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Prologue: Faultless systems – yes we can!

This title is certainly provocative. We all know that this claim corresponds to something
that is impossible. No! We cannot construct faultless systems; just have a look around.
If it were possible, it would have been already done a long time ago. And anyway, to
begin with, what is a “fault”?

So, how can we imagine the contrary? We might think: yet another guru trying
to sell us his latest universal panacea. Dear reader, be reassured, this Prologue does
not contain any new bright solutions and, moreover, it is not technical; you’ll have no
complicated concepts to swallow. The intention is just to remind you of a few simple
facts and ideas that you might use if you wish to do so.

The idea is to play the role of someone who is faced with a terrible situation (yes,
the situation of computerized system development is not far from being terrible – as
a measure, just consider the money thrown out of the window when systems fail).
Faced with a terrible situation, we might decide to change things in a brutal way; it
never works. Another approach is to gradually introduce some simple features that
together will eventually result in a global improvement of the situation. The latter is
the philosophy we will use here.

Definitions and requirements document
Since it is our intention to build correct systems, we need first to carefully define the
way we can judge what it is we are doing. This is the purpose of a “definitions and
requirements” document, which has to be carefully written before embarking on any
computerized system development.

But, you say, lots of industries have such documents; they already exist, so why
bother? Well, it is my experience that most of the time, requirements documents that
are used in industry are very poor ; it is often very hard just to understand what the

Jean-Raymond Abrial. Faultless Systems: Yes We Can! Computer, 42(9): 30–36, September 2009,
doi:10.1109/MC.2009.283. c©IEEE 2009. Reproduced with permission.

xi



xii Prologue: Faultless systems – yes we can!

requirements are and thus to extract them from these documents. People too often
justify the appropriateness of their requirements document by the fact that they use
some (expensive) tools!

I strongly recommend that a requirements document is rewritten along the simple
lines presented in this section.

Such a document should be made up of two kinds of texts embedded in each other:
the explanatory text and the reference text. The former contains explanations needed
to understand the problem at hand. Such explanations are supposed to help a reader
who encounters a problem for the first time and who needs some elementary account.
The latter contains definitions and requirements mainly in the form of short natural
language statements that are labeled and numbered. Such definitions and requirements
are more formal than the accompanying explanations. However, they must be self-
contained and thus constitute a unique reference for correctness.

The definitions and requirements document bears an analogy with a book of mathe-
matics where fragments of the explanatory text (where the author explains informally
his approach and sometimes gives some historical background) are intermixed with
fragments of more formal items – definitions, lemmas, and theorems – all of which
form the reference text and can easily be separated from the rest of the book.

In the case of system engineering, we label our reference definitions and requirements
along two axes. The first one contains the purpose (functions, equipment, safety, phys-
ical units, degraded modes, errors . . . ) while the second one contains the abstraction
level (high, intermediate, low . . . ).

The first axis must be defined carefully before embarking on the writing of the
definitions and requirements document since it might be different from one project to
the next. Note that the “functional” label corresponds to requirements dealing with
the specific task of the intended software, whereas the “equipment” label deals with
assumptions (which we also call requirements) that have to be guaranteed concerning
the environment situated around our intended software. Such an environment is made of
some pieces of equipment, some physical varying phenomena, other pieces of software,
as well as system users. The second axis places the reference items within a hierarchy,
going from very general (abstract) definitions or requirements down to more and more
specific ones imposed by system promoters.

It is very important that this stage of the definitions and requirements document be
agreed upon and signed by the stakeholders.

At the end of this phase however, we have no guarantee that the desired properties
of our system we have written down can indeed be fulfilled. It is not by writing that an
intended airplane must fly that it indeed will. However, quite often after the writing
of such a document, people rush into the programming phase and we know very well
what the outcome is. What is needed is an intermediate phase to be undertaken before
programming; this is the purpose of what is explained in the next section.
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Modeling vs. programming
Programming is the activity of constructing a piece of formal text that is supposed to
instruct a computer how to fulfil certain tasks. Our intention is not to do that. What
we intend to build is a system within which there is a certain piece of software (the
one we shall construct), which is a component among many others. This is the reason
why our task is not limited to the software part only.

In doing this as engineers, we are not supposed to instruct a computer; rather, we are
supposed to instruct ourselves. To do this in a rigorous way, we have no choice but to
build a complete model of our future system, including the software that will eventually
be constructed, as well as its environment, which, again, is made of equipment, varying
physical phenomena, other software, and even users. Programming languages are of no
help in doing this. All this has to be carefully modeled so that the exact assumptions
within which our software is going to behave are known.

Modeling is the main task of system engineers. Programming then becomes a sub-
task which might very well be performed automatically.

Computerized system modeling has been done in the past (and still is) with the help
of simulation languages such as SIMULA-67 (the ancestor of object-oriented program-
ming languages). What we propose here is also to perform a simulation, but rather
than doing it with the help of a simulation language, the outcome of which can be in-
spected and analyzed, we propose to do it by constructing mathematical models which
will be analyzed by doing proofs. Physicists or operational researchers proceed in this
way. We will do the same.

Since we are not instructing a computer, we do not have to say what is to be done,
we have rather to explain and formalize what we can observe. But immediately comes
the question: how can we observe something that does not yet exist? The answer to
this question is simple: it certainly does not exist yet in the physical world, but, for
sure, it exists in our minds. Engineers or architects always proceed in this way: they
construct artefacts according to the pre-defined representation they have of them in
their minds.

Discrete transition systems and proofs
As said in the previous section, modeling is not just formalizing our mental represen-
tation of the future system, it also consists in proving that this representation fulfils
certain desired properties, namely those stated informally in the definitions and re-
quirements document briefly described above.

In order to perform this joint task of simulation and proofs, we use a simple formal-
ism, that of discrete transition systems. In other words, whatever the modeling task we
have to perform, we always represent the components of our future systems by means
of a succession of states intermixed with sudden transitions, also called events.
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From the point of view of modeling, it is important to understand that there are no
fundamental differences between a human being pressing a button, a motor starting
or stopping, or a piece of software executing certain tasks – all of them being situated
within the same global system. Each of these activities is a discrete transition system,
working on its own and communicating with others. They are together embarked on
the distributed activities of the system as a whole. This is the way we would like to do
our modeling task.

It happens that this very simple paradigm is extremely convenient. In particular,
the proving task is partially performed by demonstrating that the transitions of each
component preserve a number of desired global properties which must be permanently
obeyed by the states of our components. These properties are the so-called invariants.
Most of the time, these invariants are transversal properties involving the states of
multiple components in our system. The corresponding proofs are called the invariant
preservation proofs.

States and events
As seen in previous section, a discrete transition component is made of a state and
some transitions. Let us describe this here in simple terms.

Roughly speaking, a state is defined (as in an imperative program) by means of
a number of variables. However, the difference with a program is that these variables
might be any integer, pairs, sets, relations, functions, etc. (i.e. any mathematical object
representable within set theory), not just computer objects (i.e. limited integer and
floating point numbers, arrays, files, and the like). Besides the variables’ definitions,
we might have invariant statements, which can be any predicate expressed within the
notation of first-order logic and set theory. By putting all this together, a state can be
simply abstracted to a set.

Exercises: What is the state of the discrete system of a human being able to press a
button? What is the state of the discrete system of a motor being able to start and stop?

Taking this into account, an event can be abstracted to a simple binary relation
built on the state set. This relation represents the connection existing between two
successive states considered just before and just after the event “execution.” However,
defining an event directly as a binary relation would not be very convenient. A better
notation consists in splitting an event into two parts: the guards and the actions.

A guard is a predicate and all the guards conjoined together in an event form the
domain of the corresponding relation. An action is a simple assignment to a state
variable. The actions of an event are supposed to be “executed” simultaneously on
different variables. Variables that are not assigned are unchanged.
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This is all the notation we are using for defining our transition systems.

Exercises: What are the events of the discrete system of a human being able to
press a button? What are the events of the discrete system of a motor being able
to start and stop? What is the possible relationship between both these systems?

At this stage, we might be slightly embarrassed and discover that it is not so easy
to answer the last question. In fact, to begin with, we have not followed our own
prescriptions! Perhaps it would have been better to first write down a definitions and
requirements document concerned with the user/button/motor system. In doing this,
we might have discovered that this relationship between the motor and the button is
not that simple after all. Here are some questions that might come up: do we need a
single button or several of them (i.e. a start button and a stop button)? Is the latter
a good idea? In the case of several buttons, what can we observe if the start button is
pressed while the motor is already started? In this case, do we have to release the button
to re-start the motor later? And so on. We could also have figured out that, rather
than considering separately a button system and a motor system and then composing
them, it might have been better to consider first a single problem which might later
be decomposed into several. Now, how about putting a piece of software between the
two? And so on.

Horizontal refinement and proofs
The modeling of a large system containing many discrete transition components is
not a task that can be done in one shot. It has to be done in successive steps. Each
of these steps make the model richer by first creating and then enriching the states
and transitions of its various components, first in a very abstract way and later by
introducing more concrete elements. This activity is called horizontal refinement (or
superposition).

In doing this, the system engineer explores the definitions and requirements docu-
ment and gradually extracts from it some elements to be formalized; he thus starts
the traceability of the definitions and requirements within the model. Notice that quite
often it is discovered by modeling that the definitions and requirements document is
incomplete or inconsistent; it then has to be edited accordingly.

By applying this horizontal refinement approach, we have to perform some proofs,
namely that a more concrete refinement step does not invalidate what has been done
in a more abstract step: these are the refinement proofs.

Note, finally, that the horizontal refinement steps are complete when there do not
remain any definitions or any requirements that have not been taken into account in
the model.
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In making an horizontal refinement, we do not care about implementability. Our
mathematical model is done using the set-theoretic notation to write down the state
invariants and the transitions.

When making an horizontal refinement, we extend the state of a model by adding
new variables. We can strengthen the guards of an event or add new guards. We also
add new actions in an event. Finally, it is possible to add new events.

Vertical refinement and proofs
There exists a second kind of refinement that takes place when all horizontal refinement
steps have been performed. As a result, we do not enter any more new details of the
problem in the model, we rather transform some state and transitions of our discrete
system so that it can easily be implemented on a computer. This is called vertical
refinement (or data refinement). It can often be performed by a semi-automatic tool.
Refinement proofs have also to be performed in order to be sure that our implementa-
tion choice is coherent with the more abstract view.

A typical example of vertical refinement is the transformation of finite sets into
boolean arrays together with the corresponding transformations of set-theoretic oper-
ations (union, intersection, inclusion, etc.) into program loops.

When making a vertical refinement, we can remove some variables and add new ones.
An important aspect of vertical refinement is the so-called gluing invariant linking the
concrete and abstract states.

Communication and proofs
A very important aspect of the modeling task is concerned with the communication
between the various components of the future system. We have to be very careful here
to proceed by successive refinements. It is a mistake to model immediately the com-
munication between components as they will be in the final system. A good approach
to this is to consider that each component has the “right” to access directly the state of
other components (which are still very abstract too). In doing that we “cheat”, as it is
clearly not the way it works in reality. But it is a very convenient way to approach the
initial horizontal refinement steps as our components are gradually refined with their
communication becoming gradually richer as one moves along the refinement steps. It
is only at the end of the horizontal refinement steps that it is appropriate to introduce
various channels corresponding to the real communication schemes at work between
components and to possibly decompose our global system into several communicating
sub-systems.

We can then figure out that each component reacts to the transitions of others with
a fuzzy picture of their states. This is because the messages between the components
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do take some time to travel. We then have to prove that, in spite of this time shift,
things remain “as if” such a shift did not exist. This is yet another refinement proof
that we have to perform.

Being faultless: what does it mean?
We are now ready to make precise what we mean by a “faultless” system, which repre-
sents our ultimate goal as the title of this prologue indicates.

If a program controlling a train network is not developed to be correct by con-
struction, then, after writing it, we can certainly never prove that this program will
guarantee that two trains will never collide. It is too late. The only thing we might
sometimes (not always unfortunately) be able to test or prove is that such a program
has not got array accesses that are out of bounds, or dangerous null pointers that
might be accessed, or that it does not contain the risk of some arithmetic overflow
(although, remember, this was precisely the undetected problem that caused the Ari-
ane 5 crash on its maiden voyage).

There is an important difference between a solution validation versus a problem
validation. It seems that there is considerable confusion here as people do not make
any clear distinction between the two.

A solution validation is concerned solely with the constructed software and it val-
idates this piece of code against a number of software properties as mentioned above
(out-of-bound array access, null pointers, overflows). On the contrary, a problem val-
idation is concerned with the overall purpose of our system (i.e. to ensure that trains
travel safely within a given network). To do this, we have to prove that all components
of the system (not only the software) harmoniously participate in the global goal.

To prove that our program will guarantee that two trains will never collide, we have
to construct the program by modeling the problem. And, of course, a significant part
of this is that the property in question must be part of the model to begin with.

We should notice, however, that people sometimes succeed in doing some sort of
problem proofs directly as part of the solution (the program). This is done by incor-
porating some so-called ghost variables dealing with the problem inside the program.
Such variables are then removed from the final code. We consider that this approach
is a rather artificial afterthought. The disadvantage of this approach is that it focuses
attention on the software rather than on the wider problem. In fact, this use of ghost
variables just highlights the need for abstraction when reasoning at the problem level.
The approach advocated here is precisely to start with the abstractions, reason about
these, and introduce the programs later.

During the horizontal refinement phase of our model development, we shall take
account of many properties. At the end of the horizontal refinement phase, we shall
then know exactly what we mean by this non-collision property. In doing so, we shall
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make precise all assumptions (in particular, environment assumptions) by which our
model will guarantee that two trains will never collide.

As can be seen, the property alone is not sufficient. By exhibiting all these assump-
tions, we are doing a problem validation that is completely different in nature from the
one we can perform on the software only.

Using this kind of approach for all properties of our system will allow us to claim
that, at the end of our development, our system is faultless by construction. For this, we
have made very precise what we call the “faults” under consideration (and, in particular,
their relevant assumptions).

However, we should note a delicate point here. We pretended that this approach
allows us to produce the final software that is correct by construction relative to its
surrounding environment. In other words, the global system is faultless. This has been
done by means of proofs performed during the modeling phase where we constructed
a model of the environment. Now we said earlier that this environment was made
up of equipment, physical phenomena, pieces of software, and also users. It is quite
clear that these elements cannot be formalized completely. Rather than say that our
software is correct relative to its environment, it would be more appropriate to be more
modest by saying that our software is correct relative to the model of the environment
we have constructed. This model is certainly only an approximation of the physical
environment. Should this approximation be too far from the real environment, then it
would be possible that our software would fail under unforeseen external circumstances.

In conclusion, we can only pretend that we have a relative faultless construction, not
an absolute one, which is clearly impossible. A problem where the solution is still in its
infancy is that of finding the right methodology to perform an environment modeling
that is a “good” approximation of the real environment. It is clear that a probabilistic
approach would certainly be very useful when doing this.

About proofs
In previous sections, we mentioned several times that we have to perform proofs during
the modeling process. First of all, it must be clear that we need a tool for generating
automatically what we have to prove. It would be foolish (and error prone) to let a
human being write down explicitly the formal statements that must be proved, for the
simple reason that it is common to have thousands of such proofs. Second, we also
need a tool to perform the proofs automatically: a typical desirable figure here is to
have 90% of the proofs being discharged automatically.

An interesting question is then to study what happens when an automatic proof
fails. It might be because: (1) the automatic prover is not smart enough, or (2) the
statement to prove is false, or else (3) the statement to prove cannot be proved. In case
(1), we have to perform an interactive proof (see the “Tool” section below). In case (2),
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the model has to be significantly modified. In case (3), the model has to be enriched.
Cases (2) and (3) are very interesting; they show that the proof activity plays the same
role for models as the one played by testing for programs.

Also notice that the final percentage of automatic proofs is a good indication of the
quality of the model. If there are too many interactive proofs, it might signify that
the model is too complicated. By simplifying the model, we often also significantly
augment the percentage of automatically discharged proofs.

Design pattern
Design patterns were made very popular some years ago by a book written on them
for object-oriented software development [3]. But the idea is more general than that:
it can be fruitfully extended to any particular engineering discipline and in particular
to system engineering as envisaged here.

The idea is to write down some predefined small engineering recipes that can be
reused in many different situations, provided these recipes are instantiated accordingly.
In our case, it takes the form of some proved parameterized models, which can be
incorporated in a large project. The nice effect is that it saves redoing proofs that have
been done once and for all in the pattern development. Tools can be developed to easily
instantiate and incorporate patterns in a systematic fashion.

Animation
Here is a strange thing: in previous sections, we heavily proposed to base our correctness
assurance on modeling and proving. And, in this section, we are going to say that, well,
it might also be good to “animate” (that is “execute”) our models!

But, we thought that mathematics was sufficient and that there was no need to
execute. Is there any contradiction here? Are we in fact not so sure after all that our
mathematical treatment is sufficient, that mathematics are always “true”? No, after the
proof of the Pythagorean Theorem, no mathematician would think of measuring the
hypotenuse and the two sides of a right triangle to check the validity of the theorem!
So why execute our models?

We have certainly proved something and we have no doubts about our proofs, but
more simply are we sure that what we proved was indeed the right thing to prove?
Things might be difficult to swallow here: we wrote (painfully) the definitions and
requirements document precisely for that reason, to know exactly what we have to
prove. And now we claim that perhaps what the requirements document said was not
what is wanted. Yes, that is the way it is: things are not working in a linear fashion.

Animating directly the model (we are not speaking here of doing a special simulation,
we are using the very model which we proved) and showing this animation of the entire
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system (not only the software part) on a screen is very useful to check in another way
(besides the requirements document) that what we want is indeed what we wrote. Quite
often, by doing this, we discover that our requirements document was not accurate
enough or that it required properties that are not indispensable or even different from
what we want.

Animation complements modeling. It allows us to discover that we might have to
change our minds very early on. The interesting thing is that it does not cost that much
money, far less indeed than doing a real execution on the final system and discovering
(but far too late) that the system we built is not the system we want.

It seems that animation has to be performed after proving, as an additional phase
before the programming phase. No, the idea is to use animation as early as possible
during the horizontal refinement phase, even on very abstract steps. The reason is that
if we have to change our requirements (and thus redo some proofs), it is very important
to know exactly what we can save in our model and where we have to modify our model
construction.

There is another positive outcome in animating and proving simultaneously. Remem-
ber, we said that proving was a way to debug our model: a proof that cannot be done is
an indication that we have a “bug” in our model or that our model is too poor. The fact
that an invariant preservation proof cannot be done can be pointed out and explained
by an animation even before doing the proof. Deadlock freedom counter-examples are
quite often discovered very easily by animation. Notice that animation does not mean
that we can suspend our proof activity, we just wanted to say that it is a very useful
complement to it.

Tools
Tools are important to develop correct systems. Here we propose to depart from the
usual approach where there exists a (formal) text file containing models and their
successive refinement. It is far more appropriate to have a database at our disposal.
This database handles modeling objects such as models, variables, invariant, events,
guards, actions, and their relationships, as we have presented them in previous sections.

Usual static analyzers can be used on these components for lexical analysis, name
clash detection, mathematical text syntactic analysis, refinement rules verification, and
so on.

As said above, an important tool is the one called the proof obligation generator,
that analyzes the models (invariants, events) and their refinements in order to produce
corresponding statements to prove.

Finally, some proving tools (automatic and interactive) are needed to discharge the
proof obligations provided by the previous tool. An important thing to understand
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here is that the proofs to be performed are not the kind of proofs a professional math-
ematician would tackle (and be interested in). Our proving tool has to take this into
account.

In a mathematical project, the mathematician is interested in proving one theo-
rem (say, the four-color theorem) together with some lemmas (say, 20 of them). The
mathematician does not use mathematics to accompany the construction of an arte-
fact. During the mathematical project, the problem does not change (this is still the
four-color problem).

In an engineering project, thousands of predicates have to be proved. Moreover, what
we have to prove is not known right from the beginning. Note that again we do not
prove that trains do not collide; we prove that the system we are constructing ensures
that, under certain hypotheses about the environment, trains do not collide. What
we have to prove evolves with our understanding of the problem and our (non-linear)
progress in the construction process.

As a consequence, an engineering prover needs to have some functionalities which
are not needed in provers dedicated to perform proofs for mathematicians. To cite two
of these functionalities: differential proving (how to figure out which proofs have to be
redone when a slight modification to the model occurs) and proving in the presence of
useless hypotheses.

Around the tools we have presented in this section, it is very useful to add a number of
other tools using the same core database: animating tools, model-checking tools, UML
transformation tools, design pattern tools, composition tools, decomposition tools, and
so on. It means that our tooling system must be built in such a way that this extension
approach is facilitated. A tool developed according to this philosophy is the Rodin
platform which can be freely downloaded from [4].

The problem of legacy code
The legacy code question has a dual aspect: either (1) we want to develop a new piece
of software which is connected to some legacy code, or (2) we want to renovate a certain
legacy code.

Problem (1) is the most common one; it is almost always found in the development
of a new piece of software. In this case, the legacy code is just an element of the
environment of our new product. The challenge is to be able to model the behavior
we can observe of the legacy code so that we can enter it in the model as we do it
with any other element of the environment. To do this, the requirements document of
our new product must contain some elements concerned with the legacy code. Such
requirements (assumptions) have to be defined informally as we explained above.

The goal is to develop in our model the minimal interface which is compatible with
the legacy code. As usual, the key is abstraction and refinement: how can we gradually
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introduce the legacy code in our model in such a way that we take full account of the
concrete interface it offers.

Problem (2) is far more difficult than the previous one. In fact, such renovations
often give very disappointing results. People tend to consider that the legacy code “is”
the requirements document of the renovation. This is an error.

The first step is to write a brand new requirements document, not hesitating to
depart from the legacy code by defining abstract requirements that are independent
from the precise implementation seen in the legacy code.

The second step is to renovate the legacy code by developing and proving a model
of it. The danger here is to try to mimic too closely the legacy code because it might
contain aspects that are not comprehensible (except for the absent legacy code pro-
grammer(s)) and that are certainly not the result of a formal modeling approach.

Our advice here is to think twice before embarking on such a renovation. A better
approach is to develop a new product. People think it might be more time consuming
than a simple renovation; experience shows that this is rarely the case.

The use of set-theoretic notation
Physicists or operational researchers, who also proceed by constructing models, never
invent specific languages to do so; they all use classical set-theoretic notations.

Computer scientists, because they have been educated to program only, believe that
it is necessary to invent specific languages to do the modeling. This is an error. Set-
theoretic notations are well suited to perform our system modeling, and, moreover, we
can understand what it means when we write a formal statement!

We also hear very frequently that we must hide the use of mathematical notation,
because engineers will not understand it and be afraid of it. This is nonsense. Can we
imagine that it is necessary to hide the mathematical notation used in the design of
an electrical network because electrical engineers will be frightened by it?

Other validation approaches
For decades, there have been various approaches dedicated to the validation of software.
Among them are tests, abstract interpretation, and model checking.

These approaches validate the solution, the software, not the problem, the global
system. In each case, we construct a piece of software and then (and only then) try to
validate it (although it is not entirely the case with model checking, which is also used
for problem validation). To do so, we think of a certain desired property and check
that the software is indeed consistent with it. If it is not, then we have to modify the
software and thus, quite often, introduce more problems. It is also well known that
such approaches are very expensive, far more than the pure development cost.
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We do not think that these approaches alone are appropriate. However, we are not
saying of course that we should reject them; we are just saying they might complement
the modeling and proving approach.

Innovation
Big industrial corporations are often unable to innovate. They sometimes do so how-
ever, provided a very large amount of money is given to them precisely for this. Needless
to say, it is very rare. It is well known that many, so-called, research and development
(R&D) divisions of big companies are not providing any significant technologies for
their business units.

Nevertheless, financing agencies still insist on having practical research proposals
connected with such large companies. This is an error. They would do a better job by
accepting connections with far smaller more innovative entities.

It is my belief that the introduction into industry of the approach advocated here
should be done through small innovative companies rather than big corporations

Education
Most of the people presently involved in large software engineering projects are not
correctly educated. Companies think that programming jobs can be done by junior
people with little or no mathematical background and interest (quite often program-
mers do not like mathematics; this is why they choose computing in the first place).
All this is bad. The basic background of a system engineer must be a mathematical
education at a good (even high) level.

Computing should come second, after the necessary mathematical background has
been well understood. As long as this is not the case, progress will not be made. Of
course, it is clear that many academics will disagree with this; it is not the smallest
problem we have to face. Many academics still confuse computation and mathematics.

It is far less expensive to have a few well-educated people than an army of people
who are not educated at the right level. This is not an elitist attitude: who would
think that a doctor or an architect can perform well without the right education in his
discipline? Again, the fundamental basic discipline of system and software engineers is
(discrete) mathematics.

Two specific topics to be taught to future software engineers are: (1) the writing of
requirements documents (this is barely present in the practical software engineering
curriculum), and (2) the construction of mathematical models. Here the basic approach
is a practical one; it has to be taught by means of many examples and projects to be
undertaken by the students. Experience shows that the mastering of the mathematical
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approach (including the proofs) is not a problem for students with a good previous
mathematical background.

Technology transfer
Technology transfer of this kind in industry is a serious problem. It is due to the
extreme reluctance of managers to modify their development process. Usually such
processes are difficult to define and more difficult to be put into practice. This is the
reason why managers do not like to modify them.

The incorporation in the development process of the important initial phase of re-
quirements document writing, followed by another important phase of modeling, is
usually regarded as dangerous, as these additional phases impose some significant ex-
penses at the beginning of a project. Again, managers do not believe that spending
more initially will mean spending less at the end. However, experience shows that the
overall expenditure is drastically reduced, since the very costly testing phase at the
end can be significantly less, as is the considerable effort needed to patch design errors.

Above all, the overall initial action needed in order to transfer a technology to
industry is to perform a very significant preliminary education effort. Without that
initial effort, any technology transfer attempt is due to fail.

It should be noted that there exist also some fake technology transfers where people
pretend to use a formal approach (although they did not) just to get the “formal”
stamp given to them by some authority.
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Introduction

1.1 Motivation
The intent of this book is to give some insights on modeling and formal reasoning.
These activities are supposed to be performed before undertaking the effective coding
of a computer system, so that the system in question will be correct by construction.

In this book, we will thus learn how to build models of programs and, more generally,
discrete systems. But this will be done with practice in mind. For this we shall study
a large number of examples coming from various sources of computer system devel-
opment: sequential programs, concurrent programs, distributed programs, electronic
circuits, reactive systems, etc.

We will understand that the model of a program is quite different from the program
itself. And we will learn that it is far easier to reason about the model than about
the program. We will be made aware of the very important notions of abstraction and
refinement; the idea being that an executable program is only obtained at the final
stage of a sometimes long sequence consisting of gradually building more and more
accurate models of the future program (think of the various blueprints made by an
architect).

We shall make it very clear what we mean by reasoning about a model. This will
be done by using some simple mathematical methods, which will be presented first by
means of some examples then by reviewing classical logic (propositional and predicate
calculus) and set theory. We will understand the necessity of performing proofs in a
very rigorous fashion.

We will also understand how it is possible to detect the presence of inconsistencies in
our models just by the fact that some proofs cannot be done. The failure of the proof
will provide us with some helpful clues about what is wrong or insufficiently defined
in our model. We will use such tools and see how easy it is to perform proofs with a
computer.

1



2 Introduction

The formalism we use throughout the book is called Event-B. It is a simplification
as well as an extension of the B formalism [1] which was developed ten years ago
and which has been used in a number of large industrial projects [4], [3]. The formal
concepts used in Event-B are by no means new. They were proposed a long time
ago in a number of parent formalisms, such as Action Systems [6], TLA+ [2], and
UNITY [5].

The book is organized around examples. Each chapter contains a new example (some-
times several) together with the necessary formalism allowing the mathematical con-
cepts being used to be understood. Of course, such concepts are not repeated from one
chapter to the other, although they are sometimes made more precise. As a matter
of fact, each chapter is an almost independent essay. The proofs done in each chapter
have all been performed using the tools of the open source Rodin Platform [7] (see also
the website “event-b.org”).

The book can be used as a textbook by presenting each chapter in one or more
lectures. After giving a small summary of the various chapters in the next section,
a possible use for the book in an introductory as well as an advanced course will be
proposed.

1.2 Overview of the chapters
Let us now list the various chapters of the book and give a brief outline of each of
them.

Chapter 1: Introduction

The intent of this first (non-technical) chapter is to introduce you to the notion of a
formal method. It also intends to make clear what we mean by modeling. We shall see
what kind of systematic conventions we shall use for modeling. But we shall also notice
that there is no point in embarking on the modeling of a system without knowing what
the requirements of this system are. For this, we are going to study how a requirements
document has to be written.

Chapter 2: Controlling cars on a bridge

The intent of this chapter is to introduce a complete example of a small system de-
velopment. We develop the model of a system controlling cars on a one-way bridge
between an island and the mainland. As an additional constraint, the number of cars
on the island is limited. The physical equipment is made of traffic lights and car sensors

During this development, we will be made aware of the systematic approach we are
using: it consists in developing a series of more and more accurate models of the system
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we want to construct. Note that each model does not represent the programming of our
system using a high-level programming language, it rather formalizes what an external
observer of this system could perceive of it.

Each model will be analyzed and proved, thus enabling us to establish that it is
correct relative to a number of criteria. As a result, when the last model is finished, we
shall be able to say that this model is correct by construction. Moreover, this model
will be so close to a final implementation that it will be very easy to transform it into
a genuine program.

The correctness criteria alluded to above will be made completely clear and system-
atic by giving a number of proof obligation rules, which will be applied to our models.
After applying such rules, we shall have to prove formally a number of statements. To
this end, we shall also give a reminder of the classical rules of inference of the sequent
calculus. Such rules concern propositional logic, equality, and basic arithmetic. The
idea here is to give the reader the opportunity to manually prove the statements as
given by the proof obligation rules. Clearly, such proofs could easily be discharged by
theorem provers (as the ones used in the Rodin Platform), but we feel it important
at this stage that the reader takles these proofs before using an automatic theorem
prover. Notice that we do not claim that a theorem prover would perform these proofs
the way it is proposed here; quite often, a tool does not work like a human being
does.

Chapter 3: A mechanical press controller

In this chapter, we develop again the controller of a complete system: a mechanical
press. The intention is to show how this can be done in a systematic fashion in order to
obtain the correct final code. We first present, as usual, the requirement document of
this system. Then we develop two general design patterns which we shall subsequently
use. The development of these patterns will be made by using the proofs as a means of
discovering the invariants and the guards of the events. Finally, the main development
of the mechanical press will take place.

In this chapter, we illustrate how the usage of formal design patterns can help tack-
ling systematic correct developments.

Chapter 4: A simple file transfer protocol

The example introduced in this chapter is quite different from the previous ones, where
the program was supposed to control an external situation (cars on a bridge or a
mechanical press). Here we present a, so-called, protocol to be used on a computer
network by two agents. This is the very classical two-phase handshake protocol. A
very nice presentation of this example can be found in the book by L. Lamport [2].
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This example will allow us to extend our usage of the mathematical language with
such constructs as partial and total functions, domain and range of functions, and
function restrictions. We shall also extend our logical language by introducing univer-
sally quantified formulas and corresponding inference rules.

Chapter 5: The Event-B Modeling notation and proof obligation rules

In the previous chapters, we used the Event-B notation and the various corresponding
proof obligation rules without introducing them in a systematic fashion. We presented
them instead in the examples when they were needed. This was sufficient for the simple
examples studied so far because we used part of the notation and part of the proof
obligation rules only. But it might not be adequate to continue like this when presenting
more complicated examples in subsequent chapters.

The purpose of this chapter is thus to correct this. First, we present the Event-B
notation as a whole, in particular the parts we have not used so far, then we present
all the proof obligation rules. This will be illustrated with a simple running example.
Note that the mathematical justifications of the proof obligation rules will be covered
in Chapter 14.

Chapter 6: Bounded re-transmission protocol

In this chapter, we extend the file transfer protocol example of Chapter 4. The added
constraint with regard to the previous simple example is that we now suppose that
the channels situated between the two sites are unreliable. As a consequence, the effect
of the execution of the bounded re-transmission protocol is to only partially copy a
sequential file from one site to another. The purpose of this example is precisely to
study how we can cope with this kind of problem, i.e. dealing with fault tolerances
and how we can formally reason about them. This example has been studied in many
papers among which is [8].

Notice that, in this chapter, we do not develop proofs to the extent we did in the
previous chapters, we only give some hints and let the reader develop the formal proof.

Chapter 7: Development of a concurrent program

In previous chapters, we saw examples of sequential program developments (note that
we shall come back to sequential program developments in Chapter 15) and distributed
program developments. Here we show how we can develop concurrent program de-
velopments. Such concurrent programs are different from distributed programs where
various processes are executed on different computers in such a way that they cooperate
(by exchanging messages in a well-defined manner) in order to achieve a well-specified
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goal. This was typically the case in the examples presented in Chapters 4 and 6. It will
also be the case in Chapters 10, 11, 12, and 13.

In the case of concurrent programs, we also have different processes, but this time
they are usually situated on the same computer and they compete rather than co-
operate in order to gain access to some shared resources. The concurrent programs
do not communicate by exchanging messages (they ignore each other), but they can
interrupt each other in a rather random way. We illustrate this approach by devel-
oping the concurrent program known to be “Simpson’s 4-slot Fully Asynchronous
Mechanism” [14].

Chapter 8: Development of electronic circuits

In this chapter, we present a methodology to develop electronic circuits in a systematic
fashion. In doing so, we can see that the Event-B approach is general enough to be
adapted to different execution paradigms. The approach used here is similar to the
one we shall use for developing sequential programs in Chapter 15: the circuit is first
defined by means of a single event doing the job “in one shot”, then the initial very
abstract transition is refined into several transitions until it becomes possible to apply
some syntactic rules able to merge the various transitions into a single circuit.

Chapter 9: Mathematical language

This chapter does not contain any examples as in previous chapters (except Chapter
5). It rather contains the formal definition of the mathematical language we use in this
book. It is made up of four sections introducing successively the propositional language,
the predicate language, the set-theoretic language, and the arithmetic language. Each
of these languages will be introduced as an extension of the previous one.

Before introducing these languages, however, we shall also give a brief summary of
the sequent calculus. Here we shall insist on the concept of proof.

At the end of the chapter, we present the way various classical but “advanced” con-
cepts are formalized: transitive closure, various graph properties (in particular strong
connectivity), lists, trees, and well-founded relations. Such concepts will be used in
subsequent chapters.

Chapter 10: Leader election on a ring-shaped network

In this chapter, we study another interesting problem in distributed computation. We
have a possibly large (but finite) number of agents, not just two as in the examples of
Chapters 4 and 6 (file transmission protocols). These agents are disposed on different
sites that are connected by means of unidirectional channels forming a ring. Each agent
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is executing the same piece of coding. The distributed execution of all these identical
programs should result in a unique agent being “elected the leader”. This example comes
from a paper written by G. Le Lann in the 1970s [9].

The purpose of this chapter is to learn more about modeling, in particular in the
area of non-determinism. We shall also use more mathematical conventions, such as the
image of a set under a relation, the relational overriding operator, and the relational
composition operator, conventions which have all been introduced in the previous chap-
ter. Finally, we are going to study some interesting data structures: ring and linear list,
also introduced in the previous chapter.

Chapter 11: Synchronizing a tree-shaped network

In the example presented in this chapter, we have a network of nodes, which is slightly
more complicated than in the previous case where we were dealing with a ring. Here
we have a tree. At each node of the tree, we have a process performing a certain task,
which is the same for all processes (the exact nature of this task is not important).
The constraint we want these processes to observe is that they remain synchronized.
An additional constraint of our distributed algorithm states that each process can only
communicate with its immediate neighbors in the tree. This example has been treated
by many researchers [10], [11].

In this chapter, we shall encounter another interesting mathematical object: a tree.
We shall thus learn how to formalize such a data structure and see how we can fruitfully
reason about it using an induction rule. We remind the reader that this data structure
has already been introduced in Chapter 9.

Chapter 12: Routing algorithm for a mobile agent

The purpose of the example developed in this chapter is to present an interesting
routing algorithm for sending messages to a mobile phone. In this example, we shall
again encounter a tree structure as in the previous chapter, but this time the tree
structure will be dynamically modified. We shall also see another example (besides the
“bounded re-transmission protocol” of Chapter 6) where the usage of clocks will play
a fundamental role. This example is taken from [12].

Chapter 13: Leader election on a
connected graph network

The example presented in this chapter resembles the one presented in Chapter 10; it
is again a leader election protocol, but here the network is more complicated than a
simple ring. More precisely, the goal of the IEEE-1394 protocol, [13], is to elect in a
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finite time a specific node, called the leader, in a network made of a finite number of
nodes linked by some communication channels. This election is done in a distributed
and non-deterministic way.

The network has got some specific properties. As a mathematical structure, it is
called a free tree; it is a finite graph, which is symmetric, irreflexive, connected, and
acyclic. In this chapter, we shall thus learn how to deal and reason with such a complex
data structure, which was already presented in Chapter 9.

Chapter 14: Mathematical models for proof obligations

In this chapter, some mathematical justifications are presented to the proof obligation
rules introduced in Chapter 5. This is done by constructing some set-theoretic mathe-
matical models based on the trace semantics of Event-B developments. We show that
the proof obligation rules used in this book are equivalent to those dictated by the
mathematical models of Event-B developed in this chapter.

Chapter 15: Development of sequential programs

This chapter is devoted entirely to the development of sequential programs. We shall
first study the structure of such programs. They are made up of a number of assignment
statements, glued together by means of a number of operators: sequential composition,
conditional, and loop. We shall see how this can be modeled by means of simple tran-
sitions, which are the essence of the Event-B formalism. Once such transitions are
developed gradually by means of a number of refinement steps, we shall see how they
can be put together using a number of merging rules, the nature of which is completely
syntactic.

All this will be illustrated with many examples, ranging from simple array and
numerical programs to more complex pointer programs.

Chapter 16: A location access controller

The purpose of this chapter is to study another example dealing with a complete system
such as the one we studied in Chapters 2 and 3, where we controlled cars on a bridge
and a mechanical press. We shall construct a system which will be able to control the
access of certain people to different locations of a “workplace”, for example: a university
campus, an industrial site, a military compound, a shopping mall, etc.

The system we now study is a little more complicated than the previous ones. In
particular, the mathematical data structure we are going to use is more advanced. Our
intention is also to show that during the reasoning of the model, we shall discover a
number of important missing points in the requirements document.
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Chapter 17: Train system

The purpose of this chapter is to show the specification and construction of a complete
computerized system. The example we are interested in is called a train system. By
this, we mean a system that is practically managed by a train agent, whose role is to
control the various trains crossing part of a certain track network situated under his
supervision. The computerized system we want to construct is supposed to help the
train agent in doing this task.

This example presents an interesting case of quite complex data structures (the track
network) where mathematical properties have to be defined with great care – we want
to show that this is possible.

This example also shows a very interesting case where the reliability of the final
product is absolutely fundamental: several trains have to be able to safely cross the
network under the complete automatic guidance of the software product we want to
construct. For this reason, it will be important to study the bad incidents that could
happen and which we want to either completely avoid or safely manage.

The software must take account of the external environment which is to be carefully
controlled. As a consequence, the formal modeling we propose here will contain not
only a model of the future software we want to construct, but also a detailed model
of its environment. Our ultimate goal is to have the software working in perfect syn-
chronization with the external equipment, namely the track circuits, the points (or
“switch”), the signals, and also the train drivers. We want to prove that trains obeying
the signals, set by the software controller, and then (blindly) circulating on the tracks
where the points (switches) have been positioned, again by the software controller, will
do so in a completely safe manner.

Chapter 18: Problems

This last chapter contains only problems which readers might try to tackle. Rather
than spreading exercises and projects through each chapter of the book, we preferred
to put them all in a single chapter.

All problems have to be performed with the Rodin Platform, which, again, can be
downloaded from the web site “event-b.org”.

Besides exercises (supposed to be rather easy) and projects (supposed to be larger
and more difficult than exercises), we propose some mathematical developments which
can also be proved with the Rodin Platform.

1.3 How to use this book
The material presented in this book has been used to teach various courses, essentially
either introductory courses or advanced courses. Here is what can be proposed for these
two categories of courses.
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Introductory course The danger with such an introductory course is to present too
much material. The risk is to have the attendees being completely overwhelmed. What
can be presented then is the following:

• Chapter 1 (introduction),
• Chapter 2 (cars on a bridge),
• Chapter 3 (mechanical press),
• Chapter 4 (simple file transfer),
• some parts of Chapter 5 (Event-B notation),
• some parts of Chapter 9 (mathematical language),
• some parts of Chapter 15 (sequential program development).

The idea is to avoid encountering complex concepts, only simple mathematical con-
structs: propositional calculus, arithmetic, and simple set-theoretic constructs.

Chapter 2 (cars on a bridge) is important because the example is extremely easy to
understand and the basic notions of Event-B and of classical logic are introduced by
means of that simple example. However, we have to be careful to present this chapter
very slowly, doing carefully the proofs with the students because they are usually very
confused when they encounter this kind of material for the first time. In this example,
the data structures are very simple: numbers and booleans.

Chapter 3 (mechanical press) shows again a complete development. It is simple and
the usage of formal design patterns is helpful to construct the controller in a systematic
fashion.

Chapter 4 (simple file transfer) allows us to present a very simple distributed pro-
gram. Students will learn how this can be specified and later refined in order to obtain
a very well-known distributed protocol. They have to understand that such a protocol
can be constructed by starting from a very abstract (non-distributed) specification,
which is gradually distributed among various (here two) processes. This example con-
tains some more elaborated data structures than those used in the previous chapter:
intervals, functions, restrictions.

Chapter 5 (Event-B notation) contains a summary of the Event-B notation and
of the proof obligation rules. It is important that the students see that they use a
well-defined, although simple, notation, which is given a mathematical interpretation
through, the proof obligation rules. It is not necessary however to go too deeply into
fine details in such an introductory course.

Chapter 9 (mathematical language) allows us to depart a bit from the examples. It
is a refresher of the mathematical concepts in the middle of the course. The important
aspect here is to have the students becoming more familiar with proofs undertaken in
set-theoretic concepts. Students have to be given a number of exercises for translating
set-theoretic constructs into predicate calculus. It is not necessary to cover this chapter
from beginning to end.
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Chapter 15 (sequential program development) is partly an introductory course be-
cause students are used to writing programs. It is important to understand that pro-
grams can be constructed in a systematic fashion; to understand eventually the dis-
tinction between formal program construction (which we do here) versus program ver-
ification (where the program is “proved” once developed). Some of the examples must
be avoided in an introductory course, namely those dealing with pointers that are too
difficult.

At the end of the course, students should be comfortable with the notions of ab-
straction and refinement. They should also be less afraid of tackling formal proofs of
simple mathematical statements. Finally, they should be convinced that it is possible
to develop programs that work first time!

Students could be made aware of the Rodin Platform tool [7], which is devoted
to Event-B. But we think that they must first do some proofs by hand in order to
understand what the tool is doing.

Advanced course Here we suppose that the students have already attended the
introductory course. In this case, it is not necessary to repeat the presentations of
Chapters 2 and 3. However, students will be encouraged to read them again. The
course then consists in presenting all the other chapters.

It is important for the students to understand that the same Event-B approach
can be used to model systems with very different execution paradigms: sequential,
distributed, concurrent, and parallel.

Students should be comfortable reasoning with complex data structures: list, trees,
DAGs, arbitrary graphs. They must understand that set theory allows us to build
very complex data structures. For these reasons, the examples presented in Chapters
11 (synchronizing processes in a tree), 12 (mobile agent), 13 (IEEE protocol), and 17
(train system) are all important.

In this course, students should not do manual proofs any more as was the case in
the previous introductory course. They must use a tool such as the Rodin Platform,
which is specially devoted to Event-B and associated plugins [7].

1.4 Formal methods
The term “formal method” leads nowadays to great confusion because its usage has
been enlarged to cover many different activities. Some typical questions we can ask
about such methods are the following: Why use formal methods? What are they used
for? When do we need to use such methods? Is UML a formal method? Are they needed
in object-oriented programming? How can we define formal methods?

We will look at these questions gradually. Formal methods have to be used by peo-
ple who have recognized that the (internal) program development process they use
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is inadequate. There may be several reasons for such inadequacies, e.g. failure, cost,
risk.

The choice of a formal method is not an easy one. Partly because there are many
formal method vendors. More precisely, the adjective “formal” does not mean anything.
Here are some questions you may ask a formal method vendor. Is there any theory
behind your formal method? What kind of language is your formal method using? Does
there exist any kind of refinement mechanism associated with your formal method?
What is your way of reasoning with your formal method? Do you prove anything when
using your formal method?

People might claim that using formal methods is impossible because there are some
intrinsic difficulties in doing so. Here are a few of these claimed difficulties: You have to
be a mathematician. The proposed formalism is hard to master. It is not visual enough
(boxes, arrows are missing). People will not be able to perform proofs.

I mostly disagree with the above points of view, but I recognize that there are some
real difficulties, which, in my mind, are the following:

(i) When using formal methods, you have to think a lot before coding, which is not,
as we know, the current practice.

(ii) The use of formal methods has to be incorporated within a certain development
process, and this incorporation is not easy. In industry, people develop their prod-
ucts under very precise guidelines, which they have to follow very carefully. Usu-
ally, the introduction of such guidelines in an industry takes a significant time
before being accepted and fully observed by engineers. Now, changing such guide-
lines to incorporate the use of formal methods is something that managers are
very reluctant to do because they are afraid of the time and cost this process
modification will take.

(iii) Model building is not a simple activity; remember that this is what we will be
learning in this book. We have to be careful not to confuse modeling and pro-
gramming. Sometimes people do some kind of pseudo-programming instead of
modeling. More precisely, the initial model of a program describes the properties
that the program must fulfil. It does not describe the algorithm contained in the
program, but rather the way by which we can eventually judge that the final pro-
gram is correct. For example, the initial model of a file-sorting program does not
explain how to sort. It rather explains what the properties of a sorted file are and
which relationship exists between the initial non-sorted file we want to sort and
the final sorted one.

(iv) Modeling has to be accompanied by reasoning. In other words, the model of a
program is not just a piece of text, whatever the formalism being used. It also
contains proofs that are related to this text. For many years, formal methods
have just been used as a means of obtaining abstract descriptions of the program
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we wanted to construct. Again, descriptions are not enough. We must justify
what we write by proving some consistency properties. Now the problem is that
software practitioners are not used to constructing such proofs, whereas people
in other engineering disciplines are far more familiar with doing so. And one of
the difficulties in making this part of the daily practice of software engineers is
the lack of good proving tool support for proofs, which could be used on a large
scale.

(v) Finally, one important difficulty encountered in modeling is the very frequent lack
of good requirement documents associated with the programming task we have
to perform. Most of the time, the requirement document, which can be found
in industry, is either almost non-existent or far too verbose. In my opinion, it is
vital, most of the time, to completely rewrite such documents before starting any
modeling. We shall come back to this point in what follows.

1.5 A little detour: blueprints
It is my belief that the people in charge of the development of large and complex
computer systems should adopt a point of view shared by all mature engineering dis-
ciplines, namely that of using an artifact to reason about their future system during
its construction. In these disciplines, people use blueprints in the wider sense of the
term, which allows them to reason formally during the very construction process. Here
are a number of mature engineering disciplines: avionics, civil engineering, mechani-
cal engineering, train control systems, ship building, etc. In these disciplines, people
use blueprints and they consider these as very important parts of their engineering
activity.

Let us analyze for a while what a blueprint is. A blueprint is a certain representation
of the future system. It is not a mock-up however because the basis is lacking – you
cannot drive the blueprint of a car! The blueprint allows you to reason about the future
system you want to construct during its very construction process.

Reasoning about a future system means defining and calculating its behavior and
its constraints. It also allows you to construct an architecture gradually. It is based on
some dedicated underlying theories: strength of material, fluid mechanics, gravitation,
etc.

It is possible to use a number of “blueprinting” techniques, which we are going to
review now. While blueprinting, we are using a number of pre-defined conventions,
which help reasoning but also allow the blueprints to be shared among large communi-
ties. Blueprints are usually organized as sequences of more and more accurate versions
(again think of the blueprints made by architects), where each more recent version is
adding details which could not be visible in previous ones. Likewise, blueprints can
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be decomposed into smaller ones in order to enhance readability. It is also possible
for some early blueprints to be not completely determined, thus leaving open options
which will be later refined (in further blueprints). Finally, it is very interesting to have
libraries of old blueprints, where the engineer can browse in order to re-use some work
that has already been done. All this (refinement, decomposition, re-use) clearly requires
that blueprints are used with care so that the entire blueprint development of a system
is coherent. For example, we have to be sure that a more accurate blueprint does not
contradict a previous less precise one.

Most of the time, in our engineering discipline of software construction, people do
not use such blueprinting artifacts. This results in a very heavy testing phase on the
final product, which, as is well known, quite often happens too late. The blueprint
drawing of our discipline consists of building models of our future systems. In no way
is the model of a program, the program itself. But the model of a program and more
generally of a complex computer system, although not executable, allows us to clearly
identify the properties of the future system and to prove that they will be present
in it.

1.6 The requirements document
The blueprint we quickly described in the previous section is not however the initial
phase of the development process. It is preceded by a very important one which consists
of writing a so-called requirement document. Most of the time such a document is either
missing or very badly written. This is the reason why we are going to dwell for a while
on this question and try to give an adequate answer to it.

1.6.1 Life cycle

First, we are going to recall what is the right time for this activity, namely that of
the requirements document writing, within the life cycle of a program development.
Here is a rough list of the various phases of the life cycle: system analysis, requirements
document, technical specification, design, implementation, tests, maintenance.

Let us briefly summarize what the contents of these phases are. The system analysis
phase contains the preliminary feasibility studies of the system we want to construct.
The requirements document phase clearly states what the functions and constraints of
the system are. It is mostly written in natural language. The technical specification
contains the structured formalization of the previous document using some modeling
techniques. The design phase develops the previous one by taking and justifying the
decisions which implement the previous specification and also defines the architecture
of the future system. The implementation phase contains the translation of the outcome
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of the previous phase into hardware and software components. The test phase consists
of the experimental verifications of the final system. The maintenance phase contains
the system upgrading.

As noticed above, the requirements document phase is quite often a very weak point
in this life cycle. This results in lots of difficulties in subsequent phases. In particular,
the famous syndrome of the inescapable specification changes occurring during the
design phases originates in the weakness of the requirements document. When such
a document is well written, these kinds of difficulties tend to disappear. This is the
reason why it is so important to see how this phase can be improved.

1.6.2 Difficulties with the requirements document

Writing a good requirements document is a difficult task. We have to remember that
the readers of such a document are the people who are conducting the next phases,
namely technical specification and design. It is usually very difficult for them to exploit
the requirements document because they cannot clearly identify what they have to take
into account and in which order.

Quite often too, some important points are missing in the requirements document. I
have seen a huge requirements document for the alarm system of an aircraft where the
simple fact that this system should not deliver false alarms was simply missing. When
the authors of this document were interrogated on this missing point, the answer they
gave was rather surprising: it was not necessary to put such a detail in the requirements
document because “of course everybody knows that the system should not deliver any
false alarms.” Sometimes, on the contrary, the requirements document is over-specified
with a number of irrelevant details.

What is difficult for the reader of the requirements document is to make a clear
distinction between which part of the text is devoted to explanations and which part
is devoted to genuine requirements. Explanations are needed initially for the reader
to understand the future system. But when the reader is more acquainted with the
purpose of the system, explanations are less important. At that time, what counts is
to remember what the real requirements are in order to know exactly what has to be
taken into account in the system to be constructed.

1.6.3 A useful comparison

There exist other documents (rather books) which also contain explanations and, in a
sense, requirements. These are books of mathematics. The “requirements” are defini-
tions and theorems. Such items are usually easily recognizable because they are labeled
by their function (definition, lemma, theorem), numbered in a systematic fashion, and
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usually written with a font which differs from that used elsewhere in the book. Here is
an example:

2.8 The Cantor–Bernstein theorem If a � b and b � a, then a and b are
equinumerous.

This theorem was first conjectured by Cantor in 1895, and proved by Bernstein in
1898.

Proof. Since b � a, then a has a subset c such that b ≈ c . . .
�

In this quotation extracted from a book of mathematics, we can clearly see the
“requirement” as indicated on the first line: the theorem number, the theorem name,
and the theorem statement (written in italic). Next are the associated “explanations”:
historical comments and proof.

This distinction is extremely interesting and useful for the reader. If it is our first
contact with this material, then the explanation is fundamental. Later, we might only
be interested in having just a look at the precise statement of the theorem; we are
not interested any more in the historical comments or even in the proof. There are
some books of mathematics where the “requirements” – that is, the definitions and
the theorems – are summarized at the end of the book in an appendix that can be
conveniently consulted.

Structuring the requirements document
Following this analogy of a book of mathematics, the idea is to have our requirements
document organized around two texts embedded in each other: the explanatory text
and the reference text. These two texts should be immediately separable, so that it is
possible to summarize the reference text independently.

Usually, the reference text takes the form of labeled and numbered short statements
written using natural language, which must be very easy to read independently from
the explanatory text. For this, we shall use a special font for the reference text. These
fragments must be self contained without the explanations. They together form the
requirements. The explanations are just there to give some comments which could
help a first reader. But after an initial period, the reference text is the only one that
counts.

The labels of the requirement fragments are very important. They may vary from
one system to the other. Common labels are the following:
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FUN: for functional requirements,
ENV: for environment requirements,
SAF: for safety properties,
DEG: for degraded mode requirements,
DEL: for requirements concerned with delays, etc.

An important activity to be undertaken before writing the requirements document
is that of defining with care the various labels we are going to use. Numbering these
requirements is also very important as they will be referenced in later stages of the
development. This is called traceability. The idea is to have these labeled numbers
appearing in later stages (technical specification, design, even implementation) so that
it will be easy to recognize how each requirement has indeed been taken into account
during the construction of our system and in its final operational version.

Most of the time, the requirement fragments are made of short statements. But we
might also have other styles: date description tables, transition diagrams, mathematical
formulae, physical unit tables, figures, etc.

The order and more generally the structure of the entire requirements document is
not so important at this stage. This will be taken care of in later development phases.

1.7 Definition of the term “formal method” as used in this book
Formal methods are techniques used to build blueprints adapted to our discipline. Such
blueprints are called formal models.

As for real blueprints, we shall use some pre-defined conventions to write our models.
There is no point in inventing a new language; we are going to use the language of
classical logic and set theory. These conventions will allow us to easily communicate
our models to others, as these languages are known by everyone having some math-
ematical backgrounds. The use of such a mathematical language will allow us to do
some reasoning in the form of mathematical proofs, which we shall conduct as usual.

Note again that, as with blueprints, the basis is lacking; our model will thus not in
general be executable.

The kind of systems we are interested in developing are complex and discrete. Let us
develop these two ideas for a while.

1.7.1 Complex systems

Here is the kind of questions we might ask to begin with. What is common among,
say, an electronic circuit, a file transfer protocol, an airline seat booking system, a
sorting program, a PC operating system, a network routing program, a nuclear plant
control system, a SmartCard electronic purse, a launch vehicle flight controller, etc.?
Does there exist any kind of unified approach to in-depth study and formally prove the
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requirements, the specification, the design, and the implementation of systems that are
so different in size and purpose?

We shall only give for the moment a very general answer. Almost all such systems
are complex in that they are made of many parts interacting with a highly evolving
and sometimes hostile environment. They also quite often involve several concurrent
executing agents. They require a high degree of correctness. Finally, most of them
are the result of a construction process which is spread over several years and which
requires a large and talented team of engineers and technicians.

1.7.2 Discrete systems

Although their behavior is certainly ultimately continuous, the systems listed in the
previous section operate most of the time in a discrete fashion. This means that their
behavior can be faithfully abstracted by a succession of steady states intermixed with
jumps that cause sudden state changes. Of course, the number of such possible changes
is enormous, and they are occurring in a concurrent fashion at an unthinkable frequency.
But this number and this high frequency do not change the very nature of the problem:
such systems are intrinsically discrete. They fall under the generic name of transition
systems. Having said this does not give us a method, but it gives us at least a common
point of departure.

Some of the examples envisaged above are pure programs. In other words, their
transitions are essentially concentrated in one medium only. The electronic circuit and
the sorting program clearly fall into this category. Most of the other examples however
are far more complex than just pure programs because they involve many different
executing agents and also a heavy interaction with their environment. This means that
the transitions are executed by different kinds of entities acting concurrently. But,
again, this does not change the very discrete nature of the problem, it only complicates
matters.

1.7.3 Test reasoning versus model (blueprint) reasoning

A very important activity, at least in terms of time and money, concerned with the
construction of such complex discrete systems is certainly that of verifying that the
final implementations are operating in a, so-called, correct fashion. Most of the time
nowadays, this activity is realized during a very heavy testing phase, which we shall
call a “laboratory execution”.

The validation of a discrete system by means of such “laboratory executions” is
certainly far more complicated, if not impossible in practice, to realize in the multiple
medium case than in the single medium one. And we already know that program testing
used as a validation process in almost all programming projects is far from being a
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complete process. Not so much, in fact, because of the impossibility of achieving a total
cover of all executing cases. The incompleteness is rather, for us, the consequence of
the very often lack of oracles which would give, beforehand and independently of the
tested objects, the expected results of a future testing session.

It is nevertheless the case that today complex system constructions is still dependent
on a very small design team of smart people, managing an army of implementers,
eventually concluding the construction process with a long and heavy testing phase.
And it is a well-known fact that the testing cost is at least twice that of the pure
development effort. Is this a reasonable approach nowadays? Our opinion is that a
technology using such an approach is still in its infancy. This was the case at the
beginning of last century for some technologies, which have now reached a more mature
status (e.g. avionics).

The technology we consider in this short presentation is concerned with the construc-
tion of complex discrete systems . As long as the main validation method used is testing,
we consider that this technology will remain in an underdeveloped state. Testing does
not involve any kind of sophisticated reasoning. It rather consists of always postponing
any serious thinking during the specification and design phase. The construction of the
system will always be re-adapted and re-shaped according to the testing results (trial
and error). But, as we know, it is quite often too late.

In conclusion, testing always gives a shortsighted operational view of the system
under construction: that of execution. In other technologies, say again avionics, it is
certainly the case that people eventually do test what they are constructing, but the
testing is just the routine confirmation of a sophisticated design process rather than
a fundamental phase in it. As a matter of fact, most of the reasoning is done be-
fore the very construction of the final object. It is performed on various blueprints,
in the broad sense of the term, by applying to them some well-defined practical
theories.

The purpose of this book is to incorporate such a “blueprint” approach in the design
of complex discrete systems. It also aims at presenting a theory that is able to facilitate
the elaboration of some proved reasoning on such blueprints. Such reasoning will thus
take place far before the final construction. In the present context, the “blueprints” are
called discrete models. We shall now give a brief informal overview of the notion of
discrete models.

1.8 Informal overview of discrete models
In this section, we give an informal description of discrete models. A discrete model
is made of a state and a number of transitions. For the sake of understanding, we
then give an operational interpretation of discrete models. We then present the kind
of formal reasoning we want to express. Finally, we address the problem of mastering
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the complexity of models by means of three concepts: refinement, decomposition, and
generic development.

1.8.1 State and transitions

Roughly speaking, a discrete model is made of a state represented by some constants
and variables at a certain level of abstraction with regard to the real system under
study. Such variables are very much the same as those used in applied sciences (physics,
biology, operational research) for studying natural systems. In such sciences, people
also build models. It helps them to infer some laws about the real world by means of
reasoning about these models.

Besides the state, the model also contains a number of transitions that can occur
under certain circumstances. Such transitions are called here “events.” Each event is
first made of a guard , which is a predicate built on the state constants and variables.
It represents the necessary conditions for the event to occur. Each event is also made
up of an action, which describes the way certain state variables are modified as a
consequence of the event occurrence.

1.8.2 Operational interpretation

As can be seen, a discrete dynamical model thus indeed constitutes a kind of state
transition machine. We can give such a machine an extremely simple operational in-
terpretation. Notice that such an interpretation should not be considered as providing
any operational semantics in our models (this will be given later by means of a proof
system), it is just given here to support their informal understanding.

First of all, the execution of an event, which describes a certain observable transition
of the state variables, is considered to take no time. Moreover, no two events can occur
simultaneously. The execution is then the following:

• When no event guards are true, then the model execution stops; it is said to have
deadlocked .

• When some event guards are true, then one of the corresponding events necessarily
occurs and the state is modified accordingly; subsequently, the guards are checked
again, and so on.

This behavior clearly shows some possible non-determinism (called external non-
determinism) as several guards may be true simultaneously. We make no assumption
concerning the specific event which is indeed executed among those whose guards are
true. When only one guard is true at all times, the model is said to be deterministic.

Notice that the fact that a model eventually finishes is not at all mandatory. As a
matter of fact, most of the systems we study never deadlock; they run for ever.
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1.8.3 Formal reasoning

The very elementary transition machine we have described in the previous section,
although primitive is nevertheless sufficiently elaborate to allow us to undertake some
interesting formal reasoning. In the following, we envisage two kinds of discrete model
properties.

The first kind of properties that we want to prove about our models, and hence
ultimately about our real systems, are so-called invariant properties . An invariant is a
condition on the state variables that must hold permanently. In order to achieve this,
it is just required to prove that, under the invariant in question and under the guard
of each event, the invariant still holds after being modified according to the action
associated with that event.

We might also consider more complicated forms of reasoning, involving conditions
which, in contrast to the invariants, do not hold permanently. The corresponding state-
ments are called modalities . In our approach, we only consider a very special form
of modality, called reachability. What we would like to prove is that an event whose
guard is not necessarily true now will nevertheless certainly occur within a certain finite
time.

1.8.4 Managing the complexity of closed models

Note that the models we are going to construct will not just describe the control part of
our intended system, they will also contain a certain representation of the environment
within which the system we build is supposed to behave. In fact, we shall quite often
essentially construct closed models, which are able to exhibit the actions and reactions
taking place between a certain environment and a corresponding, possibly distributed,
controller.

In doing so, we shall be able to insert the model of the controller within an abstraction
of its environment, which is formalized as yet another model. The state of such a closed
system thus contains physical variables, describing the environment state, as well as
logical variables, describing the controller state. And, in the same way, the transitions
will fall into two groups: those concerned with the environment and those concerned
with the controller. We shall also have to put into the model the way these two entities
communicate.

But, as we mentioned earlier, the number of transitions in the real systems under
study is certainly enormous. And, needless to say, the number of variables describing
the state of such systems is also extremely large. How are we going to practically
manage such complexity? The answer to this question lies in three concepts: refinement
(Section 1.8.5), decomposition (Section 1.8.6), and generic instantiation (Section 1.8.7).
It is important to notice here that these concepts are linked together. As a matter of
fact, we refine a model to later decompose it, and, more importantly, we decompose it
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to further refine it more freely. And, finally, a generic model development can be later
instantiated, thus saving the user from redoing similar proofs.

1.8.5 Refinement

Refinement allows us to build a model gradually by making it more and more precise,
so that it is closer to the reality. In other words, we are not going to build a single
model representing once and for all our reality; this is clearly impossible due to the
size of the state and the number of its transitions. It would also make the resulting
model very difficult to master. We are rather going to construct an ordered sequence
of embedded models, where each of them is supposed to be a refinement of the one
preceding it in a sequence. This means that a refined, more concrete, model will have
more variables than its abstraction; such new variables are a visible consequence of a
view of our system from closer range.

A useful analogy here is that of the scientist looking through a microscope. In doing
so, the reality is the same, the microscope does not change it, but our view of it is
more accurate: some previously invisible parts of the reality are now revealed by the
microscope. An even more powerful microscope will reveal more parts, etc. A refined
model is thus one which is spatially larger than its previous abstractions.

Analogously to this spatial extension, there is a corresponding temporal extension.
This is because the new variables are now able to be modified by some transitions,
which could not have been present in the previous abstractions, simply because the
concerned variables did not exist in them. Practically, this is realized by means of new
events, involving the new variables only. Such new events refine some implicit events
doing nothing to the abstraction. Refinement will thus result in a discrete observation
of our reality, which is now performed using a finer time granularity .

Refinement is also used in order to modify the state so that it can be implemented on
a computer by means of some programming language. This second usage of refinement
is called data refinement. It is used as a second technique, once all the important
properties have been modeled.

1.8.6 Decomposition

Refinement does not solve completely the problem of the complexity. As a model is
more and more refined, the number of its state variables and that of its transitions may
augment in such a way that it becomes impossible to manage them as a whole. At this
point, it is necessary to cut our single refined model into several almost independent
pieces.

Decomposition is precisely the process by which a single model can be split into var-
ious component models in a systematic fashion. In doing so, we reduce the complexity
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of the whole by studying, and thus refining, each component model independently of
the others. The very definition of such a decomposition implies that independent re-
finements of the component models could always be put together again to form a single
model that is guaranteed to be a refinement of the original one. This decomposition
process can be further applied to the components, and so on. Note that the component
model could already exist and be developed, thus allowing to mix a top-down and a
bottom-up approach.

1.8.7 Generic development

Any model development done by applying refinement and decomposition is parame-
terized by some carrier sets and constants defined by means of a number of properties.

Such a generic model may be instantiated within another development in the same
way as a mathematical theory, e.g. group theory, can be instantiated in a more specific
mathematical theory. This can be done providing that we have been able to prove that
the axioms of the abstract theory are mere theorems in the second one.

The interest of this approach of generic instantiation is that it saves us redoing the
proofs already done in the abstract development.
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2

Controlling cars on a bridge

2.1 Introduction
The intent of this chapter is to introduce a complete example of a small system devel-
opment. During this development, we will become aware of the systematic approach
we are using: it consists in developing a series of more and more accurate models of the
system we want to construct. This technique is called refinement. The reason for build-
ing consecutive models is that a unique one would be far too complicated to reason
about. Note that each model does not represent the programming of our system using
a high-level programming language, it rather formalizes what an external observer of
this system could perceive of it.

Each model will be analyzed and proved, thus enabling us to establish that it is
correct relative to a number of criteria. As a result, when the last model is finished,
we will be able to say that this model is correct by construction. Moreover, this model
will be so close to a final implementation that it will be very easy to transform it into
a genuine program.

The correctness criteria alluded to above will be made completely clear and system-
atic by giving a number of proof obligation rules which will be applied on our models.
After applying such rules, we shall have to prove formally a number of statements.
To this end, we shall also give a reminder of the classical rules of inference of the
sequent calculus. Such rules concern propositional logic, equality, and basic arithmetic.
The idea here is to give the reader the possibility to manually prove the statements as
given by the proof obligation rules. Clearly, such proofs could easily be discharged by
a theorem prover, but we feel that it is important at this stage for the reader to tackle
the exercise before using an automatic theorem prover. Notice that we do not claim
that a theorem prover would perform these proofs the way it is proposed here; quite
often, a tool does not work like a human being does.

This chapter is organized as follows. Section 2.2 contains the requirement document
of the system we would like to develop. For this, we shall use the principles explained in

24
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the previous chapter. Section 2.3 explains our refinement strategy; it essentially assigns
the various requirements to the various development steps. The four remaining sections
are devoted to the development of the initial models and those of the three subsequent
refinements.

2.2 Requirements document
The system we are going to build is a piece of software, called the controller, connected
to some equipment, called the environment. There are thus two kinds of requirements:
those concerned with the functionalities of the controller labeled FUN, and those con-
cerned with the environment labeled ENV.

Note that the model we are going to build is a closed model, comprising the controller
as well as its environment. The reason is that we want to define with great care the
assumptions we are making concerning the environment. In other words, the controller
we shall build eventually will be correct as long as these assumptions are fulfilled by the
environment: outside these assumptions, the controller is not guaranteed to perform
correctly. We shall come back to this in Section 2.7.

Let us now turn our attention to the requirements of this system. The main function
of this system is to control cars on a narrow bridge. This bridge is supposed to link
the mainland to a small island:

The system is controlling cars on a bridge connecting the mainland to an island FUN-1

This system is equipped with two traffic lights:

The system is equipped with two traffic lights with two colors: green and red ENV-1

One of the traffic lights is situated on the mainland and the other one on the island.
Both are close to the bridge:

The traffic lights control the entrance to the bridge at both ends of it ENV-2

Drivers are supposed to obey the traffic lights by not passing when a traffic light is
red:

Cars are not supposed to pass on a red traffic light, only on a green one ENV-3
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There are also some car sensors situated at both ends of the bridge:

The system is equipped with four sensors with two states: on or off ENV-4

These sensors are supposed to detect the presence of cars intending to enter or leave
the bridge. There are four such sensors. Two of them are situated on the bridge and
the other two are situated on the mainland and on the island respectively:

The sensors are used to detect the presence of a car entering or leaving
the bridge: “on” means that a car is willing to enter the bridge or to leave it ENV-5

The pieces of equipment which have been described are illustrated Fig. 2.1. The system
has two main additional constraints: the number of cars on the bridge and island is
limited:

The number of cars on bridge and island is limited FUN-2

and the bridge is one-way:

The bridge is one-way or the other, not both at the same time FUN-3

BridgeIsland Mainland

traffic light
sensor

Fig. 2.1. The bridge control equipment
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2.3 Refinement strategy
Before engaging in the development of such a system, it is profitable to clearly identify
what our design strategy will be. This is done by listing the order in which we are going
to take account of the various requirements we proposed in the requirement document
of the previous section. Here is our strategy:

• We start with a very simple model allowing us to take account of requirement FUN-2
concerned with the maximum number of cars on the island and the bridge (Section
2.4)

• Then the bridge is introduced into the picture, and we thus take account of require-
ment FUN-3 telling us that the bridge is one way or the other (Section 2.5).

• In the next refinement, we introduce the traffic lights. This corresponds to require-
ments ENV-1, ENV-2, and ENV-3 (Section 2.6).

• In the last refinement, we introduce the various sensors corresponding to require-
ments ENV-4 and ENV-5 (Section 2.7). In this refinement, we shall also introduce
eventually the architecture of our closed model made up of the controller, the envi-
ronment, and the communication channels between the two.

You may have noticed that we have not mentioned requirement FUN-1 telling us
what the main function of this system is. This is simply because it is fairly general. It
is in fact taken care of at each development step.

2.4 Initial model: limiting the number of cars
2.4.1 Introduction

The first model we are going to construct is very simple. We do not consider at all
the various pieces of equipment, namely the traffic lights and sensors; they will be
introduced in subsequent refinements. Likewise, we do not even consider the bridge,
only a compound made of the bridge and the island together.

This is an approach taken frequently. We start by building a model that is far more
abstract than the final system we want to construct. The idea is to take account initially
of only a very few constraints. This is because we want to be able to reason about this
system in a simple way, considering in turn each requirement.

As a useful analogy, we will observe the situation from high in the sky. Although we
cannot see the bridge, we suppose however that we can “see” the cars on the island–
bridge compound and observe the two transitions, ML_out and ML_in, corresponding
to cars entering and leaving the island–bridge compound. All this is illustrated in
Fig. 2.2.
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ML_out

ML_in

Island
and

bridge
Mainland

Fig. 2.2. The mainland and the island–bridge

Our first task is to formalize the state of this simple version of our system (Section
2.4.2). We shall then formalize the two events we can observe (Section 2.4.3).

2.4.2 Formalizing the state

The state of our model is made up of two parts: the static part and the dynamic part.
The static part contains the definition and axioms associated with some constants,
whereas the dynamic part contains the variables which are modified as the system
evolves. The static part is also called the context of our model.

The context of our first model is very simple. It contains a single constant d, which is
a natural number denoting the maximum number of cars allowed to be on the island–
bridge compound at the same time. The constant d has a simple axiom: it is a natural
number. As can be seen below, we have given this axiom the name axm0_1:

constant: d axm0_1: d ∈ N

The dynamic part is made up of a single variable n, which denotes the actual number
of cars in the island–bridge compound at a given moment. This is simply written as
shown in the following boxes:

variable: n

inv0_1: n ∈ N

inv0_2: n ≤ d

The variable n is defined by means of two conditions which are called the invari-
ants. They are named inv0_1 and inv0_2. The reason for calling them invariants
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is straightforward: despite the changes over time in the value of n, these conditions
always remain true. Invariant inv0_1 says that n is a natural number. And the first
basic requirement of our system, namely FUN-2, is taken into account at this stage by
stating in inv0_2 that the number n of cars in the compound is always smaller than
or equal to the maximum number d.

The labels axm0_1, inv0_1, and inv0_2 we have used above are chosen in a
systematic fashion. The prefix axm stands for the axiom of the constant d, whereas
the prefix inv stands for the invariant of the variable n. The 0, as in axm0_1 or
inv0_2, stands for the fact that these conditions are introduced in the initial model.
Subsequent models will be the first refinement, the second refinement, and so on. They
will be numbered 1, 2, etc. Finally, the second number, as 2 in inv0_2, is a simple
serial number. In what follows, we shall use such a systematic labeling scheme for
naming our state conditions. Sometimes, but rarely, we shall change the prefixes axm
and inv for others. We found this naming scheme convenient, but, of course, any other
naming scheme can be used provided it is systematic.

2.4.3 Formalizing the events

At this stage, we can observe two transitions, which we shall henceforth call events.
They correspond to cars entering the island–bridge compound or leaving it. In
Fig. 2.3 there is an illustration of the situation just before and just after an occurrence
of the first event, ML_out (the name ML_out stands for “going out of mainland”). As
can be seen, the number of cars in the compound is incremented as a result of this
event.

Before

ML_out

After

Fig. 2.3. Event ML_out

Likewise, Fig. 2.4 shows the situation just before and just after an occurrence of the
second event, ML_in (the name ML_in stands for “getting on to the mainland”). As
can be seen, the number of cars in the compound is decremented as a result of this
event.
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Before

ML_in

After

Fig. 2.4. Event ML_in

In a first approximation, we define the events of the initial model in a simple way as
follows:

ML_out

n := n + 1
ML_in

n := n− 1

An event has a name: here ML_out and ML_in. It contains an action: here n := n+1
and n := n− 1. These statements can be read as follows: “n becomes equal to n + 1”
and “n becomes equal to n − 1”. Such statements are called actions. It is important
to notice that, in writing these actions, we are not programming. We are just formally
representing what can be observed in discrete evolutions of our system. We are giving
a formal representation to our observation.

You might have noticed that we have said above that the two events are proposed
“in a first approximation.” There are two reasons for writing this:

(i) Our model observation is done in an incremental fashion. In other words, we are
not defining immediately the final state and events of our system. Remember, we
are not programming, we are defining models of the system we want to construct,
and these models cannot be defined at once in full generality; this requires some
gradual introduction of state components and transitions.

(ii) We propose here a state and various events, but we are not yet sure that these
elements are consistent. This will have to be proved formally, and in doing this we
might discover that what we have proposed is not correct.

2.4.4 Before–after predicates

In this section, we present the concept of before–after predicates. This concept will be
helpful to define the proof obligation rules in subsequent sections.

To each event defined as an action there corresponds a so-called before–after pred-
icate. The before–after predicate associated with an action denotes the relationship
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that exists between the value of the concerned variable just before and just after the
transition. This is indicated as shown below:

Events

before–after predicates

ML_out

n := n + 1

n′ = n + 1

ML_in

n := n− 1

n′ = n− 1

As can be seen, the before–after predicate is easily obtained from the action: the
variable on the left-hand side of the action symbol “:=” is primed, the action symbol
“:=” is changed to an equality symbol “=”, and, finally, the expression on the right-hand
side of the action symbol is taken as is.

In a before–after predicate, a primed variable such as n′ denotes, by convention, the
value of the variable n just after the transition has occurred, whereas n represents its
value just before. For instance, just after an occurrence of the event ML_out, the value
of the variable n is equal to the value it had just before plus one, that is n′ = n + 1.

The before–after predicates we present here have got very simple shapes, where
the primed value is equal to some expression depending on the non-primed value. Of
course, more complicated shapes can be encountered, but in this example, which is
deterministic, we shall not encounter more complicated cases.

2.4.5 Proving invariant preservation

When writing the actions corresponding to the events ML_in and ML_out, we did
not necessarily take into account invariants inv0_1 and inv0_2, because we only
concentrated on the way the variable n was modified. As a consequence, there is no
reason a priori for these invariants to be preserved by these events. In fact, it has to
be proved in a rigorous fashion. The purpose of this section is thus to define precisely
what we have to prove in order to ensure that the invariants are indeed invariant!

The statement to be proved is generated in a systematic fashion by means of a rule,
called INV, which is defined once and for all. Such a rule is called a proof obligation
rule or a verification condition rule.

Generally speaking, suppose that our constants are collectively called c. And let
A(c) denote the axioms associated with these constants c. More precisely, A(c) stands
for the list: A1(c), A2(c), . . . of axioms associated with the constants. In our example
model, A(c) is reduced to a list consisting of the single element axm0_1. Likewise,
let v denote the variables and let I(c, v) denote the invariants of these variables. As for
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the axioms of the constants, I(c, v) stands for the list I1(c, v), I2(c, v), . . . of invariants.
In our example, I(c, v) is reduced to a list consisting of the two elements inv0_1
and inv0_2. Finally, let v′ = E(c, v) be the before–after predicate associated with
an event. The invariant preservation statement which we have to prove for this event
and for a specific invariant Ii(c, v), taken from the set of invariants I(c, v), is then the
following:

A(c), I(c, v) � Ii(c, E(c, v)) INV

This statement, which is called a sequent (wait till the next section for a precise
definition of sequents), can be read as follows: “hypotheses A(c) and hypotheses I(c, v)
entail predicate Ii(c, E(c, v))”. This is what we have to prove for each event and for
each invariant Ii(c, v). It is easy to understand. Just before the transition, we can
assume clearly that each axiom of the set A(c) holds. We can also assume that each
invariant of the set I(c, v) holds. As a consequence, we can assume A(c) and I(c, v).
Now, just after the transition, where the value of v has been changed to E(c, v), then
the invariant statement Ii(c, v) becomes Ii(c, E(c, v)), and it must hold too since it is
claimed to be an invariant.

To simplify writing and ease reading, we shall write sequents vertically when there
are several hypotheses. In the case of our rule INV, this yields the following:

A(c)
I(c, v)
� INV
Ii(c, E(c, v))

As this formulation of proof obligation rule INV might seem a bit difficult to remember,
let us rewrite it in another way, which is less formal:

Axioms
Invariants
� INV
Modified invariant

The proof obligation rule INV states what we have to formally prove in order to be
certain that the various events maintain the invariants. But we have not yet defined
what we mean by “formally prove”: this will be explained in Sections 2.4.8 to 2.4.11. We
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shall also explain how we can construct formal proofs in a systematic fashion. Finally,
note that such sequents which correspond to applying rule INV are generated easily by
a tool, which is called a proof obligation generator.

2.4.6 Sequent

In the previous section, we introduced the concept of sequent in order to express our
proof obligation rule. In this section, we give more information about such a construct.†
As explained above, a statement of the following form is called a sequent:

H � G

The symbol � is named the turnstile. The part situated on the left-hand side of the
turnstile, here H, denotes a finite set of predicates called the hypotheses (or assump-
tions). Notice that the set H can be empty. The part situated on the right-hand side
of the turnstile, here G, denotes a predicate called the goal (or conclusion).

The intuitive meaning of such a statement is that the goal G is provable under the
set of assumptions H. In other words, the turnstile can be read as the verb “entail,” or
“yield”; the assumptions H yield the conclusion G.

In what follows, we shall always generate such sequents (and try to prove them) in
order to analyze our models. We shall also give rules to prove sequents in a formal way.

2.4.7 Applying the invariant preservation rule

Coming back to our example, we are now in a position to clearly state what we have
to prove; this is what we are going to do in this section. The proof obligation rule
INV given in Section 2.4.5 yields several sequents to prove. We have one application
of this proof obligation rule per event and per invariant: in our case, we have two
events, namely ML_out and ML_in, and we have two invariants, namely inv0_1 and
inv0_2. This makes four sequents to prove: two sequents for each of the two events.

In order to remember easily what proof obligations we are speaking about, we are
going to give compound names to them. Such a proof obligation name first mentions
the event we are concerned with, then the invariant, and we finally include the label
INV in order to remember that it is an invariant preservation proof obligation (as there
will be some other kinds of proof obligations‡). In our case, the four proof obligations
are named as follows:

† Sequents and the sequent calculus are reviewed in a more formal way in Section 1 of Chapter 9.
‡ All proof obligations are reviewed in Section 2 of Chapter 5.
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ML_out / inv0_1 / INV ML_out / inv0_2 / INV
ML_in / inv0_1 / INV ML_in / inv0_2 / INV

Let us now apply proof obligation rule INV to the two events and the two invariants.
Here is what we have to prove concerning event ML_out and invariant inv_01:

Axiom axm0_1
Invariant inv0_1
Invariant inv0_2
�
Modified invariant inv0_1

d ∈ N

n ∈ N

n ≤ d

�
n + 1 ∈ N

ML_out / inv0_1 / INV

Remember that event ML_out has the before–after predicate n′ = n + 1. This is
why predicate n ∈ N corresponding to invariant inv0_1 in the assumptions has been
replaced by predicate n + 1 ∈ N in the goal. Here is what we have to prove concerning
event ML_out and invariant inv0_2:

Axiom axm0_1
Invariant inv0_1
Invariant inv0_2
�
Modified invariant inv0_2

d ∈ N

n ∈ N

n ≤ d

�
n + 1 ≤ d

ML_out / inv0_2 / INV

Here is what we have to prove concerning event ML_in and invariant inv0_1 (remem-
ber that the before–after predicate of event ML_in is n′ = n− 1):

Axiom axm0_1
Invariant inv0_1
Invariant inv0_2
�
Modified invariant inv0_1

d ∈ N

n ∈ N

n ≤ d

�
n− 1 ∈ N

ML_in / inv0_1 / INV
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Here is what we have to prove concerning event ML_in and invariant inv0_2:

Axiom axm0_1
Invariant inv0_1
Invariant inv0_2
�
Modified invariant inv0_2

d ∈ N

n ∈ N

n ≤ d

�
n− 1 ≤ d

ML_in / inv0_2 / INV

2.4.8 Proving the proof obligations

We know exactly which sequents we have to prove. Our next task is now to prove them:
this is the purpose of the present section. The formal proofs of the previous sequents
are done by applying some transformations on sequents, yielding one or several other
sequents to prove, until we reach sequents that are considered proved without any
further justification. The transformation of one sequent into new ones corresponds to
the idea that proofs of the latter are sufficient to prove the former. For example, our
first sequent, namely:

d ∈ N

n ∈ N

n ≤ d

�
n + 1 ∈ N

(2.1)

can be simplified by removing some irrelevant hypotheses (clearly hypotheses d ∈ N

and n ≤ d are useless for proving our goal n + 1 ∈ N), yielding the following simpler
sequent:

n ∈ N � n + 1 ∈ N (2.2)

What we have admitted here as a step in the proof is the fact that a proof of sequent
(2.2) is sufficient to prove sequent (2.1). In other words, if we succeed now in proving
sequent (2.2), then we have also a proof of sequent (2.1). The proof of the sequent (2.2)
is reduced to nothing. In other words, it is accepted as being proved without further
justification. It says that, under the assumption that n is a natural number, then n+1
is also a natural number.
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2.4.9 Rules of inference

In the previous section, we applied informally some rules either to transform a sequent
into another one or to accept a sequent without further justification. Such rules can be
rigorously formalized, they are called rules of inference. This is what we do now. The
first rule of inference we have used can be stated as follows:

H1 � G

H1,H2 � G
MON

Here is the structure of such a rule. On top of the horizontal line, we have a set of
sequents (here just one). These sequents are called the antecedents of the rule. Below
the horizontal line, we always have a single sequent called the consequent of the rule.
On the right of the rule, we have a name, here MON; this is the name of the inference
rule. In this case, this name stands for monotonicity of hypotheses.

The rule is to be read as follows: in order to prove the consequent, it is sufficient
to have proofs of each sequent in the antecedents. In the present case, it says that in
order to have a proof of goal G under the two sets of assumptions H1 and H2, it is
sufficient to have a proof of G under H1 only. We have indeed obtained the effect we
wanted: the removing of possibly irrelevant hypotheses H2.

Note that in applying this rule we do not require that the subset of assumptions
H2 is entirely situated after the subset H1 as is strictly indicated in the rule. In
fact, the subset H2 is to be understood as any subset of the hypotheses. For ex-
ample, in applying this rule to our proof obligation (2.1) in the previous section, we
removed the assumption d ∈ N situated before assumption n ∈ N and after assumption
n ≤ d.

The second rule of inference can be stated as follows:

H, n ∈ N � n + 1 ∈ N

P2

Here we have a rule of inference with no antecedent. For this reason, it is called an
axiom. This is the second Peano Axiom for natural numbers; hence the name P2. It says
that, in order to have a proof of the consequent, it is not necessary to prove anything.
Under the hypothesis that n is a natural number, n+1 is also a natural number. Notice
that the presence of the additional hypotheses H is optional here. This is so because it
is always possible to remove the additional hypotheses using rule MON. Thus the rule
could have been stated more simply as follows (this is the convention we shall follow
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from now on):

n ∈ N � n + 1 ∈ N

P2

A similar but more constraining rule will be used in what follows. It concerns decre-
menting a natural number:

0 < n � n− 1 ∈ N

P2′

This rule says that n −1 is a natural number under the assumption that n is positive.
We shall also use two other rules of inference called INC and DEC:

n < m � n + 1 ≤m
INC

Rule of inference INC says that n +1 is smaller than or equal to m under the assumption
that n is strictly smaller than m:

n ≤m � n− 1 < m
DEC

Rule of inference DEC says that n −1 is smaller than m under the assumption that
n is already smaller than or equal to m. We shall clearly need more rules of inference
dealing with elementary logic and also with natural numbers. But, for the moment, we
only need those we have just presented in this section.

Notice that it is well known that inference rules P2’, INC, and DEC are derived
inference rules; it simply means that such inference rules can be deduced from more
basic inference rules such as P2 above and others. But, in this presentation, we are not
so much interested in this, we want just to construct a library of useful inference rules.
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2.4.10 Meta-variables

You might have noticed that the various identifiers, namely H1,H2, G, n, m we have
used in the rules of inferences proposed in the previous section, were emphasized; we
have not used the standard mathematical font for them, namely H1, H2, G, n, m.
This is because such variables are not part of the mathematical language we are using.
They are called meta-variables.

More precisely, each proposed rule of inference stands for a schema of rules corre-
sponding to all the possible matches we could ever perform. For example rule P2:

n ∈ N � n + 1 ∈ N

P2

describes the second Peano axiom in very general terms; it can be applied to the
sequent:

a + b ∈ N � a + b + 1 ∈ N

by matching meta-variable n to the mathematical language expression a + b.

2.4.11 Proofs

Equipped with a number of rules of inference, we are now ready to perform some
elementary formal proofs. This is the purpose of this section. A proof is just a sequence
of sequents connected by the name of the rule of inference, which allows us to go from
one sequent to the next in the sequence. The sequence of sequents ends with the name
of a rule of inference with no antecedent. We shall see in Section 2.4.24 that proofs
have a more general shape, but one is sufficient for the moment.

For example, the proof of our first proof obligation ML_out / inv0_1 / INV is
the following. It corresponds exactly to what has been said informally in Section 2.4.8,
namely removing some useless hypotheses and then accepting the second sequent with-
out any further proof:

d ∈ N

n ∈ N

n ≤ d

�
n + 1 ∈ N

MON

n ∈ N

�
n + 1 ∈ N

P2
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The next proof, corresponding to proof obligation ML_out / inv0_2 / INV, fails
because we cannot apply rule INC on the final sequent as we do not have an assumption
telling us that n < d holds as required by rule INC; we only have the weaker assumption
n ≤ d. For this reason, we have put a “?” at the end of the sequence of sequents:

d ∈ N

n ∈ N

n ≤ d

�
n + 1 ≤ d

MON
n ≤ d

�
n + 1 ≤ d

?

Likewise, the proof of ML_in / inv0_1 / INV fails. Here we cannot apply inference
rule P2’ on the last sequent because we do not have the required assumption 0 < n,
only the weaker one n ∈ N:

d ∈ N

n ∈ N

n ≤ d

�
n− 1 ∈ N

MON
n ∈ N

�
n− 1 ∈ N

?

The last proof, that of ML_in / inv0_2 / INV, succeeds:

d ∈ N

n ∈ N

n ≤ d

�
n− 1 ≤ d

MON

n ≤ d

�
n− 1 < d ∨ n− 1 = d

OR_R1

n ≤ d

�
n− 1 < d

DEC

Notice that in the second step we felt free to replace n − 1 ≤ d, that is n − 1 is
smaller than or equal to d, by the equivalent formal statement n−1 < d ∨ n−1 = d,
where ∨ is the disjunctive operator “or.” Then, we apply inference rule OR_R1 (see
next section) in order to obtain the goal n − 1 < d, which is easily proved using
rule DEC.
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2.4.12 More rules of inference

At the end of previous section, we applied our first logical rule of inference named
OR_R1.† Later on, there will be further logical rules of inference, but this is the first
one we need. We present it together with the companion rule OR_R2:

H � P

H � P ∨Q
OR_R1

H � Q

H � P ∨Q
OR_R2

Both rules state obvious facts about proving a disjunctive goal P ∨ Q involving two
predicates P and Q. To prove their disjunction, it is sufficient to prove one of them: P
in the case of rule OR_R1 and Q in the case of rule OR_R2.

Notice that in the _R1 or _R2 suffixes of these rule names, the R stands for “right”:
it means that this rule transforms a goal, that is a statement situated on the right-
hand side of the turnstile. Other logical inference rules presented below will be named
using the suffix L when the transformed predicate is an hypothesis, that is a predicate
situated on the left-hand side of the turnstile.

2.4.13 Improving the two events: introducing guards

Coming back to our example, we have now to make some modifications to our model
due to the fact that some proofs have failed. We figure out that proving has the same
effect as debugging. In other words, a failed proof reveals a bug.

In order to correct the deficiencies we have discovered while carrying out the proof,
we have to add guards to our events. Taken together, these guards denote the necessary
conditions for an event to be enabled. More precisely, when an event is enabled, it means
that the transition corresponding to the event can take place. On the contrary, when
an event is not enabled (that is when at least one of its guards does not hold), it means
that the corresponding transition cannot occur.

For event ML_out to be enabled, we shall require that n be strictly smaller than
d, that is n < d. And for event ML_in to be enabled, we shall require that n be
strictly positive, that is 0 < n. Notice that such guarding conditions are exactly the
conditions that were missing in the sequents we had to prove in the previous section;
we have been guided by the failure of the proofs. Adding guards to events is done

† All rules of inference are reviewed in Chapter 9.
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as follows:

ML_out
when

n < d

then
n := n + 1

end

ML_in
when

0 < n

then
n := n− 1

end

As can be seen, we have a simple piece of syntax here: the guard is situated between
the keywords when and then, whereas the action is situated between the keywords
then and end. Note that we may have several guards in an event, although it is not
the case here.

2.4.14 Improving the invariant preservation rule

When dealing with a guarded event with the set of guards denoted by G(c, v) and
before–after predicate of the form v′ = E(c, v) (where c denotes the constants and v

the variables as introduced in Section 2.4.5), our previous proof obligation rule INV
has to be modified by adding the set of guards G(c, v) to the hypotheses of the se-
quent. This yields the following more general proof obligation for events that have
guards:

A(c)
I(c, v)
G(c, v) INV
�
Ii(c, E(c, v))

Axioms
Invariants
Guards of the event INV
�
Modified invariant

2.4.15 Reproving invariant preservation

The statements to prove by applying the amended proof obligation rule INV are
modified accordingly and are now easily provable. Here is the sequent to prove to
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ensure that event ML_out preserves invariant inv0_2:

Axiom axm0_1
Invariant inv0_1
Invariant inv0_2
Guard of ML_out
�
Modified invariant inv0_2

d ∈ N

n ∈ N

n ≤ d

n < d

�
n + 1 ≤ d

ML_out / inv0_2 / INV

Here is what we have to prove concerning event ML_in and invariant inv0_1:

Axiom axm0_1
Invariant inv0_1
Invariant inv0_2
Guard of ML_in
�
Modified invariant inv0_1

d ∈ N

n ∈ N

n ≤ d

0 < n

�
n− 1 ∈ N

ML_in / inv0_1 / INV.

The two missing proofs can now be performed easily:

d ∈ N

n ∈ N

n ≤ d

n < d

�
n + 1 ≤ d

MON

n < d

�
n + 1 ≤ d

INC

d ∈ N

n ∈ N

n ≤ d

0 < n

�
n− 1 ∈ N

MON

0 < n

�
n− 1 ∈ N

P2′
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Notice that the proofs we have already done for proof obligations ML_out / inv0_1
/ INV and ML_in / inv0_2 / INV in Section 2.4.11 need not to be redone. This is
because we are just adding a new hypothesis to these proof obligations: remember
inference rule MON (Section 2.4.9), which says that for proving a goal under certain
hypotheses H, it is sufficient to perform the proof of the same goal under less hypothe-
ses. So, conversely adding an hypothesis to a proof which is already done does not
invalidate that proof.

