs
are trace equivalent then they are also weakly trace equivalent.

Consider the two LTS TP and TQ shown in Fig. 15.16(a) and Fig. 15.16(b). They
represent, respectively, the behavior of two vending machines P and Q. For vend-
ing machine P , Tr(s0) = {coin coffee, coin tea}, and for vending machine Q, Tr(to) =
{coin coffee, coin tea}. That is, the two vending machines are trace equivalent. In TP , start-
ing at s0 we can perform the action coin, and the result is not deterministic, because we
will observe the two possible sequences {coin coffee, coin tea}. This is exactly the same
sequences observed for TQ, and consequently TP ≈tr TQ. Yet, there is a difference in their
observed behavior. In TQ, after performing the action coin at the state t0 we have a choice,
either the action coffee or the action tea can be exercised. Thus, a user of these vending

15.4 Simulation and Equivalence 393

Fig. 15.16 Coffee-tea vending machine LST

Fig. 15.17 Coffee-tea vending machine LST with τ transitions

machines can observe this difference in the behavior of these machines. Thus, trace equiv-
alence does not reveal the true behavior. We need a different notion of equivalence in order
to conclude whether or not two agents have “similar” (identical) behavior.

Consider the two LTS TP ′ and TQ′ shown in Fig. 15.17(a) and Fig. 15.16(b). The LTS
TP ′ is a refinement of the LTS TP and the LTS TQ′ is a refinement of the LTS TQ. It can
be inferred that

TP ≈tr TQ

TP ′ ≈tr TQ′

TP ≈wtr TP ′

TQ ≈wtr TQ′

15

394 15 Calculus of Communicating Systems

Fig. 15.18 Commutative
diagram for trace and weak
trace equivalences

Figure 15.18 illustrates the “commutativity” of the trace equivalence and weak trace
equivalence. Following the arrows from TP in two ways we get the equation

≈tr ◦ ≈wtr=≈wtr ◦ ≈tr (15.31)

15.4.5
Equivalence and Congruence

In this section, we consider different kinds of “equivalence” notions, where “equivalence”
is a property on which two agents can be judged to be “like” or “unlike”.

A strong form of equivalence is called isomorphism. Two agents P and Q are iso-
morphic if their corresponding LTSs TP and TQ are isomorphic. Two isomorphic LTSs
are structurally identical and their labeling of states may be different. Isomorphism is
the strongest form of equivalence. Formally, two LSTs T = (S,A,Σ, s0), and T ′ =
(S ′,A′,Σ ′, s′

0), are isomorphic, if, and only if, A = A′ and there exists a bijective function
φ : S �→ S′ such that

• φ : sort(T) �→ sort(T ′),
• φ(s0) = s ′

0, and

• for every transition s
a−→ t ∈ Σ , there exists a unique transition φ(s)

φ(a)−−→ φ(t) ∈ Σ ′.

Example 9 Consider processes R and S as defined below.

R
def= (P | Q)\{b},where

P
def= a · b · P

Q
def= c · b · Q

S
def= a · c · τ · S + c · a · τ · S

15.4 Simulation and Equivalence 395

It is easy to verify that TR and TS are isomorphic graphs. So, R and S are equivalent. �

Let us revisit the producer–consumer reduction in Example 5 and specialize it to a 1-
place buffer and a 2-place buffer. The 1-place buffer definition is

B
def= in(x) · B ′

B ′ def= out(x) · B
(15.32)

The 2-place buffer definition is

B2
def= in(x) · B1

B1
def= in(x) · B0 + out(x) · B2

B0
def= out(x) · B1

(15.33)

Intuitively, it is suggested that a 2-place buffer can be implemented by using two 1-place
buffers, provided we link the out channel of the first 1-place buffer to the in channel of the
second buffer. This is achieved by relabeling functions f , and g such that f (in) = newin
and g(out) = newin, and then composing the two 1-place buffers as

TB
def= B[f] | B[g] (15.34)

It is necessary to formally prove that TB and B2 are “equivalent”, in some precise sense.
Once a proof is given, then we can infer that the systems P | B2 | Q and P | (B[f] | B[g]) |
Q are also equivalent in the same sense. This precise sense comes out of the relation weak
bisimulation (∼w).

Weak bisimulation abstracts τ actions and is a suitable relation for stating the equiv-
alence of processes like those given for producer-consumer systems that communicate
through buffers. We extend the notation P

a⇒ Q if P may be transformed to Q by perform-
ing the action a preceded and succeeded by a finite number (possibly zero) of τ transitions.
That is,

P
a⇒ Q

stands for

P
〈τ 〉ma〈τ 〉n

−−−−−→ Q

For example if P
def= τ · τ · a · τ · Nil then

P
τ⇒ τ · a · τ · Nil

P
a⇒ a · Nil

P
a⇒ τ · Nil

P
a⇒ Nil

15

396 15 Calculus of Communicating Systems

We may write P
a⇒ Q only if the sequence of actions performed by P has at least one

τ . We define the property that takes into account the special status of τ actions described
above and would see the agents a · τ · Nil and a · Nil as “equivalent”. This kind of “equiv-
alence” is under the weak bisimulation property defined below.

Agents P and Q are weakly bisimilar if and only if

• (a) for each action a �= τ that P can perform, there exists P ′ such that P
a−→ P ′, either

(1) there exists Q′ such that Q
a⇒ Q′ and P ′ and Q′ are equivalent, or (2) a = τ and

P ′ is equivalent to Q, and conversely,
• (b) for each action a �= τ that Q can perform, there exists Q′ such that Q

a−→ Q′, either
(1) there exists P ′ such that P

a⇒ P ′ and P ′ and Q′ are equivalent, or (2) a = τ and P

is equivalent to Q′.

It is possible to prove that the processes TB and B2 are weakly bisimilar or “equivalent”
with respect to the bisimilarity property. Bisimilarity is not a relation.

Milner [9] has proved that there exists a relation ≈ on the set of agents that satisfy the
bisimilarity property, and in fact that relation is the largest among such relations. Milner
calls the relation ≈ observational equivalence, and writes P ≈ Q to express that P and Q

are “observationally equivalent”.

Substitutability and Strong Bisimilarity In general, observational equivalence does not
guarantee “substitutability”. That is, if P ≈ Q it does not follow that P + Q ≈ Q + R.
From our discussion above it follows that τ · a · Nil ≈ a · Nil. Let us do a ‘sum’ of the
process b · Nil with the two processes in the above relation. Then we get the processes

P
def= τ · a · Nil + b · Nil, and Q

def= a · Nil + b · Nil. The process P can perform a τ action to
become a · Nil, but the process Q cannot perform any sequence of τ actions with at least
one τ in it. As such, P ≈ Q is not true. This example illustrates the important distinction
between “observational equivalence” and the “actual behavior involving internal actions”.
An occurrence of an internal action, which is not observable in the environment of the
system, will drastically affect the behavior of the system. This leads us to look at a much
stronger notion of equivalence.

Another kind of bisimilarity is called strong bisimilarity, in which τ actions have the
same status as visible actions. Agents P and Q are strongly bisimilar if and only if the
following hold:

• if P
a−→ P ′ there exists a Q′ such that Q

a−→ Q′, and P ′ and Q′ are strongly bisimilar,
and

• if Q
a−→ Q′ there exists a P ′ such that P

a−→ P ′, and P ′ and Q′ are strongly bisimilar.

The processes a · τ · b · Nil + c · τ · b · Nil and c · τ · b · Nil + a · τ · b · Nil are strongly
bisimilar. However, the processes b · (a · Nil + c · Nil) and b · a · Nil + b · c · Nil) are not
strongly bisimilar.

Strong bisimilarity allows substitutability. That is if process P is strongly bisimilar to
process Q one can replace P with Q within any large system that includes P . Milner
[9] showed that there exists a congruence relation (=) that satisfies the strong bisimilarity
property and it is the largest such relation. The congruence relation for agents is an equiv-
alence relation that satisfies the substitution principle. This relation =, defined on the set
of agents, is called observational congruence and is formally expressed below.

15.4 Simulation and Equivalence 397

• reflexive: P = P

• symmetric: if P = Q then Q = P

• transitive: if P = Q and Q = R then P = R

• substitutivity: if P = Q then

a · P = a · Q
P + R = R + P

P | R = R | P
P \L = Q\L
P [f] = Q[f]
if e then P if e then Q

else R = else R

A
def= P

and A = B

B
def= Q

The “equivalence hierarchy” is

= implies ≈ implies ∼w implies ≈tr implies ≈wtr

Under observational congruence principle we discuss Expansion and Recursion princi-
ples.

Expansion Principle A system is modeled as a composition of agents. It includes par-
allel composition, and possibly relabeling, and restriction constructors. The Expansion
Principle expresses the behavior of such a static agent in terms of the behaviors of its
components and dynamic constructors, action prefixing and summation. We state it for
the simplest case, a system modeled as a parallel composition of two agents P1 and P2.
Informally, we need to apply the three compositions laws Compose1, Compose2, and
Compose3 for all possible combinations of actions (a1, a2), a1 ∈ sort(P1), a2 ∈ sort(P2).
The result of such an application, written as a set of agents, is

P1 | P2 = {a1 · (P ′
1 | P2) + a2 · (P1 | P ′

2) | P1
a1−→ P ′

1,P2
a2−→ P ′

2}

+ {
τ · (P ′

1 | P ′
2) | P1

l−→ P ′
1,P2

l−→ P ′
2

}

Generalizing the above for n > 2 agents we can write the Expansion Law as follows:

P1 | . . . | Pn =
n∑

i=1

{ai · (P1 | . . . | Pi | . . . | Pn) | Pi
ai−→ P ′

i }

=
∑

1≤i<j≤n

{
τ · (P1 | . . . | Pi | . . . | P ′

j . . . | Pn) | (Pi
l−→ P ′

i), (Pj
l−→ P ′

j)
}

Writing the Expansion Principle in the most general case, for an agent involving rela-
beling and restriction, is more complicated. It is harder to write because we have to avoid

15

398 15 Calculus of Communicating Systems

relabeled actions in a communication and defer from using restricted events. However, it
is rather straightforward to write for specific agents, by just following the transition laws
Rel and Rest.

Recursion Principle Process definitions are often recursive and involve a finite number
of recursive equations, as in

C
def= a · C′ (15.35)

C′ def= b · C (15.36)

The Recursion Laws of Milner [9] give the criteria which guarantee unique solutions to
recursive equations. The first law ensures that in a recursive definition we obtain an agent
congruent to the defining expression.

Law1-Recursion

If A
def= P then A = P (15.37)

To formulate a law for recursively defined agents, as in (15.35), agent variables and in-
complete agents are defined. Let V denote a set of agent variables. If X,Y ∈ V , then a · X
and a · X | b · Y are examples of incomplete agents. That is, an incomplete agent is an
expression involving agent variables and constructors of the calculus. An incomplete agent
can be instantiated to an agent by substituting agents for each agent variable. For example,
substituting b · Nil for X and c · Nil + d · Nil for Y in the expression a ·X | b ·Y , we get the
agent a · b · Nil | b · (c · Nil + d · Nil). Recursive equations in CCS are of the form X = E,
where X is an agent variable and E is an expression containing no agent variable other
than X. In addition two restrictions are imposed on E.

• Guardedness: Every occurrence of X in E must be prefixed by an action. As examples,
X is guarded in a · X + b · Nil, and in a | b · Nil, but not in a · X + X or in X + a · Y .

• Sequential: X should not occur in E within static constructors. Thus, X is not sequential
in a · X | Y or in a · X + (a · X | c · Nil), but sequential in a · X + (b · Nil | Y). In X + Y

the variable X is sequential but is not guarded, and in a ·X | Y the variable X is guarded
but not sequential.

Milner [9] has proved that the conditions of guardedness and sequentiality together are
sufficient to guarantee up to = of solutions to recursive equations in a single variable.

Law2-Recursion Suppose that X = E is an equation in agent variable X, E has no
variable other than X, X is guarded in E and is sequential in E. Then any two solutions of
the equation are observationally congruent. That is,

if P = E{P/X} and Q = E{Q/X} then P = Q (15.38)

As an example, let us try to prove A = B , where

A
def= a · A

15.5 Exercises 399

B
def= a · a · B

Consider the equation X = E, where E is the expression a · a · X. The variable X is both
guarded and sequential in E. Thus, from Law2, if P and Q are both solutions to it then
P = Q. But from Law1 we infer that B = a ·a ·B and hence B is a solution to the equation
X = E. Likewise, A is a solution to X = E. Hence A = B .

Example 10 Consider the definitions

P
def= a · P + τ · b · Nil

Q
def= a · Q + c · Nil

R
def= c · b · Nil

S
def= (Q | R)\c

We want to prove P = S. It is easy to verify that P satisfies the equation

X = a · X + τ · b · Nil (15.39)

and the variable X is guarded and is sequential in the expression E(X) = a ·X + τ · b · Nil.
In order to prove P = S, we must now prove that S satisfies (15.39). The definition of S

is not recursive, but involves Q which is recursively defined. We calculate Q | R using
either expansion laws directly or using derivation tress discussed in Sect. 15.4.1, and then
calculate S = (Q | R)\c using the restriction laws. We get the following results.

Q | R = a · (Q | R) + c · (Nil | R) + c · (Q | b · Nil) + τ · (Nil | b · Nil)

S = (Q | R)\c
= a · (Q | R) + τ · (Nil | b · Nil)

Thus, S satisfies equation (15.39). From Law2-Recursion we infer P = S. �

15.5
Exercises

1. Define agents Sum and Difference, which repeatedly input a number at each of their
input ports and then output, respectively, their sum and difference. Using these agents,
construct an agent that has the capabilities of both Sum and Difference.

2. Define an agent CoinChanger which has two ports, one for accepting a 1$ coin and
the other for delivering 25c and 10c coins. The agents must have the ability to produce
any sequence of 25c and 10c coins the sum of whose values is equal to 1$.

3. Define an agent Divisor which has two input ports and one output port. At each input
port, it can receive an integer value. It behaves conditionally, by outputting the quotient
if one of the input number divides the other and outputting the smaller of the two input
numbers otherwise.

15

400 15 Calculus of Communicating Systems

Fig. 15.19 Train-controller-gate-signal System

4. Introduce a new process Signal in TCG system in order that (1) the Gate process
communicates with the Signal process, and (2) the Signal process communicates with
the Train process. See Fig. 15.19. The new system TCGS should have the additional
behavior defined as follows:

• The Gate process informs the Signal process either to turn green or red, upon re-
ceiving the information close from the controller. In case the Gate process informs
the Signal process to turn red, it will send the message not_closing to the Controller
process.

• The Gate process triggers the internal action down only after it sends the message
green to the Signal process.

• If the Controller process receives the message not_closing it sends the message
close again to the Gate process.

• The Train process will stop if it receives (sees) red signal; otherwise, it will proceed
toward the gate.

Give the port labels for the new set of communication requirements and the full CCS
specification of the system TCGS.

5. Give an agent definition for the behavior of an elevator that can service two floors. In
the ground floor, the elevator can either stay in the first floor or can go up to the second
floor. In the second floor, the elevator can either stay in the second floor or go down to
the first floor. A user in a floor can get into the elevator only if the elevator is in that
floor and then go to the floor as serviced by the elevator.

6. Using the transition rules, find all pairs (a,P ′) such that P
a−→ P ′ where P is defined

by

P
def= ((a · P + b · Nil) | (b · P + a · τ · Nil))\a

15.6 Bibliographic Notes 401

7. Draw the derivation trees for the agents

a · (b · c · Nil + c · b · Nil)

a · (b · Nil | c · Nil)

For the two trees investigate trace equivalence and bisimilarity. Which one holds?
8. Draw the derivation trees for the agents

P
def= a · (b · Nil + τ · P) + a · τ · P

Q
def= ((a · τ · Nil | a · Nil) + c · Nil)\a) + b · Q

R
def= (c · P) | (a · Q)

9. Determine whether or not R ≈ S from the following definitions of agents.

P
def= get(x) · hold(x) · P

Q
def= hold(x) · put(x) · Q

R
def= (P | Q)\{hold}

S
def= get(x) · put(x) · S

10. Which of the following expressions satisfy both guardedness and substitutability prop-
erties?
(a) a · Nil
(b) τ · X + X

(c) a · Nil | (a · X + τ · Nil)
(d) a · X + b · Y
(e) a · (X | τ · Y)

11. For the agent definitions

P
def= a · c · P

Q
def= a · Q + τ · b · Nil

calculate (P | Q)\a and simplify it to an agent R such that R satisfies an expression
E(X) in which X satisfies the guarded and sequential properties.

15.6
Bibliographic Notes

Research in process calculi began in earnest with Robin Milner’s seminal work [8, 9]
on Calculus of Communicating Systems (CCS) during the period 1973–1980. During the

15

402 15 Calculus of Communicating Systems

same period, Hoare developed a calculus for Communicating Sequential Processes (CSP)
[6, 7]. In 1982, Bergstra and Klopp [2] introduced the basics of Algebra of Communicat-
ing Processes (ACP), and in subsequent papers [3, 4], they developed a full version of ACP
with synchronization and simulation. The majority of other process calculi work can trace
their roots to one of CCS, CSP, and ACP. A comparative study on these three models can
be found in [1]. Other models of concurrency include Petri Nets developed by Petri [11]
and the Actor Model [5].

An important issue in CCS is the specification of systems composed of agents and veri-
fication of certain properties in the modeled systems. We have explained in sufficient detail
how systems may be put together. In this endeavor, the notation, sequence of topics, and
many examples are either liberally taken or adapted from the lecture notes of Walker [13].
However, verification is not discussed in any detail. It is a subject that requires a study in
itself. It requires a much subtler aspects of algebra and logic which is both vast and deep
that it cannot be fitted within the scope of this chapter.

Current research on process calculi focuses on developing new process calculi for mo-
bile systems and biological systems. Milner’s Pi-calculus [10] is inspiring the work on
mobile process calculi. Different kinds of modal logics are studied in order to reason about
arbitrary properties of processes, following the basic ideas of Hoare.

References

1. Baeten JCM (2003) Over 30 years of process algebra: past, present, and future. In: Accto L,
Ésik Z, Fokkink W, Ingólfsdóttir A (eds) Process algebra: open problems and future directions.
BRICS notes series, vol NS-03-3, pp 7–12

2. Bergstra JA, Klop JW (1982) Fixed point semantics in process algebra. Technical report IW
208, Mathematical Center, Amsterdam

3. Bergstra JA, Klop JW (1984) Process algebra for synchronous communication. Inf Control
60(1):109–137

4. Bergstra JA, Klop JW (1985) Algebra of communicating processes with abstraction. Theor
Comput Sci 37:77–121

5. Hewitt C, Baker H Jr. (1977) Actors and continuous functionals. MIT/LCS/TR-194
6. Hoare CAR (1978) Communicating sequential processes. Commun ACM 21(8):666–677
7. Hoare CAR (1985) Communicating sequential processes. Prentice-Hall, New York
8. Milner R (1980) A calculus for communicating systems. Lecture notes in computer science,

vol 92. Springer, Berlin
9. Milner R (1989) Communication and concurrency. Prentice-Hall, New York

10. Milner R (1999) Communicating and mobile systems, the Pi-Calculus. Springer, Berlin
11. Petri CA (1962) Kommunikation mit automaten. PhD Thesis, Institut fuer Instrumentelle

Mathematik, Bonn
12. Petri CA (1980) Introduction to general net theory. In: Brauer W (ed) Proc advanced course

on general net theory, processes, systems. Lecture notes in computer science, vol 84. Springer,
Berlin, pp 1–20

13. Walker D (1987) Introduction to a Calculus of communicating systems. Technical report ECS-
LFCS-87-22, Department of Computer Science, University of Edinburgh, Edinburgh

Part VI
Model-Based Specifications

This part describes the four model-based specification techniques VDM-SL, Z, Object-Z
and the B-Method. Each technique is unique in some respect. VDM-SL is based on three-
valued logic, while the other methods use classical two-valued logic. There are many sim-
ilarities between VDM-SL and Z specification languages. The B-Method is based on the
notion of abstract machine, and provides syntactic structures and proof obligations for re-
fining an abstract machine into a more concrete representation. Object-Z supports the de-
velopment of specifications in object-oriented style, and its syntactic structure is closer to
many OO programming languages. The learning outcomes from this part are the following:

• VDMl-SL specification language—its syntax and semantics
• specification examples in VDM-SL
• data refinement of VDM-SL specifications
• reasoning about VDM-SL specifications
• Z specification notation—its syntax and semantics
• specification examples in Z
• data refinement of Z specifications
• proving properties using Z specifications
• Object-Z specification language—its syntax and semantics
• OO features in Object-Z-encapsulation, inheritance and polymorphism
• specification examples in Object-Z
• Abstract Mathematical Notation (AMN)
• B-Method and AMN used in the B-Method
• abstract machines in B
• specification examples in B
• refinement of B specifications
• proof obligations in B

Vienna Development Method 16

The Vienna Development Method (VDM) is an environment for the modeling and devel-
opment of sequential software systems. The specification language of VDM has evolved
from Meta-IV, the language used at IBM’s Vienna development laboratory for specifying
the semantics of the PL/I programming language in the early seventies. The current version
of the VDM specification language, VDM-SL, has been standardized by the International
Standards Organization (ISO). It supports the modeling and analysis of software systems
at different levels of abstraction. Using VDM-SL constructs, both data and algorithmic ab-
stractions expressed in one level can be refined to a lower level to derive a concrete model
that is closer to the final implementation of the system.

In this chapter, we present a tutorial of VDM-SL, explain refinement techniques, and
discuss proof rules. Mathematical proofs are used to demonstrate the consistency of models
and also to show that a refined concrete model faithfully conforms to its abstract model.
However, we put less emphasis in proof techniques and focus on the use of abstraction to
construct precise models. We introduce several examples to illustrate the effective use of
VDM-SL features for modeling software systems of reasonable complexity.

16.1
Structure of a VDM Specification

VDM supports two kinds of abstractions—representational abstraction and operational
abstraction. In representational abstraction, the data is abstracted from the representational
details of data structures to be used in the final implementation of the system. Operational
abstraction describes the abstract algorithmic manipulations of the data introduced in the
representational abstraction as first-order predicate logic formulas. These constraints are
expressed as functions and operations in the specification.

A VDM specification is structured into various blocks, where each block is identified
by a distinct keyword:

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3_16, © Springer-Verlag London Limited 2011

405

16

406 16 Vienna Development Method

types
<type definitions>

values
<value definitions>

functions
<function definitions>

operations
<operation definitions>

state <state name> of
<state definition>

end

There is no explicit ordering among these blocks. Moreover, not all of them are required
to be present in a specification. To illustrate, a portion of the VDM specification for a hotel
reservation system is given in Example 1.

Example 1 Specification for a Hotel Reservation System.

types
RoomNumber = {1, . . . ,100};
RoomStatus = Available | Occupied

state Reservation of
rooms: RoomNumber

m−→ RoomStatus

init mk-Reservation (rms)
�=

∀ rn ∈ dom rooms • rooms(rn) = Available
end
operations

book-room (roomno: RoomNumber)
ext wr rooms: RoomNumber

m−→ RoomStatus
pre roomno ∈ dom rooms
post

let st: RoomStatus = Occupied in
rooms =

↼−−−−−−
rooms† {roomno �→ st}; �

In Example 1, RoomNumber denotes the type of room numbers, numbers ranging from
1 to 100. The status of a room is either available or occupied. The state of the system
consists of the rooms and the status of each room in the hotel. The only operation specified
in this example is book-room. The precondition of the operation checks the validity of the
room number. The postcondition ensures that the status of the selected room is occupied.

16.2
Representational Abstraction

Representational abstraction describes the modeling primitives necessary to specify a soft-
ware. A model of the software is constructed from the data types built into the language
and from those data types that can be constructed by composing the already defined types.

16.2 Representational Abstraction 407

Table 16.1 Conventions for identifiers

Convention Synopsis Used for

lowercase bold roman nil keywords

lowercase italics student variables

lowercase italics with first
letter in uppercase italics

Faculty types

uppercase roman ORANGE quote type, state variables

lowercase bold mk_ . . . make function

– lowercase roman – comments comments

There are five mathematical structures—set, sequence, map, record and tuple. These struc-
tures help us to build composite types.

16.2.1
Identifiers

Identifiers in VDM-SL are formed using alphanumeric characters and Greek letters. The
language does not restrict the length of identifiers. Hyphens and primes are permitted
within identifiers but they should not appear at the beginning of an identifier. The iden-
tifiers in VDM-SL are case sensitive. Thus, the two identifiers student and Student are
different.

Table 16.1 describes conventional font selection followed in this book for various syn-
tactic structures. In addition, we also use subscripts as part of identifiers.

Comments and Separators Comments in VDM-SL are written with ‘–’ preceding the
comment. Any text preceding ‘–’ is part of the specification:

– This is a comment in VDM-SL.
x /∈ S – x is not a member of the given set

If comments extend to several lines, it is necessary to start each line of comment with ‘–’.
Each line in VDM-SL corresponds to a line in printed output of the specification.

Within a block of a VDM specification, such as a type definition and an operation def-
inition, individual statements or expressions are separated by semicolons. However, there
is no semicolon at the end of the block; instead, the keyword such as types and functions
itself acts as the separator.

16.2.2
Simple Types

Simple types in VDM-SL can be classified into two categories: primitive types defined in
the language, and quote types introduced by the user. These types are called simple because
they are treated as basic elements of the current specification. Consequently, these types

16

408 16 Vienna Development Method

Table 16.2 Primitive types in
VDM-SL

Symbol Type

Z Integer

N Natural number

N1 Natural number excluding zero

R Real number

Q Rational number

B Boolean

char Character

token Token type

Table 16.3 Arithmetic operators in VDM-SL

Operator Synopsis Meaning

↑ a ↑ b exponentiation

div a div b integer division

rem a rem b remainder after integer division

mod a mod b modulus operator

abs abs a returns the absolute value

floor floor (a/b) floor operator

are not further elaborated in the current specification. Representations of these types are
left to the implementation level. The operations that can be performed on simple types
include testing for equality, inequality and membership.

Primitive Types The primitive types in VDM-SL are given in Table 16.2. Types other
than the token type resemble those in a programming language. The token type contains
a countable collection of distinct values, called tokens. There is no internal representation
for a token. It is generally used to define a type whose definition is deferred until the later
stages of the development process. For example, the type definition

Person = token

introduces the type Person, which is left unspecified in the current specification.

Arithmetic and Logic Operators In addition to the standard set of arithmetic operators
such as ‘+’, ‘−’, ‘∗’, ‘/’ and logical operators ‘<’, ‘>’, ‘≤’ and ‘≥’, operators enumerated
in Table 16.3 are also available in VDM-SL.

The sign of ‘a rem b’ is the same as that of ‘a’; the sign of ‘a mod b’ is the same as that
of ‘b’. Other operators in Table 16.3 have their usual meanings.

Quote Types A quote type, unlike a token, has an internal representation defined by a
string of distinguished letters. In this book, we use upper case alphabets in roman fonts to
represent quote types. The string representing a quote type denotes both the type and its
value. For example, ORANGE is a quote type whose value is ORANGE.

16.2 Representational Abstraction 409

16.2.3
Composite Types

Composite types are constructed from the types already introduced in the specification
(simple or composite) using type constructors. In general, a composite type is defined
along with its type invariant which constrains the set of elements of the type.

Union Type A union type allows us to combine two or more types into one composite
type. The syntax is as follows:

T = T1|T2| . . . |Tn

where T is a union type and T1, T2, . . . , Tn are component types; the symbol ‘|’ is part of
the syntax. The semantics of a union type is that an instance of type T can be substituted
by an instance of any one of its component types. For example, if the type User in a library
environment is defined as

User = Faculty | Student

then members of the type User are the union of the members of the types Faculty and
Student.

Union and quote types can be composed as in

Message = SUCCESS | INPUT-ERROR | MISSING-PARAMETER

where Message can be used, for example, to denote the return values of a function.
Union type is associative and commutative. The following definitions are equivalent.

User = (Faculty | Student) | Staff

User = Faculty | (Student | Staff)

User = Staff | (Faculty | Student)

VDM-SL uses a special keyword nil to denote a null type. As the name implies, nil stands
for a type having no value. However, nil cannot be used by itself. It can only be combined
with other types composing a union type. For example,

B = nil

is illegal, and

B = N | nil

denotes a type B whose instances include natural numbers and null value.
An optional type, represented by [T], consists of the union of some type T and nil type;

i.e.,

[T] ≡ T | nil

16

410 16 Vienna Development Method

Table 16.4 Set operators

Operator Synopsis Meaning

card card S cardinality of the set S

∈ x ∈ S x is a member of the set S

∪ S1 ∪ S2 set union

∩ S1 ∩ S2 set intersection

\ S1 \ S2 set difference

⊆ S1 ⊆ S2 subset

⊂ S1 ⊂ S2 proper subset

= S1 = S2 set equality

�= S1 �= S2 set inequality
⋃ ⋃

SS distributed union of the sets SS
⋂ ⋂

SS distributed intersection of the sets SS

{i, . . . , j} {i, . . . , j} subset of integers from i to j, both inclusive

Set VDM-SL deals with only finite sets [9]. Countable sets, although not finite, are
treated as if they are finite. This seems to simplify some proof obligations. VDM-SL uses
the notion for set enumeration and set comprehension as discussed in Chap. 12.

The syntax for a declarative definition of a set in VDM-SL is

P –set

which denotes the set of elements of type P; the symbol ‘–’ and the keyword set are part
of the syntax. Some examples for set type definition are given below:

Digits = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Even = {n ∈ N | n mod 2 = 0}
– no predicate part
Even = {n | n ∈ N ∧ n mod 2 = 0}
– type inferred from declaration; no predicate part
Even = {n | n ∈ N • n mod 2 = 0}
Person = token

Employee = Person-set

Empty set is denoted by {}.
Table 16.4 enumerates the VDM-SL operators on sets. The semantics for these operators

is derived from set theory.
Notice that there is no symbol in VDM-SL for superset and proper superset; instead,

supersets can be specified using the symbols for subset and proper subset.

Sequence A sequence type can be defined using the declarative syntax, as a type or us-
ing the constructive style as enumeration and comprehension. The two forms of declarative
syntax for sequences are T ∗ and T + in which T denotes the type of elements of the se-
quence. The declaration T + defines a nonempty sequence type, whereas the declaration
T ∗ introduces a general sequence type which includes an empty sequence with no value.

16.2 Representational Abstraction 411

Table 16.5 Sequence operators

Operator Synopsis Meaning

len len S length of the sequence S

� S1 � S2 sequence concatenation

conc conc SS distributed concatenation of the sequence of sequences SS

hd hd S head of the sequence S

tl tl S tail of the sequence S

inds inds S indices of the sequence S; returned as a set of positive integers

elems elems S set of elements comprising the sequence S

(i, . . . , j) S(i, . . . , j) subsequence of S from the ith element to the j th element, both inclusive

= S1 = S2 sequence equality

�= S1 �= S2 sequence inequality

The syntax for sequence enumeration is similar to that for sets, except the parentheses
‘{’ and ‘}’ in sets are replaced by the square brackets ‘[’ and ‘]’, respectively. For example,

Vowels = [‘a’, ‘e’, ‘i’, ‘o’, ‘u’]

introduces the sequence Vowels having five members.
Sequence comprehension uses the syntax that is similar to that of set comprehension in

which the curly parentheses are replaced by square brackets. Thus,

Cubes = [n ↑ 3 | n ∈ {1,2,3}]

refers to the sequence [1,8,27]. This sequence can also be written as

Cubes = [m ∈ N | m = n ↑ 3 ∧ n ∈ {1,2,3}]

The ordering of the elements in the sequence Cubes depends on the natural order of ele-
ments in the set {1, 2, 3}. Thus, the following definitions denote the same sequence.

Cubes1 = [m ∈ N | m = n ↑ 3 ∧ n ∈ {1,2,3}]
Cubes2 = [m ∈ N | m = n ↑ 3 ∧ n ∈ {1, . . . ,3}]
Cubes2 = [m ∈ N | m = n ↑ 3 ∧ n ∈ {3,2,1}]

The empty sequence is represented by [].
Individual elements of a sequence can be accessed by subscripts as in d(5), d(i) and d(i

+ j – k). The parentheses are part of the syntax. In the second and third cases, the variable
‘i’ and the expression ‘i + j – k’ must be of type N1. By convention, VDM-SL sequences
always start at the index position 1.

Operators on sequences are listed in Table 16.5. The semantics of most of the operators
on sequences are given in Chap. 12; this is reinforced in the following example.

Example 2 Operations on a Sequence.
Let S1 = [a,b,c,d,e], S2 = [b,c,d,e,a], S3 = [f,g,h] and SS = [S1 S2 S3]

16

412 16 Vienna Development Method

S1 � S2 = [a,b,c,d,e,b,c,d,e,a]
conc SS = [a,b,c,d,e,b,c,d,e,a,f,g,h]
inds S1 = {1,2,3,4,5}
inds S2 = {1,2,3,4,5}
inds S3 = {1,2,3}
elems S1 = {a,b,c,d,e}
elems S2 = {a,b,c,d,e}
elems S3 = {f,g,h}
S1 (1, . . . ,3) = [a,b,c]
S3 (2, . . . ,2) = [g]
S2 (3, . . . ,2) = undefined since j < i �

Map A map in VDM-SL is an abstraction of a finite function. As with functions, a map
also has a domain and a range. A map associates each element from the domain to at most
one element in the range. It is convenient to think of a map as a finite table of pairs where
each domain element appears at most once. A map can be defined declaratively as a type
or can be constructively defined by enumeration or comprehension. The VDM-SL syntax
for map is

D
m−→ R

where D is the domain of the map and R is its range. The symbol
m−→ is part of the syntax.

In the following example, M denotes a map type from X to Y :

X = {1,2,3,4,5}
Y = {1,8,27,64,125}
M = X

m−→ Y

Individual elements of a map can be enumerated as

M1 = {1 �→ 1,2 �→ 8,3 �→ 27,4 �→ 64,5 �→ 125}
The symbols ‘{’, ‘ �→’ and ‘}’ are part of the syntax. The empty map is represented as
{ �→}.

The syntax for map comprehension closely resembles that of set comprehension:

M2 = {n �→ m | n ∈ X ∧ m ∈ Y • m = n ↑ 3}
Notice that maps in VDM-SL are finite. It is possible to define a map type T in which the
domain type is infinite (e.g., N). However, when a variable v is declared to be of type T ,
the domain of v must be constrained to a finite set. This can be achieved by specifying a
condition on v. See the following example:

M3 = N1
m−→ N1

Cubes : M3 = {n �→ m | n ≤ 5 • m = n ↑ 3}
Table 16.6 summarizes map operators in VDM-SL. The semantics for many of these oper-
ators have been discussed in Chap. 12. The following example reinforces the semantics:

16.2 Representational Abstraction 413

Table 16.6 Map operators

Operator Synopsis Meaning

dom dom M domain of the map M

rng rng M range of the map M

M−1 M−1 Inverse of the map M; M should be an injective map;
M−1 = {b �→ a | a �→ b ∈ M}

∪ M1 ∪ M2 map union

† M1 † M2 map overriding

◦ M1 ◦ M2 map composition

() M(a) map application

� D � M domain restriction

�− D �− M domain subtraction

� M � R range restriction

�− M �− R range subtraction

Example 3 Operations on a map.
Let M1 = {1 �→ a, 2 �→ b, 3 �→ c}, M2 = {1 �→ a, 3 �→ a}, M3 = {a �→ θ , b �→ φ, c �→ ψ}
and M4 = {1 �→ a, 4 �→ d}.

M−1
1 = {a �→ 1,b �→ 2, c �→ 3}

Notice that the inverse of a map M need not be a map; however, if M is bijective, the inverse
M−1 of M is bijective. Note that M−1

2 is not a map.
The union of two maps is defined only if they have consistent maplets. M1 ∪ M2 cannot

be determined because the maplets 3 �→ c in M1 and 3 �→ a in M2 are inconsistent. The
union of M1 and M4 exists and is given by

M1 ∪ M4 = {1 �→ a,2 �→ b,3 �→ c,4 �→ d}
M1†M2 = {1 �→ a,2 �→ b,3 �→ a}

Two maps can be composed only if the range of the first map is a subset of the domain of
the second map.

M1 ◦ M3 = {1 �→ θ,2 �→ φ,3 �→ ψ}

The map composition operator ◦ is right associative. The semantics of domain and range
restriction operators are carried over from Chap. 12.

{1} � M1 = {1 �→ a}
{1}�−M1 = {2 �→ b,3 �→ c}
M2 � {a} = {1 �→ a,3 �→ a}
M2 �−{a} = {�→}
M1(1) = a,M2(3) = a,M4(4) = d �

16

414 16 Vienna Development Method

Record While set and sequence types are constructed from the same type of elements,
a composite type with different component types can be represented by a record type.
VDM-SL syntax for a record is

T :: v1 : T1

v2 : T2

. . .

vn : Tn

where T is a record type and T1, T2, . . . , Tn represent the types of components of T. These
components, called fields, are identified by the variables v1, v2, . . . , vn. The symbol ‘::’ is
part of the syntax. The record type given below defines a collection of books:

Book :: title : String
author : String
year : N

Individual fields of a composite type can be extracted using the selection operator ‘.’ as in
Book.author and Book.year. An object of the composite type can be constructed using the
‘mk-’ (make) function on the values of the individual fields. For example, if tit, aut and y
are the values of the individual fields of a book, the book object can be constructed as

mk-Book(tit,aut, y)

The arguments for the mk- function can be constants, variables or expressions:

mk-Book(tit,“John”,1984)

While constructing an object of a record type, the values of the individual fields in the
‘mk-’ function should be given to match the order and types of the components in the
definition of the record type. For example, the ‘mk-’ function

mk-Book(aut, tit, y)

is type correct; however, it does not represent the same object as the book

mk-Book(tit,aut, y)

Two records r1 and r2 of type T are equal if the values of their corresponding fields are
equal.

The values of the individual fields of a record can be modified using the μ operator; the
syntax for μ operator is

μ(< record >,< field1 >�→< value1 >,< field2 >�→< value2 >, . . . ,

< fieldn >�→< valuen >)

The expression

μ(Book, title �→ “Set Theory”,author �→ “Shaw”, year �→ 1945)

16.2 Representational Abstraction 415

denotes the book “Set Theory” written by “Shaw” with its date of publication “1945”.

Cartesian Product A Cartesian Product type is an ordered collection of types grouped
together by a single name. VDM-SL syntax for Cartesian product type is

T = T1 × T2 × · · · × Tn

where T is the name of the product type and T1, T2, . . . , Tn are the component types. The
symbol ‘×’ is part of the syntax. Cartesian product types are not associative. They can be
compared for equality. Two product types T1 and T2 are equal if and only if the order and
the types of individual components in both product types are the same. For example, if the
types Book, Monograph, Collection and Lecture_notes are defined as

Book = String × String × N

Collection = String × String × N

Monograph = N × String × String

Lecture_notes = String × (String × N)

then

Book = Collection
Book �= Monograph –ordering different
Book �= Lecture_notes –types mismatch

The elements of a Cartesian product type are termed as tuples. A tuple belonging to a
Cartesian product type can be constructed using ‘mk-’ function. As an example, a tuple of
type Book can be constructed as follows:

mk-(“Set Theory”, “Shaw”, 1945)

Notice that the ‘mk-’ function for tuples does not involve any name, which is in contrast
to the ‘mk-’ function for records. As a result, one cannot infer the product type of a tuple
from the ‘mk-’ function. For example, the tuple

mk-(“Set Theory”, “Shaw”, 1945)

may belong to either Book or Collection or both.

Function Types A function type has a domain and a range, and its elements are functions
having the same domain and range. Thus, in

F = N → N

F is a function type which defines the set of all functions from natural numbers to natural
numbers. The values of a function type can be given using a lambda expression or using a

16

416 16 Vienna Development Method

function definition. The following are some instances of the function type F :

(λ n : N • n + 2) ∈ F
– accepts n, returns n + 2

(λ n : N • n2) ∈ F
– accepts n, returns n2

(λ n : N • n mod 2) ∈ F
– accepts n, returns n mod 2

Flat Types Function types in VDM-SL are treated separately and are called non-flat
types. Correspondingly, the values of a non-flat type are called non-flat values. Non-flat
types and non-flat values can be used just like their flat counterparts such as set, sequence,
map and Cartesian product, except in the following situations:

1. Non-flat types can neither be passed as parameters to operations nor be returned as
results from operations; however, they can be passed as parameters or results of a func-
tion.

2. Values of set and map types should not contain non-flat values. For example, in

Square = (λn : N • n2)

Square-set = Squares–set

The type Square-set is not valid since elements of this set are non-flat values.
Constructors of set and map types cannot be applied to non-flat types.

3. State and local variable declarations should not contain non-flat types.
4. Equality and inequality are not defined for non-flat values.

16.2.4
Patterns, Bindings and Values

A pattern in VDM-SL is a template consisting of a nonempty collection of identifiers,
symbols and values. The purpose of a pattern is to match the entities in the template to a
set of values of appropriate types. Table 16.7 lists some patterns, the types for the identifiers
in the patterns and their matching values. When an identifier in a pattern matches a value,
a binding occurs between them. For example, if a pattern (x, y) matches the value (2,
3), then the binding “x to 2 and y to 3” occurs. Pattern matching and binding are tightly
coupled in the sense that they always occur together. VDM-SL supports tuple patterns,
set patterns, sequence patterns and record patterns. Table 16.7 lists several tuple patterns.
While defining a set or a sequence pattern, the set or the sequence cannot be defined using
comprehension. Record patterns match with values of records with the same record tag.
Record patterns are generally used in defining type invariants, state invariants and initial
state conditions. The initial state definition

init mk-Reservation(rms)
�=

∀rn ∈ dom rooms • rooms(rn) = Available

16.2 Representational Abstraction 417

Table 16.7 Simple patterns

Pattern Type Information Some Possible
Matching Values

Comment

x x : Z -15 any integer value

2478

0

. . .

(x, y) x : N, y : N (0,0) pair of natural numbers

(1,2)

(10,12)

. . .

(4, n, b) n : Z, b : R (4,0,1.6) The first value must be the integer constant ‘4’

(4,-7,-3.68)

(4,17,0.0)

. . .

(x, –, y) x : Z, y: Z 0, {1,2,3}, 10 triple with second element as don’t care

15, [3,4,7], 32

1, 2, 3

. . .

in Example 1 involves a record pattern matching the record Reservation. Patterns may
sometimes include don’t care identifiers as in (x, -, y). In such a case, the pattern denotes
a tuple with three components which matches with any 3-tuple value as long as the types
of x and that of the first component are the same and the types of y and that of the third
component are the same. The matching of the second component is ignored. For example,
if x and y are both natural numbers, then both tuples (0, {1,2,3}, 10) and (15, [3,4,7], 32)
will match the pattern (x, -, y).

Table 16.8 illustrates the values that match some set and sequence patterns:

16.2.5
State Representation

A model of the software system under development can be constructed using the VDM-SL
type definitions and structures introduced in the previous sections. A VDM specification
for a problem consists of a state, which includes data type representations for problem
domain objects, and operations, which express the changes to the state variables consistent
with the requirements of the problem. In other words, the state is a model of the problem
and operations on the state bring out the behavior of the model. The following example
illustrates the construction of a model from the requirements.

Example 4 Course registration system.

16

418 16 Vienna Development Method

Table 16.8 Set and sequence patterns

Pattern Type
Information

Some Possible
Matching Values

Comment

{a,b,c} a,b,c : Z {1,2,3} set of three integers

{-100,0,100}

. . .

s1 ∪ s2 s1, s2 : Z-set {1,8} ∪ {7,8} union of two integer sets

{} ∪{3,7}

. . .

s1 \ {5} s1 : Z-set {} \ {5} difference between two integer sets; the
second set must be a singleton with its only
element as ‘5’

{1,5,7} \ {5}

. . .

[a,b,c] a,b,c : Z-set [{1,2}, {5} , {2, 0, -17}] sequence of three integer sets

[{}, {}, {}]

. . .

t1 � t2 t1, t2 : Char∗ [‘a’] � [‘b’] concatenation of two character sequences

[‘a’,‘b’,‘c’] � []

. . .

This example constructs a model of a course registration system based on the following
set of requirements:

A course registration software system maintains information on the courses offered by
a department in one semester. Each course has only one section of offering. Information on
the courses completed and the courses currently taken by the students in the department, the
times of course offerings, the days on which a course is offered and the faculty members
who teach these courses are to be recorded. A course has a unique name and a unique
number. A course may have a finite number of prerequisite courses. A teacher teaches a
finite number of courses.

The Model:
Every course has a name, a number, a place and time of offering, and has a set of prerequi-
site courses. So, it can be modeled as a record type consisting of the fields: course-name,
course-number, class room, days, start-time, end-time, pre-requisites:

Course :: course-name : String
course-number : String
classroom : Room
days : WeekDays–set
start-time : Time
ending-time : Time
pre-requisites : String–set – course names

16.2 Representational Abstraction 419

The type String is assumed to be a basic type for this level of specification and will not be
defined further. Therefore it can be defined using the token type.

String = token

Every room has a unique room number, possibly prefixed by the building where the room
is situated. Based on this domain knowledge, we may define the type Room to be a union
of subsets of natural numbers where each number uniquely identifies one class room.

Room = {100, . . . , 120} ∪ {200, . . . , 220} ∪ {300, . . . , 320}

The type WeekDays defines the days in a week and is modeled as a quote type.

WeekDays = MONDAY | TUESDAY | WEDNESDAY | THURSDAY | FRIDAY

Time can be modeled as an ordered pair of integers, representing hours and minutes. This
could be modeled either record type or the Cartesian product type. The latter representation
is used here.

Time = {0, . . . , 23} × {0, . . . , 59}

The record types Student and Teacher model students and teachers, respectively. A student
has a name and an identification number. Information on courses completed and courses
currently taken are modeled as sets of courses. This information is held as part of student
record to show the association between a student and courses taken by a student. A teacher
has a name and teaches a finite set of courses. From these requirements, the record types
for student and teacher entities are constructed.

Student :: name : String
idnumber : String
courses-finished : Course–set
courses-taken : Course–set

Teacher :: name : String
courses-teaching : Course–set

The state of the course registration system is modeled using the three types Course, Student
and Teacher.

state Department of
courses : Course–set
students : Student–set
teachers : Teacher–set

end

The model that we have constructed reflects the requirements and no more. It inherits
some domain knowledge, in this case from a University environment, in defining the state
to consist of the entities that are relevant to course registration. The three state variables
are courses, students and teachers; the identifiers String, Course, Room, WeekDays, Time,
Student and Teacher are type names. The identifier Department is the name of the state. �

16

420 16 Vienna Development Method

16.2.6
Invariants

An invariant of an entity is an assertion constraining the behavior of that entity. The proper-
ties implied by the invariant must be preserved before and after every operation performed
on that entity in order to ensure the correct behavior of that entity. There are two types of
invariants in VDM—type invariant and state invariant. A type invariant, as the name im-
plies, is associated with a type. A type invariant constrains type construction. All built-in
types have well-defined constructors. For each user defined composite type, constraints if
any, should be stated as an invariant. Type invariant in VDM is quite similar to integrity
constraints in databases. A state invariant, associated with a state space definition, con-
strains the behavior of the system when it is subject to modifications by the operations
specified on the state.

Type Invariant The invariants for types and the state in the course registration problem
are as follows: The type invariant for Course can be expressed as a conjunction of two
predicates: (i) the starting time of a course should be earlier than its ending time and (ii)
the set of prerequisites for a course should not include the course itself:

inv mk-Course (cn, c#, rm, d, st, et, pr)
�= earlier (st, et) ∧ cn �∈ pr

The expression

mk-Course (cn, c#, rm, d, st, et, pr)

constructs an instance of the type Course. The invariant asserts that for every instance, the
conjunction

earlier (st, et) ∧ cn �∈ pr

holds. The boolean function earlier (st, et) is not yet defined; its intended meaning is that
the function will return the value true if st precedes et in a 24-hour clock time.

A type invariant for Student is that a student is not permitted to repeat a completed
course. That is, the set of courses completed by a student and the set of courses currently
taken by the student should be distinct:

inv mk-Student (n, id, cf, ct)
�= cf ∩ ct = {}

State Invariant The state invariant for Department is a conjunction of the following
constraints: (i) All prerequisite courses for a course should be offered by the same depart-
ment; (ii) The courses completed and the courses currently taken by each student in the
department must be offered by the same department; and (iii) The courses taught by every

16.3 Operational Abstraction 421

teacher are offered by the same department.

inv mk_Department (cs, sts, ts)
�=

∀c ∈ cs • c.pre-requisites ⊂ cs ∧
∀st ∈ sts • (st.courses-finished ⊆ cs ∧ st.courses-taken ⊆ cs) ∧
∀t ∈ ts • t.courses-teaching ⊆ cs

A type invariant constrains the values that an object of the type can assume. If the type is
composite, it cannot relate a component to another variable or constant outside the defini-
tion of a composite type. A state invariant asserts the relationships among the state vari-
ables. It can also relate the state variables with other type declarations and global constants.
For example, if the type of a state variable is a union type, any assertion involving this state
variable will require the definitions of all component types of the union type.

16.3
Operational Abstraction

While representational abstraction describes the objects in the domain of a software sys-
tem, the observable behavior of the model is captured through operational abstraction. In
VDM-SL, operational abstraction is defined by functions and operations. The behavior of
the model is defined by describing the effects of functions and operations on the model. The
major difference between functions and operations is that functions do not access global
variables while operations not only access global variables but may change them.

The syntax for an operation definition in VDM-SL has a separate clause which identi-
fies all global variables accessed in that operation, thereby making the difference between
functions and operations explicit. An operation may be defined by either implicitly or ex-
plicitly in VDM-SL. In the implicit style, a function or an operation is specified by two
sets of assertions, called precondition and postcondition. Explicit style uses constructive
methods for operation definitions.

The precondition of a function is a boolean expression which is true only on those input
values to which the function may be applied. The postcondition of a function is another
boolean expression which states how the result of the function is related to its input. The
precondition of an operation is an assertion on the state of the system which must be true
before the operation is invoked in that state. The postcondition of an operation is an asser-
tion which states the relationship among the state variables after a successful termination
of the operation. If the function or the operation does not terminate, the postcondition is not
valid. If the precondition of a function or an operation fails, the status of the corresponding
postcondition is undefined.

16.3.1
Let Expression

When a complex expression is repeatedly used in a specification, it is convenient to assign
a name for it and use the name instead of the full expression. This naming convention is

16

422 16 Vienna Development Method

only a syntactic sugar which simplifies typing and improves readability of the specification.
VDM-SL provides such a syntactic sugar through the let expression. A let expression has
the following syntax:

let <definition> in <expression>

The <definition> clause is of the form

< variable > : < type >=< expression1 > or

< variable >=< expression1 >

The term <expression> uses <definition> given in the let expression and hence defines
the scope of the let expression. Multiple <expression> definitions can be given, provided
they are separated by commas. See the examples below:

let student : Student = mk-Student (“John Major”, “12345”, {}, SoftEng) in
validate_student (student)
. . .

let origin = mk-Point (0.0, 0.0), p = mk-Point (x, y) in
distance (p, origin) = . . .
. . .

let axis = mk-LineSegment (mk-Point (x,y), mk-Point(p,q)) in
. . .

16.3.2
Function Definitions

There are four kinds of function definitions in VDM-SL.

16.3.2.1
Implicit Function

An implicit function in VDM-SL characterizes the result by stating the properties. The
syntax is

fun (p1 : t1, p2 : t2, . . . , pn : tn) p : t

pre B

post B’

where func is the name of the function, p1, p2, . . . , pn are input parameters of types t1,
t2, . . . , tn, respectively and p is the output parameter of type t, B and B’ are boolean ex-
pressions.

16.3 Operational Abstraction 423

The function find given below is an example of an implicit function. If a given element
is found in the sequence, the function returns its index. If the element is not a member
of the sequence, the function returns zero. The sequence in this example is defined as a
nonempty and non-duplicating sequence.

find (S : X+, x : X) result : N

pre card elems S = len S − non-duplicating
post

(∃ i ∈ {1, . . . , len S} • S(i) = x) ⇒ result = i ∧
¬ (∃ i ∈ {1, . . . , len S} • S(i) = x) ⇒ result = 0

Sometimes one may want to introduce only the signature of an implicit function without
giving its definition. The signatures of all the functions used in the specification must be
stated. Where the definition is not given, the signature of the function is augmented with
the phrase is not yet defined as in

fun-one (p1 : t1, p2 : t2, . . . , pk : tk) p : t is not yet defined

An implicit function may have an empty set of input parameters in which case the function
is treated as a constant. Implicit functions may be recursively defined; however, recursion
can occur only in the postcondition.

16.3.2.2
Explicit Function

The explicit style of a function specification has two components—function declaration
and function definition. The declaration of a function includes only its signature.

fun-two : t1 × t2 × · · · × tn → t

The syntax for the definition of an explicit function is

fun-two (p1, p2, . . . , pn)
�= E

pre B

where E denotes an expression of type t and the parameters p1, p2, . . . , pn are of types t1,
t2, . . . , tn, respectively. The precondition is optional.

The function max given below is written using the explicit style:

max : Z × Z → Z

max (x, y)
�= if x > y then x else y

pre x �= y

An explicit function may be recursive and can be defined with or without input parameters.
The result of an explicit function can be an undefined value in which case the keyword
undefined is used to denote the result.

16

424 16 Vienna Development Method

16.3.2.3
Higher Order Function

VDM-SL also permits the definition of higher order functions, known as curried functions.
A function is a curried function if its output is another function, instead of a value. Curried
functions can be defined only explicitly. The exponentiation function for integer arguments
can be defined as a curried function:

power : N1 → N → N1

power (n)(x)
�=n ↑ x

The function takes a positive number n as input and returns a function f = power(n),
which can compute n ↑ x for any argument x.

16.3.2.4
Polymorphic Function

A function is polymorphic or generic, if its definition can be given as a template which can
be instantiated with appropriate parameters. For example, the function f [T] is a generic
function whose definition does not depend on the type of the formal parameter T . Later,
when we instantiate f with some element, say a set, the complete definition of f will be
available. The built-in function elems for sequence types is polymorphic:

elems [@S] : @S∗ → @S-set
elems (s)

�= if s = [] then {}
else hd s ∪ elems (tl s)

Notice that @S in the above function may be of any type and the definition of elems does
not depend on the type @S. The square bracket surrounding @S is part of VDM-SL syntax
for defining generic functions.

The function subsequence defined below is also generic which asserts whether or not a
given sequence small is a subsequence of another sequence large:

subsequence[@X] : @X∗ × @X∗ → B

subsequence (small, large)
�=

∃ i,j ∈ inds large | j > i ∧ len small = j – i + 1 •
∃ m : (inds small)

m−→ i . . . j •
∀ k ∈ inds small • small(k) = large(m(k))

16.3.3
Operation Definitions

There are two styles of operation definitions in VDM-SL.

16.3 Operational Abstraction 425

16.3.3.1
Implicit Operation

The syntax for implicit operation is given below:

oper (p1 : t11, p2 : t12, . . . , pn : t1n) p: t

ext <mode> g1 : t21

<mode> g2 : t22

. . .

<mode> gk : t2k

pre B

post B’

err e1 : B1 → B
′
1

e2 : B2 → B
′
2

. . .

em : Bm → B
′
m

The syntax of an implicit operation is similar to the syntax of an implicit function; however,

it includes the two additional clauses external clause ext and error block err. The external

clause lists all the global variables that are accessed in this operation. The declaration of

each global variable is preceded by <mode> which is either rd or wr indicating ‘read’ and

‘write’ attributes, respectively, of the global variable within the scope of that operation. If

the mode is wr for a variable, the value of that variable might have been changed when the

operation successfully terminates.

The error block contains a list of named error conditions labeled by the identifiers de-

noted as ei ’s. An error condition has its own precondition Bi and a postcondition B′
i . If one

or more of the error preconditions hold, then the effect of the operation is the conjunction

of the corresponding postconditions.

Let us consider the state space definition of the course registration system. An operation

that adds a new student to this system can be written in implicit style as follows:

Message = SUCCESS | ERROR – add these to types
add-student (n : String, id : String) report : Message
ext wr students : Student–set
pre ∀ s ∈ students • s.idnumber �= id
post

students =
↼−−−−−−−−−
students ∪ {mk-Student (n, id, {}, {})} ∧

report = SUCCESS
err already-exists :

(∃ s ∈ students • s.idnumber = id) → report = ERROR

16

426 16 Vienna Development Method

The hook notation
↼−−−−−−−−−
students denotes the value of the global variable students in the pre-state

of the operation. The value of the same variable after the operation is written without the
hook. The postcondition asserts the inclusion of a new student record in students and re-
ports the success of the operation. The hook notation is applicable only to global variables,
thus indicating state changes. Consequently, it should appear only in postconditions.

The definition of an implicit operation can also be left incomplete by adding the phrase
‘is not yet defined’. VDM-SL does not permit recursive operation definitions.

16.3.3.2
Explicit Operation

The signature of an explicit operation in VDM-SL is

oper-two : t1 × t2 × · · · × tn
o−→ t

The symbol
o−→ makes the syntactic difference between the signature of an explicit function

and that of an explicit operation. The definition of an explicit operation is given as follows:

oper-two (p1, p2, . . . , pn)
�= St

pre B

where p1, p2, . . . , pn are, respectively, the parameters of type t1, t2, . . . , tn and St refers
to a statement. We discuss statements in detail in the next section. The operation returns a
result of type t through a return statement.

The following explicit operation adds a new teacher to the course registration system:

add-teacher: String × Course-set
o−→ Message

add-teacher (n, ct)
�=

teachers := teachers ∪ {mk-Teacher (n, ct)};
return SUCCESS
pre ∀ t ∈ teachers • t.name �= n

The definition for add-teacher consists of two statements: an assignment statement (indi-
cated by :=) and a return statement. The semi-colon between the two statements indicates
sequential composition of statements. Unlike implicit operations, there is no ext clause in
the definition of an explicit operation. It is assumed that an explicit operation can modify all
the variables in the state in which the operation is defined. Thus, the operation add-teacher

modifies the state variable teachers.

16.4 Statements 427

16.4
Statements

VDM-SL also supports statements, much similar to those found in programming languages
such as Pascal and C. Statements are generally used during refinement of VDM specifica-
tions. A specification written in assertional style can be refined into another specification
written using statements. The refined specification resembles a program except that execu-
tion control is not present. Therefore, it seems easier to map the refined specification into
a program in one of the block structured languages. Because of these advantages, VDM
is considered as a software development environment or framework rather than a simple
specification language.

Table 16.9 gives a partial list of statements supported by VDM-SL; see [19] for a com-
plete list. Below, we discuss some of the distinguishing features of these statements.

Let Statement The semantics of let statement is similar to that of the let expression in
VDM-SL except that the <definition> in let statement is applied to a statement, rather
than to an expression.

Assignment Statement The <designator> in assignment statement is an identifier
whose type is the same as that of <expression> in the assignment statement. This iden-
tifier must have been declared before the assignment statement. The semantics of the as-
signment statement is to overwrite the value previously held by <designator>. Therefore,

the assignment statement does not use the hook notation (e.g.,
↼−−−−−−−−−
previous) for a variable in

<expression>. A major advantage of the assignment statement is that it can be used to
modify only a portion of a state variable when the variable is of composite type.

