

Lecture Notes in Geoinformation and Cartography

Series Editors: William Cartwright, Georg Gartner, Liqiu Meng,
Michael P. Peterson

Peter van Oosterom • Sisi Zlatanova •
Friso Penninga • Elfriede Fendel
(Eds.)

Advances in 3D
Geoinformation Systems

With 235 Figures

Editors:

Peter van Oosterom
Jaffalaan 9
2628 BX, Delft
The Netherlands
E-mail: p.j.m.vanoosterom@tudelft.nl

Sisi Zlatanova
Jaffalaan 9
2628 BX, Delft
The Netherlands
E-mail: s.zlatanova@tudelft.nl

Friso Penninga
Jaffalaan 9
2628 BX, Delft
The Netherlands
E-mail: f.penninga@tudelft.nl

Elfriede M. Fendel
Jaffalaan 9
2628 BX, Delft
The Netherlands
E-mail: e.m.fendel@tudelft.nl

ISBN 978-3-540-72134-5 SSpringer Berlin Heidelberg New York

Library of Congress Control Number: 2007939908

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustra-
tions, recitation, broadcasting, reproduction on microfilm or in any other way, and stor-
age in data banks. Duplication of this publication or parts thereof is permitted only under
the provisions of the German Copyright Law of September 9, 1965, in its current version,
and permission for use must always be obtained from Springer-Verlag. Violations are li-
able to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com
© Springer-Verlag Berlin Heidelberg 2008

The use of general descriptive names, registered names, trademarks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are ex-
empt from the relevant protective laws and regulations and therefore free for general use.

Cover design: deblik, Berlin
Production: A. Oelschläger
Typesetting: Camera-ready by the Editors
Printed on acid-free paper 30/2132/AO 54321

Preface

Society is expecting and demanding more 3D support since users have ex-
perienced the added value in emerging visualisation applications such as 3D
globe based interfaces, navigation systems presenting a 3D perspective, etc.
Due to the rapid developments in sensor techniques more 3D data have be-
come available. Effective algorithms for (semi) automatic object reconstruc-
tion are required. Integration of existing 2D objects with height data is a
non-trivial process, and further research is needed. The resulting 3D models
can be maintained in several forms: TEN (Tetrahedral Network), construc-
tive solid geometry (CSG) models, regular polytopes, TIN boundary rep-
resentation and 3D volume quad edge structure, layered/topology models,
voxel based models, 3D models used in urban planning/polyhedrons, and
n-dimensional models including time. 3D analysis and 3D simulation tech-
niques explore and extend the possibilities of spatial applications. In such
a dynamic scientific environment, it is very important to have high quality
and an open exchange of ideas on these new developments. It is also very
important to carefully review and document the progress that is made. This
book and the associated 3D GeoInfo workshop are an attempt to achieve
this goal. The workshop is the second in a series on 3D geo-information. The
previous event took place in Kuala Lumpur, Malaysia, on 7-8 August 2006
(http://www.fksg.utm.my/3dgeoinfo2006). Selected papers from the first
workshop were published in ‘Innovations in 3D Geo Information Systems’,
Springer-Verlag, 2006. The current (2007) workshop was held in Delft, the
Netherlands, while future discussions on 3D issues are expected to be held in
Seoul, South Korea, on 12-14 November 2008. The chapters in this book are
the result of the ‘2nd International Workshop on 3D Geo-Information: Re-
quirements, Acquisition, Modelling, Analysis, Visualisation’ (12-14 December
2007, Delft, the Netherlands). The workshop’s website contains many details,
including the programme of the event (http://www.3d-geoinfo-07.nl).
The five themes – mentioned in the sub-title – give a good indication of
the thematic scope and the chapters in this book, which have been organised
accordingly. The chapters have been selected based on a full-paper submis-

v

vi Preface

sion and were thoroughly reviewed by three members of the international
programme committee. The authors of the best and most original submis-
sions were asked to submit revised versions based on these comments. Ad-
ditionally, this book contains two chapters that are related to the invited
key-notes, both with a Geo-ICT industry origin (TeleAtlas: ‘Maps Get Real,
Digital Maps evolving from mathematical line graphs to virtual reality mod-
els’ and Oracle: ‘On Valid and Invalid Three-Dimensional Geometries’). These
chapters together make up the main part of the book. During the workshop
there were also working group sessions organised according to each of the spe-
cific themes: Requirements & Applications, Acquisition, Modelling, Analysis,
and Visualisation. All of the working group sessions followed a given format:
current problems to be solved, potential solutions, and recommendations by
the working group. The discussions started with a position paper that was
usually prepared by the chairs of the working groups. These position papers
are also included in the last part of this book. The discussion sessions were
coordinated by the chair, and the concluding summaries of the results were
presented at the closing plenary session.

This series of workshops is an excellent opportunity for the exchange of
ideas on 3D requirements and the comparison of the different techniques of
3D acquisition, modeling and simulation. The 3D GeoInfo workshops aim to
bring together international state-of-the-art research in the field of 3D geo-
information. They offer an interdisciplinary forum to researchers in the closely
related fields of 3D data collection, modelling, management, data analysis,
and visualisation. We hope that this series will become a very interesting
yearly event with many sparkling discussions on all aspects of handling 3D
geo-information!

The editors of this book would like to thank the co-organisers (Eveline
Vogels, Marc van Kreveld and George Vosselman) for the pleasant cooper-
ation from the first initial idea to organise the workshop through the final
preparations. Further, we are grateful to all of the authors for their original
contributions (also to the authors of contributions that were not selected).
Special thanks to the members of the programme committee; they had the
difficult task of critically reviewing the contributions and providing construc-
tive comments, thus enhancing the quality of the chapters included in this
book. The editors are also grateful to the support provided by the Advanced
Gaming and Simulation (AGS) research centre and the two projects RGI-011
‘3D topography’ and RGI-013 ‘Virtual reality for urban planning and secu-
rity’, funded by the Dutch Program ‘Space for Geo-information’.

Delft, Peter van Oosterom
October 2007 Sisi Zlatanova

Friso Penninga
Elfriede M. Fendel

viii Organisation

Organisation

Programme chair Peter van Oosterom,
Delft University of Technology

Local organising committee
Peter van Oosterom Delft University of Technology
Sisi Zlatanova Delft University of Technology
Friso Penninga Delft University of Technology
Elfriede Fendel Delft University of Technology
Eveline Vogels Delft University of Technology
George Vosselman ITC Enschede
Marc van Kreveld Utrecht University

Programme committee
Alias Abdul-Rahman University of Technology Malaysia

(Malaysia)
Bart Beers Cyclomedia (the Netherlands)
Tim Bevan 1Spatial (United Kingdom)
Roland Billen University of Liege (Belgium)
Lars Bodum Aalborg University (Denmark)
Arnold Bregt Wageningen University and Research

Centre (the Netherlands)
Styli Camateros Bentley (Canada)
Volker Coors University of Applied Sciences Stuttgart

(Germany)
Andrew Frank TU Wien (Austria)
Georg Gartner TU Wien (Austria)
Christopher Gold University of Glamorgan

(United Kingdom)
Cecil Goodwin TeleAtlas (USA)

Organisation ix

Armin Gruen ETH Zürich (Switzerland)
Norbert Haala University of Stuttgart (Germany)
Muki Haklay University College London

(United Kingdom)
John Herring Oracle Corporation (USA)
Daniel Holweg Fraunhofer Institute Darmstadt (Germany)
Thomas Kolbe Technical University Berlin (Germany)
Marc van Kreveld Utrecht University (the Netherlands)
Hugo Ledoux Delft University of Technology

(the Netherlands)
Jiyeong Lee University of North Caroline at Charlotte

(USA)
Paul Longley University College London

(United Kingdom)
Twan Maintz Utrecht University (the Netherlands)
Paul van der Molen FIG/ITC Enschede (the Netherlands)
Martien Molenaar ITC Enschede (the Netherlands)
Stephan Nebiker Fachhochschule Nordwestschweiz

(Switzerland)
András Osskó FIG/Budapest Land Office (Hungary)
Peter van Oosterom Delft University of Technology

(the Netherlands)
Chris Parker Ordnance Survey (United Kingdom)
Wanning Peng ESRI (USA)
Friso Penninga Delft University of Technology

(the Netherlands)
Norbert Pfeifer TU Wien (Austria)
Clemens Portele Interactive Instruments (Germany)
Jonathan Raper City University London (United Kingdom)
Carl Reed Open Geospatial Consortium (USA)
Massimo Rumor University of Padova (Italy)
Aidan Slingsby City University London (United Kingdom)
Jantien Stoter ITC Enschede (the Netherlands)
Rod Thompson Queensland Government (Australia)
George Vosselman ITC Enschede (the Netherlands)
Peter Widmayer ETH Zürich (Switzerland)
Peter Woodsford 1Spatial / Snowflake (United Kingdom)
Alexander Zipf University of Applied Sciences FH Mainz

(Germany)
Sisi Zlatanova Delft University of Technology

(the Netherlands)

List of Contributors

Alias Abdul Rahman
Department of Geoinformatics, Faculty of Geoinformation Science and Engi-
neering, Universiti Teknologi Malaysia, Malaysia e-mail: alias@fksg.utm.my

Thierry Badard
Centre for Research in Geomatics and Geomatics Department, Laval
University, Quebec, Canada

Jens Basanow
University of Bonn (Cartography), Germany, e-mail: basanow@geographie.
uni-bonn.de

Karine Bédard
Centre for Research in Geomatics and Geomatics Department, Laval
University, Quebec, Canada

Ahmad Biniaz
Department of Computer Science and Engineering, Shiraz University, Iran
e-mail: biniaz@cse.shirazu.ac.ir

Martin Breunig
Institute for Geoinformatics and Remote Sensing, University of Osnabrück,
Germany, e-mail: martin.breunig@uni-osnabrueck.de

Björn Broscheit
Institute for Geoinformatics and Remote Sensing, University of Osnabrück,
Germany, e-mail: bjoern.broscheit@uni-osnabrueck.de

Arno Bücken
Institute of Man-Machine-Interaction, RWTH Aachen, Germany, e-mail:
buecken@mmi.rwth-aachen.de

Edgar Butwilowski
Institute for Geoinformatics and Remote Sensing, University of Osnabrück,

xi

xii List of Contributors

Germany, e-mail: edgar.butwilowski@uni-osnabrueck.de

Eddie Curtis
Snowflake Software, United Kingdom, e-mail: eddie.curtis@
snowflakesoftware.co.uk

Gholamhossein Dastghaibyfard
Department of Computer Science and Engineering, Shiraz University, Iran
e-mail: dstghaib@shirazu.ac.ir

Etienne Desgagné
Centre for Research in Geomatics and Geomatics Department, Laval
University, Quebec, Canada

Jürgen Döllner
Hasso-Plattner-Institute at the University of Potsdam, Germany, e-mail:
doellner@hpi.uni-potsdam.de

Ludvig Emg̊ard
SWECO Position AB, Sweden, e-mail: ludvig.emgard@sweco.se

Rob van Essen
Tele Atlas NV, ’s-Hertogenbosch, the Netherlands e-mail:
rob.vanessen@teleatlas.com

Andrew U. Frank
Department of Geoinformation and Cartography, Technical University
Vienna, Austria e-mail: frank@geoinfo.tuwien.ac.at

Tassilo Glander
Hasso-Plattner-Institute at the University of Potsdam, Germany, e-mail:
tassilo.glander@hpi.uni-potsdam.de

Christopher Gold
University of Glamorgan, Pontypridd, Wales, United Kingdom, e-mail:
cmgold@glam.ac.uk

Baris M. Kazar
Oracle USA, Inc., USA, e-mail: Baris.Kazar@Oracle.comu

Dave Kidner
University of Glamorgan, Pontypridd, Wales, United Kingdom, e-mail:
dbkinder@glam.ac.uk

Henk de Kluijver
dBvision, Utrecht, the Netherlands, e-mail: henk.dekluijver@dBvision.nl

Ravi Kothuri
Oracle USA, Inc., USA, e-mail: Ravi.Kothuri@Oracle.com

Marc van Kreveld
Department of Information and Computing Sciences, Utrecht University,
the Netherlands, e-mail: marc@cs.uu.nl

List of Contributors xiii

Tobias Krüger
Leibniz Institute of Ecological and Regional Development (IOER), Dresden,
Germany, e-mail: t.krueger@ioer.de

Vinaykumar Kurakula
L.I.G ‘B’ 543, Hyderabad, India, e-mail: kurakulavinay@rediffmail.com

Hugo Ledoux
section GIS Technology, OTB, Delft University of Technology, the Nether-
lands, e-mail: h.ledoux@tudelft.nl

Jiyeong Lee
Department of Geoinformatics, University of Seoul, 90 Jeonnong-dong,
Dongdaemun-gu. Seoul, 130-743, South Korea, e-mail: jlee@uos.ac.kr

Gotthard Meinel
Leibniz Institute of Ecological and Regional Development (IOER), Dresden,
Germany, e-mail: g.meinel@ioer.de

Shyamalee Mukherji
Centre of Studies in Resources Engineering, Indian Institute of Technology,
Bombay, India e-mail: shyamali@csre.iitb.ac.in

Pascal Neis
University of Bonn (Cartography), Germany, e-mail: neis@geographie.
uni-bonn.de

Steffen Neubauer
University of Bonn (Cartography), Germany, e-mail: neubauer@geographie.
uni-bonn.de

Peter van Oosterom
section GIS Technology, OTB, Delft University of Technology, the Nether-
lands, e-mail: oosterom@tudelft.nl

Sander Oude Elberink
International Institute for Geo-Information Science and Earth Observation
(ITC), Enschede, the Netherlands e-mail: oudeelberink@itc.nl

Friso Penninga
section GIS Technology, OTB, Delft University of Technology, the Nether-
lands, e-mail: f.penninga@tudelft.nl

Jacynthe Pouliot
Centre for Research in Geomatics and Geomatics Department, Laval
University, Quebec, Canada e-mail: jacynthe.pouliot@scg.ulaval.ca

Shi Pu
International Institute for Geo-information Science and Earth Observation,
Enschede, the Netherlands, e-mail: spu@itc.nl

Jonathan Raper

xiv List of Contributors

The giCentre, Department of Information Science, City University, London,
United Kingdom e-mail: raper@soi.city.ac.uk

Siva Ravada
Oracle USA, Inc., USA, e-mail: Siva.Ravada@Oracle.com

Paul Richmond
University of Sheffield, United Kingdom, e-mail: paul@dcs.shef.ac.uk

Daniela Romano
University of Sheffield, United Kingdom e-mail: d.romano@dcs.shef.ac.uk

Jürgen Rossman
Institute of Man-Machine-Interaction, RWTH Aachen, Germany e-mail:
rossmann@mmi.rwth-aachen.de

Arne Schilling
University of Bonn (Cartography), e-mail: schilling@geographie.
uni-bonn.de

Aidan Slingsby
The giCentre, Department of Information Science, City University, London,
United Kingdom e-mail: a.slingsby@city.ac.uk

Jantien Stoter
ITC Enschede, Department of Geo Information Processing, the Netherlands,
e-mail: stoter@itc.nl

Chen Tet Khuan
Department of Geoinformatics, Faculty of Geoinformation Science
and Engineering, Universiti Teknologi Malaysia, Malaysia e-mail:
kenchen@fksg.utm.my

Vincent Thomas
Centre for Research in Geomatics and Geomatics Department, Laval
University, Quebec, Canada

Andreas Thomsen
Institute for Geoinformatics and Remote Sensing, University of Osnabrück,
Germany, e-mail: andreas.thomsen@uni-osnabrueck.de

Rodney Thompson
Department of Natural Resources and Water, Queensland, Australia, e-mail:
Rod.Thompson@nrw.qld.gov.au

Rebecca Tse
University of Glamorgan, Pontypridd, Wales, United Kingdom, e-mail:
rtse@glam.ac.uk

Alexander Zipf
University of Bonn (Cartography), Germany, e-mail: zipf@geographie.
uni-bonn.de

List of Contributors xv

Sisi Zlatanova
section GIS Technology, OTB, Delft University of Technology, the
Netherlands, e-mail: s.zlatanova@tudelft.nl

Contents

Part I Keynotes

1 Maps Get Real: Digital Maps evolving from mathematical
line graphs to virtual reality models . 3
Rob van Essen

2 On Valid and Invalid Three-Dimensional Geometries 19
Baris M. Kazar1, Ravi Kothuri1, Peter van Oosterom2 and Siva
Ravada1

Part II Papers

Theme I: Requirements & Applications

3 Navigable Space in 3D City Models for Pedestrians 49
Aidan Slingsby and Jonathan Raper

4 Towards 3D Spatial Data Infrastructures (3D-SDI) based
on open standards – experiences, results and future issues 65
Jens Basanow, Pascal Neis, Steffen Neubauer, Arne Schilling, and
Alexander Zipf

5 Re-using laser scanner data in applications for 3D
topography . 87
Sander Oude Elberink

6 Using Raster DTM for Dike Modelling 101
Tobias Krüger and Gotthard Meinel

7 Development of a Web Geological Feature Server
(WGFS) for sharing and querying of 3D objects 115

xvii

xviii Contents

Jacynthe Pouliot, Thierry Badard, Etienne Desgagné, Karine
Bédard, and Vincent Thomas

Theme II: Acquisition

8 Using 3D-Laser-Scanners and Image-Recognition
for Volume-Based Single-Tree-Delineation and
-Parameterization for 3D-GIS-Applications 131
Jürgen Rossmann and Arno Bücken

9 Automatic building modeling from terrestrial laser
scanning . 147
Shi Pu

10 3D City Modelling from LIDAR Data . 161
Rebecca (O.C.) Tse, Christopher Gold, and Dave Kidner

Theme III: Modelling

11 First implementation results and open issues on the
Poincaré-TEN data structure . 177
Friso Penninga and Peter van Oosterom

12 Drainage reality in terrains with higher-order Delaunay
triangulations . 199
Ahmad Biniaz and Gholamhossein Dastghaibyfard

13 Surface Reconstruction from Contour Lines or LIDAR
elevations by Least Squared-error Approximation using
Tensor-Product Cubic B-splines . 213
Shyamalee Mukherji

14 Modelling and Managing Topology in 3D Geoinformation
Systems1 . 229
Andreas Thomsen, Martin Breunig, Edgar Butwilowski, and
Björn Broscheit

15 Mathematically provable correct implementation of
integrated 2D and 3D representations . 247
Rodney Thompson1,2 and Peter van Oosterom1

16 3D Solids and Their Management In DBMS 279
Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

17 Implementation alternatives for an integrated 3D
Information Model . 313
Ludvig Emg̊ard1,2 and Sisi Zlatanova1

Contents xix

Theme IV: Analysis

18 Serving CityGML via Web Feature Services in the OGC
Web Services - Phase 4 Testbed . 331
Eddie Curtis

19 Towards 3D environmental impact studies: example of
noise . 341
Jantien Stoter1, Henk de Kluijver2, and Vinaykumar Kurakula3

20 The Kinetic 3D Voronoi Diagram: A Tool for Simulating
Environmental Processes . 361
Hugo Ledoux

Theme V: Visualisation

21 Techniques for Generalizing Building Geometry of
Complex Virtual 3D City Models . 381
Tassilo Glander and Jürgen Döllner

22 Automatic Generation of Residential Areas using
Geo-Demographics . 401
Paul Richmond and Daniela Romano

Part III Position papers

23 Working Group I – Requirements and Applications – Position
Paper:
Requirements for 3D in Geographic Information Systems
Applications . 419
Andrew U. Frank

24 Working Group II – Acquisition – Position Paper:
Data collection and 3D reconstruction . 425
Sisi Zlatanova

25 Working Group III – Modelling – Position Paper:
Modelling 3D Geo-Information . 429
Christopher Gold

26 Working Group IV – Analysis – Position Paper:
Spatial Data Analysis in 3D GIS . 435
Jiyeong Lee

27 Working Group V – Visualization – Position Paper:
3D Geo-Visualization . 439
Marc van Kreveld

Part I

Keynotes

Chapter 1

Maps Get Real: Digital Maps evolving
from mathematical line graphs to virtual
reality models

Rob van Essen

Abstract

This paper describes the production process of 3D maps at Tele Atlas. Start-
ing from a 2D City map which contains relevant features by their outline, 3D
City maps are created by adding height to the outlines of buildings and other
objects. Further enhancements are made by adding roof representations and
facade textures. These textures can either be an exact representation of the
facade or be composed of predefined elements from a library which leads to
significant data size reductions. In the production process, Mobile Mapping a
technology developed at Tele Atlas plays an important role. It serves to col-
lect building heights and facade textures and components. To date this has
resulted in the availability of 3D City maps of 12 cities with important exten-
sion planned for 2008. The paper ends by stating that whereas the original
reason to develop 3D maps stems from a desire to improve the user interface
of navigation and other Intelligent Transport applications, it is likely that 3D
models will have growing significance in future also for in-car safety systems.

1.1 Introduction

Map-making appears to predate written language by several millennia. One
of the oldest surviving maps is painted on a wall of the Catal Huyuk set-
tlement in south-central Anatolia (now Turkey); it dates from about 6200
BC. Cartography as a science is generally considered to have started with

Vice-President Strategic Research and Development
Tele Atlas NV,
Reitscheweg 7f,
POBox 420, NL-5201AK, ’s-Hertogenbosch,
e-mail: rob.vanessen@teleatlas.com

3

4 Rob van Essen

Eratosthenes (276BC-194BC), a Greek mathematician and geographer born
in today’s Lybia. Eratosthenes developed a system of latitude and longitude
and was the first to calculate the circumference of the earth. As such he was at
the roots of modern GPS. As a practical result he published what is generally
considered the first world map (see figure 1.1) [1]. Maps remained relatively

Fig. 1.1 Erastosthenes’ world map [1]

unchanged until around 1965 when the US Census bureau, with the help of
GDT (Geographic Data Technologies Inc.) founder Donald Cooke, started to
design a topological model for map information called Dual Independent Map
Encoding (DIME) for the US bureau of the Census which together with the
USGS (US Geological Survey) Digital Line Graphs in 1990 evolved into the
US TIGER (Topologically Integrated Geographic Encoding and Referencing)
files, published by the Census Bureau. Maps were no longer two-dimensional
images on a physical sheet but now also models in a computer. Whereas the
TIGER files were created mainly for Census purposes, i.e. the registration
of address information, soon people started to think about other application
areas. Despite the change in the map concept, these new applications were
similar to the applications of the traditional map, the main one being Nav-
igation, ie. finding locations and guiding the user to it. In the beginning of
the eighties ETAK started to create the navigable map of the US and a few
years later Tele Atlas started the same job in Europe. In 2000 ETAK and
Tele Atlas joined forces. In 2004 Tele Atlas and GDT joined forces. Today the
complete North-American and Western-European territory is covered by Tele
Atlas maps and extensive coverage increases take place in Eastern-Europe,
China, the Far East and in South America. It can be expected that all the
streets on the earth surface will have been captured before long.

1 Maps Get Real 5

The first navigation systems hit the European market around 1995. These
were closely tight to the car and therefore called in-car navigation systems.
The tight bond with the car was caused by the fact that the GPS signal
which enabled the car to position itself was distorted for use by non-US
military purposes by the US Military. As a consequence navigation was very
similar to traditional nautical navigation. After the initial (inaccurate) (GPS)
fix, a process called dead reckoning was started which on basis of direction
and distance sensors estimated the new positions of the car. As soon as it
was possible to match the position of the car with a position on the map
(e.g. when the car turned into a side street), the estimated position was
corrected. This process is called map matching. Dead reckoning and map
matching tied navigation to the car because the sensors which these processes
required, (gyro-) compasses, odometers, wheel sensors etc. were generally not
part of the navigation system but external components built in the car. These
navigation systems typically had one of two types of user interface. First there
was the low cost interface where the user was guided by icons on a small
(monochrome) display. The other type combined the icon based guidance
with an image of the map around the vehicles position on a (color) display.
Both interfaces were generally combined with audible instructions.

In 2000, US President Clinton ‘turned off Selective Availability’ or, in other
words, he removed the distortion from the GPS signal. As a result the GPS
signal increased its accuracy to such an extent that positioning without the
help of external sensors became possible and navigation was no longer tied
to the car. This initiated what can be called the biggest change in modern
land navigation to date. Navigation was leaving the car, devices dramatically
dropped in price and navigation became main stream and mass market. This
change gave rise to a series of very important changes in digital maps and
in the process of digital mapping. One of these is the subject of the paper:
The adaptation of the displayed image of the map to the requirements of the
mass-market. The general public had only limited appreciation for the very
strong technical connotation of the digital line graphs displayed on the early
navigation systems. The first step to respond to these requirements was to
turn back to the ‘traditional’ paper cartography and to apply the map display
principles common there. In paper maps, roads were no lines but linear areas
and buildings were rectangles and not points. I.e. objects were represented
by their outlines rather then by a mathematical abstraction. The result of
applying these ‘traditional’ map principles onto the digital map is the 2D
City map.

Still, significant portions of the population have problems reading such a
map. At the same time, the gaming industry was showing the way: Comput-
ers made it possible to display virtual reality in consumer applications not
as a model but rather as it is, as virtual reality, without the actual corre-
spondence between a map image at a certain location and the view at that
location in reality though. The map was leaving its traditional two dimen-
sional shelter and became three dimensional. The 3D City Map was born.

6 Rob van Essen

Clearly, 3D computer models of buildings had been developed before, in the
gaming industry but also by academia and government researchers [3]. The
described development can be considered novel because these 3D models were
created in an accurate geographic reference frame (thus justifying the term
map) in an industrial production environment focused on large scale produc-
tion for mass-market applications. Tele Atlas has been leading the way in the
process of adapting the map to the requirements of the mass-market. It was
the first to publish a 2D City map for navigation applications and the first
corresponding 3D City Map products also came from Tele Atlas. This paper
describes the process how Tele Atlas realized these new products.

Essential in these processes is the Tele Atlas’ Mobile Mapping technology.
The paper will first give a description of Mobile Mapping. Secondly it will
shortly describe the production process of 2D City maps after which the 3D
City map process is described. Finally some outlook on the future will be
given where it is likely that these virtual reality models not only appeal to
the user but also fulfill requirement of a new generation of in-car systems
which focus on increasing safety and reducing environmental consequences.

1.2 Capturing Reality: Mobile Mapping

1.2.1 The early days

Mobile mapping is a technology developed by Tele Atlas. It was first launched
in 1990 as a result of a Eureka project [2]. At that time, geometrically cor-
rect paper map material often was the basic source for digital maps. Clearly,
the information which could be derived from these paper sources was not
sufficient to create a navigable map. Therefore, also a wide-variety of other
sources had to be used ranging form postal files, tourist maps and construc-
tion plans of new road geometry. In addition it was necessary to actually go
to the spot and check the information on correctness and currentness and fill
in the information which was not available on any other source like one-way
traffic regulations or prohibited turn information. The thought behind Mobile
Mapping was that instead of sending a surveyor who had to manually cap-
ture the information to send a vehicle equipped with camera’s which record
reality and afterwards interpret the images in an optimally tuned office en-
vironment. The project resulted in thousands of video tapes. Difficulties of
handling these large amounts of media and accessing individual images se-
quences finally made the project less successful than originally anticipated
and the project was stopped.

1 Maps Get Real 7

Fig. 1.2 First generation Mobile Mapping van (1990)

1.2.2 Mobile Mapping re-invented

In 2004 technology had made big leaps compared to 1990. Positioning and
camera technology had improved and completely new, random access storage
media had become available at considerable lower prices. As a result also big
advances in Mobile Mapping technology had been achieved (see also [4]). This
was for Tele Atlas the signal to revisit the concept of Mobile Mapping. The
result was a highly accurately positioned vehicle equipped with up-to six dig-
ital camera’s of which the two forward facing were stereo camera’s allowing
geometrically accurate measurements in the images. The positional accuracy
achieved is sub-half-meter. The pictures have a resolution of 1300x1000 pixels.
The novel aspect of this new generation of mobile mapping was not so much
the technical components but more the support for industrial production
processes. Aspects of this include quasi-continuous operation by none expert
people at typical traffic speeds positioned highly accurately and seamlessly
in different countries. The main thought behind the Mobile Mapping concept
in 2005 was similar to that of 1987. Instead of sending surveyors to check
and complete the content of the database it was better to record reality and
to extract the information in an optimally tuned office environment. In this
respect had the need for Mobile Mapping considerably increased compared
to 1990. This was the consequence of the ever increasing content of a digi-
tal map database. Next to the needs of simple navigation applications now
also the need of advanced safety applications requiring the inclusion of in-
formation like lanes, traffic signs, curve information, traffic lights etc. had
to be accommodated [5]. In addition, it became apparent that Mobile Map-
ping also can fulfill the need of improved map display requirements. This

8 Rob van Essen

Fig. 1.3 Second generation Mobile Mapping vehicle (2005)

will be the further detailed in the following sections. Currently Mobile Map-
ping is extensively used by Tele Atlas. World wide, 50 vehicles are driving
the streets resulting 250 TB of imagery yearly. These images are interpreted
by highly trained database experts and the necessary content is extracted.
When customer complaints come in via the Tele Atlas’ Customer Feedback
system ‘MapInsight’ the images corresponding to the complaint position are
interpreted which in a large number of cases leads to a resolution of the
complaint.

1.2.3 Mobile Mapping: the future

The potential of Mobile Mapping is by far not exploited fully yet. Contents
requirements are still increasing. And a lot of this new contents can be cap-
tured using Mobile Mapping. 3D information is one example which will be
dealt with later. Another example is content which can be captured using ad-
ditional sensors on the Mobile Mapping van. A typical example of this is the
slope of roads which is required to optimize the automatic gearbox of trucks
resulting in significant fuel consumption decreases. In current prototyping ac-
tivities, slope is being captured with Mobile Mapping by a 3D gyro installed
in the vehicle. Other sensors include laser scanners which enable collection
of banking (transverse slope) and street lay out. Novel aspects of these de-
velopments mainly relate to the use of different sensors in combination and
exploiting the synergies, also referred to as sensor fusion. Another field where

1 Maps Get Real 9

further developments are expected is the automatic interpretation of images.
Currently research on automatic object recognition techniques is undertaken
at Tele Atlas and the first results have been adopted in production. The ex-
pectation is that in future more and more of the information present in the
Mobile Mapping images can be extracted automatically.

1.3 Advanced Map Display

1.3.1 2D City Maps

Traditionally, the Japanese navigation industry has put much more emphasis
on map display than their European counterparts. The 2D City Map there-
fore originates from Japan. Tele Atlas started producing 2D City maps in
cooperation with its Japanese partner IPC [6] in 1999. As indicated above
2D City Maps typically contain features described by their outline. Streets,
including traffic islands and side walks are included as well as buildings. Also
walkways (through e.g. parks) are included. Railway lines and water areas

Fig. 1.4 An extract of the 2D City Map of Brussels

are included with greater detail. 2D City Maps are mainly produced in a tra-
ditional way. From a source like a paper (cadastral) map or areal photograph,
the outlines of the objects are extracted, usually via a manual digitizing pro-
cess. The accuracy requirements for 2D City Maps are 5m RMS which is
higher than the accuracy requirements for the traditional in-car navigation

10 Rob van Essen

road network. Because the two need to fit, there is a final production step
involving the possible adaptation of the original navigation network geometry
to the geometry of the 2D City Map.

1.3.2 3D City Maps

Basically, a 3D City Map is a 2D City map in which a height attribute
has been attached to the building outlines and possibly to the sidewalks.
The buildings can have been extended with a roof and the facades of the
buildings can have been assigned a certain texture. In addition standard 3D
representation of road furniture objects like traffic signs, traffic lights, trees,
fences etc. can have been added. Also 3D Landmarks should be mentioned
here as potential components, which are separately description further down.
From all the ‘can’s’ in the above description it becomes clear that a 3D City
Model can take on very different shapes. Tele Atlas decided to go for a model
in which roofs and facade textures are included. Variation occurs in the type
of texture which is used. This will be elaborated further down. Despite all
the variance possible, there is one very important fixed factor and that is
that 3D Building representations are defined as extended 2D City maps. The
consequence of this is that they are perfectly aligned with the navigation road
network and that they thus can be deployed in navigation systems.

Building height is derived from externally acquired photogrammetric ele-
vation models. By subtracting the terrain height from normal digital eleva-
tion models, building heights are acquired and attached to the corresponding
building outlines. This leads to good results in the majority of the cases.
Where this is not the case building heights are derived from the stereoscopic
camera imagery of the Mobile Mapping vehicles. Facade textures are also
derived from Mobile Mapping images. The approach taken here depends on
the ‘commercial’ value of the facade. The most basic approach makes use of
standard components from a library [7]. This library contains typical facade
components like windows, doors and wall textures. The library has been built
during a manual pre-process on basis of mobile mapping imagery. Depending
on what the 3D City map operator sees on the Mobile Mapping images he
will compose the facade using different components from the library. This is
a semi-automatic process in which technology interprets the image and pro-
poses a limited set of components to the operator. It is clear that such an
approach facilitates the re-use of components which will greatly reduce the
storage requirements for these types of models. In a lot of cases, facades have
a repetitive character. The model has been designed such that this repeti-
tive character also is explicitly supported thus further reducing storage and
data size consequences. The component based model has been successfully
proposed for standardization to ISO/TC204 SWG3.1: GDF. The next ver-
sion of GDF4.0 [8] , GDF5.0 will contain the model described. Figure 1.8

1 Maps Get Real 11

Fig. 1.5 Adding textures via a library based approach

gives the UML model. Please note that this model is more extensive than
the described products. Pending the finalization of this standard, 3D models
are made available in the Shape format [9]. An alternative approach takes

Fig. 1.6 The result of repetition of components

entire facades (or parts of facades) from Mobile Mapping images and attaches
them to the blocks. Experience has shown that the repetitive component ap-
proach does not work for characteristic facades like the ground floor level of
shopping streets with the typical and individual window lay-out with domi-
nant lettering and logo’s. Here, only a complete image of the shop front will
have sufficient similarity. A typical problem with this approach is that the
Mobile Mapping images are ‘polluted’ with trees, parked cars and accidental

12 Rob van Essen

pedestrians. Special technology facilitates the semi-automatic removal of this
pollution.

Fig. 1.7 A Mobile Mapping images before and after clean-up

It is important to note that both the technology and the GDF model
allow that both approaches are deployed simultaneously. In other words, the
image based approach can be deployed for one building in a street and for
the ground floor of four shops further down the street, while the rest of the
street is modelled with the component based approach. In such a way an
optimal combination of data size requirements and quality requirements can
be adopted. Currently, 3D City Maps of 2 Cities are available fully textured
(Berlin and London) and 10 cities as blocks models with roofs. In 2008 24
cities will be available fully textured and 52 as block models.

1 Maps Get Real 13

Fig. 1.8 The UML Model for 3D building as proposed for GDF5.0

1.4 3D Landmarks

Despite its flexibility, it is clear that the 3D City model approach only applies
to cubically shaped buildings with facades which consist of vertical planes

14 Rob van Essen

Fig. 1.9 An example of a 3D City Model of the city of Graz

only. Consequently not all building can be modelled with it. Notable exam-
ples where this will be the case include the Arc de Triomphe in Paris or the
Gurkin Building in London. These buildings or rather ”constructions” can be
modelled as 3D Landmarks.. 3D Landmarks are created by photographing the
object from all sides with an accurately positioned digital camera. With spe-
cial software the images are interpreted and converted in a so called wireframe
model. Planes are identified in this wire frame model and the corresponding
picture parts are identified and transformed and added to the planes. This
results in a high quality 3D model of the object. 3D Landmarks are treated as
an object external to the digital map. A proper connection between the two
is a pointer to a location which is in fact an absolute WGS ’84 coordinate. A
second horizontal coordinate assures that aspects like direction and scaling
are properly taken care of. The high quality of the 3D Landmark also makes
the methodology fit to represent buildings which do have a cubic shape but
which because of their prominence need to be modelled with higher quality
than the 3D City models.

1.5 Data Volumes

Data volumes are important criteria for on- and off-board navigation appli-
cations. The GDF model of the component based approach facilitates very
efficient data size requirements. Research has shown that a standard non
compressed Tele Atlas 2D City Map needs about 200 kb/km2. For the basic
3D block models an additional 75 kb/km2 is required. For the production
of complete 3D block models with roof types and generic facade informa-
tion 330kb for the complete library has to be added. Those libraries can be

1 Maps Get Real 15

Fig. 1.10 3D Land mark of the Arc de Triomphe

Fig. 1.11 3D landmarks

used for a complete country. If buildings need to be presented by individual
images, an extra of 10kb per processed facade picture has to be added. An
extra of about 100 kb per km2 has to be added in order to link the map data
to those libraries. The volume of standard VRML 3D models is high, but
can significantly be reduced using compression technology. They have a data
volume between 70 to 150 kb per 3D landmark. In Tele Atlas products the
footprint of the 3D components is significantly higher. This is because Tele

16 Rob van Essen

Atlas customers have expressed the desire to make an own trade-off between
data size and quality and apply corresponding data compression techniques.

1.6 Storage of 3D data

In the recent past, an interesting trend has become visible: The use of off
the shelf relational database technology for storing and managing geographic
data and even delivering geospatial applications. More and more geographic
features are natively supported by relational database products. With respect
to 3D the recent version of the Oracle database product contains interesting
new features. This Oracle 11g database has as one of the key features support
for 3D. Oracle targeted its software development in supporting 3-dimensional
data toward specific applications such as:

1. GIS for city planning and property rights
2. City modelling and adopting features to support CityGML guidelines
3. Business Intelligence for real estate and advertising
4. Virtual-Reality solutions

Specifically, the 3D data types that are supported include points, lines, poly-
gons and solids, as well as multi-points, multi-lines and multi-surfaces. It
follows Geography Markup Language (GML) 3.1.1 [10] and ISO19107 [11]
specifications. Support for simple solids includes closed surfaces such as a
cubes or pyramids. 3D support for arcs or parametric surfaces is not in-
cluded. These enhancements will support large, high density and volume 3D
city models. Additional new data types support the massive volumes of point
data, such as point clouds, obtained from laser scanners and LiDAR, as well
as triangulated irregular networks. Part of Oracle 11g are also many spatial
functions to manage and operate on 3D data. Tele Atlas contributed to the
Oracle 11g beta testing effort. As a consequence, the 3D models described in
the previous sections are compliant to Oracle 11g 3D model and easy upload
of the Tele Atlas 3D models in Oracle 11g is provided. This trend has also
influenced the GDF standardisation where in the upcoming version 5.0 also
a database neutral relational storage model is supported, which is compli-
ant to the SQL/MM standard [12]. In version 5.0, a syntactic model will be
provided, modelling the entities of the GDF conceptual model one to one in
relations, e.g. node, edge, face, point, feature, line feature, area feature etc.
In future, it is likely that GDF will also provide semantic model, by splitting
the generic table further according to feature themes. Also, the current 2.5D
model can be extended towards a 3D model, by supporting corresponding ge-
ometric primitives such as solids. Thus, the GDF relational extensions are to
be seen complementary to the commercial off-the-shelf solutions from Oracle
and others.

1 Maps Get Real 17

1.7 The future: 3D Maps beyond map display

The relevance of 3D modelling has in this paper mainly explained in the
context of the need for more user-friendly map display. As a consequence
(digital) maps have evolved from digital line graphs to virtual reality models.
Maps are getting real. An industrial production process has been outlined
with which these maps are produced. Mobile Mapping has been presented as
an important data collection technology in this process. Mobile Mapping was
developed as an efficient capturing mechanism for the ever growing content
of the navigable database which mainly relates to the upcoming use of in-car
safety systems. These safety systems are also referred to as Advanced Driver
Assistance Systems (ADAS). They typically work on basis of sensors which
constantly monitor the surroundings of the car. The map is considered one of
the sensors which allow the system to look ahead. Map information is either
used as a primary sensor (e.g. to detect the sharp curve ahead and warn the
driver) or as a secondary sensor where it is used to validate information from
other sensors (e.g. a lane departure system working with video as a primary
sensor in the case that lane markings are missing). The sensor equipment of
the car will further grow in future and there will be a growing need to use
a map to validate the information coming from these sensors. 3D represen-
tations of objects in the map are expected play an important role here. In
future not only people will need 3D maps but also cars.

References

[1] http://en.wikipedia.org/wiki/Eratosthenes
[2] http://www.eureka.be/inaction/AcShowProjectOutline.do
[3] City of Helsinki converts to 3D Mapping: http://www.bentley.com/

en-US/Markets/Geospatial/User+Stories/3D+Mapping.htm
[4] Tao, Vincent, Jonathan Li (Eds.): Advances in Mobile Mapping Tech-

nology. Taylor&Francis, London, 2007
[5] T’Siobbel, Stephen: Mobile Digital Mapping: Field data collection Mat-

ters!. Proceedings ITS World 2004, Nagoya 2004
[6] http://www.incrementp.co.jp/english/business1.html
[7] Vande Velde, Linde: Tele Atlas 3D City Models. International Workshop

Next generation 3D city mod-els, Bonn, 21-22 June 2005
[8] ISO14285:2003 Intelligent Transport Systems - Geographic Data Files

- Overall Data Specifications (colloquially referred to as GDF4.0),
ISO/TC204 Intelligent Transport Systems..

[9] http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
[10] http://www.opengeospatial.org/standards/gml
[11] ISO19107: http://www.iso.org/iso/en/CatalogueDetailPage.

CatalogueDetail?CSNUMBER=26012

18 Rob van Essen

[12] ISO/IEC 13249-3 Information technology - Data-base languages - SQL
Multimedia and Application Packages - Part 3: Spatial, May 15, 2006.

Chapter 2

On Valid and Invalid Three-Dimensional
Geometries

Baris M. Kazar1, Ravi Kothuri1, Peter van Oosterom2 and Siva Ravada1

Abstract

Advances in storage management and visualization tools have expanded the
frontiers of traditional 2D domains like GIS to 3Dimensions. Recent propos-
als such as CityGML and associated gateways bridge a long-standing gap
between the terrestrial models from the GIS and the CAD/CAM worlds and
shift the focus from 2D to 3D. As a result, efficient and scalable techniques for
storage, validation and query of 3D models will become a key to terrestrial
data management. In this paper, we focus on the problem of validation of
3D geometries. First we present Oracle’s data model for storing 3D geome-
tries (following the general OGC/ISO GML3 specifications). Then, we define
more specific and refined rules for valid geometries in this model. We show
that the solid representation is simpler and easier to validate than the GML
model but still retains the representative power. Finally, we present explicit
examples of valid and invalid geometries. This work should make it to easy
to conceptualize valid and invalid 3D geometries.

2.1 Introduction

The combination of civil engineering surveying equipment, GPS, laser scan-
ning and aerial and satellite remote sensing coupled with strong spatial re-
search has enabled the growth and success of the GIS industry. These indus-
tries typically cater to a wide variety of application-specific databases includ-

1Oracle USA, Inc.
One Oracle Drive, Nashua, NH 03062, USA
2Delft University of Technology, OTB, section GIS Technology,
Jaffalaan 9, 2628 BX the Netherlands
Baris.Kazar, Ravi.Kothuri, Siva.Ravada@Oracle.com, oosterom@tudelft.nl

19

20 Kazar and Kothuri and van Oosterom and Ravada

ing cadastral databases for property/land management, and utility manage-
ment in addition to popular location-based searching [G84, BKSS90, BDA04,
MTP04, MA05] and services [J04, YS05]. Cadastral and Census databases
typically maintain exact geometry boundaries for personal properties or ad-
ministrative boundaries. For example, most countries in the European Union
including the Netherlands maintain exact boundaries of properties and use
that information for better visualization, property tax calculation etc. The
United States Census Bureau maintains the database of exact geometrical
shapes for various entities in different levels of the administrative hierarchy.
The hierarchy consists of census blocks, block-groups, cities, counties, states
etc. In most of these GIS applications, the data is represented using 2Di-
mensional geometries and stored inside a spatial database. The databases
can be quite huge storing up to tens and hundreds of millions of spatial ge-
ometries. These geometries are typically stored, managed and queried using
efficient processing techniques developed in the spatial and database research
community [A94, BKSS90, BKS94, DE04, G84, S89].

Till recently, 3D research has been primarily confined to the graphics,
CAD/CAM, gaming, virtual reality and computational geometry communi-
ties [FD97, SE02]. The rapid strides in scanner equipment and the declin-
ing costs of the same in recent years has generated renewed enthusiasm in
3D data management in various fields like GIS, CAD/CAM, medical and
city modeling. Recent proposals such as CityGML [KGP05, OGC06C] bridge
a long-standing gap between the terrestrial models from the GIS and the
CAD/CAM worlds and shift the focus from 2D to 3D. As a consequence,
more and more city departments are planning to utilize 3D models for stor-
ing building footprint information for city records databases. Figure 1 shows
one such example of a 3D model for the city of Berlin.

Fig. 2.1 3D Model for the Buildings part in the City of Berlin (courtesy data from
the www.citygml.org and LandXplorer visualization tool)

2 On Valid and Invalid Three-Dimensional Geometries 21

The renewed interest on the acquisition and storage of 3D data in the
GIS industry and city departments is likely to result in large amounts of 3D
information in the near future. As a result, efficient and scalable techniques
for storage and querying of 3D models will be essential to scalable terrestrial
data management. To address this need, Oracle Spatial [KAE04] enhanced its
SDO GEOMETRY data type to store 3D data and created additional func-
tionality for the efficient storage, query and management of such 3D data
inside the database. One important piece of successful data models is ”val-
idation” which verifies whether or not the data generated by third parties,
say, a city department, conforms to the data model supported. Validation
is an essential and important component of 3D data modeling and enables
subsequent operations on valid data to run correctly and efficiently (without
the need to check for validity). Standardization organizations such as ISO
and OGC have tried to give unambiguous and complete definitions of valid
geometric primitives. But as it was already pointed out in [OT03] and [OT04]
it turns out that the standards are not unambiguous and complete even in
the 2D case of polygons. It should further be noted that ISO [ISO03] provide
abstract descriptions, but not a detailed implementation specification en-
abling system interoperability. This aspect has been provided by OGC/ISO in
[OGC99, OGC06a, OGC06b]. It is interesting to note that OGC did improve
their definition [OGC06a] of a valid polygon in 2D by adding the condition
that the outer boundary must have a counter clockwise orientation compared
to the previous definition [OGC99]. What is still missing is a good treatment
of tolerance values (also noted in [OT04]), which somehow is implied in the
used terms such as spikes and also needed in a final digital machine to decide
if two rings of a polygon do touch. Further different vendors of geo-DBMSs
did also have different interpretations of a valid polygon, both compared to
each other and to the ISO and OGC standards (again see [OT04]). However
it must be stated that in the meantime also the producers did take notice of
this issue and significant improvements have been noticed (though a system-
atic benchmark has not been repeated). For 3D geometric primitives there is
an abstract ISO specification (again [ISO03]), but this is not the needed im-
plementation specification. In [ASO05] a proposal was made to extend Oracle
Spatial with a polyhedron primitive. Despite the fact that much attention was
paid to the validation of this primitive, this paper did have some limitations.
For example, it was stated that every edge in a valid polyhedron must exactly
be used two times, but in this paper we will show that also valid cases exits
where an edge is used four (or higher even number) times. Also the paper
did focus on a single polyhedron (called in ISO terms ’simple solid’), and did
not discuss composite and multi solids. In this paper a more complete set
of validation rules are given for the complete set of 3D geometric primitives.
Also this paper gives more illustrations of valid and invalid polyhedrons (sim-
ple solids), illustrating that quite complicated configurations are possible for
which it is not easy to decide whether the primitive is valid.

22 Kazar and Kothuri and van Oosterom and Ravada

One could wonder if the subject of valid or invalid solids has not been
treated within CAD, with its long-standing 3D basis. There one has to dis-
tinguish between the different type of CAD models: voxels, CSG (constructive
solid geometry) and boundary representation using (curved) surfaces [M97].
Only the boundary representations are comparable to the discussion of valid
solids. However, within CAD the focus is more on the shape of the (curved)
boundary, than on the validness of the solid object. Most CAD systems work
with CSG and form complex objects from primitive objects. Validity of the
resulting objects is typically assumed (due to the underlying nature of the
primitives). In practical GIS applications, Boundary representation is more
natural. The OGC’s GML defines solids in a boundary-representation format
[GML03]. GML also allows composite solids to mimic CAD world’s conve-
nience of making complex man-made objects. Oracle’s model closely follows
OGC’s specifications in both aspects. In this paper, we illustrate how the
Oracle 3D model compares with the GML definitions and present explicit
validation rules for checking for validity in a practical implementation. This
paper will also help in shedding more light on the valid geometry definitions
of GML by providing explicit examples of valid and invalid geometries.

Section 2 defines the data model for storing 3D geometries in Oracle. Sec-
tion 3 describes rules for determining ’structurally-valid’ polygons and sur-
faces. Note that the definition of polygons is quite similar to those in GML.
However, the contribution of that section is Lemma 1 (which can be converted
to an algorithm) to prove that polygons with inner rings can be converted
to composite surfaces without inner rings. Besides, this section also forms
the basis for solid modeling. Section 4 describes solid modeling in Oracle
using either ’simple solids’ or ’composite solids’ and how these differ from
the standard definitions in GML. This section also establishes that simpler
representations using simple solids without inner rings in faces (or the equiv-
alent composite solids) are sufficient to model 3D geometries (as long as
they don’t have arcs and parametric curves). By adopting this paradigm (of
simple solids) for storing solids, much complexity is avoided and validation
algorithms are simplified. Section 5 describes validation rules and examples
for collection geometries. The final section discusses the implementation de-
tails of these rules (with pointers to the full report) and concludes the paper
with pointers for future research.

2.2 3D Geometry in Oracle Spatial

The SDO Geometry data type for storing 3D data in Oracle has the class
structure depicted in Figure 2. The SDO GEOMETRY is represented by
an array of one or more elements. The element array can be used to repre-
sent a point, linestring, surface, solid, or collection (heterogeneous collection
or homogenous collection such as multi-point, multi-curve, multi-surface, or

2 On Valid and Invalid Three-Dimensional Geometries 23

multi-solid). Two or more points form a line-string. A closed line-string is
called a ring. One or more rings (1 outer and 0 or more inner rings) within
the same plane form a polygon [OT04]. One or more polygons form a surface
(called a composite if consisting of more than 1 polygon and the surface is
connected via shared parts of edges). Two or more outer rings of a composite
surface can be on the same or different planes. One outer surface and 0 or
more inner surfaces (represented as 1 or more in Figure 2) surfaces form a
simple solid (Ssolid in Figure 2) if all the involved surfaces bound a closed vol-
ume. One or more adjacent (sharing at least a 2D part of a face) simple solids
form a composite solid (referred to as CSolid in Figure 2). As we will show in
the next sections, any composite solid can be represented as simple solid by
removing the shared polygons. Composite solid is however very convenient
from the user’s perspective and part of the ISO standard [ISO03]. The collec-
tion types are formed as one or more elements of the appropriate type (e.g.,
one or more points form a multi-point, one or more solids form a multi-solid
etc.). Note that the elements of the multi-X (X=surface, or solid) are either
disjoint or touching via lower dimensional shared part of their boundary.

Buildings and other architectural elements of city models will likely be rep-
resented using simple solids (Ssolids in Figure 2), composite solids (CSolids
in Figure 2), multi-solids or collection-type geometries. In this paper, we
mainly focus on these types of ’complex’ geometries (and do not discuss
the rest of the simpler types as they are simple extensions of the 2Dimen-
sional counterparts). The above SDO GEOMETRY is realized as an imple-
mentation object type called SDO GEOMETRY in the Oracle database.
This object has attributes such as SDO GTYPE, SDO ELEM INFO and
SDO ORDINATES. The SDO GTYPE specifies the type for the geometry.
The SDO ORDINATES stores the ordinates of the vertices of the geometry.
The SDO ELEM INFO is an array of element descriptors each describing how
to connect the ordinates stored in the SDO ORDINATES field. The following
SQL shows the constructor for a Composite surface geometry composed of two
(axis-aligned) rectangle polygons. More examples of the SDO GEOMETRY
type with additional examples can be found in Appendix B.

SDO_GEOMETRY (
3003, -- SDO_GTYPE: 3Dimensional surface type geometry
NULL, NULL, -- SDO_SRID for coordinate system ID

SDO_ELEM_INFO_ARRAY(-- SDO_ELEM_INFO constructor
1, -- starting offset for element
1006, -- Element type is a COMPOSITE SURFACE
2, -- Number of primitive polygon elements making up

-- the composite surface
1, -- starting offset of first polygon of Composite

-- surface
1003, -- Polygon element type
3, -- Axis-aligned rectangle specified by two corners
7, -- starting offset of second polygon of Composite

24 Kazar and Kothuri and van Oosterom and Ravada

-- surface
1003, -- Polygon element type
3 -- Axis-aligned rectangle specified by two corners,
)
SDO_ORDINATE_ARRAY (-- Constructor for SDO_ORDINATES:

-- Store the actual ordinates of the vertices
2,0,2, -- 1st corner or 1st axis-aligned rect. polygon
4,2,2, -- 2nd corner of 1st axis-aligned rect. polygon
2,0,2, -- 1st corner of 2nd axis-aligned rect. polygon
4,0,4 -- 2nd corner of 2nd axis-aligned rect. polygon

)
)

Note that the class structure of Figure 2 closely follows the class structure
for 3D geometries in GML 3.1.1 [GML03] but with a notable restriction: arcs
and parametric curves are not currently supported in the SDO Geometry.
The validation rules and algorithms described in this paper work even when
arcs are incorporated into the data model.

Fig. 2.2 The Class structure for the SDO GEOMETRY data type

In the next sections, we describe how surfaces, solids and collections are
defined in Oracle and present specific validation rules with appropriate ex-
amples. We skip points and lines as for these types the validation rules are
no different than their 2D counterparts, they are relatively trivial, and there
is not much ambiguity in the OGC/ISO standards (no repeated notes, no

2 On Valid and Invalid Three-Dimensional Geometries 25

self intersection of edges). The only tricky part is the treatment of tolerance
values (needed to decide if there is indeed an intersection or equal node), but
this will be discussed for surfaces.

2.3 Surfaces

In this section surfaces and their validation rules are discussed, as the closed
surfaces are the building block for defining solids (outer and possible inner
boundaries). First the ring is discussed, the simple surfaces (polygon) and
finally the composite surface. This section does not present new validation
rules but it presents the concepts and proves an important lemma needed for
the next section on solid modeling.

2.3.1 Rings

Based on our interpretation of the ring definition in OGC/ISO GML3, a ring
can be defined as a closed string of connected non-intersecting lines that lie
in the same plane. A ring R is typically specified as the sequence of n+1
vertices R =< V1,V2, . . . ,Vn,V1 > where the first and the (n + 1)th vertex are
the same (to make the ring closed). All other vertices are distinct. Each pair
< Vi,Vi+1 > represents a directed edge connecting the vertex Vi to Vi+1. Also
note that no two edges of the ring can intersect (no self intersection). The
only exception is the first edge < V1,V2 > and the last edge < Vn,V1 > can
touch at the vertex V1.

Validation Rules for a Ring:

• Closedness Test: The first and last vertices of the ring are identical.
• Planarity Test: All vertices of the ring are on the same plane (within a

planarity-tolerance error).
• Non-intersection of edges: If edge ei connects vertex < Vi,Vi+1 > and

edge e j connects < e j,e j+1 >, ei and e j have the following properties:

– If (j = i+1 mod n), then ei and e j only touch at vertex Vj
– Otherwise, ei and e j do not intersect.

• Distinct Vertex Test: Adjacent vertices Vi, Vi+1 should not represent
the same point in space. Vi, Vi+1 are considered to duplicates of the
same point if the distance between Vi, and Vi+1 is less than a tolerance
error.

26 Kazar and Kothuri and van Oosterom and Ravada

Note that the planarity tolerance discussed in bullet 2 and tolerance in
bullet 4 are different. These tolerance values ensure that spikes and other
degenerate cases are invalidated. Note that due to the tolerance also spikes
to the inside and outside are not allowed (in [OT04] spikes to the inside were
allowed, but not to the outside, which was a bit asymmetric).

2.3.2 Polygon in GML

In GML [GML03], a Polygon is a planar Surface defined by one exterior
boundary and zero or more interior boundaries. Each interior boundary de-
fines a hole in the Polygon. GML has the following assertions for Polygons
(the rules that define valid Polygons):

a) Polygons are topologically closed.
b) The boundary of a Polygon consists of a set of LinearRings that make up

its exterior and interior boundaries.
c) No two Rings in the boundary cross and the Rings in the boundary of a

Polygon may intersect at a Point but only as a tangent.
d) Polygon may not have cut lines, spikes or punctures.
e) The interior of every Polygon is a connected point set.

The exterior of a Polygon with one or more holes is not connected. Each
hole defines a connected component of the exterior.

Simple Surface, Polygon in Oracle

A polygon P in Oracle strictly adheres to the definition in GML (nothing new
here). It is defined as a single contiguous area in a planar space bounded by
one outer (or exterior) ring PRe as the exterior boundary and zero or more
(interior) rings PRi1, . . . ,PRik which are interior to the outer ring and non-
overlapping with one another. The inner rings should be oriented in opposite
direction as the outer ring. The outer ring itself can always be oriented in
any manner. In addition to the mentioned assertions for polygons in GML,
we also add the implicitly mentioned co-planarity of points.