2.4.16 Initialization

In the previous sections, we defined the two events ML_in and ML_out and the invari-
ants of the model, namely inv0_1 and inv0_2. We also proved that these invariants
were preserved by the transition defined by the events. But we have not defined what
happens at the beginning. For this, it is necessary to define a special initial event that
is systematically named init. In our case, this event is the following:

init

n := 0

As can be seen, the initializing event corresponds to the observation that initially there
are no cars in the compound. Notice that this event has no guard; this must always be
the case with the initializing event init. In other words, initialization must always be
possible!

Also note that the expression situated on the right-hand sign of := in the action
of the event init cannot refer to any variable of the model. This is because we are
initializing. In our case, the variable n cannot be assigned an expression depending
on n. The corresponding before–after predicate of init is thus always rather an “after
predicate” only. In our case, it is the following (as can be seen, this predicate does not
mention n, only n′):

n′ = 0

2.4.17 Invariant establishment rule for the initializing event init

Event init cannot preserve the invariants because before init the system state “does not
exist.” Event init must just establish the invariant for the first time. In this way, other
events, which by definition are only observable after initialization has taken place, can
be enabled in a situation where the invariants hold.
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We have thus to define a proof obligation rule for this invariant establishment. It is
almost identical to the proof obligation rule INV we have already presented in Section
2.4.5. The difference is that in the proof obligation rule presented now the invariants
are not mentioned in the hypotheses of the sequent. More precisely, given a system
with constants c, with a set of axioms A(c), with variables v and an invariant Ii(c, v),
and an initializing event with after predicate v′ = K(c), then the proof obligation rule
INV for invariant establishment is the following:

A(c)
� INV
Ii(c, K(c))

Axioms
� INV
Modified invariant

2.4.18 Applying the invariant establishment rule

The application of the previous rule to our initializing event init yields the following to
prove:

Axiom axm0_1
�
Modified invariant inv0_1

d ∈ N � 0 ∈ N inv0_1 / INV

Axiom axm0_1
�
Modified invariant inv0_2

d ∈ N � 0 ≤ d inv0_2 / INV

2.4.19 Proving the initialization proof obligations: more inference rules

The proof obligations of the previous section cannot be formally proved without other
inference rules. The first one is named P1: it is the first Peano axiom which says that
0 is a natural number. Notice that the sequent that defines the consequent of this
inference rule has no assumption:

� 0 ∈ N

P1

The second rule of inference we need is a consequence of the third Peano axiom,
which says that 0 is not the successor of any natural number. We can prove that this
can be rephrased as follows: 0 is the smallest natural number. In other words, under
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the assumption that n is a natural number, then 0 is smaller than or equal to n. For
convenience, we shall name it P3:

n ∈ N � 0 ≤ n
P3

We leave it as an exercise to the reader to now prove the two previous initialization
proof obligations.

2.4.20 Deadlock freedom

Since our two main events ML_in and ML_out are now guarded, it means that our
model might deadlock when both guards are false: none of the events would be enabled;
the system would be blocked. Sometimes this is what we want, but certainly not here,
where this is to be avoided. As a matter of fact, we discover that this non-blocking
property was missing in our requirement document of Section 2.2. So we edit this
document by adding this new requirement:

Once started, the system should work for ever FUN-4

2.4.21 Deadlock freedom rule

Given a model with constants c, set of axioms A(c), variables v, and set of invariants
I(c, v), we have thus to prove a proof obligation rule called DLF (for deadlock freedom)
stating that one of the guards G1(c, v), . . . , Gm(c, v) of the various events is always
true. In other words, in our case, cars can always either enter the compound or leave
it. This is to be proved under the set of axioms A(c) of the constants c and under the
set of invariants I(c, v). The proof obligation rule can be stated as follows in general
terms:

A(c)
I(c, v)
� DLF
G1(c, v) ∨ . . . ∨ Gm(c, v)

Axioms
Invariants
� DLF
Disjunction of the guards

Note that the application of this rule is not mandatory; not all systems need to be
deadlock free.
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2.4.22 Applying the deadlock freedom proof obligation rule

Here is what we have to prove according to rule DLF:

Axiom axm0_1
Invariant inv0_1
Invariant inv0_2
�
Disjunction of the guards

d ∈ N

n ∈ N

n ≤ d

�
n < d ∨ 0 < n

DLF

2.4.23 More inference rules

The previous deadlock freedom proof obligation cannot be proved without more rules
of inference. The first one is a logical rule, which corresponds to the classical technique
of a proof by cases. It is named OR_L as it has to do with the “or” symbol ∨ situated in
the “left-hand” assumption part of a sequent. Notice that the antecedent of this rule has
two sequents. More precisely, in order to prove a goal under a disjunctive assumption
P ∨Q, it is sufficient to prove independently the same goal under assumption P and
also under assumption Q:

H,P � R H,Q � R

H, P ∨Q � R
OR_L

For the sake of completeness, we provide again the two logical inference rules we
have already presented in Section 2.4.12:

H � P

H � P ∨Q
OR_R1

H � Q

H � P ∨Q
OR_R2

Our final logical rules have to do with the essence of a sequent. The first rule, HYP
says that when the goal of a sequent is present as an assumption of that sequent, then
the sequent is proved. The second rule, FALSE_L, says that a sequent with a false
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assumption is proved. We denote false with the symbol ⊥:

P � P
HYP

⊥ � P
FALSE_L

Our next two rules of inference are dealing with equality. They explain how we can
exploit an assumption which is an equality.

H(F), E = F � P(F)

H(E), E = F � P(E)
EQ_LR

H(E), E = F � P(E)

H(F), E = F � P(F)
EQ_RL

In rule EQ_LR, we have a sequent with a goal P(E), which is a predicate depend-
ing on the expression E. We also have a set of hypotheses H(E) depending of E.
Finally, we have the equality hypothesis E = F. The rule says that we can then re-
place this sequent by another one where all occurrences of E in P(E) and in H(E)
have been replaced by F. The label LR is to remind us that we apply the equality
from “Left” to “Right”. Rule EQ_RL exploits the same equality by applying it now
from right to left, that is replacing F by E in P(F) and H(F) yielding P(E) and
H(E). Note that we have not formally explained exactly what we mean when we
say that a predicate “depends” on an expression E. This will be made more precise
later.

Our final rule, dealing with equality, says that any expression E is equal to itself.
This rule in not used immediately in the next proof, but it is quite natural to introduce
it now:

� E = E
EQL



48 Controlling cars on a bridge

2.4.24 Proving the deadlock freedom proof obligation

Coming back to our example, we are going to give a tentative proof of our deadlock
freedom proof obligation DLF, which we repeat now:

d ∈ N

n ∈ N

n ≤ d

�
n < d ∨ 0 < n

DLF

Here, we are going to apply inference rule OR_L, because the assumption n ≤ d is in
fact equivalent to the disjunctive predicate n < d ∨ n = d. As can be seen, the usage
of inference rule OR_L induces a tree shape to the proof. This is because we have two
antecedents in this rule. This tree shape is the normal shape of a proof:

d ∈ N

n ∈ N

n < d ∨ n = d

�
n < d ∨ 0 < n

MON

n < d ∨ n = d

�
n < d ∨ 0 < n

OR_L . . .

· · ·




n < d

�
n < d ∨ 0 < n

OR_R1 n < d � n < d HYP

n = d

�
n < d ∨ 0 < n

EQ_LR � d < d ∨ 0 < d OR_R2 � 0 < d ?
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We now discover that the last sequent cannot be proved. We have thus to add the
following axiom, named axm0_2, which was obviously forgotten:

axm0_2: 0 < d

We notice that this additional axiom allows us to have a more precise requirement
FUN-2:

The number of cars on bridge and island is limited but positive FUN-2

Adding this axiom to avoid deadlock is very intuitive because, when d = 0, the system
is deadlocked right from the beginning since no car can ever enter the compound.
Again, note that adding this new axiom for the constant d does not invalidate the
proofs we have already made so far; this is a consequence of the monotonicity rule
MON introduced in Section 2.4.9.

2.4.25 Conclusion and summary of the initial model

As we have seen, the proofs (or rather the failed proof attempts) allowed us to discover
that our events were too naive (we had to add guards in Section 2.4.13) and also that
one axiom was missing for constant d. This is quite frequently the case: proofs help us
to discover inconsistencies in a model. In fact, this is the heart of the modeling method!
Here is the final version of the state for our initial model:

constant: d

axm0_1: d ∈ N

axm0_2: d > 0
variable: n

inv0_1: n ∈ N

inv0_2: n ≤ d

And here is the final version of the events of our initial model:

init

n := 0

ML_out
when

n < d

then
n := n + 1

end

ML_in
when

0 < n

then
n := n− 1

end
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2.5 First refinement: introducing the one-way bridge
2.5.1 Introduction

We are now going to proceed with a refinement of our initial model. A refinement is a
more precise model than the initial one. It is more precise, but it should not contradict
the initial model. Therefore, we shall certainly have to prove that the refinement is
consistent with the initial model. This will be made clear in this section.

In this first refinement, we introduce the bridge. This means that we are able to
observe more accurately our system. Together with this more accurate observation, we
can also see more events, namely cars entering and leaving the island. These events are
called IL_in and IL_out. Note that events ML_out and ML_in, which were present in
the initial model, still exist in this refinement: they now correspond to cars leaving the
mainland and entering the bridge or leaving the bridge and entering the mainland. All
this is illustrated in Fig. 2.5.

Island 

ML_outIL_in

ML_inIL_out

one way

Bridge

Fig. 2.5. Island and bridge

2.5.2 Refining the state

The state, which was defined by the constant d and variable n in the initial model, now
becomes more accurate. The constant d remains, but the variable n is now replaced by
three variables. This is because now we can see cars on the bridge and on the island,
something which we could not distinguish in the previous abstraction. Moreover, we
can see where cars on the bridge are going: either towards the island or towards the
mainland.

For these reasons, the state is now represented by means of three variables a, b,
and c. Variable a denotes the number of cars on the bridge and going to the is-
land, variable b denotes the number of cars on the island, and variable c denotes
the number of cars on the bridge and going to the mainland. This is illustrated in
Fig. 2.6.
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b
a

c

Fig. 2.6. The concrete state

The state of the initial model is called the abstract state and the state of the refined
model is called the concrete state. Likewise, variable n of the abstract state is called an
abstract variable, whereas variables a, b, and c of the concrete state are called concrete
variables.

The concrete state is represented by a number of invariants, which we call the con-
crete invariants. First, variables a, b, and c are all natural numbers. This is stated in
invariants inv1_1, inv1_2, and inv1_3 below:

variables: a, b, c

inv1_1: a ∈ N

inv1_2: b ∈ N

inv1_3: c ∈ N

inv1_4: a + b + c = n

inv1_5: a = 0 ∨ c = 0

Then we express that the sum of these variables is equal to the previous abstract
variable n, which has disappeared. This is expressed in invariant inv1_4, which relates
the concrete state represented by the three variables a, b, and c to the abstract state
represented by the variable n. And, finally, we state that the bridge is one-way; this is
our basic requirement FUN-3. This is expressed by saying that a or c is equal to zero.
Clearly, they cannot both be positive since the bridge is one-way, but they can both
be equal to zero if the bridge is empty. This one-way property is expressed in invariant
inv1_5.

Notice that among the concrete invariants, some are dealing with the concrete vari-
ables only. These are inv1_1, inv1_2, inv1_3, and inv1_5, and one is dealing with
concrete and abstract variables; this is inv1_4.
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2.5.3 Refining the abstract events

The two abstract events ML_out and ML_in now have to be refined as they are no
longer dealing with the abstract variable n, but with the concrete variables a, b, and
c. Here is the proposed concrete versions (sometimes also called refined versions) of
events ML_in and ML_out:

ML_in
when

0 < c

then
c := c− 1

end

ML_out
when

a + b < d

c = 0
then

a := a + 1
end

Notice that event ML_out has two guards, namely a + b < d and c = 0. Also notice
that although our refined model now has three variables a, b, and c, only one of them
is mentioned in each event: c in event ML_in and a in event ML_out. In fact, the other
two are, in each case, implicitly mentioned as being left unchanged.

It is easy to understand what these events are doing. In event ML_in, the action
decrements variable c as there will be one car less on the bridge, and this can be done
if there are some cars on the bridge going to the mainland, that is when 0 < c holds
(notice that we are sure that there are no cars on the bridge going to the island as a

must be equal to 0 since c is positive).
In event ML_out, the action increments variable a as there will be one more car on

the bridge. But this is possible only if c is equal to 0, because of the one-way constraint
of the bridge. Moreover, this will also be possible only if the new car entering the
bridge does not break the constraint that there are a maximum number of d cars in
the compound, that is when a + b + c < d holds, which reduces to a + b < d since c is
equal to 0.

2.5.4 Revisiting the before–after predicates

The observation concerning the actions of the concrete events in the previous section
forces us to be more precise now concerning the construction of the before–after pred-
icate. The before–after predicate of the action corresponding to an event situated in a
model containing several variables must mention explicitly that the missing variables
in the action are not modified; this is done by stating that their primed after-values
are equal to their non-primed before-values. In the case of our example, the following
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before–after predicates are associated with the corresponding event actions as follows:

Events

Before–after
predicates

ML_in
when

0 < c

then
c := c− 1

end

a′ = a ∧ b′ = b ∧
c′ = c− 1

ML_out
when

a + b < d

c = 0
then

a := a + 1
end

a′ = a + 1 ∧ b′ = b ∧
c′ = c

As can be seen, the before–after predicate of the action c := c−1 contains c′ = c−1
as expected, but also a′ = a and b′ = b. We have similar equalities corresponding to
the action a := a + 1.

2.5.5 Informal proofs of refinement

In the next section, we shall clearly define what is required for the concrete version of
an event to refine its abstraction. For now, we just present some informal arguments.
For this, we are going to compare the abstract and concrete versions of our two events
respectively. Here are the two versions of the event ML_out:

(abstract_)ML_out
when

n < d

then
n := n + 1

end

(concrete_)ML_out
when

a + b < d

c = 0
then

a := a + 1
end

As can be seen, the concrete version of this event has guards which are completely
different from that of the abstraction. We can already “feel” that the concrete version
is not contradictory with the abstract one. When the concrete version is enabled, that
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is when its guards hold, then certainly the abstract one is enabled too. This is so be-
cause the two concrete guards a + b < d and c = 0 together imply a + b + c < d,
that is n < d, which is the abstract guard, according to invariant inv1_4, which
states that a + b + c is equal to n. Moreover, when a is incremented and the other
variables left unchanged as stated in the action a := a + 1 in the concrete version,
this clearly corresponds to the fact that n is incremented in the abstract one, accord-
ing again to the invariant inv1_4. Likewise, here are the two versions of the event
ML_in:

(abstract_)ML_in
when

0 < n

then
n := n− 1

end

(concrete_)ML_in
when

0 < c

then
c := c− 1

end

A similar informal “proof ” can be conducted on these two versions of event ML_in,
showing that the concrete one does not contradict the abstract one.

2.5.6 Proving the correct refinements of abstract events

We are now going to give systematic rules defining exactly what we have to prove in
order to ensure that a concrete event indeed refines its abstraction. In fact, we have
to prove two different things. First a statement concerning the guards, and second a
statement concerning the actions.

Guard strengthening We first have to prove that the concrete guard is stronger
than the abstract one. The term “stronger” means that the concrete guard implies the
abstract guard. In other words, it is not possible to have the concrete version enabled
when the abstract one is not. Otherwise, it would be possible to have a concrete
transition with no counterpart in the abstraction. This has to be proved under the
abstract axioms of the constants, the abstract invariants and the concrete invariants.
We shall see in Section 2.5.16 that we cannot strengthen the refined guards too much
because it might result in unwanted deadlocks.

In more general terms, let c denote the constants, A(c) the set of constant axioms,
v the abstract variables, I(c, v) the set of abstract invariants, w the concrete variables,
J(c, v, w) the set of concrete invariants. Let an abstract event have the set of guards
G(c, v). In other words, G(c, v) stands for the list G1(c, v), G2(c, v), . . .. Let the cor-
responding concrete event have the set of guards H(c, w). We have then to prove the
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following for each concrete guard Gi(c, v):

A(c)
I(c, v)
J(c, v, w) GRD
H(c, w)
�
Gi(c, v)

Axioms
Abstract invariants
Concrete invariants GRD
Concrete guards
�
Abstract guard

Notice again that the set of concrete invariants denoted by J(c, v, w) contains some
elementary invariants dealing with concrete variables w only, while others are deal-
ing with both abstract and concrete variables v and w. This is the reason why we
collectively denote this set of concrete invariants by J(c, v, w).

Also note that it is possible to introduce new constants in a refinement. But we
have not stated this in the concrete invariants J(c, v, w) in order to keep the formulae
small.

Correct refinement We have to prove that the concrete event transforms the con-
crete variables w into w′, in a way which does not contradict the abstract event. While
this transition happens, the abstract event changes the abstract variables v, which are
related to w by the concrete invariant J(c, v, w), into v′, which must be related to
w′ by the modified concrete invariant J(c, v′, w′). This is illustrated in the following
diagram:

v

w

Abstract event

Concrete event

J(c,v,w)

I(v) I(v ′)

J(c,v′,w′ )

v ′= E(c,v)

w′= F(c,w)H(c,w)

G(c,v)

With our usual conventions, this leads to the following proof obligation rule named
INV, where Jj(c, v, w) denotes a single invariant of the set of concrete invariants
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J(c, v, w):

A(c)
I(c, v)
J(c, v, w)
H(c, w) INV
�
Jj(c, E(c, v), F (c, w))

Axioms
Abstract invariant
Concrete invariant
Concrete guard INV
�
Modified concrete invariant

2.5.7 Applying the refinement rules

Coming back to our example, we apply rule GRD to both refined events ML_out
and ML_in. This leads to some sequents, which look complicated but are easy to
prove.

Applying guard strengthening to event ML_out Here is what we have to prove
for event ML_out:

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guards of ML_out

�
Abstract guards of ML_out

d ∈ N

0 < d

n ∈ N

n ≤ d

a ∈ N

b ∈ N

c ∈ N

a + b + c = n

a = 0 ∨ c = 0
a + b < d

c = 0
�
n < d

ML_out / GRD.

This huge, impressive sequent can be dramatically simplified. First, we can remove
useless hypotheses by applying MON. Then we can apply the equality present in the
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hypothesis – that is c = 0 – thus transforming hypothesis a + b + c = n first into
a+ b+0 = n and then into a+ b = n. Then, we can apply this equality, thus replacing
hypothesis a + b < d by the simpler one n < d. And now we discover that this is
exactly the goal we wanted to prove; we can apply HYP. More formally, this leads to
the following successive transformations of our original sequent (obtained after applying
rule MON):

a + b + c = n

a + b < d

c = 0
�
n < d

EQ_LR

a + b + 0 = n

a + b < d

�
n < d

ARI

a + b = n

a + b < d

�
n < d

EQ_LR

n < d

�
n < d

HYP

As can be seen, we have introduced a generic rule of inference named ARI. This is to
say in a less formal way that the justification is based on simple arithmetic properties.
We could have defined corresponding specific rules of inference, but there is no point
in doing this here for the moment. In order to make clear which arithmetic properties
we are thinking of, the relevant assumptions or goals are underlined in the sequent
situated to the left of this ARI justification.

Applying guard strengthening to event ML_in After applying MON, we obtain
the following sequent:

b ∈ N

a + b + c = n

a = 0 ∨ c = 0
0 < c

�
0 < n

The disjunctive assumption suggests doing a proof by cases. Then we may apply
the equalities, thus simplifying the sequents to be proved. The proof is finished by
applying a number of simple arithmetic transformations. Here is the proof of this
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sequent:

b ∈ N

a + b + c = n

a = 0 ∨ c = 0
0 < c

�
0 < n

OR_L




b ∈ N

a + b + c = n

a = 0
0 < c

�
0 < n

EQ_LR

b ∈ N

0 + b + c = n

0 < c

�
0 < n

ARI . . .

b ∈ N

a + b + c = n

c = 0
0 < c

�
0 < n

EQ_LR

b ∈ N

a + b + 0 = n

0 < 0
�
0 < n

MON . . .

. . .

b ∈ N

b + c = n

0 < c

�
0 < n

ARI

c ≤ n

0 < c

�
0 < n

ARI

0 < n

�
0 < n

HYP

. . .

0 < 0
�
0 < n

ARI

⊥
�
0 < n

FALSE_L

Applying proof obligation rule INV leads to ten predicates to prove since we have
two events and five concrete invariants. We shall only present some of them, the others
being left as exercises for the reader.

Invariant inv1_4 preservation with event ML_out After applying MON, here is
the proof we obtain:
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a + b + c = n

�
a + 1 + b + c = n + 1

ARI

a + b + c = n

�
a + b + c + 1 = n + 1

EQ_LR � n + 1 = n + 1 EQL.

Invariant inv1_5 preservation with event ML_in After applying MON, here is
the proof we obtain:

a = 0 ∨ c = 0
0 < c
�
a = 0 ∨ c− 1 = 0

OR_L




a = 0
0 < c
�
a = 0 ∨ c− 1 = 0

OR_R1

a = 0
0 < c
�
a = 0

MON
a = 0
�
a = 0

HYP

c = 0
0 < c
�
a = 0 ∨ c− 1 = 0

EQ_LR · · ·

· · · 0 < 0 � a = 0 ∨ −1 = 0 ARI ⊥ � a = 0 ∨ −1 = 0 FALSE_L

2.5.8 Refining the initialization event Init

We also have to define the refinement of the special event init. This event can be stated
obviously as follows:

init
a := 0
b := 0
c := 0

Here we see for the first time a multiple action. The corresponding before–after predi-
cate is what we expect:

a′ = 0 ∧ b′ = 0 ∧ c′ = 0
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2.5.9 Correct proof obligation refinement rule for the
initialization event init

The proof obligation rule we have to apply in the case of the init event is a special case
of the proof obligation rule INV. It is also called INV. If the abstract initialization has
an after predicate of the form v′ = K(c) and the concrete initialization has an after
predicate of the form w′ = L(c), then the proof obligation rule is the following:

A(c)
� INV
Jj(c, K(c), L(c))

Axioms
� INV
Modified concrete invariant

Notice that we have no proof obligation rule for guard strengthening since, by definition,
the initialization event is not guarded.

2.5.10 Applying the initialization proof obligation refinement rule

The application of the proof obligation rule introduced in the previous section is
straightforward in our example. Out of the five predicates, we give only the most
important ones. Here is what we have to prove concerning invariant inv1_4:

axm0_1
axm0_2
�
Modified concrete invariant inv1_4

d ∈ N

d > 0
�
0 + 0 + 0 = 0

inv1_4 / INV

Here is what we have to prove concerning invariant inv1_5:

axm0_1
axm0_1
�
Modified concrete invariant inv1_5

d ∈ N

d > 0
�
0 = 0 ∨ 0 = 0

inv1_5 / INV

The proofs of these sequents are left to the reader.
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2.5.11 Introducing new events

We now have to introduce some new events corresponding to cars entering and leaving
the island. Next are the proposed new events:

IL_in
when

0 < a

then
a := a− 1
b := b + 1

end

IL_out
when

0 < b

a = 0
then

b := b− 1
c := c + 1

end

We have here again some multiple actions. These actions are incomplete however,
since in the first one variable c is missing, whereas variable a is missing in the second
one. Such multiple actions are associated with the following before–after predicates:

a′ = a− 1 ∧ b′ = b + 1 ∧ c′ = c a′ = a ∧ b′ = b− 1 ∧ c′ = c + 1

It is also easy to understand what these events are doing. Event IL_in corresponds
to a car leaving the bridge and entering the island. The action thus decrements the
number a of cars on the bridge and simultaneously increments the number b of cars on
the island. But this can only be done when there are cars on the bridge, that is when
the condition 0 < a holds.

Event IL_out corresponds to a car leaving the island and entering the bridge. The
action clearly decreases b and simultaneously increases c. But this can be done only if
there are cars on the island, that is if the condition 0 < b holds. A second condition for
event IL_out to be enabled is that there are no cars on the bridge going to the island
(remember, the bridge is one-way), that is if the condition a = 0 holds.

2.5.12 The empty action skip

As we shall explain in the next section, the new events have to be proved to refine a
“dummy event” that is non-guarded and does nothing in the abstraction. Such a void
action is denoted by means of the empty action skip.

It is very important to note that the before–after predicate of skip depends on the
state of the model in which it is located. In the present case, we shall speak first of such
an empty action in the initial model, which has the single variable n. Its before–after
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predicate is thus the following:

n′ = n

But a skip action residing in the concrete state, where we have the three variables a,
b, and c, would be associated with the following different before–after predicate:

a′ = a ∧ b′ = b ∧ c′ = c

2.5.13 Proving that the new events are correct

The new events that we have introduced in Section 2.5.11 were not visible in the
abstraction. Although not visible, it does not mean that they did not exist and occur.
When you are looking through a microscope, you can see things that were not visible
without the microscope. By analogy, refinement is the same thing as looking at a
system through a microscope. The transitions corresponding to the new events IL_in
and IL_out were not visible in the abstraction but, again, they existed. Formalizing
this idea consists in saying that the new events refine a non-guarded event with the
empty action skip. As a consequence, we can use proof obligation rule INV to prove
that our new events are correct. Here is what we have to prove for event IL_in and
concrete invariant inv1_4:

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guards of IL_in
�
Modified invariant inv1_4

d ∈ N

0 < d

n ∈ N

n ≤ d

a ∈ N

b ∈ N

c ∈ N

a + b + c = n

a = 0 ∨ c = 0
0 < a

�
a− 1 + b + 1 + c = n

IL_IN / inv1_4 / INV.
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Notice that n is not modified as the event refines a non-guarded event with a skip
action in the abstraction. After applying MON, we obtain the following proof:

a + b + c = n

�
a− 1 + b + 1 + c = n

ARI

a + b + c = n

�
a + b + c = n

HYP

Here is what we have to prove for event IL_in and concrete invariant inv1_5:

· · ·
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guards of IL_in
�
Modified invariant inv1_5

· · ·
a ∈ N

b ∈ N

c ∈ N

a + b + c = n

a = 0 ∨ c = 0
0 < a

�
a− 1 = 0 ∨ c = 0

IL_IN / inv1_5 / INV

After applying MON, we obtain the following proof:

a = 0 ∨ c = 0
0 < a
�
a− 1 = 0∨
c = 0

OR_L




a = 0
0 < a
�
a− 1 = 0∨
c = 0

EQ_LR

0 < 0
�
−1 = 0∨
c = 0

ARI

⊥
�
−1 = 0∨
c = 0

FALSE_L

c = 0
0 < a
�
a− 1 = 0 ∨ c = 0

OR_R2

c = 0
0 < a
�
c = 0

MON
c = 0
�
c = 0

HYP

We leave it as an exercise to the reader to state and prove the remaining sequents
corresponding to the other predicates and the other new event IL_out.
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2.5.14 Proving the convergence of the new events

In the case where we introduce some new events, we have to prove something else,
namely that they do not diverge. In other words, the new events must not be indefinitely
enabled. Should it be the case, then the concrete versions of the existing events, here
ML_out and ML_in, could be postponed indefinitely, which is certainly something we
want to avoid since such events could possibly occur in the abstraction. For proving
this, we have to exhibit a natural number expression called a variant and prove that
it is decreased by all new events. This leads to two proof obligation rules: one states
that the proposed variant is a natural number and the other states that the variant is
decreased by the new events.

In the first proof obligation rule, called NAT, we prove that the exhibited variant
V (c, w) is a natural number. This is to be done assuming the axioms A(c) of the
constants c, the abstract invariants I(c, v), the concrete invariants J(c, v, w), and the
guards of each new event H(c, w). The guard H(c, w) is put in the antecedent as we
are not interested in proving that the exhibited variant is a natural number when the
guard of a new event does not hold (it could be negative in this case):

A(c)
I(c, v)
J(c, v, w)
H(c, w) NAT
�
V (c, w) ∈ N

Axioms
Abstract invariants
Concrete invariants
Concrete guards of a new event NAT
�
Variant ∈ N

The second proof obligation rule states that the variant V (c, w) is decreased. This
has to be proved for each new event with guards H(c, w) and before–after predicate
w′ = F (c, w):

A(c)
I(c, v)
J(c, v, w)
H(c, w) VAR
�
V (c, F (c, w)) < V (c, w)

Axioms
Abstract invariants
Concrete invariants
Concrete guards of a new event VAR
�
Modified variant < variant

Note that the variant is unique. In other words, the same variant has to be decreased by
each new event. Sometimes the variant might be a little more complicated than a simple
natural number expression, but in this example we only need a natural number variant.
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2.5.15 Applying the non-divergence proof obligation rules

In our case, the proposed variant is the following:

variant_1 : 2 ∗ a + b

Applying proof obligation rule VAR on event IL_in leads to the following large but
obvious sequent to prove:

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guards of IL_in
�
Modified variant < variant

d ∈ N

0 < d

n ∈ N

n ≤ d

a ∈ N

b ∈ N

c ∈ N

a + b + c = n

a = 0 ∨ c = 0
0 < a

�
2 ∗ (a− 1) + b + 1 < 2 ∗ a + b

IL_in / VAR.

Next is the application of proof obligation rule VAR to event IL_out:

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guards of IL_out

�
Modified variant < variant

d ∈ N

0 < d

n ∈ N

n ≤ d

a ∈ N

b ∈ N

c ∈ N

a + b + c = n

a = 0 ∨ c = 0
0 < b

a = 0
�
2 ∗ a + b− 1 < 2 ∗ a + b

IL_out / VAR.
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Both these sequents are proved by simple arithmetic calculations. Proofs are
omitted.

2.5.16 Relative deadlock freedom

Finally, we have to prove that all concrete events (old and new together) do not dead-
lock more often than the abstract events. We have thus to prove that the disjunction of
the abstract guards G1(c, v), . . . , Gm(c, v) imply the disjunction of the concrete guards
H1(c, w), . . . , Hn(c, w). This proof obligation rule is called DLF:

A(c)
I(c, v)
J(c, v, w)
G1(c, v) ∨ . . . ∨ Gm(c, v) DLF
�
H1(c, w) ∨ . . . ∨ Hn(c, w)

Axioms
Abstract invariants
Concrete invariants
Disjunction of abstract guards DLF
�
Disjunction of concrete guards

2.5.17 Applying relative deadlock freedom proof obligation

The application of proof obligation rule DLF leads to the following to prove. Notice
that we have removed the disjunction of the abstract guards in the antecedent of the
implication because we have already proved them in the initial model:

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
�
Disjunction of concrete guards

d ∈ N

0 < d

n ∈ N

n ≤ d

a ∈ N

b ∈ N

c ∈ N

a + b + c = n

a = 0 ∨ c = 0
�
(a + b < d ∧ c = 0) ∨
c > 0 ∨
a > 0 ∨
(b > 0 ∧ a = 0)

DLF.
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2.5.18 More inference rules

In the previous sequent, we had to prove the disjunction of various predicates. A
convenient way to do this (using commutativity and associativity of disjunction) is to
apply the following rule that moves the negation of one of the disjuncts of the goal
into the assumptions of the sequent. Here is the corresponding rule:

H,¬P � Q

H � P ∨ Q
OR_R

The next two rules allow us to simplify conjunctive predicates appearing either in
the assumptions or in the goal of a sequent:

H,P,Q � R

H, P ∧Q � R
AND_L

H � P H � Q

H � P ∧Q
AND_R

Proving the deadlock freedom proof obligation Equipped with these new infer-
ence rules, we may now prove the deadlock freedom proof obligation (after applying
MON):

0 < d

a ∈ N

b ∈ N

c ∈ N

�
(a + b < d ∧

c = 0) ∨
c > 0 ∨
a > 0 ∨
(b > 0 ∧ a = 0)

OR_R

0 < d

a ∈ N

b ∈ N

c ∈ N

¬ (c > 0)
�
(a + b < d ∧

c = 0) ∨
a > 0 ∨
(b > 0 ∧ a = 0)

ARI

0 < d

a ∈ N

b ∈ N

c = 0
�
(a + b < d ∧

c = 0) ∨
a > 0 ∨
(b > 0 ∧ a = 0)

EQ_LR . . .
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· · ·

0 < d

a ∈ N

b ∈ N

�
(a + b < d∧
0 = 0)∨
a > 0∨
(b > 0 ∧ a = 0)

OR_R

0 < d

a ∈ N

b ∈ N

¬ (a > 0)
�
(a + b < d∧
0 = 0)∨
(b > 0 ∧ a = 0)

ARI

0 < d

a = 0
b ∈ N

�
(a + b < d∧
0 = 0)∨
(b > 0 ∧ a = 0)

EQ_LR . . .

. . .

0 < d

b ∈ N

�
(0 + b < d ∧

0 = 0) ∨
(b > 0 ∧ 0 = 0)

ARI . . .

. . .

0 < d

b = 0 ∨ b > 0
�
(b < d ∧ 0 = 0) ∨
(b > 0 ∧ 0 = 0)

OR_L




0 < d

b = 0
�
(b < d ∧ 0 = 0) ∨
(b > 0 ∧ 0 = 0)

OR_R1 . . .

0 < d

b > 0
�
(b < d ∧ 0 = 0) ∨
(b > 0 ∧ 0 = 0)

OR_R2 . . .
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· · ·
0 < d

b = 0
�
b < d ∧ 0 = 0

EQ_LR

0 < d

�
0 < d ∧ 0 = 0

AND_R




0 < d � 0 < d HYP

0 < d � 0 = 0 EQL

· · · 0 < d, b > 0 � b > 0 ∧ 0 = 0 AND_R




0 < d, b > 0 � b > 0 HYP

0 < d, b > 0 � 0 = 0 EQL

2.5.19 Summary of the first Refinement

Here is a summary of the state of the first refinement:

constants: d

variables: a, b, c

inv1_1: a ∈ N

inv1_2: b ∈ N

inv1_3: c ∈ N

inv1_4: a + b + c = n

inv1_5: a = 0 ∨ c = 0

variant1: 2 ∗ a + b

Here is a summary of the events of the first refinement:

ML_in
when
0 < c

then
c := c− 1

end

ML_out
when
a + b < d

c = 0
then
a := a + 1

end

IL_in
when
0 < a

then
a := a− 1
b := b + 1

end

IL_out
when
0 < b

a = 0
then
b := b− 1
c := c + 1

end
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init
a := 0
b := 0
c := 0

2.6 Second refinement: introducing the traffic lights
In its present form, the model of the bridge appears to be a bit magical. It seems, from
our observation, that car drivers can count cars and thus decide to enter into the bridge
from the mainland (event ML_out) or from the island (event IL_out). This means they
can observe the state of the system. Clearly, this is not realistic. In reality, as we know,
drivers follow the indication of some traffic lights; they clearly do not count cars!

This refinement then consists in introducing first the two traffic lights, named ml_tl
and il_tl, then the corresponding invariants, and, finally, some new events that can
change the colors of the traffic lights. Fig. 2.7 illustrates the new physical situation,
which can be observed in this refinement.

il_tl

ml_tl

MAINLANDISLAND

Fig. 2.7. The traffic lights

2.6.1 Refining the state

At this stage, we must extend our set of constants by first introducing the set COLOR

and its two distinct values red and green. It is done as follows:

set: COLOR

constants: red, green

axm2_1: COLOR = {green, red}

axm2_2: green 
= red
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Two new variables are then introduced, namely ml_tl (for mainland traffic light) and
il_tl (for island traffic light). These variables are defined as colors: this is formalized
in invariants named inv2_1 and inv2_2 below. Since drivers are allowed to pass only
when traffic lights are green, we better ensure, by two conditional invariants named
inv2_3 and inv2_4, that when ml_tl is green then the abstract guard of event
ML_out holds, and that when il_tl is green then the abstract guard of event IL_out
holds. Notice that we are here taking account of requirements ENV-1, ENV-2, and
ENV-3. Here are the refined variables:

variables: . . .

ml_tl

il_tl

inv2_1: ml_tl ∈ COLOR

inv2_2: il_tl ∈ COLOR

inv2_3: ml_tl = green ⇒ a + b < d ∧ c = 0

inv2_4: il_tl = green ⇒ 0 < b ∧ a = 0

Note again that invariants inv2_3 and inv2_4 are conditional invariants. Such
invariants are introduced by means of the logical implication operator “⇒”. Clearly, we
shall need inference rules dealing with this logical operator. We shall introduce such
inference rules in Section 2.6.6.

At this point, it seems that we are in a situation which is a bit different from the one
we had in the previous refinement, where concrete variables a, b, and c were replacing
the more abstract variable n. Here we are just adding two new variables ml_tl and il_tl

and we are keeping the abstract variables a, b, and c. Such a special refinement scheme
is called a superposition. We shall see in Section 2.6.4 that superposition refinement
requires an additional proof obligation rule.

2.6.2 Refining abstract events

Events ML_out and IL_out are now refined by changing their guards to the test of the
green value of the corresponding traffic lights. This is where we implicitly assume that
drivers obey the traffic lights, as indicated by requirements ENV-3. Note that events
IL_in (entering the island from the bridge) and ML_in (entering the mainland from the
bridge) are not modified in this refinement. Here is the new version of event ML_out
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presented together with its abstraction:

(abstract_)ML_out
when

c = 0
a + b < d

then
a := a + 1

end

(concrete_)ML_out
when

ml_tl = green

then
a := a + 1

end

Here is the new version of event IL_out presented together with its abstraction:

(abstract_)IL_out
when

a = 0
0 < b

then
b, c := b− 1, c + 1

end

(concrete_)IL_out
when

il_tl = green

then
b, c := b− 1, c + 1

end

2.6.3 Introducing new events

We have to introduce two new events to turn the value of the traffic lights color to green
when they are red and the conditions are appropriate. The appropriate conditions are
exactly the guards of the abstract events ML_out and IL_out. Here are the proposed
new events:

ML_tl_green
when

ml_tl = red

a + b < d

c = 0
then

ml_tl := green

end

IL_tl_green
when

il_tl = red

0 < b

a = 0
then

il_tl := green

end
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2.6.4 Superposition: adapting the refinement rule

In this section, we depart again from our example and explain the superposition with
some general terms. When we have a case of superposition where some abstract vari-
ables are kept in the concrete state we have to adapt the refinement proof obligation
rule INV. The other refinement rules need not be adapted.

Suppose we have variables u and v in the abstract state and variables v and w in the
concrete state. Variables v are thus common to the abstract and concrete states. Let
I(c, u, v) denote the abstract invariants and J(c, u, v, w) denote the concrete invariants.
In order to be able to apply the proof obligation rule INV, the abstract and concrete
states must be completely disjoint, and this is clearly not the situation we have in the
present case of superposition.

In order to get back to a disjoint situation, we can rename the variables in the
concrete state, changing v to, say, v1 and adding the additional concrete invariant
v1 = v. Suppose now that the before–after predicates of an event in the abstract state
are u′ = E(c, u, v) and v′ = M(c, u, v). Suppose that the before–after predicates of the
corresponding concrete event are v′ = N(c, v, w) and w′ = F (c, v, w) in the concrete
state. Suppose the guards of this concrete event are denoted by H(c, v, w). Applying
the proof obligation refinement rule INV yields two kinds of sequent to prove:

Axioms of constants
Abstract invariants
Concrete invariants

Concrete guards
�
Modified invariants

A(c)
I(c, u, v)
J(c, u, v1, w)
v1 = v

H(c, v1, w)
�
Jj(c, E(c, u, v), M(c, u, v), F (c, v1, w))

A(c)
I(c, u, v)
J(c, u, v1, w)
v1 = v

H(c, v1, w)
�
M(c, u, v) = N(c, v1, w)

Applying now the equality v1 = v, that is replacing every occurrence of v1 by v

in the previous sequents, leads to the following where v1 has disappeared. This is the
adaptation we wanted to perform on the proof obligation refinement rule INV. We can
interpret this adaptation as adding to the basic proof obligation rule INV another proof
obligation rule which says that the abstract and concrete expressions assigned to the
common variables in the abstract and concrete states are equal under the assumption
of the concrete invariants J(c, u, v, w):

A(c)
I(c, u, v)
J(c, u, v, w)
H(c, v, w)
�
J(c, E(c, u, v), M(c, u, v), F (c, v, w))

A(c)
I(c, u, v)
J(c, u, v, w)
H(c, v, w)
�
M(c, u, v) = N(c, v, w)
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The first sequent corresponds to proof obligation rule INV as before and the second, and
new one named SIM, simply states the equality of the abstract and concrete expressions
assigned to the common variables:

A(c)
I(c, u, v)
J(c, u, v, w) SIM
H(c, v, w)
�
M(c, u, v) = N(c, v, w)

Axioms of constants
Abstract invariants
Concrete invariants
Concrete guards
�
Equality of the expressions assigned
to the common variables

2.6.5 Proving that the events are correct

In order to prove that the concrete old events refine their abstractions, we now have
to apply three proof obligations: GRD, SIM, and INV.

Events IL_in and ML_in are identical to their abstraction, so proof obligations GRD
and SIM applied to them do not imply anything to prove. It is easy to prove that proof
obligation rule INV applied to them leads to statements that are trivial: we have to
prove that the concrete invariants inv2_3 and inv2_4 are preserved.

Proof obligation SIM applied to events events IL_out and ML_out is also trivial be-
cause the abstract and concrete actions of these events are exactly the same. Applying
proof obligation rule GRD to these events leads to simple proofs: we have to use invari-
ants inv2_3 and inv2_4 to prove that the guards are strengthened. This is what we
did informally in Section 2.6.2.

What remains to be done therefore are the proofs obtained by applying proof obli-
gation rule INV to events IL_out and ML_out. We shall see below that this raises some
difficulties.

2.6.6 More logical inference rules

We now add some new logical rules of inference that will be needed in order to perform
our proofs. The next two rules allow us to simplify implicative predicates appearing
either in the assumptions or in the goal of a sequent. We also present a rule dealing
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with a negative assumption:†

H,P,Q � R

H, P, P⇒Q � R
IMP_L

H,P � Q

H � P⇒Q
IMP_R

H,P � ¬Q

H, ¬P � Q
NOT_L

2.6.7 Tentative proofs and solutions

Proving that event ML_out preserves invariant inv2_4 Here is the sequent to
prove:

axm0_1
axm0_2
axm2_1
axm2_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
inv2_1
inv2_2
inv2_3
inv2_4
Guard of ML_out
�
Modified inv2_4

d ∈ N

0 < d

COLOR = {green, red}
green 
= red

n ∈ N

n ≤ d

a ∈ N

b ∈ N

c ∈ N

a + b + c = n

a = 0 ∨ c = 0
ml_tl ∈ {red, green}
il_tl ∈ {red, green}
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green

�
il_tl = green ⇒ 0 < b ∧ a + 1 = 0

ML_out / inv2_4 / INV.

† We remind the reader that all rules of inference are reviewed in Chapter 9.
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Here is a tentative proof of this sequent (after applying MON):

green 
= red
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
�
il_tl = green ⇒ 0 < b ∧ a + 1 = 0

IMP_R

green 
= red
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
il_tl = green
�
0 < b ∧ a + 1 = 0

IMP_L . . .

· · ·

green 
= red

0 < b ∧ a = 0
ml_tl = green

il_tl = green

�
0 < b ∧ a + 1 = 0

AND_L

green 
= red

0 < b

a = 0
ml_tl = green

il_tl = green

�
0 < b ∧ a + 1 = 0

AND_R . . .

. . .




green 
= red

0 < b

a = 0
ml_tl = green

il_tl = green

�
0 < b

MON

0 < b

�
0 < b

HYP

green 
= red

0 < b

a = 0
ml_tl = green

il_tl = green

�
a + 1 = 0

EQ_LR

green 
= red

ml_tl = green

il_tl = green

�
0 + 1 = 0

ARI

green 
= red

ml_tl = green

il_tl = green

�
1 = 0

?

Clearly, the last sequent cannot be proved.
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Proving that event IL_out preserves invariant inv2_3 Here is what we have to
prove for the preservation of invariant inv2_3 by event IL_out:

. . .
axm2_1
axm2_2
inv2_1
inv2_2
inv2_3
inv2_4
Guard of IL_out
�
Modified inv2_3

. . .
COLOR = {green, red}
green 
= red
ml_tl ∈ {red, green}
il_tl ∈ {red, green}
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green
�
ml_tl = green ⇒ a + b− 1 < d ∧ c + 1 = 0

IL_out / inv2_3 / INV

Here is the tentative proof (after applying MON):

green 
= red

ml_tl = green⇒
a + b < d ∧ c = 0

il_tl = green

�
ml_tl = green ⇒

a + b− 1 < d ∧ c + 1 = 0

IMP_R

green 
= red

ml_tl = green⇒
a + b < d ∧ c = 0

il_tl = green

ml_tl = green

�
a + b− 1 < d ∧ c + 1 = 0

IMP_L . . .

. . .

green 
= red

a + b < d ∧ c = 0
il_tl = green

ml_tl = green

�
a + b− 1 < d ∧
c + 1 = 0

AND_L

green 
= red

a + b < d

c = 0
il_tl = green

ml_tl = green

�
a + b− 1 < d ∧
c + 1 = 0

AND_R . . .
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· · ·




green 
= red

a + b < d

c = 0
il_tl = green

ml_tl = green

�
a + b− 1 < d

MON a + b < d � a + b− 1 < d DEC

green 
= red

c = 0
il_tl = green

ml_tl = green

�
c + 1 = 0

EQ_LR

green 
= red

il_tl = green

ml_tl = green

�
0 + 1 = 0

ARI

green 
= red

il_tl = green

ml_tl = green

�
1 = 0

?

Clearly the last sequent cannot be proved either.

The solution The two previous proofs failed because we had to prove the following
sequent:

green 
= red

il_tl = green

ml_tl = green

�
1 = 0

What this shows is that both lights cannot be green at the same time. This is an
obvious fact, which we have nevertheless completely forgotten to express. We thus now
introduce it as an additional invariant:

inv2_5: ml_tl = red ∨ il_tl = red

We note that this invariant could have been a requirement, although it could have been
deduced from requirement, ENV-3, which says that “cars are not supposed to pass on a
red traffic light, only a green one”, and requirement FUN-3, which says that “the bridge
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is one way or the other, not both at the same time”. Adding this invariant will solve
the problem, since then we have the following extension to our proofs:

green 
= red

ml_tl = red ∨
il_tl = red

il_tl = green

ml_tl = green

�
1 = 0

OR_L




green 
= red

ml_tl = red

il_tl = green

ml_tl = green

�
1 = 0

EQ_LR

green 
= red

green = red

il_tl = green

�
1 = 0

NOT_L

HYP

green 
= red

il_tl = red

il_tl = green

ml_tl = green

�
1 = 0

EQ_LR

green 
= red

green = red

ml_tl = green

�
1 = 0

NOT_L

HYP

Modifying events ML_tl_green and IL_tl_green This new invariant inv2_5 has
to be preserved and this is clearly not the case with the new events ML_tl_green and
IL_tl_green we proposed earlier in Section 2.6.3, unless we correct them by turning to
red the other traffic light, yielding:

ML_tl_green
when

ml_tl = red

a + b < d

c = 0
then

ml_tl := green

il_tl := red

end

IL_tl_green
when

il_tl = red

0 < b

a = 0
then

il_tl := green

ml_tl := red

end

Proving that event ML_out preserves invariant inv2_3 When trying to prove
the preservation of invariant inv2_3 by event ML_out, we are again in trouble. Next
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is what we have to prove:

. . .
inv2_3
inv2_4
Guard of ML_out
�
Modified inv2_3

. . .
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
�
ml_tl = green ⇒ a + 1 + b < d ∧ c = 0

ML_out / inv2_3 / INV

Here is the tentative proof (after applying MON):

ml_tl = green ⇒ a + b < d ∧ c = 0
�
ml_tl = green ⇒ a + 1 + b < d ∧ c = 0

IMP_R

ml_tl = green ⇒
a + b < d ∧ c = 0

ml_tl = green
�
a + 1 + b < d ∧ c = 0

IMP_L . . .

· · ·
a + b < d ∧ c = 0
ml_tl = green

�
a + 1 + b < d ∧ c = 0

AND_L

a + b < d

c = 0
ml_tl = green

�
a + 1 + b < d ∧ c = 0

AND_R . . .

· · ·




a + b < d

c = 0
ml_tl = green

�
a + 1 + b < d

?

a + b < d

c = 0
ml_tl = green

�
c = 0

MON

c = 0
�
c = 0

HYP
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As can be seen, the first of the last two sequents cannot be proved when a + 1 + b = d

unless ml_tl is set to red. In fact, when a + 1 + b = d, then the entering car is the
last one allowed to enter at this stage because more cars would violate requirement
FUN-3, which says that there are no more than d cars on the island and on the bridge.
This indicates that event ML_out has to be split into two events (both refining their
abstraction however) as follows:

ML_out_1
when

ml_tl = green

a + b + 1 
= d

then
a := a + 1

end

ML_out_2
when

ml_tl = green

a + b + 1 = d

then
a := a + 1
ml_tl := red

end

Proving that event IL_out preserves invariant inv2_4 For similar reasons, in-
variant inv2_4 cannot be maintained by event IL_out when b is equal to 1. In this
case, the last car is leaving the island. As a consequence, the island traffic light has to
turn red. As for event ML_out in the previous section, we have to split event IL_out
as follows:

IL_out_1
when

il_tl = green

b 
= 1
then

b, c := b− 1, c + 1
end

IL_out_2
when

il_tl = green

b = 1
then

b, c := b− 1, c + 1
il_tl := red

end

2.6.8 Convergence of new events

We have now to prove that the new events cannot diverge. For this, we must exhibit
a certain variant that must be decreased by the new events. In fact, it turns out to be
impossible. For instance, when a and c are both equal to 0, meaning that there is no
car on the bridge in either direction, then the traffic lights could freely change color for
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ever as we can figure out by looking at the new events ML_tl_green and IL_tl_green:

ML_tl_green
when

ml_tl = red

a + b < d

c = 0
then

ml_tl := green

il_tl := red

end

IL_tl_green
when

il_tl = red

0 < b

a = 0
then

il_tl := green

ml_tl := red

end

What could then happen is that the light colors are changing so rapidly that the
drivers can never pass. We have to make the colors change in a more disciplined way,
that is only when a car has passed in the other direction. For this, we introduce two
more variables ml_pass and il_pass. Each of them can take two values TRUE or
FALSE; they are members of the pre-defined set BOOL made of the two distinct
values TRUE and FALSE. When ml_pass is equal to TRUE, it means that one car
at least has passed on the bridge going to the island since the mainland traffic light
last turned green. And similarly when il_pass is equal to TRUE. These variables are
formalized in the following invariants:

variables: . . .

ml_pass,

il_pass

inv2_6: ml_pass ∈ BOOL

inv2_7: il_pass ∈ BOOL

We must now modify events ML_out_1, ML_out_2, IL_out_1, and IL_out_2 to set
ml_pass or il_pass to TRUE since a car has passed in the proper direction:

ML_out_1
when

ml_tl = green

a + b + 1 
= d

then
a := a + 1
ml_pass := TRUE

end

ML_out_2
when

ml_tl = green

a + b + 1 = d

then
a := a + 1
ml_tl := red

ml_pass := TRUE
end
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IL_out_1
when

il_tl = green

b 
= 1
then

b := b− 1
c := c + 1
il_pass := TRUE

end

IL_out_2
when

il_tl = green

b = 1
then

b := b− 1
c := c + 1
il_tl := red

il_pass := TRUE
end

But we must also modify event ML_tl_green and IL_tl_green to reset ml_pass and
il_pass to FALSE and also add in their guards the conditions il_pass = TRUE and
ml_pass = TRUE respectively in order to be sure that indeed a car has passed in the
other direction. This yields:

ML_tl_green
when

ml_tl = red

a + b < d

c = 0
il_pass = TRUE

then
ml_tl := green

il_tl := red

ml_pass := FALSE
end

IL_tl_green
when

il_tl = red

0 < b

a = 0
ml_pass = TRUE

then
il_tl := green

ml_tl := red

il_pass := FALSE
end

Having done all that, we can now state what is to be proved in order to guarantee that
there is no divergence of the new events. The variant we can exhibit is:

variant_2: ml_pass + il_pass

However, this variant is not correct as variables ml_pass and ilpass are not natural
number variables but boolean variables. To correct this, we have to transform boolean
expressions into numeric expressions. This can be done in a straightforward way by
defining the following constants b_2_n, which is a function from the set BOOL to the
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set {0, 1}:

constants: . . .

b_2_n

axm2_3: b_2_n ∈ BOOL→{0, 1}

axm2_4: b_2_n(TRUE) = 1

axm2_4: b_2_n(FALSE) = 0

The variant can be now properly defined as follows:

variant_2: b_2_n(ml_pass) + b_2_n(il_pass)

The sequents to be proved by applying proof obligation rule VAR on events
ML_tl_green and IL_tl_green are:

ml_tl = red

a + b < d

c = 0
il_pass = TRUE
�
b_2_n(il_pass) < b_2_n(ml_pass) + b_2_n(il_pass)

il_tl = red

b > 0
a = 0
ml_pass = TRUE
�
b_2_n(ml_pass) < b_2_n(ml_pass) + b_2_n(il_pass)

At this point, we figure out that it cannot be proved unless ml_pass = TRUE in the
first case (so that b_2_n(ml_pass) is equal to 1) and il_pass = TRUE in the second
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case for a similar reason. This suggests adding the following invariants:

inv2_8: ml_tl = red ⇒ ml_pass = TRUE

inv2_9: il_tl = red ⇒ il_pass = TRUE

It remains now for us to prove that the two new invariants inv2_8 and inv2_9 are
indeed preserved by all events. We leave this as an exercise to the reader.

2.6.9 Relative deadlock freedom
It remains now to prove that the relative deadlock freedom proof obligation rule DLF
holds. Note that the “relative” deadlock freedom becomes in our example an “absolute”
deadlock freedom since we have already proved that the previous abstractions are
deadlock-free. The statement to prove is then the disjunction of the various guards
with some simplified assumptions (we do not need all invariants):

d ∈ N

0 < d
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_pass ∈ BOOL
il_pass ∈ BOOL
a ∈ N

b ∈ N

c ∈ N

ml_tl = red ⇒ ml_pass = TRUE
il_tl = red ⇒ il_pass = TRUE
�
(ml_tl = red ∧ a + b < d ∧ c = 0 ∧ ml_pass = TRUE ∧ il_pass = TRUE) ∨
(il_tl = red ∧ a = 0 ∧ b > 0 ∧ ml_pass = TRUE ∧ il_pass = TRUE) ∨
ml_tl = green ∨
il_tl = green ∨
a > 0 ∨
c > 0

DLF

Here is a sketch of the corresponding proof. In this sketch, many intermediate steps
have been omitted, this is indicated by the symbol �, which stands for the missing
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intermediate steps:

d ∈ N

0 < d

b ∈ N

ml_tl = red

il_tl = red

ml_tl = red ⇒ ml_pass = TRUE
il_tl = red ⇒ il_pass = TRUE
�
(b < d ∧ ml_pass = TRUE ∧
il_pass = 1) ∨
(b > 0 ∧ ml_pass = TRUE ∧
il_pass = 1)

�

d ∈ N

0 < d

b ∈ N

ml_tl = red

il_tl = red

ml_pass = TRUE
il_pass = TRUE
�
(b < d ∧ ml_pass = TRUE ∧
il_pass = TRUE) ∨
(b > 0 ∧ ml_pass = TRUE ∧
il_pass = TRUE)

� · · ·

· · ·
0 < d

b ∈ N

�
b < d ∨ b > 0

OR_R1

0 < d

b = 0
�
b < d

EQ_LR 0 < d � 0 < d HYP

2.6.10 Conclusion and summary of the second refinement

During this refinement, we have seen again how the proofs (or rather the failed proof
attempts) have helped us correct our mistakes or improve our model. In fact, we discov-
ered four errors, we introduced several additional invariants, we corrected four events,
and we introduced two more variables. Here is the final version of this second refine-
ment:

variables: . . .

ml_tl

il_tl

ml_pass

il_pass

inv2_1: ml_tl ∈ COLOR

inv2_2: il_tl ∈ COLOR

inv2_3: ml_tl = green ⇒ a + b < d ∧ c = 0

inv2_4: il_tl = green ⇒ 0 < b ∧ a = 0
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inv2_5: ml_tl = red ∨
il_tl = red

inv2_6: ml_pass ∈ BOOL

inv2_7: il_pass ∈ BOOL

inv2_8: ml_tl = red⇒
ml_pass = TRUE

inv2_9: il_tl = red⇒
il_pass = TRUE

variant_2: b_2_n(ml_pass)+
b_2_n(il_pass)

And here are the events of the second refinement:

ML_out_1
when

ml_tl = green

a + b + 1 
= d

then
a := a + 1
ml_pass := TRUE

end

ML_out_2
when

ml_tl = green

a + b + 1 = d

then
a := a + 1
ml_tl := red

ml_pass := TRUE
end

IL_out_1
when

il_tl = green

b 
= 1
then

b := b− 1
c := c + 1
il_pass := TRUE

end

IL_out_2
when

il_tl = green

b = 1
then

b := b− 1
c := c + 1
il_tl := red

il_pass := TRUE
end
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ML_in
when

0 < c

then
c := c− 1

end

IL_in
when

0 < a

then
a := a− 1
b := b + 1

end

ML_tl_green
when

ml_tl = red

a + b < d

c = 0
il_pass = TRUE

then
ml_tl := green

il_tl := red

ml_pass := FALSE
end

IL_tl_green
when

il_tl = red

0 < b

a = 0
ml_pass = TRUE

then
il_tl := green

ml_tl := red

il_pass := FALSE
end

2.7 Third refinement: introducing car sensors
2.7.1 Introduction

The sensors In this refinement, we introduce the sensors, which are devices capable
of detecting the physical presence of cars entering or leaving the bridge. We remind the
reader that such sensors are situated on each side of the road and at both extremities
of the bridge. This is indicated in Fig. 2.8.

Bridge

ML_OUT sensor

IL_IN sensor

IL_OUT sensor

Island Mainland

ML_IN sensor

Fig. 2.8. The bridge control equipment
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Closed model of the controller and its environment The presence of the sensor
must now make clearer the separation between our future software controller and its
physical environment, which was mentioned at the beginning of Section 2.2. This can
be sketched as indicated in Fig. 2.9

CONTROLLER

software

ENVIRONMENT

traffic lights sensors

cars

  sensor

      light

from  the

to  the  traffic

Fig. 2.9. Controller and environment

As can be seen, the software controller is equipped with two sets of channels: output
channels connecting the controller to the traffic lights and input channels connecting
the sensors to the software controller. Our intention is to build now a closed model
corresponding to a complete mathematical simulation of the pair formed by the soft-
ware controller and its environment. The reason for building such a model is that we
want to be sure that the controller works in perfect harmony with the environment,
provided, of course, the latter obeys a number of assumptions which have to be made
completely clear (this will be made precise in Section 2.7.2). We would like to review
now the variables that help us construct the models of the various constituents of our
closed model.

Controller variables The model of the software controller has a number of vari-
ables which we have already encountered: variables a, b, and c denoting the num-
ber of cars on the bridge (a and c) and on the island (b) and two boolean variables
il_pass and ml_pass which were introduced in the previous section. What is impor-
tant to understand here is that variables a, b, and c do not correspond exactly to the
physical numbers of cars on the bridge and on the island, which we shall introduce
in the next sub-section. In fact, the controller is always working with an approxi-
mate picture of the environment, but we want to prove that, despite this, it is able
to control the environment in a correct fashion; this is the heart of the modeling
process.

Environment variables The environment is formalized by means of four variables
corresponding to the state of the sensors. More precisely, a sensor can be in one
of two states: either “on” or “off”. It is “on” when a car is on it; “off” otherwise.
As a consequence, we shall enlarge our state with four variables corresponding to
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each sensor state: ML_OUT_SR, ML_IN_SR, IL_OUT_SR, and IL_IN_SR.
Notice that we use upper-case letters to name these variables, this is to remind us
that they are physical variables denoting objects of the real world. We shall also in-
troduce three variables A, B, and C denoting the physical number of cars on the
bridge going to the island (A), on the island (B), and on the bridge going to the
mainland (C).

Output channels Now we have to explain how the controller and the environment
communicate. We have already introduced variables ml_tl and il_tl; they correspond
to the output channels from the controller to the environment. To simplify matters
and as an abstraction, we suppose that the physical traffic lights are also directly
represented by these variables. It is an abstraction as we can imagine that there is a
(very) slight delay between the controller changing one of these channels color and the
real change occurring on the physical traffic light, but we consider the corresponding
delay so small that we can take it to be equal to zero.

Input channels It remains now for us to explain how the sensors communicate with
the controller. We are not interested in the precise technology used in the sensors,
only in their external behavior. As said above, a sensor can be in two different states:
either “on” or “off.” When the state of a sensor moves from “off” to “on,” this means
that a car has just been detected as arriving on it: nothing has to be sent to the
controller in this case. Note that the state of a sensor can remain “on” for a certain
time when the car has to wait because the associated traffic light is red. When the
state of a sensor moves from “on” to “off,” this means that a car that was on it has just
left. In that case, a message has to be sent to the controller. All this is illustrated in
Fig. 2.10

off

on

off

sending  a  message 

to  the  controller

Fig. 2.10. Controller and environment

We thus introduce four input channel variables corresponding to the different sensors:
ml_out_10, ml_in_10, il_in_10, and il_out_10.
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Summary Here is a summary of the different kinds of variables we have just presented:

Input channels ml_out_10, ml_in_10, il_in_10, il_out_10

Controller a, b, c, ml_pass, il_pass

Output channels ml_tl, il_tl

Environment A, B, C, ML_OUT_SR,

ML_IN_SR, IL_OUT_SR, IL_IN_SR

Fig. 2.11 shows the various categories of variables of our closed system. In principle,
the input channel variables are set by the environment and tested by the controller.
Likewise, the output channel variables are set by the controller and tested by the
environment. But, as we shall explain at the end of Section 2.7.3, in this example there
will be an exception to these rules. On the other hand, the controller variables are set
and tested by the controller only while the environment variables are set and tested
solely by the environment. There is no exception to these rules.

ml_in_10

il_out_10

il_in_10

ml_tl

il_tl

ml_out_10

ENVIRONMENT
A   B   C

ML_OUT_SR    ML_IN_SR

IL_OUT_SR    IL_IN_SR

ml_ pass   il_pass

a   b   c

CONTROLLER

Fig. 2.11. Controller, environment, and their variables
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2.7.2 Refining the state

We first introduce an additional carrier set defining the various states (“on” and “off”)
of a sensor. This is done as follows:

sets: . . . , SENSOR

constants: . . . , on, off

axm3_1: SENSOR = {on, off}

axm3_2: on 
= off

Here are the new variables together with their basic typing invariants inv3_1 to
inv3_11:

inv3_1 : ML_OUT_SR ∈ SENSOR

inv3_2 : ML_IN_SR ∈ SENSOR

inv3_3 : IL_OUT_SR ∈ SENSOR

inv3_4 : IL_IN_SR ∈ SENSOR

inv3_5 : A ∈ N

inv3_6 : B ∈ N

inv3_7 : C ∈ N

inv3_8 : ml_out_10 ∈ BOOL

inv3_9 : ml_in_10 ∈ BOOL

inv3_10 : il_out_10 ∈ BOOL

inv3_11 : il_in_10 ∈ BOOL

We are now going to state the more interesting invariants concerned with these
variables. First, we have an invariant stating that when the sensor IL_IN_SR is on,
then A is positive. In other words, there is at least one physical car on the bridge,
namely the one that sits on the sensor IL_IN_SR. We have similar invariants for
IL_OUT_SR and ML_IN_SR, yielding:

inv3_12 : IL_IN_SR = on ⇒ A > 0

inv3_13 : IL_OUT_SR = on ⇒ B > 0

inv3_14 : ML_IN_SR = on ⇒ C > 0
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Second, when input channel ml_out_10 is TRUE, it means that a car has just
left the sensor ML_OUT_SR. For this to be possible, the mainland traffic light
must be green. This invariant formalizes the fact that car drivers obey the traffic light
indications. We have a similar case with input channel il_out_10. This is formalized
by means of the following two invariants:

inv3_15 : ml_out_10 = TRUE ⇒ ml_tl = green

inv3_16 : il_out_10 = TRUE ⇒ il_tl = green

Our next group of invariants is dealing with the relationship between the sensor
status and the messages sent to the controller. They say that no message is on an
input channel when a car is on the corresponding sensor. Here are these invariants:

inv3_17 : IL_IN_SR = on ⇒ il_in_10 = FALSE

inv3_18 : IL_OUT_SR = on ⇒ il_out_10 = FALSE

inv3_19 : ML_IN_SR = on ⇒ ml_in_10 = FALSE

inv3_20 : ML_OUT_SR = on ⇒ ml_out_10 = FALSE

These invariants state that when a car is on a sensor, then the previous message
coming from that sensor has been treated by the controller. There are two possible
interpretations for these invariants:

(A) cars must wait before touching a sensor until the controller is ready;
(B) the controller is fast enough so as to be always ready for the next car.

Obviously, (A) is not acceptable. So, we postulate choice (B). Were this not to hold,
then the controller could miss some cars entering or leaving the system. In other words,
this assumption has to be checked when installing the system. In fact, it corresponds to
a requirement which is obviously missing in our requirement document:

The controller must be fast enough so as to be able to FUN-5
treat all the information coming from the environment

Our next series of invariants deals with the relationship that exists between the
physical number of cars (A, B, and C) and the corresponding numbers dealt with by
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the controller (a, b, and c):

inv3_21 : il_in_10 = TRUE ∧ ml_out_10 = TRUE ⇒ A = a

inv3_22 : il_in_10 = FALSE ∧ ml_out_10 = TRUE ⇒ A = a + 1

inv3_23 : il_in_10 = TRUE ∧ ml_out_10 = FALSE ⇒ A = a− 1

inv3_24 : il_in_10 = FALSE ∧ ml_out_10 = FALSE ⇒ A = a

These invariants are easy to understand. When, say, il_in_10 = TRUE, this means
that a car has left the bridge to enter the island, but the controller does not know it
yet: thus A is incremented and B in decremented, while a and b are left unchanged.
Likewise, when ml_out_10 = TRUE, this means that a new car has entered the
bridge coming from the mainland, but the controller does not know it yet; thus A is
incremented, while a is left unchanged. We have similar invariants dealing with B and
b and with C and c as shown below:

inv3_25 : il_in_10 = TRUE ∧ il_out_10 = TRUE ⇒ B = b

inv3_26 : il_in_10 = TRUE ∧ il_out_10 = FALSE ⇒ B = b + 1

inv3_27 : il_in_10 = FALSE ∧ il_out_10 = TRUE ⇒ B = b− 1

inv3_28 : il_in_10 = FALSE ∧ il_out_10 = FALSE ⇒ B = b

inv3_29 : il_out_10 = TRUE ∧ ml_in_10 = TRUE ⇒ C = c

inv3_30 : il_out_10 = TRUE ∧ ml_in_10 = FALSE ⇒ C = c + 1

inv3_31 : il_out_10 = FALSE ∧ ml_in_10 = TRUE ⇒ C = c− 1

inv3_32 : il_out_10 = FALSE ∧ ml_in_10 = FALSE ⇒ C = c

The last two, and probably most important, invariants in this refinement are the ones
which say that the two main properties (one-way bridge and limited number of cars)
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hold for the physical number of cars:

inv3_33 : A = 0 ∨ C = 0

inv3_34 : A + B + C ≤ d

In other words, the controller, although working with slightly time-shifted information
concerning A, B, and C (the controller bases its decision on a, b, and c), nevertheless
maintains the basic properties on the physical numbers of cars A, B, and C.

2.7.3 Refining abstract events in the controller

It is now easy to proceed with the refinement of abstract events. This is done in a
straightforward fashion as follows:

ML_out_1
when

ml_out_10 = TRUE
a + b + 1 
= d

then
a := a + 1
ml_pass := TRUE
ml_out_10 := FALSE

end

ML_out_2
when

ml_out_10 = TRUE
a + b + 1 = d

then
a := a + 1
ml_tl := red

ml_pass := TRUE
ml_out_10 := FALSE

end

IL_out_1
when

il_out_10 = TRUE
b 
= 1

then
b := b− 1
c := c + 1
il_pass := TRUE
il_out_10 := FALSE

end

IL_out_2
when

il_out_10 = TRUE
b = 1

then
b := b− 1
c := c + 1
il_tl := red

il_pass := TRUE
il_out_10 := FALSE

end
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Notice that in their abstract versions these events were testing the green status of the
corresponding traffic lights. In these refined versions, it is not necessary any more since
these events are now triggered by the input channels ml_out_10 or il_out_10, which
ensure through invariants inv3_15 and inv3_16 that the corresponding lights are
green.

ML_in
when

ml_in_10 = TRUE
c > 0

then
c := c− 1
ml_in_10 := FALSE

end

IL_in
when

il_in_10 = TRUE
a > 0

then
a := a− 1
b := b + 1
il_in_10 := FALSE

end

In the six above events, which are triggered by the input channels, we can see that
the channels in question are all reset by the events. This is to indicate that the cor-
responding controller operation has finished. Events xxx_arr in the next section will
test such resetting in their guards so as to “allow” another car to occupy the relevant
sensor. This interplay is a formal way to express the rapid reaction of the controller,
running faster than cars may arrive!

ML_tl_green
when

ml_tl = red

a + b < d

c = 0
il_pass = TRUE
il_out_10 = FALSE

then
ml_tl := green

il_tl := red

ml_pass := FALSE
end

IL_tl_green
when

il_tl = red

0 < b

a = 0
ml_pass = TRUE
ml_out_10 = FALSE

then
il_tl := green

ml_tl := red

il_pass := FALSE
end
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The new guard il_out_10 = FALSE in event ML_tl_green is indispensable to main-
tain invariant inv3_16: that is:

inv3_16 : il_out_10 = TRUE ⇒ il_tl = green

This is so because il_tl is set to red in event ML_tl_green. We have a similar guard
(ml_out_10 = FALSE) in event IL_tl_green; it is necessary in order to maintain
invariant inv3_15.

It would be possible to add other guards in the two previous events. The idea would
be to turn a light to green only if there is a car willing to pass. In order to do so, we
would have to make the two sensors, which are situated close to the traffic lights, send
additional information when a car is coming on to them. We leave it to the reader to
make this extension.

2.7.4 Adding new events in the environment

We now add four new events corresponding to cars arriving on the various sensors:

ML_out_arr
when

ML_OUT_SR = off

ml_out_10 = FALSE
then

ML_OUT_SR := on

end

ML_in_arr
when

ML_IN_SR = off

ml_in_10 = FALSE
C > 0

then
ML_IN_SR := on

end

IL_in_arr
when

IL_IN_SR = off

il_in_10 = FALSE
A > 0

then
IL_IN_SR := on

end

IL_out_arr
when

IL_OUT_SR = off

il_out_10 = FALSE
B > 0

then
IL_OUT_SR := on

end

In each case, we suppose that the previous message has been treated; the input channels
are all tested for FALSE. Moreover, the physical number of cars is tested as expected.
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It expresses the fact that the setting to “on” of a sensor is due to the presence of cars.
This is compatible with our requirement ENV-5 saying that the sensors are used to
detect the presence of a car entering or leaving the bridge. We finally have four events
corresponding to a car leaving a sensor:

ML_out_dep
when

ML_OUT_SR = on

ml_tl = green

then
ML_OUT_SR := off

ml_out_10 := TRUE
A := A + 1

end

ML_in_dep
when

ML_IN_SR = on

then
ML_IN_SR := off

ml_in_10 := TRUE
C = C − 1

end

IL_in_dep
when

IL_IN_SR = on

then
IL_IN_SR := off

il_in_10 := TRUE
A = A− 1
B = B + 1

end

IL_out_dep
when

IL_OUT_SR = on

il_tl = green

then
IL_OUT_SR := off

il_out_10 := TRUE
B = B − 1
C = C + 1

end

It is important to notice that a car leaving the mainland out-sensor can do so provided
the corresponding traffic light is green. Likewise, a car leaving the island out-sensor
can do so provided the corresponding traffic light is green. Here we take into account
requirement ENV-3 saying that “cars are not supposed to pass on a red traffic light,
only on a green one.” It is also possible to see that in each case a message is sent to the
controller. Finally, the physical number of cars are modified as expected; we simulate
what happens in the environment.

2.7.5 Convergence of the new events

We have to exhibit a variant which is decreased by all new events. Here it is:
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variant_3: 12− (ML_OUT_SR + ML_IN_SR + IL_OUT_SR

+ IL_IN_SR+
2 ∗ (ml_out_10 + ml_in_10 + il_out_10 + il_in_10))

Notice that, as for variant_2, the previous variant is not correct. we have to convert
the boolean or sensor expressions to numerical expressions. We leave this to the reader.

2.7.6 No deadlock

We leave it to the reader to prove that this third refinement does not deadlock.
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A mechanical press controller

In this chapter, we develop the controller of another complete example: a mechanical
press. The intention is to show how this can be done in a systematic fashion in or-
der to obtain the correct final code. In Section 1, we present an informal description
of this system. In Section 2, we develop two general patterns that we shall subse-
quently use. The development of these patterns will be made by using the proofs as
a mean of discovering the invariants and the guards of the events. In Section 3, we
define the requirement document in a more precise fashion by using the terminol-
ogy developed in the definition of the patterns. The main development of the me-
chanical press will take place in further sections where more design patterns will be
presented.

3.1 Informal description
3.1.1 Basic equipment

A mechanical press is essentially made of the following pieces of equipment:

• a vertical slide, which is either stopped or moving up and down very rapidly;
• an electrical rotating motor, which can be stopped or working;
• a connecting rod, which transmits the movement of the electrical motor to that of

the slide;
• a clutch, which allows to engage or disengage the motor on the connecting rod.

This is illustrated in Fig. 3.1.

3.1.2 Basic commands and buttons

The following commands can be performed by means of buttons named respectively
B1, B2, B3, and B4.

100
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B1 B4B3B2

BUTTONS

MOTOR

ROD

SLIDE

PART

TOOL

Fig. 3.1. Schematic view of the press

Command 1 Start motor (this is performed by depressing button B1).
Command 2 Stop motor (this is performed by depressing button B2).
Command 3 Engage clutch (this is performed by depressing button B3).
Command 4 Disengage clutch (this is performed by depressing button B4).

3.1.3 Basic user action

The following actions can be performed by the user (it is clearly better to do so when
the vertical slide has stopped!).

Action 1 Change the tool at the lower extremity of the vertical slide.
Action 2 Put a part to be treated by the press at a specific place under the slide.
Action 3 Remove the part that has been treated by the press.

The very first schematic structure of the system could be thought of as being the
one shown in Fig. 3.2.

Commands Equipment

Fig. 3.2. First schematic view of the system
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3.1.4 User session

A typical user session is the following (we suppose that, initially, the motor is stopped
and the clutch is disengaged):

1. Start motor (Command 1).
2. Change tool (Action 1).
3. Put a part (Action 2).
4. Engage the clutch (Command 3); the press now works.
5. Disengage the clutch (Command 4); the press is stopped.
6. Remove the part (Action 3).
7. Repeat zero or more times items 3 to 6.
8. Repeat zero or more times items 2 to 7.
9. Stop motor (Command 2).

As can be seen, the philosophy of this mechanical press is that it can work without
stopping the motor.

3.1.5 Danger: necessity of a controller

Clearly, Action 1 (change the tool), Action 2 (put a part), and Action 3 (remove a
part) are dangerous because the user has to manipulate objects (tools, parts) in places
which are just situated below the vertical slide. Normally, this slide should not move
while doing such actions because the clutch must have been disengaged. However, the
user could have forgotten to do so or a malfunction could have caused it not to happen.
As a consequence, a controller is placed between the commands and the equipment in
order to make sure that things are working properly. In order to prevent malfunctions,
the equipment is also reporting its own status to the controller. All this results in the
second, more precise, system structure shown in Fig. 3.3.

Commands

Controller Equipment

Fig. 3.3. Second schematic view of the system
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3.1.6 The door

Placing a controller between the commands and the equipment is certainly not suffi-
cient: we have also to make these commands more sophisticated in order to protect the
user. In fact, the key is clearly the two commands for engaging and disengaging the
clutch. For this, a door is put in front of the press. This is illustrated in Fig. 3.4.

open closed

Fig. 3.4. The door

Initially, the door is open. When the user depresses button B3 to engage the clutch,
then the door is first closed before engaging the clutch, and when the user depresses
button B4 to disengage the clutch, then the door is opened after disengaging the
clutch.

3.2 Design patterns
In this example, there are many cases where a user can depress a button, which is
eventually followed by a certain reaction of the system. For example buttons B1 and
B2 have an eventual action on the motor. This is not a direct action however. In other
words, there is no direct connection between these buttons and the motor. Direct
actions on the motor are initiated by the controller, which sends commands after
receiving some information coming from buttons B1 or B2.

For example, when the motor does not work, the effect of depressing button B1 is
to eventually have the motor working. Likewise, when the motor is working, the effect
of depressing button B2 is that the motor will eventually stop. Note that when the
user depresses such a button, say button B1, and releases it very quickly, it might be
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the case that nothing happen simply because the controller has not got enough time
to figure out that this button was depressed.

Another interesting case is the one where the user depresses button B1 and keeps
on depressing it by not removing his finger. Once the motor starts working, the user
depresses button B2 with another finger. This results in the motor eventually stopping.
But the fact that now button B1 is still depressed must not have any effect, the motor
must not restart. This is due to the fact that any button must be first released in order
to be taken into account once again.

A more complicated case corresponds to the following sequence of actions as indi-
cated in Fig. 3.5:

MotorController

B1B1 B2

1 4

2

3

Fig. 3.5. Race conditions between 3 and 4

(1) the user depresses button B1 (starting motor) and, not too quickly, releases it;
(2) the controller responds to this depressing of button B1 by sending the start com-

mand to the motor;
(3) the motor sends back to the controller information informing that it has started

working;
(4) the user depresses button B2 (stopping motor) and, not too quickly, releases it.

The difficulty is that actions (3) and (4) are done in parallel by the motor and by the
user. Both these actions have to be taken into account by the controller. If action (3)
(feedback from the motor) wins, then action (4) (depressing the stop button) is followed
by a controller reaction, whose purpose is to send to the motor the stop command.
But if action (4) wins, then the reaction of the controller cannot be performed as the
controller does not know yet whether the motor is working since it has not received
the corresponding information from the motor. In that case, depressing button B2 is
not taken into account.
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What we would like to do in this section is to have a formal general study of such
cases. This will allow us to have a very systematic approach to the construction of our
mechanical press reactive system in further sections.

3.2.1 Action and reaction

The general paradigm in what we mentioned in the previous section is that of actions
and reactions. Actions and reactions can be illustrated as shown in Fig. 3.6. We have
an action, named a and represented by the plain line, followed by a reaction, named r

and represented by the dashed line. Action and reaction can take two values: 0 or 1.
We note that r, the reaction, always takes place after a, the action. In other words,
r goes up (1) after a has gone up (1). Likewise, r goes down (0) after a has gone
down (0).

0

ra
1

Fig. 3.6. Action and reaction

3.2.2 First case: a simple action and reaction pattern without
retro-action

Introduction This first case corresponds to two possible scenarios. In the first one,
it is possible that a goes up and down several times, while r is not able to react so
quickly; it stays down all the time. This is indicated in Fig. 3.7.

Fig. 3.7. Action and weak reaction (case 1)

As a second similar scenario, it is possible that once r has gone up, then a goes
down and then up again very quickly, so that r comes down only after a has gone
down several times. This is indicated in Fig. 3.8.
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Fig. 3.8. Action and weak reaction (case 2)

When the behavior of an action–reaction system corresponds to what we have just
described, it is said that we have a weak synchronization between the action and the
reaction.

Modeling These two cases will be handled by the same model. Besides variables a

and r denoting the state of the action and reaction (invariant pat0_1 and pat0_2
below), we introduce two counters: the first one is named ca and is associated with
a and the second one is named cr and is associated with r (invariant pat0_3 and
pat0_4 below). These counters denote the number of times each action and reaction
respectively have gone up. The role of these counters is precisely to formalize the
concept of a weak reaction. This is done in the main invariant, pat0_5, which says
that cr is never greater than ca.

Note that these counters will not be present in our final definition of the patterns;
they are there just to make precise the constraint of the pattern. For that reason,
variables ca and cr will not be allowed in the guards of events; they will be present in
event actions only:

variables: a

r

ca

cr

pat0_1: a ∈ {0, 1}

pat0_2: r ∈ {0, 1}

pat0_3: ca ∈ N

pat0_4: cr ∈ N

pat0_5: cr ≤ ca

Initially, no action and reaction have taken place (event init below). Events a_on and
a_off correspond to the action a. As can be seen, these events are not constrained by
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the reaction:

init
a := 0
r := 0
ca := 0
cr := 0

a_on
when

a = 0
then

a := 1
ca := ca + 1

end

a_off
when

a = 1
then

a := 0
end

This is not the case for r_on and r_off corresponding to the reaction r. These events
are synchronized with some occurrences of events a_on and a_off. This is due to the
presence of the guards a = 1 and a = 0 in the guards of events r_on and r_off.

r_on
when

r = 0
a = 1

then
r := 1
cr := cr + 1

end

r_off
when

r = 1
a = 0

then
r := 0

end

The weak synchronization of action and reaction is illustrated in Fig. 3.9. In this
figure, the arrows simply express that the occurrence of an event relies on the previous
occurrences of some others. For example, the occurrence of event r_on depends on that
of event a_on and on that of event r_off. Note that these arrows have to be understood
informally only.

a_on a_off

r_offr_on

Fig. 3.9. Weak synschronization of the events
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Proofs The proofs of invariant preservation are straightforward. Unfortunately, one
of them fails. This is the proof of the preservation of invariant pat0_5 by event r_on:
that is, r_on/pat0_5/INV.

r_on
when

r = 0
a = 1

then
r := 1
cr := cr + 1

end

We have to prove the following (after some simplifications):

Invariant pat0_5
Guards of
event r_on
�
Modified invariant pat0_5

cr ≤ ca

r = 0
a = 1
�
cr + 1 ≤ ca

We could solve the difficulty by adding the predicate cr < ca in the guard of event
r_on. This is certainly the most economical solution, as it does not affect the rest of
the model. But, as was pointed out earlier, we do not want to incorporate counter
variables in event guards. This suggests the following implicative invariant:

a = 1 ⇒ cr < ca,

which is clearly preserved by event a_on, which simultaneously sets a to 1 and incre-
ments ca, also trivially by events a_off (setting a to 0 and keeping cr and ca untouched)
and r_off (keeping a, cr, and ca untouched). But, unfortunately, this invariant is not
preserved, again by event r_on. In this case, we have to prove:

New proposed invariant
Guards of
event r_on
�
Modified proposed invariant

a = 1 ⇒ cr < ca

r = 0
a = 1
�
a = 1 ⇒ cr + 1 < ca
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This can be simplified to:

cr < ca

r = 0
a = 1
�
cr + 1 < ca.

This shows that our first proposed invariant, a = 1 ⇒ cr < ca was not strong enough.
The reader could also convince himself that the invariant r = 0 ⇒ cr < ca, would not
be sufficient either. Thus, we have to also suppose that r = 0 holds. This leads to the
following new invariant:

pat0_6: a = 1 ∧ r = 0 ⇒ cr < ca

Invariant pat0_6
Guards of
event r_on
�
Modified invariant pat0_6

a = 1 ∧ r = 0 ⇒ cr < ca

r = 0
a = 1
�
a = 1 ∧ 1 = 0 ⇒ cr + 1 < ca.

This simplifies to the following, which holds trivially since there is a false assumption,
namely 1 = 0:

cr < ca

r = 0
a = 1
1 = 0
�
cr + 1 < ca

3.2.3 Second case: a simple action pattern with a retro-acting reaction

Introduction In this section, we refine the previous model by imposing now that
the situations illustrated in Figs. 3.8 and 3.7 are not possible. We now have a strong
synchronization between the action and the reaction. The only well-synchronized pos-
sibilities are those indicated in Fig. 3.10.

Modeling We have exactly the same variables as in the previous case, with an addi-
tional invariant stipulating that ca cannot exceed cr by more than one. In other words,
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0

ra
1

Fig. 3.10. Action and strong reaction

either ca and cr are equal or ca is equal to cr + 1. This yields:

pat1_1: ca ≤ cr + 1

Proofs To begin with, since we do not know how to modify the events, we do not
modify them at all. The idea again is that the failure of some proofs will give us some
clues on how to improve the situation. In fact, all proofs succeed except one. Event
a_on cannot maintain the new invariant pat1_1:

a_on
when

a = 0
then

a := 1
ca := ca + 1

end

After some simplifications, we have to prove:

Invariant pat0_5
Invariant pat1_1
Guard of a_on
�
Modified invariant pat1_1

cr ≤ ca

ca ≤ cr + 1
a = 0
�
ca + 1 ≤ cr + 1 :

that is:
cr ≤ ca

ca ≤ cr + 1
a = 0
�
ca ≤ cr.
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The impossibility of proving this statement suggests the following invariant since ca

cannot be strictly smaller than cr because of invariant pat0_5 (cr ≤ ca):

pat1_2: a = 0 ⇒ ca = cr

Unfortunately, this time event a_off cannot preserve this invariant.

a_off
when

a = 1
then

a := 0
end

After some simplification, we are left to prove:

Guards of a_off
�
Modified invariant pat1_2

a = 1
�
0 = 0 ⇒ ca = cr.

Note that we already have the following (this is pat0_6):

a = 1 ∧ r = 0 ⇒ cr < ca.

This suggests trying the following invariant:

pat1_3: a = 1 ∧ r = 1 ⇒ ca = cr

But, unfortunately, we have no guarantee that r = 1 when we are using event a_off,
unless, of course, we add r = 1 as a new guard for event a_off. We thus try to refine
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a_off by strengthening its guard as follows:

a_off
when

a = 1
r = 1

then
a := 0

end

Unfortunately, this time we have a problem with a_on:

a_on
when

a = 0
then

a := 1
ca := ca + 1

end

The preservation of the proposed invariant pat1_3 leads to the following to prove:

Invariant pat1_2
Guards of a_on
�
Modified invariant pat1_3

a = 0 ⇒ ca = cr

a = 0
�
1 = 1 ∧ r = 1 ⇒ ca + 1 = cr

This can be simplified to:

ca = cr

a = 0
r = 1
�
ca + 1 = cr

The only possibility of proving this is to have an additional guard in a_on in order to
obtain a contradiction. The natural one is thus r = 0 (it will contradict r = 1). We
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thus refine a_on by strengthening its guard as follows:

a_on
when

a = 0
r = 0

then
a := 1
ca := ca + 1

end

And now we discover that all invariant preservation proofs succeed. Notice that we can
put the two invariants pat1_2 and pat1_3 together:

pat1_2: a = 0 ⇒ ca = cr

pat1_3: a = 1 ∧ r = 1 ⇒ ca = cr

This leads to the following invariant, which can replace the two previous ones:

pat1_4: a = 0 ∨ r = 1 ⇒ ca = cr

It is very instructive to put invariant pat0_6 next to this one:

pat0_6: a = 1 ∧ r = 0 ⇒ cr < ca

As can be seen, the antecedent of pat0_6 is the negation of that of pat1_4. And
now we can see from Fig. 3.11 the places where these invariants hold.

To summarize, here are the events for this strong synchronization case. We have
removed the counters which were present just to formalize the relationship between
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pat0_6 pat1_4pat1_4

a  = 0

r   = 1a = 1

r  = 0 r  = 0a  = 0 r   = 0

a = 1

r  = 1

Fig. 3.11. Showing where the invariants hold

the events:

a_on
when

a = 0
r = 0

then
a := 1

end

a_off
when

a = 1
r = 1

then
a := 0

end

r_on
when

r = 0
a = 1

then
r := 1

end

r_off
when

r = 1
a = 0

then
r := 0

end

The strong synchronization is illustrated in Fig. 3.12.

a_on a_off

r_offr_on

Fig. 3.12. Strong synchronization

3.3 Requirements of the mechanical press
In view of what we have seen above, we now can clearly present the requirements of
our mechanical press. We first have three requirements defining the equipment
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The system has got the following pieces of
equipment: a motor, a clutch, and a door EQP_1

Four buttons are used to start and stop the
motor, and engage and disengage the clutch EQP_2

A controller is supposed to manage these equipment EQP_3

Then we present the ways the equipment is connected to the controller:

Buttons and controller are weakly synchronized FUN_1

Controller and equipment are strongly synchronized FUN_2

Next are the two main safety requirements of the system:

When the clutch is engaged, the motor must work SAF_1

When the clutch is engaged, the door must be closed SAF_2

Finally, more constraints are put in place between the clutch and the door:

When the clutch is disengaged, the door cannot
be closed several times, ONLY ONCE FUN_3
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When the door is closed, the clutch cannot
be disengaged several times, ONLY ONCE FUN_4

Opening and closing the door is not independent.
It must be synchronized with disengaging and
engaging the clutch

FUN_5

The overall structure of the system is presented in Fig. 3.13.

MOTOR

motor_actuator

motor_sensor

CLUTCH

clutch_actuator

clutch_sensor

DOOR

door_sensordoor_actuator

CONTROLLER

StopStart Start Stop

Clutch buttons

StrongStrongStrong

Strong

Strong

Weak Weak

Motor buttons

Fig. 3.13. The press controller

3.4 Refinement strategy
In the following sections, we are going to develop the design of the mechanical press
according to the following strategy:

• Initial model: connecting the controller to the motor.
• 1st refinement: connecting the motor button to the controller.
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• 2nd refinement: connecting the controller to the clutch.
• 3rd refinement: constraining the clutch and the motor.
• 4th refinement: connecting the controller to the door.
• 5th refinement: constraining the clutch and the door.
• 6th refinement: more constraints between the clutch and the door.
• 7th refinement: connecting the clutch button to the controller.

In each case, we are going to do so by instantiating some design patterns.

3.5 Initial model: connecting the controller to the motor
3.5.1 Introduction

This initial model formalizes the connection of the controller to the motor as illustrated
in Fig. 3.14

Controller

Motor

Strong reaction

Fig. 3.14. Connecting the controller to the motor

We take partially into account requirement FUN_2:

Controller and equipment are strongly synchronized FUN_2

3.5.2 Modeling

We first define a context with the set STATUS defining the two different statuses of
the motor: stopped or working:

set: STATUS
constants: stopped

working
axm0_1: STATUS = {stopped, working}
axm0_2: stopped 
= working

Then we define two variables corresponding to the connection of the motor to the
controller: motor_actuator and motor_sensor. Variable motor_actuator formalizes
the connection of the controller to the motor. It corresponds to the command sent
by the controller, either to start or to stop the motor. The variable motor_sensor



118 A mechanical press controller

formalizes the connection of the motor to the controller. It corresponds to the feedback
sent by the motor concerning its physical status:

variables: motor_actuator

motor_sensor

inv0_1: motor_sensor ∈ STATUS

inv0_2: motor_actuator ∈ STATUS

In this connection, the controller acts as an action, whereas the motor acts as a re-
action. As we know, the reaction of the motor is strongly synchronized to the action
of the controller. The idea then is to use the corresponding pattern (Section 3.2.3) by
instantiating it to the problem at hand. More precisely, we are going to instantiate the
strong pattern as follows:

a � motor_actuator

r � motor_sensor

0 � stopped

1 � working

a_on � treat_start_motor
a_off � treat_stop_motor
r_on � Motor_start
r_off � Motor_stop

This leads first to the following events, which are supposed to represent the action of
the controller:

a_on
when

a = 0
r = 0

then
a := 1

end

treat_start_motor
when

motor_actuator = stopped

motor_sensor = stopped

then
motor_actuator := working

end

a_off
when

a = 1
r = 1

then
a := 0

end

treat_stop_motor
when

motor_actuator = working

motor_sensor = working

then
motor_actuator := stopped

end
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In this section and in the rest of this chapter, we shall follow the convention that the
names of the events pertaining to the controller all start with the prefix “treat-”. On
the other hand, events the names of which do not start with the prefix “treat-” are
physical events occurring in the environment.