Declare Statement A declare statement is used to introduce local variables to a block
of statements. The block of statements are enclosed in parentheses, which also define the
scope of variables introduced through the declare statement.

For Statement VDM-SL supports five kinds of for statement. The first two of these
statements are similar to those found in programming languages. The statement

for all < pattern >∈< expression > do < statement >

is used to iterate over all elements of a given set. Generally, this kind of for statement is
used while refining a universally quantified expression. The last two kinds of for statements
in Table 16.9 are used to iterate over sequences.

Cases Statement The semantics of a cases statement is similar to the case statement
in Pascal or switch statement in C. The <expression> is the key or selector which
identifies the choice among the several alternatives. For a given <expression>, one of the
patterns may match in which case the corresponding statement will be considered. The

16

428 16 Vienna Development Method

Table 16.9 Statements in VDM-SL

Statement Syntax

let statement let <definition> in <statement>

assignment statement <designator> := <expression>

conditional statement if <expression> then <statement>

else <statement>

case statement cases <expression>:

<pattern1 > → <statement1 >,

<pattern2 > → <statement2 >,

. . .

<patternn > → <statementn >,

others → <statementk >

end

declare statement dcl <name> : <type>

dcl <name> : <type> := <initial value>

block statement (<statement>; . . . ;<statement>)

for statement for <name> = <expression> to <expression>

do statement

for <name> = <expression> by <expression> to <expression>

do statement

for all <pattern> ∈ <expression>

do <statement>

for <pattern> ∈ <expression> in <expression>

do statement

for <pattern> : <type> in <expression>

do statement

while statement while <expression> do <expression>

return statement return <expression>

exit statement exit <expression>

error statement error

statement corresponding to others will be considered when none of the listed patterns
matches. The others clause is optional; it can be omitted if the listed alternatives cover all
possible patterns. The scope of the cases statement ends with the end keyword.

16.4 Statements 429

The following example illustrates the use of some of these statements:

types
Mark = {0,. . . ,100};
IDNumber = token;
Grade = A | B | C | D | F

values
maxtermwork : N := 5;

state Grading of

termwork : IDNumber
m−→ Mark+

total : IDNumber
m−→ Mark

grades : IDNumber
m−→ Grade

inv mk-Grading (tw, tt, gr)
�=

dom tw = dom tt = dom gr ∧
∀ id ∈ dom tw • len tw(id) ≤ maxtermwork

init mk-Grading (–, tt, –)
�=

∀ id ∈ dom tt • tt(id) = 0
end
operations

compute-grade ()
o−→ ()

�=
for all id ∈ dom termwork do

(dcl i : N := 1; sum : N := 0;
while (i ≤ len termwork(id)) do

(sum := sum + termwork(id)(i);
i := i + 1;

);
if sum > 100 then total(id) := 100 else total(id) := sum;
let excellent = {85,. . . ,100},

good = {70,. . . ,84},
fair = {60,. . . ,69},
pass = {50,. . . ,59} in
cases true :

total(id) ∈ excellent → grades(id) := A,
total(id) ∈ good → grades(id) := B,
total(id) ∈ fair → grades(id) := C,
total(id) ∈ pass → grades(id) := D,
others → grades(id) := F

end
);

The above example specifies the computation of grades for students in a course. The term

work for a student is represented by a sequence of marks. The state invariant asserts that the

16

430 16 Vienna Development Method

domains of the three maps representing the term work, total and the grades are the same.
The operation compute-grade is given in explicit style. The for statement iterates over all
the elements of the three maps. For each entry, the sum of term work is computed using
the while loop. This while loop uses a local variable i declared using the dcl statement.
The if . . . then . . . else statement ensures that the total mark does not exceed 100. The let
statement introduces four local variables which are used to classify the marks in various
grading categories. Finally, the cases statement assigns the grade to each student according
to the category to which the total mark belongs.

16.5
Specification Examples

VDM-SL specifications consist of type definitions, state space definitions, invariants, func-
tions and operations. Comments are permitted in between the specification text. In this sec-
tion, we discuss three examples emphasizing the choice of the various structures and type
definitions that are appropriate for their modeling. Each example in this section is given
in the following format: Problem Description, additional requirements, assumptions, the
model, VDM-SL specification and comments on the specification.

Example 5 Employment Exchange.

Problem Description
An employment exchange collects and manages information on two sets of people—
unemployed, representing the set of people who have registered with the exchange but
not yet employed by any employer, and employed, representing the set of people who are
employed after registering with the exchange. A person cannot be both in employed and in
unemployed at the same time. Operations for registration and changing status of persons
must be made available.

Assumptions

1. Personal details of individuals are not stated in the problem description and conse-
quently will not be included in the employment exchange registry.

2. People, once registered, will not be deleted from the exchange.

The Model
Since personal details of individuals are not required to be included in the specification,
each person registered with the employment exchange can be modeled as the type Person,
which is defined to be a token type. The state space can be modeled with two collections
employed and unemployed, both of which are of type Person-set. We choose sets to model
the two collections since the problem description does not require an ordering on the reg-
istration process.

The state invariant asserts that no person should be in both the sets simultaneously.
The initial state of the employment exchange asserts that in the beginning there are no
registered members.

16.5 Specification Examples 431

The two operations register and change-status are specified. The operation register
accepts a person as input, ensures that the person has not been registered with the ex-
change and modifies the set unemployed to include this person. The operation change-
status changes the status of the given person from unemployed to employed.

VDM-SL Specification

types
Person = token

state Emp-Exch of
employed : Person–set
unemployed : Person–set

inv mk-Emp-Exch (em, unem)
�= em ∩ unem = {}

init mk-Emp-Exch (em, unem)
�= em = {} ∧ unem = { }

end
operations

register (p : Person)
ext

wr unemployed : Person–set
rd employed : Person–set

pre p �∈ unemployed ∧ p �∈ employed

post unemployed =
↼−−−−−−−−−−−−−−
unemployed ∪ {p};

change-status (p : Person)
ext

wr unemployed : Person–set
wr employed : Person–set

pre p ∈ unemployed
post

unemployed =
↼−−−−−−−−−−−−−−
unemployed \ {p}

employed =
↼−−−−−−−−−−−
employed ∪ {p};

Comments
The initialization of the state asserts that none is registered with the exchange initially.
Since the operations that modify the state do not have any result parameter, the result of
each operation is the truth value of the postcondition of that operation. If the requirements
of the employment exchange change, more operations may become necessary. For exam-
ple, if it is required to re-register a person after the person loses the job, an operation to
delete a person from the set of employed persons must be included to the system specifi-
cation. �

Example 6 Automated Transaction Machine (ATM).

Problem Description
An automated transaction machine provides fast banking services for depositing and with-
drawing cash. Each user of the ATM has a card which is coded with a unique password of

16

432 16 Vienna Development Method

the user. To initiate a transaction, the machine is accessed with a card and password. If the
password coded in the card matches the password entered by the user, the user is permitted
to execute the transaction; otherwise, the transaction is terminated.

It is assumed that only one account can be accessed with one card. The machine allows
only two types of transactions—withdraw and deposit.

Additional Requirements

1. Each account in the bank is uniquely identified by an account number.
2. A user can have several accounts with the bank; however, the user needs one card for

each account.
3. Several users can share an account; however, every user must have a separate card.
4. The machine has a reserve which can hold a fixed amount of cash.
5. If there is a request to withdraw an amount exceeding the balance in that account or in

the machine’s reserve, the withdrawal request will not be completed. No partial with-
drawal is permitted.

6. The machine’s reserve can be modified only by an employee of the bank. Each em-
ployee of the bank has a distinct card to access a special account. An employee can
update the reserve of the machine using the distinct card.

7. Error messages should be given to user stating why a certain operation is not successful.

Assumptions

1. All account holders have equal privileges.
2. Sufficient fund is deposited into the machine’s reserve on a regular basis.

The Model
Since no personal details, such as name and address are mandated by the requirements, it is
assumed that users themselves need not be modeled. The cards will be the representatives
of the users.

Cards and accounts are modeled as record types. A card contains a card number and
a password. An account contains an account number, balance and holders, a set of card
numbers associated with this account. The cardinality of the set holders is the number of
cards associated with the account.

Since each card accesses only one account, the relationship between cards and accounts
is modeled as a map. ATM’s reserve is modeled as a global variable of type N. Since
only an employee can update the bank’s reserve, the employee has a distinct card which
is mapped to a particular account number. The state of ATM system is modeled by the
database of card holders (dbase), the bank’s reserve (reserve), and the special account for
updating the reserve (special-Account).

We provide four operations—validate-card, withdraw, deposit and update-reserve. The
validate-card operation is internal to the system and is not accessible to any user of ATM.
This operation validates the given card before allowing access to an account. The operation
update-reserve is restricted to a bank employee who is authorized to access it. The other
two operations are accessible to all card holders of ATM.

16.5 Specification Examples 433

VDM-SL Specification

types
Card :: card-number : N

code : N;

Account :: account-number : N

balance : N

holders : N–set; − set of card numbers

Message = VALID-CARD | INVALID-CARD | UPDATED |

INSUFFICIENT-BALANCE | NO-MONEY-IN-RESERVE;

state ATM of

dbase : Card
m−→ Account

reserve : N

special-account : Account − Account# for employee’s card.

inv mk-ATM (db,–, sa)
�=

(∀ ac1, ac2 ∈ rng db • ac1.account-number = ac2.account-number

⇔ ac1 = ac2) ∧
(∀ c ∈ dom db • db(c).holders �= {} ∧

∀ h ∈ db(c).holders •
∃ ca ∈ dom db • ca.card-number = h ∧ db(ca) = db(c)) ∧

(∀ h ∈ sa.holders • ∃ ca ∈ dom db • ca.card-number = h ∧ db(ca) = sa) ∧
sa.holders �= {}

init mk-ATM (–, re, –)
�= re > 0

end

operations

validate-card : Card × N
o−→ Message

validate-card (c, n)
�=

if c.code = n then return VALID-CARD

else return INVALID-CARD

pre c ∈ dom dbase;

update-reserve : Card × N × N
o−→ Message

update-reserve (sc, code, amount)
�=

reserve := reserve + amount;

return UPDATED

pre
validate-card (sc, code) = VALID-CARD ∧
dbase(sc) = special-account;

16

434 16 Vienna Development Method

withdraw : Card × N × N
o−→ Message

withdraw (c, code, amount)
�=

if dbase(c).balance ≥ amount then
if reserve ≥ amount then

(dbase(c).balance := dbase(c).balance − amount;
reserve := reserve − amount;
return UPDATED)

else return NO-MONEY-IN-RESERVE
else return INSUFFICIENT-BALANCE

pre validate-card (c, code) = VALID-CARD;

deposit : Card × N × N
o−→ Message

deposit (c, code, amount)
�=

dbase(c).balance := dbase(c).balance + amount;
reserve := reserve + amount;
return UPDATED
pre validate-card (c, code) = VALID-CARD;

Comments
The state invariant asserts that (i) each account has a unique account number; (ii) each
account is accessible by at least one card; (iii) each account that can be accessed by a
card should include the corresponding card number in the account; (iv) the number of
the card that is used to access the special account must have been recorded in the special
account itself. The state invariant in this case is an assertion on the users of the card and
not on the reserve of the machine. Consequently, the second parameter to the mk- function
for the state invariant is not specified. The initial state asserts that there should be some
money deposited into the machine’s reserve. All operations in this example are given in
explicit style. The explicit style enables us to use statements in VDM-SL. In particular, the
assignment statement

dbase(c).balance := dbase(c).balance − amount;

in operation withdraw and the assignment statement

dbase(c).balance := dbase(c).balance + amount;

in operation deposit indicate that only part of the record dbase(c) is modified without
modifying the rest of the record. This is permissible only in explicit operations. �

Example 7 Home Heating System.

Problem Description
A home heating system controls and maintains temperature in each room of the home ac-
cording to a predefined pattern corresponding to that room. An entry for a room in the
pattern consists of an interval of time in a 24-hour clock and the desired temperature dur-
ing that interval. The control system maintains the temperature in each room at its stable
level as defined in the pattern; however, it can also change the temperature in each room

16.5 Specification Examples 435

dynamically, depending on the occupancy of the room. Occupancy is true when there is at
least one person in the room and is false when there is nobody in the room. A sensor in
each room detects the occupancy.

Additional Requirements

1. The home has a finite number of rooms.
2. The three levels of temperature to be maintained in a room are normal, below-normal

and above-normal.
3. The system permits the temperature in a room to be maintained at one of the three levels

during a certain interval of time. Temperature pattern varies from room to room and can
be dynamically changed during system operation.

4. If the occupancy in a room changes from true to false or vice versa and is stable for 5
consecutive minutes, the control system adjusts the room temperature according to the
following table:

Current Temp. Level Occupancy New Temp. Level

normal True normal
normal False below normal
below normal True normal
below normal False below normal
above normal True above normal
above normal False normal

5. There is a sensor in each room which can read the temperature at any given time.

The home heating system includes the following operations: (i) initialize the pattern;
(ii) activate a pattern at a given time; (iii) change the occupancy in a room; and (iv) control
temperature in a room based on occupancy change.

Assumptions

1. The smallest time unit is a second.

The Model
We first model the following data types.

Temperature We model the temperature using real numbers. It is difficult to ensure the
ordering among the temperature levels if it were to be modeled as an enumerated type.
Although temperature varies continuously with time, the temperature can be observed only
at discrete time points.

Room-Number A room number is modeled as a natural number not exceeding a maximum
value, the number of rooms in the house.

Sensors Both temperature sensors and occupancy sensors are defined using token types be-
cause the actual description and operations of these sensors are not relevant for the current
specification. However, there are functions to read the values indicated by the sensors at a
given time.

16

436 16 Vienna Development Method

Time We model Time as a triple representing the hour, minute and second of a clock. The
values of these components are constrained by appropriate invariants so that their values lie
within the applicable range (for example, minutes must be between 0 and 59). The reason
for choosing this representation is that the pattern entries are defined on time intervals
based on a 24-hour clock. The clock itself is not represented in the specification; rather, the
current time is obtained by invoking the function current-time() which extracts the current
value of time from the clock.

Room Information In order to maintain the information on the pattern for each room and
the current temperature in that room, we define the data type Room Information. For each
room, the information includes the current temperature in the room and the last time point
at which occupancy change occurred in that room. This information helps to check the
stability of the occupancy in the room for 5 consecutive minutes, and to control the tem-
perature against the predefined pattern.

Pattern A pattern is a collection of tuples {(t, T)}, where T is the temperature to be main-
tained during the interval t . It is sufficient to represent the starting time of the interval and
the temperature in that interval. Therefore, a pattern is modeled as a map from time to
temperature.

We define functions for obtaining current time, reading temperature from a temperature
sensor and reading the occupancy status returned by an occupancy sensor. Since some
operations require a metric notion of time, we define a function called duration.

The state of the system includes information on the rooms, the patterns for the rooms,
and the temperature and occupancy sensors for the rooms. The state of the system is mod-
eled as a collection of maps from room numbers to each of the data types Temperature
Sensor, Occupancy Sensor, Room Information and Pattern. The state invariant asserts that
the domains of the maps in the state are the same, thereby ensuring consistency among the
maps. The state is initialized with an empty pattern for each room.

The following operations are specified for the home heating system.

set-pattern This operation enables the control system to set the pattern for a particular
room. The input for this operation consists of the room number and a pattern. The pre-
condition ensures that the room exists in the house and the postcondition asserts that the
pattern is replaced.

activate-pattern The room number and the time at which the pattern is to be activated are
passed as input to this operation. The precondition ensures that the room exists in the
home, the activation time exists in the pattern for that room and the current time matches
the activation time of the pattern. The postcondition ensures that the temperature in the
room is set to the level defined in the pattern for the given time.

occupied An occupancy change occurs in a room when someone enters into an empty
room or when the room becomes empty. The room number is the input to this operation.
The postcondition records the change in occupancy and the time at which the occupancy
change occurs.

control-temperature This operation changes the temperature in a room depending upon the
occupancy change in the room. The precondition ensures that the occupancy change is

16.5 Specification Examples 437

stable for 5 consecutive minutes. The postcondition asserts that the change in temperature
level happens according to the requirements.

VDM-SL Specification

types
Temperature = R;
Room-Number = N

inv rm
�= rm ≤ maxrooms;

Temperature-Sensor = token;
Occupancy-Sensor = token;
Time :: hour : Z

minute : Z

second : Z

inv mk-Time
�=

(0 ≤ h ∧ h ≤ 23) ∧
(0 ≤ m ∧ m ≤ 59) ∧
(0 ≤ m ∧ m ≤ 59);

Room-Information :: set-temperature : Temperature
last-occupancy-change : Time;

Pattern = Time
m−→ Temperature

inv pat
�=

pat(t) = normal ∨ pat(t) = below-normal ∨ pat(t) = above-normal;

values
maxrooms : N1 := 10;
stable-occupancy : Time := mk-Time (0,5,0);
normal : Temperature := 28.0;
below-normal : Temperature := 25.0;
above-normal : Temperature := 31.0;

functions
current-time : () → Time;
read-temperature : Temperature-Sensor × Time → Temperature;
check-occupancy : Occupancy-Sensor × Time → B;
normalize-time : Z × Z × Z → Time

normalize-time (h, m, s)
�=

if s < 0 then normalize-time (h, m−1, s+60)
else if m < 0 then normalize-time (h−1, m+60, s)

else if h < 0 then mk-Time (h+24, m, s)
else mk-Time (h, m, s)

pre
h ≥ 0 ⇒ 0 ≤ h ≤ 23 ∧
m ≥ 0 ⇒ 0 ≤ m ≤ 59 ∧
s ≥ 0 ⇒ 0 ≤ s ≤ 59;

duration : Time × Time → Time

duration (t1, t2)
�=

normalize-time (t1.hour − t2.hour, t1.minute − t2.minute,
t1.second − t2.second);

16

438 16 Vienna Development Method

state Heating-System of

temp-sensors : Room-Number
m−→ Temperature-Sensor

occ-sensors : Room-Number
m−→ Occupancy-Sensor

rooms : Room-Number
m−→ Room-Information

patterns : Room-Number
m−→ Pattern

inv mk-Heating-System (ts, is, rms, pts)
�=

dom ts = dom is = dom rms = dom pts

init mk-Heating-System (-, -, rms, pts)
�=

(∀ rm ∈ dom pts •
pts(rm) = { �→} ∧
rms(rm).last-occupancy-change = mk-Time (0, 0, 0))

end

operations
set-pattern (rm : Room-Number, pat : Pattern)

ext wr patterns : Room-Number
m−→ Pattern

pre rm ∈ dom patterns

post patterns =
↼−−−−−−−−−
patterns † {rm �→ pat};

activate-pattern (rm : Room-Number, at : Time)
ext

wr rooms : Room-Number
m−→ Room-Information

rd patterns : Room-Number
m−→ Pattern

pre
rm ∈ dom rooms ∧
at ∈ dom (patterns(rm)) ∧
current-time() = at

post rooms =
↼−−−−−−
rooms † {rm �→

mk-Room-Information ((
↼−−−−−−−−−
patterns(rm))(at),

(
↼−−−−−−
rooms(rm)).last-occupancy-change)};

occupied (rm : Room-Number)
ext

wr rooms : Room-Number
m−→ Room-Information

rd occ-sensors : Room-Number
m−→ Occupancy-Sensor

pre
rm ∈ dom rooms ∧
check-occupancy (occ-sensors(rm), current-time()) =

¬ check-occupancy (occ-sensor(rm),
duration (current-time(), mk-Time (0,0,1)))

post rooms =
↼−−−−−−
rooms † {rm �→

mk-Room-Information (rooms(rm).set-temperature, current-time())};

16.5 Specification Examples 439

control-temperature (rm : Room-Number)
ext

rd temp-sensors : Room-Number
m−→ Temperature-Sensor

wr rooms : Room-Number
m−→ Room-Information

rd occ-sensors : Room-Number
m−→ Occupancy-Sensor

pre
rm ∈ dom rooms ∧
duration (current-time(), rooms(rm).last-occupancy-change)

= stable-occupancy
post

let previous =
↼−−−−−−
rooms(rm).last-occupancy-change,

occupancy = check-occupancy (
↼−−−−−−−−−−−−−−
occ-sensors(rm), current-time()) in

cases read-temperature (
↼−−−−−−−−−−−−−−−
temp-sensors(rm), previous) :

normal →
cases occupancy :

true → rooms =
↼−−−−−−
rooms,

false → rooms =
↼−−−−−−
rooms † {rm �→

mk-Room-Information (below-normal,
rooms(rm).last-occupancy-change)},

others → rooms =
↼−−−−−−
rooms

end,
below-normal →

cases occupancy :
true → rooms =

↼−−−−−−
rooms † {rm �→

mk-Room-Information (normal, rooms(rm).last-occupancy-
change)},

false → rooms =
↼−−−−−−
rooms,

others → rooms =
↼−−−−−−
rooms

end,
above-normal →

cases occupancy :
true → rooms =

↼−−−−−−
rooms,

false → rooms =
↼−−−−−−
rooms † {rm �→

mk-Room-Information(normal, rooms(rm).last-occupancy-
change)},

others → rooms =
↼−−−−−−
rooms

end,
others → rooms =

↼−−−−−−
rooms

end;

Comments
The function normalize-time converts a given triple of integers into a value of type Time.
If the parameters represent positive integers which are within the limits of the three com-
ponents for Time, the function constructs and returns a valid time value. If one of the
parameters is negative, the function modifies the three parameters until the invariant for
Time is satisfied. For example, if “seconds” is negative, it is made positive by adding 60; at
the same time, “minutes” is reduced by one. Notice that after this change, “minutes” may
become negative. So, the function is recursively applied until all the three parameters are

16

440 16 Vienna Development Method

in proper range. The function duration subtracts the second parameter from the first and
returns the normalized time.

Every operation modifies some state variable, which is of map type. The postcondition
ensures the modification by using the overwrite operation on map type objects. The oper-
ation occupied can be invoked when either an occupied room becomes empty or an empty
room becomes occupied. The precondition ensures that the status of the room at the current
time and that at one second preceding the current time are different. There is no mechanism
in VDM to specify that this operation is periodically performed, say regularly at 1-minute
intervals. �

16.6
Case Study—Computer Network

A computer network consists of a set of nodes and a set of links connecting the nodes.
Every link connects exactly two distinct nodes. A node may be active or inactive. A link is
up if both the nodes connected by the link are active; otherwise, the link is down. Messages
can be transmitted from an active node to any other active node in the network through a
sequence of links that are up. All message transmissions are handled by a network manager.
When a node wants to send a message to another node, it submits the message and the
address of the recipient to the network manager. It is the responsibility of the network
manager to choose a path between the sender and receiver nodes and route the message in
the path. Each node maintains a buffer to hold messages deposited by the network manager.
An active node periodically reads the messages in its buffer, and (i) deletes a message if it
is addressed to the current node, or (ii) forwards the message to the next node in the path.

Additional Requirements

1. Each node has a unique address.
2. Every node on a path chosen by the network manager for message transmission remains

active until it forwards it to the next node on the path.
3. No message is lost; every message dispatched by the network manager will eventually

be received.
4. The network remains connected at all times.
5. The network manager queues all requests for sending messages based on the order in

which these messages are received.

Assumptions

1. No message is corrupted.

The Model
We first consider modeling the data types in the network.

Node A node has an address, a status indicating whether it is active or inactive, and a buffer
to hold the messages. Putting these requirements together, we can model a node by a record

16.6 Case Study—Computer Network 441

type with three fields: one for the address, another for the status and the third one for the
buffer which is a queue of messages.

Link Since a link is uniquely identified by the two nodes connected by the link, both the
nodes are included in its model In addition, a link also includes a status variable. Therefore,
a record type is chosen to model a link. The invariant for the link asserts that the two nodes
are distinct and the status of the link depends on the status of the two nodes connected by
the link.

Path A path is modeled as a sequence of links. Every link, except for the first and last in
the sequence, is connected to the link on either side in the path. In addition, no link appears
more than once in the path. These constraints are expressed as a type invariant for the path.

Message A message is modeled as a record consisting of the message body and the path
through which the message is routed.

Request This data type denotes records which a node uses when it submits a message to the
network manager. It consists of the message body, and the sender and receiver information.

The state of the network includes a set of nodes and a set of links and a queue of messages.
The state invariant is a conjunction of the following constraints: (i) node identifiers are
unique; (ii) each link is uniquely identified by the two nodes it connects; (iii) the network
is connected; and (iv) for each request submitted to the network manager, the sender and
receiver nodes must be in the network.

We specify the following operations in the network:

addnode This operation adds a new node to the network. Since the network must remain
connected at all times, the new node must be connected to at least one other node in the
network. The new node must have a unique identifier which must be different from the
identifiers of all other nodes in the network. As a result of adding this new node, the set of
nodes and links in the network are modified.

addlink The purpose of this operation is to establish a link between two existing nodes in
the network. The precondition ensures that the two nodes are present and there is no link
between them. The postcondition asserts that a new link is established between the two
nodes.

read-message Every node checks its buffer periodically to read the message at the front of
its buffer which must be addressed to the current node. This can be ensured by checking
that the path encoded in the message is empty. The postcondition asserts that the buffer
retains only those messages that are to be forwarded.

forward-message When a node checks the message at the front of its buffer and the path
associated with the message is not empty, then the current node is not the receiver of the

16

442 16 Vienna Development Method

message. Consequently, the current node is expected to forward the message to the next
node in the path and to delete its name from the path.

post-message When a node wants to send a message to another node, it encodes the mes-
sage text along with the sender and receiver information and submits a request to the net-
work manager by invoking this operation. The precondition ensures that both nodes are
present in the network. The postcondition ensures that the message is added to the queue
of the network manager.

dispatch-message This operation selects a path for each message submitted to the network
manager, encodes the path in the message and puts it into successor of the first node in the
path. At the time of selection, the status of all links on the path is UP. It is assumed that
this status is valid for every subpath during message transmission.

delete-node The delete operation accepts the node to be deleted. This node must be present
in the network. The precondition also ensures that there are at least three nodes in the
network. The postcondition asserts that the node as well as all the links associated with the
node are deleted from the network. It is assumed that a node is deleted only when all the
messages in the buffer of the node have been deleted.

VDM-SL Specification

types
Node :: nodeID : NodeAddress

status : NodeStatus
messages : Message∗;

NodeAddress = token;

NodeStatus = ACTIVE | INACTIVE;

Link :: node1 : Node
node2 : Node
status : LinkStatus

inv mk-Link (n1,n2,st)
�= n1.nodeID �= n2.nodeID ∧

(n1.status = INACTIVE ∨ n2.status = INACTIVE) ⇒ st = DOWN ∧
(n1.status = ACTIVE ∧ n2.status = ACTIVE) ⇒ st = UP;

LinkStatus = UP | DOWN;

Path = Link∗

inv lns
�= injective (lns) ∧

∀ i ∈ inds lns • i ≥ 2 ⇒ lns(i).node1 = lns(i–1).node2;

MessageBody = Char+;

16.6 Case Study—Computer Network 443

Message :: text : MessageBody
path : Path;

Request :: sender : Node
receiver : Node
text : MessageBody;

Report = SUCCESS | CONNECTING-NON-EXISTING-NODE |
NODE-ALREADY-EXISTS | LINK-ALREADY-EXISTS |
NO-MESSAGE-TO-DISPATCH | NODE-DOES-NOT-EXIST |
NO-MESSAGE | MESSAGE-IN-TRANSIT |
MESSAGE-AT-DESTINATION | NODE-HAS-MESSAGES;

state Network of
nodes : Node-set
links : Link-set
requests : Request∗

inv mk-Network (nodes, links, requests)
�=

(∀ n1, n2 ∈ nodes • n1.nodeID �= n2.nodeID ⇒
connected (n1, n2, links)) ∧

(∀ ln ∈ links • ln.node1 ∈ nodes ∧ ln.node2 ∈ nodes) ∧
(∀ rq ∈ requests • rq.sender ∈ nodes ∧ rq.receiver ∈ nodes) ∧
(∀ ln1, ln2 ∈ links • ln1 = ln2 ⇔

ln1.node1 = ln2.node1 ∧ ln1.node2 = ln2.node2) ∧
(∀ n1, n2 ∈ nodes • n1 = n2 ⇔ n1.nodeID = n2.nodeID)

init mk-Network (nodes, links, requests)
�=

nodes = {mk-Node(mk-token(1), ACTIVE, []),
mk-Node(mk-token(2), ACTIVE, [])} ∧

links = {mk-Link(mk-Node(mk-token(1), ACTIVE, []),
mk-Node(mk-token(2), ACTIVE, []), UP)} ∧

requests = []
end

functions
injective : Link∗ → B

injective (lns)
�= len lns = card elems lns;

connected : Node × Node × Link-set → B

connected (n1, n2, lns)
�=

∃ p ∈{path | path : Path • elems path ⊆ lns ∧ len p > 0} •
p(1).node1 = n1 ∧ p(len p).node2 = n2;

links-incident-at : Node × Link-set → Link-set

links-incident-at (n, lns)
�=

{ln | ln : Link • ln ∈ lns ∧ (ln.node1 = n ∨ ln.node2 = n)};

16

444 16 Vienna Development Method

operations
addnode (new : Node, old : Node) rep : Report

ext
wr nodes : Node-set
wr links : Link-set

pre
old ∈ nodes ∧
∀ n ∈ nodes • n.nodeID �= new.nodeID

post

nodes =
↼−−−−−−
nodes ∪ {mk-Node (new.nodeID, new.status, [])} ∧

let up : LinkStatus := UP, down : LinkStatus := DOWN in
(new.status = ACTIVE ∧ old.status = ACTIVE) ⇒

links =
↼−−−−
links ∪ {mk-Link (old, new, up)} ∧

(new.status = INACTIVE ∨ old.status = INACTIVE) ⇒
links =

↼−−−−
links ∪ {mk-Link (old, new, down)} ∧

rep = SUCCESS

errs
DOES-NOT-EXIST : old /∈ nodes →

nodes =
↼−−−−−−
nodes ∧

links =
↼−−−−
links ∧

rep = CONNECTING-NON-EXISTING-NODE

EXISTS : ∃ n ∈ nodes • n.nodeID = new.nodeID →
nodes =

↼−−−−−−
nodes ∧

links =
↼−−−−
links ∧

rep = NODE-ALREADY-EXISTS;

addlink (from : Node, to: Node) rep : Report

ext
rd nodes : Node-set
wr links : Link-set

pre
from ∈ nodes ∧ to ∈ nodes ∧
∀ ln ∈ links • ¬ (ln.node1 = from ∧ ln.node2 = to)

post
let up : LinkStatus := UP, down : LinkStatus := DOWN in

(from.status = ACTIVE ∧ to.status = ACTIVE) ⇒
links =

↼−−−−
links ∪ {mk-Link (from, to, up)} ∧

(from.status = INACTIVE ∨ to.status = INACTIVE) ⇒
links =

↼−−−−
links ∪ {mk-Link (from, to, down)} ∧

rep = SUCCESS

16.6 Case Study—Computer Network 445

errs
DOES-NOT-EXIST : from /∈ nodes ∨ to /∈ nodes →

links =
↼−−−−
links ∧

rep = CONNECTING-NON-EXISTING-NODE
EXISTS : ∃ ln ∈ links • (ln.node1 = from ∧ ln.node2 = to) →

links =
↼−−−−
links ∧

rep = LINK-ALREADY-EXISTS;

post-message (from : Node, to : Node, msg : MessageBody) rep : Report
ext

rd nodes : Node-set
wr requests : Request∗

pre from ∈ nodes ∧ to ∈ nodes

post requests =
↼−−−−−−−−−
requests � [mk-Request (from, to, msg)] ∧

rep = SUCCESS
errs

DOES-NOT-EXIST : from /∈ nodes ∨ to /∈ nodes →
requests =

↼−−−−−−−−−
requests ∧

rep = NODE-DOES-NOT-EXIST;

dispatch-message () rep : Report
ext

wr nodes : Node-set
rd links : Link-set
wr requests : Request∗

pre len requests > 0
post

requests = tl
↼−−−−−−−−−
requests ∧

∃ path ∈ {p | p : Path • len p > 0 ∧ elems p ⊆ links ∧
p(1).node1 = (hd

↼−−−−−−−−−
requests).sender ∧

p(len p).node2 = (hd
↼−−−−−−−−−
requests).receiver} ∧

(∀ ln ∈ elems p • ln.status = UP) •
nodes =

↼−−−−−−
nodes \ {path(1).node2} ∪

{mk-Node (path(1).node2.nodeID, path(1).node2.status,
path(1).node2.messages �

[mk-Message ((hd
↼−−−−−−−−−
requests).text, tl path)]} ∧

rep = SUCCESS
errs

NOTHING : len requests = 0 →
nodes =

↼−−−−−−
nodes ∧

requests =
↼−−−−−−−−−
requests

rep = NO-MESSAGE-TO-DISPATCH;

16

446 16 Vienna Development Method

read-message (current : Node) rep : Report
ext wr nodes : Node-set
pre

current ∈ nodes ∧ len (current.messages) > 0 ∧
(hd (current.messages)).path = []

post

nodes =
↼−−−−−−
nodes \ {current} ∪

{mk-Node (current.nodeID, current.status, tl current.messages)} ∧
rep = SUCCESS

errs
DOES-NOT-EXIST : current /∈ nodes →

nodes =
↼−−−−−−
nodes ∧

rep = NODE-DOES-NOT-EXIST
NOTHING : len current.messages = 0 →

nodes =
↼−−−−−−
nodes ∧

rep = NO-MESSAGE
TRANSIT : (hd (current.messages)).path �= [] →

nodes =
↼−−−−−−
nodes

rep = MESSAGE-IN-TRANSIT;

forward-message (current : Node) rep : Report
ext wr nodes : Node-set
pre

current ∈ nodes ∧ len (current.messages) > 0 ∧
hd (current.messages).path �= []

post
let next = (hd (current.messages)).path(1).node2 in

nodes =
↼−−−−−−
nodes \ {current, next} ∪

{mk-Node (current.nodeID, current.status, tl current.messages),
mk-Node (next.nodeID, next.status, next.messages �

[mk-Message ((hd (current.messages)).text,
tl((hd (current.messages)).path))])} ∧

rep = SUCCESS
errs

DOES-NOT-EXIST : current /∈ nodes →
nodes =

↼−−−−−−
nodes ∧

rep = NODE-DOES-NOT-EXIST
NOTHING : len current.messages = 0 →

nodes =
↼−−−−−−
nodes ∧

rep = NO-MESSAGE
DESTINATION : hd (current.messages).path = [] →

nodes =
↼−−−−−−
nodes

rep = MESSAGE-AT-DESTINATION;

16.7 Rigorous Reasoning 447

delete-node (n : Node) rep : Report

ext
wr nodes : Node-set
wr links : Link-set
wr requests : Request∗

pre
#nodes ≥ 3 ∧ n ∈ nodes ∧ n.messages = []

post
n /∈ nodes ∧
links =

↼−−−−
links \ links-incident-at (n,

↼−−−−
links) ∧

requests = [
↼−−−−−−−−−
requests(i) | i ∈ inds

↼−−−−−−−−−
requests •

(
↼−−−−−−−−−
requests(i).sender �= n ∨ ↼−−−−−−−−−

requests(i).receiver �= n)] ∧
rep = SUCCESS

errs
DOES-NOT-EXIST : n /∈ nodes →

nodes =
↼−−−−−−
nodes ∧

links =
↼−−−−
links ∧

requests =
↼−−−−−−−−−
requests ∧

rep = NODE-DOES-NOT-EXIST

MESSAGE-EXISTS : n.messages �= [] →
nodes =

↼−−−−−−
nodes ∧

links =
↼−−−−
links ∧

requests =
↼−−−−−−−−−
requests ∧

rep = NODE-HAS-MESSAGES;

Comments
The function injective asserts that no link appears more than once in the sequence of links.
The function connected specifies that two nodes are connected by a given set of links if
there exists a path between them. The links comprising the path should be among those
links passed as input to the function. Given a node and a set of links, the function links-
incident-at returns the set of links incident at the node. �

16.7
Rigorous Reasoning

In this section, we give a rigorous proof for the security property:

Every message dispatched by the network manager is read only by the node to which the
message is addressed.

16

448 16 Vienna Development Method

Let a node X send a message m to a node Y ; assume both X and Y exist in the network.
The node X constructs a request and submits it to the network manager. When the network
manager finds the record r = (X,Y ,m) in front of its buffer, the precondition for the oper-
ation dispatch-message is satisfied for the record r . The postcondition of dispatch-message
asserts the following:

1. A path from sender to receiver exists, and the status of all links on this path is UP.
2. The first node of the first link on the path is the sender, and the second node of the last

link on the path is the receiver.
3. The message, and the path excluding the first link are placed in the buffer of the second

node of the first link on the path.

Accordingly, the network manager chooses a path p, where

p(1).node1 = X, and p(k).node2 = Y , k = len p,k ≥ 1

It is also true that the status of all links in p are UP. If p(1).node2 = Z, the tuple (m, tl p)

is appended to the buffer of Z. For the rest of the proof, we need to assume that op-
erations read-message, and forward-message will be eventually invoked by every node
whose buffer is not empty. Note that the preconditions for the operations read-message
and forward-message are independent. In particular, a node can invoke read-message op-
eration only when the tuple to be processed in its buffer is of the form (m,q), where q

= []. However, for the same node to invoke the forward-message operation, the second
component q must be nonempty. There are two cases to consider.

Case 1 k = 1
Infer from the postcondition of dispatch-message that the message structure (m, []) is
inserted in the buffer of Z = p(1).node2 = p(k).node2 = Y . When this message is at
the front of Z′s buffer, the precondition for the operation read-message becomes true.
The postcondition for read-message ensures that this tuple is deleted; that is, node Z has
received the message sent from X, and no node along the path has read the message.

Case 2 k > 1
Infer from the postcondition of dispatch-message that the message structure (m,p′), where
p′ = tl p, is inserted in the buffer of node Z. Since Z = p(1).node2 �= p(k).node2 = Y ,
and p′ �= [], when the tuple (m,p′) is at the front of Z′s buffer, only the precondition of
forward-message can become true. The postcondition of the operation forward-message
ensures that the message m is encoded in the structure (m, tl p′), and placed in the buffer
of node W , where p′(1).node1 = Z,p′(1).node2 = W . Notice that len p′ = k′ = k – 1,
and the encoded message is deleted from the buffer of node Z; that is, the message is not
read by node Z. If k’ = 0, then case 1 applies to node W at some future time; otherwise,
case 2 applies.

Since the length of the path encoded in the message is decremented every time the
message is forwarded by a node, eventually the length of the encoded path becomes zero.
We observe from case 2 that when the path length is greater than zero, the message is not
read. From case 1 it follows that the message is read when the path length is zero by the

16.8 Refinement and Proof Obligations 449

node to which the message is addressed. This proves that no node other than the receiver
can read the message.

16.8
Refinement and Proof Obligations

In addition to providing a formalism for specification, VDM also provides the techniques
for stepwise refinement of specifications. Such a systematic development approach of
VDM makes it suitable for the development of large complex software systems for which
the set of initial requirements continuously evolve over a period of time. VDM specifica-
tions in this case are given as a layer of models, each model being a refined version of
the previous model. A lower-level model adds design and implementation details. Thus
the last level of refinement will be closer to the implementation from which a program
could be obtained by directly mapping the specification constructs onto those of the un-
derlying programming language. There are two ways by which a specification in VDM
can be refined—data refinement and operation decomposition. In the former approach, ab-
stract data types are mapped into concrete data types. A proof obligation for the refinement
establishes that for every abstract data type there exists at least one concrete type which im-
plements it. In addition, it must be proved that every operation performed on concrete data
types satisfies the constraints imposed on the abstract data types. In an operation refine-
ment, operations in one level are refined to one or more operations in which computational
details are explicit. The effect of performing the low level operations must be proved to
be consistent with the abstract operation. The following sections explain the refinement
techniques in detail. For a rigorous treatment on refinement, refer to [22, 23].

16.8.1
Data Refinement

In data refinement, an abstract data type is refined into one or more concrete data types.
One familiar example is refining a set into a sequence with a proof that the refined data
type sequence does not contain duplicate elements. A refinement should neither add more
data nor lose any existing data. This requires a proof to establish that every element in the
set occurs somewhere in the sequence. With these two proofs, it would be established that
the sequence contains all the elements of the set, each element once, and nothing more.
Hence, the length of the sequence in the refinement is equal to the size of the set. Next,
it is also to be shown that for every operation performed on the set, there exists a unique
operation performed on the sequence so that the constraints imposed for the set operation
are still satisfied in the sequence.

In general, proof obligation for a data refinement requires (1) showing that no data is
lost and no new data is introduced; and (2) for every operation that modify data in the

16

450 16 Vienna Development Method

abstract level, the data in the refined data type is modified to yield the same effect. In the
proof obligations for data refinement,we use the following notations:

pre-Op (x,
↼−−−−
state)

post-Op (x,
↼−−−−
state, state)

where
↼−−−−
state refers to the state of the system before the operation is invoked, and state

denotes the state of the system after the operation terminates and x refers to the set of
parameters of the operation Op. Since functions do not affect state spaces, the precondition
and postcondition of a function are denoted as

pre-f (x)

post-f (x)

16.8.1.1
Proof Obligations

It is necessary to define a retrieve function which maps a concrete state space into its
abstract state space. There are five components in a proof obligation [23].

Signature Verification First, one must show that the retrieve function is of correct type;
that is, if the abstract state is denoted as Abs and the concrete state is denoted as Con,
then

Signature � retrf : Con → Abs

Adequacy Obligation For every abstract state Abs, we show that there exists at least one
concrete state Con which implements the abstract state using the retrieve function.
Formally,

Adequacy
Abs

∃Con • retrf (Con) = Abs

Initial State Validation The retrieve function should match the initial concrete state init_C
to the initial abstract state init_A as defined by the initialization functions in both state
spaces. Formally,

Init
init_C

init_A

Domain Obligation For every concrete operation OpC , the precondition of the correspond-
ing abstract operation OpA in conjunction with the retrieve function ensures the pre-
condition of OpC ; i.e.,

Domain Rule
Abs,Con,Abs = retrf (Con),pre-OpA(x,Abs)

pre-OpC(x,Con)

16.8 Refinement and Proof Obligations 451

Informally, domain obligation ensures that the precondition of the concrete operation
is weaker than that of its corresponding abstract operation.

Result Obligation For every abstract operation OpA, the postcondition of its correspond-
ing concrete operation OpC , in conjunction with the retrieve function, ensures the post-
condition of OpA. That is, we show that the postcondition of the concrete operation is

stronger than that of the corresponding abstract operation. Formally, if
↼−−−
Con represents

the concrete state before the operation OpC and Con refers to the concrete state after
OpC successfully terminates, then

Result Rule

↼−−−
Con,Con,

↼−−−
Abs = retrf (

↼−−−
Con),Abs = retrf (Con),

pre-OpA(x,oldAbs,post-OpC(
↼−−−
Con,Con)

post-OpA(
↼−−−
Abs,Abs)

16.8.2
Example for Data Refinement

In this section, we discuss the data refinement for the employment exchange specification
given in the previous section is refined. The state variables employed and unemployed are
refined into sequences. The refined specification is given below:

state Emp-Exch1 of
employed1 : Person∗
unemployed1 : Person∗

inv mk_Emp-Exch1 (em, unem)
�=

elems em ∩ elems unem = { } ∧
no-duplicates (em) ∧ no-duplicates (unem)

init mk_Emp-Exch1 (em, unem)
�= em = [] ∧ unem = []

end
functions

no-duplicates : Person∗ → B

no-duplicates (plist)
�= ∀ i,j ∈ inds plist • i �= j ⇒ plist(i) �= plist(j)

operations
register1 (p : Person)
ext

wr unemployed1 : Person∗
rd employed1 : Person∗

pre
(∀ i ∈ inds employed1 • employed1(i) �= p) ∧
(∀ j ∈ inds unemployed1 • unemployed1(j) �= p)

post unemployed1 =
↼−−−−−−−−−−−−−−
unemployed1 � [p];

16

452 16 Vienna Development Method

change-status1 (p : Person)
ext

wr unemployed1 : Person∗
wr employed1 : Person∗

pre ∃ i ∈ inds unemployed1 • unemployed1(i) = p
post

(∃ i ∈ inds
↼−−−−−−−−−−−−−−
unemployed1 • ↼−−−−−−−−−−−−−−

unemployed1(i) = p ∧
(∀ j ∈ {1,. . . ,(i−1)} • unemployed1(j) =

↼−−−−−−−−−−−−−−
unemployed1(j)) ∧

(∀ k ∈ {(i+1),. . . ,len
↼−−−−−−−−−−−−−−
unemployed1 } • unemployed1(k−1) =

↼−−−−−−−−−−−−−−
unemployed1(k))) ∧

employed1 =
↼−−−−−−−−−−−−
employed 1 � [p];

Signature Verification The retrieve function for this refinement is defined as follows:

retrf : Emp-Exch1 → Emp-exch

retrf (mk_Emp-Exch1 (em1, unem1)
�=

mk_Emp-Exch (elems em1, elems unem1)

Adequacy Proof It is shown in [23, page 40] that

∀s ∈ S–set • ∃� ∈ X∗ • s = elems �

This is the adequacy proof for the current example. From this proof, it can be safely con-
cluded that

retrf (Emp-Exch1) = Emp-Exch

retrf (
↼−−−−−−−−−−−
Emp-Exch1) =

↼−−−−−−−−−−−
Emp-Exch

The invariant of Emp_Exch1 ensures that em1 and unem1 do not contain any duplicates.

Initial State Validation The proof is given below:

from init mk_Emp-Exch1 (em1, unem1); retrf
1 em1 = []; unem1 = [] init mk_Emp-Exch1

2 em = elems []; unem = elems [] retrf
3 em = {}; unem = {} sequence
infer init mk_Emp-Exch (em, unem) init mk_Emp-Exch

Domain Obligation For simplicity, the proof for only one operation, say, register is
given below; proof for the other operation is left as an exercise. For domain obligation, we
have to show that

∀p ∈ Person • (pre-register (p,
↼−−−−−−−−−−−
Emp-Exch) ∧ retrf (

↼−−−−−−−−−−−
Emp-Exch1)

⇒ pre-register1 (p,
↼−−−−−−−−−−−
Emp-Exch1)

16.8 Refinement and Proof Obligations 453

from pre-register (p,
↼−−−−−−−−−−−
Emp-Exch); retrf (

↼−−−−−−−−−−−
Emp-Exch1)

1 p �∈ unemployed ∧ p �∈ employed pre-register
2 p �∈ elems unemployed1 ∧ p �∈ elems employed1 retrf
3 (∀i ∈ inds unemployed1 • unemployed1(i) �= p)∧

(∀i ∈ inds employed1 • employed1(i) �= p) sequence

infer pre-register1 (p,
↼−−−−−−−−−−−
Emp-Exch1) 3

Result Obligation We give the proof only for the register operation. It is required to
prove that

∀p ∈ Person • pre-register (p,
↼−−−−−−−−−−−
Emp-Exch) ∧ retrf (

↼−−−−−−−−−−−
Emp-Exch1) ∧

post-register1 (p,
↼−−−−−−−−−−−
Emp-Exch1, Emp-Exch1) ∧ ↼−−−−−−−−−−−

Emp-Exch1 ∧ Emp-Exch1

⇒ post-register (p,
↼−−−−−−−−−−−
Emp-Exch, Emp-Exch)

from hypotheses
1 unemployed = elems unemployed1 retrf, Emp-Exch1

2 unemployed = elems (
↼−−−−−−−−−−−−−−
unemployed1 �[p]) post-register1

3 unemployed = elems
↼−−−−−−−−−−−−−−
unemployed1 ∪ elems [p] sequence

4 unemployed = elems
↼−−−−−−−−−−−−−−
unemployed1 ∪ {p} sequence

5 unemployed =
↼−−−−−−−−−−−−−−
unemployed ∪ {p} retrf

infer post-register(p,
↼−−−−−−−−−−−
Emp-Exch, Emp-Exch) 5, hypotheses

Since a map is a finite set of maplets, the proof obligation for the refinement of a map type
to sequence type is quite similar to that from set type to sequence type. That is, a map
can be refined into two sequences of same size, one representing the domain elements and
another representing the range elements.

16.8.3
Operation Decomposition

The purpose of an operation decomposition process is to refine an abstract operation into a
concrete operation with computational details. In order to achieve this goal, the operations
in the concrete specification are chosen to reflect those operations supported by program-
ming languages. These include sequential composition of operations, control structures
(if-then-else and case) and iterative structures (while, repeat and for). The operation de-
composition process requires a proof; i.e., the combined effect of all operations in the
concrete specification should be proved to satisfy the behavior of the abstract operation.
Therefore, proof rules are introduced in the operation decomposition process to support
formal verification.

We discuss operation decomposition technique for the delete-node operation of the net-
work example given in the case study and informally justify the refinement. See [22, 24]
for proof rules for operation decomposition.

16

454 16 Vienna Development Method

16.8.4
Example for Operation Decomposition

We assume that the state variables nodes and links in the network example are refined as
follows:

nodes : Node∗
links : Links∗

We omit the proof obligations for this data refinement. We refine the functions connected
and links-incident-at for the refined data types.

connected : Node × Node × Link∗ → B

connected (n1, n2, lns)
�=

∃ p ∈ {path | path : Path • elems path ⊆ elems lns} •
(p(1).node1 = n1 ∨ p(len p).node2 = n2)

pre len lns > 0;

links-incident-at : Node × Link∗ → Link∗

links-incident-at (n, lns)
�=

[ln | ln : Link • ln ∈ elems lns ∧ (ln.node1 = n ∨ ln.node2 = n)];

We now define the refinement of the operation delete-node.

delete-node (n : Node)
�=

(dcl nds : Node∗ := [];
dcl lns : Link∗ := [];
dcl reqs : Request∗ := [];

(let lnks = links-incident-at (n, links) in
for ln in links do

if ln /∈ lnks then
lns := lns � [ln];

links = lns);
(for nd in nodes do

if nd �= n then
nds := nds � [nd];

nodes := nds);
(let upstat : LinkStatus := UP,

downstat : LinkStatus := DOWN in
for nd1 in nodes do

for nd2 in nodes do
if nd1 �= nd2 ∧ ¬ connected (nd1, nd2, links) then

if (nd1.status = ACTIVE ∧ nd2.status = ACTIVE) then
links := links � mk-Link (nd1, nd2, upstat)

else links := links � mk-Link (nd1, nd2, downstat)
else);

(for req in requests do
if req.sender �= n ∧ req.receiver �= n then

reqs := reqs � [req]);
)

pre n ∈ elems nodes

16.9 Exercises 455

In the refined version, the links incident at the given node are deleted first; this is specified
by the first for loop. Next, the given node under consideration is deleted from the set of
nodes. By deleting the node and the links associated with the node, the network may be left
with several unconnected branches. Since the network must be connected at all times as
stated in the requirements, we establish links between the unconnected branches and make
the network connected.

The refined operation contains a block of statements which is a sequential composition
of four statements. The first statement is the for statement which collects the sequence of
links not associated with the node n. The precondition for this statement is that the node n

must be present in the sequence of nodes. If n is not present in the sequence of nodes in
the network, the operation fails. Since in VDM-SL an explicit operation does not specify
exception, we have ignored the error conditions stated in the abstract operation delete-node.
The postcondition of the first statement asserts that only links not associated with n remain
in the network. The precondition for the second statement is the same as that of the first
statement. The postcondition of the second statement asserts that the network no longer
contains the node n. There is no precondition for the third statement. The postcondition
asserts that new links and their respective status are created, and added to the network.
The fourth statement does not depend on the sequential composition of the other three
statements. It specifies that the messages submitted by the node n and the messages sent to
the node n are removed from the network buffer. This is done by scanning each request in
the network buffer and deleting the ones addressed by and addressed to the node n.

16.9
Exercises

1. In the specification for employment exchange given in Example 5, one of the assump-
tions states that registered people will not be deleted from the exchange. Remove this
assumption and specify two operations: delete-unemployed (p : Person) and delete-
employed (p : Person), which will remove persons from the unemployed and employed
sets, respectively.

2. The specification for course registration system given in Example 4 has an assumption
that the course offerings are considered for only one semester. Remove this restriction
and modify the specification so that the database maintains information on course offer-
ings for more than one semester. Include constraints such as “pre-requisites for a course
should not be held concurrently in the same semester”.

3. The specification for automated transaction machine in Example 6 assumes that each
user has a distinct card even if the user accesses a shared account. Change this restriction
and include personal details for users. Introduce mappings between personal details and
card numbers so that the bank knows the users of an account. Modify the specification
incorporating these changes. Add new operations if necessary. Notice that a user may
have more than one account.

Specify the following new operations for the ATM example: (i) Issue a new card to
a user; include more assumptions, if necessary. (ii) Check the balance in an account.

16

456 16 Vienna Development Method

(iii) Modify the type Account so that for a given time interval, the number of deposits
and withdrawals can be printed when required.

4. The specification for a computer network in the case study ensures that no link appears
more than once in a path. However, it does permit that a path may include a simple
loop; i.e., a node can appear twice in a path, still obeying the previous invariant. Impose
a restriction that a path should be linear so that no node can appear more than once in a
path. Modify the specification to incorporate this change.

Set a limit to the number of messages that can be stored in the buffer of a node.
Modify the specification so that if the buffer in a particular node is full, no message can
be forwarded to this node, until the node reads or forwards at least one message from
its buffer.

Set a limit to the number of requests that can be stored in the buffer in the state
space. Modify the specification so that, if this buffer is full, no more requests will be
accepted by the network manager until the network manager dispatches at least one
message from this buffer.

5. Discuss data refinement and proof obligations for data abstractions in the network ex-
ample.

6. Give a data refinement for the specification of ATM given Example 6 along with proofs.
7. Specify a data type called “Line Segment” with appropriate invariant. You may need to

specify “Point” first. Define the following operations on line segments: (i) Determine
whether or not two line segments are parallel to each other; (ii) Determine whether
or not two line segments are perpendicular to each other; (iii) Determine whether or
not two line segments intersect at a common point; (iv) Determine whether or not two
line segments share at least one common point; and (v) Determine the length of a line
segment.

8. Specify a “Circle” and a “Line Segment” (you may use the specification in the previous
question) and define the following operations: Determine whether (i) the circle encloses
the line segment; (ii) the line segment touches the circle; and (iii) the line segment
intersects the circle.

9. Define the bag data type described in Chap. 12 in VDM-SL. Specify operations to count
and re-shelve books in a simple library check-out system using bag.

10. A simple cryptographic system uses its own code for each printable character. When a
message (consisting of a sequence of printable and non-printable characters) is sent, it
is encoded by the corresponding codes for each character in the message. The receiver,
knowing the code dictionary, can decode the message at the other end. Notice that each
station has its own coding dictionary and so the receiver must identify the sender first
and then chooses the appropriate dictionary. Moreover, each station must store the dic-
tionaries of all the other stations in the system. Any change in the dictionary in any of
the stations must be broadcast to all other stations.

Write a VDM-SL specification to specify this simple cryptographic system. Include
appropriate operations and error messages.

11. Figure 16.1 represents homethetic polygons P1 and P2 in which the sides of P1 are
parallel to the sides of P2, and the distance between every pair of parallel sides is the
same. Specify a data type called “Polygon”, and define a function to determine whether
or not two polygons are homethetic.

16.10 Bibliographic Notes 457

Fig. 16.1 Homethetic
polygons

16.10
Bibliographic Notes

Peter Lucas [28] gives a historical overview of VDM, particularly describing its evolution
during the last decade. The report describes the evolution of Meta-IV, the specification lan-
guage associated with VDM until 1987. The standardization process then replaced Meta-
IV by VDM-SL. A precise description of VDM-SL is given by [31]; its full description
appears in [20].

Since the language for VDM was evolving continuously over the last decade, only a few
books on VDM were published during that period. Cohen, Harwood and Jackson describe
the Meta-IV language [8, 18] with some simple examples. Hekmatpour and Ince used the
same language to describe how VDM can be used for software prototyping. Dawes de-
scribes the initial concrete syntax of VDM-SL [9]. The current standard version is slightly
different from the version of VDM-SL appeared in [9]. Andrew and Ince [2] also used the
same version as in [9]; their book contains several examples and techniques for proving
properties using VDM specifications.

In spite of the changes to the VDM specification language, VDM-SL and its predecessor
Meta-IV have been used to specify a number of applications. These include a document on
Message Authentication Algorithm developed by Parkin and Neil [30] and the Modula-2
programming language by Pronk and Schonhacker [32]. The edited monograph by Jones
and Shaw [24] contains several specification case studies using VDM.

VDM originated as a software development framework and is still considered as a ve-
hicle for software synthesis. Consequently, refinement theory has become an integral part
of VDM. A number of publications have been reported in the literature on refinement of
VDM specifications. Jones’s work [21, 22] on refinements is a primary and relevant source
of refinement theory. Others in this category include Clement’s work on data refinement
[6, 7] and Goldsack and Lano’s work on data decomposition [16].

The only object-oriented extension reported in the literature is the VDM++ specification
language. A detailed description of VDM++ can be found in [11]. Object refinement, sim-
ilar to data refinement, using VDM++ has been described in [15]. In addition, VDM++ has
been used for developing specifications of real-time and concurrent systems as reported in
[12, 14, 29]. The application of VDM++ to the development of firmware has been reported
in [25].

Several tools are available for developing specifications, refinement and proofs using
VDM. The IFAD Toolbox [19] enables one to develop a VDM-SL specification, check
its syntax and type correctness, generate proof obligations and prove some properties us-
ing its static and dynamic semantic checker. The tool box also includes code generation

16

458 16 Vienna Development Method

facilities. The Mural tool [23] supports theorem proving using VDM specifications, but
uses a different syntax from VDM. The KIDS tool [27] supports proof-based development
of specifications using VDM. Agerholm [1] discusses a methodology to translate VDM
specifications into PVS, a mechanical theorem prover. This was later extended by Droschl
[10].

Recently, the Overture open source project started developing tools for both VDM and
VDM++ [26]. This project includes a collection of open source VDM tools. More informa-
tion on this tool set can be found at https://sourceforge.net/projects/overture. Another tool
set called VDMTools is available from CSK Systems. This tool set supports both VDM and
VDM++, and includes features such as syntax and type checking, interpreter and debugger,
test coverage analysis and linking with OO languages such as C++ and Java. VDMTools
is an upgraded version of the IFAD Toolbox. This can be obtained from CSK Systems at
www.csk.com.