Validation Rules for a Polygon:

The rules for polygons can be listed as follows.

• Validity of Rings: The rings in a polygon are valid (satisfy closedness,
planarity, No Self-intersection tests, and distinct vertex).

• Co-planarity of Rings: Since the polygon defines an area in a plane,
all rings are on the same plane (within tolerance).

2 On Valid and Invalid Three-Dimensional Geometries 27

• Proper orientation: The inner rings (if any) must have the opposite
orientation compared to the outer ring.

• Single Contiguous Area: Together the outer ring and the interior rings
define a single area. This means the inner rings cannot partition the
polygon into disjoint areas.

• Non-overlapping inner rings: Inner rings cannot overlap (tolerance)
with each other but may touch at a point (under the single contiguous
area condition).

• Inner-outer disjointedness: Every inner-ring must be inside outer-
ring and can only touch (tolerance) at a single point (under the single
contiguous area condition).

Note that for 2Dimensional data, Oracle required that the vertices of the
outer ring be specified in counterclockwise direction and those of the interior
rings in clockwise direction. Such orientation restrictions are not needed for
polygons and surface geometries (only the fact that the inner boundaries have
opposite orientation compared to the outer boundary). Orientation becomes
more important when these polygons/surfaces become components in a solid
geometry. Modeling the polygon on the 3D ellipsoid is difficult (co-planarity
may not be enforced as points on ellipsoidal surface are not on the same
plane) and is not discussed here.

Fig. 2.3 Example of a 3D polygon

2.3.3 Composite Surface

A composite surface is a contiguous area formed as a composition of M non-
overlapping polygons. Note that the polygons may or may not be in the same
plane. GML does not give any explicit rules here.

28 Kazar and Kothuri and van Oosterom and Ravada

Validation Rules for Composite Surfaces:

The validation rules that we propose for composite surface are as follows.

• Validity of Polygons: Each of the M polygons has to be a valid polygon.
• Non-overlapping but edge-sharing nature: Any two polygons Pi and

Pj should not overlap, i.e. if Pi and Pj are in the same plane, the area of
intersection of the two polygons has to be zero. However, two polygons
may touch (tolerance) in a (part of a) line/edge.

• Contiguous area: Every polygon in the composite should be reachable
from any other polygon by appropriate tracing of the shared (parts of)
edges.

Fig. 2.4 Left: Valid composite-surface. Right: Invalid composite-surface: Not a single
contiguous area. Right can be modeled as a homogenous (multi-surface) or heteroge-
neous collection

Decomposition of a Polygon with inner rings into a Composite
Surface

Lemma 1: Any polygon P with an outer ring Po and (non-overlapping) inner
rings Pi1, . . . ,Pin can always be decomposed into a composite surface S where
each polygon has no inner rings with the following characteristics:

• Every edge/vertex in P is an edge in one of the polygons of S.
• Area(P) = Union of Area(Q) for all Q in S.
• No polygon of S has an inner ring
• Every edge in S

– Either belongs to P and is traversed only once in S
– Or is an edge inside the outer ring Po and is traversed twice.

Proof: see Appendix A.

2 On Valid and Invalid Three-Dimensional Geometries 29

2.4 Solids

GML and ISO define specific representations for solids. Oracle’s definition of
the solid is quite equivalent except that it does not allow arcs and parametric
curves in the solid specification. The GML definition of a solid is as follows
[GML03]:

The extent of a solid is defined by the boundary surfaces (shells). A shell
is represented by a composite surface, where every shell is used to represent a
single connected component of the boundary of a solid. It consists of a com-
posite surface (a list of orientable surfaces) connected in a topological cycle
(an object whose boundary is empty). Unlike a Ring, a shell’s elements have
no natural sort order. Like Rings, shells are simple. The element ‘exterior’
specifies the outer boundary of the solid. Boundaries of solids are similar to
surface boundaries. In normal 3Dimensional Euclidean space, one (compos-
ite) surface is distinguished as the exterior. In the more general case, this is
not always possible. The element ‘interior’ specifies the inner boundary of the
solid. Boundaries of solids are similar to surface boundaries.

In this paper, we will only focus on solid modeling in Euclidean spaces
and restrict our attention to solids without arcs and parametric curves. Ora-
cle supports two types of solids: a simple solid, and a composite solid. Both
representations are equivalent but a composite solid may be more conve-
nient to form for the user. Further composite solids are also required by the
OGC/ISO standards.

One problem with this definition is: it allows inner rings in a polygon of a
composite surface. Consider a solid such as that in the following figure that
has an inner ring on its top surface. Is this solid, valid or invalid? The answer
depends on whether the inner ring in the top surface is complemented with
inner walls too as shown in the subsequent figure.

Fig. 2.5 Is the white inner ring an empty surface-patch on the solid, not matched
with other faces as shown on the left side? (In that case, the solid is not valid.) Or
does it connect to other ’inner’ faces in which case it could become valid as shown on
the right side

30 Kazar and Kothuri and van Oosterom and Ravada

Oracle offers a simpler representation: all polygons only have an outer
ring but no inner ring (thus avoiding unnecessary computation). It turns out
that this simpler representation does not lose any power (i.e. can represent
any solid with polygons that have inner rings). Oracle supports two variants,
simple solids and composite solids, that both exhibit this property.

2.4.1 Simple Solids in Oracle

In Oracle, a simple solid is defined as a ‘Single Volume’ bounded on the ex-
terior by one exterior composite surface and on the interior by zero or more
interior composite surfaces. To demarcate the interior of the solid from the
exterior, the polygons of the boundary are oriented such that their normal
vector always point ‘outward’ from the solid. In addition, each polygon of the
composite surfaces has only an outer ring but no inner ring. (This is a restric-
tion compared to the GML definitions, but without loosing any expression
power).

Validation Rules for Simple Solids:

Based on these above definitions, we can define the rules/tests for validation
of solids (again all operations are using tolerance values):

• Single Volume check: The volume should be contiguous.

– Closedness test: The boundary has to be closed. [Z00] show that
the vector sum of the edges in the boundary traversal should be zero
(i.e. every edge on the boundary needs to be traversed even number
of times: note that some implementations check for just 2 times but
that may disallow some valid solids as shown in Figure 9). Necessary
condition but not sufficient (Figure 11 left, Figure 12 left, Figure 13
left are invalid)

– Connectedness test: For sufficiency, volume has to be connected.
(Figure 11 right, Figure 12 right, Figure 13 right are valid). This
means each component (surface, solid) of the solid should be reachable
from any other component.

• Inner-outer check:

– Every surface marked as an inner boundary should be ’inside’ the
solid defined by the exterior boundary.

– Inner boundaries may never intersect, but only touch under the con-
dition that the solid remains connected (see above)

• Orientation check: The polygons in the surfaces are always oriented
such that the normals of the polygons point outward from the solid that

2 On Valid and Invalid Three-Dimensional Geometries 31

they bound. Normal of a planar surface is defined by the right-hand
thumb rule (if the fingers of the right hand curl in the direction of the
sequence of the vertices, the thumb points in the direction of the normal).
The volume bounded by exterior boundary is computed as positive value
if every face is oriented such that each normal is pointing away from
the solid due to the Green’s Theorem. Similarly, the volume bounded
by interior boundary is computed as negative value. If each exterior and
interior boundary obeys this rule and they pass connectedness test as
well, then this check is passed.

• Element-check: Every specified surface is a valid surface.
• No-inner-ring in polygons: In the composite surfaces of a solid, no

inner rings are allowed.

A solid cannot have polygons that overlap. Due to the use of tolerances
some very thin volume parts could collapse to spikes (dangling faces or edges).
However, it is not possible to have spikes (either linear or areal shaped) as it
is not allowed to have the vector sum of edges unequal to 0.

Theorem 1: Any valid solid S where polygons have inner rings can also
be represented as a simple solid without inner rings in the faces.
Proof: Consider a polygon P that has interior rings in S. During a traversal
of P, every edge of P is traversed just once. Each of these edges is traversed
a second time in the traversal of the rest of the polygons that close the solid.
Replace polygon P (that has interior rings) in S by its equivalent compos-
ite surface consisting of the no-interior-polygons P1, . . . ,Pk as in Lemma 1.
Since every edge in P is traversed only once during a traversal of P1, . . . ,Pk,
the boundary is preserved. All edges that are in P1, . . . ,Pk but not in P are
traversed exactly twice in opposite directions and are cancelled out in the
traversal. Thus preserving the solid-closedness properties. Other properties
are also likewise preserved.

In Figure 6, simple solid has an outer boundary represented by a closed
composite surface and a hole (Hole) represented by an inner composite sur-
face. These two solids share a face. This solid is invalid since it violates the
inner-outer disjointedness rule of a simple solid. However, this solid can be
modeled as a valid simple solid represented by a single outer composite sur-
face without any inner surfaces (solid with dent).

The composite-solid in Figure 7 is composed of Solid 1 and Solid 2. Even
though solids have common (shared) area, Solid 2 is inside Solid 1, which
violates the No-volume-intersection of composite-solids and hence invalid.

The examples in Figures 8-13 give a number of valid and invalid simple
solids. The captions of the figures do explain why. From these figures it be-
comes clear that the validation includes a non-trivial topological analysis of
the inner and outer boundary elements. Let us consider another example.
The geometry in Figure 15 is designated as a composite-solid geometry con-
sisting of simple solids: Solid 1 and Solid 2. Solid 2 has an outer boundary
and an additional surface patch intersecting (overlapping) one of its faces.
This violates the No-surface-patch rule of simple solids and hence is an in-

32 Kazar and Kothuri and van Oosterom and Ravada

Fig. 2.6 Simple Solid: invalid if modeled as outer, inner surfaces. Note that the back
face (i.e. shaded area) of the inner solid boundary is partly shared with the back face
of the outer solid boundary

Fig. 2.7 Invalid composite solid because solid elements cannot be inside the other.
If modeled as a simple solid, the object will be invalid as it has two outer boundaries
(which are disconnected)

valid geometry. The geometry, however, can be modeled as a (heterogeneous)
collection.

2.4.2 Composite Solid in Oracle

In addition to a simple solid, Oracle (and GML too) also allows the specifi-
cation of a ’composite solid’. In Oracle, a composite solid is a combination of
n simple solids. Compared to the simple solid definition in Section 4.1, what
this allows is the overlap of the polygons of different simple-solids but the

2 On Valid and Invalid Three-Dimensional Geometries 33

Fig. 2.8 The importance of checking the intersection between faces: all 3 simple
solids have the same node-edge connectivity, but the last (rightmost) one has inter-
secting faces and is therefore invalid

Fig. 2.9 Simple solid with ‘inner’ boundary touching the outer boundary in one line
(fat edges are used 4 times). The left solid is valid, while the right simple solid is
invalid (together the two ‘inner’ boundaries separate the solid into two parts). Note
that both solids do not really have inner boundaries (it is a more complex single outer
boundary causing through holes touching the outer boundary in other places)

Fig. 2.10 Simple solid with inner boundary touching the outer boundary in two lines
(fat edges are used 4 times). The left solid is the only solid with a true inner boundary
(touching the outer boundary in two lines: right outer boundary in the fat line and
the back outer boundary in the fat dashed line). The left is a valid simple solid. The
middle solid is also valid (because inner boundary does not continue through the
whole), while the right simple solid is invalid (as inner boundary does separate the
solid into two parts). Again note that the middle and right solids do not really have
inner boundaries (it is a more complex single outer boundary)

34 Kazar and Kothuri and van Oosterom and Ravada

Fig. 2.11 Invalid simple solids of previous figures becoming valid via adding an
additional handle making it possible to travel from one part to another part of the
object (completely via the interior). Note: where handle touches the face, a part of the
faces is removed (that is an interior ring is added within the exiting face to create the
open connection). So, all faces have always (and everywhere) on one side the object
and on the other side something else (outside, where the normal is pointing to)

Fig. 2.12 Left: simple solid with 6 internal (cube-shaped) boundaries separating
the big cube into two parts (the internal one draw with fat lines is implied by the
6 boundaries of the 6 smaller cube-shaped holes). Therefore the left simple solid is
invalid (note that removing one of the 6 holes, makes it valid again). Right: Invalid
simple solids of previous figures becoming valid via adding an additional handle mak-
ing it possible to travel from one part to another part of the object (completely via
the interior). Right: the two parts are connected via a ’pipe’ making it a valid simple
solid again

boundary is still closed. Note that this does not allow overlapping polygons
in the same simple solid but only across multiple simple solids.

Following theorem shows the equivalence of a ’simple solid’ and a ’compos-
ite solid’. Composite solids are defined for convenience: it is easier to combine
two or more simple solids and make a composite. For the same reason, they
are also included in GML specification too. However, the composite solids in
GML do allow inner rings in polygons whereas the Oracle model does not
but still equivalent (from Theorem 1 and Theorem 2).
Theorem 2: Every valid composite solid can also be represented as a simple
solid.
Proof: Composite solid always has solids attached to each other via partially
or fully shared faces. Having detected these shared faces, one can get rid

2 On Valid and Invalid Three-Dimensional Geometries 35

Fig. 2.13 Left: valid simple solid (fat edge still used 4 times), but handle is added
through which it is possible to travel from one part to the other part via the interior
only, Right: invalid simple solid with one edge being used four times (fat line)

of these faces and redefine the solid without these shared areas. Figure 14
illustrates an example.

Fig. 2.14 (a) Composite Solid consisting of two simple solids A and B. Shared
portion of bottom face of A (i.e. shaded area) in both A and B. (b) Equivalent Simple
Solid. Shared portion of bottom face of A should not be included in the boundary.

Validation Rules for Composite Solids

• Component Validity: Each component simple solid of a composite is
valid.

• Shared-face but no-volume intersection: Intersection of two simple
solid components of a composite solid has to be a zero volume (can be
non-zero area).

36 Kazar and Kothuri and van Oosterom and Ravada

• Connectedness: The volume of the composite is contiguous, i.e. we can
go from any point in one component to any other component without
going out of the composite solid.

Since composite solids are equivalent to a simple solid, an alternate way is
simply convert the composite to the equivalent simple solid and then validate
the resulting solid.

Fig. 2.15 Invalid Composite Solid: Cannot have surface patches on a solid

Fig. 2.16 If modeled as a Composite Solid, the object is invalid due to intersection
of solid elements. If modeled as a simple solid, the object is invalid due to ‘overlapping
polygons’ of composite surface

Consider a third example on composite-solids in Figure 16, which is com-
posed of a cube and a triangular prism where a prism goes into the cube
through its top face. This is an invalid geometry because it violates the No-
volume intersection rule of composite-solids.

2 On Valid and Invalid Three-Dimensional Geometries 37

2.5 Collections

Following GML [GML03] specifications, collections in Oracle can be either
homogenous or heterogeneous. Let us look at each of these in turn.

2.5.1 Homogenous Collections

A homogenous collection is a collection of elements, where all elements are of
the same type. A homogenous collection can be either a multi-point, multi-
line, multi-surface, or multi-solid corresponding to the element type point,
line, surface and solid. For example, in a multi-solid, all elements have to be
(valid) solids.

Validation Rules for Homogenous Collections:

• All elements of same type and conform to the homogenous collection type
(multi-point, multi-line, multi-surface, multi-solid).

• Each element should be valid.

In addition to the above rules, Oracle also adds a specific rule for determin-
ing disjointedness of elements in a homogeneous collection in validation pro-
cedures (this is a deviation from the GML specification). The reason to add
the disjointedness is to distinguish between composite solids and multi-solids.
If the user does not want this restriction, he can model it as a heterogeneous
collection.

The geometry in Figure 16 is also invalid as a multi-solid because it violates
the disjointedness rule for multi-solids. Note that the disjointedness in multi-
solids not only implies no-volume intersection but also no-area intersection.
The latter is represented by the geometry in Figure 17, which is invalid due
to the disjointedness (no-area intersection) rule of multi-solids.

2.5.2 Heterogeneous Collections

In a heterogeneous collection1, the elements can be a mixture of different
types. For example, a building (simple solid) with the windows/doors (sur-
faces) can be modeled as a heterogeneous collection.

1 In Oracle documentation, a heterogeneous collection is referred to simply as a
‘collection’. All homogeneous collections are referred to by their names (e.g. multi-
line, multi-point, multi-surface, multi-solid).

38 Kazar and Kothuri and van Oosterom and Ravada

Fig. 2.17 Invalid multi-solid because solid elements are non-disjoint (but a valid
composite solid

Validation Rules for Heterogeneous Collections:

• Each element of the collection should be valid.

Figure 18 shows an example of a building modeled as a heterogeneous
collection: The building shape is modeled as a solid whereas the windows
and doors are modeled as surfaces.

Fig. 2.18 Building modeled as a Heterogeneous collection

2 On Valid and Invalid Three-Dimensional Geometries 39

2.6 Discussions and future work

In this paper, we presented a data model for storing 3D objects that occur in
the rapidly evolving area of city modeling. We examined different types and
described rules for validating these types of geometries based on OGC/ISO
standards [ISO03, OGC6a, OGC6b, OGC6c]. We then developed and pre-
sented in this paper the more detailed, unambiguous validation rules and
applied them to different examples to determine validity or otherwise. Such
a data model and validation rules can form the backbone of 3D data mod-
els needed for proper interoperability (having exactly the same definition of
the geometric primitive during the exchange of 3D data). Our specific con-
tributions include: simpler representation for solids (by eliminating the need
for inner rings in polygons) thereby simplifying the validation of solids, ex-
plicit rules for validation of each geometry type, and concrete examples for
valid and invalid 3D geometries that bring out the concepts of the valida-
tion model. This model and validation rules have been implemented in the
Oracle 11g database (the implementation details have not been included due
to space restrictions). The rules that are more involved to implement are
the Closedness test and the Reachability/Connectedness tests. Full details
on our implementation of these tests are available in [Oracle07]. Future work
could concentrate on performance evaluation of the 3D data model, valida-
tion and query on large-scale city models. Specific optimizations based on
3D query window sizes [KR01] could be investigated. Besides, the 3D data
modeling using SDO GEOMETRY can be compared with other models such
as Tetrahedron-based models [POK06] in terms of functionality and perfor-
mance. Since the area of 3D modeling in databases is a fledgling topic, we
need to investigate on easy approaches for deriving 3D data by extruding
2D footprints. By first converting arbitrary 2D polygons to a composite sur-
face, via Lemma1, and then extruding them to 3D may be a good approach.
Fast algorithms for doing this conversion may also be investigated (there ex-
ist more efficient algorithms than the recursive construction in Lemma 1).
Another important aspect in 3D modeling is visualization. Popular tools like
Google Sketchup work well with 3D surfaces but do not understand 3D solids.
Other tools such as Landxplorer and Aristoteles visualize all types of 3D GML
geometries. Commercial products from Autodesk work with their own pro-
prietary 3D formats and are planning to publish to GML geometries. The
Xj3D tools that are popular in the gaming community are also interoperat-
ing with the GML forums. Using appropriate functions, the 3D data stored
as SDO GEOMETRY can be converted to GML thereby opening it further
to other interoperable formats. Future work can be devoted to developing
fast rendering of the native 3D geometries.

40 Kazar and Kothuri and van Oosterom and Ravada

Acknowledgements

We would like to thank Friso Penninga for proof reading an earlier version
of this paper. The contribution of Peter van Oosterom to this publication
is the result of the research programme ’Sustainable Urban Areas’ (SUA)
carried out by Delft University of Technology and the Bsik RGI project 3D
Topography.

References

[Oracle07]. ‘Validation Rules and Algorithms for 3D Geoemtries in Oracle
Spatial’, 2007.

[ASO05] Calin Arens, Jantien Stoter and Peter van Oosterom, Modelling 3D
spatial objects in a geo-DBMS using a 3D primitive, In: Computers & Geo-
sciences, Volume 31, 2, 2005, pp. 165-177.

[A94] Lars Arge, Mark de Berg, Herman J. Haverkort, Ke Yi: The Priority
R-Tree: A Practically Efficient and Worst-Case Optimal R-Tree. SIGMOD
Conference 2004: 347-358.

[BKSS90] Beckmann, N., Kriegel, H., Schneider, R. and Seeger, B., The R*
tree: An efficient and robust access method for points and rectangles. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 322-331, 1990.

[BKS94] Brinkhof, T., Kriegel, H., and Seeger, B., Efficient processing of spa-
tial joins using R-trees. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 237-246, 1994.

[BDA04] Nagender Bandi, Chengyu Sun, Amr El Abbadi, Divyakant Agrawal:
Hardware Acceleration in Commercial Databases: A Case Study of Spatial
Operations. VLDB 2004: 1021-1032.

[DE94] Dimitris Papadias, Yannis Theodoridis, Timos K. Sellis, Max J. Egen-
hofer: Topological Relations in the World of Minimum Bounding Rectangles:
A Study with R-trees. SIGMOD Conference 1995: 92-103.

[FD97] Foley, van Dam, Feiner, Hughes. Computer Graphics: Principles and
Practice, The Systems Programming Series, 1997.

[G84] A. Guttman. R-trees: A dynamic index structure for spatial searching.
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 4757, 1984.

2 On Valid and Invalid Three-Dimensional Geometries 41

[GML03] The Geographic Markup Language Specification. Version 3.1.1,
http://www.opengeospatial.org.

[GSAM04] Thanaa M. Ghanem, Rahul Shah, Mohamed F. Mokbel, Walid
G. Aref, Jeffrey Scott Vitter: Bulk Operations for Space-Partitioning Trees.
ICDE 2004.

[HKV02] Marios Hadjieleftheriou, George Kollios, Vassilis J. Tsotras, Dim-
itrios Gunopulos: Efficient Indexing of Spatiotemporal Objects. EDBT 2002:
251-268.

[ISO03] ISO/TC 211/WG 2, ISO/CD 19107, Geographic information - Spa-
tial schema, 2003.

[J04] Christian S. Jensen: Database Aspects of Location-Based Services.
Location-Based Services 2004: 115-148.

[KGP05] Th. H. Kolbe, G. Gröger, L. Plümer. CityGML: Interoperable Ac-
cess to 3D City Models, In: Oosterom, P, Zlatanova, S., Fendel E. M. (editors)
Geo-information for Disaster Management, Springer, pages 883-899, 2005.

[KAE04] Kothuri, R. Godfrind A, Beinat E. ‘Pro Oracle Spatial’, Apress,
2004.

[KSSB99] Kothuri R., Ravada S., Sharma J., and Banerjee J., Indexing
medium dimentionality data, in Proc. ACM SIGMOD Int. Conf. On Man-
agement of Data, 1999.

[KR01] Kothuri, R., Ravada, S., Efficient processing of large spatial queries
using interior approximations, Symposium on Spatio-Temporal Databases,
SSTD, 2001.

[L07]. Jung-Rae Hwang, Ji-Hyeon Oh, Ki-Joune Li: Query Transformation
Method by Dalaunay Triangulation for Multi-Source Distributed Spatial
Database Systems. ACM-GIS 2001: 41-46.

[MP01] Nick Mamoulis, Dimitris Papadias: Multi-way Spatial Joins, ACM
TODS, Vol 26, No. 4, pp 424-475, 2001.

[MTP05] Nikos Mamoulis, Yannis Theodoridis, Dimitris Papadias: Spa-
tial Joins: Algorithms, Cost Models and Optimization Techniques. Spatial
Databases 2005: 155-184

[MA04] Mohamed F. Mokbel, Ming Lu, Walid G. Aref: Hash-Merge Join:
A Non-blocking Join Algorithm for Producing Fast and Early Join Results.

42 Kazar and Kothuri and van Oosterom and Ravada

ICDE 2004: 251-263.

[M97] Mortenson, M. Geometric Modelling, second ed. Wiley, New York
523pp., 1997.

[OGC99] Open GIS Consortium, Inc., OpenGIS Simple Features Specifica-
tion For SQL, Revision 1.1, OpenGIS Project Document 99-049, 5 May 1999.

[OGC06a] Open Geospatial Consortium Inc., OpenGIS Implementation Spec-
ification for Geographic information - Simple feature access - Part 1: Common
architecture, Version: 1.2.0, Reference number of this document: OGC OGC
06-103r3, 2006.

[OGC06b] Open Geospatial Consortium Inc., OpenGIS Implementation Spec-
ification for Geographic information - Simple feature access - Part 2: SQL op-
tion, Version: 1.2.0, Reference number of this document: OGC 06-104r3, 2006.

[OGC06c] Open Geospatial Consortium Inc., Candidate OpenGIS CityGML
Implementation Specification , Reference number of this document: OGC 06-
057r1, 2006.

[POK06] Penninga, F., van Oosterom, P. & Kazar, B. M., A TEN-based
DBMS approach for 3D Topographic Data Modelling, in Spatial Data Han-
dling 2006.

[S89] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-
Wesley, 1989.

[SE02] Schneider J. P., and Eberly, D.H. Geometric Tools for Computer
Graphics, Morgan Kaufman, 2002.

[TS96] Y. Theodoridis and T. K. Sellis, A model for the prediction of r-tree
performance, In Proc. of ACM Symp. on Principles of Databases, 1996.

[OT03] P.J.M. van Oosterom, C.W. Quak and T.P.M. Tijssen, Polygons: the
unstable foundation of spatial modeling, ISPRS Joint Workshop on ’Spatial,
Temporal and Multi-Dimensional Data Modelling and Analysis’, Québec, Oc-
tober 2003.

[OT04] P.J.M. van Oosterom, C.W. Quak and T.P.M. Tijssen, About Invalid,
Valid and Clean Polygons. In: Peter F. Fisher(Ed.); Developments in Spatial
Data Handling, 11th International Symposium on Spatial Data Handling,
2004, pp. 1-16

2 On Valid and Invalid Three-Dimensional Geometries 43

[YE06] Yohei Kurata, Max J. Egenhofer: The Head-Body-Tail Intersection
for Spatial Relations Between Directed Line Segments. GIScience 2006: 269-
286 2005.

[YS05] Jin Soung Yoo, Shashi Shekhar: In-Route Nearest Neighbor Queries.
GeoInformatica 9(2): 117-137 (2005).

[Z00] Zlatanova, S. On 3D Topological Relationships, DEXA Workshop, 2000.

Appendix A

Lemma 1: Any polygon P with an outer ring Po and (non-overlapping) in-
terior rings Pi1, . . . ,Pin can always be decomposed into a composite surface S
where each polygon has no inner rings with the following characteristics:

• Every edge/vertex in P is an edge in one of the polygons of S.
• Area(P) = Union of Area(Q) for all Q in S.
• No polygon of S has an inner ring.
• Every edge in S

– either belongs to P and is traversed only once in S
– or is an edge inside the outer ring Po and is traversed twice.

Proof: By induction on the number of inner rings. Let n=1. The polygon P
has one inner ring. On the inner ring find the two extreme (min, max) points
Imin, Imax along a specific axis of the plane of the polygon. Extend the min,
max points along the dimension to meet the outer ring O of the polygon at
Omin, Omax. The polygon P is now P1 and P2: the new edges < Omin, Imin >
and < Omax, Imax > are traversed twice: once in P1 and another time in reverse
direction in P2. All other edges belong to P and are in either P1 or P2. The
new edges do not cross any other edges, as Omin and Imin are the extreme
vertices. Hence P1 and P2 are valid polygons.

Hypothesis: Let the lemma be true for n=m-1.
Consider a polygon P with m inner rings. Again, sort the rings along a

specific axis of the plane and find the ring that has a vertex with the min
value on this axis (i.e. closest to the outer ring). Connect the vertex to either
side of the outer ring along this axis. This ’cutting line’ cuts some inner
rings (at least 1): For each such ring identify the first and the last vertex
along the cutting line for the ring. These vertices are the endpoints for that
inner ring and are connected to other rings that are cut or to the outer ring
boundary. The cutting line cuts the outer ring and some inner rings into
two parts. Without loss of generality, let us assume it cuts these rings into
top, and bottom halves. To identify these halves precisely for each ring r,
first determine the extreme (leftmost and rightmost) points vL(r), vR(r) on

44 Kazar and Kothuri and van Oosterom and Ravada

the ring r that are also on the cutting line. The line string vL(r), vR(r) in
counterclockwise direction determines the top half for ring r. The line string
vR(r) to vL(r) (in counterclockwise direction) determines the bottom half.
Figure 19 shows an example. Ring EJHGF is cut at two extreme points E
(leftmost) and G (rightmost on ring and cutting line). The ring is split into
a linestring EFG (top half) and GHJE (bottom half). The new edges will be
AE, EA, GK, KG, MC, CM.

Fig. 2.19 Example of a cutting line and a Polygon with 1 outer and 2 inner rings.

The linestrings of the top halves along with the new connecting edges
between the rings form one polygon. In Figure 19, AE, EFG, GK, KLM, MC,
CBA becomes the outer ring of the first polygon P1. Likewise, the bottom half
forms along with the new edges in reverse direction form another polygon.
In Figure 19, CM, MNK, KG, GHJE, EA, ADC form the outer ring of the
second polygon P2.

Note that for a specific ring s, the points vL(s) and vR(s) may be the same,
i.e. the cutting line intersects at a point of the ring s. Then only one of the
two halves can include the ring, the other half will just include the point.
Figure 20 shows an example. The inner ring, KNK, on the right touches the
cutting line. The linestring KNK is added to the bottom half and the point
K is added to the top half.

If the cutting line cuts at multiple points in a ring q, then vL(q) will be the
leftmost and vR(q) will be the rightmost. Figure 20 shows an example. Even
though the cutting line cuts the first ring at E, H, and G, the end points will
be E and G. So, the top half will have a linestring EHFG, and the bottom
half will have a line string GJE.

The remaining inner rings that are not cut by the cutting line are split
between P1 and P2 depending on which outer ring (of P1 or P2) that they are
inside. Since there is at least 1 inner ring that is split, P1 and P2 have at most
m-1 rings. The inner rings were non-overlapping in P, so they will still be

2 On Valid and Invalid Three-Dimensional Geometries 45

Fig. 2.20 Example of a Polygon with two inner rings: One ring just touches the
cutting line; another inner ring intersects at multiple points

non-overlapping in P1 and P2. Besides the cutting line does not cut the inner
rings of P1 and P2: so they still do not touch the exterior rings of P1 or P2.

The only new edges in P1 or P2 are the ‘new edges’. Each such new edge
is traversed once in one direction in P1. All other edges also existed in P and
are traversed only once (in the same direction as in P).

Since there is at least one inner ring that is split in this process, the poly-
gons that are formed have at most m-1 inner rings. By induction hypothesis,
each of these polygons satisfies Lemma 1 resulting in two composite surfaces
one for top half of the cutting line and another for the lower half. A com-
bination of these two composites, is also a composite surface and obeys the
above properties thus proving the induction.

For example, in Figure 19, the polygon connecting vertices A, D, B, C is
decomposed into a composite surface consisting of two polygons: AEFGKLM-
CBA and CMNKGHJEADC. Note that each of them has at most m-1 inner
rings, and each of the two polygons is a valid polygon, and the resulting sur-
face combining these two polygons is a valid composite and each new edge is
traversed twice and all existing edges are traversed only once, thus proving
the lemma.

46 Kazar and Kothuri and van Oosterom and Ravada

Appendix B

Fig. 2.21 Examples of different types of 3D geometries

Part II

Papers

Chapter 3

Navigable Space in 3D City Models for
Pedestrians

Aidan Slingsby and Jonathan Raper

Abstract

This paper explores the state of the art in 3D city modelling and draws
attention to the ‘missing link’ between models of buildings and models of the
surrounding terrain. Without such integrated modelling, applications that
cross this divide are stalled. In this paper we propose a conceptual approach
to this problem and set out a constraint-based solution to three dimensional
modelling of buildings and terrains together.

3.1 Introduction

3D city models are increasingly considered as important resources for munic-
ipal planning and decision-making [2]; examples of 3D City models include
Virtual London [2] and Virtual Kyoto [25]. An important aspect of cities is
the navigable space within them. In spite of this, we have found no 3D city
models which incorporate a model of pedestrian access. Navigable space for
pedestrians includes space within buildings and, crucially, the connection be-
tween building interiors and exterior space. The majority of 3D city models
treat buildings as solid objects which are placed upon a digital terrain model,
without any essential integration between them.

In this paper, we argue that there is a need for 3D city models to incor-
porate topologically-connected navigable spaces, in which space internal to
buildings is topologically connected to space outside buildings and in which
the terrain is part of this navigable space rather than a simple surface upon
which buildings are placed. Published research in this area tends to concern

The giCentre, Department of Information Science, City University,
Northampton Square, London EC1V 0HB, UK a.slingsby@city.ac.uk,

raper@soi.city.ac.uk

49

50 Aidan Slingsby and Jonathan Raper

either road vehicles which operate wholly outside buildings (transport mod-
els) or pedestrians which move within individual buildings. Models which
operate across multiple storeys of buildings tend to work on a storey-by-
storey basis with limited topological links between layers. We describe the
target application area and then present a prototype model that addresses
some of these requirements.

3.2 Brief Review of 3D city modelling approaches

Many 3D city models are implemented in GIS, because this is usually ap-
propriate for the planning application domain and the spatial scale at which
this operates. Most geographical information systems (GIS) support a simple
but effective modelling strategy in which 2D building footprints are extruded
upwards from the terrain to a representative (often LiDAR-derived) building
height. Such models can be rapidly produced, offer simple city visualisa-
tion opportunities and may be used for a limited set of analyses (Figure 1).
This approach of rapid modelling has been successfully used over the Inter-
net through customised web browser plugins and standalone browsers (e.g.
Google Earth).

Fig. 3.1 Extruded block model of part of the Technical University of Delft campus,
rendered in Google Earth. Source: Technical University of Delft.

In cities, there are often significant landmarks. For visualisation purposes,
it is helpful if these buildings are modelled to a higher level of geometrical
detail and then inserted amongst the other extruded blocks. Data for such
buildings can be hand-modelled or sourced from architectural models as 3D
building shells (external surfaces bounding an internal volume). This rather
ad hoc approach provides a good level of visual realism (especially if pho-
tographically texture-mapped), and is supported by many of the software
products which support the extruded block model (including ESRI’s Arc-

3 Navigable Space in 3D City Models 51

Scene and Google Earth). Models such as these are often used as the basis
for graphical applications such as walk- or fly-throughs. However, since the
spatial resolution of buildings is essentially the same as their 2D counterparts
the range of applications for which the data can be applied is not significantly
widened.

Full and detailed 3D models of individual buildings and small groups of
buildings are widely used in architecture and construction, but their high
spatial resolution, their high geometrical detail and their variable types of
semantic definition, often make them unsuitable for use with 3D cities. There
has been much research on various aspects of 3D GIS, including different ap-
proaches to 3D geometrical modelling, the application of thematic (attribute)
data, the creation, maintenance and storage of 3D topology (e.g. [26]) for data
validation, algorithms for 3D spatial analysis and potential application areas
[7]. However, 3D GIS is not (commercially) fully-realised for a number of
reasons including the lack of availability of data and because the individual
application area solutions have been developed separately, and no one tool
has developed into a general cross sector tool.

Within the last decade, semantically-rich data exchange formats (e.g. IFC)
and object-based building modellers (e.g. AutoDesk Revit) have been de-
veloped for architecture and construction, designed in part to facilitate the
reuse of data for different stages of the design process and for different anal-
ysis tasks [6, 10, 17]. Similar approaches have been used for virtual cities;
e.g. ‘QUASY’ [3] and ‘Smart Buildings’ [5]. CityGML1; [8] is an attempt to
create a useable and formal standard for the exchange of city models, using
this approach. It recognises that many existing 3D city models are rather ad
hoc creations which neglect semantic and topological modelling aspects. It
also recognises the need for a formalised set of levels of detail. CityGML is
an XML-based standard which provides a set of object types (through the
abstract ‘CityObject’ class). A building (an instance of an ‘AbstractBuild-
ing’) comprises building parts, rooms and bounding objects (walls, doors,
windows, ground surfaces, ceilings), depending on level-of-detail. The precise
geometrical forms of these objects can each be described and classified using
codes (based on the German Cadastral Standard: ATKIS). There are also
objects which deal with road transport, water bodies and vegetation. Five
levels-of-level exist (Figure 2): terrain-only (LoD0), extruded polygons upon
a terrain (LoD1), the addition of roof structures and roof textures (LoD2),
the addition of external architectural detail such as balconies (LoD3) and the
addition of internal rooms (LoD4).

Semantically-rich, object-based modellers underpinned by formal mod-
elling concepts have a number of advantages over the more ad hoc methods
described earlier:

1 In this paper, we are using version 0.3.0 of the Candidate OpenGIS standard [8,
11, 12]

52 Aidan Slingsby and Jonathan Raper

Fig. 3.2 The five levels of detail defined in CityGML. Source: [12]

1. The formalised levels of detail allow parts of buildings to be modelled at
the most appropriate level of detail.

2. Interior spaces in buildings can be modelled where appropriate
3. The 3D city model is exchangeable and reusable
4. The combination of geometrical, semantic and topological information

can be used to support a range of analytical tasks.

Models such these can be used to support a wide range of applications [1]
such as visualisations, flood-risk modelling, scene generation from different
viewpoints, the effect of an explosion or source of noise on individual building
parts, analyses of land use and property value, and traffic-related analyses
and impacts.

3.3 Applications

We have found support from the fire safety sector and the insurance sector for
research into how city models can assist in building safety, access, monitoring
and planning applications. An important theme in this application area is
how spaces navigable to pedestrians are connected, including the connections
between buildings and to outside space. Wayfinding, navigation, evacuation
and the extent to which various individuals have access to various spaces,
are all examples of questions which require an integrated model of navigable
space for pedestrians. For this reason, we argue that 3D city models should
not neglect navigational aspects of cities, in the same way that they should
not neglect semantic aspects. Navigational aspects have a history of being

3 Navigable Space in 3D City Models 53

considered in isolation from geometrical and semantic aspects, but all three
aspects, considered together are important. There are a diverse range of issues
relevant to the emergency evacuation of buildings, involving knowledge of
many different aspects of the built environment. This includes [9, 18]:

1. keeping an spatial inventories of the nature and location of damage and
hazardous equipment which may contribute to the aggravation of fires;

2. knowing the capacity of escape routes;
3. understanding how fire fumes might spread, how the terrain might affect

pedestrian movement and how the variability between individuals may
affect their movement and the movement of others.

3.4 Navigable space

Navigable space in cities can be considered to be a set of topologically-
connected discrete spaces, juxtaposed in three-dimensional space. Access to
these spaces is governed by the geometry of these spaces, their semantic de-
tails and a microscale description of which pedestrians have access to which
spaces and under which circumstances. Such navigable details of space in
cities are difficult to obtain, but some of the general-purpose semantically-
rich 3D city models may provide opportunities for obtaining this information.
Note that in this paper, we are not concerned with the behaviour of pedes-
trians in space, just where they are able to move – behavioural models can
be built in top, in specific application domains. A review and discussion of
the modelling of navigable space will follow.

3.5 Pedestrian navigation in CityGML

CityGML provides the opportunity to model both space inside buildings and
space outside buildings. However, it treats these spaces differently. Interior
space is modelled (at the highest level detail) as building parts and the rooms
of which they comprise, whereas space outside buildings is modelled as a ter-
rain surface. Buildings contain rooms which are organised hierarchically by
building and by building part (e.g. by storey). Kolbe’s [12] paper on apply-
ing CityGML to various disaster management applications, shows how the
connectivity between rooms for pedestrian access can be extracted using the
shared openings (doors) between rooms. However, this is both a by-product
of the geometrical modelling (to reduce the duplication of geometrical de-
scription and optional [8]. Where such topology is not supplied, it must be
derived through the geometrical coincidence of duplicate openings.

Other details which might affect pedestrian access are ‘BuildingInstal-
lation’ and ‘BuildingFurniture’ feature types within the ‘AbstractBuilding’

54 Aidan Slingsby and Jonathan Raper

model and the ‘CityFurniture’ concept for objects outside. These are classi-
fied with ATKIS-based codes classifying their type and function. Those rele-
vant to pedestrian access include stairs, pillars and ramps. Kerbs are another
important aspect which; these are part of the transport model.

A fully-populated CityGML model may be able to provide us with some
of the information we require to obtain fully-connected pedestrian access
networks, though the hierarchical way in which internal spaces are structured
in the GML makes a certain amount of restructuring necessary, a task which
it is likely to be achievable automatically.

CityGML has been sanctioned by the Open Geospatial Consortium (OGC),
and has been evaluated in the OGC Web Services Testbed No. 42.

3.6 Pedestrian access models

Most published research on pedestrian accessconcentrates either on aggregate
measures of accessibly for different user groups (e.g. [4, 19]), or simple network
models such as those for transport modelling. Okunuki et al. [16] proposed
some initial ideas for a pedestrian guidance system – implemented as a web
prototype3 – in which navigable space is represented as a network of single
links for corridors, lifts and stairs and gridded meshes of links for open spaces.
The prototype was designed to suggest a route for a user taking into account
simple preferences (such as the need to avoid stairs). Lee [14] derives a 3D
geometrical network by transforming polygons (representing floorspaces on
specific storeys) into a connected network, using a modification of a medial
axis transform. This 3D geometrical network, which extends over multiple
storeys inside buildings and connects to space outside buildings was applied
to building evacuation [13].

Neither of these works encodes pedestrian- and time-specific information
on pedestrian access at the microscale.

Meijers et al. [15] developed a semantic model for describing pedestrian
access within buildings. It requires the building to be subdivided into closed
and non-overlapping spaces (volumes) called sections, within which pedes-
trian access is unhindered and whose geometry is described with a set of
bounding polygons (a boundary-representation model). Each of the bound-
ing polygons is classified according to its role in restricting or facilitating
access; by persistency (presence in time), physical existence (some polygons
exist purely to close spaces), access granting (classified as full, semi and lim-
ited; those classified as semi may require door keys and those classified as
limited may perhaps only allow access in an emergency) and direction of pas-
sage (uni- or bi-directional). Using this polygon classification, scheme, each

2 The results are available in an OGC document available from
http://portal.opengeospatial.org/files/?artifact id=21622
3 http://www.ncgia.ucsb.edu/˜nuki/EllisonMenu.html

3 Navigable Space in 3D City Models 55

section is classified into ‘end’ (with one entrance/exit), ‘connector’ (with more
than one entrance/exit) and ‘non-accessible’. From these classified sections,
topologically-connected graphs can be derived. This work acknowledges the
need for access-granting requirements, but does not describe the details of
this can be described.

3.7 Relationship of inside and outside space

Traditionally, spaces exterior to buildings and space interior to buildings have
been modelled separately, in GIS and CAD-type software respectively. This
is due to the different applications domains which primarily use the data,
the different scales, and the different semantics. As shown, CityGML which
supports the modelling of both inside and outside space models these spaces
differently, using the building model for all aspects of inside space, and using
the terrain, water, transportation, vegetation, city furniture and land-use
models for outside space. However, unlike most of the early 3D city models
reviewed in which building blocks are placed on top of a terrain, CityGML
allows the 3D geometry of the interface between the building and the terrain
to be described, using a 3D polyline (a ‘TerrainIntersectionCurve’; Figure 4).
Stoter [24] also acknowledges the importance of integrating the terrain surface
with the base of buildings. From the point of view of modelling navigable
spaces, the way in which the terrain meets the building at access points is of
crucial importance.

Fig. 3.3 CityGML’s ‘TerrainIntersectionCurve’ (shown in black), a 3D polyline rep-
resenting where the building meets the terrain. Source: [8]

56 Aidan Slingsby and Jonathan Raper

3.8 Model design and prototype

Our prototype model for representing navigable space in cities is based on
Slingsby’s [21] model design, which attempts to combine some of the geomet-
rical, semantic and navigational aspects of cities. Space volumes are implic-
itly represented by their lower surfaces (ground surfaces), using a 2.5D ap-
proach. These surfaces are represented by polygons, tessellated and topologi-
cally structured into distinct layers. These layers are topologically-connected
to each other where there is pedestrian access (Figure 4).

The three aspects of geometry, semantic and navigational aspects of the
model design will be presented (full details of the implementation are in [21]).

3.9 Geometrical aspects

We use the 2.5D layered approach (Figure 4) to illustrate the importance
that we attach to the topological consistency between layers, in terms of
pedestrian access. It is a constraint-based surface model, in which height (e.g.
spot heights) and surface morphology constraints (e.g. surface breaklines)
primitives are embedded within 2D polygons. These constraints are used to
generate a topologically-consistent set of surfaces defined in 3D [23]. As can
be seen in figure 4, the topological model must be able to cope with non-2D-
manfold joins.

Amongst the point, lines and polygon geometrical primitives, height and
surface morphology constraints are embedded, as illustrated in Figure 5.
There are two types of point constraint, (absolute and relative heights), two
kinds of linear constraint (breaklines and vertical discontinuities called ‘off-
sets’) and two areal constraints (ramps and stairs). These constraints all
affect the resulting 3D geometry. Examples of all except the ramps can be
seen in Figure 5. These constraints are used to generate a 3D geometry which
conforms to these constraints and is topologically consistent [23].

These layers and constraints are defined independently of real-world (se-
mantic) meaning. The semantic model allows objects and semantic informa-
tion about the objects to be defined on top of the geometrical model. Their
3D geometrical forms are parameterised in the object descriptions.

Note that the geometrical model here is only used to represent discrete and
connected navigable spaces, structured into constraint-controlled 3D surfaces.

3.10 Semantic model

The semantic aspect of the model allows feature types (objects) to be de-
fined and attributed a published meaning, taking their geometries from the

3 Navigable Space in 3D City Models 57

steps

steps

steps

ramp

Fig. 3.4 A small example showing distinct surfaces (layers) which are topologically
connected. The surfaces are composed of point, line and polygon primitives (not
shown)

20.3m

1.8m

1.8m
1.8m

1.8m

1.8msteps

20.3m

20.3m

20.3m

20.3m

20.3m
offset

o
ff
s
e
t

22.1m

offset

breakline

22.1m

22.1m

22.1m

22.1m

22.1m

2m

wrt point A

2m

wrt point A

point A

point A

b
re
ak

li
n
e

Fig. 3.5 Height and surface morphological constraints

58 Aidan Slingsby and Jonathan Raper

primitives in the geometrical model and they can have a set of attributes
associated. A small set of feature types have been defined, which have par-
ticular applicability to pedestrian access. These are ‘spaces’, ‘barriers’ (walls
and fences), ‘portals’ (doors and windows) and ‘teleports’ (lifts). These have
attributes which both parameterise their 3D geometries and have access im-
plications (see following section).

3.11 Pedestrian navigation model

The pedestrian navigation model [20, 22] follows a similar approach to Meijers
et al. [15], in that information on persistency, access-granting properties, di-
rection of passage and structural information are described. However, they are
attached to objects defined by the semantic model of ‘barriers’ (walls), ‘por-
tals’ (doors and windows), ‘teleports’ (lifts) and ‘spaces’ (specific delineations
of space), rather than to the boundaries of building sections of homogeneous
access characteristics. An algorithm is then used to delineate space navigable
to particular types of pedestrian, at the time and in the context in which
access is attempted. These objects have persistency, access-granting, direc-
tion of passage and structural properties attached, some of which are time-
and pedestrian-dependent. Persistency information is provided through lists
of unique or recurring time periods (e.g. some barriers only exist at certain
times of day). Access granting information is provided as lists of the times
(unique or recurring) at which access is granted and (optionally) a specific
or specific type of pedestrian. In this context, a pedestrian has a number of
characteristics (e.g. age, gender) and may be in procession of one or more
door keys or access cards. Direction of passage information and structural in-
formation can be applied to some of these objects. Barriers and openings are
classified according to the ease of unauthorised access, e.g. how easily it can be
passed with or without damage. Pedestrians have a maximum ease threshold
of barriers for which they would be willing to breach. This might be context-
dependent, for example if there is an emergency. Using this information, the
model attempts to incorporate some of the microscale details of pedestrian
access. As stated, a pedestrian has attributes, may have a collection of access
cards of door keys has a threshold amount for gaining unauthorised access.
Additionally, a pedestrian has a step-height he or she is able to negotiate,
which would be zero or very small for a wheelchair user.

3.12 Implementation

A prototype implementation of the model design was implemented using
ArcGIS for data preparation, editing and visualisation, with the data model

3 Navigable Space in 3D City Models 59

and the 3D generating algorithm implemented in Java. This proof-of-concept
model was used to generate the worked example in the next section. This
example will be extended to full building models of Delft University in the
RGI ‘3D Topography’ project during 2007.

3.13 A worked example

Here we present a simple worked example using the model in order to illus-
trate some of the concepts of this paper. The images shown are annotated
actual output from the prototype application. The scenario is a small fic-
titious example, of a very small area shown in Figure 6. It incorporates a
section of road crossed by a bridge, a lower level accessed by a staircase and
a ramp from either side of the road and a two storey building whose storeys
are connected by a staircase. The main door of the building has a list of
pedestrian- and time-dependent restrictions. Figure 7 shows the same area
with the walls removed and from a slightly different viewpoint. The entirety
of the space of the scenario (Figure 6) is accessible by a pedestrian who can
negotiate steps.

Fig. 3.6 An annotated image of the entire 3D scenario

60 Aidan Slingsby and Jonathan Raper

The subsequent images (Figures 7, 8 and 9) show the areas of navigable
spaces in the context described in the caption.

Fig. 3.7 The space accessible by a pedestrian without a key from outside the build-
ing, out of office hours (according to the access rules shown in Figure 6). Since access
to the main door is not allowed, the interior of the building is absent, as is the upper
storey, because no access has been gained to the internal staircase.

3.14 Evaluation and discussion

Although the example scenario is rather simplistic, it serves to illustrate the
concepts in the model. It was produced by a prototype model in which nav-
igable spaces by different pedestrians in different contexts can be delineated
from a set of topologically-connected spaces with descriptions of objects which
affect pedestrian access embedded and are properly attributed.

The semantic model and the attributes used for the navigation model are
also simplistic but the approach is intended to allow the full complexity of
navigable spaces in the built environment to be encompassed.

As part of the 3D Topgraphy project at Delft, it is our aim to apply this
model to the challenge of representing the built environment of the university
campus during 2007.

3.15 Conclusion

The enormous progress in two dimensional GIS over the last decade cur-
rently masks the rather less well-developed situation in three dimensional

3 Navigable Space in 3D City Models 61

Fig. 3.8 This shows the space accessible to a pedestrian who starts just outside the
building and cannot negotiate steps of any size. Note that all steps are absent; the
road, the other side of the road, the bridge and the upper storey of the building
are missing because they can only be accessed either by stairs or steps. All elements
shown can be accessed without any steps.

GIS. There are a large number of application problems in three dimensions
which have been solved in particular application domains. One general prob-
lem, for which no acceptable modelling solution appears to have been found,
is the connection between buildings and the terrain. Without a solution to
this challenge a wide range of applications where interaction has to cross the
building-terrain divide are stalled.

References

[1] Altmaier, A. and T. Kolbe: Applications and Solutions for Interop-
erable 3D Geo-Visualization. Photogrammetric Week 2003, Stuttgart,
Germany (2003)

62 Aidan Slingsby and Jonathan Raper

Fig. 3.9 This figure shows the space accessible to a pedestrian who starts on the
opposite side of the road to that in Figure 9 and cannot negotiate steps of any size.
Note that most of the bridge is accessible from this side of the road because this side
is a ramp, but there is no access over the bridge. Also note that there is no lower level
because access to this from this side of the road is by a staircase.

[2] Batty, M.: Model cities. UCL Centre for Advanced Spatial Analysis.
Working Paper 113. Online at: http://www.casa.ucl.ac.uk/working\
_papers/paper113.pdf (2007)

[3] Benner, J., Geiger, A., Leinemann, K.: Flexible generation of semantic
3D building models. Proceedings of the 1st International Workshop on
Next Generation 3D City Models, Bonn, Germany (2005)

[4] Church, R. L. and J. Marston: Measuring Accessibility for People with
a Disability. Geographical Analysis 35(1): 83–96 (2003)

[5] Döllner, J., H. Buchholz, Brodersen, F., Glander, T., Jütterschenke, S.
and Klimetschek, A.: Smart Buildings – a concept for ad-hoc creation
and refinement of 3D building models. Proceedings of the 1st Interna-
tional Workshop on Next Generation 3D City Models, Bonn, Germany
(2005)

[6] Eastman, C. M.: Building product models: computer environments, sup-
porting design and construction. Boca Raton, FL, USA, CRC Press
(1999)

[7] Ellul, C. and Haklay, M.: Requirements for Topology in 3D GIS.. Trans-
actions in GIS 10(2): 157–175 (2006)

3 Navigable Space in 3D City Models 63

[8] Gröger, G., Kolbe, T.H. and Czerwinski, A.: Candidate OpenGIS
CityGML Implementation Specification (City Geography Markup Lan-
guage). Open Geospatial Consortium/Special Interest Group 3D (SIG
3D): 120 (2006)

[9] Gwynne, S., E. R. Galea, et al.: A review of the Methodologies used
in the Computer Simulation of Evacuation from the Built Environment.
Building and Environment 34(6): 741–749 (1999)

[10] Khemlani, L.: A ‘Federated’ Approach to Building Information Model-
ing. CADENCE AEC Tech News 94 (2003)

[11] Kolbe, T., G. Groger and Plümer, L.: Towards Unified 3D-City-Models.
ISPRS Commission IV Joint Workshop on Challenges in Geospatial
Analysis, Integration and Visualization II, Stuttgart, Germany (2003)

[12] Kolbe, T. H., G. Gröger, et al.: CityGML – Interoperable Access to 3D
City Models. Proceedings of the Int. Symposium on Geo-information for
Disaster Management, Delft, The Netherlands, Springer Verlag (2005)

[13] Kwan, M. P. and J. Lee: Emergency response after 9/11: the potential
of real-time 3D GIS for quick emergency response in micro-spatial envi-
ronments.. Computers Environment and Urban Systems 29(2): 93–113
(2005)

[14] Lee, J.: A Spatial Access-Oriented Implementation of a 3-D GIS Topo-
logical Data Model for Urban Entities. Geoinformatica 8(3): 237–264
(2004)

[15] Meijers, M., Zlatanova, S. and Pfeifer, N.: 3D Geo-information Indoors:
Structuring for Evacuation. Proceedings of the 1st International Work-
shop on Next Generation 3D City Models, Bonn, Germany. (2005)

[16] Okunuki, K., Church, R. and Marston, J.R.: A Study on a System
for Guiding of the Optimal Route with a Hybrid Network and Grid
Data Structure. Papers and Proceedings of the Geographic Information
Systems Association, Japan (1999)

[17] Papamichael, K., Chauvet, H., La Porta, J., Dandridge, R.: Product
Modeling for Computer-Aided Decision-Making. Automation in Con-
struction 8 (1999)

[18] Pu, S. and S. Zlatanova: Evacuation Route Calculation of Inner Build-
ings. Geo-information for disaster management. P. van Oosterom, S. Zla-
tanova and E. M. Fendel. Heidelberg, Germany, Springer Verlag: 1143–
1161. (2005)

[19] Sakkas, N. and J. Pérez: Elaborating metrics for the accessibility of
buildings. Computers, Environment and Urban Systems 30(5) (2006)

[20] Slingsby, A. D.: Pedestrian accessibility in the built environment in the
context of feature-based digital mapping. Proceedings of Computers
in Urban Planning and Urban Management (CUPUM), London, UK.
(2005)

[21] Slingsby, A. D.: Digital Mapping in Three Dimensional Space: Geometry,
Features and Access. Centre for Advanced Spatial Analysis. PhD thesis
(unpublished). London, UK, University College London (2006)

64 Aidan Slingsby and Jonathan Raper

[22] Slingsby, A. D. and P. A. Longley: A Conceptual Framework for Describ-
ing Microscale Pedestrian Access in the Built Environment. Proceedings
of GISRUK, Nottingham, UK (2006)

[23] Slingsby, A.D.: A layer-based data model as a basis for structuring 3D
geometrical built-enviornment data with poorly-specified heights, in a
GIS context. Proceedings of AGILE07, Aalborg, Denmark, May 2007.
(2007)

[24] Stoter, J.: 3D cadastre. PhD Thesis, Delft University of Technology,
The Netherlands (2004)

[25] Takase, Y., Yano, K., Nakaya, T., Isoda, Y., Kawasumi, T., Matsuoka,
K., Tanaka, S., Kawahara, N., Inoue, M., Tsukamoto, A., Kirimura, T.,
Kawahara, D., Sho, N., Shimiya, K. and Sone, A.: Visualisation of his-
torical city Kyoto by applying VR and Web3D-GIS technologies. CIPA
International Workshop dedicated on e-Documentation and Standardis-
ation in Cultural Heritage, Cyprus (2006)

[26] Zlatanova, S.: 3D GIS for Urban Development. ITC publication 69,
ISBN 90-6164-178-0 (2006)

Chapter 4

Towards 3D Spatial Data Infrastructures
(3D-SDI) based on open standards –
experiences, results and future issues

Jens Basanow, Pascal Neis, Steffen Neubauer, Arne Schilling, and
Alexander Zipf

4.1 Introduction

The creation of Spatial Data Infrastructures (SDI) has been an important and
actively studied topic in geoscience research for years. It is also regarded in
politics and by decision makers as leveraging technology for reducing thr time
and cost of geo services for internal usage as well as for public information
services. In Europe, the new INSPIRE (Infrastructure for Spatial Information
in Europe) directive 2007/2/EC provides general rules for implementating
national spatial data infrastructures for environmental policies. SDIs must
rely on open standards specified by the Open Geospatial Consortium (CS-
W, WMS, WFS, WCS, WPS, OpenLS, etc.)