The following events are supposed to represent the physical reaction of the motor:

r_on
when

r = 0
a = 1

then
r := 1

end

Motor_start
when

motor_sensor = stopped

motor_actuator = working

then
motor_sensor := working

end

r_off
when

r = 1
a = 0

then
r := 0

end

Motor_stop
when

motor_sensor = working

motor_actuator = stopped

then
motor_sensor := stopped

end

3.5.3 Summary of the events

• Environment

motor_start
motor_stop

• Controller

treat_start_motor
treat_stop_motor

3.6 First refinement: connecting the motor buttons to the controller
3.6.1 Introduction

We now extend the connection introduced in the previous section by connecting the
motor buttons B1 (start motor) and B2 (stop motor) to the controller. This corresponds
to Fig. 3.15
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B2B1

Controller

Weak reaction

Motor

Strong reaction

Fig. 3.15. Connecting the motor buttons to the controller

We take partially into account requirement FUN_1:

Buttons and controller are weakly synchronized FUN_1

3.6.2 Modeling

We define two boolean variables corresponding to the connection of the motor buttons
B1 and B2 to the controller: start_motor_button and stop_motor_button. These
physical variables denote the status of buttons B1 and B2 respectively: when equal to
TRUE, it means that the corresponding button is physically depressed; when equal to
FALSE, it means that it is physically released.

We define two more boolean variables: this the time controller variables: start_
motor_impulse and stop_motor_impulse. These variables denote the knowledge by
the controller of the physical status of the buttons. They are clearly distinct from the
two previous variables, as the change of the physical status of a button occurs before
the controller can be aware of it:

variables: . . .
start_motor_button
stop_motor_button
start_motor_impulse
stop_motor_impulse

inv1_1: stop_motor_button ∈ BOOL
inv1_2: start_motor_button ∈ BOOL
inv1_3: stop_motor_impulse ∈ BOOL
inv1_4: start_motor_impulse ∈ BOOL

As we know, the controller weakly reacts to the buttons: it means that the buttons
can be sometimes quickly depressed and released without the controller reacting to
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it: the behavior is clearly an instantiation of the weak reaction pattern we studied in
Section 3.2.2. Thus, we are going to instantiate the weak pattern as follows:

a_on � push_start_motor_button
a_off � release_start_motor_button
r_on � treat_start_motor
r_off � treat_release_start_motor_button
a � start_motor_button

r � start_motor_impulse

0 � FALSE
1 � TRUE

Here are the first two events:

a_on
when

a = 0
then

a := 1
end

push_start_motor_button
when

start_motor_button = FALSE
then

start_motor_button := TRUE
end

a_off
when

a = 1
then

a := 0
end

release_start_motor_button
when

start_motor_button = TRUE
then

start_motor_button := FALSE
end

Here are the two other events. As can be seen, the event treat_start_motor, which used
to be the instantiation of an action in the initial model, is now the instantiation of a
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reaction. It is renamed below treat_push_start_motor_button:

r_on

when
r = 0
a = 1

then
r := 1

end

treat_push_start_motor_button
refines

treat_start_motor
when

start_motor_impulse = FALSE
start_motor_button = TRUE
motor_actuator = stopped

motor_sensor = stopped

then
start_motor_impulse := TRUE
motor_actuator := working

end

r_off
when

r = 1
a = 0

then
r := 0

end

treat_release_start_motor_button
when

start_motor_impulse = TRUE
start_motor_button = FALSE

then
start_motor_impulse := FALSE

end

In order to understand what is happening here, let us show again the abstract event
treat_start_motor:

treat_start_motor
when

motor_actuator = stopped

motor_sensor = stopped

then
motor_actuator := working

end
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We can see how the new pattern is superposed on the previous one:

treat_push_start_motor_button
refines

treat_start_motor
when

start_motor_impulse = FALSE
start_motor_button = TRUE
motor_actuator = stopped

motor_sensor = stopped

then
start_motor_impulse := TRUE
motor_actuator := working

end

The guard of the concrete version of event treat_push_start_motor_button is made
stronger and the action is enlarged: the new version of this event is indeed a refinement
of the previous one. But, at the same time, the new version of this event is also a
refinement of the pattern (up to renaming).

We now instantiate the weak pattern as follows:

a_on � push_stop_motor_button
a_off � release_stop_motor_button
r_on � treat_stop_motor
r_off � treat_release_stop_motor_button
a � stop_motor_button

r � stop_motor_impulse

0 � FALSE
1 � TRUE

Once again, we can see that the event treat_stop_motor, which used to be the instan-
tiation of an action in the initial model, is now the instantiation of a reaction. It is
renamed treat_push_stop_motor_button:

a_on
when

a = 0
then

a := 1
end

push_stop_motor_button
when

stop_motor_button = FALSE
then

stop_motor_button := TRUE
end
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a_off
when

a = 1
then

a := 0
end

release_stop_motor_button
when

stop_motor_button = TRUE
then

stop_motor_button := FALSE
end

r_on

when
r = 0
a = 1

then
r := 1

end

treat_push_stop_motor_button
refines

treat_stop_motor
when

stop_motor_impulse = FALSE
stop_motor_button = TRUE
motor_sensor = working

motor_actuator = working

then
stop_motor_impulse := TRUE
motor_actuator := stopped

end

r_off
when

r = 1
a = 0

then
r := 0

end

treat_release_stop_motor_button
when

stop_motor_impulse = TRUE
stop_motor_button = FALSE

then
stop_motor_impulse := FALSE

end

In Fig. 3.16, you can see a combined synchronization of the various events.
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treat_release_stop_motor_button

Motor_start

push_start_motor_button release_start_motor_button

Motor_stop

treat_release_start_motor_button

push_stop_motor_buttonrelease_stop_motor_button

treat_push_stop_motor_button

treat_push_start_motor_button

Fig. 3.16. Combined synchronizations

3.6.3 Adding “false” events

The problem we tackle now has to do with the superposition of a pattern on an existing
event. A typical example is the following event:

treat_push_start_motor_button
refines

treat_start_motor
when

start_motor_impulse = FALSE
start_motor_button = TRUE
motor_actuator = stopped

motor_sensor = stopped

then
start_motor_impulse := TRUE
motor_actuator := working

end
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In case the following condition is false:

motor_actuator = stopped ∧ motor_sensor = stopped

while the following condition is true:

start_motor_impulse = FALSE ∧ start_motor_button = TRUE;

then the event cannot be “executed”, but nevertheless the button has been depressed
so that the assignment:

start_motor_impulse := TRUE

must be “executed”. As a consequence, it is necessary to define the following additional
event:

treat_push_start_motor_button_false
when

start_motor_impulse = FALSE
start_motor_button = TRUE
¬ (motor_actuator = stopped ∧

motor_sensor = stopped)
then

start_motor_impulse := TRUE
end

In what follows, we shall encounter similar cases for all buttons.

3.6.4 Summary of the events

• Environment
motor_start
motor_stop
push_start_motor_button
release_start_motor_button
push_stop_motor_button
release_stop_motor_button

• Controller
treat_push_start_motor_button
treat_push_start_motor_button_false
treat_push_stop_motor_button
treat_push_stop_motor_button_false
treat_release_start_motor_button
treat_release_stop_motor_button
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3.7 Second refinement: connecting the controller to the clutch
We now connect the controller to the clutch. As it follows exactly the same approach
as the one we have already used for the connection of the controller to the motor in
Section 3.6, we simply copy (after renaming “motor” to “clutch”) what has been done
in the initial model.

3.7.1 Summary of the events

• Environment

motor_start
motor_stop
clutch_start
clutch_stop
push_start_motor_button
release_start_motor_button
push_stop_motor_button
release_stop_motor_button

• Controller

treat_push_start_motor_button
treat_push_start_motor_button_false
treat_push_stop_motor_button
treat_push_stop_motor_button_false
treat_release_start_motor_button
treat_release_stop_motor_button
treat_start_clutch
treat_stop_clutch

3.8 Another design pattern: weak synchronization
of two strong reactions

Our next step in designing the mechanical press is to take account of the following
additional safety constraint:

When the clutch is engaged, the motor must work SAF_1

It means that engaging the clutch is not independent of the starting of the motor as
was the case in the previous refinement, where we had two completely independent
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strongly synchronized connections: that of the motor and that of the clutch. To study
this in general, we now consider another design pattern.

3.8.1 Introduction

In this design pattern, we have two strongly synchronized patterns as indicated in Fig.
3.17, where in each case the arrows indicate the strong synchronization at work. Note
that the first action and reaction are called a and r as before, whereas the second ones
are called b and s.

a

r

b

s

Fig. 3.17. Two strongly synchronized action-reactions

We would like now to synchronize these actions and reactions so that the second
reaction, s, only occurs when the first one, r, is enabled. In other words, we would like
to ensure the following: s = 1 ⇒ r = 1.

r  = 1

s = 1

s = 1   = >  r = 1

Fig. 3.18. Synchronizing two strongly synchronized action–reactions

This is illustrated in Fig. 3.18, where the dashed arrows indicate this new synchro-
nization. But this synchronization between the two is supposed to be weak only. For
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Clutch is disengaged

several times
Motor can be started and stopped

Motor is working

several times 
Clutch can be disengaged and re-engaged

Fig. 3.19. Weak synchronization of the motor and the clutch

example, in our case, it is possible that the motor is started and stopped several times
before the clutch is indeed engaged. Likewise, it is possible that the clutch is disen-
gaged and re-engaged several times before the motor is stopped. All that is illustrated
in Fig. 3.19.

In Fig. 3.19, the new relationship between the various events is illustrated by the
dashed arrows. The reason why these arrows are dashed is that we have an additional
constraint stating that we do not want to modify the reacting events s_on and r_off.
This is illustrated in Fig. 3.20. More precisely, we want to act at the level of the actions
which have enabled these events. This is what we shall formalize in the next section.

3.8.2 Modeling

Next is a blind copy of the two strongly synchronized patterns:

dbl0_1: a ∈ {0, 1}
dbl0_2: r ∈ {0, 1}
dbl0_3: ca ∈ N

dbl0_4: cr ∈ N

dbl0_5: a = 1 ∧ r = 0 ⇒ ca = cr + 1
dbl0_6: a = 0 ∨ r = 1 ⇒ ca = cr

dbl0_7: b ∈ {0, 1}
dbl0_8: s ∈ {0, 1}
dbl0_9: cb ∈ N

dbl0_10: cs ∈ N

dbl0_11: b = 1 ∧ s = 0 ⇒ cb = cs + 1
dbl0_12: b = 0 ∨ s = 1 ⇒ cb = cs
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a_on a_off

r_offr_on

b_on b_off

s_offs_on

Fig. 3.20. Weak synchronization of two strongly synchronized action–reactions

a_on
when

a = 0
r = 0

then
a, ca := 1, ca + 1

end

a_off
when

a = 1
r = 1

then
a := 0

end

r_on
when

r = 0
a = 1

then
r, cr := 1, cr + 1

end

r_off
when

r = 1
a = 0

then
r := 0

end

b_on
when

b = 0
s = 0

then
b, cb := 1, cb + 1

end

b_off
when

b = 1
s = 1

then
b := 0

end

s_on
when

s = 0
b = 1

then
s, cs := 1, cs + 1

end

s_off
when

s = 1
b = 0

then
s := 0

end

We now refine these patterns by introducing our new requirement:

dbl1_1: s = 1 ⇒ r = 1
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The only events that might cause a problem in proving this invariant are s_on
(setting s to 1) and r_off (setting r to 0). In order to solve this problem, it
seems sufficient to add the guards r = 1 and s = 0 to events s_on and r_off
respectively:

s_on
when

s = 0
b = 1
r = 1

then
s, cs := 1, cs + 1

end

r_off
when

r = 1
a = 0
s = 0

then
r := 0

end

But, as indicated above, we do not want to touch these reacting events. In order to
obtain the same effect, it is sufficient to add the following invariants:

dbl1_2: b = 1 ⇒ r = 1

dbl1_3: a = 0 ⇒ s = 0

In order to maintain invariant dbl1_2, we have to modify event b_on by adding the
guard r = 1 to it since it sets b to 1:

b_on
when

b = 0
s = 0

then
b := 1
cb := cb + 1

end

�

b_on
when

b = 0
s = 0
r = 1

then
b := 1
cb := cb + 1

end
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To maintain invariant dbl1_2, we have also to add the guard b = 0 to event r_off
since it sets r to 0:

r_off
when

r = 1
a = 0

then
r := 0

end

�

r_off
when

r = 1
a = 0
b = 0

then
r := 0

end

But, again, we do not want to touch this reacting event, so we introduce the following
invariant:

dbl1_4: a = 0 ⇒ b = 0

In order to maintain invariant dbl1_3: that is:

dbl1_3: a = 0 ⇒ s = 0 ,

we have to refine event a_off as follows (guard strengthening):

a_off
when

a = 1
r = 1

then
a := 0

end

�

a_off
when

a = 1
r = 1
s = 0

then
a := 0

end
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We have also to refine event s_on as follows (guard strengthening):

s_on
when

s = 0
b = 1

then
s := 1
cs := cs + 1

end

�

s_on
when

s = 0
b = 1
a = 1

then
s := 1
cs := cs + 1

end

But, again, we do not want to touch this event, so that we have to introduce the
following invariant:

b = 1 ⇒ a = 1

Fortunately, this is exactly dbl1_4 contraposed:

dbl1_4: a = 0 ⇒ b = 0

In order to maintain invariant dbl1_4, we have to refine a_off again:

a_off
when

a = 1
r = 1
s = 0

then
a := 0

end

�

a_off
when

a = 1
r = 1
s = 0
b = 0

then
a := 0

end
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And also event b_on again:

b_on
when

b = 0
s = 0
r = 1

then
b := 1
cb := cb + 1

end

�

b_on
when

b = 0
s = 0
r = 1
a = 1

then
b := 1
cb := cb + 1

end

Now we have obtained the desired effect, namely that of weakly synchronizing the
reactions r and s by acting on their respective actions a and b. This is indicated in
Fig. 3.21.

a_on a_off

r_offr_on

b_on b_off

s_offs_on

Fig. 3.21. Weak synchronizing two strongly synchronized action–reactions

Here is a summary of the introduced invariants:

dbl1_1: s = 1 ⇒ r = 1

dbl1_2: b = 1 ⇒ r = 1

dbl1_3: a = 0 ⇒ s = 0

dbl1_4: a = 0 ⇒ b = 0
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Here is also a summary of the modified events a_off and b_on (where we have removed
the incrementation of counter cb):

a_off
when

a = 1
r = 1
s = 0
b = 0

then
a := 0

end

b_on
when

b = 0
s = 0
r = 1
a = 1

then
b := 1

end

Note that the four previous invariants can be equivalently reduced to the following
unique one, which can be “read” now from Fig. 3.22:

dbl1_5: b = 1 ∨ s = 1 ⇒ a = 1 ∧ r = 1

a = 0
 or
r = 0

a = 0
 or
r = 0

 or
b = 1

s = 1
 or
b = 1

s = 1
a = 0
 or
r = 0

a

r

b

s

Fig. 3.22. b = 1 ∨ s = 1 ⇒ a = 1 ∧ r = 1

3.9 Third refinement: constraining the clutch and the motor
Coming back to our development, we now incorporate the following requirement:

When the clutch is engaged, the motor must work SAF_1
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This can be formalized by means of the following new invariant:

inv3_1: clutch_sensor = engaged ⇒ motor_sensor = working

This is an instance of the design pattern developed in Section 3.8, which we instantiate
as follows:

a � motor_actuator

r � motor_sensor

0 � stopped

1 � working

b � clutch_actuator

s � clutch_sensor

0 � disengaged

1 � engaged

a_on � treat_push_start_motor_button
a_off � treat_push_stop_motor_button
r_on � Motor_start
r_off � Motor_stop

b_on � treat_start_clutch
b_off � treat_stop_clutch
s_on � Clutch_start
s_off � Clutch_stop

The invariant are as follows:

s = 1
dbl1_1: ⇒

r = 1

b = 1
dbl1_2: ⇒

r = 1

a = 0
dbl1_3: ⇒

s = 0

a = 0
dbl1_4: ⇒

b = 0

clutch_sensor = engaged

inv3_1: ⇒
motor_sensor = working

clutch_actuator = engaged

inv3_2: ⇒
motor_sensor = working

motor_actuator = stopped

inv3_3: ⇒
clutch_sensor = disengaged

motor_actuator = stopped

inv3_4: ⇒
clutch_actuator = disengaged
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The two modified events are as follows:

b_on
when

b = 0
s = 0
r = 1
a = 1

then
b := 1

end

treat_start_clutch
when

clutch_actuator = disengaged

clutch_sensor = disengaged

motor_sensor = working

motor_actuator = working

then
clutch_actuator := engaged

end

a_off
when

a = 1
r = 1
s = 0
b = 0

then
a := 0

end

treat_stop_motor
when

stop_motor_impulse = FALSE
stop_motor_button = TRUE
motor_actuator = working

motor_sensor = working

clutch_sensor = disengaged

clutch_actuator = disengaged

then
motor_actuator := stopped

stop_motor_impulse := TRUE
end

3.10 Fourth refinement: connecting the controller to the door
3.10.1 Copying

We copy (after renaming “motor” to “door”) what has been done in the initial model
(Section 3.6)

3.10.2 Summary of the events

• Environment

motor_start
motor_stop
clutch_start
clutch_stop
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door_close
door_open
push_start_motor_button
release_start_motor_button
push_stop_motor_button
release_stop_motor_button

• Controller

treat_push_start_motor_button
treat_push_start_motor_button_false
treat_push_stop_motor_button
treat_push_stop_motor_button_false
treat_release_start_motor_button
treat_release_stop_motor_button
treat_start_clutch
treat_stop_clutch
treat_close_door
treat_open_door

3.11 Fifth refinement: constraining the clutch and the door
We now incorporate the following additional safety constraint:

When the clutch is engaged, the door must be closed SAF_2

This is done by copying (after renaming “motor” to “door”) what has been done in the
third model (Section 3.9). At this point, we figure out that we have forgotten something
concerning the door: clearly it must be open when the motor is stopped so that the
user can replace the part or change the tool. This can be stated by adding the following
requirement:

When the motor is stopped, the door must be open SAF_3

It is interesting to present this requirement under its equivalent contraposed form
SAF_3’:

When the door is closed, the motor must work SAF_3’
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We can take care of this requirement by copying (after renaming “clutch” to “door”)
what has been done in the third model (Section 3.9). It is interesting now to put the
two previous requirements SAF_1 and SAF_2 next to SAF_3’:

When the clutch is engaged, the motor must work SAF_1

When the clutch is engaged, the door must be closed SAF_2

This shows that SAF_1 is redundant as it can be obtained by combining SAF_2 and
SAF_3’! The moral of the story is that the third refinement (Section 3.9) can be
removed completely, and thus our refinement strategy (Section 3.4) could have been
simplified as follows:

• Initial model: connecting the controller to the motor.
• 1st refinement: connecting the motor button to the controller.
• 2nd refinement: connecting the controller to the clutch.
• 3rd (4th) refinement: connecting the controller to the door.
• 4th (5th) refinement: constraining the clutch and the door and the motor and the

door.
• 5th (6th) refinement: more constraints between the clutch and the door.
• 6th (7th) refinement: connecting the clutch button to the controller.

3.12 Another design pattern: strong synchronization of two strong
reactions

3.12.1 Introduction

We consider now the following requirements FUN_3 and FUN_4 concerning the rela-
tionship between the clutch and the door:

When the clutch is disengaged, the
door cannot be closed several times

When the door is closed, the clutch
cannot be disengaged several times

This is also a case of synchronization between two strong reactions. This time however
the weak synchronization is not sufficient any more: we need a strong synchronization.
This is indicated in Fig. 3.23.The full picture is indicated in Fig. 3.24.
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Clutch is disengaged

several times

Door CANNOT be closed and re–opened

several times 

Door is closed

Clutch CANNOT be disengaged and re–engaged

Fig. 3.23. Strong synchronization between the clutch and the door

Door is closed

Clutch is engaged

Door is open

Clutch is disengaged

Fig. 3.24. The full picture of strong synchronization

3.12.2 Modeling

The modeling of this new constraints will be presented as a refinement of the “weak–
strong” model of Section 3.8. In order to formalize this new kind of synchronization,
we have to consider again the counters ca, cr, cb, and cs as indicated in Fig. 3.25.

What we want to achieve is expressed in the following properties:

ca = cb ∨ ca = cb + 1

cr = cs ∨ cr = cs + 1

Let us first treat the case of counters ca and cb as illustrated in Fig. 3.26. It seems
that the condition ca = cb + 1 is implied by the condition a = 1 ∧ b = 0 as indicated
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counter ca

counter cr

counter cb

counter cs

Fig. 3.25. The counters

ca = cbca = cb + 1

Fig. 3.26. Counters ca and cb

in Fig. 3.27. However, this guess is wrong as can be seen from Fig. 3.28. The solution
consists in introducing a new variable m as in Fig. 3.29.

variables: . . .

m

dbl2_1: m ∈ {0, 1}

dbl2_2: m = 1 ⇒ ca = cb + 1

dbl2_3: m = 0 ⇒ ca = cb

Let us now treat the case of counters cr and cs as indicated in Fig. 3.30. It seems
that the condition cr = cs+1 is implied by the condition r = 1∧ s = 0 as indicated in
Fig 3.31. But again this guess is wrong as illustrated in Fig 3.32. The solution is shown
in Fig. 3.33. This led to the following additional invariants dbl2_4 and dbl2_5:
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ca = cbca = cb + 1

a = 1 and b = 0

b = 0

a = 1

Fig. 3.27. A guess

ca = cbca = cb + 1

b = 0

a = 1 a = 1

b = 0

a = 1 and b = 0 a = 1 and b = 0

Fig. 3.28. The guess is wrong

ca = cbca = cb + 1

m = 0m = 0

m = 1

Fig. 3.29. Introducing a new variable m
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m = 0m = 0

m = 1

cr = cscr = cs + 1cr = cs

Fig. 3.30. Counters cr and cs

m = 0m = 0

m = 1

cr = cscr = cs + 1cr = cs

r = 1 and s = 0

s = 0

r = 1

s = 0

Fig. 3.31. A guess

m = 0

m = 1

cr = cscr = cs + 1cr = cs

r = 1 and

s = 0

r = 1

s = 0

r = 1 s = 0and

s = 0

r = 1

m = 0s = 0

Fig. 3.32. The guess is wrong
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m = 0 

cr = cscr = cs + 1cr = cs

r = 1 and

s = 0

r = 1

s = 0

r = 1 s = 0and

s = 0

r = 1

m = 1

m = 1

b = 1

b = 0 m = 0 

Fig. 3.33. The solution

dbl2_1: m ∈ {0, 1}
dbl2_2: m = 1 ⇒ ca = cb + 1

dbl2_3: m = 0 ⇒ ca = cb

dbl2_4: r = 1 ∧ s = 0 ∧ (m = 1 ∨ b = 1) ⇒ cr = cs + 1

dbl2_5: r = 0 ∨ s = 1 ∨ (m = 0 ∧ b = 0) ⇒ cr = cs

Let us now turn our attention to the modified events. This is indicated in Fig. 3.34.
As can be seen, the events of concern are a_on, b_on, and a_off. Here are the proposals
for these events:

a_on
when

a = 0
r = 0

then
a := 1
ca := ca + 1
m := 1

end

b_on
when

r = 1
a = 1
b = 0
s = 0
m = 1

then
b := 1
cb := cb + 1
m := 0

end

a_off
when

a = 1
r = 1
b = 0
s = 0
m = 0

then
a := 0

end
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m = 0 m = 0 

m = 1 

a_on

b_on

a_off

Fig. 3.34. The events

It remains now for us to do the proofs. Similar techniques as the ones used in Sec-
tions 3.2 and 3.8 lead us to define the following additional invariants dbl2_6 and
dbl2_7:

dbl2_1: m ∈ {0, 1}

dbl2_2: m = 1 ⇒ ca = cb + 1

dbl2_3: m = 0 ⇒ ca = cb

dbl2_4: r = 1 ∧ s = 0 ∧ (m = 1 ∨ b = 1) ⇒ cr = cs + 1

dbl2_5: r = 0 ∨ s = 1 ∨ (m = 0 ∧ b = 0) ⇒ cr = cs

dbl2_6: m = 0 ⇒ a = 0 ∨ r = 1

dbl2_7: m = 1 ⇒ b = 0 ∧ s = 0 ∧ a = 1

After this last invariant extension, the proofs are done easily.
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3.13 Sixth refinement: more constraints between clutch and door
It remains now for us to instantiate the “strong–strong” pattern of the previous section.
We do this as follows:

a � door_actuator

r � door_sensor

0 � open

1 � closed

b � clutch_actuator

s � clutch_sensor

0 � disengaged

1 � engaged

a_on � treat_close_door
a_off � treat_open_door
b_on � treat_start_clutch

This leads to the following event instantiations:

a_on
when

a = 0
r = 0

then
a := 1
m := 1

end

treat_close_door
when

door_actuator = open

door_sensor = open

motor_actuator = working

motor_sensor = working

then
door_actuator := closed

m := 1
end

b_on
when

b = 0
s = 0
r = 1
a = 1
m = 1

then
b := 1
m := 0

end

treat_start_clutch
when

motor_actuator = working

motor_sensor = working

clutch_actuator = disengaged

clutch_sensor = disengaged

door_sensor = closed

door_actuator = closed

m = 1
then

clutch_actuator := engaged

m := 0
end
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a_off
when

a = 1
r = 1
s = 0
b = 0
m = 0

then
a := 0

end

treat_open_door
when

door_actuator = closed

door_sensor = closed

clutch_sensor = disengaged

clutch_actuator = disengaged

m = 0
then

door_actuator := open

end

The final synchronization of the door and the clutch is shown in Fig. 3.35, where the
underlined events are environment events.

treat_close_door

treat_start_clutch

treat_stop_clutch

push_stop_clutch_button (B4)

door_close

clutch_stop

treat_open_door

clutch_start

door_open
push_start_clutch_button (B3)

Fig. 3.35. The final synchronization of the door and the clutch

3.14 Seventh refinement: connecting the controller to the clutch buttons
3.14.1 Copying

We simply connect button B3 to the event treat_close_door and button B4 to the
events treat_stop_clutch.

3.14.2 Summary of events

• Environment

motor_start
motor_stop
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clutch_start
clutch_stop
door_close
door_open
push_start_motor_button
release_start_motor_button
push_stop_motor_button
release_stop_motor_button
push_start_clutch_button
release_start_clutch_button
push_stop_clutch_button
release_stop_clutch_button

• Controller
treat_push_start_motor_button
treat_push_start_motor_button_false
treat_push_stop_motor_button
treat_push_stop_motor_button_false
treat_release_start_motor_button
treat_release_stop_motor_button
treat_start_clutch
treat_stop_clutch
treat_close_door
treat_open_door
treat_close_door_false
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A simple file transfer protocol

The example introduced in this chapter is quite different from the previous one, where
the program was supposed to control an external situation (cars on a bridge or a
mechanical press). Here we present a so-called protocol to be used on a computer
network by two agents. This is the very classical two-phase handshake protocol. This
example has been presented in many places. A very nice presentation is the one given
in the book by L. Lamport [1].

This example will allow us to extend our usage of the mathematical language with
such constructs as partial and total functions, domain and range of functions, and func-
tion restrictions. We shall also extend our logical language by introducing universally
quantified formulas and corresponding inference rules.

4.1 Requirements
The purpose of the protocol is to transfer a sequential file from one agent, the sender,
to another one, the receiver. The transmitted file should be equal to the original file:

The protocol ensures the copy of a file from one site to another one FUN-1

The sequential file, as its name indicates, is made of a number of items disposed in an
ordered fashion:

The file is supposed to be made of a sequence of items FUN-2

These agents are supposed to reside on different sites, so that the transfer is not made
by a simple copy of the file, it is rather realized gradually by two distinct programs

149
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exchanging various kinds of messages on the network:

The file is sent piece by piece between the two sites FUN-3

Such programs are working on different machines: the overall protocol is indeed a
distributed program.

4.2 Refinement strategy
We are not going to model the final protocol right away; this would be too complicated
and error prone. The refinement strategy we are going to adopt is explained now.

In the initial model (Section 4.3), the idea is to present the final result of the protocol
which we can observe when the protocol is finished. At this initial stage, the two
participants in the protocol – the sender and the receiver – are not supposed to reside
on different sites. This is a technique we shall always use when modeling protocols.
This initial model is important because it tells us exactly what the protocol is supposed
to achieve without telling us how.

In the first refinement (Section 4.4), we shall separate the sender and the receiver.
Moreover, the file will be transmitted piece by piece between them, not in one shot as
in the initial model. However, this separation of the sender and the receiver will not
be complete; we suppose that the receiver can “see” what remains to be transmitted
in the sender’s site and is able to take “directly” the next item from the sender and
add it to its own file. At this stage, we explain the essence of the algorithm, but we do
not see the details yet of the distributed behavior as performed on each site. This kind
of refinement is very important in the modeling of a protocol: we simplify our task
by allowing separate participants to “cheat” by looking directly into other participants
private memories.

In the next refinement (Section 4.5), the receiver is not cheating any more: it is not
able to access directly the sender’s site. In fact, the sender will send messages that
the receiver will read. The receiver then responds to these messages by returning some
acknowledgment messages to the sender. The fine details of the distributed algorithm
are revealed in full. What is important here is that the messages between the partic-
ipants can be seen as a means of implementing the previous abstraction where the
receiver could have direct access to the contents of the sender’s memory. Again, this is
a technique we shall frequently use in protocol modeling.

In the final refinement (Section 4.6), we shall optimize what is sent between the two
participants. The protocol is not modified any more; it is made just more efficient.
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4.3 Protocol initial model
What we are going to develop here is not directly the distributed program in question.
We are rather going to construct a model of its distributed execution. In the context of
this model, the file to transfer is formalized by means of a finite sequence f . The file f

is supposed to “reside” at the sender’s site. At the end of this protocol execution, we
want the file f to be copied without loss or duplication at the receiver’s site on a file
named g supposed to be empty initially. This is illustrated on Figure 4.1.

a

b

c

RECEIVER

g

a

b

c

f

SENDER

a

b

c

RECEIVER

g

f

SENDER

INITIAL  SITUATION FINAL  SITUATION

Fig. 4.1. Initial and final situations

4.3.1 The state

The context is made of a set D, which is called a carrier set. This set represents the data
that are stored in the file. The only implicit property that we assume concerning carrier
sets is that they are not empty. The presence of this set makes our development generic.
It means that the set D could be instantiated later to a particular set. Furthermore,
we have two constants. First the constant n, which is a positive natural number, and
second the constant f , which is a total function from the interval 1 . . . n to the set D.
This is the way we formalize finite sequences. These properties are written below as
axm0_1 and axm0_2:

sets: D
constants: n

f

axm0_1: 0 < n

axm0_2: f ∈ 1 .. n→D
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We have a variable, g, which is a partial function from the interval 1 ..n to the set D. It
is written below in invariant inv0_1. We have also a boolean variable b stating when
the protocol is finished (b = TRUE). As we shall see later in Section 4.3.3, variable g

is empty when the protocol is not finished, whereas it is equal to f when the protocol
is finished. This is formalized in invariants inv0_2 and inv0_3:

variables: g

b

inv0_1: g ∈ 1 .. n →D

inv0_2: b = FALSE ⇒ g = ∅

inv0_3: b = TRUE ⇒ g = f

4.3.2 Reminder of mathematical notations

In the previous sections, we have used some mathematical concepts such as intervals,
partial functions, and total functions. We recall here a few notations and definitions
concerning such concepts and similar ones.

Given two natural numbers a and b, the interval between a and b is the set of natural
numbers x where a ≤ x and x ≤ b. It is denoted by the construct a .. b. Note that when
b is smaller than a, the interval a .. b is empty:

x ∈ S set membership operator

N set of natural numbers: {0, 1, 2, 3, . . .}

a .. b interval from a to b: {a, a + 1, . . . , b} (empty when b < a)

Given two sets S and T , and two elements a and b belonging to S and T respectively,
the ordered pair made of a and b in that order is denoted by the construct a → b. The
set of all such ordered pairs made out of S and T is called the Cartesian product of S

and T . It is denoted by the construct S × T .
Given a set T , the fact that a set S is a subset of T is denoted by the predicate

S ⊆ T . The set of all subsets of a set S is called the power set of S. It is denoted by
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the construct P(S):

a → b pair constructing operator

S × T Cartesian product operator: the set of all pairs from S to T

S ⊆ T set inclusion operator

P(S) power set operator: set of all subsets of a given set S

Given two sets S and T , the power set of their Cartesian product is called the set of
binary relations built on S and T . It is denoted by P(S × T ), usually abbreviated by
the construct S↔ T . A binary relation is thus a set of pairs. It can be empty. In this
case, it is denoted by the empty set ∅.

Given a binary relation r built on two sets S and T (thus r belongs to the set
S↔T ), the domain of r is the subset of S whose elements x are such that there exists
an element y belonging to T such that the pair x → y belongs to r. It is denoted by
the construct dom(r).

Symmetrically, the range of r is the subset of T whose elements y are such that there
exists an element x of S such that the pair x → y belongs to r. It is denoted by the
construct ran(r):

S↔ T set of binary relations from S to T

dom(r) domain of a relation r

ran(r) range of a relation r
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Next is an illustration of a binary relation r between sets S and T :

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r
TS

Given two sets S and T , a partial function f from S to T is a binary relation from
S to T , where any two pairs x → y and x → z belonging to f are such that y is equal
to z. The set of all partial functions from S to T is denoted by the construct S → T .

Given two sets S and T , a total function f from S to T is a partial function from S

to T whose domain is exactly S. The set of all total functions from S to T is denoted
by the construct S→ T :

S → T set of partial functions from S to T

S→ T set of total functions from S to T

Next is an illustration of a partial function f from set S to set T , where the domain
of f is the set {a1, a3, a5, a7} and its range is the the set {b2, b4, b6}:

a3
a2

a6
a7

b1

f

b3

b4

b5

b6

b2

a5

a1

a4

TS
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Now comes an illustration of a total function f from set S to set T . As can be seen,
the domain of f is now exactly S:

a2

b1

f

b3

b4

b5

b6

b2

a1

a4
a3

a5

a6

a7

TS

4.3.3 The events

Coming back to our example, let us now define the events of our first model. Initially,
g is empty. This is indicated in the special event init below. The very global transfer
action of the protocol can be abstracted by means of a single event called final:

init
g := ∅

b := FALSE

final
when

b = FALSE
then

g := f

b := TRUE
end

Event final does not exist by itself. In other words, it is not part of the protocol;
it is just a temporal snapshot that we would like hopefully to observe. In reality, the
transfer of the file f is not done in one shot; it is made gradually. But, at this very initial
stage of our approach, we are not interested in this. In other words, as an abstraction,
and regardless of what will happen in the details of the distributed execution of the
protocol, its final action must result in the possibility to observe that the file f has
indeed been copied into the file g.

At this point, it should be noted that we are not committed to any particular proto-
col; this model is thus, in a sense, the most general one corresponding to a given class
of protocols, namely that of file transfers. Some more sophisticated specifications could
have been proposed, in which the file might have only been partially transfered (this
case will be studied in Chapter 6), but such an extension is not studied in the present
example.



156 A simple file transfer protocol

4.3.4 Proofs

Let us now turn our attention to the proofs. At this stage, the only proofs to be
considered are invariant proofs and the deadlock freeness proof. Here are the proof
obligations concerning the establishment of invariants inv0_1 and inv0_2 by the
initialization event init. Here is the first proof obligation concerning the establishment
of invariant inv0_1 by event init:

axm0_1
axm0_2
�
modified inv0_1

0 < n

f ∈ 1 .. n→D

�
∅ ∈ 1 .. n →D

init / inv0_1 / INV

The corresponding proof will be done by using informal arguments only: clearly the
empty function is a partial function from 1 .. n to D. For proofs involving set-theoretic
constructs, we shall not provide specific inference rules as we have done in Chapter
2 for propositional logic and equality, we shall instead use a “generic” inference rule
named SET, which we shall justify informally each time. Here are the proof obligations
concerning the establishment of invariant inv0_2 and inv0_3 by event init:

axm0_1
axm0_2
�
modified inv0_2

0 < n

f ∈ 1 .. n→D

�
FALSE = FALSE ⇒ ∅ = ∅

init / inv0_2 / INV

axm0_1
axm0_2
�
modified inv0_3

0 < n

f ∈ 1 .. n→D

�
FALSE = TRUE ⇒ ∅ = f

init / inv0_3 / INV
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The corresponding proofs can be done easily. Here is the proof obligation concerning
the preservation of invariant inv0_1 by event final:

axm0_1
axm0_2
inv0_1
inv0_2
inv0_3
guard
�
modified inv0_1

0 < n

f ∈ 1 .. n→D

g ∈ 1 .. n →D

b = FALSE ⇒ g = ∅

b = TRUE ⇒ g = f

b = FALSE
�
f ∈ 1 .. n →D

final / inv0_1 / INV

After applying MON, the proof goes as indicated below. A total function from one set
to another is indeed a partial function built on the same sets:

f ∈ 1 .. n→D

�
f ∈ 1 .. n →D

SET

Here are the proof obligations concerning the preservation of invariant inv0_2 and
inv0_3 by event final:

axm0_2
axm0_3
inv0_1
inv0_2
inv0_3
guard
�
modified inv0_2

0 < n

f ∈ 1 .. n→D

g ∈ 1 .. n →D

b = FALSE ⇒ g = ∅

b = TRUE ⇒ g = f

b = FALSE
�
TRUE = FALSE ⇒ g = ∅

final / inv0_2 / INV



158 A simple file transfer protocol

axm0_2
axm0_3
inv0_1
inv0_2
inv0_3
guard
�
modified inv0_3

0 < n

f ∈ 1 .. n→D

g ∈ 1 .. n →D

b = FALSE ⇒ g = ∅

b = TRUE ⇒ g = f

b = FALSE
�
TRUE = TRUE ⇒ f = f

final / inv0_3 / INV

The corresponding proofs can be done easily using inference rules introduced in Chap-
ter 2.

4.4 Protocol first refinement
4.4.1 Informal presentation

We are now going to refine the file transfer done in one shot by the previous abstract
event final acting “magically” on the receiver’s side. For this, we have an additional
concrete event named receive corresponding to an intermediate phase of the protocol.
It aims at transferring the file piece by piece. Of course, the abstract event final should
not disappear; it will have a concrete counterpart in which the same observation as in
the abstraction can be done.

In Fig. 4.2, we can see on the top what could have been observed in the abstraction,
namely the init event followed by the final event. On the bottom, we can see what
we can observe during this refinement. We can say that the eyes of the observer are
now open more often than in the abstraction. It is possible to observe a number of
occurrences of event receive in between that of event init and that of event final.

init receive receive receive

init final

final

Fig. 4.2. Initial abstraction and first refinement observations

We change the variable g to another one, h, which is modified by event receive. In
fact, this event will gradually copy the file f from the sender’s side to the receiver’s
side. For this it will use an index r, which is progressing as indicated in Fig. 4.3 below.
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receive receive receive

b

a

b

c

f

n

1r

a

b

c

b

a
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b

a

f

a

r

n

1

c

b

a

f

a

r

c

n

1

hh hh

Fig. 4.3. A trace of the first refinement behaviour

As can be seen, event receive is adding an element to file h by copying the rth element
of file f to file h. It will be interesting to see what event final does now (wait until
Section 4.4.4).

4.4.2 The state

We enlarge our state by adding to it a variable r which is a natural number. This
variable is initialized to 1. It will serve as an index on the file f ; it is thus within the
interval 1 .. n+1 as indicated in invariant inv1_1 below. We also replace the variable
g by another one named h. Variable h is exactly equal to the constant f with domain
restricted to the interval 1 .. r−1 (see the next section). This is written by means of the
following construct: (1 .. r−1)�f . In other words, in (1 .. r−1)�f , we are considering
only those pairs x → y of f where x is in the set 1 .. r− 1. This is recorded in invariant
inv1_2. Finally, we have to establish the connection between the concrete variable h

and the abstract variable g; at the end of the protocol (when b is TRUE), r must be
equal to n + 1. This is stated in invariant inv1_3. It is then easy to prove Theorem
thm1_1, stating that g is equal to h when b is equal to TRUE.

variables: b

h

r

inv1_1: r ∈ 1 .. n + 1

inv1_2: h = (1 .. r − 1) � f

inv1_3: b = TRUE ⇒ r = n + 1

thm1_1: b = TRUE⇒ g=h
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4.4.3 More mathematical symbols

In the previous section, we have introduced the operator � for restricting the domain
of a relation. In this section, we introduce more restriction operators.

Given a relation r form S to T and a subset s of S, expression s � r denotes the
relation r with only those pairs whose first element is in s. It is called a domain
restriction.

Given a relation r form S to T and a subset s of S, expression s �− r denotes the
relation r with only those pairs whose first element is not in s. It is called domain
subtraction.

Given a relation r form S to T and a subset t of T , expression r � t denotes the
relation r with only those pairs whose second element is in t. It is called a range
restriction.

Given a relation r form S to T and a subset s of S, expression r �− t denotes the
relation r with only those pairs whose second element is not in t. It is called range
subtraction:

s � r domain restriction operator

s �− r domain subtraction operator

r � t range restriction operator

r �− t range subtraction operator

Next is an illustration where the dotted lines correspond to {a3, a7}� f .

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

f
TS
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Now comes an illustration where the dotted lines correspond to {a3, a7}�− f .

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

TS
f

And now an illustration where the dotted lines correspond to f � {b2, b4}.

a3
a2

a6
a7

b1

b3

b4

b5
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a5

a1

a4

S
f

T

Finally, an illustration where the dotted lines correspond to f �− {b2, b4}.
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4.4.4 The events

Coming back to our example, let us now define the events of this refinement. The
initializing event init set b to FALSE as in the abstraction, h to the empty set and r

to 1. Event receive is adding an element to file h by copying the rth element of file f

into h, it also increments r, and event final does nothing (just sets b to TRUE as in
the abstraction)! This seems strange, but we shall prove that it refines its abstraction.
In fact, it just acts now as a witness; when its guard is true, that is when condition
r = n + 1 holds and b is FALSE, then file g must be equal to file f as stipulated in its
abstraction:

init
b := FALSE
h := ∅

r := 1

receive
status

convergent
when

r ≤ n

then
h := h ∪ {r → f(r)}
r := r + 1

end

final
when

r = n + 1
b = FALSE

then
b := TRUE

end

Notice the status of event receive; it is convergent, meaning that we have to prove that
it cannot “keep control” for ever. To prove this, we have to exhibit a numerical variant
and prove that event receive decreases it. This will be done in Section 4.4.6.

4.4.5 Refinement proofs

The proof for the initializing event init is simple. Here is the proof obligation for the
establishment of invariant inv1_1:

axm0_1
axm0_2
�
modified inv1_1

0 < n

f ∈ 1 .. n→D

�
1 ∈ 1 .. n + 1

init / inv1_1 / INV

The proof is done easily by transforming the goal 1 ∈ 1 .. n + 1 into 1 ≤ 1 ∧ 1 ≤
n + 1. Then we apply inference rule AND_R followed by simple arithmetic calculations.
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Here is now the proof obligation for the establishment of invariant inv1_2:

axm0_1
axm0_2
�
modified inv1_2

0 < n

f ∈ 1 .. n→D

�
∅ = (1 .. 1− 1) � f

init / inv1_2 / INV

To prove this, we first transform the interval 1 ..1−1 into 1 ..0, which is empty. Then
we notice that the expression ∅ � f denotes the empty set. We finally apply inference
rule EQL. Finally, proving inv1_3 is trivial.

More interesting are the refinement proofs for event final. First, we have to apply the
proof obligation rule GRD, which is obvious since the guard of the concrete version,
namely r = n + 1, is clearly stronger than that of the abstraction, which is missing
(thus always true). Applying now rule INV to invariant inv1_1 leads to the proof of
the following sequent, whose proof is obvious according to inference rules MON and
then HYP (since the goal r ∈ 1 .. n + 1 is also an hypothesis):

. . .

inv1_1
. . .

guard of final
. . .

�
modified inv1_1

. . .

r ∈ 1 .. n + 1
. . .

r = n + 1
. . .

�
r ∈ 1 .. n + 1

final / inv1_1 / INV

Likewise, invariant inv1_2 is trivially proved using inference rules MON and HYP:

. . .

inv1_2
. . .

guard of final
. . .

�
modified inv1_2

. . .

h = (1 .. r − 1) � f

. . .

r = n + 1
. . .

�
h = (1 .. r − 1) � f

final / inv1_2 / INV
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The preservation of invariant inv1_3 by event final requires proving the following,
which is obvious:

. . .

guard of final
. . .

�
modified inv1_3

. . .

r = n + 1
. . .

�
TRUE = TRUE ⇒ r = n + 1

final / inv1_3 / INV

The preservation of invariant inv1_1 by event receive requires proving:

. . .

inv1_1
. . .

guard of receive
�
modified inv1_1

. . .

r ∈ 1 .. n + 1
. . .

r ≤ n

�
r + 1 ∈ 1 .. n + 1

receive / inv1_1 / INV

Here is the proof after applying MON:

r ∈ 1 .. n + 1
r ≤ n

�
r + 1 ∈ 1 .. n + 1

ARI

1 ≤ r ∧ r ≤ n + 1
r ≤ n

�
1 ≤ r + 1 ∧
r + 1 ≤ n + 1

AND_L

1 ≤ r
r ≤ n + 1
r ≤ n

�
1 ≤ r + 1 ∧
r + 1 ≤ n + 1

AND_R · · ·

. . .




1 ≤ r
r ≤ n + 1
r ≤ n

�
1 ≤ r + 1

MON
1 ≤ r

�
1 ≤ r + 1

ARI
1 < r + 1

�
1 ≤ r + 1

ARI

1 ≤ r
r ≤ n + 1
r ≤ n

�
r + 1 ≤ n + 1

MON
r ≤ n

�
r + 1 ≤ n + 1

ARI
r ≤ n

�
r ≤ n

HYP
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The preservation of invariant inv1_2 by event receive requires proving:

. . .

inv1_1
inv1_2
. . .

guard of receive
�
mod. inv1_2

. . .

r ∈ 1 .. n + 1
h = (1 .. r − 1) � f

. . .

r ≤ n

�
h ∪ {r → f(r)} = (1 .. r + 1− 1) � f

receive/inv1_2/INV_REF

Here is the proof after applying MON:

f ∈ 1 .. n→D
r ∈ 1 .. n + 1
h = (1 .. r − 1) � f
r ≤ n
�

h ∪ {r → f(r)} = (1 .. r + 1− 1) � f

ARI

f ∈ 1 .. n→D
1 ≤ r
h = (1 .. r − 1) � f
r ≤ n
�

h ∪ {r → f(r)} = (1 .. r) � f

EQ_LR . . .

. . .

f ∈ 1 .. n→D

1 ≤ r

r ≤ n

�
(1 .. r − 1) � f ∪ {r → f(r)} = (1 .. r) � f

SET

The last sequent is discharged by noticing that adding the mini-function {r → f(r)}
(where r is in the domain of f) to the function f restricted to the interval 1 .. r − 1
yields exactly f restricted to the interval 1 .. r. The preservation of invariant inv1_3
by event receive requires proving:

. . .

inv1_3
guard of receive
�
modified inv1_3

. . .

b = TRUE ⇒ r = n + 1
r ≤ n

�
b = TRUE ⇒ r + 1 = n + 1

receive / inv1_3 / INV_REF
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The proof goes as follows after applying MON:

b = TRUE ⇒ r = n + 1
r ≤ n

�
b = TRUE ⇒ r + 1 = n + 1

IMP_R

b = TRUE ⇒ r = n + 1
r ≤ n

b = TRUE
�
r + 1 = n + 1

IMP_L . . .

. . .

r = n + 1
r ≤ n

b = TRUE
�
r + 1 = n + 1

EQL_LR

n + 1 ≤ n

b = TRUE
�
r + 1 = n + 1

ARI

⊥
b = TRUE
�
r + 1 = n + 1

FALSE_L

4.4.6 Convergence proof of event receive

We have to prove that the new event receive converges. For this, we have to exhibit
a variant, that is a non-negative expression which is decreased by event receive. The
most obvious variant is the following:

variant1: n + 1− r

Proving that this variant is decreased is easy. We have to apply proof obligation rules
NAT (the variant denotes a natural number) and VAR (the variant is decreased by event
receive). The proof of the decreasing of this variant is extremely important because it
shows that the concrete “execution” of event final might be eventually reachable. In
other words, it shows that our initial goal stated in the abstract version of final might
be reachable in the concrete version, despite the new event receive. We have written
“might be” on purpose, because what we have proved is that event receive cannot be
executed for ever. But it might stop in a position where event final cannot be enabled
because its guard would not be true. It is precisely the purpose of the next section to
prove that this cannot happen.
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4.4.7 Proving relative deadlock freeness

We are now going to prove that this system never deadlocks (as was the case for the
abstraction). Applying rule DLF, it is easy to prove that the disjunction of the guards
of events receive and final is always true. Applying the rule leads to the following, after
some simplifications:

r ∈ 1 .. n + 1
�
r ≤ n ∨ r = n + 1

As can be seen, the “execution” is the following: init, followed by one or more “execu-
tions” of event receive, followed by a single “execution” of event final.

4.5 Protocol second refinement
The previous refinement is not satisfactory, as the event receive, supposedly “executed”
by the receiver, has a direct access to the file f , which is supposed to be situated at
the sender site. We want to have a more distributed execution of this protocol. Our
observer’s eyes are now open more frequently and he can see that another event, send,
occurs before each occurrence of event receive. In Fig. 4.4, we can see first what the
observer could see at earlier stages and, in the bottom, what he can see now.

init receive receive receive

init

receivesendreceivesendreceivesendinit

final

final

final

Fig. 4.4. A trace of the second refinement behavior

4.5.1 The state and the events

The sender has a local counter, s, which records the index of the next item to be sent
to the receiver (initially, s is set to 1). When a transmission does occur, the data item
d, which is equal to f(s), is sent to the receiver, the counter s is incremented, and
the new value of s is also sent together with d to the receiver (event send). Notice
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that the sender does not immediately send the next item. It waits until it receives
an acknowledgement from the receiver. This acknowledgement, as we shall see, is the
counter r.

When the receiver receives a pair “index-item”, it compares the received counter with
r and accepts the item if the counter it receives is different from r (event receive). In
this case, r is incremented and then sent as an acknowledgment. When the sender
receives a number r which is equal to its own counter s, it considers this to be an
acknowledgement and proceeds with the next item, and so on.

The sender and the receiver are thus connected by means of two channels as indicated
in Fig. 4.5: the data channel and the acknowledgement channel.

Data channel

Ack. channel

ReceiverSender

Fig. 4.5. The channels

Invariant inv2_1 and inv2_2 below correspond to the main properties of s. It
states that the value of the counter s is at most one more than that of the counter r.
It remains now for us to formalize the channels. For the moment (in this refinement),
the data channel contains the counter s of the sender and also the data item d. As
the counter s has already been formalized, we only have to define the invariants corre-
sponding to d. This is done in invariants inv2_3, which states that the transmitted
data item d is exactly the rth element of the input file f when s is different from r

(that is when s is equal to r+1 according to invariant inv2_2). The Acknowledgment
channel just contains the counter r of the receiver:

variables: b

h

s

r

d

inv2_1: s ≤ n + 1

inv2_2: s ∈ r .. r + 1

inv2_3: s = r + 1 ⇒ d = f(r)
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Next are the various events. They encode the informal behavior of the protocol as
described above:

init
b := FALSE
h := ∅

s := 1
r := 1
d :∈ D

send
when

s = r

r 
= n + 1
then

d := f(s)
s := s + 1

end

receive
when

s = r + 1
then

h := h ∪ {r → d}
r := r + 1

end

final
when

b = FALSE
r = n + 1

then
b := TRUE

end

Notice our usage of the non-deterministic assignment d :∈ D in event init. Non-
deterministic assignment will be explained in greater detail in Section 5.1.8 of Chapter
5. We have just to understand for now that d is assigned any value pertaining to the
set D.

4.5.2 Proofs

All proofs are left as exercises to the reader. We encourage the reader to only take
weaker invariants than those proposed in the previous section. More precisely, first
drop invariant inv2_2 and replace invariant inv2_1 by a weaker one such as s ∈ N,
so that it is possible to see exactly where they are needed. Remember that it will be
necessary to prove in turn that:

• event init establishes the invariants;
• event receive and final correctly refine their more abstract versions;
• event send refines the implicit event skip;
• event send converges; for this, a variant expression will need to be exhibited;
• taken together, events never deadlock.

Also do not forget that for variables that are the same as those in the abstraction, here
b, h, and r, it will be necessary to prove that the actions done on them by old events
receive and final are identical.

4.6 Protocol third refinement
In this refinement, we shall give the final implementation of the two-phase handshake
protocol. The idea is to observe that it is not necessary to transmit the entire coun-
ters s and r on the data and acknowledgment channels. This is so for three reasons:
(1) the only tests made on both sites are equality tests (s = r or s 
= r, as can be seen
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in the events defined at the end of Section 4.5.1); (2) the only modifications of the
counters are simple incrementations (again, this can be seen in the events defined in
the Section 4.5.1); and (3) the difference between s and r is at most 1 (look at invariant
inv2_2). As a consequence, these equality tests can be performed on the parities of
these pointers only. These are thus the quantities we are going to transfer between the
sites.

4.6.1 The state

Here are a few obvious definitions concerning the parities of natural numbers. The
parity of 0 is 0 and the parity of x + 1 is 1− parity(x):

constants: . . .

parity

axm3_1: parity ∈ N→{0, 1}

axm3_2: parity(0) = 0

axm3_3: ∀x · x ∈ N ⇒ parity(x + 1) = 1− parity(x)

Notice that in axm3_3, we see for the first time a predicate logic formula, which is
introduced by the quantifier ∀ (to be read “forall”).

It is then easy to prove the following result (in Section 4.6.3), which we are go-
ing to exploit. It says that the comparison of two natural numbers is identical to
the comparison of their parities when the difference between these two numbers is at
most 1:

thm3_1: ∀x, y · x ∈ N

y ∈ N

x ∈ y .. y + 1
parity(x) = parity(y)
⇒
x = y

This is a theorem, i.e. a consequence to be proved, of what has been said elsewhere,
namely properties of constants and invariants. We now refine the state and introduce
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two new variables p and q defined to be the parities of s and r respectively:

variables: . . .

p

q

inv3_1: p = parity(s)

inv3_2: q = parity(r)

4.6.2 The events

The refined events are as follows:

init
b := FALSE
h := ∅

s := 1
r := 1
p := 1
q := 1
d :∈ D

send
when

p = q

s 
= n + 1
then

d := f(s)
s := s + 1
p := 1− p

end

receive
when

p 
= q

then
h := h ∪ {r → d}
r := r + 1
q := 1− q

end

final
when

b = FALSE
r = n + 1

then
b := TRUE

end

It can be seen that each counter s and r is now modified on one site only. So the only
data transmitted from one site to the other are d and p from the sender to the receiver
and q from the receiver to the sender. Again, all proofs are left as exercises to the
reader.

4.6.3 Inference rules for universally quantified predicates

Before proving Theorem thm3_1, we need clearly some inference rules dealing with
universally quantified formulas. As for elementary logic, we need two rules: one for
universally quantified assumptions (left rule) and one for a universally quantified goal
(right rule). Here are these rules:

H, ∀x ·P(x), P(E) � Q

H, ∀x ·P(x) � Q
ALL_L

H � P(x)

H � ∀x ·P(x)

ALL_R
(x not free in H)

The first rule (ALL_L) allows us to add another assumption when we have a univer-
sally quantified one. This new assumption is obtained by instantiating the quantified
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variable x by any expression E in the predicate P(x). The second rule (ALL_R) allows
us to remove the “∀” quantifier appearing in the goal. This can be done however only
if the quantified variable (here x) does not appear free in the the set of assumptions
H: this requirement is called a side condition.

Equipped with the rule introduced in this section, we can now prove Theorem
thm3_1. The proof obligation for this theorem consists in building a sequent with
thm3_1 as a goal and all relevant axioms as assumptions, yielding the following:

. . .

parity ∈ N→{0, 1}
parity(0) = 0
∀x · x ∈ N ⇒ parity(x + 1) = 1− parity(x)
�
∀x, y · x ∈ N

y ∈ N

x ∈ y .. y + 1
parity(x) = parity(y)
⇒
x = y

This proof is left to the reader.

4.7 Development revisited
4.7.1 Motivation and the introduction of anticipated events

In the development undertaken so far, we were changing the file variable g of the initial
model to another file variable h in the first refinement. Moreover, in order to establish
the relationship between both variables (gluing invariants inv0_2 and inv0_3), we
had to introduce the boolean variable b, which is not really a variable of the protocol.
All this seems a bit artificial.

In fact, the reason why we had to change from variable g in the initial model to
variable h in the first refinement is purely technical. This is because the new event
receive introduced in the first refinement must refine skip (as each new event does).
But this new event modifies h: it adds to h an item taken in f . As a consequence, it
cannot do that on g: h must be distinct from g.

In order to circumvent this difficulty, we introduce the concept of an anticipated
event.† In the initial model, we introduce the event receive as “anticipated”. Its only
action is to possibly modify the variable g in a non-deterministic way. More generally,
if a new anticipated event is introduced in a refinement (which is not the case here), it

† This concept was developed together with D. Cansell and D. Méry.
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does not need to decrease a variant; it will do that only when it becomes convergent
in a further refinement. However, an anticipated event must not increment the current
variant (if any).

In this new development, event receive becomes convergent in the first refinement. It
is exactly as event receive in the previous development, except that it works now with
variable g. By this, we avoid introducing the artificial file variable h and the boolean
variable b.

In the following section, we quickly present this technique applied to our current
development. As you will see, it is simpler than the previous one, thanks to the intro-
duction of an anticipated event in the initial model.

4.7.2 Initial model

variables: g inv0_1: g ∈ N↔D

init
g :∈ N↔D

final
when

g = f

then
skip

end

receive
status

anticipated

when
g 
= f

then
g :∈ N↔D

end

4.7.3 First refinement

variables: g

r

inv1_1: r ∈ 1 .. n + 1

inv1_2: g = (1 .. r − 1) � f

variant1: n + 1− r
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init
g := ∅

r := 1

receive
status

convergent
when

r ≤ n

then
g := g ∪ {r → f(r)}
r := r + 1

end

final
when

r = n + 1
then

skip

end

4.7.4 Second refinement

variables: g

s

r

d

inv2_1: s ≤ n + 1

inv2_2: s ∈ r .. r + 1

inv2_3: s = r + 1 ⇒ d = f(r)

variant2: r + 1− s

init
g := ∅

s := 1
r := 1
d :∈ D

send
status

convergent

when
s = r

r 
= n + 1
then

d := f(s)
s := s + 1

end

receive
when

s = r + 1
then

g := g ∪ {r → d}
r := r + 1

end

final
when

r = n + 1
then

skip

end
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4.7.5 Third refinement

variables: . . .

p

q

inv3_1: p = parity(s)

inv3_2: q = parity(r)

init
g := ∅

s := 1
r := 1
p := 1
q := 1
d :∈ D

send
when

p = q

s 
= n + 1
then

d := f(s)
s := s + 1
p := 1− p

end

receive
when

p 
= q

then
g := g ∪ {r → d}
r := r + 1
q := 1− q

end

final
when

r = n + 1
then

skip

end

4.8 Reference
[1] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and

Software Engineers. Addison-Wesley, 1999.



5

The Event-B modeling notation and proof
obligation rules

In previous chapters, we used the Event-B notation and the various corresponding
proof obligation rules without introducing them initially in a systematic fashion. We
presented them instead in the examples when they were needed. This was sufficient
for the simple examples we studied because we used part of the notation and part of
the proof obligation rules only. But it might not be adequate to continue in this way
when presenting more elaborate examples in subsequent chapters. The purpose of this
chapter is thus to correct this. First, we present the Event-B notation as a whole, in
particular the bits not used so far, and then we present all the proof obligation rules.
This will be illustrated with a simple running example.

5.1 The Event-B notation
5.1.1 Introduction: machines and contexts

The primary concept in doing formal developments in Event-B is that of a model.
A model contains the complete mathematical development of a Discrete Transition
System. It is made of several components of two kinds: machines and contexts. Ma-
chines contain the dynamic parts of a model, namely variables, invariants, theorems,
variants, and events, whereas contexts contain the static parts of a model, namely
carrier sets, constants, axioms, and theorems. This is illustrated in Fig. 5.1. Items
belonging to machines or contexts (variables, invariants, etc.) are called modeling
elements.

A model can contain contexts only, or machines only, or both. In the first case,
the model represents a pure mathematical structure with sets, constants, axioms, and
theorems. In the third case, the model is parameterized by the contexts. Finally, the
second case represents a model which is not parameterized.

176
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Context
carrier sets
constants
axioms
theorems

Machine
variables
invariants
theorems

events
variant

Fig. 5.1. Machine and context

5.1.2 Machine and context relationships

Machines and contexts have various relationships: a machine can be “refined” by an-
other one, and a context can be “extended” by another one. Moreover, a machine can
“see” one or several contexts. Machine and context relationships are illustrated in Fig.
5.2. Here are some visibility rules which must be followed by machines and contexts:

refines

sees

sees

Machine

Machine

Context

Context

extends

refines extends

Fig. 5.2. Machine and context relationships

• A machine can see explicitly several contexts (or no context at all).
• A context can extend explicitly several contexts (or no context at all).
• The notion of context extension is transitive: a context C1 explicitly extending a

context C2, implicitly extends all contexts extended by C1.
• When a context C1 extends a context C2, then the sets and constants of C2 can be

used in C1.
• A machine implicitly sees all contexts extended by an explicitly seen context.
• When a machine M sees a context C, it means that the sets and constants of C can

be used in M.
• The “refines” and “extends” relationships put together must not lead to any cycle.
• A machine only refines at most one other machine.
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• The set of explicitly or implicitly seen contexts of a machine must be as large as the
one of the abstraction of this machine.

All this is illustrated in Fig. 5.3, where it can be seen that machine M0 sees both
context C01 and C02 explicitly, whereas machine M1 sees context C1 explicitly and
contexts C01 and C02 implicitly. Note that the “sees” link between M2 and C1 is
indispensable.

M0 C01

C02

M1 C1
sees

sees

sees

refines

M2

sees
refines

extends

extends

Fig. 5.3. Examples of correct visibilities

5.1.3 Context structure

The most general context structure is the one shown in Fig. 5.4. As can be seen, a
context is made of various clauses introduced by specific keywords. Figure 5.4 presents
the way these clauses are shown within the Rodin Platform, where they are prede-
fined. This means that it is not necessary to enter the various keywords explicitly,
they are there permanently. Clauses are not mandatory; some (or all) of them can be
empty.

As can be seen, some clauses contain modeling elements introduced together with
labels: axioms and theorems. These labels must be clearly all distinct; in the Rodin
Platform, they are generated automatically (although users can change them). Let us
now describe the contents of each clause:

• Each context has a name, which must be distinct from all other component (machine
or context) names within the same model.
• Clause “extends” lists the contexts, which this context extends explicitly. This means

that the present context can reference sets and constants of the explicitly extended
contexts and of their extended contexts.
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• Clause “sets” lists the newly introduced carrier sets which define pairwise disjoint
types. The only property we can implicitly assume about such carrier sets is that
they are not empty.

• Clause “constants” list the various constants introduced in this context. The constant
identifiers must be all distinct and also distinct from the identifiers of the constants
and sets situated in the extended contexts.

• Clause “axioms” lists the various predicates which the constants obey. Such predi-
cates will be present as hypotheses in all proof obligations (Section 5.2).

• Clause “theorems” lists the various theorems which have to be proved within the
context. In order to prove a theorem, we assume the axioms and theorems which are
present in the extended context, the local axioms, but also the local theorems which
are written before the theorem to be proved.

< context_identifier >
extends

< context_identifier_list >
sets

< set_identifier_list >
constants

< constant_identifier_list >
axioms

< label >: < predicate >
. . .

theorems
< label >: < predicate >
. . .

end

Fig. 5.4. Context structure

5.1.4 Context example

An example of context is presented in Fig. 5.5. A set D is defined in context ctx_0.
Moreover, three constants, n, f , and v, are defined in this context: n is a natural
number (axm1), f is a total function from the interval 1 .. n to the set D (axm2), and v

is supposed to belong to the range of f (axm3). A theorem is proposed: n is a positive
number (thm1).

Notice that in this book we shall never write a context as it is shown in Fig. 5.5
because it might be difficult to read when getting bigger. As we have already done
in previous chapters, we shall always present a context with separate boxes (one per
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ctx_0
sets

D
constants

n
f
v

axioms
axm1 : n ∈ N

axm2 : f ∈ 1..n→D
axm3 : v ∈ ran(f)

theorems
thm1 : n > 0

end

Fig. 5.5. Context example

clause) as indicated in Fig. 5.6. Moreover, the “extends” clause will be obvious from
the text.

sets: D
constants: n

f
v

axm1: n ∈ N

axm2: f ∈ 1 .. n→D

axm3: v ∈ ran(f)

thm1: n > 0

Fig. 5.6. Context example as presented in this book

5.1.5 Machine structure

The most general machine structure is shown in Fig. 5.7. As can be seen, a ma-
chine, like a context, is made of various clauses introduced by specific keywords. Fig-
ure 5.7 presents the way these clauses are shown within the Rodin Platform, where
they are predefined. Clauses are not all mandatory, some (or all) of them can be
empty.

As can be seen, some clauses contain modeling elements introduced together with
labels: invariants and theorems. These labels must be clearly all distinct; in the Rodin
Platform, they are generated automatically (although users can change them). Let us
now describe the contents of each clause:
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< machine_identifier >
refines

< machine_identifier >
sees

< context_identifier_list >
variables

< variable_identifier_list >
invariants

< label >: < predicate >
. . .

theorems
< label >: < predicate >
. . .

variant
< variant >

events
< event_list >

end

Fig. 5.7. Machine structure

• A machine has a name, which must be distinct from all other component (machine
or context) names within the same model.

• Clause “refines” contains (if any) the machine which this machine refines.
• Clause “sees” lists the contexts explicitly referenced by the machine. The ma-

chine can use the sets and constants defined in the explicitly or implicitly seen
contexts.

• Clause “variables” list the various variables introduced in this machine. The variable
identifiers must all be distinct, but, unlike the contexts, some variables can be the
same as some variables in the abstract machine (if any).

• Clause “invariants” lists the various predicates which the variables must obey. Vari-
ables of the refined machine (if any) can occur in an invariant. When it is the case,
this invariant is said to be a gluing invariant; as this indicates, it “glues” the space
of the present machine to that of the refined machine.

• Clause “theorems” lists the various theorems which have to be proved within the
machine. In order to prove a theorem, we assume the axioms and theorems of the seen
contexts, the invariants and theorems of the abstract machines, the local invariants,
and also the theorems which are written before the present one.

• The “variant” clause appears in a machine containing some convergent events (see
Section 5.1.7). The variant behavior is explained in Section 5.2.9 describing the
corresponding proof obligation rule.
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• Clause “events” lists the various events of the machine. Events are described in
Section 5.1.7.

5.1.6 Machine example

An example of machine is presented in Fig. 5.8. Machine m_0a sees context ctx_0. A
variable i is defined which belongs to the interval 1 .. n (n is defined in context ctx_0).
The events of this machine are defined in Section 5.1.9. Just as for contexts, in this
book machines are never shown; this is illustrated in Fig. 5.8. Each clause is defined
in a separate box as shown in Fig 5.9. Seen contexts as well as the abstract machines
are obvious from the text.

m_0a
sees

ctx_0
variables

i
invariants

inv1 : i ∈ 1 .. n
events

. . .
end

Fig. 5.8. Machine example

variables: i inv1: i ∈ 1 .. n

Fig. 5.9. Machine example as presented in this book

5.1.7 Events

The most general event structure is shown in Fig. 5.10. An event contains several
clauses introduced by specific keywords. Figure 5.10 presents the way these clauses are
shown on the Rodin Platform, where they are also predefined. Clauses can be missing
except the clause “status”.
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< event_identifier >
status
{ordinary, convergent, anticipated}

refines
< event_identifier_list >

any
< parameter_identifier_list >

where
< label >: < predicate >
. . .

with
< label >: < witness >
. . .

then
< label >: < action >
. . .

end

Fig. 5.10. Event structure

Let us now describe the contents of each clause.

• Clause “status” can be one of ordinary, convergent (the event has to decrease the
variant), or anticipated (the event must not increase the variant).

• Clause “refines” lists the abstract events (if any) this event refines.
• Clause “any” lists the parameters (if any) of the event.
• Clause “where” contains the various guards of the event. Guards are the necessary

conditions for the event to be enabled. Notice that when the “any” clause is missing,
then keyword where is replaced by keyword when in the pretty print of the Rodin
Platform.

• Clause “with” in an event contains the witnesses of the corresponding abstract event.
A witness has to be provided in a refining event for each disappearing parameter of
the abstract event and for each disappearing abstract variable assigned in a “non-
deterministic way” in the abstract event (see Section 5.1.8). The witness for parame-
ter or variable a is defined as follows: a : P (a), where P (a) is a predicate involving a.
A witness predicate can be either deterministic or non-deterministic. A deterministic
witness P (a) is of the form a = E (with E free of a).

• Clause “then” contains the list of actions of the event. Actions are explained in
Section 5.1.8.

Each machine must contain a special initialization event.
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5.1.8 Actions

An event action can be either deterministic or non-deterministic. In the first case,
it is made of a variable identifier, followed by :=, followed by an expression. This is
illustrated as follows:

< variable_identifier > := < expression >

Here is an example of a list of deterministic actions in an event situated in a machine
with variables x. y, and z:

act1 : x := x + z

act2 : y := y − x

Variables x and y are modified as indicated, whereas variable z is not modified. It is
important to notice that such actions are “performed” simultaneously. In other words,
the order of actions in such a list is meaningless. In action act2, the value of x which
is referred to in the right-hand side is the value of x before the action act1 modifying
x takes place.

A special case of deterministic assignment is the following:

< identifier > (< expression_1 >) := < expression_2 >

where < identifier > denotes a function variable. This form is a shorthand for:

< identifier > := < identifier > �− {< expression_1 > → < expression_2 >}
where �− is the relation overriding operator.

Alternatively, an action can be non-deterministic, in which case it is made of a list
of distinct variable identifiers, followed by :|, followed by a before–after predicate. This
is illustrated below:

< variable_identifier_list > :| < before_after_predicate >

The before–after predicate may contain all the variables of the machine: they denote the
corresponding values just before the action takes place. It can also contain some of the
variable identifiers of the list. Such identifiers are primed; they denote the corresponding
values just after the action has taken place. As an example, suppose we have three
variables x, y, and z; here is a non-deterministic action:

act1 : x, y :| x′ > y ∧ y′ > x′ + z.

Variable x becomes greater than y and variable y becomes greater than x′ (the new
value for x) added to z (a variable which is not modified).
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A final option is to define a non-deterministic action as a variable identifier, followed
by :∈, followed by a set expression. This is illustrated below:

< variable_identifier > :∈ < set_expression >

This form is just a special case of the previous one. It can always be translated to
a non-deterministic case as shown in the following example. Suppose a machine with
variables A, x, and y, here is an action:

act1 : x :∈ A ∪ {y}
It is the same as:

act1 : x :| x′ ∈ A ∪ {y}.
Variable x becomes a member of the set A ∪ {y}, whereas variables A and y are not
modified.

Note that the most general form for all actions in an event is in fact the non-
deterministic form. As an example, our initial deterministic case:

x := x + z

y := y − x

can be equivalently “translated” as follows:

x, y :| x′ = x + z ∧ y′ = y − z.

This is the form which is used systematically in the tool. It unifies the three forms of
actions presented in this section.

Note, finally, that actions in the same list have to deal with distinct variables. For
example, the following is not allowed since variable x is modified in both act1 and act2:

act1 : x := x + z

act2 : x, y :| x′ > y ∧ y′ ≤ x′ + z,

whereas the following is:

act1 : x := x + z

act2 : y, z :| z′ > y ∧ y′ ≤ z′ + x.

5.1.9 Examples of events

Events associated with machine m_0a are presented in Fig. 5.11: initialization and
search. This is the way events are shown in this book, where things are simplified.
In ordinary events, the status is missing; moreover, when an event is made of a single
“then” clause, the then keyword is omitted as in event initialization. On the Rodin
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variables: i

inv1: i ∈ 1 .. n

initialization
i := 1

search
any

k
where

k ∈ 1 .. n
f(k) = v

then
i := k

end

Fig. 5.11. Events associated with machine m_0a

Platform, the presentation is slightly different: a label is defined with each guard and
each action.

The search event describes the purpose of machine m_0a, namely to find an index
i in array f such that f(i) is equal to the constant v. On Fig. 5.12, another ma-
chine, m_0b, is presented with a different search event containing a non-deterministic
action.

variables: i

inv1: i ∈ 1 .. n

initialization
i := 1

search
i :| i′ ∈ 1 .. n ∧ f(i′) = v

Fig. 5.12. Another machine m_0b

A refinement of machine m_0a by machine m_1a is shown in Fig. 5.13. A new
variable j is introduced. Notice the “with” clause in event search: it provide a witness for
the parameter k of the abstract event search in machine m_0a, which has disappeared
in the concrete event search of machine m_1a. A new convergent event progress is
introduced. Notice the “variant” clause in machine m_1a with numeric variant n − j:
this variant is decreased by event progress.

A refinement of machine m_0b by machine m_1b is shown in Fig. 5.14. The “with”
clause in event search is not needed because variable i is kept in the concrete version
of event search. Notice the “variant” clause defining the finite set variant j .. n. These
are the only differences with refining machine m_1a.
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variables: i
j

inv1: j ∈ 0 .. n

inv2: v /∈ f [i .. j]

thm1: v ∈ f [j + 1 .. n]

variant: n− j

initialization
i := 1
j := 0

search
when

f(j + 1) = v
with

k : j + 1 = k
then

i := j + 1
end

progress
status

convergent
when

f(j + 1) 
= v
then

j := j + 1
end

Fig. 5.13. Machine m_1a refines machine m_0a

variables: i
j

inv1: j ∈ 0 .. n

inv2: v /∈ f [i .. j]

thm1: v ∈ f [j + 1 .. n]

variant: j .. n

initialization
i := 1
j := 0

search
when

f(j + 1) = v
then

i := j + 1
end

progress
status

convergent
when

f(j + 1) 
= v
then

j := j + 1
end

Fig. 5.14. Machine m_1b refines machine m_0b
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5.2 Proof obligation rules
5.2.1 Introduction

The proof obligations define what is to be proved for an Event-B model. They are
automatically generated by a Rodin Platform tool called the proof obligation gen-
erator. This tool static-checks context or machine texts. It decides then what is to
be proved in these texts. The outcome is various sequents, which are transmitted
to the provers performing automatic or interactive proofs. Here is summary of the
main Rodin Platform kernel tools: the static checkers (comprising the lexical analyzer,
the syntactic analyzer, and the type checker), the proof obligation generator, and the
provers.

In what follows, we describe the different kinds of proof obligation rules. This is done
by defining for each kind of proof obligation rule the specific form of the corresponding
sequent generated by the tool. In what follows, we shall always denote the action of an
event by means of a non-deterministic action (see Section 5.1.8), since, as we know, an
action can always be put under this normalized form.

In order to define rules dealing with an event (this is the case for most rules), we
shall use systematically a schematic event defined as follows:

evt
any x where

G(s, c, v, x)
then

v :| BA(s, c, v, x, v′)
end

where s denotes the seen sets, c the seen constants, and v the variables of the ma-
chine. Seen axioms and theorems are collectively denoted by A(s, c), whereas in-
variants and local theorems are denoted by I(s, c, v). In a refining machines, the
concrete variables will be denoted by w and the local invariants and theorems by
J(s, c, v, w). In order to simplify matters, we shall suppose that no additional contexts
are seen in an refined machine (we shall thus still use s for the sets and c for the
constants).

5.2.2 Invariant preservation proof obligation rule: INV

This proof obligation rule ensures that each invariant in a machine is preserved by each
event. For an event evt and an invariant inv(s, c, v), the PO is named: “evt / inv / INV.”
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Let evt be the following event:

evt
any x where

G(s, c, v, x)
then

v :| BA(s, c, v, x, v′)
end

The rule is then the following:

Axioms and theorems
Invariants and theorems
Guards of the event evt/inv/INV
Before–after predicate of the event
�
Modified specific invariant

A(s, c)
I(s, c, v)
G(s, c, v, x)
BA(s, c, v, x, v′)
�
inv(s, c, v′)

For the machine m_0a shown in Fig. 5.11 the tool generates the following proof obli-
gations: “ initialization / inv1 / INV ” and “search / inv1 / INV ”. Here is proof obligation
“ initialization / inv1 / INV ”:

axm1
axm2
axm3
thm1
BA predicate
�
modified inv1

n ∈ N

f ∈ 1 .. n→D

v ∈ ran(f)
n > 0
i′ = 1
�
i′ ∈ 1 .. n

n ∈ N

f ∈ 1 .. n→D

v ∈ ran(f)
n > 0

�
1 ∈ 1 .. n

Simplification performed
by the PO Generator
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Here is proof obligation “search / inv1 / INV ”:

axm1
axm2
axm3
thm1
inv1
grd1
grd2
BA predicate
�
modified inv1

n ∈ N

f ∈ 1 .. n→D

v ∈ ran(f)
n > 0
i ∈ 1 .. n

k ∈ 1 .. n

f(k) = v

i′ = k

�
i′ ∈ 1 .. n

n ∈ N

f ∈ 1 .. n→D

v ∈ ran(f)
n > 0
i ∈ 1 .. n

k ∈ 1 .. n

f(k) = v

�
k ∈ 1 .. n

Simplification performed
by the PO Generator

As can be seen, the tool has performed some trivial simplifications before sending the
proof obligation to the prover. From now on, in further examples we shall show the
simplified form only.

The INV proof obligation rule is also used in the invariant of a refinement. Let evt0
be an event and evt be one of its refinements:

evt0
any

. . .

where
. . .

then
v :| . . .

end

evt
refines

evt0

any
y

where
H(y, s, c, w)

with
. . .

v′ : W2(v′, s, c, w, y, w′)
then

w :| BA2(s, c, w, y, w′)
end
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Let inv(s, c, v, w) be a specific invariant in this refinement, then the proof obligation
rule is the following:

Axioms and theorems
Abstract invariants and theorems.
Concrete invariants and theorems
Concrete event guards
witness predicates for variables evt/inv/INV
Concrete before–after predicate
�
Modified specific invariant

A(s, c)
I(s, c, v)
J(s, c, v, w)
H(y, s, c, w)
W2(v′, s, c, w, y, w′)
BA2(s, c, w, y, w′)
�
inv(s, c, v′, w′)

5.2.3 Feasibility proof obligation rule: FIS

The purpose of this proof obligation is to ensure that a non-deterministic action is
feasible. For an event evt and a non-deterministic action act in it, the name of this
proof obligation is “evt/act/FIS.” Let evt be the following event:

evt
any x where

G(s, c, v, x)
then

act : v :| BA(s, c, v, x, v′)
end

The rule is then the following:

Axioms and theorems
Invariants and theorems
Guards of the event evt/act/FIS
�
∃v′ · before–after predicate

A(s, c)
I(s, c, v)
G(s, c, v, x)
�
∃v′ ·BA(s, c, v, x, v′)
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For the machine m_0b shown in Fig. 5.12, the tool generates the following proof
obligation:

axm1
axm2
axm3
thm1
inv1
grd
�
∃i′ · before-after predicate

n ∈ N

f ∈ 1 .. n→D

v ∈ ran(f)
n > 0
i ∈ 1 .. n

no guard in event search
�
∃i′ · i′ ∈ 1 .. n ∧ f(i′) = v

5.2.4 Guard strengthening proof obligation rule: GRD

The purpose of this proof obligation is to make sure that the concrete guards in a
concrete event are stronger than the abstract ones in the abstract event. This ensures
that when a concrete event is enabled, so is the corresponding abstract one. For a
concrete event evt and an abstract guard grd in the corresponding abstract event, the
name of this proof obligation is: “evt/grd/GRD”. Let evt0 be an event and evt be its
refinement:

evt0
any

x

where
grd : g(s, c, v, x)
. . .

then
. . .

end

evt
refines

evt0
any

y

where
H(y, s, c, w)

with
x : W (x, s, c, w, y)

then
. . .

end
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Notice the witness predicate W (x, y, s, c, w), which is due to the fact that the abstract
parameters x are different from the concrete parameters y. Then the proof obligation
rule is the following:

Axioms and theorems
Abstract invariants and theorems
Concrete invariants and theorems
Concrete event guards evt/grd/GRD
Witness predicates for parameters
�
Abstract event specific guard

A(s, c)
I(s, c, v)
J(s, c, v, w)
H(y, s, c, w)
W (x, s, c, w, y)
�
g(s, c, v, x)

From the machine m_1a shown in Fig. 5.13, the tool generates the following proof
obligation:

axm1
axm2
axm3
thm1 of ctx_0
inv1 (abstract)
inv1 (concrete)
inv2 (concrete)
thm1 of m_1a
grd1 (concrete)
witness predicate for k

�
grd2 (abstract)

n ∈ N

f ∈ 1 .. n→D

v ∈ ran(f)
n > 0
i ∈ 1 .. n

j ∈ 0 .. n

v /∈ f [1 .. j]
v ∈ f [j + 1 .. n]
f(j + 1) = v

j + 1 = k

�
f(k) = v

5.2.5 The guard merging proof obligation rule: MRG

This proof obligation rule ensures that the guard of a concrete event merging two
abstract events is stronger than the disjunction of the guards of the abstract events.
For a merging event evt, the name of the rule is “evt / MRG”. Let evt01 and evt02 be
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two abstract events with the same parameters and the same action, and let evt be the
concrete merging event:

evt01
any

x

where
G1(s, c, v, x)

then
S

end

evt02
any

x

where
G2(s, c, v, x)

then
S

end

evt
refines

evt01
evt02

any
x

where
H(s, c, v, x)

then
S

end

The rule is as follows:

Axioms and theorems
Abstract invariants and theorems
Concrete event guards evt/MRG
�
Disjunction of abstract guards

A(s, c)
I(s, c, v)
H(s, c, v, x)
�
G1(s, c, v, x) ∨ G2(s, c, v, x)

5.2.6 Simulation proof obligation rule: SIM

The purpose of this proof obligation is to make sure that each action in an abstract
event is correctly simulated in the corresponding refinement. This ensures that when
a concrete event is “executed” what it does is not contradictory with what the corre-
sponding abstract event does. For a concrete event evt and an abstract action act, the
name of this proof obligation is “evt/act/SIM”. Let evt0 be an event and evt be its
refinement:
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evt0
any

x

where
. . .

then
v :| BA1(s, c, v, x, v′)

end

evt
refines

evt0

any
y

where
H(y, s, c, w)

with
x : W1(x, s, c, w, y, w′)
v′ : W2(v′, s, c, w, y, w′)

then
w :| BA2(s, c, w, y, w′)

end

The case presented in these events is the most general one that can be encoun-
tered. Both events have parameters (introduced by keyword any) and also some non-
deterministic actions. We suppose that the abstract and concrete parameters x and
y are pairwise disjoint. Likewise, we suppose that the abstract and concrete vari-
ables v and w are pairwise disjoint. As a result, we have two witness predicates:
W1(x, s, c, w, y, w′) for the abstract parameters x and W2(v′, s, c, w, y, w′) for the ab-
stract variable after-value v′. The proof obligation rule is as follows:

Axioms and theorems
Abstract invariants and theorems
Concrete invariants and theorems
Concrete event guards
witness predicates for parameters evt/act/SIM
witness predicates for variables
Concrete before–after predicate
�
Abstract before–after predicate

A(s, c)
I(s, c, v)
J(s, c, v, w)
H(y, s, c, w)
W1(x, s, c, w, y, w′)
W2(v′, s, c, w, y, w′)
BA2(s, c, w, y, w′)
�
BA1(s, c, v, x, v′)

In order to illustrate this proof obligation rule, we use a specific example. Here is
machine with variable v and event inc:
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variables: v

inv1: v ∈ N

initialization
v := 0

inc
any x where

x ∈ {2, 3, 4}
then

v :| v′ = v + 1 ∨ v′ = v + x

end

Here is now a refinement of this machine:

variables: w

inv1: w = 2 ∗ v

initialization
w := 0

inc
any y where

y ∈ {6, 8}
with

x : y = 2 ∗ x

v′ : w′ = 2 ∗ v′

then
w :| w′ = w + 2 ∨ w′ = w + y

end

Suppose the abstract action in event inc is labeled act, then the generated proof obli-
gation is the following:

Abstract invariant
Concrete invariant
Concrete event guard
witness predicate for parameter inc/act/SIM
witness predicate for variable
Concrete before–after predicate
�
Abstract before–after predicate

v ∈ N

w = 2 ∗ v

y ∈ {6, 8}
y = 2 ∗ x

w′ = 2 ∗ v′

w′ = w + 2 ∨ w′ = w + y

�
v′ = v + 1 ∨ v′ = v + x

Another usage of the SIM proof obligation rule is when (part of) the abstract variables
are kept in the concrete machine. To simplify matters, we give here the rule when all
abstract variables are kept in the concrete machine without even adding new variables
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there. The generalization is simple.

Axioms and theorems
Abstract invariants and theorems
Concrete invariants and theorems
Concrete event guards evt/act/SIM
Concrete before–after predicate
�
Abstract before–after predicate

A(s, c)
I(s, c, v)
J(s, c, v, )
H(s, c, v)
BA2(s, c, v, v′)
�
BA1(s, c, v, v′)

We can illustrate this case with the following machine:

variables: v

inv1: v ∈ N

initialization
v := 0

inc
v :∈ {v + 1, v + 2, v + 3}

This machine is refined as follows:

variables: v initialization
v := 0

inc
v :∈ {v + 1, v + 3}

The generated SIM proof obligation is then the following (act is supposed to be the
label associated with the abstract action):

Abstract invariant
Concrete before–after predicate evt/act/SIM
�
Abstract before–after predicate

v ∈ N

v′ ∈ {v + 1, v + 3}
�
v′ ∈ {v + 1, v + 2, v + 3}

5.2.7 The numeric variant proof obligation rule: NAT

This rule ensures that under the guards of each convergent or anticipated event, a
proposed numeric variant is indeed a natural number. For a convergent (or anticipated)
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event evt, the name of this rule is evt / NAT. Given a machine and a convergent event
defined as follows:

machine
m

refines
. . .

sees
. . .

variables
v

invariant
I(s, c, v)

theorems
. . .

events
. . .

variant
n(s, c, v)

end

evt
status

convergent
any x where

G(s, c, v, x)
then

. . .

end

Then the NAT proof obligation rule is the following:

Axioms and theorems
Invariants and theorems
Event guards evt/NAT
�
A numeric variant is a natural number

A(s, c)
I(s, c, v)
G(s, c, v, x)
�
n(s, c, v) ∈ N

5.2.8 The finite set variant proof obligation rule: FIN

This rule ensures that under the guards of each convergent or anticipated event, a
proposed set variant is indeed a finite set. For a convergent (or anticipated) event evt,
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the name of this rule is evt / FIN. Given a machine and a convergent event defined as
follows:

machine
m

refines
. . .

sees
. . .

variables
v

invariant
I(s, c, v)

theorems
. . .

events
. . .

variant
t(s, c, v)

end

evt
status

convergent
any x where

G(s, c, v, x)
then

. . .

end

Then the FIN proof obligation rule is the following:

Axioms and theorems
Invariants and theorems
Event guards evt/FIN
�
Finiteness of set variant

A(s, c)
I(s, c, v)
G(s, c, v, x)
�
finite(t(s, c, v))

5.2.9 The variant proof obligation rule: VAR

This proof obligation rule ensures that each convergent event decreases the pro-
posed numeric variant or proposed finite set variant. It also ensures that each an-
ticipated event does not increase the proposed numeric variant or proposed finite set
variant.
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For a convergent or anticipated event evt, the name of this rule is “evt / VAR”. Given
a convergent event defined as follows:

evt
status

convergent
any x where

G(x, s, c, v)
then

v :| BA(s, c, v, x, v′)
end

The proof obligation rule is the following if the variant n(s, c, v) is numeric:

Axioms and theorems
Invariants and theorems
Guards of the event evt/VAR
Before–after predicate of the event
�
Modified variant smaller than variant

A(s, c)
I(s, c, v)
G(s, c, v, x)
BA(s, c, v, x, v′)
�
n(s, c, v′) < n(s, c, v)

The proof obligation rule is the following if the variant t(s, c, v) is a finite set:

Axioms and theorems
Invariants and theorems
Guards of the event evt/VAR
Before–after predicate of the event
�
Modified variant strictly included in variant

A(s, c)
I(s, c, v)
G(s, c, v, x)
BA(s, c, v, x, v′)
�
t(s, c, v′) ⊂ t(s, c, v)



5.2 Proof obligation rules 201

Given an anticipated event defined as follows:

evt
status

anticipated
any x where

G(s, c, v, x)
then

v :| BA(s, c, v, x, v′)
end

The proof obligation rule is the following if the variant n(s, c, v) is numeric:

Axioms and theorems
Invariants and theorems
Guards of the event evt/VAR
Before–after predicate of the event
�
Modified variant not greater than variant

A(s, c)
I(s, c, v)
G(s, c, v, x)
BA(s, c, v, x, v′)
�
n(s, c, v′) ≤ n(s, c, v)

The proof obligation rule is the following if the variant t(s, c, v) is a finite set:

Axioms and theorems
Invariants and theorems
Guards of the event evt/VAR
Before–after predicate of the event
�
Modified variant included in or equal to variant

A(s, c)
I(s, c, v)
G(s, c, v, x)
BA(s, c, v, x, v′)
�
t(s, c, v′) ⊆ t(s, c, v)

5.2.10 The non-deterministic witness proof obligation rule: WFIS

This proof obligation rule ensures that each witness proposed in the witness predicate
of a concrete event indeed exists. For a concrete event evt, and an abstract parameter
x, the name of this rule is: evt/x/WFIS. Let the following be a concrete event where
a witness predicate W (x, s, c, w, y) is defined for the abstract parameter x (a similar
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case can be handled for a witness corresponding to an abstract after-value):

evt
refines

evt0
any

y

where
H(y, s, c, w)

with
x : W (x, s, c, w, y, w′)

then
BA2(s, c, w, y, w′)

end

The proof obligation rule is defined as follows:

Axioms and theorems
Abstract invariants and theorems
Concrete invariants and theorems
Concrete event guards evt/x/WFIS
Concrete before–after predicate
�
∃x · witness

A(s, c)
I(s, c, v)
J(s, c, v, w)
H(y, s, c, w)
BA2(s, c, w, y, w′)
�
∃x ·W (x, s, c, w, y, w′)

5.2.11 The theorem proof obligation rule: THM

This rule ensures that a proposed context or machine theorem is indeed provable.
Theorems are important in that they might simplify some proofs. For a theorem thm
in a context or machine, the name of this rule is thm/ THM.

5.2.12 The well-definedness proof obligation rule: WD

This proof obligation rule ensures that a potentially ill-defined axiom, theorem, in-
variant, guard, action, variant, or witness is indeed well defined. For a given modeling
element (axm, thm, inv, grd, act or a variant, or a witness x in an event evt), the names
are: axm / WD, thm / WD, inv / WD, grd / WD, act / WD, VWD , evt /x/ WWD.
The specific form of this proof obligation rule depends on the potentially ill-defined
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expression. This is indicated in the following table:

Mathematical expression Well-definedness condition

inter (S) S 
= ∅

⋂
x · P | T ∃x · P

f(E)
f is a partial function
E ∈ dom(f)

E/F F 
= 0

E mod F 0 ≤ E ∧ 0 < F

card(S) finite(S)

min(S) S 
= ∅ ∧ ∃x · (∀n · n ∈ S ⇒ x ≤ n)

max(S) S 
= ∅ ∧ ∃x · (∀n · n ∈ S ⇒ x ≥ n)
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Bounded re-transmission protocol

In this chapter, we extend the file transfer protocol example of Chapter 4. The added
constraint with regard to the previous simple example is that we suppose now that
the data and acknowledgment channels situated between the two sites are unreliable.
As a consequence, the effect of the execution of the bounded re-transmission protocol
(for short BRP) is to only partially copy (but sometimes totally also) a sequential file
from one site to another. The purpose of this example is precisely to study how we can
cope with this kind of problem of dealing with fault tolerance and how we can formally
reason about them. Notice that, in this chapter, we do not develop proofs as much as
in the previous chapters; we only give some hints and let the reader develop the formal
proof. This example has been studied in many papers among which is the one by J.F.
Groote and J.C. Van de Pool [1].

6.1 Informal presentation of the bounded re-transmission protocol
6.1.1 Normal behavior

The sequential file to be transmitted is supposed to be transported piece by piece
from one site, the sender site, to another one, the receiver site. For that purpose, the
sender sends a certain data item on the so-called data channel connecting the sender
to the receiver. As soon as the receiver receives this data item, it stores it in its own
file and sends back an acknowledgment to the sender on the so-called acknowledgment
channel connecting the receiver to the sender. As soon as the sender receives this
acknowledgment, it sends the next data item, and so on. We suppose that the final
data item sent by the sender contains a special item of information so that the receiver
is able to know when the file transmission is completed. Notice that it has nevertheless
to send a final acknowledgment.