References

1. Agerholm S (1996) Translating specifications in VDM-SL to PVS. In: v. Wright J, Grundy
J, Harrison J (eds) Proceedings of the international conference on theorem proving in higher
order logics (TPHOL’96). Springer, Berlin

2. Andrews A, Ince D (1991) Practical formal methods using VDM. McGraw Hill, New York
3. Bicarregui JC et al (1994) Proof in VDM: a practitioner’s guide. Springer, Berlin
4. Bicarregui J, Ritchie B (1991) Reasoning about VDM developments using the VDM tool

support in mural. In: Prehn S, Toetenel WJ (eds) VDM’91: formal software development
methods. Lecture notes in computer science, vol 552. Springer, Berlin, pp 371–388

5. Bicarregui J, Matthews B (1995) Formal methods in practice: a comparison of two support
systems for proof. In: Bartosek A et al (eds) SOFSEM’95: theory and practice of informatics.
Lecture notes in computer science, vol 1012. Springer, Berlin

6. Clement T (1994) Comparing approaches to data reification. In: Naftalin M, Denvir T, Bertran
M (eds) FME’94: industrial benefits of formal methods. Lecture notes in computer science,
vol 893. Springer, Berlin, pp 118–133

7. Clement T (1996) Data reification without explicit abstraction functions. In: Gaudel MC,
Woodcock JCP (eds) FME’96: industrial benefits and advances in formal methods. Lecture
notes in computer science, vol 1051. Springer, Berlin, pp 195–213

8. Cohen B, Harwood WT, Jackson MI (1986) The specification of complex systems. Addison-
Wesley, Reading

9. Dawes J (1991) The VDM-SL reference guide. Pitman, London
10. Droschl G (1999) On the integration of formal methods: events and scenarios in PVS and

VDM. In: Third Irish workshop on formal methods, Galway, Eire, July 1999
11. Durr EH, Plat N (eds) (1995) VDM++: language reference manual, Afrodite (ESPRIT-III,

project number 6500) document, Cap Volmac, Aug 1995
12. Durr EH, Goldsack S (1996) Formal methods and object technology. In: Concurrency and

real-time in VDM++. Springer, Berlin, pp 86–112
13. Elvang-Goransson M (1991) Reasoning about VDM specifications. In: Prehn S, Toetenel WJ

(eds) VDM’91: formal software development methods. Lecture notes in computer science,
vol 552. Springer, Berlin, pp 343–355

14. Fitzgerald JS et al (2007) Validation support for real-time embedded systems in VDM++. In:
Proceedings of the 10th IEEE high assurance systems engineering symposium (HAS 2007),
Nov 2007, pp 331–340

References 459

15. Goldsack SJ, Durr EH, Plat N (1995) Object reification in VDM++. In: Wirsing M (ed) ICSE-
17: workshop on formal methods application in software engineering practice, April 1995,
pp 194–201

16. Goldsack S, Lano K (1996) Annealing and data decomposition in VDM. ACM SIGPLAN Not
31(4):32–38

17. Harry A (1996) Formal methods fact file: VDM and Z. Wiley, New York
18. Hekmatpour S, Ince D (1988) Software prototyping, formal methods and VDM. Addison-

Wesley, Reading
19. The VDM-SL Tool Group (1995) User manual for the IFAD VDM-SL toolbox, IFAD, The

Institute of Applied Computer Science, Forskerparken 10, DK-5230 Odense M, Denmark,
June 1995

20. Larsen PG et al. (1996) Information technology—programming languages, their environments
and system software interfaces—Vienna development method—Specification language—Part
1: Base language. ISO document, December 1996

21. Jones CB (1986) The systematic software development using VDM. Series in Computer Sci-
ence. Prentice Hall International, Englewood Cliffs

22. Jones CB (1990) The systematic software development using VDM, 2nd edn. Series in com-
puter science. Prentice Hall International, Englewood Cliffs

23. Jones CB, Jones KD, Lindsay PA, Moore R (1991) Mural: a formal development support
system. Springer, Berlin

24. Jones CB, Shaw RC (1990) Case Studies in systematic software development. Series in com-
puter science. Prentice Hall International, Englewood Cliffs

25. Kurita T, Nakatsugawa Y (2009) The application of VDM++ to the development of firmware
for a smart card IC chip. Int J Softw Informatics 3(2–3)

26. Larsen PG et al. (2010) The overture initiative—integrating tools for VDM. ACM Softw Eng
Notes 35(1)

27. Ledru Y (1996) Using KIDS as a tool support for VDM. In: Proceedings of the 18th interna-
tional conference on software engineering, March 1996, pp 236–245

28. Lucas P (1987) VDM: origins, hopes and achievements. In: Bjorner D et al (eds) VDM’87:
VDM—a formal method at work. Lecture notes in computer science, vol 252. Springer, Berlin,
pp 1–8

29. Mukherjee P et al (2000) Exploring timing properties using VDM++ on an industrial applica-
tion. In: Proceedings of the second VDM workshop, Sep 2000

30. Parkin GI, O’Neil G (1991) Specification of the MAA standard in VDM. In: VDM’91: formal
software development methods. Lecture notes in computer science, vol 552. Springer, Berlin,
pp 526–544

31. Parkin GI (1994) Vienna development method specification language (VDM-SL). Comput
Stand Interfaces 16:527–530

32. Pronk C, Schonhacker M (1996) ISO/IEC 10514-1, the standard for Modula-2: process as-
pects. ACM SIGPLAN Not 31(8):74–83

The Z Notation 17

The Z notation (pronounced as zed, named after the German mathematician Ernst Zer-
melo) originated at the Oxford University Computing Laboratory, UK and has evolved
over the last decade into a conceptually clear and mathematically well-defined specifica-
tion language. The mathematical bases for Z notation are ZF set theory and the classical
two-valued predicate logic. An interesting feature of the Z specification language is the
schema notation. Using schemas, one can develop modular specifications in Z and com-
pose them using schema calculus.

This chapter presents a tutorial of the Z notation, brings out the differences between the
Z notation and other model-based specification languages such as VDM-SL through infor-
mal discussions and motivates the reader to understand the principles of modular specifica-
tion supported by the Z notation. As was done in previous chapters, a number of examples
are given to make the reader become familiar with basics of the Z notation and acquire
skills in writing Z specifications. All the examples in this chapter have been type-checked
by the fuzz type checker [11].

17.1
Abstractions in Z

Like VDM, the Z notation supports two types of abstractions—representational abstrac-
tion and operational abstraction. Representational abstraction is described by type defini-
tions, global constants and state space declarations. Operational abstraction is captured by
operation definitions and function definitions. Sections 10.2 and 10.3 describe these two
abstractions in detail.

17.2
Representational Abstraction

The syntactic structures in Z that form the basis of representational abstraction can be
broadly classified into two categories: mathematical preliminaries and schemas. The math-

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3 17, © Springer-Verlag London Limited 2011

461

17

462 17 The Z Notation

ematical preliminaries include sets, functions, relations and sequences which are already
discussed in Chap. 12. Subsequent sections in this chapter focuses only on notational dif-
ferences for these structures within the Z specification language.

The distinguishing feature of Z is the schema notation. A schema has a unique name, a
structure described by a set of declarations, and a property described by a set of predicates;
these predicates express the invariant relationships among the structural components. The
schema notation enables a specification to be split into small manageable pieces, allow-
ing the development of modular specifications. Schemas can be composed using schema
calculus. Thus, larger specifications are obtained from smaller specification pieces. Later
subsections in this section describe in detail the syntax for schema notation and that for
composing schemas.

17.2.1
Types

Types are interpreted as sets in Z. The set of values associated with a type is called the
carrier set of that type. This set describes the collection of values that an object of the
concerned type can assume. Thus, an object of a type in Z is actually a member of the
carrier set of that type.

The Z notation is strongly typed. That is, every variable, constant and expression in a
Z specification must be associated with a type. Such a strict type system brings out two
major advantages [10]: (i) it is easier to spot errors in a specification, and (ii) the type
system enforces a discipline in writing good specifications. Moreover, the notion of strong
typing enables type checking of a Z specification to be automated.

Types in Z fall into two categories: simple types and composite types. Composite types
are derived from simple types using type constructors. The type of a composite structure
such as a schema or that of a compound expression is generally derived from the types of
its constituents.

17.2.1.1
Simple Types

There are two kinds of simple types in Z—primitive types (already defined in Z) and basic
types (user defined). Integers (Z) is the only primitive type defined in Z. Basic types are
assumed to be defined for the current specification (the specification in which they are
declared) and are not further elaborated. The assumption is that these basic types will be
defined later. As an example, the users of an automated teller machine in a banking system
can be modeled as a basic type. The syntax for this basic type is

[USERS]

The square parentheses are part of the syntax. Several basic types may be introduced in
one line as in

17.2 Representational Abstraction 463

[USERS, STAFF, CLIENTS]

Several basic type definitions may be introduced in a specification.
Since types are treated as sets in Z, equality (=) and membership (∈) operators are

defined for all types. Hence, objects of basic types can be compared for equality and mem-
bership:

[USERS]

∀ u1, u2 : USERS • u1 �= u2 ⇒ . . .

. . .

u ∈ USERS ⇒ . . .

The arithmetic operators +, −, ∗, div and mod, and the relational operators <, >, ≤ and ≥
are defined for integers.

17.2.1.2
Composite Types

There are three composite types in Z: power set types, Cartesian product types and schema
types. Other composite types can be built from them and from simple types.

Sets and Power Set Types In Z, a set can be declared in three ways: set as a type,
set by enumeration and set by comprehension. These notations have been introduced in
Chap. 12. Set operators built into Z are given in Table 17.1. The symbol F is used to
denote finite subsets of a set, while the symbol P is used to define the set of all subsets of
a set. Mathematically speaking, a finite set is the one whose members can be put into one-
to-one correspondence with the elements of the set {1, . . . , n} for some natural number n.
Whether to use F or P in a specification depends on the application. As an example, to
denote a subset of natural numbers without any indication as how it is to be used, one
would choose PN, whereas if it is used to denote a finite subset such as a set of room
numbers in a building, the declaration FN must be used.

Tuples and Cartesian Product Types The notation for Cartesian product type, as de-
fined in Chap. 12, is used in Z. In the declaration,

book : Title × Author × CallNumber × Year

the variable book is a quadruple (t, a, c, y) indicating, respectively, the title, author, call
number and year of publication of a book. Thus, if t1, a1, c1 and y1 are variables of type
Title, Author, CallNumber and Year, respectively, then the following equality holds:

book = (t1, a1, c1, y1)

17

464 17 The Z Notation

Table 17.1 Set operators in Z

Operator Synopsis Meaning

∈ x ∈ S set membership

∪ S1 ∪ S2 set union

∩ S1 ∩ S2 set intersection

\ S1 \ S2 set difference

#S cardinality of a set

⊆ S1 ⊆ S2 subset

⊂ S1 ⊂ S2 proper subset

= S1 = S2 set equality
⋃ ⋃

SS generalized union of sets SS
⋂ ⋂

SS generalized intersection of sets SS

P P S power set of the set S

F F S finite subsets of the set S

17.2.2
Abbreviation

Often, it is convenient to introduce a new name for a complex expression so that the new
name can be used in place of the complex expression. For example, a type such as

Title × Author × CallNumber × Year

can be renamed as Book which is easier to use. This is achieved in Z by the following
syntax:

Book == Title × Author × CallNumber × Year

The notation == is called abbreviation, meaning that the expression to the right side of
== is abbreviated to the name on the left side. The semantics of the abbreviation

X == Y

is that X is of type PY . Generally, abbreviation definition is used for defining a type as in

RoomNumber == N1

Here, RoomNumber defines a new type which is represented by a subset of N1. This new
type can further be constrained to assume only a finite subset of values using global con-
straints as in the following:

∀ r : RoomNumber • 100 ≤ r ≤ 199

17.2 Representational Abstraction 465

Table 17.2 Notations for
functions

Symbol Meaning

→ Total function

�→ Partial function

� Total injective function

�� Partial injective function

→→ Total surjective function

�→→ Partial surjective function

��→ Partial bijective function

�→ Total bijective function

� �→ Finite partial function

� �� Finite partial injective function

17.2.3
Relations and Functions

Relations and functions are composite mathematical objects, described using sets and
Cartesian products. The formal definitions of relations and functions introduced in
Chap. 12 are the basis for Z specifications. The kinds of functions supported in Z and
their corresponding notations are listed in Table 17.2. The operators on functions and rela-
tions and their corresponding notations in Z are given in Table 17.3. The meanings of these
operators are the same as discussed in Chap. 12. Mathematical functions in Z are different
from computable functions in programming languages, even though during refinement, the
mathematical functions are generally implemented using computable functions. Since a
function is synonymous to a relation and has a type P(X × Y), one can think of a func-
tion as a precomputed set of ordered pairs. Consequently, the values of the function are
assumed to be known. In fact, both constant definitions and functions use the same syntax
in Z as shown below:

maximum : N

maximum = 1000

half : N → N

half = {n : N • n
→ n div 2}

Function types such as

password : UserId
→ Password

may be used in declarations.

17

466 17 The Z Notation

Table 17.3 Operators on relations and functions in Z

Operator Synopsis Meaning

↔ X ↔ Y declaration of a binary relation between X and Y

�→ x �→ y maplet

dom dom R domain of the relation R

ran ran R range of the relation R

id id X identity relation
o
9 R1

o
9 R2 relational composition

◦ R1 ◦ R2 backward relational composition

� S � R domain restriction

� R � S range restriction

−� S −� R domain subtraction (domain anti-restriction)

−� R −� S range subtraction (range anti-restriction)
∼ R∼ relational inverse

(| |) R (| S |) relational image

⊕ R1 ⊕ R2 relational overriding

Rk relational iteration

R+ transitive closure of the relation R

R∗ reflexive transitive closure of the relation R

17.2.4
Sequences

The mathematical basis for sequences has been discussed in Chap. 12. Below, we mention
their syntax and specific built-in operations defined in Z. In Z, a sequence is treated as a
function from N1 (representing the indexes of the sequence) to the type of objects in the
sequence. Hence, the operators defined for functions (in fact, those defined for relations)
can be equally applied to sequences.

Sequences can be specified in two ways. A sequence, empty or nonempty, can be de-
clared using the keyword seq (e.g., seqN). Nonempty sequences can be explicitly declared
using the keyword seq1 (e.g., seq1 Char). Sequences with no duplicate elements (also
called injective sequences) are declared using a special keyword iseq (e.g., iseq Person).
A sequence can also be enumerated by explicitly introducing the objects and their relative
positions within the sequence.

The notation S(i) denotes the ith element of the sequence S. An empty sequence is rep-
resented by 〈〉. Table 17.4 lists the notations and the meanings of operators on sequences.
The following example illustrates the application of some of these operators.

Example 1 Operators on Sequences.

Let S1 = 〈a, b, c, d〉, S2 = 〈a, b〉, S3 = 〈f, g,h〉,
S4 = 〈b, c〉, S5 = 〈c, d〉, SS = 〈S1, S2, S3〉.

17.2 Representational Abstraction 467

Table 17.4 Operators on sequences in Z

Operator Synopsis Meaning

S length of the sequence S
� S1

� S2 concatenation of sequence S1 with S2

rev rev S reverse of the sequence S

head head S first element of the sequence S

last last S last element of the sequence S

tail tail S sequence S with its first element removed

front front S sequence S with its last element removed
�/ �/ SS distributed concatenation of the sequence of sequences SS

⊆ S ⊆ T S is a sequence forming the prefix of the sequence T

suffix S suffix T S is a sequence forming the suffix of the sequence T

in S in T S is a segment inside the sequence T

� U � S extract the elements from the sequence S corresponding to the
index set U; the result is also a sequence, maintaining the same
order as in S

� S � V extract the elements of the set V from the sequence S; the
result is also a sequence, maintaining the same order as in S

disjoint disjoint SeqSet SeqSet is an indexed family of mutually distinct sets

partitions SeqSet partitions T the indexed family of mutually disjoint sets whose distributed
union is T

S1
� S2 = 〈a, b, c, d, a, b〉

rev S1 = 〈d, c, b, a〉
�/SS = 〈a, b, c, d, a, b, f , g, h〉
S2 ⊆ S1 is true
S4 suffix S1 is false
S5 in S1 is true
{2,3} � S1 = 〈b, c〉
S1 � {b, d, f , g} = 〈b, d〉
disjoint 〈{a, b}, {c, d}, {f, g} 〉 is true
disjoint 〈{a, b}, {c, d}, {f, g, a} 〉 is false
〈 {a, b, c}, {d}, {f, g,h} 〉partitions {a, b, c, d, f , g, h}

�

17.2.5
Bags

Like the schema notation (to be discussed shortly), bag is another distinguishing feature of
the Z notation, which is not included in many model-based specification languages includ-
ing VDM-SL. However, it can be easily modeled using functions or maps. The introduction
of bag and the set of operators on bags simply provides additional modeling facility.

17

468 17 The Z Notation

A bag is a set of elements which also encodes the number of occurrences of each ele-
ment in the bag. Formally, a bag is defined as a partial function from the type of elements
to the number of occurrences of the elements.

bagX == X
→ N1

Notice that the range of a bag is denoted by positive numbers (N1). This is to indicate that
a bag does not maintain the information about those elements that are not in the bag.

As an example, consider a bag of coins with varying denominations: 2 pennies, 7 nickels
and 12 quarters. Let the type coins be defined as

coins == {penny,nickel, dime,quarter}

The coin bag under consideration is then denoted as

coinbag = {penny
→ 2,nickel
→ 7,quarter
→ 12}

17.2.5.1
Operators on Bags

The following operators on bags are available in Z.

count The operator count is actually a higher order function which accepts a bag as input
and returns a total function from the type of elements in the bag to their corresponding
number of occurrences. Typically, count elaborates the partial function in the formal defi-
nition of the bag into a total function by explicitly checking each element in the domain and
associating a zero as the number of occurrences to those elements which are not present in
the domain.

The application of the count operator is illustrated below:

count coinbag quarter = 12

count coinbag dime = 0

The infix notation � for count may also be used in Z. Using �, we can rewrite the example
as

coinbag�quarter = 12

coinbag�dime = 0

Membership The presence of an element in a bag is checked by the bag membership oper-
ator 	− whose semantics is similar to the set membership operator. The following example
illustrates the application of the bag membership operator:

nickel 	− coinbag

dime �	− coinbag

17.2 Representational Abstraction 469

Union, Difference and Sub-bag Operators Similar to sets, there are three operators to com-
pose bags: bag union operator (�), bag difference operator (−∪) and sub-bag operator (�).
These three operators are binary infix operators and require that both operands be of the
same type of bag.

When two bags are joined under the bag union operator, the domain of the new bag
includes all the elements in both bags. The number of occurrences of common elements in
both bags are summed up in the new bag. Non-common elements in both bags are retained
as such in the new bag.

For the difference operator, the domain of the new bag is a subset of the domain of the
bag on the left side of the operator. The number of occurrences of elements in the new
bag is decreased from that in the left operand according to the count in the right operand.
It becomes zero if the result of subtraction is negative. As a result, those elements whose
counts become zero due to the difference operation will be eliminated from the bag since
the bag does not retain count for elements that are not present.

The sub-bag operator returns true if the domain of the left operand is a subset of the
domain of the right operand and the number of occurrences of each element in the left
operand is the same or less than that of the same element in the right operand.

The example below illustrates the application of these operators:

Let two new bags be defined as

newbag1 = {dime
→ 3,penny
→ 1}
newbag2 = {nickel
→ 2,quarter
→ 2}

Some bag expressions are

coinbag � newbag1 = {penny
→ 3,nickel
→ 7,dime
→ 3,quarter
→ 12}
coinbag −∪ newbag2 = {penny
→ 2,nickel
→ 5,quarter
→ 10}
newbag2 � coinbag

Bag from a Sequence A sequence represents an ordered collection of elements emphasiz-
ing the position of each element in the sequence. Given a sequence, therefore, it is possible
to count the number of occurrences of each distinct element in the sequence, thus obtain
a bag. The prefix operator items performs this operation. Thus, if coinseq is a sequence
defined as

coinseq = 〈nickel, nickel,penny,nickel, dime,quarter,quarter,dime, penny〉

then

items coinseq = {penny
→ 2,nickel
→ 3,dime
→ 2,quarter
→ 2}

17

470 17 The Z Notation

17.2.6
Free Types

The primary purpose of a free type definition is to introduce enumerated constants and
recursive type definitions. Like type abbreviation, every free type definition introduces a
new type name into the current specification.

The syntax of a free type definition is

FreeType ::= constant1 | . . . | constantn |
constructor1〈〈source1〉〉 | . . . | constructorm〈〈sourcem 〉〉

The symbols ‘::=’, ‘|’, ‘〈〈’ and ‘〉〉’ are part of the full syntax. The terms constant1, . . . ,
constantn refer to distinct constants which belong to the carrier set of the free type. The
symbols for these constants, as given in the free type definition, stand for their values and
they are similar to enumerated type definition in programming languages such as Pascal.
The term constructori 〈〈sourcei 〉〉 refers to an injective function which accepts an object of
type sourcei as input and returns an object of type FreeType. The definition for FreeType
is said to be closed in the sense that

〈{constant1}, . . . , {constantn }, ran constructor1, . . . , ran constructorm〉
partitions FreeType

That is, the sets {constant1}, . . . , {constantn }, ran constructor1, . . . , ran constructorm are
pairwise disjoint and their union make up the entire set FreeType. Thus a free type defini-
tion explicitly defines all the members of its carrier set.

The following examples illustrate the application of free type definitions in several con-
texts:

Example 2 The different types of coins in a currency system can be defined as an enumer-
ated type.

Coins ::= Penny | Nickel | Dime | Quarter �

Example 3 The users of an automated banking system are drawn from three categories of
people:

Users ::= cust〈〈Customer〉〉 | stf 〈〈Staff 〉〉 | mgr〈〈Manager〉〉

Notice that the above definition is similar to the union type definition in VDM-SL, except
for the notation for constructor functions. �

Example 4 The abstract data type ‘List’ can be defined using the syntax for free type
definition. Following is the recursive definition for a list of natural numbers.

List ::= nil | cons〈〈N × List〉〉

17.2 Representational Abstraction 471

In the definition List, the symbol nil stands for a unique value of List (similar to quote types
in VDM-SL); cons is a constructor function which adds an element to a list. Notice that the
definition List does not indicate whether cons adds the element to the front or to the back
of the list. Such constraints must be specified separately outside the free type definition,
possibly as global constraints. �

17.2.7
Schemas

A schema is a formal mathematical text describing some aspect of the software system
being developed. A schema has a unique name, a declaration part and a predicate part.
The name of a schema can be used anywhere in the document after its declaration to refer
to the text. This name can also serve as a type name (to be discussed in detail shortly).
The declaration part introduces some variables along with their types which are local to
the schema. The predicate part describes some invariant relationships between the local
variables themselves and/or some relationships between the local variables, and global
constants and global variables that are declared before the schema.

As an example, a user of a computer system can be specified by the schema:

[Char]

User 1

name : seq Char
password : seq Char
storage limit : N

Generally, schemas are defined using the box notation as shown above. The name of the
box (in this case User 1) is the name of the schema. A schema of this style without any
additional constraints is a simple schema. If there are constraints imposed on components
of the schema then these constraints are listed below the declaration part, separated by a
horizontal line.

User 2

name : seq Char
password : seq Char
storage limit : N

name �= password

The constraints are generally expressed as well-formed formulas in predicate logic. Al-
ternatively, several well-formed formulas, one on each separate line in the predicate part
of the schema, can be given. In this case, an implicit conjunction is assumed between the
predicates. For example, the predicate in the schema

17

472 17 The Z Notation

User 3

name : seq Char
password : seq Char
storage limit : N

name �= password
#password < 8

is equivalent to

name �= password ∧ #password < 8

A schema can be also be specified in a horizontal style as

User 4 == [name : seqChar; password : seqChar; storage limit : N |
name �= password ∧ #password < 8]

The variables in the declaration part of a horizontal schema must be separated by semi-
colons, and all constraints in one schema should be stated by one well-formed formula.
The square brackets on the right side of == are part of the syntax.

17.2.7.1
Signature and Properties

A signature is a collection of variables, each variable being associated with a type. For
example,

name : seq char; age : N1

is a signature with two variables name and age; the type of name is a sequence of characters
and the type of age is N1.

The property of a schema is a predicate that is obtained from the predicate part of the
schema and the predicate implicit in the declaration part. Thus, the property of the schema
User 3 is the following predicate:

name ∈ seq char ∧ password ∈ seq char ∧ storage limit ∈ N ∧
name �= password ∧ #password < 8

17.2.7.2
Schema Types and Bindings

The definition of schema User 3 introduces the name User 3 as a type. A schema type is
an association or a binding between names (derived from the schema name and the names

17.2 Representational Abstraction 473

of the local variables) and types of the local variables. The type of a schema is completely
determined by the names and types in the declaration part. The predicate part is irrelevant
in establishing the type of the schema. Two schema types are regarded as identical if they
differ only in the order of presentation of their signatures. Thus, the schemas User 1 and
User 2 define the same type, even though their predicate parts are different. The schema
User 3 defines a type different from User 1 (and User 2), since the signatures are differ-
ent. An object u with the schema type User 3 has components u.name, u.password and
u.storage limit. If N , P and S are objects of types seq char, seq char and N, respectively,
we can establish a binding between the component names of the schema User 3 and the
objects N , P and S as

θ User 3 ≡ (name
 N,password
 P , storage limit
 S)

which assigns the objects N , P and S to the schema components u.name, u.password
and u.storage limit, respectively. The symbol
 is used to describe bindings in Z, but
is not part of the Z notation. The expression θ S where S is a schema, has a binding as
its value. That is, θ S is an instance of S with its components as declared in S. The set
comprehension expression {User 3} is interpreted to mean {User 3 • θ User 3}, which
denotes a set of users and its type is P User 3.

17.2.7.3
Type Compatibility of Signatures

Two signatures are said to be type compatible if and only if every variable common to both
signatures has the same type. Thus the signature

name : seq Char

password : seq Char

is type compatible with the signature

name : seq Char

social insurance number : N1

since the only common variable name has the same type in both signatures. As another
example, the two signatures

x, y : N and

x, t : Z

are also type compatible. Here, the type of the common variable x in both signatures is Z.
The term N denotes a set of non-negative integers with a constraint that

∀ n : N • n ≥ 0

The type of N is Z, the maximal set.

17

474 17 The Z Notation

17.2.7.4
Schema Inclusion

Schema inclusion is a mechanism by which a previously defined schema definition can be
reused in the definition of another schema. This could be done in two ways: (i) a schema
S1 can be included in the declaration part of another schema S2; (ii) S1 can be included in
the predicate part of S2.

When a schema S1 is included in the declaration part of another schema S2, the signa-
ture of S2 includes that of S1 and the newly declared <variable, type> pairs introduced
in the declaration part of S2. The signature of S1 must be type compatible with that of
S2. The predicate part of S1 is conjoined with the newly declared predicates of S2. As an
example, consider the definition of a schema Student which includes the schema User 3.

Student
User 3

idnumber : N1

storage limit ≤ 1000

This is equivalent to the schema

Student
name : seq Char
password : seq Char
storage limit : N

idnumber : N1

name �= password
#password < 8

storage limit ≤ 1000

A schema S1 can be included in the predicate part of another schema S2 in two ways:
(i) the name S1 can be placed on a separate line in the predicate part of S2; (ii) S1 can
be included using a quantified expression. In both cases, the signature of S1 must be type
compatible with that of S2. See the two examples below, which illustrate these concepts.

The schema

Student 0

name : seq Char
password : seq Char
storage limit : N

idnumber : N1

User 3

storage limit ≤ 1000

17.2 Representational Abstraction 475

is equivalent to the schema

Student 0

name : seq Char
password : seq Char
storage limit : N

idnumber : N1

name �= password
#password < 8

storage limit ≤ 1000

The schema

Student 1

idnumber : N1

∃ User 3 • storage limit ≤ 1000

is equivalent to the schema

Student 1

idnumber : N1

∃ name : seq Char; password : seq Char; storage limt : N •
name �= password ∧ #password < 8 ∧ storage limit ≤ 1000

Remarks Notice that the constraints defined in the three schemas Student, Student 0

and Student 1 are the same as seen from their expanded definitions. However, the three
schemas are not identical. The subtle differences are:

• The types of the schemas Student and Student 0 are the same, namely the bindings
defined by

〈|name : seq Char; password : seq Char; idnumber : N1;

storage limit : N|〉

• The type of the schema Student 1 is 〈|idnumber : N|〉, which is different from the types
of Student and Student 0.

• The declaration and predicate parts of User 3 are automatically brought into the respec-
tive declaration and predicate parts of Student, whereas to create Student 0 we have to
retype the declarations of User 3 in Student 0 in order to bring the variables in scope;
only the predicate part of User 3 is automatically conjoined with the newly declared
predicate of Student 0.

17

476 17 The Z Notation

17.2.7.5
Schema as a Type

As stated earlier, a schema can be used as a type name after it has been introduced. The
carrier set of this type is the set of all instances of the schema satisfying the binding of the
schema. To illustrate, consider the schema Users defined below:

Users
all : PUser 3

∀ u1, u2 : User 3 | u1 �= u2 ∧ u1 ∈ all ∧ u2 ∈ all •
u1.name �= u2.name

The predicate part of Users asserts that the names of users of type User 3 must all be
unique. A variable u of type Users is an instance of Users schema. To refer to a particular
component of a schema, the . operator is used; thus, the name u.all refers to the instance
in u of the variable all in Users.

17.2.7.6
Generic Schema

The generic constructs in Z allow a family of concepts to be captured in a single definition.
For example, a table can be defined as a generic schema:

Table T,X
first column : seqT

second column : seqX

The schema Table defines a two-column table pattern with entries of type T in the first
column and entries of type X in the second column. The structure of a specific table can
be described as an instance of this generic pattern. For example,

[Person,PhoneNumber]

PhoneBook == Table[Person, PhoneNumber]

defines a table with objects of type Person in the first column and objects of type
PhoneNumber in the second column. The instantiation of the generic parameters T and
X by the actual parameters Person and PhoneNumber, respectively, provides a strict bind-
ing defined as

〈|first column : seqPerson; second column : seqPhoneNumber|〉

17.2 Representational Abstraction 477

Notice that the two columns in Table[T ,X] need not be of same length. If there is such a
restriction, it will be stated in the predicate part of Table[T ,X] such as

#first column = #second column

This restriction will be carried over when Table[T ,X] is instantiated with actual param-
eters. Thus, PhoneBook has the same restriction as that of Table[T ,X]. One may further
constrain the instantiation. For example, if the phone book is required to be sorted on al-
phabetical ordering of Person, then a global constraint such as

∀ phb : PhoneBook•
∀ i, j : 1..#(phb.first column)•

i ≤ j ⇒ (phb.first column)(i) ≤p (phb.first column)(j)

provided that the operator ≤p is defined for objects of type Person.

17.2.7.7
Schema Expressions

Type compatible schemas can be composed using the logical operators ¬ , ∨, ∧, ⇒ and
⇔. When the unary operator ¬ is applied to a schema S, the result is a schema denoted
by ¬ S whose signature is the same as that of S and whose predicate part is obtained by
negating the property of S. As an example, consider the schema S defined as

S

x,y : N

x > y

Before considering ¬ S, we should rewrite S so that the implicit predicates of S are visible.
Thus, S can be rewritten as

S

x,y : Z

x ≥ 0

y ≥ 0

x > y

Now, ¬ S can be defined as

¬ S

x,y : Z

¬ (x ≥ 0 ∧ y ≥ 0 ∧ x > y)

17

478 17 The Z Notation

As another example, consider the schema S1 defined as

S 1

x : 1..10

y : N1

y > x ∗ x

S1 has an implicit predicate in its declaration part. To obtain its negation, S 1 is first
rewritten as

S 1

x, y : Z

1 ≤ x ≤ 10

y > 0

y > x ∗ x

and then ¬ S 1 is obtained:

¬ S 1

x, y : Z

¬ (1 ≤ x ≤ 10) ∨
¬ (y > 0) ∨
¬ (y > x ∗ x)

The signature of the schema S ∧ T is the union of the signatures of S and T . The predicate
part of S ∧ T is the conjunction of the predicate parts of S and T . Similar definitions are
given for S ∨ T , S ⇒ T , and S ⇔ T . In all the four cases, the signatures of S and T must
be type compatible. The following example illustrates schema composition operations:

Example 5 Logical operators applied to schemas.

Let S == [x, y : N | x > y] and T == [x : Z | x > 100]

S ∨ T == [x : Z; y : N | x > y ∨ x > 100]

S ∧ T == [x : Z; y : N | x > y ∧ x > 100]

S ⇒ T == [x : Z; y : N | x > y ⇒ x > 100]

S ⇔ T == [x : Z; y : N | x > y ⇔ x > 100] �

Schemas can appear in quantified expressions. Given two schemas S and T , each one
of the expressions ∃ T • S, ∃1 T • S, and ∀ T • S results in a new schema. In all these

17.2 Representational Abstraction 479

cases, the signatures of S and T must be type compatible. The resulting schema in each
case has its signature as the signature of S with components of T removed from S. The
property of the new schema is true under all the bindings for which the property of S is
true constrained by the property of T . This requires that the components of T which are
not present in the signature of the resulting schema be brought back into the predicate part
of the result through the same quantifier. The example below illustrates this concept:

Example 6 Schemas in quantified expressions.

Let S == [x, y : N | x > y], T == [x : Z | x > 100] and U == [x,w : Z | x > w]

∃ T • S == [y : N | ∃ x : Z | x > 100 • x > y]

∃1 T • S == [y : N | ∃1 x : Z | x > y • x > 100]

∃1 U • S == [y : N | ∃1 x : Z; w : Z | x > w • x > y]

∀ T • S == [y : N | ∀ x : Z | x > 100 • x > y] �

We next define a schema expression. A schema expression SE is a member of the smallest
set generated by the following rules:

1. A schema S is an SE.
2. If SE1 and SE2 are schema expressions, then their compositions through the logical

operators ¬ , ∨, ∧, ⇒ and ⇔ are also schema expressions; i.e., ¬ SE1, SE1 ∨ SE2,
SE1 ∧ SE2, SE1 ⇒ SE2, SE1 ⇔ SE2 are all schema expressions.

3. If SE is a schema expression and T is a schema, then the quantified expressions ∃ T • SE,
∃1 T • SE, ∀ T • SE are schema expressions.

17.2.7.8
Schema Renaming

The variables x1, . . . , xn of a schema S can be renamed using the notation S[y1/x1, . . . , yn/xn]

where y1, . . . , yn are new identifiers replacing the existing identifiers x1, . . . , xn. The new
identifiers yi need not be distinct from one another and may even be the same identifiers
already present in S. The following conditions must be true for the validity of schema
renaming:

• The signature of S and that of S[y1/x1, . . . , yn/xn] must be type compatible.
• For every binding under which the property of S is true, the property of S[y1/x1, . . . ,

yn/xn] must also be true after renaming. Thus, if S is defined as

S == [x, y : N | x > y]

then the renaming S[p/x, q/y] results in a valid schema

S[p/x, q/y] == [p, q : N | p > q]

17

480 17 The Z Notation

whereas the renaming S[y/x] results in an invalid schema

S[y/x] == [y : N | y > y]

because the property y > y is false under all bindings.1

• Schema renaming is merely a process of changing identifiers; hence, substitution of
expressions to replace components of a schema using schema renaming is invalid.

17.2.7.9
Schema Hiding and Projection

The purpose of schema hiding is to hide some components of a schema from its declaration
part. However, these components will be reintroduced in the predicate part of the schema
through existential quantifier. The reason is to bring these components in scope so that the
property of the new schema will be true under all bindings for which the property of the
original schema is true. Since these components are removed from the declaration part, the
type of the resulting schema will be different from the original schema.

The notation S\(x1, . . . , xn) is used to hide the components x1, . . . , xn from the
schema S. As an example, User 3\(name) is the schema

User 3\(name)
password : seq Char
storage limit : N

∃ name : seq Char | name �= password • #password < 8

For schema hiding such as S\(x1, x2, . . . , xn) to be valid, the variables x1, x2, . . . , xn must
be present in the declaration part of S.

A schema S can be projected into another schema T using the schema projection oper-
ator. The result is a schema, written as S � T whose signature is the same as that of T . The
property of S � T is satisfied by exactly those bindings under which the property of S ∧ T

is true, but are restricted by the components x1, . . . , xn such that x1, . . . , xn are in S but
not in T . Typically,

S � T ≡ (S ∧ T)\(x1, . . . , xn)

For the schema projection to be valid, the signatures of S and T must be type compatible;
see the following example:

1Strictly speaking, this condition is not mandatory. Thus, the schema S[y/x] is a valid Z specifica-
tion for which there is no model. However, we impose this restriction for the usefulness of schema
renaming.

17.2 Representational Abstraction 481

Example 7 Type Compatibility.

Let S == [x, y : N | x > y ∧ x > 100] and T == [y, z : Z | y > z]

S � T == [y, z : Z | y > z ∧ y ≥ 0 ∧ (∃ x : N • x > y ∧ x > 100)]

Notice that the variable y in T is an integer whereas y in S � T is a natural number,
because y is declared as a natural number in S. In order to maintain type compatibility, the
constraint y ≥ 0 is introduced in S � T . �

17.2.8
State Representation

A schema can be used to describe the abstract state of a software system in Z. The decla-
ration part of the schema contains the state space variables and the predicate part describes
the state invariant. Unlike VDM, substates can be independently specified and combined
using schema calculus operators. Modularity, achieved in this fashion, promotes compre-
hension, analysis, and reuse of schemas.

The instances or snap shots of a state representation in Z correspond to the bindings of
the state components to various objects, which satisfy the state invariant. For illustration,
consider the state space schema

ComputerSystem
valid,active, inactive : P UserId
password : UserId
→ Password

active = dom password
active ∩ inactive = ∅
valid = active ∪ inactive

The state ComputerSystem describes three types of users. The variable valid denotes the
set of users who have registered with the system. This set is partitioned into two groups,
active who are currently using the system and inactive whose accounts are frozen and
therefore are not used. The state variable password in ComputerSystem stands for a file
which maintains the names and respective passwords of the users. The state invariant of
ComputerSystem asserts the following: (i) The variable password maintains the passwords
of active users only; notice that it is defined as a partial function. (ii) A user’s account will
not be active and inactive at the same time. Stated otherwise, the set of active users and the
set of inactive users are mutually exclusive. (iii) The valid users of the system include the
sets of active and inactive users.

Table 17.5 shows some snap shots of the state specified by ComputerSystem (in this
table, John, Mary and Tom refer to distinct objects of type UserId; animal, clown and
crazy refer to distinct objects of type Password).

17

482 17 The Z Notation

Table 17.5 Some bindings of the state represented by ComputerSystem

valid active inactive password

∅ ∅ ∅ ∅
{John, Mary} {John} {Mary} {John �→ animal}

{John, Mary, Tom} {Mary, Tom} {John} {Mary �→ clown, Tom �→ crazy}

17.3
Operational Abstraction

The operational abstraction formalizes operations and functions on an abstract state. The
major difference between operations and functions is, as in VDM-SL, that operations ac-
cess state space variables while functions do not.

17.3.1
Operations

An operation, defined over an abstract state space, may or may not change the state space
and unlike functions, does not return any value explicitly. The schema notation is used
to define operations. The declaration part of an operation schema includes the names of
the state variables before and after the operation, and input and output parameters for the
operation. The predicate part describes how the values of variables in the declaration part
are constrained.

Let us consider how to specify the state and operations for a simplified model of a
store which issues credit cards to its customers. For each customer, the store maintains
the information such as the name of the customer, the card number issued to the customer
and the current balance in the customer’s account. The schema Customer defined below
specifies the type of customers for this store.

[STRING]

Customer
name : STRING
cardnumber : N

balance : N

The state space of the system consists of the set of all customers of the store. The schema
Company describes this state space. It has only one state variable: customers which is de-
fined as a set of Customer. The state invariant asserts that card numbers issued to customers
are unique.

17.3 Operational Abstraction 483

Company
customers : PCustomer

∀ c1, c2 : Customer | c1 ∈ customers ∧ c2 ∈ customers •
c1 = c2 ⇔ c1.cardnumber = c2.cardnumber

To enroll a new customer, we need an operation AddCustomer, which ensures that the card
number for the new customer is different from any other card that has already been issued.
This is the precondition for the operation. The postcondition asserts that the database of
customers has been modified to include the new customer’s information.

AddCustomer
customers, customers′ : PCustomer
new customer? : Customer

(∀ cust : Customer | cust ∈ customers •
cust.cardnumber �= new customer?.cardnumber)

customers′ = customers ∪ {new customer?}

The declaration part of AddCustomer consists of three components: customers represents
the set of customers before the operation, customers′ represents the customers after the
operation successfully terminates and new customer? is the input parameter to the opera-
tion. Unprimed names like customers are used to denote the values of the components of
the state before the operation, the pre-state. Names with primes like customers′ are used
to denote the values of the same components of the state after the operation, the post-state.
Names like new customer? denote input parameters to the operation. Names like result!
with a ! at the end are used to denote output parameters from the operation. These deco-
rations are conventionally used for these intended purposes, although the Z notation does
not prevent a specifier from using the decorations for other purposes. For example, if the
state space schema Company contains a variable customer?, it is still valid. However, ex-
perienced Z users may find such declarations unconventional.

The predicate part of AddCustomer consists of two predicates: the first one is the pre-
condition for the operation which, asserts that the card number of the new customer must
not be the same as the card number of any other customer in the system. The second pred-
icate is the postcondition which ensures that the new customer is added to the database of
the system.

Recall that the specification of an operation in VDM-SL may include an error clause;
the error clause asserts the conditions that must be satisfied when the precondition fails.
In Z, such error conditions may be specified as separate schemas and then they may be
combined with the operation schema using schema composition. In the store example dis-
cussed above, we may wish to include messages indicating a successful or an unsuccessful
addition of a new customer to the store. So, we first define a message type:

Message ::= CUSTOMER ADDED | CARD NUMBER EXISTS

17

484 17 The Z Notation

AddCustomer 0

customers, customers′ : PCustomer
new customer? : Customer
message! : Message

(∀ cust : Customer | cust ∈ customers •
cust.cardnumber �= new customer?.cardnumber)

customers′ = customers ∪ {new customer?}
message! = CUSTOMER ADDED

The operation AddCustomer 0 is enriched with a message in AddCustomer.

Customer Exists
customers : PCustomer
new customer? : Customer
message! : Message

(∃ cust : Customer | cust ∈ customers •
cust.cardnumber = new customer?.cardnumber)

message! = CARD NUMBER EXISTS

The operation Customer Exists affirms the presence of a customer in the database whose
card number matches the card number of the new customer.

AddCustomer new == AddCustomer 0 ∨ Customer Exists

The operation AddCustomer new composes AddCustomer 0 and Customer Exists to in-
corporate both messages into one single operation.

Remarks It should be noted that both AddCustomer and AddCustomer new assert only
the conditions that must be true of the state variables before and after the operation. How-
ever, they do not guarantee the validity of the state invariant after the termination of the
operation. It requires a proof obligation; see Sect. 10.4.

17.3.2
Schema Decorators and Conventions

The conventions for schema decorations allow specifications to be written with clarity and
reused in other schemas. Among the three decorators (prime, question mark and exclama-
tion mark) discussed earlier for variable names, the use of prime deserves further elabora-
tion. When an operation schema includes the variables of a state, it should include all the
variables in that state plus their primed counterparts. This is in contrast to the specification

17.3 Operational Abstraction 485

of an operation in VDM-SL where only those state variables which are modified by the
operation are specified through the ext clause. An important consequence of including all
the state variables and their primed counterparts in a schema is that the specifier must ex-
plicitly show what state variables are changed by the operation (by specifying how they are
modified) and must also report that all other state variables remain unchanged. In order to
simplify the writing of all the state variables and their primed counterparts in an operation
schema, Z has two conventions: the Δ and the Ξ notations.

The Δ notation: The Δ notation is used as an abbreviation to include schemas S and S′

into a single schema ΔS. Note that Δ is part of a schema name, and not an operator.

S

x : X

y : Y

P (x, y)

S′

x′ : X

y′ : Y

P [x′/x, y′/y]

ΔS

S

S′

Having defined ΔS, we can include it in an operation schema to introduce all state vari-
ables of S before and after the operation. We illustrate below the Δ convention by rewriting
AddCustomer operation defined previously:

AddCustomer 1

ΔCompany
new customer? : Customer

(∀ cust : Customer | cust ∈ customers
cust.cardnumber �= new customer?.cardnumber)

customers′ = customers ∪ {new customer?}

The above operation definition is equivalent to

17

486 17 The Z Notation

AddCustomer 1

customers : PCustomer
customers′ : PCustomer
new customer? : Customer

(∀ c1, c2 : Customer | c1 ∈ customers ∧ c2 ∈ customers •
c1 = c2 ⇔ c1.cardnumber = c2.cardnumber)

(∀ c1, c2 : Customer | c1 ∈ customers′ ∧ c2 ∈ customers′ •
c1 = c2 ⇔ c1.cardnumber = c2.cardnumber)

(∀ cust : Customer | cust ∈ customers •
cust.cardnumber �= new customer?.cardnumber)

customers′ = customers ∪ {new customer?}

Notice that the operation AddCustomer 1 includes the state invariant before and after the
operation as part of its meaning. This ensures the validity of state invariant before and after
the operation.

The Ξ notation: When the Δ notation is used in an operation schema, the intention is that
the operation changes the values of some of the state variables. This is synonymous to
read/write operation in programming languages. If the operation is an inquiry operation
such as to find or read the value of a state variable, then the Ξ notation is used. The formal
definition of ΞS is given below:

ΞS

ΔS

S = S′

The following is a revised specification of the operation Customer Exists:

Customer Exists
ΞCompany
new customer? : Customer
message! : Message

(∃ cust : Customer | cust ∈ customers •
cust.cardnumber = new customer?.cardnumber)

message! = CARD NUMBER EXISTS

Unlike VDM-SL, an operation in Z can act on several state spaces at the same time. These
state spaces will be included in the definition of the operation schema using the Δ or Ξ no-
tations. The semantics for schema inclusion will be applied to merge common declarations
in these state spaces. The invariants of the state spaces are conjoined with the predicate
part of the operation schema.

17.3 Operational Abstraction 487

17.3.3
Sequential Composition

Schema calculus uses logical connectives on predefined schemas to create new schemas. In
addition, there is a sequential composition operator denoted by o

9 which is primarily used
to compose operation schemas.

The sequential composition of operations describes the combined effect of the opera-
tions, applied in the specified sequence, on the state of the system. The sequential compo-
sition S == S1

o
9 S2 defines S as an operation for which the input is the input of S1 and

the result is that from S2 when the result of S1 is fed as input to S2. That is to say that the
postcondition of S1 implies the precondition of S2. For sequential composition to remain
meaningful, the signatures of the two schemas S1 and S2 must be type compatible and
both S1 and S2 should address the same abstract state. If this abstract state is represented
as T , then S1 will describe the states T and T ′ . Since T ′ is fed as input to S2, S2 describes
the states T ′ and T ′′ ; all the T s are of same type. S will contain T and T ′′ as its initial
and final states. The signature of S consists of the unprimed components of S1, the primed
components of S2, and the input and output parameters of both S1 and S2.

Sequential composition operator can be used to specify the changes in profile of a cus-
tomer in the database of a credit card company, an example discussed earlier. The following
operation deletes a customer record:

DeleteCustomer
ΔCompany
old customer? : Customer

(∃ cust : Customer | cust ∈ customers •
cust.cardnumber = old customer?.cardnumber)

customers′ = customers \ {old customer?}

Assuming that the operation AddCustomer is the same as defined earlier, we can now
define ChangeCustomer operation as a sequential composition of DeleteCustomer and
AddCustomer:

ChangeCustomer 0 == DeleteCustomer o
9 AddCustomer

ChangeCustomer == [ChangeCustomer 0 |
old customer?.cardnumber = new customer?.cardnumber]

The syntax of Z does not allow constrained sequential composition. So, we first introduce
the operation ChangeCustomer 0 and then introduce the additional constraint that the card
numbers of old customer? and new customer? are the same.

The fully expanded version of the operation ChangeCustomer 0 is given below:

17

488 17 The Z Notation

ChangeCustomer 0

customers, customers′ : PCustomer
old customer? : Customer
customers′, customers′′ : PCustomer
new customer? : Customer

(∀ c1, c2 : Customer | c1 ∈ customers ∧ c2 ∈ customers •
c1 = c2 ⇔ c1.cardnumber = c2.cardnumber)

(∀ c1, c2 : Customer | c1 ∈ customers′ ∧ c2 ∈ customers′ •
c1 = c2 ⇔ c1.cardnumber = c2.cardnumber)

(∃ cust : Customer | cust ∈ customers •
cust.cardnumber = old customer?.cardnumber)

customers′ = customers \ {old customer?}
(∀ c1, c2 : Customer | c1 ∈ customers′ ∧ c2 ∈ customers •

c1 = c2 ⇔ c1.cardnumber = c2.cardnumber)
(∀ c1, c2 : Customer | c1 ∈ customers′′ ∧ c2 ∈ customers′ •

c1 = c2 ⇔ c1.cardnumber = c2.cardnumber)
(∀ cust : Customer | cust ∈ customers′ •

cust.cardnumber �= new customer?.cardnumber)
customers′′ = customers′ ∪ {new customer?}

Next, we simplify the schema: the state implied by single primed variables are first merged;
to maintain consistency with the Δ notation, the single primed variables are removed and
the double primed variables are changed into single primed variables. Thus, the simplified
definition of ChangeCustomer 0 is

ChangeCustomer 0

ΔCompany
old customer? : Customer
new customer? : Customer

(∃ cust : Customer | cust ∈ customers •
cust.cardnumber = old customer?.cardnumber)

(∀ cust : Customer | cust ∈ customers •
cust.cardnumber �= new customer?.cardnumber)

customers′ = customers \ {old customer?} ∪ {new customer?}

17.3.4
Functions

The specification of a function has two parts—signature and definition. The signature con-
sists of names and types of input and output parameters. Like VDM-SL, one can define a

17.3 Operational Abstraction 489

function in two ways in Z: using explicit style or using implicit style. The definition of an
explicit function is constructive in the sense that the function definition explicitly shows
how the output parameter is obtained. For example, the function Sqr which squares its
input parameter can be explicitly stated as follows:

Sqr : N → N

∀ n : N • Sqr(n) = n ∗ n

An implicit function states the relationships between the input parameters and the result of
the function as shown in the example below:

max : F1N → N

∀ nset : F1N; n : N • max(nset) = n ⇔
n ∈ nset ∧ (∀ i : N • i ∈ nset ⇒ i ≤ n)

A function definition can also be recursive. For example, the function sum list defined
below sums up all integers in an integer list and returns the sum. It uses the free type
definition List defined as

List ::= nil | cons〈〈Z × List〉〉

sum list : List → Z

∀ n : Z; l : List •
sum list(nil) = 0 ∧
sum list(cons(n, l)) = n + sum list(l)

The definition of sum list asserts that the sum of integers of an empty integer list is zero. If
the list is nonempty, then the list has been constructed by adding an integer n to a sublist l.
In this case, the resulting sum is the sum of integers in l and the integer n.

17.3.5
Generic Functions

Generic functions are those that produce results for arguments of arbitrary types. We have
seen examples of generic functions in Chap. 12. The syntax for defining a generic function
in Z is a box with a double line at the top containing the name of the generic parameters.
The generic function length defined below recursively determines the length of a sequence
(of elements of some type).

17

490 17 The Z Notation

[T]

length : seqT → N

∀ inseq : seqT •
inseq = 〈〉 ⇒ length(inseq) = 0 ∧
inseq �= 〈〉 ⇒ length(inseq) = 1 + length(tail inseq)

17.4
Specification Examples

A Z specification consists of a series of paragraphs, where each paragraph can be a type
definition, global constant, global constraint, state space declaration or an operation. Z
follows the principle of “define before use”; accordingly, every entity (type declaration,
operation, function) must be defined before being used. The scope of an entity starts from
the point at which it is declared and extends to the end of the current specification (except
for the structural components of a schema, whose scope ends at the end of the schema
definition itself). A specifier can introduce any Z paragraph as and when it is needed. In
addition, each paragraph can be augmented with informal descriptions. This helps the spec-
ifier to explain the purpose of a piece of specification immediately after it is introduced.
The reader should note how this feature differs from VDM-SL syntax, where an entire
specification must be written in one piece, under one state space.

In this section, three Z specification examples are given to illustrate the syntactic struc-
tures discussed so far. In all examples, the specifications are accompanied by informal
descriptions.

Example 8 Login Subsystem Management.

Problem Statement
A login subsystem maintains a set of accounts, one for each user of the system. Each
account consists of a user name and a password. It is required that the names of users must
be unique in the system. A user can have multiple accounts in the system with different
user names. It should be possible to (i) add a new account to the system ,(ii) delete an
existing account, and (iii) change the password of an account.

Additional Requirement

1. Suitable error messages must be given.

The Model
User names and passwords are modeled as basic types. The rationale for this decision is
that user attributes are neither stated in the problem, nor are they required to specify the
operations. An account is a composite entity which consists of a user name and a password.
This can be modeled either as a Cartesian product or a schema. We have chosen the schema
notation to model an account. The state space is represented by a schema which consists

17.4 Specification Examples 491

of only one component: the set of accounts. Since no ordering is implied by the problem
statement the state variable can be modeled as a set. The state invariant ensures that no two
accounts have the same user name. Three operations, add an account, delete an account
and change the password of an account, are given.

Z Specification
An account in the login subsystem consists of a user name and a password.

[Username,Password]

Account
name : Username
password : Password

The state space is described by the schema LoginSubsystem.

LoginSubsystem
users : PAccount

∀ u1, u2 : Account | u1 ∈ users ∧ u2 ∈ users •
u1.name = u2.name ⇔ u1 = u2

The state invariant in the above schema asserts that if two accounts have the same name,
then the two accounts are identical. That is, no two users in the system have the same name.

It is possible to rewrite the state invariant as

∀ u1, u2 : users • u1.name = u2.name ⇔ u1 = u2

We follow the former style in this book so that the types of variables are explicit from their
declarations.

The operation AddAccount accepts a new account as input. It modifies the state space
to include the new account, if the precondition is satisfied.

AddAccount
ΔLoginSubsystem
a? : Account

(∀ a : Account | a ∈ users • a.name �= a?.name)
users′ = users ∪ {a?}

The precondition ensures that there is no user in the system having the same name as that of
the user name in the new account. The postcondition asserts that the state space is modified
to include the new account.

To delete an existing account, it is sufficient to present the user name of that account
since user names are unique in the system.

17

492 17 The Z Notation

DeleteAccount
ΔLoginSubsystem
uname? : Username

users′ = users \ {a : Account | a ∈ users ∧ a.name = uname? • a}

The predicate in DeleteAccount asserts that the user’s account whose name matches with
the input parameter is deleted from the database.

In order to change the password of an existing account, the user name of the account to
be modified and the new password must be presented.

ChangePassword
ΔLoginSubsystem
uname? : Username
pnew? : Password

∃ a : Account | a ∈ users ∧ a.name = uname? ∧ a.password �= pnew? •
users′ = users \ {a} ∪

{(μacc : Account | acc.name = uname? ∧ acc.password = pnew?)}

The operation ChangePassword first checks whether the new password is different from the
old password. If this condition is satisfied, the account corresponding to the old password
is deleted from the database and a new account having the same user name and the new
password is created.

The operation ChangePassword uses a μ expression which has the following syntax
in Z:

(μ < declaration >|< predicate > • < expression >)

The parentheses at both ends of the μ expression are part of the syntax. The semantics
of a μ expression is the same as that of set comprehension except that a μ expression
returns only one value. This value is determined by the expression after • symbol in the μ

expression. If the expression after • is omitted, then the result of the μ expression is the
same as that of the declaration constrained by the predicate after the | symbol.

The types of error messages for the chosen problem are

Message ::= Success | UsernameAlreadyExists | UsernameUnknown |
SamePassword

The success of an operation will be prompted by the message Success; this is given by the
schema Successful.

Successful
message! : Message

message! = Success

17.4 Specification Examples 493

The operation AlreadyExists returns the message UsernameAlreadyExists when a match
for the input name is found in the database. The operation Unknown returns the message
UsernameUnknown if no match for the given input name is found. Finally, the operation
Repeated returns the message SamePassword when a user invoked ChangePassword but
does not give a new password; it inputs the same password.

AlreadyExists
ΞLoginSubsystem
uname? : Username
message! : Message

(∃ a : Account | a ∈ users • a.name = uname?)
message! = UsernameAlreadyExists

Unknown
ΞLoginSubsystem
uname? : Username
message! : Message

¬ (∃ a : Account | a ∈ users • a.name = uname?)
message! = UsernameUnknown

Repeated
ΞLoginSubsystem
uname? : Username
pnew? : Password
message! : Message

∃ a : Account | a ∈ users ∧ a.name = uname? ∧ a.password = pnew?

message = SamePassword

The seven operations described so far can be combined to produce three new operations
corresponding to the required functionalities of the problem statement.

CAddAccount == (AddAccount ∧ Successful) ∨ AlreadyExists

CDeleteAccount == (DeleteAccount ∧ Successful) ∨ Unknown

CChangePassword == (ChangePassword ∧ Successful) ∨ Unknown ∨ Repeated

The meaning of each one of these operations will be best understood if we expand them
using the semantics for schema composition. For example, the operation CAddAccount can
be viewed as

17

494 17 The Z Notation

CAddAccount
ΔLoginSubsystem
a? : Account
message! : Message

(¬(∃ a : Account | a ∈ users • a.name = a?.name) ∧
users′ = users ∪ {a?} ∧
message! = Success)

∨ (∃ a : Account | a ∈ users • a.name = a?.name) ∧
message! = UsernameAlreadyExists)

�

Example 9 University Accounts Office.

Problem Statement

An accounts office in a university is required to maintain a database of information on

courses in which students are registered and enrolled. A student pays a fee for each course

taken during a semester. In addition, each student also pays a fixed fee for administration

and student activity. Graduate students are required to pay additional fees toward thesis

registration and graduation. Only after full payment of fees, students will be registered in

courses. The accounts office expects to perform three operations: (i) enroll a student, (ii)

register a student in a course, and (iii) collect fees.

Additional Requirement

1. A student cannot register for the same course more than once.

The Model

A student’s record can be modeled as a schema consisting of identification number, status

(undergraduate or graduate) and the courses registered. The courses registered by a stu-

dent is modeled as a set of course numbers. The details of a course such as course name,

instructor and time at which the course is offered are irrelevant for the current problem.

Therefore, courses can be uniquely represented by course numbers.

The state space is represented by a schema which consists of two state variables, one

representing the collection of students who have already paid their fees, and the other rep-

resenting the collection who have not yet paid the fees. These collections can be modeled

either as sets or sequences. We choose sequences to model them. This choice enables us

to modify the specification, if necessary, later; for example, the students records can be

sorted based on their identification numbers. The state invariant ensures that no student is

included in both collections at the same time.

17.4 Specification Examples 495

Z Specification
The course numbers are derived from the basic type COURSENO.

[COURSENO]

We declare IDNUMBER as a finite nonempty subset of natural numbers.

IDNUMBER : F1N

Notice that COURSENO is defined as a basic type while IDNUMBER is declared as a
global variable. In particular, IDNUMBER has been declared as of type Z. The reason for
this choice is that identification numbers must be compared when ordering the students
records. However, no such comparison is necessary for course numbers.

The free type Status declares the two student categories managed by the system.

Status ::= Ugrad | Grad

A student’s record is modeled by the schema Student.

Student
id : IDNUMBER
status : Status
courses : PCOURSENO

The following is a global constraint which asserts that no two students have the same
identification number.

∀ s1, s2 : Student • s1.id = s2.id ⇔ s1 = s2

The state space is represented by the schema Accounts.