Based on the theoretical background of INSPIRE and several discussion
drafts of the OGC, we have implemented an SDI for the city of Heidelberg
that comprises an array of established OGC services and some new proposed
technologies required to extend into the 3rd dimension. In this paper, we
discuss the components that have been developed for a 3D SDI and some
important aspects that must be addressed to make this kind of infrastruc-
ture work. For standard services, we could use existing open source solu-
tions; others must be extended or developed from scratch, including new
techniques for data preparation and integration. The components have been
implemented for several projects with different goals, always with interoper-
ability and reusability in mind.

The central part of the SDI is the OGC Web3D Service (W3DS), which
delivers the actual 3D data. The W3DS specification is currently in draft sta-
tus and is not yet adopted by the OGC. We present our own implementation
of this service and some implications when considering different use cases.
In our case it was important to use the W3DS not only for producing static

University of Applied Sciences Mainz &University of Bonn (Cartography), Germany
<name>@geographie.uni-bonn.de

65

66 Basanov, Neis, Neubauer, Schilling and Zipf

scenes, but also to request data piecewise in order to stream it to the client;
this implements a more dynamic visualization. This is due to the large data
quantities, which are not comparable to the 2D bitmaps delivered by a WMS.

A possible extension to the WMS is the support of the Styled Layer De-
scriptor (SLD) profile for controlling the appearance of maps. It is advisable
to separate the geometry or geographic raw data from the visualization rules.
Proposals have been made to include further visualization elements directly
in CityGML. We suggest using the SLD specification in combination with
W3DS services. We describe how SLD can be extended to provide 3D sym-
bolizations - e.g. for 3D points, linestrings, surfaces, and solids.

There must also be an adequate way to describe our 3D data in a catalogue
service; we examined different alternatives. We also examined the integration
of route services, for which the OGC OpenLS specification can be used, as
we will show.

Finally, we discuss future research topics that arise from current trends
such as Location Based Services or Service Oriented Architectures (SOA).
We need to investigate how these concepts can be applied to mobile 3D nav-
igation services, which have different requirements in terms of visualization
and user guidance. In the long term, a higher level concept for defining chains
of web services within an SOA could be applied that helps to orchestrate SDI
services more flexibly. In particular, the Business Process Execution Lan-
guage (BPEL) could be used to define scenarios realized through chaining
the open GI services that constitute SDIs.

4.2 3D Data Management – an overview

Data management is at the heart of an SDI. A powerful database is nec-
essary to manage and administer 3D data efficiently (Zlatanova & Prosperi
2005). Object-relational databases such as PostGIS or OracleSpatial have al-
ready been applied successfully to handling geographic information. A lot of
work has been done in this respect; in this paper we summarize recent devel-
opments in standard-based data sources for 3D visualization services, such
as the W3DS. In order to create a 3D data storage layer that can be used
as a source for our W3DS implementation, we tested open and commercial
database capabilities regarding geometry models, export formats, availabil-
ity, etc. The following products were assessed:

iGeo3D is part of the degree-framework that allows users to manage 3D
geodata through the web. It is completely based on OGC standards. The 3D
database scheme ‘CityFeatureStore’ of the data storage module can be used
for various database systems (Oracle, PostGreSQL/ PostGis). The degree-
WFS offers write- and read access to the data and iGeoSecurity provides
access protection. The CityGML format or multiple image formats can be

4 Towards 3D Spatial Data Infrastructures 67

used for exchanging the data.

The City Model Administration open source toolkit (CAT3D) was developed
within the EU-project VEPS (Virtual Environmental Planning System) by
the HfT Stuttgart. It can connect to different data sources and produce sev-
eral output formats (VRML, KML, Shapefile). The architecture is modular
so that additional data sources and formats can be supported by implement-
ing the according modules.

A 3D extension by CPA Geoinformation for commercial SupportGIS offers
ISO/OGC conform 3D data storage and supports databases such as Ora-
cle, PostgreSQL, MySQL and Informix. Together with SupportGIS-3DViewer
and SupportGIS-Web3D a 3D platform is provided with a CityGML central
database structure.

Within the VisualMap project (FhG IGD/EML) a database called ArchiBase
was developed which allows various different 3D geodata to be administered.
The modelling tools can come from applications such as 3D Studio Max as
well as from GIS. The scheme was realized for Oracle. The data can be man-
aged via a graphical user interface, and exchange formats can be in VRML
2.0 and XML. Principles that evolved from this work can be found within
CityServer3D.

CityServer3D (Haist & Coors 2005) is a multi-layered application consisting
of a spatial database, a server and a client application. The database man-
ages 3D geometries at multiple levels of detail along with the corresponding
metadata. The server as the core component provides different interfaces for
importing and exporting various geodata formats. The data is structured by
a meta-model and stored in a database.

Currently, we use the well known PostGIS extension to PostgreSQL for 2D
data and 3D points of the DEM, as well as VRML code snippets, but after
evaluating the projects mentioned above, we will extend data management
of our server to also support native 3D data types within the database as
needed. The exchange of 3D city models through CityGML delivered by a
WFS is separate; it is already covered by the above mentioned projects, such
as iGeo3D, etc.

4.3 Towards a 3D Catalogue Service for 3D Metadata

Within an SDI it is important to record information about available datasets
via metadata in order to make it possible to find relevant data. Three meta-
data standards seemed most relevant for spatial data: ISO 19115 along with

68 Basanov, Neis, Neubauer, Schilling and Zipf

its predecessors Dublin Core and CEN-TC287. Nonn et al. (2007) evaluated
the suitability of the current metadata standards for 3D spatial data. The au-
thors also investigated which enhancements or supplements might be needed
by the most important metadata specification for spatial data, ISO 19115, so
that it can be used to describe 3D landscape and city models. We tried to
find the highest possible sufficiency for 3D spatial data, city- and landscape
models. In particular, we used the present OGC CityGML discussion paper
(Gröger et al. 2006) - especially regarding the question of how to allow a
semantic description of structures within 3D city models.

As of today there is still no online object catalogue available for CityGML
from which attribute values can be derived. If such a catalogue was available
online, it would not be necessary to put this kind of information directly into
the ISO 19115 standard; instead, the internet catalogue could be referenced.
The feature type attributes contain an object type list, also linking the user
to the specific parts of the online catalogue.

This work paves the way for future discussions on the needs of 3D-SDI,
especially for 3D city models. Although current SDI developments focus on
2D spatial data, we think that in the long run a similar development is nec-
essary for 3D data. Already a range of basic attributes in ISO 19115 apply
to 3D data; even so, we found a need to add further specifications to the
metadata catalogues. We have made first suggestions for ways to add these
missing elements to the ISO 19115. We are aware that these suggestions are
a first attempt and need further development. For first results, see Nonn et
al. (2007).

4.4 Scene-based Visualization with the Web3D Service

Regarding the portrayal of 3D information, a Web3D Service (W3DS) was
proposed to the OGC as a discussion draft (OGC 2005). The W3DS de-
livers 3D scenes of 3D city or landscape models over the web as VRML,
X3D, GeoVRML, or similar formats. The parameters are similar to those of
the WPVS (Web Perspective View Service), which adds to the well-known
WMS interface parameters for camera position, view target, etc. We imple-
mented a server that supports all these parameters, but also provides some
noteworthy techniques applied to a W3DS service for the first time in a
standard-conforming way. For example, in order to provide techniques that
are already state of the art in computer graphics (such as dynamic concepts
like continuous LODs for triangle meshes or streaming of geometry parts), we
developed a sort of ‘pseudo-streaming’ using an intelligent client-application
and pre-processed DEM-tiles with different resolutions and sizes. This allows
faster delivery of scenes compared to typical implementations of the W3DS,
which deliver only complete scenes in file documents, covering the entire re-
quested scene. A similar scenario was introduced at Web3D 2002 (Schilling

4 Towards 3D Spatial Data Infrastructures 69

and Zipf 2002). Back then, there were no 3D OGC standards we could use
for our scenario. This has changed; we incorporated these new standards into
the project. The work presented here is embedded in a larger project that
involves a several OGC Web Services (OWS), as well as several clients and
the integration of various data sources.

As shown in figure 1, many requests from our Map3D-Client trigger a ser-
vice chain involving separate OWS necessary to process the request. 2D maps
are delivered by a Web Map Service (WMS) for overview maps of the region.
3D information is provided by our Web 3D Service (W3DS) implementation.
The Web Feature Service (WFS) standard is or will be the basis for both of
these services. The WFS is already integrated for the 2D map data used by
the WMS and will also be used to provide the data necessary for creating 3D
scenes.

Fig. 4.1 Components and service chaining in our 3D-SDI (WPS to be added soon
for pre-processing of terrain data)

We implemented the OpenLS Route Service Specification (as well as the
OpenLS Utility Service (Geocoding and Reverse Geocoding)). The route cal-
culation itself is done on a 2D network graph; however, the resulting route
geometry is then replaced by 3D linestrings taken from the 3D network. This
3D network was pre-calculated by mapping the 2D linestrings onto the Digital
Elevation Model (DEM) so that the route segments exactly follow the terrain
including tunnels and bridges. This so-called Route Service 3D (RS3D) uses
exactly the same interface as the already standardized OpenLS Route Service,
without needing to extend anything. Due to the more accurate representation

70 Basanov, Neis, Neubauer, Schilling and Zipf

of route geometries from the 3D extension, we get a lot more route segments.
Practical tests showed that we needed to reduce the geometries further using
horizontal and vertical generalization to produce smooth visualizations and
animations. A 2D overview map is also produced by our implementation of
the OpenLS Presentation Service.

The OGC Catalog Service (CS-W) shown in figure 1 is based on the degree
framework and delivers metadata of the actual spatial data. Before adding
metadata to this service, we conducted an investigation to determine if the
relevant metadata standards such as Dublin Core or ISO 19115 are appropri-
ate for describing 3D spatial data such as 3D city models (Nonn et al. 2007).
The purpose of the CS-W is to provide information through search functions
such as where to find GI services and spatial data within the spatial data
infrastructure or on the Web. We used these for 2D data in former projects,
such as OK-GIS or geoXchange (Tschirner et al. 2005).

4.5 Streaming and different LODs of DEM using the
W3DS

As mentioned earlier, we developed a ‘smart’ Java3D client that uses pre-
processed DEM-tiles served by the W3DS to satisfy state-of-the-art com-
puter graphics with respect to streaming. Further, it uses different LODs
when changing the field of view of the viewer. This was done using open
standards by OGC, as explained below:

A high-precision (5 meter) DEM, covering an nearly 150 square kilometres,
was divided into several groups of smaller, rectangular DEM pieces with dif-
ferent accuracies and point-densities. Each DEM-tile group represents one
Level-of-Detail (LOD). This means that those tiles covering wide areas de-
scribe the surface more approximately than smaller tiles with a high point
density. Each DEM tile is replaced by four smaller tiles in the next higher
LOD. This allows the client to retrieve DEM-tiles at different LODs using
the W3DS. A dynamic DEM can be processed by requesting the needed tiles
depending on the viewer’s position, the line of sight and the distance along
the line of sight. All changes in the viewer’s field of view or position causes
a new series of W3DS-GetScene requests delivering new DEM-tiles. These
tiles are then added to the scenegraph. Memory is saved by only displaying
the tiles in the view and by removing all tiles outside of the view on the fly.
An example of the results is available as a video screen capture showing the
effect on the DEM when navigating the scene in real time. The videos are
available from http://www.gdi-3d.de.

4 Towards 3D Spatial Data Infrastructures 71

4.6 Standard-based Configuration of 3D Visualization
through extensions of the Styled Layer Descriptor

In conventional GIS, the raw data is typically separated from the visualisa-
tion properties. This provides the possibility of displaying the same data in
multiple ways depending on the project use case or user preferences. So far,
this separation is not yet established in 3D GIS data, since usually the 3D
model is considered as a kind of visualization itself - including all appearance
properties. This is the case for all common graphics formats like DXF, 3DS,
VRML, and other proprietary CAD formats. In the GIS world we strive to
describe only the geometry and the object classes in the raw datasets and
to store attribute data and display properties in different files, as is the case
with the most popular products.

For 2D web maps, Styled Layer Descriptor (SLD) documents exist, which
define rules and symbols controlling the map appearance. The same should
be applied to 3D maps, including city models. By using SLD it is also possible
to integrate different data sources into a single rendering service like a WMS
and to style all data consistently.

We propose an extension to the SLD specification in order to support 3D
geometries and appearance properties. As of now, this approach is unique.
However, there are considerations on extending CityGML by further visual-
ization elements. If such an extension would also cover pure styling informa-
tion this would undermine the desired separation of raw data and visualiza-
tion rules. Therefore, we must be aware of existing OGC specifications and
incorporate them into new standards, or simply extend existing ones. In this
case, styling information for polygons, lines, and points in SLD is also partly
useful in 3D. Therefore an SLD extension seems to be more promising. In
the next sections we make some first suggestions for a SLD3D that incorpo-
rates standard SLD elements and some new elements only valid in 3D space.
The SLD3D was implemented and tested in the 3D-SDI Heidelberg project
(Neubauer 2007, Neubauer & Zipf 2007). The SLD files are currently used for
configuring the W3DS server; however, in the future the client will be able
to specify it as well in order to provide more flexibility of interaction.

Relevant aspects of this extension can be categorized as follows:

• Rotation of elements around all three axes
• Displacements and positions are extended by Z
• SolidSymbolizer for object volume description
• SurfaceSymbolizer for defining surfaces with triangular meshes (tin)
• Integration of external 3D objects into the scene
• Defining material properties
• Billboards for 2D graphics
• 3D legends
• Lines displayed cylindrically (e.g. for routes)

72 Basanov, Neis, Neubauer, Schilling and Zipf

Current WMSs can provide the user with a choice of style options; the
W3DS, on the other hand, can only provide style names and not a more
detailed scene of what the portrayal will look like. The biggest drawback,
however, is that the user has no way of defining his own styling rules. For
a human or machine client to define these rules, there must be a styling
language that the client and server can both understand. This work focuses
on defining such a language, called 3D Symbology Encoding (3D SE). This
language can be used to portray the output of Web 3D Services.

3D-Symbology-Encoding includes FeatureTypeStyle and CoverageStyle
root elements taken from standard Symbology Encoding. These elements
contain all styling, for example, filters and different kinds of symbolizers.
As the specification states, Symbolizers are embedded in Rules, which have
group conditions for styling features. A Symbolizer describes how a feature
will appear on a map or in a 3D scene. The symbolizer also has graphical
properties such as color and opacity.

The 3D-SE can be used flexibly by a number of services or applications
that style georeferenced information in 3D. It can be seen as a declarative
way to define the styling of 3D-geodata independent of service interface spec-
ifications, such as W3DS.

4.6.1 PolygonSymbolizer

The PolygonSymbolizer describes the standard 2D style of a polygon in-
cluding Fill for the interiors and Stroke for the outline, as defined in SLD.
Additionally the 3D-SLD extension describes 3D features like BillboardPlace-
ment.

4.6.2 LineSymbolizer

A 2D line can be represented in 3D as a pipe feature, with a certain radius
and colour. The standard attributes from SLD-specification also can be set
(StrokeWidth, StrokeType, etc.).

4.6.3 BillboardPlacement

With the BillboardPlacement element, 2D objects (text, images, etc.) can
be placed so that they always face the viewer. This is useful for icons, pixel
graphics, signs, and other abstract graphics. BillboardPlacement contains 3
sub elements: AnchorPoint, Displacement, and Rotation. The syntax is:

4 Towards 3D Spatial Data Infrastructures 73

Fig. 4.2 XML schema for the SLD-3D PolygonSymbolizer

Fig. 4.3 XML schema of the SLD-3D LineSymbolizer

AnchorPoint
The 3D Symbology Encoding Anchor Point element is extended by An-

chorPointZ. The coordinates are given as floating-point numbers like Anchor-
PointX and AnchorPointY. These elements each have values ranging from 0.0
to 1.0. The default point is X=0.5, Y=0.5, Z=0.5 which is at the middle height
and length of the graphic/label text. Its syntax is:

Displacement

74 Basanov, Neis, Neubauer, Schilling and Zipf

Fig. 4.4 XSD schema of the SLD-3D BillboardPlacement

Fig. 4.5 XSD schema of the SLD-3D AnchorPoint

Displacement is extended by Z like AnchorPoint. The default displacement
is X=0, Y=0, Z=0. The schema is visualized in figure 7.

Fig. 4.6 XSD schema of the SLD-3D Displacement

If Displacement is used in conjunction with Size and/or Rotation, the
graphic symbol can be scaled and/or rotated before it is displaced.

4 Towards 3D Spatial Data Infrastructures 75

4.6.4 Material

Due to the more complicated lighting simulation in 3D, it is necessary to
replace the simple colour fill element by a Material element describing the
physical properties of a surface by simple means. The implementation follows
the fixed function pipeline of OpenGL.

Fig. 4.7 XSD schema of the SLD-3D material-description)

The annex shows a simplified basic SLD-3D document containing one
NamedLayer and one UserStyle. Several of these can be defined in the doc-
ument. The examples of extensions given so far give only a first impression
of the very large list of extensions to the original SLD schema (Neubauer&
Zipf 2007). Further information and the full schema will be made public in

76 Basanov, Neis, Neubauer, Schilling and Zipf

late 2007. Currently these new 3D styles are implemented within our W3DS
server.

4.7 Scene Integration and Server Architecture

The internal architecture of our W3DS implementation is shown in Fig. 9.
The service is intended to produce ready-to-use display elements. This means
that all integration tasks can be done in advance because the display elements
can be processed as far as possible ahead of time. For this reason, we sepa-
rate functionality into a visualization server, delivering 3D scene graphs in a
Web3D format, and a modelling or authoring engine, processing all the raw
data into a completely integrated 3D data set of the area. This also prepares
tiles that can be quickly streamed to the client.

Fig. 4.8 The Web3D Service is implemented as a visualisation Server

At the moment we use Java3D objects for internal data management in
the visualization server. The export module encodes the objects into VRML
syntax which are returned to the client as a response to the GetScene request.
In a first version we stored all Java3D objects in the server’s java heap space.
In practice, however, we realized that this is insufficient for larger data sets,
so we are now switching to a database implementation that holds all the
Java3D objects. In the pre-processing step, we integrate the different data
sources like 2D GIS data, terrain data, point objects and VRML landmarks.
Fig. 9 describes the integration process of the spatial data, from its original
raw state to its on-screen visualization. This data is imported from various

4 Towards 3D Spatial Data Infrastructures 77

sources. In a next step it is converted into 3D objects that comprise a 3D
scene and is stored in a database for faster access. This 3D-geodatabase is
the data source for the visualization server, which delivers 3D scenes by a
W3DS conform web request and offers the possibility of exporting into various
formats.

Fig. 4.9 Thematic 2D layers integrated into the terrain model

We found the integration of thematic 2D area information (forest, streets,
water, etc) particularly interesting because these are not applied to the terrain
as textures but are instead cut into the TIN triangulation. Fig. 10 shows how
the original 2D layers are transformed into 3D geometries. For each layer
we create one indexed face set that covers the terrain exactly. The original
surface underneath is cut away. The downside of this is that it produces larger
geometries. The advantage, however, is that aliasing effects do not occur and
that we do not need to transmit additional textures.

78 Basanov, Neis, Neubauer, Schilling and Zipf

4.8 Standard-based 3D Route Planning within an 3D
SDI

The OpenLS (OpenGIS Location Services) framework consists of five core
services (OpenLS 2002). We have implemented three of these services us-
ing Java (Neis et al 2006, Neis et al 2007). The Route Service (RS) allows
various criteria to be set, such as start and destination, time, distance, travel-
type, one-way street information, as well as the possibility to add areas or
streets that should be avoided (AvoidAreas). Following this standard, we im-
plemented a Route Service 3D (RS3D). The main difference is that RS3D
provides GML code that contains Z values for all route geometries and in-
structions so that the result can be integrated into 3D landscapes without
further calculations. Similar ideas have been proposed by Zlatanova and Ver-
bree (2006).

The implementation is based on a complete 3D street network. For the
actual route calculations we use the standard Dijkstra-Algorithm. The origi-
nal 2D network graph and the 3D graph are topologically equal. However, we
need to transform the network segments in order to reflect the terrain surface.
We do this by mapping the 2D linestrings onto the DEM and adding new
line vertices wherever an Edge of the terrain triangulation is crossed, so that
it is exactly parallel to the surface. Depending on the terrain accuracy, the
amount of data for the network geometry increases, as well as the correctness
of the graph. Network segments representing bridges, tunnels, or underpasses
still need to be adjusted manually, which is relevant for the visualization and
route animation. The RS3D uses the existing OpenLS Location Utility Ser-
vice for geocoding and OpenLS Presentation Service for generating overview
maps. This is a good example of service chaining within an SDI. Our tests
show that this approach is faster than calculating the geometries on the fly,
which takes a considerable amount of time.

Fig. 4.10 RS3D UML sequence diagram

4 Towards 3D Spatial Data Infrastructures 79

4.9 Route Presentation within the W3DS Viewer

Route presentations in 3D can be done using either dynamically updated
texture maps containing a line string of a certain width, colour, and pattern,
or using 3D geometries like tubes along the route. We chose the latter alter-
native, since texturing is already used for terrain styling. The 3D line string
is extruded as a pipe with a certain distance to the ground. Switching to
a new route quickly is no problem since the Web3D Services delivering the
city model and the route service are independent and the scenegraph part
containing the route can be replaced. Waypoints are displayed as 2D labels
on top of the screen. By computing key frames for every node and connect-
ing them by a Spline interpolator (KBRotPosScaleSplinePathInterpolator)
we created a route animation that moves the viewpoint some distance along
the route. Unfortunately, the initial route linestring, which fits the terrain
surface perfectly, is not very useful for generating animations. Small features
or errors in the TIN, such as little bumps that are not visually dominant,
are preserved and lead to jerky movements in the animations. This occurs
because the animation moves along a segmented line and the camera view
changes at every small segment. Also, the network graph used for the route
computation contains sharp corners at intersections. While this is sufficient
for 2D maps, there are difficulties when it is applied to 3D. We therefore im-
plemented an additional simplification that filters small features in order to
acquire a smooth animation. The results can be seen from the video captures
at http://www.heidelberg-3d.de/.

4.10 Future Issues in 3D SDIs

4.10.1 Orchestrating 3D Web Services

Flexibility and reusability are major goals for complex applications based
on OGC Webservices (OWS) that represent a spatial data infrastructure.
Through aggregating standardized base services, complex functions and work-
flows of a certain granularity can be achieved. These new aggregated func-
tionalities can then be used as web services on their own. In order to avoid
programming the aggregation of several independent OWS by hand, a higher
level solution has been proposed. This alternative is called ‘Web Service Or-
chestration’ (WSO) through standardized higher level languages, such as the
Business Process Execution Language (BPEL). The promise of WSO is an
easy and flexible way to link services in given patterns, especially through
configuration. This can be realized through so-called orchestration scripts.
Their configuration can then be carried out with graphical tools instead of

80 Basanov, Neis, Neubauer, Schilling and Zipf

Fig. 4.11 3D routing in the W3DS-Viewer

hard-coded programming. The BPEL scripts will be executed in correspond-
ing WSO engines.

First experiences using WSO or BPEL in the context of OGC service have
been reported recently (Weiser and Zipf 2007). Discussions within the OGC
about service-oriented architectures with OWS started in 2004 (OGC 04-
060r1). Although there were some earlier considerations about adjusting the
architecture towards compatibility with common web services (OGC 03-014),
the OWS2 paper (OGC OWS2) offered the first helpful suggestions in this
direction. Similar methods and ideas have been discussed by Kiehle et al.
(2006) and Lemmens et al. (2006). Some results from the OWS4 initiative
can be found in the recent internal OGC discussion paper ‘OWS4 Workflow
IPR’ (OGC 06-187). The proof-of-concept evaluation presented in Weiser
and Zipf (2007) shows that it is possible to create added-value by combining
and aggregating OGC Web Services. However it only makes sense to use
orchestration where a continuous service chain without human intervention
is given. This is why it is necessary to find stable standard chains (small
parts of a larger workflow that can act as modular building blocks) as well as
to do research on assembling BPEL scripts even more dynamically, even for
non-technical users. At the moment, developers must still face many small
technical problems when trying to realize WSO for OWS (Weiser et al 2007).
User interface concepts are especially needed to ease the highly dynamic
orchestration of OWS on the fly. They would also in principle allow the
representation of such service chains as presented figure 1 through the use of

4 Towards 3D Spatial Data Infrastructures 81

WSO-technologies like BPEL. A major obstacle at the moment is the missing
SOAP interface for the relevant OWS; this will change in the foreseeable
future, as SOAP interfaces must now be added to every new version of an
OGC specification.

4.10.2 Future 3D Navigation on Mobile Devices

It makes sense to talk about 3D route planning in a 3D environment. We
presented preliminary work on the Mainz Mobile 3D system, a PDA based
navigation system that can also send W3DS requests to the W3DS server
and display the VRML scene returned (Fischer et al. 2006). Recently, a new
project was started with several partners (including Hft Stuttgart and compa-
nies like Navigon, Teleatlas, GTA Geoinformatics, Heidelberg Mobil and oth-
ers), called ‘Mobile Navigation with 3D city models’ (MoNa3D,http://www.
mona3d.de/), which extends mobile navigation systems into 3D (Coors & Zipf
2007). Improved 3D navigation using semantic route descriptions like land-
marks will be investigated. 3D visualizations are important for both pedes-
trian and vehicle navigation systems. 3D city models allow landmarks to be
integrated into the route description. Indoor navigation must also be consid-
ered – here the choice and visualization of appropriate landmarks is also im-
portant (Mohan & Zipf 2005). Most navigation systems today only offer direc-
tion and distance information. This is not sufficient to provide the user with
ideal orientation information. Studies from cognitive psychology have shown
that directions using landmarks are rated higher than direction and distance
alone. We aim to gain knowledge about optimizing 3D navigation informa-
tion to provide users with relevant orientation details. This could lead to safer
navigation through reduced stress. In order to achieve sustainable outcomes,
3D city models for navigation support must be available within a functioning
3D geodata infrastructure (3D-GDI), such as http://www.3d-gdi.de/.

4.11 Conclusion and Outlook

In this paper, we discussed the first outcomes of a research project that
concentrates on implementing the next generation of spatial infrastructures
based on open standards currently under discussion in the OGC. We showed
how to use these standards to develop a 3D SDI. A demo application using
an OpenLS-based 3D route service was introduced.

So far we discussed mostly data management and visualization issues for
3D spatial data. The next step for 3D SDI not yet mentioned in this pa-
per is the standard conform geoprocessing of 3D data. Within the OGC,
a draft version of a new specification regarding processing arbitrary spatial

82 Basanov, Neis, Neubauer, Schilling and Zipf

data is under development. This so-called Web Processing Service (WPS)
(see also Kiehle et al. 2006) still has a way to go, but we have first experi-
ences with this draft gained through implementations of specific processing
algorithms (e.g. spatial join and aggregation) (Stollberg 2006, &Stollberg and
Zipf 2007) within the project OK-GIS (open disaster management with free
GIS, http://www.ok-gis.de/). From these we are confident, that a range
of preprocessing steps needed in our scenarios in 3D-SDI Heidelberg can be
realized using this new standard.

4.12 Acknowledgements

This work was supported by the Klaus-Tschira-Foundation (KTS) GmbH
Heidelberg within the project www.heidelberg-3d.de. All spatial data is by
courtesy of the Bureau of Surveying Heidelberg and the European Media Lab-
oratory (EML) Heidelberg. We thank all coworkers, in particular A. Weiser,
B. Stollberg, U. Nonn and C. Mark for their efforts.

References

Abdul-Rahman, A.; Zlatanova, S.; Coors, V. (Eds.): Innovations in 3D Geo
Information Systems Springer: Lecture Notes in Geoinformation and Cartog-
raphy , 2006, 760 p.

Chen L, Wassermann B, Emmerich W, Foster H (2006): Web Service Orches-
tration with BPEL. Dept. of Computer Science, University College London

Coors, V. and Zipf, A, (Eds.)(2004): 3D-Geoinformationssysteme. Grundla-
gen und Anwendungen. Wichmann - Hüthig Verlag. Heidelberg. 525 pages.

Coors, V. and Zipf, A. (2007 accepted): MoNa 3D — Mobile Navigation using
3D City Models. LBS and Telecartography 2007. Hongkong.

Coors, V. and Bogdahn, J. (2007): City Model Administration Toolkit
(CAT3D) http://www.multimedia.fht-stuttgart.de/veps/CAT3D/cat3d.
htm

Fischer, M., Basanow, Zipf (2006): http://www2.geoinform.fh-mainz.de/
~zipf/MainzMobile3D_Geoinfo3D.pdf Mainz Mobile 3D - A PDA based
OGC Web 3D Service Client and corresponding server. International Work-
shop on 3D Geoinformation 2006 (3DGeoInfo'06). Kuala Lumpur. Malaysia.

4 Towards 3D Spatial Data Infrastructures 83

Fitzke J, Greve K; Müller M and Poth A (2004): Building SDIs with Free
Software - the deegree Project. In: Proceedings of GSDI- 7, Bangalore, India.

Gröger, G., Kolbe, T.H., Czerwinski, A. (2006): OpenGIS City Geography
Markup Language (CityGML), Implementation Specification Version 0.3.0,
Discussion Paper, OGC Doc. No. 06-057

Haist, J.; Coors, V. (2005): The W3DS-Interface of Cityserver3D. In: Kolbe,
Gröger (Ed.); European Spatial Data Research (EuroSDR) u.a.: Next Gen-
eration 3D City Models. Workshop Papers : Participant's Edition. 2005, pp.
63-67

iGeo3D: http:www.lat-lon.de/latlon/portal/media-type/html/
language/de/user/anon/page/default.psml/js_pane/sub_produkte
_deegree-igeo3d

ISO/TC 211 Geographic information/Geomatics. ISO reference number:
19115 (2002)

Kiehle C; Greve K & Heier C (2006): Standardized Geoprocessing – Taking
Spatial Data Infrastructures one step further. Proceedings of the 9th AGILE
International Conference on Geographic Information Science. Visegrád, Hun-
gary.

Lemmens R, Granell C, Wytzisk A, de By R, Gould M, van Oosterom P
(2006): http://www.agile2006.hu/papers/a051.pdf Semantic and syntac-
tic service descriptions at work in geo-service chaining. Proc. of the 9th AG-
ILE Int. Conference on Geographic Information Science. Visegrád, Hungary

Mohan, S. K., Zipf, A. (2007): Improving the support of indoor evacua-
tion through landmarks on mobile displays. 3rd International Symposium
on Geoinformation for Disaster Management. Toronto, Canada.

Müller, M. (ed): OpenGIS Symbology Encoding Implementation Specifi-
cation version 1.1.0 doc.nr. 05-077r4 http://www.opengeospatial.org/
standards/symbol

Neis, P. (2006): Routenplaner für einen Emergency Route Service auf Basis
der OpenLS Spezifikation. Diploma Thesis. University of Applied Sciences
FH Mainz.

Neis, P., A. Schilling, A. Zipf (2007): http://www2.geoinform.fh-mainz.
de/~zipf/GI4D2007.3DEmergencyRouteService.pdf 3D Emergency Route
Service based on OpenLS Specifications. GI4DM 2007. 3rd International Sym-

84 Basanov, Neis, Neubauer, Schilling and Zipf

posium on Geoinformation for Disaster Management. Toronto, Canada.

Neubauer, S., Zipf, A. (2007 accepted): Suggestions for Extending the OGC
Styled Layer Descriptor (SLD) Specification into 3D – Towards Visualization
Rules for 3D City Models, Urban Data Management Symposium. UDMS
2007. Stuttgart. Germany.

Nonn, U., Dietze, L. and A. Zipf (2007): Metadata for 3D City Models -
Analysis of the Applicability of the ISO 19115 Standard and Possibilities for
further Amendments. AGILE 2007. International Conference on Geographic
Information Science of the Association of Geograpic Information Laborato-
ries for Europe. Aalborg, Denmark.

Nougeras-Iso, J., P.R. Muro-Medrano, F. J. Zarazaga-Soria (2005): Geo-
graphic Information Metadata for Spatial Data Infrastructures - Resources,
Interoperability and Information Retrieval. Springer. 2005, XXII, 264 p

OGC 2005. Web 3D Service. OGC Discussion Paper, Ref. No. OGC 05-019.

OGC: OWS2 Common Architecture. Hrsg. OGC. RefNum. OGC 04-060r1;
Vers. 1.0.0; Status: OGC Discussion Paper.

Open Geospatial Consortium Inc. OWS 1.2 SOAP Experiment Report. Hrsg.
OGC. RefNum. OGC 03-014; Vers. 0.8; Status: OGC Discussion Paper.

Open Geospatial Consortium Inc. Towards 3D Spatial Data Infrastrucutres
(3D-SDI) based on Open. Hrsg. OGC. RefNum OGC 06-187; Vers. 1.0.0;
2007-09-14 Status: internal OGC Discussion Paper.

OPENLS: OGC Open Location Services Version 1.1
http://www.opengeospatial.org/functional/?page=ols.

OGC: Styled Layer Descriptor (SLD) Implementation Specification V.1.0
doc.nr. 02-070

OGC: Styled Layer Descriptor Profile of the Web Map Service Implementa-
tion Specification version 1.1 doc.nr. 05-078

OGC: Web 3D Service. OGC Discussion Paper, Ref. No. OGC 05-019.

Schilling, A., Basanow, J., Zipf, A. (2007): Vector based mapping of polygons
on irregular terrain meshes for web 3D map services. 3rd International Confer-
ence on Web Information Systems and Technologies (WEBIST). Barcelona,
Spain. 2007.

4 Towards 3D Spatial Data Infrastructures 85

Schilling, A., Zipf, A. (2002): Generation of VRML City Models for Focus
Based Tour Animations - Integration, Modeling and Presentation of Hetero-
geneous Geo-Data Sources. In Web3D Conference, 9-12.03.2003, Saint Malo,
France.

Stollberg, B. (2006): Geoprocessing in Spatial Data Infrastructures. Design
and Implementation of a Service for Aggregating Spatial Data with the Web
Processing Service (WPS). Diploma Thesis. University of Applied Sciences
FH Mainz.

Stollberg, B. & Zipf, A. (2007 accepted): OGC Web Processing Service Inter-
face for Web Service Orchestration - Aggregating geo-processing services in
a bomb thread scenario. W2GIS 2007: Web&Wireless GIS Conference 2007.
Cardiff, UK.

SLD: SLD-Specification (OGC): http://www.opengeospatial.org/docs/
02-070.pdf

SupportGIS-3d:
http://www.supportgis.de/Dip2/SupportGIS/3D/SupportGIS-3D.pdf

Weiser, A., Zipf, A. (2007): Web Service Orchestration of OGC Web Services
(OWS) for Disaster Management. GI4DM 2007. 3rd International Sympo-
sium on Geoinformation for Disaster Management. Toronto, Canada.

Zipf, A., Tschirner, S. (2005): Finding GI-datasets that otherwise would
have been lost - GeoXchange - a OGC standards-based SDI for sharing free
geodata. 2nd International Workshop on Geographic Information Retrieval
(GIR 2005) at the Fourteenth ACM Conference on Information and Knowl-
edge Management (CIKM). November, 2005. Bremen, Germany. Springer
Lecutre Notes in Computer Science.

Zlatanova, S. and E. Verbree (2005): The third dimension in LBS: the steps
to go. In: Geowissenschaftliche Mitteilungen, Heft Nr. 74, 2005, pp. 185-190.

Zlatanova, S. and D. Prosperi (Eds) (2005): Large-scale 3D Data Integration
CRC Press. 256 pages.

86 Basanov, Neis, Neubauer, Schilling and Zipf

Annex Example Document of SLD-3D Extension

Chapter 5

Re-using laser scanner data in
applications for 3D topography

Sander Oude Elberink

Abstract

Once 3D information is acquired and used for their initial applications, it is
likely that the original source data or its derived products can be re-used.
The purpose of this paper is to show the large potential for re-using 3D
geo-information. The focus is on the re-use of laser scanner data and its
derived products at four major geo-organisations in The Netherlands. Re-
using data is not only of interest for end-users but especially for data owners
who can better justify the costs for acquisition and maintenance of the data.
We analyzed the flexibility of organizations to explore what can be done with
the data in their possession. We found that once a 3D data set was acquired
with requirements based on initial applications, many ‘new’ users recognized
the added value of 3D data for their own application.

5.1 Introduction

Many papers mention the need for 3D building models, and then describe
their methods to acquire 3D models [1], [2], [3] or to evaluate their methods.
For researchers it is important to explore optimal methods to build, store
and analyze 3D data. In many cases, organizations store their original source
data, and process it into derived 3D information for their applications using
methods and recommendations from research or commercial market. Once
3D information has been acquired and used for their initial applications, it is
likely that the original source data or its derived products can be re-used.

International Institute for Geo-Information Science and Earth Observation (ITC)
P.O.Box 6
7500 AA, Enschede, The Netherlands
oudeelberink@itc.nl

87

88 Sander Oude Elberink

For example, laser data can be used to derive 3D building models for visu-
alization purposes. For other applications, users can both access the original
laser data set or the already derived 3D building models. Little is known
about the experiences on the re-usability of 3D geo-information and its con-
sequences for user requirements.

The purpose of this paper is to show the large potential for re-using 3D
geo-information, regarding both conventional users, like geo-information de-
partments, as well as new groups of users, like tax departments. The focus is
on the re-use of laser scanner data and its derived products. Re-using data
is not only of interest for end-users but especially for data owners who can
better justify the costs for acquisition and maintenance of the data.

Four cases were compared by information analysis at four major geo-
information organizations in The Netherlands. Through interview sessions
and a subsequent workshop, we collected and discussed user experiences con-
cerning quality requirements, applications, storage and acquisition of 3D to-
pographical data. Information analysis shows that the re-usability of data
strongly depends on the requirements of the source data.

5.2 Background

Several years ago, geo-information departments started building up their ex-
periences with laser scanner data, to better and faster acquire DTMs or to
support updating topographic maps, as shown in [4]. Laser data and its de-
rived products like 3D city models are relatively new data sources for other
departments in many organizations.

Research groups of Delft University of Technology and ITC Enschede work
on the efficient modelling and acquisition of 3D topographic models. The
focus of the overall research project is on data modelling in TEN structures
[5] concerning efficient data storage and analysis, and data acquisition using
laser altimetry data [6] focusing on reconstructing objects in 3D. To ensure
that in the future their methods will be adapted in practice, an inventory was
made on the user requirements of these models and acquisition techniques.

For readability reasons we ignore details of the definitions of whether data
is real 3D or 2.5D. If height information is available at a certain location, we
speak of 3D geo-information. When necessary, we further specify 3D infor-
mation as raw source data (like laser scanner data) or derived 3D data (like
3D building models).

5 Re-using laser scanner data in applications for 3D topography 89

5.3 User experiences on 3D Topography

Interview sessions were organized between researchers and owners/users of
3D geo-information. We selected four cases, in which the users already gained
some experience with the acquisition, storage and analyses of laser scanner
data and its derived 3D products. The four organizations are:

• Municipality of Den Bosch;
• Survey department of Rijkswaterstaat (RWS);
• Water board ‘Hoogheemraadschap de Stichtsche Rijnlanden’ (HDSR);
• Topographic Service of the Dutch Cadastre.

During the interviews we collected information on the necessity for using
3D data instead of the existing 2D data. Limitations of (analyzing) 2D data
are important to justify the need for 3D data. The result of this part of the
study can be seen in figure 1.

Fig. 5.1 Initial list of 3D applications

The figure shows an initial list of applications that are based on 2.5D or
3D data. In all of the applications height information is essential to correctly
perform the task. Height was determinedusing laser scanner data at some
point during the processing.

5.3.1 User requirements

The major purpose of the interviews was to specify user requirements for
3D topography. User requirements should cover topics like specific wishes on
data quality, distribution, and analyses. Before we describe the re-usability
of the data, we briefly discuss these user requirements first.

90 Sander Oude Elberink

5.3.1.1 Municipality of Den Bosch

Den Bosch aims for the production of a large scale 3D geo-database. Their
main motive for acquiring 3D data is to perform height-related tasks like
volume determination and water management tasks, but also for visualising
the “as-is” situation. Visualising models close to reality is an important tool
to communicate with their citizens.

Their list with 3D model requirements starts with the modelling of shapes
of buildings, followed by the possibility for storing and analyzing multiple
objects on top of each other. These requirements are added to the existing
requirements for DTM production or determination of height profiles, for-
merly measured by GPS.

5.3.1.2 Survey Department RWS(Rijkswaterstaat)

The Survey Department is responsible for acquiring and maintaining geo-
information of national infrastructures (stored in Digital Topographic Database
DTB) and a nation wide height model (AHN).

The Digital Topographic Database (DTB) is a topographic database with
a map scale of 1:1.000, containing detailed information about all national
infrastructural objects, like highways and national water ways.

Fig. 5.2 Points, lines and surfaces in interchange of DTB

Acquisition was done in 3D, by measuring in stereo imagery supplemented
with terrestrial measurements at interchanges and tunnels. Points, lines and
polygons were classified manually and stored in the database. Quality require-

5 Re-using laser scanner data in applications for 3D topography 91

ments depend on the idealization precision of the object, e.g. paint strips can
be measured with a higher accuracy than a border between two meadow
fields. Besides this, user requirements are strongly related to the acquisition
method. Demands for terrestrial measurements are higher than photogram-
metric demands. In the near future terrestrial and airborne laser scanner data
might be introduced as a new data source for fast and automated acquisition
of objects. The Actual Height model of the Netherlands (AHN) is a national
DTM, initiated by three governmental organizations: Rijkswaterstaat, the
provinces and the union of water boards.

User requirements of the AHN changed over time due to the growing num-
ber of applications. The most important change is the need for higher point
density. In 1996, at the beginning of the project, 1 point per 16 m2 was sup-
posed to be dense enough to fulfil all user requirements. When users started
to detect features, or fused the laser data with other detailed datasets, the
demand grew for a higher point density laser data set. In 2004, the growing
technical possibilities of laser scanners strengthened the idea that the next
version of AHN should have at least 1 point per 9 m2. In 2006 it was proposed
that if the point density could be increased even more, many new applications
could be performed. For example, the state of coastal objects, like dikes, can
be monitored by analyzing high point density laser data. Recently, a pilot
project began acquiring AHN data with a point density of 10 points per m2.
Given the fact that the AHN is a national height model, the pilot project
suggests the ambition to cover more parts, if not all, of The Netherlands
with a resolution of 10 points per m2 if the pilot is successful.

5.3.1.3 Water board HDSR

For inspection and maintenance of regional dikes, bridges and waterways, the
water board needs up-to-date and reliable geo-information. Requirements for
a 3D model are that breaklines and objects on top and at the bottom of
a dike are measured with high precision. Existing AHN data is not dense
enough for detailed mapping purposes. Breaklines are important features for
the conditions (shape and strength) of dikes. In the past, parallel profiles
were measured with GPS. Water board HDSR decided to acquire a heli-
copter based laser data set with a point density of more than 10 points per
m2, together with high resolution images. Important objects like bridges,
dikes, water pipes were measured manually using the laser point cloud for
geometric information, and images for detection and thematic information.
By using laser data, the water board is able to calculate strength analysis
locally instead of globally. This is important for analyzing the behaviour of
its dikes. Now that a detailed 3D model of the dike and its neighbouring
objects has been captured, analyzing strengths accurately in time and space
will be possible when acquiring the next data set.

92 Sander Oude Elberink

5.3.1.4 Topographic Service

The Topographic Service of the Dutch Cadastre produces national 2D to-
pographic databases from a scale of 1:10.000 to 1:250.000. Implicit height
information has been integrated at specific parts in the 2D topographic maps
by:

• Shadowing, visualizing local height differences;
• Symbols, representing a high obstacle like churches, wind mills, etc;
• Building classifications, discriminating between high and low buildings;
• Level code, indicating on which level an object is, when looking from

above.

More explicit and absolute height information has been given by:

• Contour lines, representing a virtual line at a specific height;
• Height numbers, representing the local height at a certain location.

Whereas in the past the height information mentioned above was introduced
mainly for cartographic purposes, the Topographic Service aims to extend
the possibilities and acquire and store objects in 3D. When building up a
3D topographic database the customers of the products of the Topographic
Service will be able to perform traffic analysis, volume calculations and 3D
visualizations. User requirements can be summarized by the wish to acquire
and store rough 3D building models and to add height values to road poly-
gons. A summary of user requirements of all four cases can be found in Figure
3.

Fig. 5.3 User requirements based on interviews

With these requirements several research activities were set up to specify
the optimal way to meet the requirements. For example, after specifying the
requirements for a 3D topographic road database for the Topographic Service,
a research project was carried out to describe the best way to automatically
acquire 3D roads. Results of this research project can be found in [6], where
the authors describe a method to successfully combine laser data with 2D
topographic map data. During the interviews users mentioned the increasing
number of applications, using laser scanner data or its derived products.

5 Re-using laser scanner data in applications for 3D topography 93

5.3.2 Re-using data

All four organizations re-used their laser data and its derived products, more
than expected. Figure 4 shows the extended list of 3D topography applica-
tions. Applications shown in bold and italic represent ‘new’ applications: they
were initiated after the organizations captured their data for their original
applications. Total number of applications mentioned in the interviews was
29, whereas the originally planned number was 12.

Fig. 5.4 Extended list of 3D applications

Users mentioned the data-driven character of the new applications. These
applications are in the explorative phase, which implies that the users first
look at what can be done with the 3D data they have. This can be seen by the
fact that the user requirements are characterized by the specifications of the
available data. With the maturation of these applications, the requirements
will become more application-driven, resulting in a more detailed description
of what the specifications of 3D data should be.

The legal and financial consequences of re-using geo-information within
the public sector has been explored and described by many others, e.g. [7]. In
this section we look in detail at the growing numbers of applications re-using
laser data at these four organizations.

94 Sander Oude Elberink

5.3.2.1 Municipality of Den Bosch

The engineering department re-used parts of laser data classified as ‘hard’
terrain. They fused it with their existing topographic map and road database
to better analyze the drainage of rainwater. The tax department initiated a
project to detect dormers more quickly and more accurately, using laser data
and imagery. Municipalities are looking for quantitative and fast methods
to determine urban tree volumes for various reasons. Therefore, research has
been done to detect individual trees and calculate urban tree crown volume in
the city of Den Bosch, using their existing laser data [8]. Intermediate results
can be the extraction of laser data on trees, as shown in Figure 5.

Fig. 5.5 Gridded laser data (left), laser data classified as trees (right), [source: Lim,
2007]

5.3.2.2 Survey Department of RWS

In [9] it has been shown that RWS performs various river management ap-
plications with one high point density dataset.

The authors of [9] conclude that time-consuming terrestrial measurements,
visual inspections and mapping from imagery, can be replaced by laser al-
timetry. In case of extreme low-water levels laser altimetry enables RWS to
acquire detailed morphologic information about the groyne fields which usu-
ally cannot be measured. In combination with multi beam echo-sounder data,
acquired at high-water level, behaviour of the river bed and groyne fields can
be analysed simultaneously. A combined DEM has been shown in figure 6.

AHN has intensively been used by archaeologists. Large scale morpho-
logical structures, possibly indicating historical objects or activities, which

5 Re-using laser scanner data in applications for 3D topography 95

Fig. 5.6 DEM of laser altimetry data in combination with multi-beam echo-sounder
data at the river Waal [source: Brügelmann and Bollweg, 2004]

cannot be seen from the ground, may clearly be visible in the DTM. Besides
this, slopes can indicate where to look, using the knowledge that historical
objects tend to slide to lower parts in the terrain.

5.3.2.3 Water board ‘HDSR’

Information about topography can be combined with subterranean informa-
tion, to better analyze the strength of a dike. The use of laser scanner data
is essential to correctly fuse topographic features with the (also 3D) subter-
ranean information. Change detection is a hot topic in the maintenance of
dikes. Already existing data sets are as important as future laser data sets
when looking at differences between them.

5.3.2.4 Topographic Service

The Topographic Service seeks methods for fast and reliable change detection.
In [4] it has been shown that laser data can be used to automatically detect
changes in the 2D map. The authors explain that changes between laser
data and map data should be handled with care. Changes can be caused by
misinterpretations of aerial photographs, or by differences in generalization
of the map.

96 Sander Oude Elberink

5.4 Factors increasing re-usability

In the interviews users mentioned various factors that had a positive influence
on the re-use of laser data.

5.4.0.5 Availability and distribution

GIS based intranet applications make it possible to show geo-data to the or-
ganization. Google Earth already has shown the success of simple visualizing,
navigating and zooming of 2D geo data. When visualizing the as-is situation
in 3D, it generates an alternative perspective for new user groups, including
tax departments and citizens who want to walk through their streets in the
model. Eye opening is the first and most important step in using new kinds
of data for existing or even new applications.

5.4.0.6 Data fusion

Combining data sources not only delivers information on the similarities and
differences between the two datasets, it also can use complementary aspects
to create new or better products. Examples can be found in the fusion of
map and laser data [6], where map data delivers thematic and topologic
information and laser data adds geometric information.

5.4.0.7 Generalization and filtering

Although several authors use both terms Generalization and Filtering as be-
ing the same activity, we distinguish between generalizing 3D data, focusing
on the representation of the output (reducing derived 3D data), and filtering
laser scanner data, focusing on data reduction of the input (reducing raw
data). In [10,11] the authors describe the need for 3D generalization. The
need has been explained by the fact that generalized 3D models are easier
to render. More important in our context, is their motivation that general-
ization allows organizations to use 3D geo data multiple times at multiple
scales, thus reducing the costs of acquiring 3D data. For water boards a spe-
cial kind of generalization is important, because objects close to dikes have
to be represented in more detail than objects located farther away.

Although high point density laser data is useful for reliable classification of
buildings, vegetation and other objects, and for the extraction of breaklines
in the terrain, it is clear that for large parts in the terrain the point density
is too high to allow efficient processing of a DTM. Filter algorithms help the
user to reduce laser data at an early stage of the process, making the huge
datasets much more flexible for their application.

5 Re-using laser scanner data in applications for 3D topography 97

5.5 Discussion

The reason for the increasing numbers of users of 3D data instead of 2D data
is that 3D better represents the as-is situation. From this situation many users
perform their activities. For example, city planners can add features to the
as-is situation, civil engineers are able to calculate volumes and strengths at
given situations, etc. Whereas 3D information started at the geo information
departments to create a faster way to detect 2D objects automatically and to
add value to the existing 2D information, it is for many other departments
the first contact to geo information. It has to be noted that for a number
of applications represention in 2D is still the most convenient way to reach
their goal. Examples can be found in route descriptions and assessing parcel
information.

Although airborne laser data is a good method to quickly acquire detailed
information, it cannot replace all terrestrial measurements for purposes like
measuring and monitoring point objects.

User requirements of 3D objects and databases are still under development.
One of the reasons is that the number of applications and users is still growing.
On the other hand, the technical possibilities of airborne imagery and laser
altimetry are increasing in terms of geometric and radiometric resolution.
With the growing offer of detailed information, the user requirements get
more specific and the demand for more detailed information grows. Scientific
projects in data acquisition, data fusion and storage are essential for users to
show the re-usability of their data.

5.6 Conclusions

In our study we analyzed user requirements on 3D geo information in four
major organizations. The user requirements were based on originally expected
applications. We recognized the flexibility of organizations to explore the
limits of their existing data. Therefore, the most important insight was the
large potential for re-using existing 3D geo information. Once a 3D data set
had been acquired, many ‘new’ users recognized the added value of 3D data
for their application.

With a growing of number of users, the number of requirements also grows.
A good example is the desired point density of the national height model
AHN, which has increased from 1 point per 16 m2 in 1996 to 10 points per
m2 in 2006.

Even information analyses can be re-used for different purposes. The actual
purpose of analyzing the interview information was to specify user require-
ments, whereas the re-used version was to show the advantages of re-using
geo-information.

98 Sander Oude Elberink

Acknowledgement

This research is partially funded by the Dutch BSIK research program Space
for Geo-Information, project 3D Topography. The authors would like to thank
Bram Verbruggen of the municipality of Den Bosch for providing additional
information on the re-use of data, and the other persons who cooperated in
the interviews and at the workshop.

References

1 Henricsson, O. and Baltsavias, E. (1997). 3-d building reconstruction with
aruba: A qualitative and quantitative evaluation. In: Gruen, Baltsavias
and Henricsson (Editors), Automatic Extraction of Man-Made Objects
from Aerial and Space Images (II). Birkhauser, Ascona, pp. 65-76.

2 Haala, N., C. Brenner and Anders, K.-H. (1998). 3D Urban GIS From
Laser Altimeter and 2D Map Data, ISPRS Commission IV – GIS Between
Visions and Applications.Ohio, USA.

3 Maas, H.-G., 2001. The suitability of Airborne Laser Scanner Data for
Automatic 3D Object Reconstruction, Third International Workshop on
Automatic Extraction of Man-Made Objects from Aerial and Space Im-
ages, Ascona, Switzerland.

4 Vosselman, G., Kessels, P., Gorte, B.G.H. (2005).The Utilisation of
Airborne Laser Scanning for Three-Dimensional Mapping International
Journal of Applied Earth Observation and Geoinformation 6 (3-4): 177-
186.

5 Penninga, F., van Oosterom P., Kazar B.M. (2006). A Tetrahedronized
Irregular Network based DBMS approach for 3D Topographic Data Mod-
eling, the 12th International Symposium on Spatial Data Handling (SDH
2006), Vienna, Austria.

6 Oude Elberink, S. and Vosselman, G. (2006). Adding the Third Dimen-
sion to a Topographic Database Using Airborne Laser Scanner Data,
ISRPS Vol 36, Part 3, “Commission III symposium”, Bonn, Germany.

7 Loenen, B. van (2006), Developing geographic information infrastruc-
tures; the role of information policies. Dissertation. Delft University of
Technology. Delft: DUP Science.

8 Lim, C. (2007) Estimation of urban tree crown volume based on object
- oriented approach and LIDAR data. Master thesis. ITC Enschede, The
Netherlands.

9 Brügelmann, R. and Bollweg, A. E.: Laser Altimetry for River Manage-
ment. International Archives of Photogrammetry, Remote Sensing and
Spatial Information. Vol XXXV (part B2), p 234-239, Istanbul, Turkey.

10 Meng, L. and Forberg, A. (2006): 3D building generalization. Chapter
11, 211-232. In: Mackaness, W., Ruas, A. and Sarjakoski, T. (Eds): Chal-

5 Re-using laser scanner data in applications for 3D topography 99

lenges in the Portrayal of Geographic Information: Issues of Generalisa-
tion and Multi Scale Representation. VTEX, Vilnius.

11 Thiemann, F. (2002). Generalization of 3D building data, ISPRS Vol
34, Part 4, ‘GeoSpatial Theory, Processing and Applications’, Ottawa,
Canada.

Chapter 6

Using Raster DTM for Dike Modelling

Tobias Krüger and Gotthard Meinel

Abstract

Digital Terrain Models are necessary for the simulation of flood events. There-
fore they have to be available for creating flood risk maps. River embankments
for flood protection have been in use for centuries. Although they are artifi-
cial structures that actually do not belong to the natural elements of the land
surface they are usually implicitly embedded in digital terrain data. Being
elongated and elevated objects, they appear – depending on the used colour
ramp for visualisation – as bright stripes on the surrounding background.

For purposes of flood protection it might be useful to gain data about crest
levels, especially if these information are not available from other sources.
High resolution Digital Terrain Models (DTM) can be used as highly reliable
sources for deriving dike heights. Using laser scanner technique a general
height accuracy of about 10–15 cm can be achieved for elevation models.
Thus, by analysing DTM data relevant geometrical information on dikes can
be directly derived.

6.1 Introduction

The last decades have shown a high frequency in the appearance of severe
flood events in Central Europe. This tendency is continuing after the turn of
the millennium, and the problem will probably become more serious in the
future due to global warming.

Flood protection has therefore seen a change of paradigm within in the
recent years and decades. In former times it was common to count only on
technical protection strategies as building dikes, reservoirs, or flood polders.

Leibniz Institute of Ecological and Regional Development (IOER), Dresden
t.krueger@ioer.de, g.meinel@ioer.de

101

102 Tobias Krüger and Gotthard Meinel

Recent flood events have shown the limited capacity of these measures. Today
a more integrative view of flood protection is being adopted. The strategic
focus here, which is of vital importance, lies on risk assessment and risk
management. The current state of treating flood risks is given in [11].