All this can be represented in Fig. 6.1 where the events (SND_snd, RCV_rcv,
RCV_snd, and SND_rcv) are supposed to represent the various phases we have just
described, together with their synchronization as indicated by the arrows.

204
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SND_snd −→ Data channel −→ RCV_rcv

↓↑

SND_rcv ←− Acknowledgment
channel ←− RCV_snd

Fig. 6.1. Schematic view of the transmission protocol

What we have just described is the normal behavior of the protocol, where an entire
file is transmitted from the sender to the receiver. We shall also describe below a
degraded behavior, where the sender’s file is transmitted only partially to the receiver
due to some problems on the transmission channels.

6.1.2 Unreliability of the communications

The transmission channels (data and acknowledgement) situated between the sender
and the receiver might be faulty; that is, some data items sent by the sender or some
acknowledgments sent by the receiver might be lost. In order to cope with the unrelia-
bility of these channels, the sender starts a timer when it sends a data item. This device
is adjusted so that it wakes up the sender (provided, of course, it has not received an
acknowledgment in the meantime) after a certain delay. This delay is guaranteed to
be greater than the maximum delay, dl, which is required to first send a data item
and subsequently receive back the corresponding acknowledgment. In other words, the
sender can conclude that a message has necessarily been lost when the time is over,
that is if a delay, dl, has passed since the last data item has been sent to the receiver
without receiving a corresponding acknowledgment.

But, of course, when the timer wakes it up, the sender does not know whether the lost
message corresponds to the data item that it has been sent or to the corresponding ac-
knowledgment supposed to have been sent back by the receiver. In any case, the sender
re-transmits the previous data item and waits for the corresponding acknowledgment.
This is the reason why the protocol is called a re-transmission protocol.

6.1.3 Protocol abortion

In case of successive losses of messages, the process of data re-transmission can be
repeated a number of times; this is recorded at the sender site in the, so-called, re-try
counter. When this counter reaches a certain pre-defined limit M , the sender decides
that the transmission is definitely broken and aborts the protocol (from its own point
of view). This is the reason why the protocol is called the bounded re-transmission
protocol.
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The question that arises immediately is then, of course, that of the synchronization
with the receiver. In other words, how does the receiver know that the protocol has
aborted? Clearly, the sender cannot communicate any longer with the receiver in order
to send it this abortion information because the communication is now broken.

This problem is solved by means of a second timer situated in the receiver’s site.
This timer is activated by the receiver when it receives a new data item (that is, not a
re-transmitted one). This timer is adjusted so that it wakes up the receiver (provided,
of course, it has not received a new data item in the meantime) after a certain delay
that is guaranteed to be such that the receiver can be certain that the sender has
already aborted the protocol. Clearly, this delay has to be greater than or equal to the
quantity (M +1)×dl, since after that delay the sender must have given up as we have
seen above. When the second timer wakes it up, the receiver aborts the protocol (from
its own point of view). As can be seen, in case of problems, the two participants are
indirectly synchronized by means of these timers.

6.1.4 Alternating bit

As we have seen above, the sender may re-transmit the same data item several times.
But, it may also transmit two (or more) successive data items, which might happen
to have the same value. Of course, this is annoying, since the receiver may confuse a
re-transmitted data item with a new one that is identical to its predecessor. In order to
solve this problem, each data item is accompanied by a bit whose value is alternating
from one item to the next. When the receiver receives two successive items accompanied
by the same bit, it can thus be certain (is it?) that the latter is a re-transmission of
the former.

6.1.5 Final situation of the protocol

At the end of the protocol execution, we might be in one of the following three situa-
tions:

(i) The protocol has successfully been able to transfer the entire file from the sender
to the receiver and the sender has indeed received the last acknowledgment from
the receiver. In that case, both the sender and the receiver know that the protocol
has ended successfully; the file has been entirely copied and both sites know it.

(ii) The protocol has successfully been able to transfer the entire file from the sender to
the receiver, but the sender has never received the last acknowledgment (in spite of
successive re-transmissions, this message is definitely lost in the acknowledgment
channel) so that the sender aborts the protocol, whereas the receiver does not.

(iii) The protocol has been aborted on both sites.
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Notice that the fourth possibility – where the receiver would have aborted the protocol,
whereas the sender would not – is not possible (is it true?).

6.1.6 A pseudo-code description of the BRP

In this section, we present a pseudo-code version of our protocol. The rôle of this
description is to make a little more precise the completely informal presentation of the
previous section. Each event of the protocol (that is, SND_snd, RCV_rcv, RCV_snd,
and SND_rcv) and the two additional events corresponding to the timers (which we
call, SND_timer and RCV_timer) are described in terms of an enabling condition,
introduced as we have done in previous chapters by the keyword when, followed by an
action part, introduced by the keyword then. The former contains the condition under
which the event may be enabled, whereas the latter contains a description of what the
event is supposed to do once it is enabled.

Event SND_snd Our first event, SND_snd, is enabled by a condition expressing that
this event is indeed woken up (we shall see below that this is done either by the event
SND_rcv or by the event SND_timer). The action of SND_snd consists in acquir-
ing the next data item from the sender’s file, storing it on the data channel together
with the corresponding alternating bit, starting the sender’s timer, and finally activat-
ing the data channel (effectively sending the data and the bit). Below, on the left, is
the pseudo-code of this event:

SND_snd
when

SND_snd is woken up
then

acquire data from sender’s file;
store acquired data on data channel;
store sender’s bit on data channel;
start sender’s timer;
activate data channel;

end

RCV_rcv
when

data channel interrupt occurs
then

acquire sender’s bit from data channel;
if sender’s bit = receiver’s bit then

acquire data from data channel;
store data on receiver’s file;
modify receiver’s bit;
if data item is not the last one then

start receiver’s timer;
end

end
reset data channel interrupt;
wake up event RCV_snd;

end

Event RCV_rcv The next event, RCV_rcv, proposed above on the right, is enabled by
the interruption of the data channel on the receiver’s site. The action consists first in
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testing whether the alternating bit sent by the sender is identical to the alternating bit
previously stored by the receiver. If this is the case, then this means, by convention,
that we have a new data item. This item is extracted from the data channel, it is
subsequently stored on the receiver’s file, the receiver’s alternating bit is modified,
and, finally, the receiver’s timer is started if the received item is not the final one. In
any case, the interrupt of the data channel is de-activated, whereas event RCV_snd is
woken up.

Event RCV_snd The next event, RCV_snd, is enabled by event RCV_rcv as we have
seen in the previous section. Its action simply consists in activating the acknowledgment
channel. This event is shown below on the left.

RCV_snd
when

RCV_snd is woken up
then

activate acknowledgment channel;
end

SND_rcv
when

acknowledgment channel interrupt occurs;
then

remove data from sender’s file;
reset retry counter;
modify sender’s bit;
reset acknowledgment channel interrupt;
if sender’s file is not empty then

wake up event SND_snd;
end

end

Event SND_rcv The next event, SND_rcv, is enabled by the interruption of the ac-
knowledgment channel on the sender’s site. The action consists in removing the previ-
ously sent item from the sender’s file (although that data item has already been sent,
it was nevertheless kept in the file in case of a re-transmission; now it can be definitely
removed since we have just received the acknowledgment telling us that the receiver
has indeed received it). The sender’s alternating bit can now be modified for the next
data item, the event SND_snd is woken up, and, finally, the acknowledgment channel
is de-activated.

Event SND_timer The event, SND_timer, is enabled when the sender’s timer reaches
its specified delay. The action consists in testing whether the re-try counter has reached
its maximum value, in which case the protocol is aborted (from the point of view of
the sender). When this is not the case, then the re-try counter is incremented and, of
course, the event SND_snd is woken up for a re-transmission:
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SND_timer
when

sender’s timer interrupt occurs
then

if retry counter is equal to M+1 then
abort protocol on sender’s site

else
increment retry counter;
wake up event SND_snd;

end
end

RCV_timer
when

receiver’s timer interrupt occurs
then

abort protocol on receiver’s site
end

Event RCV_timer The event RCV_timer is enabled when the receiver’s timer reaches
its specified delay. The action consists in aborting the protocol (from the point of view
of the receiver).

Note: The sender knows that the file has been successfully sent and received when
event SND_rcv observes that the file is empty (we suppose that the file is not empty
at the beginning). It seems (but are we sure?) that event SND_timer cannot wake up
event SND_snd while the file is empty.

Likewise, the sender knows that the file has been entirely sent, but that the last
data has not been necessarily received. This happens when event SND_timer aborts
the protocol, while the sender’s file has just got one piece of data left.

The receiver knows that the protocol ends successfully when it receives the last
data; this is supposed to be indicated by a special information put on the last data
itself.

6.1.7 About the pseudo-code

The definition of our protocol by means of this pseudo-code (or by means of any
other similar descriptive notation) raises a number of questions. Are we sure that such
a description is correct in the sense that it effectively corresponds to a file transfer
protocol? Are we sure that the described protocol does terminate (no infinite loop, no
deadlock)? What kind of properties should this protocol maintain?

It is our opinion that these questions cannot be answered on the basis of such an
informal description only. Nevertheless, we believe that it is quite useful to have such a
description at our disposal, since it may act as a goal to our future protocol construction.
In the sequel, and as said above, we shall formally construct our protocol starting
from a mathematical specification of its main properties, and ending up with a formal
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description of its components, which we might then fruitfully compare to their informal
pseudo-code counterparts.

The main drawback of such descriptions, which are often said to constitute the
specification of these protocols, is that they describe a rather informal implementation.
This is the reason why it is so important to rewrite clearly our informal specification
as a proper requirements document. This is what we intend to do in the next section.

6.2 Requirements document
The requirements document which we propose now is far less precise than the previous
informal explanations we have given. It is far less precise in that it does not propose an
implementation. It essentially consists in explaining what kind of belief each site may
have at the end of the protocol. We also make precise when such beliefs are indeed
true. Here are our requirements for the bounded retransmission protocol. We first make
precise the overall purpose of the protocol:

The bounded retransmission protocol is a file transfer protocol.
Its goal is to totally or partially transfer a certain non-empty original
sequential file from one site, the sender, to another, the receiver.

FUN-1

Then we explain what a “total transfer” means:

A “total transfer” means that the transmitted file is an exact copy
of the original one.

FUN-2

We also explain what a “partial transfer” means:

A “partial transfer” means that the transmitted file is a prefix of
the original one.

FUN-3

We describe now what both sites may believe at the end of the protocol:

Each site may end up in any of the two situations: either it believes
that the protocol has terminated successfully, or it believes that the
protocol has aborted before being successfully terminated.

FUN-4
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We relate the beliefs of both the sender and the receiver:

When the sender believes that the protocol has terminated successfully,
then the receiver believes so too. Conversely, when the receiver believes
that the protocol has aborted, then the sender believes so too.

FUN-5

We explain that it is possible that these beliefs are not shared by both participants:

However, it is possible for the sender to believe that the protocol has
aborted, while the receiver believes that it has terminated successfully.

FUN-6

We explain finally that the belief of the receiver is always true:

When the receiver believes that the protocol has terminated
successfully, this is because the original file has been entirely
copied on the receiver’s site. In other words, the receiver’s
belief is true.

FUN-7

When the receiver believes that the protocol has aborted, this is
because the original file has not been copied entirely on the
receiver’s site. Again, the receiver’s belief is true.

FUN-8

6.3 Refinement strategy
In this short section, we present our strategy for constructing the bounded re-
transmission protocol. This will be done by means of an initial model followed by
six refinements.

• The initial model set up the scene by taking account of requirements FUN-4 stating
the final situation of both participants of the protocol.

• In the first and second refinement, we take care of the requirements FUN-5 and
FUN-6, stating some relationship between the status of the two participants.

• In the third refinement, we introduce the transmitted file. It takes account of re-
quirement FUN-1 to FUN-3. In this refinement, the receiver only enters into the
scene.
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• In the fourth refinement, we introduce the sender, which sends messages to the
receiver and vice-versa.
• In the fifth refinement, we introduce the unreliability of the channels.
• In the last refinement, we optimize the information transmitted between the sender

and the receiver.

6.4 Initial model
Our initial model contains a very partial specification of the bounded re-transmission
protocol. It deals with requirements FUN-4:

Each site may end up in any of the two situations: either it believes
that the protocol has terminated successfully, or it believes that the
protocol has aborted before being successfully terminated.

FUN-4

6.4.1 The state

In this initial very abstract model, we introduce the concept of status. For this, we
define a carrier set named STATUS. It is made of three distinct elements: working,
success, and failure as shown below:

sets: STATUS

constants: working

success

failure

axm1_1: STATUS = {working, success, failure}

axm0_2: working 
= success

axm0_3: working 
= failure

axm0_4: success 
= failure

There are two variables s_st and r_st defining the status of the two participants:

variables: s_st

r_st

inv0_1: s_st ∈ STATUS

inv0_2: r_st ∈ STATUS
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6.4.2 The events

Initially, the participants are working. We have then an observer event named brp,
which is fired when both participants are not working any more.

init
s_st := working

r_st := working

brp
when

s_st 
= working

r_st 
= working

then
skip

end

In what follows, we use the technique of anticipated events, which was introduced and
motivated in Section 7 of Chapter 4. We have thus two anticipated events claiming to
have both participants being eventually in either status success or status failure:

SND_progress
status

anticipated

when
s_st = working

then
s_st :∈ {success, failure}

end

RCV_progress
status

anticipated

when
r_st = working

then
r_st :∈ {success, failure}

end

6.5 First and second refinements
These refinements take account of requirement FUN-5:

When the sender believes that the protocol has terminated successfully,
then the receiver believes so too. Conversely, when the receiver believes
that the protocol has aborted, then the sender believes so too.

FUN-5 ,
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and of requirement FUN-6:

However, it is possible for the sender to believe that the protocol has
aborted, while the receiver believes that it has terminated successfully.

FUN-6 .

Finally, it makes more precise what is meant by the previous anticipated event.

6.5.1 The state

Invariant inv1_1 below formalizes requirement FUN-4. As it is not an equivalence, it
take accounts indirectly of requirement FUN-6:

inv1_1: s_st = success⇒ r_st = success

6.5.2 Events of first refinement

We now split events progress into success and failure. Notice that events SND_success
(in this section) and RCV_failure (in the next section) are both “cheating” as they
contain the status of the other participant in their guards. We prove that these events
are indeed convergent; it is done in two separate refinements:

SND_success
refines

SND_progress

status
convergent

when
s_st = working

r_st = success

then
s_st := success

end

SND_failure
refines

SND_progress

status
convergent

when
s_st = working

then
s_st := failure

end

variant1: {success, failure} \ {s_st}
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6.5.3 Events of second refinement

RCV_success
refines

RCV_progress

status
convergent

when
r_st = working

then
r_st := success

end

RCV_failure
refines

RCV_progress

status
convergent

when
r_st = working

s_st = failure

then
r_st := failure

end

variant2: {success, failure} \ {r_st}

6.6 Third refinement
In this refinement, we consider requirements FUN-1 to FUN-3 concerned with the trans-
fer of the file. We also take account of requirement FUN-7 and FUN-8, expressing that
the receiver belief is true.

6.6.1 The state

First, we extend our context by defining the sequential file f to be transmitted from
the sender to the receiver:

sets: D
constants: n

f

axm0_1: 0 < n

axm0_2: f ∈ 1 .. n→D

The transmitted file is denoted by a variable g of length r. Invariant inv3_2 formal-
izes that the transmitted file is always a prefix of the original file. Invariant inv3_3
formalizes that the receiver succeeds exactly when the file has been transmitted
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entirely:

variables: r

g

inv3_1: r ∈ 0 .. n

inv3_2: g = 1 .. r � f

inv3_3: r_st = success ⇔ r = n

6.6.2 The events

New Event RCV_rcv_current_data and refined event RCV_success both cheat as they
contain direct references to information belonging to the sender, namely f(r + 1) and
n. Event init is not shown here: it sets r to 0:

RCV_rcv_current_data
status

convergent

when
r_st = working

r + 1 < n

then
r := r + 1
g := g ∪ {r + 1 → f(r + 1)}

end

RCV_success
when

r_st = working

r + 1 = n

then
r_st := success

r := r + 1
g := g ∪ {r + 1 → f(n)}

end

variant3: n− r

6.6.3 Synchronization of the events

In this refinement, the events are synchronized according to Fig. 6.2. In this figure, the
new events are written in italic and the dashed line corresponds to the only synchro-
nization we had in the abstraction.

6.7 Fourth refinement
In this refinement, the sender will enter into the scene by cooperating with the receiver
in order to transmit the file. In fact, the receiver will no longer directly access the
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RCV_success

brp

init

RCV_rcv_current_data

SND_failure

RCV failure

SND_success

Fig. 6.2. Synchronization of the events

original file f as was the case in the previous refinement; this will be done by the sender
who then sends the corresponding data to the receiver through the, so-called, data
channel. We then introduce this data channel and also the symmetric acknowledgment
channel. Such channels are situated between the two sites. Notice that we do not
introduce yet the fact that these channels are unreliable; this will be done in the next
refinement only.

6.7.1 The state

The state is first enlarged with an activation bit, w, to be used by the sender. This
variable is boolean as indicated implicitly in invariants inv2_3. When w is equal to
TRUE, it means that the sender event sending information to the receiver can be
activated:

variables: . . .

w

s

d

inv4_1: s ∈ 0 .. n− 1

inv4_2: r ∈ s .. s + 1

inv4_3: w = FALSE ⇒ d = f(s + 1)
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The state is also enlarged with a sender pointer s, which is such that s + 1 points
to the next item, f(s + 1), of the original file f to be transmitted to the receiver. It is
defined by invariant inv4_1. Also notice the very important property relating pointer
s to the size r of the transmitted file: r is either equal to s or to s + 1 as indicated by
invariant inv4_2.

The state is further enlarged with the data container d, which is part of the data
channel and which contains the next item to be transmitted. Its main property is
defined in invariant inv4_3, which states that d is equal to f(s + 1) when the data
channel is active, that is when w = FALSE.

6.7.2 The events

Events brp, SND_failure, and RCV_failure are not modified in this refinement. The
initialization event is extended in a straightforward fashion as indicated below. The
activation bit w is set to TRUE at the beginning so that the only two events which
can be fired are the ones described now:

init
r := 0
g := ∅

r_st := working

s_st := working

w := TRUE
s := 0
d :∈ D

The next event SND_snd_data is new. It corresponds to the main action of the
sender, namely to prepare the information to be sent through the data channel. What
are sent through this channel are the data d and the sender pointer s:

SND_snd_data
when

s_st = working

w = TRUE
then

d := f(s + 1)
w := FALSE

end
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The next two events correspond to the receiver receiving information on the data
channel. As can be seen, the receiver checks that the received pointer s from the sender
is equal to its own pointer r. The first event, RCV_rcv_current_data, corresponds to
the receiver receiving an information which is not the last one (r +1 < n). The second
one corresponds to the receiver receiving the last item (r + 1 = n). In this case, the
receiver succeeds:

RCV_rcv_current_data
when

r_st = working

w = FALSE
r = s

r + 1 < n

then
r := r + 1
g := g ∪ {r + 1 → d}

end

RCV_success
when

r_st = working

w = FALSE
r = s

r + 1 = n

then
r_st := success

r := r + 1
g := g ∪ {r + 1 → d}

end

Notice that the receiver is still “cheating” as it is able (in the guards above) to check
the value of its pointer r against the constant size n of the original file, which is in the
sender’s site. This anomaly will be corrected in the next refinement.

The next two events correspond to the sender receiving the acknowledgment from
the receiver. The first one, SND_rcv_current_ack, is a new event. When the sender
receives the last acknowledgment (when s + 1 = n in event SND_success), the sender
succeeds, otherwise (when s + 1 < n in event SND_rcv_current_ack) it increments its
pointer s and activates the events SND_snd_data by setting the activation bit w to
TRUE:

SND_rcv_current_ack
when

s_st = working

w = FALSE
s + 1 < n

r = s + 1
then

w := TRUE
s := s + 1

end

SND_success
when

s_st = working

w = FALSE
s + 1 = n

r = s + 1
then

s_st := success

end
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We finally introduce an event that modifies the activation pointer w. This event will
receive a full explanation in the next refinement:

SND_time_out_current
when

s_st = working

w = FALSE
then

w := TRUE
end

6.7.3 Synchronization of the events

In this refinement, the events are synchronized according to Fig. 6.3, where the new
events are written in italic. These new events are inserted in the previous synchroniza-
tion diagram, Fig. 6.2. Events SND_failure, RCV_failure, and SND_time_out_current
are presently “spontaneous”. They will receive more explanations in the next refine-
ment.

RCV_success

RCV_failure

SND_failure

RCV_rcv_current_data

SND_snd_current_data SND_snd_last_data

SND_success brpSND_rcv_current_ack

SND_time_out_current

init

Fig. 6.3. Synchronization of the events in the fourth refinement
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6.8 Fifth refinement
6.8.1 The state

In this refinement, we introduce the unreliability of the channels.This is done by first
adding three activation bits: db, ab, and v. At most one of these bits, together with
w already introduced in previous refinements, is equal to TRUE; this is expressed
in invariants inv5_1 to inv5_6. The use of the activation bits is illustrated in
Fig. 6.4:

variables: . . .

db

ab

v

inv5_1: w = TRUE ⇒ db = FALSE

inv5_2: w = TRUE ⇒ ab = FALSE

inv5_3: w = TRUE ⇒ v = FALSE

inv5_4: db = TRUE ⇒ ab = FALSE

inv5_5: db = TRUE ⇒ v = FALSE

inv5_6: ab = TRUE ⇒ v = FALSE

Acknowledgment
channel

RCV_rcv

RCV_snd

Data channel

SND_rcv

SND_snd

db

abw v

Fig. 6.4. The activation bits

We introduce an additional boolean variable, l, which denotes the last item indicator.
It is sent by the sender to the receiver (together with d and s). When equal to TRUE,
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this bit indicates that the sent item is the last one (invariants inv5_7 and inv5_8):

variables: . . .

l

inv5_7: db = TRUE ∧ r = s ∧ l = FALSE ⇒ r + 1 < n

inv5_8: db = TRUE ∧ r = s ∧ l = TRUE ⇒ r + 1 = n

Finally, we introduce a constant MAX and a variable c. Constant MAX denotes the
maximum number of re-tries and variable c denotes the current number of re-tries. In
invariant inv3_10, it is explained that when c exceeds MAX, then the sender fails:

constants: . . .

MAX

variables: . . .

c

axm3_1: MAX ∈ N

inv3_9: c ∈ 0 .. MAX + 1

inv3_10: c = MAX + 1 ⇔ s_st = failure

6.8.2 The events

The initial event is extended in a straightforward fashion. Event brp is not modified in
this refinement:

init
r := 0
g := ∅

r_st := working

s_st := working

s := 0
d :∈ D

w := TRUE
db := FALSE
ab := FALSE
v := FALSE
l := FALSE
c := 0

brp
when

r 
= working

s 
= working

then
skip

end
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The following events are modified as indicated by the underlined actions. We split now
abstract event SND_snd_data into two events according to the sending of the last data
or not. The activation bit, db, of the data channel is set to TRUE:

SND_snd_current_data
refines

SND_snd_data
when

s_st = working

w = TRUE
s + 1 < n

then
d := f(s + 1)
w := FALSE
db := TRUE
l := FALSE

end

SND_snd_last_data
refines

SND_snd_data
when

s_st = working

w = TRUE
s + 1 = n

then
d := f(s + 1)
w := FALSE
db := TRUE
l := TRUE

end

In the next two receiver events, the abstract “cheating” guards r + 1 < n and
r + 1 = n have disappeared. They have been replaced by guards l = FALSE and
l = TRUE, respectively. Invariants inv3_11 and inv3_12 defined below ensure guard
strengthening. The receiver activation bit v is set to TRUE:

RCV_rcv_current_data
when

r_st = working

db = TRUE
r = s

l = FALSE
then

r := r + 1
h := h ∪ {r + 1 → d}
db := FALSE
v := TRUE

end

RCV_success
when

r_st = working

db = TRUE
r = s

l = TRUE
then

r_st := success

r := r + 1
h := h ∪ {r + 1 → d}
db := FALSE
v := TRUE

end

The next two events are new. Event RCV_rcv_retry corresponds to the receiver
receiving a re-try. The receiver detects this by the fact that its own pointer r is different
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from the one, s, it receives from the sender. The activation bit v is set to TRUE. The
second event, RCV_snd_ack, is activated when v is equal to TRUE. It sends the
acknowledgment to the sender by setting the activation bit ab of the acknowledgment
channel to TRUE. Notice that that no information is sent:

RCV_rcv_retry
when

db = TRUE
r 
= s

then
db := FALSE
v := TRUE

end

RCV_snd_ack
when

v = TRUE
then

v := FALSE
ab := TRUE

end

In the next two sender events, the abstract guard r = s + 1 has disappeared. It has
been replaced by the guard ab = TRUE. In order to ensure guard strengthening, we
have to add the following invariants:

inv3_11: ab = TRUE ⇒ r = s + 1

inv3_12: v = TRUE ⇒ r = s + 1

The second invariant helps prove the first one in event RCV_snd_ack:

SND_rcv_current_ack
when

s_st = working

ab = TRUE
s + 1 < n

then
w := TRUE
s := s + 1
c := 0
ab := FALSE

end

SND_success
when

s_st = working

ab = TRUE
s + 1 = n

then
s_st := success

c := 0
ab := FALSE

end

The next two new events correspond to the daemons breaking the channels. They result
in activation bits w, db, v, and ab being all equal to FALSE. Notice that these events
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can occur asynchronously when the corresponding channels are active:

DMN_data_channel
when

db = TRUE
then

db = FALSE
end

DMN_ack_channel
when

ab = TRUE
then

ab = FALSE
end

The next three events correspond to the timers. The first two are the sender timer.
The first one occurs when the retransmission has not yet reach the maximum MAX,
whereas the second one corresponds to this maximum: in this case, the sender fails. The
last one corresponds to the receiver failure. This occurs when the sender has already
failed according to invariant inv3_10. As can be seen, the time slot given to the
receiver timer implicitly assumes that this event can only occur when the sender has
failed:

SND_time_out_current
when

s_st = working

w = FALSE
ab = FALSE
db = FALSE
v = FALSE
c < MAX

then
w := TRUE
c := c + 1

end

SND_failure
when

s_st = working

w = FALSE
ab = FALSE
db = FALSE
v = FALSE
c = MAX

then
s_st := failure

c := c + 1
end

RCV_failure
when

r_st = working

c = MAX + 1
then

r_st := failure

end

6.8.3 Synchronization of the events

The last synchronization of the events is shown in Fig. 6.5.

6.9 Sixth refinement
The sixth refinement consists in sending the parity of pointer s from the sender to
the receiver, and the parity of pointer r in the other direction. The definition of this
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SND_snd_current_data SND_snd_last_data

SND_success brp

init

RCV_success

DMN ack channel DMN data channel

RCV_retry

RCV_snd_ack

RCV_rcv_current_data

SND_rcv_current_ack

SND_failure

RCV_failure

SND_time_out_current

Fig. 6.5. Synchronization of the events in the third refinement

refinement is left to the reader. The technique to be used is the one used in Section 6
of this chapter.

6.10 Reference
[1] J. F. Groote and J.C. Van de Pol. A bounded retransmission protocol for large data

packets – a case study in computer checked algebraic verification. Lecture Notes in Com-
puter Science 1101. Algebraic Methodology and Software Technology, 5th International
Conference AMAST ’96, Munich.
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Development of a concurrent program†

In this book, we are studying the correct development of distributed programs by means
of various examples. So far we have done this in Chapter 4 (file transfer protocol) and
in Chapter 6 (bounded retransmission protocol). In later chapters, we shall also study
some distributed program developments: leader election on a ring-shaped network in
Chapter 10, synchronizing processes on a tree in Chapter 11, routing algorithm in
Chapter 12, leader election on a connected network in Chapter 13. We shall also study
the correct development of sequential programs in Chapter 15. In this chapter, we shall
study another kind of execution paradigm, namely that of concurrent programs.

7.1 Comparing distributed and concurrent programs
The distinction between sequential and distributed programs must be clear. But the
one between distributed and concurrent ones might be less obvious. Here are the main
differences which we consider between the two.

7.1.1 Distributed programs

In the case of distributed programs, the entire algorithm is performed by various agents
executing some sequential programs (sometimes the same one) on different computers.
But, at the same time, these agents are supposed to cooperate in order to achieve
together a well-defined goal, which is the purpose of the algorithm.

This cooperation could be made easy by having a centralized agency, the role of
which would be to schedule the various participating agents. But we suppose that
such an agency does not exist. In other words, the various agents cooperate only by
communicating with each other in some well-defined ways, which have to be clearly
defined before embarking in a distributed development. This is typically the case in the
leader election algorithms developed in Chapters 10 and 13, where each agent executes

† This chapter was written in close cooperation with Dominique Cansell
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the same short sequential program in order to achieve a single goal, that of electing
a node to be the leader. In these examples, the geometry of the network dictates the
way the agents can communicate.

7.1.2 Concurrent programs

In the case of concurrent programs, we still have different agents working concurrently
by executing some sequential programs. But, this time, the various executions, which
may correspond to different programs, are performed on the same computer. Moreover,
the agents do not cooperate as was the case in a distributed program, they rather
compete in order to use a common shared resource, which must be handled according
to certain rules preserving its integrity.

Here too, an obvious way to do this would be to have a centralized agency protecting
the resource in question so that its integrity is preserved. To this end, each agent would
ask the centralized agency permission to use for a while the shared resource. But we
want to avoid the usage of such a centralized agency. In other words, we would like
each agent to consider that it can use the resource by executing its own program as
if the other agents did not exist. But, of course, we have a final constraint which
is the following: the sequential program executed by an agent can be interrupted by
any other program executed by another agent in an almost totally random way. Of
course, the places where the program of each agent can be interrupted are well defined:
they correspond to what is called the atomicity of the various “instructions” of such
programs. Such atomicity constraints are dictated by the hardware of the computer
where the concurrent programs are supposed to be executed. This has to be clearly
defined before embarking on such a concurrent development.

7.2 The proposed example
7.2.1 Informal presentation

The technique we are using for developing such concurrent programs will be com-
pletely systematic. In this chapter, we describe and illustrate it on a famous example
introduced by H.R. Simpson in [1]: the “Four-slot Fully Asynchronous Mechanism.”

Here is a first simplified explanation of this mechanism. We have two participants:
a writer and a reader. The writer writes some information (which he gets somehow)
on a shared memory. The reader must be able to read the information stored in that
memory. As a very first approximation, we consider that the shared memory is made
of a pair of slots where the writer writes alternatively. This is illustrated in Fig. 7.1
where the two slots are named “0” and “1”.

Still as an approximation, we need a second pair of slots where the writer and the
reader are writing and reading alternatively (again, it is an approximation for the
moment). This is illustrated in Fig. 7.2 where the two pairs are named “0” and “1”:
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0 1

Fig. 7.1. The two slots

0 1

the pairs

the slots

reading
writing0

1

Fig. 7.2. The two pairs of two slots

We are now ready to present the sequential programs of the writer and the reader.
But before doing that, we need to define the global variables, which are shared between
the two participants:

data ∈ {0, 1}→ ({0, 1}→D)

reading ∈ {0, 1}

latest ∈ {0, 1}

slot ∈ {0, 1}→ {0, 1}

The set D is a generic; it represents the data which are written and read. The vari-
able data defines the two pairs of two slots. The first dimension defines the pair and
the second dimension defines the slot. For example, data(1)(0) is indicated by “X” in
Fig. 7.3.

The variable reading denotes the pair used by the reader. The pair used by the
writer is therefore 1 − reading. The variable latest denotes the last pair used by the
writer, which the reader may now use if it is willing to read. Finally, the variable slot

indicates the slot in which the writer or the reader are currently writing or reading.
More precisely, slot(reading) indicates the slot where the reader is currently reading
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0 1

0

1 X

Fig. 7.3. Using the slots

and slot(1 − reading) indicates the slot where the writer is currently writing. The
sequential program of the writer uses two local variables:

pair_w ∈ {0, 1}

indx_w ∈ {0, 1}

The local variable pair_w denotes the pair used by the writer. The local variable
indx_w denotes the current slot used by the writer. Now, the pidgin program of the
writer (with parameter x) is the following:

Writer(x)

pair_w := 1− reading; Choosing a pair different from that used by the
reader

indx_w := 1− slot(pair_w); Choosing a slot different from that used in the
previous writing

data(pair_w)(indx_w) := x; Writing

slot(pair_w) := indx_w; Storing the last written slot

latest := pair_w Storing the last written pair

The sequential program of the reader uses one local variable:

indx_r ∈ {0, 1}
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The local variable indx_r denotes the current slot used by the reader. Now, the pidgin
program of the reader (with returned value y) is the following:

Reader

reading := latest; Choosing the last written pair

indx_r := slot(reading); Choosing the last written slot

y := data(reading)(indx_r) Reading

The usage of “last” in the previous comments, “Choosing the last written pair” and
“Choosing the last written slot”, is not correct as we shall see later. More precisely, it
is correct provided the Reader program is executed in a non-concurrent fashion with
the Writer program: in other words, when they never interrupt each other. But it is
not correct when the Reader program accesses the first instruction, reading := latest,
while the Writer program has already written another piece of data by executing the
instruction data(pair_w)(indx_w) := x.

7.2.2 Non-concurrent animations

In order to understand more accurately the behaviors of both the writer and the reader,
let us define some short animations where the reader and the writer are, for the moment,
working independently of each other. We suppose the following initial condition:

reading = 1 slot = {0 → 1, 1 → 1}

Writing successively the three values a, b, and c yields the following successive values
of the state after the execution of the Writer pidgin program:

1

10

0 a b

− −

10

1

0 a −

−− 1

1

0

0

bc

− −
.

Writer(a) Writer(b) Writer(c)
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pair_w = 0
indx_w = 0
reading = 1
slot(pair_w) = 0
latest = 0

pair_w = 0
indx_w = 1
reading = 1
slot(pair_w) = 1
latest = 0

pair_w = 0
indx_w = 0
reading = 1
slot(pair_w) = 0
latest = 0

Now, we read twice and then write d. This results in the following succession of
states:

10

1

1

0

0

bc
− −

10

1

1

0

0

bc

−d

10

1

1

0

0

bc
− −

Reader Reader Writer(d)

indx_r = 0
reading = 0
slot(reading) = 0
data(0)(0) = c

indx_r = 0
reading = 0
slot(reading) = 0
data(0)(0) = c

pair_w = 1
indx_w = 0
reading = 0
slot(pair_w) = 0
latest = 1

Finally, we write e and f and we read once. This results in the following succession
of states:

1

10

0 b

10

1

0

1

1

0

0

bc
.

Reader

c b

e ed

c

e

Writer(e) Writer(f)

ff

pair_w = 1
indx_w = 1
reading = 0
slot(pair_w) = 1
latest = 1

pair_w = 1
indx_w = 0
reading = 0
slot(pair_w) = 0
latest = 1

indx_r = 0
reading = 1
slot(reading) = 0
data(1)(0) = f

According to this short animation, we can observe the following facts concerning the
Reader program:
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– it always reads the last written data: c and f ;
– it can read several times the same data: c;
– it can miss some written data: a, b, d, and e.

7.2.3 Defining atomicity

We suppose that each instruction of the Writer and Reader programs are atomic.
But we require that the reading and writing operations never occur “simultaneously”
on the same slot. In other words, if the Writer program is about to write a piece of
data in data(pair_w)(indx_w) and simultaneously the Reader program is about to
read some data in data(reading)(indx_r), then we require that either pair_w and
reading are distinct, or, if they are identical, then indx_w and indx_r are distinct.
More formally:

pair_w = reading ⇒ indx_w 
= indx_r

This definition of atomicity is highly subjective. It could be argued that a finer
atomicity is needed because the hardware might not be able to achieve this one. We
agree with that remark, but shall not enter into this discussion here as it is not our
present problem.

Our present problem at the moment is to perform this concurrent development. But
we face immediately a difficult question. In fact, what is not clear at all at this point
is what the specification of this problem is. As a result, we do not know what kind of
proof we have to perform in order to guarantee that our concurrent development is
correct. In other words, we do not know what to do!

7.3 Interleaving
Before clearly defining what the specification of our problem is (this will be done in
Section 7.4), we shall stop for a while on the question of interleaving.

7.3.1 The problem

The animation we have been able to observe in the previous section was very simple
because there was no interruptions between the executions of the Writer and Reader
programs. But a real concurrent execution of both programs is far more complicated
than this as it is possible to have interleaving of both programs’ instructions. For
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example, here is one interleaving we can observe among many others:

Writer Reader
. . . . . .

1. pair_w := 1− reading

1. reading := latest

2. indx_w := 1− slot(pair_w)
2. indx_r := slot(reading)
3. y := data(reading)(indx_r)

3. data(pair_w)(indx_w) := x

1. reading := latest

4. slot(pair_w) := indx_w

5. latest := pair_w

2. indx_r := slot(reading)
1. pair_w := 1− reading

3. y := data(reading)(indx_r)
2. indx_w := 1− slot(writing)
3. data(pair_w)(indx_w) := x

1. reading := latest

. . . . . .

As can be seen, each program remains sequential but it can be interrupted by the other
between two successive instructions and vice-versa. A possible reasoning about such
interleaved programs is to envisage studying all possible interleaving corresponding to
a significant number of executions of the Writer and Reader programs, thus making
a complete checking of all these situations. Before doing that however, it might be
interesting to formally compute the number of interleavings we have, just to know
whether such a complete checking is indeed feasible.

7.3.2 Computing the number of different interleavings

We are given two sequential programs with respectively m and n instructions, where
m and n are natural numbers. Notice that we might have m or n equal to 0; this
corresponds to empty programs. Let U(m, n) be the number of interleavings of these
two programs. First of all, we certainly have:

U(m, 0) = 1

U(0, n) = 1
,
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since interleaving the instructions of a program with another empty one results in one
interleaving! Now supposing m and n are both different from 0, then we have:

U(m, n) = U(m− 1, n) + U(m, n− 1)

This can be explained easily. If the last instruction of the first program is situated after
the last instruction of the second one, then the number of interleavings is U(m− 1, n).
And if the last instruction of the first program is not situated after the last instruction
of the second one, then the number of interleavings is U(m, n− 1).

We can calculate U(m, n) by means of a recursive program, but it would be rather
inefficient because we shall calculate identical quantities many times. A far better
technique is that of dynamic programming, where a matrix M of size m + 1 and n + 1
is calculated step by step after filling its first line M(i, 0) (for i in 0 .. m) and its first
column M(0, j) (for j in 0 .. n) with ones. The result is given by M(m, n). Here is the
C program calculating U(m, n):

int U(int m, int n)
{int M[m+1][n+1],i,j;
for (i=0; i<=m; ++i) M[i][0]=1;
for (j=0; j<=n; ++j) M[0][j]=1;
for (i=1; i<=m; ++i)

for (j=1; j<=n; ++j)
M[i][j]=M[i-1][j]+M[i][j-1];

return M[m][n];
}

This program has to be modified however as the calculation might result in an over-
flow. This is the case when a certain calculation leads to a number which would be
greater than INT_MAX (the greatest integer of the “C machine”). In order to take care
of this, we define a new version returning 0 (an impossible normal result) when there
is a possible overflow:

int U(int m, int n)
{int M[m+1][n+1],i,j,a,b;
for (i=0; i<=m; ++i) M[i][0]=1;
for (j=0; j<=n; ++j) M[0][j]=1;
for (i=1; i<=m; ++i)

for (j=1; j<=n; ++j)
{a=M[i-1][j];
b=M[i][j-1];
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if (a>INT_MAX-b) return 0;
M[i][j]=a+b;
}

return M[m][n];
}

7.3.3 The results

The results are quite interesting. Our Writer program has five instructions and our
Reader program has three instructions. Let us calculate the number of interleavings
for zero Writer working with zero Reader, that is U(0, 0), one Writer working with
one Reader, that is U(5, 3), then two Writer with two Reader, that is U(10, 6), and
so on. Here is the main program calculating these values:

main(void)
{int i,a,b,r,ok=1;
for (i=0; ok; ++i)

{a=5*i;
b=3*i;
r=U(a,b);
if (r==0)

{printf(" U(%d,%d) = OVERFLOW\n",a,b);
ok=0;
}

else
printf(" U(%d,%d) = %d\n",a,b,r);

}
}

Here are the results:

U(0,0) = 1
U(5,3) = 56
U(10,6) = 8008
U(15,9) = 1307504
U(20,12) = 225792840
U(25,15) = OVERFLOW

What is shown by this result is that the number of interleavings becomes quickly
extremely large. With only five writings and five readings (that is, U(25, 15)) the
number is already greater than INT_MAX, that is 2,147,483,647. The moral of the
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story is that it is clearly out of the question to reason on concurrent programs by
checking all possible cases on a significant number of successive executions!

7.4 Specifying the concurrent program
Coming back to our example, we define in this section how our concurrent program
can be specified.

7.4.1 Writing and reading traces

The idea is to consider that the Writer and Reader programs are not entirely seen
in the specification. We suppose that we only see what happens at the very moment
where they are supposed to have finished writing or reading. Taking account of these
moments in the reasoning can be done by storing the complete history of what has
been written and read so far; this gives rise to a writing trace and to a reading trace.
The specification of our concurrent programs is then the definition of the relationship
between these traces. The formal definition of the writing and reading traces, wt and
rd respectively, are straightforward. The variables w and r denote the lengths of these
traces:

sets: D

variables: w

r

wt

rd

inv0_1: w ∈ N1

inv0_2: r ∈ N1

inv0_3: wt ∈ 1 .. w→D

inv0_4: rd ∈ 1 .. r→D

7.4.2 Relationship between the traces

We have now to express various properties of the reading trace with regard to the
writing traces:

(i) what is read has been written before;
(ii) what is read follows the order of what is written;
(iii) some writing might be missing in the reading trace;
(iv) some reading might be repeated in the reading trace.
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This can be formulated partially by means of a function f relating the reading and the
writing traces:

variables: f

inv0_5: f ∈ 1 .. r→ 1 .. w

inv0_6: rd = (f ; wt)

The variable f is a total function mapping the domain of the reading trace to that of
the writing trace (inv0_5). The reading trace is exactly the forward composition of f

with wt (inv0_6). In Fig. 7.4, we show an example of traces together with their basic
relationship. As can be seen, the function f relating both traces of this example is:

f = {1 → 1, 2 → 1, 3 → 5, 4 → 8, 5 → 8, 6 → 11, . . .}

1 2 3 4 5 6

1 2 3 4 5 6

a        b c d e h i j k l m n . . .

. . .a e j j ma

7 8 9 10 11 12

writing trace

reading trace

function f

Fig. 7.4. The writing and reading traces and their basic relationship

The specification we have defined so far in the invariants does not take into account
our intuition about the reading trace. In fact, a Reader program always reading the
first element of the writing trace would be a perfect implementation of the present
specification. In order to make impossible such an implementation, we have to say that
the reading trace makes necessary some progress.

To begin with, what is missing in our specification is the exact situation of the
writing trace when a value is entered in the reading trace. To do that, we introduce a
second function g also connecting like f the domain of the reading trace to that of the
writing trace (inv0_7):

variables: g inv0_7: g ∈ 1 .. r→ 1 .. w
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Given a point i in the domain of the reading trace (thus i ∈ 1 .. r), then g(i) denotes
the last point in the writing trace that has occurred just before the end of the reading
trace. This is illustrated in Fig. 7.5.

1 2 3 4 5 6

1 2 3 4 5 6

a b c d e h i j k l m n . . .

. . .a e j j ma

7 8 9 10 11 12

writing trace

reading trace

function f

function g

Fig. 7.5. The writing and reading traces and their relationship

The functions f and g allow us (in principle) to put together both traces as indicated
in Fig. 7.6. As can be seen, the second reading, a, is done on the first writing, although
the writing that just precedes that second reading is the fourth writing, d. This is due
to the interleaving of the Reader and Writer programs. If the reader executes its
first instruction, it assigns a new value to the variable reading (it performs reading :=
latest). If the reader stops now, then any new execution of the writer will write on
the slot different from reading, and it can do so many times. As a consequence, when
the reader starts again, it can read a very old value.

a a b c d e h e i j j mk l j

1 2 3 4

1 2

5 6

3

7 8

4 5 6

9 10 1211

m na

Fig. 7.6. The writing and reading traces together

We now express very simply that what is read corresponds to something that has
been written already, namely f(i) ≤ g(i) for all i in 1 .. r (inv0_8). Again, the reason
for not having an equality here is that the Writer program might have moved forward
(sometimes a lot) while the Reader program has already decided what it is going to
read but has not done it yet:

inv0_8: ∀ i · i ∈ 1 .. r ⇒ f(i) ≤ g(i)
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What remains to be expressed now is the fact that the writing index of what is read
at some point i+ 1 (for some i in 1 .. r− 1), that is at the index f(i + 1) of the writing
trace, is greater than or equal to the index of what has be written at index g(i) just
before the previous reading i. This is invariant inv0_9 which follows:

inv0_9: ∀ i · i ∈ 1 .. r − 1 ⇒ g(i) ≤ f(i + 1)

Putting together inv0_8 and inv0_9, we obtain the following for all i in 1 .. r − 1:

f(i + 1) ∈ g(i) .. g(i + 1).

This is illustrated in Fig. 7.7 where the domain of the writing trace is shown at the
top, whereas that of the reading trace is shown at the bottom.

i i+1 i+2i-1 . . .. . .

. . . . . .

f (i)

f (i+1)

f (i+2)

g(i+2)g(i+1)g(i)g(i-1)

Fig. 7.7. The relationship between functions f and g

As can be seen, the reader certainly makes some progress if there is at least one
writing between two successive readings. More precisely, if g(i + 1) = g(i) + 1, then the
minimal value of f(i + 2), which is equal to g(i + 1), is thus equal to g(i) + 1, whereas
the maximal value of f(i) is g(i). In this case, the reader makes progress between i and
i + 2. This is illustrated in Fig. 7.8, where we have indicated that the ith reading can
be a, b, or c, the (i + 1)th reading can be c, or d, and the (i + 2)th reading can be d,
e, or h.

This example can be made clearer by putting together the two traces as shown in
Fig. 7.9. As can be seen, there is writing (d) between the ith and (i + 1)th readings.
As a consequence, there is progress in reading between the ith reading, where a, b, or
c can be read, and the (i + 2)th reading where d, e, or h can be read (not any of a, b,
or c).
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. . .. . .

g(i)

f (i +1)

f (i + 2)

g(i− 1)

(i − 1) (i +1) (i +2)

g(i +1) g(i +2)

j − 2 j −1 j +1 j +2 j +3j

i

a,b,c c,d

a b c d e h

d,e,h

f(i)

. . . . . .

Fig. 7.8. The reader is making progress

b c a,b,c d c,d e h d,e,h . . .. . .

j−2 j−1 j +1 j +2 j +3j

i−1 i+1 i +2i

a

Fig. 7.9. The reader is making progress

7.4.3 Summary of the invariants

Next is a summary of the invariants of the initial step:

inv0_1: w ∈ N1

inv0_2: r ∈ N1

inv0_3: wt ∈ 1 .. w→D

inv0_4: rd ∈ 1 .. r→D

inv0_5: f ∈ 1 .. r→ 1 .. w

inv0_6: rd = (f ; wt)

inv0_7: g ∈ 1 .. r→ 1 .. w

inv0_8: ∀ i · i ∈ 1 .. r ⇒ f(i) ≤ g(i)

inv0_9: ∀ i · i ∈ 1 .. r − 1 ⇒ g(i) ≤ f(i + 1)
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7.4.4 The events

In order to simplify matters, we suppose that a certain value d0 has been written and
then read initially:

constants: d0 axm0_1: d0 ∈ D

With this in mind, the initial events are straightforward:

init
w := 1
r := 1
wt := {1 → d0}
rd := {1 → d0}
f := {1 → 1}
g := {1 → 1}

write
any d where

d ∈ D

then
w := w + 1
wt(w + 1) := d

end

read
any v where

v ∈ g(r) .. w

then
r := r + 1
f(r + 1) := v

g(r + 1) := w

rd(r + 1) := wt(v)
end

In event read, the guard, v ∈ g(r)..w, and the two actions, f(r+1) := v and g(r+1) :=
w, ensure the preservation of the invariants:

– for invariant inv0_8: f(r + 1) ≤ g(r + 1) since f(r + 1) = v ≤ w = g(r + 1);
– for invariant inv0_9: g(r) ≤ f(r + 1) since g(r) ≤ v = f(r + 1).

7.5 Refinement strategy
The technique we use for developing our concurrent program consists in cutting events
write and read proposed in the previous section into smaller pieces. This technique is
very general; it can be applied to many concurrent algorithms.

7.5.1 Sketch of the final refinement

At the end of the development, the formalization of each instruction of both programs
must correspond to a specific event so that the interleaving will be obtained by the non-
determinacy between the writing and reading events. More precisely, we shall have two
variables denoting the address counters of the Writer and Reader programs, namely
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adr_w and adr_r:

adr_w ∈ 1 .. 5

adr_r ∈ 1 .. 3

Besides the initialization event (setting both address counters to 1), the various events
corresponding to the Writer and Reader programs will then have the following forms:

init
adr_w := 1
adr_r := 1
. . .

Writer_1
any d where

d ∈ D

adr_w = 1
then

x := D

pair_w := 1− reading

adr_w := 2
end

Writer_2
when

adr_w = 2
then

indx_w := 1− slot(pair_w)
adr_w := 3

end

Writer_3
when

adr_w = 3
then

data(pair_w)(index_w) := x
adr_w := 4

end

Writer_4
when

adr_w = 4
then

slot(pair_w) := indx_w
adr_w := 5

end

Writer_5
when

adr_w = 5
then

latest := pair_w
adr_w := 1

end

Reader_1
when

adr_r = 1
then

reading := latest
adr_r := 2

end

Reader_2
when

adr_r = 2
then

indx_r := slot(reading)
adr_r := 3

end

Reader_3
when

adr_r = 3
then

y := data(reading)(indx_r)
adr_r := 1

end
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It is worth comparing these events with the two concurrent programs, which were
presented in Section 7.2.1:

Writer(x)

pair_w := 1− reading;

indx_w := 1− slot(pair_w);

data(pair_w)(indx_w) := x

slot(pair_w) := indx_w;

latest := pair_w

Reader

reading := latest;

indx_r := slot(reading);

y := data(reading)(indx_r)

As can be seen, each individual instruction corresponds to an independent event. Note
however that event Writer_1 also stores the input parameter in a variable x. It could
have been done in an additional initial event Writer_0.

7.5.2 Purpose of refinements

Our goal is now clarified. We have to refine the initial model presented in Section 7.4
in order to obtain the final model presented in Section 7.5.1. This will be done by:

• gradually splitting the writing and reading actions done in one shot in the abstrac-
tion;
• gradually removing the reading and writing traces;
• gradually introducing the data structure of the final concurrent programs.

The more precise refinement strategy is the following:

(i) Splitting the writer and reader into two parts; removing the reading trace.
(ii) Introducing Simpson’s algorithm data structure; splitting the reader into one

more part.
(iii) Removing the writing trace.
(iv) Splitting the writer into three parts.
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7.6 First refinement
In this refinement, we introduce the address counters of both the writer and the reader,
we remove the reading trace, and we also cut the writing in the writing trace into various
places.

7.6.1 The reader state

The address counters are named adr_w, ranging from 1 to 5, and adr_r, ranging from
1 to 3. They are defined in invariants inv1_1 and inv1_2 below:

variables: . . .

adr_r

adr_w

inv1_1: adr_r ∈ {1, 2, 3}

inv1_2: adr_w ∈ {1, 2, 3, 4, 5}

Let us recall below the read event of the initial model:

read
any v where

v ∈ g(r) .. w

then
r := r + 1
f(r + 1) := v

g(r + 1) := w

rd(r + 1) := wt(v)
end

We can see that we only use and modify f and g at index r and new index r + 1. As a
consequence, we can forget about the entire reading trace and only use two variables
u and m denoting respectively g(r) and f(r). This is done in invariants inv1_3 and
inv1_4 below. The variable y denotes the result of the reading operation. Therefore, it
is a member of the set D (inv1_5). We must also express that this variable corresponds
to the last value of the reading trace rd, that is rd(r). We do this in invariant inv1_6
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below:

variables: . . .

u

m

y

inv1_3: u = g(r)

inv1_4: m = f(r)

inv1_5: y ∈ D

inv1_6: adr_r = 1 ⇒ y = rd(r)

7.6.2 The reading events

The reader events are now defined below. We have two new events (refining skip):
Reader_1 and Reader_3. For the moment, event Reader_1 is just a dummy. Abstract
event read is renamed Reader_2. This is illustrated in Fig. 7.10.

Reader_3Reader_Reader_2

read skip

Reader_1

skip

refines refinesrefines

(dummy)

Fig. 7.10. Refinement of the reader

Among the three events, Reader_2 is the one that refines the abstract event read.
The reason for this choice is explained informally by looking at the Reader program:

Reader

reading := latest;

indx_r := slot(reading);

y := data(reading)(indx_r)

In fact, it happens that after the second instruction of this program, the data which
are read, namely data(reading)(indx_r), do not change whatever the behavior of the
writing programs. This will be proved formally in the fourth refinement. So we choose
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to state that what is read is defined after the second instruction, hence our choice of
refining event read with event Reader_2.

In event Reader_2, the non-deterministic choice for v, which was in g(r) .. w in the
abstraction, is now in u .. w (remember invariant inv1_3, which says that u is equal
to g(r)). The result of the reading in variable y is done in event Reader_3. Remember
that invariant inv1_6 says that just after an occurrence of event Reader_3 (when
adr_r is equal to 1), y is equal to the last item of the reading trace, rd(r), which is
wtp(f(r)) – that is wtp(m) since m = f(r) – (this is invariant inv1_4):

Reader_1
when

adr_r = 1
then

adr_r := 2
end

Reader_2
refines

read

any v where
adr_r = 2
v ∈ u .. w

then
m := v

u := w

adr_r := 3
end

Reader_3
when

adr_r = 3
then

y := wtp(m)
adr_r := 1

end

7.6.3 The writer state

We define now the concrete writing trace wtp, which is slightly different from the ab-
stract writing trace wt. It is different because, in this refinement, the writing trace wtp

is modified in an event (Writer_1), while the writing index w is incremented in two dif-
ferent events: Writer_42 or Writer_51. All this is expressed in the following invariants:

variables: . . .

wtp

inv1_7: wtp ∈ N1 →D

inv1_8: wt ⊆ wtp

inv1_9: adr_w = 1 ⇒ dom(wtp) = 1 .. w

inv1_10: adr_w ∈ {2, 3, 4} ⇒ dom(wtp) = 1 .. w + 1

inv1_11: adr_w = 5 ⇒ dom(wtp) ∈ {1 .. w, 1 .. w + 1}
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7.6.4 The writing events

Now come the writing events. We have five new events (refining skip): Writer_1,
Writer_2, Writer_3, Writer_41, and Writer_52. For the moment, events Writer_2,
Writer_3, Writer_41, and Writer_52 are simple dummies. Events Writer_42 and
Writer_51 are both refining abstract event write. All this is illustrated in Fig. 7.11.

skipskipskipskip skip

Writer_51 Writer_52Writer_42Writer_41Writer_3Writer_2Writer_1

write

refines refinesrefinesrefinesrefinesrefines refines

(dummy) (dummy) (dummy) (dummy)

Fig. 7.11. Refinement of the writer

The choice of the event refining abstract event write is more delicate than that for
the reading case. To explain it informally, let us study the Writer program:

Writer(x)

pair_w := 1− reading;

indx_w := 1− slot(pair_w);

data(pair_w)(indx_w) := x

slot(pair_w) := indx_w;

latest := pair_w

The instruction that must correspond to what we can observe in the abstraction is not
the third one where the writing is done. The reason for not choosing that instruction
is that the last two instructions modify some data (slot and latest) which are shared
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by the Reader program. So, we have to choose the last instruction. But, in fact, this
last instruction is sometimes doing nothing; this is when latest is already equal to
pair_w. It can happen when the Reader program has been quiet for a while and
has not modified the variable reading. In that case, pair_w is not modified in the
first instruction; hence latest is not modified. As a consequence, the abstract end of
the writing is either on the fourth or on the fifth instruction. Therefore, we define two
events for the fourth instruction, Writer_41 and Writer_42, and two events for the fifth
instruction, Writer_51 and Writer_52.

The writing in wtp occurs in event Writer_1, while the incrementation of the index
w is only done in event Writer_42 or Writer_51. Note the guards in events Writer_51
and Writer_52. They ensure that w is always incremented, but only once either in
event Writer_42 or in event Writer_51:

Writer_1
any d where

d ∈ D

adr_w = 1
then

wtp(w + 1) := d

adr_w := 2
end

Writer_2
when

adr_w = 2
then

adr_w := 3
end

Writer_3
when

adr_w = 3
then

adr_w := 4
end

Writer_41
when

adr_w = 4
then

adr_w := 5
end

Writer_42
refines

write

when
adr_w = 4

with
d = wtp(w + 1)

then
w := w + 1
adr_w := 5

end

Writer_51
refines

write

when
adr_w = 5
dom(wtp) = 1 .. w + 1

with
d = wtp(w + 1)

then
w := w + 1
adr_w := 1

end

Writer_52
when

adr_w = 5
dom(wtp) = 1 .. w

then
adr_w := 1

end
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7.7 Second refinement
In this refinement, we introduce the data structure of Simpson’s algorithm

7.7.1 The state

The data structures of the algorithm, which we already presented in Section 7.2.1,
are formally defined below. Note that there are two exceptions: (1) variable idata

does not contain a data value but rather an index to the writing trace – it will be
refined to the final variable data in the third and fourth refinements – and (2) variable
indx_wp is slightly different from the final variable indx_w, which will be introduced
in the fourth refinement. Note that we remove variables u and m, which are no longer
useful:

variables: . . .
reading
pair_w
latest
indx_r
indx_wp
slot
idata

inv2_1: reading ∈ {0, 1}

inv2_2: pair_w ∈ {0, 1}

inv2_3: latest ∈ {0, 1}

inv2_4: indx_r ∈ {0, 1}

inv2_5: indx_wp ∈ {0, 1}

inv2_6: slot ∈ {0, 1}→ {0, 1}

inv2_7: idata ∈ {0, 1}→ ({0, 1}→ dom(wtp))

7.7.2 The events and some additional invariants

Here are the refined reader events:

Reader_1
when

adr_r = 1
then

reading := latest
adr_r := 2

end

Reader_2
when

adr_r = 2
with

v = idata(reading)(slot(reading))
then

indx_r := slot(reading)
adr_r := 3

end

Reader_3
when

adr_r = 3
then

y := wtp(idata(reading)(indx_r))
adr_r := 1

end
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Next are the abstract versions of event Reader_2 and Reader_3:

(abstract-)Reader_2
refines

read

any v where
adr_r = 2
v ∈ u .. w

then
m := v

u := w

adr_r := 3
end

(abstract-)Reader_3
when

adr_r = 3
then

y := wtp(m)
adr_r := 1

end

This will allow us to understand the necessity of the next invariants, which were dis-
covered while doing the proofs. In fact, inv2_8 helps prove Reader_2, inv2_9 helps
prove Reader_3, and inv2_9 helps prove the preservation of inv2_8 by Reader_1:

inv2_8: adr_r = 2 ⇒ idata(reading)(slot(reading)) ∈ u .. w

inv2_9: adr_r = 3 ⇒ m = idata(reading)(indx_r)

inv2_10: idata(latest)(slot(latest)) = w

Here are the writer events. As events Writer_2 and Writer_3 are not modified from
the previous refinement, they are not shown now:

Writer_1
any d where

d ∈ D

adr_w = 1
then

pair_w := 1− reading

indx_wp := 1− slot(1− reading)
idata(1− reading)(1− slot(1− reading)) := w + 1
wtp(w + 1) := d

adr_w := 2
end
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Writer_41
when

adr_w = 4
pair_w 
= latest

then
slot(pair_w) := indx_wp

adr_w := 5
end

Writer_42
when

adr_w = 4
pair_w = latest

then
slot(pair_w) := indx_wp

w := w + 1
adr_w := 5

end

Writer_51
when

adr_w = 5
pair_w 
= latest

then
latest := pair_w

w := w + 1
adr_w := 1

end

Writer_52
when

adr_w = 5
pair_w = latest

then
latest := pair_w

adr_w := 1
end

The preservation of the previous invariants requires introducing the next series of
invariants; they are all proved very easily:

inv2_11: adr_w = 1 ⇒ pair_w = latest

inv2_12: reading = pair_w ⇒ latest = reading

inv2_13: adr_w ∈ {1, 5} ⇒ indx_wp = slot(pair_w)

inv2_14: adr_w ∈ {2, 3, 4} ⇒ indx_wp = 1− slot(pair_w)

inv2_15: adr_w = 5 ⇒ (latest = pair_w ⇔ dom(wtp) = 1 .. w)

inv2_16: idata(pair_w)(indx_w) = max(dom(wtp))
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Notice that max(dom(wtp)) is well defined since dom(wtp) is not empty and finite
(dom(wtp) ⊆ 1 ..w+1 as stipulated in invariants inv1_9 to inv1_11 and also w ≥ 1
as stipulated by invariant inv0_1). Here is finally the initialization event:

init
adr_w := 1
adr_r := 1
w := 1
wtp := {1 → d0}
y := d0
pair_w := 0
reading := 0
latest := 0
slot := {0 → 0, 1 → 0}
idata := {0 → {0 → 1, 1 → 1},

1 → {0 → 1, 1 → 1}}
indx_wp := 0
indx_r := 0

7.8 Third refinement
In this refinement, we remove the writing trace wtp. We can thus remove variable w.
As a consequence, the action of events Write_41 and Write_42 are becoming identical;
these events will be merged in the next refinement. The same thing happens to events
Write_51 and Write_52; these events will also be merged in the next refinement.

7.8.1 The state

The variables idata and wtp are replaced by variable Data, which contains data values
(this is indicated in the gluing invariant inv3_2):

variables: . . .

Data

inv3_1: Data ∈ {0, 1}→ ({0, 1}→D)

inv3_2: ∀x, y ·




x ∈ {0, 1}
y ∈ {0, 1}
⇒
wtp(idata(x)(y)) = Data(x)(y)






254 Development of a concurrent program

7.8.2 The events
Here are the events. Notice that the first writing event still concentrates three actions.
It will be split in the next refinement in events write_2 and write_3:

init
adr_w := 1
adr_r := 1
y := d0
pair_w := 0
reading := 0
latest := 0
slot := {0 → 0, 1 → 0}
Data := {0 → {0 → d0, 1 → d0},

1 → {0 → d0, 1 → d0}}
indx_wp := 0
indx_r := 0

Writer_1
any d where

d ∈ D
adr_w = 1

then
pair_w := 1− reading
indx_wp := 1− slot(1− reading)
Data(1− reading)(1− slot(1− reading)) := d
adr_w := 2

end

Writer_41
when

adr_w = 4
pair_w 
= latest

then
slot(pair_w) := indx_wp

adr_w := 5
end

Writer_42
when

adr_w = 4
pair_w = latest

then
slot(pair_w) := indx_wp

adr_w := 5
end

Writer_51
when

adr_w = 5
pair_w 
= latest

then
latest := pair_w

adr_w := 1
end

Writer_52
when

adr_w = 5
pair_w = latest

then
latest := pair_w

adr_w := 1
end
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Reader_1
when

adr_r = 1
then

reading := latest
adr_r := 2

end

Reader_2
when

adr_r = 2
then

indx_r := slot(reading)
adr_r := 3

end

Reader_3
when

adr_r = 3
then

y := Data(reading)(indx_r)
adr_r := 1

end

7.9 Fourth refinement
7.9.1 The state

This is the final touch: event Writer_1 is split. We obtain exactly the sketch we proposed
in Section 7.5.1. The variable data replaces Data, and the variable indx_w replaces
indx_wp:

variables: . . .

data

indx_w

x

inv4_1: data ∈ {0, 1}→ ({0, 1}→D)

inv4_2: indx_w ∈ {0, 1}

inv4_3: x ∈ D

inv4_4: adr_w ∈ {1, 4, 5} ⇒ Data = data

inv4_5:
adr_w ∈ {2, 3}
⇒
Data = data �− {pair_w → (data(pair_w) �− {indx_wp → x})}
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inv4_6: adr_w ∈ {1, 3, 4, 5} ⇒ indx_w = indx_wp

inv4_7:

adr_w = 3
adr_r = 3
pair_w = reading
⇒
indx_r 
= indx_wp

inv4_8:

adr_w = 2
adr_r = 3
pair_w = reading
⇒
indx_r 
= indx_wp

Notice inv4_7, which was required in Section 7.2.3. It says that we are never writing
and reading at the same place concurrently.

7.9.2 The events

init
adr_w := 1
adr_r := 1
. . .

Writer_1
when

adr_w = 1
then

x :∈ D

pair_w := 1− reading

adr_w := 2
end

Writer_2
when

adr_w = 2
then

indx_w := 1− slot(pair_w)
adr_w := 3

end

Writer_3
when

adr_w = 3
then

data(pair_w)(index_w) := x
adr_w := 4

end

Writer_4
refines

Writer_41
Writer_42

when
adr_w = 4

then
slot(pair_w) := indx_w
adr_w := 5

end

Writer_5
refines

Writer_51
Writer_52

when
adr_w = 5

then
latest := pair_w
adr_w := 1

end
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Reader_1
when

adr_r = 1
then

reading := latest
adr_r := 2

end

Reader_2
when

adr_r = 2
then

indx_r := slot(reading)
adr_r := 3

end

Reader_3
when

adr_r = 3
then

y := data(reading)(indx_r)
adr_r := 1

end

In the following diagram, we represent the various transformations of the write event:

Initial model

3rd refinement

2nd refinement

4th refinement

Writer_42Writer_41

Writer_41

Writer_41

Writer_42

Writer_52

Writer_52

Writer_4 Writer_5

Writer_51Writer_42

Writer_51

Writer_52Writer_51 1st refinement

(merging)

(splitting)

Write
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[1] H. R. Simpson. Four-slot fully asynchronous communication mechanism. Computer and

Digital Techniques. IEE Proceedings. Vol. 137 (1) (January 1990).
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Development of electronic circuits

8.1 Introduction
In this chapter, a simple methodology supporting the progressive proved development
of synchronous electronic circuits is presented. A typical circuit is shown in Fig. 8.1

p2

i1
o1

o2

i2

Fig. 8.1. A typical circuit

This circuit is made of the following components: two input wires i1 and i2 carrying
boolean values, two output wires o1 and o2 carrying boolean values, various gates (here
three and-gates and two not-gates), and a register p2 containing a boolean value. We
would like to develop such circuits in a systematic fashion.

8.1.1 Synchronous circuits

A synchronous circuit is viewed as a box which has a certain state; let us call this
state cir_state. Some input lines are entering into the box, and some output lines are
emerging out of it. Input and output lines are supposed to carry boolean values. All
this is indicated in Fig. 8.2.

As a sufficient abstraction, we can say that the circuit is synchronized by a clock,
which pulses regularly between two alternative positions, low and high, as indicated
in Fig. 8.3.

258
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outputinput
cir_state

Fig. 8.2. A circuit as a box with some input and output wires

low

high

Fig. 8.3. A clock

This abstraction of the clock is interpreted as follows: (1) when the clock is low,
cir_state and the output lines are supposed to be idle, only the input lines may
change; conversely, (2) when the clock is high, the input lines are supposed to stay
idle, whereas cir_state may be modified as well as the output line. From now on, we
consider that the circuit state cir_state and the output wire output together form the
circuit, whereas the input line constitutes its environment. Note that the environment
may also comprise a state, which we call env_state.

8.1.2 Coupling the circuit with its environment

With this view of circuit and environment in mind, the notion of clock can be made
more abstract by simply saying that it gives us two alternative ways of observing the
closed system made of the circuit and its environment.

We can thus consider that we have two modes of observation: one, env, corresponds
to observing the environment independently of the circuit, and another one, cir, corre-
sponds to observing the circuit independently of the environment. Such modes alternate
for ever. From now on, we shall follow that view and forget about the clock. This has
the consequence that we shall never develop a circuit in isolation, but always together
with its environment. Such a coupling is shown in Fig. 8.4.

8.1.3 Dynamic view of the coupling

Suppose cir_state is formalized by means of a number of boolean variables c. The
various dynamic evolutions of the circuit can be formalized by means of a number of
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output
cir_state

input
env_state

environment circuit

Fig. 8.4. A circuit and its environment

events defined as follows:

cir_event_i
when

mode = cir

GC_i(input, c)
then

mode := env

c, output :| PC_i(input, c, c′, output′)
end

Likewise, the environment is formalized by means of a number of variables e. The
various dynamic evolutions of the environment can be formalized by means of a number
of events defined as follows:

env_event_j
when

mode = env

GE_j(output, e)
then

mode := cir

e, input :| PE_j(output, e, e′, input′)
end

As can be seen, there is an important distinction to be made between the way the
input line and environment variables e are modified when the mode is env, and the
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output line and circuit variables c are modified when the mode is cir. The modification
of the environment may follow some specific rules but in no case is it influenced by
the circuit variables (it may be influenced by the output however). Conversely, the
modification in the circuit may depend on the input line and on the circuit variables
c, but not on the environment variables e however.

Also notice that, in an abstract view of our circuit and environment, the status of
the input and output lines and of c and e are not necessarily represented by boolean
values (which will probably be the case in a refined implementation). For instance, in
an abstract specification, variables e and c can very well carry the entire history of
what has happened since the interaction between the circuit and its environment has
started.

8.1.4 Static view of the coupling

So far we have only envisaged a very operational (although abstract) view of our circuit
and environment; we have just described how these entities behave dynamically while
time is passing, but we have not at all explained why they should behave like this.
Another completely independent approach is one by which a static view is presented by
means of some conditions C and D describing the way these entities are permanently
related to each other. These conditions express the way the circuit is coupled with its
environment:

mode = env ⇒ C(e, input, c, output)

mode = cir ⇒ D(e, input, c, output)

Condition C states what the circuit should establish (for the environment) provided
it behaves in a situation where D holds. Conversely, condition D states what the
environment should establish (for the circuit) provided it behaves in a situation where
C holds.

8.1.5 Consistency conditions

Nothing guarantees however that the dynamics envisaged above and the statics we
have just described are coherent; this is something that has to be proved rigorously. It



262 Development of electronic circuits

can be stated as follows:

C(e, input, c, output)
GE_j(output, e)
PE_j(output, e, e′, input′)
⇒
D(e′, input′, c, output))

D(e, input, c, output)
GC_i(input, c)
PC_i(input, c, c′, output′)
⇒
C(e, input, c′, output′)

Informally, this means that when mode is env and the static condition C holds, then
D must hold after any accepted modifications e′ and input′ made by the environment.
Likewise, when mode is cir and the static condition D holds, then C must hold after
any accepted modifications c′ and output′ made by the circuit.

8.1.6 A warning

Note that this formulation corresponds to what we must obtain towards the end of
a formal development where there should exist a very clear distinction between the
circuit and the environment. During the development however, such a distinction
is not necessarily as strict. For instance, we might allow for the possibility of the
environment accessing the previous input and even accessing the state of the cir-
cuit. Likewise, we have to accept the circuit accessing its previous output and even
the entire state of the environment. What must still be clearly followed however,
even in an abstraction, is the limitation of modification: the environment modifies
the input and its state only, whereas the circuit modifies its state and the output

only.
One of the objectives of the design of a circuit is precisely that of making the circuit

and environment communicate eventually through the input and output lines only. For
this, we have to localize their respective states.

8.1.7 Final construction of the circuit

A final refinement situation is obtained when the following conditions hold:

(i) the circuit variables must all be boolean;
(ii) the inputs must be boolean;
(iii) the outputs must be boolean;
(iv) the circuit must be deadlock free;
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(v) the circuit must be internally deterministic – this concerns circuit variables and
outputs;

(vi) the circuit must be externally deterministic – circuit guards are mutually exclu-
sive;

(vii) the environment does not access the circuit variables except the output;
(viii) the circuit does not access the environment variables except the input.

Note that the environment might still be externally as well as internally non-deter-
ministic. As a result, a circuit event has the following shape:

cir_event_i
when

mode = cir

GC_i(input, c)
then

mode := env

c := C_i(input, c)
output := O_i(input, c)

end

We are going to prove now that each circuit event can be refined in such a way
that all have the same action on the circuit state and output. Here is one such
refinement:

cir_event_i
when

mode = cir

GC_i(input, c)
then

mode := env

c := bool


 . . . ∨

(GC_i(input, c) ∧ C_i(input, c) = TRUE ) ∨
. . .




output := bool


 . . . ∨

(GC_i(input, c) ∧ O_i(input, c) = TRUE ) ∨
. . .




end
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Notice our usage of the operator “bool” transforming a predicate into a boolean ex-
pression. It is defined by means of the following equivalence:

E = bool(P ) ⇔
(

P ⇒ E = TRUE
¬P ⇒ E = FALSE

)

The refinement proof is now straightforward. It amounts to proving the following con-
cerning variable c (the proof to be done concerning output is similar and thus not
shown):

GC_i(input, c)
�

C_i(input, c) = bool


 . . . ∨

( GC_i(input, c) ∧ C_i(input, c) = TRUE ) ∨
. . .




According to the definition of the operator bool, this reduces to proving two statements.
Here is the first:

GC_i(input, c)
 . . . ∨

(GC_i(input, c) ∧ C_i(input, c) = TRUE ) ∨
. . .




�
C_i(input, c) = TRUE

Thanks to the mutual exclusion of the guards (that is GC_i(input, c)⇒¬GC_j

(input, c) when i 
= j), this first statement reduces to the following which holds
trivially:

GC_i(input, c)
C_i(input, c) = TRUE
�
C_i(input, c) = TRUE

Here is now the second statement:

GC_i(input, c)

¬

 . . . ∨

(GC_i(input, c) ∧ C_i(input, c) = TRUE ) ∨
. . .




�
C_i(input, c) = FALSE
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By applying de Morgan’s law to remove the external negation, this second statement
is equivalent to:

GC_i(input, c)
. . .

¬GC_i(input, c) ∨ C_i(input, c) = FALSE
. . .

�
C_i(input, c) = FALSE

that is, the following, which holds trivially:

GC_i(input, c)
. . .

C_i(input, c) = FALSE
. . .

�
C_i(input, c) = FALSE

Since the circuit events are deadlock free (disjunction of guards holds under condition
mode = cir) and have identical actions, they can all be merged into a single event as
follows:

cir_event
when

mode = cir

then
mode := env

c := bool


 . . . ∨

GC_i(input, c) ∧ C_i(input, c) = TRUE ∨
. . .




output := bool


 . . . ∨

GC_i(input, c) ∧ O_i(input, c) = TRUE ∨
. . .




end

Notice that when Ci(input, c) is syntactically equal to TRUE, then Ci(input, c) =
TRUE can be removed, and when Ci(input, c) is syntactically equal to FALSE, then
GC_i(input, c)∧Ci(input, c) = TRUE can be removed. We have similar simplifications
for O_i(input, c). This last event is our circuit. From this, the circuit can be drawn in
a systematic fashion.
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8.1.8 A very small illustrative example

Suppose we end up with a development with the following circuit events:

env1
when

mode = env

input_1 = TRUE
input_2 = TRUE

then
mode := cir

output := TRUE
end

env2
when

mode = env

input_1 = TRUE
input_2 = FALSE

then
mode := cir

output := TRUE
end

env3
when

mode = env

input_1 = FALSE
input_2 = TRUE

then
mode := cir

output := TRUE
end

env4
when

mode = env

input_1 = FALSE
input_2 = FALSE

then
mode := cir

output := FALSE
end

Clearly, these events are internally as well as externally deterministic and also deadlock-
free. By applying the merging rule presented in the previous section, we obtain the
following for the assignment of the variable output:

bool




( input_1 = TRUE ∧ input_2 = TRUE ∧ TRUE = TRUE ) ∨
( input_1 = TRUE ∧ input_2 = FALSE ∧ TRUE = TRUE ) ∨
( input_1 = FALSE ∧ input_2 = TRUE ∧ TRUE = TRUE ) ∨
( input_1 = FALSE ∧ input_2 = FALSE ∧ FALSE = TRUE )


 ,

reducing as expected to:

bool( input_1 = TRUE ∨ input_2 = TRUE ).
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As a result, these events can be merged into the following unique event:

or_gate
when

mode = env

then
mode := cir

output := bool ( input_1 = TRUE ∨ input_2 = TRUE )
end

8.2 A first example
As the previous discussion may appear to be rather dry, we shall now illustrate our
approach by describing a little example of circuit specification and design.

8.2.1 Informal specification

The circuit we propose to study is a well-known benchmark that has been analyzed
in different contexts: it is called the Single Pulser (Pulser for short). Here is a first
informal specification taken from [1]:

We have a debounced push-button, on (true) in the down position, off (false) in the
up position. Devise a circuit to sense the depression of the button and assert an
output signal for one clock pulse. The system should not allow additional assertions
of the output until after the operator has released the button.

Here is another related specification [1], which is given under the form of three prop-
erties concerning the input I and the output O of the circuit:

1. Whenever there is a rising edge at I, O becomes true some time later.
2. Whenever O is true, it becomes false in the next time distance and it remains false

at least until the next rising edge on I.
3. Whenever there is a rising edge, and assuming that the output pulse does not happen

immediately, there are no more rising edges until that pulse happens (There cannot
be two rising edges on I without a pulse on O between them).

A subjective impression after reading these specifications is that they are rather
difficult to understand. We would prefer to plunge the circuit to specify within a
possible environment as follows:

1. We have a button that can be depressed and released by an operator. The button
is connected to the input of the circuit.
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2. We have a lamp that is able to be lit and subsequently turned down. The lamp is
connected to the output of the circuit.

3. The circuit, situated between the button and the lamp, must always make the lamp
flash as many times as the button is depressed and subsequently released.

A schematic representation of this closed system is shown in Fig. 8.5.

PULSER
input output

button
lamp

Fig. 8.5. A pulser and its environment

Note that the scenario we have described can be observed by an external witness.
We can count the number of times the button is depressed by the operator and also
the number of times the lamp flashes and we can compare these numbers. For example,
Fig. 8.6 shows two wave diagrams: the first one represents a succession of depressions
of the button followed by subsequent releases, while the second shows various corre-
sponding flashes of the lamp.

released

depressed

flashes

button

lamp

Fig. 8.6. Relationship between the button depression and the lamp flash

As can be seen, the flash can be situated just after a button depression, or in between
a depression and a subsequent release, or else just after a release.

8.2.2 Initial model

The State Before defining the state, we must formalize the set MODE and its two
values env and cir:
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sets: MODE constants: env, cir

axm0_1: MODE = {env, cir}

axm0_2: env 
= cir

Rather than directly representing the environment by the concrete input line and
the circuit by the concrete output line (and probably some concrete internal state), we
consider an abstraction where the environment is represented by two natural variables,
push and pop, denoting respectively the number of times the button is depressed and
the number of times it is released (since the system has started). This yields the
following invariants, stating quite naturally that push is at least as pop and at most
one more than pop:

variables: mode

push

pop

inv0_1: mode ∈ MODE

inv0_2: push ∈ N

inv0_3: pop ∈ N

inv0_4: pop ≤ push

inv0_5: push ≤ pop + 1

The abstract circuit is represented by a single variable, flash, denoting the number
of times the lamp flashes. We then have the following properties showing the coupling
between the abstract environment and the abstract circuit: push is at least as flash

and at most one more than flash. In other words, you push the button then the lamp
later flashes (the lamp being turned down when the circuit is started):

variables: . . . , f lash

inv0_6: flash ∈ N

inv0_7: flash ≤ push

inv0_8: push ≤ flash + 1

The events Besides the initialization event, the dynamics of the environment are
straightforward: we have three events corresponding respectively to pushing the button
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(event env1), releasing it (event env2), and, finally, doing nothing (event env3). Clearly,
we can depress the button only when pop is equal to push, and we can release it when
push is different from pop (it is then one more than pop according to invariants inv0_4
and inv0_5); finally, we can do nothing in all circumstances:

init
mode := env
push := 0
pop := 0
flash := 0

env1
when

mode = env
pop = push

then
mode := cir
push := push + 1

end

env2
when

mode = env
push 
= pop

then
mode := cir
pop := pop + 1

end

env3
when

mode = env
then

mode := cir
end

The dynamics of the abstract circuit is a little more complicated. There are two
events corresponding to flashing the lamp (event cir1) or doing nothing (event cir2).
We can flash the lamp when push is different from flash:

cir1
when

mode = cir

push 
= flash

then
mode := env

flash := flash + 1
end

The circumstances in which the circuit does nothing need to be studied carefully.
When the button is depressed, the flash of the lamp can be done either immediately
(Case 1) or later as indicated in Fig. 8.7 (Case 2 and 3). The latest time for the

Case 1 Case 1Case 2

Fig. 8.7. The various cases where the circuit does nothing
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flash occurrence is just after the user releases the button (Case 3). As a consequence,
the circuit can do nothing in three different circumstances denoted A, B, and C in
Fig. 8.8.

A B

Case 3Case 1

A C

Case 2

B CA

Fig. 8.8. The various conditions where the circuit does nothing

Conditions A, B, and C can be formalized more rigorously as follows:

Condition A: push = pop ∧ push = flash

Condition B: push 
= pop ∧ push 
= flash

Condition C: push 
= pop ∧ push = flash

The guard of the “do-nothing” event of the circuit corresponds to the disjunction of
these conditions, namely:

A ∨ B ∨ C ⇔ push 
= pop ∨ push = flash

cir2
when

mode = cir

push 
= pop ∨ push = flash

then
mode := env

end

Proofs The proof of consistency between the static properties and the events requires
introducing the following additional invariant:

inv0_9: mode = env ⇒ flash = push ∨ flash = pop
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It may seem at first glance that the disjunction flash = push∨ flash = pop is always
true (even when mode = cir). In fact, this is almost always the case, except when the
flash occurs at the latest as indicated in Fig. 8.9.

Fig. 8.9. The special case where flash = push ∨ flash = pop does not hold

Then just after the occurrence of event env2 (releasing the button), we have mode =
cir and push = pop = flash + 1, thus clearly flash = push ∨ flash = pop does not
hold.

8.2.3 Refining the circuit by diminishing its non-determinacy

In this section, we shall present a first way of refining our circuit. This corresponds to
removing some of its possible non-deterministic behaviors. Let us reconsider the two
events of our circuit:

cir1
when

mode = cir

push 
= flash

then
mode := env

flash := flash + 1
end

cir2
when

mode = cir

push 
= pop ∨ push = flash

then
mode := env

end

The guards, clearly, may overlap when push 
= flash and push 
= pop hold simulta-
neously. This occurs when we are in between a depression and a release (push 
= pop)
and when the flash has not yet occurred (push 
= flash). In this situation, it is possible
for the circuit to either flash the lamp or do nothing.

We can see that there are two different ways of making this system of events de-
terministic: (1) by replacing the guard of cir2 by push = flash, or (2) by adding
the guard push = pop to that of the event cir1. In both cases, we are strengthening
the guards. The net effect, in both cases, is to make each guard the negation of the
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other: the circuit has become deterministic indeed. The first solution, which we call
PULSER1, corresponds to flashing the lamp as early as possible. It is illustrated in
Fig. 8.10.

button released

button depressed

Fig. 8.10. The flash occurs as early as possible

cir1_PULSER1
when

mode = cir

push 
= flash

then
mode := env

flash := flash + 1
end

cir2_PULSER1
when

mode = cir

push = flash

then
mode := env

end

In this case, the following invariant can be proved:

inv1_pulser1: pop 
= push ∧ mode = env ⇒ flash 
= pop

When the button is depressed (pop 
= push) and the mode is environment (mode =
env), then the flash has occurred; thus, the number of flashes is one more than the
number of pops, or alternatively the flash number is equal to the push number (flash =
push).

The second solution, which we call PULSER2, corresponds to flashing the lamp as
late as possible. It is illustrated in Fig. 8.11.
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button released

button depressed

Fig. 8.11. The flash occurs as late as possible

cir1_PULSER2
when

mode = cir

push = pop ∧ push 
= flash

then
mode := env

flash := flash + 1
end

cir2_PULSER2
when

mode = cir

push 
= pop ∨ push = flash

then
mode := env

end

In this case, the following invariant can be proved:

inv1_pulser2: pop 
= push ⇒ flash 
= push

When the button is depressed (pop 
= push), then the number of flashes is one less
than the number of pushes (flash 
= push) or alternatively the flash number is equal
to the pop number (flash = pop).

8.2.4 Refining the circuits by changing the data space

The two circuits PULSER1 and PULSER2 we have obtained, although now completely
deterministic, are still rather abstract. We would like to converge now towards some
“real” circuits. In particular, the input and output wires should be defined, and the
abstract variables push, pop, and flash should be abandoned. The purpose of this
section is to show how refinement allow us to change our data space.

We have two new variables input and output, which correspond to the input and
output lines respectively. These variables are boolean:
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variables: mode

input

output

inv2_1: input ∈ BOOL

inv2_2: output ∈ BOOL

The variable input is an environment variable: it is modified by both events env1 and
env2. The abstract variable push is supposed to denote the number of times the variable
input moves from FALSE to TRUE. Likewise, the abstract variable pop is supposed
to denote the number of times the variable input moves from TRUE to FALSE. This
leads to the following new events env1 and env2:

env1
when

mode = env

input = FALSE
then

mode := cir

input := TRUE
end

env2
when

mode = env

input = TRUE
then

mode := cir

input := FALSE
end

env3
when

mode = env

then
mode := cir

end

For these events to be correct refinements of their abstract counterparts, each con-
crete guard must imply the corresponding abstract guard. Here is a copy of the
abstractions:

(abstract-)env1
when

mode = env

pop = push

then
mode := cir

push := push + 1
end

(abstract-)env2
when

mode = env

pop 
= push

then
mode := cir

pop := pop + 1
end

(abstract-)env3
when

mode = env

then
mode := cir

end

The correct refinement thus clearly involves proving the following relationship be-
tween the concrete environment space and the abstract one:

inv2_3: input = TRUE ⇔ pop 
= push
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Let us now turn to the implementation of the abstract circuit PULSER1. We have the
following abstract circuit events:

(abstract-)cir1_PULSER1
when

mode = cir

push 
= flash

then
mode := env

flash := flash + 1
end

(abstract-)cir2_PULSER1
when

mode = cir

push = flash

then
mode := env

end

The abstract circuit variable flash has to disappear. It counts the number of times
the concrete variable output moves from FALSE to TRUE. For this, the guard of
the concrete event cir1 must check that the abstract variable push has just been
modified by the environment. As we know, this is when the input line input moves
from FALSE to TRUE. Clearly, we can access the actual value of input, but cer-
tainly not its previous value. We have no choice then but to introduce a regis-
ter, reg, internal to our circuit, and whose role is to store the previous value of
input. We also have an equality between reg and input when mode = env holds
(invi2_5):

variables: mode, input, output, reg

inv2_4: reg ∈ BOOL

invi2_5: mode = env ⇒ reg = input

This leads to the following implementation of the events cir1 and cir2 for PULSER1:

cir1_PULSER1
when

mode = cir

input = TRUE ∧ reg = FALSE
then

mode := env

output := TRUE
reg := input

end

cir2_PULSER1
when

mode = cir

input = FALSE ∨ reg = TRUE
then

mode := env

output := FALSE
reg := input

end
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The concrete guards must imply the abstract ones. All this leads to the following
properties to be maintained:

inv2_PULSER1_6: mode = cir ⇒

 input = TRUE ∧ reg = FALSE
⇔
push 
= flash




We have a similar implementation of the events cir1 and cir2 for PULSER2:

cir1_PULSER2
when

mode = cir
input = FALSE ∧ reg = TRUE

then
mode := env
output := TRUE
reg := input

end

cir2_PULSER2
when

mode = cir
input = TRUE ∨ reg = FALSE

then
mode := env
output := FALSE
reg := input

end

And we have to ensure the following additional invariant:

inv2_PULSER2_6: mode = cir ⇒

 input = FALSE ∧ reg = TRUE
⇔
push 
= flash ∧ push = pop




8.2.5 Building the final circuits

Our next design step is to depart from the closed system and consider the circuit
PULSER1 and PULSER2 in isolation. Here is a copy of the PULSER1 events:

cir1_PULSER1
when

mode = cir

input = TRUE ∧ reg = FALSE
then

mode := env

output := TRUE
reg := input

end

cir2_PULSER1
when

mode = cir

input = FALSE ∨ reg = TRUE
then

mode := env

output := FALSE
reg := input

end
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Applying the technique developed in Section 8.1.7, we obtain:

PULSER1
when

mode = cir

then
mode := env

output := bool((input = TRUE ∧ reg = FALSE ∧ TRUE = TRUE) ∨
(. . . ∧ FALSE = TRUE))

reg := bool(input = TRUE ∧ (input = TRUE ∧ reg = FALSE) ∨
input = TRUE ∧ (input = FALSE ∨ reg = TRUE))

end

,

which reduces to:

PULSER1
when

mode = cir

then
mode := env

output := bool(input = TRUE ∧ reg = FALSE)
reg := bool(input = TRUE)

end

We have eventually constructed our little circuit PULSER1 as shown on Fig. 8.12.

reg

output

input

Fig. 8.12. The circuit PULSER1
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We can construct the following circuit PULSER2 similarly:

cir1_PULSER2
when

mode = cir

input = FALSE ∧ reg = TRUE
then

mode := env

output := TRUE
reg := input

end

cir2_PULSER2
when

mode = cir

input = TRUE ∨ reg = FALSE
then

mode := env

output := FALSE
reg := input

end

Applying the technique developed in Section 8.1.7, we obtain:

PULSER2
when

mode = cir

then
mode := env

output := bool((input = FALSE ∧ reg = TRUE ∧ TRUE = TRUE) ∨
(. . . ∧ FALSE = TRUE))

reg := bool(input = TRUE ∧ (input = FALSE ∧ reg = TRUE) ∨
input = TRUE ∧ (input = TRUE ∨ reg = FALSE))

end

,

which reduces to:

PULSER2
when

mode = cir

then
mode := env

output := bool(input = FALSE ∧ reg = TRUE)
reg := bool(input = TRUE)

end

This leads to the circuit of Fig. 8.13.
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reg

output

input

Fig. 8.13. The circuit PULSER2

8.3 Second example: the arbiter
8.3.1 Informal specification

This simple circuit is called the (binary) Arbiter. It has two boolean input lines called
i_1 and i_2 and two boolean output lines called o_1 and o_2. This is indicated in
Fig. 8.14.

The circuit has two boolean inputs i_1 and i_2
and two boolean outputs o_1 and o_2

FUN-1

ARBITER

i_1 o_1

o_2i_2

Fig. 8.14. The arbiter

When input i_i is valued to TRUE, this means that a certain user_i, associated by
construction with the line i_i, has required (asked for) the usage of a certain shared
resource (the specific resource in question as well as the nature of the users do not play
any rôle in this system):

A TRUE input means a user (associated with that input)
is asking for a certain resource

FUN-2
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When the circuit, used with input i_i valued to TRUE, reacts with the output o_i

valued to TRUE, this means that the circuit has indeed granted the resource to user_i.
Of course, an output o_i can only be valued to TRUE when the corresponding input
i_i is TRUE:

The circuit reacts positively to a request by setting
the corresponding output to TRUE

FUN-3

Conversely, the circuit should react as soon as it can. But this reaction is constrained
by the fact that the circuit can only grant the resource to at most one user at a
time:

The circuit can react positively to only one request
at a time (mutual exclusion)

FUN-4

Notice that each winning user is supposed to immediately release the resource so that
it can ask for it again immediately after getting it.

Each user frees the resource immediately FUN-5

We have a number of additional constraints:

• No requiring user can be indefinitely denied the right to obtain the resource (this
could be the case, should the other user always require the resource again immedi-
ately after getting it). Notice that, in this example, we shall make this constraint
more precise by asking that a requiring user should not wait for more than one
clock pulse before being served. In other words, a new requesting user, if not served
at the next circuit reaction, must necessarily be served at the one that follows the
next:

A requesting user cannot be postponed indefinitely FUN-6

• We suppose that a requiring user shall not give up requiring the resource without
being served (this is just a simplification that could have been relaxed):
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A user asking for a resource continues to ask for it
as long as it is not served

FUN-7

• Finally, we require that the circuit correctly reacts to the void case where no user is
asking for the resource. In that case, the resource must not then be granted to any
user:

The resource cannot be granted without a user asking for it FUN-8

We do not know whether it is possible to build such a circuit. Also, we do not know
either whether such a circuit, supposedly constructed, is free from any deadlock in
some situations.