Accounts
paid,unpaid : iseq Student

ran paid ∩ ran unpaid = ∅
(∀ i, j : 1..#paid • i ≤ j ⇒ (paid i).id ≤ (paid j).id)

(∀ k, l : 1..#unpaid • k ≤ l ⇒ (unpaid k).id ≤ (unpaid l).id)

The sequence paid is the collection of enrolled students who have paid the fee. The se-
quence unpaid is the collection of enrolled students who have not registered in any course.
Since these are injective sequences, no student is included more than once in a sequence.
The state invariant asserts that (i) the two collections are mutually exclusive; and (ii) each
sequence is ordered on the identification numbers of the students. The term paid i uses a
functional notation and is equivalent to paid(i).

The operation Enrol accepts a student, who has not been previously enrolled, and puts
the student in the unpaid list of students so that the ordering in the sequence is maintained.

17

496 17 The Z Notation

To simplify the writing of Enrol operation, the function insert has been introduced; this
function places a student’s record at the appropriate location in an injective sequence of
student records maintaining the ordering on identification numbers. The operation Enrol
will use this function in the postcondition.

insert : iseq Student × Student
→ iseq Student

∀ inseq,outseq : iseq Student; s : Student • outseq = insert(inseq, s) ⇔
(∃ prior,after : iseq Student |

prior ⊆ inseq ∧
after suffix inseq ∧
inseq = prior � after •
(last prior).id < s.id ∧
s.id < (head after).id ∧
outseq = prior � 〈s〉 � after)

The function insert splits the input sequence inseq into two subsequences prior and after
such that s is greater than the last element in prior and s is smaller than the first element
in after. It constructs a new sequence by concatenating prior, s and after. The function
assumes that inseq is a non-decreasing sequence and does not check whether or not s

occurs in inseq. If these assumptions change, the function insert must be rewritten. The
operation Enrol and the nature of sequencing are separated in this design.

The definition for Enrol is

Enrol
ΔAccounts
new? : Student

¬ (∃ s : Student | s ∈ (ran paid ∪ ran unpaid) • s.id = new?.id)

unpaid′ = insert(unpaid,new?)

paid′ = paid

An enrolled student may register for one or more courses. A student cannot register for a
course after fees for one set of registered courses have been paid. So, at the time of registra-
tion the student record must belong to unpaid sequence. The operation Register modifies
the sequence unpaid reflecting course registration. This operation uses the function update,
which modifies the set of courses in one student record.

update : iseq Student × Student
→ iseq Student

∀ inseq,outseq : iseq Student; snew : Student •
outseq = update(inseq, snew) ⇒

(∃ prior,after : iseq Student; sold : Student | sold.id = snew.id •
inseq = prior � 〈sold〉 � after ∧
outseq = prior � 〈snew〉 � after)

17.4 Specification Examples 497

The schema for Register follows:

Register
ΔAccounts
s? : Student
c? : COURSENO

s? ∈ ran unpaid
unpaid′ = update(unpaid, (μs : Student | s.id = s?.id ∧

s.status = s?.status ∧ s.courses = s?.courses ∪ {c?}))

paid′ = paid

The operation PayFees calculates the fee to be paid by a student, deletes the student record
from unpaid and inserts it in paid. The fee calculation is based on the student’s status and
the number of courses registered. The tuition fee for each course, administration fee and
thesis fee are defined as global constants:

course fee,admin fee, thesis fee : N1

The delete function removes a student record from a sequence.

delete : iseq Student × Student
→ iseq Student

∀ inseq, outseq : iseq Student; s : Student • outseq = delete(inseq, s) ⇔
(∃ prior,after : iseq Student | prior � 〈s〉 � after = inseq •

outseq = prior � after)

Notice that delete operation does not depend on the sequence type. It depends only on the
ordering of elements in the sequence. Therefore, it can be defined as a generic function as
shown below:

[X]

delete from sequence : iseqX × X
→ iseqX

∀ inseq, outseq : iseqX; x : X •
outseq = delete from sequence(inseq, x) ⇔

(∃ prior, after : iseqX | prior � 〈x〉 � after = inseq •
outseq = prior � after)

17

498 17 The Z Notation

PayFees
ΔAccounts
paid by? : Student
total! : N

paid by? ∈ ran unpaid ∧ paid by?.courses �= ∅
(paid by?.status = Ugrad ⇒

total! = #(paid by?.courses) ∗ course fee + admin fee)
(paid by?.status = Grad ⇒

total! = #(paid by?.courses) ∗ course fee + admin fee + thesis fee)
paid′ = insert(paid, paid by?)
unpaid′ = delete(unpaid,paid by?)

The precondition for PayFees ensures that the student paid by? has already registered for
some courses. The postcondition asserts that (i) the fee is calculated; and (ii) the student’s
record is moved from unpaid to paid. �

Example 10 Resource Allocation in a Computer System.

Problem Statement
Every computer system manages the allocation and deallocation of resources to processes.
A process, when created, is assumed to indicate the resource types and the number of
resources for each type that it will require in fulfilling its task. Process creation fails if
(1) resource types unknown to the system are requested by a process; (2) the number of
resources of any one type exceeds the number of resources of that type available in the
system. The resource allocator maintains information on the resources allocated to pro-
cesses, and resources requested by processes. Based on the availability of resources, either
resources are allocated to the process and the process is executed, or the request is queued.
Upon release of resources, queued requests are serviced on first-in-first-out basis.

Additional Requirements
There are two additional requirements: (i) Process and resource instances have unique
identifications. (ii) When a process is destroyed, all resources that were held by the process
must be returned to the system.

Assumptions
The following assumptions are made: (i) The types of resources and the number of in-
stances of each type are fixed. (ii) Processes are created and destroyed dynamically during
the operation of the system. (iii) All processes have equal privileges in acquiring the re-
sources.

The Model
There are two basic types, one for process identifiers and another for resource identi-
fiers. A free type, called ResourceType, enumerates the resource types. A resource has
a unique type, a unique identifier, and a status (free or in use). Since a process requests a
resource by type, we model resources as a function from ResourceType to the power set of

17.4 Specification Examples 499

ResourceInstance, where ResourceInstance is a schema containing the id and status of the
resource modeled by it. In this model, resource instances of a given type can be looked up
efficiently.

All requests that have not been met are queued. Since different resource types may
have been requested by a process, an appropriate model would be a total function
waiting queues from ResourceType to iseq PROCESS ID. The injective sequence will en-
sure that no process is added more than once to any queue.

A process has a unique identifier, status (running or waiting), and information on
resources needed to complete its task. The structure of a process is modeled by a
schema ProcessStructure with two components: status, and resources needed. The vari-
able resources needed is a partial function from ResourceType to N giving the number of
resources of each type required by the process. Since process identifiers are unique, the
set of all processes in the system is a partial function processes from PROCESS ID to
ProcessStructure.

A resource instance can be allocated to at most one process. So, all resource alloca-
tions can be modeled by a partial injective function allocated from RESOURCE ID to
PROCESS ID. Being injective, it asserts that no resource instance will be allocated to
more than one process.

The state of the computer system includes the declarations of resources, processes,
waiting queues, and allocated.

Z Specification

[PROCESS ID, RESOURCE ID]

We define three distinct types of resources:

ResourceType ::= Terminal | Printer | Disk

ProcessStatus ::= Running | Waiting

ResourceStatus ::= Free | In Use

ResourceInstance
id : RESOURCE ID
status : ResourceStatus

Every resource instance is unique, irrespective of its type; this condition is ensured by the
following global constraint:

∀ rins1, rins2 : ResourceInstance • rins1.id = rins2.id ⇔ rins1 = rins2

A process structure is a schema containing the status and resource requirements of a pro-
cess.

ProcessStructure
status : ProcessStatus
resources needed : ResourceType
→ N

17

500 17 The Z Notation

Notice that a process identification is not part of the process structure since a process is a
dynamic entity. It is assigned a unique identification as and when it is created. The schema
ComputerSystem given below describes the state space of the computer system.

ComputerSystem
resources : ResourceType � PResourceInstance
waiting queues : ResourceType → iseq PROCESS ID
processes : PROCESS ID
→ ProcessStructure
allocated : RESOURCE ID
� PROCESS ID

(∀ r1, r2 : ResourceType | r1 ∈ dom resources ∧ r2 ∈ dom resources •
resources r1 ∩ resources r2 = ∅)

(∀ r : ResourceType | r ∈ dom waiting queues •
ran(waiting queues r) ⊆ dom processes)

ran allocated ⊆ dom processes
(∀ rid : RESOURCE ID | rid ∈ dom allocated •

(∃ rinset : PResourceInstance | rinset ∈ ran resources •
rid ∈ {rins : ResourceInstance | rins ∈ rinset ∧

rins.status = In Use • rins.id}))

(∀ pid : PROCESS ID | pid ∈ dom processes •
(processes pid).status = Running ⇒

¬ (∃ r : ResourceType | r ∈ dom waiting queues •
pid ∈ ran(waiting queues r)))

The state invariant asserts the following:

• Each resource instance belongs to a unique type. Stated otherwise, the sets of resource
instances in the range of resources are pairwise disjoint.

• The set of processes waiting for a resource type r must be a subset of the processes that
already exist in the system.

• The set of processes currently holding some resources must be a subset of the processes
already existing in the system.

• The status of every resource instance that is allocated to some process is In Use.
• If the status of a process is Running, then the process should not be waiting for any

resource. Stated otherwise, the process’s identifier should not appear in the range of the
waiting queues.

Initialization
The initialization of a software system is specified by a separate state schema which has the
same components as that of the state space of the system. The initial state schema, named
as InitComputerSystem, is defined below:

17.4 Specification Examples 501

InitComputerSystem
ComputerSystem′

∀ r : ResourceType | r ∈ dom resources′ • #(resources′ r) > 0
∀ r : ResourceType | r ∈ dom waiting queues′ • waiting queues′ r = 〈〉
dom processes′ = ∅
dom allocated′ = ∅

The predicate part of InitComputerSystem asserts the following conditions: (i) Every re-
source type must have at least one instance. (ii) The waiting queues of all resource types
are initially empty. (iii) Initially, there is no process in the system. (iv) All resources are
initially free.

The schema CreateProcess given below describes the creation of a process:

CreateProcess
ΔComputerSystem
pstruct? : ProcessStructure

dom(pstruct?.resources needed) ⊆ dom resources
(∀ r : ResourceType | r ∈ dom(pstruct?.resources needed) •

(pstruct?.resources needed) r ≤ #(resources r))
(∃ pid : PROCESS ID | pid �∈ dom processes •

processes′ = processes ∪ {pid
→ (μps : ProcessStructure |
ps.status = Running ∧
ps.resources needed = pstruct?.resources needed)})

resources′ = resources
waiting queues′ = waiting queues
allocated′ = allocated

The CreateProcess operation accepts a process structure (denoted by pstruct?) as input.
The processor identifier is internally generated (not specified) within this operation. The
precondition for CreateProcess ensures that the types of resources and the number of in-
stances of each type required by the new process are available in the system. The postcon-
dition for the operation asserts that the new process is added to the set of processes after a
new identifier was assigned to it and its status is set to Running. Other state variables are
not modified by CreateProcess.

When a process is destroyed, all the resources held by the process are returned to the
system. The process identifier of the deleted process will be removed from the waiting
queues, in which the process has registered. The entire process description is also removed
from the set of processes in the system. To simplify the writing of this operation and several
others to follow, three functions are introduced.

17

502 17 The Z Notation

Given a set of resource instances, the function set status sets the status of one particular

instance to In Use; others in the set are not modified.

set status : PResourceInstance × RESOURCE ID
→ PResourceInstance

∀ rinset : PResourceInstance; rid : RESOURCE ID •
set status(rinset, rid) = rinset\

{rins : ResourceInstance | rins ∈ rinset ∧ rins.id = rid} ∪
{rnew : ResourceInstance | rnew.id = rid ∧ rnew.status = In Use}

Unlike set status, the function reset status resets a subset of resource instances among a

given set of resource instances to Free. The reason for this subtle change is that the com-

puter system might set the status of only one resource instance at a time. However, when a

process is deleted, all resource instances held by the process need to be reset. Therefore, it

would be appropriate to define reset status in such way to reset a set of resource instances.

Even when a particular resource instance is required to be reset individually (for example,

when a resource instance is released by a process), reset status can still be used with a

singleton set as the parameter.

reset status : PResourceInstance × PRESOURCE ID
→ PResourceInstance

∀ rinset : PResourceInstance; rids : PRESOURCE ID •
reset status(rinset, rids) = rinset\

{rins : ResourceInstance | rins ∈ rinset ∧ rins.id ∈ rids} ∪
{rnew : ResourceInstance | rnew.id ∈ rids ∧ rnew.status = Free}

The third function, delete process, is defined to remove a process identification from an

injective sequence of process identifiers. Typically, this function will be used to delete a

process from a waiting queue.

delete process : iseq PROCESS ID × PROCESS ID → iseq PROCESS ID

∀ procids : iseq PROCESS ID; pid : PROCESS ID •
(procids = 〈〉 ⇒ delete process(procids, pid) = 〈〉) ∧
(procids �= 〈〉 ⇒

(pid = head procids ⇒ delete process(procids,pid) = tail procids ∧
pid �= head procids ⇒ delete process(procids,pid) =

〈pid〉 � delete process(tail procids,pid)))

The operation DestroyProcess uses both reset status and delete process.

17.4 Specification Examples 503

DestroyProcess
ΔComputerSystem
pid? : PROCESS ID

pid? ∈ dom processes
processes′ = {pid?} −� processes
allocated′ = allocated −� {pid?}
(let rids == {rid : RESOURCE ID | allocated(rid) = pid?} •

resources′ = resources ⊕ {r : ResourceType | r ∈ dom resources •
r
→ reset status(resources r, rids)})

waiting queues′ = waiting queues ⊕
{r : ResourceType; ps : iseq PROCESS ID | (r
→ ps) ∈ waiting queues •

(r
→ delete process(ps, pid?))}

The schema DestroyProcess uses the let clause which needs further explanation. The let
clause is used in Z to dynamically introduce local variables whose scope ends with the
current paragraph (a paragraph may contain a schema, an axiomatic definition, a generic
definition or a global constraint). The general form of a let clause is

let variable == expression • . . .

In this case, expression is abbreviated to variable and thereafter variable is used in the para-
graph. In essence, variable stands for a textual substitution of expression wherever variable
is used in the rest of the paragraph. The type of variable is power set of the type of the ex-
pression, following the semantics of type abbreviation. In the schema DestroyProcess, the
variable rids stands for a set of resource identifiers that are allocated to the process pid?

(indicated by the constraint allocated(rid) = pid?).
When a process P requests a resource, it specifies the type rtype of the resource. If at

least one instance rins of rtype is free, then rins is allocated to P . If no such instance can
be found, P is placed at the end of the waiting queue for rtype. The allocation is defined
by the schema Allocate.

Allocate
ΔComputerSystem
pid? : PROCESS ID
rtype? : ResourceType

pid? ∈ dom processes
rtype? ∈ dom resources
(∃ rins : ResourceInstance |

rins ∈ resources rtype? ∧ rins.status = Free •
allocated′ = allocated ∪ {rins.id
→ pid?} ∧
(resources′ = resources ⊕ {r : ResourceType | r ∈ dom resources •

if r = rtype? then r
→ set status(resources r, rins.id)

17

504 17 The Z Notation

else r
→ resources r}) ∧
waiting queues′ = waiting queues ∧
processes′ = processes)

¬ (∃ rins : ResourceInstance •
rins ∈ resources rtype? ∧ rins.status = Free) ⇒

resources′ = resources ∧
allocated′ = allocated ∧
(waiting queues′ = waiting queues ⊕

{rtype?
→ (waiting queues rtype?) � 〈pid?〉}) ∧
(processes′ = processes ⊕

{pid?
→ (μps : ProcessStructure |
ps.status = Waiting ∧
ps.resources needed = (processes pid?).resources needed)})

The operation Allocate has two preconditions: the process requesting a resource must exist
in the system and the resource type which the process requests must be known to the
system. The first part of the postcondition of Allocate is for the case when a free instance is
found. The state variables allocated and resources are modified to indicate that the resource
instance has been allocated to the requesting process and the status of the allocated resource
is set to In Use. The other two variables, waiting queues and processes, are not modified.

The second part of the postcondition for Allocate is for the condition that no instance
of the resource type can be found. The state components waiting queues and processes are
modified to indicate that the requesting process must be placed in the waiting queue of the
resource type and that the status of the requesting process is set to Waiting. The other two
state variables are not modified.

Note the following facts regarding the specification of Allocate: When a resource in-
stance rins is allocated to a process, the status of rins is updated. This modification does
not affect the status of any other resource instance in the system. Such a modification on a
portion of a state variable (in this case resources) cannot be specified in isolation because
the primed variables in an operation schema correspond to only state variables. Therefore,
it becomes necessary to specify the effect of the change in one resource instance on the
whole set of resource instances which are collectively referred to by resources′.
The expression

(resources′ = resources ⊕ {r : ResourceType | r ∈ dom resources •
if r = rtype? then r
→ set status(resources r, rins.id)

else r
→ resources r)

in the postcondition asserts that the function resources is overwritten (indicated by ⊕) by
the changes in the resource instances of one particular resource type (indicated by r =

rtype?); instances of other resource types are not modified (indicated by r
→ resources r).
Finally, the DeAllocate operation is specified. When a resource instance is released by

a process, it is returned to the pool of resources in the system.

17.5 Proving Properties from Z Specifications 505

DeAllocate
ΔComputerSystem
rid? : RESOURCE ID

rid? ∈ dom allocated
allocated′ = {rid?} −� allocated
processes′ = processes
waiting queues′ = waiting queues
(∃ rtype : ResourceType; rins : ResourceInstance |

rtype ∈ dom resources ∧
rins ∈ resources rtype ∧
rins.id = rid? •

resources′ = resources ⊕
{rtype
→ reset status(resources rtype, {rid?})})

It would be appropriate to allocate a deallocated resource rins belonging to a resource type
rtype to the process in the front of the waiting queue for rtype. This can be specified by the
sequential composition of three operations

DeAllocate o
9 SelectProcess o

9 Allocate

where the operation SelectProcess retrieves the first process in the waiting queue of rtype
whose instance is deallocated in DeAllocate. Specification of SelectProcess is left as an
exercise for the reader. �

17.5
Proving Properties from Z Specifications

A specification must be inspected by the specifiers and developers to ensure that it captures
all the requirements of the software system being specified. The inspection process, also
called consistency checking, includes the following steps: (i) Check the syntactic and type
correctness of the specification. Ensure that all operations strictly use the state model. (ii)
Ensure that the specification captures the required functionalities and properties. (iii) An-
alyze the formal text to bring out inconsistent and missing information in the documented
requirements.

In this section, we illustrate how we could ensure consistency of Z specifications and
how some properties can be derived by formal analysis. The consistency of a Z specifica-
tion is established (i) by showing that there exists a valid initial state for the state space of
the system, and (ii) by showing that every operation respects the state invariant (that is, if
the state invariant is true before the operation, then it must be true after the operation as
well).

17

506 17 The Z Notation

17.5.1
Initial State Validation

The validity of an initial state is established by the initialization theorem which asserts that

∃ S′ • Init S

where S refers to the state space schema and Init S is the initial state schema. Informally,
the initialization theorem asserts that it is possible to find a state S′ with the initialization
asserted by Init S. The proof obligation in this case is to show that the initialization is type
correct and it indeed satisfies the state invariant. We illustrate the initialization theorem
for the two examples: the login subsystem and resource allocation system. Generally, the
proof for the initialization theorem uses a technique called the one-point-rule in order to
eliminate the quantifier in the initialization theorem.

17.5.1.1
One-Point-Rule

The one-point-rule eliminates the existential quantifier from a quantified statement if the
bound variables in the existentially quantified statement can be substituted by other terms
in the same statement, and the types of the substituting terms are compatible with those of
the bound variables. Formally, one-point-rule may be stated as

∃ x : X • P ∧ (x = y) ≡ y ∈ X ∧ P [y/x]

The right side of the equivalence asserts that y can be substituted for x provided that (i) y is
of the same type as that of x, and (ii) the property P inside the quantified expression must
still be satisfied even after substituting y for x. An important constraint for the application
of one-point-rule is that x should not be a free variable in the expression y.

Example 11 Login Subsystem—revisited.

One of the possible initial states for the login subsystem (not given earlier) is

InitLoginSubsystem
LoginSubsystem′

users′ = ∅

The corresponding initialization theorem would be

∃ LoginSubsystem′ • InitLoginSubsystem

17.5 Proving Properties from Z Specifications 507

By expanding LoginSubsystem′ , we get

� ∃ users′ : PAccount | (∀ u1, u2 : Account | u1 ∈ users′ ∧ u2 ∈ users′ •
u1.name = u2.name ⇔ u1 = u2) •
users′ = ∅

The symbol � denotes syntactic derivation as explained in Chap. 9. Using one-point-rule,
the above statement is simplified to

∅ ∈ PAccount ∧
∀ u1, u2 : Account | u1 ∈ ∅ ∧ u2 ∈ ∅ •
u1.name = u2..name ⇔ u1 = u2

The first conjunct is true because the formal definition of ∅ in the mathematical toolkit for
Z [12] is defined as

∅[X] == {x : X | false}

The above definition asserts that ∅ is defined as a generic type which can be instantiated
for any type X . Accordingly,

∅[Account] ∈ PAccount

The second conjunct in the proof is vacuously true because the predicate u1 ∈ ∅ ∧ u2 ∈ ∅
is false and hence the quantified statement as a whole is true.
Therefore, the initial state InitLoginSubsystem is valid. �

Example 12 Resource Allocation in a Computer System—revisited.

For convenience, the initial state of the computer system given earlier is repeated here:

InitComputerSystem
ComputerSystem′

∀ r : ResourceType | r ∈ dom resources′ • #(resources′ r) > 0

∀ r : ResourceType | r ∈ dom waiting queues′ • waiting queues′ r = 〈〉
dom processes′ = ∅
dom allocated′ = ∅

The initialization theorem for this example would be

∃ ComputerSystem′ • InitComputerSystem

which when expanded gives rise to the following derivation:

� ∃ resources′ : ResourceType � PResourceInstance;

17

508 17 The Z Notation

waiting queues′ : ResourceType → iseq PROCESS ID;

processes′ : PROCESS ID
→ ProcessStructure;

allocated′ : RESOURCE ID
→ PROCESS ID |
(∀ r : ResourceType | r ∈ dom waiting queues′ •

ran(waiting queues′ r) ⊆ dom processes′) ∧
ran allocated′ ⊆ dom processes′ ∧
(∀ rid : RESOURCE ID | rid ∈ dom allocated′ •

(∃ rinset : PResourceInstance | rinset ∈ ran resources′ •
rid ∈ {rins : ResourceInstance | rins ∈ rinset ∧

rins.status = In Use • rins.id})) ∧
(∀ pid : PROCESS ID | pid ∈ dom processes′ •

(processes′ pid).status = Running ⇒
¬ (∃ r : ResourceType | r ∈ dom waiting queues′ •

pid ∈ ran(waiting queues′ r))) •
(∀ r : ResourceType | r ∈ dom resources′ • #(resources′ r) > 0) ∧
(∀ r : ResourceType | r ∈ dom waiting queues′ •

waiting queues′ r = 〈〉) ∧
dom processes′ = ∅ ∧ dom allocated′ = ∅

With regard to type correctness, it must be shown that

〈〉 ∈ iseq PROCESS ID ∧ ∅ ∈ PPROCESS ID ∧ ∅ ∈ PRESOURCE ID

From the definition of ∅, the last two conjuncts are trivial. The formal definitions of ‘〈〉’,
‘seq’, and ‘iseq’ are

seqX == {f : N

→ X | domf = 1..#f }
〈〉 X == {f : N

→ X | domf = ∅ }
iseq X == seqX ∩ (N
� X)

From these formal definitions, one can infer that the type of 〈〉 is the same as that of seqX

and so is the type of iseq X . Therefore, the first conjunct in the derivation, namely

〈〉 ∈ iseq PROCESS ID

is type correct. Next, it must be shown that the initializations satisfy the state invariant. The
state invariant is defined by four conjuncts. Using the initializations, the state invariant can
be rewritten as

(∀ r : ResourceType | r ∈ dom waiting queues • ran ∅ ⊆ ∅) ∧
∅ ⊆ ∅ ∧
(∀ rid : RESOURCE ID | rid ∈ ∅ •

(∃ rinset : PResourceInstance | rinset ∈ ran resources •

17.5 Proving Properties from Z Specifications 509

rid ∈ {rins : ResourceInstance | rins ∈ rinset ∧
rins.status = In Use • rins.id})) ∧

(∀ pid : PROCESS ID | pid ∈ ∅ •
(processes pid).status = Running ⇒

¬ (∃ r : ResourceType | r ∈ dom waiting queues •
pid ∈ ran(waiting queues r)))

The four conjuncts are vacuously true for the same reason explained in proving the initial-
ization theorem for the login subsystem example.

Therefore, the initial state for the computer system is valid. �

17.5.2
Consistency of Operations

The specification for an operation is ensured to be consistent if it can be shown that the pre-
and postconditions of the operation respect the state invariant. That is, the property ‘if the
state invariant is true before the operation is invoked, the invariant remains true after the
operation terminates’ should be proved for every operation. Formally, for every operation
Op, if S and S′ refer to the states before and after the operation, respectively, inv (S), and
inv (S′) refer to the invariant evaluated at S and S′ , respectively, the consistency of Op is
established by proving

pred (Op) ∧ inv (S) ⇒ inv (S′)

where pred (Op) denotes the predicate part of the operation schema Op.
We prove the consistency of AddAccount operation given in the LoginSubsystem exam-

ple. In this case, it must be shown that

(∀ u1, u2 : Account | u1 ∈ users ∧ u2 ∈ users •
u1.name = u2.name ⇔ u1 = u2) ∧

¬ (∃ a : Account | a ∈ users • a.name = a?.name) ∧
users′ = users ∪ {a?}

⇒
(∀ u1, u2 : Account | u1 ∈ users′ ∧ u2 ∈ users′ •

u1.name = u2.name ⇔ u1 = u2)

Replacing users′ in the right side of the implication by users ∪ {a?}, the right side is
rewritten as

(∀ u1, u2 : Account | u1 ∈ users ∪ {a?} ∧ u2 ∈ users ∪ {a?} •
u1.name = u2.name ⇔ u1 = u2)

17

510 17 The Z Notation

There are three possibilities that must be considered: (i) both u1 and u2 are identical and
refer to a?; (ii) one of them refers to a? and the other is different from a?; and (iii) both of
them are different from a?.

Case 1 u1 = a? ∧ u2 = a? Hypothesis

In this case, both u1 and u2 have been selected to denote the same account, namely the
input parameter. The formal proof below shows that the invariant is true after the operation.

1.1 fromu1 = a?

u1.name = a?.name ∧
u1.password = a?.password

schema equality

infer u1.name = a?.name ∧-elimination
1.2 from u2 = a?

u2.name = a?.name ∧
u2.password = a?.password

schema equality

infer u2.name = a?.name ∧-elimination
1.3 from 1.1, 1.2

infer u1.name = u2.name equality
1.4 from u1 = a?

u1.name = a?.name ∧
u1.password = a?.password

schema equality

infer u1.password = a?.password ∧-elimination
1.5 from u2 = a?

u2.name = a?.name ∧
u2.password = a?.password

schema equality

infer u2.password = a?.password ∧-elimination
1.6 from 1.1, 1.2

infer u1.password = u2.password equality
1.7 from 1.3, 1.6

infer u1.name = u2.name ∧
u1.password = u2.password

∧-introduction

1.8 from 1.7
infer u1 = u2 schema equality

1.9 from 1.3, 1.7
infer u1.name = u2.name ⇒ u1 = u2 ⇒-introduction

1.10 from 1.8
infer u1.name = u2.name schema equality

1.11 from 1.8, 1.10
infer u1 = u2 ⇒ u1.name = u2.name ⇒-introduction

1.12 from 1.9, 1.11
infer u1.name = u2.name ⇔ u1 = u2 ⇔-introduction

Case 2 u1 = a? ∧ u2 �= a? Hypothesis

The variable u1 denotes the input parameter and u2 denotes some other account already
existing in the system. One expects u1 and u2 to be different because the system does not
maintain duplicate accounts. The formal proof below not only ensures this fact but also
shows that accounts are compared based on user names.

17.5 Proving Properties from Z Specifications 511

2.1 fromu1 = a?

u1.name = u2.name ∧
u1.password = a?.password

schema equality

infer u1.name = a?.name ∧-elimination
2.2 fromu1 = a?

u1.name = u2.name ∧
u1.password = a?.password

schema equality

infer u1.password = a?.password ∧-elimination
2.3 fromu2 ∈ users ∪ {a?} and u2 �= a?

u2 ∈ users set union
infer u2.name �= a?.name precondition of AddAccount

2.4 from u2 �= a?

¬ (u2.name = a?.name ∧
u2.password = a?.password)

schema inequality

u2.name �= a?.name ∨
u2.password �= a?.password

DeMorgan’s law

infer u2.name �= a?.name 2.3
2.5 from 2.1, 2.4

infer u1.name �= u2.name inequality
2.6 from 2.5

infer u1 �= u2 schema inequality
2.7 from 2.5, 2.6

infer u1.name �= u2.name ⇒ u1 �= u2 ⇒-introduction
2.8 from Hypothesis

infer u1 �= u2 inequality
2.9 from 2.8

u1.name �= u2.name ∨
u1.password �= u2.password

schema inequality

infer u1.name �= u2.name 2.5
2.10 from 2.8, 2.9

infer u1 �= u2 ⇒ u1.name �= u2.name ⇒-introduction
2.11 from 2.7, 2.10

infer u1.name �= u2.name ⇔ u1 �= u2 ⇔-introduction

A similar proof applies for the case u1 �= a? ∧ u2 = a.

Case 3 u1 �= a? ∧ u2 �= a? Hypothesis

Since both u1 and u2 are different from the input parameter a?, they denote two accounts
that already exist in the system. Since the invariant is true before the operation, it is trivial
to prove that u1 and u2 are equal if and only if the user names in these two accounts are
the same.

3.1 from u1 ∈ users ∪ {a?} and u1 �= a?

infer u1 ∈ users set union
3.2 fromu2 ∈ users ∪ {a?} and u2 �= a?

infer u2 ∈ users set union

17

512 17 The Z Notation

3.3 from 3.1, 3.2
infer u1.name = u2.name ⇔ u1 = u2 invariant before

Formal proofs, as seen from the above example, requires a number of proof steps where in
each step an inference rule is used to derive a new fact. For most non-trivial applications
formal proofs are very hard to produce. Even with the help of a proof assistant, deriving a
formal proof can be a tedious and difficult process. The major difficulty lies in managing
the large number of proof steps and in the generation of intermediate inference rules.

To alleviate the problems in deriving formal proofs, but still support reasoning based
on formal specifications, software developers use a rigorous approach. A rigorous proof is
not formal, but it is not informal either. A rigorous proof resembles a mathematical proof.

In this approach, proofs include rigorous arguments and informal descriptions. The rig-
orous arguments are justified by quoting the formal specification components. The infer-
ence rules are ignored and fundamental properties of basic types are assumed. Below, we
rigorously prove that the operation ChangePassword in the LoginSubsystem example is
consistent.

Example 13 Login Subsystem—Revisited.

The operation ChangePassword in the LoginSubsystem example should not modify any
account other than the account selected for modification. Formally stated:

ChangePassword � (∀ u : Account | u ∈ users′ •
u.name �= uname? ⇒ (∃ v : Account | v ∈ users • v = u)

In the expression above, u denotes any account in the state after the operation terminates
(indicated by u ∈ users′). There are two cases to be considered for the proof:

Case 1: u ∈ users′ ∧ u.name = uname?

The variable u refers to the account being modified. Since u ∈ users′ and u.name =

uname? is the negation of the constraint given in the quantified expression

∀ u : Account | u ∈ users′ • u.name �= uname? ⇒ . . .

the implication is vacuously true. This means that the stated property is derivable from
ChangePassword. Notice that the variables and their types in the hypothesis are derived
from the declaration of the schema ChangePassword as indicated by the semantics of the
notation �.

Case 2: u ∈ users′ ∧ u.name �= uname?

The predicate part in ChangePassword has been reproduced below for the sake of under-
standing:

17.6 Case Study: An Automated Billing System 513

ChangePassword
ΔLoginSubsystem
uname? : Username
pnew? : Password

∃ a : Account | a ∈ users ∧ a.name = uname? ∧ a.password �= pnew? •
users′ = users \ {a} ∪

{(μacc : Account | acc.name = uname? ∧ acc.password = pnew?)}

ChangePassword describes the construction of users′: i.e., a is removed from users and
acc is inserted in users. From

u.name �= uname? (hypothesis)

a.name = uname? (precondition),

we conclude

u.name �= a.name

From the state invariant

∀ u1, u2 : Account | u1 ∈ users ∧ u2 ∈ users •
u1.name = u2.name ⇔ u1 = u2

one can derive

u �= a

Therefore, u is not the account which is being deleted by ChangePassword. Since u exists
in the state after the operation terminates (indicated by u ∈ users′), either it exists in the
state before the operation or it is the newly created account(i.e., u = acc). In the predicate
part of the specification, notice that

u.name �= uname? and

acc.name = uname?

The state invariant asserts that

u �= acc

Therefore, u is not changed by the operation ChangePassword. �

17.6
Case Study: An Automated Billing System

In this section, we describe the specification of an automated billing system for work sched-
ule in a software firm. Most of the Z notation discussed so far are used in this specification.

17

514 17 The Z Notation

Problem Statement
Software consulting firms generally deal with several clients where each client contracts
out a project to the firm and receives a set of services related to the project. An employee
in the firm may work on multiple projects at any one time, with interleaved work schedule.
A customer is billed at an hourly rate and an employee is paid at another hourly rate. The
focus of the problem is to develop an automated billing system which can be used both for
billing the customers for their projects and for calculating the salaries of employees.

Additional Requirements

1. A project employs one or more employees.
2. The hourly rate charged for projects is the same for all the projects and is assigned at

the initiation of the project.
3. The hourly salary is the same for all employees in the firm. The salary is independent

of the project(s) assigned to the employee.
4. The estimated number of hours for completing a project is fixed for billing purposes,

whether or not the project is completed by the deadline. If a project is not completed
within its estimated time, the customer who initiated this project will not be billed for
the extra hours required by the firm to complete the project. However, employees who
work on this project during the extra hours will be paid according to their salary rate.

5. Depending on the rate of progress and the nature of a project, employees may be as-
signed to a project or be removed from a project.

6. A project, once initiated, will not be terminated until it is completed.
7. It must be possible to perform the following operations: (i) add a new employee to the

firm, (ii) add a new customer, (iii) initiate a project (by a known customer), (iv) assign
an employee to a project, (v) release an employee from a project, (vi) report the work
done by an employee, (vii) calculate the salary of an employee for a given month and
year, and (viii) bill a customer for a given month and year.

The Model
The requirements reveal that Employee, Customer and Project are three composite data
types to be modeled with a number of static and dynamic relationships among them. For
example, “a project is initiated by a customer” is a static relationship between Project and
Customer, while “an employee is assigned to a particular project” defines a dynamic rela-
tionship between Employee and Project. These relationships must be captured succinctly
in their models.

Schema type or Cartesian product type may be used to construct the data model for Em-
ployee, Project and Customer. However, that may lead to a clumsy specification. For exam-
ple, a schema for Employee would have to include project information as well. This neces-
sitates using expressions of the form e.project in operation specifications. If the Cartesian
product type were to be used as in

Customer == CUSTOMER ID × P(PROJECT ID × DATE × HOURS)

two projection operations are required to select the number of hours spent on a project
initiated by a customer. So we avoid these two modeling approaches and instead use a
modular approach to building data types required for the problem. First, primitive types

17.6 Case Study: An Automated Billing System 515

and operations on them are defined. Next, composite types are constructed and curried
functions (higher order functions) are defined to capture the relationships among the com-
posite types. Finally, these are used to form aggregates modeling the three types Employee,
Customer and Project.

Z Specification
We first define several basic types and auxiliary functions that are necessary in the system
specification.

Basic Types

The identifiers for employees, customers and projects are represented by three distinct
basic types.

[EMPLOYEE ID,CUSTOMER ID,PROJECT ID]

Date

The requirements state that salaries of employees and customer invoices are based on the
number of hours devoted to the projects on a daily basis. So, we need to model Date. Date
is a triple (day,month, year) and so Cartesian product is an appropriate model for it.

Day == 1..31

Month ::= January | February | March | April | May | June | July |
August | September | October | November | December

Year == 1991..2999

Date == Day × Month × Year

The enumerated values for Year are chosen arbitrarily. We next specify three projection
functions day, month and year to select the fields of a date.

day : Date → Day
month : Date → Month
year : Date → Year

∀ dt : Date •
∃ d : Day; m : Month; y : Year | (d,m,y) = dt •

day(dt) = d ∧ month(dt) = m ∧ year(dt) = y

The following global constraint asserts the validity of instances of type Date.

∀ dt : Date •
month(dt) ∈ {April, June,September,November} ⇒ day(dt) ≤ 30 ∧
(month(dt) = February ⇒

((year(dt) mod 4 = 0 ∧ year(dt) mod 100 �= 0) ⇒ day(dt) ≤ 29) ∧
((year(dt) mod 4 �= 0 ∨ year(dt) mod 100 = 0) ⇒ day(dt) ≤ 28))

17

516 17 The Z Notation

Work hours

An employee may work for a maximum of 24 hours during a 24-hour day. We therefore
define Hours as an enumerated set of values 0..24.

Hours == 0..24

Timesheet

Combining Date and Hours, we define the data type TimeSheet which shows the dates
and the number of hours worked by an employee during each day on a particular project.
A time sheet cannot show two different work hours for a given date, since a TimeSheet is a
function from Date to Hours.

TimeSheet == Date
→ Hours

A TimeSheet may also be used as part of a customer’s record to enter the work hours
completed on a particular project.

Two time sheets may be combined into one. The resulting time sheet will show the
number of hours worked by an employee on two different projects on a given day.

update timesheet : TimeSheet × TimeSheet
→ TimeSheet

∀ tsh1, tsh2, tsh : TimeSheet • update timesheet(tsh1, tsh2) = tsh ⇒
dom tsh = dom tsh1 ∪ dom tsh2 ∧
(∀ dt : Date | dt ∈ dom tsh •

(dt ∈ dom tsh1 ∧ dt ∈ dom tsh2 ⇒
tsh dt = tsh1 dt + tsh2 dt) ∧

(dt ∈ dom tsh1 ⇒ tsh dt = tsh1 dt) ∧
(dt ∈ dom tsh2 ⇒ tsh dt = tsh2 dt))

Given a time sheet, we can sum up all the entries in the second column, which is the number
of hours worked by an employee on different dates. This sum can be used to calculate the
salary of an employee (or to prepare a bill for the customer). The function sum timesheet
computes this sum for a given time sheet.

sum timesheet : TimeSheet → N

∀ tsh : TimeSheet •
tsh = ∅ ⇒ sum timesheet(tsh) = 0 ∧
tsh �= ∅ ⇒ (∃ dt : Date | dt ∈ dom tsh •

sum timesheet(tsh) = (tsh dt) + sum timesheet({dt} −� tsh))

Notice that the expression

sum timesheet({dt} −� tsh)

recursively defines the sum on the time sheet entries after deleting the entry corresponding
to dt from the domain of tsh. Since there can be only finitely many entries in a time sheet,
the terminating condition stated in the postcondition is satisfied.

17.6 Case Study: An Automated Billing System 517

Worksheet

There is at most one (logical) time sheet for a project. A worksheet records for each project
the time sheet associated with that project.

WorkSheet == PROJECT ID
→ TimeSheet

The number of work hours completed for a project can be calculated from a work sheet
by projecting the project identifier and the work hours in the work sheet. The function
project hours discards the date component in TimeSheet of a work sheet and returns the
project identification with the number of hours completed for that project.

project hours : WorkSheet
→ (PROJECT ID
→ N)

∀ work : WorkSheet • project hours(work) =

{pid : PROJECT ID; hrs : Hours |
pid ∈ dom work ∧ hrs = sum timesheet(work pid) •

(pid
→ hrs)}

The function sum workhours accepts a work sheet as input and returns the total number
of hours in all the time sheets contained in the work sheet. This function is necessary to
calculate the salary of an employee as well as the amount to be billed to a customer.

sum workhours : WorkSheet
→ N

∀ work : WorkSheet •
work = ∅ ⇒ sum workhours(work) = 0 ∧
work �= ∅ ⇒ (∃ pid : PROJECT ID | pid ∈ dom work •

sum workhours(work) = sum timesheet(work pid)+

sum workhours({pid} −� work))

In order to know the monthly salary of an employee or cost on a project to a customer, we
need to select the time sheets corresponding to the particular month under consideration
from the set of time sheets given in a work sheet.

select timesheets : WorkSheet × Month × Year
→ WorkSheet

∀ work : WorkSheet; m : Month; y : Year •
select timesheets(work,m, y) = {pid : PROJECT ID; tsh : TimeSheet |

pid
→ tsh ∈ work ∧
(∀ dt : Date | dt ∈ dom tsh • month(dt) = m ∧ year(dt) = y) •

(pid
→ tsh)}

Like the function update timesheet, we also define another function update worksheet to
update a worksheet.

17

518 17 The Z Notation

update worksheet : WorkSheet × WorkSheet
→ WorkSheet

∀ work1,work2,work : WorkSheet • update worksheet(work1, work2) = work ⇒
dom work = dom work1 ∪ dom work2 ∧
(∀ pid : PROJECT ID | pid ∈ dom work •

(pid ∈ dom work1 ∧ dt ∈ dom work2 ⇒
work pid = update timesheet(work1 pid,work2 pid) ∧

(pid ∈ dom work1 ⇒ work dt = work1 dt) ∧
(pid ∈ dom work2 ⇒ work dt = work2 dt))

State of the system

There are three constants in the state model: project rate denoting the hourly rate used to
charge a customer; employee rate denoting the hourly rate for calculating the salaries of
employees; and bill charge indicating the fixed monthly charge to be added to the bill for
each customer.

project rate : N1

employee rate : N1

bill charge : N1

Organization
employees : EMPLOYEE ID
→ WorkSheet
customers : CUSTOMER ID
→ WorkSheet
projects : PROJECT ID
→ (N1 × N)

(∀ eid : EMPLOYEE ID | eid ∈ dom employees •
dom(employees eid) ⊆ dom projects ∧
(∀ pid : PROJECT ID | pid ∈ dom(employees eid) •

second(projects pid) ≥ sum timesheet((employees eid) pid))) ∧
(∀ cid : CUSTOMER ID | cid ∈ dom customers •

dom(customers cid) ⊆ dom projects ∧
(∀ pid : PROJECT ID | pid ∈ dom(customers cid) •

second(projects pid) = sum timesheet((customers cid) pid))) ∧
(∀ pid : PROJECT ID | pid ∈ dom projects •

second(projects pid) ≤ first(projects pid))

The state space schema Organization defines three entities: employees, a function from em-
ployee identifiers to worksheet; customers, a function from customer identifiers to work-
sheet; and projects, a function from project identifiers to a pair of integers, where the first
integer denotes the estimated time for the completion of a project, and the second denotes
the actual number of hours put in.

The state invariant is a conjunction of the following constraints:

• Every project assigned to an employee is a project contracted out to the firm:

dom(employees eid) ⊆ dom projects

17.6 Case Study: An Automated Billing System 519

• The number of work hours reported by an employee on a project cannot exceed the total
number of hours completed on that project:

second(projects pid) ≥ sum timesheet((employees eid) pid)))

• The number of hours completed on a project must agree with the number of hours re-
ported to the customer of that project:

second(projects pid) = sum timesheet((customers cid) pid)))

• For every project, the number of work hours completed must be less than or equal to the
number of work hours estimated for the project:

second(projects pid) ≤ first(projects pid)

Initialization

The initial state for the organization is one in which there is no employee, customer or
project.

InitOrganization
Organization′

employees′ = ∅
customers′ = ∅
projects′ = ∅

Operations

The operation AddEmployee adds a new employee to the organization, who is not yet
assigned to any project.

AddEmployee
ΔOrganization

(∃ eid : EMPLOYEE ID | eid �∈ dom employees •
employees′ = employees ⊕ {eid
→ ∅})

customers′ = customers
projects′ = projects

The identifier for the new employee is generated by AddEmployee operation and ensures
that the identifier is unique.

The operations InitiateProject and AddCustomer are similar; however, there are some
minor differences between them. Only a customer of the organization can initiate projects.
That is, a project initiation by a customer happens only after the customer has been included
in the database of customers in the organization. When a customer is added to the database,
the customer is assigned a unique identification number and no project has been initiated

17

520 17 The Z Notation

at that instant. Below, the InitiateProject operation is shown; AddCustomer is left as an
exercise.

InitiateProject
ΔOrganization
cid? : CUSTOMER ID
estimate? : N1

cid? ∈ dom customers
(∃ pid : PROJECT ID | pid �∈ dom projects •

customers′ = customers ⊕ {cid?
→
(customers cid?) ⊕ {pid
→ ∅}} ∧

projects′ = projects ⊕ {pid
→ (estimate?,0)})

employees′ = employees

AssignEmployee
ΔOrganization
eid? : EMPLOYEE ID
pid? : PROJECT ID

eid? ∈ dom employees
pid? ∈ dom projects
¬ (pid? ∈ dom(employees eid?))

employees′ = employees ⊕ {eid?
→ (employees eid?) ⊕ {pid?
→ ∅}}
customers′ = customers
projects′ = projects

The operation AssignEmployee assigns an employee to a project (or a project to an em-
ployee). The employee identifier eid and the project identifier pid are input parameters.
The precondition checks the validity of these identifiers. In addition, the precondition en-
sures that the project pid? has not been assigned previously to the employee eid?. The
postcondition asserts that the employee has been assigned the project.
The operation ReleaseEmployee, a complement of the operation AssignEmployee, is left
for the exercises.

ReportWork
ΔOrganization
eid? : EMPLOYEE ID
work? : WorkSheet

eid? ∈ dom employees
dom work? ⊆ dom(employees eid?)

employees′ = employees ⊕ {eid?
→

17.7 Additional Features in Z 521

update worksheet(employees eid?,work?)}
customers′ = customers ⊕ {cid : CUSTOMER ID | cid ∈ dom customers •

cid
→ update worksheet(customers cid, work?)}
(let updates == project hours(work?) •

projects′ = projects ⊕ {pid : PROJECT ID | pid ∈ dom updates •
pid
→ (first(projects pid), second(projects pid) + (updates pid))})

Since the date/time at which the employee reports the completion of work has not been
modeled, the operation ReportWork only specifies the functionality of updating the work
sheet for a particular employee without regard to the date and time of update. The precon-
dition checks for the validity of the employee identification and the legitimacy of the work
reported. The postcondition uses the two functions update worksheet and project hours to
modify the state variables.

CalculateSalary
ΞOrganization
eid? : EMPLOYEE ID
month? : Month
year? : Year
salary! : N

eid? ∈ dom employees
(let worksheet == select timesheets((employees eid?),month?, year?) •

salary! = sum workhours(worksheet) ∗ employee rate)

The salary for an employee is calculated for a given month and so the operation
CalculateSalary receives three input parameters: the employee identifier eid whose salary
is to be calculated, the month and year for which the salary is to be calculated. The let
clause in the predicate part of CalculateSalary projects only those time sheets that corre-
spond to the selected month from the employee’s record. Since CalculateSalary does not
modify the state (indicated by Ξ), it is not necessary to include those constraints which
assert that the state variables are not changed by this operation.

The operation BillCustomer is similar to the operation CalculateSalary and is left to the
Exercises.

17.7
Additional Features in Z

In this section, we discuss precondition calculation and promotion, two additional features
in Z. The predicate part of a schema consists of several predicates, some denoting pre-
conditions and some denoting postconditions for the specified operation. However, the Z

17

522 17 The Z Notation

notation does not explicitly separate the precondition from the postcondition. Therefore, a
procedure to calculate the precondition is introduced. Promotion effectively describes the
influence of an operation defined for a local state space on a global state space; the local
state space must be part of the global state space.

17.7.1
Precondition Calculation

The precondition of an operation describes the set of possible assignments of values to
the state variables and input variables such that the operation terminates in a consistent
state and generates an expected output. If the precondition of an operation fails, the conse-
quences of invoking that operation are unpredictable or are unacceptable. Unlike in VDM-
SL, there is no explicit notation to denote the precondition of an operation in Z. Instead,
one has to calculate the precondition from the definition of the operation. pre op will be
used to denote the schema derived by the precondition calculation on the schema op.

The main question to be answered in a precondition calculation is “for what combina-
tions of inputs and starting states one can find the ending states and outputs that satisfy
the predicates?”. Informally, the answer to the above question is to assert the existence of
outputs and ending states such that the predicate part of the op schema is satisfied for the
unprimed variables. So, the precondition calculation is done as follows: from the given
schema remove the outputs and ending states (primed variables) from the declaration part,
and bind them in the predicate part with an existential quantifier.

As an example, in the specification LoginSubsystem consider the operation AddAccount.
For convenience, we reproduce the specification of AddAccount here with its declaration
and predicate parts expanded.

AddAccount
users,users′ : PAccount
a? : Account

(∀ u1, u2 : Account | u1 ∈ users ∧ u2 ∈ users •
u1.name = u2.name ⇔ u1 = u2)

(∀ u1, u2 : Account | u1 ∈ users′ ∧ u2 ∈ users′ •
u1.name = u2.name ⇔ u1 = u2)

¬ (∃ a : Account | a ∈ users • a.name = a?.name)
users′ = users ∪ {a?}

No implicit predicate arises from the declaration. We need to remove the outputs and end-
ing states from the declaration and bind them with existential quantifier in the predicate
part. The expression pre AddAccount results in the following unnamed schema:

17.7 Additional Features in Z 523

users : PAccount
a? : Account

∃ users′ : PAccount •
(∀ u1, u2 : Account | u1 ∈ users ∧ u2 ∈ users •

u1.name = u2.name ⇔ u1 = u2) ∧
(∀ u1, u2 : Account | u1 ∈ users′ ∧ u2 ∈ users′ •

u1.name = u2.name ⇔ u1 = u2) ∧
(¬ (∃ a : Account | a ∈ users • a.name = a?.name)) ∧
(users′ = users ∪ {a?})

The application of pre always results in an unnamed schema, because the result is neither a
state space schema nor an operation schema. It is generally used in proofs or part of another
schema expression. The predicate part of the precondition schema can be further simplified
by applying predefined inference rules [16] and techniques such as the one-point-rule.

17.7.1.1
Precondition Simplification

Using the one-point-rule, pre AddAccount can be further simplified. The term users′ will
be substituted by users ∪ {a?} and the existential quantifier in ∃ users′ : PAccount . . . will
be removed. The constraint users ∪ {a?} ∈ PAccount will be conjoined with the predicate
part. The modified schema is shown below:

users : PAccount
a? : Account

(∀ u1, u2 : Account | u1 ∈ users ∧ u2 ∈ users •
u1.name = u2.name ⇔ u1 = u2)

(∀ u1, u2 : Account | u1 ∈ users ∪ {a?} ∧ u2 ∈ users ∪ {a?} •
u1.name = u2.name ⇔ u1 = u2)

¬ (∃ a : Account | a ∈ users • a.name = a?.name)
users ∪ {a?} ∈ PAccount

The predicate

users ∪ {a?} ∈ P Account

can be removed because it is easily provable from the declarations of users and a? and
from set union. The constraint

∀ u1, u2 : Account | u1 ∈ users ∧ u2 ∈ users •
u1.name = u2.name ⇔ u1 = u2

17

524 17 The Z Notation

can be removed because it is subsumed by the other two constraints. Therefore,
pre AddAccount will effectively reduce to

users : PAccount
a? : Account

(∀ u1, u2 : Account | u1 ∈ users ∪ {a?} ∧ u2 ∈ users ∪ {a?} •
u1.name = u2.name ⇔ u1 = u2)

¬ (∃ a : Account | a ∈ users • a.name = a?.name)

Since the universally quantified statement in pre AddAccount is the state invariant which
is inherent in every operation schema, we specify only the other constraint as precondition
when we write the specification for AddAccount.

17.7.2
Promotion

Promotion is a technique by which an operation on a component (referred to as local state
space) of a large system (referred to as global state space) is promoted or upgraded to the
large system. The major advantage of promotion is the reuse of smaller notations in more
elaborate situations.

Consider the following schema definitions:

User
name : STRING
id : N1

AllUsers
all : PUser

∀ u1, u2 : User | u1 �= u2 ∧ u1 ∈ all ∧ u2 ∈ all •
u1.name �= u2.name

In this case, the local state space is defined by the schema User. An operation such as
ChangeName can be defined to change the name of a user. The schema AllUsers defines the
global state space in which User is a component. In order to change the name of one user
within the set of users defined by AllUsers, one can make use of the operation ChangeName
and promote it to the global state AllUsers.

In general, if Local denotes a local state space, Global denotes a global state space
which contains Local, Localop denotes an operation on Local and Globalop denotes an

17.7 Additional Features in Z 525

operation on Global which has the same effect as that of Localop (modifying only Local
in Global and the rest of Global being unaffected), then we can define an operation called
Promote such that

Globalop ≡ ∃ ΔLocal • Localop ∧ Promote

For promotion to be valid, the global state must be an aggregate of the local state space; that
is, there must exist a component of Global whose type is Local. The following example
illustrates the concept of promotion.

Consider the operation Register in the accounts system example, which is reproduced
below:

Register
ΔAccounts
s? : Student
c? : COURSENO

s? ∈ ran unpaid
unpaid′ = update(unpaid, (μs : Student | s.id = s?.id ∧

s.status = s?.status ∧ s.courses = s?.courses ∪ {c?}))

paid′ = paid

Register is a global operation which operates on the global state Accounts. The local state
in this case is Student. We now introduce the operation Register Local which operates on
Student and updates the set of courses included in Student. Finally, we define the promotion
operation called Promote.

Register Local
ΔStudent
c? : COURSENO

id′ = id
status′ = status
courses′ = courses ∪ {c?}

Promote
ΔAccounts
ΔStudent
s? : Student

∃ s : Student | s ∈ ran unpaid ∧ s.id = s?.id • θStudent = s

unpaid′ = update(unpaid, θStudent′)

paid′ = paid

17

526 17 The Z Notation

In principle, the operation Promote establishes a binding between the global state Accounts
and local state Student. The expression

∃ s : Student | s ∈ ran unpaid ∧ s.id = s?.id • θStudent = s

asserts that the local state before the operation corresponds to a copy of a student record
already existing in the system. The expression

unpaid′ = update(unpaid, θStudent′)

indicates that the global state variable unpaid′ is updated using the modified local state
θStudent′ . The change in local state is established by the operation Register Local. There-
fore, the equation

Register ≡ ∃ ΔStudent • Register Local ∧ Promote

confirms that the operation Register Local is promoted to the global state.
The use of θ operator in Promote has a significance. The term θStudent refer to any in-

stance of the schema Student which in this case is bound to the input student record. That is,
the connection between the local state and the global state is established through the input
variable s?. The term θStudent′ refers to the same instance of Student after being updated
by an operation on a local state which in this case is bound to Register Local through the
equation for promotion. By the use of θ operator, Promote asserts that whenever the local
state is updated, the global state is also modified. But Promote does not specify which lo-
cal operation causes this change. Therefore, the same Promote operation can be conjoined
with another local operation to promote it to the global state. For example, if there is an
operation Withdraw Local on Student, which is defined as

Withdraw Local
ΔStudent
c? : COURSENO

id′ = id
status′ = status
courses′ = courses \ {c?}

then it can be promoted to Accounts in the same way as Register Local. Thus,

Withdraw ≡ ∃ ΔStudent • Withdraw Local ∧ Promote

17.8
Refinement and Proof Obligations

The goal of a refinement process is to develop a detailed design and/or an implementation
from formal specification of requirements. A refinement process requires a proof obligation

17.8 Refinement and Proof Obligations 527

to ensure that successive designs are consistent. We use the term ‘abstract specification’ to

denote the specification that is the source of refinement (the one that is supposed to be re-

fined) and the term ‘concrete specification’ for the specification obtained after refinement.

Morgan and Vickers discuss refinement calculus for model-based specification tech-

niques with sufficient rigor [9]. In this section, we describe refinement of Z specifications

as described by Spivey in [12].

The two possible refinements of a Z specification are data refinement and operation

refinement. In data refinement, a data type in an abstract state space is refined into another

data type in the concrete state space. The data type in the concrete state space is selected in

such a way that it is more easily implementable. One of the obligations for data refinement

is that every operation that uses the abstract data type must be proved to be correct if

it also uses the concrete data type. Operation refinement, on the other hand, focuses on

mapping an operation in the abstract state space to one or more operations in the concrete

state space. In particular, operation refinement describes algorithmic details of concrete

operations thereby justifying that the specification is implementable. Unlike VDM-SL, the

Z notation does not directly support programming language-like constructs. Hence, there

is a semantic gap between Z and a programming language implementing specifications in

Z. For this reason, we do not consider operation refinement in this book.

17.8.1
Data Refinement

In data refinement, there exist three possible mappings between abstract and concrete state

spaces:

• There exists exactly one concrete state space for every abstract state space.

This is the ideal situation. Proof obligations in this case are easy and straightforward.

• For every abstract state space, there exist possibly many concrete state spaces.

This is the most general case. The proof obligations for this case are very similar to those

of the ideal case.

• One concrete state space serves as the refinement of several abstract state spaces.

Such a situation occurs only when some aspects of each one of the abstract state spaces

are not implementable. The concrete state space implements those features which are

common to all the abstract state spaces. Naturally, any feature of an abstract state space

that is not implementable is not interesting and hence is not worthy of refinement.

We now consider proof obligations for the first two cases. A data refinement process

requires an abstraction schema which maps concrete state spaces to abstract state spaces.

For the rest of the discussion in this chapter, we use the following terminology:

17

528 17 The Z Notation

AbsState An abstract state space.
ConState The concrete state space mapped to AbsState.
AbsOp An operation on the abstract state space AbsState.
ConOp The operation on the concrete state space ConState which implements AbsOp.
Refine The abstraction schema which maps ConState to AbsState.
AbsInit An initial state for the abstract specification.
ConInit An initial state for the concrete specification which implements AbsInit.

A data refinement process must satisfy the following three conditions.

• Every initial state for the concrete state space corresponds to a valid initial state for the
abstract state space. Formally, for the ideal case

∀ AbsState; ConState • ConInit ∧ Refine ⇒ AbsInit

and for the general case

∀ ConState; ConInit ⇒ (∃ AbsState • Refine ∧ AbsInit)

• A concrete operation terminates whenever the corresponding abstract operation is guar-
anteed to terminate. That is to say that the precondition of the concrete operation must
be weaker than that of the abstract operation. This can be formally stated for the ideal
case as follows:

∀ AbsState; ConState; x? : X • pre AbsOp ∧ Refine ⇒ pre ConOp

The term x? : X denotes the set of input parameters to the operation. The formal expres-
sion for the general case is the same as that of the ideal case.