Table 6.1 Selected European flood events since 1978. Source: [11]

Time Event description

1978 Flood event in Switzerland changes Swiss flood pro-
tection strategies towards integrated approaches

1993, December Rhine flood event, later declared as “Hundred Year
Flood”

1995, January Rhine flood event, overtopping the December event
of 1993, overall damage 1993/95: > 5.5 billion EUR

1997, Summer Oder Basin flood in Germany, Poland, Bohemia,
more than 100 casualties, damage about 5.5 million
EUR

1999 “Whitsun Flood” in Southern Germany, five casu-
alties, damage 335 million EUR

2002, August “Hundred Year Flood” in Central Europe, esp. in
the Elbe and Danube basins, in Germany 21 casu-
alties, overall damage of about 11.8 billion EUR

2003 Winter flood on the Elbe River
2005, August Flood in Switzerland, the most expensive damage

event of the last hundred years, overall damage
about 2.6 billion CHF [16]

2006,
March/April

Springtime flood along the Elbe River, partly with
higher gauges compared to 2002 (esp. in the lower
Elbe due to less dike breaches in the middle river
stretch); Danube flood in Romania

2007, August Flood event caused by heavy rain in Germany
(Rhine), Switzerland, Austria

The list of recent flood events shown in Table 6.1 demonstrates the ne-
cessity to deal with flood risk management, especially in densly settled areas
like Central Europe. Flood risk management can be seen as the effort to opti-
mise the relation of hazard reduction – as erecting protection buildings – and
vulnerability mitigation.1 The latter can be achieved by the interaction of
several components, e. g. to adopt resistant and resilient building structures.
It is also of high importance to establish an efficient disaster management
system which provides communication tools capable of working under hard
pressure.

Another way of reducing vulnerability is to withdraw from natural flood-
plain areas. This improves the ecological capability and complies the natural
conditions of a seasonally flooded river regime (see [4]). In [3] it is claimed
to provide rivers with retention areas which have been successively reduced

1 For detailed information on flood protection terms see [9].

6 Dike modelling using raster DTM 103

to a fraction of their original sizes. The Elbe River has preserved much of its
natural conditions and shows a relatively high ecological potential compared
to other Central European riparian landscapes. Nevertheless, more than 80 %
of the Elbe floodplains have been cut from the river during the last centuries
(see [5]). A coarse map showing the differences between the former flooding
area and the recent floodplain is shown in [15].

The research project VERIS-Elbe

The research project VERIS-Elbe [8] examines the changing flood risk along
the German Elbe River due to land use change, climate change, and other
factors using the scenario technique prospecting into the next one hundred
years.

The potential flood area of the Elbe River in Germany covers about 5 000
square kilometres. Within the project it is intended to determine flood risks
under varying conditions, which includes to remove dikes and rebuild them
on other places.

6.2 Digital elevation data

6.2.1 Dikes as terrain model objects

Depending on the objective of the model one speaks of Digital Terrain Models
or Digital Surface Models. The latter depict the surface including elevated
objects while the former contain information only on the very earth’s surface.
Therefore it is useful and necessary not only to talk about Digital Elevation
Models but exactly to determine what kind of elevation is meant.

The fertile floodplain soils are favourable for agrarian use and require pro-
tection. Therefore the beginning of dike formation dates back for centuries.
Whereas flood dams were already erected by Roman soldiers the planned
installation of dikes in Central Europe began in the early Middle Ages (see
[14]).

The derivation of Digital Terrain Models includes the clearing up raw the
data from elevated items like buildings, bridges, or trees. Contrary to this,
dikes usually remain as land surface elements in the terrain model datasets.
Depending on the visualisation colour scheme they appear as bright bands.
Dikes therefore turn out to be a kind of hybrid objects which are man-made
on the one hand, but on the other hand are considered as belonging to the
earth’s surface.

If one needs information about geometrical properties of dikes such as
length, width, and height it is necessary to collect external data. Length and

104 Tobias Krüger and Gotthard Meinel

width can quite easily be obtained by using measurement tools as provided by
standard GIS2 software. Height information must be provided by terrestrial
survey data or can be extracted directly from the DTM.

6.2.2 Available Digital Terrain Models

The research project VERIS-Elbe examines the flood risk on nearly the full
length of the German Elbe River. The investigation area ranges from the
German-Czech border to the gauging station Neu Darchau which is situated
in Lower Saxony and is to be considered as the last gauge not influenced by
the tides (see [1, p. 55]).

6.2.2.1 High resolution DTM

One of the project partners is the German Bundesanstalt für Gewässerkunde3

(BfG) which is providing a high resolution Digital Terrain Model for the Elbe
including the hydrologically relevant earth’s surface along the river channel.
That means that all flood protection dikes are included in the model. The
model’s acronym is DGM-W4 and it is divided into three sections called
South, Middle, and North. The spatial resolution is 2 m in section South –
covering the Saxon part of the Elbe River – and 2 m in section Middle –
covering the Elbe in Saxony-Anhalt as well as the area of the Havel River.
Section North data have not been processed so far but will be at 2 m resolution
as well once available. All these datasets were derived from laser scanner
data. The river bed information origins from sonar measurements. The height
accuracy is indicated as 0.15 m.

Another high resolution DTM is available for the Saxon Elbe section. It
has been provided by the Saxon Landestalsperrenverwaltung5 (LTV) and has
a resolution of 2m. It also covers the immediate neighbourhood of the river
and has a height accuracy better than 0.10 m. This model has no specific
acronym, but it is referred to as HWSK data6 by the LTV.

The Landesbetrieb für Hochwasserschutz und Wasserwirtschaft Sachsen-
Anhalt7 (LHW) has provided a high resolution DTM for a projected flood
polder site near Lutherstadt Wittenberg. It has a spatial resolution of 1.0 m
and a height accuracy of 0.15 m.

2 Geographic information system
3 Federal Institut of Hydrology, Koblenz, http://www.bafg.de/
4 Digitales Geländemodell – Wasserlauf, engl.: DTM Watercourse
5 State reservoir authority, Pirna, http://www.talsperren-sachsen.de/
6 HWSK: Hochwasserschutzkonzeption, engl.: Flood protection conception
7 State Agency for Flood Protection and Water Management Saxony-Anhalt, Magde-
burg

6 Dike modelling using raster DTM 105

Table 6.2 Available high resolution DTM datasets

DTM dataset Spatial resolution [m] Height accuracy [m]

HWSK data 2 0.10
DGM-W Middle 2 0.15
DGM-W South 2.5 0.15
Polder DTM 1 0.15

6.2.2.2 Medium resolution DTM

Unfortunately, the whole inundation area of the Elbe River cannot be covered
with a high resolution DTM. Thus for the remaining regions a DTM provided
by the German Bundesamt für Kartographie und Geodäsie8 is being used.
The DGM-D9 is part of the ATKIS10 dataset and has a spatial resolution of
25 m. The height accuracy varies within a quite large range. As stated in the
dataset’s manual [2] the accuracy is determined as ranging from 1 m to 8m –
depending on the quality of the underlying data. This quite high inexactness
of the data is caused by the very different sources which have been used
to compile the DTM that serves the whole country. In Germany the survey
authorities are under the responsibility of the Federal States. The federal
survey agencies are supplying data which is used by the BKG to compile
datasets covering Germany as a whole. The data originate from very diverse
sources and show different spatial resolution and accuracy. Some parts of the
data are collected by laser scanning, stereographic interpretation of aerial
imagery, or even might originate from digitising contour lines from large-scale
topographic maps.

6.3 Dike extraction

6.3.1 Object recognition

Because dikes can be perceived as elevated objects, dike extraction leads to
object recognition methods which are common in raster image processing.

Identification of dikes can generally be done by two different approaches.
The first possibility uses pure image processing. These methods base on the
analysis of elevation differences in the model. Fulfilling certain criteria causes
the identification of pixels as belonging to an elevated object or not. The

8 Federal Agency for Cartography and Geodesy, Frankfurt/M. and Leipzig, http:

//www.bkg.bund.de/
9 DGM Deutschland, engl: DTM Germany
10 Amtliches Topographisch-Kartographisches Informationssystem, engl.: Authorita-
tive topographic cartographic Information system

106 Tobias Krüger and Gotthard Meinel

second method uses pre-information. If vectors depicting the lineage of dikes
are available the raster model can selectively be investigated. Using vector
information it is no longer necessary to examine the whole terrain model for
identifying dikes. In this paper only the first approach mentioned is discussed.
In all cases an interpolation of the base heights of the detected dike bodies
has to follow. The final step to establish the Digital Dike Model (DDM) is
to calculate the actual crest levels. This leads to a raster based model which
can be used as the basis for ongoing analysis.

Object recognition in DTM are based on the finding of sudden level leaps.
If a given difference threshold Θ is exceeded the pixel is considered as an
elevated object (see [10]). The further editing will appear as follows: The
elevated flagged pixels are being erased from the terrain model and form a
mask of non-ground points (Non-Ground Model). Afterwards the remaining
holes in the Digital Terrain Model must be filled with approximated ground
height values, which have to be interpolated from the surrounding edge pixels.
The actual crest level values can be obtained by subtracting the interpolated
surface from the original elevation data.

6.3.2 Adapted Filter method

The principle of detecting elevated objects is to examine the surface level
differences within a certain neighbourhood. If the difference between a pixel
and its neighbouring minimum exceeds a defined threshold it is being marked
as belonging to an elevated object.

It is useful to apply combinations of several filter sizes and threshold set-
tings. The result of the filtering is being cleaned and will be used for building
objects which are classified by shape parameters. As a result the actual crest
level can be directly derived.

�������	�
��

��

���

������
�������

Fig. 6.1 Detection of elevated objects in DTM (inspired by [10]).

The principle of the filter method is illustrated in Fig. 6.1. Each pixel in
the given DTM scene will be compared to its neighbourhood minimum whose

6 Dike modelling using raster DTM 107

extent is indicated by filter width. If the difference exceeds the threshold ΘΔh
the pixel will be flagged as elevated.

The filter method described in [10] was already applied by the author
[7]. For the use with one of the above-mentioned high resolution DTM it
had to be adapted and realised in a programming language available at the
IOER11. The programme allows the user to adjust any options concerning
the appliance of the filter to adequately fit the current conditions of the
investigated DTM scene.

To detect elevated objects of different dimensions it is useful to combine
the use of several filter sizes in combination with different threshold values.
It can easily be seen that bigger filter widths combined with higher Θ -values
will detect large elevated objects that have a relatively wide extent while a
small filter size with lower thresholds would yield smaller objects of little
height. In order to detect most of the elevated objects a combination of two
option settings should be applied.

Height thresholds and filter sizes

The following facts have been used to preset the thresholds for discriminating
elevated from non-elevated pixels:

Table 6.3 Flood alert levels in relation to dike height. Source: [13]

Alarm level Event/characteristics for declaring

1 Bankfull riverbed, little overflowings occurring here
and there.

2 Beginning overflow, water level reaches dike base.
3 Water level reaches half crest level, beginning dike

defence measures if necessary.
4 Dike-overtopping threat, endangered dike stability.

Considering the parameters in Table 6.3 the dike’s crest levels can be
estimated as the difference of the water levels that belong to Alarm levels 4
and 1. Table 6.4 indicates the Alarm levels of selected water level gauging
station along the Elbe River.

The differences between the values of alarm levels 4 and 1 in Table 6.4
suggest that dikes rise at least 2m above the surrounding surface. Therefore
the threshold ΘΔh should not be bigger than 2 m.

In [7] dike width values were detected ranging from 12 m to 25 m that can
be considered as indicatory values. The filter has to ensure that at least one
ground point is inside the search window while passing over the DTM raster.
Assuming a maximum dike width of 25 m the filter size then has to be 13 m.

11 Leibniz Institute of Ecological and Regional Development, Dresden

108 Tobias Krüger and Gotthard Meinel

Table 6.4 Flood alarm levels of selected Elbe gauges. Source: [12] and [6]

Gauging station Alarm level [cm]
(River km from Czech border) 1 2 3 4

Schöna (2) 400 500 600 750
Dresden (55.6) 350 500 600 700
Torgau (154.1) 580 660 720 800
Wittenberge (453.9) 450 550 630 670

For dikes do not elevate abruptly out of the surface, a smaller filter size
with smaller threshold is to be applied in order to detect the lower parts
of the dike slope. The application of the second filter can be reduced to the
regions neighbouring to the pixels that have been detected by the larger filter
window. Therefore these regions will be buffered and used as mask for the
second filtering.

Object Selection

Some regions in the DTM might be detected which are not dikes or em-
bankments. These include single pixels or small pixel groups which do not
belong to any dike body. Therefore the Non-Ground Model have to be clas-
sificated if its objects can be dikes or not. That’s why the recognised objects
are described by form parameters:

Direct Parameters

are basic geometrical attributes which are calculated directly from the raster
data:

• Area: The Area A is calculated by cumulating the count of pixels that
form one object. This number is depending on the spatial resolution of
the Digital Terrain Model used for dike detection.

• Perimeter : The perimeter P is formed by the outline of the surrounding
pixels of one object and is therefore a multiple of the pixel width.

Indirect Form Parameters

are calculated from Area and Perimeter and describe the object shape inde-
pendent from the actual object size:

• Form Factor : The Form Factor F is defined by the ratio of the squared
Perimeter P and Area A: F = P2/A≥ 4π. It describes the figure’s deviation
from the circle of which the Form Factor is F0 = (2πr)2/2πr2 = 4π.

6 Dike modelling using raster DTM 109

• Contour Index : The Contour Index C is given by the ratio C = P/PC ≥ 1,
where P is the object perimeter and PC is the circumference of an equal-
area circle. For circular objects the Contour Index C0 = (2πr)/(2πr) = 1.

The parameters F and C are related and can be converted by F = 4πC2.
Hence it is possible to describe the found objects by just one of the indirect
parameters.

Once the objects have been build and their form parameters have been
calculated they are classified as possible dikes or non-dikes by thresholding
the two parameters Area and Form Factor.

1. One object must consist of a minimum number of pixels, that it has to
cover a minimum area to be considered as possible dikes.

2. The Form Factor has to be greater than a certain threshold value which
is typical for elongated features like dikes.

6.3.3 Filter appliance

The application of the two filters will lead to two Non Ground Models NGM1
and NGM2. Afterwards both models can be merged to produce the Combined
Non-Ground Model NGMcomb.

Fig. 6.2 shows the consecution of the filtering. The analysed scene has
dimensions of 2 000 m on both axes.

(a) DTM (b) NGMcomb (c) cDTM

Fig. 6.2 Demonstration of DTM filtering

The different stages of filtering are shown in the sub-pictures (a) to (c) of
Figure 6.2:

(a) Original DTM. Dikes on both sides of the river are well exposed.
(b) Detected object areas for ground point interpolation after cleaning filter

result.
(c) DTM after removing dikes (cDTM).

110 Tobias Krüger and Gotthard Meinel

6.3.4 Ground level interpolation

Removing the detected objects includes the calculation of the underlying
base heights in order to fill the masked pixels in the DTM. This can be
accomplished quite easily by using the triangulation technique. The pixels
bordering the masked areas function as mass points for the triangulation.
The masked areas are of longish shape. So the distance which has to be filled
by interpolation is not too far and the result of the triangulation can be
considered as reliable. Figure 6.3 shows the principle of triangulating.

Fig. 6.3 TIN creation for base height interpolation

The resulting model is a Digital Terrain Model cleaned from dikes. For
differentiation from the original version it should be abbreviated with cDTM
(see Fig. 6.4).

Once all objects (dikes) have been erased and replaced by their ground
heights the final Above Ground Model (AGM) can be calculated by subtract-
ing cDTM from DTM: AGM = DT M− cDT M.

This model can be considered as the desired DDM (see 6.3.1). At this state
it forms a raster where each pixel value represents the above ground level.
To make clear it is of raster format the abbreviation should be extended to
DDM-R. The single dikes are surrounded by no-data regions12.

The focal maxima within the distinct objects give information on the real
object height. Dike lineage can be derived by thinning and vectorising the
data. The stored features of the polylines will hold attributes which indicate

12 Depending on the further analysis it might be useful to use zero values to fill
non-elevated areas instead of no-data.

6 Dike modelling using raster DTM 111

(a) Original DTM (b) Cleaned cDTM

Fig. 6.4 DTM scene before and after detecting and removing dikes

important geometrical information as object heights and widths. This dataset
is referred to as DDM-V. Because it consists of vector data it can easily be
edited and manipulated with common GIS methods. Changes can be re-
converted into raster format for further use in flood simulations.

6.4 Outlook

The technology described in this paper offers a quite effective method to
extract dikes from high resolution DTM data. This is useful especially if
no geometrical data concerning the dikes is available. Another aspect is to
verify given information on crest levels, e. g. on medium and large scale13

topographic maps. The procedures have been programmed in Arc Macro
Language (AML) scripts. A user friendly version for ArcGIS is intended which
includes dike detection and dike removal as well as the establishment of new
dikes. Therefore the user will have to digitise the new dike lineage in vector
format. The vectors’ attributs include information on crest levels and dike
widths and/or slope ratios from which a new dike can be modelled and merged
with the underlying DTM.

This will provide a useful toolbox to estimate the effect of dike building
measures or dike breaches on the flood risk of a certain area. The main
problem will remain the limited availability of high resolution DTM which is
the most important pre-condition of object recognition.

13 Medium scale: ≥1:10 000–>1:100 000, large scale: >1:10 000

112 Tobias Krüger and Gotthard Meinel

References

[1] Boehlich MJ (2003) Tidedynamik der Elbe. J Mitteilungsblatt
der Bundesanstalt für Wasserbau, 86:55–60. http://www.baw.de/
vip/publikationen/Mitteilungsblaetter/mitteilungsblatt86/
boehlich.pdf (2007/03/22)

[2] Bundesamt für Kartographie und Geodäsie (2006) Digitales Gelände-
modell für Deutschland DGM-D. http://www.geodatenzentrum.de/
docpdf/dgm-d.pdf (2006/09/12)

[3] Frerichs S and Hatzfeld F and Hinzen A and Kurz S and Lau P and
Simon A (2003) Sichern und Wiederherstellen von Hochwasserrückhal-
teflächen. Umweltbundesamt, Berlin

[4] Jährling KH (1994) Bereiche möglicher Deichrückverlegungen in der El-
baue im Bereich der Mittelelbe – Vorschläge aus ökologischer Sicht als
Beitrag zu einer interdisziplinären Diskussion. In: Guhr H and Prange
A and Punčochář P and Wilken RD and Büttner B (eds) Die Elbe im
Spannungsfeld zwischen Ökologie und Ökonomie: Internationale Fach-
tagung in Cuxhaven vom 8. bis 12. November 1994 / 6. Magdeburger
Gewässerschutzseminar. Teubner, Stuttgart & Leipzig

[5] Jährling KH (1998) Deichrückverlegungen: Eine Strategie zur Rena-
turierung und Erhaltung wertvoller Flußlandschaften? Staatliches Amt
für Umweltschutz, Magdeburg

[6] Koll C (2002) Das Elbehochwasser im Sommer 2002: Bericht des
Landesumweltamtes Brandenburg im November 2002, vol. 73 of
Fachbeiträge des Landesumweltamtes. Landesumweltamt Brandenburg
(LUA), Potsdam

[7] Krüger T and Buchroithner M and Lehmann, F (2005) GIS-gestützte
Kartierung hochwasserschutzrelevanter topographischer Informationen
mit HRSC-Daten. J Photogrammetrie-Fernerkundung-Geoinformation
2/2005:129–133

[8] Leibniz Institute of Ecological and Regional Development (2006)
Change and management of risks of extreme flood events in large river
basins – the example of the Elbe River. http://www.veris-elbe.ioer.
de/

[9] Loat R and Meier E (2003) Dictionary of Flood Protection. Haupt, Bern
[10] Mayer S (2003) Automatisierte Objekterkennung zur Interpretation

hochauflösender Bilddaten. Thesis, Humboldt University of Berlin
[11] Merz B (2006) Hochwasserrisiken. Grenzen und Möglichkeiten der

Risikoabschätzung. Schweizerbart, Stuttgart
[12] Sächsisches Landesamt für Umwelt und Geologie (2002) Hydro-

logisches Handbuch – Teil 1 – Pegelverzeichnis Stand Januar
2002. http://www.umwelt.sachsen.de/de/wu/umwelt/lfug/
lfug-internet/veroeffentlichungen/verzeichnis/Wasser/PVZ_
Internet.pdf(2007/03/07)

6 Dike modelling using raster DTM 113

[13] Sächsisches Landesamt für Umwelt und Geologie (2007) Bedeutung der
Alarmstufen. http://www.umwelt.sachsen.de/de/wu/umwelt/lfug/
lfug-internet/wasser_9562.html (2007/03/26)

[14] Schmidt M (2000) Hochwasser und Hochwasserschutz in Deutschland
vor 1850. Eine Auswertung alter Quellen und Karten. Oldenbourg, Mu-
nich

[15] Voigt M (2005) Hochwassermanagement und Räumliche Planung.
In: Jüpner R (ed) Hochwassermanagement. Magdeburger Wasser-
wirtschaftliche Hefte, vol. 1. Shaker, Aachen

[16] Willi HP and Eberli J (2006) Differenzierter Hochwasserschutz an der
Engelberger Aa. J tec21 36:4–7. http://www.tec21.ch/pdf/tec21_
3620063740.pdf (20070/03/07)

Chapter 7

Development of a Web Geological Feature
Server (WGFS) for sharing and querying
of 3D objects

Jacynthe Pouliot, Thierry Badard, Etienne Desgagné, Karine Bédard, and
Vincent Thomas

Abstract

In order to adequately fulfil specific requirements related to spatial database
integration with 3D modeling tools, this paper presents the development of
a generic and open system architecture called Web Geological Feature Server
(WGFS). WGFS provides direct access through Web services to 3D geolog-
ical models. WGFS is based on a three-tier architecture: a client (Gocad),
an application server (Apache Tomcat and Deegree) and a DBMS (MySQL).
This architecture takes advantage of standard-compliant spatial applications
such as WFS and GML standards stemming from OGC and spatial schema
from ISO TC/211-Geographic Information. Before introducing the architec-
ture and motivations of some geoinformatics choices, we will remind some
important issues that have to be taken into account when such development
is planned.

7.1 Introduction

By interpreting field observations and integrating available geophysical and
geochemical data to determine the 3D configuration of rocks, their temporal
relationships and causal processes, geoscientists are now frequently using Ge-
oModels1(Bédard 2006; Fallara et al. 2006; Jessell 2001; Kessler et al. 2005;
Mallet 2002;). GeoModels, thanks to various modeling software, can be geo-
metrically designed and investigated visually or by performing quantitative

Centre for Research in Geomatics and Geomatics Department,
Laval University,
Quebec, Canada
jacynthe.pouliot@scg.ulaval.ca

1 Geological Models

115

116 Pouliot, Badard, Desgagné, Bédard and Thomas

analyses (Lee 2004; Pouliot et al. 2007; Zlatanova et al. 2004). A great variety
of 3D geological modeling tools exists such as EarthVision, Gocad, GEMS
and Vulcan23 model construction, they present important limitations. For ex-
ample, and even if they store geospatial data, they generally do not manage
coordinate projection systems, which could hinder potential integration of
various geospatial data sources. They are not very accessible as they require
advanced knowledge in modeling and in computer science which can only be
acquired after several hours of training. They are also not easily extensible
and interoperable since they are mainly closed systems with their own devel-
opment language, are not fully compliant with standards and are proposing
few import and export capabilities (file formats, database connectivity . . .).
Moreover, the modeling tools provide few functions to support advanced
selection and query of spatial objects. Today with the great emphasis on
database’s implementation (and more specifically geospatial databases), sev-
eral governmental agencies look at such system that could improve efficiency
of data management, exchange and analysis. In addition, online services are
now seen as a must and promoting Web based development will contribute
to this end.

Geospatial information system (GIS) can also be evaluated for 3D geospa-
tial modeling and management. GIS and related spatial database manage-
ment system (DBMS) provide several capacities for spatial and non spatial
data management, transformation, and analysis while controlling the organi-
zation, the maintenance, the storage and the retrieval of data in a database.
However, no GIS currently propose the concept of volumetric (solid) objects.
They are limited to the presentation of 2.5D models, like digital elevation
model (DEM), where we can drape raster data onto the model and extrude
some regular objects such as buildings. This considerably limits the capabil-
ities of such system to manage 3D (volume) Geomodels.

From this report and in order to develop an appropriate 3D GIS for explo-
ration assessment and efficient management of mineral resources, a research
team involved in a GEOIDE4 project propose the extension of a 3D mod-
eling tool by enhancing its functionalities to perform spatial data selection
and query over the Web. It consists of accessing 3D GeoModels organized in
a coupled environment integrating a 3D modeling tool, a 3D spatial DBMS
and a server. It tries to take advantage of Web-based and standard-compliant
spatial applications (such as WFS and GML standards stemming from OGC5

2 Respectively: http://www.dgi.com/earthvision,http://www.gocad.org/, http://
www.gemcomsoftware.com/products/GEMS, http://www.vulcan3d.com/.

However, when we consider these modeling tools, we note that, even if they are
powerful for 3D
3 3D (objects or model) will refer to objects placed in a 3D universe (x,y,z), no matter
which geometric dimension the object has. To mark the difference with the geometric
dimension of the object, we will refer to punctual, linear, surface or volumetric object.
4 GEOIDE (GEOmatics for Informed Decision), http://www.geoide.ulaval.ca/
5 Open Geospatial Consortium, http://www.opengeospatial.org/

7 Development of a Web Geological Feature Server 117

and spatial schema from ISO TC/211-Geographic Information). Theses con-
cerns also drive some software selection towards open source solutions. The
article will present these experiments of designing a Web Geological Fea-
ture Server (WGFS). WGFS is based on a three-tier software architecture:
a client (Gocad), an application server (Apache Tomcat and Deegree) and
a DBMS (MySQL). We will finally discuss the first and future experiments
in the context of coupling a 3D geological tetrahedral model and SIGEOM 6

database.

7.2 Review of 3D GIS development and standards

Since the attempts made by Raper in 1989, several authors have been ad-
dressed the development of 3D GIS. More recently, we can first report the
work of Apel and Frank (Apel 2006; Frank et al. 2003). They proposed a 3D
GIS framework based on existing 3D Geomodeling theory and software, an
integrated data model and a XML database server. There works were specif-
ically designed for geological observation data and geomodel construction.
This development was of particular interest for us because closed needs were
addressed mainly related to 3D Geomodels and Web based information sys-
tem. Personal communications in 2006 with Apel and Frank demonstrated us
that even if promising concepts and ideas were at that time proposed, some
constraints were not solved and the proposed system is no more available.
For example, XML and XQuery were not specifically designed for storing
and querying geospatial data and the application server (3DXApps) was only
supporting surfaces objects, no solids, which is a crucial constraint.

Van Oosterom, Arens and Stoter (Arens et al. 2005; van Oosterom et al.
2002) from Delft University of Technology, the Netherlands are also quite
involved in the development of 3D GIS components. Among others, they
proposed, according to OGC ‘Simple Feature Specification for SQL’, some
concepts helping the design and the implementation of a real 3D primitive
in a spatial DBMS. As they stated, this implementation is a first experiment
where a spatial DBMS (Oracle Spatial 9i Spatial) supports a 3D primitive
(Stoter and van Oosterom, 2002). Of particular interest, they cover aspects
such as validation of 3D functions, 3D indexing (and benchmarking) and 3D
visualization. There works and because it was not a priority, do not link spa-
tial DBMS with 3D Geomodeling tools and are not based on Web protocols.

Zlatanova has presented in 2000 the design of a 3D topological model
specifically designed for Web-oriented query and visualisation (Zlatanova,
2000 and Zaltanova et al. 2004). Her works was particularly of interest re-
garding the optimisation of data transfer over the Web and strategies to as-
semble such coupled system. She developed a GUI interface, used CGI scripts

6 Système d'information géominière du Ministère Ressources naturelles et Faune du
Québec, http://sigeom.mrnfp.gouv.qc.ca/

118 Pouliot, Badard, Desgagné, Bédard and Thomas

(on the Apache server side), VRML and HTML languages and MySQL as a
DBMS. Her thesis even if it was in 2000 and specially oriented for munici-
pal applications was a valuable source of information for 3D GIS design and
applications.

A specific group of researchers from the Earth Sciences Sector of Natural
Resources Canada and Mira Geoscience are also working to extend Gocad
software (Sprague et al. 2006). A query framework with application to mineral
exploration is proposed supporting for example proximity query, property
query (only numeric attribute), feature query (dome, depression, curvature),
and intersection query. This framework is interesting but actually restricted
to Gocad environment.

Breunig presented GeoToolKit (Balovnev et al., 1997; Breunig, 1999 and
2001), an open 3D database kernel system implemented by using the object-
oriented database management system ObjectStore. This system provides
specific algorithms, spatial access methods and visualization for 3D geo-
sciences modeling. GeoToolKit contains C++ class library extensible and
offers the representation and the manipulation of simple and complex 3D
spatial objects. Even if this architecture is open and extensible and can be
assembled into a ready-to-use application by geoscientists with little program-
ming experience, it still represents a new environment to learn and this could
limit its capacity to penetrate this community of specialists. In Shumilov and
Breunig (2000), they tried to connect Gocad with GeoToolKit/ObjectStore
ODBMS and a CORBA/ODBMS adapter. GeoToolKit was not specially de-
signed for web based applications, but this coupled environment was particu-
lar interesting as it offers great advantage of using a common database which
gives the opportunity to geoscientists to perform a cooperative work under
one 3D GeoModel.

If we now have a close look on 3D modeling from the standardization
point of view, we can resume it as follow. The International Organization
for Standardization (ISO), particularly ISO/TC 211 – Geographic informa-
tion/Geomatics, proposes a spatial schema (ISO 19107 2002) that describes
geometric objects in universes having up to three dimensions. Geometric
primitives used to build objects are the points, curves, surfaces and solids.
The solids are considered as the basis of the 3D geometry of the spatial
schema and they are defined by a boundary which is an envelope composed
of surfaces.

On its side, the Open Geospatial Consortium (OGC) works on the edition
of specifications with the objective to make frequently used spatial data and
services accessible and interoperable. The ‘Simple Feature Specification for
SQL’ (OGC SFS 1999) defines an SQL schema which supports the storage,
querying and updating of simple geospatial features. It enables the definition
of punctual, linear and surface geometry but no volumetric or solid object
are described. Another specification stemming from OGC is the ‘Geogra-
phy Markup Language (GML) Encoding Specification’ (OGC GML 2004)
that allows the modeling and the storage of geospatial information through

7 Development of a Web Geological Feature Server 119

a standard XML (Extensible Markup Language) encoding. GML 3.x now
supports solids as geometric objects but the previous version (2.x and older)
only supported points, curves and surfaces. GML 3.x is thus closely related
to the ISO spatial schema as most of the objects present in the schema have
a corresponding object in GML. However, it does not mean that an appli-
cation using GML 3.x will offer the management of volumetric object. In
fact, GML 3.x defines a way to encode information that allows 3D data but
it is always possible to encode 2D data with GML 3.x; presently, very few
applications produce complete volumetric exchanges using GML 3.x. If GML
is a generic language, we could find for geoscience applications, GeoSciML,
a GML application language for geoscience in which a suite of feature types
based on geological criteria (units, structures, fossils) or artefacts of geological
investigations are proposed. GeoSciML helps the representation of geoscience
information associated with geologic maps and observation, actually includ-
ing no volume.

The OGC also proposes a wide variety of protocols and standards for
service exchange between applications, based on a client/server approach.
These Web services facilitate interoperability between diverse tools working
on different platforms. The ‘Web Feature Service’ (OGC WFS 2004) proposes
a protocol to query/insert/delete/update distributed geospatial databases
through a standardized and neutral interface. Technologies which are used
to effectively store the data are hidden by such interface: responses and re-
quests exchanged between the client and the service are encoded in XML and
geospatial data are delivered to the client over the Internet in GML 3. All
these notions, spatial schema, SFS, GML and WFS, are important as they
represent a standard way to manage data and operators in geospatial tools.
The standardization organisms are only starting to revise their standards and
specifications in order to better integrate 3D notions. GML 3.x is a good ex-
ample of such an evolution, there is still work to be done to bring the other
standards to a complete tridimensional stage.

At the time we made an inventory of GIS/CAD/DBMS capabilities to per-
form volumetric data manipulations (Pouliot et al. 2006), we notified some
elements. Although GIS and spatial DBMS commonly allow the data stor-
age of X, Y, Z coordinates, the majority only enables the management of
features with a point, a curve or a surface geometry or a possibly hetero-
geneous collection of the previous types such as proposed by the SFS for
SQL (OGC SFS 1999). Last summer, Oracle announced Oracle 11g in which
they will support three dimensional data types (a solid); geometry consists
of multiple surfaces and completely enclosed in a three-dimensional space.
Very few GIS and spatial DBMS software propose models of the raster type
(i.e. voxels), except perhaps MapInfo’s Engage 3D. The 3D spatial analyses
are generally limited to visibility, slope (gradient/orientation) and convexity
(profile/plane) computations. Finally no GIS or DBMS allow 3D topological
analyses.

120 Pouliot, Badard, Desgagné, Bédard and Thomas

Computer-aided design software (CAD) offer a wide range of geometric
models (wireframe, surface, volume) but from a volumetric point of view,
they are not actually linkable to a database. Solid objects are usually repre-
sented as a collection of surfaces forming closed volumes such as B-Rep. Other
modeling’s software in the CAD category have been developed for specific
applications. For example, Gocad software is a 3D modeling tool specifically
designed for earth sciences. 3D representation in Gocad is based on some 3D
structures (B-Rep, voxel and tetrahedral models).

7.3 Web Geological Feature Server (WGFS)

From this review and having in mind the specific requirements of the gov-
ernmental agency7 partner in the GEOIDE project, we proposed a Web Ge-
ological Feature Server (WGFS). WGFS is a generic and open coupled envi-
ronment integrating an existing 3D modeling tool, a 3D spatial DBMS and
a server while take advantage of Web-based and standard-compliant spatial
applications.

At present, 3D Geomodels of our partner are built in Gocad software with
the help of information such as attribute and spatial data coming from an
external geospatial database (GeoDB). They are quite familiar and pleased
with the performing 3D modeling tool and do not want to change their mod-
eling procedure. Nevertheless, once the 3D Geomodel is built, they have no
mean, mainly because the spatial DBMS in which the GeoDB is stored does
not manage volumetric objects, to return back this new 3D information in
the GeoDB and share this valuable knowledge with a larger community of
users. The first issue in this context is then to extend the GeoDB to be able to
manage volumetric object. Then, and because we wanted to take full advan-
tage of the 3D modeling tool and not having to develop every 3D functions
for data handling, the system will be able to interactively link a performing
3D modeling software with a GeoDB through functions of:

• being informed of available 3D Geomodel stored in a GeoDB;
• data selection and querying the GeoDB over the Web;
• importing selected descriptive (qualitative and quantitative attributes)

and geometric data (point, line, surface and solid) into the 3D modeling
software;

• modification and creation of new spatial features (actual functions of the
3D modeling tool), while having access to descriptive data;

• returning back the new 3D feature (attribute and spatial data) into the
GeoDB.

WGFS was developed with the objective of linking 3D modeling software
to a DBMS because this kind of system ensures a reliable, fast and multi-user
7 Québec Ministère Ressources naturelles et Faune (MRNF)

7 Development of a Web Geological Feature Server 121

access to data. In order to provide interoperable capabilities to the system,
geospatial data access and delivery is performed through an interoperable
Web Protocol. The interoperable approach we adopted relies on ISO and
OGC standards for the definition of geometric objects and spatial operators
(ISO 19107 – Spatial schema, OCG GML) as well as for the online services
used (OGC WFS). WGFS allows thus to provide access, via the Web, to
geospatial data and operators located on a server for multiple users who do
not have the same modeling tools.

In accordance with our partner’s priorities, first tests and experiments
should be performed with the 3D modeling software Gocad, a complex 3D
GeoModel of the Porcupine-Destor region (north-western Québec, Canada)
containing surfaces and tetrahedral solids built in Gocad© by Fallara et
al. (2004) and partial information (mainly attributes of lithology and strati-
graphic classes) extracted from the geospatial database SIGEOM.

7.4 System architecture and implementation

WGFS is based on a three-tier software architecture composed of a client
(Gocad), an application server (WFS compliant software) and a database
management system (MySQL). This type of architecture allows many clients
to access and share the same data because data are centralized in a common
‘database’. Each user can access data with the help of a client-application
linked to the server via a network, either local or Internet. The application-
server enables the connection between the client and the DBMS and it hosts
the components which hold the system’s applicative logic where data pro-
cessing is performed. In addition, such a three-tier software architecture fa-
cilitates the deployment and maintenance of the system: the application does
not require to be installed on all client’s computers, only the server has to be
updated when an upgrade or a change in the application is performed. The
architecture of the WGFS is presented in figure 1.

As, at present, DBMS do not support volumetric geometries, two alterna-
tives were examined to store 3D objects. We could have stored our geological
models in a 3D topological data structure adapted to geological context such
as the GeoTEN designed by Lachance (2005) or TEN (Tetrahedral Network
Structure) by Pilouk (1996). For simplicity and efficiency reasons it has been
decided to directly store geological models as GML documents in a rela-
tional table of the DBMS. Storing GML documents in a native XML DBMS
could also have been possible but at present they are not as fast as relational
DBMS. The well-known and widely used DBMS MySQL has been chosen for
performance, deployment rapidity and simplicity reasons. The geometry of
the objects is stored as GML objects (text) and their attributes are stored as
fields in the relational table. To accelerate spatial queries, a pseudo spatial
index was implemented by storing the ‘bounding box’ (spatial envelope) for

122 Pouliot, Badard, Desgagné, Bédard and Thomas

Fig. 7.1 Architecture of the Web Geological Feature Server (WGFS) prototype

each GML object. It allows a faster retrieval of the objects in the table. Fig-
ure 2 illustrates the structure of the relational table which stores the GML
documents. Even though this storing strategy is not optimal for data man-
agement, it enables the rapid and easy implementation of the 3D models in
the database.

Fig. 7.2 Example of the storage of the bounding box coordinates of objects in the
relational table of the DBMS

GML version 3 allows 3D objects to be represented with composite geome-
tries. In GML 3.x, objects are thus composed of a collection of homogeneous
primitives such as compositeCurves, compositeSurfaces and compositeSolids.
It is then possible to construct a tetrahedral model as a collection of com-
positeSolids where each solid is a tetrahedron composed of surfaces. Figure 3
illustrates the composition relationships which occur in a 3D model: it is com-
posed of one to many compositeSolids that are themselves composed of one
to many tetrahedrons. This model is compliant with Gocad data model where
a solid (referred as TSolid) can be modelled as a specialised tetrahedron.

7 Development of a Web Geological Feature Server 123

Fig. 7.3 Composition of a 3D model in GML 3.x

The application server is the core of this three-tier system; it is where
geospatial processing is performed. This part of the architecture is based on
an open source WFS implementation, Deegree from the University of Bonn
in Germany. Deegree is a Java Framework offering the main building blocks
for Spatial Data Infrastructures. Deegree has been chosen because its entire
architecture is developed using standards of the Open Geospatial Consortium
(OGC) and ISO/TC 211 (ISO Technical Committee 211 - Geographic Infor-
mation/Geomatics). Especially, it allows the handling of geospatial objects
in compliance with the ISO 19107 – Spatial schema standard (ISO 19107
2002). Nevertheless, some additions have to be performed to the source code
of Deegree (which is possible because it is an open source solution) in order to
enable the support of 3D objects. Indeed, Java classes allowing the modeling
of 3D objects were not available (empty classes) when we have implanted
the WGFS system. For instance, some GM Solid subclasses have been coded
in order to enable the generation of truly 3D GML 3.x messages. Remem-
ber, it is not because a system can produce GML 3 compliant messages that
all these messages necessarily contain 3D geospatial objects! GML 3 is just
an encoding. Our modified version of the Deegree WFS has been deployed
through the well-known and widely used Servlet and JSP container, Tomcat
from the Apache Foundation.

In addition, we have designed and developed a specific interface (a DataS-
tore) in order to enable the connection with the DBMS. Deegree already offers
different DataStore to connect to commonly used geospatial DBMS (Oracle,
PostGIS, . . .), but as mentioned previously, none of these DBMS allows the
storage of 3D objects. The DataStore we developed enables the consistent
processing of queries dealing with 3D objects and sent to the WGFS system
by the client (selection, insert, updates). In order to be able to process all
kind of selection queries, spatial operators (union, intersection, etc.) should
have been extended for 2D to 3D. At present, no API (Application Program-
ming Interface) fully offers such 3D processing capabilities. For experiments
purposes, we have only extended the basic BBox (Bounding Box) operator.
It allows us to provide responses to selection queries as ‘give me all objects
contained in the following 3D bounding box’.

Finally, the client part of the architecture is composed of the client mod-
eling software and a WGFS plug-in. Because our partner was using Gocad©
modeling software and thus it is a valuable 3D geological modeling tool, our
system architecture was built with Gocad© as a client. In order to allow Go-
cad users to build and send queries and then receive results from the server, a
plug-in and a data converter has been designed. The plug-in provides a stan-

124 Pouliot, Badard, Desgagné, Bédard and Thomas

dard interface for those operations. Each operation is performed in a trans-
parent way for the user. The client is linked to the application server over a
network and the query system between both tiers is implemented following
the WFS specification (OGC WFS 2004). When a query is sent to the server
from the client-end, the data returned as the result of the query are in GML
format. The XML Parser receives the GML document and then translates
it to Gocad object format and vice-versa. The Java Native Interface (JNI)
is used to enable the data transfer between the XML parser (in our case in
Java) and the Plugin in C++. These GML documents contain spatial as well
as descriptive data. However, it is not usually possible to query descriptive
information in CAD systems. We have developed a tool in order to be able to
query those descriptive data in Gocad. It is thus possible to directly access
the attributes of each object once they are imported in Gocad.

The architecture has the advantage that other 3D modeling software pack-
ages could easily be linked to the application server with only the development
of a new plug-in for the translation of GML standard documents into software
formats.

7.5 WGFS in action

As quoted previously, the prototype allows multiple clients to access and share
data located on a server. Diverse operations are performed in order to pro-
vide the client with geological data. First, the user sends a query through the
Gocad plug-in to know what data are available on the server. A WFS getCa-
pability query is thus sent to the server which then relies on its DataStore to
get the information. This information is subsequently sent to the client who
receives a list of all the available data in XML format. From there, the user can
select the data he/she wants to get into his/her system, again with the help of
the Gocad plug-in. The client selects a dataset and he can optionally specify
constraints for the importation such as a bounding box (tridimensional enve-
lope) or selection by attributes characterizing the data. The figure 4 presents
the WGFS query dialog to get available 3D GeoModels and perform a selec-
tion query based either on a portion of the GeoModels (BBOX) or on values
of descriptive attributes stored in the GeoDB.

When the user sends the query, the plug-in transmit a getFeature WFS
query to the application server. The server then sends an SQL query to the
database containing the data to retrieve the information asked by the client.
Data are consequently extracted from the database and sent to the client in
GML documents. The figure 5 illustrates an example of SIGEOM GeoDB
content.

From there, the plug-in translates the GML exchange into the Gocad 3D
data structure. The next figure illustrates a group of tetrahedral displayed in

7 Development of a Web Geological Feature Server 125

Fig. 7.4 WGFS plug-in interface for Gocad. A getFeature query is built to get the
complete ‘porcupine’ odel in Gocad

Fig. 7.5 Example of SIGEOM GeoDB descriptive data

the Gocad interface with descriptive data made available by the Interrogation
(I) button specifically added in the Gocad menu.

Up to now, the WFS getFeature and the transactions insert, delete and
update operations have been implemented. Some tests and experiments were
made with a complex 3D GeoModel (11.4km x 4km x 1km). We used a small
portion (2.5km x 1.5km x 900m) of the complete GeoModel to build 267
tetrahedral solids (see figure 7).

A database containing the solids and their attributes (lithology and stratig-
raphy) derived from the SIGEOM database was also built. This allows a user

126 Pouliot, Badard, Desgagné, Bédard and Thomas

Fig. 7.6 Example of 3D Geomodel retrieved in the WGFS and displayed in the Go-
cad environment with available identification data and descriptive attributes coming
from the SIGEOM GeoDB (see Information window)

Fig. 7.7 Portion of the 3D GeoModel of the Porcupine-Destor model (Fallara et al.
2004) used to test the WGFS

7 Development of a Web Geological Feature Server 127

to build a query with filter expression based on descriptive data such as
lithology = ‘V3B’ AND stratigraphy = ‘[arch]3’.

In order to validate our solution, we implemented a prototype version of the
WGFS in the office of the Québec MRNF. Preliminary results demonstrated
good response from geologists and spatial data managers. It helped us to
demonstrate the importance of using such a geospatial database approach,
thus improving the efficiency of data management, exchange and analysis.
Next steps will concern testing the performance of such system.

7.6 Conclusion

As we specified in the literature review, proposal for 3D GIS development
is not new. Several authors agree on the necessity of having a connection
between 3D Geomodels (or 3D modeling tools) and actual spatial database
systems. Nevertheless, we did not have access to interconnected 3D geomod-
eling tools and DBMS, neither on commercial solutions and R&D activities.

As far as we know, the innovative part of our work is to have implemented
a system that fully integrates a 3D modeling tool, a spatial DBMS (with
3D primitive), and this especially over the Web (Web services). OGC and
ISO/TC211 standards and open solution choices insure portability and easy
extensibility. At present, a plug-in has to be installed in Gocad. Other 3D
modeling software packages could easily be linked to the application server
with only the development of a new plug-in for the translation of GML stan-
dard documents to software formats.

Until now, simple 3D primitive (polyhedron), few 3D objects and a pseudo
spatial index storing the ‘bounding box’ of each GML object were chosen to
experiment the feasibility of this open and generic architecture. Next steps
have to estimate the efficacy and limitations of this architecture. In addi-
tion, the integration of some conceptual aspects of our development with the
GeoSciML application language would improve the exchange and sharing of
geoscience data.

Acknowledgements

We want to thank GEOIDE Network (http://www.geoide.ulaval.ca/)
and NSERC (http://www.nserc-crsng.gc.ca/) which funded the research
project that leaded to the ideas presented in this paper. We also want to
thank our partners, R. Marquis, F. Fallara and G. Perron respectively from
Québec MRNF, Université du Québec en Abitibi Témiscaminque and Mira
Geoscience, and finally, Tobias Frank at that time at Technische Universität
Freiberg, for helpful comments for Gocad developments.

128 Pouliot, Badard, Desgagné, Bédard and Thomas

References

Apel M (2006) From 3d geomodelling systems towards 3d geoscience informa-
tion systems: Data model, query functionality and data management. Com-
puters & Geosciences 32: 222-229

Arens C, Stoter J, van Oosterom P (2005) Modelling 3D objects in a Geo-
DBMS using a 3D primitive. Computers & Geosciences 31: 165-177

Balovnev, O., Breunig, M., Cremers, A.B., 1997. From GeoStore to GeoToolKit:
the second step. Proceedings 5th International Symposium on Spatial Databases,
Berlin, Lecture Notes in Computer Science 1262. Springer, Berlin : 223-237.

Bédard K (2006) 3D geological model construction in the standardization era
(in French). Masters dissertation, Université Laval, Canada

Breunig M (1999) An approach to the integration of spatial data and systems
for a 3D geoinformation system. Computers & Geosciences 25: 39-48

Breunig, M., 2001. On the way to component-based 3D/4D geoinformation
systems. Lecture Notes in Earth Sciences 94, Springer, Berlin, Heidelberg

Fallara F, Legault M, Cheng LZ, Rabeau O, Goutier J (2004) 3D model of a
segment of the Porcupine-Destor Fault, metallogenic synthesis of Duparquet
(phase 2/2) (in French). Ministère des Ressources naturelles et de la Faune
du Québec. 3D 2004-01. CD

Fallara F, Legault M, Rabeau O (2006) 3-D integrated geological modeling
in the Abitibi Subprovince (Québec, Canada): Techniques and applications.
Exploration and Mining Geology 15: 27-41

Frank T, Apel A, Schaebec H (2003) Web Integration of gOcad Using a 3d-
Xml Application Server. 23rd Gocad Meeting, Nancy, June 10-11

Gong J, Cheng P, Wang Y (2004) Three-dimensional modeling and appli-
cation in geological exploration engineering. Computers & Geosciences, 30:
391-404

Jessell M (2001) Three-dimensional geological modeling of potential-field
data. Computers & Geosciences 27: 455-465

Kessler H, Lelliott M, Bridge D, Ford F, Sobisch HG, Mathers S, Simon Price
S, Merritt J, Royse K (2005) 3D geoscience models and their delivery to cus-
tomers. Annual Meeting of the Geological Society of America, 3D geologic

7 Development of a Web Geological Feature Server 129

mapping for groundwater applications. Salt Lake City, Oct 15

Lachance B (2005) 3D topological data structure development for the analy-
sis of geological models (in French). Masters Dissertation, Université Laval,
Canada

Larrivée S, Bédard Y, Pouliot J (2005) How to enrich the semantics of geospa-
tial databases by properly expressing 3D objects in a conceptual model. The
First International Workshop on Semantic-based Geographical Information
Systems (SeBGIS 05), Ayia Napa, Cyprus, November

Mallet JL (2002) Geomodeling. Oxford University Press, New York

OGC SFS (1999) Simple Features Specification For SQL, Revision 1.1,
OpenGIS Project Document 99-049, Release Date: May 5

OGC GML (2004) Geographic information – Geography Markup Language
(GML). Open Geospatial Consortium, ISO/TC 211/WG 4/PT 19136

OGC WFS (2004) Web Feature Service Implementation Specification. Open
Geospatial Consortium, OGC 04-094

Pouliot J, Desgagné E, Badard T, Bédard K (2006) SIG 3D : Où en sommes-
nous et quelles sont les avenues de développement ? (in French) Géomatique
2006, Montréal, Oct 25-26

Pouliot, J, Bédard K, Kirkwood D, Lachance B (2007 accepted). Reasoning
about geological space: Coupling 3D Geomodels and topological queries as
an aid to spatial data selection. Computers and Geosciences.

Raper, J. (Ed.), 1989. Three Dimensional Applications in Geographical In-
formation Systems. Taylor and Francis, London.

Pilouk, M., 1996. Integrated modelling for 3D GIS. Ph.D. Thesis, ITC, The
Netherlands.

Shi W, Yang B, Li Q (2003) An object-oriented data model for complex
objects in three-dimensional geographical information systems. International
Journal of Geographical Information Science 17: 411-430

Shumilov S. and Breunig M (2000) Integration of 3D Geoscientific Visualisa-
tion Tools with help of a Geo-Database Kernel, 6th EC-GI & GIS Workshop
‘The Spatial Information Society - Shaping the Future Lyon’, France, 28-30.

130 Pouliot, Badard, Desgagné, Bédard and Thomas

Sprague, K., de Kemp, E., Wong, W., McGaughey, J., Perron, G., Barrie, T.,
2006. Spatial targeting using queries in a 3-D GIS environment with applica-
tion to mineral exploration. Computers & Geosciences 32 (3), 396-418.

Stoter, JE, van Oosterom, PJM (2002) Incorporating 3D geo-objects into a
2D geo-DBMS. In: Proceedings FIG ACSM/ASPRS, Washington DC, USA

van Oosterom P, Stoter J, Quak W, Zlatanova S (2002) The balance between
geometry and topology. In: Richardson DE, van Oosterom P (eds) Advances
in Spatial Data Handling. Springer, Berlin, pp 209-224

Zlatanova S (2000) 3D GIS for urban development. Ph.D. thesis, Graz Uni-
versity of Technology, Austria

Zlatanova S, Rahman AA, Shi W (2004) Topological models and frameworks
for 3D spatial objects. Computers & Geosciences 30: 419-428

Chapter 8

Using 3D-Laser-Scanners and
Image-Recognition for Volume-Based
Single-Tree-Delineation and
-Parameterization for
3D-GIS-Applications

Jürgen Rossmann and Arno Bücken

Abstract

Today, 2D-GIS applications are standard tools in administration and man-
agement. As with all state-of-the-art systems certain environmental param-
eters were found to be difficult to perceive and convey, such that a novel
3D-presentation of the environment was developed to be more intuitive. The
cost-effective graphics performance of current computers enables the move
towards 3D-GIS and in turn, more detailed views of the environment. While
current forestry-2D-GISs provide information on areas or collection of trees,
the next generation of forestry-3D-GISs will store and make information avail-
able at level of an individual tree. In this paper we introduce an approach
to bring vision technology into the forest. We present a volumetric algorithm
based on the well-known watershed algorithm and use it to detect trees in
laser-scanner point-clouds and four-channel aerial views. Based on this data,
maps and virtual environments, ‘virtual forests’ are generated which can be
used in a 3D-GIS for forest management, disaster management, forest ma-
chine navigation and other purposes.

8.1 Introduction

In recent years, laser-range-finders and image-recognition algorithms have
been continuously enhanced responding to the requirements of modern ap-
plications in the fields of automation, robotics and last but not least surveyor
technology. Currently, laser-scanners are fast and powerful enough to gener-
ate airborne-scans of large areas. LIDAR-sensors can provide up to 150.000
measurements per second at helicopter flight level [1] or 100.000 measure-

Institute of Man-Machine-Interaction, RWTH Aachen
rossmann;buecken@mmi.rwth-aachen.de

131

132 Jürgen Rossmann and Arno Bücken

ment points per second at airplane flight level. [2] These measurements are
then turned into 3D maps of an environment at a resolution of several points
per square meter. Combining the laser-scanned 3D maps with high-resolution
photos, it is possible to generate true-ortho-photos. [3] In a true-ortho-photo,
parallactic distortions have been eliminated; each pixel shows the color infor-
mation virtually as a photo taken from an infinite distance.

In this paper we will show how to adapt these technologies to the area of
GIS in forestry management. We will present an approach to map generation
for huge regions on the level of an individual tree using a combination of
LIDAR-data and true-ortho-photos. The goal of this development is the cre-
ation of a so called ‘virtual forest’, a virtual world representing a real forest
that can be used to administrate biological resources, to navigate through the
corresponding real forest and — in the near future — to control autonomous
forest machines. Our current test forest already includes about 120.000 trees;
more will be added with future flight campaigns.

8.2 Data Acquisition

All examples in this paper are based on data recorded in spring 2004 and
summer 2005 using a Toposys Falcon II scanner [4]. The data shows the area
known as ‘Glindfeld’, which is located close to Winterberg, Germany. The
size of the recorded area was about 82km². The resolution of the LIDAR
data is one point per square-meter, the true-ortho-photos are specified to
have a resolution of four pixels per square-meter. In addition, a high density
data set of a small part of the area was generated during the 2005 flight
session. That data has a LIDAR-resolution of four points per square-meter.

Due to the radius of the laser-point at ground level, approximately 80cm,
multiple echoes may occur (Fig. 1). For each laser-pulse the first echo and
the last echo of a total of eight measured echoes were recorded. The first echo
gives information about the canopy surface (DSM – Digital Surface Model)
whereas the last echo is used to generate a topological model of the ground
(DTM – Digital Terrain Model).

The point-cloud recorded during the flight was converted into a grid-based
representation with a cell-size of 1m x 1m using a Toposys internal software-
package while the DTM was filtered to eliminate plants, buildings and other
disturbances in a partly automated process. Due to hte impenetrability of
dense canopy and of buildings, the resulting DTM shows gaps. A Filled Dig-
ital Terrain Model (FDTM) was generated by interpolating the gaps. In a
last step a Differential Model (DM, also known as normalized digital surface
model nDSM or canopy height model CHM) was calculated as the difference
between the DSM and FDTM. The DM gives the height of the crown surface
of a tree above the ground. This is the most important LIDAR data set for
single tree delineation.

8 Volume-Based Single-Tree-Delineation and -Parameterization 133

Fig. 8.1 Multiple Echoes in LIDAR Recording

The image data recorded by the Falcon II 4 channel line scanner was
normalized and converted to true-ortho-photos in RGB (red, green and blue
channel) and CIR (near-infrared, red and green channel)(Fig. 2).

8.3 LIDAR Processing

The LIDAR DM can be seen in two ways: As a three-dimensional model
of the canopy or as a two-dimensional height-map (Fig.2). The latter view
leads to the use of a watershed algorithm for single tree delineation. [5] With
a standard watershed-algorithm the z-axis of the three dimensional data is
only used to generate gradients and calculate affiliations, resulting in a set of
areas, each annotated with its size. Thus, the size of the region would be the
only criterion to decide whether a region represents a tree or only a branch
of a tree.

We decided to use the full 3D-information and therefore, to look at the
volume the peaks pointing out of the canopy. One way to get an approxi-
mation of all peak-volumes is to modify the watershed-algorithm to work on

134 Jürgen Rossmann and Arno Bücken

Fig. 8.2 The Source Data: Aerial Photos in RGB and CIR, Differential Model in
Height Map-Representation and in 3D-Visualisation

three dimensional data. For the illustration of the following algorithm we will
use a sectional drawing through a three dimensional DM. Fig. 3a shows some
trees and the sectional drawing above them. To make it easier to imagine
rainfall and water-flow we turned the sectional drawing upside down in the
subsequent images with the most significant points – the maximum heights
in the original data that may represent tree-tops – as local minima of the
graph. Fig. 3b illustrates the idea of a standard watershed algorithm. Wa-
ter is poured over the area uniformly. The water-flow is simulated and the
amount of arriving water is measured at all local minima.