8.3.2 Initial model

The state In the formal specification, we shall abstract from the boolean input and
output lines as described in the previous section. We consider that in the environment,
we can count the numbers r1 and r2 of requests made by each user and the correspond-
ing numbers a1 and a2 of acknowledgements made by the circuit. The constraint of
the informal specification imposes the following straightforward permanent invariant
where it is stated that the number of requests is at most one more than the number
of acknowledgements (inv0_5 to inv0_8):

variables: r1
r2
a1
a2

inv0_1: r1 ∈ N

inv0_2: r2 ∈ N

inv0_3: a1 ∈ N

inv0_4: a2 ∈ N

inv0_5: a1 ≤ r1

inv0_6: r1 ≤ a1 + 1

inv0_7: a2 ≤ r2

inv0_8: r2 ≤ a2 + 1

We have not yet stated however that no user must wait indefinitely. For this, we
introduce two boolean variables in the circuit: p1 and p2. When, say, pi is TRUE, it
means that user_i now waits for the resource. Clearly, p1 and p2 cannot be both equal
to TRUE simultaneously (inv011) because that would mean that the circuit has not
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reacted immediately. In fact, when mode is env, pi = FALSE is equivalent to ri = ai;
no request is pending for user_i (inv0_12 and inv0_13):

variables: p1
p2

inv0_9: p1 ∈ BOOL

inv0_10: p2 ∈ BOOL

inv0_11: p1 = FALSE ∨ p2 = FALSE

inv0_12: mode = env ⇒ (r1 = a1 ⇔ p1 = FALSE)

inv0_13: mode = env ⇒ (r2 = a2 ⇔ p2 = FALSE)

Events The various environment events correspond to new requests being posted
either individually (env1 and env2) or simultaneously (env3), or to the environment
doing nothing (env0):

env1
when

mode = env

r1 = a1
then

mode := cir

r1 := r1 + 1
end

env2
when

mode = env

r2 = a2
then

mode := cir

r2 := r2 + 1
end

env3
when

mode = env

r1 = a1
r2 = a2

then
mode := cir

r1 := r1 + 1
r2 := r2 + 1

end

env0
when

mode = env

then
mode := cir

end
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The events of the circuit are very simple. In case a request is pending (in events
cir1 and cir2), the event increments the acknowledgement counter and sets the cor-
responding variables, say p1 for event cir1, to FALSE. Notice that it can be the
case already. It does so, however, provided the other user has not itself required
the resource for more than one clock pulse; hence the guard p2 = FALSE. When
no request is made (in event cir0), the event does nothing except set p1 and p2
to FALSE:

cir1
when

mode = cir

r1 
= a1
p2 = FALSE

then
mode := env

a1 := a1 + 1
p1 := FALSE
p2 := bool(r2 
= a2)

end

cir2
when

mode = cir

r2 
= a2
p1 = FALSE

then
mode := env

a2 := a2 + 1
p2 := FALSE
p1 := bool(r1 
= a1)

end

cir0
when

mode = cir

r1 = a1
r2 = a2

then
mode := env

p1 := FALSE
p2 := FALSE

end

Proving deadlock freedom Nothing guarantees, of course, that the circuit events
are not stuck because their guards do not hold. We have thus to prove the following,
stating that while in the cir mode, the disjunction of the guards of the circuit always
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holds:

thm0_1: mode = cir ⇒

 r1 
= a1 ∧ p2 = FALSE ∨

r2 
= a2 ∧ p1 = FALSE ∨
r1 = a1 ∧ r2 = a2




To prove this, it is necessary to add the following invariants:

inv0_14: mode = cir ⇒ (r1 = a1 ⇒ p1 = FALSE)

inv0_15: mode = cir ⇒ (r2 = a2 ⇒ p2 = FALSE)

Note that the circuit is still non-deterministic; this is the case when both users are
just require the resource simultaneously (thus p1 = FALSE and p2 = FALSE hold
simultaneously). In this case, both circuit events, cir1 and cir2, can be fired.

8.3.3 First refinement: generating binary outputs
from the circuit

The state In the previous section, the circuit events, cir1 and cir2, incremented di-
rectly the acknowledgement counters, a1 and a2. These counters both formed the
abstract outputs of our circuit. We shall now postpone this incrementation and have
the circuit only generating an offset (that is, a 0 or a 1), the proper incrementation
itself being done by the environment on two slightly time-shifted counters, say b1 and
b2. But we want the circuit to produce boolean values only. For this, we introduce a
constant function b_2_01, transforming a boolean value into a numeric value.

constants: b_2_01

axm1_1: b_2_01 ∈ BOOL→{0, 1}

axm1_2: b_2_01(TRUE) = 1

axm1_3: b_2_01(FALSE) = 0
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This refinement introduces thus four variables typed as follows:

variables: b1, o1, b2, o2

inv1_1: b1 ∈ N

inv1_2: o1 ∈ BOOL

inv1_3: b2 ∈ N

inv1_4: o2 ∈ BOOL

The “gluing” invariant that holds between the abstract counters a1 and a2 and the new
concrete variables we have just introduced is the following:

inv1_5: mode = cir ⇒ a1 = b1

inv1_6: mode = cir ⇒ a2 = b2

inv1_7: mode = env ⇒ a1 = b1 + b_2_01(o1)

inv1_8: mode = env ⇒ a2 = b2 + b_2_01(o2)

The last two statements indicate that, while we are observing the environment (just
after the reaction of the circuit), the abstract counters ai are already incremented
(by the abstract circuit), while the concrete counters bi are not. In fact, they will be
incremented in the environment, thanks to the contents of the output oi. On the other
hand, the first two statements indicate that, while observing the circuit, the abstract
and concrete counters are now “in phase”.

The events The environment events are all modified in a straightforward way:

env1
when

mode = env

r1 = b1 + b_2_01(o1)
then

mode := cir

r1 := r1 + 1
b1 := b1 + b_2_01(o1)
b2 := b2 + b_2_01(o2)

end

env2
when

mode = env

r2 = b2 + b_2_01(o2)
then

mode := cir

r2 := r2 + 1
b1 := b1 + b_2_01(o1)
b2 := b2 + b_2_01(o2)

end
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env3
when

mode = env
r1 = b1 + b_2_01(o1)
r2 = b2 + b_2_01(o2)

then
mode := cir
r1 := r1 + 1
r2 := r2 + 1
b1 := b1 + b_2_01(o1)
b2 := b2 + b_2_01(o2)

end

The circuit events are modified accordingly:

cir1
when

mode = cir

r1 
= b1
p2 = FALSE

then
mode := env

o1 := TRUE
o2 := FALSE
p1 := FALSE
p2 := bool(r2 
= b2)

end

cir2
when

mode = cir

r2 
= b2
p1 = FALSE

then
mode := env

o1 := FALSE
o2 := TRUE
p1 := bool(r1 
= b1)
p2 := FALSE

end

cir0
when

mode = cir

r1 = b1
r2 = b2

then
mode := env

o1 := FALSE
o2 := FALSE
p1 := FALSE
p2 := FALSE

end
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8.3.4 Second refinement

The state The environment events are now accessing environment variables only (r1,
r2, b1, and b2) together with the outputs of the circuit (o1 and o2). But, the circuit
events still access the environment variables (r1, r2, b1, and b2). In this refinement, we
introduce proper inputs i1 and i2 to the circuit.

The inputs to the circuit, rather than being the number ri of requests and the number
bi of acknowledgements could very well be only their difference, which is at most 1, as
we know from invariants inv0_5 to inv0_8. For this, we introduce two new binary
variables i1 and i2:

variables: i1, i2
inv2_1: i1 ∈ BOOL

inv2_2: i2 ∈ BOOL

The invariants relating i1 and i2 to r1, r2, b1, and b2 are straightforward:

inv2_2: mode = cir ⇒ (i1 = FALSE ⇔ r1 = b1)

inv2_3: mode = cir ⇒ (i2 = FALSE ⇔ r2 = b2)

The modification of the environment events are very simple:

env1
when

mode = env

r1 = b1 + b_2_01(o1)
then

mode := cir

r1 := r1 + 1
b1 := b1 + b_2_01(o1)
b2 := b2 + b_2_01(o2)
i1 := TRUE
i2 := bool(r2 
= b2 + b_2_01(o2))

end

env2
when

mode = env

r2 = b2 + b_2_01(o2)
then

mode := cir

r2 := r2 + 1
b1 := b1 + b_2_01(o1)
b2 := b2 + b_2_01(o2)
i1 := bool(r1 
= b1 + b_1_01(o1))
i2 := TRUE

end
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env3
when

mode = env

r1 = b1 + b_2_01(o1)
r2 = b2 + b_2_01(o2)

then
mode := cir

r1 := r1 + 1
r2 := r2 + 1
b1 := b1 + b_2_01(o1)
b2 := b2 + b_2_01(o2)
i1 := TRUE
i2 := TRUE

end

env0
when

mode = env

then
mode := cir

b1 := b1 + b_2_01(o1)
b2 := b2 + b_2_01(o2)
i1 := bool(r1 
= b1 + b_1_01(o1))
i2 := bool(r1 
= b2 + b_1_01(o2))

end

Here are the new circuit events:

cir1
when

mode = cir

i1 = TRUE
p2 = FALSE

then
mode := env

o1 := TRUE
o2 := FALSE
p1 := FALSE
p2 := i2

end

cir2
when

mode = cir

i2 = TRUE
p1 = FALSE

then
mode := env

o1 := FALSE
o2 := TRUE
p1 := i1
p2 := FALSE

end

cir0
when

mode = cir

i1 = FALSE
i2 = FALSE

then
mode := env

o1 := FALSE
o2 := FALSE
p1 := FALSE
p2 := FALSE

end

8.3.5 Third refinement: reducing non-determinacy of the circuit

The state The circuit we have obtained in the previous section is now complete and
simple, but still non-deterministic: when i1 and i2 are both equal to TRUE with p1
and p2 both equal to FALSE, the circuit can choose to set o1 or o2 to TRUE. In other
words, both events cir1 and cir2 are enabled. In order to make the circuit completely
deterministic, we decide that, in this case, o1 say, will be the winner. In fact, we remove
variables p1.
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The events The environment events remain the same, whereas the circuit events are
modified as follows:

cir1
when

mode = cir

i1 = TRUE
p2 = FALSE

then
mode := env

o1 := TRUE
o2 := FALSE
p2 := i2

end

cir2
when

mode = cir

i2 = TRUE
¬ (i1 = TRUE ∧ p2 = FALSE)

then
mode := env

o1 := FALSE
o2 := TRUE
p2 := FALSE

end

cir0
when

mode = cir

i1 = FALSE
i2 = FALSE

then
mode := env

o1 := FALSE
o2 := FALSE
p2 := FALSE

end

The circuit events are now clearly internally as well as externally deterministic.

Revisiting deadlock freedom The interesting and fundamental last statement to
prove is that the events of the circuit are deadlock free. For this, we have to prove that,
under the hypothesis mode = cir, the disjunction of the guards of the circuit events
are true (the interactive proof of this statement is easy), namely:

thm3_1: mode = cir ⇒

 i1 = TRUE ∧ p2 = FALSE) ∨

i2 = TRUE ∧ ¬ (i1 = TRUE ∧ p2 = FALSE) ∨
i1 = FALSE ∧ i2 = FALSE
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8.3.6 Fourth refinement: building the final circuit

The circuit and environment now fulfill all the final conditions stated in Section 8.1.7.
As a result, we can construct our final circuit in a systematic fashion:

arbiter
when

mode = cir
then

mode := env
o1 := bool ( (i1 = TRUE ∧ p2 = FALSE ∧ TRUE = TRUE) ∨

(. . . ∧ FALSE = TRUE) ∨
(. . . ∧ FALSE = TRUE) )

o2 := bool ( (. . . ∧ FALSE = TRUE) ∨
(i2 = TRUE ∧ ¬ (i1 = TRUE ∧ p2 = FALSE) ∧ TRUE = TRUE) ∨
(. . . ∧ FALSE = TRUE) )

p2 := bool ( (i1 = TRUE ∧ p2 = FALSE ∧ i2 = TRUE ) ∨
(. . . ∧ FALSE = TRUE) ∨
(. . . ∧ FALSE = TRUE) )

end

This can be simplified as follows:

arbiter
when

mode = cir

then
mode := env

o1 := bool ( i1 = TRUE ∧ p2 = FALSE )
o2 := bool ( i2 = TRUE ∧ ¬ (i1 = TRUE ∧ p2 = FALSE) )
p2 := bool ( i1 = TRUE ∧ p2 = FALSE ∧ i2 = TRUE )

end

This leads to the circuit of Fig. 8.15.

8.4 Third example: a special road traffic light
The example we develop in this section is one where a complete (but still simple)
system is considered with a circuit aimed at controlling a physical environment by
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p2

i1
o1

o2

i2

Fig. 8.15. The arbiter

reacting appropriately. In this example, we also experiment with the idea of connecting
various circuits together.

8.4.1 Informal specification

We intend to install a traffic light at the crossing between a main road and a small
road. The idea is to have these lights behaving in such a way that the traffic on the
main road is somehow given a certain advantage over that on the small road. The
corresponding policy is explained (and commented) in the following informally stated
rules:

Rule 1 When the light controlling the main road is green, it only turns orange (and
subsequently red) when some cars are present on the small road (the pres-
ence of such cars is detected by appropriate sensors). As a consequence, when
no cars are present on the small road, the traffic on the main road is not
disturbed.

Rule 2 This potential loss of priority on the main road is however only possible pro-
vided that road has already kept the priority for at least a certain (long) fixed
delay. In other words, within that delay, the main road keeps the priority even
if there are cars waiting on the small road. As a consequence, when there are
cars frequently coming on the small road, the traffic on the main road is still
flowing smoothly.

Rule 3 On the other hand, the small road, when given priority, keeps it is as long as
there are cars willing to cross the main road.

Rule 4 This keeping of the priority by the small road is however only possible provided
a (long) delay (the same delay as for the main road) has not passed. When
the delay is over, the priority systematically returns to the main road, even if
there are still some cars present on the small road. As a consequence, when
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there are many cars on the small road, these cars cannot block the main road
for too long a period of time.

Rule 5 As already alluded to above, a green light does not turn red immediately. An
orange color appears as usual for a (small) amount of time before the light
definitely turns red. This sequential behavior is the same on the lights of both
roads.

Rule 6 As usual, the safety of the drivers is ensured by the fact that the light, when
green or orange on one road, is always red on the other one, and vice-versa.
Safety is also ensured, of course, provided the drivers obey the law of not
trespassing a red light (but this is another matter, not under the responsibility
of the circuit!).

8.4.2 A separation of concern approach

By reading the previous informal requirements, it appears that there are apparently
two separate questions in this problem: (1) one is dealing with the modification of the
priority from the main to the small road and vice-versa (this corresponds to Rule 1
and to Rule 4 above), and (2) another is dealing with the realization of that change
of priority in a way that is meaningful to drivers (this corresponds to Rule 5 and
Rule 6): this concerns the modification of the colours of each light (from successively,
say, green to orange, then to red, and then to green again, etc), and the obvious non-
contradiction between the lights governing each road (no two green lights at the same
time, etc).

It seems that these two questions are rather “orthogonal” in that a modification in
the road priority policy should not affect the proper behaviors of the lights, and vice-
versa. Clearly, a modification in classical behavior of the lights is not something that we
would reasonably envisage, as it is rather universal. On the other hand, a modification
in the priority policy is a possibility that could not be rejected a priori. In that case,
we would like to have the circuit built in such a way that this modification could be
done in an easy way (sub-circuit replacement).

We should also notice that the first of these two questions deals with the essential
function of this system, namely to alternate the priority between two roads in an
unbalanced way. On the other hand, the second question rather deals with the safety
and possible progress of the users. In other words, we must ensure that drivers: (i)
are always in a safe situation provided they obey the usual conventions indicated by
the colours of the lights, and (ii) are also not blocked indefinitely (everybody has
experienced at least once a situation where, for instance, both lights are red!).

Our initial idea is thus to make the design of two distinct circuits, which will be
eventually connected. One is the Priority circuit, and the other is the Light circuit. The
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Priority circuit delivers a signal to the Light circuit stating that the priority has to be
changed from one road to the other. In this way, the latter can translate this “priority”
information in terms of a corresponding “traffic light” information.

8.4.3 The priority circuit: initial model

The state The simplest Priority circuit we can think of is one with two boolean inputs,
car and clk: car corresponds to the information elaborated by the car sensors disposed
on the small road and clk is an alarm coming from an external “timer” saying that the
long delay is over. The priority circuit has two boolean outputs, chg and prt. chg yields
the information concerning a change in the priority, whereas prt yields the priority in
use. All this is indicated on Fig. 8.16.

This timer sends an alarm on the boolean entry clk when (and as long as) the
long delay described above is over.The circuit “decides” to possibly change the priority
depending on three factors: (1) the actual priority (main road or small road) stored
in the circuit, (2) the presence of cars on the small road, and (3) the state of the
alarm coming from the timer. The Priority circuit has an internal register, prt, holding
the actual priority. The output chg is used externally to reset the external timer. The
overall picture is indicated on Fig. 8.17.

clk

car

chg

prtPRIORITY

Fig. 8.16. The priority circuit

clk

car

chg

prtPRIORITY

TIMER

Fig. 8.17. Connection of the priority circuit with the Timer Circuit
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The variables of the priority circuit are declared as follows:

variables: car, clk, chg, prt

inv0_1: car ∈ BOOL

inv0_2: clk ∈ BOOL

inv0_3: chg ∈ BOOL

inv0_4: prt ∈ BOOL

We have the following conventions: (1) car valued to TRUE means that some cars are
waiting on the small road; (2) clk valued to TRUE means that the long delay is over;
and (3) chg valued to TRUE means that the priority has to change. The variable prt

is valued FALSE (priority on main road) or TRUE (priority on small road).

The events The events of the Priority circuit elaborate priority changes. We have two
such events, called main_to_small and small_to_main. Their guards formally state
under which circumstances the priority can change. This is explained in what follows:

(i) Event main_to_small can be fired when the priority is on main road (prt =
FALSE), when some car are present on the small road (car = TRUE), and when
the long delay has passed (clk = TRUE): this corresponds to Rule 1 and Rule 2
above.

(ii) Event small_to_main_ can be fired when the priority is on small road (prt =
TRUE) and when no cars are present on the small road (car = FALSE) or
when the long delay has passed (clk = TRUE): this corresponds to Rule 3 and
Rule 4.

In both cases, the priority changes (chg := TRUE) and variable prt is modified ac-
cordingly. Here are the events:

main_to_small
when

mode = cir
prt = FALSE
car = TRUE
clk = TRUE

then
mode := env
prt := TRUE
chg := TRUE

end

small_to_main
when

mode = cir
prt = TRUE
car = FALSE ∨ clk = TRUE

then
mode := env
prt := FALSE
chg := TRUE

end
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Another series of events corresponds to the circuit doing nothing except resetting the
chg output to FALSE (no change). This occurs in two circumstances:

(i) Event do_nothing_1 can be fired when the priority is on main road (prt = FALSE)
and when there are no cars on the small road (car = FALSE) or the delay
has not passed yet (clk = FALSE). This corresponds to Rule 1 and Rule 2
above.

(ii) Event do_nothing_2 can be fired when the priority is on small road (prt = TRUE),
when there are cars present on the small road (car = TRUE), and when the
delay has not passed yet (clk = FALSE). This corresponds to Rule 3 and
Rule 4.

Here are these events:

do_nothing_1
when

mode = cir

prt = FALSE
car = FALSE ∨ clk = FALSE

then
mode := env

chg := FALSE
end

do_nothing_2
when

mode = cir

prt = TRUE
car = TRUE
clk = FALSE

then
mode := env

chg := FALSE
end

The unique environment event is the following:

env1
when

mode = env

then
mode := cir

car :∈ BOOL
clk :∈ BOOL

end
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Notice that this event is not very realistic as cars may come and then disappear in
a rather random way. In Section 8.4.4, we shall make this event more realistic by
splitting it.

Deadlock freedom The Priority circuit is deadlock free as stated in this
theorem:

thm0_1: mode = cir ⇒




prt = FALSE ∧ car = TRUE ∧ clk = TRUE
prt = TRUE ∧ (car = FALSE ∨ clk = TRUE)
prt = FALSE ∧ (car = FALSE ∨ clk = FALSE)
prt = TRUE ∧ car = TRUE ∧ clk = FALSE




8.4.4 The final Priority circuit

The priority circuit fulfills the condition of Section 8.1.7. Notice that events do_
nothing_1 and do_nothing_2 do not mention variable prt; in fact, we could consider
that they both have the action prt := prt. With this in mind, the circuit generation
goes as follows:

priority
when

mode = cir
then

mode := env

prt := bool




(prt = FALSE ∧ car = TRUE ∧ clk =
TRUE ∧ TRUE = TRUE) ∨

(prt = FALSE ∧ (car = FALSE ∨ clk = FALSE) ∧ prt =
TRUE) ∨

(prt = TRUE ∧ car = TRUE ∧ clk = FALSE ∧ prt =
TRUE)




chg := bool




(prt = FALSE ∧ car = TRUE ∧ clk = TRUE ∧ TRUE
= TRUE) ∨

(prt = TRUE ∧ (car = FALSE ∨ clk = TRUE) ∧ TRUE
= TRUE) ∨

(. . . ∧ FALSE = TRUE) ∨
(. . . ∧ FALSE = TRUE))




end
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This reduces trivially to the following:

priority
when

mode = cir

then
mode := env

prt := bool
(

(prt = FALSE ∧ car = TRUE ∧ clk = TRUE) ∨
(prt = TRUE ∧ car = TRUE ∧ clk = FALSE)

)

chg := bool
(

(prt = FALSE ∧ car = TRUE ∧ clk = TRUE) ∨
(prt = TRUE ∧ (car = FALSE ∨ clk = TRUE))

)
end

This circuit can be further transformed in the following equivalent fashion:

priority
when

mode = cir
then

mode := env

prt := bool




(prt = TRUE ∧ ¬
(

(car = TRUE ∧ clk = TRUE) ∨
(car = FALSE ∧ prt = TRUE)

)
∨

(prt = FALSE ∧
(

(car = TRUE ∧ clk = TRUE) ∨
(car = FALSE ∧ prt = TRUE)

)



chg := bool
(

(car = TRUE ∧ clk = TRUE) ∨
(car = FALSE ∧ prt = TRUE)

)
end

It is easy to figure out that these two events are equivalent. Hint: (1) do a proof by cases
(prt = TRUE, then prt = FALSE) to prove the equivalence concerning the assignment
to prt, and (2) do a proof by cases (car = TRUE, then car = FALSE) to prove the
equivalence concerning the assignment to chg. The last event is interesting because it
contains three times the following fragment, which can thus be computed only once:

car = TRUE ∧ clk = TRUE ∨
car = FALSE ∧ prt = TRUE.

In this last version, we notice also several occurrences of predicates of the form:

(P ∧Q) ∨ (¬P ∧R).
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This will be economically represented by an IF gate, considered to be an atomic one.
Such a gate is pictorially represented in Fig. 8.18.

Equipped with such an IF gate, we can draw our Priority circuit as indicated in
Fig. 8.19.

P

Q

R

P

R

Q

Fig. 8.18. An IF gate

prtcar

clk
chg

prt

Fig. 8.19. The priority circuit

8.5 The Light circuit
We now connect our Priority circuit to the Light circuit. The Light circuit delivers the
various colours of both traffic lights. This is indicated in Fig. 8.20.

8.5.1 An abstraction: the Upper circuit

We start with a simplified circuit whose rôle is to ensure the sequencing of a single
traffic light, that of the main road. This is shown in Fig. 8.21.
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clk chg

prtPRIORITY

TIMER

LIGHT

car

_grn_MR red_MR grn_SRorg_MR org_SR red_SR

Fig. 8.20. The priority circuit connected to the light circuit

grn org rd1 rd2

prt

UPPER

Fig. 8.21. The upper light circuit

We shall later extend that circuit to handle two synchronous traffic lights. The circuit
has a single boolean entry prt, which, when valued to TRUE, indicates that a light
appearance should give priority to the small road. It has four boolean outputs called
grn, org, rd1, and rd2. The reason for decomposing the red colour into two colours
is one of symmetry. Exactly one of them at a time is valued to TRUE. This can be
formalized as follows:

variables: prt, grn, org, rd1, rd2
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inv0_1: prt ∈ BOOL

inv0_2: grn = TRUE ∨ org = TRUE ∨ rd1 = TRUE ∨ rd2 = TRUE

inv0_3: grn = TRUE⇒ org = FALSE ∧ rd1 = FALSE ∧ rd2 = FALSE

inv0_4: org = TRUE⇒ rd1 = FALSE ∧ rd2 = FALSE

inv0_5: rd1 = TRUE⇒ rd2 = FALSE

inv0_6: mode ∈MODE

The events of the circuit are straightforward:

grn_to_org
when

mode = cir

prt = TRUE
grn = TRUE

then
mode := env

grn := FALSE
org := TRUE

end

org_to_rd1
when

mode = cir

org = TRUE
then

mode := env

org := FALSE
rd1 := TRUE

end

rd1_to_rd2
when

mode = cir

prt = FALSE
rd1 = TRUE

then
mode := env

rd1 := FALSE
rd2 := TRUE

end

rd2_to_grn
when

mode = cir

rd2 = TRUE
then

mode := env

grn := TRUE
rd2 := FALSE

end

We have two “do-nothing” events in the circuit and also an environment event assigning
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prt in a non-deterministic way. These are as follows:

grn_to_nth
when

mode = cir

grn = TRUE
prt = FALSE

then
mode := env

end

rd1_to_nth
when

mode = cir

rd1 = TRUE
prt = TRUE

then
mode := env

end

env_evt
when

mode = env

then
mode := cir

prt :∈ BOOL

end

8.5.2 A refinement: adding the Lower circuit

We refine the circuit by having now six outputs corresponding the the light appearance
of both traffic lights. First those of the main road: grn_MR, org_MR, and red_MR.
Then those of the small road: grn_SR, org_SR, and red_SR:

variables: prt, grn, org, rd1, rd2

grn_MR, org_MR, red_MR

grn_SR, org_SR, red_SR

The final colours are related to the variables of the initial model in a straightforward
way:

inv1_1: grn_MR = grn

inv1_2: org_MR = org

inv1_3: red_MR = TRUE ⇔ (rd1 = TRUE ∨ rd2 = TRUE)

inv1_4: grn_SR = rd1

inv1_5: org_SR = rd2

inv1_6: red_SR = TRUE ⇔ (grn = TRUE ∨ org = TRUE)
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We can prove the following safety theorems:

thm1_1: red_MR = TRUE ⇔ (grn_SR = TRUE ∨ org_SR = TRUE)

thm1_2: red_SR = TRUE ⇔ (grn_MR = TRUE ∨ org_MR = TRUE)

Next are the refinements of the events:

grn_to_org
when

mode = cir

prt = TRUE
grn = TRUE

then
mode := env

grn := FALSE
org := TRUE
grn_MR := FALSE
org_MR := TRUE

end

org_to_rd1
when

mode = cir

org = TRUE
then

mode := env

org := FALSE
rd1 := TRUE
org_MR := FALSE
red_MR := TRUE
grn_SR := TRUE
red_SR := FALSE

end

rd1_to_rd2
when

mode = cir

prt = FALSE
rd1 = TRUE

then
mode := env

rd1 := FALSE
rd2 := TRUE
org_SR := TRUE
grn_SR := FALSE

end

rd2_to_grn
when

mode = cir

rd2 = TRUE
then

mode := env

grn := TRUE
rd2 := FALSE
grn_MR := TRUE
red_MR := FALSE
org_SR := FALSE
red_SR := TRUE

end
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The various circuit events can be unified as usual:

light
when

mode = cir

then
mode := env

grn := bool( rd2 = TRUE ∨ (prt = FALSE ∧ grn = TRUE) )
org := bool( prt = TRUE ∧ grn = TRUE )
rd1 := bool( org = TRUE ∨ (prt = TRUE ∧ rd1 = TRUE) )
rd2 := bool( prt = FALSE ∧ rd1 = TRUE )
grn_MR := bool( rd2 = TRUE ∨ (prt = FALSE ∧ grn = TRUE) )
org_MR := bool( prt = TRUE ∧ grn = TRUE )
red_MR := bool( org = TRUE ∨ (prt = TRUE ∧ rd1 = TRUE) ∨

(prt = FALSE ∧ rd1 = TRUE) )
grn_SR := bool( org = TRUE ∨ (prt = TRUE ∧ rd1 = TRUE) )
org_SR := bool( prt = FALSE ∧ rd1 = TRUE )
red_SR := bool( rd2 = TRUE ∨ (prt = FALSE ∧ grn = TRUE) ∨

(prt = TRUE ∧ grn = TRUE) )
end

The final Light circuit is shown in Fig. 8.22.

grn org rd1 rd2

prt

red_MRgrn_SRgrn_MR org_SRorg_MRred_SR

Fig. 8.22. The light circuit
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9

Mathematical language

This chapter contains the definition of the mathematical language we use in this book.
It is made of seven sections. The first one contains a preliminary definition of sequents,
inference rules, and proofs. Then we have the presentation of our mathematical lan-
guage. It is defined as follows: the propositional language (Section 9.2), the predicate
language (Section 9.3), the equality language (Section 9.4), the set-theoretic language
(Section 9.5), and the boolean and arithmetic language (Section 9.6). Each of these
languages will be presented as an extension of the previous one. A final section contains
a definition of the various data structures we are going to use in subsequent chapters,
among which are lists, rings, and trees.

9.1 Sequent calculus
9.1.1 Definitions

In this section, we give some definitions which will be helpful to present the sequent
calculus.

(1) A sequent is a generic name for “something we want to prove”. For the moment,
this is just an informally defined notion, which we shall refine later in Section 9.1.2.
The important thing to note at this point is that we can associate a proof with a
sequent. For the moment, we do not know what a proof is however. It will only be
defined at the end of this section.

(2) An inference rule is a device used to construct proofs of sequents. It is made of
two parts: the antecedent part and the consequent part. The antecedent denotes a
finite set of sequents, while the consequent denotes a single sequent. An inference
rule, named say R1, with antecedent A and consequent C is usually written as
follows:

A

C

R1

306
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It is to be read:

Inference rule R1 yields a proof of sequent C

as soon as we have proofs of each sequent of A.

The antecedent A might be empty. In this case, the inference rule, named say R2,
is written as follows:

C

R2

It is to be read:

Inference rule R2 yields a proof of sequent C.

(3) A theory is a set of inference rules.
(4) The proof of a sequent within a theory is simply a finite tree with certain con-

straints. The nodes of such a tree have two components: a sequent s and a rule r

of the theory. Here are the constraints for each node of the form (s, r): the conse-
quent of the rule r is s, and the offspring of this node are nodes whose sequents are
exactly all the sequents of the antecedent of rule r. As a consequence, the leaves
of the tree contain rules with no antecedent. Moreover, the root node of the tree
contains the sequent to be proved. As an example, we give the following theory
involving sequents S1 to S7 and rules R1 to R7:

S2
R1

S7

S4
R2

S2 S3 S4

S1
R3

S5
R4

S5 S6

S3
R5

S6
R6

S7
R7

In Fig. 9.1 you can see a proof of sequent S1:
As can be seen, the root of the tree contains sequent S1, which is the one we

want to prove. And it is easy to check that each node, say node (S3,R5), is indeed
such that the consequent of its rule is the sequent of the node. More precisely,
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S2 R1 S3 R5 S4 R2

S6 R6S5 R4 S7 R7

S1 R3

Fig. 9.1. A proof

S3 in this case, is the consequent of rule R5. Moreover, we can check that the
sequents of the offspring nodes of node (S3,R5), namely, S5 and S6, are exactly
the sequents forming the antecedents of rule R5.

This tree can be interpreted as follows: In order to prove S1, we prove S2,
S3, and S4, according to rule R3. In order to prove S2, we prove nothing more,
according to rule R1. In order to prove S3, we prove S5 and S6, according to R5.
And so on.

This tree can be represented as we have done in Chapter 2; this is indicated on
Fig. 9.2. In this chapter, we shall adopt this representation as well.

S1 R3




S2 R1

S3 R5




S5 R4

S6 R6

S4 R2 S7 R7

Fig. 9.2. Another representation of the proof tree

9.1.2 Sequents for a mathematical language

We now refine our notion of sequent in order to define the way we shall make proofs
with our mathematical language. Such a language contains constructs called predicates.
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For the moment, this is all that we know about our mathematical language. Within
this framework, a sequent S, as defined in the previous section, now becomes a more
complex object. It is made of two parts: the hypotheses part and the goal part. The
hypothesis part denotes a finite set of predicates, while the goal part denotes a single
predicate. A sequent with hypotheses H and goal G is written as follows:

H � G

This sequent is to be read as follows:

Goal G holds under the set of hypotheses H

This is the sort of sequents we want to prove. It is also the sort of sequents we shall
have in the theories associated with our mathematical language. Note that the set of
hypotheses of a sequent might be empty and that the order and repetition of hypotheses
in the set H is meaningless.

9.1.3 Initial theory

We now have enough elements at our disposal to define the first rules of our proving
theory. Note again that we still do not know what a predicate is. We just know that
predicates are constructs we shall be able to define within our future mathematical
language. We start with three basic rules which we first state informally and then define
more rigorously. They are called HYP, MON, and CUT. Here are their definitions:

• HYP: If the goal P of a sequent belongs to the set of hypotheses of this sequent,
then it is proved.

H, P � P

HYP

• MON: In order to prove a sequent, it is sufficient to prove another sequent with the
same goal but with fewer hypotheses:

H � Q

H, P � Q

MON
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• CUT: If you succeed in proving a predicate P under a set of hypotheses H, then P

can be added to the set of hypotheses H for proving a goal Q:

H � P H, P � Q

H � Q

CUT

Note that in the previous rules, the letters H, P , and Q are, so-called, meta-variables.
The letter H is a meta-variable standing for a finite set of predicates, whereas the
letters P and Q are meta-variables standing for predicates. Clearly, then, each of the
previous “rules” stands for more than just one rule; it is better to call it a rule schema.
This will always be the case in what follows.

9.2 The propositional language
In this section, we present a first simple version of our mathematical language, it is
called the propositional language. It will be later refined to more complete versions:
predicate language (Section 9.3), equality language (Section 9.4), set-theoretic language
(Section 9.5), and arithmetic language (Section 9.6).

9.2.1 Syntax

Our first version is built around five constructs called falsity, negation, conjunction,
disjunction, and implication. Given two predicates P and Q, we can construct their
conjunction P ∧Q, their disjunction P ∨Q, and their implication P ⇒Q. And given
a predicate P , we can construct its negation ¬P . This can be formalized by means of
the following syntax:

predicate ::= ⊥
¬ predicate

predicate ∧ predicate

predicate ∨ predicate

predicate ⇒ predicate
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This syntax is clearly ambiguous, but we do not care about it at this stage. Only
note that conjunction and disjunction operators have stronger syntactic priorities than
the implication operator. Moreover, conjunction and disjunction have the same syn-
tactic priorities, so that parentheses will always be necessary when several such dis-
tinct operators are following each other. Also note that this syntax does not con-
tain any “base” predicate (except ⊥); such predicates will come later in Sections 9.4
and 9.5.

9.2.2 Enlarging the initial theory

The initial theory of Section 9.1.3 is enlarged with the following inference rules:

H, ⊥ � P

FALSE_L

H, ¬Q � P

H, ¬P � Q

NOT_L

H, P, Q � R

H, P ∧Q � R

AND_L

H, P � R H, Q � R

H, P ∨Q � R

OR_L

H � P H � ¬P

H � ⊥
FALSE_R

H, P � ⊥

H � ¬P

NOT_R

H � P H � Q

H � P ∧Q

AND_R

H, ¬P � Q

H � P ∨Q

OR_R
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H, P, Q � R

H, P, P ⇒Q � R

IMP_L
H, P � Q

H � P ⇒Q

IMP_R

As can be seen, each kind of predicates, namely falsity, negation, conjunction,
disjunction, and implication, is given two rules: a left rule, labeled with _L, and
a right rule, labeled with _R. This corresponds to the predicate appearing either
in the hypothesis part (left) or in the goal part (right) of the consequent of the
rule.

9.2.3 Derived rules

Besides the previous rules, the following derived rule (among many others) is quite
useful. It says that, for proving a goal P , it is sufficient to prove it first under hypothesis
Q and then under hypothesis ¬Q:

H, Q � P H, ¬Q � P

H � P

CASE

For proving a derived rule, we assume its antecedents (if any) and prove its consequent.
With this in mind, here is the proof of derived rule CASE:

H � P CUT




H � Q ∨ ¬Q OR_R H,¬Q � ¬Q HYP

H, Q ∨ ¬Q � P OR_L




H, Q � P
assumed
antecedent

H,¬Q � P
assumed
antecedent
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With the help of this new (derived) rule CASE, we can now generalize rule NOT_L
by rule CT_L:

H. ¬Q � ¬P

H, P � Q

CT_L

Proof of rule CT_L:

H, P � Q CASE




H, P, Q � Q HYP

H, P,¬Q � Q CUT




H, P,¬Q � ¬P MON . . .

H, P,¬Q,¬P � Q NOT_L . . .

. . . H,¬Q � ¬P assumed antecedent

. . . H, P,¬Q,¬Q � P HYP

We can also generalize rule NOT_R by rule CT_R:

H, ¬P � ⊥

H � P

CT_R
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Proof of rule CT_R:

H � P CASE




H, P � P HYP

H, ¬P � P CUT




H,¬P � ⊥ assumed
antecedent

H,¬P,⊥ � P FALSE_L

In a similar way, we can prove the following derived rules, which we used in
Chapter 2:

H � P

H � P ∨Q
OR_R1

H � Q

H � P ∨Q
OR_R2

9.2.4 Methodology

The method we are going to use to build our mathematical language must start to
be clearer: it will be very systematic. It is made of two steps: first we augment our
syntax. Then either the extension corresponds to a simple facility. In that case, we
give simply the definition of the new construct in terms of previous ones. Or the new
construct is not related to any previous constructs. In that case, we augment our current
theory.

9.2.5 Extending the proposition language

The proposition language is now extended by adding one more construct called
equivalence. Given two predicates P and Q, we can construct their equivalence
P ⇔ Q. We also add one predicate: �. As a consequence, our syntax is now the
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following:

predicate ::= ⊥
�
¬ predicate

predicate ∧ predicate

predicate ∨ predicate

predicate ⇒ predicate

predicate ⇔ predicate

Note that implication and equivalence operators have the same syntactic priorities so
that parentheses will be necessary when several such distinct operators are following
each other. Such extensions are defined in terms of previous ones by mere rewriting
rules:

Predicate Rewritten

� ¬ ⊥

P ⇔ Q (P ⇒ Q) ∧ (Q ⇒ P )

The following derived rules can be proved easily:

H � P

H, � � P

TRUE_L
H � �

TRUE_R

Note that rule TRUE_L can be proved using rule MON, but the reverse rule (ex-
changing antecedent and consequent), which holds as well, cannot. We leave it as an
exercise to the reader to prove these rules.
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9.3 The predicate language
9.3.1 Syntax

In this section, we introduce the predicate language. The syntax is extended with a
number of new kinds of predicates and also with the introduction of two new syntactic
categories called expression and variable. A variable is a simple identifier. Given a non-
empty list of variables x made of pairwise distinct identifiers and a predicate P , the
construct ∀x·P is called a universally quantified predicate. Likewise, given a non-empty
list of variables x made of pairwise distinct identifiers and a predicate P , the construct
∃x·P is called an existentially quantified predicate. An expression is either a variable
or else a paired expression E → F , where E and F are two expressions. Here is this
new syntax:

predicate ::= ⊥
�
¬ predicate

predicate ∧ predicate

predicate ∨ predicate

predicate ⇒ predicate

predicate ⇔ predicate

∀var_list · predicate

∃var_list · predicate

expression ::= variable

expression → expression

var_list ::= variable

variable, var_list

This syntax is also ambiguous. Note however that the scope of the universal or existen-
tial quantifiers extends to the right as much as they can, the limitation being expressed
either by the end of the formula or by means of enclosing parentheses.

9.3.2 Predicates and expressions

It might be useful at this point to clarify the difference between a predicate and an
expression. A predicate P is a piece of formal text which can be proved when embedded
within a sequent as in:

H � P.
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A predicate does not denote anything. This is not the case of an expression which
always denotes an object. An expression cannot be “proved”. Hence predicates and
expressions are incompatible. Note that for the moment the possible expressions we
can define are quite limited. This will be considerably extended in the set-theoretic
language defined in Section 9.5.

9.3.3 Inference rules for universally quantified predicates

The universally and existentially quantified predicates require introducing correspond-
ing rules of inference. As for propositional calculus, in both cases we need two rules:
one for quantified assumptions (left rule) and one for a quantified goal (right rule).
Here are these rules for universally quantified predicates:

H, ∀x · P, [x := E]P � Q

H, ∀x · P � Q
ALL_L

H � P

H � ∀x · P
ALL_R

(x not free in H)

The first rule (ALL_L) allows us to add another assumption when we have a univer-
sally quantified one. This new assumption is obtained by instantiating the quantified
variable x by any expression E in the predicate P : this is denoted by [x := E]P . The
second rule (ALL_R) allows us to remove the “∀ ” quantifier appearing in the goal. This
can be done however only if the quantified variable (here x) does not appear free in
the the set of assumptions H: this requirement is called a side condition. In the sequel
we shall write x nfin P to mean that variable x is not free in predicate P . The same
notation is used with an expression E. We omit in this presentation to develop the
syntactic rules allowing us to compute non-freeness as well as substitutions. We have
similar rules for existentially quantified predicates:

H, P � Q

H, ∃x · P � Q

XST_L
(x not free in H and Q)

H � [x := E]P

H � ∃x · P
XST_R
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As an example, we prove now the following sequent:

∀x · (∃y · Px,y) ⇒ Qx � ∀x · (∀y · Px,y ⇒ Qx) ,

where Px,y stands for a predicate containing variables x and y only as free variables,
and Qx stands for a predicate containing variable x only as a free variable.

∀x · (∃y · Px,y) ⇒ Qx

�
∀x · (∀y · Px,y ⇒ Qx)

ALL_R

ALL_R

IMP_R

∀x · (∃y · Px,y) ⇒ Qx

Px,y

�
Qx

CUT . . .

. . .




∀x · (∃y · Px,y) ⇒ Qx

Px,y

�
∃y · Px,y

XST_R

∀x · (∃y · Px,y) ⇒ Qx

Px,y

�
Px,y

HYP

∀x · (∃y · Px,y) ⇒ Qx

Px,y

∃y · Px,y

�
Qx

ALL_L

IMP_L

∀x · (∃y · Px,y) ⇒ Qx

Qx

Px,y

∃y · Px,y

�
Qx

HYP

The proof of the following sequent is left to the reader:

∀x · (∀y · Px,y ⇒ Qx) � ∀x · (∃y · Px,y) ⇒ Qx
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An interesting derived rule is the following, which allows us to simplify an existential
goal by replacing it with another one, hopefully simpler:

H � ∃x ·Q H, Q � P

H � ∃x · P
CUT_XST

(x nfin H)

Proof of CUT_XST

H � ∃x · P CUT




H � ∃x ·Q assumed antecedent

H, ∃x ·Q � ∃x · P XST_L
XST_R

H, Q � P
assumed
antecedent

9.4 Introducing equality
The predicate language is once again extended by adding a new predicate, the equality
predicate. Given two expressions E and F , we define their equality by means of the
construct E = F . Here is the extension of our syntax:

predicate ::= ⊥
�
¬ predicate

predicate ∧ predicate

predicate ∨ predicate

predicate ⇒ predicate

predicate ⇔ predicate

∀var_list · predicate

∃var_list · predicate

expression = expression

expression ::= variable

expression → expression
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Note that we shall henceforth use the operator 
= to mean, as is usual, the negation of
equality. The inference rules for equality are the following:

[x := F ]H, E = F � [x := F ]P

[x := E]H, E = F � [x := E]P
EQ_LR

[x := E]H, E = F � [x := E]P

[x := F ]H, E = F � [x := F ]P
EQ_RL

This allows us to apply an equality assumption in the remaining assumptions and in
the goal. This can be made by using the equality from left to right or from right to
left. Subsequent rules correspond to the reflexivity of equality and to the equality of
pairs. They are both defined by rewriting some rules as follows:

Operator Predicate Rewritten

Equality E = E �

Equality of pairs E → F = G → H E = G ∧ F = H

The following rewriting rules, within which x is supposed to be not free in E, are easy
to prove. They are called the one point rules:

Predicate Rewritten

∀x · x = E ⇒ P [x := E]P

∃x · x = E ∧ P [x := E]P
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9.5 The set-theoretic language
Our next language, the set-theoretic language, is now presented as an extension to the
previous predicate language.

9.5.1 Syntax

In this extension, we introduce some special kinds of expressions called sets. Note that
not all expressions are sets: for instance a pair is not a set. However, in the coming
syntax, we shall not make any distinction between expressions which are sets and
expressions which are not.

We introduce another predicate the membership predicate. Given an expression E

and a set S, the construct E ∈ S is a membership predicate which says that expression
E is a member of set S.

We also introduce the basic set constructs. Given two sets S and T , the construct
S × T is a set called the Cartesian product of S and T . Given a set S, the construct
P(S) is a set called the power set of S. Finally, given a list of variables x with pairwise
distinct identifiers, a predicate P , and an expression E, the construct {x · P |E} is
called a set defined in comprehension. Here is our new syntax:

predicate ::= . . .

expression ∈ expression

expression ::= variable

expression → expression

expression× expression

P(expression)
{ var_list · predicate | expression }

Note that we shall use the operator /∈ in the sequel to mean, as is usual, the negation
of set membership.

9.5.2 Axioms of set theory

The axioms of the set-theoretic language are given under the form of equivalences
to various set memberships. They are all defined in terms of rewriting rules. Note
that the last of these rules defines equality for sets. It is called the extensionality
axiom.
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Operator Predicate Rewritten Side cond.

Cartesian product E → F ∈ S × T E ∈ S ∧ F ∈ T

Power set E ∈ P(S) ∀x · x ∈ E ⇒ x ∈ S
x nfin E
x nfin S

Set comprehension E ∈ {x · P | F } ∃x · P ∧ E = F x nfin E

Set equality S = T S ∈ P(T ) ∧ T ∈ P(S)

As a special case, set comprehension can sometimes be written {F |P }, which can be
read as follows: “the set of objects has shape F when P holds”. However, as we can see,
the list of variables x has now disappeared. In fact, these variables are then implicitly
determined as being all the free variables in F . When we want that x represent only
some, but not all, of these free variables, we cannot use this shorthand.

A more special case is one where the expression F is exactly a single variable x, that
is {x · P | x }. As a shorthand, this can be written {x |P }, which is very common in
informally written mathematics. And then E ∈ {x |P } becomes [x := E]P according
to the second “one point rule” of Section 9.4.

9.5.3 Elementary set operators
In this section, we introduce the classical set operators: inclusion, union, intersection,
difference, extension, and the empty set:

predicate ::= . . .
expression ⊆ expression

expression ::= . . .
expression ∪ expression
expression ∩ expression
expression \ expression
{expression_list}
∅

expression_list ::= expression
expression, expression_list
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Notice that the expressions in an expression_list are not necessarily distinct.

Operator Predicate Rewritten

Inclusion S ⊆ T S ∈ P(T )

Union E ∈ S ∪ T E ∈ S ∨ E ∈ T

Intersection E ∈ S ∩ T E ∈ S ∧ E ∈ T

Difference E ∈ S \ T E ∈ S ∧ ¬ (E ∈ T )

Set extension E ∈ {a, . . . , b} E = a ∨ . . . ∨ E = b

Empty set E ∈ ∅ ⊥

9.5.4 Generalization of elementary set operators

The next series of operators consists in generalizing union and intersection to sets of
sets. This takes the forms either of an operator acting on a set or of a quantifier:

. . .

expression ::= . . .

union(expression)⋃
var_list · predicate | expression

inter(expression)⋂
var_list · predicate | expression
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Operator Predicate Rewritten Side cond.

Generalized intersection E ∈ union (S) ∃s · s ∈ S ∧ E ∈ s
s nfin S
s nfin E

Quantified union E ∈ ⋃
x · P | T ∃x · P ∧ E ∈ T x nfin E

Generalized intersection E ∈ inter (S) ∀s · s ∈ S ⇒ E ∈ s
s nfin S
s nfin E

Quantified intersection E ∈ ⋂
x · P | T ∀x · P ⇒ E ∈ T x nfin E

The last two rewriting rules require that the set inter(S) and
⋂

x · P | T be well defined.
This is presented in the following table:

Set construction Well-definedness condition

inter (S) S 
= ∅

⋂
x · P | T ∃x · P

Well-definedness conditions are taken care of in proof obligations as explained in
Section 5.2.12 of Chapter 5.

9.5.5 Binary relation operators

We now define a first series of binary relation operators: the set of binary relations
built on two sets, the domain and range of a binary relation, and then various sets of
binary relations.
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. . .

expression ::= . . .

expression↔ expression

dom(expression)
ran(expression)
expression←↔ expression

expression↔→ expression

expression↔↔ expression

Operator Predicate Rewritten Side cond.

Set of all binary
relations r ∈ S↔ T r ⊆ S × T

Domain E ∈ dom (r) ∃y · E → y ∈ r
y nfin E
y nfin r

Range F ∈ ran (r) ∃x · x → F ∈ r
x nfin F
x nfin r

Set of all total
relations r ∈ S←↔ T r ∈ S↔ T ∧ dom (r) = S

Set of all surjective
relations r ∈ S↔→ T r ∈ S↔ T ∧ ran (r) = T

Set of all total and
surjective relations r ∈ S↔↔ T r ∈ S←↔ T ∧ r ∈ S↔→ T
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The next series of binary relation operators define the converse of a relation, various
relation restrictions, and the image of a set under a relation.

expression ::= . . .
expression−1

expression � expression
expression � expression
expression �− expression
expression �− expression
expression[expression]

Operator Predicate Rewritten Side cond.

Converse E → F ∈ r−1 F → E ∈ r

Domain restriction E → F ∈ S � r E ∈ S ∧ E → F ∈ r

Range restriction E → F ∈ r � T E → F ∈ r ∧ F ∈ T

Domain subtraction E → F ∈ S �− r ¬E ∈ S ∧ E → F ∈ r

Range subtraction E → F ∈ r �− T E → F ∈ r ∧ ¬F ∈ T

Relational image F ∈ r[U ] ∃x · x ∈ U ∧ x → F ∈ r
x nfin F
x nfin r
x nfin U

Let us illustrate the relational image. Given a binary relation r from a set S to a set
T , the image of a subset U of S under the relation r is a subset of T . The image of U
under r is denoted by r[U ]. Here is its definition:

r[U ] = { y | ∃x · x ∈ U ∧ x → y ∈ r }.
This is illustrated in Fig. 9.3. As can be seen on this figure, the image of the set {a, b}
under relation r is the set {m, n, p}.
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Fig. 9.3. Image of a set under a relation

Our next series of operators defines the composition of two binary relations, the over-
riding of a relation by another one, and the direct and parallel products of two relations:

expression ::= . . .
expression ; expression
expression ◦ expression
expression �− expression
expression⊗ expression
expression ‖ expression

Operator Predicate Rewritten Side cond.

Forward
composition E → F ∈ f ; g ∃x · E → x ∈ f ∧ x → F ∈ g

x nfin E
x nfin F
x nfin f
x nfin g

Backward
composition E → F ∈ g ◦ f E → F ∈ f ; g
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Given a relation f from S to T and a relation g from T to U , the forward relational
composition of f and g is a relation from S to U . It is denoted by the construct f ; g.
Sometimes it is denoted the other way around as g ◦ f , in which case is is said to be
the backward composition. Figure 9.4 illustrates forward composition.

Operator Predicate Rewritten

Overriding E → F ∈ f �− g E → F ∈ (dom (g) �− f) ∪ g

Direct product E → (F → G) ∈ f ⊗ g E → F ∈ f ∧ E → G ∈ g

Parallel product (E → F ) → (G → H) ∈ f ‖ g E → G ∈ f ∧ F → H ∈ g

a

n
m

b

d
c

p

f ; g

p

a
n

x

T
S U

t
d

b
c

m

u

z
y

f g

Fig. 9.4. Forward composition

The overriding operator is applicable in general to a relation f from, say, a set S to
a set T , and a relation g also from S to T . Figure 9.5 illustrates overriding.

When f is a function and g is the singleton function {x → E}, then f �− {x → E}
replaces in f the pair x → f(x) by the pair x → E. Notice that in the case where x is
not in the domain of f , then f �−{x → E} simply adds the pair x → E to the function
f . In this case, it is thus equal to f ∪ {x → E}.

9.5.6 Function operators
In this section, we define various function operators: the sets of all partial and total
functions, partial and total injections, partial and total surjections, and bijections. We
also introduce the two projection functions as well as the identity function:
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f g f <+ g

Fig. 9.5. Relation overriding

expression ::= . . .
id
expression → expression
expression→ expression
expression � expression
expression � expression
expression � expression
expression � expression
expression �� expression
prj1
prj2

Operator Predicate Rewritten

Identity E → F ∈ id E = F

Set of all partial functions f ∈ S → T f ∈ S↔ T ∧ (f−1 ; f) ⊆ id

Set of all total functions f ∈ S→ T f ∈ S → T ∧ S = dom (f)

Set of all partial injections f ∈ S � T f ∈ S → T ∧ f−1 ∈ T → S

Set of all total injections f ∈ S � T f ∈ S→ T ∧ f−1 ∈ T → S

Set of all partial surjections f ∈ S � T f ∈ S → T ∧ T = ran (f)

Set of all total surjections f ∈ S � T f ∈ S→ T ∧ T = ran (f)

Set of all bijections f ∈ S �� T f ∈ S � T ∧ f ∈ S � T
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Operator Predicate Rewritten

First projection (E → F ) → G ∈ prj1 G = E

Second projection (E → F ) → G ∈ prj2 G = F

9.5.7 Summary of the arrows

Operator Arrow

Binary relations S↔ T

Total relations S←↔ T

Surjective relations S↔→ T

Total surjective relations S↔↔ T

Partial functions S → T

Total functions S→ T

Operator Arrow

Partial injections S � T

Total injections S � T

Partial surjections S � T

Total surjections S � T

Bijections S �� T

9.5.8 Lambda abstraction and function invocation
We now define lambda abstraction, which is a way to construct functions, and also
function invocation, which is a way to call functions. But first we have to define the
notion of pattern of variables. A pattern of variables is either an identifier or a pair
made of two patterns of variables. Moreover, all variables composing the pattern must
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be distinct. For example, here are three patterns of variables:

abc

abc → def

abc → (def → ghi)

Given a pattern of variables x, a predicate P , and an expression E, the construct
λ x · P |E is a lambda abstraction, which is a function. Given a function f and an
expression E, the construct f(E) is an expression denoting a function invocation. Here
is our new syntax:

expression ::= . . .
expression(expression)
λ pattern · predicate | expression

pattern ::= variable
pattern → pattern

In the following table, l stands for the list of variables in the pattern L.

Operator Predicate Rewritten

Lambda abstraction F ∈ λL · P |E F ∈ {l · P |L → E}
Function invocation F = f(E) E → F ∈ f

The function invocation construct f(E) requires a well-definedness condition, which
is the following:

Expression Well-definedness condition

f(E) f−1 ; f ⊆ id ∧ E ∈ dom(f)

Some of the axioms of integers are presented in this section.

9.6 Boolean and arithmetic language
9.6.1 Syntax

In this section, we extend the expressions once more. An expression might be a boolean
or a number. Booleans are either TRUE or FALSE (do not confuse them with � and
⊥). Numbers are either 0, 1, . . . , the sum, product, or power of two numbers. We also
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add the sets BOOL, Z, N, N1 and the functions succ and pred:

expression ::= . . .
BOOL
TRUE
FALSE
Z

N

N1

succ
pred
0
1
. . .
expression + expression
expression ∗ expression
expression ̂ expression

9.6.2 Peano axioms and recursive definitions
The following predicates yield definition of the boolean and arithmetic expressions:

BOOL = {TRUE, FALSE}
TRUE 
= FALSE

0 ∈ N

succ ∈ Z �� Z

pred = succ−1

∀S · 0 ∈ S ∧ (∀n · n ∈ S ⇒ succ(n) ∈ S) ⇒ N ⊆ S

∀ a · a + 0 = a

∀ a · a ∗ 0 = 0

∀ a · a ̂ 0 = succ(0)

∀ a, b · a + succ(b) = succ(a + b)

∀ a, b · a ∗ succ(b) = (a ∗ b) + a

∀ a, b · a ̂ succ(b) = (a ̂ b) ∗ a
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9.6.3 Extension of the arithmetic language
We introduce the classical binary relations on numbers, the finiteness predicate, the
interval between two numbers, the subtraction, division, modulo, cardinal, maximum,
and minimum constructs:

. . .

predicate ::= . . .
expression ≤ expression
expression < expression
expression ≥ expression
expression > expression
finite(expression)

expression ::= . . .
expression .. expression
expression− expression
expression / expression
expression mod expression
card(expression)
max(expression)
min(expression)

Operator Predicate Rewritten

smaller than or equal a ≤ b ∃ c · c ∈ N ∧ b = a + c

smaller than a < b a ≤ b ∧ a 
= b

greater than or equal a ≥ b ¬ (a < b)

greater than a > b ¬ (a ≤ b)

interval c ∈ a .. b a ≤ c ∧ c ≤ b

subtraction c = a− b a = b + c

division c = a/b
∃ r · ( r ∈ N ∧ r < b ∧

a = c ∗ b + r )

modulo r = a mod b a = (a/b) ∗ b + r

finiteness finite(s) ∃n, f · n ∈ N ∧ f ∈ 1 .. n �� s

cardinality n = card(s) ∃f · f ∈ 1 .. n �� s
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Operator Predicate Rewritten

maximum n = max(s) n ∈ s ∧ (∀x · x ∈ s ⇒ x ≤ n)

minimum n = min(s) n ∈ s ∧ (∀x · x ∈ s ⇒ x ≥ n)

Division, modulo, cardinal, minimum, and maximum are subjected to some well-
definedness conditions, which are the following:

Numeric expression Well-definedness condition

a/b b 
= 0

a mod b 0 ≤ a ∧ b > 0

card(s) finite(s)

max(s) s 
= ∅ ∧ ∃x · (∀n · n ∈ s ⇒ x ≥ n)

min(s) s 
= ∅ ∧ ∃x · (∀n · n ∈ s ⇒ x ≤ n)

9.7 Advanced data structures
In this section, we show how our basic mathematical language can still be extended
to cope with some classical (advanced) data structures we shall use in subsequent
chapters of the book, essentially strongly connected graphs, lists, rings, and trees. We
present the axiomatic definitions of these data structures together with some theorems.
We do not present proofs. In fact all such proofs have been done with the Rodin
Platform.
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9.7.1 Irreflexive transitive closure
We start with the definition of the irreflexive transitive closure of a relation, which is
a very useful concept to be used in what follows. Given a relation r from a set S to
itself, the irreflexive transitive closure of r, denoted by cl(r), is also a relation from S
to S. The characteristic properties of cl(r) are:

(i) Relation r is included in cl(r).
(ii) The forward composition of cl(r) with r is included in cl(r).
(iii) Relation cl(r) is the smallest relation dealing with (i) and (ii).

This is illustrated in Fig. 9.6. It can be formalized as follows:

axm_1 : r ∈ S↔ S

axm_2 : cl(r) ∈ S↔ S

axm_3 : r ⊆ cl(r)

axm_4 : cl(r) ; r ⊆ cl(r)

axm_5 : ∀p · r ⊆ p ∧ p ; r ⊆ p ⇒ cl(r) ⊆ p

Fig. 9.6. A relation (dashed) and its irreflexive transitive closure (dashed and plain)
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The following theorems can be proved:

thm_1 : cl(r) ; cl(r) ⊆ cl(r)

thm_2 : cl(r) = r ∪ r ; cl(r)

thm_3 : cl(r) = r ∪ cl(r) ; r

thm_4 : ∀s · r[s] ⊆ s ⇒ cl(r)[s] ⊆ s

thm_5 : cl(r−1) = cl(r)−1

These theorems are proved by finding some instantiations for the local variable p in
the universally quantified axiom axm_5. In particular, the proof of thm_1 is handled
by instantiating p with†:

{x → y | cl(r) ; {x → y} ⊆ cl(r) }.

9.7.2 Strongly connected graphs
Given a set V and a binary relation r from V to itself, the graph representing this
relation is said to be strongly connected if any two distinct points m and n in V are
possibly connected by a path built on r. This is illustrated in Fig. 9.7. This can be

Fig. 9.7. A strongly connected graph

† This was suggested by D. Cansell
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formalized as follows:

axm_1 : r ∈ V ↔ V

axm_2 : (V × V ) \ id ⊆ cl(r)

This definition is easy to understand: it simply says that every two distinct points of
V are related through the irreflexive transitive closure cl(r) of r. But this definition is
not very convenient to use in proof. Here is an equivalent one, which is more convenient:

thm_1 : ∀S · S 
= ∅ ∧ r[S] ⊆ S ⇒ V ⊆ S

The intuition behind this definition is the following: it says that the only set S (except
the empty set), which is such that r[S] ⊆ S, is the entire set V . For example, suppose
we have:

V = {a, b}

r = {a → b}

r[{a}] = {b}

r[{b}] = ∅

r[{a, b}] = {b}.

The graph r is not connected because the non-empty set {b}, which is different from
V , is such that r[{b}] ⊆ {b}. Now suppose:

V = {a, b}

r = {a → b, b → a}

r[{a}] = {b}

r[{b}] = {a}

r[{a, b}] = {a, b}

The graph r is strongly connected since the only non-empty set S where r[S] ⊆ S is
{a, b}, that is indeed V .
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Also note the following result which is very intuitive: if r is strongly connected then
so is r−1 .

9.7.3 Infinite lists
An infinite list built on a set V is defined by means of a point f of V (the beginning
of the list) and a bijective function n from V to V \ {f}. It is illustrated in Fig. 9.8.

This can be formalized as follows:

axm_1 : f ∈ V

axm_2 : n ∈ V �� V \ {f}

f n

Fig. 9.8. An infinite list

But these two properties are not enough. We need a final property, which says that
there are no cycles or backward infinite chains, which are not precluded by axioms
axm_1 and axm_2. We want to eliminate the backward infinite chain and the cycle
which are shown in Fig. 9.9.

f n

Fig. 9.9. Avoiding infinite backward chains and cycles
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A set S containing a cycle or an infinite backward chain is one such that each point x
in S is related to a point y in S by the relation n−1 . This can be formalized as follows:

∀x · x ∈ S ⇒ (∃y · y ∈ S ∧ y → x ∈ n ) :

that is

S ⊆ n[S].

But as the empty set enjoys this property, we state in the following axiom that the
only set with that property is precisely the empty set:

axm_3 : ∀S · S ⊆ n[S] ⇒ S = ∅

A classical example of an infinite list is one where V is the set of natural numbers
N, f is 0, and n is the successor function succ restricted to N. This is illustrated in
Fig. 9.10.

0 succ

Fig. 9.10. The natural numbers

It clearly obeys axm_1 and axm_2. It also obeys axm_3: let S be a non-empty
subset of N, then succ[S] does not contain min(S); thus S is not included in succ[S]. In
fact, axm_1 and axm_2 are exactly the first four Peano axioms. But clearly axm_3
does not correspond to the last Peano axiom (recurrence). However, the following
theorem shows that the last Peano axiom can be proved from axm_3 (and vice-versa).
This can be done easily by instantiating S in axm_3 with V \ T :

thm_1 : ∀T · f ∈ T ∧ n[T ] ⊆ T ⇒ V ⊆ T

By unfolding n[T ] ⊆ T , we obtain:

thm_2 : ∀T · f ∈ T ∧ (∀x · x ∈ T ⇒ n(x) ∈ T ) ⇒ V ⊆ T

Translating this to the natural numbers, we obtain the last Peano axiom:

∀T · 0 ∈ T ∧ (∀x · x ∈ T ⇒ x + 1 ∈ T ) ⇒ N ⊆ T
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Next are three more theorems which might be useful. Observe thm_4, which says
that backward chaining is finite. Theorem thm_5 represents another way to state
that there are no cycles. It does not say however that there is no backward infinite
chains, so it is not equivalent to axm_3; it is only implied by axm_3.

thm_3 : cl(n)[{f}] ∪ {f} = V

thm_4 : ∀x · finite(cl(n−1)[{x}])

thm_5 : cl(n) ∩ id = ∅

Note that in the case of the natural numbers, a → b ∈ cl(succ) is the same as a < b,
and cl(succ−1)[{a}] ∪ {a} (for any natural number a) is the same as the interval 0 .. a.

The list induction rule Theorem thm_2 can be used to prove a property P(x) for
all nodes of a list. It is done in the following fashion. The property P(x) is transformed
into the following set:

{x |x ∈ V ∧ P(x)}.
And now proving that P(x) holds for each node x of V is exactly the same as proving
that V is included into that set, that is:

V ⊆ {x |x ∈ V ∧ P(x)}.
To do so, it suffices to instantiate T in thm_2 with the set {x |x ∈ V ∧ P(x)}. This
yields:

f ∈ {x |x ∈ V ∧ P(x)}
∀x · x ∈ {x |x ∈ V ∧ P(x)} ⇒ n(x) ∈ {x |x ∈ V ∧ P(x)}
⇒
V ⊆ {x |x ∈ V ∧ P(x)}

The first antecedent of this implication reduces to:

P(f)

The second antecedent can be rewritten:

∀x · x ∈ V ∧ P(x) ⇒ P(n(x))
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And now, once we have proved the previous statements, then we can deduce the fol-
lowing, which was our initial goal:

V ⊆ {x |x ∈ V ∧ P(x)},

that is:

∀x · x ∈ V ⇒ P(x).

To summarize, when we have to prove a property P(x) for all elements x of a list, a
possibility is to do the following:

• prove that P(f) holds for the first element f of the list;
• prove that P(n(x)) holds for any x in V , under the assumption that P(x) holds.

In doing so, the property P(x) is said to be proved by list induction. All this can now
be transformed in an inference rule as follows:

H � P(f) H, x ∈ V, P(x) � P(n(x))

H, x ∈ V � P(x)
IND_LIST
(x nfin H)

By translating this rule to the natural numbers, this yields:

H � P(0) H, x ∈ N, P(x) � P(x + 1)

H, x ∈ N � P(x)
IND_N

(x nfin H)

9.7.4 Finite lists
A finite list constructed on the set V is defined by means of two points f (denoting
the first element in the list) and l (denoting the last element in the list). The list itself
is a bijection. It is illustrated in Fig. 9.11. Finally, an axiom similar to axiom axm_3



342 Mathematical language

f n l

Fig. 9.11. A Finite list

of the infinite lists says that there is no backward chain or cycles:

axm_1 : f ∈ V

axm_2 : l ∈ V

axm_3 : n ∈ V \ {l}�� V \ {f}

axm_4 : ∀S · S ⊆ n[S] ⇒ S = ∅

Notice that axiom axm_4 is not symmetric with regard to both directions on
the list. But this can be proved in a systematic manner. This is what is shown in
the following theorems:

thm_1 : ∀T · f ∈ T ∧ n[T ] ⊆ T ⇒ V ⊆ T

thm_2 : cl(n)[{f}] ∪ {f} = V

thm_3 : cl(n−1)[{l}] ∪ {l} = V

thm_4 : ∀T · l ∈ T ∧ n−1[T ] ⊆ T ⇒ V ⊆ T

thm_5 : ∀S · S ⊆ n−1[S] ⇒ S = ∅

thm_6 : finite(V )

thm_7 : cl(n) ∩ id = ∅

A classical example of finite lists are numerical intervals a .. b (with a ≤ b). This is
illustrated in Fig. 9.12.
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ba succ

Fig. 9.12. A numerical interval

It is easy to prove the following:

a ∈ a .. b

b ∈ a .. b

(a .. b− 1) � succ ∈ (a .. b) \ {b}�� (a .. b) \ {a}

Coming back to our general finite lists, let us now define the set of elements itvl(x)
belonging to a sublist from f to x in a finite list from f to l:

axm_5 : itvl ∈ V → P(V )

axm_6 : ∀x · x ∈ V ⇒ itvl(x) = cl(n−1)[{x}] ∪ {x}

The following theorems state some useful properties of these sets. Observe the recursive
property stated in thm_9:

thm_8 : ∀x · x ∈ V ⇒ {f, x} ⊆ itvl(x)

thm_9 : ∀x · x ∈ V \ {f} ⇒ itvl(x) = itvl(n−1(x)) ∪ {x}

thm_10 : itvl(l) = V

The last theorem is just a rewording of thm_3.

9.7.5 Rings
A ring is defined by a bijection which is strongly connected. It is illustrated in Fig. 9.13.
Thus we copy in axm_2 part of the statement of thm_2 of Section 9.7.2 showing
the equivalence to strong connectivity.
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Fig. 9.13. A ring

axm_1 : n ∈ V �� V

axm_2 : ∀S · S 
= ∅ ∧ n−1[S] ⊆ S ⇒ V ⊆ S

Since n is injective (bijective, in fact), we have the following:

thm_1 : ∀S · n−1[S] ⊆ S ⇔ S ⊆ n[S]

This allows us to transform as follows the connectivity relationship of the ring:

thm_2 : ∀S · S 
= ∅ ∧ S ⊆ n[S] ⇒ V ⊆ S

By cutting a ring between n−1(x) and x, we obtain a finite list from x to n−1(x). This
is illustrated in Fig. 9.14. This finite list starts at x and ends at n−1(x). This is stated
in the following theorems:

thm_1 : ∀x · x ∈ V ⇒ p ∈ V \ {n−1(x)}�� V \ {x}

thm_2 : ∀x · x ∈ V ⇒ (∀S · S ⊆ p[S] ⇒ S = ∅)

where p is n �− {x}
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x

n   (x)

n

Fig. 9.14. A cut ring

Let us now define the sets of elements itvr(x)(y) belonging to an interval on a ring
from x to y.

axm_3 : itvr ∈ V → (V → P(V ))

axm_4 : ∀x, y · x ∈ V ∧ y ∈ V ⇒ itvr(x)(y) = cl({x}�− n−1)[{y}] ∪ {y}

The following theorems state some useful properties of the intervals:

thm_3 : ∀x · x ∈ V ∧ y ∈ V ⇒ {x, y} ⊆ itvr(x)(y)

thm_4 : ∀x · x ∈ V ∧ y ∈ V \ {x} ⇒ itvr(x)(y) = itvr(x)(n−1(y)) ∪ {y}

thm_5 : ∀x · x ∈ V ⇒ itvr(x)(n−1(x)) = V

The last theorem is an adaptation of theorem thm_10 of finite lists. A classical
example of a ring is given by “addition-modulo” as illustrated in Fig. 9.15.

Notice that sometimes it is more convenient to use a ring than “addition-modulo”:
proofs are getting simpler.

9.7.6 Infinite trees
Infinite trees generalize infinite lists. The beginning f of the list is replaced by the
top t of the tree. The function p replaces n−1 of the infinite list. This is illustrated in
Fig. 9.16. This is expressed by axioms axm_1 and axm_2 below. Axiom axm_3 has
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0 1
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34

5

Fig. 9.15. A ring modulo 6

t

p

Fig. 9.16. An infinite tree

the same function as axm_3 on infinite lists: it removes cycles and infinite backward
chains:

axm_1 : t ∈ V

axm_2 : p ∈ V \ {t}� V

axm_3 : ∀S · S ⊆ p−1[S] ⇒ S = ∅
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The next theorem defines induction rules which generalize that of infinite lists:

thm_1 : ∀T · t ∈ T ∧ p−1[T ] ⊆ T ⇒ V ⊆ T

thm_2 : cl(p−1)[{t}] ∪ {t} = V

The following theorem states that backwards chains are finite:

thm_3 : ∀x · finite(cl(p)[{x}])

The list induction rule It is easy to prove that thm_1 is equivalent to the following
theorem thm_4 (hint: instantiate T in thm_1 with N \ T ):

thm_4: ∀T · T ⊆ V
t ∈ T
p−1 [T ] ⊆ T
⇒
V ⊆ T

This theorem can be further unfolded to the following equivalent one:

thm_5: ∀T · T ⊆ V
t ∈ T
∀x · x ∈ V \ {t} ∧ p(x) ∈ T ⇒ x ∈ T
⇒
V ⊆ T
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This is so because we have:

p−1[T ] ⊆ T
⇔
∀x · x ∈ p−1[T ] ⇒ x ∈ T
⇔
∀x · (∃y · y ∈ T ∧ x → y ∈ p ) ⇒ x ∈ T
⇔
∀x · (∃y · y ∈ T ∧ x ∈ dom(p) ∧ y = p(x) ) ⇒ x ∈ T
⇔
∀x · x ∈ V \ {t} ∧ p(x) ∈ T ⇒ x ∈ T

Theorem thm_5 can be used to prove a property P(x) for all nodes of a tree. It is
done in the following fashion. The property P(x) is transformed into the following set:

{x |x ∈ V ∧ P(x)}.

And now proving that P(x) holds for each node x of V is exactly the same as proving
that V is included into that set, that is:

V ⊆ {x |x ∈ V ∧ P(x)}

To do so, it suffices to instantiate T in thm_5 with the set {x |x ∈ V ∧ P(x)}. This
yields:

{x |x ∈ V ∧ P(x)} ⊆ V

t ∈ {x |x ∈ V ∧ P(x)}

∀x ·




x ∈ V \ {t}
p(x) ∈ {x |x ∈ V ∧ P(x)}
⇒
x ∈ {x |x ∈ V ∧ P(x)}




⇒
V ⊆ {x |x ∈ V ∧ P(x)}

The first antecedent of this implication is obvious because the set {x |x ∈ V ∧ P(x)}
is indeed included in the set V , and the second antecedent reduces to:

P(t)



9.7 Advanced data structures 349

The third antecedent can be rewritten:

∀x · x ∈ V \ {t} ∧ P(p(x)) ⇒ P(x)

And now, once we have proved the previous statements, then we can deduce the fol-
lowing which was our initial goal:

V ⊆ {x |x ∈ V ∧ P(x)},
that is:

∀x · ( x ∈ V ⇒ P(x) )

To summarize, when we have to prove a property P(x) for all elements x of a tree, a
possibility is to do the following:

• prove that P(t) holds for the top t of the tree;
• prove that P(x) holds for any x in V \ {t}, under the assumption that P(p(x)) holds

for the parent p(x) of x in the tree.

In doing so, the property P(x) is said to be proved by tree induction. All this can now
be transformed in an inference rule as follows:

H � P(t) H, x ∈ V \ {t}, P(p(x)) � P(x)

H, x ∈ V � P(x)
IND_TREE
(x nfin H)

9.7.7 Finite depth trees
Finite depth trees generalize finite lists. We still have a top point t, which was f in
the lists. But the last element l of the list is now replaced by a set L: these are the
so-called leafs of the tree. All this is illustrated in Fig. 9.17. The axioms are as usual
the following:

axm_1 : t ∈ V

axm_2 : L ⊆ V

axm_3 : p ∈ V \ {t}� V \ L

axm_4 : ∀S · S ⊆ p−1 [S] ⇒ S = ∅
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t

p

L

Fig. 9.17. A finite tree

The seven theorems of finite lists can be adapted to finite trees as follows:

thm_1 : ∀T · t ∈ T ∧ p−1[T ] ⊆ T ⇒ V ⊆ T

thm_2 : cl(p−1)[{f}] ∪ {f} = V

thm_3 : cl(p)[L] ∪ L = V

thm_4 : ∀T · L ⊆ T ∧ p[T ] ⊆ T ⇒ V ⊆ T

thm_5 : ∀S · S ⊆ p[S] ⇒ S = ∅

thm_6 : finite(V )

thm_7 : cl(p) ∩ id = ∅

9.7.8 Free trees
A free tree is a data structure that is often encountered in network modeling.
Figure 9.18 shows a free tree. Given a finite set V (axm_1), a free tree is graph
g with the following properties: it is a relation from V to V (axm_2), it is symmetric
(axm_3), irreflexive (axm_4), connected (axm_5), and acyclic (axm_6) in spite
of the symmetry.
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Fig. 9.18. A free tree

Axiom axm_5 is a copy of Theorem thm_2 of Section 9.7.2 dealing with strong
connectivity. Note that axiom axm_6 is not a copy of axiom axm_4 of Section 9.7.7;
we added the quantified variable h and two properties, namely h ⊆ g and h ∩ h−1 =
∅. This is due to the symmetry property of the graph, which we have somehow to
“eliminate”. The presence of h in axm_6 has the effect of transforming the free tree
into a finite tree. This is illustrated in Fig. 9.19.

axm_1 : finite(V )

axm_2 : g ∈ V ↔ V

axm_3 : g ⊆ g−1

axm_4 : g ∩ id = ∅

axm_5 : ∀S · S 
= ∅ ∧ g[S] ⊆ S ⇒ V ⊆ S

axm_6 : ∀h, S · h ⊆ g
h ∩ h−1 = ∅

S ⊆ h[S]
⇒
S = ∅

Outer and inner nodes of a free tree The outer nodes of a free tree are those
members x of the set V , which are connected to a single node y in the free tree:

{x |x ∈ V ∧ ∃y · g[{x}] = {y} }.
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Fig. 9.19. A free tree transformed into a finite tree

The inner nodes are the other nodes. This is illustrated in Fig. 9.20, where the outer
nodes are the black nodes, while the inner nodes are the white ones. The following
theorem states that when a free tree is not empty, then its set of outer nodes is not
empty either:

thm_1 : (∃x · V = {x}) ∨ ∃x, y · g[{x}] = {y}

Fig. 9.20. The outer and inner nodes of the free tree

9.7.9 Well-founded relations and directed acyclic graphs
We leave it to the reader to generalize infinite trees to well-founded graphs and finite
trees to directed acyclic graphs.
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Leader election on a ring-shaped network

The purpose of this chapter is to learn more about modeling, in particular in the area
of non-determinism. We are going to apply an interesting data structure: that of a
ring. For this, we are going to use the general approach on advanced data structures
introduced at the end of Chapter 9 (Section 9.7).

All this will be made through the study of another interesting problem in distributed
computation. This example comes from a paper by Le Lann in the seventies [1].

10.1 Requirement document
We have a possibly large (but finite) number of agents, just not two as in the exam-
ples of Chapters 4 and 6 on file transfer. These agents are disposed on different sites
that are connected by means of unidirectional channels forming a ring as indicated in
Fig. 10.1.

a

e d

b

cf

Fig. 10.1. The Ring

We have a finite set of nodes forming an oriented ring ENV-1

353
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Each agent is able to send messages to its right neighbor and receive ones form its left
neighbor.

Each node can send a message to the next one in the ring ENV-2

Such messages are not supposed to be transmitted immediately from one node to the
next. In fact, we suppose that they can be buffered between the two and even freely
reordered in these buffers:

Messages can be buffered in each node ENV-3

This is illustrated in Fig. 10.2. As can be seen, a buffer is associated with each
node.

a b 

c

e

f

d

Fig. 10.2. The buffers

Messages can be re-ordered in their buffer ENV-4

Moreover, each agent is supposed to execute the same piece of code.

The distributed program is made by the same piece of code
executed by each node ENV-5

The distributed execution of all these identical programs should result in a unique
agent being “elected the leader”:
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The purpose of the distributed program is to have a unique node
being elected the leader FUN-1

This decision, based on certain local criteria, should be made by the winning agent
itself. Of course, it must be proved that no other agent can reach the same conclusion.
The determination of such a privileged agent might be useful when the ring is started
or re-initiated.

Since every agent executes the same code, the problem seems to be unsolvable: what
kind of distinction between them could indeed introduce a certain difference in their,
otherwise homogeneous, behavior? Their position in the ring is certainly not such a
distinction, since the very shape of the ring does not give the position of an agent any
special distinction; no first, no last, only medium position. In fact, the only attribute
that makes one agent different from the others is its name: the agents are indeed
supposedly named and named differently. But by itself, this difference in names still is
an homogeneous property: there is, a priori, no “more” distinction than the distinction
itself.

In order to possibly introduce a supplementary distinction in these distinct names,
we must have a certain structure in the name set. The simplest one we can think of is
that of the natural numbers. In other words, we shall suppose that the names of the
agents form a finite set of natural numbers.

Each node has a unique name which is a natural number ENV-6

Clearly then, there exists a possible identifying distinction between these names: the
largest one (or the smallest one as well). Now the problem can be restated as follows.
How can one agent figure out that it bears a name that happens to be the largest
number of the collection of names of all agents in the ring?

The leader must be the node with the largest name FUN-2

10.2 Initial model
At this point, we have enough elements to start our formalization. We first define the
constant set of agent names N , it is supposed to be a finite and non-empty subset of
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natural numbers. This is formalized in properties axm0_1 to axm0_3 below:

constants: N

axm0_1: N ⊆ N

axm0_2: finite(N)

axm0_3: N 
= ∅

We have a variable w which is a node as indicated by invariant inv0_1. It will denote
the winner of the election. Initially, w is set to any node:

variables: w inv0_1: w ∈ N

As in other examples, we define a single event, here called elect, which solves the
problem in one shot by assigning the maximum of N to the variable w as required by
requirement FUN-2:

init
w :∈ N

elect
w := max(N)

Notice that the expression max(N) in event elect is well defined since the set N is finite
and non-empty according to axioms axm0_2 and axm0_3.

10.3 Discussion
In this section, we shall discuss various possibilities for determining the elected node
as the one that bears the largest name.

10.3.1 First attempt
Here is a first simple procedure. To begin with, each agent has no choice but to send
its own name to its right neighbor. An agent receiving a name from its left neighbor
collects it in its private memory and sends it further to its right neighbor. When an
agent receives its own name, it obviously means that it has collected all the names
(since its own name must have made a complete turn of the ring) and can then decide
whether its name is indeed the largest one by looking in its private collection.
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However, this very primitive procedure does not work because messages can be re-
ordered in the buffers as explained by requirement ENV-4. So that when one agent
receives its own name, it does not mean that it has received all names.

10.3.2 Second attempt
The drawback of the first attempt can be circumvented by having each agent knowing
the number, n, of distinct agents in the ring so that it can start the decision procedure
not, as before, when receiving its own name from its left neighbor, but only after
receiving n distinct agent names.

That would certainly work (although in a very tedious way), but we want to avoid
agents having to know the number n in question for obvious practical reasons: the ring
could be quite often dynamically extended or shrunk.

10.3.3 Third attempt
The other procedure that has been proposed resembles the first we mentioned above.
But rather than transmitting systematically a name N from one agent named A to the
one situated on its right, the idea is only to transmit N , provided it is strictly greater
than A. Initially, each agent transmits its own name.

As a matter of fact, in the case where N is strictly smaller than A, then the po-
tentially transmitted name cannot be the maximum we are looking for; consequently,
there is no point in transmitting it since in no case could it be elected.

Finally, in the case where N is the same as A, then A is elected: its name is indeed the
maximum of the agents names. We have the impression that it works, but it certainly
remains to be proved in full generality (and in the presence of asynchronous channels,
which may reorder messages in the buffers).

10.3.4 Informal presentation of the solution
The model we propose now is not one where we explicitly represent the channels
between the nodes, or the corresponding “read” and “write” operations. We shall rather
represent the actual state of the evolving situation by means of a partial function a
linking some agent names x with the agent a(x) which has to transmit it. We would
say that x is in the buffer of a(x). Notice that a is indeed a function, since no name
can be in different buffers at the same time. And it is a partial function because some
names are not in any buffer since they might have been eliminated. This is illustrated
in Fig. 10.3. As can be seen, the function a is the following:

a = { 1 → 6, 3 → 5, 4 → 6, 5 → 2, 6 → 4 }.
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Fig. 10.3. The names in the buffers

From this state, the situation can evolve in many different ways. For example, 6 can
move to node 1 since 6 is greater than 4, or 3 can be eliminated since 3 is smaller
than 5, or 5 can move to node 4 since 5 is greater than 2, and so on. What appears
here is a huge non-determinism in the way the situation is able to evolve. Initially,
the agent has to transmit its name x to its neighbor in the ring. This is shown in
Fig. 10.4

4

1

3

5

6

2

1

4

25

3

6

Fig. 10.4. Initial situation

Now suppose that a certain name, say 6, has moved successively to nodes 3, 5, 2,
and 4 as indicated in Fig. 10.3. Name 6 is now waiting to be transmitted to node 1.
Clearly, name 6 must be already greater than 3, 5, and 2 since otherwise it would not
have been allowed to move to node 4. Therefore, the maximum of the set {6, 3, 5, 2}
is clearly 6. More generally, for all agent names x in the domain of a, x is the max-
imum of the interval between x and n−1(a(x)) in the ring. And when x is the same
as the node a(x), then x is the maximum of the interval between this node x and
node n−1(x), which is exactly the set N . This corresponds to the situation depicted
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in Fig. 10.5, where we have:
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2
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4 61

Fig. 10.5. The final situation

6 = max({6, 3, 5, 2, 4, 1}) = max(N).

Notice that such a simple informal proof has been possible because we departed in
our model from a close copy of the real environment of the future distributed program:
no channels, no buffers, etc. It is important to make a clear distinction between the
activity of building models and that of building programs. In the former, we are aiming
at proving, hence it is convenient to use abstractions. In the latter, we are aiming at
executing. Such a difference in goals induces a difference in forms.

10.4 First refinement
What we would like to do now is to completely formalize the informal proof we have
presented in the previous section.

10.4.1 The state: formalizing a ring
Preliminary approach The first thing we define is the concept of a ring. A ring is
defined on a set N by means of a function n (for next) representing the connection
between each node and its, say, right neighbor. Clearly, n is a bijection from the set
N to itself. We remind the reader that a bijection from a set S to a set T is a total
function whose inverse is also a total function from set T to set S: it is denoted by
S �� T .

constants: N, n, itvr
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The next series of axioms is just a copy of some of the axioms and theorems for rings
developed in Section 7.5 of Chapter 9.

axm1_1: n ∈ N �� N

axm1_2: ∀S · n−1[S] ⊆ S ∧ S 
= ∅ ⇒ N ⊆ S

axm1_3: itvr ∈ N → (N → P(N))

axm1_4: ∀x · x ∈ N ∧ y ∈ N \ {x} ⇒ itvr(x)(y) = itvr(x)(n−1(y)) ∪ {y}

axm1_5: ∀x · x ∈ N ⇒ itvr(x)(n−1(x)) = N

10.4.2 The State: variables
Let us now come back to our original problem, namely electing a leader on a ring. We
define the variable function a mentioned in Section 10.3.4. It is a partial function from
N to itself as defined in inv1_1. Its main property is in inv1_2. It was informally
stated in the Section 10.3.4. For each node x in the domain of a (remember a is only
a partial function), x is the maximum of the interval starting in x and ending in
n−1(a(x)):

constants: w, a
inv1_1: a ∈ N →N

inv1_2: ∀ f · f ∈ dom (a) ⇒ f = max(itvr(f)(n−1(a(f))))

10.4.3 Events
Next are the events: elect that was already present in the abstraction and the new
events accept and reject.

init
w :∈ N
a := n

elect
any x where

x ∈ dom (a)
x = a(x)

then
w := x

end

accept
any x where

x ∈ dom (a)
a(x) < x

then
a(x) := n(a(x))

end

reject
any x where

x ∈ dom (a)
x < a(x)

then
a := {x}�− a

end
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Notice that the event elect in the abstraction has now become a parameterized event
and the two new events accept and reject are also parameterized events. In all cases,
the quantified variable x denotes a node that is in the domain of the function a.

10.5 Proofs
In this section, we give semi-formal proofs for the refinement of event elect and new
events accept and reject. We also give an informal proof for the convergence of the new
events. We close this section with an informal proof of deadlock freeness.

Notice that when using the proof obligation rules in each case, we shall only give
parts of the elements required by each of them. In other words, we shall only give
the properties and invariants that are needed in the proof, otherwise the complete
transcription of the rules would be completely unreadable.

10.5.1 Proof for event elect
The refinement proof of event elect, which we show below together with its abstraction,
does not require us to use the proof obligation rule GRD since the abstraction has no
guard; it does not require the use of the proof obligation rule INV on the two invariants
inv1_1 and inv1_2 since these invariants do not contain any references to variable
w, which is the only variable modified by concrete event elect:

(abstract-)elect
w := max(N)

(concrete-)elect
any x where

x ∈ dom (a)
x = a(x)

then
w := x

end

.

The only proof obligation rule that remains to be used is then rule SIM, since the
variable w is common to the two spaces and is modified by both events.

Axiom axm1_5
Invariant inv1_1
Invariant inv1_2
Concrete guard
of event elect
�
Equality of actions on

common variable w

∀x · ( x ∈ N ⇒ itvr(x)(n−1(x)) = N )
a ∈ N →N
∀ f · f ∈ dom (a) ⇒ f = max (itvr(f)(n−1(a(f))))
x ∈ dom (a)
x = a(x)
�
x = max(N).
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The proof is easy. We instantiate in both universal quantifications the quantified
variable with x, yielding the following after some simplifications:

itvr(x)(n−1(x)) = N
x = max (itvr(x)(n−1(a(x))))
x = a(x)
�
x = max(N).

Then we replace a(x) by x, yielding the following, which is obvious:

itvr(x)(n−1(x)) = N
x = max(itvr(x)(n−1(x)))
�
x = max(N).

10.5.2 Proof for event accept
The new event accept is shown below:

accept
any x where

x ∈ dom (a)
a(x) < x

then
a(x) := n(a(x))

end

.

It must refine skip, which is obvious, since it does not touch the abstract variable w.
We have first to prove that it preserves invariants inv1_1. This is stated as follows
by using proof obligation rule INV:

inv1_1
guards of event
accept
�
Modifed invariant inv1_1

a ∈ N →N
x ∈ dom (a)
a(x) < x
�
({x}�− a) ∪ {x → n(a(x))} ∈ N →N

.

This is obvious since the left-hand side of the goal of this sequent is made of the union
of two partial functions from N to N with non-intersecting domains. Then we have
to prove that event accept preserves invariant inv1_2. The statement to prove is as
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follows by using proof obligation rule INV and after some simplifications:

Axiom axm1_4

Invariant inv1_1
Invariant inv1_2
Guards of event
accept
�
Modified invariant inv1_2

∀x, y ·




x ∈ N
y ∈ N \ {x}
⇒
itvr(x)(y) = itvr(x)(n−1(y)) ∪ {y}




ra ∈ N →N
∀ f · f ∈ dom (a) ⇒ f = max(itvr(f)(n−1(a(f))))
x ∈ dom (a)
a(x) < x
�

∀ f ·

 f ∈ dom (a �− {x → n(a(x)))
⇒
x = max(itvr(x)(n−1((a �− {x → n(a(x))})(f))))


.

The universal quantification of the consequent can be decomposed (using rules ALL_R
and IMP_R), yielding:

∀x, y ·




x ∈ N
y ∈ N \ {x}
⇒
itvr(x)(y) = itvr(x)(n−1(y)) ∪ {y}




a ∈ N →N
∀ f · f ∈ dom (a) ⇒ f = max(itvr(f)(n−1(a(f))))
x ∈ dom (a)
a(x) < x
f ∈ dom (a �− {x → n(a(x))})
�
f = max(itvr(f)(n−1((a �− {x → n(a(x))})(f)))).

We now proceed with a proof by cases. We consider in turn the case where f is equal
to x and then where it is different from x. Note that this is very frequently the case
with proofs dealing with expressions containing the overriding operator �−.

First case: f = x Notice that:

n−1((a �− {x → n(a(x))})(x))

reduces to:

n−1(n(a(x))),
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that is, to a(x) since n is a bijection. This yields:

∀x, y ·




x ∈ N
y ∈ N \ {x}
⇒
itvr(x)(y) = itvr(x)(n−1(y)) ∪ {y}




a ∈ N →N
∀ f · f ∈ dom (a) ⇒ f = max(itvr(f)(n−1(a(f))))
x ∈ dom (a)
a(x) < x
�
x = max(itvr(x)(a(x))).

In the first universal quantification, we instantiate x with x and y with a(x). Notice
that we have indeed x 
= a(x) since a(x) < x. This yields:

itvr(x)(a(x)) = itvr(x)(n−1(a(x))) ∪ {a(x)}.

We can thus replace itvr(x)(a(x)) by itvr(x)(n−1(a(x)))∪{a(x)} in max(itvr(x)(a(x))).
We also instantiate f with x in the second universal quantification. We thus obtain
eventually the following:

x = max(itvr(x)(n−1(a(x))))
a(x) < x
�
x = max(itvr(x)(n−1(a(x))) ∪ {a(x)}).

This can be discharged easily by noticing that for two finite and non-empty sets of
numbers s and t we have max(s ∪ t) = max({max(s), max(t)}). Finally, we also have
for any number a: max({a}) = a . This yields the following, which is obvious:

a(x) < x
�
x = max({x, a(x)}).