• Every state in which a concrete operation terminates corresponds to a member of those
abstract states in which the corresponding abstract operation could terminate. This con-
dition indirectly asserts that the postcondition of the concrete operation is stronger than
that of the abstract operation. The formal expression describing this condition for the
ideal case is

∀ AbsState; AbsState′; ConState; ConState′; x? : X; y! : Y •
pre AbsOp ∧ Refine ∧ ConOp ∧ Refine′ ⇒ AbsOp

and the formal expression for the general case is

∀ AbsState; ConState; ConState′; x? : X; y! : Y •
pre AbsOp ∧ Refine ∧ ConOp ⇒

(∃ AbsState′ • Refine′ ∧ AbsOp)

Notice that both these formal expressions contain the subexpression

pre AbsOp ∧ Refine

17.8 Refinement and Proof Obligations 529

which denotes that pre ConOp is satisfied according to the second condition. Therefore,
the left side of the implication asserts that ConOp is invoked in ConState resulting in
ConState′ . The refinement schema Refine′ when conjoined with ConState′ results in
AbsState′ which is one of the terminating states obtained from AbsState. The existence
of AbsState and AbsState′ thereby indicates the presence and validity of AbsOp.

It is interesting to notice that the three conditions for data refinement in Z correspond
to initial state validation, domain obligation and result obligation for data refinement in
VDM. The only difference is that the mapping of concrete state spaces to abstract state
spaces is defined as a function (retrieve function) in VDM, whereas it is defined by a
schema in Z. By including the abstract and concrete states in the declaration part of the
refinement schema, the latter satisfies the signature and adequacy obligations warranted
by data refinement. Thus, the refinement theory for VDM and Z specifications are one and
the same, except for notational differences.

Example 14 Personal Phone Book.

A simple model of a personal phone book contains pairs of names and phone numbers. It is
assumed that every name is associated with only one phone number. Two names, however,
may be associated with the same phone number. �

17.8.1.1
Abstract Specification

For simplicity, Name and Phone are assumed to be basic types in this specification.

[Name,Phone]

The state of the phone book contains only one variable, entries, which denotes the mapping
between names and phone numbers.

PhoneBook
entries : Name
→ Phone

There is no state invariant for this abstract state. A possible initial state is given below.

InitPhoneBook
PhoneBook

entries = ∅

We illustrate data refinement on only one operation AddPhone. This operation adds a new
pair of name and phone number to the book. The precondition for this operation ensures
that the new name does not already exist in the book.

17

530 17 The Z Notation

AddPhone
ΔPhoneBook
n? : Name
ph? : Phone

n? �∈ dom entries
entries′ = entries ∪ {n?
→ ph?}

The postcondition asserts that the new pair is added to the book.

17.8.1.2
Concrete Specification

In the refined specification, each entry is modeled as a record. This record is described by
the schema Entry as shown below:

Entry
name : Name
phone : Phone

Since the names are assumed to be unique in the phone book, we introduce a global con-
straint on entries asserting that two entries are equal if and only if their names are equal.

∀ e1, e2 : Entry • e1.name = e2.name ⇔ e1 = e2

In the refined version of the phone book, the entries are arranged in a sequence. The or-
dering of entries depends on the order in which they are entered in the phone book. It is
therefore clear that a new entry will be placed at the end of the sequence.

PhoneBook 1

entries 1 : iseq Entry

Like the abstract state, there is no state invariant for the concrete state. The declaration
‘iseq’ in the concrete state PhoneBook 1 denotes an injective sequence and hence there
are no duplicate entries in the concrete state. This declaration, in conjunction with the
global constraint defined earlier, asserts that the names in the concrete state are unique.
In the schema InitPhoneBook 1 a possible initial state for the concrete specification is
shown.

InitPhoneBook 1

PhoneBook 1

entries 1 = 〈〉

17.8 Refinement and Proof Obligations 531

We now specify the concrete operation AddPhone 1.

AddPhone 1

ΔPhoneBook 1

n? : Name
ph? : Phone

¬ (∃ e : Entry | e ∈ ran entries 1 • e.name = n?)

entries 1′ = entries 1 � 〈(μe : Entry | e.name = n? ∧ e.phone = ph?)〉

The precondition for AddPhone 1 ensures that the new name does not exist in the book
before the operation is invoked. The postcondition ensures that a new record is constructed
with the input parameters and is concatenated to the sequence of entries in the book.

17.8.1.3
Refinement Schema

The refinement schema for the above example is given below:

Refine
PhoneBook
PhoneBook 1

dom entries = {e : Entry | e ∈ ran entries 1 • e.name}
∀ i : 1..#entries 1 •

(entries 1 i).phone = entries((entries 1 i).name)

The schema Refine maps the concrete space PhoneBook 1 to the abstract space PhoneBook.
The first predicate in Refine asserts that both PhoneBook and PhoneBook 1 contain the
same set of names. The second predicate ensures that the phone number associated with
each name in PhoneBook and that associated with the same name in PhoneBook 1 are
identical.

17.8.2
Proof Obligations

We give a rigorous proof that PhoneBook 1 implements PhoneBook. The proof shows that
the refinement described by Refine satisfies all the three conditions for data refinement.

Initial State Validation
For the initial state validation, it must be proved that

∀ PhoneBook; PhoneBook 1 •
InitPhoneBook 1 ∧ Refine ⇒ InitPhoneBook

17

532 17 The Z Notation

Since there is no state invariant both in PhoneBook and in PhoneBook 1, we need to con-
sider only the predicate parts of InitPhoneBook 1, Refine and InitPhoneBook. Expanding
the predicate parts of all the three schemas, the left side of the implication becomes

entries 1 = 〈〉 ∧
dom entries = {e : Entry | e ∈ ran entries 1 • e.name} ∧
(∀ i : 1..#entries 1 •

(entries 1 i).phone = entries((entries 1 i).name)

Since entries 1 = 〈〉, there is no entry in entries 1. Hence,

{e : Entry | e ∈ ran entries 1 • e.name} = ∅

From the second predicate, we can therefore infer that

dom entries = ∅

which is the same as

entries = ∅

This is the predicate part of InitPhoneBook which is the right side of the implication.
Therefore, every initial state of PhoneBook 1 also serves as an initial state for PhoneBook.

Domain Obligation
For the second condition, we have to prove that the precondition of PhoneBook in conjunc-
tion with Refine implies the precondition of PhoneBook 1. That is,

∀ PhoneBook; PhoneBook 1; n? : Name; ph? : Phone •
pre AddPhone ∧ Refine ⇒ pre AddPhone 1

Since the specifications are simple, we do not show the precondition evaluation of
AddPhone and that of AddPhone 1. Instead, we directly use the results. Thus, we need
to prove

n �∈ dom entries ∧
dom entries = {e : Entry | e ∈ ran entries 1 • e.name} ∧
(∀ i : 1..#entries 1 •

(entries 1 i).phone = entries((entries 1 i).name) ⇒
¬ (∃ e : Entry | e ran entries 1 • e.name = n?)

From

n �∈ dom entries ∧
dom entries = {e : Entry | e ∈ ran entries 1 • e.name}

17.8 Refinement and Proof Obligations 533

we can infer that

n? �∈ {e : Entry | e ∈ ran entries 1 • e.name}

Using the semantics of set membership, we can rewrite this expression as

∀ e : Entry | e ∈ ran entries 1 • e.name �= n?

which is the same as

¬ (∃ e : Entry | e ran entries 1 • e.name = n?)

Result Obligation
Finally, we have to prove that the postcondition of AddPhone 1 is stronger than that of
AddPhone. Formally,

∀ PhoneBook; PhoneBook′; PhoneBook 1; PhoneBook 1′;

n? : Name; ph? : Phone •
pre AddPhone ∧ Refine ∧ AddPhone 1 ∧ Refine′ ⇒ AddPhone

By expanding the predicate parts of the respective schemas, we obtain

n? �∈ dom entries ∧
dom entries = {e : Entry | e ∈ ran entries 1 • e.name} ∧
(∀ i : 1..#entries 1 •

(entries 1 i).phone = entries((entries 1 i).name) ∧
¬ (∃ e : Entry | e ∈ ran entries 1 • e.name = n?) ∧
entries 1′ = entries 1 � 〈(μe : Entry | e.name = n? ∧ e.phone = ph?)〉 ∧
dom entries′ = {e : Entry | e ∈ ran entries 1′ • e.name} ∧
(∀ i : 1..#entries 1′ •

(entries 1′ i).phone = entries′((entries 1′ i).name) ⇒
n? �∈ dom entries ∧
entries′ = entries ∪ {n?
→ ph?}

The right side of the implication contains two conjuncts of which the first one occurs as
one of the conjuncts on the left side of the implication. Hence, it is sufficient to derive only
the second conjunct from the left side of the implication. This conjunct asserts that the new
name and phone number are added to the entries of the phone book in the abstract state.
We prove this conjunct in two parts: (i) n? is in the domain of entries′ and (ii) the phone
number corresponding to n? in entries′ is ph?.

Part 1 To prove that n? ∈ dom entries′

In the predicate

dom entries′ = {e : Entry | e ∈ ran entries 1′ • e.name}

17

534 17 The Z Notation

substitute for entries 1′ . For ease of understanding, we rename the bound variables in the
expression.

dom entries′ = {e : Entry | e ∈ ran(entries 1 � 〈(μe1 : Entry | e1.name =

n? ∧ e1.phone = ph?)〉) • e.name}

Using the semantics of sequence concatenation, we infer that the right side of the equality
contains an entry corresponding to n? and so does the left side. Therefore, we can conclude
that n? ∈ dom entries′ .

Part 2 To prove that entries′(n?) = ph?

From Part 1 and from the predicate

(∀ i : 1..#entries 1′ •
(entries 1′ i).phone = entries′((entries 1′ i).name))

we can infer that

entries′(n?) = {i : 1..#entries 1′ | (entries 1′ i).name = n? •
(entries 1′ i).phone} (17.1)

From the predicate

entries 1′ = entries 1 � 〈(μe : Entry | e.name = n? ∧ e.phone = ph?)〉

we can conclude using the one-point-rule that

∃ i : 1..#entries 1′ • e.name = n? ∧ e.phone = ph? (17.2)

From equations (17.1) and (17.2), we assert that the phone number corresponding to n? in
entries′ is ph?.

17.9
Exercises

1. Given two sequences s1 and s2, prove
(a) items (s1

� s2) = items s1 � items s2

(b) if s2 in s2, then items s2 � items s1

(c) if s2 = I � s1 for some I ⊆ 1..#s1, then items s2 � items s1

2. Modify the specification for the login subsystem given in Example 8 as stated below:
(a) Instead of the schema definition Account, use the function definition Username
→

Password in the LoginSubsystem schema.
(b) The specification in the text considers only one class of users. Introduce at least

two different categories of users: normal and system users. With this change, mod-
ify the specification for the login subsystem example to satisfy the following re-
quirements:

17.9 Exercises 535

(i) A user belongs to only one category.
(ii) Adding and deleting accounts can be performed only by a system user.

(iii) The password of an account can be changed either by the owner of that ac-
count or by a system user. A normal user who is not the owner of a particular
account cannot access that account.

3. In the specification for an university accounts office in Example 9, introduce a schema
called Course which contains course number, prerequisites for a course and the maxi-
mum number of seats available in that course. Modify the specification to reflect these
changes. It should accommodate the following condition: a student registering for a
course must have completed all the prerequisites for that course.
Modify the specification such that the information for more than one semester can also
be maintained by the registration system.

4. The operation SelectProcess in the specification for resource allocation in a computer
system (Example 10) is not given in the text. Complete the specification by introducing
an operation schema SelectProcess.
If it is assumed that there is only one instance for each resource type, what changes
are required in the specification?

5. Give the specification for an initial state for the university accounts office example,
and prove its validation.

6. Prove the consistency of operations Enrol, Register and PayFees given in the specifi-
cation for the university accounts office.

7. One of the requirements for the accounts office example is that a student cannot regis-
ter for the same course more than once. Prove that the operation Register satisfies this
requirement.

8. Do the following for the specification discussed in the case study:
(a) Give the specification for the following additional operations:

• ListProject which will list all the projects initiated by a particular customer.
• DeleteProject which will delete a particular project.
• ListEmployees which determines all the employees working in projects initiated

by a particular customer.

(b) Consider the following new set of requirements for the billing system:
(i) There are three categories of employees: programmer, supervisor and man-

ager. Employees in each category have the same hourly rate, but the hourly
rate will be different for the three categories.

(ii) There are three categories of customers: individual, corporation and govern-
ment.

(iii) There are three categories of projects: small, medium and large.
(iv) A project is charged differently depending on the category of the project and

the category of the customer who initiates that project.
Discuss necessary changes in the data types, state space and operations in the
specification of the billing system given in the text, and rewrite the specification to
capture the requirements mentioned above in addition to the original requirements.

9. Calculate the preconditions for the following operations:
(a) PayFees in the specification for university accounts office (Example 9).

17

536 17 The Z Notation

(b) DeAllocate in the specification for resource allocation (Example 10).
(c) ReportWork in the specification for the automated billing system (case study).

10. In the specification for the login subsystem, define a local operation called
ChangePassword Local which operates on Account and changes the password for
that account. Promote this operation to the global state LoginSubsystem.

11. Model TimeSheet and WorkSheet as schemas in the specification for the automated
billing discussed in the case study. Define all functions on time sheets and worksheets
as local operations to the respective state spaces defined by TimeSheet and WorkSheet.
Promote these operations to the global state Organization. Notice that you may want
to promote operations defined on TimeSheet to the state space defined by WorkSheet
and then promote them again to Organization.

12. The specification for login subsystem models accounts as sets. Refine the data type
users using sequences and modify the specification accordingly. Prove the correctness
of this refinement.

13. The waiting queues in the specification of resource allocation system is modeled us-
ing a partial function. Refine this model using sequences, modify the specification
accordingly and prove the correctness of the refinement.

14. (Project) A post office handles three types of mails: Regular mails, Express mails,
Fast or Courier mails and so on. Mails may arrive from different locations at different
times, including the mails handed over in person at the post office itself. Mails are
sorted by three different processes: the first process sorts mails based on the zone
to which the mails are to be delivered (may be identified by the first three letters of
the postal code), the second process sorts mails based on the location within that zone
(may be identified by the last three letters of the postal code) and the third process sorts
them based on the street number. After the third sorting process, mails are classified
based on the type of mail. At the end of this classification, the mails are sent out from
the post office for delivery.

Model the mail handling subsystem in the post office. You may introduce additional
requirements and assumptions, if necessary.

17.10
Bibliographic Notes

Much of the earlier work on Z can be found in [6]. The syntax of the Z notation evolved
continuously over several years; a somewhat more stable version has been described by
Spivey which can be found in [10, 12]. Currently, the Z notation is being standardized
by International Standards Organization (ISO). The most recent version of the Z notation
described in [16] is slightly different from the earlier version described in [10, 12]. We
have used the earlier version [12] in this book.

Spivey’s version includes the notion of piping which is discarded in the Standard ver-
sion. We have not discussed piping in this chapter.

Woodcock and Davies [14] discuss refinement theory for Z specifications which is not
dealt with in such great detail in this book. A somewhat simple refinement method for both

References 537

data refinement and operation refinement can be found in [15]. The readers can also find a
detailed and formal treatment of the precondition calculation in [14].

Among all the books for Z, Spivey’s book [12] seems to be the only one which describes
formal definitions of symbols in Z; these are collectively described as the mathematical
toolkit. The ISO Standards draft [16] also includes formal definitions of the symbols in the
mathematical toolkit, but with minor modifications.

Several object-oriented extensions to the Z notation have been reported in the literature.
These include the languages MooZ [8], Object-Z [5] and Z++. All these extensions are
based on Spivey’s version. A comprehensive overview of these can be found in [13]. As a
result of the standardization process, these object-oriented languages are also evolving.

Coombes and McDermid [4], and Baumann and Lermer [2] discussed real-time spec-
ifications using Z, without extending the syntax of Z. Hayes and Mahony [7] have de-
scribed extensions to the Z notation to specify real-time systems. Carrido [3], and Alagar
and Periyasamy [1] have extended Object-Z toward real-time specifications; in both these
cases, the semantics of the extensions have been developed as extensions of the semantics
for the Z language.

The Computing Laboratory at Oxford University in the UK maintains a web site for the
Z notation: http://www.comlab.ac.uk/zforum. This web site contains a current Z bibliogra-
phy, information on tool support for Z notation and pointers to work achieved by the stan-
dardization process. A separate moderated newsgroup called comp.specification.z is also
maintained by the Oxford Computing Laboratory, which is a useful source for beginners
to find out more about the Z notation. In addition, proceedings of the annual conference,
called The Z Users Meeting, are also an invaluable source for up-to-date developments
in Z.

References

1. Alagar VS, Periyasamy K (1996) Real-time object-Z: a language for the specification and de-
sign of real-time reactive systems. Technical report, Department of Computer Science, Con-
cordia University, Montreal, Quebec, Canada, June 1996

2. Baumann P, Lermer K (1995) A framework for the specification of reactive and concurrent
systems in Z. In: Proceedings of the fifteenth conference on foundations of software technol-
ogy and theoretical computer science. Lecture notes in computer science, vol 1026. Springer,
Berlin, pp 62–79

3. Carrido JM (1995) Specification of real-time systems with extensions to object-Z. In: Pro-
ceedings of technology of object-oriented languages and systems (TOOLS), Santa Barbara,
CA, pp 167–179

4. Coombes AC, McDermid JA (1992) Specifying temporal requirements for distributed real-
time systems in Z. Technical report YCS176, Computer Science Department, University of
York, Heslington, York, UK

5. Duke R, Rose G, Smith G (1995) Object-Z: a specification language for the description of
standards. Comput Stand Interfaces 17:511–533

6. Hayes IJ (ed) (1987) Specification case studies. Series in computer science. Prentice Hall
International, Englewood Cliffs

7. Mahony BP, Hayes IJ (1992) A case-study in timed refinement: a mine pump. IEEE Trans
Softw Eng 18(9):817–826

17

538 17 The Z Notation

8. Meira SL, Cavalcanti ALC (1992) The MooZ specification language. Technical report, Depar-
tamento de Informática, Universidade Federal de Pernambuco, Recife—PE, Brasil

9. Morgan C, Vickers T (eds) (1994) On the refinement calculus. Springer, Berlin
10. Potter B, Sinclair J, Till D (1991) An introduction to formal specification and Z. Series in

computer science. Prentice Hall International, Englewood Cliffs
11. Spivey JM (1992) The fuzz reference manual. JM Spivey Computing Science Consultancy,

Oxford OX44 9AN, UK
12. Spivey JM (1992) The Z notation—a reference manual, 2nd edn. Series in computer science.

Prentice Hall International, Englewood Cliffs
13. Stepney S, Barden R, Cooper D (eds) (1992) Object-orientation in Z. Workshops in Comput-

ing Series. Springer, Berlin
14. Woodcock JCP, Davies J (1996) Using Z: specification, refinement and proof. Series in com-

puter science. Prentice Hall International, Englewood Cliffs
15. Wordsworth JB (1992) Software development with Z. Addison-Wesley, Reading
16. The Z Notation, ISO/IEC JTC 1/SC22 CD 13568, September 1995

The Object-Z Specification Language 18

The Z notation is more popular and is easy to use, but it is procedural in nature. A Z
specification starts with a global state definition. Operations are then specified to manip-
ulate the state variables. The procedural nature of Z specification makes the specifiers
to think in terms of one global state space, and operations and functions to act on that
global state. Practitioners of the object-oriented approach attempted to use the Z notation
in an object-oriented style [46]. They tried to model each object as a separate Z specifi-
cation and thereby made each object as an independent and reusable entity. Composition
of objects and interactions among objects were specified using schema calculus. How-
ever, this effort was not fruitful because the intrinsic properties of object-orientation such
as encapsulation, inheritance and polymorphism were not captured by the Z specification
written in object-oriented style. In order to utilize the full expressive power of the object-
oriented approach, several object-oriented extensions of the Z notations were developed.
MooZ [4, 5], ZEST [46], Z++ [46] and Object-Z [10, 38] are some of them. Among these
extensions, Object-Z became more popular because of its literature support and tool sup-
port.

The Object-Z notation is a conservative extension of the Z notation. Most of the syn-
tactic structures of Z such as primitive types, schema notation, set, sequence, function and
relation are retained in Object-Z with their respective semantics. Additionally, Object-Z in-
troduces the class notation and some unique features of object-orientation such as visibility
(to declare the public interface of a class), inheritance, polymorphism and composition op-
erators (to define message passing between objects).

18.1
Basic Structure of an Object-Z Specification

Before looking at the structure of an Object-Z specification, it is important to revise the
syntax of the Z language because a major portion of an Object-Z specification uses the

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3 18, © Springer-Verlag London Limited 2011

539

18

540 18 The Object-Z Specification Language

same syntax and semantics of the Z language. The readers are therefore advised to revise
Sect. 17.2 in Chap. 17.

An Object-Z specification consists of several class definitions preceded by global defini-
tions. Generally, global definitions are given as Z paragraphs the beginning of an Object-Z
specification. The global definitions include types, constants and functions that are shared
by all classes.

A template of an Object-Z specification is given below.

Classname
< visibility list >

< inherited class names >

< local definitions >

< state definition >

< initial state definition >

< operation definitions >

The class name of a class serves as the unique identifier of the class.
The visibility list includes the names of the features (state variables and operation

names) that will be exported (made public) from this class. If no such list is specified,
then all features of the class are exported. The visibility list will not be inherited by any
subclass. Hence, a subclass can export a private feature of a superclass or can hide a pub-
lic feature of a superclass. The terms ‘subclass’ and ‘superclass’ are used with the same
meaning as in Object-Oriented programming. The list of superclasses is listed next to the
visibility list. Local definitions within a class definition may include types, constants, and
functions they are local to the class.

The state definition is represented by an unnamed schema. This includes the state vari-
ables which are the attributes of the class. The predicate of the state schema represents
the class invariant. The initial state definition is a schema with the keyword ‘INIT’ and
includes the conditions corresponding to the initial state of an object instantiated from this
class definition. While it is the specifier’s responsibility to include the state name in the
initial state definition in a Z specification, the initial state definition inside a class does
not have any state name. This is because it is associated with only the state of the class in
which it is declared. An operation definition in a class is very similar to that of an operation
definition in a Z specification, except for the semantics of Δ. The Δ symbol in Object-Z is
associated with a list of state variables that are modified by the operation.

Object-Z also enforces that the various components of a class must be listed in the same
order as shown above. Among these components, the state definition is mandatory; others
are optional.

Example 1 Employees in a small company.

A small software development company has a set of employees. The following specifica-
tion models the employees and their salaries.

18.1 Basic Structure of an Object-Z Specification 541

[EMPLOYEE]

EmployeeSalaries
� (AddEmployee,ModifySalary,DeleteEmployee)

employeeSalary : EMPLOYEE �→R

∀ d : dom employeeSalary • employeeSalary(d) > 0.0

INIT

employeeSalary = ∅

AddEmployee
Δ(employeeSalary)
newEmployee? : EMPLOYEE
salary? : R

salary? > 0.0

newEmployee? �∈ dom employeeSalary
employeeSalary′ = employeeSalary ∪ {newEmployee? �→ salary?}

ModifySalary
Δ(employeeSalary)
employee? : EMPLOYEE
newSalary? : R

newSalary? > 0.0

employee? ∈ dom employeeSalary
employeeSalary′ = employeeSalary ⊕ {employee? �→ newSalary?}

DeleteEmployee
Δ(employeeSalary)
who? : EMPLOYEE

who? ∈ dom employeeSalary
employeeSalary′ = {who?}�−employeeSalary

The class EmployeeSalaries uses the basic type EMPLOYEE which is declared outside of
the class as a global type definition. The visibility list indicates that this class exports the
three operations AddEmployee, ModifySalary and DeleteEmployee. The state of the class
consists of a mapping from employees to their salaries; the salaries are modeled as real
numbers. The state invariant asserts that the salaries must be positive real numbers. The

18

542 18 The Object-Z Specification Language

state uses a partial function to model the mapping and hence each employee has only one
salary recorded in the system. The state schema in a class is unnamed.

Initially, the system has no records, as indicated by the INIT state. The keyword INIT
is used to denote the initial state of the objects instantiated from a class. Thus, every class
has its own INIT state.

Operations in a class are defined in the same way as operations in a Z specification,
except for the difference in Δ list as described below. The semantics of Δ list in Object-
Z is different from that in the Z specification language. While in Z, the Δ list indicates
the names of the state space schemas, in Object-Z, they indicate the state variables of the
class in which the operation is located. Further, the Δ list in Object-Z only includes those
state variables that are modified by the operation. Other state variables may be used by the
operation but not included in the Δ list.

The operation AddEmployee will be invoked to add a new employee to the system. This
operation will modify the state variable employeeSalary as indicated by the Δ list. The
operation accepts the new employee and his/her salary as inputs. The precondition for this
operation ensures that the salary must be a positive number and the employee must not be
in system before. The postcondition asserts that the employee record is added to the system.

The ModifySalary operation describes how the salary of an employee can be modified.
The employee identification and the new salary are passed as inputs. The salary must be a
positive number and the employee must be in the system before. The postcondition in this
case asserts that the salary for this employee is overwritten by the new salary, as indicated
by the relational override operator.

The last operation in the EmployeeSalaries class is used to delete an employee from
the system. The only input parameter is the employee identification. The precondition en-
sures that the employee is found in the system records. The postcondition asserts that the
employee record is removed from the system. The operation uses the domain subtraction
operator for this purpose.

Object-Z syntax also includes operations specified in horizontal style, just like horizon-
tal schemas in the Z notation. For example, the operation DeleteEmployee can be specified
in the horizontal style as follows:

DeleteEmployee =̂ [who? : EMPLOYEE | who? ∈ dom employeeSalary ∧
employeeSalary′ = {who?}�−employeeSalary]

The Δ list is not specified in the horizontal style. This style is used in composition of
operations, to be discussed later in this chapter. �

18.1.1
Parameterized Class

A class can have parameters but they are optional. If present, they must be included in the
name of the class as shown below:

ClassName[< Parameters >]

. . .

18.1 Basic Structure of an Object-Z Specification 543

The specification of a parameterized class can make use of the parameters in the same way
as basic types and cannot anticipate any other property of the parameters. Consequently,
any variable of the parameter types can only be compared for equality and inequality just
like variables of basic types. The parameters of a class can be instantiated only by set
values, and not by any scalar value. The concept of parameterized class is similar to that of
parameterized schema in Z. Example 2 illustrates how a parameterized class can be defined
and used.

Example 2 Generic Queue.

Queue[T]

� (Join, Remove)

elements : seqT

INIT

elements = 〈 〉

Join
Δ(elements)
t? : T

elements′ = elements � 〈t?〉

Remove
Δ(elements)
t! : T

#elements > 0

elements′ = tail elements
t! = head elements

The class Buffer uses the generic queue and instantiates it with integers.

Buffer

items : Queue[Z]

AddItems =̂ items.Join
DeleteItems =̂ items.Remove

Just like in Z, an operation schema can be specified in box notation as well as in hori-
zontal style as shown in the Buffer class. The operations of a class can be invoked using

18

544 18 The Object-Z Specification Language

the dot notation, commonly used in object-oriented design and programming. The class
Buffer thus uses this dot notation to invoke the Join and Remove operations from the class
Queue[Z]. �

18.2
Distinguished Features of Object-Orientation

Among the many differences between procedural and object-oriented paradigms, three fea-
tures are dominant. These are encapsulation, inheritance and polymorphism.

18.2.1
Encapsulation

Encapsulation is a property by which the internal features of a class are separated from
external (public) features. In short, encapsulation enforces access restrictions on the fea-
tures of a class. In Object-Z, encapsulation is implemented by the visibility list operator in
a class definition. For example, in the EmployeeSalaries class described in Example 1, the
line

� (AddEmployee, ModifySalary,DeleteEmployee)

indicates the public features that are exported from the class. All other features that are not
exported will be considered as private.

In many object-oriented programming languages, three levels of restrictions are used
to enforce encapsulation. These are called public, private and protected. In Object-Z, only
the first two levels are used. The items listed in the visibility list of a class are public in
the sense that they can be accessed by another class. Any feature that is not included in the
visibility list is deemed private. The private features can thus be used only within the scope
of the class definition in which they are defined.

18.2.2
Inheritance

The discussion on inheritance requires the notion of subclass and superclass made clear.
Even though these two terms can be found in every reference on object-orientation, a brief
description here will help the readers understand their roles in Object-Z specifications.

A class X is said to be a subclass of another class Y if X is a specialization of Y . That
is, X acquires some features of Y but may add its own features and/or modify some of the
features acquired from Y . The class Y is called the superclass in this case. Specialization
denotes the concept of acquiring the features in this way, and inheritance is the mechanism
that implements the specialization concept. The inheritance mechanism may specifically

18.2 Distinguished Features of Object-Orientation 545

state the features from the superclass that are acquired and the actions that a subclass is
allowed to do.

In Object-Z, a subclass X can inherit from a superclass Y by including the name of
the superclass (i.e. Y in this case) after the visibility list in X . If there is no such visibility
list in X , then the superclass name will be the first one listed inside the class definition.
The inheritance mechanism in Object-Z allows the subclass to inherit every feature that
is defined in the superclass ignoring the visibility list. That is, the visibility list of the
superclass is not inherited. However, the subclass can make any of the inherited features
to become public even if these features are private in the superclass. At the same time, the
subclass can also make some of the inherited features to be private by not listing them in
its visibility list even though these features may be listed as public in the visibility list of
the superclass. The consequences of inheritance are summarized below:

• All local type definitions and constant definitions of the superclass are included in the
subclass. Notice that the subclass should not have another definition for the same type
or constant; otherwise, it will lead to a nondeterministic choice.

• The state variables of the superclass are merged with those of the subclass. If the subclass
redefines the type of a superclass state variable, then two types must be compatible (e.g.,
N and Z). This occurs when there is a state variable in the subclass with the same name as
that of a state variable in the superclass but with a different type. In this case, a subclass
may expand or restrict the horizon of a superclass state variable. As an example, the type
N of a variable x in the superclass may be expanded to the type Z of the same variable
in the subclass. Likewise, the type Z of a superclass variable may be restricted to the
type N of the same variable in the subclass.

• The state invariant of the superclass is conjoined with that of the subclass. Care must be
taken to ensure that there is no contradiction after conjoining.

• The initial state of the superclass is conjoined with that of the subclass.
• If an operation Op is redefined in the subclass, the declaration of Op in the superclass is

merged with that of the same operation in the subclass. If any input or output parameter
has the same name both in the superclass and in the subclass, then their types must be
compatible. The predicate part of Op in the superclass is conjoined with that of the same
operation in the subclass. Once again, it is the specifier’s responsibility to ensure that
there is no contradiction after conjoining.

Object-Z supports multiple inheritance and hence a subclass can inherit more than one
superclass at the same time.
To illustrate the inheritance mechanism in Object-Z, consider the class Account in a bank:

Account
� (accountNumber,Deposit,Withdraw)

accountNumber : None
ownerID : None
balance : R

18

546 18 The Object-Z Specification Language

Deposit
Δ(balance)
amount? : R

amount? > 0.0
balance′ = balance + amount?

Withdraw
Δ(balance)
amount? : R

amount? ≥ 0.0
balance′ = balance − amount?

The Withdraw operation includes an unconditional withdrawal of amount? from the bal-
ance. This may lead to a negative balance in the account if there is not sufficient balance
in the account. The subclasses derived from Account may enforce restrictions on with-
drawals to keep the balance zero or positive. One such account is SavingsAccount, which
is specified below.

SavingsAccount
� (accountNumber,balance,Deposit,Withdraw)
Account

minimumBalance : R

minimumBalance = 1000

balance ≥ minimumBalance

Withdraw
balance − amount? ≥ minimumBalance

The class SavingsAccount inherits Account and then exports the state variable balance
along with the three features already exported by Account. A minimum balance of 1000 is
expected to be maintained at all times by the savings account. This constant is introduced
inside the class SavingsAccount and the constraint on minimum balance is included as a
state invariant. Since the class Account does not have any state invariant, no conflicts will
arise in SavingsAccount. The operation Withdraw has a precondition to ensure that the
balance in the account is sufficiently high to allow the withdrawal and at the same time to
maintain the minimum balance. This precondition will be conjoined with the predicate

amount? ≥ 0

balance′ = balance − amount?

already stated in Withdraw in the class Account.

18.2 Distinguished Features of Object-Orientation 547

18.2.3
Polymorphism

Object-Z supports universal polymorphism in which a subclass object can be substituted
for a superclass object. In order to do this, the superclass object must be declared poly-
morphic in the first place. For example, consider the classes Account and its subclass
SavingsAccount for the bank example described in the previous section. The declaration

account :↓ Account

means that the variable account belongs to the superclass Account but any object of the
class Account or its descendant SavingsAccount can be assigned to account. Using this
syntax, a bank class can be given as below:

Bank

accounts : P ↓ Account

∀ a1, a2 : accounts • a1.accountNumber = a2.accountNumber ⇔ a1 = a2

INIT

accounts = ∅

AddAccount
Δ(accounts)
sac? : SavingsAccount

sac?.accountNumber �∈ {a : Account | a ∈ accounts • a.accountNumber}
accounts′ = accounts ∪ {sac?}

The class Bank includes a set of accounts. The declaration

accounts : P ↓ Account

indicates that accounts is a set of elements of the polymorphic type Account. Therefore,
this set can contain elements from Account as well as elements from its subclasses.

The state invariant asserts that an account is uniquely identified by its account number.
The operation AddAccount receives an object of SavingsAccount as a parameter. The

precondition of this operation ensures that the savings account number is not already in-
cluded in any of the accounts in the bank. The postcondition asserts that the savings account
is added to the set of accounts. The predicate

accounts′ = accounts ∪ {sac}

illustrates the polymorphic substitution because sac is an object of type SavingsAccount,
while accounts is declared to be a set of Account.

18

548 18 The Object-Z Specification Language

18.3
Composition of Operations

In object-oriented approach, a class is expected to be highly cohesive and fairly indepen-
dent. This means that the state of an object instantiated from a class must be changed
only by the operations defined within the class. In order to execute a common task that
involves several operations possibly from different classes, a mechanism for method com-
munication is used. Object-Z supports specification of the method communication mech-
anism through Composition of Operations. There are five composition operators defined
in Object-Z; these are sequential composition operator (o9), concurrency operator (∧),
parallel composition operator (‖), nondeterministic choice operator ([]), and environment
enrichment operator (•). All the five of them are binary infix operators. The semantics of
each of these operators is explained in detail in subsequent sections.

It is important to notice that the composition operators can only be used in the horizontal
schema style. This is because, they define composition of operations while the box nota-
tion for schema is meant for including declarations and predicates. Thus, the box notation
should be used only for single standalone operation.

18.3.1
Sequential Composition Operator

The sequential composition operator is used when a specifier wants to realize the effect of
two operations performed in a sequence. It is similar to sequential composition of operation
schemas in Z.

Syntax

Op =̂Op1
o
9 Op2

Semantics
The signature of Op is the union of the signatures of Op1 and Op2 and the predicate part
of Op is the conjunction of the predicate part of Op1 and that of Op2.

The operation Op2 starts in the state where Op1 finishes, thus they are in a sequence.
The communication between the two operations occurs through input and output variables.
Accordingly, the input variables of Op2 are equated to the output variables of Op1. In order
for this to happen, the communicating variables in both operations must have the same
base name. These communicating variables are hidden in Op and so is the intermediate
state between Op1 and Op2.

To illustrate how the sequential composition operator can be used, consider a crafts store
that sells several items. A customer can buy an item and ask the store to paint it. However,
the customer must pay for the item first before asking the store to paint. These two tasks
can be specified as below:

18.3 Composition of Operations 549

PayForItem
Δ(. . .)

item? : ITEM
. . .

SendForPainting
Δ(. . .)

item? : ITEM
. . .

PayForItem o
9 SendForPainting

Since both operations use item? as input, the composition operation merges the two decla-
rations which indicate that the same item is purchased and sent for painting. Alternatively,
the operation PayForItem can output item! which can be absorbed into SendForPainting
through sequential composition.

Properties
The sequential composition operator is neither commutative nor associative.

18.3.2
Concurrency Operator

This operator is used to specify the situation when two operations are invoked at the same
time. It is similar to the schema conjunction operator in Z.

Syntax

Op =̂Op1 ∧ Op2

Semantics
Like in sequential composition, the signature of Op is the union of the signatures of Op1

and Op2, and the predicate part of Op is the conjunction of the predicates of the two
constituent operations.

The operations Op1 and Op2 are started at the same time, even if they terminate at
different times. There is no direct communication involved between Op1 and Op2. It is
important to notice that the individual behavior of the constituent operations is hard to
observe within the composition, especially when both Op1 and Op2 access or modify the
same state variable. An example of a concurrency operator is given below using the crafts
store example discussed in the previous section:

PackThisItem
Δ(. . .)

item? : ITEM
. . .

18

550 18 The Object-Z Specification Language

PayForItem ∧ PackThisItem

The conjunction operator in this case indicates that payment for an item and packing an
item can be performed concurrently.

Properties
The conjunction operator is commutative and associative.

18.3.3
Parallel Communication Operator

This operator is also called handshaking communication operator because the constituent
operations involved in the communication exchange information with each other.

Syntax

Op =̂Op1 ‖ Op2

Semantics
The signature and predicates of Op are derived from the constituent operations in the same
way as in sequential communication.

In this handshaking communication mode, Op1 and Op2 exchange information with
each other through input and output variables. Accordingly, if Op1 has an output variable
and Op2 has an input variable of the same base name, then the output of Op1 is absorbed
as input by Op2. Similarly, if Op2 has an output variable and Op1 has an input variable
of the same base name, then the output of Op2 is absorbed as input by Op1. While the
information exchange is strictly one way in sequential communication, it occurs in both
directions in parallel communication. As before, the communicating variables are hidden
in Op. The following example illustrates the parallel communication using the crafts store
example.

DeliverPaintedItem
Δ(. . .)

item! : ITEM . . .

PayForItem o
9 SendForPainting o

9 (PackThisItem ‖ DeliverPaintedItem)

The parallel composition in this case indicates that the item is delivered by the paint shop
and is given for packaging.

Properties
The parallel communication operator is commutative but not associative. An associative
version of the parallel operator denoted by ‖! is also available. Apart from the associativity,
another difference between the two parallel operators is that the output variables are not
hidden when the associative parallel operator is used, and hence these variables may be
equated with other input variables in subsequent parallel operations [38].

18.3 Composition of Operations 551

18.3.4
Nondeterministic Choice Operator

This binary operator exclusively selects one of the two constituent operations.

Syntax

Op =̂Op1[]Op2

Semantics
The signature of Op is the union of the signatures of both Op1 and Op2. The predicate of
Op is formed by the disjunction of the predicates of the two constituent operations.

If Op1 is enabled, i.e., when its precondition is true, Op1 will be executed when Op is
called. Similarly, if Op2 is enabled, then Op2 will be executed when Op is called. However,
if both of them are enabled, then one of them is selected to occur. The choice is determined
at design or implementation time and hence this operator is called nondeterministic. One of
the restrictions of the choice operator is that Op1 and Op2 must have the same set of aux-
iliary variables. Auxiliary variables are the variables declared in the operation excluding
those listed in the Δ-list of the operation.

As an example for the choice operator, consider the situation of an overbooked flight.
Assume that the economy seats are full but the flight has few more seats in the business
class. The airlines generally chooses someone who has paid regular price for the economy
ticket or someone who has an Elite membership. If the airlines can find people from both
the categories, then it chooses one arbitrarily. This can be shown using the choice operator
as follows:

PomoteSeating =̂PaidRegularPrice [] HasEliteMembership

Properties
The choice operator is commutative and associative.

18.3.5
Environment Enrichment Operator

The environment enrichment operator is somewhat similar to the sequential composition
operator. It is denoted by the symbol •. If two operations Op1 and Op2 are composed as
Op1 • Op2, then Op2 starts in the state where Op1 ends. In this aspect, • behaves like o

9. The
difference between the two operators is that the environment enrichment operator extends
the full signature of Op1 to Op2. In other words, this operator enriches the environment of
Op2 by allowing it to access the variables declared in the signature of Op1.

Syntax

Op =̂Op1 • Op2

18

552 18 The Object-Z Specification Language

Semantics
The signature of Op is the union of the signature of Op1 and Op2 and its predicate part is
the conjunction of the predicate parts of the two constituent operations.

In this composition, Op2 can access any variable declared in the signature of Op1.
For illustration, consider the flight overbooking example given in the previous section.
Assume that the two operations PaidRegularPrice and HasEliteMembership both have an
input parameter of type EconomySeatPassenger but have different names. In this case, an
unnamed operation can be introduced for passing the input parameter and its signature can
be extended to the two operations using the environment enrichment operator.

PromoteSeating =̂ [x? : EconomySeatPassenger] •
(PaidRegularPrice[x?/passenger?][]HasEliteMembership[x?/member?]

The syntax PaidRegularPrice[x?/passenger?] indicates that the parameter passenger? is
renamed by x?. This renaming of components in a schema is described in Chap. 17.

Properties
The environment enrichment operator is neither commutative nor associative.

The case study given in Sect. 18.5 illustrates the use of all the five composition opera-
tors.

18.4
Specification Examples

Example 3 The Transcript class.

This example is on modeling a student’s transcript. In addition to demonstrating how to
model a simple data-oriented application using Object-Z, this example also shows how to
use the axiomatic definitions within a class.

Problem Description

A student’s transcript includes the student’s name, the courses taken by the student and the
mark for each course. Mark is a number between 0 and 100. The specification must support
operations (i) to add a course to the student’s transcript, (ii) to remove a course from the
transcript, (iii) to change the mark for a course already entered in the transcript, and (iv) to
find the average of marks in all the courses taken by the student. No course can exist in the
transcript without a mark. Stated otherwise, whenever a course is added to the transcript,
the mark in that course must also be added at the same time.

Assumptions

1. There is only one mark for each course in the transcript. If the student takes the course
again, the new mark for the course will override the previous mark entered for that
course.

The Model

The application is modeled as one class called Transcript with some global types that can
be used inside the class.

18.4 Specification Examples 553

Mark is a number ranging from 1 to 100, both inclusive, and hence it is appropriate to
model it as an enumerated type. The course and mark are tightly related and hence can
be modeled as a relation. Since there is only one mark for a course, the relation between
course and mark should be modeled as a function. The state of the system will include a
variable that corresponds to the mapping between courses and the marks in these courses.
The student’s name is included as another state variable, even though this variable does not
contribute to any operations in the class.

It is required to compute the average of the marks for a student. This means that the
marks in all the courses must be summed up to find the average. Consequently, the sum
function must be defined using an axiomatic definition.

Since the course to mark relationship is modeled as a function data type in the state
space, we can include another function to extract the mark in each course. Because two
courses may have the same mark, the output of the extraction function will be modeled as
a sequence. This output will be fed as an input to the sum function. Although the average
can be computed within an operation, the specification includes a third function to compute
the average. This function can be used to compute the average of a sequence of numbers
and hence can be used in other context as well.

Initially, the mapping from courses to marks will be empty. The operations of the
Transcript class follow:

AddRecord This operation describes how to add a new course record to the transcript. The
precondition must ensure that the course name must not exist in the transcript before.

RemoveRecord In order to remove a record from the transcript, the course name corre-
sponding to the record must exist already in the transcript. This should be stated as a
precondition. Since courses is a function, it guarantees that there is only one record for
each course in the transcript.

ReportAverage The purpose of this operation is to find the average of marks for all the
courses reported in the transcript. This operation will make use of the function findAver-
age which, in turn, calls the function findSum. The sequence of marks from the transcript
are extracted using the function extractMarks.

The Object-Z Specification

[COURSE, STRING]

Mark == 0..100

Transcript
� (name, courses,AddRecord,RemoveRecord,ReportAverage)

extractMarks : (COURSE �→Mark) �→ seq Mark

∀ cours : (COURSE �→Mark) •
(cours = ∅ ⇒ extractMarks(cours) = 〈 〉) ∧
(cours �= ∅ ⇒

(∃ c : COURSE | c ∈ dom cours •
extractMarks(cours) = 〈cours(c)〉 � extractMarks({c}�−cours)))

18

554 18 The Object-Z Specification Language

findSum : seq Mark �→N

∀ s : seq Mark •
(s = 〈 〉 ⇒ findSum(s) = 0) ∧
(s �= 〈 〉 ⇒ findSum(s) = head s + findSum(tail s))

findAverage : seq Mark �→N

∀ s : seq Mark | s �= 〈 〉 • findAverage(s) = findSum(s) div (#s)

name : STRING
courses : COURSE �→Mark

INIT

courses = ∅

AddRecord
Δ(courses)
newCourse? : COURSE
mark? : Mark

newCourse? �∈ dom courses
courses′ = courses ∪ {newCourse? �→ mark?}

RemoveRecord
Δ(courses)
courseToRemove? : COURSE

courseToRemove? ∈ dom courses
courses′ = {courseToRemove?}�−courses

ReportAverage
average! : R

average! = findAverage(extractMarks(courses))

�
Example 4 Access Rights to Computers.

Problem Description

This example is about the specification of authorized access to a set of computers in a
department. The department has a set of computers and a set of student users. Each user

18.4 Specification Examples 555

Fig. 18.1 A scenario in the Access Rights example

is assigned at most one computer for his/her use. The user U assigned to a computer C

is responsible for maintaining C . Each computer can be assigned to at most one student.
In addition to using the computer assigned to him/her, a student is also allowed to use a
subset of computers that are already assigned to other users. This authorization must be
given by the department. Notice that no one can use a computer that is not assigned to
anyone because no one can maintain (is responsible for) that computer. Also, a student
who has not been assigned to any computer cannot use any other computer.

To better understand the problem, consider the scenario as shown in Fig. 18.1: There
are four students and four computers in this scenario. Student S1 is assigned the computer
C1 but can also use C2. Student S2 is assigned C3 but can also use C1 and C2. Student S3
is assigned C2. The computer C4 is not assigned to anyone and student S4 is not assigned
to any computer.

The department must be able (i) to add a new student, (ii) to add a new computer, (iii) to
assign a computer to a student, (iv) to de-assign a computer that was assigned to a student,
(v) to give authorization for a student to use a computer other than the one assigned to
him/her, and (vi) to remove authorization for a student from using a computer.

Assumptions

1. The set of computers that a student can use includes the computer he/she is assigned to.

18

556 18 The Object-Z Specification Language

The Model

The focus of the problem lies in the relationship between computers and students. This
relationship can be modeled in different ways. Each choice will lead to a different style of
specification, some leaning to easier to understand. For example, one could use the relation
↔ from computers to students. This will allow a computer to be associated with more than
one student which is appropriate for the usage relationship. That is, a computer can be used
by several students. However, in order to capture the assignment of computers to students,
additional constraints must be imposed on this relationship, because each computer is at
most assigned to only one student. A function is a natural choice for the latter relationship.
The problem will be different if the relationship is viewed from students to computers.
Thus, this example serves as a candidate to explore different modeling alternatives.

The specification given below uses functions to model both the assignment and usage
relationships. It has only one class, the Department. The state space consists of a set of
computers, a set of students and two mappings—one for the assigned relationship and the
other for the usage relationship. Both mappings are modeled as functions from students
to computers. Thus, assigned is a function from students to computers, and canUse is a
function from students to a set of computers. The state invariant must assert the following:

1. The domain of assigned which represents the set of all students who are assigned com-
puters must be a subset of the set of students in the department.

2. The range of assigned which denotes the set of all computers being assigned must be a
subset of the set of computers in the department.

3. Both functions assigned and canUse must have the same domain indicating that every
student who is assigned a computer must also be using a computer, and vice versa.

4. The set of all computers that are assigned must also be used, and vice versa.
5. The constraint that each user can be assigned at most one computer is taken care of by

the function data type. However, an additional constraint is needed to assert that each
computer is assigned to at most one student. Stated otherwise, no two students must
have been assigned the same computer.

6. Every student who is assigned a computer can use that computer.

The operations AddStudent and AddComputer are straightforward. The operation Assign
should check whether the student is not assigned any computer, and the computer is not
assigned to any student. If these two conditions are true, both the functions assigned and
canUse should be updated to include a new entry for the given student and the given com-
puter.

The operation Authorize allows a student to use a computer. It must check whether the
computer is already assigned to a student, because only those computers that are assigned
can be authorized to use. Similarly, the operation must also check whether the student has
been assigned a computer. If these two conditions are met, the set of computers used by
this student should be updated to include the computer given as the parameter.

The purpose of the DeAssign operation is to remove the assignment of a computer from
a student. Since this will remove the person who is in charge of the computer, all usage rela-
tionships to this computer must also be removed. Further, the student who was assigned to
this computer must also be removed from all usage relationships because a student cannot

18.4 Specification Examples 557

use any computer if he/she does not have any computer assigned to him/her. The opera-
tion DeAssign accepts two input parameters—student? and computer?. The precondition
must ensure that computer? is assigned to student? before this operation. The postcondi-
tion must (i) remove the entry corresponding to student? �→ computer? from the function
assigned; (ii) remove all entries corresponding to the use of this computer in canUse; and
(iii) remove all entries corresponding to student? from canUse.

The operation RemoveAuthorization will be invoked to remove authorization of a stu-
dent from using a computer. It accepts student? and computer? as inputs. The student must
be using this computer before and hence there must be an entry student? �→ computer? in
canUse. It is also important to check that computer? is not assigned to student?. Other-
wise, there will be no one to administer computer?. Further, de-assigning a computer will
be taken care of by the DeAssign operation, and not by RemoveAuthorization. The post-
condition for the RemoveAuthorization must assert that computer? is removed from the set
of computers used by student?.

Object-Z specification

[USERNAME,COMPUTER]

The state of the class Department includes two relations, called assigned and canUse
which, respectively, define the relationships from students to assigned computers and from
students to the set of computers that they can use. For the above example, these two rela-
tions will be

assigned = {(S1,C1), (S2,C3), (S3,C2)}
canUse = {(S1, {C2,C1}), (S2, {C3,C1,C2}), (S3, {C2})}

Notice that S4 is not included in the relation canUse, because S4 cannot use any computer.
It is possible to include the ordered pair (S4, {}) in the relation canUse but it will be a
slightly different model.

Department

students : PUSERNAME
computers : PCOMPUTER
assigned : USERNAME �→COMPUTER
canUse : USERNAME �→PCOMPUTER

dom assigned ⊆ students
ran assigned ⊆ computers
dom canUse = dom assigned⋃

(ran canUse) = ran assigned
∀ u1, u2 : dom assigned • u1 �= u2 ⇒ assigned(u1) �= assigned(u2)

∀ u : dom assigned • assigned(u) ∈ canUse(u)

18

558 18 The Object-Z Specification Language

INIT

students = ∅
computers = ∅
assigned = ∅
canUse = ∅

AddStudent
Δ(students)
newStudent? : USERNAME

newStudent? �∈ students
students′ = students ∪ {newStudent?}

AddComputer
Δ(students)
newComputer? : COMPUTER

newComputer? �∈ computers
computers′ = computers ∪ {newComputer?}

Assign
Δ(assigned, canUse)
student? : USERNAME
computer? : COMPUTER

student? ∈ students
computer? ∈ computers
student? �∈ dom assigned
computer? �∈ ran assigned
assigned′ = assigned ∪ {student? �→ computer?}
canUse′ = canUse ∪ {student? �→ {computer?} }

DeAssign
Δ(assigned, canUse)
student? : USERNAME
computer? : COMPUTER

(student? �→ computer?) ∈ assigned
assigned′ = {student?}�−assigned
∀ s : dom canUse | computer? ∈ canUse(s) •

canUse′ = (canUse ⊕ {s �→ canUse(s) \ {computer?} })
∪({student?}�−canUse)

18.4 Specification Examples 559

Authorize
Δ(canUse)
student? : USERNAME
computer? : COMPUTER

student? ∈ dom assigned
computer? ∈ ran assigned
computer? �∈ canUse(student?)
canUse′ = canUse ⊕ {student? �→ canUse(student?) ∪ {computer?} }

RemoveAuthorization
Δ(canUse)
student? : USERNAME
computer? : COMPUTER

student? ∈ dom canUse
computer? ∈ canUse(student?)
student? �→ computer? �∈ assigned
canUse′ = canUse ⊕ {student? �→ canUse(student?) \ {computer?} }

�

Example 5 University Sports Management.

Problem Description

A computerized system maintains information about players and teams in several univer-
sities and games played between the universities. Each university has a set of players,
considered to be the sportsmen of the university. The players for a team are selected from
the set of players of the university. A university may have more than one team whose play-
ers are selected from the same pool, and so a player from a university may play for more
than one team. The following rules must be obeyed by the universities and their teams:

• Each team is associated with exactly one university.
• Each player is associated with exactly one university.
• A university may have more than one team.
• The players for a team are chosen from the players of the same university.
• A player from a university may play for more than one team of the same university.
• No two teams from the same university play against each other.

The system must include operations (i) to add a new player to a team, (ii) to add a new
player to the university, (iii) to add a new team to a university, (iv) to delete a player from
a team, (v) to delete a player from the university, (vi) to delete a team from a university,
(vii) to replace a player in a team, (viii) to add a game between two universities and (ix) to
delete a game between two universities.

18

560 18 The Object-Z Specification Language

Assumptions

1. Since the problem is concerned with the relationships between teams, players and
games, no personal information about players will be included.

2. A team will have a team name and a set of players. No additional information such as
captain or team logo will be included in the specification.

3. Team names are assumed to be unique throughout the system.
4. University names are assumed to be unique.
5. For a game, only the two team names playing in the game will be maintained in the

system. No additional information such as game timings or location will be included.

The Model

Based on the assumptions, it is appropriate to model the player, team name and university
name as basic types. Like the computer access rights problem given in Example 4, this
problem can be modeled in several ways. For example, the relationship between team and
player can be modeled as a relation or as a function, and the relationship between team
and university can be modeled in the same way. The specification below uses functions to
model the relationships between the entities.

There will be two classes, University and SportsManagementSystem. Further, one could
model a team as a separate class and then include it in the University class. However, the
only information needed for a team is its name and the set of players in the team. This could
be modeled as a relation within the University class, thus eliminating the need forone more
class. If the problem is expanded to include additional information, such as the caption of
the team, then it is appropriate to consider team as a separate class.

For the University class, the state space will include the name of the university, the
set of players of the university, and the set of teams along with their players. As stated
earlier, teams and their players can be modeled as a function from team names to a set of
players. The state invariant must assert the players of all teams within the university must
be coming from the pool of players belonging to the university. Initially, there is no player
and no team in the university. The operations will be modeled next.

The operations AddPlayerToUniversity, AddTeam, AddPlayerToTeam, DeletePlayer-
FromTeam and DeleteTeam in the University class are straightforward. The readers are
urged to think of the specifications for these operations by themselves and then compare
their solutions with the ones given in the specification below.

The operation DeletePlayerFromUniversity needs special attention because a player
when deleted from a university must also be deleted from all the teams in which he/she
participates.

The operation ReplacePlayerFromTeam can be defined as a composition of deleting a
player from the team and adding a new player.

The class SportsManagementSystem maintains the information about games between
the teams. Since teams are associated with the universities, the state space for this class
consists of a set of universities and games. A game is modeled as a relation between two
teams. Since team names are unique, and the information about a game only requires the
team names, it is appropriate to model this relation between two team names. This also
justifies why it is not necessary to model the team as a class. The state invariant for this
class must assert the following:

18.4 Specification Examples 561

1. The names of all universities are unique.
2. No player is associated with more than one university. Stated otherwise, the set of play-

ers of two different universities are mutually exclusive.
3. The team names are all unique. That is, no two teams, whether belonging to the same

university or different universities, will have the same name.
4. For every game, the two teams playing the game must come from two different univer-

sities. This asserts the fact that two teams of the same university cannot play against
each other.

There are only two operations in the SportsManagementSystem class—AddGame and
DeleteGame. Deleting a game from the system is straightforward; it simply removes the
entry from the relation games. To add a game, the precondition must ensure that the two
teams must belong to two different universities.

Object-Z specification

[PLAYER,TEAM NAME,UNIVERSITY NAME]

University

name : UNIVERSITY NAME
players : PPLAYER
teams : TEAM NAME �→PPLAYER

⋃
(ran teams) ⊆ players

INIT

players = ∅
teams = ∅

AddPlayerToUniversity
Δ(players)
newPlayer? : PLAYER

newPlayer? �∈ players
players′ = players ∪ {newPlayer?}

AddTeam
Δ(teams)
newTeamName : TEAM NAME
newTeamPlayers : PPLAYER

newTeamName �∈ dom teams
newTeamPlayers ⊆ players
teams′ = teams ∪ {newTeamName �→ newTeamPlayers}

18

562 18 The Object-Z Specification Language

AddPlayerToTeam
Δ(teams)
newPlayer? : PLAYER
teamName? : TEAM NAME

teamName? ∈ dom teams
newPlayer? ∈ players
newPlayer? �∈ teams(teamName?)
teams′ = teams ⊕ {teamName? �→ (teams(teamName?) ∪ {newPlayer?})}

DeletePlayerFromTeam
Δ(teams)
player? : PLAYER
teamName? : TEAM NAME

teamName? ∈ dom teams
player? ∈ teams(teamName?)
teams′ = teams ⊕ {teamName? �→ (teams(teamName?) \ {player?})}

DeletePlayerFromUniversity
Δ(players, teams)
player? : PLAYER

player? ∈ players
players′ = players \ {player?}
∀ teamName : TEAM NAME|

teamName ∈ dom teams ∧ player? ∈ teams(teamName) •
teams′ = teams ⊕ {teamName �→

(teams(teamName) \ {player?})}

DeleteTeam
Δ(teams)
teamName? : TEAM NAME

teams′ = {teamName?}�−teams

ReplacePlayerFromTeam =̂DeletePlayerFromTeam o
9 AddPlayerToTeam

18.4 Specification Examples 563

SportsManagementSystem

universities : PUniversity
games : TEAM NAME ↔ TEAM NAME

∀ univ1,univ2 : universities •
(univ1.name = univ2.name ⇔ univ1 = univ2) ∧
(univ1 �= univ2 ⇒

(univ1.players ∩ univ2.players = ∅) ∧
({tn : TEAM NAME | tn ∈ dom univ1.teams} ∩

{tn : TEAM NAME | tn ∈ dom univ2.teams} = ∅))

∀ team1, team2 : TEAM NAME | (team1, team2) ∈ games •
team1 �= team2 ∧
(∃ univ1,univ2 : University | univ1 ∈ universities ∧

univ2 ∈ universities ∧ univ1.name �= univ2.name •
team1 ∈ dom univ1.teams ∧ team2 ∈ dom univ2.teams)

INIT

universities �= ∅
games = ∅

AddGame
Δ(games)
team1?, team2? : TEAM NAME

(∃ univ1,univ2 : University | univ1 ∈ universities ∧
univ2 ∈ universities ∧ univ1.name �= univ2.name •

team1? ∈ dom univ1.teams ∧ team2? ∈ dom univ2.teams)
games′ = games ∪ {team1? �→ team2?}

DeleteGame
Δ(games)
team1?, team2? : TEAM NAME

(team1?, team2?) ∈ games
games′ = games \ {(team1?, team2?)}

Comments

Replacing a player in a team is the same as deleting the player from the team and adding a
new player. So, a sequential composition is used for this operation. Notice that there is no
communication between DeletePlayerFromTeam and AddPlayerToTeam, but the sequence
of executions is still defined by this operation. �

18

564 18 The Object-Z Specification Language

18.5
Case Study

In Chap. 16, the case study is given on a computer network. The focus of that problem
is to model the nodes, the paths and network protocol. The case study in this chapter is
on modeling an electronic mail system which focuses on client side mail operations such
as sending, receiving, reading and forwarding mails, as well as network manager opera-
tions in distributing the mails. These two case studies are derived from the same applica-
tion domain but each has a different focus and hence the modeling are different. Further,
the specification for the case study in this chapter utilizes the composition operators in
Object-Z.