To get volumetric information we figuratively fill the DM with water. Then,
in each cycle, we puncture the point with the most water-pressure acting on
it and measure the amount of water streaming out of this opening. (Fig. 3c)
The result is a value which is always higher than or equal to the real volume
of the peak. Interestingly, the result is far from the real volume for the most
extreme points (areas that are most likely treetops) but very close to the
real volume for the critical peaks that are hard to decide. For each opening

8 Volume-Based Single-Tree-Delineation and -Parameterization 135

Fig. 8.3 Single Tree Detection in LIDAR data. a) Trees and LIDAR Information,
b) Watershed-Algorithm, c) Volumetric Algorithm – First Cycle, d) Last Cycle

with a volume greater than a user-specified threshold, a tree is generated in
the map using the x and y position of the puncture - which is always the
highest point within its peak –, the z value taken from the FDTM. The tree
is annotated with its height, which can be determined from the DM. Fig. 3d
shows a situation where only one peak is left. The remaining volume is below
the threshold so no tree will be generated at this position.

In contrast to the well known 2D approach, the volumetric approach adds
another dimension to the data used for calculation and makes it easier to
decide whether a peak is a tree or just a tree branch. This is especially valuable
for the available data because the z-axis of the grid-based DM-model has a
resolution of 1cm compared to the 1m-resolution of the x- and y-axis.

Using the volumetric algorithm, the percentage of correctly detected tree-
tops increased significantly. We compared the two available resolutions of LI-
DAR data and, not surprisingly, the higher resolution proofs produced better
detection results.

The data-points measured with a Falcon II scanner were inhomogeneously
distributed over the surface. The average rate was specified to be one mea-
surement per square-meter, but the deviation was rather high. There were
some grid cells measured with as much as six laser points whereas other cells
were not hit at all by the laser beam. Unfortunately, there were connected

136 Jürgen Rossmann and Arno Bücken

areas of up to 25 square meters occurred that had not been hit. This led to
the question how the results may look on a homogeneous distributed data
set. We decided to use the true-ortho-photos for this.

Fig. 8.4 RGB Image and Image after Color Tone based Brightness Reduction

8.4 RGB and CIR Processing

A key idea of the presented approach is that the same volumetric ap-
proach used for LIDAR data for processing is also applied to the true-ortho
photos. Substituting DM height values with brightness information derived
from the aerial photos allows the algorithm to focus on bright spots in the
picture. These may be tree-tops or white marks on a street. There are two
ways of eliminating unwanted bright spots: Classification of the detection
results or filtation of the picture before the detection starts. We chose to fil-
ter the picture because we did not want to lose the ability to overestimate
the most likely positions, which may happen if artificial marks are brighter
than tree-tops in the selected input-channel. We applied a color tone based
brightness reduction filter. (Fig. 4) The color tone was calculated using all
four available channels (red, green, blue and near-infrared). The brightness
and color of a pixel were adjusted based on the distance of its original color
from a specified area of colors within the color-space that represents trees.

In the resulting image we chose the green-channel of the RGB image –
which is characteristic for trees – as input for the detection-algorithm. Fol-
lowing the optical impression, this data looks similar to the LIDAR-data.
We associated height-levels with brightness-levels in the green-channel and
used the described volumetric algorithm on the camera data. The true-ortho-
photos are geo-referenced so the position of a pixel can be associated with

8 Volume-Based Single-Tree-Delineation and -Parameterization 137

a geo-coordinate giving the x- and y-coordinate of the selected brightness-
maximum in the algorithm. The z-coordinate and height of the tree are gener-
ated the same way as during calculation with LIDAR data: they can be read
out of the FDTM respectively the DM. These tree candidates are filtered
by using the LIDAR-information. Thus, if the height of the tree is outside a
user-selectable range, the tree is neglected.

Fig. 8.5 The Threshold for the Volumetric Algorithm can be set interactively using
a Slider

8.5 Results

The described algorithms were implemented in a 3D-GIS. Because the thresh-
old needed for the volumetric algorithm depends on the density and age of
the forestry unit, it can be set interactively. (fig. 5)

The result of changing the threshold is displayed in real-time to help the
user find the correct value for each forest unit. In general, older units require
higher thresholds because smaller peaks will most likely represent branches
whereas a peak with the same volume in a younger unit will most likely be a
tree-top.

Fig. 6 shows the results for the algorithm with LIDAR data. The left
image shows the detected trees as points on a grayscale image that displays

138 Jürgen Rossmann and Arno Bücken

Fig. 8.6 Results of the volumetric Algorithm on LIDAR data displayed on a
grayscale representation of the LIDAR data and on an rgb true orthophoto

the values of the DM. The detected points seem to describe the trees in the
real world. However, upon comparison to the rgb aerial photo of the same area
it turns out that a large number of trees are not detectable in the LIDAR
data – even for a human operator. Some examples are marked with white
circles in the left image.

Fig. 8.7 Results of the watershed Algorithm (left) and the volumetric Algorithm
(right) on aerial photos

A comparison between the watershed algorithm and the volumetric algo-
rithm presented in this paper is shown in fig. 7. The results of both algorithms
seem to match the scenery. The white circles in the pictures mark positions
where either a tree was detected twice or a human operator would expect
additional trees.

For one unit we had ground truth data measured with an absolute precision
of 15cm. In this unit we compared the results of the algorithm with the

8 Volume-Based Single-Tree-Delineation and -Parameterization 139

real situation. The volumetric algorithm detected 95 percent of the trees
correctly (Fig. 8) while the watershed algorithm only delivered 84 percent.
With LIDAR data the detection rate was very poor, about 60 percent. The
visual impressions on aerial photos of units where we do not have ground
truth data support these values.

Fig. 8.8 Results of the Volumetric Algorithm compared to Ground Truth Data.
Solid Marks indicate recognized Trees, white Circles mark known positions of a Set
of Sample Trees

Although the detection rate gets better using the visual data, LIDAR-data
will typically deliver better tree-positions. RGB and CIR shots depend on the
actual light situation. At noon with the sun in a very high position the tree-
tops are the brightest point of a tree, giving accurate results. However, if an
image is taken in the late afternoon, the sun only lights one side of a tree,
moving the center of the brightest spot away from the tree-top. Addition-
ally, within the test-area of 82km² we found several places where lightning
conditions made it hard to recognize trees – even for a human operator.

140 Jürgen Rossmann and Arno Bücken

8.6 Applications

8.6.1 Forestry GIS

The single tree-delineation algorithm was developed for a 3d forestry GIS.
This system can support forestry experts in planning the economical usage
of a forestry area, from seeding to harvesting. Ownership and size of a tree can
be monitored, felling activities can be planned and ideal trees for a certain
commission could be searched within the 3D-GIS.

For these activities not only tree-positions, but also properties of the indi-
vidual tree are important. The most important key-parameter is the (stem-)
diameter at breast height (DBH). This parameter is usually measured on-site,
i.e. on the ground, using a pincer, so there are a lot of publications showing
statistical relations between the DBH and a number of other parameters of
a tree [6][7]. In particular, the timber volume, which is critical for the value
of an individual tree, depends on the DBH and the height of the tree.

According to Hyyppä [8] the DBH can be calculated using the height of
the tree and the diameter of its canopy:

DBH = αL+βh+ γ
In this equation α, β , and γ are parameters depending on the local situa-

tion of the tree, L is the crown-diameter and h represents the height.
Using the known position of each tree in a forestry unit the crown diameters

are calculated by a gradient descent algorithm starting at the treetop of each
tree. A point reachable by a gradient descent from multiple treetops is added
to the most likely tree or – if the point is located at a height minimum between
two trees – it is added in parts to all adjacent trees. This calculation has been
implemented using a stepwise calculation on each of the discrete height levels
and presorted height points.

Knowing the parameters of the individual trees the value of the biological
repository can be estimated more precisely. This may help in selling standing
wood and getting better prices.

The virtual forest can be used to plan harvesting actions. Simulations can
show how to harvest most economically. Depending on the slope of the ground
and the distribution of the interesting trees a lumberjack or a harvester could
be the better choice.

When looking for trees with special attributes, a virtual forest – a tree-
oriented geo-database – can show where to find appropriate trees or groups
with a significant number of such trees.

Tools like SILVA [10] can simulate forestry growth. The virtual forest is
an excellent foundation for growth prediction because the position and the
important growth parameters of every tree in the forest are known exactly.

8 Volume-Based Single-Tree-Delineation and -Parameterization 141

8.6.2 Visual GPS

Using particle filters it is possible to find groups of trees in the virtual forest,
even given a significant uncertainty between the real stem positions and the
derived positions. In a first example, we found that it was possible to detect
a group of 34 trees in a forest of about 15.000 trees, even if the sample trees
showed an average position error of 6m. This may lead to using a virtual
forest for special purpose navigation systems. The virtual forest database
can be used as a map. While GPS systems often deliver poor results in dense
forests, a visual GPS using additional information out of the virtual forest
and a laser or visual sensor for local tree detection could provide improved
position information.

8.6.3 Accessibility-Check

Using the 3D-GIS including the filled digital terrain model and positions of
individual trees it becomes possible to check whether a point in the forest
is reachable by huge forest machines. The slope lateral to the path can be
checked as well as the horizontal clearance towards the individual trees. Com-
bining both information a route can be declared accessible or not. The 3D-GIS
supports visual feedback for the user in order to understand the results.

Fig. 8.9 Applications of the Virtual Forest in a Virtual Reality Environment – Forest
Machine and Disaster Simulation

142 Jürgen Rossmann and Arno Bücken

8.6.4 Forest Machine Simulation

Today, forest machines are complex vehicles featuring multiple driver con-
trollable degrees of freedom. For example, a harvester is equipped with a
manipulator with up to 10m grip-range, the harvesting head has multiple
knifes, wheels and a chain-saw and the chassis may have several hydraulic
cylinders controlling the level of each wheel. Due to the number of simulta-
neous controlled joints, the handling of a modern harvester becomes complex
and difficult. It has been shown that driver training on forest machine sim-
ulators makes it easier to handle the real machine. Damage and breakdown
of the machine were reduced dramatically as well as damage to the trees,
increasing the value of the harvested wood.

The data stored in the forestry 3D-GIS is used to generate virtual envi-
ronments for out forest machine simulators, enabling a very realistic training
scenario. The slope of the environment is again taken from the FDTM and
the individual trees are generated with their parameters as species, height
and DBH and placed at the appropriate positions in the simulation.

8.6.5 Disaster Management

The virtual forest gives a very realistic impression of the environment. Ac-
cessibility and a precise idea of the local situation are vital facts especially
for use in a rescue procedure as part of disaster management. The data used
in the 3D-GIS could be exported for use in a virtual reality system where all
other features of our simulation system may be used – for example several
types of vehicles and a fire-simulation displaying actual situations in order to
discuss several possibilities of intervention.

During the rescue mission the virtual GPS could provide better localization
information to the rescue team, helping them to find the scene faster and
more efficiently. In combining the virtual GPS with the accessibility check an
efficient forest navigation system can be implemented.

8.7 Conclusions

The volumetric algorithm presented in this paper shows a significantly better
result compared to the well-known 2D-watershed-algorithm. It reaches detec-
tion rates up to 95 percent on homogeneous data with a resolution of 0.5m
per measurement point. The results scale with the resolution and the homo-
geneity of the data, so working on camera data delivering a homogeneous
distribution with a high resolution delivered the best results.

8 Volume-Based Single-Tree-Delineation and -Parameterization 143

The single-tree delineation shown in this paper was implemented in our 3D-
GIS in order to generate the data needed for a virtual forest. Several graphical
representations (view from above, 3D using symbols instead of trees and high-
definition rendering of scenes) were added to the system (Fig. 10).We have
already populated a number of forestry units with a total of about 120.000
trees. During this work we discovered several points which will still require
continuing effort:

The results were best using high-resolution data with a homogeneous dis-
tribution of the individual measuring points. Promising candidates to deliver
appropriate data may be stereoscopic cameras like the DLR HRSC [9] or
LIDAR scanners with a swinging or rotating mirror, which are capable of
delivering a higher resolution. During the next steps of the project we will
import this data in the 3D-GIS and evaluate its quality for the volumetric
algorithm.

We currently use a recent official forestry unit classification. The approach
works well on units with a homogeneous age and species structure of the
trees while the usage becomes difficult if there are several species or age
classes of trees in the same unit. In order to increase comfort and usability we
are integrating algorithms to classify and segment the area into appropriate
units, mostly featuring a homogeneous tree age and species structure. For
the remaining units we need to look at colors and shapes of the tree-tops to
group them into younger and older trees and divide them by species.

Fig. 8.10 A view into the Virtual Forest – a computer graphics frontend to the
database

.
The Hyyppä formula we currently use to calculate individual tree prop-

erties is based on local constants α, β and γ which must be determined for
each forest section. It turned out that the variance of the three parameters is

144 Jürgen Rossmann and Arno Bücken

rather high. A promising approach for important forestry units is combining
the aerial view with ground measured data. Matching the positions of air-
borne detected trees with the ground detected trees will result in complete
sets of parameters (DBH, height and crown diameter) for these trees. The
complete sets can be used as samples for calculating the Hyyppä-parameters
for the unit by using regression formulas. We are going to use ground-based
laser-scanners to gather the requested calibration data in the next phase of
the project.

References

1 Leica ALS50-II Technical Specification, Leica Geosystems, Heerbrugg
Switzerland, www.leica-geosystems.com

2 Riegl LMS-Q560 Technical Specification, Riegl Laser Measurement Sys-
tems, Horn, Austria, www.riegl.com

3 Katrin Schnadt, Rolf Katzenbeisser: Unique Airborne Fiber Scanner
Technique for Application-Oriented Lidar Products, International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences,
Vol. XXXVI - 8/W2

4 Toposys Falcon II Technical Specification, Toposys GmbH, Biberach,
Germany, www.toposys.de

5 O. Diedershagen, B. Koch, H. Weinacker, C. Schütt. Combining LIDAR-
and GIS-Data for the Extraction of Forest Inventory Parameters, 2003

6 Kramer, H. und Akça, A. Leitfaden zur Waldmesslehre. 3. erw. Aufl.
Frankfurt a.M., Sauerländer. 266 S., 1995

7 Landesanstalt für Ökologie, Landschaftsentwicklung und Forstplanung
Nordrhein-Westfalen. Hilfstafeln für die Forsteinrichtung. 3. Auflage,
1989

8 J. Hyyppä, M. Inkinen. Detecting and estimating attributes for single
trees using laser scanner. The Photogrammetric Journal of Finland, Vol.
16, No. 2, s. 27-42, 1999

9 F. Scholten, S. Sujew, F. Wewel, J. Flohrer, R. Jaumann, et al.: The
High Resolution Stereo Camera (HRSC) - Digital 3D-Image Acquisition,
Photogrammetric Processing and Data Evaluation. ”Sensors and Map-
ping from Space 1999” ISPRS Joint Workshop, Hannover, 27.-30.9.1999,
International Society of Photogrammetry and Remote Sensing (ISPRS),
International Society of Photogrammetry and Remote Sensing Proc. of
Joint Workshop ”Sensors and Mapping from Space 1999” (CD-ROM),
(1999)

10 H.-J. Klemmt, P. Biber, H. Pretzsch: Mit SILVA in die Zukunft des
Waldes blicken, LWF aktuell, Bayrische Landesanstalt für Wald und
Forstwirtschaft, No. 46, 2004

8 Volume-Based Single-Tree-Delineation and -Parameterization 145

11 J. Holmgren. Estimation of Forest Variables using Airborne Laser Scan-
ning, 2003

12 J. Holmgren, A. Persson, U. Södermann. Identification of tree species of
individual trees by combining very high resolution laser data with multi-
spectral images. Workshop on 3D Remote Sensing in Forestry, Vienna
2006

13 E. Naesset. Determination of mean tree height of forest stands using air-
borne laser scanner data, 1996

Chapter 9

Automatic building modeling from
terrestrial laser scanning

Shi Pu

Abstract

We present an automatic approach to create building models from terrestrial
laser points. Our method starts by extracting important building features
(wall, window, roof, door, extrusion) from segmented terrestrial point cloud.
Then visible building geometries are recovered by direct fitting polygons to
extracted feature segments. For the occluded building parts, geometric as-
sumptions are made from visible parts and knowledge about buildings. Finally
solid building models can be obtained by combining directly fitted polygons
and assumptions for occluded parts. This approach achieves high automation,
level of detail, and accuracy.

9.1 Introduction

The topic of building reconstruction has been a research of interest, due to
the increasing demand for accurate three-dimensional building models from
various fields, such as urban planning, construction, environment safety, navi-
gation, and virtual city tourism. Manual creation of a building model is a slow
procedure. For example, it is necessary to measure the length of all the wall
edges to make a wall face. This operation can be rather time-consuming when
the target building contains too many edges, and/or there are many buildings
to be modeled. Manual building modeling is also an inaccurate procedure, be-
cause visual measurement of geometric properties (distance/size/area) may
depend on human operator.

International Institute for Geo-information Science and Earth Observation
P.O. Box 6, 7500AA, Enschede, the Netherlands
spu@itc.nl

147

148 Shi Pu

After several years’ work, a lot of algorithms and systems have been pro-
posed towards the topic of automatic building reconstruction. However, a
versatile solution has not been found yet, with only partial solutions and
limited success in constrained environments being the state of art [9]. This
is mainly because digital imagery is the only data source used for the recon-
struction for a long time, and it is still hard to recover 3D building structures
from 2D image. Recent studies ([2] [6]) show that laser scanning data can be
a valuable data source for the automatic building reconstructing. Comparing
to digital imagery, airborne and terrestrial laser scanning give explicit 3D in-
formation, which enables the rapid and accurate capture of the geometry of
complex buildings. In particular, terrestrial laser scanning is able to provide
very dense point clouds of building facades, which gives enough raw data
from which high detailed 3D building models can be obtained automatically.

We propose a bottom-up building reconstruction process based on terres-
trial laser scanning as the following steps:

1. Feature extraction, where important building features (walls, windows,
doors, etc.) are recognized and extracted;

2. Modeling, where recognized features are fitted to geometric shapes (poly-
gon, cylinder, etc), and then combined to complete geometric models;

3. Refine, where models are verified, and improved with information from
other data sources if necessary;

4. Texturing, where geometry models are textured with selections from dig-
ital image or pre-defined textures.

So far the research has been done up to the modeling stage. This paper
presents our approach to automatic creating building models from terrestrial
laser scanning. Section 2 explains how features are extracted from terrestrial
laser point cloud. Section 3 elaborates modeling of building geometry by
fitting feature segments and estimating occluded faces. Some conclusions and
recommendations for future work are given in the last section.

9.2 Feature extraction

An algorithm of building feature extraction from terrestrial laser scanning
has been demonstrated in [8]. We improved this method by refining the fea-
ture constraints and integrating a second extraction method, to make the ex-
traction more accurate. Our approach starts with segmentation, where laser
points are grouped roughly according to the plane they belong to; then each
segment is checked through some pre-defined feature constraints, to deter-
mine which building feature (wall, roof, door, extrusion) it is; finally window
feature are extracted particularly from wall holes.

9 Automatic building modeling from terrestrial laser scanning 149

9.2.1 Segmentation

A couple of segmentation algorithms based on laser point cloud are available
([4,5,7,9,10]). We adopted the planar surface-growing algorithm by [10] be-
cause it is more suitable for segmenting planar surfaces. A description about
this algorithm is given here because of its strong relevance to our feature
extraction method.

Fig. 9.1 Left: terrestrial laser scanned building facade; right: segmentation result

The planar surface-growing algorithm starts by choosing seed surfaces. A
seed surface consists of a group of nearby points that fit well to a plane.
The algorithm selects an arbitrary unclassified point and tests if a minimum
number of nearby points can be fitted to a plane. If this is the case, these
points constitute the seed surface; otherwise, another arbitrary point is tested.
Then seed surfaces tries to grow to their nearby points. Only the point within
certain distance to the seed surface, and with perpendicular distance to the
seed plane below some threshold, can be added to the seed surface to make
it grow.

Figure 1 left gives a terrestrial laser scanned building façade. The data
acquisition of this data set is done in one scan, by a Leica terrestrial laser
scanning machine which was placed a couple of meters in front of the building.
The point density is around 500 points per square meter. Figure 1 right gives
the segmentation result.

9.2.2 2.2 Feature constraints

Humans understand building features by analyzing their characteristics such
as size, position, direction and topology. These characteristics can be ‘taught’

150 Shi Pu

to machines, so that they can also ‘understand’ the laser point cloud of build-
ings, and extract features automatically.

We list different building features’ constraints in Table 1, which describes
the most significant characteristics to distinguish one feature from another.
Note that although ground is not a real building feature, it is still recognized
because ground provides important clue for recognizing wall feature and door
feature.

Size Position Direction Topology
Ground Segment(s) with Lowest

large area
Wall Segment(s) with Vertical May intersect

larger area grouond
Roof Segment(s) with Above wall Not vertical Intersects

large area a wall
Door Area with On the wall Vertical Intersects

certain area the ground
Extrusion A little outside

the wall/roof

Table 9.1 Constraints for building features (The unit for position is meter, for area
is square meter, and for direction is degree)

The feature constraints listed in Table 1 are pretty robust. First, all the
constraint values are independent of data sets, because these constraints are
semantic based. The size/length/direction of any feature is the same no mat-
ter where is the data acquisition position, and no matter how dense the point
cloud is. Second, some constraints are relatively determined, which make con-
straint values dynamic. For example, ‘the WALL feature segments have the
larger area’. This is always true because walls are always bigger than door
and extrusion. And in terrestrial laser scanned point clouds, the wall part is
also usually bigger than the roof part, as the data acquisition position is on
the ground.

9.2.3 Feature recognition

Five building features: wall, roof, door, extrusion and window, are recognized
and extracted in our approach, because we believe they are the most im-
portant elements on building surface. Each segment is checked through the
feature constraints defined in Table 1, to determine which of the four features
(wall, roof, door, extrusion) it is. Windows are specially extracted from the
holes on wall segments, after filtering out the holes caused by extrusions and
doors.

9 Automatic building modeling from terrestrial laser scanning 151

Sometimes a feature might be over-segmented, which means, a same fea-
ture is segmented into multiple segments, due to discontinuous laser points or
wrong segmentation parameters. Over-segmentation can be corrected auto-
matically by some simple geometry checking: if two segments are on the same
plane, and they are attached to each other, then the algorithm treats them
as over-segmented results, and merge them to one segment. For example, the
wall in Figure 1 is segmented into two parts, due to over segmentation. They
will be treated as one part (merge) in the modeling stage.

Figure 2 shows the feature recognition results of the building façade in
Figure 1.

Fig. 9.2 Feature recognition results (extrusion, roof, wall, door, window)

9.3 Geometry modeling

A straightforward thinking of the geometry modeling would be: first fitting
the extracted feature segments to some simple geometric shapes such as poly-
gon, and then combine them to the final building model. However, the actual
procedure of geometry modeling is not simple as fitting plus grouping. This
is because:

1. Sometimes feature segments contain incomplete geometry information.
Due to scanning or segmentation error, an extracted feature segment
may only contain points from part of the whole feature. For example, the
roof segment in Figure 3 left has the lower part missing, because an eave

152 Shi Pu

blocked laser beam when scanning. Direct geometry fitting will result in
gaps between patches (the area between bottom green edge and yellow
edge in Figure 3 right).

2. Terrestrial laser points are only available for the building facade, which
means, there is no direct geometry information available for left, right,
up and back sides of wall, roof and dormer window. Assumptions have to
be made to obtain a solid building model instead of only geometries of
facade patches.

Fig. 9.3 Left: laser points of a roof, with the part near eave missing. Right: directly
fitted shape (yellow) and actual shape (green)

Knowledge about buildings is helpful to solve these problems, too. For
example, we know that roof must intersect a wall, so the low contour of a
roof should be parallel and on the same height with (a part of) wall contour.
We know that a dormer window is extrusion on a slope roof, so there must be
connection parts between the dormer window and its projection on the slope
roof. These missing parts can be well estimated from existing laser points
and knowledge about buildings. The actual steps in building modeling stage
are: geometry fitting, geometry estimation, and combining.

9.3.1 Geometry fitting

Based on the hypothesis that most building surfaces are planar, we try to
fit planar shapes such as polygon to all feature segments. Although there
are curved surfaces on some buildings, we are unable to deal with them yet.
Further research is needed to fit curved surfaces in addition to planar surfaces,
so that more accurate building models can be obtained.

9 Automatic building modeling from terrestrial laser scanning 153

9.3.1.1 Wall

As the most important feature for buildings, a wall provides the outline for
a building model. Our scan-line algorithm first extracts the upper contour
points from wall segments; then line segments are fit out of the contour points,
to combine the building outline. The steps are given as follows:

a. Select all the points where wall segment and ground segment intersect.
These points fit a 2D contour line of the wall on the ground plane.

b. Pick sample points from the 2D contour line by scanning this line from
left to right, with 10 centimeter as the step. This step length is determined
after a series of experiments. Shorter step will result in more details in
the fitted wall outline, and longer step may result in missing of details.
As long as the density of point cloud, particularly in the wall part, is
higher than 100 points per square meter, we will be able to select point
every 10 centimeters. The density capabilities of mainstream terrestrial
laser scanners are much higher than this minimal requirement.

c. For each sample point, select all the surrounding points from the wall
segment, which are within 5 centimeter from this sample point. Find the
highest point among these surrounding points.

d. Repeat step c for all sample points, determine all the highest surrounding
points, and group them to form a 3D upper contour of the wall (Figure
4 left).

e. Scan the points in 3D upper contour from left to right. Keep all the
extreme points, which are far away from their previous points, or causing
sharp angle change in this 3D upper contour line.

f. Connect all the extreme points to make the upper outline for the wall.
Then project the most left point and most right point to the ground
plane, to make the left and right outline of the wall. These two outlines
are vertical, based on the hypothesis that walls are vertical.

g. Give the height of ground plane to 2D contour line (in step a) to make it
3D, which is also the lower outline of the wall.

h. Finally the whole building outline (Figure 4 right) is combined from upper
outline, left outline, right outline, and lower outline.

9.3.1.2 Roof and extrusion

In our approach, each roof/extrusion segment is simply fit to a convex poly-
gon, based on the hypothesis that most roofs/extrusions have the geometry
of convex polygon. Concave polygon fitting is still to be researched in the
future work. The Quick Hull algorithm is used to fit the convex polygons in
fitted planes. A detailed explanation of this algorithm can be found in [1].
Figure 5 shows the fitting results of roof and extrusion.

154 Shi Pu

Fig. 9.4 Left: upper contour points of a building façade. Right: fitted building outline

Fig. 9.5 Fitted roof and extrusion polygons

9 Automatic building modeling from terrestrial laser scanning 155

9.3.1.3 Door & window

Each door segment and window segment is simply fit with a minimum bound-
ing box, based on the hypothesis that most doors and windows are rectangular
and vertical. Figure 6 shows the fitted door and window rectangles.

Fig. 9.6 Fitted door and window rectangles

9.4 Occlusion assumption

As mentioned earlier, terrestrial laser scanning can only retrieve points from
building façades. The occluded area should be filled based on existing laser
points and knowledge about buildings, so that solid building model can be
obtained. In particular, the following parts should be filled:

• Left, right, top, bottom and back sides of a building.
We first construct a line that is perpendicular with wall plane. Then we
‘push’ the existing wall outline back along this perpendicular line for a
certain distance. This results in an assumed building backside, which is
parallel with the façade outline. The left, right, top and bottom sides
can be generated by connecting corresponding vertices on wall outline
and estimated backside outline. The offset distance can be either a fixed
value, or derived from 2D ground plan.

• bf Parts on roofs blocked by eaves.
Based on the hypothesis that the blocked area is also on the same plane
with the whole roof, we extend the directly fitted polygon till it intersects
the wall outline. Or in another words, we first construct a horizontal
plane which has the same height with nearby wall outline, then replace
the bottom edge of directly fitted polygon with intersection edge between
roof patch and this horizontal plane.

• All the missing parts between extrusion and its supporting
wall/roof.
So far we just project the directly fitted polygons to its supporting

156 Shi Pu

wall/roof plane, then connect all vertices between origin polygon and
projection polygon, to generate the estimated polygons. We are aware
this only works for simple extrusion types. For example, direction projec-
tion will lead to wrong geometry for the stair extrusion shown in Figure 7.
Further research about extrusion structure knowledge is needed for more
accurate estimation.

Fig. 9.7 An incorrect extrusion

9.5 Modeling result

Figure 8 shows the final model of the building façade in Figure 1. This model
contains both directly fitted geometries and estimated geometries. The whole
procedure takes 3.5 minutes, including segmentation, feature recognition, di-
rect geometry fitting, and geometry estimation. No manual interaction is
needed throughout the process. The raw laser point cloud contains 381057
points, and the final model contains around eighty points, which are just the
vertices of the polygons. Some faces share vertices and these points are not
stored more than once.

Comparing with reality, we are able to model the wall facade, roof facade,
and most extrusions, windows and doors accurately. This is mainly because
we have sufficient terrestrial laser information for reconstructing reliable ge-
ometries.

9 Automatic building modeling from terrestrial laser scanning 157

Fig. 9.8 Final geometry model of the building façade in Figure 1

Wrong shapes appear in the following parts:

• The left, right and back sides of the wall. Due to no terrestrial laser points
available for these areas, assumptions have to be made to combine a solid
model, as mentioned is section 3.2. These assumptions can be inaccurate.

• There is a curved surface patch under an extrusion on the wall. This
patch is not modeled because we haven’t fit curved surfaces yet.

Figure 9 shows another buildings model example. The wall outline, roof
and some windows are accurately modeled.

Two main modeling errors are:

• The extrusions’ shapes are incorrect. There are two extrusions in this
building facade: a dormer window on the roof and a balcony on the wall.
The dormer window has its own roof on top of it, which is missing in
the final model because this ‘dormer-roof’ feature is not supported yet.
The balcony results in a bit extruded shape, because so far we model an
extrusion’s geometry by projecting the convex hull of extrusion façade to
its supporting wall. This naturally leads to wrong result for extrusions
with concave facade, such as this balcony.

• The three holes are recognized and modeled as windows. This is be-cause
in one hand, we haven’t deal with holes on walls yet; and in the other
hand, we define the window feature as ‘big holes on wall segments, after
filtering out the holes caused by extrusions and doors’.

158 Shi Pu

Fig. 9.9 Another building example (left: raw terrestrial laser data; right: geometry
model

Figure 10 shows another building example which can not be correctly mod-
eled yet. Besides the wrong shape of dormers, the awnings are also missing
in the final model. This is because the shapes of these awnings are curved,
and curved geometry is not yet supported in our method.

9.6 Summary and recommendations

In this paper we presented an automatic building modeling technique based
on terrestrial laser scanning. The raw laser points are segmented first, so
that all the points belong to the same plane are grouped together. Then
some important building features (wall, door, window, roof and extrusion)
are extracted out of the segments, by checking each segment with some
knowledge-based feature constraints. In the modeling stage, boundary poly-
gons are derived from the extracted feature segments first; then geometries of
occluded area are estimated from existing boundary and human knowledge
about buildings.

Two recommendations are given for future research:
First, our modeling method is a bottom-up process, where building models

are combined from patches. For buildings with complex shapes, the feature
recognition may fail as a result of lacking context information among features.
Concepts of top-down approach, or grammar based building modeling, should

9 Automatic building modeling from terrestrial laser scanning 159

Fig. 9.10 Another building example with some awnings (left: raw terrestrial laser
data; right: geometry model)

be helpful to increase the feature recognition ability, and in turn improve the
modeling.

Second, fusing of other data sources can be helpful throughout our model-
ing process. For example, ground plan gives explicit 2D contour of buildings,
which can be used to verify the fitted building outline; it is relatively easy
to extract edge information from digital imagery, which can be combined to-
gether with laser segments, to obtain more confident wall outline and roof
boundary.

References

1 Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. T., 1996, The Quickhull
Algorithm for Convex Hulls, ACM Trans. Mathematical Software 22, 469-
483

2 Brenner, C., 2000, Towards Fully Automatic Generation of City Models,
XIX ISPRS Congress IAPRS, Amsterdam, the Netherlands, pp. 85-92

3 Brenner, C., 2003, Building Reconstruction from Laser Scanning and Im-
ages, Proc. ITC Workshop on Data Quality in Earth Observation Tech-
niques, Enschede, the Netherlands

160 Shi Pu

4 B Gorte, N Pfeifer, 2004, Structuring Laser-scanned Trees Using 3D
Mathematical Morphology, International Archives of Photogrammetry
and Remote Sensing, Vol. XXXV, Istanbul, Turkey.

5 H. Woo, E. Kang, Semyung Wang and Kwan H. Lee, 2002, A New Seg-
mentation Method for Point Cloud Data, International Journal of Ma-
chine Tools and Manufacture, January, vol. 42, no. 2, pp. 167-178 (12)

6 Maas, H.-G., 2001, The Suitability of Airborne Laser Scanner Data for
Automatic 3D Object Reconstruction, Third International Workshop on
Automatic Extraction of Man-Made Objects from Aerial and Space Im-
ages, Ascona, Switzerland.

7 Rabbani, T., Heuvel, F.A. van den, Vosselman, G., 2006, Segmentation
of Point Clouds Using Smoothness Constraints, International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.
36, part 5, Dresden, Germany, September 25-27, pp. 248-253

8 Pu, S., Vosselman, G., 2006, Automatic extraction of building features
from terrestrial laser scanning, International Archives of Photogramme-
try, Remote Sensing and Spatial Information Sciences, vol. 36, part 5,
Dresden, Germany, September 25-27, 5 p.

9 Suveg, I., Vosselman, G., 2004, Reconstruction of 3D Building Models
from Aerial Images and Maps, ISPRS Journal of Photogrammetry and
Remote Sensing 58 (3-4), p202-224.

10 Vosselman, G., B. Gorte, G. Sithole and Rabbani, T., 2004, Recogniz-
ing Structure in Laser Scanner Point Clouds, International Conference
NATSCAN, Laser-Scanners for Fores and Landscape, Processing Meth-
ods and Applications, ISPRS working group VIII/2, Freiburg im Breis-
gau, Germany.

Chapter 10

3D City Modelling from LIDAR Data

Rebecca (O.C.) Tse, Christopher Gold, and Dave Kidner

Abstract

Airborne Laser Surveying (ALS) or LIDAR (Light Detection and Ranging)
becomes more and more popular because it provides a rapid 3D data col-
lection over a massive area. The captured 3D data contains terrain models,
forestry, 3D buildings and so on. Current research combines other data re-
sources on extracting building information or uses pre-defined building mod-
els to fit the roof structures. However we want to find an alternative solution
to reconstruct the 3D buildings without any additional data sources and pre-
defined roof styles. Therefore our challenge is to use the captured data only
and covert them into CAD-type models containing walls, roof planes and
terrain which can be rapidly displayed from any 3D viewpoint.

10.1 Introduction

We have successfully addressed this problem by developing a several-stage
process. Our starting point is a set of raw LIDAR data, as this is becoming
readily available for many areas. This is then triangulated in the x-y plane us-
ing standard Delaunay techniques to produce a TIN. The LIDAR values will
then show buildings as regions of high elevation compared with the ground.
Our initial objective is to extrude these buildings from the landscape in such
a manner that they have well defined wall and roof planes. We want to know
how to extract building outlines from the triangulation when it is not avail-
able from the national mapping department. We do this by superimposing
a coarse Voronoi cell structure on the data, and identifying wall segments
within each.

University of Glamorgan, Pontypridd, Wales, UK rtse@glam.ac.uk, cm-

gold@glam.ac.uk, dbkinder@glam.ac.uk

161

162 Rebecca (O.C.) Tse, Christopher Gold, and Dave Kidner

There are two ways to examine the triangulated interior (roof) data. The
first method is to find out the folding axis of the roof, but it may not be
suitable for a complex roof. The second is to identify planar segments and
connect them to form the final surface model of the building embedded in the
terrain. This is done using Euler Operators and Quad-Edges with preserved
topological connectivity. This was successfully developed by [10, 11]. In this
paper, we will focus on discussing how to extract building blocks from raw
LIDAR data and how to find out the roof shape of those building blocks.

10.2 What is LIDAR?

ALS (or so called LIDAR) is a new independent technology which is highly
automated to produce digital terrain models (DTM) and digital surface mod-
els (DSM) [1]. It is a laser-based technology to emit and capture the returned
signal from the topographical surface.

A laser scanning system, a global positioning system (GPS) and an inertial
measuring unit (IMU) are the three main units in an ALS system. The laser
scanning system is mounted on an aircraft, a helicopter or satellites and emits
pulses toward the earth’s surface and measures the distance reflected from
the earth’s surface and other objects on the surface back to the aircraft. IMU
and GPS are important for determining the absolute position and orientation
of the LIDAR sensors. The Inertial navigation system is used to correct the
errors from the pitch, roll and yaw of the plane. GPS monitors the altitude
and the flight path of the aircraft which observes the three dimensions data.
A high accuracy GPS is installed in the plane and a ground control based
station is established. Figure 10.1 shows an aircraft scanning over a piece of
land.

Fig. 10.1 Airborne laser scanning

10 3D City Modelling from LIDAR Data 163

10.3 Building Construction from LIDAR Data Alone

LIDAR provides an efficient way to capture 3D data; however it is not easy
to extract building information from the data. Much research focuses on
extracting building outlines, and they may combine different data sources,
for example photogrammetric data or existing landline data [6, 7, 8, 13] .
It does not work if there is no other data available. Our approach is to use
LIDAR only to reconstruct the 3D buildings and remodel the roof structure
without using any pre-defined models.

10.3.0.4 Building Blocks Identification

Our method is to identify building blocks from the terrain rather than search-
ing for the building footprints directly. It separates the high-elevation data
(building block) from low-elevation data (terrain surface). We make use of
the duality and connectivity properties of Delaunay triangulation, and its
dual Voronoi diagram.

A Delaunay triangulation is created using the original high density LIDAR
data (Figure 10.2). Then we sample it to a lower resolution triangulation
(Figure 10.3. In Figure 10.3 each big Voronoi cell contains many data points
(about 50 - 100), some with only the ground points (low elevation) and some
with only the building points (high elevation). Voronoi cells with low and high
points are extracted for further modification because building segments can
be found in those cells. We are using some made-up data with an L-shaped
building to illustrate the method.

Fig. 10.2 Raw LIDAR data points

The extracted cells contain low and high points which will be split into
two. The direction of the splitting line is found by calculating the eigenvalues
and eigenvectors of the 3 x 3 variance-covariance matrix of the coordinates
of the points within each cell. The result of three eigenvectors “explain” the

164 Rebecca (O.C.) Tse, Christopher Gold, and Dave Kidner

Fig. 10.3 Lower resolution LIDAR data points

overall variance, the left-over and the residue. For example, a wrinkled piece
of paper might have the first eigenvector (the highest eigenvalue) oriented
along the length of the paper, the second (middle eigenvalue) along its width,
and the third (the smallest eigenvalue) “looking” along the wrinkles. Thus
the eigenvector of the smallest eigenvalue indicates the orientation of a wall
segment, if present, and looks along it. Figure 10.4 shows the eigenvector
with the smallest eigenvalue which shows the orientation of the splitting line
between the low and high points.

Fig. 10.4 The eigenvector with the smallest eigenvalue

With the orientation of the splitting line, the next step is to find the
best location to put the line and split the cell. This is achieved iteratively, by
testing various positions of the line parallel to the smallest eigenvector in order
to find the greatest difference between the low and the high points. Figure
10.5 shows a thick line which separates the high points from the low points. In
order to minimize the effect of sloping roofs or terrain, only those elevations
close to the line are used. If this maximum difference is not sufficiently large
then no wall segment was detected. Therefore walls have a specified minimum
height and this height difference is achieved within a very few “pixels”.

10 3D City Modelling from LIDAR Data 165

Fig. 10.5 The thick red line separates the low and high data points

Fig. 10.6 Building segment in each Voronoi cell

Fig. 10.7 Vertical Building Walls formed by split Voronoi Cells

166 Rebecca (O.C.) Tse, Christopher Gold, and Dave Kidner

Fig. 10.8 The split Voronoi edges in six groups

Fig. 10.9 Corners of the building

We locate the splitting line and add a generator on each side of this line,
at the mid-point to split the cell. Figures 10.6 and 10.7 show the 2D and
3D view of the split Voronoi cells. A set of “high” Voronoi cells are split
and surrounded by “low” ones. In Figure 10.6 building boundaries are then
determined by walking around the cells and connecting the Voronoi boundary
segments (the splitting line) or the immediate Voronoi edges to form a closed
region. If a closed high region is found, it is considered to be a building.

The Voronoi boundary segments are used to estimate the building outline.
We use the Voronoi boundary segments which are created with the eigenvec-
tor technique (but not all the Voronoi edges to form the closed high region.
The Voronoi segments are clustered according to their orientation (Figure
10.8). A best fit line is found to represent each group of the clustered Voronoi
segments. Figure 10.9 forms the building outline by intersecting the best fit
lines.

10 3D City Modelling from LIDAR Data 167

10.4 Roof Modelling

Many systems use pre-defined building models for reconstruction [2, 5], but
we would like to reconstruct the buildings without any pre-defined models.
Two methods are used to remodel the roof structure. The first is simple but
works only with simple gabled roofs. The second is more complicated but can
solve the problem of the complex roof structure.

10.4.1 Simple Roof

No other assumptions are made about the form of the roof in our approach,
except that the roof is made up of planar segments. This method may be
extended to detect other basic shapes if required [14]. When the building
boundary is determined, the interior points are extracted to model the roof
structure. The extracted points are used to create a triangulation and each
of the interior triangles has an associated vector normal (Figure 10.10. The
vector normals are used to calculate and find the “smallest” eigenvector (de-
scribed in the section 10.3). We project the vector normals on a right-hand
coordinate system according to the “smallest” eigenvector (Figure 10.11).

Fig. 10.10 Each of the interior triangles has an associated vector normal

In Figure 10.12 all the vector normals are plotted on a unit semicircle.
The plotted vector normals are close to each other if they have the same
orientation. They can be clustered into different groups (Figure 10.13). This
works well even if the data is fairly noisy because the scatter of the vector
normals is fairly large (Figure 10.14). If there are two or more parallel planes
on the roof , these may be separated at this stage by constructing the Delau-
nay triangulation in x-y space for the data points of the cluster, extracting
the Minimum Spanning Tree (MST), and separating the two or more parallel
roof portions. The general technique is described in the next section.

168 Rebecca (O.C.) Tse, Christopher Gold, and Dave Kidner

Fig. 10.11 Projected right-hand coordinate system according the smallest eigenvec-
tor

Fig. 10.12 All vector normals are plotted on a semicircle

Fig. 10.13 Clustered vector normals with its associated triangle

10 3D City Modelling from LIDAR Data 169

Fig. 10.14 A clustered simple roof created by noisy data

10.4.2 Complex Roof

The above method only works for roofs with a simple axis. If the roof has
many differently oriented segments, the vector normals have to be projected
onto the unit hemisphere. [4] used different projections to find out the roof
segments.

Fig. 10.15 2D view of vector normals on the unit hemisphere

A cross-hipped L-shape roof building is used to illustrate the clustering
methods. The extracted data points (inside the building boundary) are used
to create a Delaunay triangulation. The vector normals of the interior tri-
angles are project onto the unit hemisphere. Figures 10.15 and 10.16 show
the 2D and 3D views of projected vector normals on the unit hemisphere.
Then the vector normals are clustered by their orientation and geographi-
cal location. The result is several sets of clustered triangles (vector normals)
which share a single roof plane with a common description of the plane. The
planar descriptions are used to form roof planes and intersect the building
walls which produce the building model.

170 Rebecca (O.C.) Tse, Christopher Gold, and Dave Kidner

Fig. 10.16 3D view of vector normals on the unit hemisphere

Fig. 10.17 Orientation clustering of vector normals in 2D view

Fig. 10.18 The darker triangles face toward the same direction

10 3D City Modelling from LIDAR Data 171

Orientation Clustering is the first method used to separate the vector
normals. The location of the vector normals on the unit hemisphere represent
their orientation on the roof (direction). They are clustered into groups using
the Minimum Spanning Tree (MST). If the vector normals are close enough,
they will be assigned to the same group. Figure 10.17 shows four groups
of vector normals which means the triangles face four different directions.
However the roof may contain more than four roof planes which means some
roof planes face the same way. Figure 10.18 shows that triangles with the
same orientation are clustered. Further clustering is needed to separate the
same direction roof planes.

A

B

Fig. 10.19 Triangles on roof A and B projected onto the averaged vector normal
(thick dash line)

B

A

Fig. 10.20 Triangles on roofs are projected on its averaged vector normal (thick
dash line)

In the second clustering method, we average the vector normals (the thick
dashed line in Figure 10.19) and project the centre point of the triangles
(solid thin lines in Figure 10.19) onto its averaged vector normal. They are
in the same group if the projected centre points are close to each other. The

172 Rebecca (O.C.) Tse, Christopher Gold, and Dave Kidner

same method is used to separate the building extension due to the height
difference between the main and the extension buildings. In Figure 10.20
triangles on Roof A (main building) and B (extension building) are projected
and clustered into two groups because of their locations.

A B

Fig. 10.21 A building with complicated hipped roofs

Figure 10.21 shows roof planes A and B in the same group after two cluster-
ing; however they are two different roof planes. The geographical clustering
method is used to separate roof planes A and B. The centre points of the
triangles are extracted to create a Delaunay triangulation. We then cluster
the centre points using the MST. Roofs A and B will be separated into two
groups.

Fig. 10.22 Square points are the intersection points

Finally each cluster of triangles represents a roof plane. Once we have got
all the roof planes, we need to consider the intersection of the roof planes. The
relationships between roof planes may be represented as a dual triangulation.
We use the dual triangulation to intersect every adjacent three to four roof
planes. Figure 10.22 shows the intersection points (square points) between
the roof planes and the vertical walls of the building.

10 3D City Modelling from LIDAR Data 173

10.5 Tools for Building Reconstruction

Our approach is to reconstruct a 3D city model with preserved topologi-
cal connectivity. We have successfully developed a set of tools for building
reconstruction [12, 9]. Few steps are used for the building reconstruction:

• Delete all the data points which are inside the building boundary.
• Insert the intersection points (include the building outline and the roof

structure points) using the constrained Delaunay triangulation.
• Use Euler Operators to extrude the building to its height and remodel

the roof structure.

The result of an extruded L-shape building is shown in Figure 10.23.

Fig. 10.23 An extruded L-shape building

10.6 Conclusion

We have outlined a procedure for the direct extraction of building exteri-
ors from LIDAR data without any additional data sources and pre-defined
building models. More complicated buildings have been built. With the help
of the research of [3] may be able to model the roof like the Wales Millennium
Centre which is an arch shape roof.

References

[1] F. Ackermann. Airborne laser scanning - present status and future
expectations. ISPRS Journal of Photogrammetry & Remote Sensing,
54(1):64–67, 1999.

174 Rebecca (O.C.) Tse, Christopher Gold, and Dave Kidner

[2] Claus Brenner. Interactive modelling tools for 3D building reconstruc-
tion. In D. Fritsch and R. Spiller, editors, Photogrammetric Week ’99’,
pages 23–34, Wchmann Verlag, Heidelberg, 1999.

[3] H. A. K. Charlesworth, C. W. Langenberg, and J. Ramsden. Determining
axes, axial places and sections of macroscopic folds using computer-based
methods. Candian Journal Earth Science, 13:54–65, 1975.

[4] Alexandra D. Hofmann, Hans-Gerd Maas, and Andre Streilein. Deriva-
tion of roof types by cluster analysis in parameter spaces of airborne
laserscanner point clouds. In IAPRS International Archives of Pho-
togrammetry and Remote Sensing and Spatial Information Sciences, vol-
ume 34, Part 3/ W13, pages 112–117, Dresden, Germany, 2003.

[5] F. Rottensteiner and C. Briese. Automatic generation of building models
from LIDAR data and the integration of aerial images. In H.-G. Maas,
G. Vosselman, and A. Streilein, editors, Proceedings of the ISPRS work-
ing group III/3 workshop ’3-D reconstruction from airborne laserscanner
and InSAR data’, volume 34 Session IV, Dresden, Germany, 2003. In-
stitute of Photogrammetry and Remote Sensing Dresden University of
Technology.

[6] Gunho Sohn and Ian Dowman. Building extraction using lidar DEMS
and IKONOS images. In H.-G. Maas, G. Vosselman, and A. Streilein,
editors, Proceedings of the ISPRS working group III/3 workshop ’3-D
reconstruction from airborne laserscanner and InSAR data’, volume 34
Session IV, Dresden, Germany, 2003. Institute of Photogrammetry and
Remote Sensing Dresden University of Technology.

[7] Gunho Sohn and Ian J. Dowman. Extraction of buildings from high
resolution satellite data and LIDAR. In ISPRS 20th Congress WGIII/4
Automated Object Extraction, Istanbul, Turkey, 2004.

[8] I. Suveg and G. Vosselman. Reconstruction of 3D building models from
aerial images and maps. ISPRS Journal of Photogrammetry & Remote
Sensing, 58(3–4):202–224, 2004.

[9] R. O.C. Tse. Semi-Automated Construction of fully three-dimensional
terrain models. PhD thesis, The Hong Kong Polytechnic University,
Hong Kong, 2003.

[10] R.O.C. Tse and C.M. Gold. Terrain, dinosaurs and cadastres - options
for three-dimension modelling. In C. Lemmen and P. van Oosterom,
editors, Proceedings: International Workshop on ”3D Cadastres”, pages
243–257, Delft, The Netherlands, 2001.

[11] R.O.C. Tse and C.M. Gold. Tin meets CAD - extending the TIN
concept in GIS. In P.M.A. Sloot, C.J.K. Tan, J. Dongarra, and A.G.
Hoekstra, editors, Computational Science - ICCS 2002, International
Conference, Proceedings of Part III. Lecture Notes in Computer Sci-
ence, volume 2331, pages 135–143, Amsterdam, the Netherlands, 2002.
Springer-Verlag.

10 3D City Modelling from LIDAR Data 175

[12] R.O.C. Tse and C.M. Gold. Tin meets CAD - extending the TIN con-
cept in GIS. Future Generation Computer Systems (Geocomputation),
20(7):1171–1184, 2004.

[13] George Vosselman and Sander Dijkman. 3D building model reconstruc-
tion from point clouds and ground plans. In International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences,
volume 34, part 3/W4, pages 37–43, Annapolis, MA, USA, 2001.

[14] George Vosselman, B.G.H. Gorte, G. Sithole, and T. Rabbani. Recog-
nising structure in laser scanner point clouds. In International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences,
volume 46, part 8/W2, pages 33–38, Freiburg, Germany, 2004.

Chapter 11

First implementation results and open
issues on the Poincaré-TEN data
structure

Friso Penninga and Peter van Oosterom

Abstract

Modeling 3D geo-information has often been based on either simple exten-
sions of 2D geo-information modeling principles without considering the ad-
ditional 3D aspects related to correctness of representations or on 3D CAD
based solutions applied to geo-information. Our approach is based from the
scratch on modeling 3D geo-information based on the mathematically well-
defined Poincaré-TEN data structure. The feasibility of this approach still
has to be verified in practice. In this paper, the first experiences of loading a
reasonable sized data set, comprised of about 1,800 buildings represented by
nearly 170,000 tetrahedrons (including the ’air’ and ’earth’), are discussed.
Though the Poincaré-TEN data structure is feasible, the experience gained
during the implementation raises new research topics: physical storage in one
(tetrahedron only) or two tables (tetrahedron and node), effective clustering
and indexing improvements, more compact representations without losing too
much performance, etc.

11.1 Introduction

11.1.1 Motivation

This paper presents the first implementation results of the Poincaré-TEN
data structure, as presented earlier in [1]. This structure is developed within
a research project 3D Topography and a prototype is being developed within

Delft University of Technology, OTB, section GIS Technology,
Jaffalaan 9, 2628 BX the Netherlands
F.Penninga@tudelft.nl, oosterom@tudelft.nl

177

178 Friso Penninga and Peter van Oosterom

Oracle Spatial. The theoretical strengths of this concept (a compact topolog-
ical DBMS approach based on a solid mathematical foundation) were demon-
strated in previous papers [1, 2, 3]. Despite these strengths, the applicability
of the new approach depends heavily on whether the approach is feasible
in terms of storage requirements and performance. Therefore, implementing
and testing these new ideas is essential. The first implementation results will
provide insight to the number of TEN elements and provide some prelimi-
nary ideas on storage requirements (as future optimization steps will affect
these requirements). At the same time implementing the approach raises new
design questions and these open problems will be presented.

11.1.2 Related research

Research in the field of 3D GIS has been performed over the last two decades.
Zlatanova et al. [4] gave an overview of the most relevant developments during
this period. Related to the topics discussed in this paper, Carlson [5] can
be seen as the starting point as he introduced a simplicial complex-based
approach of 3D subsurface structures. However, this approach was limited
to the use of 0-, 1- and 2-simplexes in 3D space. Extending this into higher
dimensions (as indicated by Frank and Kuhn [6]) is mentioned as a possibility.
The explicit use of 3D manifolds to model 3D features is explored by Pigot
[7, 8] and Pilouk [9] introduces the TEtrahedral irregular Network (TEN),
in which the 3-simplex is used as a building block. However, in their work,
a rigid mathematical foundation is missing. As far as can be deducted from
their descriptions, the 3D simplices are explicitly represented by 2D simplices,
specifically, triangles (which are in turn represented by edges and nodes). A
topological data model based on 2D simplicial complexes (in 2D space) is
introduced [10] and implemented in the PANDA system [11], an early object-
oriented database. In applications polyhedrons are often used as 3D primitive
[12, 13].

11.1.3 Overview of paper

Before describing the first implementation results and open issues, we will first
describe the core characteristics of the previously introduced Poincaré-TEN
approach in Section 11.2. After, the approach will be applied to modeling 3D
Topography in Section 11.3, while Section 11.4 summarizes the implementa-
tion details. The preliminary implementation results with the 1,800 building
data set are described in Section 11.5. This paper ends with discussing the
current implementation and related open issues in Section 11.6.

11 Implementing the Poincaré-TEN data structure 179

11.2 The Poincaré-TEN approach

In this section, first three aspects of our Poincaré-TEN approach are further
explained, before the full concept of the approach is used as the foundation
for 3D topography modeling:

• It models the world as a full decomposition of 3D space
• The world is modelled in a Tetrahedronized Irregular Network (TEN)
• The TEN is modelled based on Poincaré simplicial homology

11.2.1 Characteristic 1: Full Decomposition of Space

As the Poincaré-TEN approach is developed with 3D topographic data in
mind, two fundamental observations are of great importance [14]:

• Physical objects have by definition a volume. In reality, there are no point,
line or polygon objects, only point, line or polygon representations exist
(at a certain level of abstraction/generalization). The ISO 19101 Geo-
graphic information - Reference model [15] defines features as ’abstrac-
tions of real world phenomena’. In most current modeling approaches,
the abstraction (read ’simplification’) is in the choice of a representation
of lower dimension. However, as the proposed method uses a tetrahedral
network (or mesh), the simplification is already in the subdivision into
easy-to-handle parts (i.e. it is a finite element method!).

• The real world can be considered a volume partition: a set of nonoverlap-
ping volumes that form a closed (i.e. no gaps within the domain) modelled
space. As a consequence, objects like ’earth’ or ’air’ are explicitly part of
the real world and thus have to be modelled.

Although volume features are the basic elements in the model, planar fea-
tures might still be very useful, as they mark the boundary (or transition)
between two volume features. This approach allows for the existence of planar
features, but only as ’derived features’. In terms of UML class diagrams, these
planar features are modelled as association classes. For instance, the ’earth
surface’ is the result of the association between ’earth’ and ’non-earth’. Such
features might be labeled (for instance as ’grassland’ or ’road surface’ with
additional attributes), but they do not represent or describe the volume ob-
ject. For example, a road is represented by a volume (despite the appearance
of planar features like the road surface), with neighboring volumes that might
represent air, earth or other adjacent features.

The explicit inclusion of earth and air features is not very common, since
these features are usually considered empty space in between topographic fea-
tures. Based on following two arguments, we decided to deviate from common
practice. First, air and earth features are often also the subject of analyses.

180 Friso Penninga and Peter van Oosterom

One can think of applications like modeling noise propagation or air pollu-
tion. Second, by introducing earth and air features future extensions of the
model will be enabled (beyond Topography). Space that is currently labeled
as air can be subdivided into air traffic or telecommunication corridors, while
earth might be subclassified into geographic layers or polluted regions.

11.2.2 Characteristic 2: using a TEN

Despite initial ideas on a hybrid data model (an integrated TIN/TEN model,
based on a pragmatic approach to model in 2,5D as much as possible and to
switch to a full 3D model in exceptional cases only), the decision was made
[14] to model all topographic features in a TEN. The preference for these
simplex-based data structures is based on certain qualities of simplexes (a
simplex can be defined as the simplest geometry in a dimension, regarded as
the number of points required to describe the geometry):

• Well defined: a n-simplex is bounded by n + 1 (n - 1)-simplexes. E.g. a
2-simplex (triangle) is bounded by 3 1-simplexes (edges)

• Flatness of faces: every face can be described by three points
• A n-simplex is convex (which simplifies amongst others point-in-polygon

tests)

Due to the use of simplexes, a 1:n relationship between features and their
representations is introduced. The actual usability of the Poincaré-TEN ap-
proach depends on the actual size of this n and will be discussed later in this
paper.