Second case: f 
= x This yields:

a ∈ N →N
∀ f · f ∈ dom (a) ⇒ f = max(itvr(f)(n−1(a(f))))
f ∈ dom (a)
�
f = max(itvr(f)(n−1(a(f)))).
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By instantiating f in the universal quantification with f , we obtain the following, which
is discharged by rule HYP:

f = max(itvr(f)(n−1(a(f))))
�
f = max(itvr(f)(n−1(a(f)))).

10.5.3 Proofs for event reject
We leave it as an exercise for the reader to generate the proof statements for event
reject and give them some informal proofs similar to the one we have just given for
event accept.

10.5.4 Proof of non-divergence of the new events
We have to exhibit a variant quantity that will be decreased by both the new events
accept and reject. Clearly event reject decreases the number of elements in the set
dom(a) since it transforms a into {x} �− a, whereas the guards contain the condition
x ∈ dom(a). But unfortunately, it is not the case for event accept, which only moves
forward x from a(x) to n(a(x)). But, in doing so, it certainly decreases the number of
elements in the interval from a(x) to x: itvr(a(x))(x).

The previous remark gives us a clue. We can take as a variant the sum of the
cardinals of the various sets itvr(a(x))(x) for all x in the domain of a. This quantity
is also decreased by the event reject, since it removes completely one of these intervals
from the sum in question.

variant1:
∑

x∈dom(a)

card (itvr(a(x))(x))

Notice that the decrease in this variant can be proved by showing that the finite set:

{x → y |x ∈ dom(a) ∧ y ∈ itvr(a(x))(x) }
is made strictly smaller by the new event. Replacing the decrease in a variant of the
sum of the cardinals of a finite set by the equivalent decrease in this set is generally a
better technique than performing the proof directly on the cardinals.

10.5.5 Proof of deadlock freeness
The proof of deadlock freeness is easy when considering the various guards as shown
below. Their disjunction is obviously true provided we are sure that dom(a) is never
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empty; a new invariant that we have to add and thus prove:

inv1_3: dom(a) 
= ∅

Event Guard

elect ∃x · (x ∈ dom(a) ∧ x = a(x) )

accept ∃x · (x ∈ dom(a) ∧ a(x) < x )

reject ∃x · (x ∈ dom(a) ∧ x < a(x) )

10.6 Reference
[1] G. Le Lann. Distributed systems – towards a formal approach. In B. Gilchrist, editor,

Information Processing 77. North-Holland, 1977.
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Synchronizing a tree-shaped network

In this chapter, we develop another distributed program example, where we shall en-
counter another interesting mathematical object: a tree. We shall thus learn how to
formalize such a data structure and see how we can fruitfully reason about it using an
induction rule. This example has been treated by many researchers; we have taken it
from the following books [1], [2].

11.1 Introduction
In this example, we have a network of nodes, which is slightly more complicated than
in the previous chapter, where we were dealing with a ring. Here we have a finite tree
as indicated in Fig. 11.1.

Fig. 11.1. A tree-shaped network

367
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We have a set of nodes forming a finite tree ENV-1

At each node of the tree, we have a process performing a certain task, which is the
same for all processes (the exact nature of this task is not important). The constraint
we want these processes to observe is that they remain synchronized. In other words,
not one of them should be able to progress too much with regard to the others. In
order to formalize this synchronization constraint, we assign a counter to each node
of the tree. Intuitively, each counter represents the phase within which each process is
currently running:

Each node has a counter, which is a natural number FUN-1

In order to express that each process is at most one phase ahead of the others, we
simply state that the difference between any two of these counters is at most equal
to 1. This is illustrated in Fig. 11.2.
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Fig. 11.2. A tree with counters at the nodes

The difference between any two counters is at most equal to 1 FUN-2
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An additional constraint of our distributed algorithm states that each process can read
the counters of its immediate neighbors only:

Each node can only read the counter of its immediate neighbors in the tree FUN-3

Moreover, each process is allowed to modify its own counter only:

The counter of a node can be modified by this node only FUN-4

One of the most important aspects of our approach is that the local constraint as
expressed in FUN-3 has not to be followed right from the beginning of the construction
process. During the early phases, we feel free to magically have access everywhere from
any node. During the refining phases however, we shall gradually strengthen the guards
of the events so that this local constraint will be obeyed eventually. Again, this reveals
an important distinction between a model and a program.

11.2 Initial model
11.2.1 The state

We now proceed with the first formalization. The network is defined from a carrier set
N of nodes. Our only property about this set is that it is finite. This is expressed as
axiom axm0_1:

sets: N axm0_1: finite(N)

At this stage, we do not need to define the tree, the only state variable we have is the
function c defining the counter value at each node (all initialized to 0). We now define
two invariants involving c. First its basic invariant, inv0_1, stating that c is a total
function from N to the set N natural numbers, and then another invariant, inv0_2,
expressing the basic synchronizing requirement, FUN-2: the difference between two
node counters is at most 1, so that each counter value is kept smaller than or equal to
the value of any other counter plus 1:

variable: c
inv0_1: c ∈ N → N

inv0_2: ∀x, y · x ∈ N ∧ y ∈ N ⇒ c(x) ≤ c(y) + 1
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Invariant inv0_2 seems a bit surprising at first glance. Does it state that the difference
between the values of two counters is at most equal to 1? Let a and b be two such values.
If a ≤ b, then we have b = a + d with d ≥ 0, then we certainly have a + d ≤ a + 1
(that is, d ≤ 1) since b ≤ a + 1 according to inv0_2. In other words, in the case
where a ≤ b, then b − a ∈ 0 .. 1. A similar reasoning would show that if b ≤ a, then
a− b ∈ 0 .. 1.

11.2.2 The events
Besides event init, our only other event, increment, makes explicit the conditions under
which a node n can progress. It is obviously the case when its counter c(n) is not
greater than that of any other counter m, that is when c(n) ≤ c(m). It is in this case
only that the node can increment its own counter without destroying the synchronizing
invariant inv0_2. As can be seen (and as announced above), we have supposed that
a given node n has free access to all other nodes in the tree. Again, this is because we
are here in an abstraction where every access is still possible. Note how we initialize
the counters in event init to be all equal to 0:

init
c := N × {0}

increment
any n where

n ∈ N
∀m ·m ∈ N ⇒ c(n) ≤ c(m)

then
c(n) := c(n) + 1

end

11.2.3 The proofs
The proofs of the statements expressing that event init establishes the invariants are
trivial. We shall only informally develop the proof of the statement expressing the
preservation of invariant inv0_2 by event increment. Here is what we have to prove:

Invariant inv0_1
Invariant inv0_2
Guards of
event increment
�
Mod. inv. inv0_2

c ∈ N → N

∀x, y · x ∈ N ∧ y ∈ N ⇒ c(x) ≤ c(y) + 1
n ∈ N
∀m ·m ∈ N ⇒ c(n) ≤ c(m)
�
∀x, y · x ∈ N ∧ y ∈ N ⇒ (c �− {n → c(n) + 1})(x) ≤

(c �− {n → c(n) + 1})(y) + 1
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This statement can be simplified to the following by removing the universal quantifi-
cation in the consequent and then moving both predicates x ∈ N and y ∈ N in the
antecedent (rules ALL_R and IMP_R):

c ∈ N → N

∀x, y · x ∈ N ∧ y ∈ N ⇒ c(x) ≤ c(y) + 1
n ∈ N
∀m ·m ∈ N ⇒ c(n) ≤ c(m)
x ∈ N
y ∈ N
�
(c �− {n → c(n) + 1})(x) ≤ (c �− {n → c(n) + 1})(y) + 1

The proof now proceeds by cases (four of them, in fact) as is usual when we deal
with the overriding operator �−:

(1) When x and y are both equal to n, then it results in the following goal, which is
trivial:

c(n) + 1 ≤ c(n) + 1 + 1.

(2) When x is equal to n while y is not, then it results in the following goal, which is
trivial according to the guarding condition, ∀m ·m ∈ N ⇒ c(n) ≤ c(m) of event
ascending (instantiate m with y):

c(n) + 1 ≤ c(y) + 1.

(3) When x is not equal to n while y is, then it results in the following goal, which is
trivial according to invariant inv0_2 (instantiate x with x and y with n):

c(x) ≤ c(n) + 1.

(4) When x and y are both not equal to n, then it results in the following goal, which
is trivial according to invariant inv0_2 (instantiate x with x and y with y):

c(x) ≤ c(y) + 1.

Note that such a proof can be done automatically by a prover.

11.3 First refinement
11.3.1 The state

The problem with the guard of the event ascending proposed in the previous section
(it is copied below) is that we have to compare the value c(n) of the counter at node
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n, with that of all other counters c(m).

increment
any n where

n ∈ N
∀m ·m ∈ N ⇒ c(n) ≤ c(m)

then
c(n) := c(n) + 1

end

In order to solve this problem (partially in this refinement), we have to introduce the
tree structure of the network. This is what we are going to do in this section. The tree
is defined by three constants: its root r, a set of leafs L, and also its parent function
f . We borrow the axiomatic definition of finite trees as well as the tree induction rule
presented in Section 9.7.7 of Chapter 9.

constants: r
L
f

axm1_1 : r ∈ N

axm1_2 : L ⊆ N

axm1_3 : f ∈ N \ {r}� N \ L

axm1_4 : ∀T · r ∈ T ∧ f−1 [T ] ⊆ T ⇒ N ⊆ T

In order to limit the number of comparisons which a node had to perform in the
abstract version of event increment, the idea is to suppose that the value c(r) of the
counter at the root r of the tree is always smaller than or equal to that of any other
counter. We have thus c(r) ≤ c(m) for all nodes m. In that case, it is sufficient to
reduce the guard of event increment to a mere comparison of c(n) with c(r). When the
equality holds, that is when we have c(n) = c(r), then clearly c(n) ≤ c(m) holds for
all nodes m and we can thus safely increment the counter of n. We could have stated
the above rule – that is, c(r) ≤ c(m) for all nodes m – as an invariant, but we choose
to have the following more primitive invariant inv1_1:

inv1_1: ∀m ·m ∈ N \ {r} ⇒ c(f(m)) ≤ c(m)

In order to maintain the property c(r) ≤ c(m) for all nodes m, it is sufficient to
have the counter of the parent of each node m (except the root which has no parent)
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being kept smaller than or equal to that of its offspring m. In other words, c(f(m)) ≤
c(m) must hold for each node m except the root r: this is invariant inv1_1. As
a consequence, the counters are incremented by waves moving up as illustrated in
Fig. 11.3. Here is the theorem we want eventually to prove:

thm1_1: ∀m ·m ∈ N ⇒ c(r) ≤ c(m)

1

11

2 1

2 2

2

2

2

2

2

1

Fig. 11.3. An ascending wave

11.3.2 The events
In order to maintain our new invariant inv1_1, we have to strengthen the guard of
event ascending (a new name for abstract event increment) by ensuring that the counter
of node n is distinct from that of each of its offspring:

init
c := N × {0}

ascending
refines

increment
any n where

n ∈ N
c(n) = c(r)
∀m ·m ∈ f−1 [{n}] ⇒ c(n) 
= c(m)

then
c(n) := c(n) + 1

end
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Note that the comparisons of c(n) in node n are now limited to the counters c(m)
of the set of children, f−1 [{n}], of node n, which is allowed according to requirement
FUN-3 since node n and m are next to each other. But we also compare c(n) with c(r),
which is not acceptable since nodes n and r are not in general next to each other. This
problem will be solved in the next refinement.

11.3.3 The proofs
In order to ease the proof, we introduce the following two theorems, which are easily
deductible from the invariants:

thm1_2: ∀n · n ∈ N ⇒ c(n) ∈ c(r) .. c(r) + 1

thm1_3: ∀n · n ∈ N \ {r} ⇒ c(n) ∈ c(f(n)) .. c(f(n)) + 1

The proof of thm1_1 is done by tree induction under the assumption of inv1_1.
Let us recall that the tree induction rule IND_TREE, which was introduced in Section
9.7.6 of Chapter 9. We adapt it by instantiating V to N , t to r, p to f , and x to m
yielding:

H � P(r) H, m ∈ N \ {r}, P(f(m)) � P(m)

H, m ∈ N � P(m)
IND_TREE
(m nfin H)

Here P(m) is c(r) ≤ c(m). Next is the proof of thm1_1 after applying rules ALL_R
and IMP_R:

∀m ·m ∈ N \ {r}⇒ c(f (m)) ≤ c(m)
m ∈ N
�
c(r) ≤ c(m)

IND_TREE




∀m ·m ∈ N \ {r} ⇒ c(f (m)) ≤ c(m)
�
c(r) ≤ c(r)

ARI

∀m ·m ∈ N \ {r}⇒ c(f (m)) ≤ c(m)
m ∈ N \ {r}
c(r) ≤ c(f (m))
�
c(r) ≤ c(m)

ALL_L . . .
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We instantiate now m in the first assumption with m:

. . .

m ∈ N \ {r} ⇒ c(f (m)) ≤ c(m)
m ∈ N \ {r}
c(r) ≤ c(f (m))
�
c(r) ≤ c(m)

IMP_L

c(f (m)) ≤ c(m)
m ∈ N \ {r}
c(r) ≤ c(f (m))
�
c(r) ≤ c(m)

ARI

c(f (m)) ≤ c(m)
x ∈ N \ {r}
c(r) ≤ c(f (m))
c(r) ≤ c(m)
�
c(r) ≤ c(m)

HYP

11.4 Second refinement
It remains now for us to replace the test c(r) = c(n) in the guard of the previous
version of event ascending (copied below) by a more local test.

ascending
any n where

n ∈ N
c(n) = c(r)
∀m ·m ∈ f−1 [{n}] ⇒ c(n) 
= c(m)

then
c(n) := c(n) + 1

end

The problem is that of having the nodes informed that the value of the counter at the
root is indeed equal to that of their local counter. This is clearly the case when an
incrementing wave has reached the root, where then all nodes have the same value.

When this situation is reached, the idea is to have a second wave going down and
gradually informing the nodes that the value of the c counter at the root r is the same
as the value of all other c counters. For this, we need a second counter d at each node
to hold the second descending wave. This is indicated in Fig. 11.4, where the second
counter d is the one indicated on the left of each node.

This second wave goes down as illustrated in Fig. 11.5. In this refinement, we shall
just define the d counters (this is done in invariant inv2_1 below) together with the
basic property that the difference between two d counters does not exceed 1 (invariant
inv2_2). Note that this property is of the same nature as that expressed in invariant
inv0_1 in the initial model for c counters. Formally:

variable: c, d
inv2_1: d ∈ N → N

inv2_2: ∀x, y · x ∈ N ∧ y ∈ N ⇒ d(x) ≤ d(y) + 1
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1,2
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Fig. 11.4. Enlarging the state with a second counter
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Fig. 11.5. The descending wave

We now have to extend event init in a straightforward fashion and also add a new
event, descending, corresponding to the incrementation of the d counters when ap-
propriate. Again, note the analogy with what we did in the initial model with the c
counters:
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init
c := N × {0}
d := N × {0}

descending
any n where

n ∈ N
∀m ·m ∈ N ⇒ d(n) ≤ d(m)

then
d(n) := d(n) + 1

end

Event ascending has not been touched in this refinement; hence we have not copied it
above. We leave it to the reader to prove that this superposition refinement is correct.
Do not forget to prove that the new event does not diverge and also that the system
does not deadlock.

11.5 Third refinement
In this third refinement, we are going to perform two tasks: first, we construct the
descending wave of the d counters incrementation very much in the same way as we
did for the ascending wave of the c counters incrementation in Section 3; and, second,
we establish the relationship between the c and the d counters. Note that we do not
extend the state. We have thus here a special case of superposition: the concrete state
is exactly the same as the abstract one.

11.5.1 Refining event ascending
The first invariant we introduce, inv3_1, is very much of the same nature as invariant
inv1_1, introduced in the first refinement for the c counters (Section 11.3.1), which
we repeat:

inv1_1: ∀m ·m ∈ N \ {r} ⇒ c(f(m)) ≤ c(m)

The d counter at a node m is not greater than that of its parent node f(m). It is what
makes the wave descending:

inv3_1: ∀m ·m ∈ N \ {r} ⇒ d(m) ≤ d(f(m))
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With this invariant and the induction rule IND_TREE mentioned in Section 11.5.3,
we can easily prove the following theorem, which is of the same nature as thm1_1
of Section 11.5.3. It says that the d counters are are not greater than the value
d(r):

thm3_1: ∀n · n ∈ N ⇒ d(n) ≤ d(r)

It remains for us to establish the connection between c(r) and d(r). In fact, the latter
is never greater than the former. It is expressed in the following invariant:

inv3_2: d(r) ≤ c(r)

Thanks to these invariants, we can refine event ascending as follows:

(abstract-)ascending
any n where

n ∈ N
c(n) = c(r)
∀m ·m ∈ f−1 [{n}] ⇒ c(n) 
= c(m)

then
c(n) := c(n) + 1

end

(concrete-)ascending
any n where

n ∈ N
c(n) = d(n)
∀m ·m ∈ f−1 [{n}] ⇒ c(n) 
= c(m)

then
c(n) := c(n) + 1

end

As can be seen, the only difference between the abstract and concrete versions of
these events is the replacement of the abstract guard c(n) = c(r) by the concrete one
c(n) = d(n). As a consequence, we just have to prove that the latter implies the former
(guard strengthening), which is trivial:

concrete guard
according to thm3_1
invariant inv3_2
according to thm1_1
�
abstract guard

c(n) = d(n)
d(n) ≤ d(r)
d(r) ≤ c(r)
c(r) ≤ c(n)
�
c(n) = c(r)
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We have now reached our goal concerning event ascending: it is indeed accessing its
neighbors’ counters only as required by requirement FUN-3.

11.5.2 Refining event descending
We now turn our attention to event descending. In fact, the abstract descending event
has to be split into two events: one dealing with any node n except the root r and
another one dealing with the root node r. Here is the proposal for the first case together
with the abstraction:

(abstract-)descending
any n where

n ∈ N
∀m ·m ∈ N ⇒ d(n) ≤ d(m)

then
d(n) := d(n) + 1

end

(concrete-)descending_1
any n where

n ∈ N \ {r}
d(n) 
= d(f(n))

then
d(n) := d(n) + 1

end

We notice that in the concrete version the node n follows requirement FUN-3: it only
accesses the value of counters d at n and at f(n), the parent node of n. The only
difference between the two versions concerns again the guards. The abstract guard
∀m ·m ∈ N ⇒ d(n) ≤ d(m) is replaced by the concrete one d(n) 
= d(f(n)). We have
then again just to prove that the concrete guard implies the abstract one. It amounts
to proving:

n ∈ N \ {r}
d(n) 
= d(f(n))
m ∈ N
�
d(n) ≤ d(m)

To prove this statement, we can first prove the following simple theorems:

thm3_2: ∀n · n ∈ N \ {r} ⇒ d(f(n)) ∈ d(n) .. d(n) + 1

thm3_3: ∀n · n ∈ N ⇒ d(r) ∈ d(n) .. d(n) + 1

From d(n) 
= d(f(n)) and thm3_2, we deduce d(f(n)) = d(n) + 1. By instantiating
n in thm3_3 successively with f(n) and m, we obtain d(r) ∈ d(f(n)) .. d(f(n)) + 1
and d(r) ∈ d(m) .. d(m) + 1. We are thus left to prove the following, which is trivial
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(the assumptions yield: d(n) + 1 ≤ d(r) ≤ d(m) + 1):

d(r) ∈ d(n) + 1 .. d(n) + 2
d(r) ∈ d(m) .. d(m) + 1
�
d(n) ≤ d(m)

We now have to consider the second case for the descending event. Here is the proposal:

(abstract-)descending
any n where

n ∈ N
∀m ·m ∈ N ⇒ d(n) ≤ d(m)

then
d(n) := d(n) + 1

end

(concrete-)descending_2
when

d(r) 
= c(r)
then

d(r) := d(r) + 1
end

Again, the concrete version follows requirement FUN-3 as node r only accesses the c and
d counters of this node. We have a case here where the abstract event is introduced by
an any construct, whereas the concrete one is introduced by a when construct. We have
to provide a witness, which is clearly r for n in the abstraction. As a consequence, the
two actions are now the same and the only statement to prove is again the strengthening
of the guard. After some simplification, it amounts to proving:

d(r) 
= c(r)
m ∈ N
⇒
d(r) ≤ d(m)

Now suppose that we have the following theorem:

thm3_4: ∀n · n ∈ N ⇒ c(r) ∈ d(n) .. d(n) + 1

We can instantiate this theorem first with r yielding c(r) ∈ d(r) ..d(r)+1. But we have
d(r) 
= c(r). As a consequence, we have c(r) = d(r) + 1. We now instantiate thm3_4
with m yielding c(r) ∈ d(m) .. d(m) + 1. We are thus left to prove the following, which
is trivial:

d(r) + 1 ∈ d(m) .. d(m) + 1
�
d(r) ≤ d(m)
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11.5.3 Proving theorem thm3_4
It now remains for us to prove thm3_4. For this we have to introduce a new invariant,
namely:

inv3_3: ∀n · n ∈ N ⇒ c(n) ∈ d(n) .. d(n) + 1

Note that invariant inv3_2, stating that d(r) is not greater than c(r), can be trans-
formed into a mere theorem as it is clearly implied by invariant inv3_3. Theorem
thm3_4 can now be proved from invariant inv3_3 and theorems thm3_1 and
thm1_2. Here is what we have to prove:

Theorem thm3_1
Invariant inv3_3
Theorem thm1_2
�
Theorem thm3_4

∀n · n ∈ N ⇒ d(n) ≤ d(r)
∀n · n ∈ N ⇒ c(n) ∈ d(n) .. d(n) + 1
∀n · n ∈ N ⇒ c(n) ∈ c(r) .. c(r) + 1
�
∀n · n ∈ N ⇒ c(r) ∈ d(n) .. d(n) + 1

By properly instantiating and simplifying the previous statement, we obtain the fol-
lowing, which is trivially true (the two first antecedents yields d(n) ≤ d(r) ≤ c(r),
whereas the last two yields c(r) ≤ c(n) ≤ d(n) + 1):

Theorem thm3_1 instantiated with n
Invariant inv3_3 instantiated with r
Theorem thm1_2 instantiated with n
Invariant inv3_3 instantiated with n
�
Theorem thm3_4

d(n) ≤ d(r)
c(r) ∈ d(r) .. d(r) + 1
c(n) ∈ c(r) .. c(r) + 1
c(n) ∈ d(n) .. d(n) + 1
�
c(r) ∈ d(n) .. d(n) + 1

11.5.4 Proving preservation of invariant inv3_3
It remains now for us to prove that the new invariant inv3_3 is indeed preserved by
the proposed events. Here is what we have to prove for event ascending to preserve
invariant inv3_3:

Invariant inv3_3
Guard of ascending

�
Mod. inv. inv3_3

∀m ·m ∈ N ⇒ c(m) ∈ d(m) .. d(m) + 1
n ∈ N
c(n) = d(n)
∀m ·m ∈ f−1 [{n}] ⇒ c(n) 
= c(m)
�
∀n ·m ∈ N ⇒ (c �− {n → c(n) + 1})(m) ∈ d(m) .. d(m) + 1
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This can be rearranged as:

∀m ·m ∈ N ⇒ c(m) ∈ d(m) .. d(m) + 1
n ∈ N
c(n) = d(n)
m ∈ N
�
c �− {n → c(n) + 1})(m) ∈ d(m) .. d(m) + 1

As usual in the presence of the overriding operator �−, we have to do a proof case by
case. First case: m = n, and second case: m 
= n. The first case leads to the following,
which is trivial:

c(n) = d(n)
n ∈ N
�
c(n) + 1 ∈ d(n) .. d(n) + 1

The second case is solved by instantiating m in the universal quantification with m,
leading to the following, which is trivial:

c(m) ∈ d(m) .. d(m) + 1
m ∈ N
�
c(m) ∈ d(m) .. d(m) + 1

We now prove that invariant inv3_3 is preserved by event descending_1. It amounts
to proving:

Invariant inv3_3
Guard of descending_1

�
Mod. inv. inv3_3

∀m ·m ∈ N ⇒ c(m) ∈ d(m) .. d(m) + 1
n ∈ N \ {r}
d(n) 
= d(f(n))
�
∀m ·m ∈ N ⇒ c(m) ∈ (d �− {n → d(n) + 1})(m)..

(d �− {n → d(n) + 1})(m) + 1

This can be rearranged as:

∀m ·m ∈ N ⇒ c(m) ∈ d(m) .. d(m) + 1
n ∈ N \ {r}
d(n) 
= d(f(n))
m ∈ N
�
c(m) ∈ (d �− {n → d(n) + 1})(m) .. (d �− {n → d(n) + 1})(m) + 1
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We prove this by cases: first case m = n; second case m 
= n. Here is what the first
case yields:

n ∈ N \ {r}
d(n) 
= d(f(n))
⇒
c(n) ∈ d(n) + 1 .. d(n) + 2

By instantiating thm3_2 with n, we obtain d(f(n)) ∈ d(n)..d(n)+1, which together
with d(n) 
= d(f(n)) yields d(f(n)) = d(n) + 1. Instantiating then thm3_1 with f(n)
yields d(f(n)) ≤ d(r), that is d(n) + 1 ≤ d(r). We are thus left to prove the following
where we have added some theorems and invariant instantiations. This is trivially true
(the three first antecedents yield d(n) + 1 ≤ d(r) ≤ c(r) ≤ c(n), whereas the last
antecedent yields c(n) ≤ d(n + 1); therefore we have c(n) = d(n) + 1):

inv3_3 instantiated with r
thm1_2 instantiated with n
inv3_3 instantiated with n

d(n) + 1 ≤ d(r)
c(r) ∈ d(r) .. d(r) + 1
c(n) ∈ c(r) .. c(r) + 1
c(n) ∈ d(n) .. d(n) + 1
�
c(n) ∈ d(n) + 1 .. d(n) + 2.

The second case (m 
= n) yields the following, which is trivially true:

∀m ·m ∈ N ⇒ c(m) ∈ d(m) .. d(m) + 1
n ∈ N \ {r}
d(n) 
= d(f(n))
m ∈ N
�
c(m) ∈ d(m) .. d(m) + 1.

It remains finally for us to prove that invariant inv3_3 is preserved by event descend-
ing_2. It amounts to proving:

Invariant inv3_3
Guard of descending_2

�
Mod. inv. inv3_3

∀m ·m ∈ N ⇒ c(m) ∈ d(m) .. d(m) + 1
d(r) 
= c(r)
�
∀m ·m ∈ N ⇒ c(m) ∈ (d �− {r → d(r) + 1})(m)..

(d �− {r → d(r) + 1})(m) + 1.
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This can be rearranged as follows:

∀m ·m ∈ N ⇒ c(m) ∈ d(m) .. d(m) + 1
d(r) 
= c(r)
m ∈ N
�
c(m) ∈ (d �− {r → d(r) + 1})(m) .. (d �− {r → d(r) + 1})(m) + 1.

The proof proceeds again by cases. The first case (m = r), leads to the following, which
is trivially true:

Theorem thm3_1 instantiated with r
d(r) 
= c(r)
c(r) ∈ d(r) .. d(r) + 1
�
c(r) ∈ d(r) + 1 .. d(r) + 1 + 1.

The second case (m 
= r), leads to the following, which is also trivially true:

Invariant inv3_3 instantiated with m c(m) ∈ d(m) .. d(m) + 1
�
c(m) ∈ d(m) .. (d(m) + 1.

11.6 Fourth refinements
The idea of the next refinement comes from a careful observation of the three events
we have obtained in the previous section. Let us copy them here again (note that we
have changed the guard of event ascending to an equivalent one):

ascending
any n where

n ∈ N
c(n) = d(n)

∀m ·




m ∈ N
n = f(m)
⇒
c(f(m)) 
= c(m)




then
c(n) := c(n) + 1

end

descending_1
any n where

n ∈ N \ {r}
d(n) 
= d(f(n))

then
d(n) := d(n) + 1

end

descending_2
when

d(r) 
= c(r)
then

d(r) := d(r) + 1
end .

In event ascending, we observe a comparison of c(n) and d(n), and also a comparison
of c(m) and c(f(m)). In event descending_1, we observe that the guard contains a
comparison of d(n) and d(f(n)), and in event descending_2, we observe that the guard
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contains a comparison of d(r) and c(r). Moreover, the counters c or d are incremented
in all events.

We have the impression to encounter a situation which is very similar to the one
already encountered in the file transfer protocol example in Chapters 4 and 6. Should
this impression be confirmed, then we could replace the values of the counters c and
d simply by their parities. It is certainly an interesting transformation since then we
have no more risk of such counters becoming too big. But in order to be able to do
this refinement, we must be sure that the difference between the compared values is not
greater than one. In the following table, we state that it is indeed the case:

Comparison Justifying theorem

c(n) and d(n) inv3_3: ∀n · n ∈ N ⇒ c(n) ∈ d(n) .. d(n) + 1

c(m) and c(f(m)) thm1_3: ∀n · n ∈ N \ {r} ⇒ c(n) ∈ c(f(n)) .. c(f(n)) + 1

d(n) and d(f(n)) thm3_2: ∀n · n ∈ N \ {r} ⇒ d(f(n)) ∈ d(n) .. d(n) + 1

d(r) and c(r) thm3_4: ∀n · n ∈ N ⇒ c(r) ∈ d(n) .. d(n) + 1

The fourth refinement is now mere routine. We copy here the properties and basic
theorem concerning parities:

constants: r, f, parity

axm4_1: parity ∈ N→{0, 1}

axm4_2: parity(0) = 0

axm4_3: ∀x · x ∈ N ⇒ parity(x + 1) = 1− parity(x)

thm4_1: ∀x, y · x ∈ N ∧ y ∈ N ∧ x ∈ y .. y + 1 ∧ parity(x) = parity(y) ⇒ x = y



386 Synchronizing a tree-shaped network

And we define the parities p(n) and q(n) of c(n) and d(n):

variables: p
q

inv4_1: p ∈ N →{0, 1}

inv4_2: q ∈ N →{0, 1}

inv4_3: ∀n · (n ∈ N ⇒ p(n) = parity(c(n))

inv4_4: ∀n · (n ∈ N ⇒ q(n) = parity(d(n))

The final events are as follows:

init
p := N × {0}
q := N × {0}

ascending
any n where

n ∈ N
p(n) = q(n)
∀m ·m ∈ N ∧ f(m) = n ⇒ p(n) 
= p(m)

then
p(n) := 1− p(n)

end

descending_1
any n where

n ∈ N \ {r}
q(n) 
= q(f(n))

then
q(n) := 1− q(n)

end

descending_2
when

q(r) 
= p(r)
then

q(r) := 1− q(r)
end

11.7 References
[1] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
[2] W. H. J. Feijen and A. J. M. van Gasteren. On a Method of Multi-programming. Springer,

1999.
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Routing algorithm for a mobile agent

The purpose of the example developed in this chapter is to present an interesting rout-
ing algorithm for sending messages to a mobile phone. In this example, we shall again
encounter a tree structure as in the previous chapter, but this time the tree structure
will be modified dynamically. We shall also encounter another example (besides the
bounded re-transmission protocol in Chapter 6) where the usage of clocks will play a
fundamental role. This example is taken from [1].

12.1 Informal description of the problem
A, so-called, mobile agentM is supposed to travel between various sites. Fixed agents
situated in the sites in question want to establish some communications with it. To
simplify matters, such communications are supposed to be unidirectional: they take
the practical form of messages sent from the fixed agents to M.

12.1.1 Abstract informal specification
In an ideal abstract world, the moves of the mobile agent M from one site to another
are instantaneous. Likewise, the knowledge by the fixed agents of the exact position
of M is also supposed to be instantaneous. In that case, the fixed agents follow the
mobile agentM by sending messages where it currently is. Notice that such messages
are (for the moment) received immediately by M. This is illustrated in Fig. 12.1
where the mobile agent M (represented by a black square) originally situated at site
c, moves then successively to sites d, a, c, and b. The arrows indicate where each fixed
agent is sending messages: they just follow M since they immediately know where
it is.

387
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Fig. 12.1. First abstraction: the fixed agents always know where the mobile agent is

12.1.2 First informal refinement
In a more realistic concrete world, the moves of M from one site to another are still
instantaneous, but the only site to know where M is, is the site thatM has just left.
The other sites are not aware of the move, they continue thus to send messages to
the site where they still believe that M resides. Then it is quite possible that some
messages arrive at a destination which is not currently that of M. As a consequence,
each site, besides sending its own messages, is thus also in charge of possibly forwarding
the messages received whileM is not present any more locally. It is quite possible that
several such intermediate transmissions take place before a message eventually reaches
M. This is illustrated in Fig. 12.2.
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Fig. 12.2. First refinement: fixed agents do not know the exact position of the mobile agent
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As can be seen, whenM reaches a new site, that site destroys the previous knowledge
it has concerning the location of M. For instance, in the third snapshot, where M
has just moved to site a coming from site d, the link between a and c that existed
in the previous situation is removed. Similarly, when M leaves a site, that site re-
actualizes its knowledge by storing the new location of M (again, supposed to be
known instantaneously). For instance, in the fourth snapshot above, whereM has just
moved from a to c, a new link between a and c is established.

Intuitively for the moment, we can figure out that the communication channels
are dynamically modified, while maintaining a tree structure whose root is the actual
site of M. This is illustrated in Fig. 12.3 where we have reordered the sites to show
more clearly the tree structure. Each site is then indirectly connected to the site of
M and there exists no cycles that might put some forwarded messages in an endless
loop.
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c

b

c

ba d

Fig. 12.3. The tree structure

12.1.3 Second informal refinement: a problem
In a still more realistic world, the moves of M between sites are not instantaneous
anymore. In fact, whenM leaves a site, it does not know necessarily where it is going.
Only when M arrives at its destination, is it able to send a service message to its
previous site in order to inform it of its present location. Of course, the service message
in question does not itself travel instantaneously. Communication messages are thus
still forwarded from sites to sites, but that forwarding might be suspended in some
sites, whichM has left in the past, until such sites receive service messages informing
them of the “present” location of M (“present”, however, meaning when the service
message was sent, which may not be the situation any more when it is received).

We have no control over the relative speed of the service messages: some of them
can reach their destination quite quickly, while some others might take more time (but
we suppose that they will eventually arrive at their destination). In Fig. 12.4, we have
put some dashed lines to indicate that the corresponding service messages have not yet
arrived: notice that service messages following the dashed lines circulate in a direction
which is the opposite of that followed by the communication messages that will be
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established upon reception of the service message. In fact, when a service message
arrives at its destination, the corresponding dashed line is transformed into a “plain”
line going in the opposite direction.

In Fig. 12.4, we have shown a series of snapshots where all service messages are
pending. Notice that the situation pictured in the last snapshot contains a potential
problem. This is because site c is expected to receive two service messages, one from
d and another one from b. As a matter of fact, a site might expect as many service
messages as there has been past visits of that site by the mobile agent M.
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Fig. 12.4. Second refinement: the mobile agent sends a service message with its new position

In Fig. 12.5, we show various snapshots corresponding to the arrival of some service
messages. The last snapshot shows a situation were all service messages have reached
their destination except the ones, sm1 and sm2, supposed to reach site c form d and
b respectively.

b
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b
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dd
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ba

d
sm1

sm2

Fig. 12.5. Service messages messages sm2 from b to c and sm1 from d to c have not yet arrived

If the service message sm1 between d and c is very late (arriving after the service
message sm2 between b and c although sent before sm2), then, upon arrival, sm1
may have the disastrous effect: first, isolating completely site b, and, second, forming a
cycle within which communication messages may circulate for ever. This is illustrated in
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Fig. 12.6 where the two snapshots show the arrival of service message sm2 followed by
that of service message sm1.

a

d

b a

d

b

cc
sm1

Fig. 12.6. Arrival of service message sm2 before sm1

This failure is due to the fact that site c is misled by service message sm1 from
site d. In fact, message sm1 should have been discarded by site b when sending service
message sm2 to c. But how can site b know about the existence of such a pending
service message sm1 whose destination is also c?

12.1.4 Third informal refinement: the solution
The purpose of the distributed routing algorithm presented here and developed by
L. Moreau in [1] is precisely to solve the potential problem we revealed above. The
idea is to have the mobile agentM traveling with a logical clock which is incremented
each time it arrives at a new site. Upon arrival in a site, the value of the logical clock is
stored (after being incremented). It thus records the time of the last visit of the mobile
agentM at this site. WhenM sends its service message to its previous site, it stamps
that message with the new time (the one that has just been incremented and recorded
in the new site). This is illustrated in Fig. 12.7 where the local time stored in each site
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Fig. 12.7. Introducing the clock
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can be seen next to each of them. The stamp value on the service messages are shown
next to the middle of the corresponding arrow (they are all equal as expected to the
value of the clock stored at the origin of the message).

As a consequence, a new service message is stamped with a value that is certainly
greater than that recorded in its destination. When the service message arrives, it is
filtered: if the stamp is smaller than or equal to the local time of the destination, then it
is discarded because it is clearly a late service message. If the stamp of a service message
is greater than the local time, then the message is accepted and, simultaneously, the
local clock of the site is updated with the value of the stamp traveling with the service
message. Thanks to this, the message could not be used a second time (in case of
misbehavior of the network). Figure 12.8 shows the series of situations corresponding
to the arrival of the service messages. We have decorated these situations with the
clocks and the stamps.

53

2 4
2

3 4 5

2

4 5

53

3 4

54

3 4
2

5

5 54 4

5
2

3 53

Fig. 12.8. Arrival of the service messages

As can be seen, the last service message is discarded because its stamp value, 2, is
smaller than the local clock, 5, at destination. We have reversed from the potential
failure presented earlier. This is due to the presence of the clock and stamps, and of
the particular adopted strategy.

The system we have described seems to work, at least according to our informal
explanations. But it is certainly important to develop it formally so as to be sure that
it behaves in a correct fashion. This is the purpose of the coming sections.

12.2 Initial model
Now, we have enough information to start the formal construction of this routing
protocol. The first question that we must ask ourselves with an example such as this
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one (and many others) is that concerning the level of description we have to start from.
It is out of the question to start from the final solution, because then nothing really
can be proved. We must start from an abstract enough level, which must be pretty
obvious (and where no technical difficulties exist yet, in particular those dealing with
time and distances), so that the proposed solution can be proved to indeed solve the
problem that has been informally described.

In the present case, we are going to start from the second abstract informal level
described in Section 12.1.2, where the exact position of the mobile is only known by its
previous site. This level is quite simple: the communication channels, as we have said
informally, form a tree structure (an invariant that has to be proved, of course), the
moves of the mobile agent are timeless, and finally the knowledge concerning the new
location of the mobile agent is instantaneously communicated to its previous site (no
service message thus). Further refinements will introduce more realistic constraints.

12.2.1 The state
We have two carrier sets S and M : the set S denotes the set of sites and M the set of
communication messages. To have a carrier set representing the set of communication
messages is a really useful abstraction since we are not interested in the contents of
these messages: we can then suppose that they are all distinct. Initially the mobile is
at some initial location denoted by the constant il (axm0_1):

sets: S
M

constant: il axm0_1: il ∈ S

We have three variables in our initial model: l, c, and p. The variable l denotes the
actual location of the mobile agent (inv0_1). The variable c denotes the dynamically
changing communication channels between sites: it is a total function from sites to
sites (inv0_2). Notice that this function is obviously not meaningful at l. Finally, the
variable p denotes the pool of messages that are waiting to be forwarded on each site:
clearly a given message is at most in one site at a time, so that p is a partial function
from messages to sites (inv0_3). Formally:

variables: l, c, p

inv0_1: l ∈ S

inv0_2: c ∈ S \ {l}→ S

inv0_3: p ∈ M → S
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It remains now for us to formalize the tree structure of the communication channels.
The root of the tree is l and the parent function is the function c. We shall use exactly
the same formulation as the one introduced in Section 9.7.7, namely inv0_4:

inv0_4: ∀T · T ⊆ c−1[T ] ⇒ T = ∅

We can see the difference with the previous chapter: in this one, this statement is an
invariant, not an axiom.

12.2.2 The events
We have four events besides event init which show that all nodes (except il) are pointing
to the initial position of the mobile M. Event rcv_agt corresponds to the mobile
moving instantaneously from the site l to another one (different from l). Event snd_msg
corresponds to a new communication message m sent from one site s to the mobile.
Event fwd_msg corresponds to a communication message m being forwarded from one
site s to another one by means of the corresponding channel (note that this transfer
is also instantaneous for the moment). And finally event dlv_msg corresponds to a
communication message m being delivered to the mobile. Here are these events:

init
l := il
c := (S \ {il})× {il}
p := ∅

rcv_agt
any s where

s ∈ S \ {l}
then

l := s
c := ({s}�− c) ∪ {l → s}

end

snd_msg
any s, m where

s ∈ S
m ∈M \ dom(p)

then
p(m) := s

end

fwd_msg
any m where

m ∈ dom(p)
p(m) 
= l

then
p(m) := c(p(m))

end

dlv_msg
any m where

m ∈ dom(p)
p(m) = l

then
p := {m}�− p

end



12.2 Initial model 395

12.2.3 The proofs
The only interesting proof at this level is that of the preservation of invariant inv0_4
by event rcv_agt. Here is what we have to prove:

. . .

Invariant inv0_4

Guard of rcv_agt
�

Modified invariant inv0_4

. . .


∀T · T ⊆ S

T ⊆ c−1 [T ]
⇒
T = ∅




s ∈ S \ {l}
�


∀T · T ⊆ S

T ⊆ ({s} �− c) ∪ {l �→ s})−1 [T ]
⇒
T = ∅




We can remove the universal quantification in the consequent of this implication by
using rules ALL_R and IMP_R. The proof proceeds then as follows:

. . .


∀T · T ⊆ S

T ⊆ c−1 [T ]
⇒
T = ∅




s ∈ S \ {l}
T ⊆ S

T ⊆ ({s} �− c) ∪ {l �→ s})−1 [T ]
�
T = ∅

ALL_L

. . .


T ⊆ S

T ⊆ c−1 [T ]
⇒
T = ∅




s ∈ S \ {l}
T ⊆ S

T ⊆ ({s} �− c) ∪ {l �→ s})−1 [T ]
�
T = ∅

SET . . .

. . .

. . .


T ⊆ S

T ⊆ c−1 [T ]
⇒
T = ∅




s ∈ S \ {l}
T ⊆ S

T ⊆ ({s} �− c) ∪ {l �→ s})−1 [T ]
T ⊆ c−1 [T ]

�
T = ∅

IMP_L

. . .

T = ∅

s ∈ S \ {l}
T ⊆ S

T ⊆ ({s} �− c) ∪ {l �→ s})−1 [T ]
T ⊆ c−1 [T ]

�
T = ∅

HYP.
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The key of this proof is the following lemma whose proof is sketched below.

· · ·
s ∈ S \ {l}
T ⊆ ({s}�− c) ∪ {l → s})−1 [T ]
�
T ⊆ c−1[T ]

Consider two cases successively s /∈ T and s ∈ T . In the first case, T ⊆ ({s} �− c) ∪
{l → s})−1 [T ] reduces to T ⊆ (c−1 �− {s})[T ], hence T ⊆ c−1[T ]. In the second case,
T ⊆ ({s}�− c) ∪ {l → s})−1 [T ] reduces to T ⊆ (c−1 �− {s})[T ] ∪ {l} which contradicts
s ∈ T since s /∈ (c−1 �− {s})[T ] and s 
= l.

12.3 First refinement
In this first refinement, we are more concrete. The movements of the mobile will not
be instantaneous any more, it will be made in two steps: first the mobile agent leaves
the site l (new event leave_agt), and then arrives at a new site s different from l (old
event rcv_agt).

In that second case, the knowledge by the previous site l of the new position s of the
mobile agent will not be instantaneous any more as was the case in the initial model.
In fact, as we said in Section 12.1.3, the mobile agent will send a service message to
its previous site s, in order for that site to update its forward pointer to the new site.
But during the traveling delay of the mobile agent and then the transmission delay of
the service message, site s cannot transmit any forward message because it does not
know where the agent is. Site s only knows that it is expecting a service message. The
site corresponding to the previous position of M will eventually receive the service
message (new event rcv_srv).

12.3.1 The state
Clearly, the channel structure in this new refined model is not in phase with that of
the previous model where it was modified when the mobile agent arrived at its new
destination: this was done by event rcv_agt (in the previous model, we had no traveling
time and no transmission of a service message). In this refinement, we have thus to
add a new variable, d, denoting this new channel structure (inv1_1), which will only
be updated as a consequence of the new event rcv_srv.
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We have a new variable, a, denoting the service channel containing the service mes-
sages mentioned in the informal description. It is a partial function from sites to sites
(inv1_2); more precisely, from the site where the mobile was before moving (it cannot
be l) to the site where it currently is. This function contains the future of the com-
munication channel. We shall make precise in what follows the reason why a is such a
function, which is far from being obvious a priori: we shall see that, in this abstraction,
this channel has a rather magic behavior.

The next invariant, inv1_3, establishes the connection between the abstract com-
munication channel c and its concrete counterpart d. It says that the abstract
channel c corresponds to the concrete one, d, overridden by the service channel a.
Formally:

variables: l
p
d
a
da

inv1_1: d ∈ S \ {l} → S

inv1_2: a ∈ S \ {l} → S

inv1_3: c = d �− a

We introduce another variable da which records the sites at which the current for-
warding direction for information messages is not meaningful any more. This is be-
cause the mobile has left these sites while none of them has received yet the ex-
pected service message. For these reasons, the sites of da cannot forward any messages.
Formally:

inv1_4: dom(a) = da \ {l}

12.3.2 The events
The various concrete events are very close to their abstraction. As event snd_msg does
not change, we have not copied it in what follows. Here are the first ones:
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init
l := il
p := ∅

d := (S \ {il})× {il}
a := ∅

da := ∅

dlv_msg
any m where

m ∈ dom(p)
p(m) /∈ da
p(m) = l

then
p := {m}�− p

end

fwd_msg
any m where

m ∈ dom(p)
p(m) /∈ da
p(m) 
= l

then
p(m) := d(p(m))

end

Event fwd_msg has a stronger guard than its abstraction. More precisely, a message
m whose site is p(m) can only be forwarded if this site is not in da, since then the
destination is not known, and also different from l, since then it can be delivered
directly by event dlv_msg.

We have a new event called leave_agt. It corresponds to the mobile leaving its site
l. Of course, it can only happen when l is not in da since otherwise the mobile would
have been already in transit. As can be seen, site l is now expecting a service message
(assignment da := da ∪ {l}).

leave_agt
when

l /∈ da
then

da := da ∪ {l}
end

rcv_agt
any s where

s ∈ S \ {l}
l ∈ da

then
l := s
a := ({s}�− a) �− {l → s}
d := {s}�− d
da := da \ {s}

end

rcv_srv
any s where

s ∈ dom(a)
l 
= s

then
d(s) := a(s)
a := {s}�− a
da := da \ {s}

end

Event rcv_agt has a very interesting behavior. We note that when putting a new
message {l → s} in the service channel a (this message goes from the new site s
of the mobile agent to its previous site l), we magically remove the previous pair, if
any, whose first component was l: In other words, we clean the channel by removing
pending service messages to l, which might not have been delivered yet at l. In this
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way, there is at most one service message pointing to a given site, and there is thus
no risk of having a pending message arriving late (that is, after a more recent one)
and having the kind of bad effect we have described in Section 12.1.3. Of course,
this is quite magic for the moment. What we only wanted to express at this level is
the intended behavior of the channel. It will remain, of course, for us to implement
this magical behavior, which is another matter. This will be the business of the next
refinement.

Finally, we have a new event, rcv_srv, corresponding to the reception by a site s
of a service message informing s of the new location a(s) of the mobile at the time
this service message was sent. Notice that the move from s to a(s) is indeed the most
recent move by the mobile from s since all other pending service messages to s have
been discarded by event rcv_agt. The communication channel is updated and the
service message removed from the service channel.

12.3.3 The proofs
The proofs are left to the reader.

12.4 Second refinement
In the next refinement, we shall implement the magic service channel of the previous
abstraction. This is the heart of the development.

12.4.1 The state
We now have a clock k traveling with the agent (inv2_1). We also have in each site a
variable, t, recording the time of the last visit of the mobile in the corresponding site
(inv2_2). Formally:

variables: . . .
b
k
t

inv2_1: k ∈ N

inv2_2: t ∈ S→ N
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The new service channel b replacing a has now a structure far richer than its abstraction.
It may contain several stamped messages to the same site s. It is formalized as indicated
in the following example:

s → {3 → s1, 5 → s2, 9 → s3, . . .}.

This means that there has been a message s → s1 emitted at time 3, a message s → s2
emitted at time 5, a message s → s3 emitted at time 9, etc. The channel b is thus
typed as follows:

inv2_3: b ∈ S→ (N → S)

Next comes the invariant inv2_4 connecting the abstract service channel a and the
concrete one b; the service message to s in the abstract channel a corresponds, among
all service messages to s in the concrete channel b, to the one with the greatest time
(the most recent one):

inv2_4: ∀s · s ∈ dom(a)
⇒
dom(b(s)) 
= ∅

a(s) = b(s)(max(dom(b(s))))

When the time of the last visit t(s) of the recipient s of a service message is strictly
smaller than the maximum time of the pending service messages for that recipient, that
is max(dom(b(s))), then the recipient s in question is indeed expecting a real message
as in the abstraction. This is formalized in the following invariant inv2_5:

inv2_5: ∀s · s ∈ S
dom(b(s)) 
= ∅

t(s) < max(dom(b(s)))
⇒
s ∈ dom(a)

But the problem, of course, is that, a priori, the recipient does not know that it is indeed
receiving the maximum in question. This difficulty will be circumvented below in the
last invariant inv2_9. Invariant inv2_5 allows us to prove the guard strengthening
of event rcv_srv, with the help of invariant inv2_9 below.
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We now have three more invariants concerned with the time of the last visit t and
the clock k: (1) the times in the pending service messages are never bigger than the
clock (inv2_6), (2) the time of the last visit is equal to the clock at the site of the
Mobile (inv2_7), and (3) in other sites, the time of the last visit is at most equal to
the clock (inv2_8):

inv2_6: ∀s · s ∈ S ∧ dom(b(s)) 
= ∅ ⇒ max(dom(b(s))) ≤ k

inv2_7: t(l) = k

inv2_8: ∀s · s ∈ S \ {l} ⇒ t(s) ≤ k

Now comes at last the key invariant inv2_9. When the recipient s of a service message
receives a message with a time n that is strictly greater than the time of its own last
visit t(s), then it can be absolutely certain that it is indeed receiving the message
with the greatest time, therefore the same message as in the abstraction according to
invariant inv2_4.

inv2_9: ∀ s, n · s ∈ S
n ∈ dom(b(s))
t(s) < n
⇒
n = max(dom(b(s)))

This invariant is far from being completely intuitive. The informal explanation is as
follows. If several service messages are expected at a site s, then it means that the
mobile agent has visited s several times. And on each such visit it has updated the
time of last visit of s with the most recent value of the clock. Upon leaving site s, it
has sent to s (when arriving at its new location) a service message with a stamp value
which is one more than that of the time of last visit of s. So, during its previous visit
to s, which has certainly taken place after the sending (not necessarily the receiving)
of the previous service messages to s, the updated value of the time of the last visit of
s is then certainly greater than that of the stamp of any pending service messages to
s. As a consequence, when the mobile leaves s again for the last time, it sends (upon
arrival at its new location) yet another service message, which is then the only one
with a stamp greater than the value of the time of the last visit at s. All this, clearly,
needs confirmation from a formal proof. Thanks to this invariant, we can implement
the magic abstract channel a with the concrete channel b.
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12.4.2 The events
Here is first the last version of event init:

init
l := il
p := ∅

d := (S \ {il})× {il}
b := S × {∅}
da := ∅

k := 1
t := S × {0} �− {il → 1}

Next comes event rcv_agt together with its previous abstract version:

(abstract-)rcv_agt
any s where

s ∈ S \ {l}
l ∈ da

then
l := s
a(l) := s
d := {s}�− d
da := da \ {s}

(concrete-)rcv_agt
any s where

s ∈ S \ {l}
l ∈ da

then
l := s
t(s) := k + 1
k := k + 1
b(l)(k + 1) := s
d := {s}�− d
da := da \ {s}

end

Notice the incrementation of the clock k and the storing of it in t(s). And now we
propose event rcv_srv, again together with its previous abstract version:

(abstract-)rcv_srv
any s where

s ∈ dom(a)
l 
= s

then
d(s) := a(s)
a := {s}�− a
da := da \ {s}

end

(concrete-)rcv_srv
any s, n where

s ∈ S
n ∈ dom(b(s))
t(s) < n

then
d(s) := b(s)(n)
t(s) := n
da := da \ {s}

end
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We again copy below inv2_5 and inv2_9 in order to show how part of guard strength-
ening, namely s ∈ dom(a), can be proved:

inv2_5: ∀s ·




s ∈ S

dom(b(s)) �= ∅

t(s) < max(dom(b(s)))
⇒
s ∈ dom(a)


 inv2_9: ∀ s, n ·




s ∈ S

n ∈ dom(b(s))
t(s) < n

⇒
n = max(dom(b(s)))




In fact, putting together inv2_9 and inv2_5, we easily obtain the following theorem:

thm2_1: ∀ s, n · s ∈ S
n ∈ dom(b(s))
t(s) < n
⇒
s ∈ dom(a)

The second part of guard strengthening, namely l 
= s, can be proved according to
inv2_7, inv2_6 and again inv2_9. The proof is by contradiction: we suppose l = s
and derive a contradiction.

Note that, to simplify matters, we do not clean the channel b in event rcv_srv.
As a matter of fact, it is not necessary. Since the abstract channel was cleaned (the
refinement is correct), this means that the message will not be accepted another time.
This is because of the updating of the time of the last visit (t(s) := n). This gives us
a cleaning effect.

12.4.3 The proofs
Proofs are left to the reader.

12.5 Third refinement: data refinement
In this refinement, we transform the set da into a boolean function. In fact we then
localize this information in each site.
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12.5.1 The state
We introduce the variable dab (inv3_1), replacing abstract variables da. Invariant
inv3_2 defines the boolean function as the characteristic function of the corresponding
set.

variables: . . .
dab

inv3_1: dab ∈ S→ BOOL

inv3_2: ∀x · x ∈ S ⇒ (x ∈ da ⇔ dab(x) = TRUE)

12.5.2 The events
The events are now refined in a straightforward way as follows (note how the function
dab is initialized):

init
l := il
p := ∅

d := (S \ {il})× {il}
b := S × {∅}
dab := S × {FALSE}
k := 1
t := S × {0} �− {il → 1}

leave_agt
when

dab(l) = FALSE
then

dab(l) := TRUE
end

rcv_agt
any s where

s ∈ S \ {l}
dab(l) = TRUE

then
l := s
t(s) := k + 1
k := k + 1
b(l)(k + 1) := s
d := {s}�− d
dab(s) := FALSE

end

rcv_srv
any s, n where

s ∈ S
n ∈ dom(b(s))
t(s) < n

then
d(s) := b(s)(n)
t(s) := n
dab(s) := FALSE

end
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dlv_msg
any m where

m ∈ dom(p)
dab(p(m)) = FALSE
p(m) = l

then
p := {m}�− p

end

fwd_msg
any m where

m ∈ dom(p)
dab(p(m)) = FALSE
p(m) 
= l

then
p(m) := d(p(m))

end

12.5.3 The proofs
Proofs are left to the reader.

12.6 Fourth refinement
There is one more refinement where we implement the effective migration of the for-
warded communication messages. We leave it as an exercise to the reader to develop
this refinement.

12.7 References
[1] L. Moreau. Distributed directory service and message routers for mobile agent. Science of

Computer Programming 39 (2–3): 249–272, 2001.
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Leader election on a connected graph network

The goal of the IEEE-1394 protocol is to elect in a finite time a specific node, called the
leader , in a network made of a finite number of nodes linked by some communication
channels.

We are given a finite network of nodes. FUN-1
The goal of the protocol is to elect a leader

The network has got some specific properties: as a mathematical structure, it is called
a free tree.

The graph representing the network is a free tree FUN-2

Such a free tree is shown in Fig. 13.1

Fig. 13.1. A free tree

406
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13.1 Initial model
13.1.1 The state

This initial steps just contain the definition of the finite set N of nodes. A variable l
will be assigned the leader in a one shot action.

sets: N axm0_1: finite(N) variables: l

inv0_1: l ∈ N

13.1.2 Events
The dynamic aspect of the protocol is essentially made of one event, called elect, which
claims what the result of the protocol is, when it is completed . In other words, at this
level, there is no protocol, just the formal definition of its intended result, namely a
node l chosen non-deterministically to be the leader.

init
l :∈ N

elect
any x where

x ∈ N
then

l := x
end

13.2 First refinement
13.2.1 Defining the free tree

The constant graph g is introduced as a free tree. To do this, we copy the axiomatization
of free trees we performed in Section 7.8 of Chapter 9.
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constant: g

axm1_1: g ∈ N ↔N

axm1_2: g = g−1

axm1_3: g ∩ id(N) = ∅

axm1_4: ∀s · S ⊆ N
S 
= ∅

g[S] ⊆ S
⇒
N ⊆ S

axm1_5: ∀h, S · h ⊆ g
h ∩ h−1 = ∅

S ⊆ h[S]
⇒
S = ∅

13.2.2 Extending the state
We extend the state with a subset n of the carrier set N . The variable n is initialized
to N . The invariant states that the graph n�g�n remains a free tree until it becomes
empty (when n is reduced to a single element).

constant: l
n

inv1_1: n ⊆ N

inv1_2: ∀s · S ⊆ n
S 
= ∅

(n � g � n)[S] ⊆ S
⇒
n ⊆ S

13.2.3 The events of the first refinement
We introduce a new event, progress, which removes from the set n an element x which
happens to be an outer node of the free tree (Section 9.7.8 of Chapter 9). This is
illustrated in Fig. 13.2.
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Fig. 13.2. Illustration of the distributed algorithm

init
l :∈ N
n := N

elect
any x where

n = {x}
then

l := x
end

progress
status

convergent
any x, y where

x ∈ n
g[{x}] ∩ n = {y}

then
n := n \ {x}

end

13.2.4 Proofs of the first refinement
The proofs are not difficult except that of the preservation of invariant inv1_2 by
event progress, which is a bit tedious. The variant for the convergence of event progress
is obvious: this is the set n, which is clearly finite and decreasing.
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The deadlock freeness proof is a direct consequence of theorem thm_1 of Section
9.7.8 of Chapter 9 on free trees. It says that the set of outer nodes of a free tree is not
empty, provided the free tree is itself not empty.

13.3 Second refinement
In the previous refinement, event progress was still very abstract. When a node x detects
that it is an outer node of the free tree n�g�n, then x is removed from the set n. In the
real protocol, things works differently: once a node x detects that it is an outer node of
the free tree n�g�n, it sends a message to the only node y to which it is connected by
means of n�g�n. When receiving this message, node y finalizes the job by removing x
from n.

13.3.1 The state of the second refinement
In order to establish this distributed connection between nodes, we need to define a
new variable, m, to handle the message: m represents the channels between nodes.
Variable m is a partial function from n to itself. When a pair x → y belongs to m,
it means that node x has sent a message to node y; the fact that m is a function
is because x is only connected to a single node y by means of n � g � n. Clearly,
m is also included in the graph g (invariant inv2_1). All this can be formalized as
follows:

variables: l, n, m

inv2_1: m ⊆ g

inv2_2: m ∈ n → n

inv2_3: ∀x, y · x → y ∈ m ⇒ x ∈ n

inv2_4: ∀x, y · x → y ∈ m ⇒ g[{x}] ∩ n = {y}

13.3.2 Events
A new event is defined in order to manage messages: send_msg. As we shall see,
event progress is modified, whereas event elect is left unchanged. Here is the new event
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send_msg and the refined version of event progress:

send_msg
any x, y where

x ∈ n
g[{x}] ∩ n = {y}
x /∈ dom(m)

then
m := m ∪ {x → y}

end

progress
any x, y where

x → y ∈ m
y /∈ dom(m)

then
n := n \ {x}
m := m \ {x → y}

end

Event send_msg is enabled when a node x of n discovers that it is an outer node of the
tree n � g � n. These conditions were the guards of the abstraction of event progress.
Moreover, node x must not have already sent a message, that is condition x /∈ dom(m)
must hold. When these conditions are fulfilled, then the pair x → y is added to m.

Event progress is enabled when a node y receives a message from node x, that is
when condition x → y ∈ m holds. Moreover, node y itself has not sent a message, that
is condition y /∈ dom(m) must hold. When these conditions are fulfilled then node y
removes x from n and x → y from m.

13.3.3 Proofs
Proofs of events send_msg New event send_msg clearly refines skip since it only
works with the new variable m. Moreover, its action increments the cardinal of m
(this cardinal is bounded by that of g); therefore, it does not diverge. It is also easily
provable that it maintains invariants inv2_1 to inv2_4

Proof of event progress Here are the concrete and abstract versions of event
progress:

(abstract-)progress
any x, y where

x ∈ n
g[{x}] ∩ n = {y}

then
n := n \ {x → y}

end

(concrete-)progress
any x, y where

x → y ∈ m
y /∈ dom(m)

then
n := n \ {x}
m := m \ {x → y}

end
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The action on variable n being the same, we have just to prove that the concrete
guard implies the abstract one, which is obvious according to invariants inv2_3 and
inv2_4

13.4 Third refinement: the problem of contention
13.4.1 Introduction

Here is the event progress, which we copy again from Section 13.3.2. This event explains
when node x can be removed from set n.

progress
any x, y where

x → y ∈ m
y /∈ dom(m)

then
n := n \ {x}
m := m \ {x → y}

end

As can be seen, this event contains the guarding condition y /∈ dom(m). It means that
node x can be removed from n provided node y has not itself sent a message. If y has
sent a message to x while the other guarding conditions hold, that is x → y ∈ m,
then clearly (1) x has sent a message to y, and (2) y has sent a message to x. In other
words, the situation is completely symmetric between the two: each one of them wants
the other to remove x or y from n.

In this case, no action can take place. The solution consists in the two nodes x
and y retrying to send a message to the other (as if it were not already the case),
hoping to introduce some sort of asymmetry. Figure 13.3 shows when the contention
problem does occur, that is when there remain only two nodes to be potential leader
candidates.

In the real protocol, the problem is solved by means of timers. As soon as a node y
discovers a contention with node x, it waits for a very short delay in order to be certain
that the other node x has also discovered the problem. The very short delay in question
is at least equal to the message transfer time between nodes (such a time is supposed
to be bounded). After this, each node randomly chooses (with probability 1/2) to wait
for a second delay, which is either a “short” or a “large” delay (the difference between
the two is at least twice the message transfer time). After the chosen delay has passed,
each node sends a new message to the other.

Clearly, if both nodes choose the same second delay, the contention situation will
reappear. However, if they do not choose the same delay, then the one that has
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Fig. 13.3. The contention

chosen the largest delay becomes the winner: when it wakes up, it discovers the
message from the other, while it has not itself already sent its own message; it can
therefore remove the other from n. According to the law of large numbers, the prob-
ability that both nodes will indefinitely choose the same delay is zero. Thus, at some
point, they will (in probability) choose different delays and one of them will thus
become the leader.

13.4.2 The state for contention
We shall only present here a partial formalization of the contention problem. The idea
is to introduce a virtual contention channel, called c. When this “channel” c contains
a pair x → y, it means that y has discovered the contention with node x. When both
pairs x → y and y → x are present in c, it means that both nodes x and y have
discovered the contention. Notice that c and m are incompatible and that their union
is a function. We also introduce a set bm, which is equal to the domain of m∪ c. These
invariants are shown below:

variables: l, n, m, c, bm

inv3_1: c ⊆ g

inv3_2: m ∪ c ∈ n → n

inv3_3: m ∩ c = ∅

inv3_4: bm = dom(m ∪ c)
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13.4.3 The events for contention
We have thus to modify our previous events as follows:

send_msg
any x, y where

x ∈ n
g[{x}] ∩ n = {y}
x /∈ bm

then
m := m ∪ {x → y}
bm := bm ∪ {x}

end

progress
any x, y where

x → y ∈ m
y /∈ bm

then
n := n \ {x}
m := m \ {x → y}
bm := bm \ {x}

end

In event send_msg, the guard x /∈ bm replaces the weaker guard x /∈ dom(m). In event
progress, the guard y /∈ bm replaces the weaker guards y /∈ dom(m).

We have two new events. The first one is called discover_contention. The only dif-
ference with the guard of this event and that of event progress concerns the condition
y ∈ bm, which is true in discover_contention and false in progress. The action of this
event adds the pair x → y to c. The second new event is called solve_contention. It is
enabled when both pairs x → y and y → x are present in c. This event resets c and
removes x and y from bm. This formalizes what happens after the “very short delay”.
Notice that this event is not part of the protocol: it corresponds to a “daemon” acting
when the very short delay has just passed. Here are the events:

discover_contention
any x, y where

x → y ∈ m
y ∈ bm

then
c := c ∪ {x → y}
m := m \ {x → y}

end

solve_contention
any x, y where

c = {x → y, y → x}
then

c := ∅

bm := bm \ {x, y}
end

All invariants are proved to be maintained easily.

13.5 Fourth refinement: simplification
In this refinement, we data-refine the previous model. In fact, the guard

g[{x}] ∩ n = {y}
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is simplified by introducing a variable d replacing n. Here are the new invariants:

variables: l, d, m, c, bm
inv4_1: d ∈ n→ P(n)

inv4_2: ∀x · x ∈ n ⇒ d(x) = g[{x}] ∩ n

Here are the impacted events:

init
l :∈ N

d :|
(

d′ ∈ N → P(N)
∀x · (x ∈ N ⇒ d′(x) = g[{x}] )

)
m := ∅

c := ∅

bm := ∅

elect
any x where

x ∈ dom(d)
d(x) = ∅

then
l := x

end

send_msg
any x, y where

x ∈ dom(d)
d(x) = {y}
x /∈ bm

then
m := m ∪ {x → y}
bm := bm ∪ {x}

end

progress
any x, y where

x → y ∈ m
y /∈ bm

then
d := ({x}�− d) �− {y → d(y) \ {x}}
m := m \ {x → y}
bm := bm \ {x}

end

The proofs that these events correctly refine their respective abstractions are easy.

13.6 Fifth refinement: introducing cardinality
In the guard of events elect or send_msg, it is checked that the set d(x) is either empty
or a singleton. In most cases, such tests can be simplified by just checking that the
cardinality of d(x) is either equal to 1 or 0. The purpose of this simple refinement is
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to introduce this optimization. Here is the new state:

variables: l, d, m, c, bm, r
inv5_1: r ∈ N → N

inv5_2: ∀x · ( x ∈ N ⇒ r(x) = card(d(x)) )

Here are the impacted events:

init
l :∈ N

d :|
(

d′ ∈ N → P(N)
∀x · (x ∈ N ⇒ d′(x) = g[{x}] )

)
m := ∅

c := ∅

bm := ∅

r :|
(

r′ ∈ N → N

∀x · (x ∈ N ⇒ r′(x) = card(g[{x}]) )

)

elect
any x where

x ∈ N
r(x) = 0

then
l := x

end

send_msg
any x, y where

x ∈ N
r(x) = 1
y ∈ d(x)
x /∈ bm

then
m := m ∪ {x → y}
bm := bm ∪ {x}

end

progress
any x, y where

x → y ∈ m
y /∈ bm

then
d := ({x}�− d) �− {y → d(y) \ {x}}
r := ({x}�− r) �− {y → r(y)− 1}
m := m \ {x → y}

end
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Mathematical models for proof obligations

14.1 Introduction
This chapter contains the mathematical justification of the proof obligation rules used
in this book. More precisely, we are going to give solid mathematical definitions to the
following proof obligation rules:

Rules Chapter 5 This
Chapter

INV §2.2 §2

FIS §2.3 §2

GRD §2.4 §5.3

MRG §2.5 §6.2

SIM §2.6 §5.3

NAT §2.7 §6.3

Rules Chapter 5 This
Chapter

FIN §2.8 §6.3

VAR §2.9 §6.3

WFIS §2.10 §5.3

THM §2.11

WD §2.12

DLF §2

417
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In this presentation, to simplify matters, we suppose that we have models defined
without constants.

14.2 Proof obligation rules for invariant preservation
In this section, our intention is to formally justify the invariant proof obligation rules,
namely INV, FIS, and DLF, which we use throughout this book. For this, we develop a
set-theoretic representation of the discrete models and then we establish a connection
between this representation and the event models.

We suppose that the state variables v are constrained by the invariant I(v). The
initialization event init is defined by means of the after-predicate K(v′). Each event,
say eventi , different from init, is defined by means of its guard Gi(v) and before–after
predicate Ri(v, v′). This can be stated as follows:

variables: v

inv0: I(v)

init
v :| K(v′)

eventi

when
Gi(v)

then
v :| Ri(v, v′)

end

Our mathematical model is made of three items: (1) a set S on which the variables
v are moving; (2) a non-empty initializing set L; and (3) a certain binary relation aei

for each event eventi . The fact that the invariant I(v) is established by the initializing
event init and preserved by the event eventi is simply formalized by saying that L is
included in S and aei is a binary relation built on S:

L ⊆ S L 
= ∅ aei ∈ S↔ S

In order to link this set-theoretic representation with the proof obligation rules we have
used, it suffices to formally define S, L, and aei . It involves the invariant I(v) for the
set S, the after predicate K(v′) for the set L, and the guard Gi(v) and before–after
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predicate Ri(v, v′) for the relation aei . This yields:

S = { v | I(v) }

L = { v | K(v) }

aei = { v → v′ | I(v) ∧ Gi(v) ∧ Ri(v, v′) }

dom (aei) = { v | I(v) ∧ Gi(v) }

The fact that the set L is not empty leads to the following, which is exactly the proof
obligation FIS for the init event:

� ∃v ·K(v) FIS

The translation of the condition L ⊆ S yields the proof obligation rule INV for the init
event, namely:

K(v) � I(v) INV

The last definition above states that Gi(v) and I(v) together denote the genuine domain
of the relation aei . But the domain of aei is defined to be the set:

v | I(v) ∧ Gi(v) ∧ ∃ v′ ·Ri(v, v′) }

This leads to the following, which is exactly the proof obligation FIS for events:

I(v)
Gi(v) FIS
�
∃v′ ·Ri(v, v′)
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Finally, the translation of the predicate aei ∈ S↔S yields exactly the proof obligation
rule INV, namely:

I(v)
Gi(v)
Ri(v, v′) INV
�
I(v′)

In case the invariant I(v) is made of several sub-invariants I1(v), . . . , In(v), then the
previous rule splits into n separate rules (one for each sub-invariant).

Sometimes we want to prove that the transition system does not deadlock, namely
that it is always possible to have an event enabled. For this, we have to consider the
global transition relation ae of our model; it is the union of all the individual transition
relations corresponding to each event, formally:

ae = ae1 ∪ . . . ∪ aen .

We have then just to prove that the domain of the relation ae is exactly the set S,
that is:

dom(ae) = { v | I(v) ∧ (G1(v) ∨ . . . ∨Gn(v)) } = { v | I(v) }.

This yields the following, which is exactly proof obligation rule DLF:

I(v)
� DLF
G1(v) ∨ . . . ∨Gn(v)

14.3 Observing the evolution of discrete transition systems: traces
In this section, we introduce the well-known concept of trace. A trace is a record of the
history of what can be observed of a “running” discrete system after the occurrence of
each transition. First, this concept will be presented by means of an example. After
that, the example will be generalized. Finally, the concept will be given a solid math-
ematical definition. The concept of trace is introduced here because it has been used
on many occasions to help define the notion of refinement. In Section 14.4, we shall
present a simple refinement using traces. At the end of that section, we shall show that
the use of trace is not really necessary however.
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14.3.1 First example
As an introductory example, let us take the “action/weak-reaction” pattern, which is
described in Chapter 3. The state is made of two variables a (for action) and r (for
reaction) both ranging over the set {0, 1}. Here are the various events making this little
system:

init
a := 0
r := 0

a_on
when

a = 0
then

a := 1
end

a_off
when

a = 1
then

a := 0
end

r_on
when

a = 1
r = 0

then
r := 1

end

r_off
when

a = 0
r = 1

then
r := 0

end

The reaction, represented by events r_on and r_off, is said to be weak. This can be
explained as follows. When both action and reaction are “off” (0), the action, repre-
sented by events a_on and a_off, may alternate (after moving to “on” (1)) zero or more
times between “off” (0) and “on” (1) before the reaction indeed reacts and moves to
“on” (1). A similar symmetric effect can be observed in the other direction: when both
action and reaction are “on” (1), the action (after moving to “off” (0)) may alternate
zero or more times between “on” (1) and “off” (0) before the reaction indeed reacts and
itself moves to “off” (0). This can be illustrated on the following figure:

reactionaction

14.3.2 Traces
A more formal way to consider this is to record the finite succession of states, which
an external person can observe from the beginning of operations until “now”. In our
example, let us illustrate the state by means of the following “circle” with the two
values a and r inside it as follows:

a r

With this convention, we show below a succession of states which can be observed after
eight moves (among many others which can be observed):
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00 01 00
r_off

1 1
r_on

1
a_off

01 11 0
a_on a_off a_on

Such a succession of states is called a trace.

14.3.3 Characterizing traces
Let T be the set of all such traces. A trace t in T can be characterized in the following
way:

(i) It is a finite sequence of size at least 1.
(ii) The first element of it is a member of the initial set of states as defined by the init

event.
(iii) Two successive elements in it are related by the before–after predicate defined by

the events.

Moreover, when a trace t belongs to T , then all prefixes of t except the empty sequence
are also members of T . This is very intuitive: clearly, the recording of what we have
observed till now must contain what we have observed before. Finally, the entire set of
traces T is characterized in three different ways:

(i) In some discrete systems, the number of traces is limited: in fact, such systems
are due to eventually deadlock (when all event guards become false) after some
time.

(ii) In other systems, however, each trace can always be extended. The number of
traces is not limited and the system is running for ever.

(iii) There are some intermediate cases where some traces can be extended while others
cannot. It simply means that, in some circumstances, such systems deadlock while
in others they run for ever.

In the proposed example above, our “action/weak-reaction” system is in case (2); any
trace can always be extended. The system always “runs” for ever.

14.3.4 Graph of evolution
Another way to look at the evolution of a discrete transition system is to show its graph
of evolution. In our example, this graph is finite since the set of states is finite too; we
have four different states only. Here is an illustration of this graph:
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00
r_on

a_off

r_off

a_off

a_on

a_on

0

0

11 1

1

As can be seen, a trace corresponds to a finite path, which can be followed in this
graph from an initial state till a certain point. Notice that in the previous figure we
have emphasized the initial state, which is unique in this case (but this is not always
the case).

14.3.5 Mathematical representation
All this can be further formalized by defining directly the various binary relations
corresponding to the events. The initialization is expressed under the form of an initial
set L of states. In the case of our example, we obtain the following:

L = {0 → 0}
a_on_rel = {(0 → 0) → (1 → 0), (0 → 1) → (1 → 1)}
a_off_rel = {(1 → 0) → (0 → 0), (1 → 1) → (0 → 1)}
r_on_rel = {(1 → 0) → (1 → 1)}
r_off_rel = {(0 → 1) → (0 → 0)}.

By taking the union of all these relations, we obtain the relation ae corresponding to
all transitions:

ae = { (0 → 0) → (1 → 0),
(0 → 1) → (1 → 1),
(1 → 0) → (0 → 0),
(1 → 1) → (0 → 1),
(1 → 0) → (1 → 1),
(0 → 1) → (0 → 0) }.

Given a discrete transition system built on a set S and defined by means of an
initializing set L and a transition relation ae, the corresponding set of traces T (L → ae)
can be defined as follows:

T (L → ae) ⊆ N1 × (N1 → S).
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The pair n → t made of a positive natural number n and a trace t belongs to the set
T (L → ae) if the following holds:

n → t ∈ T (L → ae) ⇔




n ∈ N1

t ∈ 1 .. n→ S
t(1) ∈ L
∀ i · i ∈ 1 .. n− 1 ⇒ t(i) → t(i + 1) ∈ ae




This formal definition corresponds to the informal characterization we gave in
Section 14.3.3, namely:

(i) It is a finite sequence of size at least 1.
(ii) The first element of it is a member of the initial set of states as defined by the init

event.
(iii) Two successive elements in it are related by the before–after predicate defined by

the events.

From this definition, it is easy to prove that any non-empty prefix of t of size m is also
a member of the set T (L → ae).

14.4 Presentation of simple refinement by means of traces
In this section, we now present the concept of simple refinement between two discrete
transition systems. As above with the notion of trace, simple refinement will be ex-
plained first through an example, which will be generalized afterwards until we obtain
a solid mathematical definition. At the end of the section, we show that simple refine-
ment as introduced so far is relative to what can be observed from the state, which is
not necessarily the entire set of states.

14.4.1 Second example
As a second example, let us take the “action/strong-reaction” pattern, which is also
presented in Chapter 3. The state is the same as in the previous example; it is
defined by means of two variables a and r, both ranging over the set {0, 1}. The
events are the same except that events a_on and a_off have stronger guards as
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shown below:

init
a := 0
r := 0

a_on
when

a = 0
r = 0

then
a := 1

end

a_off
when

a = 1
r = 1

then
a := 0

end

r_on
when

a = 1
r = 0

then
r := 1

end

r_off
when

a = 0
r = 1

then
r := 0

end

This time, the reaction is said to be “strong”. When both action and reaction are “off”
(0), the action can move to “on” (1). But it cannot move to “off” (0) again unless the
reaction has itself moved to “on” (1). We have a similar symmetric situation in the other
direction; the action cannot move to “on” (1) unless the reaction has already moved
to “off” (0). As can be seen, the reaction follows the action and the action follows the
reaction. This can be illustrated in the following figure:

Here is a trace which shows the described behavior after four transitions:

00 01
a_on r_on

11
a_off

0 1 00
r_off

We can also abstract the traces by means of a complete picture of the transition graph:

00
r_on

r_off

a_off

a_on

0

0

11 1

1

Finally, we might directly define this discrete system by means of the following initial-
izing state M and binary relation re:

M = {0 → 0}
re = { (0 → 0) → (1 → 0),

(1 → 0) → (1 → 1),
(1 → 1) → (0 → 1),
(0 → 1) → (0 → 0) }
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14.4.2 Comparing the two examples
When putting next to each other the two graphs representing the examples, we can
see immediately that the second one is included in the first one. As a consequence, any
trace of the second example is also a trace of the first one. In other words, observing a
trace of the second example is not sufficient to discover which system has produced it;
when we observe a trace of the second example– we cannot say for sure that it comes
from that example – the first example could have produced it as well.

00
r_on

a_off

r_off

a_off

a_on

a_on

0

0

1 1 1

1

r_on

r_off

a_off

a_on

0

0

1 11

1

00

It is said (informally for the moment) that the second example is a refinement of the
first one. And, conversely, the first example is said to be an abstraction of the second
one. The idea presented at the beginning of this section is the essence of refinement: ac-
quiring a refined model instead of an abstraction must not be perceptible by the “buyer”.

14.4.3 Simple refinement: informal approach
Our goal in this section is to try to characterize more accurately refinement in terms
of trace comparisons. As said above, any trace of a refined model must also be a trace
of the abstraction. But, on the other hand, saying that the set of traces of the refined
model is included in the set of traces of the abstraction is clearly too strong since that
would imply that a model with an empty set of traces could be a refinement of any
abstraction, which is clearly counter-intuitive!

In order to proceed and obtain a more accurate definition, we have to rely on the
original idea consisting in comparing behaviors: an observation of the behavior of the
potential refinement must not allow us to deduce whether we observe the refinement or
the abstraction (notice that the contrary is not true). So, if we cannot observe anything
from a certain model, although we can observe something from a potential abstraction,
then we can deduce that we are not observing the abstraction. This precludes the empty
set of traces for the refinement.

But we can push this idea a bit further. If we can observe a certain trace, and then
cannot observe anything any more after it (no additional evolution), then, if this is
not the case in the abstraction where the same trace can be extended, then we can
deduce that we are not observing the abstraction. This precludes any deadlock of the
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refinement which is not itself a deadlock of the abstraction. This property is called
relative deadlock freedom.

Finally, we have also to consider the initial set. It is possible to have an initial set
which is smaller in the refinement (M) than in the abstraction (L). But of course the
initial refinement set must not be empty.

14.4.4 Simple refinement: formal definition
We are now ready to give the precise definition of simple refinement. Given a carrier set
S, we have an abstraction consisting of an initial set L included in S and a transition
relation ae from S to S. We have a potential refinement consisting of an initial set
M included in S and a transition relation re from S to S. This can be formalized as
follows:

L ⊆ S

ae ∈ S↔ S

M ⊆ S

re ∈ S↔ S

As said above, we first require that M is included in L and that M is not empty:

M ⊆ L M 
= ∅

We have now to consider the space on which the potential refinement states are moving:
this is the union of M with the image of the initial set M under the transitive closure of
the relation ae, namely M ∪ cl(ae)[M ]. Clearly, this set contains exactly the elements
of all traces of the refined model. Since we want that a refined trace is also an abstract
one, we thus have the following additional property:

(M ∪ cl(ae)[M ]) � re ⊆ ae

Finally, we do not want a refined trace to be unable to be extended if the corresponding
abstract one is able to be extended. This requires that the domain of the abstract
transition relation ae intersected with the set M ∪ cl(ae)[M ] is included in the domain
of the refined transition relation re also intersected with the same set M ∪ cl(ae)[M ];
formally:

(M ∪ cl(ae)[M ]) ∩ dom(ae) ⊆ (M ∪ cl(ae)[M ]) ∩ dom(re)

The last two conditions are not so easy to deal with because of the presence of the
set M ∪ cl(ae)[M ]. As a consequence, we forget about this set and get the following
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slightly stronger (but far simpler) conditions:

M ⊆ L

M 
= ∅

re ⊆ ae

dom(ae) ⊆ dom(re)

(I)

Going back to our examples, we can now clearly prove that the second one is a
refinement of the first one:

L = {0 → 0}

ae = { (0 → 0) → (1 → 0),
(0 → 1) → (1 → 1),
(1 → 0) → (0 → 0),
(1 → 1) → (0 → 1),
(1 → 0) → (1 → 1),
(0 → 1) → (0 → 0) }

M = {0 → 0}

re = { (0 → 0) → (1 → 0),
(1 → 1) → (0 → 1),
(1 → 0) → (1 → 1),
(0 → 1) → (0 → 0) }

In conclusion, we have seen that traces allowed us to informally reason about a
refinement by making explicit what can be observed in a refinement and in an abstrac-
tion. But, on the other hand, we end up with conditions (I), which do not depend on
the traces, but rather on the initial sets and on the transition relations of both the
abstraction and the refinement.

14.4.5 Considering the individual events
In the previous section, we considered the abstract and concrete relation ae and re
obtained after taking the union of the various relations ae1 , . . . , aen making the abstract
events and re1 , . . . , ren making the corresponding concrete events; formally:

ae = ae1 ∪ · · · ∪ aen re = re1 ∪ · · · ∪ ren .

The above condition re ⊆ ae is made stronger by imposing that the containment is
constrained at the finer level of each individual events, namely:

re1 ⊆ ae1 ∧ . . . ∧ ren ⊆ aen .



14.4 Presentation of simple refinement by means of traces 429

Such conditions clearly imply re ⊆ ae. We could have imposed some similar stronger
conditions dealing with the domains as well, namely:

dom(ae1) ⊆ dom(re1) ∧ . . . ∧ dom(aen) ⊆ dom(ren).

But this happens to be sometimes too strong. Refinement conditions (I) can be re-
written as follows:

M ⊆ L

M 
= ∅

re1 ⊆ ae1

. . .

ren ⊆ aen

dom(ae) ⊆ dom(re)

(II)

In doing so, we impose (for the moment) that to each concrete event formalized by the
relation rei there corresponds an abstract event formalized by the relation aei . Notice
that this constraint will be made more liberal in Section 14.6, where we shall study
three possible extensions: (1) the splitting of an abstract event into several concrete
ones, (2) the merging of several abstract events into a single concrete one, and (3)
the introduction in a refinement of new events, which have no counterparts in the
abstraction.

14.4.6 External and internal variables
In the previous section, we defined a refinement by considering what we can observe
from our discrete transition systems. But, what we can observe is just a convention we
give ourselves. In fact, the state can be more complicated than what we can observe
of it. In the “action/reaction” examples, as they are developed in Chapter 3, we have
a more complicated state containing, besides variables a and r, two additional vari-
ables ca and cr recording the number of times the action and the reaction are “on”
(1) respectively. Such variables ca and cr are said to be internal variables, whereas
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variables a and r are said to be external variables. If we represent the state with a
circle containing four values as shown below:

a r
crca

then the transition relation corresponding to the first example can be illustrated par-
tially (because it is now infinite) as follows:

0 0
0 0

0
0 0

0
0

0 0
0
0

0
0

0 0
0
0

1
1

1

2

2
1

3
1

1 1
11

2 1
11

1
1 1

2 1
1

3 1
1 1

3 1
1

0 0

0 0

0 0

1 1

2 1

3 1

a_on

a_on

a_on

r_on

r_on

r_on

a_off

a_off

a_off

r_off

r_off

r_off

a_on

a_on

a_off

a_off

In summary, to define the refinement we are only interested in comparing the two
sets of traces, recording only those parts of the states that correspond to the variables
we decide are external.

14.4.7 External set
In order to formalize what has been explained in the previous section, we consider the
set of states S and a total function f projecting S on an external set E:

f ∈ S→ E

This projection function is applied systematically in order to define the transition
relations used to define the refinement between two discrete transition systems. We do
not compare directly the rei with the aei , but rather their projections on the external
set E by means of the function f , that is: f−1 ; rei ; f and f−1 ; aei ; f . This can
be illustrated in the following diagram where an abstract event is represented by the
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relation named aei and the corresponding refined event is represented by the relation
named rei :

E E

S S
f f

re

f f
S S

 aei

i

In other words, what has been defined as the simple refinement conditions (II) in
Section 14.4.3 remains valid, provided we replace the set S by the external set E. This
is formalized in the following conditions:

M ⊆ L

M 
= ∅

f−1 ; re1 ; f ⊆ f−1 ; ae1 ; f

. . .

f−1 ; ren ; f ⊆ f−1 ; aen ; f

dom(ae) ⊆ dom(re)

(III)

An additional sophistication consists in changing the set of state S to another T
when we refine. The purpose of the next section is to explain how we can define general
refinement, also called data refinement in such a case.

14.5 General refinement set-theoretic representation
As in the Section 14.2 for invariants, our intention is to formally justify in this sec-
tion the refinement proof obligation rules, namely FIS, GRD, INV, and SIM, that
we use in this book. For this, we shall extend the set-theoretic representation of
Section 14.2.



432 Mathematical models for proof obligations

14.5.1 Introduction
We suppose, as above, that the abstract state variables v are together moving within a
certain set S. But we now have to introduce the external set. In fact, the set S is able
to be projected on an external set E. As said in the previous sections, the external
sets E defines what can be observed in a model. Similarly, the refined state variables
w are together moving within a certain set T , which is also able to be projected on an
external set F (notice that now external sets E and F are not identical). Let f and
g denote the functions projecting the set S on the set E and the set T on the set F
respectively:

f ∈ S→ E

g ∈ T → F

The external sets E and F are related by a certain total function h. The reason for
h to be a function is that we want to be able to reconstruct the abstract observation
from the concrete one. In other words, we do not want to loose in the concrete state
what can be observed in the abstract one. The function h is thus typed as follows:

h ∈ F → E

Let aei denote a binary relation corresponding to an abstract event eventi and let rei

be the corresponding refined event binary relation. The initializing set L is not empty
and included in S, whereas the refined initializing set M is not empty and included in
T . We then have the following typing constraints:

L ⊆ S

M ⊆ T

L 
= ∅

M 
= ∅

aei ∈ S ↔ S

rei ∈ T ↔ T

All this can be illustrated in the following diagram:
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E

FF

E

g

SS

TT

hh

g

f f

ae

re

i

i

In this diagram, the initializing case can be obtained by assuming that the relation aei

is S × L and the relation rei is T ×M .

14.5.2 Formal definition of refinement
We now present a formal definition of refinement that is entirely based on the external
sets. This will result in a kind of ultimate definition of refinement. In the next section
we shall however derive some sufficient refinement conditions implying a formalization
of the gluing invariant.

The previous diagram shows how we can link the external set F to itself by navigating
either through h, f−1 , aei , f , and h−1 in the abstraction or through g−1 , rei , and g in
the refinement. These two compositions result in two binary relations built on F . The
definition of refinement follows: the event represented by the relation aei is refined by
that represented by the relation rei if the relation g−1 ; rei ;g is included in the relation
h ;f−1 ;aei ;f ;h−1 . As can be seen, refinement is clearly defined relative to the external
sets. The initializing case simplifies to g[M ] ⊆ h−1 [f [L]]:

g[M ] ⊆ h−1 [f [L]]

M 
= ∅

g−1 ; re1 ; g ⊆ h ; f−1 ; ae1 ; f ; h−1

. . .

g−1 ; ren ; g ⊆ h ; f−1 ; aen ; f ; h−1

h−1[f [dom(ae)]] ⊆ g[dom(re)]

(IV )



434 Mathematical models for proof obligations

If a pair of external values is linked through the refined event rei , it must also be linked
through the abstract event aei . In other words, the refined event must not contradict
the abstract one from the point of view of the external sets.