Problem Description

An electronic mail system supports transactions of mails across a set of nodes. It is assumed
that a network manager handles communication of mails between nodes. A node wishing
to send a mail (hereafter referred to as sender) must compose the mail first and submit it
to the network manager. The sender will get an acknowledgment from the network man-
ager whether or not the mail has been accepted by the network manager, depending on the
availability of space in the network manager’s buffer to hold the mail. The network man-
ager maintains two queues for holding mails—regular queue, which is used to hold the
incoming mails, and retry queue, which is used to hold the mails that are not dispatched
in the first attempt. The network manager concurrently dispatches mails from both the
queues.

Receiving a mail at a node is different from reading the mail. While receiving a mail,
the network manager attempts to put the mail in the incoming tray of the receiver. If the
tray is not full, the receive operation will be successful; if the tray is full, then the network
manager will place the mail in its retry queue and attempt to dispatch the mail again at a
later time. The network manager attempts at most two times to deliver a mail. In case the
mail could not delivered within two attempts, the network manager sends a message to the
sender and discards the mail.

When a node reads a mail, it moves the mail from its incoming tray to an internal
mailbox. The mails in the internal mailbox are grouped based on sender identifications.

Assumptions

1. If a sender receives a notification from the network manager that a mail sent by the
sender is not accepted, the sender can decide to send the mail again or to ignore the
mail.

2. Each mail is addressed to only one recipient. Therefore, if a sender wants to send a
mail to more than one recipient, the sender must send a separate mail to each recipi-
ent.

3. A node can send a new mail, reply to a mail or can forward a mail.
4. When a mail is forwarded by a node, it does not change the contents of the mail. Only

the to address of the mail is changed.

18.5 Case Study 565

5. When a node replies back to a mail, the contents of the mail must be changed.
The from and to addresses of the incoming mail are switched in the outgoing
mail.

The Model

This problem is quite complex in terms of the number of entities involved and the commu-
nication between them. For example, from the problem description, one could identifythe
entities Mail, Node, Queue, Buffer and Network Manager. Each of these entities has its
own private data and operations to manipulate the data, thus qualifying for a class defini-
tion. This type of analysis is done in object-oriented design to identify the set of classes
from the problem description.

The Object-Z Specification

The following basic types are introduced in the specification.

[NODEID,CHAR]

The following global types are used in the specification.

MailContent == seq CHAR
Acknowledgement ::= Accepted | NotAccepted
DeliveryMessage ::= Delivered | TimeOut
SpaceAvailability ::= Full | NotFull

The type MailContent is used to describe the contents of a mail as one string. Other
global entities are enumerated types.

The class Mail contains three state variables. The variable from identifies the sender
node, to identifies the receiver and body describes the contents of the mail. The two edit
operations given in the class allow one to edit the to address of a mail and the body of the
mail, respectively.

Mail

from : NODEID
to : NODEID
body : MailContent

body �= 〈 〉

EditTo
Δ(to)

to′ �= to

18

566 18 The Object-Z Specification Language

EditBody
Δ(body)

body′ �= body

The class MailQueue describes a queue of mails. From the problem description, there
are at least three places where mails are queued in this example: the intray of a node,
which holds the incoming mails, the regular queue in the network manager, which holds
the mails submitted by nodes, and the retry queue in the network manager, which holds
the mails that are not delivered in the first attempt. Each mail queue has its constant called
buffer capacity, which denotes the maximum size of the queue. There are three operations
included in the MailQueue class:

AddMail This operation is to add a mail to the queue. It must ensure that there is enough
space in the buffer of the queue.

ExtractMail This operation will be invoked to remove the first element in the queue and
output the same.

IsFull This is a boolean operation that asserts whether or not the queue is full.

MailQueue

buffer capacity : N1

buffer : iseq Mail

#buffer ≤ buffer capacity

INIT

buffer = 〈 〉

AddMail
Δ(buffer)
new? : Mail

#buffer < buffer capacity
buffer′ = buffer � 〈new?〉

ExtractMail
Δ(buffer)
out! : Mail

#buffer > 0
buffer′ = tail buffer
out! = head buffer

18.5 Case Study 567

IsFull
result! : SpaceAvailability

#buffer = buffer capacity ⇒ result! = Full
#buffer �= buffer capacity ⇒ result! = NotFull

A node contains a unique identifier for the node, a mail queue called intray to store the
incoming mails and an internal mailbox indicated as mbox in the class Node. The internal
mailbox is defined as a function from sender identifiers to a set of mails. Each entry in this
function shows the mails received from a particular sender. The state invariant of the class
Node asserts the following:

• Every mail in intray of the current node has its to address corresponding to the node id
of this node. In other words, every node n has only those mails addressed to n in its
intray.

• If there is an entry for a node n in mbox, then there must be at least one mail received
from n. In other words, no entry in mbox will have an empty set mapped to a node.

• Every mail in mbox has its from address corresponding to the entry in mbox and to
address corresponding to the id of the current node.

• When a mail is read, it is moved from intray to mbox. Therefore, there is no duplicate
copy of any mail held in intray. Consequently, the set of mails in intray and the set of
mails in mbox are mutually exclusive.

Initially, both intray and mbox must be empty. The operations in the class Node are sum-
marized below:

Send This operation is used when a node wants to send a mail. Typically, this operation
lets the user compose a mail. The from address of the new mail must be the sender’s id.

ReceiveACK This operation will be invoked when the node wants to receive acknowledg-
ment from the network manager after sending a mail. Currently, this operation is spec-
ified with no predicates because the primary purpose of this operation is to receive the
acknowledgment only.

ReceiveDeliveryMessage Similar to ReceiveACK, this operation will be invoked when a
network manager sends a delivery message for a mail submitted by this node.

SendAndWait This is a composite operation defined as a sequential composition of Send
and ReceiveACK.

Receive This operation will be invoked by the network manager to put the incoming mails
into the intray. It is defined as a composite operation using environment enrichment oper-
ator. The unnamed operation on the left side of the • operator is used to declare the input
variable new? which will be used by the intray.AddMail operation.

UpdateMailbox The UpdateMailbox operation is used to add a mail to mbox. It checks
whether there is a mail already from the same sender in mbox. If so, it adds the new
mail to the set of mails already received from this sender. Otherwise, a new entry will be
created for this sender and the new mail is added to this entry.

18

568 18 The Object-Z Specification Language

Read The process of reading a mail is defined as moving a mail from intray to mbox.
Forward The Forward operation is supposed to be defined as a sequential composition of
Read, followed by EditTo in the incoming mail which is then followed by SendAndWait.
Conceptually, a forwarding operation reads the mail, enters the new destination in to field
and then sends it to the new destination.

Reply When a node replies back to a message, the sender and receiver addresses are
switched as indicated by the unnamed operation in the definition of Reply. The Reply
operation itself is defined as a sequential composition of Read, followed by EditBody of
the incoming mail and then followed by SendAndWait.

Node

nid : NODEID
intray : MailQueue
mbox : NODEID �→PMail

∀ m : Mail | 〈m〉 in intray.buffer • m.to = nid
∀ id : NODEID | id ∈ dom mbox •

(mbox(id) �= ∅) ∧
(∀ m : Mail | m ∈ mbox(id) • m.from = id ∧ nid = m.to) ∧
(mbox(id) ∩ ran(intray.buffer) = ∅)

INIT

intray.buffer = ∅
mbox = ∅

Send
to? : NODEID
body? : MailContent
m! : Mail

m!.from = nid
m!.to = to?

m!.body = body?

ReceiveACK
ack? : Acknowledgement

ReceiveDeliveryMessage
message? : DeliveryMessage

SendAndWait =̂Send o
9 ReceiveACK

Receive =̂ [new? : Mail | nid = new?.to] •intray.AddMail

18.5 Case Study 569

UpdateMailbox
Δ(mbox)
m? : Mail

(m?.from ∈ dom mbox ⇒
mbox′ = mbox ⊕ {m?.from �→ mbox(m?.from) ∪ {m?} })

(m?.from �∈ dom mbox ⇒
mbox′ = mbox ⊕ {m?.from �→ {m?} })

Read =̂ intray.ExtractMail • UpdateMailbox[out!/m?]

Forward =̂ [m?,m! : Mail | m!.from = nid] •
(Read o

9 m?.EditTo o
9 SendAndWait)

Reply =̂ [m?,m! : Mail | m!.from = nid ∧ m!.to = m?.from] •
(Read o

9 m?.EditBody o
9 SendAndWait)

Comments on the class Node

The operation Read is defined as sequential composition of the two operations in-

tray.ExtractMail and it UpdateMailbox. Notice that the output variable out! of in-

tray.ExtractMail is substituted for the input variable m? of UpdateMailbox.

The unnamed operation in Forward before the sequential composition declares the input

and output variables and ensures that the sender of the new mail is the current node.

The NetworkManager class is given next. It consists of a set of nodes and two

mail queues—the regular queue that holds all mails submitted by other nodes, and the

retry queue that holds the mails that were not delivered in the first attempt. The state in-

variant of this class asserts that no mail is duplicated between the two queues, and every

mail stored in the two queues is sent by a node known to the network manager and is

also addressed to one of the nodes known to the manager. Initially, the two queues in the

network manager are empty. All the operations of the network manager are defined as

composite operations.

NetworkManager

nodes : PNODEID
regular queue : MailQueue
retry queue : MailQueue

ran(regular queue.buffer) ∩ ran(retry queue.buffer) = ∅
∀ m : Mail | m ∈ ran(regular queue.buffer) ∪ ran(retry queue.buffer) •

m.from ∈ nodes ∧ m.to ∈ nodes

18

570 18 The Object-Z Specification Language

INIT

regular queue.INIT

retry queue.INIT

AcceptMail =̂
[ack! : Acknowledgement; result! : SpaceAvailability; m! : Mail;

sender : Node | sender.nid ∈ nodes] •
((sender.SendAndWait ‖

(regular queue.IsFull • [result! = NotFull ∧ ack! = Accepted])
) o

9

regular queue.AddMail[m!/new?]

)

RefuseMail =̂
[ack! : Acknowledgement; result! : SpaceAvailability; m! : Mail;

sender : Node | sender.nid ∈ nodes] •
(sender.SendAndWait ‖

(regular queue.IsFull • [result! = Full ∧ ack! = NotAccepted])
)

Receive =̂AcceptMail[]RefuseMail
Regular dispatch successful =̂

[receiver : Node; out! : Mail; result! : SpaceAvailability;
delivery! : DeliveryMessage; tray : MailQueue; sender : Node|
receiver.nid ∈ nodes ∧ out!.to = receiver.nid ∧
tray = receiver.intray ∧ out!.from = sender.nid] •

(((regular queue.ExtractMail ∧ tray.IsFull) • [result! = NotFull]
) o

9

((receiver.Receive[out!/new?] ∧ [delivery! = Delivered])
o
9 sender.ReceiveDeliveryMessage
)

)

Retry dispatch successful =̂
[receiver : Node; out! : Mail; result! : SpaceAvailability;

delivery! : DeliveryMessage; tray : MailQueue; sender : Node|
receiver.nid ∈ nodes ∧ out!.to = receiver.nid ∧
tray = receiver.intray ∧ out!.from = sender.nid] •

(((retry queue.ExtractMail ∧ tray.IsFull) • [result! = NotFull]
) o

9

((receiver.Receive[out!/new?] ∧ [delivery! = Delivered])
o
9 sender.ReceiveDeliveryMessage
)

)

18.6 Exercises 571

Regular dispatch fail =̂
[receiver : Node; out! : Mail; result! : SpaceAvailability; tray : MailQueue|

receiver.nid ∈ nodes ∧ out!.to = receiver.nid ∧ tray = receiver.intray] •
(((regular queue.ExtractMail ∧ tray.IsFull) • [result! = Full]
) o

9

retry queue.AddMail[out!/new?]

)

Retry dispatch fail =̂
[receiver : Node; out! : Mail; result! : SpaceAvailability;

delivery! : DeliveryMessage; tray : MailQueue; sender : Node|
receiver.nid ∈ nodes ∧ out!.to = receiver.nid ∧
tray = receiver.intray ∧ out!.from = sender.nid] •

(((retry queue.ExtractMail ∧ tray.IsFull) • [result! = Full ∧ delivery! =
TimeOut]
) o

9

sender.ReceiveDeliveryMessage
)

The explanation for one of the composite operations is given below:

AcceptMail The AcceptMail operation defines the constraints that must be true when a
submitted mail is accepted by the network manager. For the purpose of explanation, the
AcceptMail operation can be viewed as

AcceptMail =̂Op1 • ((Op2 ‖ (Op3 • Op4))
o
9 Op5)

Op1 is an unnamed operation that introduces the input and output parameters, and other
variables that are used by the other components. These variables are accessed by the
other component operations through the environment enrichment operator. Op2 refers
the sender’s action of submitting the mail to the network manager. Op3 corresponds to
checking whether the regular queue in the network manager is full. Since AcceptMail
describes only the success scenario, Op3 is expected to return the value asserting that
the regular queue is not full. This is indicated by the unnamed operation Op4, which
also indicates that the acknowledgment to be sent to the sender must say “Accepted”.
Following the checking, the submitted mail is added to the regular queue of the network
manager which is described by Op5.

Other operations in the class NetworkManager can be interpreted in a similar way.

18.6
Exercises

1. In Example 1, all employees are modeled into one set. Modify this example so that the
state space now contains two divisions of employees—Managers and Developers. The

18

572 18 The Object-Z Specification Language

salary for each manager must be greater than the salary of every developer. No employee
will be in both divisions; i.e., the set of developers and the set of managers are mutually
exclusive. Modify the operations with these changes in the state space. Include one
more operation by which an employee is promoted to a manager and his/her salary is
increased.

2. The Example 4 uses functions from students to computers to model the relationships.
(a) Model the relationships using functions from computers to students.
(b) Model the relationships using relations from computers to students.
(c) Model the relationships using relations from students to computers.
In all the three cases, you may need to rewrite the whole specification.

3. Modify the class Transcript given in Example 3 to add an operation that overwrites a
mark for a given course already entered in the transcript.

4. Modify the class Transcript given in Example 3 to add an operation which allows more
than one mark for a course to be entered. This situation corresponds to taking the course
more than once in order to get a better mark. However, when the average is calculated,
it should take only the highest mark for any course.

5. Modify the university sports management system example to include the following:

• Every team has a captain who is one of the players of the team. A captain cannot
play for more than one team. This is because a captain has more responsibilities and
cannot afford for spending time for more than one team.

• The university maintains a list of players who qualify to serve as captains. Therefore,
the captain of a team must be selected only from this list.

6. Model a double-sided generic queue. It should be possible to add items into this queue
and delete items from the queue on both sides. Show how to use this queue for modeling
a queue in a bank. The regular customers will join the queue at the back while privileged
customers join the queue at the front. When the queue is served, it always removes the
customer from the front of the queue. However, if the last person in the queue leaves, it
should be possible to remove the person from the tail end of the queue.

7. This problem is an expanded version of the crafts store example already used in this
chapter. A crafts store sells several items. Some of these items can be painted or re-
painted at the store for an extra cost. Customers who want an item to be painted must
first pay for the item. An item requested for painting will be sent to the paint shop. After
painting, it is delivered back to the store. It is then packed and the customer will pick
it up from the store. If a customer buys an item without painting, the item is packed
after payment and given to the customer. Model the crafts store mentioned above. Use
as many composition operators as possible. You may also consider the paint shop as a
separate entity rather than part of the store. This will change the model considerably.

8. A car dealer sells several types of vehicles. Each vehicle has a Vehicle Identification
Number (VIN), ‘make’ (Toyota, Honda, Ford etc.), ‘model’ under each ‘make’ (Carolla
and Camery under Toyota, Civic and Pilot under Honda and so on), price and a set
of features of the vehicle. Write Object-Z specification for this car dealer shop using
inheritance. You can use the ‘models’ as subclasses under the superclass corresponding
to the ‘make’. For example, there is a superclass for Toyota vehicle and every ‘model’

18.7 Bibliographic Notes 573

of Toyota can be defined as a subclass. Include operations to add new vehicles, to sell
vehicles, to change features and report sales for a given ‘make’ or ‘model’.

9. (project) An electronic repair shop accepts electronic items for repair. Each item may
require some repair work to be done and/or some parts to be replaced. If parts need
to be replaced, the shop takes the parts from its storage. Obviously, the store needs
to maintain a parts storage. If the parts are not available in the storage, the shop orders
them from a warehouse. Assume that the warehouse has sufficient parts for all electronic
items. Model this electronic repair shop. You may want to consider each entity such as
the shop, storage, warehouse, and electronic item as a separate class. Include relevant
operations for each entity.

18.7
Bibliographic Notes

Object-Z was developed by Graeme Smith [34] at the Software Verification Research Cen-
ter (SVRC) associated with the University of Queensland, Australia. A detailed description
of the language can be found in [10, 38]. Smith described the formal semantics of the lan-
guage in [35] which was later extended by Griffiths [13]. Griffiths worked further on the
semantics of recursive operation definitions [14], which was later refined by Smith [39].

Since its inception, Object-Z has been extensively used for many applications. Most of
them were research projects supported by SVRC. Interested readers can find a good col-
lection of technical reports and publications at SVRC as well as from Smith’s web site
http://www.itee.uq.edu.au/~smith/publications.html. Some of these applications include
multi-agent systems [16], mobile systems [41, 49], user interface design [17, 18], spec-
ification of concurrent systems [44], and specification-based testing [3, 30].

Recently, Object-Z has been combined with CSP for developing the specification of
concurrent systems [8, 43]. Taguchi and others [50] have reported the close relationships
between Pi-Calclus and Object-Z, though there was no integration between the two meth-
ods. Some researchers have used UML with Object-Z [2]. Notable among these is using
the use case diagrams as the front end for Object-Z [27]. Kim and Carrington explained
the mapping between UML models and Object-Z [21]. Roe and others have extended this
approach to include OCL [33].

There are quite a few type checkers available for Object-Z. Wendy Johnson devel-
oped the Wizard tool at SVRC. It is a LATEX-based tool and is freely available. Wizard
is available at http://www.itee.uq.edu.au/~smith/tools.html and its associated documenta-
tion can be found in [19]. ZML is another type checker for Object-Z that is freely avail-
able. This tool is XML-based and was developed at National University of Singapore.
In fact, ZML handles three specification languages, Z, Object-Z and TCOZ, a tempo-
ral extension of Object-Z. This tool and its associated documentation can also be found
at http://www.itee.uq.edu.au/~smith/tools.html. A GUI-based editor and type checker for
Object-Z called TOZE was developed by Tim Parker at the University of Wisconsin-La
Crosse [29]. This tool was developed in Java and is easily portable to any platform. More-
over, this tool is also freely available. The CSP-Object-Z formal specifications can be type

18

574 18 The Object-Z Specification Language

checked by FDR tool developed at Oxford University, London. In addition to type check-
ers, there are some animation tools also available for Object-Z. These include the XML-
based tool by Sun and others [9, 47] and CZT [24]. CZT is a collection of Z-based tools
that include type checking and animation tools.

Refinement of Object-Z specifications mostly follow the same approach as that of Z
specifications, despite the semantic differences between the two languages. Derrick and
Boiten discussed this common approach these two languages in [7]. Smith discussed rea-
soning about Object-Z specifications and formal verification using Object-Z specifications
in [36, 37]. More recently, the refinement of the combined specifications and their usage in
modeling of concurrent systems have been described in [8, 42].

Though there are specific languages for the specification of temporal and real-time sys-
tems, the real-time extension of Object-Z seems to be appealing. This is because Object-Z
can be used to develop the static model of the application and then temporal constraints
can be embedded onto the model. An overview of real-time extensions of Object-Z is given
in [45]. Timed Communication in Object-Z (TCOZ) is a temporal extension of Object-Z re-
ported in [23, 32]. The Real-Time Object-Z (RTOZ) is a real-time extension of Object-Z
reported in [1, 31]. RTOZ uses a layered approach in which the static model lies at the
bottom and the real-time model is placed over the static model. Both models use the same
class structure.

References

1. Alagar VS, Periyasamy K (1996) Real-time Object-Z: a language for the specification and
design of real-time reactive system. Technical report, Department of Computer Science, Con-
cordia University

2. Amálio N, Polack F (2003) Comparison of formalisation approaches of UML class constructs
in Z and Object-Z. In: International conference of Z and B users (ZB 2003). Lecture notes in
computer science, vol 2561. Springer, Berlin

3. Carrington D, MacColl I, McDonald J, Murray L, Strooper P (2000) From Object-Z specifi-
cations to ClassBench test suites. Softw Test Verif Reliab 10(2):111–137

4. Cornelio M, Borba P (2000) Structuring mechanisms for an object-oriented formal specifica-
tion language. In: Software reuse: advances in software reusability. Lecture notes in computer
science series, vol 1844. Springer, Berlin, pp 47–102

5. Cordeiro VAO, Sampaio A, Meira SL (1994) From MooZ to Eiffel—a rigorous approach
to system development. In: FME’94: industrial benefits of formal methods. Lecture notes in
computer science, vol 873, pp 306–325

6. Derrick J (2003) Timed CSP and Object-Z. In: International conference of Z and B users (ZB
2003). Lecture notes in computer science, vol 2561. Springer, Berlin

7. Derrick J, Boiten E (2001) Refinement in Z and Object-Z, foundations and advanced applica-
tions. Springer, Berlin

8. Derrick J, Smith G (2003) Structural refinement of systems specified in Object-Z and CSP.
Formal Aspects Comput 15(1):1–27

9. Dong JS, Li YF, Sun J, Sun J, Wong H (2002) XML-based static type checking and dynamic
visualisation for TCOZ. In: International conference on formal engineering methods (ICFEM
2002). Lecture notes in computer science, vol 2495. Springer, Berlin

10. Duke R, Rose G (2000) Formal object-oriented specification using Object-Z. MacMillan, New
York

References 575

11. Fukagawa M, Hikita T, Yamazaki H (1994) A mapping system from Object-Z to C++. In:
1st Asia-Pacific software engineering conference (APSEC94). IEEE Computer Society, Los
Alamitos

12. Griffiths A (1995) From Object-Z to Eiffel: a rigorous development method. In: Technology
of object-oriented languages and systems: TOOLS 18. Prentice Hall, New York

13. Griffiths A (1996) An extended semantic foundation for Object-Z. In: Asia-Pacific software
engineering conference (APSEC’96). IEEE Computer Society, Los Alamitos

14. Griffiths A (1997) A semantics for recursive operations in Object-Z. In: Formal methods Pa-
cific (FMP’97). Springer, Berlin

15. Gruer P, Hilaire V, Koukam A (2004) Heterogeneous formal specification based on Object-Z
and state charts: semantics and verification. J Syst Softw 70(1–2):95–105

16. Hilaire V, Simonin O, Koukam A, Ferber J (2004) A formal approach to design and reuse
agent and multiagent models. In: Agent oriented software engineering (AOSE 04). Lecture
notes in computer science

17. Hussey A (1999) Formal object-oriented user-interface design. Technical report 99-09, Soft-
ware Verification Research Center, University of Queensland, Australia

18. Hussey A, Carrington D (1998) An empirical study of formal user-interface design. HCI Lett
1(1):19–24

19. Johnston W (1996) A type checker for Object-Z. SVRC technical report No 96–24
20. Kassel G, Smith G (2001) Model checking Object-Z classes: some experiments with FDR. In:

Asia-Pacific software engineering conference (APSEC). IEEE Press, New York
21. Kim S-K, Carrington D (2002) A formal metamodeling approach to transformation between

the UML state machine and Object-Z. In: International conference on formal engineering
methods (ICFEM 2002). Lecture notes in computer science, vol 2495. Springer, Berlin

22. Lano K, Haughton H (eds) (1994) Object oriented specification case studies. Prentice Hall,
New York

23. Mahony B, Dong JS (2000) Timed communicating Object Z. IEEE Trans Softw Eng
26(2):150–177

24. Malik P, Utting M (2005) CZT: a framework for Z tools. In: Lecture notes in computer science,
vol 3455, pp 65–84

25. McComb T, Smith G (2003) Animation of Object-Z specifications using a Z animator. In: In-
ternational conference on software engineering and formal methods (SEFM). IEEE Computer
Society, Los Alamitos

26. Miao H, Lui L, Li L (2002) Formalizing UML models with Object-Z. In: International con-
ference on formal engineering methods (ICFEM 2002). Lecture notes in computer science,
vol 2495. Springer, Berlin

27. Moreira A, Arau’jo J (2000) Generating Object Z specifications from use cases. In: Filipe J
(ed) Enterprise information systems. Kluwer Academic, Norwell, pp 43–51. ISBN 0-7923-
6239-X

28. Moller M, Olderog E-R, Rasch H, Wehrheim H (2004) Linking CSP-OZ with UML and Java:
a case study. In: International conference on integrated formal methods (IFM 2004). Lecture
notes in computer science, vol 2999. Springer, Berlin

29. Parker T (2008) TOZE: a graphical editor and type checker for Object-Z. Masters thesis,
Department of Computer Science, University of Wisconsin-La Crosse

30. Periyasamy K, Alagar VS, Subramanian S (1998) Deriving test cases from Object-Z speci-
fications. In: TOOLS USA’98 (technology of object-oriented languages and systems). IEEE
Computer Society, Los Alamitos

31. Periyasamy K, Alagar VS (1998) Extending Obejct-Z for specifying real-time systems. In:
TOOLS USA’97: technology of object-oriented languages and systems. IEEE Computer So-
ciety, Los Alamitos

32. Qin SC, Dong JS, Chin WN (2003) A semantic foundation of TCOZ in unifying theory of
programming. In: International FME symposium (FM’03). Lecture notes in computer science.
Springer, Berlin

18

576 18 The Object-Z Specification Language

33. Roe D, Broda K, Russo A (2003) Mapping UML models incorporating OCL constraints into
Object-Z. Technical report 2003/9, Imperial College, London

34. Smith G (1992) An object-oriented approach to formal specification. PhD thesis, University
of Queensland

35. Smith G (1995) A fully abstract semantics of classes for Object-Z. Formal Aspects Comput
7(3):289–313

36. Smith G (1995) Reasoning about Object-Z specifications. In: Asia-Pacific software engineer-
ing conference (APSEC ’95). IEEE Computer Society, Los Alamitos

37. Smith G (1995) Formal verification of Object-Z specifications. SVRC Technical report 95-55
38. Smith G (2000) The Object-Z specification language. Kluwer Academic, Norwell
39. Smith G (2000) Recursive schema definitions in Object-Z. In: ZB2000: international confer-

ence of B and Z users. Lecture notes in computer science, vol 1878. Springer, Berlin
40. Smith G (2002) An integration of real-time Object-Z and CSP for specifying concurrent real-

time systems. In: International conference on integrated formal methods (IFM 2002). Lecture
notes in computer science, vol 2335. Springer, Berlin

41. Smith G (2004) A formal framework for modelling and analysing mobile systems. In: Aus-
tralasian computer science conference (ACSC). Australian Computer Society, Sydney

42. Smith G, Derrick J (2001) Specification, refinement and verification of concurrent systems—
an integration of Object-Z and CSP. Form Methods Syst Des 18(3):249–284

43. Smith G, Derrick J (2002) Abstract specification in Object-Z and CSP. In: International con-
ference on formal engineering methods (ICFEM 2002). Lecture notes in computer science,
vol 2495. Springer, Berlin

44. Smith G, Duke R (1992) Specifying concurrent systems using Object-Z. In: 15th Australian
computer science conference (ACSC-15)

45. Smith G, Hayes I (2002) An introduction to real-time Object-Z. Form Aspects Comput
13(2):128–141

46. Stepney S, Barden R, Cooper D (eds) (1992) In: Object orientation in Z. Springer, Berlin
47. Sun J, Dong JS, Liu J, Wang H (2001) An XML/XSL approach to visualize and animate

TCOZ. In: 8th Asia-Pacific software engineering conference (APSEC’01). IEEE Press, New
York

48. Taylor C, Derrick J, Boiten E (2000) A case study in partial specification: consistency and re-
finement for Object-Z. In: International conference on formal engineering methods (ICFEM).
IEEE Computer Society, Los Alamitos

49. Taguchi K, Dong JS (2002) An overview of mobile Object-Z. In: International conference
on formal engineering methods (ICFEM 2002). Lecture notes in computer science, vol 2495.
Springer, Berlin

50. Taguchi K, Dong JS, Ciobanu G (2004) Relating Pi-calculus to Object-Z. In: IEEE interna-
tional conference on engineering complex computer systems (ICECCS’04). IEEE Press, New
York

The B-Method 19

Formal software development requires specifications that are both abstract and concrete,

and in addition a mechanism to refine abstract specifications to concrete specifications. The

B-Method is purposively designed to accomplish the goal of specification and refinement

together along with proof obligations. Introduced by Jean-Raymond Abrial in the early

1990s, the B-Method includes the B language, refinement methods and proof methods

to verify the satisfaction of refinements. This chapter provides a sound tutorial of the B-

Method and includes several examples at varying levels of complexity. The specifications

given in this chapter have been type checked using the Atelier-B-tool. As a result of using

this tool, some of the symbols that were quite frequently used in previous chapters may

look different in this chapter. For example, in this chapter, P denotes the power set, N
denotes the natural numbers, N1 denotes the positive numbers, and Z denotes the integers.

19.1
Abstract Machine Notation (AMN)

The B-Method uses Abstract Machine Notation (AMN), which is a wide-spectrum lan-

guage that supports both abstract specification and its refinement. This makes it easier

for a specifier to start with an abstract specification, refine it toward an implementation

and generate code from a fairly detailed level of specification. The proof obligations dis-

charged at each level guarantees the correctness of the refinement at that level and hence

the final implementation [1, 20]. The specification is given as a collection of abstract ma-

chines. Each machine includes encapsulated data and operations, and invariants. Like other

model-based specification languages such as VDM and Z, the B-Method is also based on

set theory and first-order predicate logic.

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3 19, © Springer-Verlag London Limited 2011

577

19

578 19 The B-Method

19.1.1
Structure of a B Specification

A template of a B specification is given below.

MACHINE MName(p)
CONSTRAINTS C
SETS S
CONSTANTS K
PROPERTIES B
DEFINITIONS M
VARIABLES V
INVARIANT I
INITIALIZATION T
OPERATIONS

y ← operation(x) =

PRE pre
THEN stat
END;

. . .
END

The clauses in uppercase bold letters such as MACHINE and CONSTRAINTS are
keywords in the notation. Most of these keywords are self-explanatory in terms of the
purposes they serve.

MACHINE and CONSTRAINTS clauses

Each abstract machine comes with a unique name (in the above template, MName). A ma-
chine may be parametrized; in this case, the parameters of the machine are supplied with
the machine name. The machine name MName has a parameter p. A machine may have any
number of parameters but their relative ordering is not important. There are two types of
parameters—scalar valued parameters and set valued parameters. A scalar valued param-
eter must be instantiated with a scalar value during implementation of the machine. A set
valued parameter must be instantiated with a nonempty set. The parameters of a machine
may be subject to some constraints which are provided in the CONSTRAINTS clause
after the machine name.

SETS, CONSTANTS and PROPERTIES clauses

Every specification starts at an abstract level. Some types are assumed to be defined at that
level. Z and Object-Z languages call these Basic Types. The equivalent of basic types in B is
the SETS clause. Being sets, this also confirms that types and sets are treated equally within
the B-Method. Constants used within the machine are defined in the CONSTANTS clause.
Any constraints and relationships between the sets, constants and machine parameters are
introduced in the PROPERTIES clause.

19.1 Abstract Machine Notation (AMN) 579

DEFINITIONS clause

Sometimes it will be useful to rename some of the complex structures into a simple name.
The DEFINITIONS clause will be used in this case. All definitions given in this clause
will be textually expanded just like macro substitutions.

VARIABLES, INVARIANT and INITIALIZATION clauses

The VARIABLES clause introduces the state variables of the machine. The invariant of
the machine is specified under the heading INVARIANT which also establishes the rela-
tionships between state variables, constants, sets and parameters. Generally, the invariant
of the machine describes the static properties of the machine that should be preserved at
any time and is expressed using the state variables in relation with the constants, sets and
parameters. The INVARIANTS clause must include the type for each state variable.

An initial state of the machine is described by assigning an initial value for each variable
based on its type. These initial assignments are given in the INITIALIZATION clause.

OPERATIONS clause

The dynamic behavior of the machine is described by a set of operations, each of which
is given under the heading OPERATIONS. The signature of each operation is given in
functional style with its output parameter name, followed by the left arrow, and the name of
the operation together with the names of the input parameters. The set of input parameters
and the output parameter are both optional, but the name of the operation is mandatory.

Each operation consists of a precondition given under the heading PRE, and a body
stated after the THEN clause. Precondition of an operation includes the types for the pa-
rameters. The body of an operation is described by a set of statements (also called general-
ized substitutions) that either set values to output variables or change some state variables
or both. The set of statements include assignment statements, conditional statements using
IF . . . THEN . . . ELSE clauses, and CASE selections. The syntax for these statements is
similar to that found in many imperative programming languages.

Assignment statements in the body of an operation are sometimes referred to as sub-
stitutions. Since, in a formal specification, sequencing of actions will not be specified, the
statements of an operation are always specified as parallel statements. An example for
parallel statements is given below:

x := x + 1 ‖ z := result

The B-Method provides a facility by which multiple assignments can be specified in a
single statement, such as

a, b := x, y

The number of variables on the left side of the assignment must be equal to the number
of expressions on the right side. Hence, the ordering of variables and their corresponding
expressions is implicit. The variables on the left side must be all distinct.

The end of an operation is signified by the keyword END. Operation definitions are
separated by semicolons. The entire specification ends with another keyword END.

19

580 19 The B-Method

Table 19.1 Visibility Rules within an Abstract Machine. ©Abrial, 1996

CONSTRAINTS PROPERTIES INVARIANT OPERATIONS

Machine parameters
√ √ √

SETS
√ √ √

CONSTANTS
√ √ √

VARIABLES
√ √

Visibility Rules

Table 19.1 shows the visibility rules for various entities within an abstract machine. The
symbol

√
in the ith row and jth column of the table indicates that the object in row i is

accessible to the object in column j.
Notice that the visibility rules given in Table 19.1 excludes the DEFINITIONS clause

because the definitions are textually substituted in the rest of the specification before the
specification is type checked. The definitions, therefore, do not have any impact on the rest
of the specification by themselves.

The B-Method includes some additional clauses such as INCLUDES, SEES and USES
which will be discussed later in this chapter.

Though each clause is written on a separate line, formatting of the specification is com-
pletely left with the specifier and tool support. In this chapter, the specifications are written
in the same style as in [20].

To understand the AMN structure of a B specification, consider Example 1, which de-
scribes a student council. It consists of a set of students, one of whom is elected as the
president of the council. It includes three operations—to add a new student to the council,
to delete an existing student from the council and to change the president of the council.

Example 1 The StudentCouncil machine.

MACHINE
StudentCouncil (limit)

CONSTRAINTS
limit ∈ N1

SETS
STUDENT

VARIABLES
council, president

INVARIANT
council ∈ P (STUDENT) ∧ card(council) ≤ limit ∧
president ∈ STUDENT ∧
(council �= ∅ ⇒ president ∈ council)

INITIALIZATION
council := ∅ ‖
president :∈ STUDENT

OPERATIONS

19.1 Abstract Machine Notation (AMN) 581

AddStudent(nn) =

PRE
nn ∈ STUDENT ∧ nn �∈ council ∧ card(council) < limit

THEN
IF council = ∅ THEN

president := nn
END ‖
council := council ∪ {nn}

END;

DeleteStudent(nn) =

PRE
nn ∈ STUDENT ∧ nn ∈ council ∧ nn �= president

THEN
council := council - {nn}

END;

ChangePresident(nn) =

PRE
nn ∈ STUDENT ∧ nn ∈ council

THEN
president := nn

END
END

The StudentCounil machine is declared with a parameter limit which is a positive num-
ber (see the CONSTRAINTS clause). The parameter limit in this case indicates the max-
imum size of the student council. The type STUDENT denotes the set of all students used
in this specification. There are two state variables for this specification, namely council
and president, which are listed under VARIABLES. The INVARIANT clause starts with
the type declarations of the state variables; the variable council is declared as a set of
STUDENT while the variable president is declared of type STUDENT . In addition to these
two type declarations, the state invariant also asserts that (i) the number of students in the
council must be less than or equal to limit, and (ii) the president must be a member of
the council whenever the council is nonempty. The INITIALIZATION clause indicates
that the council is initially empty. It also shows that the value for president is set to some
value of type STUDENT . The operator :∈ denotes a nondeterministic choice from the set
STUDENT . Nondeterministic operators will be discussed in detail in a later section.

The specification includes three operations. The AddStudent operation accepts a stu-
dent as a parameter. The precondition of this operation ensures that the student is not in
the council already (otherwise, there is no need to add the student again). If the precon-
dition is satisfied, the council is updated to include the student. If the council is empty
before this operation, then this student will be the only member of the council and hence
will automatically become the president of the council. The DeleteStudent operation re-
moves a student from the council if the student is already a member of the council. The

19

582 19 The B-Method

Table 19.2 Arithmetic and Set Notations in B-Method

Arithmetic notations Set notations

Symbol Meaning Symbol Meaning

N Natural numbers S ∪ T Set union

N1 Positive numbers S ∩ T Set intersection

m..n Range of numbers from m to
n, m ≤ n

S − T Set difference

max(S) Maximum of a set of numbers e ∈ S Set membership

min(S) Minimum of a set of numbers S ⊆ T Subset

m div n Integer division S ⊂ T Proper subset

m mod n m modulo n P S Power set of S
∑

x . (P | E) Summation of all E(x) for
which P(x) holds

{ }, ∅ Empty set

⋃
X Generalized union of the set of

sets X

Π x . (P | E) Product of all E(x) for which
P(x) holds

⋂
X

Generalized intersection of the
set of sets X

card(S) Cardinality of the set S

operation ChangePresident changes the president of the council to a person input to the
operation. The precondition here ensures that the new president is a student and is a mem-
ber of the council. If the precondition is satisfied, the state variable president is set to this
new student. �

19.2
Notations

Being a model-based specification method, the B-Method shares a majority of symbols
with other model-based specification languages such as VDM-SL and Z. Tables 19.2 and
19.3 display the symbols and their meanings used by the B-Method.

The summation and product notations are new in the B-Method. These two notations
are used in assignment statements in operations.

The notation perm(S) denotes a bijective sequence of type S and is also called the set
of permutations of S.

19.2.1
Arrays

Arrays are formally modeled through functions and sequences in many specification lan-
guages. The B-Method provides additional syntax for arrays. In B, functions and sequences

19.2 Notations 583

Table 19.3 Sequence and Relation Notations in B-Method

Sequence notations Relation notations

Symbol Meaning Symbol Meaning

[] Empty sequence x
→ y x maps to y

seq(S) Sequence of type S dom(R) Domain of relation R

seq1(S) Nonempty sequence of type S ran(R) Range of relation R

iseq(S) Injective sequence of type S U � R Domain restriction

perm(S) Bijective sequence of type S U �− R Domain subtraction

s1 � s2 Sequence concatenation R � U Range restriction

size(s) Cardinality of the sequence s R �− U Range subtraction

rev(s) Reverse of the sequence s S × T Cartesian product

first(s) First element of sequence s R[U] Relational image of the set U

last(s) Last element of sequence s R−1 Relational inverse

tail(s) Sequence s with first element removed R0 o
9 R1 Relational composition

front(s) Sequence s with last element removed R0 �−− R1 Relational override

e → s Prefix sequence s with sequence e id(S) Identity relation on S

s ← e Append sequence e to sequence s Rn nth iteration of relation R

s ↑ n Truncate sequence s after n elements R∗ Transitive closure of relation R

s ↓ n Remove first n elements of sequence s

Table 19.4 Syntax for Arrays in B-Method

Symbol Meaning

arr ∈ 1..N
→ T Array declaration

arr := Exp Substitution of an entire array; ‘Exp’ must be of the same type as ‘arr’

arr(i) := Exp assigning the result of expression ‘Exp’ to the ith element of the array ‘arr’

are generally used in assertions such as in CONSTRAINTS and PROPERTIES. Arrays,
on the other hand, are used in substitutions inside operations. Since the abstraction of an
array is a function, arrays in B use the same syntax as a function application. Table 19.4
shows the syntax for arrays.

Since arrays are formally modeled as functions, the following equivalence holds:

arr(i) := Exp ≡ arr := arr �−− {i → Exp}

In a multiple assignment statement, the variables on the left hand side must all be distinct.
Hence, the statement

arr(i),arr(j) := Exp1,Exp2

19

584 19 The B-Method

which involves the same array variable arr on the left hand side is not permitted. However,
the statement

arr(i),brr(j) := Exp1,Exp2

is correct.

19.3
Nondeterministic Statements

The B-Method allows nondeterminism and provides several constructs to specify it. Infor-
mally, when a set of nondeterministic statements are included, the refinement steps and
hence the desired implementation can exercise a choice in selecting only those statements
that satisfy the additional constraints imposed by the refinement steps.

19.3.1
ANY Statement

The purpose of the ANY statement is to execute a particular statement based on any of the
permissible values of a control variable. The syntax of the ANY statement is given below:

ANY a WHERE C THEN S END

In this structure, the control variable a may have several permissible values, and C is a
condition on a. The condition C can be any logical expression but it must provide the type
of the control variable a. If a satisfies the condition C , then the statement S is executed.
It is possible that more than one value of a may satisfy the condition C and hence S is
nondeterministically executed when any one of the values of a satisfies the condition C .
The control variable a must be local to the ANY statement, and therefore, should not be
part of the state space (state variables, input and output variables) of the operation in which
the ANY statement is executed. As an example, consider the following ANY statement:

ANY n WHERE n ∈ N1 THEN n := n + 1 END

In this case, any positive value of n will cause the statement n := n+1 to be executed. An
extension of the ANY statement includes multiple control variables and their associated
conditions as in

ANY a1, a2, . . . , am WHERE C1 ∧ C2 ∧ · · · ∧ Cn THEN S END

It is important to notice that there should be at least one condition associated with each
control variable. In addition, the type of each control variable must also be provided by the
predicate C1 ∧ C2 ∧ · · · ∧ Cn.

19.3 Nondeterministic Statements 585

19.3.1.1
LET Statement

The LET statement is a special form of ANY statement in which there is only one value
for the control variable. Its syntax is as follows:

LET a BE a = Exp IN S END

The value of a in the above LET statement is constrained to the value evaluated by the
expression Exp. The LET statement given above can be equivalently expressed using the
ANY statement as follows:

ANY a WHERE a = Exp THEN S END

The type of the control variable a is derived from the type of the expression Exp.

19.3.2
CHOICE Statement

Instead of executing a statement based on an arbitrary value of a control variable, some-
times it may be useful to specify an arbitrary choice of statements without constraints.
This is achieved using the CHOICE statement. Its purpose is to arbitrarily choose a state-
ment for execution giving full freedom to the implementer. The syntax of the CHOICE
statement is

CHOICE S1 OR S2 OR . . .OR Sn END

where each Si is a statement. If the above CHOICE statement is executed, it results in
one of the statements Si being executed nondeterministically. To illustrate, consider the
following example:

CHOICE courseResult := Pass

OR courseResult := Fail

OR courseResult := Undecided ‖ action := RepeatCourse

The above example shows the result of a course which describes one of the three possible
outcomes—Pass, Fail or Repeat the course. The CHOICE statement indicates that one of
these will be chosen for execution, but does not indicate how the choice is made. Perhaps
it can be chosen from the user interface.

19

586 19 The B-Method

19.3.3
SELECT Statement

The SELECT statement can be considered as an extension of the CHOICE statement in
which the selection is included in the specification. The syntax for the SELECT statement
is given below:

SELECT C1 THEN S1

WHEN C2 THEN S2

. . .
WHEN Cn THEN Sn

ELSE Sdefault

END

The semantics of the SELECT statement is as follows: When any of the conditions Ci is
satisfied exclusively and all other conditions fail, its associated statement Si is executed.
However, if more than one condition is satisfied, then a nondeterministic choice is made
to execute one of the corresponding statements. The order in which the conditions Ci are
checked is immaterial, because the selection of the executable statement is nondeterminis-
tic.

If none of the conditions from C1 to Cn is satisfied, then the statement Sdefault associated
with the ELSE clause is executed. The ELSE clause is optional in which case, one of the
conditions must be satisfied when the SELECT statement is executed. It is the specifier’s
responsibility to ensure that one of the conditions becomes true if there is no ELSE clause.
The following is an example for the SELECT statement.

SELECT marks ≥ 60 THEN courseResult := Pass
WHEN marks ≥ 50 ∧ marks < 60 THEN courseResult := Undecided ‖

action := RepeatCourse
WHEN marks ≥ 0 ∧ marks < 50 THEN courseResult := Fail
ELSE action := ReportErrorInMarks
END

The ELSE clause in the SELECT statement insists that marks must be zero or above;
otherwise, there is an error in the marks.

19.3.4
PRE Statement

The PRE statement includes a precondition for a statement to be executed. It has the fol-
lowing syntax:

PRE C THEN S END

The statement S will be executed only if the precondition C is true. This is used in most of
the operations. The readers are urged to refer to the StudentCouncil machine in Example 1
for illustration of the PRE statement.

19.4 Structured Specifications 587

19.4
Structured Specifications

This section discusses the constructs for structuring B specifications. In particular, these
constructs enable a disciplined development of incremental specifications.

19.4.1
The INCLUDES Clause

The inclusion mechanism in the B-Method is similar to the aggregation relationship used
in object-orientation. It allows one machine M1 to be completely embodied into another
machine M2. Such an inclusion makes M1 an inherent part of M2. This is achieved by
using the INCLUDES clause as follows:

MACHINE M2

INCLUDES M1

SETS
END

The consequences of the INCLUDES clause are summarized below:

General Conditions

The sets, constants and variables of M1, the included machine, must be distinct from those
of M2, the including machine. In fact, if M2 includes several machines, the sets, constants
and variables of every machine including M2 must all be distinct. The reason for this
condition is explained below under the heading invariant inclusion.

Parameter Instantiation

If M1 is parameterized, the parameters of M1 must be instantiated while including M1 in
M2. Therefore, the inclusion mechanism expects a particular instance of a parameterized
machine, and not a template.

Access to Sets and Constants

The sets and constants of M1 are accessible in M2. So, M2 is free to use any set or constant
declared in M1, along with those additionally declared in M2.

Invariant Inclusion

The state of M1 becomes a part of the state of M2. This indicates that the invariant of M2

includes the invariant of M1. Thus, every operation invoked from M2 must satisfy both
the invariant of M2 as well as the invariant of M1. However, the state of M1 included
within M2 can only be updated by invoking the operations in M1. Stated otherwise, the
operations of M2 can invoke the operations of M1 but they cannot directly access or modify
the state variables of M1. Since the invariant may use the sets, constants and variables of

19

588 19 The B-Method

the corresponding machine, it is necessary that the sets, constants and invariants of the two
machines are distinct; otherwise, there will be a conflict.

Exclusivity of Included Machine

Because the state space of M1 is included in the state space of M2, M1 cannot be included
in any other machine. The reason is that the invariant of M2 depends on the invariant of
M1. If M1 is allowed to be included in another machine, the other machine may change
the state of M1 by invoking one of the operations on M1 while M2 is not aware of such
invocation.

Order of Invocation

The initialization of M2 will invoke the initialization of M1.

Promotion of Operations

By default, operations of M1 are accessible only within M1 and M2 and are not accessible
from outside of M2. However, M2 can make an operation Op of M1 to be available for
its clients through its interface. This requires the PROMOTES clause; its syntax is shown
below:

MACHINE M2

INCLUDES M1

PROMOTES Op

SETS
END

In effect, M2 promotes the operation Op to an outer level. The PROMOTES clause must
occur in conjunction with the INCLUDES clause.

Exporting All Operations

It would be cumbersome to use the PROMOTES clause if M2 wants to promote every
operation from M1, especially when M1 has many operations. In this case, M2 can use the
EXTENDS clause in place of the INCLUDES clause. Thus,

MACHINE M2

EXTENDS M1

SETS
END

is equivalent to

MACHINE M2

INCLUDES M1

PROMOTES Op1, Op2, . . . , Opn

SETS
END

19.4 Structured Specifications 589

Table 19.5 Visibility rules for the INCLUDES clause

PROPERTIES
of including
machine

INVARIANT
of including
machine

OPERATIONS
of including
machine

Parameters of included machine

SETS of included machine
√ √ √

CONSTANTS of included machine
√ √ √

VARIABLES of included machine
√

read-only

OPERATIONS of included
machine

√

where Op1, Op2, . . . ,Opn are all the operations in M1.

Invocation of Included Operations

Though M2 can invoke any operation of M1, it can invoke only one operation of M1 at any
one time. This is because it would not be possible to guarantee the invariant satisfaction if
more than one operation is invoked. Remember that invocation of any operation of M1 or
M2 requires to satisfy the invariants of both the machines.

If M2 includes several machines, the operations of different machines can be executed
in parallel, still maintaining the constraint that only one operation from each machine is
invoked at a time.

Visibility Rules

For ease of quick references, Table 19.5 describes the visibility of different elements of
M1 in M2 under the inclusion relationship, taken from [1].

Transitivity

The inclusion mechanism is transitive. Thus, if a machine M3 includes M2, and M2, in
turn, includes the machine M1, then M3 includes M1 as well. There is one exception to the
transitivity: M3 cannot invoke any operation of M1 directly but can invoke the operations
of M1 through M2. Even if M2 promotes any operation Op from M1, op is considered to
be a part of M2 as far as M3 is concerned.

To illustrate the INCLUDES clause, consider the relationship between a car and its
engine. The car naturally includes the engine. Example 2 describes an engine in a car.

Example 2 The Engine machine and Car machine.

MACHINE Engine
SETS STATUS = {Running, Stopped}
VARIABLES status
INVARIANT status ∈ STATUS
INITIALIZATION status := Stopped
OPERATIONS

run =

19

590 19 The B-Method

PRE status = Stopped
THEN status := Running
END;

stop =

PRE status = Running
THEN status := Stopped
END

END

MACHINE Car

INCLUDES Engine

SETS CARSTATUS = {On, Off}
VARIABLES carStatus, engineStatus
INVARIANT

carStatus ∈ CARSTATUS ∧ engineStatus ∈ STATUS ∧
(engineStatus = Running ⇒ carStatus = On)

INITIALIZATION
carStatus, engineStatus := Off, Stopped

OPERATIONS
start =

PRE carStatus = Off
THEN run ‖ carStatus := On
END;

turnOff =

PRE carStatus = On
THEN stop ‖ carStatus := Off
END;

turnOn = carStatus := On
END

The car machine has two state variables—the variable carStatus is of type CARSTATUS
which is declared as a set inside the car machine. The other variable engineStatus is de-
clared as of type STATUS which is a set defined in the engine machine. This is accessible
because car includes engine. Even though the variable engineStatus is not used anywhere
else in the Car machine, it is introduced in this example mainly to show that the sets and
constants of the included machine are accessible by the including machine.

There are three scenarios described by the operations of the car machine. Initially, the
engine is stopped and the car ignition switch is turned off. In the first scenario, the car is
started by turning it on and the engine is running. This is illustrated by the operation start()
in the car machine. Notice that this operation invokes the run() operation inside the engine
machine. In the second scenario, the car is stopped by invoking the turnOff () operation,
which in turn invokes the stop() operation in the engine machine. The third scenario de-
scribes the possibility of turning on the car without starting the engine, as illustrated by the
turnOn() operation.

19.4 Structured Specifications 591

The Car machine does not promote any operation from the Engine machine and hence
none of the operations of Engine is accessible from outside of the Car machine. �

19.4.2
The USES Clause

The inclusion mechanism incorporates one machine M1 into another machine M2. Ma-
chine M2, in this case, has complete control over M1. The fact that M1 cannot be included
in or accessed by any other machine shows a strict aggregation relationship between M1

and M2. However, there are some other situations where a machine is required to be shared
by several other machines but in read-only format. This is achieved by the USES clause.
Thus, when a machine M2 uses a machine M1, M2 can only make use of the static envi-
ronment of M1, described the SETS, and CONSTANTS clauses of M1. In addition, M2

can also make use of the variables of M1 in the invariant of M2, thus establishing a strong
binding between the invariant of M2 and M1. In other words, the invariant of M2 depends
on the state of M1. However, M2 cannot change the state of M1 because it does not have
access to the operations of M1. This shows the read-only access of M1 from M2.

The dependency relationship of the invariant of M2 on the state of M1 raises an im-
portant issue. How would M2 ensure the satisfaction of its own invariant when it does not
have control over the state of M1? In fact, M2 would not be able to guarantee that its own
invariant is satisfied at all times. This must be done by a machine that includes both M1

and M2. Therefore, the USES clause is used only in a situation where M1 and M2 are both
part of another machine M , but M2 uses M1 for some of its definitions. More details on
the USES relationship can be found in [1].

The INCLUDES and USES mechanisms in the B-Method are similar to the concepts
of composite aggregation and shared aggregation, respectively, in the Unified Modeling
Language (UML) [9], a design notation commonly used for object-oriented software de-
velopment.

The following is the syntax of the USES clause:

MACHINE M2

USES M1

SETS
END

The semantics of the USES clause is described below. The description refers to the situa-
tion where machine M2 uses machine M1.

Parameter Instantiation

Unlike in the INCLUDES clause, the parameters of M1 are not instantiated in M2. This
is mainly because M1 can be shared by any other machine. However, M2 can make use
of the parameters of M1 in its invariant and operations because the state (and hence the
invariant) of M2 depends on the state of M1.

19

592 19 The B-Method

Table 19.6 Visibility Rules of the USES clause

PROPERTIES
of using
machine

INVARIANT
of using
machine

OPERATIONS
of using
machine

Parameters of used machine
√ √

SETS of used machine
√ √ √

CONSTANTS of used machine
√ √ √

VARIABLES of used machine
√

read-only

OPERATIONS of used machine

Access to Sets and Constants

The sets and constants of M1 are available within M2 which can be used anywhere in M2.

Inclusion of Invariant

The variables of M1 are visible to M2. So the INVARIANT and INITIALIZATION
clauses of M2 can use the variables of M1.

Inclusion of Query Operations

According to Schneider [20], the machine M2 can use only the query operations of M1

since these operations do not change the state of M1. Because the query operations can
reveal the state of M1, it can be stated that M2 can visualize the state of M1 indirectly, but
not directly through the state variables of M1. However, Abrial indicated in his B-Book
that none of the operations of M1 are accessible in M2 [1].

Visibility Rules

The visibility rules concerning the various elements of M1 with respect to M2 are given in
Table 19.6 under the uses relationship, taken from [1].

Transitivity

When the machine M1 includes another machine M3, machine M2 can also use the ma-
chine M3. However, when M1 uses another machine M4, M2 cannot use M4. This means
that the relationship given by the USES clause is not transitive.

As an example for the USAGE class, consider a water meter that reads water level in a
boiler. The water meter can read values between −1000 and 1000 units. It simply reads and
stores the value internally. The water meter is used in conjunction with a water controller.
This controller takes some actions depending on the water level recorded. For example,
when the water level goes below 10 units, the controller opens a pump. When the water
level exceeds 100 units, the controller closes the pumps. The descriptions of these two
machines are given in Example 3.

19.4 Structured Specifications 593

Example 3 The WaterMeter machine.

MACHINE WaterMeter

CONSTANTS MIN W, MAX W

PROPERTIES MIN W = −1000 ∧ MAX W = 1000

VARIABLES currentLevel

INVARIANT
currentLevel ∈ Z ∧
MIN W ≤ currentLevel ∧
currentLevel ≤ MAX W

INITIALIZATION currentLevel := 0

OPERATIONS
changeWaterLevel(nn) =

PRE nn ∈ Z ∧ nn ≥ MIN W ∧ nn ≤ MAX W

THEN currentLevel := nn

END;
/* ... */

END

MACHINE WaterController

USES WaterMeter

CONSTANTS MIN ALLOWED, MAX ALLOWED

PROPERTIES MIN ALLOWED = 10 ∧ MAX ALLOWED = 100

...
OPERATIONS

OpenPump =

PRE currentLevel < MIN ALLOWED

THEN
...

END;

ClosePump =

PRE currentLevel > MAX ALLOWED

THEN
...

END;
...

END

Clearly, the machine WaterController uses the state of the WaterMeter machine by using

its state variable inside the operations OpenPump and ClosePump. �

19

594 19 The B-Method

19.4.3
The SEES Clause

The B-Method has another clause, called the SEES clause, which has several characteris-
tics similar to those of the USES clauses. But it was introduced mainly to share machines
at the refinement and implementation levels. In other words, the USES clause is used at the
specification level, while the SEES clause can be used at the specification, refinement and
implementation levels. This will be clear when looking at the visibility rules, given later in
this section.

When a machine M2 sees a machine M1, the invariant of M2 is no longer dependent
on the state of M1. This is the major difference between the USES and SEES clauses.

The syntax of the SEES clause is as follows:

MACHINE M2

SEES M1

SETS
END

When a machine M2 sees a machine M1, M2 has read-only access to M1. Only the sets,
constants and query operations of M1 are visible to and are accessible from M2. The
semantics of the SEES clause is given next; the description assumes that machine M2 sees
machine M1.

Parameters

The SEES clause does not include the parameters of M1. Therefore, the parameters of M1

are not visible to M2. The SEES mechanism is expected to be used at the implementation
level and hence if a machine M2 sees a machine M1, then the implementation of M2 must
import the implementation of M1. Since at the specification level there is no information
available corresponding to implementation details, M2 does not know how to instantiate
M1 and therefore, the parameters of M1 are not visible to M2.

Access to Sets and Constants

The sets and constants of M1 are available for M2 and they can be used anywhere in M2.

Exclusion of Invariant

The variables of M1 are not visible to M2. Otherwise, M2 may be able to change the state
of M1. Consequently, M2 cannot use the invariant or the initialization of M1.

Inclusion of Query Operations

According to Schneider [20], the machine M2 can use only the query operations of M1

since these operations do not change the state of M1. The machine M2 can thus observe
the state of M1. However, Abrial indicated that none of the operations of M1 are accessible
in M2 [1].

19.4 Structured Specifications 595

Table 19.7 Visibility Rules of the SEES clause

PROPERTIES
of seeing
machine

INVARIANT
of seeing
machine

OPERATIONS
of seeing
machine

Parameters of seen machine

SETS of seen machine
√ √ √

CONSTANTS of seen machine
√ √ √

VARIABLES of seen machine
√

read-only

OPERATIONS of seen machine

Visibility Rules

The visibility rules concerning the various elements of M1 with respect to M2 are given in
Table 19.7 under the SEES relationship, taken from [1].

Transitivity

When the machine M1 includes another machine M3, machine M2 can also see the ma-
chine M3. However, when M1 sees another machine M4, M2 cannot see M4. This means
that the relationship given by the SEES clause is not transitive.

Example 4 illustrates how a SEES clause can be used. Consider a clock that outputs the
time in hours and minutes in 24-hour format.

Example 4 The Clock machine.