11.2.3 Characteristic 3: applying Poincaré simplicial
homology

The new volumetric approach uses tetrahedrons to model real world features.
Tetrahedrons consist of nodes, edges and triangles. All four data types are
simplexes: the simplest geometry in each dimension, in which simple refers to
minimizing the number of points required to define the shape. A more formal
definition [16] of a n-simplex Sn is: a n-simplex Sn is the smallest convex set
in Euclidian space IRmcontaining n + 1 points v0, . . . ,vn that do not lie in a
hyperplane of dimension less than n. As the n-dimensional simplex is defined
by n+1 nodes, it has the following notation: Sn =< v0, . . . ,vn >. The boundary
of a n-simplex is defined by the following sum of n−1 dimensional simplexes
[17] (the hat symbol indicates omitting the specific node):

11 Implementing the Poincaré-TEN data structure 181

∂Sn =
n

∑
i=0

(−1)i < v0, . . . , v̂i, . . . ,vn >

This results in the following boundaries (also see Figure 11.1):

S1 =< v0,v1 > ∂S1 =< v1 >−< v0 >
S2 =< v0,v1,v2 > ∂S2 =< v1,v2 >−< v0,v2 > + < v0,v1 >
S3 =< v0,v1,v2,v3 > ∂S3 =< v1,v2,v3 >−< v0,v2,v3 >

+ < v0,v1,v3 >−< v0,v1,v2 >

Fig. 11.1 Simplexes and their boundaries (From [16])

All simplexes are ordered. As a simplex Sn is defined by n+1 vertices, (n+
1)! permutations exist. All even permutations of an ordered simplex Sn =<
v0, . . . ,vn > have the same orientation, all odd permutations have opposite
orientation. So edge S1 =< v0,v1 > has boundary ∂S1 =< v1 >−< v0 >. The
other permutation S1 = − < v0,v1 >=< v1,v0 > has boundary ∂S1 =< v0 >
−< v1 >, which is the opposite direction. As a consequence operators like the
dual of a simplex, that is the simplex with the opposite orientation, become
very simple: it only requires a single permutation.

The direction of all oriented boundaries of a given simplex obtained with
the above boundary operator formula is the same. In 3D this results in the
favorable characteristic that with S3 either all normal vectors of the bound-
ary triangles point inwards or all normal vectors point outwards. This is a
direct result of the boundary operator definition, as it is defined in such a
manner that ∂ 2Sn is the zero homomorphism, i.e. the boundary of the bound-
ary equals zero (summing-up the positive and negative parts). For example,
consider ∂ 2S3, a tetrahedron. The boundary of this tetrahedron consists of
four triangles, and the boundaries of these triangles consist of edges. Each of
the six edges of S3 appears twice, as each edge bounds two triangles. Since the
zero homomorphism states that the sum of these edges equals zero, this is the

182 Friso Penninga and Peter van Oosterom

case if and only if the edges in these six pairs have opposite signs. The edges
of two neighboring triangles have opposite signs if and only if the triangles
have similar orientation, i.e. either both are oriented outwards or both are
oriented inwards. This characteristic is important in deriving the boundary
of a simplicial complex (construction of multiple simplexes). If this identical
orientation is assured for all boundary triangles of tetrahedrons (which can
be achieved by a single permutation when necessary), deriving the bound-
ary triangulation of a feature will reduce to adding up boundary triangles of
all related tetrahedrons, as internal triangles will cancel out in pairs due to
opposite orientation. Figure 11.2 shows an example in which all boundaries
of the tetrahedrons are added to obtain the boundary triangulation of the
building.

Fig. 11.2 Deriving the boundary triangulation from the TEN

11 Implementing the Poincaré-TEN data structure 183

11.3 Poincaré-TEN approach to modeling 3D
Topography

11.3.1 Conceptual model

Usually [8, 9], tetrahedrons are defined by four triangles, triangles by three
edges and edges by two nodes. Geometry is stored at node level. As a result,
reconstructing geometry, for instance a tetrahedron, becomes a relatively la-
borious operation. In simplicial homology, simplexes of all dimensions are
defined by their vertices only, while relationships between other simplexes
can be derived by applying the boundary operator. Due to the availability
of this operator, there is no need for explicit storage of these relationships.
This concept is illustrated in the UML class diagram in Figure 11.3. Tetra-
hedrons, triangles and edges are defined by an ordered list of nodes. The
mutual relationships between tetrahedrons, triangles and nodes (the bound-
ary/coboundary relationships) are derived and signed (i.e. oriented).

Figure 11.3 shows the concept of full space decomposition. The real world
consists of volume features and features of lower dimension are modelled as
association classes. As a result, instances of these classes are lifetime depen-
dent on the relationship between two volume features.

11.3.2 Extending simplex notation: vertex encoding

In the Poincaré-TEN approach to 3D topographic data modeling, simplexes
are defined by their vertices. Identical to the simplex notation from simplicial
homology, where for instance a tetrahedron is noted as S3 =< v0,v1,v2,v3 >,
simplex identifiers are constructed by concatenating the vertex ID’s. In do-
ing so, unique identifiers exist that contain orientation information as well,
since the order of vertices determines the orientation. In an earlier paper [1],
we suggested the use of x, y and z coordinate concatenation as node ID.
Since geometry is the only attribute of a vertex, adding a unique identifier
to each point and building an index on top of this table will cause a substan-
tial increase in data storage. The geometry itself will be a unique identifier.
Concatenating the coordinate pairs into one long identifier code and sorting
the resulting list, will result in a very basic spatial index. In a way this ap-
proach can be seen as building and storing an index, while the original table
is deleted.

Figure 11.4 [1] illustrates this idea of vertex encoding in a simplicial
complex-based approach. A house is tetrahedronized and the resulting tetra-
hedrons are coded as the concatenation of their four vertices’ coordinates.
Each row in the tetrahedron encoding can be interpreted as x1y1z1x2y2z2x3y3z3x4y4z4.
For reasons of simplicity, only two positions are used for each coordinate ele-

1
8
4

F
riso

P
en

n
in

g
a

a
n
d

P
eter

v
a
n

O
o
stero

m

F
ig

.
1
1
.3

U
M

L
cla

ss
d
ia

g
ra

m
o
f
th

e
sim

p
licia

l
co

m
p
lex

-b
a
sed

a
p
p
ro

a
ch

11 Implementing the Poincaré-TEN data structure 185

ment. Therefore, the last row (100000000600100600100608) should be inter-
pret as the tetrahedron defined by the vertices (10,00,00),(00,06,00),(10,06,00)
and (10,06,08), which is the tetrahedron at the bottom right of the house.

Fig. 11.4 Describing tetrahedrons by their encoded vertices

11.4 Current implementation

To provide greater insight into the proposed new approach, the basic struc-
ture is implemented within the Oracle DBMS. This section will summarize
the current status of the implementation, but one has to realize that this
is still a work in progress. At this moment, the required tetrahedronization
algorithms are not implemented within the DBMS, so TetGen [18] is used
to perform an external batch tetrahedronisation. The input is a Piecewise
Linear Complex (PLC), see Figure 11.5. A PLC [19] is a set of vertices, seg-
ments and facets, where a facet is a polygonal region. Each facet may be
non-convex and hcontain holes, segments and vertices, but it should not be a
curved surface. A facet can represent any planar straight line graph (PSLG),
which is a popular input model used by many two-dimensional mesh algo-
rithms. A PSLG is [20] a graph embedding of a planar graph (i.e. a graph
without graph edge crossings), in which only straight line segments are used
to connect the graph vertices.

Compared to a polyhedron, a PLC is a more flexible format. If one looks at
the shaded facet in Figure 11.5, one can see that this facet cannot be described
by a polygon because there are loose and dangling line segments. However, in
our application, situations like these will be rare or not appear at all. Based
on an input PLC, TetGen creates a constrained Delaunay tetrahedronisation.
This tetrahedronization is loaded into the database and then converted into
the Poincaré-TEN format. Figure 11.6 shows this concept with a small test
dataset, from the input PLC (top), via the tetrahedronization (mid) to the

186 Friso Penninga and Peter van Oosterom

Fig. 11.5 A Piecewise Linear Complex (PLC), input for the tetrahedronization al-
gorithm (From [21])

output in which only the constrained triangles (the feature boundary faces)
are drawn (bottom).

The tetrahedron table is the only table in the implementation. It consists
of a single column (NVARCHAR2) in which the encoded tetrahedrons are de-
scribed in the form x1y1z1x2y2z2x3y3z3x4y4z4id (based on fixed length character
strings). Note that besides the geometry, an unique identifier is added, which
refers to a volume feature that is (partly) represented by the tetrahedron. The
tetrahedrons are not signed, but are assumed to be a positive permutation,
meaning that all normal vectors on boundary triangles are oriented outwards.
This is checked and ensured during the initial loading proces. A consistent
orientation is required to ensure that each boundary triangle appears twice:
once with positive and once with negative orientation. The orientation sim-
plifies determination of left/right and inside/outside relations. Based on the
encoded tetrahedrons the boundary triangles can be derived by applying the
boundary operator:

create or replace procedure deriveboundarytriangles(
(...)
a := (SUBSTR(tetcode,1,3*codelength));
b := (SUBSTR(tetcode,1+3*codelength,3*codelength));
c := (SUBSTR(tetcode,1+6*codelength,3*codelength));
d := (SUBSTR(tetcode,1+9*codelength,3*codelength));
id := (SUBSTR(tetcode,1+12*codelength));
ordertriangle(codelength,’+’||b||c||d||id, tricode1);
ordertriangle(codelength,’-’||a||c||d||id, tricode2);
ordertriangle(codelength,’+’||a||b||d||id, tricode3);
ordertriangle(codelength,’-’||a||b||c||id, tricode4);
(...)

Note that the triangles inherit the object id from the tetrahedron, i.e. each
triangle has a reference to the volume feature represented by the tetrahedron

11 Implementing the Poincaré-TEN data structure 187

Fig. 11.6 Input PLC (top), the resulting tetrahedronization (mid) and as output
the constrained triangles (i.e. the feature boundaries)(bottom)

of which the triangle is part of the (internal) boundary. The reason for this
will be introduced in the next section. Also, it can be seen that each boundary
triangle is ordered by the ordertriangle procedure. The objective of this
procedure is to gain control over which permutation is used. A triangle has six
(= 3!) permutations, but it is important that the same permutation is used
both in the positive and negative orientations, as they will not cancel out
in pairs otherwise. The ordertriangle procedure always rewrites a triangle
< a,b,c > such that a < b < c holds, which is an arbitrary criterion.

Based on a slightly altered version of the deriveboundarytriangles op-
erator the triangle view is created. The resulting view contains all trian-
gles (coded by their geometry and inherited object id’s) and their cobound-
aries (the coboundary of a n-dimensional simplex Sn is the set of all (n+1)-
dimensional simplexes Sn+1 of which the simplex Sn is part of their boundaries
∂Sn+1). In this case, the coboundary is a tetrahedron, of which the triangle
is part of the boundary. This coboundary will prove useful in deriving topo-

188 Friso Penninga and Peter van Oosterom

logical relationships later in this section. The resulting view will contain four
times the number of tetrahedrons and every triangle appears twice: once with
a positive and once with a negative sign (and not in a permutated form, due
to the ordertriangle procedure). However, it must be realized that this is
just a view and no actual storage takes place:

create or replace view triangle as
select deriveboundarytriangle1(tetcode) tricode,
tetcode fromtetcode from tetrahedron
UNION ALL
select deriveboundarytriangle2(tetcode) tricode,
tetcode fromtetcode from tetrahedron
UNION ALL
select deriveboundarytriangle3(tetcode) tricode,
tetcode fromtetcode from tetrahedron
UNION ALL
select deriveboundarytriangle4(tetcode) tricode,
tetcode fromtetcode from tetrahedron;

Features in the model are represented by a set of tetrahedrons. To ensure
that these tetrahedrons represent the correct geometry, the outer boundary
is triangulated and these triangles are used as constraints. This implies that
these triangles will remain present as long as the feature is part of the model
(i.e. they are not deleted in a update proces). To achieve this, the incremental
tetrahedronization algorithm needs to keep track of these constrained trian-
gles. In contrast with what one might expect, it is not necessary to store
these constraints explicitly, as they can be derived. This derivation is based
on the fact that although every triangle (in a geometric sense) appears two
times (with opposite orientation) in the triangle view, not every triangle code
appears twice. As stated before, the triangle code inherits the object id from
the tetrahedron (its coboundary). This implies that for internal triangles (i.e.
within an object) the triangle and its dual will have (apart from the sign)
the exact same triangle code (geometry + object id), but in case of boundary
triangles (i.e. constrained triangles) this code will differ due to the different
inherited object id’s. A view with constrained triangles can be derived:

create or replace view constrainedtriangle as
select t1.tricode tricode from triangle t1
where not exists (select t2.tricode from triangle t2

where t1.tricode = t2.tricode*-1);

Other views might be defined to simplify operations, for instance, a view with
triangles stored by their geometry alone or a view without duals.

Similar to deriving the triangle views, views with edges, constrained edges
and nodes can be constructed. Note that the views with edges contain no
duals, i.e. edges are described only by their geometry:

create or replace view edge as

11 Implementing the Poincaré-TEN data structure 189

select distinct deriveabsboundaryedge1(tricode) edcode
from triangle
UNION
select distinct deriveabsboundaryedge2(tricode) edcode
from triangle
UNION
select distinct deriveabsboundaryedge3(tricode) edcode
from triangle;

create or replace view constrainededge as
select distinct deriveabsboundaryedge1(tricode) edcode
from constrainedtriangle
UNION
select distinct deriveabsboundaryedge2(tricode) edcode
from constrainedtriangle
UNION
select distinct deriveabsboundaryedge3(tricode) edcode
from constrainedtriangle;

create or replace view node as
select distinct deriveboundarynode1(edcode) nodecode
from edge
UNION
select distinct deriveboundarynode2(edcode) nodecode
from edge;

In the current implementation edges are undirected and do not inherit object
id’s, as no application for this has been identified. However, strict application
of the boundary operator results in directed triangles. With the tetrahedron
table and triangle, edge and node views, the data structure is accessible at
different levels. Due to encoding of the vertices, both geometry and topology
are present at every level, thus enabling switching to the most appropriate
approach for every operation.

11.5 Preliminary implementation results

The very small dataset from Figure 11.6 is now replaced by a larger dataset.
It consists of 1796 buildings in the northern part of Rotterdam (see Figure
11.7) and covers an area of about seven square kilometres. At this moment
other topographic features like the earth surface, roads, tunnels etc. are still
missing due to lacking appropriate 3D data. Complex situations like multiple
land use and highway interchanges are lacking as well. However, this dataset
will provide more insight into the number of elements of a TEN.

190 Friso Penninga and Peter van Oosterom

Fig. 11.7 Rotterdam test data set: 1796 buildings

11.5.1 An alternative model

Until now, simplex codes are obtained by concatenating the node coordi-
nates, like x1y1z1x2y2z2x3y3z3x4y4z4. This approach is based on the idea that
a node table only contains geometry and that adding an identifier would
be a bit redundant, since the geometry is already an unique identifier. Nev-
ertheless, one can question whether this approach actually reduces storage
requirements, since each node is part of multiple tetrahedrons (the Rotter-
dam tetrahedronization shows an average of about fifteen tetrahedrons per
node; see next subsection). Due to this result, the concatenated coordinate
pair is used multiple times. As long as a node identifier requires consider-
ably less storage space compared to this concatenated geometry, switching
to a tetrahedron-node approach might be feasible. An additional node table
containing a node identifier is required to create shorter simplex codes like
nid1nid2nid3nid4.

With this idea in mind tetrahedronization of the Rotterdam data set was
performed. Since TetGen output consists of a comparable structure with both
a tetrahedron and a node table, incorporating TetGen results in the Poincaré-
TEN structure was easier in the tetrahedron-node version. Since obtaining
a working implementation was strongly favored over minimizing storage re-
quirements or optimizing performance at this point, the tetrahedron-node im-
plementation was used. As a result, two tables with tetrahedrons and nodes
are stored. All simplexes are identified by a concatenation/permutation of
node id’s instead of concatenated coordinate pairs. All pro’s and con’s re-

11 Implementing the Poincaré-TEN data structure 191

garding the choice between a tetrahedron-only and a tetrahedron-node im-
plementation will be discussed into more detail in Section 11.6.2.

11.5.2 Preliminary results on storage requirements

The Rotterdam data set is first converted into the input format for TetGen,
the tetrahedronization software. This input format requires a list of nodes
with geometry, a list of faces (described by their nodes) and a list of points
inside each object to identify the object. Real volumetric 3D data is rare,
so one has to convert data or integrate multiple sources. Modifying this into
the topological format in which faces are described by their nodes is usu-
ally a very time-consuming task. The input dataset consists of 26,656 nodes,
16,928 faces and 1,796 points to identify the 1,796 buildings. Tetrahedroniz-
ing this input set with TetGen results in a TEN, consisting of 30,877 nodes,
54,566 constrained triangles and 167,598 tetrahedrons. One should note that
the tetrahedronization results in one network, i.e. the space in between the
buildings is tetrahedronized as well! The increase in the number of nodes is
caused by the addition of Steiner points; additional points required to either
enable tetrahedronization or improve tetrahedronization quality (in terms of
avoiding ill-shaped triangles and tetrahedrons to avoid numerical instability).

The tetrahedronization results are loaded into the Poincaré-TEN struc-
ture. The tetrahedron table consists of 167.598 tetrahedrons. Based on these
tetrahedron table, views are created with triangles, constrained triangles,
edges and nodes by repeatedly applying the boundary operator. Since the
Poincaré-TEN structure contains duals of all triangles as well, the num-
bers differ from the initial tetrahedronization. From the 167,598 tetrahedrons
670,392 (4 x number of tetrahedrons) triangles are derived, of which 109,120
are constrained triangles. This number slightly differs from multiplying the
original 54.566 constrained triangles by two (because of inclusion of the dual),
since the outer boundary of the TEN consists of twelve triangles without a
dual. The edge view provides information for the 198,480 edges. Note that
these edges are described by their nodes alone, so without inherited object
id, dual or sign, i.e. each geometry is unique.

As stated before, the current implementation is very straightforward. Obtain-
ing a working implementation was strongly favored over minimizing storage
requirements or optimizing performance. However, improving these aspects is
one of the most important tasks for the upcoming period. Nevertheless, stor-
age requirements of the current approach are compared to requirements of
a polyhedron approach. The polyhedrons are described in Oracle as a solid,
defined by a set of polygonal faces, each described by their vertices. The
TEN approach slightly differs from previously described implementations, as
it consists of both a tetrahedron and a node table.

192 Friso Penninga and Peter van Oosterom

The Poincaré-TEN approach requires 1.44 and 19.65 MB, respectively,
for the node and tetrahedron table, while the polyhedron tables requires 4.39
MB. This means that the current (absolutely not optimized!) implementation
requires about 4.8 times more storage space. However, as will be discussed in
Section 11.6.4, the feasibility of our approach should be assessed both based
on storage requirements as well as performance. A simple storage reduction
can be obtained by using bit string instead of character string represention
of the coordinates. Not only will this save storage space (estimated between
a factor 2 to 3), but it would also increase performance and no ascii to binary
conversions are necessary when using the coordinates.

11.6 Discussion of open issues

The prototype implementations show that the Poincaré-TEN approach is
indeed feasible and can be used for well defined representation, but is still
usable in basic GIS functions: selection of relevant objects and their visual-
ization. Further, basic analysis is very well possible: both using topology (e.g.
find the neighbors of a given feature) and geometry (e.g. compute volume of
a given feature by summing tetrahedron volumes). Finding neighbors of a
given feature can be implemented by querying the constrained triangle view
to find all boundary triangles with a specific feature identifier. Through a
view with triangle duals, the neighboring features can be identified quickly.
An alternative approach would be to traverse the TEN tetrahedron by tetra-
hedron and test for feature identifier changes. A function to find neighboring
tetrahedrons can be defined:

create or replace function getneighbourtet1(
(...)
select fromtetcode into neighbourtet from triangle
where removeobjectid(tricode)= -1 *removeobjectid(tricode);

(...)

or the volume of a tetrahedron can be calculated using the Cayley-Menger
determinant [22] (with di j as length of edge < vi,v j >):

288V 2 =

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 d2

01 d2
02 d2

03
1 d2

10 0 d2
12 d2

13
1 d2

20 d2
21 0 d2

23
1 d2

30 d2
31 d2

32 0

∣∣∣∣∣∣∣∣∣∣
Although these capabilities have been established, ongoing research is at-

tempting to provide answers to a number of some open issues. These issues
will be described in the final subsections of this paper.

11 Implementing the Poincaré-TEN data structure 193

11.6.1 Open issue 0. Spatial clustering and indexing

The large real world data set will require spatial organization of the data to
enable the efficient implementation of spatial queries such as the rectangle
(or box) selections. Spatial organization includes spatial clustering (things
close in reality are also close in computer memory, which is tricky given the
one dimensional nature of computer memory) and spatial indexing (given
the spatial selection predicate, the addresses of the relevant objects can be
found efficiently). If the current coding of the tetrahedrons (first x, then y,
then z) is replaced by bitwise interleaving, the tetrahedron code itself may be
used for spatial clustering (similar to the Morton code) and used for spatial
indexing without using additional structures (such as quad-tree or r-tree,
also requiring significant storage space and maintenance during updates) [23].
Only the coboundary references of the triangles might need functional indexes
to improve performance.

11.6.2 Open issue 1. Minimizing redundancy:
tetrahedron only vs. tetrahedron-node

In this paper, two variants of the implementation have been described. If a
separate node table is used, with compact node id’s, then the issue of realizing
spatial clustering and indexing is relevant for both tables. As there is no
direct geometry in the tetrahedron table, the bitwise interleaving approach
of the coordinates cannot be used (and probably a more explicit technique
has to be applied). At this time, no comparative results are available, but one
can expect the tetrahedron-node variant to be cheaper in terms of storage
than the tetrahedron-only approach. However, reducing data storage might
deteriorate performance, as additional operations are necessary to perform
geometrical operations on top of simplexes. If one thinks, for instance, of
the operation that checks whether a tetrahedron is oriented positively or
negatively, one needs the node coordinates to calculate a normal vector on
one of the triangles and calculate the angle between this normal vector and
a vector from a triangle opposute to the fourth node to determine whether
the normal points inwards or outwards. To perform this operation in the
tetrahedron-node implementation, one has to search the node table first to
obtain the node geometries.

194 Friso Penninga and Peter van Oosterom

11.6.3 Open issue 2. Dealing with storage
requirements: storing all coordinates vs. storing
differences

Assuming that one opts for the tetrahedron only approach, storage require-
ments can be reduced by avoiding storage of the full coordinates. Since the
four nodes are relatively close to each other, one might choose to store the co-
ordinates of one node and only give difference vectors to the other three nodes:
x1y1z1x2y2z2x3y3z3x4y4z4 would change into xyzδx1δy1δ z1δx2δy2δ z2δx3δy3δ z3.
Similar to the choice between the tetrahedron only and the tetrahedron-node
implementation, reducing data storage will come at a price. Again additional
operators are required to reconstruct the four node geometries when neces-
sary. However, if these can be implemented efficiently (and there is no reason
why this can not be done), they could be used in a view translating the com-
pact physical storage representation in a more verbose full representation
(but as this is only a view, it is not stored so it does not matter that this size
is larger). Also, the bitwise interleaving approach to provide spatial clustering
and indexing may still work well with this approach (as it is sufficient to do
only bitwise interleaving of the first coordinate).

11.6.4 Open issue 3. How to assess feasibility of the
Poincaré-TEN approach

In the implementation of the theory, as indicated in this paper (first proto-
type and also the open issues described above for further improvement), care
has to be taken so that the storage requirements are not excessive (compared
to other approaches) as this would make the approach less feasible (stor-
age requirements should be linear in the number of features represented). In
general, bulky storage requires more time to retrieve data from the disk, as
compared to compact storage. However, if very expensive computations are
needed (e.g. joins which are not well supported), then bad response times
could occur. It is important to implement the typical basic functionality ef-
fectively (both w.r.t. storage and time performance). At this moment, there
seems to be no basic functions that cannot be implemented time efficiently
(when proper clustering/indexing is applied). However, this assumption still
has to be proven.

11 Implementing the Poincaré-TEN data structure 195

11.6.5 Open issue 4. Correct insertion of 3D objects:
snapping to the earth surface

3D data sets are required to load into the current implementation. Although
research efforts are made to increase availability of such datasets [24], depen-
dence of the availability of such data sets seriously limits applicability of the
data structure at this time. Therefore, additional functionality is required to
switch from importing 3D data sets into importing 3D data from different
sources. One can imagine that creation of a 3D topographic model starts with
the creation of the earth surface, followed by inclusion of 3D buildings. In gen-
eral, buildings are built on top of the earth surface. As the earth surface and
building data originates from different sources, these objects are not likely to
fit together perfectly. To cope with such situation, one needs a snap-to-earth-
surface operator. Such an operator will project the buildings footprint onto
the terrain and determine the distance between terrain and buildings under-
side. If this distance is smaller than a certain pre-set tolerance, the building
will be placed on the terrain by applying a vertical displacement, thus en-
suring a tight fit. Two options exist for this, as one can either adjust the
buildings underside to fit the terrain or adjust the terrain to fit the (usually
flat) underside of the building. The snapping operator can also be utilized for
inclusion of infrastructural objects and land coverage objects.

11.6.6 Open issue 5. Incremental updating of existing
structure in DBMS

The current implementation lacks any tetrahedronization algorithms. At this
time, TetGen software is used and the resulting output is loaded into the
database and subsequently converted into the Poincaré-TEN structure. With
the intended application of 3D Topography in mind, bulk loading is useful for
the initial model build, but updates should be handled incrementally. A the-
oretical framework of incremental updates in a TEN structure is presented in
[2, 25]. However, these ideas still need further implementation and develop-
ment. It will be most effective to devise incremental update procedures that
act as local as possible, with the risk that quality parameters like the Delau-
nay criterion or shortest-to-longest edge ratios are temporarily not met. This
could be compensated by a cleaning function that performs a local rebuild
or even a full retetrahedronization. Obviously, such an operation needs to be
performed every now and then, but not after every update, thus speeding up
the update process.

196 Friso Penninga and Peter van Oosterom

References

[1] Penninga, F., van Oosterom, P.: A Compact Topological DBMS Data
Structure For 3D Topography. In Fabrikant, S., Wachowicz, M., eds.:
Geographic Information Science and Systems in Europe, Agile Confer-
ence 2007. Lecture Notes in Geoinformation and Cartography, Springer
(2007)

[2] Penninga, F., van Oosterom, P.: Updating Features in a TEN-based
DBMS approach for 3D Topographic Data modeling. In Raubal, M.,
Miller, H.J., Frank, A.U., Goodchild, M.F., eds.: Geographic Information
Science, Fourth International Conference, GIScience 2006, Münster, Ger-
many, September 2006, Extended Abstracts. Volume 28 of IfGI prints.
(2006) 147–152

[3] Penninga, F., van Oosterom, P., Kazar, B.M.: A TEN-based DBMS
approach for 3D Topographic Data modeling. In Riedl, A., Kainz, W.,
Elmes, G., eds.: Progress in Spatial Data Handling, 12th International
Symposium on spatial Data Handling, Springer (2006) 581–598

[4] Zlatanova, S., Abdul Rahman, A., Pilouk, M.: 3D GIS: Current Status
and Perspectives. In: Proceedings of Joint Conference on Geo-Spatial
Theory, Processing and Applications, Ottawa, Canada. (2002)

[5] Carlson, E.: Three-dimensional conceptual modeling of subsurface struc-
tures. In: Auto-Carto 8. (1987) 336–345

[6] Frank, A.U., Kuhn, W.: Cell Graphs: A provable Correct Method for
the Storage of Geometry. In: Proceedings of the 2nd International Sym-
posium on Spatial Data Handling, Seattle, Washington. (1986)

[7] Pigot, S.: A Topological Model for a 3D Spatial Information System.
In: Proceedings of the 5th International Symposium on Spatial Data
Handling. (1992) 344–360

[8] Pigot, S.: A topological model for a 3-dimensional Spatial Information
System. PhD thesis, University of Tasmania, Australia (1995)

[9] Pilouk, M.: Integrated modeling for 3D GIS. PhD thesis, ITC Enschede,
Netherlands (1996)

[10] Egenhofer, M., Frank, A., Jackson, J.: A Topological Data Model for
Spatial Databases. In: Proceedings of First Symposium SSD’89. (1989)
271–286

[11] Egenhofer, M., Frank, A.: PANDA: An Extensible Dbms Supporting
Object-Oriented Software Techniques. In: Datenbanksysteme in Büro,
Technik und Wissenschaft. Proceedings of GI/SI Fachtagung, Zürich,
1989. Informatik Fachberichten, Springer-Verlag (1989) 74–79

[12] Zlatanova, S.: 3D GIS for urban development. PhD thesis, Graz Uni-
versity of Technology (2000)

[13] Stoter, J.: 3D Cadastre. PhD thesis, Delft University of Technology
(2004)

[14] Penninga, F.: 3D Topographic Data modeling: Why Rigidity Is Prefer-
able to Pragmatism. In Cohn, A.G., Mark, D.M., eds.: Spatial Infor-

11 Implementing the Poincaré-TEN data structure 197

mation Theory, Cosit’05. Volume 3693 of Lecture Notes on Computer
Science., Springer (2005) 409–425

[15] ISO/TC211: Geographic information - reference model. Technical Re-
port ISO 19101, International Organization for Standardization (2005)

[16] Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)
Available at http://www.math.cornell.edu/ hatcher.

[17] Poincaré, H.: Complément á l’Analysis Situs. Rendiconti del Circolo
Matematico di Palermo 13 (1899) 285–343

[18] http://tetgen.berlios.de/: (2007)
[19] Miller, G.L., Talmor, D., Teng, S.H., Walkington, N., Wang, H.: Con-

trol Volume Meshes using Sphere Packing: Generation, Refinement and
Coarsening. In: 5th International Meshing Roundtable, Sandia National
Laboratories (1996) 47–62

[20] http://mathworld.wolfram.com/PlanarStraightLineGraph.html: (2007)
[21] Si, H.: TetGen, A Quality Tetrahedral Mesh Generator and Three-

Dimensional Delaunay Triangulator. User’s Manual. Technical re-
port, Weierstrass Institute for Applied Analysis and Stochastics, Berlin,
Germany (2006) Available at http://tetgen.berlios.de/files/tetgen-
manual.pdf.

[22] Colins, K.D.: Cayley-Menger Determinant. From Mathworld –
A Wolfram Web Resource. http://mathworld.wolfram.com/Cayley-
MengerDeterminant.html (2003)

[23] van Oosterom, P., Vijlbrief, T.: The Spatial Location Code. In Kraak,
M.J., Molenaar, M., eds.: Advances in GIS research II; proceedings of the
seventh International Symposium on Spatial Data Handling - SDH’96,
Taylor and Francis (1996)

[24] Oude Elberink, S., Vosselman, G.: Adding the Third Dimension to a
Topographic Database Using Airborne Laser Scanner Data. In: Pho-
togrammetric Computer Vision 2006. IAPRS, Bonn, Germany. (2006)

[25] Penninga, F., van Oosterom, P.: Editing Features in a TEN-based
DBMS approach for 3D Topographic Data modeling. Technical Report
GISt Report No. 43, Delft University of Technology (2006) Available at
http://www.gdmc.nl/publications/reports/GISt43.pdf.

Chapter 12

Drainage reality in terrains with
higher-order Delaunay triangulations

Ahmad Biniaz and Gholamhossein Dastghaibyfard

Abstract

Terrains are often modeled by triangulations, which ideally should have ‘nice
shape’ triangles and reality of drainage in terrains (few local minima and
drainage lines in the bottoms of valleys). Delaunay triangulation is a good
way to formalize nice shape, and if higher-order Delaunay triangulations are
used, drainage reality can be achieved. Two heuristics are presented, one
for reducing the number of local minima and one for reducing the number
of valley edges and components. The empirical results show how well they
perform on real-world data; on average we see a 16% improvement over known
algorithms.

List of Abbreviations and Symbols

CHS California Hot Springs
QP Quinn Peak
SL Sphinx Lakes
SM Split Mountain
WP Wren Peak
dl Delaunay triangulation
of Old flip heuristic
nf New flip heuristic
h Hull heuristic
fv Flip plus valley heuristics
hv Hull plus valley heuristics
fvvr Flip plus valley plus valley-reduce heuristics

Department of Computer Science and Engineering, Shiraz University, Shiraz, Iran
biniaz@cse.shirazu.ac.ir, dstghaib@shirazu.ac.ir

199

200 Ahmad Biniaz and Gholamhossein Dastghaibyfard

hvvr Hull plus valley plus valley-reduce heuristics

12.1 Introduction

Terrains are often modeled by triangulations. In nearly all applications where
triangulations are used, the triangles must have a ‘nice shape’. This is true
for visualization, mesh generation [1], and terrain modeling [2]. Delaunay
triangulation (DT) is a good way to formalize nice shape. Delaunay triangu-
lation of a set P of n points maximizes the minimum angle of its triangles,
over all possible triangulations of P, and also lexicographically maximizes the
increasing sequence of these angles.

For terrain modeling, there are criteria other than nice shape, such as
reality of drainage and slope fidelity in terrains. Natural terrains do not have
many local minima, because terrains are formed by natural processes and
local minima would be eroded away by water flow [2]. When constructing a
triangulated model of a terrain by Delaunay triangulation, some local minima
may appear. This may be because Delaunay triangulation is defined for a
planar set of points, and does not take into account the third dimension
[3]. Another triangulation of the same points may not have these minima;
it is therefore better to generate triangulated terrains with nice shape and
few local minima. This leads us to use higher-order Delaunay triangulations
(HODT) [3].

Definition 12.1. An edge in a point set P is order-k if there exists a circle
through its endpoints that has at most k points of P inside. A triangle in
a point set P is order-k if its circumcircle contains at most k points of P. A
triangulation of a set P of points is an order-k Delaunay triangulation if every
triangle of the triangulation is order-k (see Fig. 1).

��

����

����

��

��

����

��

�
�
�
�

��

����

��

����

����

��

��

����

��

�
�
�
�

��

����

Fig. 12.1 Left, order-0 Delaunay triangulation. Right, an order-2 Delaunay triangu-
lation, with two triangles of orders 1 and 2.

Therefore a standard Delaunay triangulation is a unique order-0 Delaunay
triangulation. For any positive integer k, there can be many different order-k

12 Drainage reality in terrains with higher-order Delaunay triangulations 201

Delaunay triangulations. By the definition, any order-k Delaunay triangula-
tion is also an order-k

′
Delaunay triangulation for all k

′
> k [4]. The bigger

k, the more freedom to eliminate artifacts like local minima, but the shape
of the triangles may deteriorate. Higher order Delaunay triangulations have
applications in realistic terrain modeling [5] and mesh generation [1].

Kok et. al. [5] showed that minimizing the number of local minima in
order-k Delaunay triangulations is NP-hard for larger values of k. For any
0 < ε < 1 and some 0 < c < 1, it is NP-hard to compute a k-th order Delaunay
triangulation that minimizes the number of local minima of the polyhedral
terrain for nε ≤ k ≤ c.n.

The terrain model is also influenced by the drainage lines, which are often
known separately. Real terrains have these drainage lines in the bottoms of
valleys. The contiguity of valley lines is a natural phenomenon. Valleys do
not start and stop halfway a mountain slope, but the Delaunay triangulation
may contain such artifacts [5]. So, the problem is to build a terrain model
that has few valley edges [6] and valley components by choosing the correct
triangulation, if it exists.

Therefore, optimization criteria for terrain modeling include minimizing
the number of local minima and the number of valley line components [5].

This paper discusses the reality of drainage networks in terrains using
higher-order Delaunay triangulations of a point set P, for which elevations
are given. In section 12.2 we present a survey on the number of heuristics for
generating realistic terrains, namely; flip and hull heuristics for reducing the
number of local minima and the valley heuristic for reducing the number of
valley edges and components. In section 12.3 a new efficient algorithm based
on the flip heuristic is proposed, which generates better outcomes. In section
12.4 we propose a new heuristic called valley reduce to reduce the number of
valley edges and components, as well an attractive method for removing iso-
lated valley edge components. Section 12.5 presents experimental results and
compares the heuristics on various terrains. Tables and visualizations show
how well the two proposed algorithms perform on real-world data. Finally,
we discuss our conclusions in section 12.6.

12.2 Background

There are two heuristics for reducing the number of local minima: hull and
flip. The hull heuristic was firstly described by Gudmundsson et al. [3] with
O(nk3 +nk logn) time complexity, and has an approximation factor of Θ(k2) of
the optimum. The algorithm starts with the Delaunay triangulation and adds
a useful order-k Delaunay edge e to the triangulation, if it reduces the number
of local minima. This edge may intersect several Delaunay edges, which are
removed; the two holes in the triangulation that appear are retriangulated
with the constrained Delaunay triangulation [7] in O(k logk). The union of

202 Ahmad Biniaz and Gholamhossein Dastghaibyfard

these two holes is called the hull of e. During the algorithm, the hull of the new
inserted edge must avoid intersecting the hulls of previously inserted edges.
Gudmundsson’s own implementation uses the hull intersection graph for this
purpose. Kok et. al. [5] improved the hull heuristic to run in O(nk2 +nk logn)
by marking the edges of the triangulation.; this is more efficient for larger
values of k.

The flip heuristic proposed by Kok et. al. [5] flips the diagonal of a convex
quadrilateral in the triangulation if certain conditions hold (for more details
see section 12.3). The algorithm starts with the Delaunay triangulation and
k
′
= 1, does all possible flips to obtain an order-k

′
Delaunay triangulation,

then increments k
′
and repeats until k

′
= k. The run time of this algorithm is

also O(nk2 +nk logn).
To reduce the number of valley edge components and improve the drainage

quality, Kok et. al. [5] proposed an O(nk logn) algorithm called the valley
heuristic. They applied two methods: removing isolated valley edges and ex-
tending valley components downward. An isolated valley edge is removed by
flip, if possible. To extend each valley component downward, the triangula-
tion around its endpoint is changed locally and connected to another valley
component if possible, reducing the number of valley components.

12.3 A More Efficient Flip Heuristic

In the flip heuristic proposed by Kok et. al. [5], any edge that satisfies two
conditions is flipped. Conditions are: (i) the two new triangles are order-k
Delaunay triangles and (ii) the new edge connects the lowest point of the
four to the opposite point. These conditions do not prevent the generation of
new valley edges (valley edges are defined in the next section). However, they
flip an edge without considering whether its end points are local minima or
not. The tables and visualizations in [5] show that: 1) the number of valley
edges and components are increased, since the method tries to connect edges
to the points with steepest descent and 2) it generates an unrealistic drainage
network with long edges, because it retriangulates the whole terrain surface
instead of only around local minima.

As mentioned earlier, the flip heuristic reduces the number of local minima,
but increases the number of valley edges and components. To overcome this
problem, we modify the flip heuristic and call it new flip. In this new heuristic,
the diagonal of a convex quadrilateral in the triangulation is flipped if two
conditions hold simultaneously: (i) the two new triangles are order-k Delaunay
triangles and (ii) the new edge connects a local minimum to the opposite
point. These conditions not only reduce the number of local minima, but
also reduce the number of valley edges and valley components. The shape of
the terrain is more realistic compared to the results of flip (see tables and
visualizations in section 12.5). The time complexity of this algorithm is still

12 Drainage reality in terrains with higher-order Delaunay triangulations 203

O(nk2 + nk logn), but in practice, it is more efficient and faster because it
checks only the edges around local minima instead of all the edges of the
triangulation. The concrete numbers for spent CPU time are given in Table 3
from section 12.5.

12.4 Reducing the Number of Valley Edge Components

Flow on terrains is usually assumed to take the direction of steepest descent;
at any point, the steepest descent direction is unique. This is a common
assumption in drainage network modeling [6, 8]. Yu et al. [6] distinguish
three type of edges in triangulation: co f luent, trans f luent and di f luent edges.
Cofluent or valley edges are edges that receive water from both adjacent
triangles (because for both adjacent triangles, the direction of steepest descent
is directed towards this edge); transfluent or normal edges receive water from
one adjacent triangle, which continues down to another triangle; and difluent
edges or ridges receive no water (because for both adjacent triangles, the
direction of steepest descent is directed away from this edge) (see Fig. 2).

15

25
30

transfluent
10

20 15

30

difluent
10

15
25

cofluent
10

30

Fig. 12.2 The three types of edges.

Definition 12.2. A valley (edge) component is a maximal set of valley edges
such that flow from all of these valley edges reaches the lowest vertex incident
to the valley edges.

So a valley component is a rooted tree with a single target that may be a
local minimum. This target is tree root and is called the end point; the leaves
of the tree are called start points.

Figure 3 shows an example of a terrain with three valley components.
The valley edges are shown by the direction of the flow, numbers indicate
the identity of each component, and squares show local minima. Component
2 ends at an inner local minimum and component 1 ends in a boundary
local minimum (a local minimum that is on the boundary of the terrain).
Component 3 ends in the inner vertex that is not a local minimum; flow

204 Ahmad Biniaz and Gholamhossein Dastghaibyfard

proceeds over a triangle. In this example, the direction of steepest descent
from vertex q – where components 2 and 3 touch – is over the edge labeled 2
to the local minimum. Each component has an end point as the root of the
tree and some start points as leaves. In our example, component 2 has three
start points (leaves), while the other components have two.

��

�
�
�
�

��
��
��
��

�
�
�
�

����

����

�
�
�
�

����

��

�
�
�
�

��

��

��
��
��
��

��

�
�
�
�

��
��

��

����

��

�
�
�
�
�

�
�
�
�
�

����
����
����
����

����
����
����
����

�
�
�
�
�
�
�

�
�
�
�
�
�
�

������
������
������

������
������
������

��
��
��
��

����

q a

cb

d

2

2

23

3

3 1

1

1 1

22

Fig. 12.3 An example of a terrain with three valley edge components.

Kok et. al. [5] observed that the drainage quality of a terrain is determined
by:

• the number of local minima, and
• the number of valley edge components that do not end in a local mini-

mum.

The sum of these two numbers immediately gives the total number of
valley edge components. They attempt to reduce this number with flip, hull
and valley heuristics. We provide a new heuristic that reduces this number
and consequently increases the drainage quality.

12.4.1 The Valley Reduce Heuristic

Just as isolated valley edges in the triangulation of a terrain are often arti-
facts, so are valley components with two or three edges (and in general valley
components with few valley edges, i.e. small valley components). Berg et. al.
[8] showed that the worst-case complexity of a river for triangulations with n
triangles, is Θ(n2) and Θ(n3) for all rivers, if drainage is allowed through the
interiors of triangles, according to steepest descent. Thus, sequences of valley
edges that do not end in local minima, where flow proceeds over a triangle,
are also artifacts.

After removing single valley edges and extending valley components down-
hill by the valley heuristic, we reduce and possibly remove the valley compo-
nents by using the valley reduce heuristic.

To reduce a valley component, we attempt to repeatedly flip (valley) edges
from each starting point. Figure 3 shows the situation when trying to reduce

12 Drainage reality in terrains with higher-order Delaunay triangulations 205

component 2 from starting point a by changing the flow situation on the
valley edge (a,b). Five candidate flips take care of this: the valley edge (a,b)
itself, and the four other edges incident to the two triangles incident to this
valley edge: ac, ad, bc and bd. A flip can potentially remove one valley edge
but create another one at the same time; such a flip is not useful and ter-
mination of the heuristic would not be guaranteed [5]. Any flip changes the
flow situation at four vertices. There are many possible choices for how to
allow flips. We choose to flip only if no new valley edge or local minimum is
generated, no valley edge except (a,b) is removed, and the two new triangles
are order-k Delaunay.

��

��
��
��
��

��
��
��
��

�
�
�
�

����

����

�
�
�
�

����

��

�
�
�
�

��

��

��
��
��
��

��

��
��
��
��

��
��

����

����

��

�
�
�
�
�

�
�
�
�
�

����
����
����
����

����
����
����
����

�
�
�
�
�
�
�

�
�
�
�
�
�
�

������
������
������

������
������
������

�
�
�
�

����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����

�����
�����
�����q2

2

23

3

3 1

1

1

2

c

d 1

a
b

Fig. 12.4 Component 2 is reduced from starting point a.

Figure 4 shows the most common case, when the valley edge itself was
flipped. The old starting point a is removed from the list of starting points
for this valley component. Point b is added to the list as a new starting point
if no valley edge is ascending from it. Then, this process is repeated on the
new start point b. Some small valley components that are not isolated from
the valley edge may be removed during this heuristic (see results in the next
section).

The valley reduce heuristic may create single valley edge components, if all
the edges of a component except for the final edge are removed. In this case,
the number of isolated valley edges is increased and may influence the shape
of drainage basins [9]. Therefore we relax the conditions that remove isolated
valley edges. Kok et. al. [5] remove such edges if the flow situation of the
four vertices of the convex quadrilateral does not change, and the two new
triangles are order-k Delaunay. We remove such edges only if no new valley
edge or new local minimum is generated or removed except that edge, and
the two new triangles are order-k Delaunay. In this case another valley edge
may be affected, but it remains a valley edge; e.g. one of its incident triangles
may be changed but flow still goes through that edge. Figure 5 shows what
happens when our method removes an isolated valley edge but the previous
method does not. The edge (a,b) is an isolated valley edge component (left
figure). It becomes transfluent if edge (b,c) is flipped (right figure). This flip

206 Ahmad Biniaz and Gholamhossein Dastghaibyfard

causes valley edge (c,d) to be affected, but it is still a valley edge. This type
of flipping was not considered by the previous method.

�
�
�
�

����

�
�
�
�

��

��
��
��
��

��

�
�
�
�

����

�
�
�
�

��

��
��
��
��

��

a

c

b

d

a

c

b

d

Fig. 12.5 Removing an isolated valley edge component.

Algorithmically, there are at most O(n) flips. The most expensive test is
deciding if the two new triangles are order-k. This can be done in O(logn +
k) time after O(nk logn) preprocessing time using an order-(k + 1) voronoi
diagram [10].

Theorem 12.1. The valley reduce heuristic to reduce the number of valley
edges and components in order-k Delaunay triangulations on n points takes
O(nk logn) time.

12.5 Empirical Results

This section shows the experimental results of the proposed heuristics (new
flip and valley reduce), and compares these heuristics with other heuristics
for various terrains. The algorithms are tested on five real-world terrains:
the California hot springs, Wren peak, Quinn peak, Sphinx lakes and Split
Mountains. As in [5], the terrains have roughly 1950 vertices. The vertices
were chosen by a random sampling of 1% of the points from elevation grids.
We only examine order 8; higher orders are less interesting in practice since
the interpolation quality deteriorates, and skinny triangles may cause arti-
facts in visualization [5]. Lower orders are also uninteresting because they
limit our freedom to flip edges. Flip, hull and valley heuristics were writ-
ten by Thierry de Kok, and we implemented the new flip and valley reduce
heuristics. All the algorithms were written in C and use CGAL-3.1 library.
We test the algorithms on an ASUS A3000 laptop with an Intel Pentium
M+1.6 GHz processor and 504 MB of RAM running under Cygwin for the
Microsoft Windows XP operating system.

The number of edges in the California hot springs, Wren, Quinn, Sphinx
and Split are 5234, 5192, 5214, 5184 and 5147 respectively, for all triangula-
tions. To define valley edges and flow when vertices have the same height, we

12 Drainage reality in terrains with higher-order Delaunay triangulations 207

treated height as a lexicographic number (z,x,y), where x and y are the lesser
significant components in the lexicographic order.

Table 12.1 Statistics for five terrains. For each terrain, counts for the Delaunay
triangulation are given, as well as for the outcome of the original flip, new flip, and
hull heuristics for order 8.

Terrain CHS QP SL
Heuristic dl of nf h dl of nf h dl of nf h
Valley edges 860 955 827 803 755 864 684 703 670 855 648 627
Local minima 63 35 37 35 56 28 30 27 54 28 29 29
Valley components 245 256 224 230 250 302 227 231 246 301 230 227
Not min.ending 191 225 196 204 199 276 204 207 197 278 206 203

Terrain SM WP
Heuristic dl of nf h dl of nf h
Valley edges 692 862 668 651 783 902 725 740
Local minima 53 31 32 32 55 29 30 30
Valley components 268 290 253 255 230 286 216 212
Not min.ending 230 269 236 238 180 261 191 187

Table 12.2 Statistics for five terrains when applying the valley reduce heuristic
(order 8) to the outcomes of the hull plus valley and new flip plus valley heuristics

Terrain CHS QP SL SM WP
Heuristic hv hvvr hv hvvr hv hvvr hv hvvr hv hvvr
Valley edges 753 609 645 504 567 452 592 469 703 557
Local minima 35 35 27 27 29 29 32 32 30 30
Valley components 161 146 157 135 147 125 169 149 137 121
Not min.ending 136 121 132 110 124 102 153 133 114 98
Single edge valley 56 60 62 64 49 47 59 58 42 49

Terain CHS QP SL SM WP
Heuristic fv fvvr fv fvvr fv fvvr fv fvvr fv fvvr
Valley edges 777 624 622 495 583 458 603 479 685 541
Local minima 37 37 30 30 29 29 32 32 30 30
Valley components 159 142 149 128 147 124 165 145 139 124
Not min.ending 132 115 123 102 124 101 149 129 116 101
Single edge valley 56 58 58 60 46 42 55 56 44 52

Table 1 shows the statistics obtained after applying Delaunay triangula-
tion, flip, new flip, and hull heuristics to five different terrains. The number
of local minima in the table represents the sum of inner local minima and
boundary local minima. The last row shows the number of components that
do not end in local minima; this number is the sum of components that end in
the inner part of the terrain and components that end in the boundary of the
terrain. The flip heuristic increased the number of valley edges considerably,
while the new flip heuristic decreased this number. The same is true for the
number of valley components.

208 Ahmad Biniaz and Gholamhossein Dastghaibyfard

The valley reduce heuristic was applied to the outcomes of new flip plus
valley and hull plus valley heuristics, see results in Table 2. The results show
that the valley reduce heuristic reduces the number of valley edges and valley
components considerably in all cases. The reduction is between 19% to 22%
for valley edges and between 9% to 16% for valley components for all trian-
gulations. There is no considerable difference between fvvr and hvvr in the
number of valley edges; in some cases new flip is better and in other cases
hull is better. The number of valley components is lowest when applying the
valley reduce heuristic to the outcome of new flip plus valley heuristics in all
terrains except Wren Peak. The number of local minima is not changed by
the valley reduce heuristic. A more careful look at Table 2 shows that the
valley reduce heuristic removes between 11% and 19% of the valley compo-
nents that do not end in local minima. The last rows of Table 2 show that
the valley reduce heuristic may create single valley edge components that can
not be removed.

Table 12.3 Number of flips and CPU time spent for flip and new flip heuristics.
Times are in seconds and do not include times of I/O.

Terrain CHS QP SL SM WP
Heuristic of nf of nf of nf of nf of nf
No of points 1967 1967 1957 1957 1947 1947 1938 1938 1951 1951
No. of flips 1696 137 1694 156 1758 165 1703 77 1734 172
Spent CPU time 50 3 51 4 51 4 53 2 51 4

Table 3 compares the flip and new flip heuristics on five terrains, regarding
CPU time spent and the number of flips made to achieve 8-order Delaunay
triangulations. We can see that the CPU time and number of flips for new
flip is roughly one tenth of that for flip heuristic.

The visualization of heuristics applied at Sphinx Lakes and Quinn Peak
terrains are given in Figs. 6 and 7 respectively. New flip has more realistic
outcomes than its original version does. A close inspection shows that there is
no significant difference between the outcomes of new flip and hull. However,
when valley reduce is applied to their outcomes, the reality of the terrains
increases significantly.

12.6 Conclusion

This paper deals with the reality of drainage networks on terrains using
higher-order Delaunay triangulations. For drainage applications, it is impor-
tant to have the drainage network coincide with the triangulation edges, and
not go over the middles of triangles. Natural terrains have few local minima
and valley edge components [5]. We presented two heuristics: new flip (for

12 Drainage reality in terrains with higher-order Delaunay triangulations 209

Fig. 12.6 Visualization of the valley edges and local minima after applying the
valley reduce heuristic to the Sphinx Lakes data set. Left column: outcome of new
flip, outcome of new flip plus valley, outcome of new flip plus valley plus valley reduce.
Second column: same, but for hull.

reducing the number of local minima) and valley reduce (for reducing the
number of valley edge components in terrains). The empirical results of five
real-world terrains shows on average a 16% reduction in the number of valley
edges and components over known algorithms.

210 Ahmad Biniaz and Gholamhossein Dastghaibyfard

Fig. 12.7 Visualization of valley edges and local minima after applying the valley
reduce heuristic for the Quinn Peak data set. Left column: outcome of new flip,
outcome of new flip plus valley, outcome of new flip plus valley plus valley reduce.
Second column: same, but for hull.

Acknowledgment

We would like to thank Mr. Maarten Löffler, a Ph.d student from Utrecht
University, the Netherlands, for sharing his code and terrain data with us.

12 Drainage reality in terrains with higher-order Delaunay triangulations 211

References

[1] J. R. Shewchuk, Lecture notes on Delaunay mesh generation, University
of California at Berkeley, (1999).

[2] Kreveld M van, GOGO project homepage.
http://www.cs.uu.nl/centers/give/geometry/compgeom/gogo

[3] Gudmundsson J, Hammar M, Kreveld M van (2002) Higher order Delau-
nay triangulations. Computational Geometry: Theory and Applications
23:85–98

[4] Gudmundsson J, Haverkort H, Kreveld M van (2005) Constrained
higher order Delaunay triangulations. Computational Geometry: The-
ory and Applications 30:271–277

[5] Kok T de, Kreveld M van, Löffler M (2007) Generating realistic terrains
with higher-order Delaunay triangulations. Computational Geometry:
Theory and Applications 36:52–67

[6] Yu S, Kreveld M van, Snoeyink J (1997) Drainage queries in TINs:
from local to global and back again. In: Kraak MJ, Molenaar M (eds)
Advances in GIS research II: Proc. of the 7th Int. Symp. on Spatial
Data Handling, pp. 829–842

[7] Chew LP (1989) Constrained Delaunay triangulations. Algorithmica
4:97–108

[8] Berg M de, Bose P, Dobrint K, Kreveld M van, Overmars M, Groot
M de, Roos R, Snoeyink J, Yu S (1996) The complexity of rivers in
triangulated terrains. In: Proc. 8th Canad. Conf. Comput. Geom. 325–
330

[9] McAllister M, Snoeyink J (1999) Extracting consistent watersheds from
digital river and elevation data. In: Proc. ASPRS/ACSM Annu. Conf.

[10] Ramos EA (1999) On range reporting, ray shooting and k-level construc-
tion. In: Proc. 15th Annu. ACM Symp. on Computational Geometry,
390–399

Chapter 13

Surface Reconstruction from Contour
Lines or LIDAR elevations by Least
Squared-error Approximation using
Tensor-Product Cubic B-splines

Shyamalee Mukherji

Abstract

We consider, in this paper, the problem of reconstructing the surface from
contour lines of a topographic map. We reconstruct the surface by approx-
imating the elevations, as specified by the contour lines, by tensor-product
cubic B-splines using the least squared-error criterion. The resulting surface
is both accurate and smooth and is free from the terracing artifacts that
occur when thin-plate splines are used to reconstruct the surface.

The approximating surface, S(x,y), is a linear combination of tensor-
product cubic B-splines. We denote the second-order partial derivatives of
S by Sxx, Sxy and Syy. Let hk be the elevations at the points (xk,yk) on the con-
tours. S is found by minimising the sum of the squared-errors {S(xk,yk)−hk}2

and the quantity
∫ ∫

S2
xx(x,y) + 2S2

xy(x,y) + S2
yy(x,y)dydx, the latter weighted

by a constant λ .
Thus, the coefficients of a small number of tensor-product cubic B-splines

define the reconstructed surface. Also, since tensor-product cubic B-splines
are non-zero only for four knot-intervals in the x-direction and y-direction,
the elevation at any point can be found in constant time and a grid DEM
can be generated from the coefficients of the B-splines in time linear in the
size of the grid.

Centre of Studies in Resources Engineering
Indian Institute of Technology, Bombay
P.O.: Powai - I.I.T.
Mumbai - 400 076
INDIA.
shyamali@csre.iitb.ac.in

213

214 Shyamalee Mukherji

13.1 Introduction

The contour lines of a topographic map are sometimes the only source of infor-
mation that we have about the terrain elevations in a region. Tensor-product
B-splines have been successfully used to model a wide variety of surfaces
in various fields, e.g., turbulence simulation, regional gravity field approxi-
mation, buckling of shells under loads etc.. In this paper, we reconstruct the
surface from contour lines by approximating the elevations by tensor-product
cubic B-splines using the least squared-error criterion.

Some solutions that have been proposed for the problem of reconstructing
the surface from contour lines are given in Section 2. Then, the least squared-
error approximation technique is described in Section 3. The results obtained
by approximating the elevation data, derived from the contours, by tensor-
product cubic B-splines are given in Section 4. In Section 5, we show that the
elevation of the reconstructed surface can be computed efficiently and also
give an efficient way of computing the DEM. In Section 6, we reconstruct
surfaces from LIDAR elevations using the same technique of least squared-
error approximation by tensor-product B-splines. We conclude the paper in
Section 7, with a summary of the advantages of reconstructing the surface
using B-splines.