14.5.3 Sufficient refinement conditions: forward simulation
We are now going to define a sufficient refinement condition for refinement: it is called
forward simulation. In the next section, we shall see another sufficient condition called
backward simulation. Let r be a total binary relation from the concrete set T to the
abstract set S. This relation formalizes the gluing invariant between the refined state
and the abstract one. Formally:

r ∈ T ←↔ S

Note that the symbol “←↔” is used to define the set of total binary relations from one
set to another. The introduction of the relation r leads to the following diagram:

E

FF

E

S

TT

f

g

h h

g

f

rr

ae

re

S
i

i

The relation r must be compatible with the function h linking the external sets F
and E. In other words, if y is linked to x through r, then g(y) must be linked to f(x)
through h, that is to say: f(x) = h(g(y)). This can be formalized by means of the
following condition:

∀x, y · ( y → x ∈ r ⇒ f(x) = h(g(y)) )

The previous condition can be simplified to the following equivalent one:

r−1 ; g ⊆ f ; h−1 C1
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Here is the proof (it uses simple predicate calculus rules):

∀x, y · ( y → x ∈ r ⇒ f(x) = h(g(y)) )
⇔
∀x, y · ( y → x ∈ r ⇒ g(y) → f(x) ∈ h )

⇔
∀x, y, z · ( z = g(y) ∧ y → x ∈ r ⇒ z → f(x) ∈ h )

⇔
∀x, z · (∃y ·(z = g(y) ∧ y → x ∈ r ) ⇒ z → f(x) ∈ h )

⇔
∀x, z · (∃y ·(z = g(y) ∧ y → x ∈ r ) ⇒ ∃u · (u = f(x) ∧ z → u ∈ h ) )

⇔
∀x, z · (∃y ·(x → y ∈ r−1 ∧ y → z ∈ g ) ⇒ ∃u · (x → u ∈ f ∧ u → z ∈ h−1 ) )

⇔
∀x, z · (x → z ∈ (r−1 ; g) ⇒ x → z ∈ (f ; h−1) )

⇔
r−1 ; g ⊆ f ; h−1

We now suppose that the following two additional conditions hold:

r−1 ; rei ⊆ aei ; r−1 C2

g−1 ⊆ h ; f−1 ; r−1 C3

It is then easy to prove that conditions C1, C2, and C3 are together sufficient to ensure
refinement, namely condition (IV) above. It relies on the monotonicity of composition
with regards to set inclusion and also on the associativity of composition. Here is the
proof:

g−1 ; rei ; g
⊆ C3

h ; f−1 ; r−1 ; rei ; g
⊆ C2

h ; f−1 ; aei ; r−1 ; g
⊆ C1

h ; f−1 ; aei ; f ; h−1
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But it happens that condition C3 can be deduced from condition C1 and from the
totality of r. Here is the proof:

r−1 ; g ⊆ f ; h−1 C1
⇒ Set theory

r ; r−1 ; g ⊆ r ; f ; h−1

⇒ id ⊆ r ; r−1 since r ∈ T ←↔ S
g ⊆ r ; f ; h−1

⇔ Set theory
g−1 ⊆ h ; f−1 ; r−1 C3

The relationship between the initializing sets L and M can be deduced from rule C2
by replacing aei by S ×L and rei by T ×M . We leave it to the reader to show that it
yields:

M ⊆ r−1[L]

As a consequence, there only remains condition C2. In order to translate this condition
and thus establish our proof obligation rules, it suffices to link S, T , aei , rei , and r
with this new formulation. We suppose to have the following abstract model as defined
in Section 14.2:

variables: v

inv0: I(v)

init
v :| K(v′)

eventi

when
Gi(v)

then
v :| Ri(v, v′)

end

The following model is supposed to refine the previous one. Notice the with clause in
eventi . It defines a non-deterministic witness for v′.

variables: w

inv1: J(v, w)

init
w :| N(w′)

eventi

when
Hi(w)

with
P (v′, w, w′)

then
w :| Si(w, w′)

end
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This yields:

S = { v | I(v) }

T = {w | ∃v · ( I(v) ∧ J(v, w) ) }

L = { v | K(v) }

M = {w | N(w) }

aei = { v → v′ | I(v) ∧ Gi(v) ∧ Ri(v, v′) }

rei = {w → w′ | (∃v · I(v) ∧ J(v, w) ) ∧ Hi(w) ∧ Si(w,w′) }

r = {w → v | I(v) ∧ J(v, w) }

dom (aei) = { v | I(v) ∧ Gi(v) }

dom (rei) = {w | ∃v · ( I(v) ∧ J(v, w) ) ∧ Hi(w) }

The translation of M ⊆ r−1 [L] gives us the following, which is exactly rule INV in the
case of initializing a refinement:

N(w)
� INV
∃v · ( K(v) ∧ J(v, w)

)

Note that the domain of the binary relation r is T . The binary relation r is thus indeed
a total relation as required. The domain of the binary relation rei is the set:

{w | ∃v · ( I(v) ∧ J(v, w) ) ∧ Hi(w) ∧ ∃w′ · Si(w, w′) }
Thus our last constraint on the domain of rei leads to the following, which is exactly
FIS in the case of a refinement:

I(v)
J(v, w)
Hi(w) FIS
�
∃w′ · Si(w, w′)
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The translation of condition C2, namely r−1 ; rei ⊆ aei ; r−1 , yields:

I(v) ∧ J(v, w) ∧ Hi(w) ∧ Si(w, w′) � Gi(v) ∧ ∃ v′ · ( Ri(v, v′) ∧ J(v′, w′) )

It can be split as follows yielding exactly proof obligation GRD:

I(v)
J(v, w)
Hi(w) GRD
�
Gi(v)

The second half is the following. As can be seen, the goal contains an existential
quantification:

I(v)
J(v, w)
Hi(w)
Si(w, w′)
�
∃ v′ · ( Ri(v, v′) ∧ J(v′, w′) )

Thanks to the witness predicate P (v′, w, w′) provided in the refined event, this sequent
can be decomposed into the following three proof obligation rules:

I(v)
J(v, w)
Hi(w)
Si(w, w′) WFIS
�
∃ v′ ·P (v′, w, w′)

I(v)
J(v, w)
Hi(w)
Si(w, w′) SIM
P (v′, w, w′)
�
Ri(v, v′)

I(v)
J(v, w)
Hi(w)
Si(w, w′) INV
P (v′, w, w′)
�
J(v′, w′)

This decomposition is a direct consequence of applying the derived inference rule
CUT_EXT proved at the end of Section 9.4.2 of Chapter 9. It remains now for
us to formalize relative deadlock freedom. This corresponds to the condition:

r−1[dom(ae)] ⊆ dom(re)
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This is translated trivially as follows:

I(v)
J(v, w)
G1(v) ∨ . . . ∨ Gn(v) DLF
�
H1(w) ∨ . . . ∨ Hn(w)

Note that a stronger deadlock freedom rule could have been defined requiring that each
individual abstract guard implies the concrete one; formally:

I(v)
J(v, w)
Gi(v) DLF
�
Hi(w)

14.5.4 Another sufficient refinement conditions:
backward simulation

There exists another sufficient condition for refinement: it is called backward simulation.
Relation r has got the same property as in previous section: it is a total relation from
T to S. Conditions C1 and C3 of previous section are the same, only condition C2 is
changed to condition C2’. Next is a copy of the conditions of previous section together
with the new ones:

r−1 ; g ⊆ f ; h−1 C1

r−1 ; rei ⊆ aei ; r−1 C2

g−1 ⊆ h ; f−1 ; r−1 C3

r−1 ; g ⊆ f ; h−1 C1

r−1 ; re−1
i ⊆ ae−1

i ; r−1 C2’

g−1 ⊆ h ; f−1 ; r−1 C3
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Conditions C1, C2’, and C3 can be put under the following equivalent forms D1, D2’,
and D3:

g−1 ; r ⊆ h ; f−1 D1

rei ; r ⊆ r ; aei D2’

g ⊆ r ; f ; h−1 D3

Next is the proof stating that conditions D1, D2’, and D3 are sufficient to prove refine-
ment:

g−1 ; rei ; g
⊆ D3

g−1 ; rei ; r ; f ; h−1

⊆ D2’
g−1 ; r ; aei ; f ; h−1

⊆ D1
h ; f−1 ; aei ; f ; h−1

The reason for calling condition C2’ “backward simulation” must be clear now by com-
paring it with C2. In C2 (forward), we are using rei and aei , whereas in C2’ (backward),
we are using re−1

i and ae−1
i . In the sequel, we shall not use backward simulation.

14.5.5 Refining a trace
Forward (and backward) simulation allows one to prove that individual event refine-
ments are generalizable to trace refinements. In this section, it is shown that it is the
case for a trace comprising two events: it can clearly be extended trivially to traces
containing more events. A trace with two events and its refinement is illustrated in the
following diagram:

f

F

E

S

T

h

g

j

jae

re

r

E

F

S

T

h

g

f
S

T
i

iae

re

r r
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In order to verify (by forward simulation) that the trace aei ; aej is refined to the
trace rei ; rej , it is sufficient to prove the following (this is condition C2 of Section
14.5.3):

r−1 ; rei ; rej ⊆ aei ; aej ; r−1

But aei is refined to rei , thus we have:

r−1 ; rei ⊆ aei ; r−1

Hence:

r−1 ; rei ; rej ⊆ aei ; r−1 ; rej

And aej is refined to rej , thus we have:

r−1 ; rej ⊆ aej ; r−1

Hence:

r−1 ; rei ; rej ⊆ aei ; r−1 ; rej ⊆ aei ; aej ; r−1

The proof with backward simulation is obtained in the same way.

14.6 Breaking the one-to-one relationship between abstract
and concrete events

14.6.1 Splitting an abstract event
When refining an abstract event aei , it can be split into two (or more) events, say rei1

and rei2 . We simply prove that these events both refine aei .

14.6.2 Merging several abstract events
It is also possible to merge two abstract events aei and aej to form a single refined
event reij . We simply have to prove that reij refines aei ∪ aej . We insist that events
eventi and eventj work in the model with the same variables v with invariant I(v) and
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that they both have the same actions as shown below:

eventi

when
P (v)

then
S

end

eventj

when
Q(v)

then
S

end

The merging yields the following event:

eventij

refines
eventi

eventj

when
R(v)

then
S

end

As a consequence the merging proof obligation rule is straightforward:

I(v)
R(v) MRG
�
P (v) ∨Q(v)

14.6.3 Introducing new events
Besides changing the state in a refinement and also establishing a certain relationship
between the concrete and abstract states by means of the, so-called, “gluing invariant”,
it is also possible to add new events in a refinement. Such new events have no counter-
part in the abstraction, they correspond to transitions which can be observed in the
concrete space but could not be observed in the abstraction. By having new events,
we are observing our discrete system in the refinement with a finer grain than in the
abstraction.

It is not so clear to see what it means for a model (with new events) to refine an-
other more abstract one. We have to go back to the set of traces and consider what we
can observe in the abstraction and what we can observe in the refinement. In order to
simplify, we shall suppose in this approach that we have no event splitting or merging.
Thus if “old” events in the abstraction are represented by the relation ae1 , . . . , aei , . . . ,
aen , then these events exist in the refinement where they are represented by the rela-
tions re1 , . . . , rei, . . . , ren . The “new” events are represented in the refinement only by
the binary relations ne1 , . . . , nek , . . . , nem . Next is an illustration of a short abstract
trace with event aei followed aej . In the concrete space, we have event rei followed by
rej , but between the two we have the new event nek , which could not be observed in
the abstraction.
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In fact, this new event simply refines a pseudo-event that does nothing (skip). We have
thus the following forward simulation proof to perform:

r−1 ; nek ⊆ r−1

From this, it is trivial to prove that the abstract trace aei ;aej is refined to the concrete
trace rei ;nek ; rej . It is simply an application of the technique we have already applied
in Section 14.5.5. Suppose we have a new event of the following shape:

new_eventk

when
Nk (w)

then
w :| Tk (w, w′)

end

What we have to prove for invariant preservation is an adaptation of rule INV:

I(v)
J(v, w)
Nk(w) INV
Tk(w, w′)
�
J(v, w′)

The introduction of new events requires a slight modification in the relative deadlock
freedom rule as we have to take into account the guards of the new events. We suppose
that the guarding predicates of the new events are denoted by: N1(w), . . . , Nm (w).
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The rule is modified so:

I(v)
J(v, w)
G1(v) ∨ . . . ∨ Gn(v) DLF
�
H1(w) ∨ . . . ∨ Hn(w) ∨ N1(w) ∨ . . . ∨ Nm (w)

The stronger rule is modified as follows:

I(v)
J(v, w)
Gi(v) DLF
�
Hi(w) ∨ N1(w) ∨ . . . ∨ Nm (w)

Notice that between two occurrences of concrete events represented by binary rela-
tions rei and rej there might be several occurrences of new events as indicated in the
following figure:
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Clearly, we do not want this sequence of new events being possibly infinite, because the
corresponding trace could not be a refinement of an abstract trace where the abstract
event represented by the relation aei is indeed followed by the event represented by the
binary relation aej . In other words, event rej must be reachable after event rei . This
is the reason for introducing the two rules NAT and VAR. We must exhibit a natural
number variant V (w), which is a natural number. Each new event of the following form
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must decrease this variant:

new_eventk

when
Nk (w)

then
w :| Tk (w, w′)

end

Here are the corresponding proof obligation rules:

I(v)
J(v, w)
Nk (w) NAT
�
V (w) ∈ N

I(v)
J(v, w)
Nk(w) VAR
Tk(w, w′)
�
V (w′) < V (w)

The variant decreasing can be generalized to the strict decreasing (strict inclusion) of
a finite set S(w). This yields the following two rules:

I(v)
J(v, w)
Nk (w) FIN
�
finite(S(w))

I(v)
J(v, w)
Nk (w) VAR
Tk(w, w′)
�
S(w′) ⊂ S(w)



15

Development of sequential programs

In this chapter, we shall see how to develop sequential programs. We present the ap-
proach we shall use, and then we propose a large number of examples.

Sequential programs (e.g. loops), when formally constructed, are usually devel-
oped gradually by means of a series of progressively more refined “sketches” start-
ing with the formal specification and ending in the final program. Each such sketch
is already (although often in a highly non-deterministic form) a monolithic de-
scription which resumes the final intended program in terms of a single formula.
This is precisely that initial “formula”, that is gradually transformed into the final
program.

We are not going to use this approach here. After all, in order to prove a large
formula, a logician usually breaks it down into various pieces, on which he per-
forms some simple manipulations before putting them together again in a final
proof.

15.1 A systematic approach to sequential
program development

15.1.1 Components of a sequential program
A sequential program is essentially made up of a number of individual assignments
that are glued together by means of various constructs. Typical constructs are se-
quential composition (;), loop (while), and condition (if). Their role is to explicitly
schedule these assignments in a proper order so that the execution of the program can
achieve its intended goal. Here is an example of a sequential program where the various

446
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assignments have been emphasized:

while j 
= m do
if g(j + 1) > x then

j := j + 1
elsif k = j then

k, j := k + 1, j + 1
else

k, j, g := k + 1, j + 1, swap (g, k + 1, j + 1)
end

end ;
p := k

Note that, to simplify matters, we use a pidgin imperative language allowing us to
have multiple assignments as in:

k, j := k + 1, j + 1k, j, g := k + 1, j + 1, swap (g, k + 1, j + 1)

Although it is not important for what we want to explain here, note that the expression
swap (g, k + 1, j + 1) stands for the swapping of the values g(k + 1) and g(j + 1) in the
array g. Also note that we have used a syntax with opening (while, if), intermediate
(do, then, elsif, else), and closing (end) keywords. We could have used another syntax
which would have been more appealing to Java or C programmers. In fact, the syntax
used here in not important as long as we understand what we are writing.

In summary, we shall develop programs written in a simple pidgin programming
language with the following syntax for program statements:

< variable > := < expressions >

< statement > ; < statement >

if < condition > then < statement > else < statement > end

if < condition > then < statement > elsif . . . else < statement > end

while < condition > do < statement > end

Moreover, expressions will denote natural numbers, arrays, and also pointers.
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15.1.2 Decomposing a sequential program into
individual events

The approach we present here is to completely separate, during the design, these indi-
vidual assignments from their scheduling. This approach is thus essentially one where
we favor an initial implicit distribution of the computation over a centralized explicit
one. At a certain stage, the “program” will just be made of a number of naked events,
performing some actions under the control of certain guarding conditions. And at this
point the synchronization of these events is not our concern. Thinking operationally, it
is done implicitly by a hidden scheduler, which may fire an event once its guard holds.
We can express as follows the various naked events corresponding to the previous
example:

when
j 
= m
g(j + 1) > x

then
j := j + 1

end

when
j 
= m
g(j + 1) ≤ x
k = j

then
k := k + 1
j := j + 1

end

when
j 
= m
g(j + 1) ≤ x
k 
= j

then
k := k + 1
j := j + 1
g := swap (g, k + 1, j + 1)

end

when
j = m

then
p := k

end

This decomposition has been done in a very systematic fashion. As can be seen, the
guard of each event has been obtained by collecting the conditions that are introduced
by the while and if statements. For instance, the second event dealing with assignments
k := k + 1 and j := j + 1 has got the following guards:

j 
= m, because this assignment is inside the loop starting with while j 
=
m do . . . end.

g(j + 1) ≤ x, because we are not in the first branch of the if x <
g(j + 1) then . . . end statement.

k = j, because we are in the first branch of the elsif k = j then . . . end
statement.

Conversely, it seems easy to build the initial program of the previous section from these
four naked events. But, of course, this process will have to be made systematic later
in Section 15.3.
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15.1.3 Sketch of the approach
After what has just been said, the approach we are going to take can be divided up
into three distinct phases:

1. At the beginning of the development process, the event system, besides an initializ-
ing event, is made of a single guarded event with no action. This event represents the
specification of our future program. At this step, we might also define an anticipated
event (see Section 15.2).

2. During the development process, other events might be added or some abstract
anticipated events might become convergent (see Section 15.2).

3. When all the individual pieces are “on the table” (this is the situation shown in the
previous section), and only then, we start to be interested in their explicit scheduling.
This will have the effect of minimizing guard evaluations in the scheduling. For this,
we apply certain systematic rules (section 15.3) whose role is to gradually merge
the events and thus organize them into a single entity forming our final program.
The application of these rules has the effect of gradually eliminating the various
predicates making the guards. At the end of the development, it results in a single
guardless final “event”.

What is interesting about this approach is that it gives us full freedom to refine small
pieces of the future program, and also to create new ones, without being disturbed by
others ; the program is developed by means of small independent parts that so remain
until they are eventually put together systematically at the end of the process. This
can be illustrated as follows:

Specification phase • Initial event: specification
↙ ↓ ↘

• • •
. . .

Development phase . . . New events: refinements
. . .

• • •
Merging phase ↘ ↓ ↙

• Final event: program

15.1.4 Sequential program specification: pre- and
post-condition

A sequential program P with some input parameters and some results is often specified
by using a so-called Hoare-triple, of the following shape:

{Pre} P {Post}
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Here Pre denotes the pre-condition of the program P, while Post denotes its post-
condition. The pre-condition defines the condition we can assume concerning the
parameters of the program, and the post-condition denotes what we can expect con-
cerning the outcome of the program.

It is very simple to have an Hoare-triple being encoded within an event system. The
parameters are constants and the pre-conditions are the axioms of these constants.
The results are variables and the program is represented by an event containing the
post-condition in its guard together with a skip action. We illustrate this in the next
section with a very simple example.

15.2 A very simple example
15.2.1 Specification

Suppose we want to specify a program, named search, with the following parameters:
an array f of size n, and a certain value v guaranteed to be within the range of the
array f . The result of our program search is denoted by r, which is an index of the array
f such that f(r) = v. This informal specification can be made a little more formal by
the following Hoare-triple:


n ∈ N

f ∈ 1 .. n→ S
v ∈ ran(f)


 search

{
r ∈ 1 .. n
f(r) = v

}

The previous example can then be encoded in a straightforward fashion as follows.
Here is the encoding of the pre-condition:

sets: S

constants: n, f, v

axm0_1: n ∈ N

axm0_2: f ∈ 1 .. n→ S

axm0_3: v ∈ ran(f)

thm0_1: n ≥ 1

As can be seen, the three predicates making the pre-conditions have become three
axioms axm0_1 to axm0_3. Notice the theorem thm0_1 we have stated. Now
comes the post-condition encoding. First the definition of the result variable r:

variables: r inv0_1: r ∈ N
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As can be seen, the invariant is very weak, we just say in invariant inv0_1 that the
result r is a natural number. Next are the two events named init and final:

init
r :∈ N

final
when

r ∈ 1 .. n
f(r) = v

then
skip

end

The two predicates making the post-condition have become guards of the final
event, which has no action. Finally, we introduce the following anticipated event
progress:

progress
status

anticipated
then

r :∈ N

end

This event modifies variable r in a totally non-deterministic way. This is a tech-
nique we introduced in Section 7 of Chapter 4 and reused again in Section 4.2
of Chapter 6. We are going to use this technique systematically throughout this
chapter.

15.2.2 Refinement
The development of sequential programs will exactly follow the same lines as those we
have already followed in previous chapters: namely doing some refinements by looking
more carefully at the state and introducing new events or (in the present case) refining
an anticipated event.

In this searching example, our refinement will be extremely simple. We do not in-
troduce any new variables: we rather add invariants on r and refine event progress.
Variable r ranges over the interval 1 ..n (invariant inv1_1). The main invariant states
that v is not within the set denoting the image of the interval 1 .. r − 1 under f , that
is f [1 .. r − 1] (invariant inv1_2). In other words, the interval 1 .. r − 1 denotes the
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set of indices we have already explored unsuccessfully:

variables: r

inv1_1: r ∈ 1 .. n

inv1_2: v /∈ f [1 .. r − 1]

variant1: n− r

This can be illustrated as follows:

unsuccessful unknown

r n1 1

f

Now we make our previous anticipated event progress, convergent. It increments r
when f(r) is not equal to v; notice also the initialization of the result variable r:

init
r := 1

final
when

f(r) = v
then

skip
end

progress
status

convergent
when

f(r) 
= v
then

r := r + 1
end

Notice that event progress is now convergent. For this, we provide variant variant1,
which is a natural number decreased by event progress. All proofs are left to the
reader.

15.2.3 Generalization
Note that the previous example can be generalized to the case where the searched
value v is not necessarily within the range of the array f . The program may have
then two different outcomes: (1) the searched value has not been found; and (2) the
searched value has been found and the result is then a corresponding index. This will
be represented in the abstraction by two distinct events and an additional boolean
variable success, which is equal to true when v is in the range of f , false otherwise.
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It is also possible to re-arrange the previous solution so that both solutions are very
close to each other.

15.3 Merging rules
At this point, our development is almost finished. It just remains for us to merge the
events in order to obtain our final program. For this we shall define some merging rules.
We essentially have two merging rules: one for defining a conditional statement (M_IF)
and the other one for defining a loop statement (M-WHILE). Here are these rules:

when
P
Q

then
S

end

when
P
¬Q
then

T
end

�

when
P

then
if Q then S else T end

end

M_IF

when
P
Q

then
S

end

when
P
¬Q
then

T
end

�

when
P

then
while Q do S end ; T

end

M_WHILE

These rules can be read as follows: if we have an event system where two events have
forms corresponding to the ones shown on the left of the � symbol in the rule, they
can be merged into a single pseudo-event corresponding to the right-hand side of the
rule. Notice that both rules have the same antecedent events, so that the application
of one or the other might be problematic. There is no confusion, however, as the rules
have some incompatible side conditions, which are the following:

The second rule (that introducing while) requires that the first antecedent event
(that giving rise to the “body” S of the loop) appears as new or non-anticipated,
thus convergent at one refinement level below that of the second one. In this way, we
are certain that there exists a variant ensuring that the loop terminates. Moreover,
the first event must keep the common condition P invariant. The merged event is
considered to “appear” at the same level as the second antecedent event.
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The first rule (that introducing if) is applicable when both events have been intro-
duced at the same level. The merged event is considered to bear the same “level”
as the component events.

The first rule may take a special form when one of the antecedent events has an if
form. It is as follows:

when
P
Q

then
S

end

when
P

¬Q
then

if R then T else U end
end

�

when
P

then
if Q then S elsif R then T else U end

end

M_ELSIF

Note that in the three rules, the common guard P is optional. When P is missing then
the pseudo-event on the right-hand side of the rule reduces to a non-guarded event.
Also note that in the merging rule M_WHILE, the action T can be reduced to skip. In
these cases, the rule simplifies accordingly.

The rules are applied systematically until a single pseudo-event with no guard is
left. It then remains for us to apply a last merging rule, called M_INIT, consisting in
prepending the unique pseudo-event with the initialization event. In our case, it leads
to the final program construction:

search_program
r := 1;
while f(r) 
= v do

r := r + 1
end

15.4 Example: binary search in a sorted array
15.4.1 Initial model

This problem is exactly the same as the previous one: searching for a value in an array.
So, the formal specification is (almost) identical to the one of the previous example.
The only difference is that, this time, we have more information on the array: it is
an array of natural numbers, which is sorted in a non-decreasing way as indicated in
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axm0_4. Here is the pre-condition:

constants: n
f
v

axm0_1: n ∈ N

axm0_2: f ∈ 1 .. n→ N

axm0_3: v ∈ ran(f)

thm0_1: n ≥ 1

axm0_4: ∀ i, j · i ∈ 1 .. n
j ∈ 1 .. n
i ≤ j
⇒
f(i) ≤ f(j)

Here is now the post-condition:

variables: r inv0_1: r ∈ N
init

r :∈ N

final
when

r ∈ 1 .. n
f(r) = v

then
skip

end

We have also an anticipated event:

progress
status

anticipated
then

r :∈ N

end

15.4.2 First refinement
The state We introduce two new variables p and q. Variables p and q are supposed
to be two indices in the array f (inv1_1 and inv1_2). The variable r is within the
interval p .. q (inv1_3). Moreover, the value v is supposed to be a member of the set
denoting the image of the interval p .. q under f : that is, f [p .. q] (inv1_4). Here is
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the state of this refinement:

variables: r
p
q

inv1_1: p ∈ 1 .. n

inv1_2: q ∈ 1 .. n

inv1_3: r ∈ p .. q

inv1_4: v ∈ f [p .. q]

variant1: q − p

The current situation is illustrated in the following figure:

nq+1

q

1 1−

p

r

Now, we introduce two events called inc and dec which split abstract anticipated
event progress. These events are convergent (see variant1 above). They increment
or decrement p or q when f(r) is smaller or greater than v. They also move r non-
deterministically within the new interval p .. q:

init
p := 1
q := 1
r :∈ 1 .. n

inc
refines

progress
status

convergent
when

f(r) < v
then

p := r + 1
r :∈ r + 1 .. q

end

dec
refines

progress
status

convergent
when

v < f(r)
then

q := r − 1
r :∈ p .. r − 1

end

final
when

f(r) = v
then

skip
end

The following figure illustrates the situation encountered by event inc (the arrow indi-
cates the new value of index p), which is guarded by the predicate f(r) < v:

nq+1

q

1 1

p

r

r +1
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We next illustrate the situation encountered by event dec (the arrow indicates the new
value of index q), which is guarded by the predicate v < f(r):

nq+1

q

1 1

1p

r

The proofs are simple. We encourage the reader to do them with the Rodin
Platform.

15.4.3 Second refinement
The second refinement is very simple. The state is the same as in the abstraction. We
only reduce the non-determinism of events inc and dec by choosing r in the “middle”
of the intervals r + 1 .. q or p .. r− 1. This leads to the following refinements of these
events:

init
p := 1
q := 1
r := (1 + n)/2

inc
when

f (r) < v

then
p := r + 1
r := (r + 1 + q)/2

end

dec
when

v < f(r)
then

q := r − 1
r := (p + r − 1)/2

end

final
when

f (r) = v

then
skip

end

The main proofs concern the implication of the common actions on r in events inc
and dec. For event dec, this amounts to proving (r + 1 + q)/2 ∈ r + 1 .. q,
which is obvious since we have already proved in the abstraction that the interval
r + 1 .. q was not empty (feasibility of abstract event dec). The proof of event inc is
similar.

15.4.4 Merging
We are now ready to merge events inc and dec. For this we can use merging rule M_IF
thus obtaining (on the left) the following pseudo-event inc_dec. After that, we can
merge this pseudo-event with event final. For this, we can use merging rule M_WHILE,
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thus obtaining the pseudo-event situated on the right:

inc_dec
when

f(r) 
= v
then

if f(r) < v then
p, r := r + 1, (r + 1 + q)/2

else
q, r := r − 1, (p + r − 1)/2

end
end

inc_dec_final
while f(r) 
= v do

if f(r) < v then
p, r := r + 1, (r + 1 + q)/2

else
q, r := r − 1, (p + r − 1)/2

end
end

The final program is obtained by pre-pending the initialization (rule M-INIT):

bin_search_program
p, q, r := 1, n, (1 + n)/2;
while f(r) 
= v do

if f(r) < v then
p, r := r + 1, (r + 1 + q)/2

else
q, r := r − 1, (p + r − 1)/2

end
end

15.5 Example: minimum of an array of natural numbers
15.5.1 Initial model

Our next elementary example consists in looking for the minimum of the range of a
non-empty array of natural numbers. Let n and f be two constants, and m a variable.
Here is our initial model:

constants: n
f

axm0_1: 0 < n

axm0_2: f ∈ 1 .. n→ N

thm0_1: ran(f) 
= ∅

variables: m
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inv0_1: m ∈ N
init

m :∈ N

minimum
m := min(ran(f))

15.5.2 First refinement
Our first refinement consists in introducing, as in the previous example, two indices
p and q where p is not greater than q as indicated in invariant inv1_3. More-
over, it is shown in invariant inv1_4 that the minimum of the array is in the set
f [p .. q]:

constants: n, f

variables: m, p, q

inv1_1: p ∈ 1 .. n

inv1_2: q ∈ 1 .. n

inv1_3: p ≤ q

inv1_4: min(ran(f)) ∈ f [p .. q]

We also introduce two new events inc and dec. When p is smaller than q and f(p) is
greater than f(q), we can reduce the interval p .. q to p + 1 .. q since f(p) is cer-
tainly not the minimum we are looking for. We have a similar effect with invari-
ant dec. The minimum is then found when p is equal to q according to invariant
inv1_4:

init
p, q := 1, n
m :∈ N

inc
when

p < q
f(p) > f(q)

then
p := p + 1

end

dec
when

p < q
f(p) ≤ f(q)

then
q := q − 1

end

minimum
when

p = q
then

m := f(p)
end

We leave it as an exercise for the reader to prove this refinement (do not forget to prove
the convergence of events inc and dec) and generate the corresponding final program
by applying some merging rules.
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15.6 Example: array partitioning
In this example, all proofs are left to the reader.

15.6.1 Initial model
The problem we study now is a variant of the well-known partitioning problem used
in Quicksort. Let f be an array of n natural numbers (supposed to be distinct for
simplification). Let x be a natural number. We would like to transform f in another
array g with exactly the same elements as in the initial array f , in such a way that
there exists an index k of the interval 0 ..n such that all elements in g[1 .. k] are smaller
than or equal to x, while all elements in g[k + 1 .. n] are strictly greater than x. The
final result is shown below:

1 ≤ x k k + 1 > x n

For example, let the array f be the following:

3 7 2 5 8 9 4 1

If we like to partition it with 5, then the transformed array g can be the following with
k being set to 5:

3 2 5 4 1 9 7 8

Note that in case all elements of f are greater than x, then k should be equal to 0.
And in case all elements are smaller than or equal to x, then k should be equal to n.
We now have enough elements to introduce our initial model as follows:

constants: n
f
x

axm0_1: n ∈ N

axm0_2: f ∈ 1 .. n � N

axm0_3: x ∈ N
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variables: k
g

inv0_1: k ∈ N

inv0_2: g ∈ N↔ N

init
k :∈ N

g :∈ N↔ N

final
when

k ∈ 0 .. n
g ∈ 1 .. n � N

ran (g) = ran (f)
∀m ·m ∈ 1 .. k ⇒ g(m) ≤ x
∀m ·m ∈ k + 1 .. n ⇒ g(m) > x

then
skip

end

progress
status

anticipated
then

k :∈ N

g :∈ N↔ N

end

15.6.2 First refinement
Our next step is to introduce one new variable j. Variables j and k are indices in 0 .. n.
Variable k is supposed to be smaller than or equal to j. We have also two invariants
saying that k and j partition the array g as indicated as follows:

1 ≤ x k k + 1 > x j j + 1 ? n

As can be seen, the array g is partitioned in the interval 1 .. j with k being the
intermediate partitioning point. The idea is then to possibly increment j alone or both
k and j while maintaining the corresponding invariant. The process is completed when
j is equal to n. More formally, this yields the following new state:

variables: k
g
j

inv1_1: j ∈ 0 .. n

inv1_2: k ∈ 0 .. j

inv1_3: g ∈ 1 .. n � N

inv1_4: ran(g) = ran(f )

inv1_5: ∀m · m ∈ 1 .. k ⇒ g(m) ≤ x

inv1_6: ∀m · m ∈ k + 1 .. j ⇒ x < g(m)

Here are the refinements of the events init and final, and the introduction of three con-
vergent events progress_1, progress_2, and progress_3 all refining abstract anticipated
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event progress (guess the variant):

init
j := 0
k := 0
g := f

final
when

j = n
then

skip
end

progress_1
refines

progress
status

convergent
when

j 
= n
g(j + 1) > x

then
j := j + 1

end

progress_2
refines

progress
status

convergent
when

j 
= n
g(j + 1) ≤ x
k = j

then
k := k + 1
j := j + 1

end

progress_3
refines

progress
status

convergent
when

j 
= n
g(j + 1) ≤ x
k 
= j

then
k := k + 1
j := j + 1
g := g �− {k + 1 → g(j + 1)}�− {j + 1 → g(k + 1)}

end

15.6.3 Merging
By merging these events, we obtain the following final program:

partition_program
j, k, g := 0, 0, f ;
while j 
= n do

if g(j + 1) > x then
j := j + 1

elsif k = j then
k, j := k + 1, j + 1

else
k, j, g := k + 1, j + 1, g �− {k + 1 → g(j + 1)}�− {j + 1 → g(l + 1)}

end
end
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15.7 Example: simple sorting
In this example, all proofs are left to the reader.

15.7.1 Initial model
We are not going to develop a very clever sorting algorithm here. Rather, our intention
is only to use sorting as an opportunity to develop a little program containing an
embedded loop. We have two constants: n, which is a positive natural number, and f ,
which is a total injective function from 1 .. n to the natural numbers. We have a result
variable g which must be sorted and have the same elements as f . Here is our initial
state:

constants: n
f

axm0_1: 0 < n

axm0_2: f ∈ 1 .. n � N

variables: g

inv0_1: g ∈ N↔ N

init
g :∈ N↔ N

final
when

g ∈ 1 .. n � N

ran (g) = ran (f)
∀ i, j · i ∈ 1 .. n− 1

j ∈ i + 1 .. n
⇒
g(i) < g(j)

then
skip

end

progress
status

anticipated
then

g :∈ N↔ N

end

The guards in event final stipulate that g has exactly the same elements as the original
f , and that it is sorted in ascending order.

15.7.2 First refinement
In our first refinement, we introduce a new index k supposed to be in the interval 1 ..n.
Moreover, the elements of the sub-part of g ranging from 1 to k − 1 are all sorted and
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also smaller than the elements lying in the other sub-part, namely those ranging from
k to n. This can be illustrated as follows:

1 sorted and smaller k − 1 k n

We also introduce a new variable l and a new anticipated event prog. In the guard of
the convergent event progress (guess the variant), we require that g(l) is the minimum
of the set g[k .. n]. Our new state and events are as follows. Notice that events init,
progress, and prog all modify l non-deterministically:

variables: g
k
l

inv1_1: g ∈ 1 .. n � N

inv1_2: ran(g) = ran(f)

inv1_3: k ∈ 1 .. n

inv1_4: ∀ i, j · i ∈ 1 .. k − 1
j ∈ i + 1 .. n
⇒
g(i) < g(j)

inv1_5: l ∈ N

init
g := f
k := 1
l :∈ N

final
when

k = n
then

skip
end

progress
status

convergent
when

k 
= n
l ∈ k .. n
g(l) = min(g[k..n])

then
g := g �− {k → g(l)}�− {l → g(k)}
k := k + 1
l :∈ N

end

prog
status

anticipated
then

l :∈ N

end
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15.7.3 Second refinement
Our next step consists in determining the minimum chosen arbitrarily in the previ-
ous section. For this, we introduce an additional index j. The index j ranges from
k to n, whereas l ranges from k to j. The value of g at index l is supposed to
be the minimum of g on the sub-part of it ranging from k to j. Here is our new
state:

variables: g
k
l
j

inv2_1: j ∈ k .. n

inv2_2: l ∈ k .. j

inv2_3: g(l) = min(g[k .. j])

Invariant inv2_3 is illustrated as so:

1 sorted and smaller k − 1 k g(l) is the minimum j n

Next are the refinements of the abstract events:

init
g := f
k := 1
l := 1
j := 1

final
when

k = n
then

skip
end

progress
when

k 
= n
j = n

then
g := g �− {k → g(l)}�− {l → g(k)}
k := k + 1
j := k + 1
l := k + 1

end

In the concrete event progress, the strengthening of the guard (with condition j = n)
implies that the value of the variable l corresponds exactly to the minimum chosen
arbitrarily in the abstraction. Here are the new convergent events prog1 and prog2
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(guess the variant) both refining abstract anticipated event prog:

prog1
refines

prog
status

convergent
when

k 
= n
j 
= n
g(l) ≤ g(j + 1)

then
j := j + 1

end

prog2
refines

prog
status

convergent
when

k 
= n
j 
= n
g(j + 1) < g(l)

then
j := j + 1
l := j + 1

end

15.7.4 Merging
After applying the merging rule we obtain the following final program:

sort_program
g, k, j, l := f, 1, 1, 1
while k 
= n do

while j 
= n do
if g(l) ≤ g(j + 1) then

j := j + 1
else

j, l := j + 1, j + 1
end

end ;
k, j, l, g := k + 1, k + 1, k + 1, g �− {k → g(l)}�− {l → g(k)}

end

Note that the initialization of the inner loop variables, namely j and l, is made in two
different places: either in the proper initialization at the beginning of the program, or
in the trailing statement after the inner loop itself.

15.8 Example: array reversing
In this example, all proofs are left to the reader.
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15.8.1 Initial model
Our next example is the classical array reversing. We are given a carrier set S, and
two constants n and f , and a variable g. Here is the state:

sets: S

constants: n, f

axm0_1: n ∈ N

axm0_2: 0 < n

axm0_3: f ∈ 1 .. n→ S

variables: g

inv0_1: g ∈ N↔ S

Here are the events:

init
g :∈ N↔ S

final
when

g ∈ 1 .. n→ S
∀k · k ∈ 1 .. n ⇒ g(k) = f(n− k + 1)

then
skip

end

progress
status

anticipated
then

g :∈ N↔ S
end

15.8.2 First refinement
Our first refinement consists in introducing two indices i, starting at 1, and j, starting
at n. The indices i and j move towards each other. The array g is gradually reversed
by swapping elements g(i) and g(j) while, of course, i is strictly smaller than j. This is
done in the event progress. In this way, the sub-arrays of g ranging from 1 to i− 1 and
from j +1 to n respectively have all their elements reversed with regard to the original
array f . And the middle part is still unchanged with regards to f . This is illustrated
as follows:

1 reversed i unchanged j reversed n

Notice that the quantity i+ j is always equal to n+1. At the end of the process, either
i is equal to j when n is odd, or i is equal to j + 1 when n is even. But, in both cases,
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we have i ≥ j. Here is the new state:

variables: g
i
j

inv1_1: g ∈ 1 .. n→ S

inv1_2: i ∈ 1 .. n

inv1_3: j ∈ 1 .. n

inv1_4: i + j = n + 1

inv1_5: i ≤ j + 1

inv1_6: ∀k · k ∈ 1 .. i− 1 ⇒ g(k) = f(n− k + 1)

inv1_7: ∀k · k ∈ i .. j ⇒ g(k) = f(k)

inv1_8: ∀k · k ∈ j + 1 .. n ⇒ g(k) = f(n− k + 1)

Here are the refined events (guess the variant for event progress):

init
i := 1
j := n
g := f

final
when

j ≤ i
then

skip
end

progress
status

convergent
when

i < j
then

g := g �− {i → g(j)}�− {j → g(i)}
i := i + 1
j := j − 1

end

Now, we can apply the merging rules and obtain the following final program:

reverse_program
i, j, g := 1, n, f ;
while i < j do

i, j, g := i + 1, j − 1, g �− {i → g(j)}�− {j → g(i)}
end
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15.9 Example: reversing a linked list
So far, all our examples were dealing with arrays and corresponding indices. As a
consequence, some of the proofs relied on elementary arithmetic properties. In this
example, we experiment with a data structure that deals with pointers. The problem
we shall tackle is very classical and simple: we just want to reverse a linear chain.
Notice that to simplify matters, the chain is made of pointers only. In other words, a
node of the chain has no information field.

15.9.1 Initial model
Each node in the chain points to its immediate successor (if any). The chain starts
with a node called f (for “first”) and ends with a node called l (for “last”). All this can
be represented as follows:

f → x → . . . → z → l

Before engaging in our problem, we first have to formalize what we have just introduced.
After renaming its constants, we simply copy the axioms which have been presented
in Section 9.7.4 of Chapter 9:

sets: S

constants: d, f, l, c

axm0_1: d ⊆ S

axm0_2: f ∈ d

axm0_3: l ∈ d

axm0_4: f 
= l

axm0_5: c ∈ d \ {l}�� d \ {f}

axm0_6: ∀T · T ⊆ c[T ] ⇒ T = ∅

We would like to reverse this chain. So, if the initial chain is

f → x → . . . → z → l ,

then the transformed chain r should look like this:

f ← x ← . . . ← z ← l
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Here is the definition of the result r together with the event reverse doing the job in
one shot: r is exactly the converse of c.

variables: r inv0_1: r ∈ S↔ S init
r :∈ S↔ S

reverse
r := c−1

15.9.2 First refinement
In this first refinement, we introduce two additional chains a and b and a pointer p.
Chain a corresponds to the part of chain c that has already been reversed, whereas
chain b corresponds to the part of chain c that has not yet been reversed. Node p is
the starting node of both chains. Here is the situation:

a

f ← x ← · · · ← p → → · · · → z → l

b

Progress is obtained by moving p one step to the right and reversing the first pointer
of chain b. This is indicated as follows:

a

f ← x ← · · · ← ← p → · · · → z → l

b

At the start, p is equal to f , a is empty, and b is equal to c:

p → x → . . . → → → · · · → z → l

b

At the end, p is equal to l, a is the reversed chain, and b is empty:

a

f ← x ← · · · ← ← ← · · · ← z ← p
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Formalizing what we have just informally presented is simple: we define both chains
a and b and their relationship with c. Notice that we use cl(c) and cl(c−1), which
are the irreflexive transitive closures of c and c−1 (cl is defined in Section 9.7.1 of
Chapter 9).

variables: r
a
b
p

inv1_1: p ∈ d

inv1_2: a ∈ (cl(c−1)[{p}] ∪ {p}) \ {f}�� cl(c−1)[{p}]

inv1_3: b ∈ (cl(c)[{p}] ∪ {p}) \ {l}�� cl(c)[{p}]

inv1_4: c = a−1 ∪ b

Here are the refinements of the previous events and also the introduction of the new
event progress:

init
r :∈ S↔ S
a, b, p := ∅, c, f

reverse
when

b = ∅

then
r := a

end

progress
when

p ∈ dom(b)
then

p := b(p)
a(b(p)) := p
b := {p}�− b

end

As can be seen in event progress, p is moved to the right (that is p := b(p)), the pair
b(p) → p is added to the chain a (that is a(b(p)) := p), and, finally, node p is removed
from chain b (that is b := {p}�− b).

15.9.3 Second refinement
In this refinement, we introduce a special constant node named nil (axm2_1), which
is supposed to be outside the set d. We also replace the chain b by the chain bn which
is equal to b ∪ {l → nil} (inv2_1). Finally, we introduce a second pointer, q, which is
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equal to bn(p). This is represented as follows:

a

f ← x ← · · · ← p → q → · · · → z → l → nil

bn

Here is the new state:

constants: f, l, c, nil

variables: r, a, bn, p, q

axm2_1: nil ∈ S

axm2_2: nil /∈ d

inv2_1: bn = b ∪ {l → nil}

inv2_2: q = bn(p)

Here are the refinements of the events. Notice that the guards have been made inde-
pendent of the chain b:

init
r :∈ S↔ S
a, bn := ∅, c ∪ {l → nil}
p, q := f, c(f)

reverse
when

q = nil
then

r := a
end

progress
when

q 
= nil
then

p := q
a(q) := p
q := bn(q)
bn := {p}�− bn

end

15.9.4 Third refinement
We now remove chains a and bn and replace them by a unique chain, e, containing
both chains a and bn. Here is the new situation:

f ← x ← · · · ← p q → · · · → z → l → nil

e



15.10 Example: simple numerical program computing the square root 473

Next is the refined state with the definition of the new variable e in terms of the
abstract variables a and bn:

variables: r, p, q, e inv3_1: e = ({f}�− bn) �− a

The events correspond to straightforward transformations of the previous one:

init
r :∈ S↔ S
e := {f}�− (c ∪ {l → nil}
p := f
q := c(f)

reverse
when

q = nil
then

r := e �− {nil}
end

progress
when

q 
= nil
then

p := q
e(q) := p
q := e(q)

end

15.9.5 Merging
The last refinement leads to the following final program:

reverse_program
p, q, e := f, c(f), {f}�− (c ∪ {l → nil});
while q 
= nil do

p := q
e(q) := p
q := e(q)

end ;
r := e �− {nil}

15.10 Example: simple numerical program computing the
square root

We have not yet tried our approach on a numerical example. This is the purpose of
this section. Given a natural number n, we want to compute its natural number square
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root by defect; that is, a number r such that:

r2 ≤ n < (r + 1)2 .

15.10.1 Initial model
Our first model is simply the following:

constants: n axm0_1: n ∈ N variables: r inv0_1: r ∈ N

init
r :∈ N

final
when

r2 ≤ n
n < (r + 1)2

then
skip

end

progress
status

anticipated
then

r :∈ N

end

15.10.2 First refinement

variables: r inv1_1: r2 ≤ n

init
r := 0

final
when

n < (r + 1)2

then
skip

end

progress
status

convergent
when

(r + 1)2 ≤ n
then

r := r + 1
end
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The proof of this refinement is straightforward but do not forget to prove the conver-
gence of event progress. We obtain the following program:

square_root_program
r := 0;
while (r + 1)2 ≤ n do

r := r + 1
end

15.10.3 Second refinement
The previous solution, although correct, is a bit heavy because we have to compute
(r + 1)2 at each step of the computation. We would like to investigate whether it
would be possible to refine the previous solution by computing this quantity in a less
expensive way. The idea relies on the following equalities:

((r + 1) + 1)2 = (r + 1)2 + (2r + 3)

2(r + 1) + 3 = (2r + 3) + 2

We are thus extending our state with two more variables a and b recording in advance
respectively (r + 1)2 and 2r + 3. Here is the new state and the new program:

variables: r
a
b

inv2_1: a = (r + 1)2

inv2_2: b = 2r + 3

init
r := 0
a := 1
b := 3

final
when

n < a
then

skip
end

progress
when

a ≤ n
then

r := r + 1
a := a + b
b := b + 2

end
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We obtain the following program:

square_root_program
r, a, b := 0, 1, 3;
while a ≤ n do

r, a, b := r + 1, a + b, b + 2
end

15.11 Example: the inverse of an injective
numerical function

In this example we are trying to borrow some ideas coming from the binary search
example of Section 15.4. We want to compute the inverse by defect of an injective
numerical function defined on all natural numbers.

15.11.1 Initial model
This is a generalization of the previous example where the function in question was
the squaring function. In this model, we are a bit more specific than was announced:
our function f is not stated to be injective to begin with. It is only defined to be a
total function in axm0_1. But it is said in axm0_2 that this numerical function f
is strictly increasing. As a consequence, it can be proved to be injective, i.e. that its
inverse is also a function; this is stated in thm0_1:

constants: n
f

axm0_1: f ∈ N→ N

axm0_2: ∀i, j · i ∈ N

j ∈ N

i < j
⇒
f(i) < f(j)

axm0_3: n ∈ N

thm0_1: f ∈ N � N

variables: r

inv0_1: r ∈ N
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Event final calculates the inverse by defect of f at n in one shot which is just a gener-
alization of what was defined in the previous example.

init
r :∈ N

final
when

f(r) ≤ n
n < f(r + 1)

then
skip

end

progress
status

anticipated
then

r :∈ N

end

15.11.2 First refinement
The idea of this refinement is to suppose first that we can exhibit two numerical
constants a and b such that:

f(a) ≤ n < f(b + 1)

We are certain then that our result r is within the interval a .. b since f is de-
fined everywhere and increasing. The idea of the refinement is then to narrow this
initial interval. For this, we introduce a new variable q initially set to b, whereas
variable r is initially set to a. These two variables will have the following invariant
property:

f(r) ≤ n < f(q + 1)

When r and q are equal, we are done. When r and q are distinct we are left to
perform a search in the interval r .. q. For this we shall use a technique very close
to the one we used in Section 15.4 for binary search. Here is the state of this
refinement:

constants: f, n, a, b

variables: r, p, q

axm1_1: a ∈ N

axm1_2: b ∈ N

axm1_3: f (a) ≤ n

axm1_4: n < f (b + 1)

inv1_1: q ∈ N

inv1_2: r ≤ q

inv1_3: f (r) ≤ n

inv1_4: n < f (q + 1)

We introduce two new events inc and dec. As can be seen, a number x is chosen non-
deterministically in the interval p+1 .. q. Then n is compared with f(x) and an action
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is done accordingly on q or on p:

init
r := a
q := b

final
when

r = q
then

skip
end

dec
refines

progress
status

convergent
any x where

r 
= q
x ∈ r + 1 .. q
n < f(x)

then
q := x− 1

end

inc
refines

progress
status

convergent
any x where

r 
= q
x ∈ r + 1 .. q
f(x) ≤ n

then
r := x

end

The proof of this refinement is not difficult. We have to exhibit a variant and prove
that it is decreased by the new events. This variant is not difficult to guess.

15.11.3 Second refinement
In this second refinement, we are going to remove the non-determinacy in the events
inc and dec. This will be done by choosing for the local variable x the “middle” of the
interval r + 1 .. q. In this refinement, we do not change the state, only the events dec
and inc as follows:

dec
when

r 
= q
n < f((r + 1 + q)/2)

with
x = (r + 1 + q)/2

then
q := (r + 1 + q)/2− 1

end

inc
when

r 
= q
f((r + 1 + q)/2) ≤ n

with
x = (r + 1 + q)/2

then
r := (r + 1 + q)/2

end

In order to prove this refinement the following theorem can be useful:

thm2_1: ∀x, y · x ∈ N

y ∈ N

x ≤ y
⇒
(x + y)/2 ∈ x .. y
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As a result, we obtain, by using some of the merging rules, the following program:

inverse_program
r, q := a, b;
while r 
= q do

if n < f((r + 1 + q)/2) then
q := (r + 1 + q)/2− 1

else
r := (r + 1 + q)/2

end
end

15.11.4 Instantiation
The development we have done in this example is interesting because it is generic. By
this, it is meant that is can be instantiated. For this, it is sufficient to provide some
values to the constants and to provide proofs that the proposed values are obeying the
properties that were given for these constants.

In our case, the constants to be instantiated are f , a, and b. The constant
n will remain as it is since it corresponds to the quantity for which we want
to compute the inverse function value. And the properties we have to prove for
the proposed instantiations are axm0_1 (f is a total function defined on N),
axm0_2 (f is an increasing function), axm1_3 (f(a) ≤ n), and axm1_4 (n <
f(b + 1)).

15.11.5 First instantiation
If we take for f the squaring function, then the computation will provide the square
root of n by defect. More precisely, we shall compute a quantity r such that:

r2 ≤ n < (r + 1)2

We have thus to prove that the squaring function is total and increasing, which
is trivial. Now, given a value n we have to find two numbers a and b such
that:

a2 ≤ n < (b + 1)2
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It is easy to see that a can be instantiated to 0 and b to n. As a result, we have for
free the following program calculating the square root of n:

square_root_program
r, q := 0, n;
while r 
= q do

if n < ((r + 1 + q)/2)2 then
q := (r + 1 + q)/2− 1

else
r := (r + 1 + q)/2

end
end

15.11.6 Second instantiation
If we take for f the function “multiply by m”, where m is a positive natural number,
then the computation will provide the integer division of n by m. More precisely, we
shall compute a quantity r such that:

m× r ≤ n < m× (r + 1)

We have thus to prove that this function is total and increasing, which is trivial. Now,
given a value n we have to find two numbers a and b such that:

m× a ≤ n < m× (b + 1).

It is easy to see that a can be instantiated to 0 and b to n (remember, m is a positive
natural number). As a result, we have for free the following program calculating the
integer division of n by m:

integer_division_program
r, q := 0, n;
while r 
= q do

if n < m× (p + 1 + q)/2 then
q := (r + 1 + q)/2− 1

else
r := (r + 1 + q)/2

end
end .
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A location access controller

The purpose of this chapter is to study yet another example dealing with a complete
system like the one we studied in Chapter 2, where we controlled cars on a bridge, and
in Chapter 3, where we studied a mechanical press controller. The system we study now
is a little more complicated than the previous ones. In particular, the mathematical
data structure we are going to use is more advanced. Our intention is also to show that
during the reasoning on the model we shall discover a number of important missing
points in the requirement document.

16.1 Requirement document
We shall construct a system which will be able to control the access of certain people
to different locations of a “workplace”; for example, a university campus, an industrial
site, a military compound, a shopping mall, etc. Thus:

The system concerns people and locations FUN-1

The control takes place on the basis of the authorization that each person concerned
is supposed to possess. This authorization should allow him, controlled by the system,
to penetrate into certain locations, and not into others. For example, a certain person
p1 is authorized to enter location l1 and not location l2 ; however, another person p2

is allowed to enter both locations. These authorizations are given on a “permanent”
basis; in other words, they will not change during a normal functioning of the system:

People are permanently assigned the authorization to access certain locations FUN-2

481
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A person who is in a location must be authorized to be there FUN-3

When someone is inside a location, his eventual exit must also be controlled by the sys-
tem, so as to be able to know at any moment who is inside a given location. Each person
involved receives a magnetic card with a unique identifying sign, which is engraved on
the card itself:

Each person receives a personal magnetic card EQP-1

Card readers are installed at each entrance and at each exit of the locations concerned.
Near to each reader, two control lights can be found: a red one and a green one. Each
one of these lights can be on or off:

Each entrance and exit of a location is equipped with a card reader EQP-2

Each card reader has two lights: one green light and one red light EQP-3

Each light can be “on” or “off”. EQP-4

The transfer of people from one location to another takes place thanks to “turnstiles”
which are normally blocked; nobody can get through them without being controlled
by the system, any person getting through is detected by a sensor:

Locations communicate via one-way turnstiles EQP-5

Each turnstile is dedicated to a single task, either entry or exit; there are no “two-way”
turnstiles. Turnstiles and card readers are illustrated in Fig. 16.1.

A sensor detects the passage of a person through a turnstile EQP-6
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red (on/off)

green (on/off)

fenceTurnstile

Fig. 16.1. Turnstile and card reader

Turnstiles are normally blocked FUN-4

The entry or the exit of a location follows a systematic procedure composed of a suite
of events. A person wishing to enter or exit a location puts his card into the card reader
on the appropriate turnstile. We are then faced with the following two alternatives:

1. If the person is authorized to pass through the turnstile, the green control light is lit
and the turnstile is opened within 30 seconds. We are now faced with the following
situation:
• As soon as the individual gets through the turnstile within the 30 seconds limit,

the green control light goes out immediately and the turnstile is blocked.
• If, however, 30 seconds go by without anybody going through the turnstile, the

control light goes out and the turnstile is also blocked.
2. If the person is not authorized to pass through the turnstile, the red control light

goes on for two seconds and, of course, the turnstile remains blocked.

A person willing to pass through a turnstile puts his/her card in the
fence of the card reader FUN-5

If the person is accepted, the green light is lit and the turnstile is unblocked
for at most 30 seconds. FUN-6
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If the person is not accepted, the red light is lit for 2 seconds and the
turnstile remains blocked FUN-7

As soon as an accepted person has gone through an unblocked turnstile,
the green light is turned off and the turnstile is blocked again FUN-8

If nobody goes through an unblocked turnstile during the 30 seconds
period, the green light is turned off and the turnstile is blocked again FUN-9

16.2 Discussion
The above informal presentation of the system does not pretend to be complete, or
to have raised all the technical options. Indeed, it is merely the minimal starting
point for the realization of the future control software, but clearly there remain many
unknowns concerning, among others, the hardware and its links with the software. We
give precisions hereafter as to the role of the study which we shall undertake during
the construction of the formal model.

16.2.1 Sharing out of the control
An important question which should be asked at the outset about such a system
concerns the distribution, which is more or less important, of control between the
software and the diverse peripherals (turnstiles, readers).

For example, there can be a computer at each turnstile; in this case, the control
is entirely decentralized. Inversely, a single computer can entirely centralize the con-
trol. Of course, there are intermediate situations in which each turnstile has a certain
form of autonomy; an example consists in equipping each turnstile with a clock which
conditions part of its behavior.

16.2.2 Construction of a closed model
In any case, technical argumentation which can lead to such and such a decision can
only be realized by analyzing the system as a whole. It is to be noted that this tech-
nical argumentation must also be nourished by information concerning the equipment
available on the market (it can also be decided to utilize new equipment).
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For this we shall therefore build a closed model of our future system and prove
that its characteristic properties (which will have to be precisely explained) are in fact
assured.

16.2.3 Behavior of the equipment
An important result of this study concerns the behavioral specification of the different
equipment. So as to conduct this study correctly, we will be obliged to introduce into
the model a certain amount of supposition concerning the equipment. For example, does
the turnstile block of its own accord after the pass of a single person, or does it block
only after the reception of an order from the software? Of course, the chosen option will
condition the organization of the software. This option makes up a hypothesis under
which the software can function correctly.

Thus, it will be necessary to make a certain number of choices concerning the behav-
ior of the equipment. These choices will result, among other things, in the definition
of a receipt procedure aimed at verifying that all the equipment that has been in-
stalled has in fact the expected qualities. If this were not the case, it is clear that the
union of the software and the hardware would have no chance of working correctly
as had been demonstrated in the model. This demonstration will therefore have been
useless.

16.2.4 Tackling safety questions
An important question which is not tackled at all in the requirement document concerns
the safety of people implicated in this system. We would like the model to inform us on
this point, or at least that it asks a certain number of pertinent questions. For example,
can people be blocked for ever in a location? How can we guarantee the contrary?

16.2.5 Synchronization problems
On a more technical level, the informal presentation says nothing about the details
of the timing of the transfer operation. For example, what time-lag is there between
the lighting up of the green control light, the acceptance of the turnstile and the start
of the 30 second countdown? Could the green light go on while the turnstile is still
blocked, or could it go out while the turnstile is still accepted?

The question is not so much to find out if the previous behavior is good or bad, it
is rather to recognize the existence of a certain behavior and to know in advance if it
can occur (even in a fugitive form) in the final system which will be installed.
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16.2.6 Functioning at the limits
Another question not treated in the requirement document is what happens when the
system functions “at the limits”. For example, what is the reaction of the system when
a card is introduced into the reader, whilst the green or red lights are still lit (that is to
say, before the preceding action is finished)? More generally, we would like to be able
to understand and predict how the system reacts when faced with “hostile” behavior of
certain users. In this sort of system, we must not count upon hypotheses that rely too
much upon the “good” behavior of users. Some users certainly do behave in a “strange”
way.

16.3 Initial model of the system
We are now going to proceed to the initial formal description of our system by con-
structing a first, very abstract, model in which the separation between the software
and the hardware is not the current issue.

In this first model, we introduce the set P of people and the set L of locations as
carrier sets. We remind the reader that a carrier set has the implicit unique property of
being non-empty. We introduce a constant aut denoting the authorization permanently
given to people; it is a binary relation built on the sets P and L as stated in axm0_1.
We also introduce a special location, out, denoting the outside. We ensure in axm0_3
that everyone is authorized to be in location out!

Finally, we introduce a variable, sit, denoting the location where each person is. Note
that this is a total function as stated in inv0_1: a person cannot be in two locations
at a time and a person is always somewhere (thanks to out). Finally, the main property
of our system is stated in invariant inv0_2: every person, which in a certain location,
is authorized to be there. This invariant formalizes requirement FUN_3. Here is our
initial formal state:

sets: P
L

constants: aut
out

axm0_1: aut ∈ P ↔ L

axm0_2: out ∈ L

axm0_3: P × {out} ⊆ aut

variables: sit
inv0_1: sit ∈ P → L

inv0_2: sit ⊆ aut
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Initially, everyone is outside as indicated in event init. We have a unique normal event,
pass, corresponding to a person going from one location to another different one:

init
sit := P × {out}

pass
any p, l where

p → l ∈ aut
sit(p) 
= l

then
sit(p) := l

end

To illustrate this, let us suppose that we have four locations l1, l2, l3, and l4 and three
people p1, p2, and p3 together with the following authorizations:

p1 l2, l4

p2 l1, l3, l4

p3 l2, l3, l4

The following situations can therefore represent a satisfying evolution of the system
since, as can be noted, invariant inv0_1 and inv0_2 are respected:

p1 l4

p2 l4

p3 l4

Situation 1

p1 l2

p2 l4

p3 l4

Situation 2

p1 l2

p2 l1

p3 l4

Situation 3

p1 l4

p2 l1

p3 l4

Situation 4

p1 l4

p2 l1

p3 l3

Situation 5

It is easy to prove that the invariants are well preserved by the above transitions when
they happen. It is to be remarked that the event pass is very abstract; we do not
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know by which process the person p enters the location l. Neither do we know if the
location, in which the person p is, communicates with location l, in which he wishes
to go. In fact, we cannot express this property because we have not yet formalized the
“geometry” of the locations.

The only important element of the present model is the expression of fundamental
rules of the system in invariant inv0_1 and inv0_2, and the proof that the unique
observable and interesting event at this level (pass) maintains these conditions. We are
already sure that the future models will respect these conditions, if, of course, we can
prove that they constitute correct refinements of the present model.

16.4 First refinement
16.4.1 State and event

We are now going to proceed to our first refinement, which will consist in introducing
into the model the notion of possible direct communication between two locations.
For this, we introduce a new constant, com, denoting the direct communication be-
tween two locations. This is a binary relation built on the set L. A location does not
“communicate” with itself as stated in axm1_2:

constants: . . .
com

axm1_1: com ∈ L↔ L

axm1_2: com ∩ id = ∅

The initialization event does not change, and the event pass is refined in a straight-
forward way; we stipulate that a person can move to another location l if it has the
authorization to be in l (as already stated in the abstraction) and also if location l
communicates with the location where p is now, that is sit(p):

init
sit := P × {out}

pass
any p, l where

p → l ∈ aut
sit(p) → l ∈ com

then
sit(p) := l

end

This event is quite simply a refinement of the previous version because the action is
identical in both cases (sit(p) := l) and the guard of the second is stronger than that
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of the first as we have:

sit(p) → l ∈ com ⇒ sit(p) 
= l

since a location cannot communicate with itself according to axm1_2.

16.4.2 Deadlock freeness
It must now be proved that, in the absence of new events in this refinement, the
concrete event pass does not happen less often than its abstract homologue (we recall
that this is a necessary condition of the refinement). In fact, we are obviously faced
with a difficulty here; it is not possible to prove that the refined event pass does not
happen less often than its more abstract homologue. To demonstrate this, we would
have to prove that the guard of the abstract event implies that of the concrete event;
that is,

∃ p, l · p → l ∈ aut ∧ sit(p) 
= l � ∃ p, l · p → l ∈ aut ∧ sit(p) → l ∈ com

It is clear that this condition cannot be verified in general. A counter-example is easy
to exhibit. Suppose we only have one person, p, in our system, and suppose that p is
in a location sit(p) where it is possible to enter (p did it). Now if this location has
no exit, then p cannot leave it for another location l, although it could do it in the
abstraction because the constraints about communication between locations did not
exist.

The failure to prove the above condition indicates that there are possibilities that
some people could stay permanently blocked in locations. And to be more precise, this
could be the case even if this possibility did not exist in the abstraction, that is to
say even if the authorizations are well defined to begin with so that it cannot happen.
In fact, the geometry of communication between locations clearly adds an additional
constraint limiting the way people can move.

Indeed, if a person is in a location l and has no authorization allowing him to be in
any of the locations which communicate with l, then that person is blocked in l. The
impossibility to make the above proof has brought up a safety problem, which can be
set out in the form of a safety requirement which the system must satisfy:

No persons must remain blocked in a location SAF-1

Notice that, what is stated here is stronger than what would have been needed, strictly
speaking, to allow us to perform the proof that failed. That weaker statement would
have been the following: “The geometry of locations does not introduce additional
possibilities of blockage beyond those already present without this constraint.” As a
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matter of fact, the mathematics of our approach has revealed a problem that gives
us the idea of a wider safety question that was totally ignored in the requirement
document.

16.4.3 A first solution
So we must find a sufficient constraint so that this requirement SAF-1 is practically
satisfied. The previous proof obligation, namely:

∃ p, l · p → l ∈ aut ∧ sit(p) 
= l � ∃ p, l · p → l ∈ aut ∧ sit(p) → l ∈ com,

will serve as a model for this constraint. It is sufficient to prove the consequence of this
implication:

∃ q, m · q → m ∈ aut ∧ sit(q) → m ∈ com

which can be re-written as:

(aut ∩ (sit; com)) 
= ∅

or, in an equivalent way:

((aut; com−1) ∩ sit) 
= ∅.

So as to prove this condition, it is sufficient to prove the following (since the condition
P 
= ∅ implies that the total function sit is not empty):

sit ⊆ (aut; com−1).

What does this condition say? If we develop it, we obtain:

∀p · ∃l · ( p → l ∈ aut ∧ sit(p) → l ∈ com ).

In other words, the location sit(p), in which each person p is situated at any moment,
is in communication with at least one other location, l, in which p is authorized to go:
the person p can therefore go out of the the location sit(p), in which he is, via l.

This condition could be imposed as a new invariant of the system; however, it would
be necessary to reinforce the guard for the pass event so as to admit in any one location
only the people authorized to enter it (this is already the case), and who would also
be authorized to exit. If faced with an interdiction, the authorization to enter such
a location, which the person concerned would hold, would not be of much use since
access would be refused anyway. So, it would be preferable to have a (sufficient) con-
dition which would be independent of the situation of people. Indeed, this is possible,
because we already have the invariant property sit ⊆ aut. So as to prove the condition
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sit ⊆ (aut; com−1) above, it is sufficient to prove the following, by transitivity of the
inclusion:

aut ⊆ aut; com−1

This condition makes up a further invariant, which can be translated as follows:

∀ p, l · p → l ∈ aut ⇒ (∃m · p → m ∈ aut ∧ l → m ∈ com ).

The interpretation of this invariant is quite instructive; it can be remarked that when-
ever the pair p → l belongs to aut (the person p could therefore be in the location l
since he is authorized to be there), there is a location m such as p → m belongs to
aut (the same person p is therefore authorized to enter the location m) and, more-
over, such that the pair l → m belongs to com (so the two locations l and m do
communicate). When all is said and done, the person p, who could be in the lo-
cation l, would not remain blocked indefinitely since he is also authorized to enter
the location m which communicates with l. So this person can leave l via m. As
can be seen, requirement SAF-1 has now been satisfied thanks to a stronger require-
ment whose expression has been determined (calculated) before being expressed as
follows:

Any person authorized to be in a location must also be authorized to go
in another location which communicates with the first one. SAF-2

16.4.4 Second solution
Note that the previous solution is not satisfactory. It should be widened to guaran-
tee that any person in a location, cannot only go out of it but, more generally, can
also get outside. For this we extend our constant by introducing a function, exit,
connecting locations to locations and defined at every location except out (this is
property axm1_3 below). More precisely, exit defines a tree structure. As a conse-
quence, we can copy the tree axioms as defined in Section 7.6 of Chapter 9. More-
over, exit must be compatible with com (axm1_5). Finally, we must state that
people must be authorized to follow the exit sign (axm1_6). All this leads to the
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following axioms:

constants: . . .
exit

axm1_3 : exit ∈ L \ {out}→ L

axm1_4 : ∀s · s ⊆ exit−1[s] ⇒ s = ∅

axm1_5 : exit ⊆ com

axm1_6 : aut �− {out} ⊆ aut ; exit−1

The last property could be promoted to a requirement replacing the one we defined
above:

Any person authorized to be in a location which is not “outside”, must also
be authorized to be in another location communicating with the former
and leading towards outside.

SAF-3

16.4.5 Revisiting deadlock freeness
Earlier, we proved that people who are in any location (except “outside”) can always go
outside. But we have not proved that we have no deadlock for people who are outside!
We must prove that people can enter into the building. This is formalized by means of
the following additional property:

axm1_7 : ∀p · p ∈ P ⇒ (∃l · p → l ⊆ aut ∧ out → l ∈ com )

16.5 Second refinement
16.5.1 State and events

During this second refinement, we are going to introduce one-way doors to communicate
from one location to another. The formalization goes through the introduction of a new
carrier set D which makes models of the doors. Each door is associated with a location
of origin, represented by the total function org (property axm2_1) and a destination
location represented by the total function dst (property axm2_2). For all these doors,
the locations of origin and destination represent exactly the pairs of locations implied
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in the relation com introduced during the previous refinement (property axm2_3).
This is formalized as follows:

sets: . . .
D

constants: . . .
org
dst

axm2_1 : org ∈ D→ L

axm2_2 : dst ∈ D→ L

axm2_3 : com = (org−1 ; dst)

We introduce three new variables in this refinement, namely dap, grn, and red. The
variable dap is a partial function from the set P of persons to the set D of doors:

variables: . . .
dap

inv2_1 : dap ∈ P � D

inv2_2 : (dap ; org) ⊆ sit

inv2_3 : (dap ; dst) ⊆ aut

It corresponds to the temporary connection that exists between a person p willing to
go through a door d, but who has not passed yet through the door d. This connection
exists between the moment where that person is “accepted” by the door (new event
accept) and the subsequent moment where either that person passes through the door
(event pass) or the 30 seconds delay is over (new event off_grn). The variable dap
is a function (invariant inv2_1) because we do not want a person to be involved
with more than one door at a time (since otherwise some additional people could be
admitted into locations without cards). And it is also an injective function (invariant
inv2_1) because we do not want to have a door involved with more than one person
at a time (since otherwise people could be confused with the meaning of the green and
red lights). Moreover, the origin of the door involved in this relationship correspond to
the actual situation of the person (invariant inv2_2) and the destination of the door
is a location where the person is authorized to be (invariant inv2_3):

The other two variables grn and red denote the subsets of the doors where the green
or red light is lit (invariants inv2_4 and inv2_5). Note that the set of green doors
exactly corresponds to the range of the variables dap (invariant inv2_6). Also notice
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that both lights cannot be lit simultaneously (invariant inv2_7):

variables: . . .
grn
red

inv2_4 : grn ⊆ D

inv2_5 : red ⊆ D

inv2_6 : grn = ran(dap)

inv2_7 : grn ∩ red = ∅

We have two new events, accept and refuse, defined below:

accept
any p, d where

p ∈ P
d ∈ D
d /∈ grn ∪ red
sit(p) = org(d)
p → dst(d) ∈ aut
p /∈ dom (dap)

then
dap(p) := d
grn := grn ∪ {d}

end

refuse
any p, d where

p ∈ P
d ∈ D
d /∈ grn ∪ red

¬ ( sit(p) = org(d)
p → dst(d) ∈ aut
p /∈ dom (dap) )

then
red := red ∪ {d}

end

Both events involve a person p and a door d where red and green lights are both off.
Event pass has three additional guards which make the door d possibly accept the
person p: (1) person p must be situated at the origin of d, (2) person p is authorized
to be at the destination of d, and finally (3) person p is not already involved with a
door. Event refuse has an additional guard which is the negation of the conjunction of
the three previous guards.
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Next are the definitions of two new events, off_grn and off_red, and also the refine-
ment of the abstract event pass:

off_grn
any d where

d ∈ grn
then

dap := dap �− {d}
grn := grn \ {d}

end

off_red
any d where

d ∈ red
then

red := red \ {d}
end

pass
any d where

d ∈ grn
with

p = dap−1(d)
l = dst(d)

then
sit(dap−1(d)) := dst(d)
dap := dap �− {d}
grn := grn \ {d}

end

Event off_grn corresponds to the green light being put off when the 30 seconds delay
has passed. Event off_red corresponds to the red light being put off when the 2 seconds
delay has passed. Event pass corresponds to the person p associated with a green door
d passing through that door. The person p in question is dap−1(d). The green light of
d is put off and the association between p and d is removed.

16.5.2 Synchronization
As illustrated in the following diagram, the synchronization between the different events
is quite weak for the moment.

accept refuse

↙ ↘ ↓

pass off_grn off_red

16.5.3 Proofs
It is easy to prove that the new version of the event pass refines its abstraction. It is
also easy to prove that the new events all refine the event which does nothing, skip.
Two things remain to be proved:

(1) that the event pass does not happen less often than its abstraction, taking into
account, of course, the new events;
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(2) that the new events cannot take control indefinitely, thus preventing the event pass
from taking place.

In fact, the proof of (1) is relatively easy; however that of (2) is quite simply impossible.
We have here a new difficulty which we will have to investigate and probably correct
by additional requirements.

16.5.4 Risk of permanent obstruction of card readers
Taking into account the initial informal presentation, we now know that the event
pass envisaged above is not the only “basic” event that can be observed. We know
that the entrance of a person can be refused and also that a person who wishes to
enter a location can change his mind just before passing – in this last case the door
is automatically blocked again after 30 seconds. This corresponds to the events refuse
and off_grn envisaged above.

However, during their introduction, it must be proved that these two events cannot
prevent indefinitely the event pass from happening (that is to say, their guards are not
indefinitely true at the same time as those of the event pass), which, in theory rather
than in practice, is not impossible.

Indeed, we can imagine observing strange behavior of the system where nobody could
ever enter the locations, either because people without the necessary authorizations
keep trying to get in, or because other people, who are authorized put their cards in
the reader but change their minds at the last minute. So as to prove that this behavior
is not indefinitely possible, we must propose something to prevent them.

16.5.5 Propositions for preventing permanent obstruction
A first way of proceeding would be to formalize a mechanism whereby the “system”
(at large) would force, in one way or another, people who are not allowed to access a
location not to keep on trying indefinitely to get in (meeting indefinitely with refuse).
In the same way, should the system force, in one way or another, those who have the
right not to give up at the last minute (thus provoking indefinitely a new blockage)?
This type of drastic behavior, in all evidence, is not part of the specification of the
system we are analyzing.

A second way of proceeding, more gentle but also more efficient, would consist in
eliminating from the system people who tend to behave in this way too frequently. They
would simply no longer be allowed to enter any location at all. Their authorization to
enter any location at all would be taken away. These people would therefore be confined
to the location in which they find themselves, for example “outside”. This is very easy
to formalize and then to realize; moreover, this is the situation to be found in most
smart card systems. For example, after three successive unfruitful tries with a cash
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dispenser, the card is “snatched”, which is a very efficient way of preventing the person
in question from blocking indefinitely access to the dispenser. Note however that such a
drastic solution has its drawbacks in our case: the person whose card has been removed
simply cannot leave the location where this has happened, causing yet another safety
problem.

16.5.6 Final decision
We decide not to envisage this last possibility which would make the card readers
too complicated (too expensive) and would introduce an additional safety problem.
In other words, we accept, for financial (and safety) reasons, a risk of indefinite ob-
struction, which, despite everything, will probably never happen in reality. In other
words, the system we are going to construct will not prevent people from blocking
doors indefinitely either by trying indefinitely to enter locations into which they are
not authorized to enter, or by abandoning “on the way” their intention to enter the
locations in which they are in fact authorized to enter.

Clearly, the system we are going to construct is thus not totally correct according
to our theoretical criteria. We accept this, but, and this is very important, we have
taken great care to make it known, and to point it out explicitly by a clearly expressed
decision.

16.6 Third refinement
16.6.1 Introducing the card readers

We now introduce the card readers into the model. This is the first time we will have
been taking into account such a material element. This device can be characterized
by: (i) the capture of information which is read on the card introduced by the user
and (ii) the expedition of this information towards the controlling computer by means
of a networked message. Moreover, when a card is read, it can be supposed that the
reader is physically blocked (the slot is obstructed) until it receives an acknowledgement
message coming from the control system.

All this corresponds to the following behavioral decision for card readers: each card
reader is supposed to stay physically blocked (slot obstructed) between the moment
when the contents of a card is sent to the system and the reception by this reader
of the corresponding acknowledgement. This comes when the pass protocol has been
entirely completed (successfully or not).

By this decision, we are making sure that no-one will be able to introduce a card
into a reader at random. It is to be noted that we must pay a certain price for this,
that of the installation of readers with obstructable slots (they do not all belong to
this category).
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16.6.2 Assumptions concerning the communication network
We will only make minimal assumptions concerning the forwarding of messages through
the network. For example, we suppose that the network does not guarantee that the
messages be received in the order in which they have been sent. However, it can be
supposed that the messages sent along the network are not lost, or modified, or du-
plicated. Of course, we could take into account these particular constraints, but then
the model would be more complicated. In any case, such constraints would only be
introduced during ulterior refinements.

16.6.3 Variables and invariant
We will identify in the model each physical reader with the door it is associated with.
Therefore, it is not necessary to have a particular set for the readers. The set of blocked
readers is represented by a subset of doors which we will name BLR (for blocked
readers). This is invariant inv3_1 below.

The messages which are sent from the readers towards the control system are “door-
person” pairs represented collectively by the variable mCard (each one of these pairs
d → p represents what the reader associated with the door d has read on the card of
the person p). They make up a partial function from the set D of doors to the set P
of persons (invariant inv3_2); intuitively, this comes from the fact that no reader can
implicate more than one person in the messages it sends because its slot is obstructed
as seen above. However, this is not an injective function because nothing prevents a
person from sliding his card into another reader when he has not gone through the
door associated to the first one and the 30 seconds corresponding to this are not over
(this is a case of strange behavior that cannot be eliminated).

Lastly, the set of acknowledgement messages is represented by the set mAckn, which
is therefore a subset of doors (invariant inv3_3). These elements are formally defined
as follows:

variables: . . .
BLR
mCard
mAckn

inv3_1 : BLR ⊆ D

inv3_2 : mCard ∈ D → P

inv3_3 : mAckn ⊆ D

While a reader is obstructed, the door in question is in one of the four following exclu-
sive situations: (1) it is consigned in an input message as yet untreated by the system,
(2) its green light is on, (3) its red light is on, (4) it is consigned in an acknowledge-
ment message as yet untreated by the reader. These different states characterize the
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progression of the information through the system. They correspond to the following
supplementary invariants:

inv3_4 : dom (mCard) ∪ grn ∪ red ∪ mAckn = BLR

inv3_5 : dom (mCard) ∩ (grn ∪ red ∪ mAckn) = ∅

inv3_6 : mAckn ∩ (grn ∪ red) = ∅

Since we already know that the sets grn and red are disjoint (this is invariant inv2_7),
we can say that the four sets dom (mCard), grn, red, and mAckn form a partition of
the set BLR.

16.6.4 Events
The new event we are introducing at this stage is the one that corresponds to the
reading of a card. It is a “physical” event:

CARD
any p, d where

p ∈ P
d ∈ D \BLR

then
BLR := BLR ∪ {d}
mCard := mCard ∪ {d → p}

end

Note the the guard d ∈ D\BLR indicates that no card can be introduced in the reader
while it is blocked. This is a “physical” guard.

We can now find the refinements of two events accept and refuse. They are almost
identical to their previous versions except that now the implied elements p and d are
those read on a message coming from a card reader:
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accept
any p, d where

d → p ∈ mCard
sit(p) = org(d)
p → dst(d) ∈ aut
p /∈ dom (dap)

then
dap(p) := d
grn := grn ∪ {d}
mCard := mCard \ {d → p}

end

refuse
any p, d where

d → p ∈ mCard
¬ ( sit(p) = org(d)

p → dst(d) ∈ aut
p /∈ dom (dap) )

then
red := red ∪ {d}
mCard := mCard \ {d → p}

end

Note that the message d → p, once read, is removed from the “channel” mCard. The
event pass is almost identical to its previous versions. The reading of the card is only
confirmed by the dispatch of the corresponding acknowledgement message towards the
corresponding reader by means of the “channel” mAckn:

pass
any d where

d ∈ grn
then

sit(dap−1(d)) := dst(d)
dap := dap �− {d}
grn := grn \ {d}
mAckn := mAckn ∪ {d}

end

Likewise the two events off_grn and off_red also contain the dispatching of an ac-
knowledgement message to the card reader.

off_grn
any d where

d ∈ grn
then

dap := dap �− {d}
grn := grn \ {d}
mAckn := mAckn ∪ {d}

end

off_red
any d where

d ∈ red
then

red := red \ {d}
mAckn := mAckn ∪ {d}

end
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Lastly, a new physical event ACKN closes the protocol by unblocking the corresponding
reader:

ACKN
any d where

d ∈ mAckn
then

BLR := BLR \ {d}
mAckn := mAckn \ {d}

end

16.6.5 Synchronization
The various events of this refinement are now synchronized as follows:

CARD

↙ ↘

accept refuse

↙ ↘ ↓

pass off_grn off_red

↘ ↓ ↙

ACKN

16.6.6 Proofs
The proof of this refinement does not induce any particular problem.

16.7 Fourth refinement
16.7.1 Decisions concerning the physical doors

We are now introducing the physical controls of the door (blocking and acceptance)
as well as those for the detection of pass. We are also taking the following decision
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concerning “local” behavior of doors: when a door has been cleared, it blocks itself
automatically without any intervention from the control system.

We are also making another important decision, which is the following: it is supposed
that each door incorporates a local clock which assures temporized blocking after 30
seconds together with the extinction of the green light, or the extinction of the red
light after 2 seconds.

16.7.2 Variables and invariant: the green chain
The formalization takes place thanks to a certain number of new variables. First the
set mAccept of messages sent by the control system to accept the doors. As we have
seen above with the card readers, the set of accepted doors is introduced: it is called
GRN since it corresponds to the doors whose green light is physically on. Then we have
the set mPass of messages sent by each door after detection of clearing. Lastly, we
have the set mOff_grn of messages sent by the doors to signal automatic re-blocking
after 30 seconds. The following invariant is obtained:

variables: . . .
GRN
mAccept
mOff_grn
mPass

These sets are exclusive and their union is equal to the set grn of doors whose green
light is logically on. As in the previous section, these properties show the progression
of the information. Also notice that GRN is included in mAccept:

inv4_1 : mAccept ∪ mPass ∪ mOff_grn = grn

inv4_2 : mAccept ∩ (mPass ∪ mOff_grn) = ∅

inv4_3 : mPass ∩ mOff_grn = ∅

inv4_4 : GRN ⊆ mAccept

As can be seen, it is possible for a door to be logically green while it is not yet or not
any more physically green. Moreover, invariant inv4_1 makes the variable grn useless
in this refinement.
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16.7.3 Variables and invariant: the red chain
In a completely symmetrical way to the “green chain”, we are now going to study
the “red chain”. The following variables are to be found. First the set mRefuse of
messages used to send to a door the order to put on its red light. Then the set
RED of doors whose red light is physically on. Finally, we have the set of messages
mOff_red used for sending the corresponding information to the part of the software
concerned with the extinction of the red light. These last messages are sent automat-
ically by the door 2 seconds after the red light goes on. The following invariant is
obtained:

variables: . . .
RED
mRefuse
mOff_red

These sets are exclusive and their union is equal to the set red of doors whose red
lights are logically on. As before, these properties show the progression of information.
Moreover RED is included in mRefuse:

inv4_5 : mRefuse ∪ mOff_red = red

inv4_6 : mRefuse ∩ mOff_red = ∅

inv4_7 : RED ⊆ mRefuse

As can be seen, it is possible for a door to be logically red while it is not yet or not
any more physically red. Moreover, invariant inv4_5 makes the variable red useless
in this refinement.

16.7.4 The events
Let us now consider the events. Those which correspond to card readers which have
not been changed in this refinement will not be copied here. Inversely, the event accept
has been slightly modified. The sending of a physical acceptance message to the doors
has been added:
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accept
any p, d where

d → p ∈ mCard
sit(p) = org(d)
p → dst(d) ∈ aut
p /∈ dom (dap)

then
dap(p) := d
mCard := mCard \ {d → p}
mAccept := mAccept ∪ {d}

end

We now find the physical event of acceptance to a door and the physical lighting of a
green light:

ACCEPT
any d where

d ∈ mAccept
then

GRN := GRN ∪ {d}
end

It is interesting to remark on the gap between the logical acceptance of the door (accept
event in the software) and the physical acceptance (event ACCEPT of the hardware).
This gap evokes a major problem of distributed systems which is that of distinguishing
between the intention (software) and the real action (hardware). We now find the
physical event corresponding to the clearing of the door. Note that the door does not
“know” who is clearing it.

PASS
any d where

d ∈ GRN
then

GRN := GRN \ {d}
mPass := mPass ∪ {d}
mAccept := mAccept \ {d}

end

This physical pass is followed by a logical pass which is almost identical to its version
during the previous refinement. The only difference corresponds to the fact that the



16.7 Fourth refinement 505

launching of this event is now due to the reception of a message. It is to be noted here
that the event pass “knows” who is passing; we are dealing with the person implied
in acceptance of the door. Once again we may note a gap between physical detection
(PASS event of the hardware) and its logical effect (pass event of the software):

pass
any d where

d ∈ mPass
then

sit(dap−1(d)) := dst(d)
dap := dap �− {d}
mAckn := mAckn ∪ {d}
mPass := mPass \ {d}

end

The event which consists in physically blocking the door (from a clock supposedly
inside the door which starts up 30 seconds after its acceptance if no one has cleared it
in the meantime) is the following. The message of re-blocking is sent to the software.

OFF_GRN
any d where

d ∈ GRN
then

GRN := GRN \ {d}
mOff_grn := mOff_grn ∪ {d}
mAccept := mAccept \ {d}

end

Finally, we can find a new version of the event off_grn, which gets underway on recep-
tion of the previous message.

off_grn
any d where

d ∈ mOff_grn
then

dap := dap �− {d}
mAckn := mAckn ∪ {d}
mOff_grn := mOff_grn \ {d}

end
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The event refuse is slightly modified so as to allow a message concerning the lighting
of the red light to be sent:

refuse
any p, d where

d → p ∈ mCard
¬ ( sit(p) = org(d)

p → dst(d) ∈ aut
p /∈ dom (dap) )

then
mCard := mCard \ {q → p}
mRefuse := mRefuse ∪ {q}

end

The first hardware event after this corresponds to the reception of the previous message
and the effective lighting up of the red light. The automatic extinction of the red light
after 2 seconds corresponds to the following second event which sends a message to the
software so as to warn it:

REFUSE
any d where

d ∈ mRefuse
then

RED := RED ∪ {d}
end

OFF_RED
any d where

d ∈ RED
then

RED := RED \ {d}
mOff_red := mOff_red ∪ {d}
mRefuse := mRefuse \ {d}

end

The event off_red is slightly modified as regards its previous version; it is now set off
by the reception of the previous message:

off_red
any d where

d ∈ mOff_red
then

mAckn := mAckn ∪ {d}
mOff_red := mOff_red \ {d}

end
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16.7.5 Synchronization
We now obtain the following complete synchronization between the software and the
hardware:

CARD

↙ ↘

accept refuse

↓ ↓

ACCEPT REFUSE

↙ ↘ ↓

PASS OFF_GRN OFF_RED

↓ ↓ ↓

pass off_grn off_red

↘ ↓ ↙

ACKN
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Train system

17.1 Informal introduction
The purpose of this chapter is to show the specification and construction of a complete
computerized system. The example we are interested in is called a train system. By
this, we mean a system that is practically managed by a train agent, whose role is to
control the various trains crossing part of a certain track network situated under his
supervision. The computerized system we want to construct is supposed to help the
train agent in doing this task.

Before entering in the informal description of this system (followed by its formal
construction), it might be useful to explain the reason why we think it is important to
present such a case study in great detail. There are at least four reasons which are the
following:

(i) This example presents an interesting case of quite complex data structures (the
track network), whose mathematical properties have to be defined with great care:
we want to show that this is possible.

(ii) This example also shows a very interesting case where the reliability of the final
product is absolutely fundamental: several trains have to be able to cross the
network safely under the complete automatic guidance of the software product we
want to construct. For this reason, it will be important to study the bad incidents
that could happen and which we want either to avoid completely or manage
safely. In this chapter, however, we are more concerned by fault prevention than
fault tolerance. We shall come back to this in the conclusion.

(iii) The software must take account of the external environment that is to be carefully
controlled. As a consequence, the formal modeling we propose here will contain
not only a model of the future software we want to construct, but also a detailed
model of its environment. Our ultimate goal is to have the software working in
perfect synchronization with the external equipment, namely the track circuits,
the points (switches), the signals, and also the train drivers. We want to prove

508
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that trains obeying the signals, set by the software controller, and then (blindly)
circulating on the tracks whose points have been positioned, again by the software
controller, will do so in a completely safe manner.

(iv) Together with this study, the reader will be able to understand the kind of method-
ology we recommend. It should be described, we hope, in sufficiently general terms
so that he will be able to use this approach in similar examples.

We now proceed with the informal description of this train system together with
its informal (but very precise) definitions and requirements. We first define a typical
track network, which we shall use as a running example throughout the chapter. We
then study the two main components of tracks, namely points (switches) and crossings.
The important concepts of blocks, routes, and signals are then presented together with
their main properties. The central notions of route and block reservations are proposed.
Safety conditions are then studied.This is followed by the complementary train moving
conditions, allowing several trains to be present in the network at the same time. We
propose a number of assumptions about the way trains behave. Finally, we present
possible failures that could happen and the way such problems are solved.

The formal development (model construction) is preceded by the refinement strategy
we shall adopt in order to proceed in a gentle and structured manner. This is followed
by the formal model construction.

17.1.1 Methodological conventions for the informal presentation
In the following sections, we give an informal description of this train system, and,
together with this description, we state what its main definitions and requirements are.
Such definitions and requirements will be inserted as separate labeled boxes in the
middle of an explanatory text. These boxes must all together clearly define what is to
be taken into account by people doing the formal development. The various definitions
and requirements will be labeled according to the following taxonomy:

ENV Environment

FUN Functional

SAF Safety

MVT Movement

TRN Train

FLR Failure

• “Environment” definitions and requirements are concerned with the structure of the
track network and its components.
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• “Functional” definitions and requirements are dealing with the main functions of the
system.
• “Safety” definitions and requirements define the properties ensuring that no classical

accidents could happen.
• “Movement” definitions and requirements ensure that a large number of trains may

cross the network at the same time.
• “Train” definitions and requirements define the implicit assumptions about the be-

havior of trains.
• “Failure” definitions and requirements finally define the various failures against which

the system is able to react without incidents.

Here is our first very general requirement:

The goal of the train system is to safely control trains moving
on a track network FUN-1

17.1.2 Network associated with a controlling agent
Here is a typical track network that a train agent is able to control. In what follows,
we are going to use that network as a running example:

17.1.3 Special components of a network: points and crossings
Such a network contains a number of special components: these are the points and the
crossings as illustrated in the following figure (five points and one crossing).

a crossinga point
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A point is a device allowing a track to split in two distinct directions. A crossing,
as its name indicates, is a device that makes two different tracks cross each other. In
what follows, we briefly describe points and crossings.

A track network may contain some special components: points ENV-1
and crossings

Point A point special component can be in three different positions: left, right, or
unknown. This is indicated in the following figure.

A

B

C

left right

A

B
A C

B

unknown

C

Note that the orientation from A to C is sometimes called the direct track, whereas
the one from A to B is called the diverted track. In what follows, however, we shall
continue to call them right and left respectively as there is no ambiguity in doing so.

In the first two cases above, the arrow in the figure shows the convention we shall
use to indicate the orientation of the point. Note that these arrows do not indicate
the direction followed by a train. For example, in the first case, it is said that a train
coming from A will turn left, a train coming from B will turn right, and a train coming
from C will probably have some troubles! Also note that a train encountering a point
oriented in an unknown direction (third case) might have some trouble too, even more
if a point suddenly changes position while a train is on it (we shall come to this in
Section 17.1.8).

The last case is the one that holds when the point is moving from left to right or vice-
versa. This is because this movement is supposed to take some time; it is performed
by means of a motor which is part of the point. When the point has reached its final
position (left or right) it is locked, whereas when it is moving it is unlocked. Note,
however, that in the coming development, we shall not take this into account. In other
words, we shall suppose, as a simplification, that a point moves instantaneously and
that it is thus always locked; that is, the unknown case is not treated. We then just
require in this development that a point may have only two positions: left or right:

A point may have two positions: left or right ENV-2
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Crossing A crossing special component is completely static; it has no state as points
have. The way a crossing behaves is illustrated in the following figure: trains can go
from A to B and vice-versa, and from C to D and vice-versa.

D

B

A

C

17.1.4 The concept of block
The controlled network is statically divided into a fixed number of named blocks as
indicated in the following figure where we have 14 blocks named by single letters from
A to N :

A
B

D F G

H I J N

K

L

M

E

C

A track network is made of a number of fixed blocks ENV-3

Each block may contain at most one special component (points or crossings):

A special component (points or crossings) is always attached
to a given block. And a block contains at most one special ENV-4
component

For example, in our case, block C does not contain any special component, whereas
block D contains one point, and block K contains a crossing. Each block is equipped
with a, so-called, track circuit, which is able to detect the presence of a train on it.
A block can thus be in two distinct states: unoccupied (no train on it) or occupied
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(a train is on it).

A block may be occupied or unoccupied by a train ENV-5

In the following figure, you can see that a train is occupying the two adjacent blocks
D and K (this is indicated in the figure by the fact that the blocks in question are
emphasized).

A
B

D

H I J N

F G

K

L

M

E

C

Notice that when a train is detected in a block, we do not know a priori the precise
position of the train in it, nor do we know whether the train is stopped or moving.
Moreover, in the last case, we do not know in which direction the train is moving. But
all such information is not important for us; as will be seen in this development, it is
only sufficient for our purpose to know that a block is occupied or not.

17.1.5 The concept of route
The blocks defined in the previous section are always structured in a number of stati-
cally pre-defined routes. Each route represents a possible path that a train may follow
within the network controlled by the train agent. In other words, the routes define the
various ways a train can traverse the network. A route is composed of a number of
adjacent blocks forming an ordered sequence:

A network has a fixed number of routes. Each route is
characterized by a sequence of adjacent blocks ENV-6

A train following a route is supposed to occupy in turn each block of that route.
Note that a train may occupy several adjacent blocks at the same time (even a short
train). Also note that a given block can be part of several routes. All this is shown
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below in the following table where ten pre-defined routes are proposed:

R1 L A B C R6 C B A L

R2 L A B D E F G R7 G F E D B A L

R3 L A B D K J N R8 N J K D B A L

R4 M H I K F G R9 G F K I H M

R5 M H I J N R10 N J I H M

Besides being characterized by the sequence of blocks composing it, a route is also
statically characterized by the positions of the points which are parts of the corre-
sponding blocks. For example, route R3 (L A B D K J N) is characterized as
follows:

• the point in block B is positioned to right,
• the point in block D is positioned to right,
• the point in block J is positioned to right.