MACHINE Clock
CONSTANTS HOUR, MINUTE, TIME, Hour, Minute
PROPERTIES

HOUR = 0 .. 23 ∧
MINUTE = 0 .. 59 ∧
TIME = HOUR × MINUTE ∧
Hour ∈ TIME → HOUR ∧
Minute ∈ TIME → MINUTE ∧

∀ (hh, mm).((hh, mm) ∈ TIME ⇒
Hour(hh, mm) = hh ∧ Minute(hh, mm) = mm)

VARIABLES time
INVARIANT time ∈ TIME
INITIALIZATION time := 0 → 0 /* equivalent to (0, 0) */
OPERATIONS

tick =

IF Minute(time) = 59
THEN time := ((Hour(time) + 1) mod 24) → 0
ELSE time := Hour(time) → (Minute(time) + 1)
END;

19

596 19 The B-Method

hh ← hours = hh := Hour(time);

mm ← minutes = mm := Minute (time)
END

An office machine that sees this clock is described next.

The Office machine.

MACHINE
Office

SEES Clock
OPERATIONS

hh, mm ← currentTime =

BEGIN hh ← hours ‖ mm ← minutes END
END

The office machine is able to get the current time from the clock machine by calling the
hours and minutes functions. However, it cannot access the tick function which actually
changes the time. Notice that the office machine access the two operations of the clock
machine at the same time. This is allowed because they are both query operations and they
do not affect the invariant of either machine. �

19.5
Refinement

The B-Method, Like VDM-SL, includes several AMN notations which look like program-
ming language notations that support refinement of abstract specifications. For example,
the B-Method supports assignment statements, conditional statements, iterative statements
and notations for sequential and parallel composition of statements. It also includes no-
tations to declare local variables within an operation just like in programming languages.
Using the same AMN structure, a specifier can therefore develop a design specification by
refining an abstract specification. This section describes the AMN structure for refinement
with the additional syntax.

19.5.1
Sequential Composition of Statements

The statements in the body of an operation can be composed using a sequential composition
operator; the syntax is

S ; T

19.5 Refinement 597

The semantics of this operator is that the statement T is executed in a state in which S

terminates. If, however, S does not terminate, then the sequential composition fails. The
same is true when T does not terminate. So, the sequential composition will be valid only if
both S and T terminate and T starts in the state in which S terminates. Several statements
can be sequentially composed as in

S ; T ; Q ; R

19.5.2
Local Variables

An operation can declare a local variable using the syntax

VAR x IN S END

The variable x is local only to the statement S and hence will not be accessible outside of S.
Because x is local to S, it must be assigned some value within S before it is being used.
Otherwise, the value of x becomes undefined. The syntax of local variables declaration can
be extended to include multiple variables within the same declaration as in

VAR x1, x2, . . . , xn IN S END

As before, every one of xi must be assigned a value within S before it is used.

19.5.3
Refinement Machine

Refinement is supported through refinement machines which use the same interface as the
abstract machine they refine. The data types inside the refinement machine will be different
and hence the refinement process in the B-Method is considered to be data refinement.
A refinement machine R will have the same set of operations, input and output parameters
of the abstract machine M it refines. This set of operations include the operations of any
machine that is included or extended by M . There are two clauses required of a refinement
machine as indicated below:

REFINEMENT R
REFINES M
. . .

The REFINEMENT clause introduces the name of the refinement machine and the RE-
FINES clause introduces the name of the abstract machine that is refined. The rest of the
structure for the refinement machine is similar to that of an abstract machine. Thus, the
refinement machine uses the same AMN structure which is easier for a specifier.

19

598 19 The B-Method

One of the obligations of a refinement machine is that it must provide some relation-
ship between its own state space and the state space of the abstract machine that it re-
fines. For example, if the state space of the refinement machine includes a variable called
refinedVariable which is of type N � NAME, and the state space of the abstract machine
includes a variable called absVariable whose type is P NAME, then a relationship between
these two variables could be that ran refinedVariable = absVariable. That is, the set of
names addressed by refinedVariable is the same set as described by absVariable. However,
refinedVariable includes an ordering of these names through the injective function. This
relationship between the two state spaces is called a linking invariant. It is required that
the linking invariant must include some relationship for every state variable of the abstract
machine and thus ensuring data refinement.

The REFINES clause is somewhat similar to that of the INCLUDES clause but not
exactly the same. The reason for this assumption is that the state variables of the abstract
machine are accessible directly in the linking invariant in order to establish the relationship
between the two state spaces. The refinement machine does not need to redeclare these
variables. In addition, the refinement machine preserves the signature of all the operations
declared in the abstract machine.

Suppose y ← Op(x) is an operation introduced in the abstract machine, the refinement
machine will automatically have this operation with the same signature. Moreover, the
type of the input variables (in this case, the variable x) and the precondition on these
input variables, namely the PRE clause in operation Op are inherited into the operation
in the refinement machine. Therefore, the refinement machine does not need to repeat the
precondition. The assumption is that the refinement works if and only if it satisfies the
conditions in the abstract machine and hence the precondition of the operation must be
true before the refined operation is invoked.

While the refinement machine uses the same AMN structure as the abstract machine,
there are a few restrictions.

• A refinement machine can only include abstract machines through the INCLUDES
clause. This is because refinement machines includes specifications and not implemen-
tations.

• A refinement machine can have INCLUDES, EXTENDS, PROMOTES and SEES
clauses but cannot have USES clause. The USES clause is a specification construct that
establishes a relationship between the state variables of the two machines. Since the
refinement machine explicitly does this through the linked invariant, it is not appropriate
to have a USES clause.

As an example for refinement, consider an abstract machine Collection that describes a
collection of books maintained, say, in a personal library. It includes two operations: add
that adds a new book to the collection and search that confirms whether or a not a given
book is in the collection. The collection machine is shown in Example 5.

Example 5 The Collection machine.

MACHINE Collection
SETS BOOK; ANSWER = {yes, no}

19.5 Refinement 599

VARIABLES books
INVARIANT books ∈ P (BOOK)
INITIALIZATION books := ∅
OPERATIONS

add(bb) =

PRE bb ∈ BOOK ∧ bb �∈ books
THEN books := books ∪ {bb}
END;

cc ← search(bb) =

PRE bb ∈ BOOK
THEN

IF bb ∈ books
THEN cc := yes
ELSE cc := no
END

END
END

�

A refinement machine called Shelf puts the collection of books in order so that each
book has an index. The index starts at 1. Every time a new book is added, it is always
placed at the end of the collection. It is assumed that no book is deleted from this collection
and therefore the index of a book in the collection never changes. The refinement machine
Shelf is given in Example 6.

Example 6 The Shelf machine.

REFINEMENT Shelf
REFINES Collection
VARIABLES sBooks, count
INVARIANT

sBooks ∈ N1 � BOOK ∧
count ∈ N ∧
ran(sBooks) = books

INITIALIZATION sBooks, count := ∅ , 0
OPERATIONS

add(bb) =

BEGIN
count := count + 1; sBooks(count) := bb

END;

cc ← search(bb) =

IF bb ∈ sBooks[1 .. count]
THEN cc := yes

19

600 19 The B-Method

ELSE cc := no
END

END

The machine Shelf uses an additional variable called count to maintain the number of
books in the collection. The syntax sBooks[1..count] in the operation search indicates the
set of all books held in the shelf indexed from 1 to count. This could have been alternatively
specified as

IF (∃ i.(i ∈ 1..count ∧ sBooks(i) = bb))

The machine Shelf thus refines the machine Collection. �

19.6
Specification Examples

This section includes several examples with varying complexity. They together illustrate
the expressive power of the B-Method.

Example 7 Synonyms and Antonyms.

Problem Description

A personal dictionary includes a set of words. Each word also comes with a set of syn-
onyms and antonyms, though a given word may neither have a synonym nor have an
antonym. The synonyms and antonyms are themselves words in the same dictionary. It
is required to develop an on-line version of the personal dictionary that includes the op-
erations (i) to add a new word into the dictionary, (ii) to add a synonym to a word in the
dictionary, (iii) to add an antonym to a word in the dictionary, (iv) to query the number of
words that have the given word as a synonym, and (v) to query the number of words that
have the given word as an antonym.

Assumptions

1. If a word w has another word w1 as a synonym, then w1 need not have w as the syn-
onym. The same is true for antonyms.

The Model

The personal dictionary will be modeled as an abstract machine. The state of the machine
will consist of a set of words in the dictionary, and two mappings—one for maintaining the
synonyms and the other for antonyms. Since one word may have several synonyms (and
several antonyms), the mappings are designed as functions from words to a set of words.
The following invariants must be specified:

• Synonyms and antonyms can only be found for those words in the dictionary.
• Synonyms and antonyms themselves are words in the same dictionary.

19.6 Specification Examples 601

• The synonyms and antonyms of a particular word are mutually exclusive; i.e., no word
can be the synonym and antonym of the same word.

The machine will include five operations as requested in the problem description:

AddWord This operation will add a new word into the dictionary. It should ensure that
the word is not in the dictionary before. No synonyms or antonyms will be added at this
time; these will be taken care of by the next two operations.

AddSynonym In order to add a word ss as a synonym to a word ww, both words must
exist in the dictionary. One of the preconditions is to ensure that the word ss must neither
be in the synonyms of ww nor in its antonyms. Care must also be taken to ensure that ss
is not the same as ww because a word cannot be its own synonym.

AddAntonym This operation is very similar to AddSynonym but for antonyms.
QueryNumberOfWordsWithSameSynonym This is a read-only operation which re-
turns the number of words that have the same word ss in their list of synonyms. A pre-
condition for this operation must ensure that the word ss is in the dictionary.

QueryNumberOfWordsWithSameAntonym This operation is similar to QueryNum-
berOfWordsWithSameSynonym but it returns the number of words that contain the
same word aa as antonym.

The PersonalDictionary machine is given below.

MACHINE PersonalDictionary
SETS WORD
VARIABLES words, synonyms, antonyms
INVARIANT

words ∈ P (WORD) ∧
synonyms ∈ WORD → P (WORD) ∧
antonyms ∈ WORD → P (WORD) ∧
dom(synonyms) ∪ dom(antonyms) ⊆ words ∧
union(ran(synonyms) ∪ ran(antonyms)) ⊆ words ∧

∀ (ww).(ww ∈ dom(synonyms) ∩ dom(antonyms) ⇒
synonyms(ww) ∩ antonyms(ww) = ∅)

INITIALIZATION
words, synonyms, antonyms := ∅ , ∅ , ∅

OPERATIONS
AddWord(ww) =

PRE
ww ∈ WORD ∧ ww �∈ words

THEN
words := words ∪ {ww}

END;

AddSynonym(ww, ss) =

PRE

19

602 19 The B-Method

ww ∈ WORD ∧ ss ∈ WORD ∧
ww �= ss ∧ {ww, ss} ⊆ words ∧
(ww ∈ dom(synonyms) ⇒ ss �∈ synonyms(ww)) ∧
(ww ∈ dom(antonyms) ⇒ ss �∈ antonyms(ww))

THEN
IF ww ∈ dom(synonyms) THEN

synonyms(ww) := synonyms(ww) ∪ {ss}
ELSE

synonyms(ww) := {ss}
END

END;

AddAntonym(ww, aa) =

PRE
ww ∈ WORD ∧ aa ∈ WORD ∧
ww �= aa ∧ {ww, aa} ⊆ words ∧
(ww ∈ dom(antonyms) ⇒ aa �∈ antonyms(ww)) ∧
(ww ∈ dom(synonyms) ⇒ aa �∈ synonyms(ww))

THEN
IF ww ∈ dom(antonyms) THEN

antonyms(ww) := antonyms(ww) ∪ {aa}
ELSE

antonyms(ww) := {aa}
END

END;

count ← QueryNumberOfWordsWithSameSynonym(ss) =

PRE
ss ∈ WORD ∧ ss ∈ words

THEN
count := card({ww | ww ∈ dom(synonyms) ∧ ss ∈ synonyms(ww)})

END;

count ← QueryNumberOfWordsWithSameAntonym(aa) =

PRE
aa ∈ WORD ∧ aa ∈ words

THEN
count := card({ww | ww ∈ dom(antonyms) ∧ aa ∈ antonyms(ww)})

END
END

Comments

The state of the personal dictionary is defined by three variables, namely words, synonyms
and antonyms. The variable words is of type of set of WORD, and synonyms and antonyms
are both functions from WORD to a set of WORD. Typically, for a given word w, synonyms

19.6 Specification Examples 603

will return a set of words which are recorded as the synonyms of w. Similarly, antonyms
will return a set of antonyms for a given word. In addition to defining the types of the state
variables, the invariant of the machine asserts the following:

1. If a word ww has its synonym recorded in the system (indicated by dom(synonym)),
then ww must be a word in the dictionary; the same is true for antonyms.

2. The collection of words recorded as synonyms and antonyms (indicated by
⋃

(ran(synonym) ∪ ran(antonym))) must be words in the dictionary.
3. For every word ww for which synonyms and antonyms are both recorded, the synonyms

and antonyms must be mutually exclusive.

Initially, all the three state variables are set to empty.
The operations of the machine are self-explanatory. �

Example 8 File Access Control.

Problem Description

A computer system has a set of files and a set of users. Each user is given read/write access
to the files according to the following criteria:

• If a user has write access to a file f , then the user must have read access to f as well.
However, a user may have read-only access to a file.

• Every file must have at least one user who has read access to it.
• A user may not have any access to a given file.

Assumptions

1. If a user u is deleted from the system and a file f has u as the only user who has read or
write access to it, then f must also be deleted from the system. Thus, the system does
not maintain any file which is not accessible by any user.

2. File ownership will not be included in this level of specification. Only low level opera-
tions such as adding users and files, deleting users and files and changing access rights
for a user to a given file will be included.

The computer system must include operations (i) to add a new user to the system, (ii) to
add a new file to the system, (iii) to delete a user from the system, (iv) to delete a file from
the system, and (v) to change the access rights of a user to a given file.

The Model

The file access control system must maintain three entities: a set of users, a set of files
and the access rights of users for each file. The access rights can be modeled in two ways:
(i) For each file f , the set of users who have access rights to f can be maintained as a list.
(ii) For each user u, the set of files to which u has access rights can be maintained as a
list. In both approaches, the read and write accesses must be separately maintained. The
specification in this example uses the first approach, namely from files to the set of users.

19

604 19 The B-Method

The access control subsystem for the computer system will be modeled as an abstract
machine. The state of the machine will contain a set of files, a set of users, and two map-
pings, one for read access and the other for write access. The access criteria as mentioned
in the problem description above must be specified as state invariant. The machine will
include the following operations:

AddNewUser The precondition for this operation must ensure that the user is not already
present in the computer system.

AddNewFile When a new file is added to the system, there must be at least one user in
the system who has read access to the file. Otherwise, no one will be able to use the file.
So, the operation should accept three parameters, the file ff to be added, the user uu who
is given access right to this file, and the access right rr itself. It is possible that uu is given
write access to ff which, in turn, requires read access to be included. The precondition for
the operation must ensure that the file ff is not already present in the system, but the user
uu is. In addition, it should also ensure that the access right parameter rr must indicate
read or write access to the file.

DeleteFile Deleting an existing file will remove all entries for this file from the two
mappings—read access and write access. Also, the file itself must be removed from the
state of the system.

DeleteUser When an existing user uu is deleted from the system, not only that uu is re-
moved from the state of the system, but the access rights given to the user must also be
removed. This requires that the two mappings must be updated to remove all entries cor-
responding to the user uu. In addition, if there is any file ff in the system which has uu as
the only person who has access rights, then ff also must be removed from the state of the
system.

ChangeAccessRight This operation takes three parameters—the file ff whose mapping is
to be changed, the user uu who is given new access rights, and the access right rr. The
intention is to give the access right rr for the user uu to the file ff . The operation does not
check what access rights uu has on file ff before the operation. It only ensures that both
ff and uu exist in the state of the system. Care must be taken to ensure that if the access
right rr indicates ‘NONE’, then there must be at least one user other than uu who has read
access to ff . Otherwise, the file may become an orphan after changing the access rights.

The FileAccessControl machine is given below.

MACHINE FileAccessControl
SETS FILE; USER; RIGHT = {RD, WR, NONE}
VARIABLES

files, users, readAccess, writeAccess

INVARIANT
files ∈ P (FILE) ∧ users ∈ P (USER) ∧
readAccess ∈ FILE ↔ USER ∧ writeAccess ∈ FILE ↔ USER ∧

∀ ff.(ff ∈ dom(writeAccess) ⇒ writeAccess[{ff}] ⊆ readAccess[{ff}]) ∧
dom(readAccess) = files ∧
dom(writeAccess) ⊆ files ∧

19.6 Specification Examples 605

ran(readAccess) ∪ ran(writeAccess) ⊆ users

INITIALIZATION
files, users, readAccess, writeAccess := ∅ , ∅ , ∅ , ∅

OPERATIONS
AddNewUser(newUser) =

PRE
newUser ∈ USER ∧ newUser �∈ users

THEN
users := users ∪ {newUser}

END;

AddNewFile(newFile, initUser, initRight) =

PRE
newFile ∈ FILE ∧ newFile �∈ files ∧
initUser ∈ USER ∧ initUser ∈ users ∧
initRight ∈ RIGHT ∧ initRight �= NONE

THEN
files := files ∪ {newFile} ‖
readAccess := readAccess ∪ {newFile → initUser} ‖
IF initRight = WR THEN

writeAccess := writeAccess ∪ {newFile → initUser}
END

END;

DeleteFile(ff) =

PRE
ff ∈ FILE ∧ ff ∈ files

THEN
writeAccess := {ff} �− writeAccess ‖
readAccess := {ff} �− readAccess ‖
files := files − {ff}

END;

DeleteUser(uu) =

PRE
uu ∈ USER ∧ uu ∈ users

THEN
writeAccess := writeAccess �− {uu} ‖
readAccess := readAccess �− {uu} ‖

/* Delete orphan files */
files := files − {ff | ff ∈ files ∧ uu ∈ readAccess[{ff}] ∧

card(readAccess[{ff}]) = 1} ‖

19

606 19 The B-Method

users := users − {uu}
END;

ChangeAccessRight(ff, uu, rr) =

PRE
ff ∈ FILE ∧ ff ∈ files ∧
uu ∈ USER ∧ uu ∈ users ∧
rr ∈ RIGHT ∧
(rr = NONE ∧ uu ∈ readAccess[{ff}] ⇒

card(readAccess[{ff}]) > 1)
THEN

IF rr = WR THEN
readAccess := readAccess ∪ {ff → uu} ‖
writeAccess := writeAccess ∪ {ff → uu}

ELSIF rr = RD THEN
readAccess := readAccess ∪ {ff → uu} ‖
writeAccess := writeAccess − {ff → uu}

ELSE
readAccess := readAccess − {ff → uu} ‖
writeAccess := writeAccess − {ff → uu}

END
END

END

Comments

The invariant, in addition to describing the types of these four variables, asserts the follow-
ing conditions.

• The set of users who has write access to a given file ff also has read access to the same
file.

• Every file in the system must be readable. That is, there is at least one user for every file
who has read access to it. Otherwise, the file becomes an orphan which cannot be used.

• Some files may not have write access; i.e., these files have read-only access. So, the set
of files that do have write access is actually a subset of the entire file system.

• Some users in the system may not have read or write access to any file. Stated otherwise,
the union of the set of users who have read access to at least one file and the set of users
who have write access to at least one file is a subset of the users of the system.

Initially all the four state variables are assigned empty sets. It is not possible to add a new
file until a user is added because the operation AddNewFile requires an existing user as
one of the inputs.

In the DeletUser operation, the statement

files := files − {ff | ff ∈ files ∧ uu ∈ readAccess[{ff }] ∧

card(readAccess[{ff }]) = 1

19.6 Specification Examples 607

collects all the files that the user has read access to it and also ensures that uu is the only
user who has read access to it. These files will eventually be deleted from the system as
well because they become orphans as a result of deleting the user uu. Notice that the files
for which the user has write access are not checked because the user will have read access
to every file for which he/she has write access.

There are three choices to be considered in ChangeAccessRight operation:

1. If the access right rr is ‘WR’, then the user is given both read and write access to the
files. Consequently, the two maps readAccess and writeAccess will both be updated to
include an entry for this user.

2. If the access right rr is ‘RD’, then the user is given read-only access. This is achieved
by adding an entry for this user in the map readAccess and removing the entry of this
user from writeAccess. If the user already has write access to the file, this operation will
remove such access. If the user does not have write access to the file, then the second
action will not have any effect. So, at the end, the user will have read-only access to the
file.

3. In the third case, the user is revoked both read access and write access for this file.
Hence, the user entry from readAccess and writeAccess is removed, no matter whether
or not this user had read access or write access to the file before. �

Example 9 Seating arrangement in a Theater.

Problem Description

This problem is concerned with ticketing and seating arrangements in a theater. The theater
sells tickets for various events. There are three types of tickets: REGULAR, FRONT ROW
and BALCONY. Each ticket type has a different price. Tickets can be bought individually
or as a group. A sample seating arrangement for the three types of tickets is shown in
Fig. 19.1. As seen in Fig. 19.1, the seats that correspond to one type of ticket must all be
consecutive. The number of tickets in each ticket type may be different.

The following minimal set of operations must be specified: (1) Buy an individual ticket.
(2) Buy a group ticket. (3) Report the revenue collected through ticket sales at any time.
(4) Cancel a ticket.

Additional Requirements

1. While purchasing a group ticket, all tickets in the group must be of same type and
the seat numbers for the tickets must be consecutive. For example, if someone buys a
group ticket for seven people in FRONT ROW, there must be seven consecutive seats
available in FONT ROW ticket type. Otherwise, the group ticket for this party will not
be sold.

Assumptions

1. The total number of seats is fixed.
2. The number of tickets in each ticket type is fixed.

19

608 19 The B-Method

Fig. 19.1 Seating arrangement for the three types of tickets

The Model

The focus of this problem is on the seating arrangement. It is decided to use a two-
dimensional array for modeling the seating arrangement. The maximum number of rows
and columns must be specified as constants and hence they will not change. There is more
than one option to model the seating for each type of ticket. One of the options would be to
fix some specific rows of seats for each type of ticket. Figure 19.1 shows such an arrange-
ment. Another option would be to give the choice for the implementer to decide which rows
belong to a given ticket type. The specification in this example uses the second option. In
this case, each seat is defined to belong to a particular type of ticket and hence the seat
number must be checked for the ticket type before the seat is sold. The implementer of this
specification has the freedom to change the number of rows for each ticket type. However,
once implemented, there is no operation to change the number of rows dynamically during
the operation of the system. Thus, the system still maintains the second condition stated in
the assumptions.

The ticketing system will be modeled as an abstract machine named
TheaterTicketingSystem. The machine must include appropriate types—one to define the
status of a seat to indicate whether or not it is occupied/sold, and another to define the type

19.6 Specification Examples 609

of ticket. Both are modeled as sets in the machine. The total number of seats, described
by the multiplication of number of rows and number of columns, should be defined as
a constant since it is fixed. It is assumed that each row has the same number of seats as
shown in Fig. 19.1. Instead of modeling one single number to indicate the total number
of seats, the specification models two constants max row and max column that define the
maximum number of rows and columns, respectively. The prices for each type of ticket
must also be included as constants because they do not change.

Since the seating arrangement is modeled as a two-dimensional array, it is appropriate
to define projection functions on this array to identify the row number and column number
of a particular seat. Apart from these two projection functions, additional functions are
needed to assert the positional relationships between two seats. For example, we would like
to know whether one seat is before the next seat. This is defined by the function precedes
in the specification. We also want to know whether a given seat is in between two seats.
This would be useful to find out whether a ticket in a group is inside a range of consecutive
seat numbers. The specification includes a function called inRange which asserts whether
or not a given seat number is inside a range of seat numbers.

The state of the system includes two variables—seat and type, both are modeled as
functions. The mapping seat is defined from seat numbers to the status of a seat; the map-
ping type denotes the ticket type of a given seat number. Initially, all the seats must have
the status as unoccupied or empty.

The operations of the TheaterTicketingSystem machine are described in detail below:

• The operation SellIndividualTicket allows a user to buy an individual ticket. It should
take the seat number, its type the amount paid as parameters. The operation should
return the change if the amount is more than the ticket price. The precondition must
ensure that the seat is empty, the type requested by the user matches with the type of the
seat in the seating, and the amount is greater than or equal to the amount of the ticket.
If all constraints in the precondition are satisfied, then the seat should be declared to be
occupied and the change should be calculated.

• The operation SellGroupTickets will be invoked when a user wants to buy a group of
tickets. There are two ways to model this operation: The user can input the number of
tickets needed and the type of tickets, and the system can find a set of consecutive seats
for the tickets. There could be more than one possible set of seats available for this
purchase. The other option would be to ask the user to select the particular seat numbers
they want, of course, all belonging to the same ticket type. This second approach is used
in this specification. Accordingly, when a user buys a group of tickets, the user must
provide the starting seat number fr seat, the ending seat number to seat, the ticket type
seatType and the amount paidAmount as parameters to the operation. The precondition
must ensure that the seat number fr seat must precede to seat. Further, every seat in this
range must be empty and must have the same type. Remember that a group ticket can
be bought only if the tickets are all of same type and consecutive seats are available for
these tickets. The precondition must also ensure that the amount paid is greater than or
equal to the total amount for all the tickets in the range specified. If the precondition is
true, the operation will set all the seats in the given range to be occupied and also will
calculate the change for this purchase.

19

610 19 The B-Method

• An individual ticket can be canceled by invoking the CancelTicket operation. It accepts
the seat number of the ticket to be canceled and returns the refund amount. The pre-
condition for this operation must ensure that the seat is indeed occupied meaning that
the ticket is purchased. If the precondition is true, the operation should set the seat to
be empty and calculate the refund. There is no separate operation provided for cancel-
ing a group of tickets. It is assumed that the CancelTicket operation can be invoked
individually for every ticket in a group ticket in order to cancel a group of tickets.

• The operation RevenueQuery returns the revenue collected so far. It comes from all
the tickets sold. However, the specification does not keep track of ticket counts or ticket
numbers but this information is gathered from seat numbers that are occupied. So, the
revenue is calculated by checking every seat whether or not it is occupied, and then
summing up its price value.

The TheaterTicketingSystem machine is given next.

MACHINE TheaterTicketingSystem
SETS

SEATSTATUS = {empty, occupied};
SEATTYPE = {regular, front row, balcony}

CONSTANTS
max row, max column,
reg price, front price, balcony price,
row, column, price /* functions */

PROPERTIES
max row ∈ N1 ∧ max column ∈ N1 ∧
reg price ∈ N1 ∧ front price ∈ N1 ∧ balcony price ∈ N1 ∧
row ∈ N1 × N1 → N1 ∧
column ∈ N1 × N1 → N1 ∧

∀ (rr, cc).((rr, cc) ∈ N1 × N1 ⇒
row(rr, cc) = rr ∧ column(rr, cc) = cc) ∧

price ∈ SEATTYPE → N1 ∧
price = {regular → reg price,

front row → front price,
balcony → balcony price}

DEFINITIONS
SEATNO == (1 .. max row) × (1 .. max column);

/* s1 precedes s2 */
precedes(s1, s2) == (

row(s1) < row(s2) ∨
row(s1) = row(s2) ∧ column(s1) < column(s2)

);

19.6 Specification Examples 611

/* ss inRange [s1, s2] */
inRange(ss, s1, s2) == (

ss = s1 ∨ ss = s2 ∨ (precedes(s1, ss) ∧ precedes(ss, s2))
)

VARIABLES
seat, type

INVARIANT
seat ∈ SEATNO → SEATSTATUS ∧
type ∈ SEATNO → SEATTYPE

INITIALIZATION
seat := λ sn.(sn ∈ SEATNO | empty) ‖
/* Another way to init. seat()
seat := SEATNO × {empty}
*/
type :∈ SEATNO → SEATTYPE

OPERATIONS
change ← SellIndividualTicket(seatNumber, seatType, paidAmount) =

PRE
seatNumber ∈ SEATNO ∧ seat(seatNumber) = empty ∧
seatType ∈ SEATTYPE ∧ type(seatNumber) = seatType ∧
paidAmount ∈ N1 ∧ paidAmount ≥ (type ; price)(seatNumber)

THEN
seat(seatNumber) := occupied ‖
change := paidAmount − (type ; price)(seatNumber)

END;

change ← SellGroupTickets(fr seat, to seat, seatType, paidAmount) =

PRE
fr seat ∈ SEATNO ∧ to seat ∈ SEATNO ∧
precedes(fr seat, to seat) ∧
seatType ∈ SEATTYPE ∧

∀ ss.(ss ∈ SEATNO ∧ inRange(ss, fr seat, to seat)
⇒ seat(ss) = empty ∧ type(ss) = seatType) ∧

paidAmount ∈ N1 ∧
paidAmount ≥ price(seatType) ×

card({ss | ss ∈ SEATNO ∧ inRange(ss, fr seat, to seat)})
THEN

LET sellingSeats BE
sellingSeats = {ss | ss ∈ SEATNO ∧

inRange(ss, fr seat, to seat)}
IN

19

612 19 The B-Method

seat := seat �−− sellingSeats × {occupied} ‖
change := paidAmount − price(seatType) × card(sellingSeats)

END

END;

refund ← CancelTicket(seatNumber) =

PRE

seatNumber ∈ SEATNO ∧ seat(seatNumber) = occupied

THEN

seat(seatNumber) := empty ‖
refund := (type ; price)(seatNumber)

END;

revenue ← RevenueQuery =

revenue :=
∑

(ss).(

ss ∈ SEATNO ∧
seat(ss) = occupied | (type ; price)(ss))

END

Comments

This specification includes three definitions: SEATNO is used as an abbreviation for a two-

dimensional array. Each element of this array uniquely identifies a seat. The other two

definitions are boolean functions. The function precedes takes two seats as parameters and

returns true if the first seat precedes the second seat in the seating. The function inRange

accepts three parameters. It asserts whether or not the seat passed as the first argument lies

in between the two seats that are passed as the second and third parameters. It is interesting

to notice that the types of parameters for the two functions are not given in these definitions

but are inferred from the definitions themselves.

The INITIALIZATION clause shows that the variable type is assigned some arbitrary

value from the type SEATNO → SEATTYPE. This is indicated by the nondeterministic

operator :∈.

The expression (typeo
9price) in the operation SellIndividualTicket shows functional

composition which results in a function that takes a seat number as a parameter and returns

its price. The same compositional function is used in two other operations—CancelTicket

and RevenueQuery.

The operation SellGroupsTickets uses the LET clause that introduces a local variable

sellingSeats that is used in the statements corresponding to changing the seat status as well

as calculating the change. �

19.7 Case Study—A Ticketing System in a Parking Lot 613

19.7
Case Study—A Ticketing System in a Parking Lot

In this section, we present a case study for the specification of an automated ticketing
system in a parking lot. The case study uses several syntactic structures discussed in this
chapter.

Problem Description

A parking lot generally has several parking spaces; some might have been reserved for
specific purposes such as handicapped parking. Vehicles enter the parking lot through one
or more entry points. While entering into the parking lot, every vehicle must take a ticket
issued by the automated ticketing system. The system records the date and time of entry on
the ticket but does not note anything specific to the vehicle such as license plate number.
It is also important to note that the driver and the vehicle are together treated as one entity.
So, the actions of a driver implies that of the vehicle and vice versa. Vehicles leave the
parking lot through one or more exit points. While leaving, the driver must first insert the
ticket into the ticketing system. The system, in turn, calculates and displays the amount to
be paid. The driver then inserts money (cash or credit card) into the appropriate slots in the
machine. It is expected that the driver pays in full. If paid in cash, and if the driver pays in
excess, then a change will be returned.

Modeling a problem with such a general description may become too complex. For
example, when there is more than one entry point, it would be hard for the system to find
out how many vehicles enter into the lot at any one time. If there is only one space available
and two vehicles enter the lot, it may be difficult for the system to allocate the one available
space to one of the two vehicles. In order to develop such automated ticketing system, it is
therefore necessary to consider some assumptions that provide the boundary within which
the ticketing system operates. In this case study, the following assumptions are made in
order to simplify the development of the automated ticketing system.

Assumptions

1. All spaces in the parking lot are identical. Consequently, no space is reserved for any
particular vehicle type.

2. There is only one entry point and one exit point for vehicles.
3. Vehicles and drivers are treated as one entity. Vehicles are uniquely identified by the

ticket numbers they take while entering the parking lot. Since no additional information
about a vehicle is required other than its unique identification, vehicles will not be
modeled separately.

4. Vehicles are charged from 6:00 A.M. to 9:00 P.M. only. No vehicle is allowed to park in
the lot between 9:00 P.M. and 6:00 A.M. The specification will not include any penalty
or overnight charges. It is assumed that the parking lot management somehow forces
the vehicles to clear the lot after 9:00 P.M.

5. All vehicles are charged at a flat rate of $15 per hour. Parking hours are rounded to
the nearest hour. This means that even if a vehicle is parked for one minute, it will be
charged for one hour.

19

614 19 The B-Method

6. Only cash payments are accepted. It is further assumed that the ticketing machine has
sufficient money at all times to render correct change.

7. Every vehicle/driver pays in full when leaving the parking lot.

The specification will include operations to (i) issue a ticket to a vehicle when it enters, (ii)
pay for a ticket when the vehicle holding the ticket leaves the parking lot, (iii) report the
number of tickets sold for a given period of time (a day, a week or a month), and (iv) report
the revenue generated for a given period of time (a day, a week or a month).

The Model

Since the specification of the ticketing system requires date and time to be used in tickets
and in calculations, the specification of date and time is given as a separate machine and is
used by the parking lot. This machine is called DateTime and its model is discussed first.

The DateTime machine

The main purpose of the DateTime machine is to validate a given date or time, and to
provide some services to compare dates and times. Hence, it is appropriate to design the
DateTime machine as a stateless machine, meaning without a state space. Accordingly, the
machine includes several services which are modeled as constants. These are described
below:

DATE This is a triple consisting of three other constants, DAY , MONTH and YEAR. Vali-
dation of a date is given as a property of this constant that checks whether a given date is
correct with respect to the number of days in a given month and the number of days for
the month of February in a leap year.

TIME This is a tuple comprising two other constants, HOUR and MINUTE. As in the case
of DATE, the validation of a given time is stated as a property in the specification.

Day, Month, Year These are projection functions which return the day, month and year
components of a given date.

Hour, Minute These are projection functions which return the hour and minute of compo-
nents of a given time.

In addition to the constants mentioned above, the machine needs to provide comparative
functions for dates and times. These functions are also modeled as constants and their
definitions are given as properties. The following functions are defined:

DateCmp This function compares two dates and returns an indicator showing whether the
first argument is earlier, later or on the same date as the second argument. The three types
of indicators themselves are defined as constants in the specification.

DateDiffInDays This function returns the number of days elapsed between two given
dates.

TimeCmp This function is similar to DateCmp but compares two times, instead of dates.
TimeDiffInHours This function returns the number of hours elapsed between two given
times.

TimeDiffInMinutes This is similar to the function TimeDiffInHours but returns the number
of minutes elapsed.

19.7 Case Study—A Ticketing System in a Parking Lot 615

The DateTime machine.

MACHINE DateTime
CONSTANTS

DAY, MONTH, YEAR, DATE,
HOUR, MINUTE, TIME,

/* Constants used in comparison */
EARLIER, SAME, LATER,

/* Projection functions */
Day, Month, Year, Hour, Minute,

/* DATE comparison functions */
DateCmp, DateDiffInDays,
ComputeDayOffset, /* Aux function */

/* TIME comparison functions */
TimeCmp, TimeDiffInHoursSameDay, TimeDiffInMinutesSameDay

PROPERTIES
/* DATE/TIME defs */
DAY = 1 .. 31 ∧ MONTH = 1 .. 12 ∧ YEAR = 1900 .. 3000 ∧
HOUR = 0 .. 23 ∧ MINUTE = 0 .. 59 ∧
DATE = DAY × MONTH × YEAR ∧
TIME = HOUR × MINUTE ∧

/* DATE validation */
∀ (dd, mm, yy).((dd, mm, yy) ∈ DATE ⇒ (

(mm ∈ {1, 3, 5, 7, 8, 10, 12} ⇒ dd ∈ 1 .. 31) ∧
(mm ∈ {4, 6, 9, 11} ⇒ dd ∈ 1 .. 30) ∧
(mm = 2 ∧ (

yy mod 400 = 0 ∨
(yy mod 4 = 0 ∧ yy mod 100 �= 0)

) ⇒ dd ∈ 1 .. 29) ∧
(mm = 2 ∧ ¬ (

yy mod 400 = 0 ∨
(yy mod 4 = 0 ∧ yy mod 100 �= 0)

) ⇒ dd ∈ 1 .. 28)
)) ∧

/* Constants used in comparison */
EARLIER = −1 ∧ SAME = 0 ∧ LATER = 1 ∧

/* Projection functions */

19

616 19 The B-Method

Day ∈ DATE → DAY ∧
Month ∈ DATE → MONTH ∧
Year ∈ DATE → YEAR ∧
Hour ∈ TIME → HOUR ∧
Minute ∈ TIME → MINUTE ∧

/* Defs. of Day(), Month(), Year(), Hour(), Minute() */
∀ (dd, mm, yy).((dd, mm, yy) ∈ DATE ⇒

Day(dd, mm, yy) = dd ∧
Month(dd, mm, yy) = mm ∧
Year(dd, mm, yy) = yy

) ∧
∀ (hh, mm).((hh, mm) ∈ TIME ⇒

Hour(hh, mm) = hh ∧
Minute(hh, mm) = mm

) ∧

*/ DATE comparison functions */
DateCmp ∈ DATE × DATE → Z ∧
DateDiffInDays ∈ DATE × DATE → N ∧
ComputeDayOffset ∈ DATE → N ∧

/*∗
∗ Defs of DATE comparison functions
*/
/* Def. DateCmp() */

∀ (d1, d2).(d1 ∈ DATE ∧ d2 ∈ DATE ⇒
(DateCmp(d1, d2) = LATER ⇔ (

Year(d1) > Year(d2) ∨
Year(d1) = Year(d2) ∧ Month(d1) > Month(d2) ∨
Year(d1) = Year(d2) ∧

Month(d1) = Month(d2) ∧ Day(d1) > Day(d2)
)) ∧
(DateCmp(d1, d2) = EARLIER ⇔ (

Year(d1) < Year(d2) ∨
Year(d1) = Year(d2) ∧ Month(d1) < Month(d2) ∨
Year(d1) = Year(d2) ∧

Month(d1) = Month(d2) ∧ Day(d1) < Day(d2)
)) ∧
(DateCmp(d1, d2) = SAME ⇔ (d1 = d2))

) ∧

/* Def. ComputeDayOffset */
∀ (yy, mm, dd, tm, ty).

((yy, mm, dd) ∈ DATE ∧

19.7 Case Study—A Ticketing System in a Parking Lot 617

tm ∈ N ∧ ty ∈ N ∧
tm = (mm + 9) mod 12 ∧
ty = yy − tm div 10 ⇒

ComputeDayOffset(yy, mm, dd) =

365 × ty + ty div 4 − ty div 100 + ty div 400 +

(306 × tm + 5) div 10 +

(dd − 1)
) ∧

/* Def. DateDiffInDays */
∀ (d1, d2).(d1 ∈ DATE ∧ d2 ∈ DATE ⇒

(DateCmp(d1, d2) ∈ {EARLIER, SAME} ⇒
DateDiffInDays(d1, d2) =

ComputeDayOffset(d2) − ComputeDayOffset(d1)
) ∧
(DateCmp(d1, d2) = LATER ⇒

DateDiffInDays(d1, d2) = DateDiffInDays(d2, d1)
)

) ∧

/*∗
∗ TIME comparison functions
*/
TimeCmp ∈ TIME × TIME → Z ∧
TimeDiffInHoursSameDay ∈ TIME × TIME → Z ∧
TimeDiffInMinutesSameDay ∈ TIME × TIME → N ∧

/*∗
∗ Defs. of TIME comparison functions
*/
/* Def. TimeCmp() */

∀ (t1, t2).(t1 ∈ TIME ∧ t2 ∈ TIME ⇒
(TimeCmp(t1, t2) = LATER ⇔ (

Hour(t1) > Hour(t2) ∨
Hour(t1) = Hour(t2) ∧ Minute(t1) > Minute(t2)

)) ∧
(TimeCmp(t1, t2) = EARLIER ⇔ (

Hour(t1) < Hour(t2) ∨
Hour(t1) = Hour(t2) ∧ Minute(t1) < Minute(t2)

)) ∧
(TimeCmp(t1, t2) = SAME ⇔ (t1 = t2))

) ∧

/* Def. TimeDiffInHoursSameDay */
∀ (t1, t2).(t1 ∈ TIME ∧ t2 ∈ TIME ⇒

19

618 19 The B-Method

(TimeCmp(t1, t2) ∈ {EARLIER, SAME} ⇒
(Minute(t1) ≥ Minute(t2) ⇔

(TimeDiffInHoursSameDay(t1, t2) =

Hour(t2) − Hour(t1))) ∧
(Minute(t1) < Minute(t2) ⇔ /* One-hour rounding */

(TimeDiffInHoursSameDay(t1, t2) =

Hour(t2) − Hour(t1) + 1))
) ∧
(TimeCmp(t1, t2) = LATER ⇒

TimeDiffInHoursSameDay(t1, t2) =

TimeDiffInHoursSameDay(t2, t1))
) ∧

/* Def. TimeDiffInMinutesSameDay */
∀ (t1, t2).(t1 ∈ TIME ∧ t2 ∈ TIME ⇒

(TimeCmp(t1, t2) ∈ {EARLIER, SAME} ⇒
(TimeDiffInMinutesSameDay(t1, t2) =

(Hour(t2) − Hour(t1)) × 60 + Minute(t2) − Minute(t1))
) ∧
(TimeCmp(t1, t2) = LATER ⇒

(TimeDiffInMinutesSameDay(t1, t2) =

TimeDiffInMinutesSameDay(t2, t1))
)

)
END

Comments

The function ComputeDayOffset is an auxiliary function used in the calculation of the
number of days elapsed between two given dates. Consequently, this function is used by
DateDiffInDays function. The algorithm implemented in this function is given in http://
alcor.concordia.ca/~gpkatch/gdate-method.html.

Though it would be appropriate to use the DEFINITIONS clause for some of the con-
stants such as DAY , MONTH, YEAR, DATE, HOUR, MINUTE and TIME, it was decided
to define them in the CONSTANTS clause instead because these definitions will not be
visible to other machines when the DateTime machine is used through the SEES clause or
USES clause of another machine.

The AutomatedTicketingSystem machine

We now discuss the details of the automated ticketing machine that makes use of the
DateTime machine. Among the three relationships discussed in the previous sections in
this chapter, the inclusion relationship is not appropriate because it exclusively includes the
component inside an aggregate machine. Since DateTime machine can be shared by many
other machines, either the DateTime machine can be seen by the ticketing machine or used
by it. As stated in Sect. 19.4.2, if the ticketing machine uses the DateTime machine, the in-

19.7 Case Study—A Ticketing System in a Parking Lot 619

variant of the ticketing machine is not guaranteed when the state of the DateTime machine
changes. Since, the DateTime machine does not have a state, it is possible for the ticketing
machine to use the DateTime machine. However, the SEES relationship seems to be quite
appropriate in this case because the invariant of the ticketing machine does not depend on
the invariant of the DateTime machine. Therefore, the SEES relationship has been used in
the specification.

The parking lot has a fixed capacity; that is, the number of available spaces is fixed. In
order to demonstrate that this specification can be used for different parking lots of varying
sizes, it is decided to use a machine parameter to denote the capacity.

The machine must include a function to compute the charges based on the time a vehicle
is parked. This is defined as Computer Charge in the CONSTANTS clause. Three other
constants are required for computing the charge—RATE which defines the rate per hour for
parking, START CHARGE TIME and END CHARGE TIME which, respectively, denote
the opening and closing time of the parking lot.

The state space must maintain information about the tickets that are issued and the
tickets that are paid. Every ticket must have a date stamp on it. This is used to ensure that
the ticket is paid on the same day and hence the vehicle leaves the parking lot on the same
day. The state of the machine must also include the status of each ticket. Finally, the state
space should include a count on the number of spaces available at any time. This count will
be used to check whether there is a free space when a vehicle enters the parking lot.

The state invariant must assert the following constraints:

• The set of vehicles that are checked out must be a subset of the vehicles that were
checked in.

• There should be a date stamp on the ticket and a status for every vehicles that is checked
in.

• A vehicle that is not checked out must have its status Unpaid. In contrast, if the status
of a vehicle is Paid, then it must have checked out.

• The check out time stamp must be later than the check in time stamp.
• Both check in and check out time stamps must be within the allowable parking times

(START CHARGE TIME and END CHARGE TIME).

The initialization of the machine should set the number of available spaces to the ca-
pacity of the parking lot and set all ticket entries to null.

The operations on the ticketing machine are explained below.
The IssueTicket operation will be invoked when a vehicle checks in. This operation

should accept three parameters: the ticket, check in date and check in time. The precon-
dition must ensure that the ticket is not used by another vehicle before. That is, a ticket
uniquely identifies a vehicle. If one vehicle comes back to the parking lot after check out,
it is considered to be a different vehicle because it is issued a different ticket number. The
precondition also must ensure that there is at least one space available for the vehicle that
is checking in. If the precondition is satisfied, then the check in time of the vehicle must be
updated and its status must be set to Unpaid.

When a vehicle leaves the parking lot, two things should be taken care of. (i) The
charges must be computed for this vehicle when the driver inserts the ticket into the ma-
chine. Only after computing and displaying the charges, the driver will know how much

19

620 19 The B-Method

to pay. (ii) The driver must pay in full for this vehicle. The status of the vehicle should
be updated. These two tasks are described separately by the operations Checkout and
PayTicket, respectively.

The Checkout operation should accept the ticket and check out time as input parame-
ters. The precondition must ensure that the vehicle is checked in but not checked out, and
the check in time (entered in the ticket) is earlier than check out time. If the precondition
is true, the check out time should be recorded, the number of available spaces should be
increased by one, and the charge should be computed based on the check in and check out
times.

The PayTicket operation should take a ticket and amount paid by the driver as input
parameters. The precondition for this operation must ensure that the vehicle is checked out
but not paid. This indirectly enforces the sequencing of tasks by Checkout and PayTicket.
The precondition must also ensure that the amount is greater than or equal to the charges
computed. If the precondition is true, the operation must update the status of the ticket to
Paid and should return the change after payment.

Two query operations are to be included in the specification. The first one is
QueryNumberOfTicketsSold which is invoked to query the number of tickets sold in
a given period of time. It takes two dates fromDt and toDt as input parameters which de-
fine the period in which the calculation is to be performed. Obviously, the precondition
must ensure that fromDt is earlier than toDt or the same. The operation should count the
number of tickets whose status is Paid and the date stamp in the ticket is in the range
fromDt .. toDt.

The second query operation QueryRevenue is very similar to that of QueryNum-
berOfTicketsSold, but in addition to counting the tickets, it should also compute the
charge for each ticket based on the check in and check out times entered on the ticket.

The AutomatedTicketingSystem machine is given below.

MACHINE AutomatedTicketingSystem (Capacity)
CONSTRAINTS Capacity ∈ N1

SEES DateTime
SETS

TICKETNO;
TICKETSTAT = {Paid, Unpaid}

CONSTANTS
RATE, START CHARGE TIME, END CHARGE TIME,
Compute Charge /* functions */

PROPERTIES
RATE = 15 ∧
START CHARGE TIME = (6, 0) ∧
END CHARGE TIME = (21, 0) ∧
Compute Charge ∈ TIME × TIME → N ∧

∀ (t1, t2).(
t1 ∈ TIME ∧ t2 ∈ TIME ∧

19.7 Case Study—A Ticketing System in a Parking Lot 621

TimeCmp(t1, t2) ∈ {EARLIER, SAME} ⇒
Compute Charge(t1, t2) =

RATE × TimeDiffInHoursSameDay(t1, t2)
)

VARIABLES
checkin, checkout, date, status, /* functions */
availableSpace

INVARIANT
checkin ∈ TICKETNO → TIME ∧
checkout ∈ TICKETNO → TIME ∧
date ∈ TICKETNO → DATE ∧
status ∈ TICKETNO → TICKETSTAT ∧
availableSpace ∈ N ∧

/* relationship */
dom(checkout) ⊆ dom(checkin) ∧
dom(date) = dom(checkin) ∧
dom(status) = dom(checkin) ∧

∀ (tk).(
tk ∈ dom(checkin) ∧ tk �∈ dom(checkout) ⇒ status(tk) = Unpaid

) ∧
∀ (tk).(

tk ∈ dom(checkin) ⇒
TimeCmp(checkin(tk), START CHARGE TIME) ∈ {SAME, LATER} ∧
TimeCmp(checkin(tk), END CHARGE TIME) = EARLIER

) ∧
∀ (tk).(

tk ∈ dom(checkout) ⇒
TimeCmp(checkin(tk), checkout(tk)) = EARLIER ∧
TimeCmp(checkout(tk), START CHARGE TIME) = LATER ∧
TimeCmp(checkout(tk), END CHARGE TIME) ∈ {EARLIER, SAME}

) ∧
∀ (tk).(tk ∈ dom(status) ∧ status(tk) = Paid ⇒ tk ∈ dom(checkout))

INITIALIZATION
availableSpace := Capacity ‖
checkin, checkout, date, status := ∅ , ∅ , ∅ , ∅

OPERATIONS
IssueTicket(tk, checkinDate, checkinTime) =

PRE
tk ∈ TICKETNO ∧ tk �∈ dom(checkin) ∧
checkinDate ∈ DATE ∧ checkinTime ∈ TIME ∧

19

622 19 The B-Method

TimeCmp(checkinTime, START CHARGE TIME) ∈ {SAME, LATER} ∧
TimeCmp(checkinTime, END CHARGE TIME) = EARLIER ∧
availableSpace > 0

THEN
availableSpace := availableSpace − 1 ‖
checkin(tk) := checkinTime ‖
date(tk) := checkinDate ‖
status(tk) := Unpaid

END;

charge ← Checkout(tk, checkoutTime) =

PRE
tk ∈ TICKETNO ∧ checkoutTime ∈ TIME ∧
tk ∈ dom(checkin) − dom(checkout) ∧
TimeCmp(checkoutTime, checkin(tk)) = LATER ∧
TimeCmp(checkoutTime, END CHARGE TIME) ∈ {EARLIER, SAME}

THEN
checkout(tk) := checkoutTime ‖
availableSpace := availableSpace + 1 ‖
charge := Compute Charge(checkin(tk), checkoutTime)

END;

change ← PayTicket(tk, amount) =

PRE
tk ∈ TICKETNO ∧ tk ∈ dom(checkout) ∧ status(tk) = Unpaid ∧
amount ∈ N ∧
amount ≥ Compute Charge(checkin(tk), checkout(tk))

THEN
status(tk) := Paid ‖
change := amount − Compute Charge(checkin(tk), checkout(tk))

END;

count ← QueryNumberOfTicketsSold(fromDt, toDt) =

PRE
fromDt ∈ DATE ∧ toDt ∈ DATE ∧
DateCmp(fromDt, toDt) ∈ {EARLIER, SAME}

THEN
count := card({tk | tk ∈ dom(status) ∧ status(tk) = Paid ∧

DateCmp(fromDt, date(tk)) ∈ {EARLIER, SAME} ∧
DateCmp(date(tk), toDt) ∈ {EARLIER, SAME}})

END;

revenue ← QueryRevenue(fromDt, toDt) =

PRE
fromDt ∈ DATE ∧ toDt ∈ DATE ∧

19.8 Proof Obligations 623

DateCmp(fromDt, toDt) ∈ {EARLIER, SAME}
THEN

revenue :=
∑

(tk).(
tk ∈ dom(status) ∧ status(tk) = Paid ∧
DateCmp(fromDt, date(tk)) ∈ {EARLIER, SAME} ∧
DateCmp(date(tk), toDt) ∈ {EARLIER, SAME} |

Compute Charge(checkin(tk), checkout(tk)))
END;

count ← QueryAvailableSpaces = count := availableSpace

END

19.8
Proof Obligations

An abstract machine must be proved to be well-founded by showing that it is internally
consistent. A general abstract machine is described by the following AMN structure:

MACHINE MName(p)
CONSTRAINTS C
SETS S
CONSTANTS K
PROPERTIES B
VARIABLES V
INVARIANT I
INITIALIZATION T
OPERATIONS

y ← operation(x) =

PRE pre
THEN stat
END;

. . .
END

The above structure does not include the DEFINITIONS clause because they are macro
substitutions and hence must be textually expanded before showing internal consistency of
the machine. Given this structure, there are five proof obligations that must be discharged
to ensure internal consistency of the machine.

Parameter Existence

If a machine has parameters, then for every parameter, it is required to show that there
exists at least one instantiation that can be used to instantiate the machine. Otherwise,

19

624 19 The B-Method

the machine becomes useless. The parameters must satisfy the conditions given in the
CONSTRAINTS clause. This proof obligation is stated as

∃ p . C

If there is no parameter for the machine, there will be no constraints to satisfy and so there
is no proof obligation with respect to the parameters.

Existence of Sets and Constants

If a machine has the SETS and/or CONSTANTS clauses, then, as in the case of param-
eters, showing the existence of such sets and constants becomes a proof obligation. For-
mally, it is stated as

C ⇒ ∃ S,K . B

The formal statement asserts that, given that the parameters of the machine have been
shown to exist, there must exist some sets and constants as described in the machine that
satisfy the properties stated in the machine. Since the PROPERTIES clause may use the
parameters, it is important to assert the existence of parameters first.

Invariant Satisfaction

Generally, every machine will have at least one variable to define the state space of the
machine. A necessary condition is that the existence of state variable must satisfy the in-
variant.

C ∧ B ⇒ ∃ v . I

If a machine does not have a state variable, there will be no invariant. See the DateTime
machine given in the case study for an example of a machine without state variables. Such
stateless machines will be useful for providing some services.

Initialization and Invariant

The initialization conditions must satisfy the invariant. This is formally stated as

C ∧ B ⇒ [T]I

The notation [T]I denotes that I must be satisfied after executing T . In other words, I is
the postcondition of executing T .

Maintaining the Invariant

Every operation of the machine must satisfy the invariant. The proof obligation for opera-
tion definition follows:

C ∧ B ∧ I ∧ pre ⇒ [stat]I

Informally, for every operation, if the constraints, properties and invariant of the machine
are true along with the precondition of the operation, then the execution of the substitutions

19.8 Proof Obligations 625

must satisfy the invariant. The parameters of the operation need not be explicitly addressed
in the proof obligation since they will be covered under pre and stat.

To illustrate the process of checking internal consistency, consider the Student Council
example given in Example 1.

Parameter Existence The StudentCouncil machine has one parameter of type positive
numbers. Any positive number such as 30 that represents a reasonable size of the student
council will enable us to discharge this proof obligation.

Existence of Sets and Constants There is only one set STUDENT included in this ma-
chine. Since there is no property stated in the specification, the proof obligation can be
discharged easily.

Invariant Satisfaction If the machine is instantiated with a positive number limit and
given the set STUDENT , we need to show that there exist two variables council and
president such that

council ∈ P(STUDENT) ∧ card(council) ≤ limit ∧

president ∈ STUDENT ∧ council �= ∅ ⇒ president ∈ council

This requires that we need to find values for council and president that satisfy the two
conditions

card(council) ≤ limit ∧ council �= ∅ ⇒ president ∈ council

If limit is 30 and there is only one student in the council, these constraints will be satisfied.

Initialization and Invariant The substitution council := 0 in the INITIALIZATION
clause shows that card(council) ≤ limit since limit is a positive number. Further, since
council is empty, the other part of the state invariant is automatically true. Thus, the initial
state satisfies the state invariant.

Maintaining the State Invariant Consider the AddStudent operation. The precondition
of this operation ensures that the parameter is of type STUDENT and is not a member of
the council. Further, there is a space for at least one more member in the council. Given
that the parameter is instantiated, the set STUDENT exists, the invariant of the machine is
true, and the precondition is true, the proof obligation requires that the substitution for this
operation satisfies the state invariant. That is, the substitution

council = ∅ ⇒ president := nn ‖ council := council ∪ {nn}

must imply the invariant

card(council) ≤ limit ∧ (council �= ∅ ⇒ president ∈ council)

There are two cases to consider here.

19

626 19 The B-Method

Case 1 Council was empty before this operation.
In this case, the substitution results in a one-member council after the operation and the
only member will be the president. This satisfies both the constraints in the invariant. The
fact that card(council) < limit before the operation ensures that the new addition will not
exceed the limit.
Case 2 Council was not empty before this operation.
In this case, the cardinality constraint, as stated in Case 1, ensures that the size of the coun-
cil will not exceed the limit. The president of the council is not changed by the operation
in this case, and hence the second constraint president ∈ council is satisfied because it is
supposed to be true before the operation.
Thus, the AddStudent operation maintains the state invariant. The proof for other two
operations are left as exercise.

19.8.1
Proof Obligations for INCLUDES Clause

When a machine M2 includes a machine M1, additional proof obligations need to be dis-
charged in addition to those that are required for ensuring internal consistency. This section
gives the complete proof obligations for the machine M2 when it includes machine M1.
The following discussion uses subscripts to distinguish various components of the two
machines. For example, p1 refers to the parameters of the machine M1.

Parameter Existence

If M2 has parameters, the proof obligation requires the existence of some values for its
parameters. This is formally stated as

∃ p2 . C2

Existence of Sets and Constants

The machine M1 is an inherent part of M2. This shows that sets and constants of M1 are
also part of those in M2. Hence, the existence of sets and constants in M2 warrants the
existence of sets and constants in M1 as well. Formally,

C1 ∧ C2 ⇒ ∃ S1,K1, S2,K2 . B1 ∧ B2

The sets and constants of both machines together must satisfy the properties of both the
machines.

Invariant Satisfaction

If parameter existence and sets and constants existence are satisfied for both machines, then
the existence of variables on both machines must satisfy the invariants of both machines.
A formal statement follows:

C1 ∧ C2 ∧ B1 ∧ B2 ⇒ ∃ V1, V2 . I1 ∧ I2

19.8 Proof Obligations 627

Initialization and Invariant

The initialization process of M2 uses the initialization of M1 first. The entire initialization
process must satisfy the invariant of M2.

C1 ∧ C2 ∧ B1 ∧ B2 ⇒ [T1
o
9 T2]I2

The expression T1
o
9T2 denotes sequential composition of the initializations of the two ma-

chines. Notice that the initialization of M1 must satisfy the invariant of M1 as a standalone
machine and hence it is not brought into the above statement.

Maintaining the Invariant

Every operation in M2 must satisfy the invariant of M2. Since, during inclusion, M2 may
invoke some operations of M1, it is required that the invariant of M2 is also satisfied
by every operation of M1. The proof obligation for this step uses the same structure for
individual machine.

C1 ∧ C2 ∧ B1 ∧ B2 ∧ I1 ∧ I2 ∧ pre ⇒ [stat]I2

The satisfaction of I1 will be taken care of inside M1.

19.8.2
Proof Obligations for USES Clause

Consider a machine M2 that uses a machine M1. Since M2 does not alter the state space
of M1, the proof obligations mostly concern with the invariant of M2.