13.2 Solutions Proposed in the Literature

Thin-plate splines have been used to reconstruct the surface from contour
lines but the computing time of the algorithms and terracing artifacts in the
reconstructed surface are major drawbacks of these methods [1].

The most accurate approach, for reconstruction of the surface, is to inter-
polate the elevations using Hardy’s multiquadrics [2, 3]. The reconstructed
surface is a linear combination of multiquadrics, each centered on a data
point, and a polynomial of degree one. The coefficients of the multiquadrics
and the polynomial are determined by solving a system of linear equations
whose size is the number of data points plus three. Since the multiquadrics
have global support, the coefficient matrix of the system of equations is a full
matrix and a direct solution of the system is not acceptable for large data
sets with thousands of points. The parameters that define the reconstructed
surface are the centers of the multiquadrics along with the coefficients of the
multiquadrics, and the coefficients of the polynomial. Therefore, the number
of parameters required is thrice the number of data points plus three. Also,
all the multiquadrics contribute to the elevation of the surface at any point.

To alleviate these problems, Pouderoux et al. proposed a scheme for fast
reconstruction of a C1-continuous surface [4]. The scheme also allows more
control over the numerical stability of the solution. In this scheme, the global
domain of interest is sub-divided into smaller overlapping sub-domains. The

13 Surface Reconstruction from Contour Lines 215

number of coefficients that define the reconstructed surface goes up as the
sub-divisions overlap. The number of multiquadrics that contribute to the
elevation (of the surface) at any point is greatly reduced but is still of the
order of hundreds.

Franklin proposed a computation and storage-intensive algorithm for re-
constructing the surface from contour lines [5].

Goncalves et al. used piecewise cubics to approximate the elevation data [6].
The piecewise cubics he used, however, are C1-continuous.

Dakowicz et al. solved the problem of ‘flat triangles’ in TINs by inserting
skeleton points in the TIN and assigning them elevations [7]. Various inter-
polation techniques were then used to interpolate the thus enriched contour
elevation data and were compared. Slight breaks in slope at contour lines or
oscillations are the artifacts that remain in the best surfaces obtained.

In this paper, we choose to approximate elevation data using cubic B-
splines as the natural cubic spline is the solution to the least squared-error
approximation problem in one dimension and the B-spline is smooth (C2-
continuous). We find that approximating contour elevation data by tensor-
product cubic B-splines results in a smooth surface. The solution is numeri-
cally stable. The reconstructed surface is defined by the coefficients of a small
number of tensor-product B-splines. The number of B-splines required has
been observed to be half the number of parameters that would be required
to specify a surface that has been reconstructed by multiquadrics without
applying Pouderoux’s sub-division scheme. Also, exactly 16 tensor-product
B-splines contribute to the elevation of the surface at a point. So, the elevation
at any point can be found in real-time.

13.3 Least Squared-error Approximation by
Tensor-product Cubic B-splines [8]

A cubic B-spline, B(x), with uniform knot-spacing Δ and centered at xi is
given by h(|x− xi|/Δ) where

3p3/6− p2 +4/6 0≤ p < 1
h(p) = −p3/6+ p2−2p+8/6 1≤ p < 2

0 2≤ p

A tensor-product cubic B-spline, centered at a point (x1,y1), is the product
of a cubic B-spline B(x) centered at x1 and a cubic B-spline B(y) centered at
y1.

Let Bi(x) and Cj(y) be cubic B-splines along the x and y-directions, respec-
tively. Let us take nx B-splines along the x-direction and ny B-splines along
the y-direction. Then, the spline surface S(x,y) which is to be constructed is

216 Shyamalee Mukherji

S(x,y) =
nx

∑
i=1

ny

∑
j=1

ci jBi(x)Cj(y)

Let N be the number of points, pk, at which the elevations, hk, are known
on the contour lines.

A smoothing term is added to the squared-error that is to be minimized
and the function to be minimized is

F(c) =
N

∑
k=1
{S(pk)−hk}2 +λJ(c), (13.1)

where λ is a positive constant and

J(c) =
∫ b1

a1

∫ b2

a2

S2
xx +2S2

xy +S2
yy dydx

where Sxx, Sxy and Syy are the second-order partial derivatives of S(x,y) and
[a1,b1]∗ [a2,b2] is the domain of S.

This integral can be expressed as

∑nx
i=1 ∑ny

j=1 ∑nx
r=1 ∑ny

s=1 Ei jrsci jcrs,

where

Ei jrs = Ai jrs +2Bi jrs +Ci jrs

and

Ai jrs =
∫ b1

a1

B′′i (x)B
′′
r (x)dx

∫ b2

a2

Cj(y)Cs(y)dy,

Bi jrs =
∫ b1

a1

B′i(x)B
′
r(x)dx

∫ b2

a2

C′j(y)C
′
s(y)dy,

Ci jrs =
∫ b1

a1

Bi(x)Br(x)dx
∫ b2

a2

C′′j (y)C
′′
s (y)dy.

A minimum of F(c) must occur at a point c where all partial derivatives are
zero.

Let

J(c) = cT Ec,

where E is a square matrix of dimension n = nx ∗ny whose elements are

E(j−1)nx+i,(s−1)nx+r = Ei jrs

for i,r = 1,,nx and j,s = 1,,ny.
By differentiating (1), we get

(BT B+λE)c = BT h, (13.2)

where h = (h1,,hN)T and B is the N×n matrix

13 Surface Reconstruction from Contour Lines 217

⎛
⎜⎜⎝

B1(x1)C1(y1) B2(x1)C1(y1) ... Bnx(x1)Cny(y1)
. . . .
. . . .

B1(xN)C1(yN) B2(xN)C1(yN) ... Bnx(xN)Cny(yN)

⎞
⎟⎟⎠

where pk = (xk,yk).
Then, the solution to (1) is the solution c to (2).
The matrix G = BT B+λE is positive semi-definite. The matrix is strictly

positive definite if the only solution to cT Gc = 0 is c = 0.
First observe that

cT Ec = J(c) = 0

implies that S must be a linear polynomial a+bx+ cy. Second, observe that

cT BT Bc = ||Bc||2 = 0

implies that S(pk) = 0 for all k = 1, ...,N. Thus, we have that cT Gc = 0 implies
that S is a linear polynomial which is 0 at every point pk. Clearly then, if
there are at least 3 points pk which do not lie on a straight line, S would have
to be 0 and all the coefficients ci j would have to be 0. Since the points pk
can never all be collinear, we deduce that G is indeed nonsingular and the
minimizer c of (2) is unique.

13.4 Results

The contour lines in Fig. 1 correspond to elevations ranging from 220 metres
at the bottom of the map to 660 metres at the top of the map; at intervals
of 20 metres. The lines were digitized with a planimetric accuracy of 2.28
metres.14∗19 tensor-product cubic B-splines (corresponding to 14 B-splines
along the x-direction and 19 B-splines along the y-direction) and a value of
0.0001 for λ were used to obtain the reconstructed spline surface in Fig. 2.
The r.m.s. error (between the elevations of the reconstructed surface at the
points on the digitized contour lines and the contour line elevations) achieved
is 1.89 metres. The surface is smooth with minor artifacts at a few places at
the edges of the surface. The surface obtained by interpolation using Hardy’s
multiquadrics is shown in Fig. 3 for comparison. The difference surface is
shown in Fig. 4.

32∗30 tensor-product cubic B-splines and a value of 0.01 for λ were used
to achieve an r.m.s. error of 2.01 metres for the contour lines in Fig. 5. The
reconstructed surface is shown in Fig. 6. The surface obtained by interpolation
using Hardy’s multiquadrics is shown in Fig. 7. The difference surface is shown
in Fig. 8.

Thus, the reconstructed surface is defined by a small number of B-splines.
The surface is free from the terracing artifacts that occur when thin-plate
splines are used to reconstruct the surface.

218 Shyamalee Mukherji

Fig. 13.1 Contour lines.

Fig. 13.2 The reconstructed surface.

13 Surface Reconstruction from Contour Lines 219

Fig. 13.3 Surface obtained by interpolation using Hardy’s multiquadrics.

Fig. 13.4 The difference surface.

220 Shyamalee Mukherji

Fig. 13.5 Contour lines.

Fig. 13.6 The reconstructed surface for the contour lines in Fig. 5.

13.5 Computing the DEM

In this Section, we show that the elevation of the reconstructed surface at
a point can be computed efficiently. We then describe an efficient way of
generating the DEM with low memory requirements.

Since tensor-product cubic B-splines are non-zero only for four knot-
intervals in the x-direction and the y-direction, exactly 16 tensor-product
cubic B-splines contribute to the elevation at a point.

Let us assume that the B-splines that are non-zero at a point (x1,y1)
are Bk(x), Bk+1(x), Bk+2(x), Bk+3(x), Cl(y), Cl+1(y), Cl+2(y) and Cl+3(y). The
elevation at (x1,y1) is found by evaluating the right-hand side of Eqn. 2 at
(x1,y1) as follows:

13 Surface Reconstruction from Contour Lines 221

Fig. 13.7 Surface obtained by interpolation using Hardy’s multiquadrics.

Fig. 13.8 The difference surface.

222 Shyamalee Mukherji

We first evaluate the cubic polynomials Pj(x) = ∑k+3
i=k ci jBi(x), j = l, . . . , l +3

at x = x1. To do this, we first find p = |x1− xk+1|/Δx where xk+1 is the center
of the B-spline Bk+1(x) and Δx is the knot-interval for the Bi(x). Pj(x1) is,
then,

ck j(−p3 +3p2−15p+1)+ ck+1, j(3p3−6p2 +4)

+ck+2, j(−3p3 +3p2 +3p+1)+ ck+3, j p3 (13.3)

The quantities in the brackets require 17 operations {where an operation
is either an addition (subtraction) or a multiplication}. So, finding the four
Pj(x1) requires 17+4∗7 = 45 operations.

Then, we find q = |y1− yl+1|/Δy where yl+1 is the center of the B-spline
Cl+1(y) and Δy is the knot-interval for the Cj(y). The elevation at (x1,y1),
which is ∑l+3

j=l Pj(x1)Cj(y1), can be expressed in a form that is analogous to
the expression in (3) above. A rearrangement of the terms yields

q3{−Pl(x1)+3(Pl+1(x1)−Pl+2(x1))+Pl+3(x1)}
+3q2{Pl(x1)+Pl+2(x1)−2Pl+1(x1)}+3q{−5Pl(x1)+Pl+2(x1)}

+Pl(x1)+Pl+2(x1)+4Pl+1(x1) (13.4)

the computation of which requires 21 operations.
Thus, the elevation at any point can be found with 45+21 = 66 operations,

or, in constant time. (In contrast, in Pouderoux’s sub-division scheme, a small
multiple of 800 operations would be required.)

When generating a DEM, we start with the distinct x co-ordinates, of the
points of the DEM grid (Fig. 9), which lie between x2 and x3 (x1 and xnx lie
at least Δx to the left of and Δx to the right of the first and last data points,
respectively, in the horizontal direction; and there are no data points in the
intervals [x1,x2] and [xnx−1,xnx]), compute the respective p = |x− x2|/Δx and
compute and store the quantities in the brackets in expression (3), for these
x co-ordinates. This takes 17Nx operations where Nx is the number of distinct
x co-ordinates of the grid that lie between x2 and x3. We then compute and
store the four Pj(x1), j = 1, . . . ,4 for each of these x co-ordinates. This takes
Nx ∗4∗7 = 28Nx operations.

We then take the y co-ordinates of the DEM grid that lie between y2
and y3 and find the corresponding q = |y− y2|/Δy. The elevation at the grid-
points, (x1,y1), whose x co-ordinates lie between x2 and x3 and y co-ordinates
lie between y2 and y3, is ∑4

j=1 Pj(x1)Cj(y1) = P1(x1)(−q3 + 3q2− 15q + 1) +
P2(x1)(3q3−6q2 +4)+P3(x1)(−3q3 +3q2 +3q+1)+P4(x1)q3. Thus, the com-
putation of the elevations at these grid-points takes a total of 17Ny +Ny∗Nx ∗7
operations where Ny is the number of distinct y co-ordinates of the grid that
lie between y2 and y3.

Next, we compute P5(x1) and use Pj(x1), j = 2, . . . ,5 to find the elevations at
the grid-points, whose x co-ordinates lie between x2 and x3 and y co-ordinates

13 Surface Reconstruction from Contour Lines 223

c c c c c

11 21 31 41 n 1

x

x x x x x

1 2 3 4 n

x

y x x x x x

1

c

12 x1

y x x|delta-x x x x

2 y1-o o o

delta-y

c

13 o o o

y x x x x x

3

c

14

y x x x x x

4

c

1n

y

y x x x x x

n

y

x: centers of the B-splines

o: grid-points

Fig. 13.9 Computing the DEM

lie between y3 and y4. We proceed down the grid in this manner, computing
the elevations at the grid-points, till we reach the bottom of the grid. Then
we return to the top of the grid and repeat the entire procedure starting, this
time, with the distinct x co-ordinates of the grid-points between x3 and x4.
This process continues till the lower right corner of the grid is reached.

Thus, the computation of the elevations at the grid-points requires 17N +
7Nny +17M(nx−3)+7MN = 7MN +17M(nx−3)+7Nny +17N operations for
an M ∗N grid. nx and ny can be atmost N and M. So, the computation time

224 Shyamalee Mukherji

is linear in the size of the grid and the constant is small, viz., 31. This is not
the case with multiquadric-based DEMs wherein all multiquadrics contribute
to the elevation at every grid-point.

13.6 Approximating LIDAR elevation data

We rotated the LIDAR scan-lines so that they are vertical as in Fig. 10. The
surface obtained by approximating the elevations by tensor-product quadratic
B-splines is shown in Fig. 11. This is a rural area scanned from an altitude of
1350 metres with a point spacing of 1.1 metres. The r.m.s. deviation of the
surface from the LIDAR elevations is 1.8 cm.. Brovelli et al. approximates
the LIDAR elevation data by bilinear splines [9]. The corresponding surface
is shown in Fig. 12.

Fig. 13.10 LIDAR elevations. (The values shown are in excess of 100 metres.)

LIDAR elevation data with gaps (Fig. 13) (rural area again) are approx-
imated well by tensor-product cubic B-splines as is shown in Fig. 14. The
value of lambda used is 0.000001 and the r.m.s. deviation of the surface from
the LIDAR elevations is 2.6 cm..

13 Surface Reconstruction from Contour Lines 225

Fig. 13.11 Surface approximating LIDAR data.

Fig. 13.12 Approximation by bilinear splines.

13.7 Conclusions

We conclude, from the results in Section 4, that tensor-product cubic B-
splines lead to a good reconstruction. The reconstructed surface is also free
from the terracing artifacts that occur when thin-plate splines are used to
reconstruct the surface. The smoothness of the surface results from the in-
herently smooth nature of cubic B-splines, which are C2-continuous. An ad-

226 Shyamalee Mukherji

Fig. 13.13 LIDAR elevations with gaps. (The values shown are in excess of 100
metres.)

Fig. 13.14 Surface approximating LIDAR data with gaps.

13 Surface Reconstruction from Contour Lines 227

vantage of this method of reconstructing the surface is that the coefficients
of a small number of tensor-product cubic B-splines define the surface.

Tensor-product cubic B-splines are non-zero only for four knot-intervals
in the x-direction and y-direction. Therefore, exactly 16 tensor-product B-
splines contribute to the elevation at a point. So, the elevation at any point
can be found in constant time and a grid DEM can be generated from the
coefficients of the B-splines in time linear in the size of the grid.

13.8 Acknowledgement

This work was supported by the Indian Space Research Organization.

References

[1] Gousie MB (1998) Contours to digital elevation models: Grid-based sur-
face reconstruction methods. PhD Thesis, Rensselaer Polytechnic Insti-
tute, Troy, New York

[2] Franke R (1982) Scattered data interpolation: tests of some methods.
Math Comp 38(157):181-200

[3] Hardy RL (1971) Multiquadric equations of topography and other irreg-
ular surfaces. J Geophys Res 76:1905-1915

[4] Pouderoux J, Gonzato JC, Tobor I, Guitton P (2004) Adaptive hierarchi-
cal RBF interpolation for creating smooth digital elevation models. Proc
12th Ann ACM Intl Workshop GIS 2004, Washington, DC, USA, 232-240

[5] Franklin WR (2000) Applications of analytical cartography. Carto & GIS
27(3):225-237

[6] Goncalves G, Julien P, Riazanoff S, Cervelle B (2002) Preserving carto-
graphic quality in DTM interpolation from contour lines. ISPRS J Pho-
togram & Remote Sens 56:210-220

[7] Dakowicz M, Gold CM (2003) Extracting meaningful slopes from terrain
contours. Intl J Comput Geom & Applns 13(4):339-357.

[8] Floater MS (2000) Meshless parameterization and B-spline surface ap-
proximation. In: Cipolla R, Martin R (eds) The mathematics of surfaces
IX. Springer, Berlin Heidelberg NewYork

[9] Brovelli MA, Cannata M, Longoni UM (2004) LIDAR data filtering and
DTM interpolation within GRASS. Trans in GIS 8(2):155-174

Chapter 14

Modelling and Managing Topology in 3D
Geoinformation Systems1

Andreas Thomsen, Martin Breunig, Edgar Butwilowski, and Björn Broscheit

Abstract

Modelling and managing topology in 3D GIS is a non-trivial task. The tradi-
tional approaches for modelling topological data in 2D GIS cannot be easily
extended into higher dimensions. In fact, the topology of real 3D models is
much more complex than that of the 2D and 2.5D models used in classical
GIS; in consequence there is a great number of different 3D spatial mod-
els ranging from constructive solid geometry to boundary representations.
The choice of a particular representation is generally driven by the require-
ments of a given application. Nevertheless, from a data management point
of view, it would be useful to provide a general topological model handling
2D, 2.5D and 3D models in a uniform way. In this paper we describe con-
cepts and the realisation of a general approach to modelling and managing
topology in a 3D GIS based on oriented d-Generalised Maps and the closely
related cell-tuple structures. As an example of the applicability of the ap-
proach, the combination of a group of buildings from a 3D city model with
the corresponding part of a 2D city is presented. Finally, an outlook to on-
going research is given in the context of topological abstraction for objects
represented in multi-representation databases.

Institute for Geoinformatics and Remote Sensing, University of Osnabrück,
Seminarstr. 19 a/b, 49069 Osnabrück, Germany
{martin.breunig,andreas.thomsen,edgar.butwilowski,bjoern.broscheit}

@uni-osnabrueck.de

1 This work is funded by the German Research Foundation (DFG) in the project
‘MAT’ within the DFG joint project ‘Abstraction of Geoinformation’, grant no. BR
2128/6-1.

229

230 Thomsen, Breunig, Butwilowski, Broscheit

14.1 Introduction

Topology and GIS belong together since the development of GIS. Already
first GIS like GRASS and Arc/Info provided a topological data model stor-
ing relationships between points, lines, and areas of an area network. These
traditional approaches for modelling topology in in 2D GIS were implemented
by explicit links between geometric objects, e.g. from a line segment to its
neighbouring left and right area. The more topologogical relationships the
user required, the more complex the topological model became.

Unfortunately, there are no straightforward extensions into 3D space of the
2D topological data models used in traditional GIS. Instead, there is a num-
ber of different 3D spatial models ranging from constructive solid geometry
to boundary representations, the choice of a particular representation being
driven by the requirements of a particular application - from architecture and
urbanism to numerical modelling, engineering and underground mining.

In a 3D Geoinformation System, objects of different dimension d ≤ 3 are
processed. The geometry of a geoscientific object in 3D GIS can be composed
of sets of points, curves, surfaces and volumes, respectively. In a topology
model of a 3D GIS, the components of the objects can be interpreted e.g. as
a mesh of nodes, edges, faces and solids that describes both the interior struc-
ture of the geoscientific objects and their mutual neighbourhood relationships
in 3D space.

To describe topology uniformely in 3D solid modeling [1] and 3D GIS
[2], a general framework for topological data models has to be provided that
abstracts from the dimension of the objects. Furthermore, it should be usable
as a data integration platform for 2D, 3D and time-dependent 3D (sometimes
termed ”4D”) topology.

In this paper, we investigate how oriented G-Maps and cell-tuple struc-
tures can be used to handle the topology of a digital spatial model in a more
generic way, in order to support 2- and 3-dimensional and spatio-temporal
models. For many 3D geo-applications not only the modelling, but also the
management of topology in database management systems is relevant. In-
spired by the work of GeoToolKit [3], that provides a geometric 3D library,
we here present topological data structures and operations needed in 3D GIS.

After a short overview on related work, we recall Lienhardt’s d-G-Map in
section 3, and discuss basic topological operations in section 4. An object-
relational representation based on Brisson’s cell-tuple structures is introduced
in section 5. The integration of triangular meshes is discussed in section
6, while the application to time-dependent topology is briefly presented in
section 7. We conclude with an application example in section 8, and an
outlook on future work.

14 Modelling and Managing Topology in 3D GIS 231

14.2 Related work

Whereas basic relationships of point set topology, and in particular Egen-
hofer’s nine intersection model have become standard in GIS, and lend them-
selves to a 3D generalisation [4, 5], 3D discrete topological structures stem-
ming from algebraic topology have not gained comparable popularity, despite
considerable development during the last decades. While [6] discussed the ap-
plication of simplicial complexes to spatial databases, general approaches to
representing topology in the context of 3D modelling have been examined by
[7] and by other authors. [8] developed d-dimensional cell-tuple structures,
and in parallel [9] developed d-dimensional Generalised Maps (d-G-Maps), to
represent and manage the topological properties of cellular partitions of d-
dimensional manifolds (d-CPM), cf. also [10]. [11] has shown that 3-G-Maps
have comparable space and time behaviour as the DCEL and radial edge
structures, but can be used for a wider range of applications, allowing a more
concise and robust code. [12] used G-Maps to model architectural complexes
in a hierarchy of multi-partitions. G-Maps and cell-tuple structures have been
used to represent the topology of land-use changes [13], and are currently ap-
plied in the geoscientific 3D modelling software GOCAD2 [14, 10], and in
the topological modelling and visualisation tool Moka[15]. [16] give a concise
overview of 2D and 3D topological models and propose the translation into
geometric primitives for the integration of 2D and 3D topological models with
3D GIS based on relational databases. Recently, [17] describe the integration
of 2D and 3D cadastral objects in a representation by regular polytopes based
on pseudo-rational numbers. [18] presents the combination of 3D simplicial
networks with Poincarié Algebra in a TEN-based spatial DBMS. Relations of
our work with the work of [19], which has not been available at short notice,
will be examined in our future work.

14.3 A general approach to modelling topology in 3D
GIS

In the following, we use oriented d-CPM as a topological model for 3D GIS.
d-CPM can be considered as a generalisation of simplicial complexes, but lack
the algebraic properties of the latter. However, if a d-CPM is represented by a
d-G-Map, the involution operations of the latter provide the cellular complex
with the combinatorial structure of an abstract simplicial complex, where
the cells and cell-tuples play the role of abstract nodes and abstract sim-
plexes, while the involution operators define the neighbourhood relationships
between the abstract simplexes [9]. Note that the abstract nodes n, e, f , s of
a 3-G-Map belong to 4 classes distinguished by different dimensions, whereas

2 GOCAD is a registered trademark of Earth Decision Co.

232 Thomsen, Breunig, Butwilowski, Broscheit

all nodes of a simplicial complex belong to the same finite set of vertices in
space.

According to [9], a d-dimensional Generalized Map (d-G-Map) is a d+2-
tuple G = (D,α0, . . . ,αd), consisting of a finite set D of objects called “darts”,
and d +1 permutations αi, i = 0, . . . ,d that verify the following two conditions:

the αi are involutions, i.e. they verify for all x,

αi (αi (x)) = x, (14.1)

and for all i, j with 0≤ i < i+2≤ j ≤ d, αiα j is an involution, i.e.

αi (α j (αi (α j (x)))) = x, (14.2)

which implies αiα j = α jαi.
The G-Maps are embedded in space by a mapping that to each dart asso-

ciates a unique combination (n,e, f [,s]) of a node n, an edge e, a face f , and
in 3D a solid s.

The condition that a d-G-Map always represents a d-dimensional manifold
ensures that to any cell-tuple, there exists at most one partner that differs
from it only by one exchange operation αi .

A d-G-Map can be represented as a graph with cell-tuples as nodes (darts),
and edges defined by the involution operations (Figure 14.1).

Fig. 14.1 Representation of an oriented 3-G-Map as graph with symmetries deter-
mined by the combinatorial character of the involutions.

14 Modelling and Managing Topology in 3D GIS 233

By assumption, the cellular complexes are orientable, and the correspond-
ing G-Maps are oriented. This implies that there are two classes of darts or
cell-tuples of the same cardinality, but carrying different polarity. Different
from [9], we exclude the possibility that an involution attaches a cell-tuple
to itself (f (x) = x), e.g. at the boundary of the cellular complex. Thus we
ensure that involution operations always link pairs of cell-tuples of opposite
sign. Instead, following [8], we introduce a special non-standard cell, the out-
side, or universe, which in general needs not be simply connected and may
comprise holes and islands, and provide the universe also with cell-tuples and
involutions on the boundary. This approach increases the number of objects
to be handled. However, it simplifies some operations and algorithms.

14.4 Topological operations on oriented d-G-Maps and
cell-tuple structures

In the following, we briefly present some topological operations on oriented
G-Maps, a more extensive discussion can be found e.g. in [11, 20].

14.4.1 Orbits

Orbits are defined as subsets that can be reached by any combination of invo-
lution operations of a given subset of α0, . . . ,αd , starting from a given dart or
cell-tuple cT0. They are noted orbitd(cT0,αi, . . . ,α j), or shorter orbitd

i... j(cT0).
Orbits that comprise all indices 0, ...,d with the exception of k leave the k-th
cell of cell-tuple cT0 fixed and can be interpreted as the subset of all cell-
tuples containing the same cell of dimension k as cT0. Such orbits can also be
noted as orbitd(cT0, � k). Orbits of this type provide another way to describe
cells of dimension k. While most types of orbits are implemented by single
or double programming loops of fixed or variable size, [11] implements or-
bits of type orbit2

012(), orbit3
012(), orbit3

123(), and orbit3
0123() recursively using a

stack. Whereas loop implementations of orbits yield continuous closed paths
in the G-Map graph, recursively implemented orbits in certain situations
may produce discontinuities (”jumps”). Orbits of type orbit2

012(), orbit3
0123()

produce the complete connected component containing cT0. Besides orbits,
other loops, i.e. closed paths in the G-Map graph may be defined by an appli-
cation or by a user. Orbits and loops are the main methods for the navigation
on the G-Map graph. They are also indispensable for the implementation of
some of the topological operations discussed below.

234 Thomsen, Breunig, Butwilowski, Broscheit

14.4.2 Topological operations on cells

Two classes of topological operations can be distinguished: Euler operations
that conserve the Euler-Poincaré characteristic and thus the global connec-
tivity properties of a G-Map ([1, 11]), and non-Euler operations that alter
the connectivity of the structure. Examples of Euler operations are the sub-
division of a cell of any dimension k > 0 by a newly created separating cell
of dimension k− 1, e.g. the division of a face f by a new edge e, and the
corresponding inverse operations, under certain conditions ensuring the con-
sistency of the resulting G-Map. An example of a Non-Euler operation is the
attachment and subsequent sewing [11] of two previously disconnected cells,
and the inverse operation. These operations constitute the most important
methods for the building, transformation and in particular generalisation of
d-G-Maps.

14.5 Data management for topological cell-tuple
structures

In the following, we discuss some aspects of a different realisation of an
oriented d-G-Map, namely as a cell-tuple structure in an object-relational
database. This representation aims at providing a general topological access
structure in 2D and 3D to existing GIS based on object-relational databases
(ORDBMS). Whereas in the graph representation the main attention is given
to the involutions αi, the relational representation uses Brisson’s [8] cell-tuples
as a realisation of the darts, while involutions are implemented using foreign
keys and exchange operations. It is an interesting question, to what extent
the functionality of orbits can be replaced by subset queries, join operations,
and sorting, i.e. by standard operations of a relational DBMS.

14.5.1 Implementation of the topological data
structures as database representation

The topological data structure presented here shall manage the topology of
complex spatial objects in 2 and 3 dimensions. It is based on Lienhardt’s [9]
d-Generalized Maps and on Brisson’s [8] closely related cell-tuple structures.

A d-G-Map can be represented in the relational model as follows (Figure
14.2): the set of cell-tuples is stored in tabular form, e.g. by two relations
cT pos(node id,edge id, f ace id [,solid id] ,′+′,n inv,e inv, f inv [,s inv])
cT neg(node id,edge id, f ace id [,solid id] ,′ −′,n inv,e inv, f inv [,s inv]),
and the involution operations are modelled as symmetric 1:1 relationships

14 Modelling and Managing Topology in 3D GIS 235

Fig. 14.2 Representation of a 3-G-Map as relation with nodes Ni, edges Ei, faces Fi,
solids Si, and involutions αi

defined by the switch operations [8], linking e.g.
cT pos(node id, . . . ,′+′,n inv, . . . ,) to cT neg(n inv, . . . ,′ −′,node id, . . . ,).

In a cell-tuple, the combination of cell identifiers, augmented by the pos-
itive or negative sign, (node id,edge id, f ace is [,solid id] ,sign) is used as a
unique cell-tuple key, while the identifiers of the cells to be exchanged by
the involutions are stored as data. The data access by cell-tuple keys is en-
hanced by sorted indexes or hash indexes. The involutions are implemented
in two steps: first, from a given cell-tuple entry, create a new cell-tuple key
by exchanging exactly one cell id. Second, use this key to retrieve the corre-
sponding complete entry from the database.

The implementation of a d-G-Map is thus realised as a network of cell-
tuples that is made persistent by relations of an Object-Relational Database
Management System (ORDBMS). With the goal of a topological component
for multi-representation databases [20], we implemented 2-G-Maps and 3-G-
Maps with the ORDBMS PostgreSQL3 [21] in combination with the open
source GIS PostGIS4 [22]. In our future work, we intend to implement the
graph representation of a G-Map as a topological access structure for our
object-oriented 3D/4D Geo-DBMS GeoDB3D [25, 26]. GeoDB3d uses sim-

3 PostgreSQL ©1996-2005 by the PostgreSQL Global Development Group ©1994
by the Regents of the University of California is released under the BSD license
4 PostGIS has been developed by Refractions Research and is released under the
GNU General Public License

236 Thomsen, Breunig, Butwilowski, Broscheit

plicial complexes to represent geometry, and is based on the DBMS Object-
Store5.

14.5.2 Implementation of topological database
operations

As the general topological data model is to be integrated into existent spa-
tial ORDBMS, we focus on a clear translation of the G-Map into the rela-
tional model, and on the integration of the topological operations with the
SQL-commands of a database server. In our view, optimization efforts should
rather make use of RDBMS functionality, like sorting, indexing, clustering
and caching, than perform the topological operations in client memory.

Orbits of the form orbitd
0...�k...d (cT0) comprise all celltuples that share with

cT0 a cell of dimension k. The corresponding cell-tuple subset can be retrieved
by an appropriate relational query, though not in the same arrangement. For
orbit2

012 () and orbit3
0123 (), a corresponding relational query would yield all cell-

tuples, regardless whether from the same connected component or not. For
many purposes, this may be sufficient, but for the implementation of the two
last-mentioned orbits, and for applications that require an identical arrange-
ment, we can either explicitly model the orbit using the involution operations,
or rearrange the subset on the client side after retrieval. Implementing orbit
re-arrangement as an additional functionality of the server would be the best
option, if this is supported by the ORDBMS. Loops can be implemented as-
sociating each cell-tuple with a selector variable that defines the involution
to be performed next.

14.5.3 Example implementation of a database
operation

A Basic Euler operation.

As an example of a basic topological operation, in a 2-G-Map comprising
nodes n . . ., edges e . . . and faces f . . ., consider the insertion of a new node n
that splits an edge e(n0,n1, f0, f1) between nodes n0, n1 and faces f0, f1 into
two edges e0 (n0,n) and e1 (n,n1) (Figure 14.3). At node n, four cell-tuples are
inserted:

• (n,e0, f0,−,n0,e1, f1),
• (n,e0, f1,+,n0,e1, f0),
• (n,e1, f0,−,n1,e0, f1),

5 ObjectStore is a registered trademark of Progress Software Co.

14 Modelling and Managing Topology in 3D GIS 237

• (n,e1, f1,+,n1,e0, f0).

Eight cell-tuples at nodes n0 and n1 are transformed:

• (n0,e, f0,+,n1,ea, f1)→ (n0,e0, f0,+,n,ea, f1),
• (n0,e, f1,−,n1,eb, f0)→ (n0,e0, f1,−,n,eb, f0),
• (n1,e, f0,−,n0,ec, f1)→ (n1,e1, f0,−,n,ec, f1),
• (n1,e, f1,+,n0,ed , f0)→ (n1,e1, f1,+,n,ed , f0).
• (n0,ea, f0,−, . . . ,e, f1)→ (n0,ea, f0,−, . . . ,e0, f1),
• (n0,eb, f1,+, . . . ,e, f0)→ (n0,eb, f1,+, . . . ,e0, f0),
• (n1,ec, f0,+, . . . ,e, f1)→ (n1,ec, f0,+, . . . ,e1, f1),
• (n1,ed , f1,−, . . . ,e, f0)(n1,ed , f1,−, . . . ,e1, f0).

The translation into SQL is straightforward:

BEGIN TRANSACTION
INSERT INTO celltuples VALUE (n,e0,f0,-,n0,e1,f1);
INSERT INTO celltuples VALUE (n,e0,f1,+,n0,e1,f0);
INSERT INTO celltuples VALUE (n,e1,f1,-,n1,e0,f0);
INSERT INTO celltuples VALUE (n,e0,f0,+,n0,e1,f1);
UPDATE celltuples
CASE
WHEN edge=e AND node=n0 THEN SET edge=e0 SET node_inv=n
WHEN edge=e AND node=n1 THEN SET edge=e1 SET node_inv=n
WHEN edge_inv=e AND node=n0 THEN SET edge_inv=e0
WHEN edge_inv=e AND node=n1 THEN SET edge_inv=e1
END
WHERE edge= e OR edge_inv= e;
COMMIT;

Fig. 14.3 A simple Euler operation: splitting an edge by the insertion of a node

238 Thomsen, Breunig, Butwilowski, Broscheit

While this example is particularly simple, corresponding operations on
cells of higher dimension, e.g. in a 3-G-Map the splitting of a face by the
introduction of a separating edge initially follow a similar pattern. However,
after the ”sewing” i.e. adaptation of the αi transitions at the new separating
edge, additional operations are necessary to modify the links of all cell-tuples
that refer the divided face. These operations are supported by two orbit2

01
about the two newly created faces. For the splitting of a 3D solid by a new
2D face, a ”loop” is required that defines the location where the new face
is incident with the boundary of the existing solid to be split. Typically, a
database client would provide a set of basic operations for the management,
navigation and retrieval of topological information. These operations should
be combined into short programs or scripts that fulfil more complex tasks.

14.5.4 Integrity checks for the relational
representation of d-G-Maps

A spatial database has no a-priori knowledge about the way a newly intro-
duced dataset has been constructed, nor on the order of update operations
executed by a user or by a client application. It is therefore necessary to pro-
vide it with a set of tools to check the integrity of a stored G-Map at any
time. In a relational representation of a G-Map, join operations can serve to
implement some basic integrity checks. A possible test for α0 verifying con-
dition (1) is the following operation which for a consistent G-Map returns
zero:

SELECT COUNT(*)
FROM cT_pos, cT_neg
WHERE (cT_neg.node_id = cT_pos.node_inv)
AND NOT (cT_pos.node_id = cT_neg.node_inv);

Condition (2) on α0, α2 is checked e.g. by the following SQL query in-
volving a triple join, that must return zero, if the G-Map is consistent with
condition (2):

SELECT COUNT(*)
FROM cT_pos as cT_p1, cT_neg as cT_n1,

cT_pos as cT_P2, cT_neg as cT_n2
WHERE (cT_n1.node_id = cT_p1.node_inv)
AND (cT_p2.face_id = cT_n1.face_inv)
AND (cT_n2.node_id= cT_p2.node_inv)
AND NOT (cT_p1.face_id = cT_n2.face_inv);

14 Modelling and Managing Topology in 3D GIS 239

14.6 Mesh representation of geometry

By merging adjacent d-cells, hierarchies of G-Maps can be built, that consist
of a sequence of nested subsets of cell-tuples and their involutions. The αi
transitions at a higher level correspond to a sequence of transitions at the
lower, more detailed level. Such a nested hierarchy of G-Maps [11] can be
used to integrate a more detailed geometric representation into the topolog-
ical model. Suppose that the geometry of flat or curved surface patches is
represented by triangle nets, which may have been generated by any mod-
elling method, and are described by a set of vertices (v j,x j,y j,z j) and a set
of triangle elements (tri,vi0 ,vi1 ,vi2 ,ni1 ,ni2 ,ni3), where tri is an identifier of the
triangle element, vi0 , ...,vi2 reference its vertices, and ni0 , ...,ni2 reference the
neighbour triangles (Figure 14.4).

Fig. 14.4 Representation of a face by a triangle mesh. Within each triangle element
tri, celltuples and switch transitions are generated automatically (small darts). The
cell-tuples of the complete face are situated at selected ”corner” vertices Nj of the
mesh, while involutions follow the mesh boundaries Ek

The corresponding G-Map representation of topology of a mesh element
comprises six cell-tuples (vik ,edgel , tri,sign), where the values edgel still have
to be determined. It is possible to generate a new numbering of edges and
a new cell-tuple representation, and to store it as a separate object, but
this would greatly increase the size of the model, without adding any new
information. In order to save space, we therefore suggest to generate the
six cell-tuples of a triangle element on the fly when required, using an edge
numbering scheme that can be reproduced as long as the triangle mesh is
not altered: If an edge is situated at the triangle mesh boundary, we identify
the edge by the triangle identifier tri and by its relative position within the

240 Thomsen, Breunig, Butwilowski, Broscheit

triangle, the latter being a number p < 3. For an interior edge separating
two triangles tri and tr j, we choose the smaller of the two numbers, e.g. tr j,
and the corresponding relative position p j. Clearly two bits are sufficient to
store the local position, and the edge identifiers may be represented e.g. by
tr j ∗ 3 + p j. By restricting the admissible number of triangles, we can store
triangle identifiers, vertex identifiers and edge numbers in fixed length fields,
e.g. as long integers, and reproduce the corresponding cell-tuples at any time:
for a given triangle tr and its three neighbours tr0, tr1 and tr2, determine first
which neighbours have lower id, and second, the relative position pe of the
corresponding edge e within, then compose tr or trk and pe into the edge
number eid; finally, return the six cell-tuples, where the signs ’+’ and ’-’ are
only given as an example:

(vi0 ,eid2 , tri,+)(vi1 ,eid1 , tr2)
(vi1 ,eid2 , tri,−)(vi0 ,eid0 , tr2)
(vi1 ,eid0 , tri,+)(vi2 ,eid2 , tr0)
(vi2 ,eid0 , tri,−)(vi1 ,eid1 , tr0)
(vi2 ,eid1 , tri,+)(vi0 ,eid0 , tr1)
(vi0 ,eid1 , tri,−)(vi2 ,eid2 , tr1)

As long as the triangle mesh topology is not altered, these cell-tuples can be
reproduced at any time.

Thus, at the lowest, most detailed level of the hierarchy, the cell-tuple
structure is represented implicitly by the triangle net. By a similar argument,
any mesh consisting of elements with a bounded number of vertices can be
integrated at the cost of a small number of bits for each element, e.g. a
quadrangular mesh for boundary representation, or a tetrahedral mesh for
solid modelling. Combined with a corresponding interpolation method, e.g.
linear or bilinear interpolation for each mesh cell, at the lowest level topology
and geometry representation can be integrated with the G-Map hierarchy.

14.7 Time-dependent topology

The objects of a city model, or of any other 3D GIS possess a ”life span”, i.e.
a temporal interval of existence, that in turn can be decomposed into several
intervals during which their structure is constant. As the G-Map represen-
tation of topology is a discrete structure, we consider intervals of constant
topology as the smallest temporal units, separated by time instants at which
the topology changes. Geometry and thematic properties, however may vary
within these intervals, and using appropriate interpolation methods continu-

14 Modelling and Managing Topology in 3D GIS 241

ous variation of geometry and thematic properties at interval boundaries can
be modelled.

We define a time-dependent d-G-Map as an application φ that to any tem-
poral instant t of a temporal interval T attaches a d-G-Map
φ (t) = G(D(t),α0(t), . . . ,αd(t)). At each time instant t, φ(t) must verify
the conditions (1) and (2) mentioned above. Given a sequence t0,T1, ..., ti−
1,Ti, ..., tn of time interval composing a ”life span” [t0, ..., tn], we require φ(t)
to be constant on each interval Ti. We do not in general impose continuity
at the temporal interval boundaries ti, but in some cases, a smoothness cri-
terion at the transition between consecutive time intervals may be required.
This can be achieved e.g. by associating with the time instant ti the common
refinement of the topologies associated with time intervals Ti and Ti+1 meet-
ing at ti. As a time instant or time inteval is attached to any component of
a time-dependent G-Map, we may search, for a given cell-tuple or a given
transition, to find a minimal subdivision of its ”life-span”. This can result
in a bundle of a large number of different temporal interval sequences that
may be more difficult to manage than their common subdivision. For the
modelling of time-dependent d-G-Maps, we therefore propose a compromise
between both approaches, by identifying larger groups of spatiotemporal ele-
ments, the so-called spatiotemporal components, that consist of the cartesian
product of a temporal sequence with a constant subset of the time-dependent
cellular complex. With each spatio-temporal component, a single sequence of
time intervals is associated, thus reducing significantly the amount of stor-
age required, while simplifying the management. This approach results in
a hierarchical decomposition of the spatio-temporal G-Map into a number
of component G-Maps, each of which is constant over its temporal interval
of definition. The retrieval of a spatio-temporal cell then proceeds in two
steps: first identify the temporal segment and the attached spatio-temporal
component, and second, locate the cell within the ST-component.

14.8 Application example: combination of a 2D map
with part of a 3D city model

In an ongoing application study, the first results of which are documented
in [23], we examine the combination of 2D topology from a cadastral map
of the city centre of Osnabrück with freely available 3D city model data of
Osnabrück ([24] into a topological model of the environment of Osnabrück
palace 14.5).

We used PostgreSQL ([21] as database platform, java6 and pl/java [27]
as programming languages, and the program Moka [15] as visualisation and
editing tool. The cell-tuple structure, the involution operations, orbits and

6 Java is a registered trademark of Sun Microsystems, Inc.

242 Thomsen, Breunig, Butwilowski, Broscheit

loops, as well basic Euler non-Euler operations on cellular complexes as de-
scribed in [20] have been implemented. A certain gain in execution speed
was achieved by server-side implementation as stored procedures [23], other
optimisation attempts are still under way.

The application example consists of several connected buildings enclosing
a courtyard, which is linked to streets and to a park by seven archways - a
configuration which cannot be modelled without true 3D topology (14.5).

Fig. 14.5 Topological representation (sketch): 3-G-Map of Osnabrück Palace with
the 2D city map. Small pins symbolize a subset of the cell-tuples

From a database point of view, the goal is to provide topological and mixed
database queries supported by a topological access structure. The queries
contain adjacency queries and other useful queries for way finding, e.g.
Can I pass through the courtyard on my way from the street to the park?.

The use of G-Maps respectively of cell-tuple structures leads to a clear
method:

1. Select a rectangular working area in the 2D cadastral map, and a set of
buildings from the city model.

2. Correct the location of the vertices using digital elevation data.
3. Extract the topology of the 2D cadastral map as a 2-G-Map.
4. Convert the 2-G-Map of the working area into a 3-G-map:

a. Extend the relational representation by addition of two columns.
b. Duplicate the set of cell-tuples, inverting the orientation such that a

”lower” and an ”upper” side can be distinguished.

14 Modelling and Managing Topology in 3D GIS 243

c. Add four nodes, eight edges and five faces, and introduce a solid - the
”underground”, resulting in a ”sandbox” that carries the oroginal 2D
map as upper surface.

5. Construct a 3-G-Map from the data of the 3D city model, which in fact
is composed of 2D patches in 3D space:

a. Extract simply connected surface patches, and represent them as
faces, edges and nodes in the database.

b. Build a 3-G-Map by composing the faces into boundaries of volume
cells representing the topology of individual building parts.

c. Transform the 3-G-Map by merging the common boundaries of adja-
cent building parts, representing the topology of the 3D city map.

6. Combine the models by defining faces on top of the ”sandbox” corre-
sponding to the ground faces of the solids composing the city model.

a. Edit the two topology models to define the faces, edges and nodes to
be matched

b. Correct of vertex positions if necessary.
c. Sew the cells of the two models at the contacts.

Most of these steps are either trivial or can easily be automated. The
constructions of the topologies of the 2D map (step 3.) and of the 3D city
model (step 5.), however are not simple. As the 2D cadastral map data are
stored as polygons in a shape file, a spatial join on vertex and arc locations
has to be used to establish the contacts between faces. The construction
of a topologically consistent 3D model from the city model data involves
considerable user interaction. In fact, the city model, derived from satellite
data, consists of 2D surface patches suitable for a ”virtual reality” visual
representation, but is neither consistent nor complete, and does not comprise
volume cells. Therefore available floor plans, elevations and vertical sections
of the buildings, which belong to Osnabrück university, have to be consulted
to control the construction of the 3D model.

After the two models are merged into one, further editing of the cells can be
used to e.g. cut out cellars, windows, doors and archways, or to create interior
walls and intermediate ceilings, in order to yield a more realistic consistent
topological 3D model integrating indoor and outdoor spaces (Figure 14.6).

Topological database queries such as determining the neighbouring build-
ings of the palace can be directly answered using the topological 3-G-Map
structure.

14.9 Conclusion and outlook

In this paper we have described a general approach for modelling and man-
aging the topology of objects in a 3D GIS - based on oriented d-Generalised

244 Thomsen, Breunig, Butwilowski, Broscheit

Fig. 14.6 Screen snapshot during editing session with Moka [15]: Introduction of
archways, and correction of vertex position nconsistencies. Edges are represented by
straight lines, though the corresponding arcs may be curves or polylines

Maps. The topological data model and its realisation in a database manage-
ment system have been presented in detail. The realisation of the approach
in an Object-Relational Database Management System (ORDBMS) has been
presented. An application example as part of the Osnabrück city map com-
bined with a 3D model of Osnabrück Palace showed the applicability of the
approach.

In our future work we will also deal with topological operations on objects
with different levels of detail (LOD) based on hierarchical d-G-Maps. This
approach shall be implemented in a Multi-Representation Database and eval-
uated with cartographic data of our project partners at Hannover University.

References

[1] Mäntylä, M.: An Introduction to Solid Modelling. Computer Science
Press (1988)

[2] Turner, A.K. (1992)(Ed.): Three-Dimensional Modelling with Geosci-
entific Information Systems, proc. NATO ASI 354, Kluwer, Dordrecht,
123–142.

[3] Balovnev, O., Bode, T., Breunig, M., Cremers, A.B., Müller, W., Pogo-
daev, G., Shumilov, S., Siebeck, J., Siehl, A., Thomsen, A.: The Story
of the GeoToolKit – An Object-Oriented Geodatabase Kernel System.
GeoInformatica 8(1) (2004) 5–47.

14 Modelling and Managing Topology in 3D GIS 245

[4] Egenhofer, M.J.: A formal definition of binary topological relationships.
In: Proc. 3th Int. Conf. on foundation of data organisation and algo-
rithms (1989) 457–472

[5] Zlatanova, S.: 3D GIS for Urban Development. PhD dissertation, TU
GRAZ, ITC Dissertation 69 (2000).

[6] Egenhofer, M.J., Frank, A.U. and Jackson, J.P.: A topological data
model for spatial databases. In: Buchmann, A. P., Günther, O., Smith,
T. R. and Wang, Y.-F.(eds.): Design and Implementation of Large Spa-
tial, LNCS 409, Springer, Berlin (1990) 271–286 Zlatanova, S.: 3D GIS
for Urban Development. PhD dissertation, TU GRAZ, ITC Dissertation
69 (2000).

[7] Pigot, S.: A topological model for a 3D spatial information system. 5th

SDH, Charleston, (1992), 344–360.
[8] Brisson, E.: Representing Geometric Structures in d Dimensions: Topol-

ogy and Order. Discrete & Computational Geometry 9 (1993) 387–426.
[9] Lienhardt, P.: N-dimensional generalized combinatorial maps and cellu-

lar quasi-manifolds. Int. Journal Comp. Geometry and applications 4(3)
(1994) 275–324.

[10] Mallet, J.L.: Geomodelling. Oxford University Press (2002)
[11] Lévy, B.: Topologie Algorithmique – Combinatoire et Plongement. PhD

Thesis, INPL Nancy (1999)
[12] Fradin, D., Meneveaux, D. and Lienhardt, P.: Partition de l’espace et

hiérarchie de cartes généralisées. AFIG 2002, Lyon, décembre (2002),
12p.

[13] Raza, A., Kainz,W.: An Object-Oriented Approach for Modelling Urban
Land-Use Changes. ACM-GIS (1999) 20–25.

[14] Mallet, J.L.: GOCAD: A computer aided design programme for geolog-
ical applications. In: Turner, A.K. (Ed.): Three-Dimensional Modelling
with Geoscientific Information Systems, proc. NATO ASI 354, Kluwer,
Dordrecht, 123–142.

[15] MOKA: Modeleur de Cartes http://www.sic.sp2mi.univ-
poitiers.fr/moka/ (2006).

[16] van Oosterom, P., Stoter, J.E., Quak, C.W., Zlatanova, S., The Balance
Between Geometry and Topology. In: Richardson, D. and van Oosterom,
P. (eds.), Advances in Spatial Data Handling, 10th SDH, Springer, Berlin
(2002).

[17] Thompson, R.J.., van Oosterom, P.: Implementation issues in the storage
of spatial data as regular polytopes. Information Systems for Sustainable
Development-Part1 (2006) 2.33–2.46 (2006).

[18] Penninga, F., van Oosterom, P. and Kazar,B. M.: A tetrahedronized
irregular network based DBMS approach for 3D topographic data mod-
eling. In: Riedl, Andreas, Kainz, W., Elmes and Gregory A. (eds.):
Progress in Spatial Data Handling, 12th SDH 2006, Springer, Berlin
(2006) 581–598

246 Thomsen, Breunig, Butwilowski, Broscheit

[19] Saadi Mesgari, M.: Topological Cell-Tuple Structures for Three-
Dimensional Spatial Data. PhD thesis University of Twente. ITC Dis-
sertation 74 (2000).

[20] Thomsen, A., Breunig, M.: Some remarks on topological abstraction
in multi representation databases. In: Popovich, V., Schrenk, M. and
Korolenko, K. (eds.): 3rd workshop Inf. Fusion & GIS, Springer, Berlin
(2007) 234–251.

[21] PostgreSQL.org: http://www.postgresql.org/docs (2006).
[22] PostGIS.org: http://postgis.refractions.net/documentation (2006).
[23] Butwilowski, E.: Topologische Fragestellungen bei der Kombination

von 3D-Stadtmodellen mit 2D-Karten in einer Räumlichen Datenbank.
Diplomarbeit, Fachgebiet Geographie, Universität Osnabrück, (2007).

[24] FRIDA: Free data from the city of Osnabrueck.
http://frida.intevation.org/ueber-frida.html (2007).

[25] Breunig, M., Bär W. and Thomsen, A.: Usage of Spatial Data Stores for
Geo-Services. 7th AGILE Conf. Geographic Information Science, (2004)
687–696.

[26] Bär, W.: Verwaltung geowissenschaftlicher 3D Daten in mobilen Daten-
banksystemen PhD Thesis, dept. of Mathematics/Computer Science,
University of Osnabrück (2007).
http://elib.ub.uni-osnabrueck.de/cgi-bin/diss/user/catalog?search=
sqn&sqn=693

[27] pl/java: http://wiki.tada.se/display/pljava/Home

Chapter 15

Mathematically provable correct
implementation of integrated 2D and 3D
representations

Rodney Thompson1,2 and Peter van Oosterom1

Abstract

The concept of the ‘Regular Polytope’ has been designed to facilitate the
search for a rigorous closed algebra for the query and manipulation of the
representations of spatial objects within the finite precision of a computer
implementation. It has been shown to support a closed, complete and useful
algebra of connectivity, and support a topology, without assuming the avail-
ability of infinite precision arithmetic. This paper explores the practicalities
of implementing this approach both in terms of the database schema and in
terms of the algorithmic implementation of the connectivity and topological
predicates and functions. The problem domains of Cadastre and Topography
have been chosen to illustrate the issues.

15.1 Introduction

One of the perennial problems in the spatial data industry is interchange of
data. It is common for considerable outlay of time and effort (and funds) to
be consumed in re-formatting and revalidating data, largely due to the lack of
formal definition of spatial primitives and functions. For example, there is no
agreed normative meaning of the ‘equals’ predicate when applied to geomet-
ric objects. Definitions of validity are in general defined by implementers – for
example (Kazar et al. 2007). In addition, the language of spatial databases
is couched in terms of the language of mathematics, with operations named

1Delft University of Technology, OTB, section GIS Technology,
Jaffalaan 9, 2628 BX the Netherlands
2Department of Natural Resources and Water,
Queensland, Australia
Rod.Thompson@nrw.qld.gov.au, oosterom@tudelft.nl

247

248 Rodney Thompson and Peter van Oosterom

‘union’ and ‘intersection’ and using vector-like representations. This naturally
leads to the impression that the representations form a topological space,
and/or a vector space, which unfortunately is not the case. Generally speak-
ing, the rigorous mathematics of the definition of spatial objects ends outside
the database representation, which is only an approximation of the theoret-
ical formalism used to define it. This leads to many cases where unexpected
breakdowns in logic occur (Franklin 1984; Hölbling et al. 1998; Thompson
2004; Thompson 2007) due to the finite digital arithmetic implemented by
computers and the necessary rounding or approximations.

By contrast, the Regular Polytope (Thompson 2005a) has been shown to
be a promising candidate for the rigorous representation of geometric objects,
in a form that is computable using the finite arithmetic available on digital
computers. In order to explore practical issues in the Regular Polytope rep-
resentation, a series of objects have been written in the Java programming
language, and stored in a basic form using an Informix database.

The class of test data chosen was Cadastral property boundaries, since
large volumes of data was available, and this topic presents some unique
challenges, in particular, the mix of 3D and 2D data that is involved (Stoter
2004). The Regular Polytope representation provides a particularly elegant
solution to this issue.

This paper describes alternative database schemas to support the imple-
mentation, and discusses some of the practical considerations that arise. This
gives an indication of the requirements of a full implementation, and what
further development is needed. Also discussed are some of the practicalities
involved in converting geo-information to and from the regular polytope form
from the conventional vertex representations. First, two different approaches
to representation of geo-objects based on regions (resp. boundary-based and
boundary-free) and two different application areas (resp. Cadastre and To-
pography) are discussed. This introductory section ends with an overview of
the complete paper.

15.1.1 Boundary Representations and Mereology

The conventional description of a geometric object partitions space into the
interior, boundary and exterior of that object. The Egenhofer 9-matrix pro-
vides an exhaustive description of possible binary relationships (between two
objects), and is frequently used in situations where a clear definition of a
complex relationship is required (Egenhofer and Herring 1994). It consists of
a 3 × 3 matrix of Boolean values representing the overlap of the interiors,
boundaries and exteriors of the object pairs.

Alternately, there is an advantage in taking a Mereological approach to
spatial logic, thus avoiding some of the distinctions between finite and infinite
(smooth) sets. In this way, concepts such as ‘set contacts set’ and ‘set includes

15 Mathematically provable correct integrated 2D/3D representations 249

set’ move easily from the infinite to the finite realm, whereas the definition
of a region as a collection of points defined by a boundary set of points
(Smith 1997) raises the issue of the density of the representation. Briefly, the
distinction is that point-set topology defines regions as sets of points, with
boundaries being a separate set of points, either included or not depending
whether the region is closed or open. The Mereological approach is to treat
the region as the fundamental concept, with the boundary arising as a natural
consequence of the region being limited in extent (Borgo et al. 1996).

Although the concept of a boundary as a point-set is useful in describing
mathematical abstractions, it has no counterpart in the real world. ‘. . . it
is nonsense to ask whether a physical object occupies an open or a closed
region of space, or who owns the mathematical line along a property frontier’
(Lemon & Pratt 1998a, page 10).

Similarly, in the computer representation, a boundary point set is prob-
lematic. On a line between two points in a 2D vector representation based on
integers or floating point coordinates, it has been shown that in about 60%
of cases, there will be no representable points at all lying on the line (apart
from the end points)(Castellanos 1988; Thompson 2007). Thus, if a region is
defined by a conventional polygon, the point set representing its boundary
will consist of the vertices plus an insignificant, but highly variable number
of points.