This is illustrated in the following figure where route R3 (L A B D K J N)
is emphasized. The little arrows situated next to the points of blocks B, D, and J
indicate their position:

A
B

D F G

H I J N

K

L

M

E

C

A route is also characterized by the positions of the points
which are situated in blocks composing it ENV-7
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Routes have two additional properties. The first concerns the first block of a route:

The first block of a route cannot be part of another route unless
it is also the first or last block of that route ENV-8

And the second one concerns the last block of a route:

The last block of a route cannot be part of another route unless
it is also the first or last block of that route ENV-9

At the end of the next section, we shall explain why the constraints we have presented
just now are important. Finally, a route has some obvious continuity property:

A route connects its first block to its last one in a continuous ENV-10
manner

and it has no cycle:

A route contains no cycles ENV-11

17.1.6 The concept of signal
Each route is protected by a signal, which can be red or green. This signal is situated
just before the first block of each route. It must be clearly visible from the train drivers:

Each route is protected by a signal situated just before its ENV-12
first block

When a signal is red, then, by convention, the corresponding route cannot be used
by an incoming train. Of course, the train driver must obey this very fundamental
requirement:

A signal can be red or green. Trains are supposed to stop ENV-13
at red signals
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In the next figure, you can see the signal protecting each route:

A
B

D

H I J N

F G

K

L

M

E

C

Notice that a given signal can protect several routes. For example, the signal situated
on the left of block L protects route R1 (L A B C), R2 (L A B D E F G),
and R3 (L A B D K J N); this is because each of these routes starts with the
same block, namely block L:

Routes having the same first block share the same signal ENV-14

In the previous figure and in the coming ones, we use the convention that a signal
situated to the left of its pole protects the routes situated on its right and vice-versa.
For example, the signal situated on the right-hand side of block C protects route R6,
namely (C B A L).

A last important property of a signal protecting the first block of a route is that, when
green, it turns back automatically to red as soon as a train enters into the protected
block.

A green signal turns back to red automatically as soon as ENV-15
the first block is made occupied

The reason for the constraints defined at the end of Section 17.1.5 must now be clear:
we want a signal, which is always situated just before the first block of a route, to
clearly identify the protection of that route. If a route, say r1, starts in the middle
of another one, say r2, then the signal protecting r1 will cause some trouble for the
train situated in route r2. As very often the reverse of a route is also used as a route,
the previous constraint applies for the last block of a route; it cannot be common to
another route except if it is also the last block of that route.
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17.1.7 Route and block reservations
The train agent is provided with a panel offering a number of commands corresponding
to the different routes he can assign to trains traversing his “territory”.

R2

R3

R5

R6

R8

R9

R4 R7R1

R10

When a train is approaching the network, the train agent is told that this train
will cross the network by using a certain route. The train agent then presses the
corresponding command in order to reserve that route. Note that other trains might
already be crossing the network, while the train agent is pressing that command. As
a consequence, the situation faced by the train agent is potentially dangerous; we
shall come back to this very important fact in Section 17.1.8. This is the reason why
the forthcoming reservation process is entirely controlled by the software we want to
construct.

A route can be reserved for a train. The software is in charge
of controlling the reservation process FUN-2

The reservation process of a route r is made of three phases:

(i) the individual reservation of the various blocks composing route r is performed,
(ii) the positioning of the relevant points of route r is accomplished,
(iii) the turning to green of the signal protecting route r is done.

When the first phase is not possible (see next section), the reservation fails and the
two other phases are then canceled. In this case, the reservation has to be re-tried later
by the train agent. Let us now describe these phases in more detail.

Phase 1: Block reservation The block reservation performed during the first phase
induces another state for a block (besides being occupied or unoccupied by a train, as
seen in Section 1.3), that is a block can be reserved or free:

A block can be reserved or free FUN-3
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Note that an occupied block must clearly be already reserved:

An occupied block is always reserved FUN-4

At the end of this first successful phase, the route is said to be reserved, but it is not
ready yet to accept a train:

Reserving a route consists in reserving the individual blocks it
is made of. Once this is done, the route is said to be reserved FUN-5

Phase 2: Point positioning When the reservation of all blocks of a route r is suc-
cessful, the reservation process proceeds with the second phase, namely the positioning
of the corresponding points in the direction corresponding to the route r. When all
points of r are properly positioned, the route is said to be formed:

Once it is reserved, a route has to be formed by properly FUN-6
positioning its points

Note that a formed route remains reserved:

A formed route is always a reserved route FUN-7

Phase 3: Turning signal to green Once a route r is formed, the third and last
phase of the reservation can be done: the signal controlling route r is turned green;
a train can be accepted in it. A train driver, looking at the green signal, then leads
the train within the reserved and formed route. We already know from requirement
ENV-15 that the signal will then turn red immediately:

Once it is formed, a route is made available for the incoming
train by turning its signal to green FUN-8
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17.1.8 Safety conditions
As several trains can cross the network at the same time, and as the train agent (or
rather the software he uses) is sometimes re-positioning a point when forming a route,
there are clearly some serious risks of bad incidents. This is the reason why we must
clearly identify such risks and see how we can safely avoid them. This is, in fact, the
main purpose of the software we would like to build in order to help the train agent in
a systematic fashion. There are three main risks which are the following:

(1) Two (or more) trains traversing the network at the same time hit each other in
various ways.

(2) A point may change position under a train.
(3) The point of a route may change position in front of a train using that route. In

other words, the train has not yet occupied the block at this point, but it will do
so in the near future since that block is situated on that route.

Case (1) is obviously very bad since the crashed trains may derail. Case (2) would
have the consequence to cut the train into two parts and, most probably, the train
will derail too. Case (3) may have two distinct consequences: either to move the train
outside its current route so that it can now hit another train (Case (1)), or to have the
train derail in case the point now disconnects the current route. We are thus going to
set up a number of safety conditions in order to prevent such risks from happening.
The first risk (train hitting) is avoided by ensuring two safety conditions:

(i) a given block can only be reserved for at most one route at a time,

A block can be reserved for at most one route SAF-1

(ii) the signal of a route is green only when the various blocks of that route are all
reserved for it and are unoccupied, and when all points of that route are set in the
proper direction.

The signal of a route can only be green when all blocks of
that route are reserved for it and are unoccupied, and when SAF-2
all points of this route are properly positioned

As a consequence (and also thanks to requirement FUN-4 stating that an occupied
block is always a reserved block), several trains never occupy the same block at the
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same time, provided, of course, that train drivers do not overpass a red signal. We shall
come back to this important point in Section 17.1.11.

The second and third risks (points changing direction under certain circumstances)
are avoided by ensuring that a point can only be maneuvered when the corresponding
block is that of a route which is reserved (all its blocks being reserved) but not yet
formed:

A point can only be re-positioned if it belongs to a block which
is in a reserved but not yet formed route SAF-3

The last safety requirement ensures that no blocks of a reserved, but not yet formed,
route are occupied by a train.

No blocks of a reserved, but not yet formed, route are occupied SAF-4

A consequence of this last safety requirement is that the re-positioning of a point,
done according to requirement SAF_3, is always safe.

17.1.9 Moving conditions
In spite of the safety conditions (which could be preserved by not allowing any train
to cross the network!), we want to allow a large number of trains to be present in the
network at the same time without danger. For this, we allow each block of a reserved
route to be freed as soon as the train does not occupy it any more:

Once a block of a formed route is made unoccupied, it is also MVT-1
freed

As a result, the only reserved blocks of a formed route are those blocks which are
occupied by the train or those blocks of the route which are not yet occupied by the
train:

A route remains formed as long as there are some reserved MVT-2
blocks in it
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When no block of a formed route is reserved any more for that route, it means that
the train has left the route, which can thus be made free:

A formed route can be made free (not formed and not reserved
any more) when no blocks are reserved for it any more MVT-3

17.1.10 Train assumptions
Note that it is very important that a block once freed for a route (after being occupied
and subsequently unoccupied) cannot be made occupied again for this route unless the
route is first made free and then formed again. The reason for this is that the freed
block in question can be assigned to another route. To achieve this, we must assume
that trains obey two properties. First, a train cannot split in two or more parts while
in the network:

A train cannot split while in the network TRN-1

And second, a train cannot move backwards while in the network:

A train cannot move backwards while in the network TRN-2

This is so because in both cases a freed block can be made occupied again. Note that
clearly trains do split and move backwards (for example, in the main station of most
towns); it simply means that the blocks where they do so are not within the network
controlled by a train system.

Another important implicit assumption about trains is that they cannot enter “in
the middle” of a route (it cannot land on a route!):

A train cannot enter in the middle of a route. It has to do so
through its first block. TRN-3

Likewise, a train cannot disappear in the middle of a route (it cannot take off!):

A train cannot leave a route without first occupying then freeing TRN-4
all its blocks
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17.1.11 Failures
In this section, we study a number of abnormal cases which could happen. The fact
that their probabilities are very low is not a reason to preclude these cases.

The first and most important case of failure is obviously the one where, for some
reason, the driver of a train does not obey the red signal guarding a route. In Section
17.1.6 we said in requirement ENV_14 that “trains are supposed to stop at red signals”.
Now, is it always the case?

The solution to this problem is local to the train. This case is detected within the
faulty train by a device called the automatic train protection. As soon as this device
detects that the train passes a red signal, it automatically activates the emergency
brakes of the train. The distance between the signal and the first block of the route it
protects is calculated so that we can be sure that the train will stop before entering that
first block. Note that this protection is not certain as the automatic train protection
could be broken while the train does not stop at a red signal!

Trains are equipped with the automatic train protection system,
which guarantees that they cannot enter a route guarded by a FLR-1
red signal

In Section 17.1.10, we claimed in requirement TRN_1 that “a train cannot split
while in the network”. Is it possible that it happens nevertheless by accident? The
solution to this problem is again local to the train. Each train is now equipped with
special bindings so that it forms a continuous body that cannot be mechanically bro-
ken. Here again, the solution is not certain but professionals claim that the risk is
extremely low:

Trains are equipped with special bindings, which guarantee that
they cannot be mechanically broken. FLR-2

Another case raised in Section 17.1.10 is requirement TRN_2 claiming that “a train
cannot move backwards while in the network”. Here again, the automatic train pro-
tection system is used. It detects immediately any backward move and in that case
activates automatically the emergency brakes. But we have to be sure that the train
nevertheless does not occupy a block again that it has recently freed. This is guaran-
teed by the fact that the transmission of the occupancy of a block by the track circuit
is slightly delayed. As a consequence, when the train has physically left a block, this
fact is not immediately transmitted to the controller; it is only done when the back of
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the train has moved a certain distance. If the train moves backwards slightly, then it
does not occupy the block again since it did not leave it (as “seen” from the software
controller):

The automatic protection system and a slight delay observed
by the track circuit guarantee that a train moving backward FLR-3
cannot occupy again a block which has been physically freed.

In Section 17.1.10, we said in requirement TRN-3 that “a train cannot enter in the
middle of a route”. This is certainly the case for trains. The problem is that the software
controller does not “see” trains. It only detects that a block is occupied or freed by
means of track circuits connections. As a consequence, it is possible that, for some
reason, a block is detected to be occupied by its track circuit because a piece of metal
is put on the rail. The software controller can detect such a faulty occupancy. In that
case the train agent can take some emergency action. But this is not always the case
however. This risk is therefore accepted but not treated here:

The risk of a faulty detection of a block occupancy is not FLR-4
treated

In Section 17.1.10, we said in requirement TRN-4 that “a train cannot leave a route
without first occupying then freeing all its block”. This is not always the case; however,
in the very rare circumstance where a short train (say a single engine) derails and then
falls down it suddenly quits the block where it is situated! This case can certainly be
detected by the software controller and some emergency action can be taken by the
train agent. We do not treat this case here however:

The case where a short train derails and leaves its block is not FLR-5
treated here

Note that the last two cases of failure raise a difficult problem which is the one of
restarting the system after an emergency. It seems that the only solution consists in
carefully inspecting the network to decide whether a normal situation has been reached
again.
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17.1.12 Examples
We now illustrate the previous concepts with examples of trains safely crossing the
network.

To begin with, we can see a train T1 approaching block L. This is indicated by a
little thick line on the left of block L. The train cannot continue since the signal is red.
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The train agent is told to form route R3, that is L A B D K J N . This
consists in checking that the various blocks of this route are not reserved for another
route and that the points are oriented in the proper directions. Once this is done,
the corresponding signal is turned green; route R3 is indeed formed. In the following
figure,† we can see the situation just after the “formation” of route R3:
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Train T1 now enters route R3. It occupies block L.‡ The signal protecting route R3
has been turned to red again so that no train can enter this route any more.

† In subsequent figures, we use the following convention: a reserved, but not yet occupied, block is repre-
sented by a thick dashed line (we have already seen in Section 17.1.3 that a reserved and occupied block is
represented by a thick plain line)
‡ In this running example, we suppose that trains never occupy more than one block at a time. This is a

simplification that does not correspond to the reality; a train can clearly occupy two adjacent blocks when
a car is covering the transition between them. We use this simplification here just to make the examples
shorter.
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Train T1 moves further to block A (this is skipped) and then to block B. Block L and
A are freed as soon as the train does not occupy them any more.
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Train T1 moves further to block D. Block B is freed. A second train, T2, arrives and
approaches block C. The train agent is told to form route R6, that is C B A L, for
that new train. This is possible because there is no conflict with the already reserved
blocks. The corresponding points are set properly and the signal protecting route R6
has turned green.
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Train T1 moves to block K. Train T2 enters route R6. It occupies block C. The signal
protecting route R6 is turned red:
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Train T1 now occupies block J and frees block K, and train T2 still occupies block C.
A third train, T3, approaches block M . The train agent is told to form route R4; that
is, M H I K F G, for that new train. This is possible because there is no conflict
with already reserved blocks. The corresponding points are set properly and the signal
protecting route R4 is turned green.
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Train T3 enters route R4 by occupying block M . The signal protecting route R4 turns
back to red. The other trains are moving in their respective routes.
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Train T1 now leaves route R3. Trains T2 and T3 continue to move.
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Eventually trains T2 and T3 leave their routes.
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17.2 Refinement strategy
The summary of the various informal requirements we have seen in previous sections
is as indicated below. We have all together 39 requirements. Of course, a real train
system might have far more requirements than this; it must be clear that what we are
presenting here is only a very simplified version of such a train system:

ENV Environment 15

FUN Functional 8

SAF Safety 4

MVT Movement 3

TRN Train 4

FLR Failure 5

The role of the formal phase, which we start now, is to build models able to take
account of these requirements. As it is out of the question to incorporate all of them at
ounce, we are going to proceed by successive approximations, which are called refine-
ments. In this section, we define the refinement strategy we are going to follow. It is
very important indeed to define the order in which we are going to extract the various
requirements which have been exhibited in the previous phase.

(i) In the initial model, the blocks, and route concepts are formalized. Blocks are
defined from a logical point of view however.

(ii) In the first refinement we introduce the physical blocks and thus start to formalize
part of the environment. We establish the connection between the logical blocks
and the physical ones. This is done in an abstract way, however, as we do not yet
introduce the points.

(iii) In the second refinement, we introduce the notion of readiness for a route. This
corresponds to an abstract view of the green signals.
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(iv) In the third refinement, we introduce the physical signals. We data-refine (imple-
ment) the readiness of a route by means of green signals.

(v) In the fourth refinement, we introduce the points.
(vi) Some other refinements are needed in order to finalize details. Such refinements

are not treated in this chapter however.

17.3 Initial model
17.3.1 The state

The state is made up of a number of carrier sets, constants, and variables, which we
study in the following sections.

Carrier sets The initial model is concerned with blocks and routes. We thus take
account of requirement ENV-3 of Section 17.1.4, and of requirement ENV-6 of Section
17.1.5. We do not take account of points or signals for the moment; this will be done in
further refinements. We have thus only two carrier sets, B and R, standing for blocks
and routes. In what follows, we shall use the convention that carrier sets are named
using single upper case letters:

sets: B
R

Constants The organization of the track network, which is made of a number of
routes, is formalized by means of two constant: rtbl (“routes of blocks”) relating routes
to blocks and nxt (“next”) relating blocks to blocks for each route:

constants: rtbl
nxt

The constant rtbl is a total (all routes are concerned) and surjective (all blocks are
concerned) binary relation from B to R (axm0_1). This is so because a route may
have many blocks and a block can belong to several routes:

axm0_1: rtbl ∈ B↔↔R

The constant nxt denotes the succession of each blocks associated with a route
(ENV-6). This succession forms an injective function from blocks to blocks (that is, a
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function whose inverse is also a function):

axm0_2: nxt ∈ R→ (B � B)

For example, a route such as route R3 comprising the following blocks L A B D K
J N in that order:
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is represented as follows by the injective function nxt(R3). As can be seen, the function
nxt(R3) establishes a continuous connection between the first block L and last block
N of route R3:

first block last block

L A B D K J N

As the first and last block of a route will play a certain role in further properties,
we have to introduce them explicitly in our state by means of some new constants. We
thus extend our set of constants by introducing the first and last block of each route
r: fst and lst

constants: · · ·
fst
lst

These first and last elements of a route enjoy the following obvious properties: they
are defined for each route (axm0_3 and axm0_4) and they are genuine blocks of
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the route (axm0_5 and axm0_6). Moreover the first and last block of a route are
distinct (axm0_7):

axm0_3: fst ∈ R→B

axm0_4: lst ∈ R→B

axm0_5: fst−1 ⊆ rtbl

axm0_6: lst−1 ⊆ rtbl

axm0_7: ∀r · r ∈ R ⇒ fst(r) 
= lst(r)

As illustrated in the previous figure, we want the connection represented by the
function nxt(r) for each route r, to be continuous as required by requirement ENV-10
of Section 17.1.5. In other words, we want to exclude cases like this, which do not make
sense for a route:

first block last block

Moreover, we want to express that the blocks of a route r, which are present in the
domain and range of the injection nxt(r), are exactly the blocks of route r, namely
rtbl−1[{r}]. In order to express all this, we just say that the injection nxt(r) is indeed
a bijection from rtbl−1[{r}] \ {lst(r)} to rtbl−1[{r}] \ {fst(r)}:

axm0_8: ∀r · r ∈ R ⇒ nxt(r) ∈ s \ {lst(r)}�� s \ {fst(r)}

where s is rtbl−1[{r}]

But this is not sufficient, as the following pathological case can happen:

first block last block

We have then to express that there is no such cycles in the connection. This corre-
sponds to requirement ENV-11 of Section 17.1.5. This can be done by stating that the



17.3 Initial model 531

only subset S of B which is included in its image under nxt(r), that is nxt(r)[S], is
the empty set (a genuine cycle is indeed equal to its image under nxt(r)):

axm0_9: ∀r · r ∈ R ⇒ (∀S · S ⊆ nxt(r)[S] ⇒ S = ∅ )

A final property of the routes is that they cannot depart or arrive in the middle of
another one. However several routes can depart from the same block or arrive at the
same block. All this corresponds to requirements ENV-8 and ENV-9 of Section 17.1.5.
It is expressed by the following two properties:

axm0_10: ∀ r, s · r ∈ R
s ∈ R
r 
= s
⇒
fst(r) /∈ rtbl−1[{s}] \ {fst(s), lst(s)}

axm0_11: ∀ r, s · r ∈ R
s ∈ R
r 
= s
⇒
lst(r) /∈ rtbl−1[{s}] \ {fst(s), lst(s)}

Note that the previous properties do not preclude two routes from having the same
first or last blocks.

Variables In this initial model, we have four variables named resrt, resbl, rsrtbl, and
OCC (see below, the box entitled variables). In what follows, we shall use the con-
vention that physical variables are named using upper case letters only. By “physical
variable”, we mean a variable representing part of the external equipment (here OCC
denotes the set of physical blocks which are occupied by trains). The other variables
(named using lower case letters only) are called the logical variables: they represent
variables that will be part of the future software controller. The invariants correspond-
ing to all these variables can be seen on the right table below (these invariants are
explained below):
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variables: resrt
resbl
rsrtbl
OCC

inv0_1: resrt ⊆ R

inv0_2: resbl ⊆ B

inv0_3: rsrtbl ∈ resbl→ resrt

inv0_4: rsrtbl ⊆ rtbl

inv0_5: OCC ⊆ resbl

The variable resrt (reserved routes) denotes the reserved routes (inv0_1): this is
coherent with requirement FUN-2 of Section 17.1.7, which says that a route can be
reserved for a train.

The second variable, resbl (reserved blocks), denotes the set of reserved blocks
(inv0_2). This is coherent with requirement FUN-3 of Section 17.1.7, which states
that a block can be reserved for a route.

Our third variable, rsrtbl (reserved routes of reserved blocks), relates reserved blocks
to reserved routes: it is a total function from reserved blocks to reserved routes
(inv0_3). This is coherent with requirement SAF-1 stating that a block cannot be
reserved for more than one route. Of course, this connection is compatible with the
static relationship rtbl between blocks and routes (inv0_4): a reserved block for a
route is a block of that route.

Finally, variable OCC denotes the set of occupied blocks. This is coherent with re-
quirement ENV-5 stating that a block might be occupied by a train. Such occupied
blocks are obviously reserved for some route (inv0_5). This is coherent with require-
ment FUN-4 of Section 17.1.7 stating that an occupied block is always reserved.

We have to define now more invariants corresponding to the way a train can occupy
a reserved route. The general situation is illustrated on the following figure:

f r e e o c c u p i e d u n o c c u p i e d

The blocks of a reserved route are divided in three areas:

(i) In the first area (on the left, where the blocks are represented by white circles), the
blocks are freed by that route because the train does not occupy them any more.
They can readily be reused (and maybe they are already) for another reserved
route.
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(ii) In the second area (in the centre, where the blocks are represented by black circles),
the blocks are all reserved and occupied by a train.

(iii) In the third area (on the right, where the blocks are represented by white squares),
the block are all reserved, but not occupied yet by a train.

There are other situations corresponding to some special cases of the general situation
depicted in the previous figure. In the first special case, areas 1 and 2 are empty; the
route is reserved, but the train has not yet entered the route:

u n o c c u p i e du n o c c u p i e du n o c c u p i e d

The second special case is the one where area 1 is empty, but not areas 2 and 3. In
fact, the train is entering the route as illustrated in the following figure:

o c c u p i e d o c c u p i e d u n o c c u p i e d

A third special case is one where a (long) train occupies all blocks in a route:

o c c u p i e d o c c u p i e do c c u p i e d

The fourth special case it the one where the train is leaving the route:

o c c u p i e df r e e f r e e 

The last special case is the one where all blocks in the reserved route have been freed
by that route. The route itself is then ready to be freed

f r e e f r e e f r e e 

More formally, let us call M the set of free blocks in a reserved route (those behind
the train), N the set of occupied blocks in a reserved route, and finally P the set of
reserved but unoccupied blocks of a reserved route (those situated in front of a train).
Sets M , N , and P are formally defined as follows for a given reserved route r:

M = rtbl−1[{r}] \ rsrtbl−1[{r}]

N = rsrtbl−1[{r}] ∩ OCC

P = rsrtbl−1[{r}] \OCC
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Note that M , N , and P partition rtbl−1[{r}]. According to the previous presentation,
the only transitions that are allowed are the following:

M →M M → N N → N N → P P → P

This can be represented by the following conditions:

nxt(r)[M ] ⊆ M ∪ N nxt(r)[N ] ⊆ N ∪ P nxt(r)[P ] ⊆ P

Such conditions are equivalent to the following ones (since nxt(r)[rtbl−1[{r}]] is in-
cluded in rtbl−1[{r}] according to axm0_8):

nxt(r)[M ] ∩ P = ∅ nxt(r)[N ∪ P ] ⊆ N ∪ P nxt(r)[P ] ⊆ P

All this is eventually formalized in the following invariants:

inv0_6: ∀r · r ∈ R ⇒ nxt(r)[rtbl−1[{r}] \ s] ∩ (s \OCC) = ∅

inv0_7: ∀r · r ∈ R ⇒ nxt(r)[s] ⊆ s

inv0_8: ∀r · r ∈ R ⇒ nxt(r)[s \OCC] ⊆ s \OCC

where s is rsrtbl−1[{r}]

These invariants are coherent with the train requirements TRN-1 to TRN-4 defined
in Section 17.1.10.

17.3.2 The events
The four variables resrt, resbl, rsrtbl, and OCC are initialized to the empty set.
Initially, no trains are in the network and no routes or blocks are reserved. Besides the
initialization event (which we do not present here), we have five normal events. Events
define transitions which can be observed. In what follows, we shall use the convention
that physical events corresponding to transitions occurring in the environment are
named using upper case letters only. Here are the events of the initial model:

• route_reservation,
• route_freeing,
• FRONT_MOVE_1,
• FRONT_MOVE_2,
• BACK_MOVE.
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Event route_reservation corresponds to the reservation of a route r. It is done on an
unreserved route (i.e. r ∈ R \ resrt) whose blocks are not already reserved for a route
(i.e. rtbl−1 [{r}] ∩ resbl = ∅). Route r is then reserved together with its blocks. This
is coherent with requirement FUN-5, which says that a route can be reserved as soon
as all its blocks are themselves reserved:

route_reservation
any r where

r ∈ R \ resrt
rtbl−1[{r}] ∩ resbl = ∅

then
resrt := resrt ∪ {r}
rsrtbl := rsrtbl ∪ rtbl � {r}
resbl := resbl ∪ rtbl−1[{r}]

end

route_freeing
any r where

r ∈ resrt \ ran(rsrtbl)
then

resrt := resrt \ {r}
end

Event route_freeing makes a reserved route free when it does not contain reserved
blocks any more. This is coherent with requirement MVT-3, which says that a route
can be made free when no blocks are reserved for it any more.

Event FRONT_MOVE_1 corresponds to a train entering a reserved route r. The first
block of r must be reserved and unoccupied. Moreover, the reserved route corresponding
to the first block of r must be r itself. The first block is made occupied:

FRONT_MOVE_1
any r where

r ∈ resrt
fst(r) ∈ resbl \OCC
rsrtbl(fst(r)) = r

then
OCC := OCC ∪ {fst(r)}

end

FRONT_MOVE_2
any b, c where

b ∈ OCC
c ∈ B \OCC
b → c ∈ nxt(rsrtbl(b))

then
OCC := OCC ∪ {c}

end

Event FRONT_MOVE_2 corresponds to the occupancy of a block, which happens to
be different from the first block of a reserved route. Given a block b, which is occupied
and preceded (in the same route) by a block, say c, which is not occupied, then c is
made occupied.

Finally, event BACK_MOVE corresponds to the move of the rear part of the train.
This happens for a block b which is occupied and is the last block of a train. This is
detected when block b has a follower in the route r reserved for b and that follower, if
reserved, is not reserved for r (this corresponds to the big implicative guard). Moreover,
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when b has a predecessor, that predecessor must be occupied so that the train does
not disappear before reaching the end of route r (this corresponds to the last guard).
The action corresponding to that event makes b unoccupied and unreserved. This is
coherent with requirement MVT-1, which says that “once a block of a formed route is
made unoccupied, it is also freed”:

BACK_MOVE
any b, n where

b ∈ OCC
n = nxt(rsrtbl(b))


b ∈ ran(n) ∧
n−1(b) ∈ dom(rsrtbl)
⇒
rsrtbl(n−1(b)) 
= rsrtbl(b)




b ∈ dom(n) ⇒ n(b) ∈ OCC
then

OCC := OCC \ {b}
rsrtbl := {b}�− rsrtbl
resbl := resbl \ {b}

end

Important remark It might seem strange at first glance (and even incorrect) to have
physical events such as FRONT_MOVE_1, FRONT_MOVE_2, and BACK_MOVE us-
ing non-physical variables in their guards. Clearly, a physical event can be enabled
under certain conditions depending on physical variables only: a physical event cannot
magically “see” the non-physical variables. The reason for having non-physical variables
in the guards here is that we are still in an abstract version where such abnormalities
are possible. Of course, in the final refined version of physical events we have to check
that it is not the case any more.

17.4 First refinement
In this first refinement, we introduce the physical tracks. So that the movements of the
train will correspond entirely on the physical situation of the track. Note however that
we do not yet introduce the points and the signals.

17.4.1 The state
We do not introduce new carrier sets or new constants in this refinement.
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Variables In this refinement, we have three new variables named TRK (track),
frm (formed routes), and LBT (last blocks of trains). Notice that the variables in-
troduced in the initial models, namely resrt, resbl, rsrtbl, and OCC, are kept in
this refinement:

variables: · · ·
TRK
frm
LBT

The variable TRK is a partial injection (inv1_1) from blocks to blocks defining the
physical succession of blocks. It also contains the direction taken by trains following
the tracks. Note that this last information is not “physical” (you cannot “see” it on
the track); it corresponds however to the physical movements of trains on the physical
tracks. Next is the invariant defining variable TRK as an injective function:

inv1_1: TRK ∈ B � B

Here is an illustration of the variable TRK in a certain situation:

L A D E F G

K
M H I J N

C

B

As can be seen, route R9 (G F K I H H M) is now established on the physical
track. In Section 17.4.2, we shall see how the event, which is positioning the points
will modify this situation. Note that the crossing in block K is “broken” and that the
physical track “remembers” the direction followed by trains circulating on it; of course,
this is not what happen in the real tracks, but this is a convenient abstraction.

Finally, all pairs belonging to TRK also belong to nxt(r) for some route r (inv_2):

inv1_2: ∀x, y · x → y ∈ TRK ⇒ (∃ r · r ∈ R ∧ x → y ∈ nxt(r) )

The variable frm represents the set of formed routes; it is a subset of the reserved
routes (inv1_3). This is coherent with requirement FUN-7, which says that “a formed
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route is always a reserved route”. We have a number of invariants involving the formed
routes. The reserved routes of occupied blocks are formed routes (inv1_4). A route
r, which is reserved but not yet formed, is such that its reserved blocks are exactly the
constant reserved blocks associated with r (inv1_5). The two previous invariants are
coherent with requirements SAF-4, which says that “no blocks of a reserved but not
yet formed route are occupied”:

inv1_3: frm ⊆ resrt

inv1_4: rsrtbl[OCC] ⊆ frm

inv1_5: ∀r · r ∈ resrt \ frm ⇒ rtbl � {r} = rsrtbl � {r}

Now comes the most important invariant (inv1_6); it relates the logical succession
of blocks on a route (represented by the function nxt(r) for each route r) to the
physical tracks on the terrain (represented by the variable TRK). It says that for
each formed route r, the logical succession of blocks (where the train is supposed to
be and where it has to go when proceeding through route r) agrees with the physical
tracks on the terrain. In other words, when a route r is formed, then the portion of the
physical blocks where the train is or where it will be in the future when proceeding
along this route corresponds to what is expected in the logical blocks as recorded by
the controller:

inv1_6: ∀r · r ∈ frm ⇒ rsrtbl−1[{r}] � nxt(r) = rsrtbl−1[{r}] � TRK

Finally, variable LBT denotes the set of blocks occupied by the back of each train;
this is also a “physical” variable like variable TRK. The first invariant (inv1_7) con-
cerning this variable, quite naturally says that the last block of a train is indeed occu-
pied by a train:

inv1_7: LBT ⊆ OCC
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And now we state (inv1_8) that the last block b of a train, if it has a follower a on
its route, then a, if reserved, is not reserved for the route of b:

inv1_8: ∀a, b · b ∈ LBT
b ∈ ran(nxt(rsrtbl(b)))
a = nxt(rsrtbl(b))−1(b)
a ∈ dom(rsrtbl)
⇒
rsrtbl(a) 
= rsrtbl(b)

Thanks to the introduction of the physical variables TRK and LBT , we shall be
able to define the movements of the train based only on what the train finds on the
terrain, namely the physical blocks. Notice that a train “knows” that the last part of
it occupies a block belonging to LBT .

17.4.2 The events
Event route_reservation is not modified in this refinement. Other events are modified
as shown below. We also introduce two more events:

• point_positioning,
• route_formation

Event point_positioning is still very abstract in this refinement. It conveys however
the essence of the communication between the future software and the outside equip-
ment; the physical TRK is modified according to the logical route nxt(r). This event
is coherent with requirement SAF-3, which says that “a point can only be re-positioned
if it belongs to a block that is in a reserved but not yet formed route”. In further
refinements, this modification of the physical track will correspond to the controller
action modifying the point positions:

point_positioning
any r where

r ∈ resrt \ frm
then

TRK := (dom(nxt(r)) �− TRK �− ran(nxt(r))) ∪ nxt(r)
end
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As can be seen, this logical event has an effect on the physical variable TRK. This
is due to the fact that this event is effectively changing (at ounce for the moment) the
physical position of the points of route r.

Next is an illustration of the physical situations just before and just after an occur-
rence of event point_positioning. As can be seen, after this occurrence we have three
properties: (1) route R3 (L A B K J N) is established on the physical track, (2)
the points have been modified accordingly, and (3) the crossing situated in block K
has been “reorganized”:

L A D E F G

K
M H I J N

C

B

L A D E F G

K
M H I J N

C

B

Event route_formation explains when a route r can be “formed”, namely when the
physical and logical track agree, that is after event point_positioning has acted on
route r:

route_formation
any r where

r ∈ resrt \ frm
rsrtbl−1[{r}] � nxt(r) = rsrtbl−1[{r}] � TRK

then
frm := frm ∪ {r}

end

It can be seen that this event refers to the physical variable TRK in its
guard. This is due to the fact that this event is enabled when the controller de-
tects (here at ounce for the moment) that all points of route r are correctly
positioned.

Event route_freeing is slightly extended by making the freed route not formed any
more. This is coherent with requirement MVT_2, which says that “a route remains
formed as long as there are some reserved blocks in it” and MVT-3, which says that
“a formed route can be made free (not formed and not reserved any more) when no
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blocks are reserved for it any more”:

route_freeing
any r where

r ∈ resrt \ ran(rsrtbl)
then

resrt := resrt \ {r}
frm := frm \ {r}

end

Event FRONT_MOVE_1 is only slightly modified for the moment as we have not
introduced the signals yet; this will be done in further refinements. The present modi-
fication consists in extending the set LBT by adding to it the singleton {fst(r)}. As
a matter of fact, when a train is entering a route, the last block of the train for that
route is certainly the first block of the route until that block is freed when the back of
the train will move in event BACK_MOVE.

FRONT_MOVE_1
any r where

r ∈ frm
fst(r) ∈ resbl \OCC
rsrtbl(fst(r)) = r

then
OCC := OCC ∪ {fst(r)}
LBT := LBT ∪ {fst(r)}

end

FRONT_MOVE_2
any b where

b ∈ OCC
b ∈ dom(TRK)
TRK(b) /∈ OCC

then
OCC := OCC ∪ {TRK(b)}

end

Event FRONT_MOVE_2 is now following the physical situation on the real track.
We shall have to prove that it refines its abstraction however. As can be seen, all guards
are now defined in terms of physical variables.

Event BACK_MOVE is split into two events. Event BACK_MOVE_1 corresponds
to the last block of the train leaving the route. Event BACK_MOVE_2 corresponds to
the last block of the train progressing in the route.
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BACK_MOVE_1
any b where

b ∈ LBT
b /∈ dom(TRK)

then
OCC := OCC \ {b}
rsrtbl := {b}�− rsrtbl
resbl := resbl \ {b}
LBT := LBT \ {b}

end

BACK_MOVE_2
any b where

b ∈ LBT
b ∈ dom(TRK)
TRK(b) ∈ OCC

then
OCC := OCC \ {b}
rsrtbl := {b}�− rsrtbl
resbl := resbl \ {b}
LBT := (LBT \ {b}) ∪ {TRK(b)}

end

Remark 1 As can be seen, the guards of physical events FRONT_MOVE_2,
BACK_MOVE_1, and BACK_MOVE_2 are all now involving physical variables only
(remember our “important remark” at the end of Section 17.3.2). It is still not the case
for event FRONT_MOVE_1 however. Wait until refinement 3 in Section 17.6 where
we shall see that event FRONT_MOVE_1 will be enabled as a consequence of a green
signal, which clearly is a physical condition.

Remark 2 We notice that physical events BACK_MOVE_1 and BACK_MOVE_2 both
make reference to some non-physical variables in their action part (rsrtbl and resbl).
We wonder whether this is allowed. It would seem obvious that a physical event can-
not modify controller variables. The reason to have some non-physical variables still
present in the action parts of these events is because these events have still to be de-
composed into two events: the “pure” physical event and a corresponding event in the
controller. The reason can clearly be seen here: when the train does a physical back
move, the controller has to react by freeing the corresponding logical block. The con-
nection between the physical move and the (separate) logical reaction in the controller
will be done later (in some refinement step to be done, but not presented in this chap-
ter) by having the physical track circuit sending a message to the controller when it
is physically made unoccupied. Upon receiving this message, the controller can then
react.

Remark 3 Notice that both events FRONT_MOVE_1 and FRONT_MOVE_2 do not
make any reference in their action part to some non-physical variables. It means that
such events have no influence on the controller. This is quite understandable, when the
front of the train proceeds, we have nothing to do in the controller, whereas when the
back of the train proceeds we have something to do (block freeing).
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17.5 Second refinement
In this refinement, we introduce the notion of readiness for a route. A route is ready
when it is able to accept a new train. In the next refinement, we shall introduce the
signals. As we shall see, the ready routes will have a green signal.

17.5.1 The state
We do not introduce new carrier sets or new constants.

Variables In this refinement, we introduce the new variable rdy, which denotes the
set of ready routes.

variables: · · · ,
rdy

Here are the basic properties of a ready route. A ready route is one which is formed
(inv2_1), has all its blocks reserved for it (inv2_2), and has all its blocks unoccupied
(inv2_3):

inv2_1: rdy ⊆ frm

inv2_2: ∀r · r ∈ rdy ⇒ rtbl � {r} ⊆ rsrtbl � {r}

inv2_3: ∀r · r ∈ rdy ⇒ dom(rtbl � {r}) ∩ OCC = ∅

17.5.2 The events
Events point_positioning, route_reservation, route_freeing, FRONT_MOVE_2,
BACK_MOVE_1, and BACK_MOVE_2 are not modified in this refinement, they
are thus not copied below. Event route_formation is extended by making the corre-
sponding route ready besides being formed (this action was performed in the previous
refinement):

route_formation
any r where

r ∈ resrt \ frm
rsrtbl−1 [{r}] � nxt(r) = rsrtbl−1 [{r}] � TRK

then
frm := frm ∪ {r}
rdy := rdy ∪ {r}

end



544 Train system

The guards of event FRONT_MOVE_1 are simplified (and made stronger) by stating
that the route r is a ready route (this event will be further simplified in the next
refinement where we introduce the signals). We put the abstract version of this event
next to the refined one to show the differences between the two guards:

(abstract-)FRONT_MOVE_1
any r where

r ∈ frm
fst(r) ∈ resbl \OCC
rsrtbl(fst(r)) = r

then
OCC := OCC ∪ {fst(r)}
LBT := LBT ∪ {fst(r)}

end

(concrete-)FRONT_MOVE_1
any r where

r ∈ rdy
rsrtbl(fst(r)) = r

then
OCC := OCC ∪ {fst(r)}
LBT := LBT ∪ {fst(r)}
rdy := rdy \ {r}

end

17.6 Third refinement
In this refinement, we define the signals. The role of a signal is to express, when green,
that a route is ready.

17.6.1 The state
Carrier sets We introduce the new carrier set S defining the signals:

sets: B, R, S

Constants In this refinement, we define one constant named SIG (pronounced “signal
of first block”). This constant yields the unique signal associated with the first block of
a route (axm3_1). This corresponds to requirements ENV-12 and ENV-14 of section
17.1.6. It is a bijection since every signal is uniquely associated with the corresponding
first block of a route. Notice that routes sharing the same first block share the same
signal:

constants: · · ·
SIG

axm3_1: SIG ∈ ran(fst) �� S
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Variables In this refinement, we introduce the variable GRN denoting the set of
green signals (inv3_1). This variable data-refines variable rdy which disappears. The
connection between the two is established by saying that signals of the first blocks
of ready routes are exactly the green signals (inv3_2). We have thus established a
correspondence between the abstract notion of ready routes and the physical notion of
green signals:

variables: · · ·
GRN

inv3_1: GRN ⊆ S

inv3_2: SIG[fst[rdy]] = GRN

17.6.2 The events
The only two events that are modified in this refinement are events route_formation
and FRONT_MOVE_1. Event route_formation is refined by turning to green the sig-
nal associated with the first block of the newly formed route. This is coherent with
requirement FUN-8, which says that “once it is formed, a route is made available for
the incoming train by turning its signal to green”. This event is also coherent with
requirement SAF-2, which says that “the signal of a route can only be green when
all blocks of that route are reserved for it and are unoccupied”. This is due to in-
variant inv3_2 equating the blocks with green signals with ready routes, and invari-
ants inv2_2 and inv2_3 saying that ready routes have all their blocks reserved and
unoccupied:

route_formation
any r where

r ∈ resrt \ frm
rsrtbl−1[{r}] � nxt(r) = rsrtbl−1[{r}] � TRK

then
frm := frm ∪ {r}
GRN := GRN ∪ {SIG(fst(r))}

end

This logical event acts on the physical variable GRN . It corresponds to the controller
sending a command to turn the physical signal of the first block of route r to green.
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Event FRONT_MOVE_1 now reacts to a green signal rather than to a ready route
as in the previous refinement. We take at last account of requirement ENV-13:

FRONT_MOVE_1
any b where

b ∈ dom(SIG)
SIG(b) ∈ GRN

then
OCC := OCC ∪ {b}
LBT := LBT ∪ {b}
GRN := GRN \ {SIG(b)}

end

As can be seen, the physical movement of trains follows the indication of green
signals. Note that a green signal is automatically turned red when the train enters the
corresponding block: this is coherent with requirement ENV-15.

17.7 Fourth refinement
17.7.1 The state

In this refinement, we introduce the points from an abstract point of view for the
moment. They are denoted by the set of blocks which contain points. We know from
requirement ENV-4 that a block may contain at most one special component: point or
crossing.

Constants We introduce three constants in this refinement: blpt, lft, and rht. Con-
stant blpt (pronounced “blocks with points”) denotes the set of blocks containing points
(axm4_1). Each block b containing a point is connected to another block situated on
the left of b and another block situated on its right. This is represented by two to-
tal functions lft and rht from blpt to B (axm4_2 and axm4_3). Notice that the
two function lft and rht are disjoint (axm4_4) because a block cannot be situated
simultaneously to the left and to the right of a point:

constants: · · ·
blpt,
lft,
rht

axm4_1: blpt ⊆ B

axm4_2: lft ∈ blpt→B

axm4_3: rht ∈ blpt→B

axm4_4: lft ∩ rht = ∅
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Let us recall our usual example network:

L A D E F G

K
M H I J N

C

B

Next are the set blpt and both functions lft and rht corresponding to this example:

blpt = {B, D, F, I, J }

lft = {B → C, D → E, F → K, I → K, J → I }

rht = {B → D, D → K, F → E, I → J, J → K }

Each point situated in a route is either in the “direct” or “inverse” direction of this
route. This is illustrated in the following figure where you can see fragments of two
routes: on the left, we have a point oriented “direct-right”, and on the right we have a
point oriented “inverse-right”.

right left

rightleft inversedirect

More precisely, a point is represented in a route by either the left or the right
connection, and also on the direct direction of the route or the inverse one. For example,
in route R2 (L A B D E F G), there are three points: in B, in D, and in F . The
one in B is direct and represented by the pair B → D which is a member of rht, the
one in D is direct and represented by the pair D → E which is a member of lft, and
finally the one in F is inverse and represented by the pair F → E which is a member of
rht. The connection of each point-block to the next one in a route must be functional
(since the point is either in the right or in the left position). This can be formalized as
follows:

axm4_5: ∀r · r ∈ R ⇒ (lft ∪ rht) ∩ (nxt(r) ∪ nxt(r)−1) ∈ blpt →B

Notice that the position of each point relative to a given route r is the following:
(lft ∪ rht) ∩ (nxt(r) ∪ nxt(r)−1).
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We also have to add a technical property saying that there is no point in the first or
last block of a route (axm4_6 and axm4_7):

axm4_6: blpt ∩ ran(fst) = ∅

axm4_7: blpt ∩ ran(lst) = ∅

Variable We have no new variable in this refinement, only a new invariant expressing
that the point positioning is, as expected, functional in the real track. This is expressed
by the invariant inv4_1:

inv4_1: (lft ∪ rht) ∩ (TRK ∪ TRK−1) ∈ blpt →B

Notice that the function is partial only: this is due to the crossing. It is not difficult
to prove that this invariant is maintained by event point_positioning, which is recalled
now:

point_positioning
any r where

r ∈ resrt \ frm
then

TRK := (dom(nxt(r)) �− TRK �− ran(nxt(r))) ∪ nxt(r)
end

A few additional refinements are clearly needed in order to complete this mod-
eling development. It should contain the decomposition of events route_reservation,
route_formation, and point_positioning in more atomic events so as to construct corre-
sponding loops.

17.8 Conclusion
As was said in the introduction, this chapter contains more material on fault prevention
than on fault tolerance. This is essentially due to the problem at hand where faults
have to be avoided by all means. But faults can happen as was explained in Section
17.1.11, so it is interesting to see how this could have been taken into account in the
modeling process.

It would not have been difficult to incorporate the Automatic Train Protection Sys-
tem (alluded above in Section 17.1.11) within the formal models because we have a
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global approach taking account of the environment. This would take care of require-
ments FLR-1 (drivers passing a red signal) and FLR-3 (trains moving backwards) which
are protected by the Automatic Train Protection System.

As much as I understand from experts, the other failures are not treated, simply
because people consider that their probability is extremely low. However, such failures
could sometimes be detected in the case of FLR-4 (wrong block occupancy) and that
of FLR-5 (train leaving a block). In these cases, the controller has to stop the system
by not allowing any signal to be turned green and by not doing any point positioning.
This default phase is to last until the environment is inspected and the system is reset.
It would be also very easy to model this.

What we have presented here is very close to similar studies found in [1] and [3]. The
approach of [1] itself follows from original approaches done in the past by applying the
“Action System” methodology [2]. The important lesson learned from Action System
is the idea of reasoning at a global level by introducing not only the intended software
into the picture but also its physical environment.

In the present study, we insisted on the preliminary informal phase consisting in
presenting the structured “definitions and requirements” of the system we want to
build. We think that it is extremely important from a methodological point of view,
as it is quite frequently a very weak point in similar industrial applications. It seems
that we have also made a more complete mathematical treatment of the track network
model.
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Problems

This final chapter is entirely devoted to problems which you might try solving. They
are all to be done with the Rodin Platform, which you can download from the web site
“event-b.org”. We recommend beginners who are downloading the Rodin Platform for
the first time to “perform” the tutorial which is included on this site before engaging
in any of the problems presented in this chapter.

These problems are divided up into three categories called Exercises (Section 1),
Projects (Section 2), and Mathematical developments (Section 3).

Exercises are small and easy developments, mainly corresponding to the construction
of simple sequential programs. But we also find models of simple complete systems
and even the development of a small electronic circuit. Exercises can be proposed in a
beginner course.

Projects are more serious problems, which require more investment than exercises.
They can be proposed in an advanced course.

Mathematical developments come from pure mathematics. They involve more com-
plicated proofs than in the two previous cases; most of them are not performed au-
tomatically by the provers of the Rodin Platform. As such, they represent excellent
exercises to improve our ability to perform interactive proofs.

For Exercises and Projects, we are required to write a requirements document as well
as a refinement strategy before engaging in the formal development with the Rodin
Platform. Most of the time, we will have to use some contexts to define the carrier
sets and the constants of the problem at hand. The various machines we will define
then represent our development by means of successive refinements. Many proofs can
be done automatically by the Rodin Platform.

In the case of Mathematical developments, we will only define contexts since
the issue is not to define transition systems but just to answer mathematical
questions.

550
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18.1 Exercises
18.1.1 Bank

Develop the simple model of a bank where people (customers of the bank) can open
or close an account and make a deposit or withdraw some money on their account. It
is not allowed to have a negative balance.

We might define two carrier sets PERSON and ACCOUNT in a context. We
might define a variable client representing the set of clients of the bank, and a variable
account representing the set of open accounts in the bank. Each such account must
be connected to a single client. Persons can become clients of the banks and then
successively open one or several accounts.

18.1.2 Birthday book
A birthday book contains the names and dates of birth of certain persons. In this
exercise, we can consider that NAME and DATE are abstract sets.

It will be possible to add a new record (name, date) in the birthday book and also
to remove a record from the book.

As a refinement, the book is made of a number of consecutive numbered pages. Each
page contains a person’s record. When removing a person, the last page of the book is
moved in place of the missing page.

18.1.3 Numerical matrix with a row of 0s
We are given a numerical matrix with m rows and n columns. We would like to find
out whether there is a row in this matrix in which all n elements are equal to 0.

First define a context with the matrix definition.
Then define an initial machine with two events corresponding to the specification of

the possible outcomes: success (such a row does exist) or failure (such a row does not
exist).

Refine this machine by introducing a row index r and a column index c. Initially, r
and c are both equal to 1. Define two invariants stating that the first r − 1 rows are
not successful (these rows are not made of 0 only), whereas the c− 1 first columns of
row r are successful (containing 0). This refinement has two new events making r and
c progressing in certain circumstances.

18.1.4 Search in an ordered numerical matrix
We are given a numerical matrix with m rows and n columns. We suppose that this
matrix is ordered both row-wise and column-wise in ascending order. We are also given
a numeric constant x. We would like to know whether this number x is in the matrix.
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First define a context with the matrix definition and property, together with the
constant x.

Then define a machine with two events corresponding to the specification of the
possible results: success (x is in the matrix) or failure (x is not in the matrix).

Refine this machine by introducing a row index r and a column index c. Initially,
r is equal to m, whereas c is equal to 1. Define an invariant stating that x is not in
the sub-matrix (1 .. r,1 .. c− 1) and also in the rows from r + 1 to m. In other words,
the search is concentrated in the sub-matrix (1 .. r, c .. n). This is indicated in Fig.
18.1. Introduce two new events incrementing c or r according to the comparison with
x (greater or smaller) of the value of the matrix at row r and column c.

?

n

m

c

r

1
1

Fig. 18.1. Searching in a matrix

18.1.5 The celebrity problem
Among a set P of persons, there is a celebrity c. We are given a binary relation knows
between two different persons. More precisely if the pair p → q belongs to knows, it
means that person p knows person q. The characteristic property of the celebrity c is
that everyone knows c, whereas c does not know anybody. We would like to search for
the celebrity by asking who knows or does not know who.

Define a context with the finite set of persons P , the relation knows and the celebrity
c. For reasons which will be clearer later we suppose that P is a set of natural numbers.

Define an initial machine with a single event find setting a result variable r to the
celebrity c.

Refine the previous machine. Introduce a variable Q, which is supposed to be a
subset of P containing the celebrity c. Initially Q is equal to P . The purpose of this
machine is to introduce two new events, gradually removing elements from the set Q.
The first event removes a person p from Q if p knows another person q of Q. The
second event removes a person q from Q if q is not known from another person p of Q.
First give an informal justification for these removals and then do the corresponding
formal proofs.
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Refine the previous machine by introducing two variables R and b. Variable R is a
subset of the set P and variable b is a person which is not in R. Variable Q disappears
but it is related to Q and b as follows: Q = R ∪ {b}. Refine the events of previous
machine. Do the proofs.

In the next refinement, we suppose that the set P is exactly the interval 0 .. n for
some positive number n. We introduce a new variable a which is a number in the
interval 1 .. n + 1. Initially, a is equal to 1 and b is equal to 0. The set R disappears. It
is related to a and n as follows: R = a .. n. Refine the events of previous machine. Do
the proofs.

18.1.6 Find a common element in two intersecting finite
sets of numbers [1]

We are given two finite sets a and b of natural numbers. The intersection of these
two sets is supposed to be non-empty. We would like to find any number r such that
r ∈ a ∩ b.

Define a context with the two sets.
Define an initial machine with variable r and a single event find assigning r to any

value x in a ∩ b.
Refine the previous machine. For this, introduce two new variables c and d. Variable

c is a subset of a and variable d is a subset of b. Moreover, the intersection of c and
d is equal to the intersection of a and b. Initially, c is set to a and d is set to b. We
introduce two new events, which remove gradually elements in c and d. These elements
are chosen non-deterministically.

Refine the previous machine. The previous non-deterministic removing events are
made deterministic. We remove the minimum of c if it is smaller than the minimum of
d and we remove the minimum of d if it is smaller than the minimum of c. When both
minima are equal, then we have found a common element.

Now we extend the context. We suppose that the sets a and b are the range of two
bijections f and g from 1 .. m and 1 .. n respectively:

f ∈ 1 .. m �� a

g ∈ 1 .. n �� b

We suppose that these bijections are ordered, that is:

∀i, j · i ∈ 1 .. m ∧ j ∈ 1 .. m ∧ i ≤ j ⇒ f(i) ≤ f(j)

∀i, j · i ∈ 1 .. n ∧ j ∈ 1 .. n ∧ i ≤ j ⇒ g(i) ≤ g(j)
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Prove the following theorems:

∀k · k ∈ 1 .. m ⇒ f(k) = min(f [k .. m])

∀l · l ∈ 1 .. n ⇒ g(l) = min(g[l .. n]).

Now, we refine the previous machine. For this, we introduce two new variables i and
j. These variables are in the intervals 1 .. m and 1 .. n respectively. Initially, they are
both equal to 1. The variables c and d disappear. They are related to i and j as follows:

c = f [i .. m]

d = g[i .. n].

Refine the events.

18.1.7 A simple access control system
We want to define the requirements document of a simple access control system. Here
is the informal (poor) description of this system.

We have a building made of different rooms. Each room is connected to some other
rooms by means of doors. There is a special room called the hallway: it is connected
to all rooms.

This building is supposed to be used by a group of people. Each person in this group
receives the authorization to be in certain rooms only. Note that everybody can be in
the hallway.

People can enter and leave rooms by means of a magnetic card with an adequate
identification. In order to do so they have to put their card into a machine situated at
each door. If they are authorized to enter the room, then the door will be open for a
while.

Define a more precise requirements document. Each requirement will be labeled as
being an equipment requirement (EQP), or a functional requirement (FUN), or else a
safety requirement (SAF).

Develop a model of this system by means of several refinements.

18.1.8 A simple library [2]
A library is made of books which can be acquired or discarded by the library. People
can be made members of this library. Members can also leave the library.

Books can be borrowed by members. But members cannot borrow more than a
certain fixed number of books. Members return books which they have borrowed.

When a book which a member wants to borrow is not available (borrowed by another
person), the member is put on a waiting queue associated with this book. Members
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can quit a waiting queue. The member in a waiting queue who has been waiting the
longest is served when the book is returned.

Define a proper requirements document for this system.
Develop a model by means of several refinements.

18.1.9 A simple circuit [3]
We want to construct a simple circuit which is sketched in Fig. 18.2. This circuit has
four inputs a_in, b_in, r_in, and t_in and one output o, which are all boolean
(TRUE or FALSE). For the sake of simplification, we suppose that only one input can
be set to TRUE at a time.

r_in

t_in

a_in
b_in

o

Fig. 18.2. A simple circuit

The circuit might be said to be open or closed. When it is closed, if input t_in is
set to TRUE, then the circuit is made open. When it is open, if input t_in is set to
TRUE, then the circuit is made closed.

When the circuit is open, the output o is set to TRUE as soon as the circuit has
received a TRUE signal on both inputs a_in and b_in in any order while the circuit
was open.

When the circuit is open, a TRUE signal on input r_in resets the circuit. More
precisely, the memory of input a_in and/or b_in are lost. In case the output o is
TRUE, then it is reset to FALSE.

When the circuit is made open, it is reset. In other words, it looses the memory of
what has happened when it was previously open.

Define an initial machine with four boolean variables: a, b, t, and o. The variable
t records whether the circuit is open (TRUE) or closed (FALSE). Note that the four
inputs have not yet been introduced in this machine. The variable a (or b) records
the fact that input a_in (or b_in) was set to TRUE when the circuit was open. The
variable o is the output. Define the invariants relating these variables. Define events
A1, A2, B1, B2, R, T, and S. Events A1 correspond to input a_in being TRUE, while b
is still FALSE: it makes a become TRUE. Events A2 corresponds to input a_in being
TRUE, while b is True: it makes a become TRUE and o become TRUE. Events B1
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and B2 have similar behavior as events A1 and A2 with input b_in. Event R resets the
circuit. Event T closes the circuit and event S opens it.

Refine the previous machine. Introduce a technical boolean variable cir, which is
TRUE when the circuit reacts to the environment and FALSE when the environment
sets the inputs. Introduce the four input variables a_in, b_in, r_in, and t_in. Define
the invariants stating that at most one input is TRUE at a time and that one input is
always TRUE. Introduce the environment events push_a, push_b, push_r, and push_t.
Introduce another circuit event N that does nothing. Refine the events of the previous
machine.

Refine the previous machine by using the technique developed in Chapter 8 so that
all circuit events have the same action.

Refine the previous machine by merging the circuit events into a single event.

18.1.10 An alarm clock
In this exercise, we want to build the model of a telephone alarm clock. We have two
processes: the user and the alarm clock. These processes are communicating through a
telephone line.

In order to ask for an alarm, the user calls for an alarm call, giving (by dialling)
the time he wants to be woken up. The telephone answers that it has established the
requirement.

From here there are two possibilities:

• the user calls up again before being woken up to cancel the demand;
• the bell of the telephone alarm clock rings.

Note that these two events might be competing. Define and prove the corresponding
formal model.

18.1.11 Analysis of a continuous signal
The purpose of this exercise is to construct the model of a system analysing a continuous
signal in order to transform it into a a “step” signal.

In Fig. 18.3, you can see a continuous input signal being sampled every other CT
second (CT stands for the cycling time): this is indicated by the black dots. An output
signal will be generated as a result of the sampling. Initially, the output signal is off .

If the sampling detects that the threshold RTH (rising threshold) has been passed
between two successive samplings and that the input signal is above RTH for a time BT
(debounce time) immediately after this detection, then the output signal moves from
off to on. We have a symmetric situation with the threshold FTH (falling threshold)
and the output signal moving from on to off . We suppose that the integer ratio n =
BT/CT is well defined and positive.
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CT CTBT BT

on

FTH

RTH

off

Fig. 18.3. Sampling

Construct a model of this system producing an adequate output for each detected
input. Each event will correspond to a reaction of the system to an input. There will
be many different events as there are many different situations in which an input may
occur.

Define the model by successive refinements. Do not forget to write an initial re-
quirements document as well as a refinement strategy before embarking on the formal
development.

18.2 Projects
18.2.1 An electronic hotel key system [4] [5]

The purpose of this project is to develop the model of an hotel electronic key system.
The purpose of such a system is to guarantee that between your check-in and check-

out in an hotel, you can enter the room you booked and no one else can do so. Note
that this is not the case with a metallic key system since a previous user of the room
may have duplicated the metallic key.

A proposed implementation is defined as follows:

(1) Each hotel room door is equipped with an independent electronic lock which holds
an electronic key. The lock has a fence in which one may insert a magnetic card.

(2) Each check-in starts a new booking of a certain room. To each booking is associated
a magnetic card containing two electronic keys: a guaranteed new key, and the
electronic key presently stored in the lock of the room (a centralized dynamic
system is supposed to hold the keys stored in the room locks). To enter the room,
you insert your card in the fence of the lock. The lock reads your card and opens
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the door provided its own electronic key is one of the keys on your card. The
electronic key is replaced by the new key which is on your card.

In Fig. 18.4 a new card is introduced in the fence. It contains the new key k2 and the
key k1 of the lock. The card is accepted and the electronic key of the lock becomes k2.
The owner of the card can now re-enter his room with the same card (since it contains
key k2).

k1

k2

k1

k1

k2

k2

Fig. 18.4. A door lock and a new card being inserted

The proposed implementation with the cards requires that people effectively use the
room. If someone does not use the room he booked, then the next client cannot enter
the room.

Develop a model for this system. Do not introduce the card and the key at
the beginning. You rather make an abstraction were the main property is ex-
pressed: a person who has booked a room is guaranteed that no one else can enter
this room.

In subsequent refinements, express the fact that clients are served according to their
arrival (hotel policy). Then finally, introduce the card system which implements this
policy.

You might define various events: check-in, check-out, enter_room, leave_room. Con-
sider also a master entering in the room (under the responsibility of the hotel).

18.2.2 Earley parser [6]
The purpose of this project is to develop a formal model for an Earley parser.

For this we have to define first what a syntax is. We are given a set S of symbols. A
subset N of S contains the so-called non-terminal symbols. The complement T of N
(that is, S \N) contains the so-called terminal symbols.
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We are given a set P of productions. A production has got a left-hand part which is a
non-terminal symbol. It has got also a right-hand part which is a non-empty sequence
of symbols. Finally, there is a special production called the axiom. This can be defined
as follows:

left ∈ P →N

right ∈ P → (N → S)

size ∈ P → N1

∀p· right(p) ∈ 1 .. size(p)→ S

axiom ∈ P

A syntax is just a set of productions defined on a set S of symbols.
We define now what it means for a sequence of symbols to match a sequence of

terminal symbols. For this, we use the following binary relation:

match ∈ (N → S)↔ (N → T )

The relation match is defined by means of three axioms, which are the following:

∅ → ∅ ∈ match

∀i, j, k, l, n1, n2, s1, s2 · i ∈ 1 .. n1
j ∈ 0 .. n1− 1
k ∈ 1 .. n2
l ∈ 0 .. n2− 1
s1 ∈ 1 .. n1→ S
s2 ∈ 1 .. n2→ T
s1(j + 1) = s2(l + 1)
i .. j � s1 → k .. l � s2 ∈ match
⇒
i .. j + 1 � s1 → k .. l + 1 � s2 ∈ match
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∀i, j, k, l, n1, n2, s1, s2, m, p · i ∈ 1 .. n1
j ∈ 0 .. n1− 1
k ∈ 1 .. n2
l ∈ 0 .. n2− 1
s1 ∈ 1 .. n1→ S
s2 ∈ 1 .. n2→ T
m ∈ l .. n2
left(p) = s1(j + 1)
right(p) → l + 1 .. m � s2 ∈ match
i .. j � s1 → k .. l � s2 ∈ match
⇒
i .. j + 1 � s1 → k .. m � s2 ∈ match

Finally, we define the input as a sequence of terminal symbol of size s: formally,

s ∈ N

input ∈ 1 .. s→ T

All previous modeling components can be entered in a context.
The input is said to be recognized by the syntax if the following holds:

right(axiom) → input ∈ match

Define an initial machine that does the recognition in one shot. This can be done by
means of the following event:

parser
when

right(axiom) → input ∈ match
then

r := TRUE
end

The purpose of this project is to perform a complete model of this parser.
The first refinement contains the essence of the Earley parser. For this we introduce

a variable item, which is a binary relation defined as follows:

item ∈ (P × N) ↔ (N× N)
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together with the following invariant:

∀p, k, i, j · (p → k) → (i → j) ∈ item
⇒
k ∈ 0 .. size(p)
i ∈ 0 .. s
j ∈ 0 .. s
i ≤ j
1 .. k � right(p) → i + 1 .. j � input ∈ match

Besides the refinement of the parser event, this first refinement is made of three events
called: the scanner, the predictor, and the completer.

The scanner adds a new “item” (p → k+1) → (i → j+1) provided (p → k) → (i → j)
(where k < size(p) and j < s) is already stored and right(p)(k + 1) = input(j + 1)
holds.

The predictor adds a new “item” (q → 0) → (j → j) provided (p → k) → (i → j)
(where k < size(p)) is already stored and there is a production q such that left(q) =
right(p)(k + 1).

The completer adds a new “item” (q → kp+1) → (ip → j) provided (p → size(p)) →
(i → j) is already stored and (q → kp) → (ip → i) (where kp < size(q)) is also already
stored, and finally right(q)(kp + 1) = left(p) holds.

Prove (informally first) with the help of the axioms for match that these events
maintain the main invariant. Refine event parser. As can be seen, this first refinement
is highly non-deterministic.

The goal of the project is to perform a number of refinements in order to obtain an
efficient parser implemented as a final sequential program.

18.2.3 The Schorr–Wait Algorithm [7]
The purpose of this project is to make a model for the Schorr–Wait algorithm.

We are given a finite set N of node, a binary relation g (for “graph”) built on this
set, and a special node t (for “top”). Let r be the image of {t} under the irreflexive
transitive closure of g: r = cl(g)[{t}]. We want to mark (in black) all elements of r.

Define an initial machine with a “one shot” event mark performing this task.
Refine this machine by introducing a non-deterministic event progress. Initially only

node t is marked. Event progress marks a node which is related to an already marked
node by means of relation g. Introduce the necessary invariant and refine event mark.

Refine this machine by making it work in a “depth-first” fashion. For this introduce
a “current” node and also a stack which is a linear list. Give invariant properties of the
stack.
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Simplify this machine by supposing the graph g is a binary graph. In other words,
each node is connected to at most two nodes by means of two partial functions left
and right .

Continue to refine by temporary storing the stack in the graph (this is the essence
of the Schorr–Waite algorithm).

18.2.4 Linear list encapsulation [8]
The purpose of this project is to develop the model of a linear list “encapsulation”.

We are given a finite set N of node.
We define an initial machine with a finite linear list of such nodes. This list is defined

as follows by means of the next variable:

next ∈ N � N

Add some other variables in order to define this linear list more precisely. Give some
invariant properties. Initially, the list is empty.

Provide a number of events for inserting or removing nodes at the beginning, at the
end, or in the middle of this list. In the last case, it is possible to use next−1 .

This machine is then refined so that inserting or removing a node in the middle of
the list does not use next−1

18.2.5 Concurrent access to a queue [9]
This project consists in developing a model for a concurrent access to a queue. The
technique to be used is similar to the one developed in Chapter 7. The problem is
described in full detail in [9]. The reader is encouraged to have a look at this paper.

The queue is made of a number of nodes linked by pointers called Next . The final
element of the queue is a dummy node called Null . The queue is accessed through two
additional pointers called Head and Tail . Normally Tail points to the node preceding
Null in the queue. When Head and Tail are the same, the queue is said to be degraded.
All this can be seen in Fig. 18.5.

Tail

Null Null

tailHeadHead

Next

Fig. 18.5. The queue (normal and degraded)
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We may perform three operations on this queue: Enqueue, Dequeue, and Adapt. These
operations are described below in a pidgin programming language:

Dequeue
if Next 
= Tail then

Head := Next(Head)
end

Enqueue
if Next(Tail) = Null then

node := new_node;
Next(node) := Null;
Next(Tail) := node

end

Adapt
if Next(Tail) 
= Null then

Tail := Next(Tail)
end

We suppose that a number of processes have a concurrent access to this queue. They all
perform “simultaneously” the previous operations ignoring each other. In the mentioned
paper you will see how these processes can interrupt each other according to some
precise definition of their atomicity.

Follow the description of the paper to define the initial machine and its various
refinements. Perform all proofs with the Rodin Platform.

18.2.6 Almost linear sorting
Normally the expected time to sort n item is proportional to n logn. But, in certain
circumstances, it can be made “almost” proportional to n. The purpose of this project
is to develop the model of such an almost linear sorting algorithm.

Suppose we have to sort n distinct numbers ranging exactly from 1 to n. The sorting
is clearly linear: simply put each number i at the ith position. This is illustrated in
Fig. 18.6.

2
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2
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5

Fig. 18.6. Linear sorting
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Now suppose we have to sort n distinct numbers ranging from 1 to m where m is
slightly greater than n. For instance, n is equal to 5 but m is now equal to 7 as shown in
Fig. 18.7. We can suppose that this assumption about a slight difference only between
m and n could help in designing an almost linear sorting. This is so because there is no
reason for that small difference between n and m to suddenly induce a large difference
in the sorting time with respect to the linear time we had when n and m were identical.

1

25

1

6

7

2

5

6

7

Fig. 18.7. Almost linear sorting

First define a context introducing n, m, and the array f to sort:

n > 0

m > 0

f ∈ 1 .. n � 1 .. m

Define an initial machine doing the sorting in one shot. For this, define a variable
array g which is a function from 1 .. n to 1 .. m. Also define an event sort and an
anticipating event progress as follows:

sort
any h where

h ∈ 1 .. n→ 1 .. m
ran(h) = ran(f)
∀i · i ∈ 1 .. n− 1 ⇒ h(i) < h(i + 1)

then
g := h

end

progress
status

anticipated
begin

g :∈ 1 .. n→ 1 .. m
end

Refine the initial machine. For this, introduce a variable k situated in 0 .. m and a
variable l situated in 0 .. n. Initially, these variables are set to 0. As an invariant, state
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that the array g is sorted from 1 to l. Also state that the image g[1 .. l] is equal to
ran(f)∩ 1 .. k, and that the cardinal of dom(f �1 .. k)) is exactly equal to l. Refine the
events. Split the anticipated event progress: the two resulting events become convergent.
Prove this refinement.

Add another refinement with an event scan constructing a boolean array r from 1..m
to BOOL where we eventually have r(x) being TRUE if and only if x is in the range
of f . Refine the events. Prove this refinement. Perform an animation. The sorting is
proportional to m + n, so roughly 2n when n and m are almost equal.

18.2.7 Termination detection [12]
The purpose of this small project is to develop a simple model of the Dijkstra-Scholten
termination detection algorithm.

We are given a set P of processes. A subset of these processes are sleeping. The
purpose of the algorithm is to determine whether all processes are sleeping.

Define a context with the set P of processes. Define an initial machine with the
variable sleeping and a boolean d which when TRUE implies that all processes are
sleeping:

d = TRUE ⇒ sleeping = P

This machine has three events: awake, make_asleep, and detection. The last one is as
follows:

detection
when

sleeping = P
then

d; = TRUE
end

In this version, the entire set of processes has to be considered. We would like to have
a more economical version where only one process is considered.

We extend our initial context by introducing a special constant process r, which is
supposed to be always sleeping. The non-sleeping processes are supposed to be all in a
dynamic tree rooted at r. The tree might contain some sleeping processes as well. But
these processes are eliminated when they are leafs of the tree. For this, we introduce
an additional event shrink removing a sleeping leaf of this tree. The tree is defined by
means of a function f as follows (Section 9.7.7 of Chapter 9):

f ∈ P \ {r} → dom(f) ∪ {r}
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together with the usual tree property:

∀S · S ⊆ f−1 [S] ⇒ S = ∅

The guard of the refined version of the detection event becomes:

r /∈ ran(f)

In other words, the root of the tree has no children. Finalize and prove this refined
machine.

18.2.8 Distributed mutual exclusion [10]
We, supposedly, have a number of processes running in parallel. From time to time some
of them want to access a certain “resource” (whose exact nature is not important) in
an exclusive way. We want to develop a model that handles this constraint.

The processes in question are all members of a certain fixed set P of pro-
cesses. Each such process x is supposed to cycle indefinitely on the following three
successive phases:

• x is in the, so-called, non-critical section – it is thus not using or willing to use the
resource;
• x is in the pre-critical section – this corresponds to the process willing to access the

resource. It is thus competing with other processes, which are also in the pre-critical
section waiting to be admitted into the critical section where the mentioned resource
is supposed to be granted exclusively to a single process;
• x is in the critical section – it is using the resource.

We shall represent the transitions between these phases by means of the following three
events as illustrated in Fig. 18.8:

critical

ask

leave enter

Fig. 18.8. Transitions between the three phases
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• event ask corresponds to the transition non-critical −→ pre-critical;
• event enter corresponds to the transition pre-critical −→ critical;
• event leave corresponds to the transition critical −→ non-critical.

There are three fundamental constraints in this problem, which are the
following:

• a process, supposed to be blocked in the non-critical section, must not block the
processes that are in the pre-critical section – this excludes solutions where each
process is given a pre-defined ordered access to the resource;

• a process must not wait for ever in the pre-critical section – this encourages solutions
where a certain dynamic re-ordering between the processes is realized;

• the critical section contains at most one process – this is the basic mutual exclusion
property.

We define an initial machine. The problem is formalized by means of a set variable p
containing the processes in the pre-critical section as well as the process in the critical
section. The set of processes in the critical section is denoted by the variable c. This is
expressed in invariants inv0_1 and inv0_2. The critical section should have at most
one member (invariant inv0_3):

inv0_1 : p ⊆ P

inv0_2 : c ⊆ p

inv0_3 : c 
= ∅ ⇒ ∃x · c = {x}

We also define a variable holding a precedence relation r, which possibly holds be-
tween members of the set P of processes and members of the set of processes in the
pre-critical section p except the one (if any) in the critical section. When a pair x, y
belongs to r this means that x must not enter the critical section before y (or that
y should precede x in entering the critical section). The reason for having y to pre-
cede x is because last time x was in the critical section, y was already waiting in the
pre-critical section. And, since then, y is still waiting. Consequently, if x re-enters the
pre-critical section, it will be unfair to allow it to enter the critical section before y,
since otherwise y could be indefinitely blocked in the pre-critical section. Clearly, the
relation r should be a strict partial order. That is, if z precedes y and y precedes x,
then z should precede x (otherwise we might have some risk of deadlock), and x cannot
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be preceded by itself. All this is formalized as:

inv0_4 : r ∈ P ↔ p \ c

inv0_5 : r ; r ⊆ r

inv0_6 : r ∩ r−1 = ∅

The three events of our initial machine are:

ask
any x where

x ∈ P \ p
then

p := p ∪ {x}
end

enter
any x where

x ∈ p
c = ∅

x /∈ dom (r)
then

c := {x}
r := r �− {x}

end

leave
any x where

x ∈ c
then

c := ∅

p := p \ {x}
r := r ∪ {x} × (p \ {x})

end

Here are some comments concerning the guard of the previous events. A process x
can execute ask if it is not already in the pre-critical section. A process x can execute
enter if it is in the pre-critical section, if the critical section is empty, and if x is not
preceded by any other process (thus x is not in the domain of the precedence relation
r). Finally, a process x can execute leave if it is in the critical section.

Notice that we have a certain non-determinism in the possible executions of the
event leave as there might exist several candidates in the pre-critical section, which are
not preceded by other processes (remember, r is only a partial order).

When a process x enters the critical section (event enter) each pair of processes of
the form y → x should be removed from the relation r since x should not precede any
other process as it is now in the critical section. The other modification of the relation r
takes place when a process leaves the critical section (event leave); all processes present
in the pre-critical section should now precede x for entering the critical section.

Prove this initial machine.
The development of a specific mutual exclusion algorithm may implement the re-

lation r by means of a more concrete relation, which only needs to be weaker than r
(i.e. with more pairs). Thus, the concrete relation has a domain including that of r.
As a consequence, we shall be able to replace the guard x /∈ dom (r) in event enter
by the stronger guard “x is not in the domain of the concrete guard”. This is because
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a process x which is not in the domain of the concrete relation, is not in the domain
of r.

Before developing the first refinement, we extend our initial context where the set
P of processes is defined. In this extension, the processes form a ring. For this use
the definition of rings described in Section 9.7.5 of Chapter 9. The ring is defined by
means of a bijection n between processes. You might also prove a few more interesting
lemmas on rings. In particular, you need to copy the definition of an interval itv(a → b)
between two nodes a and b in a ring.

In the first refinement, the variable r is removed. It is “replaced” by a variable w
which is a process. More precisely, w denotes either the process which sits in the critical
section or, in case the critical section is empty, the process which was last in the critical
section. The gluing invariant between r and w is as follows:

∀x, y · x → y ∈ r ⇒ y ∈ p ∧ x 
= y ∧ y ∈ itv(n(w) → x)

This is illustrated in Fig. 18.9. An additional invariant states that w is not in the range
of r. Refined the three events.

w
n

n(w)

y

x

Fig. 18.9. The ring

Develop further refinements defining the loop which is concentrated in event enter.

18.2.9 Lift
The informal description of an elevator system is given below. It’s quite clumsy and
poorly written. Sometimes, some basic requirements might be omitted (when they have
been considered trivial). This is on purpose. It reflects the average user’s requirements
document encountered in practice.

The elevator system consists of the following parts:

• an elevator,
• a door for the elevator,
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• a cable and an engine for moving the elevator,
• sensors for detecting that the elevator has reached some floor,
• an engine for opening and closing the door,
• sensors for detecting if the door is open or closed,
• N + 1 floors,
• buttons on floors for calling the elevator,
• buttons in the elevator for choosing floors,
• a controller that controls the system,
• copper wires between them.

In order for the user to know that his request is acknowledged by the system, all
buttons have a small light attached to them. That light should be switched on when
the user presses the corresponding button. Conversely, it should be switched off once
the request has been served.

Floors have two buttons (one for each direction of the elevator), unless only one
button is needed. There are exactly N + 1 buttons in the elevator (one for each floor).

Finally, to prevent accidents, the elevator should always move with the door engine
working towards closing the doors; this prevents users from opening the doors while
the elevator is moving.

The inputs of the controller are:

• the status of the cable engine (winding, unwinding, or stopped),
• the status of the door engine (opening, closing, or stopped),
• the status of the floor sensors (the number of the floor that the elevator has reached

or –1 if the elevator is between two floors; floors are counted from 0 to N),
• the status of the door sensors (fully open, half open, or closed),
• the status of the buttons (pressed or not: boolean).

The outputs of the controller are:

• the command of the cable engine (wind, unwind, or stop),
• the command of the door engine (open, close, or stop),
• the command of the lights of the buttons (on or off: boolean).

Out of that description, you should write a clean requirements document. You should
use the following taxonomy of requirements:

• EQP for equipment,
• FUN for functional,
• SAF for safety requirements.

Pursue this project by proposing a refinement strategy and then develop the corre-
sponding model by means of several refinements.
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18.2.10 A business protocol [11]
This project aims at constructing the model of a business protocol. The idea is also to
use the design pattern technique which was presented in Chapter 3.

This protocol determines the negotiation taking place between a buyer and a seller.
The outcome of the protocol might be as follows:

• the two parties agree on a final agreement by which the seller sells a certain quantity
of a certain product to the buyer at a certain price. Note that the product, the
quantity, and the price are all abstracted here as an INFO exchanged between the
participants;

• the two parties might end up by not succeeding in finding an agreement;
• whatever the final result (agreement or no agreement), the buyer might always cancel

the protocol.

The protocol is divided up into four phases: the initial phase, the free game phase,
the last proposal phase, and the termination phase.

• In the initial phase, the buyer starts the protocol by sending a proposal to the seller.
• After this initial proposal has been received by the seller, the protocol enters the

free game phase. In this second phase buyer and seller can send counter-proposal or
acceptance to the other partner proposal in a fully asynchronous way. In this phase,
an acceptance or a counter-proposal by either party is never definitive.

• The last proposal phase is at the initiative of the buyer which makes it clear to the
seller that the proposal sent to it is the last one; the seller can either accept it or
reject it. It cannot send a counter-proposal.

• The termination phase is the one by which the buyer sends a termination message,
which the seller has to acknowledge.

During the three first phases, the buyer can always cancel the protocol by sending a
message to the seller, which needs to acknowledge it. This has the immediate effect to
move the protocol to the termination phase.

When the seller or the buyer sends a counter-proposal it must mention in the corre-
sponding message to which proposal of the other party it corresponds.

The channels between the seller and the buyer are not reliable: messages can be lost,
copied and do not arrive necessarily at their destination in the same order in which
they have been sent.

Use design patterns to handle the sending of messages, the response to a message,
or both. Use these patterns in a systematic fashion to model the various phases of the
protocol.

Do not perform the modeling in a flat manner; use various refinements to structure
your formal model. Do not forget to write a precise requirements document as well as
a refinement strategy.
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18.3 Mathematical developments
18.3.1 Well-founded sets and relations

Characteristic properties Given a set S, a binary relation r built on S is set to be
well founded if all paths built on r and starting from any point x of S are finite. A
relation which is not well founded thus contains infinite paths built on r. A subset p
of S contains infinite paths if for any point x in p, there exists a point y, also in p,
related to x by means of r; formally:

∀x ·x ∈ p ⇒ (∃y · y ∈ p ∧ x → y ∈ r ) :

that is:

p ⊆ r−1[p].

Since the empty set enjoys this property, we can define a well-founded relation r as
one where the only set p enjoying that property is the empty set:

∀p · p ⊆ r−1[p] ⇒ p = ∅ (1)

Another characteristic property of a well-founded relation r states that every non-
empty subset of S has an r-minimal element; formally:

∀p · p 
= ∅ ⇒ ∃x · x ∈ p ∧ (∀y · y ∈ p ⇒ x → y /∈ r ) (2)

Prove that (1) and (2) are equivalent.

Induction principle Given a well-founded relation r built on a set S, we can define
a general induction principle stated as follows:

∀q · (∀x · r[{x}] ⊆ q ⇒ x ∈ q ) ⇒ S = q (3)

Prove that (1) or (2) implies (3).

Proving well-foundedness We now establish a few results for proving well-
foundedness.
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If a relation b built on a set S is well-founded, then any relation a included in b is
also well-founded; formally:

∀p · p ⊆ b−1 [p] ⇒ p = ∅

a ⊆ b
⇒
∀p · p ⊆ a−1 [p] ⇒ p = ∅

(4)

Prove property (4). As a more general result, suppose we have a well-founded relation
b built on a set T , and a total binary relation from a set S to T . A binary relation a
built on S is well-founded provided v−1 ; a ⊆ b ; v−1 holds; formally:

∀p · p ⊆ b−1 [p] ⇒ p = ∅

v ∈ S←↔ T
v−1 ; a ⊆ b ; v−1

⇒
∀p · p ⊆ a−1 [p] ⇒ p = ∅

(5)

Prove property (5). A special case of (5) is when v is a total function from S to T ;
formally:

a ∈ S↔ S
b ∈ T ↔ T
v ∈ S→ T
∀x, y · x → y ∈ a ⇒ v(x) → v(y) ∈ b
⇒
v−1 ; a ⊆ b ; v−1

(6)

Prove property (6). The relation “<” on natural numbers is well-founded; formally:

∀x, y · x ∈ N ∧ y ∈ N ⇒ x → y ∈ b ⇔ y < x
⇒
∀q · q ⊆ b−1 [q] ⇒ q = ∅

(7)
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Prove property (7). Putting (6) and (7) together, we obtain the following:

a ∈ S↔ S
v ∈ S→ N

∀x, y · x → y ∈ a ⇒ v(y) < v(x)
⇒
∀a · a ⊆ p−1[a] ⇒ a = ∅

(8)

Prove property (8).

18.3.2 Fixpoints
Definition We are given a set S and a total function f from P(S) to itself:

f ∈ P(S)→ P(S).

We would like to construct a subset fix(f) of S such that the following holds:

fix(f) = f(fix(f))

Here is a proposed definition of fix(f):

fix(f) = inter({s | s ⊆ f(s)}) (9)

Prove that this definition is well defined.

Properties Now come two useful lemmas. First, fix(f) is a lower bound of the set
{s | s ⊆ f(s)}; formally:

∀s · f(s) ⊆ s ⇒ fix(f) ⊆ s (10)

Second, fix(f) is the greatest lower bound of this set; formally:

∀v · (∀s · f(s) ⊆ s ⇒ v ⊆ s) ⇒ v ⊆ fix(f) (11)
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Prove (10) and (11). The theorem of Knaster and Tarski states that fix(f) is indeed
a fixpoint provided the function f is monotone:

∀a, b · a ⊆ b ⇒ f(a) ⊆ f(b)
⇒
fix(f) = f(fix(f))

(12)

Prove (12). Moreover, fix(f) is the least fixpoint:

∀t · t = f(t) ⇒ fix(f) ⊆ t (13)

Prove (13). Develop similar results for the greatest fixpoint FIX(f) defined as:

FIX(f) = union({s | f(s) ⊆ s}) (14)

Let dual be the following function:

dual ∈ (P(S)→ P(S))→ (P(S)→ P(S))

∀f, x· dual(f)(x) = S \ f(S \ x).

Prove:

FIX(f) = S \ fix(dual(f)).

18.3.3 Recursion
We are given two sets S and T , a well-founded binary relation r built on S, and a
function g which is:

g ∈ (S → T )→ T.

We would like to construct a total function f from S to T with the following property:

f ∈ S→ T

∀x · x ∈ T ⇒ f(x) = g(r[{x}] � f).
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In other words, the value of the function f at x depends on its values on points of the
set r[{x}]. First, we define a function img:

img ∈ S→ P(S)

∀x · x ∈ S ⇒ img(x) = r[{x}].
Second, we define a function res:

res ∈ (S↔ T )→ (P(S)↔ (S→ T ))

∀p · p ∈ S↔ T ⇒ res(p) = {a → h |h ∈ a→ T ∧ h ⊆ a � p}.
Third, we define a function genf :

genf ∈ (S↔ T )→ (S↔ T )

∀p · p ∈ S↔ T ⇒ genf(p) = img ; res(p) ; g.

Prove that genf is monotone. We now define f to be a binary relation defined as
follows:

f = fix(genf).

Prove:

∀z · z ∈ S ⇒ {z}� f ∈ {z}→ T.

Hint: Use the well-founded induction rule defined by the well-founded relation r. From
this, prove:

f ∈ S→ T.

Finally, prove:

∀x · x ∈ S ⇒ f(x) = g(r[{x}] � f).

18.3.4 Transitive closure
Given a set S and a binary relation r built on S, we define the function f :

f ∈ (S↔ S)→ (S↔ S)

∀s · s ∈ S↔ S ⇒ f(s) = r ∪ (s ; r)

Prove that f is monotone. Now define cl(r):

cl(r) = fix(f)
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Prove the following properties:

r ⊆ cl(r)

cl(r) ; r ⊆ cl(r)

∀s · r ⊆ s ∧ s ; r ⊆ s ⇒ cl (r) ⊆ s

cl(r) ; cl(r) ⊆ cl(r)

cl(r) = r ∪ cl(r) ; r

cl(r) = r ∪ r ; cl(r)

cl(r−1) = cl(r)−1

18.3.5 Filters and ultrafilters
Given a set S, a filter f is a set of subsets of S such that:

• if a set A belongs to f , then all supersets B of A also belong to f ;
• if two sets C and D belong to f , then so does their intersection;
• S belong to f ;
• ∅ does not belong to f .

Then the set filter of all filters built on S can be defined as follows:

filter = {f | (∀A, B ·A ∈ f ∧ A ⊆ B ⇒ B ∈ f) ∧
(∀C, D · C ∈ f ∧ D ∈ f ⇒ C ∩ D ∈ f) ∧
S ∈ f ∧
∅ /∈ f}

An ultrafilter is a filter which has no bigger filters. Then the set ultra of ultrafilters
can be defined as:

ultra = {f | f ∈ filter ∧ ∀g · g ∈ filter ∧ f ⊆ g ⇒ g = f}.
One of the main properties of ultrafilters is:

∀f, M, N · f ∈ ultra ∧ M ∪ N ∈ f ⇒ M ∈ f ∨ N ∈ f.

Prove this property. Hint: Perform a proof by contradiction and then instantiate g in
the predicate:

∀g · g ∈ filter ∧ f ⊆ g ⇒ g = f

with the set {X |M ∪ X ∈ f}.
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18.3.6 Topology
Topologies can be defined in different equivalent ways. We would like to investigate
this and prove equivalences of these definitions.

Definitions Given a set S, a topological space built on S is defined by means of a set
O of subsets of S as follows. The members of O are said to be open:

• the intersection of two sets in O is also in O,
• the generalized union of a subset of O is also in O,
• the empty set ∅ is in O,
• the set S is in O.

A set is said to be closed if it is the complement of an open set. Let C be the set of
closed sets. Prove:

• the union of two sets in C is also in C,
• the generalized intersection of a non-empty subset of C is also in C,
• the empty set ∅ is in C,
• the set S is in C.

Prove that a topology can be axiomatized equivalently by means of the set C of closed
sets.

The neighborhood of a point x of S is any set that contains an open set containing x.
Investigate from a mathematics book the properties of neighborhoods and prove them.
Prove that a topology can be axiomatized by means of neighborhoods.

Interior, closure, and border We are given a topology built on a set S. Here are a
few definitions.

• The interior of a set X is the set of points x of X such that X is a neighborhood of
x.
• The closure of a set X is the set of points x whose neighborhoods have a common

point with X.
• The border of a set X is the intersection of the closure of X with that of S \X.

Prove the following properties:

• The interior of a set X is the union of the open sets included into X.
• An open set is one that is equal to its interior.
• The interior of the intersection of two sets in the intersection of their interiors.
• The interior of an interior is that interior.
• The closure of a closure is that closure.
• The complement of the closure of a set X is the interior of the complement of X.
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• A closed set is one that is equal to its closure.
• The closure of a set X it the union of X with the border of X
• The intersection of the interior of a set X with the border of X is empty.

Continuous functions We are given two topological spaces built on S and T respec-
tively. Note: to simplify matters, we can take S and T to be the same set.

A total function from S to T is said to be continuous, if for all point x of S and all
neighborhoods n of f(x) there exists a neighbourhood m of x such that m is included
in the inverse image of n under f .

Prove the following properties of a total function f between S and T (note the
circularity of these properties which means that they are all equivalent):

• If f is continuous, then for all subset a of S the image of the closure of a under f is
included in the closure of the image of a under f .

• If f is continuous and if for all subset a of S the image of the closure of a under f is
included in the closure of the image of a under f , then the inverse image of a closed
set under f is closed.

• If the inverse image of a closed set under f is closed, then the inverse image of an
open set under f is open.

• If the inverse image of an open set under f is open, then the function f is continuous.

Given three topological spaces, prove that the composition of two continuous func-
tions is continuous.

18.3.7 Cantor–Bernstein theorem
We are given two sets S and T and two total injective functions f and g:

f ∈ S � T

g ∈ T � S.

We are also given two subsets x and y from S and T respectively, such that:

f [x] = T \ y

g[y] = S \ x.

Prove:

(x � f) ∪ (y � g)−1 ∈ S �� T.

Prove:

∀a, b · a ⊆ b ⇒ S \ g[T \ f [a]] ⊆ S \ g[T \ f [b]].
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From the previous properties, deduce the Cantor–Bernstein theorem:

∃ f · f ∈ S � T
∃ g · g ∈ T � S
⇒
∃h · h ∈ S �� T.

18.3.8 Zermelo’s theorem [13]
Transporting a well-order We are given two sets S and T and a well-order relation
q built on T ; formally:

q ∈ S↔ T

id ⊆ q

q ∩ q−1 ⊆ id

q ; q ⊆ q

∀B ·B 
= ∅ ⇒ ∃y · y ∈ B ∧ B ⊆ q[y].

Let f be a total injection between S and T :

f ∈ S � T.

Prove that the relation f ; q ; f−1 well-orders the set S.

Strategy for proving Zermelo’s theorem We would like to prove that any set S
can be well-ordered: this is Zermelo’s theorem. The idea is to perform this proof as
follows.

• We define a set T .
• We build a well-order q on T.
• We build a total injection f from S to T .

If we succeed in doing that, then, according to the above, the set S can be well-
ordered.

Building the set T and the well-order q The set T is a set of subsets of S:

T ⊆ P(S).

Let q be the set inclusion relation built on T :

∀a, b · a ∈ T ∧ b ∈ T ⇒ (a → b ∈ q ⇔ a ⊆ b).
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Moreover, we suppose the following:

∀A ·A ⊆ T ∧ A 
= ∅ ⇒ inter(A) ∈ A. Assumption 1

Prove that relation q well-orders T under Assumption 1.

Defining a total injection between S and T We define f as a total function from
S to T :

f ∈ S→ T.

with the following property:

∀z · z ∈ S ⇒ f(z) = union({x |x ∈ T ∧ z /∈ x}).
In order to prove that f is an injection, we need more assumptions concerning sets S
and T . First, we need the following, for any subset A of T :

∀A ·A ⊆ T ⇒ union(A) ∈ T Assumption 2

Second, we suppose that the set S can be equipped with a choice function c defined as
follows:

c ∈ P 1(S)→ S

∀A ·A ⊆ S ∧A 
= ∅ ⇒ c(A) ∈ S.
Assumption 3

Now, we define a total function n (for next) on P(S) as follows:

n ∈ P(S)→ P(S).

together with the following properties:


n(S) = S

∀A ·A ⊆ S ∧A 
= S ⇒ n(A) = A ∪ {c(S \A)}
.

Third, we assume that n is closed under T :

∀x · x ∈ T ⇒ n(x) ∈ T. Assumption 4

Prove that under these four assumptions, f is indeed an injection.
According to what we have done so far, S is a well-ordered set under these four

assumptions. Our next step consists in giving more structure to the set T so that we
can prove Assumptions 1, 2, and 4. Assumption 3 will remain unproved. In other words,
the set S has to be equipped with a choice function like c in order to be proved to be
well-ordered.
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Giving more structure to the set T We define a function Union on P(S) as follows:

Union ∈ P(P(S))→ P(P(S))

∀A ·A ⊆ P(S) ⇒ Union(A) = union(A).

We define another function g on P(S) as follows:

g ∈ P(P(S))→ P(P(S))

∀A ·A ⊆ P(S) ⇒ g(A) = n[A] ∪ Union[P(A)].

We suppose:

g(T ) ⊆ T.

Prove Assumption 2 and Assumption 4. Moreover, we suppose the following:

∀x, y · x ⊆ y ∨ y ⊆ x. Assumption 5

Prove Assumption 1. It remains for us to prove the new Assumption 5. For this we
suppose that T is the least fixpoint of the function g:

T = fix(g)

Prove that g is monotone (so that Tarski’s theorem can be used). Prove finally As-
sumption 5. Hint: Use property (10) of Section 18.3.2. This completes the proof
of the Zermelo’s theorem, that every set equipped with a choice function can be
well-ordered.
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