Parameter Existence

This is the same for an individual machine; i.e.,

∃ p2 . C2

Existence of Sets and Constants

The sets and constants of M1 must exist already for M2 to use it. The proof obligation for
M2 in this case becomes

C1 ∧ C2 ∧ B1 ⇒ ∃ S2,K2 . B2

Invariant Satisfaction

The invariant of M2 may use the invariant of M1 and hence the variables of both the
machines must exist and they must satisfy the invariants of both machines. Formally,

C1 ∧ C2 ∧ B1 ∧ B2 ⇒ ∃ V1, V2 . I1 ∧ I2

19

628 19 The B-Method

Initialization and Invariant

As in the case of inclusion, the initialization of M1 must be done prior to the initialization
of M2. The latter must satisfy the state invariant of M2.

C1 ∧ C2 ∧ B1 ∧ B2 ⇒ [T1
o
9 T2]I2

Since M1 must exist already, initialization of M1 must satisfy its invariant.

Maintaining the invariant

This is the same as the corresponding rule for the INCLUDES clause. That is,

C1 ∧ C2 ∧ B1 ∧ B2 ∧ I1 ∧ I2 ∧ pre ⇒ [stat]I2

19.8.3
Proof Obligations for SEES Clause

The only difference between the USES clause and the SEES clause is that in the case of
the latter, the machine M2 cannot use the invariant of M1. Therefore, the proof obligation
for invariant satisfaction of M2 does not include I1. Formally, this is stated as

C1 ∧ C2 ∧ B1 ∧ B2 ⇒ ∃ V2 . I2

Other proof rules are the same for both the clauses.

19.8.4
Proof Obligations for Refinement

As discussed in the Sect. 19.5, the refinement machine refers to several entities in the
abstract machine including the preconditions of operations. It has a linking invariant which
relates the state of the abstract machine and that of the refinement machine. The refinement
machine must have the same signature for operations as that of the abstract machine. These
unique characteristics of the refinement process make the proof obligations for refinement
different from those for establishing internal consistency. Consider the structure for the
abstract machine as given at the beginning of this section, and consider the structure of a
refinement machine given below:

REFINEMENT RName
REFINES MName
SETS S
CONSTANTS K
PROPERTIES B
VARIABLES V

19.8 Proof Obligations 629

INVARIANT I
INITIALIZATION T
OPERATIONS

y ← operation(x) =

PRE pre
THEN stat
END;

. . .
END

Notice that the refinement machine cannot have parameters and hence there is no proof
obligation concerning parameters. The rest of the proof obligations are given next.

Existence of Sets and Constants

Since the abstract machine may have parameters, the proof obligation for this step requires
the existence of values for those parameters. If there exist parameters for the abstract ma-
chine that satisfy the constraints of the abstract machine, then the sets and constants of both
the abstract and refined machines must exist that together satisfy the properties of both the
machines. This is stated formally as

Ca ⇒ ∃ Sa, Sr,Ka,Kr . Ba ∧ Br

The above statement uses the subscript ‘a’ for components of the abstract machine and ‘r’
for those of the refined machine.

Initialization and Invariant

Any transition by the initial state of the refinement machine must reach a state in which
some transition of the abstract state can establish the linking invariant, which is the invari-
ant of the refinement machine. In other words, every valid initial state Tr of the refinement
machine must correspond to some initial state Ta of the abstract machine for which the
linking invariant Ir is true. This is expressed as

¬ [Ta]¬ Ir

which states that not every transition of Ta guarantees that Ir is false. In other words, some
transition of Ta guarantees that Ir is true. For Tr to be a refinement of Ta, it is required
that ¬ [Ta]¬ Ir must be true for any state that Tr can reach. That is, Tr must guarantee to
reach a state in which ¬ [Ta]¬ Ir is true. This is expressed as

[Tr](¬ [Ta]¬ Ir)

Formally, the proof obligation is

Ca ∧ Ba ∧ Br ⇒ [Tr](¬ [Ta]¬ Ir)

19

630 19 The B-Method

Operations Without Output

For operations without output, the proof obligation is reduced to satisfying the precondition
of the refined operation.

Ca ∧ Ba ∧ Br ∧ Ia ∧ Ir ∧ prea ⇒ prer

Since the refined machine does not include a separate precondition, the above proof rules
thus reduces to the satisfaction of the precondition in the abstract operation.

For operations with output y, the proof obligation becomes

Ca ∧ Ba ∧ Br ∧ Ia ∧ Ir ∧ prea ⇒ [statr[y′/y]](¬ [stata]¬ (ir ∧ y′ = y))

Since the refinement operation has exactly the same signature as that of the abstract oper-
ation, the renaming of the output variable y into y′ is necessary in this proof obligation.

19.9
Exercises

1. Rewrite the StudentCouncil machine given in Example 1 using arrays to model the
council.

2. In Sect. 19.3.3, it is mentioned that the SELECT statement is an extension of the
CHOICE statement. Prove that is true.
Hint: Write a SELECT statement that is equivalent to a CHOICE statement.

3. The DateTime machine given in the case study includes two functions
TimeDiffInHoursSameDay and TimeDiffInMinutesSameDay. These functions return
the elapsed time between two times passed as input in hours and minutes, respectively.
However, they assume that the times occur on the same day. Include two other func-
tions in this machine named TimeDiffInHours and TimeDiffInMinutes which relax the
assumption. In other words, these new functions must return the elapsed time between
any two given times. Choose the input parameters for these functions appropriately.

4. Modify the PersonalDictionary machine given in Example 7 to include the additional
constraint: “For every word w in the dictionary, if w1 is a synonym of w, then w must
be included in the synonym of w1 as well. A similar constraint must be included for
antonyms as well”.

5. Modify the FileAccessControl machine given in Example 8 to include file ownership.
Include the following additional constraints: (i) The owner of a file will automatically
get read and write access to the file. It is possible that the owner can modify the access
rights later. (ii) Only the owner of the file can change the access rights of a file. Con-
sequently, in order for a user to get access to a file that he/she does not own, the user
must request the owner to grant access rights.

6. Write the specification for a simple TV remote control that supports three function-
alities for channel selection: (1) A user must be able to select any specific channel
by giving the channel number. (2) If the user does not select any channel, the remote

19.10 Bibliographic Notes 631

control should arbitrarily select a channel for display. (3) The user may specify a cri-
teria such as SPORTS and PAY PER VIEW and the remote control selects one of the
channels from this group arbitrarily.
Hint: Use nondeterministic statements in the operations.

7. A simple library collection management system includes only books. Model this sys-
tem and include the following functionalities: (i) add a new book to the collection; (ii)
borrow a book from the library; (iii) return a book to the library; and (iv) reserve a
book that is borrowed by another user. You may make use of the DateTime machine
given in the case study.

8. Show that the PersonalDictionary machine given in Example 7 is internally consistent.
9. Give the proof obligations for the refinement of the Collection machine and its refine-

ment shown in Examples 5 and 6, respectively.
10. (Project) The case study on automated ticketing machine for a parking lot includes the

assumption that no vehicle is allowed to park between 9:00 P.M. and 6:00 A.M. Relax
this assumption and rewrite the specification. This will involve changing the model
and computing charges.

11. (Research) Critically compare the refinement techniques supported by specification
languages VDM-SL and Z, and the one supported by the B-Method.

19.10
Bibliographic Notes

The B-Method was invented by Jean-Raymond Abrial. A detailed discussion of the first
version of the B-Method is given in his B-Book [1]. The inclusion of a specification lan-
guage, refinements and proof all under one umbrella attracted many researchers to use
the B-Method for various applications. These applications include smart card application
[10], component-based software development [12], model-based testing [19, 24], valida-
tion of strategies in space applications [22], reliability assessment [23], and verification
of work flow applications [27]. This list shows the diversity of applications in which the
B-Method is used and hence its expressive power for specification and verification of sys-
tems. A major industrial application of the B-Method has been reported in [17, 18] in
which the B-Method was applied to the specification and development of a control system
for Paris Metro Rail System. In particular, the safety properties in the control system have
been proved using the B-Method. Several other case studies using the B-Method have been
reported in [8, 21].

Several researchers have combined the B-Method with other modeling notations, specif-
ically for proving the correctness of models specified in other notations. Thus, the power of
the B-Method lies in its influence in proving the correctness of the system being specified.
Notable modeling notations that have been used in this approach include Model Checking
using SPIN [3], Timed Automata [4], and Personal Software Process (PSP) [6]. In some
cases, informal or semi-formal requirements engineering methods have been combined
with the B-Method in order to provide a rigorous requirements analysis [5, 7].

19

632 19 The B-Method

Abrial also developed an extension of the B-Method which includes specification of
events. This method is called Event-B [2] and has become more popular than B because
of its ability to specify and prove interactive systems such as web-based systems. Both B
and Event-B use the AMN syntactic structure to describe the dynamics of systems (called
machines). However, Event-B is more flexible in terms of adding newer syntax and in
combining with other notations [14, 27]. More information about current work on Event-B
can be found at www.event-b.org.

There are two tools for the B-Method that are quite popular. The B-Core company in
UK provides the B-Tool which is widely used. This can be obtained from the B-core web
site at www.b-core.com/btool.html. Recently, ClearSy System Engineering has provided
another tool called Atelier-B, named after the founder of the company. This tool is free for
academic purposes and can be obtained from www.atelierb.eu/index-en.php.

References

1. Abrial J-R (1996) The B-book: assigning programs to meanings. Cambridge University Press,
Cambridge

2. Abrial J-R (2009) Modeling in event-B: system and software design. Cambridge University
Press, Cambridge

3. Attiogbe JC (2004) A mechanically proved development combining B abstract systems with
spin. In: International conference on quality software (QSIC 2004), pp 42–49

4. Ayoub A, Wahba A, Sheirah M (2008) Mapping timed automata to B. In: Third international
design and test workshop (IDT 2008), Monstir, pp 255–259

5. Ayed LJB, Younes AB (2006) From graphical design in STATEMATE to formal specifica-
tion in event B. In: International conference on information and communication technologies
(ICITA’06), Damascus, pp 2837–2842

6. Babar A, Potter J (2005) Adapting the personal software process (PSP) to formal methods. In:
Proceedings of the Australian software engineering conference, pp 192–201

7. Babar A, Tosic V, Potter J (2007) Aligning the map requirements modeling with the B-method
for formal software development. In: Asia Pacific software engineering conference (APSEC
2007), Aichi, pp 17–24

8. Bicarregui JC et al (1997) Formal methods into practice: case studies in the application of the
B method. IEE Proc Softw Eng 144(2):119–133

9. Eirksson H-E et al (2004) UML 2 toolkit. Wiley, Indianapolis
10. Gomes B, Deharbe D, Moreira A, Moraes K (2010) Applying the B method for the rigorous

development of smart card applications. In: Abstract state machines, alloy, B and Z (ABZ
2010). LNCS, vol 5977, pp 203–216

11. Habrias H, Griech B (1997) Formal specification of dynamic constraints with the B-method.
In: International conference on formal engineering methods (ICFEM 1997), Hiroshima, Japan,
pp 304–314

12. Hatebur D, Heisel M, Souquieres J (2006) A method for component-based software and sys-
tem development. In: EUROMICRO conference on software engineering and advanced appli-
cations (SEAA’06), Cavtat, Dubrovnik, pp 72–80

13. Hoang TS, Furst A, Abrial J-R (2009) Event-B patterns and their tool support. In: IEEE in-
ternational conference on software engineering and formal methods (SEFM’09), Hanoi, pp
210–219

14. Iliasov A et al (2010) Supporting reuse in event B development: modularisation approach. In:
Abstract state machines, alloy, B and Z (ABZ 2010). LNCS, vol 5977, pp 174–188

References 633

15. Lano K (1996) The B language and method: a guide to practical formal development. Springer,
London

16. Lano K, Haughton H (1996) Specification in B: an introduction using the B-toolkit. Imperial
College Press, London

17. Lecomte T (2008) Safe and reliable metro platform screen doors control/command systems.
In: International symposium on formal methods (FM 2008), Turku, Finland, pp 430–434

18. Lecomte T, Servat T, Pouzancre G (2007) Formal methods in safety-critical railway systems.
In: SBMF Conference, Brazil

19. Malik QA, Truscan D, Lilius J (2010) Using UML models and formal verification in model-
based testing. In: IEEE international conference and workshops on engineering of computer-
based systems. Oxford, England, pp 50–56

20. Schneider S (2001) The B-method: an introduction. Palgrave Macmillan, Basingstoke
21. Sekerinski E, Sere K (1999) Program development and refinement: case studies using the B

method, FACIT. Springer, London
22. Sabatier D, Dellandrea B, Chemouil D (2008) FDIR Strategy validation with the B method.

DASIA
23. Tarasyuk A, Troubitsyna E, Laibinis L (2010) From formal specification in event-B to prob-

abilistic reliability assessment. In: Third international conference on dependability, Venice,
Italy, pp 24–31

24. Utting M, Legeard B (2007) Practical model-based testing: a tools approach. Morgan Kauf-
mann, San Mateo

25. Waeselynck H, Behnia S (1998) B model animation for external verification. In: International
conference on formal engineering methods (ICFEM 1998), Brisbane, Australia, pp 36–45

26. Wang S, Li Y, Huang G (2007) PostB: the postcondition extension onto the B-method. In:
ACIS international conference on software engineering research, management & applications
(SERA 2007), Busan, pp 195–202

27. Younes AB, Ayed LJB (2008) From UML activity diagrams to event B for the specification
and the verification of workflow applications. In: IEEE international conference on computer
software and applications (COMPSAC’08), Turku, pp 643–648

Index

A
Absorption laws, 186
Abstraction, 12, 38, 47, 49, 53–56, 179, 367,

406, 421, 461, 482
Accept state, 78, 81, 84–86, 88, 89, 91, 101,

216, 217, 219
Accepter, 77–79
Action prefix, 368, 376, 382, 386
Agent, 83, 368–376, 378–381, 383, 385–392,

397–401, 573
Agent expression, 368–372, 374, 376, 385,

387–389
Agent variable, 398
Algebra, 16, 23, 48, 129–131, 265, 267–276,

281, 288, 295, 298, 300, 301, 309,
317, 365, 366, 402

final, 65, 276
free-word, 352
heterogeneous, 270–272, 301
homogeneous, 270, 271, 301
initial, 276, 277, 281, 288, 292, 310, 317,

319
many-sorted algebra, 270, 273, 310
order-sorted algebra, 291
term, 131, 272, 273, 275, 276, 281, 288,

295, 319, 352, 365
terminal, see final

Algebraic specification, 72, 131, 132, 265,
267, 286, 310, 311, 314, 315, 318,
319, 365

abstract data type, 267, 270, 273, 274, 280,
281, 290, 310, 318–320

axioms, 268, 272, 274, 275, 279–281,
289, 310, 318, 320

Axioms clause, 275
constructor, 281
constructors, 280, 281

extend by clause, 275, 279
mutator, 280, 281, 283, 285
nonconstructor, 280
observer, 47, 121, 280, 281, 283–285,

296, 320, 368
Operations clause, 275
primitive constructor, 281
Sorts clause, 275
Spec clause, 275
Variables clause, 275

adequacy, 64, 277, 281, 450, 529
ADT, see abstract data type
many-sorted specification, 277, 279
OBJ3, 131, 132, 265, 286, 288–294,

296–298, 301, 302, 310, 311
built-in sorts, 290
constructor, 296
equations, 131, 288, 289, 294, 296–298
extending, 292
import clause, 292
including, 292, 293
instantiation, 301
module, 265, 287, 288, 290, 292–295,

297, 298, 301, 302
module expression, 301
object, 131, 287–293, 296–298, 310
observer, 296
parameterized module, 297, 298, 301
parameterized programming, 297
protecting, 292, 295, 298, 299, 301
reduction, 288, 296
rewrite rules, 131, 288, 290, 294
signature, 294, 298
signature of a module, 292, 295
subsorts, 290, 291, 294, 295
term rewriting, 288, 296

V.S. Alagar, K. Periyasamy, Specification of Software Systems,
Texts in Computer Science,
DOI 10.1007/978-0-85729-277-3, © Springer-Verlag London Limited 2011

635

636 Index

Algebraic specification (cont.)
theories, 297, 298, 311
theory, 131, 267, 287, 288, 294, 297,

298, 310
using, 292, 293
view, 287, 288, 297, 298

operations, 131, 263, 267–270, 273, 274,
276, 278–287, 289–298, 301–303,
309, 310

reasoning, 291, 365
equational reasoning, 277, 365
induction, 277

signature, 270, 273, 274, 276, 283, 292,
294, 295, 309

sorts, 267, 268, 270, 273–276, 278, 279,
282–285, 287–293, 295, 297–299,
301, 302, 310, 315

Alphabet, 65, 68, 73–75, 78–80, 82, 83, 87, 89,
91–93, 95, 97, 195, 218, 227, 269

Atomic action, 213

B
Bag, 258, 259, 469

add member, 258
elements, 258–260, 469
empty bag, 258, 280
from sequence, 259, 469
membership, 258
multiplicity, 258, 259

Behavior, 3–9, 12–16, 36–39, 77, 78, 87–89,
101, 102, 116, 118, 119, 189–194,
219, 223–225, 346, 347, 365–371,
374–376, 392, 393, 420, 421

Behavioral specification, 14, 15, 24, 37, 127
Bisimilarity, 396, 401
Bisimulation, 395, 396
B-Method, vi, vii, 403, 577–580, 582–584,

587, 591, 594, 596, 597, 600, 631,
632

abstract machine, 48–50, 55, 77, 403, 577,
578, 580, 597, 598, 600, 604, 608,
623, 628, 629

Abstract Mathematical Notation, 403, 577,
580, 596, 597, 623, 632

AMN, see Abstract Mathematical Notation
ANY statement, 584, 585
array, 583, 584, 608, 612
Atelier-B, 577, 632
B-Tool, 632
CHOICE statement, 585, 586, 630
CONSTANTS clause, 578, 618
CONSTRAINTS clause, 578, 624
DEFINITIONS clause, 579, 580, 618, 623

Event-B, 632
EXTENDS clause, 588
generalized substitution, 579
INCLUDES clause, 587–589, 591, 598,

626, 628
INITIALISATION clause, 579, 581, 612,

625
INVARIANT clause, 581
LET statement, 585
local variable, 351, 427, 430, 471, 473,

503, 596, 597
MACHINE, 578, 580, 587–591, 593–596,

601, 623
OPERATIONS clause, 579
parallel statement, 579
PRE clause, 579
PROMOTES clause, 588
proof obligation, 624–630
PROPERTIES clause, 578, 624
refinement, 403, 577, 584, 594, 596–598,

628–631
refinement machine, 597–599, 628, 629
REFINES clause, 597, 598
SEES clause, 594, 595, 618, 628
SELECT statement, 586, 630
sequential composition, 596, 597, 627
SETS clause, 578
substitution, 583, 625, 626
USES clause, 591, 592, 594, 618, 627, 628
VARIABLES clause, 579
visibility rule, 580, 589, 592, 594, 595

Branching time, 181, 227
Büchi automaton model, 226
Buffer, 92–94, 102, 106, 107, 383, 395,

440–442, 448, 455, 456, 543, 544,
564–569

C
Cartesian product type, 235, 415, 419, 463,

514
Choice composition, 88
Classical logic, 131, 177, 184
CNF, see conjunctive normal form
Communication, vii, xv, 8–12, 15, 17, 19, 20,

51, 127, 189–193, 201, 203,
365–368, 371–375, 378, 379,
548–550, 563–565

Communication channel, 31, 126, 196
Completeness, 1, 6, 12, 42–45, 48, 55, 69–71,

85, 113, 143, 165, 186, 318, 323,
324, 372

operational, 42, 43, 55
sufficient, 41–43, 71

Index 637

Complex system, 5, 105, 127
Complexity, 1, 3–5, 7–12, 15, 17, 19, 20, 26,

37, 41, 76, 85, 105, 112, 113, 227,
228, 367, 405

application domain, 9–12, 15, 76
communication, 10–12, 15, 17, 19, 20, 367
environmental, 7–9, 15–17, 19, 20, 25
size, 6, 11, 15–17, 26, 61, 102, 105, 228
software, 4–7, 9–13, 15–17, 19, 20, 37, 61,

76, 102, 113, 405
structural, 6, 12, 16, 26, 61

Composing state machine, 98
Composition, 12, 39, 41, 88, 89, 98, 105, 114,

122, 123, 168, 169, 199, 243,
372–376, 378–384, 390, 487, 548,
549, 551, 552, 567–569, 596, 597

Composition of automata, 88
Computability, 48–50
Concurrent, 8, 19, 77, 129, 177, 178, 201, 202,

204, 212, 213, 216, 223, 366, 367,
380

Concurrent system, vii, 77, 126, 131, 132, 135,
201, 210, 211, 227, 365–367, 457,
573, 574

Conditional constructor, 375
Congruence, 265, 352, 387, 394, 396, 397
Conjunctive normal form, 141, 142, 163
Consequence closure, 67, 68, 70
Consistency, xviii, xix, xxiv, 9, 20, 30, 69–71,

143, 149, 323, 405, 436, 488, 505,
509, 623, 625, 626

Continuous time, 152
Contradiction, 18, 62, 64, 138, 142, 151, 164,

323, 545
Contradictory, 41, 62, 138, 151
Correctness, 7, 13, 16, 23, 27–29, 31, 41, 43,

44, 48, 54, 130, 166, 167, 180, 205,
206, 536, 631

type, 41, 43, 130, 131, 178, 457, 505, 508,
536

D
Deadlock-freedom, 178, 188
Decidability, 70, 71, 143, 165
Declaration, 234, 289, 291, 293, 343, 344, 410,

423, 462, 463, 465, 466, 471–475,
480–483, 490–492, 522, 523, 529,
530, 547, 597

Decomposition, 6, 12, 15, 449, 453, 454, 457
Deductive system, 61, 67, 167, 174
Defining equation, 320, 398
Dependability, 4, 7, 19, 20, 44
Derivation tree, 383–386, 389–391

Design specification, 14, 15, 24, 35, 54, 178,
180, 282, 313, 596

Deterministic finite automata, 78, 392
Dining philosophers, 188, 222
Discrete time, 99, 152, 153, 181, 189, 435
Distributive laws, 138, 163, 186, 350, 389
Duality laws, 187
Dynamic laws, 387

E
Emptyness checking, 441
Encapsulation, 5, 37, 105, 315, 357, 539, 544
Epimorphism, 271, 272
Equality, 147, 151, 152, 160, 166, 235–237,

260, 261, 270, 274–276, 283, 284,
317, 318, 375, 387, 410, 411, 415,
416, 463, 464, 510, 511

Equality of tuples, 236
Equational term-rewriting, see term-rewriting
Equivalence, 138, 151, 160, 186, 187, 220,

222, 265, 318, 320, 345, 366, 382,
383, 387, 391–397, 506, 583

Expansion laws, 187, 387, 397, 399
Expansion principle, 387, 397
Extended finite state machine, 103, 105, 106,

114, 116–118, 126, 127, 365

F
Fairness, 178, 179, 187, 188, 196, 222, 227,

367
Finite sequence, 254, 258, 261, 263, 391, 392
Finite state machine, 78, 79, 81, 94, 97, 98,

100, 101, 106, 121, 132, 217
First order temporal logic (FOTL), 195–197,

199, 205, 210, 211
Formal language, vi, vii, 28, 36, 56, 59, 61, 62,

65–67, 70, 72, 76, 135, 138, 148
Formal methods, v, vi, viii, ix, xi–xiii, 1, 3, 4,

14, 23, 24, 26–28, 30–32, 35, 36,
40, 59, 61, 62, 77, 129, 130, 133

Formal notation, xiii, 17, 27, 59, 174, 178,
227, 264

Formal proof, xi, xiii, 27, 54, 68–70, 131, 139,
167, 174, 262, 324, 510, 512

Formal specification, vi, viii, ix, xi–xiii, xvi, 1,
12, 18, 21, 24, 26–29, 32, 35, 40,
41, 129, 130, 242, 243, 512

Formal system, xi, 59, 61, 62, 65–71, 76
Formal verification, 24, 27, 130, 135, 178, 205,

453, 574
Formalism, vi, xi–xiii, 13, 23–25, 27, 30, 32,

36, 59, 61, 62, 65, 76, 132, 143,
151, 274

638 Index

Formality, 24–27, 30, 40, 61, 129
Function, 49, 50, 53–56, 147–149, 242–259,

261–263, 343–348, 414–416,
420–426, 450–452, 465–468,
488–490, 496–499, 515–518, 553,
556, 557, 614–621

G
Generalized intersection, 91, 92, 123, 464, 582
Grammar, 65, 66, 71–75, 110, 111, 137, 138,

343
Guarded, 398, 399, 401

H
Handshake, 368, 379
Hiding, 310, 480
Hierarchical state, 112
Hierarchical state machine, 120
Homomorphism, 271, 272, 276, 298, 309
Hypothesis, see premises

I
Idempotent laws, 187
Incompleteness, 45, 53, 70, 97, 227, 323, 363
Incremental modeling, 15
Induction laws, 187
Inductive hypothesis, 250, 251, 260
Inference mechanism, 39, 67, 70, 71, 352
Inference rules, 23, 67–69, 130, 137, 140, 142,

160, 205, 250, 382, 512, 523
Inheritance, 291, 292, 315, 325, 403, 539, 544,

545, 572
Interleaved execution, 190, 204
Interleaving model, 197
Internal action, 96, 368, 373, 396, 400
Internal transition, 89
Invariance property, 210
Isomorphism, 272, 276, 394

K
Kripke structure, 210, 211, 213, 216–218, 220,

226, 365

L
Labeled transition system, 216, 377, 391
Lambda, 49, 50, 55, 56, 367, 370, 415
Larch, vii, xii–xiv, xvi, 27, 32, 55, 131, 132,

265, 313–315, 317, 320, 323, 324,
329, 349, 351, 363

allocated keyword, 348
asserts clause, 326, 349
assigned keyword, 348
assumes clause, 324, 325
claims clause, 348

constructs clause, 348
converts clause, 324, 349
date sort, see distinguished sort
declaration, 343, 344, 351
declarator, 343
distinguished sort, 319, 320
ensures clause, 345–348
enumeration of, 327
equational logic, 267, 318
equational specification, 315
equations, 26, 131, 316–318, 321, 323,

324, 326, 339, 349, 351–354
exempting clause, 324
extension, 320, 325
free-word algebra, 352
fresh keyword, 348
generated by clause, 319, 349, 351, 353
generator, 319, 320, 323, 343, 345
implies clause, 323, 326, 348–351, 358
includes clause, 321, 325
interface specification, xii, xiv, 313, 314,

339, 345, 347, 355–363
interface tier, 313, 314
introduces clause, 326
iterator, 332–334, 342, 358
Larch Interface Language, 265, 313, 314
Larch Proof Assistant, 323
Larch Shared Language, xiv, 265, 314, 315
Larch/C++, xiii–xv, 315, 339, 341–343,

345–349, 356–363
let clause, 348
LIL, see Larch Interface Language
LP, see Larch Proof Assistant
LP theories, 351–353
LSL, see Larch Shared Language
mixfix notation, 317
mixfix operator, 317
modifies clause, 346–348
multi-sorted first-order, 314, 317, 318, 351
observer, 320
operator overloading, 326
operators, 265, 315, 317, 319–327, 329,

343, 345, 347, 351, 352, 358
partitioned by clause, 320, 349, 353
post-state, 95, 106, 131, 314, 344, 345,

347, 348
pre-state, 95, 106, 131, 314, 344, 345, 347,

348
principal sort, see distinguished sort
proof, 351

deduction rules, 351
inductive rules, 187, 319, 353

Index 639

Larch (cont.)
proof obligations, 349

proof methods, vii, 27, 131, 349, 353
critical-pair equations, 354
instantiation, 354
normalization, 353
proof by case, 248, 354
proof by implication, 349
proof by induction, 249, 259, 354

requires clause, 346, 347
self, 346, 347, 356, 357, 359–362
shared tier, 314, 329
signature, 316, 317, 322, 339, 351
sorts, 267, 315, 316, 321, 324, 328,

342–345, 351
state function, 345, 347
theory, 32, 131, 267, 314, 315, 318–323,

325, 326, 329, 333, 349, 352–354,
358, 365

completeness, 318, 323, 324
containment, 323
sufficiently complete, 324

trait, 314–335, 337–343, 345, 347–351,
355, 357–359

assertions, 314, 318, 322, 323, 326,
348–350

assumptions, 324, 325, 349
axioms, 318, 320, 321, 323, 349, 350
composing traits, 321
theory, 314, 315, 318, 320–323, 325,

326, 329, 331, 333, 349, 358
well-formed, 317, 318

trashes clause, 348
tuple of, 316, 327, 330, 334, 339, 340, 342,

343
two-tiered approach, 131, 313, 314, 364
union of, 318, 328
uses clause, 345

Law of excluded middle, 140
Linear temporal logic, vii, 132, 135, 226
Liveness, 178, 196, 227, 367
Liveness property, 178, 187, 188, 196–198,

210, 226, 367
Logic, vii, xii–xiv, 16, 23, 24, 27, 54, 55,

129–131, 135, 137, 138, 145, 151,
166, 167, 174, 177, 367, 402, 403

Logical reasoning, 42, 43

M
Metalanguage, 61, 65, 66, 71, 72, 76
Model, 9, 10, 23–28, 35–37, 50–52, 63–65,

83–85, 92–103, 105–114, 118–120,
122–127, 130–133, 178–181,

189–192, 204, 205, 223–227,
572–574

Model checking, v, vii, 31, 42, 103, 130–132,
135, 178, 210, 213, 216–218, 220,
221, 227, 228, 365, 631

Model-oriented specification, 130, 132, 313
Modeling, 20, 26, 27, 51, 52, 56, 77–79, 87,

106, 113, 114, 119, 120, 127, 132,
405, 406, 514, 515, 564, 608, 609,
631

Monomorphism, 272
MooZ, 537, 539
Mutual exclusion, 178, 188, 204, 214, 216

N
N -tuple, 234, 235
Natural deduction, 140, 141, 144, 160, 165,

171, 235, 349
Nondeterministic composition, 90
Nondeterministic finite automata, 86–88, 367

O
Object-Z, vi, vii, 27, 30, 32, 132, 403, 537,

539, 540, 542, 544, 545, 547, 548,
552, 553, 557, 561, 564, 565,
572–574

Δ, 485, 486, 488, 540, 542, 551
choice operator, 548, 551
class definition, 540, 544, 545, 565
concurrency, vii, 132, 548, 549
encapsulation, 403, 539, 544
environment enrichment, 548, 551, 552,

567, 571
inheritance, 403, 539, 544, 545, 572
inherited class, 540
INIT, 540–543, 547, 554, 558, 561, 563,

570
nondeterministic choice, 545, 548
parallel composition, 548
parameterized class, 542, 543
polymorphism, 403, 539, 544, 547
RTOZ, 574
sequential composition, 548, 549, 551, 563,

567–569
state definition, 539, 540
subclass, 540, 544, 545, 547, 573
superclass, 540, 544, 545, 547, 572
TCOZ, 573, 574
TOZE, 573
universal polymorphism, 547
visibility, 539–541, 544, 545
wizard, 573
ZML, 573

640 Index

Observational equivalence, 382, 396
Observer, 47, 121, 280, 281, 283–285, 296,

320, 368
One-point-rule, 506, 507, 523, 534

P
Parallel composition, vi, 366, 384, 385,

387–389, 397, 548, 550, 596
Partial correctness, 167, 168, 178
Peano’s axiom, 62
Polymorphism, 315, 403, 539, 544, 547
Port label, 373, 374
Postcondition, 42, 167, 169–171, 173,

206–209, 249–251, 421, 425, 426,
436, 437, 440–442, 448, 450, 451,
455, 504, 520–522, 542

Precision, 12, 27, 41–43, 48
Precondition, 167, 169–171, 206–209, 243,

421, 436, 440–442, 448, 450, 451,
455, 483, 520–524, 531, 532, 581,
582, 609, 610, 619, 620

Predicate logic, vii, 61, 130, 132, 135,
147–149, 151–156, 158, 160, 162,
165, 172, 174, 195, 231, 405

commutative, 294
completeness theorem, 165
decidability, 165
equality, 147, 151, 152, 160, 166
equivalence, 151, 160
equivalent, 152, 172, 472
existential generalization, 161, 162
existential specification, 161
natural deduction, 160, 165, 171
predicate, 147–153, 156–159, 165, 172,

195, 196, 233, 471, 472
provable, 165
quantified expression, 153, 154, 162
reflexive, 243, 253, 397, 466
resolution, 155, 160, 162–165, 171
soundness theorem, 165
transitive, 243, 253, 292, 310, 397
undecidable, 165
unification, 162, 164, 174
universal generalization, 160
universal specification, 160, 161

Prefix, 82, 158, 290, 317, 329, 330, 362, 369,
371, 385, 389, 467, 469, 583

Premises, 68, 139, 141–144, 161, 162, 171,
172, 237

Prenex normal form, 155, 163, 172
Process algebra, 365, 366
Process calculus, 132
Program graphs, 212–216, 226, 365

Program specification, 24, 35, 55, 173, 178
Program termination, 168
Proof, 27, 28, 32, 68–71, 130–132, 139–142,

162–165, 248–251, 260, 326,
348–351, 353–355, 447–450,
452–454, 510–512, 526, 527,
623–631

Proof by case, 248, 354
Proof by contradiction, 142
Proof by induction, 249, 259, 354
Proof by resolution, 141, 145, 155, 164, 171
Property-oriented specification, 130
Propositional logic, vii, 135, 137–139,

143–145, 147, 148, 160, 162, 165,
181

atomic formula, 138, 141
compactness, 143
completeness, 143, 165
compound proposition, 137
consistency, 143
decidability, 143, 165
elimination, 140–142, 160–163
equivalent, 138, 141, 142
introduction rules, 140
literal, 141, 162
logical connective, 137, 182
modus ponens, 139, 142, 161, 162
resolvent, 141, 142, 162
satisfiable, 138, 144, 164, 165
semantics, vii, 137, 138, 143, 149
soundness, see consistency
syntax, vii, 137, 148, 182
well-formed formula, 138, 148

Propositional temporal logic (PTL), 181,
183–187, 192, 195, 196, 205, 210,
211, 217–219, 222

Provable, 68, 70, 71, 143, 165, 523

R
Reactive system, 7, 129, 131, 177, 180, 192,

210, 227, 245
Real-time, 7, 8, 103, 127, 131, 177, 192, 457,

537, 574
Reasoning, vii, xii, 3, 23, 24, 26, 37, 42, 43,

71, 78, 80, 102, 135, 145, 248, 277,
365, 366

Recursive definition, 378, 381, 398, 470
Referential transparency, 37
Refinement, xii, 27, 28, 30, 107–113, 118, 195,

313, 403, 449–454, 456, 457,
526–529, 531, 536, 537, 577,
596–599, 628–631

Relabelling, 388

Index 641

Relation, 13, 147, 148, 179, 184, 242–244,
247, 248, 291, 292, 298, 313, 352,
366, 395, 396, 553, 556, 557, 560,
561, 583

Relations, vii, xiii, 16, 17, 39, 52, 129, 130,
132, 147, 231, 233, 242–244, 248,
263–265, 465, 466, 557, 572

binary relation, 466
composition, 243, 251, 267, 466
domain of, 244, 248, 466
functions, 16, 130, 147, 231, 233, 242–252,

254, 255, 259, 261–263, 295, 462,
465, 466, 572

higher-order function, 245, 252
identity relation, 243, 466
inverse, 243, 318, 466
partial function, 243, 465
range of, 245–247, 466
reflexive, 243, 466
relational overriding, 248, 466
symmetric, 243
total function, 243, 465
transitive closure, 243, 466

Requirements analysis, xi, 11, 30, 45, 631
Requirements description, 178
Requirements document, 1, 14, 15, 151
Requirements specification, xvi, 6, 7, 19, 20,

26, 30, 35, 36, 113, 151, 179
Resolution principle, 144, 160, 162, 163
Restriction, 157, 201, 246, 286, 366, 374, 376,

378, 383, 384, 387–390, 397–399,
413, 455, 456, 466, 477, 583

Rewrite rules, 131, 275, 277, 288, 290, 294,
351–354, 387

Rewriting system, see term-rewriting
Rigorous, vii, xi, xii, xv, 4, 15, 23, 24, 27, 56,

61, 139, 387, 447, 449, 512, 531,
631

S
Safety, 7–9, 11, 19, 24, 26, 27, 30–32, 43, 52,

116, 178, 196, 206, 227, 245, 367
Safety property, v, 178, 188, 193, 194, 197,

198, 214, 216, 224, 225, 631
Semantic completeness, 71, 143
Semantic consequence, 138
Semantically consistent, 70
Semantics, vii, viii, xiv–xvi, 61, 62, 66, 67,

119, 120, 127, 183–185, 194, 195,
199–201, 212, 213, 276, 277, 314,
351, 377, 378, 409–413, 548–552

Sentence, 65, 66, 68, 70, 71, 138, 140, 141,
172, 323

Sequence, 169, 170, 206, 207, 253–259, 261,
263, 283–285, 300, 301, 391, 392,
410, 411, 416–418, 423, 424, 449,
451–453, 466, 467, 494–497, 582,
583

concatenation, 255, 411, 418, 467, 534, 583
operators, 205, 254, 351, 352, 358, 410,

411, 413, 466, 467, 469, 539, 548,
564

subsequence, 255, 411, 424
Set theory, vii, xii, xiii, 16, 23, 62, 129, 160,

231, 233, 235, 248, 263, 410, 414,
415, 461, 577

difference, 236, 243, 247, 248, 410
empty set, 62, 235, 237, 261, 410
equality, 160, 235–237, 260, 261, 410, 411,

415
intersection, 236, 247, 248, 410
maximal set, 234
membership, 233–237, 261
powerset, 234, 236
subset, 62, 234, 236, 237, 244, 410
type, 129, 131, 233–235, 238, 239, 252,

254, 255, 258, 261, 263, 410,
414–416, 461, 577

union, 236–238, 247, 248, 410
Shared variable, 201, 202, 204, 212, 367
Silent action, 368, 373
Silent transition, 85, 387
Simple system, 5
Simulation, 42, 118, 383, 391, 392, 402
Skolemization, 162, 163
Software design, 32, 113, 225
Software process model, 9
Software requirements document, 1, 14
Software specification, v, xi, 11, 12, 14, 310
Sort, 272–277, 279, 280, 283–286, 288–292,

297–308, 315–317, 319–322,
327–329, 331, 336, 342–345, 351,
354, 372, 388, 392

Soundness, 44, 143, 165, 186, 355
SRD, see software requirements document
Starvation-freedom, 179, 188
State, 77–89, 91–103, 105–114, 116–125,

183–189, 194–199, 209–213,
215–221, 343–348, 419–421,
450–452, 481–488, 504–507,
524–533, 539–542, 624–629

State refinement, 107–109
State transition diagram, 110–112, 120–122,

125
Static laws, 387

642 Index

Substitution, 69, 152, 160, 162, 164, 165, 169,
275, 352, 354, 390, 396, 480, 503,
547, 583, 624–626

Summation law, 387
Synchronous product, 86, 91, 93
Synchrony, 368, 379, 380
Syntactic completeness, 71
Syntactically consistent, 70
Syntax, vii, viii, xiv, xv, 27, 61, 62, 64–66, 71,

72, 156, 240, 241, 288–291,
409–412, 414, 415, 421–425, 457,
458, 547–552, 582–586, 596, 597

T
Tautology, 138, 139, 143
Temporal logic, vii, 131, 132, 135, 137,

177–179, 181, 182, 184, 187, 196,
198, 199, 201, 204–206, 222,
224–227, 365

always operator, 181, 186
branching models of time, 181
continuous time, 152
discrete time, 181, 189
eventually operator, 181
first-order linear, 205
linear time, 181, 201, 217
next operator, 181, 187
once operator, 203
propositional linear, 181
since operator, 185
until operator, 185
waiting-for operator, 203

Temporal operators, 181, 183, 184, 187, 192,
195, 196, 205, 221, 222

Term-rewriting, 352
canonical form, 352
convergent, 352
irreducible, 352
normal form, 352
operator, 352
theories, 352, 353

Theorem, v, xvi, 27, 32, 69, 76, 130, 131, 141,
143, 165, 173, 174, 271, 351, 354,
458, 506, 507

Theory, 16, 17, 19, 20, 32, 35, 39, 63, 64, 102,
103, 130–132, 152, 287, 288,
297–299, 318–323, 331, 352–354,
358, 365–367

Trace equivalence, 392–394, 401
Transducer, 77, 78, 93, 94
Transition, 78–89, 93, 94, 96, 98, 99, 103,

105–117, 119–123, 125, 188,
210–218, 220, 221, 226, 379, 380,
390, 391, 394, 629

Transition point, 119, 120
Transition relation, 211, 212, 220, 379
Transition rules, 55, 213, 378, 379, 383, 384,

391, 400
Trigger, 101, 105, 156
Turing machine, 48–50, 56, 102

U
Undecidability, 71, 165
Undecidable, 71, 165, 323, 352
Unification, 162, 164, 174

V
Validity, 69, 70, 140, 145, 151, 157, 162, 163,

165, 314, 406, 479, 484, 486, 506,
515, 520, 521, 529

Value passing, 381
Variables, agent, 398
VDM, see Vienna Development Method
Vending machine, 89, 102, 113, 370, 371, 379,

392, 393
Vienna Development Method, xii–xiv, xvi, 27,

32, 54, 55, 132, 324, 405–407, 417,
420, 427, 440, 449, 457, 458, 461,
529

arithmetic operators, 408
binding, 416
Cartesian product type, 415, 419

mk- function, 414, 415
tuples, 415

composite type, 409, 414, 420, 427
flat type, 416
function type, 415, 416
functions, 405–407, 412, 415, 421, 423,

424, 430, 435–437, 443, 450, 451,
454

curried, see higher-order
explicit, 406, 421, 423, 430
higher-order, 424
implicit, 421, 423, 425
polymorphic, 424

identifiers, 407, 416, 417, 419, 425, 441
invariant, 420, 439, 452, 456

state invariant, 420, 421, 429, 434
type invariant, 420, 421

let expression, 421, 422, 427
make function, 407, 414

for records, 415
for tuples, 415

map type, 412, 440, 453
bijective, 413
inverse, 413

Index 643

Vienna Development Method (cont.)
operators, 411–413

non-flat type, 416
non-flat value, 416
operational abstraction, 405, 421
operations, 405–408, 411, 413, 416, 417,

420, 421, 425, 426, 429–435, 438,
440–442, 444, 448–451, 453–456

err clause, 425
explicit, 421, 426, 430, 434, 449
ext clause, 426
implicit, 421, 425, 426

pattern, 416–418, 427, 428, 435–438
record pattern, 416, 417
sequence pattern, 416–418
set pattern, 416
tuple pattern, 416

postcondition, 406, 421, 423, 425, 426,
431, 437, 440–442, 448, 450, 451

precondition, 406, 421, 423, 425, 440–442,
448, 450

primitive type, 407, 408
quote type, 407–409, 419
reasoning, 403, 447
record type, 414, 418, 419, 432

fields, 414, 418
mk- function, 414

refinement, 403, 405, 449, 452–454, 457
adequacy obligation, 450
data refinement, 403, 449–451, 454,

456, 457
domain obligation, 450–452
initial state validation, 450, 452
operation decomposition, 449, 453, 454
proof obligation, 449, 450, 453
result obligation, 451, 453
signature verification, 450, 452

representational abstraction, 405, 406
sequence type, 410, 414, 424, 453

operators, 410, 411, 413
set type, 410, 453

operators, 410
simple type, 407, 408
state, 406, 416, 417, 419–421, 425–427,

429–431, 433, 434, 438, 440, 443,
450–452, 454, 456

statements, 407, 426–429, 434
:=, 167, 199, 426, 428, 434, 579, 583
cases, 427–429
dcl, 428, 429
for, 426–428
if then else, 199, 428, 430, 579
let, 427, 428

return, 426, 428
while, 427–429

structure, 405
token type, 408
union type, 409

Visibility, 539–541, 544, 545, 580, 589, 592,
594, 595

W
Well-formed formula, 67, 68, 73, 138, 148,

151, 199, 472
Well-ordering property, 249

Z
Z, xiv, xvi, 132, 263, 461, 462, 467, 473, 483,

527, 536, 537, 539, 542
abbreviation, 464, 470, 485, 503
bag, 467–469
bag operators, 469

count, 468, 469
�, 468
difference, 469
−∪, 469
items, 469, 534, 543
�− , 468
membership, 235, 468
sub-bag, 469
�, 469
union, 469
�, 469

Cartesian product type, 463
composite type, 462, 463, 515
consistency checking, 505

consistency of operations, 509
initial state validation, 506

Δ, 485, 486
free type, 470, 471, 489, 495
function type, see functions
functions, 132, 263, 461, 462, 465–468,

470, 481, 482, 489, 490, 493,
495–497, 499, 501, 502, 505,
515–517, 529, 536, 539, 540

generic function, 489, 497
notations, 465
operators, 465–469

one-point-rule, 506, 507, 523, 534
operational abstraction, 461, 482
operations, 263, 461, 466, 478, 482, 483,

490, 493, 494, 505, 509, 519
powerset type, see set type
precondition calculation, 521, 522, 537

precondition simplification, 523
promotion, 521, 522, 524–526

644 Index

Z (cont.)
refinement, 465, 526, 527, 529, 531, 536

abstract specification, 527–529
concrete specification, 527, 528, 530
data refinement, 527–529, 531, 537
proof obligations, 526, 527, 531
refinement schema, 529, 531

relations, 465, 466, 539
operators, 465, 466, 539

representational abstraction, 461
schema, 461–463, 467, 471–486, 488, 490,

491, 493–495, 497, 499, 500, 503,
506, 522–524, 526–530, 539, 543

binding, 472, 473, 476, 479, 526
declarative part, 471–474, 478,

480–483, 522, 529
generic schema, 476
predicate part, 471–483, 486, 509,

521–523, 532
property, 462, 472, 477, 479, 480, 509,

543
schema as a type, 476
schema convention, 484
schema decorator, 484
schema expression, 479, 523
schema hiding, 480

schema inclusion, 474, 486
schema projection, 480
schema renaming, 479, 480
schema type, 472, 473
sequential composition, 487
signature, 472–474, 477–480, 488, 529
type compatibility, 473, 481

schema type, 463, 472, 473
sequence type, 263, 497

injective, 466, 495, 499, 502, 530, 583
operators, 254, 411

set type, 463
simple type, 462, 463

basic type, 462, 463
primitive type, 462

state, 481–488, 491, 495, 499–501,
504–509, 513, 518, 519, 521–533,
535, 536, 539, 540, 542

tuple, 463
types, xiii, 461–463, 465, 470–473, 475,

481, 489, 491, 498, 499, 501, 506,
512, 515, 535, 536, 539, 540, 543

carrier set, 462, 470, 476
Z++, 537, 539
ZEST, 539

	Cover
	Specification of Software Systems, Second Edition
	ISBN 9780857292766
	Preface to the Second Edition
	Background and Motivation
	What is New in the Second Edition?
	Part I
	Part II
	Part III
	Part IV
	Part V
	Part VI

	How to Use the Book
	Intended Audience
	Acknowledgments

	Preface
	General Characteristics
	Audience
	Background Knowledge
	Organization and Content
	Exercises
	Case Studies
	Lab Components
	How to Use the Book
	Acknowledgements

	Contents
	Part ISpecification Fundamentals
	1 The Role of Specification
	Software Complexity
	Size Complexity
	Structural Complexity
	Environmental Complexity
	Application Domain Complexity
	Communication Complexity

	Software Specification
	What is a Specification?
	Why Specify?
	What to Specify?
	When to Specify?
	How to Control Complexity?
	A Critique of Natural Language Specification

	Exercises
	Bibliographic Notes
	References

	2 Specification Activities
	Integrating Formal Methods into the Software Life-Cycle
	Type of Application
	Size and Structure
	Choice of Formal Method and Type of Analysis
	Level of Formality
	Scope of Use
	Tool

	Administrative and Technical Roles
	Specification Roles
	Design Roles
	Implementation Roles

	Exercises
	Bibliographic Notes
	References

	3 Specification Qualities
	Process Quality
	Why a Programming Language Cannot Serve as a Specification Language?
	Attributes of Formal Specification Languages
	Formalism
	Abstraction
	Modularity
	Nondeterminism
	Inference Mechanism
	Historical References

	A Model of Process Quality

	Product Quality and Utility
	Conformance to Stated Goals
	Parsing
	Type Correctness
	Sufficient Completeness
	Precision
	Structuring
	Operational Completeness
	Frame Problem
	Animation
	Logical Reasoning

	Quality Dimensions and Quality Model

	Exercises
	Bibliographic Notes
	References

	4 Abstraction
	What Is Abstraction?
	Abstractions in Mathematics
	Fundamental Abstractions in Computing
	Abstractions for Software Construction
	Problem Abstractions
	Domain Abstraction
	Environmental Abstraction
	System Abstractions

	Exercises
	Bibliographic Notes
	References

	Part IIFormalism Fundamentals
	5 Formal Systems
	Peano's Axiomatization of Naturals-Formalization in Mathematics
	Model and Theory
	Formalization in Engineering
	Formalization in Science
	Formalization Process in Software Engineering

	Components of a Formal System
	Syntax
	Semantics
	Inference Mechanism

	Properties of Formal Systems
	Consistency
	Completeness
	Decidability

	Extended Syntactic Metalanguage
	Exercises
	Bibliographic Notes
	References

	6 Automata
	Deterministic Finite Accepters
	State Machine Modeling
	Simple Switches
	Language Recognizer
	Pattern Matching
	Traffic Light
	Finite Container
	Window Manager

	Nondeterministic Finite Accepters
	Composing nfas
	Sequence
	Choice
	Repetition
	Intersection
	Generalized Intersection
	Finite State Transducers
	Modeling Controllers with Discrete and Continuous Behaviors

	Exercises
	Bibliographic Notes
	References

	7 Extended Finite State Machine
	State Machine Hierarchy
	Menu-Driven User Interface Model

	Modularity and Bottom-up Construction
	Simulation

	Transition Points
	Case Study-Elevator Control
	Exercises
	Bibliographic Notes
	References

	8 Classification of Formal Specification Methods
	The Four Pillars
	Classification
	Property-Oriented Specification Methods
	Model-Based Specification Techniques

	Languages Chosen for Discussion
	Bibliographic Notes
	References

	Part IIILogic
	9 Propositional Logic
	Syntax and Semantics
	Proof
	Reasoning Based on Adopting a Premise
	Inference Based on Natural Deduction
	Proof by Resolution

	Consistency and Completeness
	Exercises
	Bibliographic Notes
	References

	10 Predicate Logic
	Syntax and Semantics
	Semantics

	Validity, Equality, and Equivalence
	Equality and Equivalence

	More on Quantified Expressions
	Policy Language Specification
	Knowledge Representation

	Proofs
	Natural Deduction Process
	Resolution
	Clausal Forms
	Unification

	Decidability

	Axiomatic Specification Examples
	Hoare's Notation
	The assignment axiom
	Conjunction and disjunction of specifications
	The sequencing axiom
	The conditional axioms
	The repetition axiom
	Program Exchange
	Program Division

	Exercises
	Bibliographic Notes
	References

	11 Temporal Logic
	Temporal Logic for Specification and Verification
	Concept of World and Notion of Time
	Temporal Abstraction
	Discrete or Continuous
	Linear and Branching Models of Time
	Further Specializations of Time

	Propositional Temporal Logic (PTL)
	Syntax
	Model and Semantics
	Formal Semantics
	More Temporal Operators
	Axioms
	Formalizing Properties in PTL
	Specifications
	Communication and Concurrency
	True Concurrency
	Interleaving Executions
	Executions Triggered by Messages

	Reactive System Specification: Rail Road Crossing Problem
	Behavior of Train
	Behavior of Controller
	Behavior of Gate
	Behavior of Train-Controller Interaction
	Behavior of Controller-Gate Interaction

	Refinement

	First Order Temporal Logic (FOTL)
	Formalizing Properties in FOTL
	Temporal Logic Semantics of Sequential Programs
	Semantics of Assignment Statement
	Semantics of Composition
	Semantics of Conditional Statement
	Semantics of Repetition Statement

	Temporal Logic Semantics of Concurrent Systems with Shared Variables
	Component Specification
	Specifications

	Formal Verification
	Verification of Simple FOTL Specifications
	Stack Specification
	Proving Invariant Property
	Hanoi Specification

	Model Checking
	Program Graphs, Transition Systems, and Kripke Structures
	Model Checking using Büchi Automata
	Model Checking Procedure
	Computing Product of Büchi Automata

	Exercises
	Bibliographic Notes
	References

	Part IV Mathematical Abstractions for Model-Based Specifications
	12 Set Theory and Relations
	Formal Specification Based on Set Theory
	Set Notation
	Reasoning with Sets
	A Specification Example

	Formal Specification Based on Relations and Functions
	Relations and Functions
	Functions on Relations
	Reasoning
	Proof by Cases
	Proof by Induction

	A Specification Example

	Formal Specification Based on Sequences
	Notation
	Sequence Operators
	Proofs
	A Specification Example

	Exercises
	Bibliographic Notes
	References

	Part VProperty-Oriented Specifications
	13 Algebraic Specification
	Algebra and Specification
	Algebras-A Brief Introduction
	Homomorphisms
	Homogeneous Algebras
	Heterogeneous Algebras

	Abstract Data Types
	Presentation
	Semantics

	Properties of Algebraic Specifications
	Reasoning
	Extending Many-Sorted Specifications
	Classification of Operations
	Adequacy

	Structured Specifications
	OBJ3-An Algebraic Specification Language
	OBJ3 Basic Syntax
	Built-In Sorts and Subsorts
	Built-in Sorts
	Order-Sorted Algebra
	Import Clause
	Declaration of Attributes
	Associativity and Commutativity
	Identity

	Signature and Equations
	Signature of a Module
	Equations

	Parameterized Programming
	Theories
	Views
	Parameterized Modules
	Instantiation
	Module Expression

	Case Study-A Multiple Window Environment
	Requirements
	Modeling
	Formal Specifications

	Exercises
	Bibliographic Notes
	References

	14 Larch
	The Two Tiers of Larch
	LSL-Larch Shared Language
	Equational Specification
	More Expressive Specifications and Stronger Theories
	Composing Traits
	Renaming
	Stating Checkable Properties
	Consistency
	Theory Containment
	Completeness

	Stating Assumptions
	Operator Overloading
	In-line Traits

	More LSL Examples
	File
	Iterator
	List Trait
	Enriching List Trait
	Iterator

	Date and Zone
	Time

	Larch/C++: A Larch Interface Specification Language for C++
	Relating Larch/C++ to C++
	The Formal Model of Objects, Values and States
	Declarations and Declarators
	State Functions
	Larch/C++ Syntax-An Example

	Function Specification
	Additional Function Specification Features

	Proofs in LSL
	Proof Obligations
	LP, the Larch Prover
	LP theories
	Equations
	Rewrite Rules
	Operator Theories
	Inductive Rules
	Deduction Rules

	Proof Methods
	Normalization
	Critical-Pair Equations
	Instantiation
	Proof by Case
	Proof by Induction
	Proof by Implication

	Case Study-Two Examples from Rogue Wave Library
	RWZone Specification
	RWFile Specification

	Exercises
	Bibliographic Notes
	References

	15 Calculus of Communicating Systems
	Why a Specific Calculus for Concurrency Is Necessary?
	Informal Introduction to CCS
	Action Prefix
	Definition
	Parameterizations
	Sum (Choice)
	Communication
	Restriction
	Conditional Constructor
	Relabeling

	CCS-Syntax and Semantics
	Syntax
	The Operational Semantics of Agents

	Simulation and Equivalence
	Derivation Trees
	Milner's Laws
	Labeled Transition Systems-Some Properties
	Trace Equivalence
	Equivalence and Congruence
	Substitutability and Strong Bisimilarity
	Expansion Principle
	Recursion Principle
	Law1-Recursion
	Law2-Recursion

	Exercises
	Bibliographic Notes
	References

	Part VI Model-Based Specifications
	16 Vienna Development Method
	Structure of a VDM Specification
	Representational Abstraction
	Identifiers
	Comments and Separators

	Simple Types
	Primitive Types
	Arithmetic and Logic Operators
	Quote Types

	Composite Types
	Union Type
	Set
	Sequence
	Map
	Record
	Cartesian Product
	Function Types
	Flat Types

	Patterns, Bindings and Values
	State Representation
	Invariants
	Type Invariant
	State Invariant

	Operational Abstraction
	Let Expression
	Function Definitions
	Implicit Function
	Explicit Function
	Higher Order Function
	Polymorphic Function

	Operation Definitions
	Implicit Operation
	Explicit Operation

	Statements
	Let Statement
	Assignment Statement
	Declare Statement
	For Statement
	Cases Statement

	Specification Examples
	Case Study-Computer Network
	Rigorous Reasoning
	Refinement and Proof Obligations
	Data Refinement
	Proof Obligations

	Example for Data Refinement
	Signature Verification
	Adequacy Proof
	Initial State Validation
	Domain Obligation
	Result Obligation

	Operation Decomposition
	Example for Operation Decomposition

	Exercises
	Bibliographic Notes
	References

	17 The Z Notation
	Abstractions in Z
	Representational Abstraction
	Types
	Simple Types
	Composite Types
	Sets and Power Set Types
	Tuples and Cartesian Product Types

	Abbreviation
	Relations and Functions
	Sequences
	Bags
	Operators on Bags

	Free Types
	Schemas
	Signature and Properties
	Schema Types and Bindings
	Type Compatibility of Signatures
	Schema Inclusion
	Remarks

	Schema as a Type
	Generic Schema
	Schema Expressions
	Schema Renaming
	Schema Hiding and Projection

	State Representation

	Operational Abstraction
	Operations
	Remarks

	Schema Decorators and Conventions
	Sequential Composition
	Functions
	Generic Functions

	Specification Examples
	Proving Properties from Z Specifications
	Initial State Validation
	One-Point-Rule

	Consistency of Operations

	Case Study: An Automated Billing System
	Additional Features in Z
	Precondition Calculation
	Precondition Simplification

	Promotion

	Refinement and Proof Obligations
	Data Refinement
	Abstract Specification
	Concrete Specification
	Refinement Schema

	Proof Obligations

	Exercises
	Bibliographic Notes
	References

	18 The Object-Z Specification Language
	Basic Structure of an Object-Z Specification
	Parameterized Class

	Distinguished Features of Object-Orientation
	Encapsulation
	Inheritance
	Polymorphism

	Composition of Operations
	Sequential Composition Operator
	Concurrency Operator
	Parallel Communication Operator
	Nondeterministic Choice Operator
	Environment Enrichment Operator

	Specification Examples
	Case Study
	Exercises
	Bibliographic Notes
	References

	19 The B-Method
	Abstract Machine Notation (AMN)
	Structure of a B Specification

	Notations
	Arrays

	Nondeterministic Statements
	ANY Statement
	LET Statement

	CHOICE Statement
	SELECT Statement
	PRE Statement

	Structured Specifications
	The INCLUDES Clause
	The USES Clause
	The SEES Clause

	Refinement
	Sequential Composition of Statements
	Local Variables
	Refinement Machine

	Specification Examples
	Case Study-A Ticketing System in a Parking Lot
	Proof Obligations
	Parameter Existence
	Existence of Sets and Constants
	Invariant Satisfaction
	Initialization and Invariant
	Maintaining the State Invariant
	Proof Obligations for INCLUDES Clause
	Proof Obligations for USES Clause
	Proof Obligations for SEES Clause
	Proof Obligations for Refinement

	Exercises
	Bibliographic Notes
	References

	Index