Thus, in summary, the concept of a boundary as a set of points does not sit
well in the real world, or in the computer representation. It might be thought
that a boundary would be needed to ensure a definition of such concepts
as tangential contact, but this is not the case. An alternate approach comes
from the Region Connection Calculus (RCC), defining such predicates with-
out invoking boundary point-sets (Randell et al. 1992). Of the 512 possible
relationships that can be defined in the Egenhofer 9 matrix, Zlatanova (2000)
has shown that only 8 are possible between objects of the same dimensional-
ity as the embedding space in 2D or 3D. These relationships can be directly
modelled by the 8 relations of the RCC.

15.1.2 Application to Cadastre

There are an interesting set of specific requirements in the realm of Cadastral
data. Here, the fundamental item of interest is the land parcel. While these
parcels are defined by measurement (survey) of their boundaries, there is no
question of ownership of the boundary itself. Thus a boundary-free represen-
tation is ideal.

There is a growing need to represent 3D ‘land’ parcels (space) in a cadastre.
These include strata parcels, unit rights, properties overhanging roads or
rail, etc. (Thompson 2005b; Tarbit and Thompson 2006), but comprise a
small minority of cadastral parcels in any jurisdiction, so that there is a

250 Rodney Thompson and Peter van Oosterom

strong argument for integrated 2D and 3D representations in the one database
(Stoter and van Oosterom 2006). As pointed out by Stoter (2004), the so-
called 2D parcels are really volumetric regions in space. It is merely the
definition that is 2D (defining a prismatic volume, with undefined vertical
limits), so it should be possible to evaluate any functions and predicates on
mixed 2D/3D parcels. E.g. in figure 1, it can be asked whether C intersects
D (which it does, since it encroaches on the volume above D.

Fig. 15.1 Mixing 3D and 3D Cadastre. C is a volumetric parcel, with its projection
onto the ground shown hashed

15.1.3 Topography

The representation of the topography of the earth’s surface has some simi-
larity in requirements. The vast majority can be adequately represented by
treating the elevation of the surface as a function of two variables (the x and
y coordinates) – with only one elevation applying to each point, but this
precludes the representation of vertical or overhanging cliffs, natural arches
or many man-made structures (see figure 2). In the same way as with the
cadastre, the vast majority of practical topographic data does not require
full 3D, and could be modelled as a single-valued function of two variables
- e.g. elevation(x, y). Only minority of specific regions need true 3D; e.g. a
Tetrahedral Network TEN (Verbree et al. 2005).

15.1.4 Structure of the Paper

The remainder of the paper is structured as follows:

15 Mathematically provable correct integrated 2D/3D representations 251

Fig. 15.2 Combination of TIN and TEN representations

• Section 2 defines the concept of domain-restricted rational numbers, and
the regular polytope concept.

• Section 3 discusses various database structures that could potentially be
used to implement the approach.

• Section 4 discusses a set of Java language classes that have been written to
assist in the investigation of, and demonstrate the algebra. This includes
some test results with real data.

• Section 5 explores some issues that arise when converting from conven-
tional vertex defined representations.

15.2 The Regular Polytope

In order to provide the required rigorous logic in 2D and 3D, within the com-
putational arithmetic, the concept of a regular polytope has been proposed
(Thompson 2005a; 2007) and will be summarized below. In this paper, the
terminology and mathematics of 3D will be used, since the equivalent 2D
case is usually obvious. Most of the illustrations are 2D for ease of drawing.
This section contains a brief definition of the regular polytope representation
(Sections 2.1 to 2.3), with some of its properties (Section 2.4), in comparison
with more conventional approaches (Section 2.5).

15.2.1 Definition of domain-restricted rational
numbers and points

Given two large integers N' and N'', a domain-restricted (dr)-rational number
r can be defined with the interpretation I/J, with I, J integers (–N'' ≤ I
≤N'', 0 <J ≤ N'. The name ‘domain-restricted rational’ (dr-rational) is used

252 Rodney Thompson and Peter van Oosterom

because the values of I and J are constrained to a finite domain of values. Like
floating point numbers, dr-rational numbers do not form a field1 (in contrast
to the true rational numbers) (Weisstein 2005), and therefore cannot span a
vector space.

In 3D, a dr-rational point is defined as an ordered triple of dr-rational
numbers p = x,y,z, with x,y and z representing the Cartesian co-ordinate
values. Note that there are also counter-intuitive properties possessed by dr-
rational points – e.g. it cannot be assumed that the mid-point between two
dr-rational points is a dr-rational point. The advantage possessed by the
dr-rational representation is that it is directly implementable in computer
hardware.

15.2.2 Half Space Definition

In 3D a half space2 H (A,B, C, D)(A, B, C, D integers, −M < A,B,C < M,
−3M2 < D < 3M2 is defined as the set of dr-rational points p(x,y,z): −M ≤
x,y,z < M, for which computation of the following inequalities yields these
results:

• (Ax+By+Cz+D) > 0 or
• [(Ax+By+Cz+D) = 0 and A > 0] or 3

• [(By+Cz+D) = 0 and A = 0 and B > 0] or
• [(Cz+D) = 0 and A = 0,B = 0 and C > 0],

where M is the limit of values allowed for point representations. The choice
of M is dependant on the size of the region to be covered as a multiple of the
unit of resolution. The values of N’ and N” follow from M as:

• for 2D applications N' = 2M2, N'' = 4M3.
• for 3D applications use N' = 6M3, N'' = 18M4.

H (0,0,0,0) is not a permitted half space.
The complement of a half space is defined as:

• H = (−A,−B,−C,−D) where H = (A,B,C,D).

1 The set of rational numbers Q obey the field axioms, including the closure axioms
(e.g. a ∈ Q, b ∈ Q ⇒ a.b ∈ Q). This is not the case for dr-rational or floating point
numbers.
2 The equivalent 2D object is known as a ‘half plane’ which (for convenience) is
defined by the integer parameters A,B and D.
3 This form of the definition with four parts, rather than just (A.x+B.y+C.z+D) > 0,
is chosen so as to ensure a boundary-free representation. In effect, this eliminates all
boundary points.

15 Mathematically provable correct integrated 2D/3D representations 253

15.2.3 Regular Polytope Definition

Fig. 15.3 Regular polytope O defined as the union of convex polytopes C1 and C2

A regular polytope O is defined as the union of a finite set of (possibly
overlapping) ‘convex polytopes’ (C1 and C2 in figure 3), which are in turn
defined as the intersection of a finite set of half spaces (H1a to H1d and H2a
to H2d)(Thompson 2005a; Thompson 2007). Note – a regular polytope may
consist of disconnected parts, and parts may overlap. The natural definitions
of the union, intersection, and complement of regular polytopes is used, so
that the meanings are exactly equivalent to the point set interpretations. E.g.:
∀p : p ∈ O1 ∪O2 ⇔ p ∈ O1 ∨ p ∈ O2 The concept of connectivity in this

approach is based on two forms – so-called ‘weak connectivity’ Ca in figure
4, and ‘strong’ or Cb connectivity. The strongest form of connection is actual
overlap, so that OV ⇒ Cb ⇒ Ca. This can also be expressed in dimensional
terms (Clementini et al. 1993), such that in a 3D space, Ca ≡ 0D or 1D meet,
Cb ≡ 2D meet, and OV ≡ 3D meet.

15.2.4 Properties of the Regular Polytope

It is relatively simple to show that the space of regular polytopes is a topology
(Thompson 2005c), based on the definition of regular polytope as an open set.
It is readily apparent that for any regular polytope O, ∀p : p∈O⇔ p /∈O, and
that4 O∪O = O∞ and O

⋂
O = OΦ . Thus no boundary points exist between

O and O (∀p : p ∈ O∨ p ∈ O), in contrast with most conventional approaches

4 Oϕ and O∞ are the empty and universal regular polytopes respectively such that
∀p : p /∈ Oϕ and p ∈ O∞.

254 Rodney Thompson and Peter van Oosterom

Fig. 15.4 Modes of Connectivity in 3D

where (in the mathematical model) space is partitioned into a region’s interior
Ro, exterior R− and boundary ∂R, with ∀p, p∈ Ro∨ p∈ R−∨ p∈ ∂R. A further
consequence of being a boundary free representation is that the axioms of a
Boolean algebra (Weisstein 1999) are satisfied.

It has been shown (Thompson 2005c; Thompson 2007; Thompson and van
Oosterom 2007) that the space of regular polytopes obeys the axioms of the
Region Connection Calculus (Randell et al. 1992) based on the above defi-
nitions, and that it forms a Weak Proximity Space (Naimpally and Warrack
1970); and a Boolean Contact Algebra (Düntsch and Winter 2004). It is im-
portant to remember that it is the computational representation that satisfies
the axioms, not an abstraction which is approximated by the computational
representation. Thus it is possible to computationally apply the operations
in any combination with complete confidence that no logic failure can result.

15.2.5 Vertex-based Representations

In two-dimensional applications, the ‘Point/Line/Polygon’ paradigm for the
representation of spatial features is well entrenched, albeit with some signifi-
cant variations (van Oosterom et al. 2004), and provides a degree of comfort
in the user. This is spite of some serious difficulties in terms of rigorous def-
initions of concepts such as validity, and equality (Thompson 2005a). The
available 3D structures take various forms (Arens et al. 2003), with no one
having proved to be the best in all circumstances (Zlatanova et al. 2004).

In this paper, the term ‘vertex based’ representation is used to cover all
ways to model spatial data based on point coordinates of vertices as the
major determinants of the shape and position of the objects. The vertices are
defined as points with coordinates x,y,z, while all other geometric objects are
defined in terms of sets of vertices or higher order constructive objects. This
describes virtually all other two and three dimensional spatial data models,

15 Mathematically provable correct integrated 2D/3D representations 255

regardless of the level of topological encoding supported (Ellul and Haklay
2005). In contrast, but following a similar naming convention, the regular
polytope in 3D would be called a ‘surface based representation’ and in 2D
an ‘edge based representation’. It can also be viewed as a restricted form of
constraint-based representation.

15.3 The Proposed Database Structures

In implementing the concepts of the regular polytope, in a database man-
agement system, in order to manage large data volumes in a multi-user en-
vironment, several decisions need to be made. Principal amongst these is the
decision as to how much redundant storage of information is to be tolerated,
and more specifically whether ‘topological encoding’ is to be used. Section
3.1 discusses the basic data model, 3.2 briefly describes topological encoding,
while 3.3 applies the concept to the regular polytope.

15.3.1 Discrete Polytope Encoding

This is perhaps the simplest structure, with some redundancy of storage, and
no topological encoding. Each regular polytope is stored as a unit, containing
its component convex polytopes and their defining half spaces.

Fig. 15.5 The Regular Polytope model. See also (Thompson 2005a; Thompson 2007)

Figure 5 shows, in the unified Modelling Language (UML) (OMG 1997),
a possible implementation of the regular polytope representation discretely
encoded (in 3D). Key points in the interpretation of this diagram is that:

256 Rodney Thompson and Peter van Oosterom

• A convex polytope is a specialization of regular polytope.
• A half space is a specialization of convex polytope (which means it is also

a regular polytope).
• A regular polytope consists of zero or more convex polytopes. Note that

zero implies the empty regular polytope.
• A convex polytope consists of zero or more half spaces. Note that zero

implies the infinite convex polytope.
• A half space has the integer attributes A, B, C and D.
• No dr-rational numbers are stored in the database.
• A HalfSpace whose plane separates two convex polytopes will be stored

twice (as an ‘anti-equal’ pair).

15.3.1.1 Model Restrictions

This model is the most basic, intended for demonstration purposes. In prac-
tice, additional classes would be added to improve speed and responsiveness.
For example, a convex polytope might be associated with an approximate
bounding rectangle, which is the basis for a spatial index, however the bound-
ing box could be computed with a function and the spatial index created on
the return value of that function. That is, the bounding box need not be
stored if a functional spatial index is used. There are a number of issues
remaining that apply to this base level model:

• The Regular Polytope storage mechanism differs from the more familiar
vertex representations, and requires non-trivial conversion routines to
allow interoperability.

• The calculations require the use of large precision integer arithmetic (but
these large precision integers are not stored in the database).

• The storage requirements are approximately double those required for
simple polygon encoding.

• It is not trivial to map this storage form to/from the topological encoding
form.

• Some analytic operations – such as those that require volumes, areas,
distances, etc. of objects are inconvenient in the regular polytope repre-
sentation.

15.3.1.2 Model Advantages

• Data retrieval can readily be optimised since each regular polytope can be
stored as an individual self-contained record on disc, and indexed using
standard techniques such as r-tree (Guttman 1984).

• All RCC and topological predicates and functions can be rigidly sup-
ported in the computer-based representation.

15 Mathematically provable correct integrated 2D/3D representations 257

15.3.1.3 The Disjoint Normal Form

A minor variant on the above strategy is to make the decomposition of the
regular polytopes into convex polytopes more restricted. In the disjoint nor-
mal form (DNF), the convex polytopes that comprise a regular polytope are
not permitted to overlap. In deciding whether or not to use DNF considera-
tions include:

• Calculation of the volume of a regular polytope in DNF is simpler.
The volume of each convex polytope can be calculated, and the results
summed.

• Conversion of the regular polytope to a vertex defined polyhedron is
simplified, since the individual convex polytopes can be converted, and
the resultant polyhedra can be ‘dissolved’ together. Polyhedron dissolve
is a simpler and faster operation than calculation of a union.

• It is not trivial to convert an arbitrary regular polytope to DNF.
• Some conversion algorithms from vertex representations to regular poly-

tope produce DNF naturally.
• The number of convex polytopes in a conventional regular polytope (al-

lowing overlap) can be less than in the case of DNF (see figure 6).
• The decomposition into disjoint convex polytopes is not unique (addi-

tional decision rules would be required to make it unique).

Fig. 15.6 A regular polytope in overlapping, and in disjoint normal form

15.3.2 Topological Encoding

Topological Encoding is a traditional form of storage of spatial data in vertex
representation, which provides two major advantages over discrete polygon
storage of coverages:

258 Rodney Thompson and Peter van Oosterom

• It gives the option of fast neighbour searches (find adjacent polygons).
• It reduces the redundancy of storage of boundary details.

There are several variants on space partitioning using topological encoding,
but all are based on the common storage of boundary details, with links
between the storage location of the boundary, and the details of the region(s)
delimited by that boundary. It is in the definition of a coverage5 that this
approach is most significant, where every boundary is used in the definition of
at least two regions (apart from those few boundaries surrounding the entire
coverage).

In figure 7, the line string between node 1 and node 2 defines region A to
its left and region B to its right. It is in cases such as this, where there is
some complexity in the definition of the common boundary, that the greatest
advantages of the approach are realised. (Since the definition of the line string
from 1 to 2 contains many points, which do not need to be stored twice as
would be the case if A and B were defined as discrete polygons).

Fig. 15.7 Two regions delimited by a common boundary line

15.3.3 Topological Encoding of Regular Polytopes

In the storage schemes that are appropriate to the Regular polytope repre-
sentation, there are several possible analogues to topological encoding, but
one in particular is quite promising for use in the field of cadastral data. This
approach treats each half space as a common object, stored once only (in the
way a common boundary is as described above), with links to each convex
polytope that it participates in the definition of (either as a direct definition
or as a definition by the complement of the half space); see figure 8.

5 In this context, ‘coverage’ is used to mean that the entire area of interest is parti-
tioned into non-overlapping regions (with no gaps between regions).

15 Mathematically provable correct integrated 2D/3D representations 259

Fig. 15.8 Regular polytope schema with common storage of half spaces

As an example from the cadastral domain, consider a series of property
parcels with a common road frontage as depicted in figure 9. The single half
space XY participates in the definition of the road, and its complement in
the convex polytopes A, B1, C1, D and E1 (see figure 10. This ensures that:

• There are no gaps or overlaps between parcels and the road.
• The road frontages are straight.

Since the true definition of the parcels from the survey plan was probably in
terms of a bearing and distance measurement from point X to point Y, this
is a particularly appropriate representation, and allows the option of storing
such measurement metadata within the half space record. Thus half space
XY would be linked by the direct connection to the road section 1, and via
the ‘complement = true’ link to convex polytopes A, B1, C1, D and E1. Note
that half spaces can be used more than twice in contrast to the traditional
encoding of topology based on edges, where a common edge is used twice
(positive and negative).

Even where straight sections of frontage are non-contiguous, the half space
record can be used in common. For example, the half space marked Y-Z
defines the road section 2, with its complement defining E1, F, road section
3, G etc.

In full 3D parcels, the same is possible, with a half space being able to
define a number of parcels in strata, as well as defining a non-stratum (2D)
parcel adjoining it. In figure 11, the half space marked as XY, is the boundary
of ‘2D parcel’ A, and its complement is the boundary of strata parcels B1 to
B5.

The HalfSpace record also should carry attributes defining its extents of
use. This would probably be in the form of a minimum enclosing rectangle,
and is used for two purposes:

• To distinguish between half spaces which are only co-incident by chance
(in which case individual representation of the HalfSpaces is more prac-
tical). For example, it is possible that two boundaries many kilometres
apart have the identical A,B,C,D values, but are not in any way related,
and should not be linked.

260 Rodney Thompson and Peter van Oosterom

Fig. 15.9 Cadastral data in the topologically encoded regular polytope form

Fig. 15.10 Object diagram showing some of the connections in figure 9 (The linkages
marked ‘C’ are links with complement = true as in figure 8)

• To allow easy application of adjustments such as datum changes. Where
an adjustment can be approximated by a ‘block shift’, the new definition
of the halvers in a block can be calculated using the localisation provided
by the extents.

The advantages that are created by using conventional topological encoding
apply to the topologically encoded regular polytopes well as the rigorous logic
of the regular polytope, so that:

15 Mathematically provable correct integrated 2D/3D representations 261

Fig. 15.11 3D parcels encoded using topologically encoded regular polytopes

• Some redundant storage is eliminated.
• Fast neighbour searches are facilitated.
• Accidental creation of overlaps and gaps is prevented.
• Frontages are kept straight.

It is unlikely that there will be much saving in storage requirements using
this structure, since the cost of storing a halver redundantly is quite low,
and largely offset by the keys and indexing needed to support the encoding.
This is also true of the conventional form of topological encoding, and in
both approaches the advantages are to be found in the ease of update, while
retaining correct adjacency and consistency within the model.

15.4 The Java Demonstration Classes

A set of Java classes have been developed and tested on approximately a
thousand cadastral parcels from the Queensland Cadastre, over a semi-urban
region of average density and complexity. The region chosen contains primar-
ily base (2D) parcels, but also has a smaller number of easements (secondary
interests), and several 3D parcels. It consists of properties associated with
residential, light commercial, light industrial, and recreational land usage.

The Java objects as developed parallel the definitions of the components
of the regular polytope, and are divided into categories:

• The half space (or half plane),
• The convex polytope,

262 Rodney Thompson and Peter van Oosterom

• The regular polytope.

This object model is intended for manipulation purposes in the processing
software, and so differs from the various models given in section 3, which were
intended primarily to illustrate a data storage strategy. The Java classes are
set up to facilitate the mixing of 2 and 3 dimensional data.

This implementation models 3D and 2D objects, with no extensions to ei-
ther lower of higher dimensionality. Since this is intended to explore practical
issues associated with Cadastral data, no attempt has been made to pro-
duce a fully general n-dimensional model. Also there is no provision made for
lower-dimensional objects such as lines, points and surfaces to be embedded
in the space.

15.4.1 Description of the Java Objects

These classes and interfaces are defined for the calculation of the functions
that have been defined on the regular polytopes. They contain redundant
information and constructs that assist with these calculations, but are not
necessarily stored permanently. Likewise, links that are described below may
not be of a permanent nature. In contrast to the earlier class diagrams, which
were intended to illustrate possible database table structures, the following
diagrams document a series of Java classes that implement the RCC func-
tions.

15.4.2 Classes and Relations

The half space/plane object is characterised by classes based on the Halver
and the Face as in figure 12 described below:

• HalfSpace: defines a 3D half space and carries the parameters A,B,C
and D

• HalfPlane: defines a 2D half plane and carries the parameters A,B and
D. Parameter C is not needed in 2D.

• Halver: a virtual class abstracting the HalfSpace and HalfPlane classes
(this is restricted at present to 2D or 3D, since this is what the problem
domain requires – see sections 1.2 and 1.3).

• Point2R and Point3R are domain-restricted rational point classes.
They consist of a tuple of rational numbers (2 or 3 respectively), each
consisting of a pair of Java BigIntegers (see 4.4.9).

The association in figure 12 is:

15 Mathematically provable correct integrated 2D/3D representations 263

Fig. 15.12 The Half Space, Half Plane and Halver Classes

• Surrounded By: a redundant one-way linkage, from a halfSpace, to the
halfSpaces that adjoin and define it. It is needed during the calculation
of vertices, and each time a new halver is added to a convex polytope.
In modifying a halfSpace to take account of a new halfSpace, it may be
necessary to calculate two new dr-rational points. These are the points of
intersection of this halfSpace, the new halfSpace, and existing halfSpaces
that surround the face. The relation is not needed in the 2D case, since
only two half planes are needed to define a point.

The ConvexPoly (figure 13) contains a collection of Halver objects. In
the prototype, a convex poly must contain all 2D or all 3D halvers (and is
sub-classed as ConvexPoly2 or ConvexPoly3 respectively). The MBR in the
ConvexPolytope and in the RegularPolytope is a 3D box defined by integer
coordinates which is guaranteed to contain the whole convex (or regular)
polytope.

The Polytope contains a collection of ConvexPoly objects. In this imple-
mentation, all ConvexPoly objects in a particular Polytope object must be
2D or all must be 3D. The nrUnitsA, and unitNrA attributes are used for the
calculation of Ca (weak) connectivity, nrUnitsB, and unitNrB attributes for
Cb (strong) connectivity. A unit in this context is a connected set of convex
polytopes, so that that Ca connectivity is defined as nrUnitsA = 1. Since
Cb is a stronger form of connectivity, Cb ⇒ Ca, and therefore nrUnitsA ≤
nrUnitsB.

264 Rodney Thompson and Peter van Oosterom

Fig. 15.13 The Regular Polytope and Convex Polytope Classes

15.4.3 Methods

Only the more important methods are described in this section. The main
classes based on Polytope, ConvexPoly, and Halver, have methods which
convert them to and from database form. In this demonstration suite, only
the bare minimum is stored in the database – the A,B,C and D values of the
halvers, the structure of the regular polytope and a bounding box. For the
purpose of the demonstration, and to assist with development, encoding was
via a simple text string, but in a final system, a more sophisticated binary
storage mechanism would be used. Vertices could also be stored for speed of
processing.

15.4.3.1 Polytope Methods

A regular polytope is constructed by creating an empty regular polytope OΦ ,
with no convex polytopes, and extending it using Polytope.addConvexPoly(C).
The methods provided in the regular polytope classes provide the full imple-
mentation of the RCC theory (Randell et al. 1992), extended for strong and
weak connectivity:

• Ca (p,p1) Polytope.connectsToA(Polytope)
• Cb (p,p1) Poyltope.connectsToB(Polytope)
• DCa (p,p1) ¬ Polytope.connectsToA(Polytope)
• DCb (p,p1) ¬ Polytope.connectsToB(Polytope)
• P(p,p1) Polytope.isWithin(Polytope)
• PP(p,p1) Polytope.properPartOf(Polytope)
• EQ(p,p1) Polytope.equals(Polytope)
• OV(p,1) Polytope.intersects(Polytope)

15 Mathematically provable correct integrated 2D/3D representations 265

• ECa (p,p1) Polytope.externallyConnectedToA(Polytope)
• ECb (p,p1) Polytope.externallyConnectedToB(Polytope)
• TPPa (p,p1) Polytope.tangentialProperPartOfA(Polytope)
• TPPb (p,p1) Polytope.tangentialProperPartOfB(Polytope)
• NTPPa (p,p1) Polytope.nonTangentialProperPartOfA(Polytope)
• NTPPb (p,p1) Polytope.nonTangentialProperPartOfB(Polytope)
• PO(p,p1) Polytope.properOverlap(Polytope)

Note that by RCC theory, all of these relations can be generated from the
‘connects’ relation. In practice, some are directly calculated (such as ‘inter-
sects’ – for reasons as given in Chapter 5), but most are simply implemented
as their definition suggests. e.g.:

/** Determines if this regular polytope is within the other
* @param other The other Regular Polytope
* @return True if this regular polytope is within the
other */

public boolean isWithin(Polytope other) {
Polytope otherM = other.inverse();
otherM = otherM.intersection(this);
return (otherM.convexPolys.size() == 0); }

/** Determines if this regular polytope is equal to the other
* @param other The other Regular Polytope
* @return True if every point in this regular polytope is
* within the other and visa versa. */

public boolean equals(Polytope other) {
return (this.isWithin(other) && other.isWithin(this)); }

15.4.4 Results

Approximately one thousand parcels were selected from the Queensland
Cadastre – see figure 14. The area chosen was the region surrounding the
‘Gabba’ cricket grounds in Woolloongabba Brisbane, because this area con-
tains some 3D parcels of non-trivial shape. The parcels obtained from the
database are 2D only, but do include secondary interests (such as easements).
Thus overlapping 2D register objects exist. There were several 3D parcels in
the region. Two associated with the cricket stadium (figure 15), and one with
a restaurant (figure 16) were hand encoded.

In the original data, some inaccuracies had been introduced through round-
ing, so there are slight overlaps and mismatches between the edges. This will
be discussed further in section 5.

266 Rodney Thompson and Peter van Oosterom

Fig. 15.14 An overview of the test region

Figure 14 shows the data in question. The 2D parcels have been represented
by colouring a plane (at z= 0) with a randomly selected colour. To further
show the division between parcels, a vertical ‘fence’ has been drawn, of the
same shade as the horizontal surface. Since the colour on each side is different,
some interfering visualization effects can occur.

Figure 15 shows a detail of some of the 3D parcels (which abut without
overlapping); see also (Stoter 2004) pages 269-272 for a view of these same
parcels.

Fig. 15.15 Detail of two 3D contiguous parcels with a third in the far background
(the vertical grey cylinder is the Z axis)

15 Mathematically provable correct integrated 2D/3D representations 267

Fig. 15.16 3D parcel amongst 2D parcels. (Parcel A and 2D parcel E together
comprise a restaurant. Parcel A overhangs the roadway represented by parcels B,
C and D). Figure 16 depicts a 3D parcel A overhanging the footpath, and exactly
abutting the 2D parcel E directly below the open space partially enclosed by it

15.4.4.1 Data Quantities

One of the reasons for conducting this investigation was to determine the
storage requirements of this approach. Had a more rural region been chosen,
the averages below may have been less attractive (because there are more
vertices per shared boundary on average, resulting in more halvers and con-
vex polytopes), and this could be the subject of further investigation. The
parcels in the test region required the following representation (Table 1). For
comparison, an indication of the conventional polygon/polyhedron complex-
ity is shown, but note that in the 3D case, the number of corners is estimated
only, as a polyhedral model was not constructed as part of this investigation:

2D Case 3D Case
1044 parcels 3 parcels

Average Convex Polytopes per Regular Polytope 1.3 3.3
Average Halvers per Regular Polytope 5.3 23.6
Average Halvers per Convex Polytope 4.0 7.1
Worst Case Convex Polytopes per Regular Polytope 44 5
Worst Case Halvers per Regular Polytope 81 17
Worst Case Halvers per Convex Polytope 11 8
Average Corners per Conventional Parcel 6.3 36
Maximum Corners per Conventional Parcel 100 42

Table 15.1 Average complexity of semi-urban parcels

268 Rodney Thompson and Peter van Oosterom

15.4.4.2 Algorithmic Complexity

Java is a difficult language to obtain clear timing tests, since it is interpre-
tive and uses various strategies of partial compilation. It also uses a ‘garbage
collector’ form of memory management, leading to unpredictable timings of
operations. For this reason, no strict timing tests were done. On the other
hand, the actual algorithms are available for complexity analysis, and this
leads to the suggestion that a practical implementation is possible. In the
following, only the critical and potentially complex routines of the demon-
stration implementation are discussed.

15.4.4.3 ConvexPoly.compareWith(ConvexPoly)

This determines the relationship between two convex polytopes, returning the
possible results: DISJOINT, CONTACTSa, CONTACTSb, INTERSECTS,
CONTAINS, CONTAINED or EQUAL, and is probably the most critical
method, since it is used in nearly all other operations. Inspection of the code
shows that this operation will execute in O(f1 f2 p2) time, where f1, f2 are the
number of half spaces or planes in the convex polytope, and p is the average
number of vertices in a face. In 2D, p = 2, so this becomes O(f 1f 2).

In 3D, it could be expected that the number of vertices on a face would
be fairly constant in the range of about 3 to 6, so this also becomes O(f 1f 2).
Thus it is important that in a practical system, the complexity of a convex
polytope be kept limited. Fortunately, this is possible simply by dividing any
highly complex convex polytopes into multiple smaller ones.

Thus, if the convex polytope is restricted to a specified maximum com-
plexity, this routine is O(1) (i.e. constant) in complexity. The cost of this
simplification is an increase in the complexity of the regular polytope, so
that more convex polytopes will be needed.

15.4.4.4 Constructing a Regular Polytope

As a regular polytope is constructed, each convex polytope must be compared
with the convex polytopes previously added (to determine connectivity). This
operation is thus of O(n2) where n is the number of convex polytopes in the
regular polytope6. Since each convex polytope is a well defined geometric
object, convex, and contains a MBR, it is relatively easy to optimise this
operation. For example an in-memory spatial index could be used to reduce
the search-time from O(n2) to O(n log n).

6 This is assuming that the convex polytope complexity has been controlled as de-
scribed above. Otherwise it would be O(n2f 2) in 3D.

15 Mathematically provable correct integrated 2D/3D representations 269

15.4.4.5 Polytope.intersection(Polytope)

This operation involves the calculation of the intersection of the Cartesian
product of the convex polytopes. Thus it is by nature a O(nm) operation,
however the construction of the resultant polytope from this Cartesian prod-
uct raises this in theory to O(nm log nm.

15.4.4.6 Polytope.inverse()

For regular polytope O = ∪
i=1..n

Ci, with Ci =
⋂

j=1..mi

Hj the first step is to calcu-

late: Oi = Ci = ∪
j=1..mi

H j for i = i . . .n.

Thus, since each mi≤ c (by the assumption of the limited complexity of half
spaces), this results in n regular polytopes, each of up to c convex polytopes.
Each convex polytope consists of one half space only. Thus, this first part of
the operation is O(nc) = O(n) (because c is constant). Note that the inverse
of a convex polytope consists of a regular polytope with up to c convex
polytopes, each defined by one half space.

The second phase consists of forming the intersection of the n regular
polytopes O =

⋂
i=1..n

Oi. If approached without any optimisation, this would

be disastrous – leading to an operation of order cn.
Fortunately, at each step in the algorithm, a large number of convex poly-

topes that are generated by the intersection operation are discarded. At the
end of the process, assume there are l convex polytopes left. If it is assumed
that the number of convex polytopes in R remains fairly constant during the
process, this means that the cost of processing each Oi in the intersection
operation will be O(l log l). Since there are n polytopes, this gives O(nl log
l). Note, this is an algorithm which could well repay some optimisation effort
beyond the simple version used in the demonstration software.

15.4.4.7 Other Regular Polytope Operations

All of the other regular polytope operations (as shown in section 4.3.1) are
simple combinations of other operations. So that the worst cases will be of
no higher complexity that Polytope.inverse or Polytope.intersection.

15.4.4.8 Indexing and Searches

The programs as developed as a proof of concept do not use any database
spatial indexing, and so are not efficient for doing spatial searches. On the
other hand, they do generate a minimum bounding rectangle (or solid) sur-

270 Rodney Thompson and Peter van Oosterom

rounding the vertices of each regular polytope and each convex polytope, and
so a standard R-Tree algorithm can be used.

15.4.4.9 BigInteger Arithmetic

One of the advantages of implementing these routines in Java was the easy
availability of the BigInteger object class. This provides a complete set of
arithmetical operations on an integer representation with (effectively) no limit
on the size of operands. The disadvantage of BigInteger is the slow speed of
the operations, and the fact that the speed of operations is dependant on the
size of the numbers involved.

In order to implement this software in a language other than Java (e.g.
C), some of this functionality will need to be implemented. This is not a
difficulty, since the algorithms are well known and documented. Further, not
all functionality is needed. It is not necessary to allow for potentially infinite
operands so memory allocation is not an issue. Although large numbers are
involved, they are constrained. Further, not all arithmetic operations need be
implemented – negation, addition and multiplication are needed, but division
is not (this is a considerable simplification).

It is important to note that the use of BigInteger arithmetic is not an at-
tempt to increase the accuracy of the data. The resolution of numeric forms
such as 8 byte floating point is easily sufficient to cover the level of accu-
racy of virtually all spatial data in practical databases. The use of extended
arithmetical types is to ensure repeatability and consistency in operations.

15.4.5 Optimizing the Model

Optimising techniques would benefit from control of the complexity of the
individual convex polytopes. The calculation of the vertices of a convex poly-
tope is a significant process, strongly dependant on the cardinality of the set
of half-spaces in a Convex Polytope. Restricting this cardinality can control
this complexity, even at the cost of increasing the cardinality of the set of
Convex Polytopes in a Regular Polytope. It is significantly easier to optimize
the operations between convex polytopes.

In calculating the intersection of region B with region A in figure 17 (shown
as two convex polytopes A1 and A2), even though all the half planes which
define A1 intersect all the half planes that define B (since the half-plane defini-
tion is theoretically infinite), it can be determined by a conventional bound-
ing box overlap test that all the vertices of A1 are completely separated from
the vertices of B – therefore A1

⋂
B is empty. This logic can be used to pre-

eliminate large numbers of the partial intersections, and could be augmented

15 Mathematically provable correct integrated 2D/3D representations 271

by an in-memory spatial index – e.g. an R-tree based on the bounding boxes
(shown as dashed lines) to further improve the calculation speed.

Fig. 15.17 Calculating the intersection of two regular polytopes

While not necessary to the theory, it may improve the efficiency of many
operations if the disjoint normal form (DNF) is used in representing regular
polytopes (see 3.1.3). The indexing and comparison of convex polytopes can
be improved thereby, since the disjoint convex polytopes will have smaller
minimum bounding rectangles.

15.5 Data Load Issues

A major issue in the practical implementation of a regular polytope based
storage mechanism is that of data conversion. Once the geometry is expressed
in regular polytope form the operations between geometric regions are guar-
anteed to be rigorously correct, but the quality of the source data must be
considered. Approximations may well have been made, and inaccuracies in-
troduced to allow the data to be stored in the previous form, and this may
create difficulties in data uptake.

15.5.1 Inaccuracy from Previous Systems

In many systems, calculation of the point of intersection between lines will
have introduced rounding errors, as in the road frontage in figure 18 which
was intended to be a straight line connection A and B. In addition, to avoid
later topological failures, a further displacement of the calculated point may
have been applied, as in the case pictured in figure 19.

272 Rodney Thompson and Peter van Oosterom

Fig. 15.18 Points moved slightly in the calculation of intersections (shown exagger-
ated)

Note – this assumes that the data is to be loaded from an existing spatial
database. In some cases, it may be possible to capture from the original source
– e.g. the survey data. Unfortunately, while it would have been ideal to have
captured original data in its uncompromised form, this is rarely the case,
and much processing has been done to data before it reached the database.
For example, bearings and distances will have been adjusted to ‘close’ and
elevations of 3D points will have been calculated from the raw field notes. Note
that there is a trend in which the original observations and measurements
are more often stored in the (cadastral) database, in addition to the resulting
interpretations (parcels).

Fig. 15.19 Polygon point q moved (to the right) to prevent topological failure

15 Mathematically provable correct integrated 2D/3D representations 273

Ideally, before such parcels are converted into regular polytope form, the
lines which were once straight, and were intended to be straight should be
identified, and be represented as a single half plane (or at least half planes
having the same A,B,D values). As was mentioned above (section 4.4), this
was not done in the demonstration software, resulting in small overlaps and
mismatched edges. These can, however be detected by the rigorous operators
available in the regular polytope representation.

15.5.2 2D Data Conversion to Regular Polytope Form

In the 2D version of the regular polytope, there is no difficulty generating a
half plane whose edge passes exactly through any two points with integral
coefficients. In the same way, any 2D data that is currently encoded using
integer coefficients will create a 3D regular polytope with vertical walls with
no loss of precision. In summary, it is possible to generate a half plane in 2D,
or a half space parallel to the z axis through any two points with integral
coefficients.

For example in figure 20, the incoming data is based on lines (x1,y1)(x2,y2)
and (x2,y2)(x3,y3). The planes can be defined as A1 = y1− y2, B1 = x2− x1,
C1 = 0, and D1 = x1y2 − x2y1, and A2 = y3 − y2, B2 = x2 − x3, C2 = 0, and
D2 = x3y2− x2y3. Clearly any point on the intersection of these planes will
have x = x2 and y = y2.

Fig. 15.20 3D planes based on incoming 2D data

Thus, any 2D data currently in a conventional format should easily be con-
verted into regular polytope form with no loss of resolution, and no movement
of vertices provided that integer representations are used for each. That is to

274 Rodney Thompson and Peter van Oosterom

say, if no attempt is made to straighten road frontages as part of the data
load (as described above in 5.1), existing 2D cadastral data can be loaded
unchanged. This is not necessarily the case with 3D data.

15.5.3 3D Data Conversion to Regular Polytope Form

Where 3D data is to be converted to regular polytope form, some care is
needed. In general given any three non-colinear points, the best that can
be asserted is that a half space can be generated whose boundary plane
passes within one unit of resolution of each of the points. (In many special
cases – specifically where the half space is parallel to any of the axes, much
better results can be expected). If a situation such as that of figure 19 occurs
in a 3D situation (the figure should be interpreted as a ‘slice’ through the
3D coverage), and the spurious bend at point q is straightened, the actual
position of point p (as a point of intersection) is subject to a large variation.

In figure 21, where the half spaces that define region E have a possible
imprecision of one unit, their point of intersection p has a much larger possible
error (shown shaded). If this is a critical issue, it may be solved by introducing
a deliberate bias to the approximation, and an additional half space to limit
the position of p. The bias is needed because the additional half plane can
limit the error to the south (in figure 22) but not to the north. The bias is
created by ensuring that all half planes that meet at acute angles are moved
away from the convex polytope they define.

Fig. 15.21 Imprecision in the placement of the point of intersection

15 Mathematically provable correct integrated 2D/3D representations 275

Fig. 15.22 Half space introduced to constrain the point position

For example, in figure 22, region E has been extended (still within one unit
of resolution), and the acute angle at p has been truncated. This procedure
– of truncating acute dihedral angles could be used as a general procedure in
converting geometric objects to regular polytope form. In any case, objects
with very acute angles need to be treated with caution in any representation
to avoid the possibility of failures in algorithms such as buffer generation,
generalisation, etc.

15.6 Conclusions

The Regular Polytope approach is practical, and could be rigorously im-
plemented as a large-scale database (with proven functionality and without
unpleasant surprises due to the mismatch of infinite real number mathemat-
ics and the finite digital computer). While some more optimization in the
area of the regular polytope algorithms could yield speed improvements, for
the sort of data used in this pilot system, acceptable results were obtained.
In the test region, it was possible to run any combination the standard RCC
and topological functions, and the combination and nesting of functions gave
completely predictable results. The indication is that, a full implementation
could be developed with query and analysis, and edit/update functionality.

It is expected that, as described above, restricting the complexity of convex
polytopes will ensure practical speeds. In the case of 2D polytopes, several
thousand half planes per complex polytope should be practicable. In 3D,

276 Rodney Thompson and Peter van Oosterom

the number is probably several hundred. This is appropriate particularly for
cadastral data, whereas the parcels with large numbers of points (more than
2000) required in their definitions generally occur in rural areas, and are all
2D. Overly complex convex polytopes can be subdivided into a number of
simpler convex polytopes.

The overwhelming advantage of the Regular Polytope approach is in the
rigorously correct logic that it supports, and this justifies some additional
data storage requirements, and the potentially slower processing times, but
there is still much potential to improve the implementation of some of the
operations – in particular, Polytope.intersection, and Polytope.inverse.

Possible future extensions of the Regular Polotype approach may include:
non-linear half-spaces (e.g. circular arc, or polar coordinates defining a parcel
boundary) and time as an additional dimension.

It has been shown that the definition of a half space is unique, and that
the definition of a convex polytope in terms of half spaces is also unique
(Thompson 2005c). If a decomposition of a regular polytope into a unique set
of disjoint convex polytopes can be defined, it would be of great algorithmic
value, among other things, providing a simple determination of equality.

References

Arens, C., J. Stoter and P. van Oosterom (2003). Modelling 3D Spatial Ob-
jects in a Geo-DBMS Using A 3D Primitive. Association Geographic Infor-
mation Laboritories Europe, Lyon, France.

Borgo, S., N. Guarino and C. Masolo (1996). A Pointless Theory of Space
Based On Strong Connection and Congruence. 6th International Conference
on Principles of Knowledge Representation and Reasoning (KR96), Morgan
Kaufmann.

Castellanos, D. (1988). ‘The Ubiquitous pi (Part II)’. Mathematics Magazine
61(3): 148-161.

Clementini, E., P. Di Felice and P. van Oosterom (1993). A Small Set of
Formal Topological Relationships Suitable for End-User Interaction. Third
International Symposium on Advances in Spatial Databases, Singapore.

Düntsch, I. and M. Winter (2004). ‘Algebraization and Representation of
Mereotopological Structures.’ Relational Methods in Computer Science 1:
161-180.

Egenhofer, M. J. and J. R. Herring (1994). Categorising binary topological
relations between regions, lines, and points in geographic databases. The nine

15 Mathematically provable correct integrated 2D/3D representations 277

intersection: formalism and its use for naturallanguage spatial predicates. M.
J. Egenhofer, D. M. Mark and J. R. Herring, University of California.

Ellul, C. and M. Haklay (2005). Deriving a Generic Topological Data Struc-
ture for 3D Data. Topology and Spatial Databases Workshop, Glasgow, UK.

Franklin, W. R. (1984). ‘Cartographic errors symptomatic of underlying al-
gebra problems’. International Symposium on Spatial Data Handling, Zurich,
Switzerland: 190-208.

Guttman, A. (1984). ‘R-Trees: A Dynamic Index Structure for Spatial Search-
ing’ ACM SIGMOD 13: 47-57.

Hölbling, W., W. Kuhn and A. U. Frank (1998). ‘Finite-Resolution Simplical
Complexes.’ Geoinformatica 2:3: 281-298.

Kazar, B. M., R. Kothuri, P. van Oosterom and S. Ravada (2007). On Valid
and Invalid Three-Dimensional Geometries. In this book ‘2nd International
Workshop on 3D Geo-Information: Requirements, Acquisition, Modelling,
Analysis, Visualisation, 12-14 December 2007, Delft, the Netherlands’.

Naimpally, S. A. and B. D. Warrack (1970). Proximity Spaces. University
Press, Cambridge.

OMG. (1997). ‘UML 1.5’. Retrieved 2004 from http://www.omg.org/ tech-
nology/documents/formal/uml 2.htm

Randell, D. A., Z. Cui and A. G. Cohn (1992). A spatial logic based on regions
and connection. 3rd International Conference on Principles of Knowledge
Representation and Reasoning, Cambridge MA, USA, Morgan Kaufmann.

Smith, B. (1997). Boundaries: An Essay in Mereotopology. The Philosophy
of Roderick Chisholm. L. Hahn, LaSalle: Open Court: 534- 561.

Stoter, J. (2004). 3D Cadastre. PhD Thesis. Delft, Delft University of Tech-
nology.

Stoter, J. and P. van Oosterom (2006). 3D Cadastre in an International Con-
text. Taylor & Francis, Boca Raton FL.

Tarbit, S. and R. J. Thompson (2006). Future Trends for Modern DCDB’s,
a new Vision for an Existing Infrastructure. Combined 5th Trans Tasman
Survey Conference and 2nd Queensland Spatial Industry Conference. Cairns,
Queensland, Australia.

278 Rodney Thompson and Peter van Oosterom

Thompson, R. J. (2004). 3D Topological Framework for Robust Digital Spa-
tial Models. Directions Magazine.

Thompson, R. J. (2005a). 3D Framework for Robust Digital Spatial Models.
Large-Scale 3D Data Integration. S. Zlatanova and D. Prosperi. Boca Raton,
FL, Taylor & Francis.

Thompson, R. J. (2005b). 3D Cadastral Issues Within NR&M. Brisbane, De-
partment of Natural Resources and Mines (Internal Report).

Thompson, R. J. (2005c). ‘Proofs of Assertions in the Investigation of
the Regular Polytope’. Retrieved 2 Feb 2007 from http://www.gdmc.nl/
publications/reports/GISt41.pdf

Thompson, R. J. (2007). Towards a Rigorous Logic for Spatial Data Rep-
resentation. Geo Database Management Centre. Delft, Delft University of
Technology. PhD Thesis.

Thompson, R. J. and P. van Oosterom (2007). ‘Connectivity in the Regular
Polytope Representation.’ submitted to GeoInformatica.

van Oosterom, P., W. Quak and T. Tijssen (2004). About Invalid, Valid and
Clean Polygons. Developments In Spatial Data Handling. P. F. Fisher. New
York, Springer-Verlag: 1-16.

Verbree, E., A. van der Most, W. Quak and P. van Oosterom (2005). Overlay
of 3D features within a tetrahedral mesh: A complex algorithm made simple.
Auto Carto 2005, Las Vegas.

Weisstein, E. W. (1999). ‘Boolean Algebra’. MathWorld – A Wolfram Web
Resource Retrieved 20 Jan 2007 from http://mathworld.wolfram.com/
BooleanAlgebra.html

Weisstein, E. W. (2005). ‘Rational Number’. MathWorld – A Wolfram Web
Resource Retrieved 23 May 2005 from http://mathworld.wolfram.com/
RationalNumber.html

Zlatanova, S. (2000). 3D GIS for Urban Development. Graz, Graz University
of Technology.

Zlatanova, S., A. A. Rahman and W. Shi (2004). ‘Topological models and
frameworks for 3D spatial objects’. Journal of Computers & Geosciences
30(4): 419-428.

Chapter 16

3D Solids and Their Management In
DBMS

Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Abstract

3D spatial modeling is one of the most important issues in 3D GIS research.
It involves the definition of spatial objects, data models, and attributes for
visualization, interoperability and standards. Real world complexity leads to
different modeling approaches, as seen in different GIS applications. This
paper provides some review of the problems, challenges and issues pertaining
to the 3D GIS problems, especially in the handling and managing of 3D
solids in DBMS. The paper also describes 3D spatial operators in DBMS
and presents results using a simulation dataset. At the end of the paper, we
provide and highlight requirements and recommendations for future research.

16.1 Introduction

‘True’ 3D GIS require extensive effort, as revealed from the recent research
output and workshop (see Abdul-Rahman, et al. 2006). It is interesting to
note that work on fundamental aspects, like 3D spatial analysis, has not
been addressed to the level where an operational 3D system could be real-
ized. The aim of this paper is to review recent research on 3D spatial data
modeling and describe our recent work on the management of 3D solids in
geo DBMS. Recent research development shows that 3D spatial modeling is
becoming very important for many advanced GIS applications and the sce-
nario is being enhanced by the advancement of computer graphics (hardware

Department of Geoinformatics, Faculty of Geoinformation Science and Engineering,
Universiti Teknologi Malaysia, Skudai, Malaysia
Delft University of Technology, OTB, section GIS Technology,
Jaffalaan 9, 2628 BX the Netherlands
kenchen, alias@fksg.utm.my, s.zlatanova@tudelft.nl

279

280 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

and software), visualization, etc. and also influenced by developments in the
OpenGIS consortium. 3D visualization environments such as Google Earth
or 3D navigation software have already made some contribution and enabled
more and more users to utilize visualization technology. Until recently, only
specialized applications were able to manage and analyze 3D spatial data.
The third dimension was used primarily for visualization and navigation.
However, users are looking for applications that have one or more 3D GIS
functionality. Due to the complexity of real-world spatial objects, various
types of representations (e.g. vector, raster, constructive solid geometry, etc.)
and spatial data models (topology, and geometry) have been investigated and
developed, including e.g. Pilouk, 1996; Zlatanova, 2000; and Kada et al, 2006.

A universal and practical spatial data model that is capable of addressing
more than one application is not available. This is due to the complexity of
real world objects and situations. On the other hand, different disciplines em-
phasize different aspects of information e.g. including different requirements
and output. Thus, a data model could be considered appropriate for a cer-
tain application but not so appropriate for other tasks. Different aspects and
characteristics of real objects have led to the existence of several variations
in object definition. The solution for these problems has directly referred to
GIS standardization.

Current 3D GIS offer 2D functionality with 3D visualization and naviga-
tion capability. However, promising developments were observed in the DBMS
domain where more spatial data types, functions and indexing mechanism
were supported. In this respect, DBMS are expected to become a critical
component in developing of an operational 3D GIS. However, extensive re-
search and development are needed to achieve native 3D support at DBMS
level.

This paper reviews works on 3D DBMS, especially on the aspect of man-
aging volumetric objects. It is organized in the following order – Section 2,
a short discussion on the standard specifications for 3D GIS spatial data
modeling by Open GIS Consortium. Based on the specifications, Section 3
discusses the implementation of maintaining 3D spatial objects in DBMS.
Section 4 describes the previous research works on 3D spatial data modeling.
A brief discussion for 3D visualization is given in Section 5 and the paper
concludes with recommendations for future work in Section 6.

16.2 The OGC Abstract Specifications for 3D Solids

The Open Geospatial Consortium (OGC 1999) is a non-profit organization
that deals with the development of standards for modelling real-world objects.
These standards deal with conceptual schemes for describing and manipulat-
ing the spatial characteristics of geographic features. The desire to provide a
standard specification for GIS was initially driven by the developers - due to

16 3D Solids and Their Management In DBMS 281

the difficulty in GIS interoperability. The specification, in short, defines three
important areas, namely:

• Data types: the need to have data types that represent real world object
is obvious. Different kinds of data types and different kinds of objects
could be modelled within DBMS.

• Functions/operations: there must be functions and operators to support
the management of multi-dimensional objects that work for spatial anal-
ysis in DBMS, e.g. objects intersection.

• Spatial index: the main purpose is to deal with spatial searching (query),
and sometimes it implements in different operators to speed up the query
process.

According to the Spatial Schema, spatial characteristics are described by
one or more spatial attributes whose value is given by a geometric object
(GM Object) or a topological object (TP Object). Geometry provides means
for the quantitative description, by means of coordinates and mathematical
functions, of the spatial characteristics of features, including dimension, po-
sition, size, shape, and orientation. The mathematical functions used to de-
scribe the geometry of an object depend on the type of coordinate reference
system used to define the spatial position. Geometry is the only aspect of
geographic information that changes when information is transformed from
one geodetic reference system or coordinate system to another.

Topology deals with characteristics of geometric figures that remain in-
variant when space is deformed elastically and continuously – for example,
when geographic data is transformed from one coordinate system to another.
Within the context of geographic information, topology is commonly used
to describe the connectivity of an n-dimensional graph, a property that is
invariant under continuous graph transformation. Computational topology
provides information about the connectivity of geometric primitives that can
be derived from the underlying geometry.

This paper will further concentrate on Geometry.

16.2.1 GM Solid

OGC defines 3D object as GM Solid (OGC 2001) and it is a subclass of
GM Primitive and is the basis for 3-dimensional geometry. The extent of a
solid is defined by the boundary surfaces. The boundary defines a sequence
set of GM Surfaces that limit the extent of this GM Solid (see Fig. 1). These
surfaces shall be organized into one set of surfaces for each boundary compo-
nent of the GM Solid. Each of these shells shall be a cycle (closed composite
surface without boundary). In general, a solid in a bounded 3-dimensional
manifold has no distinguished exterior boundary. In cases where ‘exterior’
boundary is not well defined, all shells of the GM SolidBoundary shall be

282 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

listed as ‘interior’. The GM OrientableSurfaces that bound a solid shall be
oriented outward – that is, the ‘top’ of each GM Surface as defined by its
orientation shall face away from the interior of the solid. To represent a 3D
solid as a volumetric object, GM Solid is the best abstract spesification de-
fined by OGC. Other than the GM Solid, some feature geometry such as
GM Composite also involves a 3D solid object with other primitives, e.g.
point, line, and polygon.

There are some functions or operations that could be implemented using
GM Solid. The function/operations are:

• Area: the operation shall return the sum of the surface areas of all of the
boundary components of a solid. For example: GM Solid::area() : Area

• Volume: the operation shall return the volume of this GM Solid. This
is the volume interior to the exterior boundary shell minus the sum
of the volumes interior to any interior boundary shell. For example:
GM Solid::volume() : Volume

• GM Solid (constructor): since this standard is limited to 3-dimensional
coordinate reference systems, any solid is definable by its boundary. The
default constructor for a GM Solid is from a properly structured set of
GM Shells organized as a GM SolidBoundary. For example: GM Solid::
GM Solid(boundary : GM SolidBoundary) : GM Solid

Fig. 16.1 GM Solid data type defined by OGC

Although the OGC does not discuss some operations that refer to 3D solid
e.g. 3D intesection between 2 solids, to extend to the third dimension, simi-
lar specifications could be given to the 3D operations, if the z-coordinate is
considered. The notion for operations provided by OGC are as provided:

return-type type-1::operation(type-2, type-3 ...)

Example:

Double Precision Geometry 1::Distance(Geometry 2, Geometry 3)

operation(name-1 : type-1, name-2 : type-2, name-3 :
type-3 ...) : return-type, ...

16 3D Solids and Their Management In DBMS 283

Example:

3D Intersects(A1:Geometry 1, A2:Geometry 2) : Geometry 3

There are other 3D objects being considered in the OGC specification, i.e.
cone, sphere and, etc. Some 3D object are not considered volumetric solids,
but still appear in 3D space, i.e. free-form curve and surface. Fig.2 denotes
the complete list of 3D objects (with highlighted part) considered in OGC
specification.

The OGC abstract specifications deal with geometry and functions. Spatial
index is not mentioned in the abstract specification. Therefore, rule or speci-
fications about developing spatial indexing is unavailable. However, the OGC
provides for the implementation specification of R-Tree indexing according
to the existing DBMS format, i.e. Oracle Spatial. The following section will
discuss the basic idea of R-Tree index implemented within DBMS.

Fig. 16.2 Geometry package in OGC abstract specification

284 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

16.2.2 The OGC Implementation Specifications for
DBMS

The GM Solid has been defined by the OGC as a general 3D primitive in
abstract specification (OGC 1999a). However, the existing implementation
(for SQL) of 3D solid (e.g. polyhedron, tetrahedron) is not available due to
the absent of 3D data type (as 3D primitive) within existing DBMS. A volu-
metric object could be modeled using a multi-collection of similar or different
geometries. OpenGIS implementation specification for 3D solid objects can
be referred to as PolyhedralSurface and MultiPolygon. A PolyhedralSurface is
a contiguous collection of polygons that share common boundary segments.
It is a subtype of Surface. The primitive of PolyhedralSurface and MultiPoly-
gon are referred to as Polygon (see Fig. 5). The difference between these two
geometries is that the polygons that construct PolyhedralSurface must share
boundaries with the neighboring polygons. The MultiPolygon is flexible, i.e.
share boundary may not exist for certain polygon(s). For each pair of polygons
that ‘touch’, the common boundary shall be expressible as a finite collection
of LineStrings. Each LineString shall be part of the boundary of at most 2
polygon patches. A TIN (triangulated irregular network) is a PolyhedralSur-
face consisting only of Triangle patches. For any two polygons that share a
common boundary, the ‘top’ of the polygon shall be consistent. This means
that when two LinearRings from these two Polygons traverse the common
boundary segment, they do so in opposite directions. Since the Polyhedral
surface is contiguous, all polygons will be consistently oriented. This means
that a non-oriented surface shall not have single surface representations. Fig.
3 shows an example of such a consistently oriented surface (from the top).
The arrows indicate the ordering of linear rings from the polygon boundary in
which they are located. The methods of implementing the polyhedral surface
in DBMS is given as below (see Fig. 4):

NumPatches (): Integer - Returns the number of including
polygons

PatchN (N: Integer): Polygon - Returns a polygon in this
surface, the order is arbitrary.

BoundingPolygons (p: Polygon): MultiPolygon - Returns the
collection of polygons in this
surface that bounds the given
polygon ‘p’ for any polygon ‘p’
in the surface.

IsClosed (): Integer - Returns 1 (True) if the polygon
closes on itself.

16 3D Solids and Their Management In DBMS 285

Fig. 16.3 PolyhedralSurface with consistent orientation

Fig. 16.4 Implementation specification for PolyhedralSurface

Fig. 16.5 SQL Geometry type hierarchy

286 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

In the implementation specification, OGC provides the geometry function
that is not limited to any dimension. Only DBMS itself decides the implemen-
tation of the standard functions (specified by OGC) that considers the third
dimension or not. Some of the standard functions given by OGC (Simple
Feature Specification for SQL, Revision 1.1) are:

Intersection (g1 Geometry, g2 Geometry): Geometry

Return a Geometry that is the set intersection of geometries g1 and g2.

Difference (g1 Geometry, g2 Geometry): Geometry

Return a Geometry that is the closure of the set difference of g1 and g2.

Union (g1 Geometry, g2 Geometry): Geometry

Return a Geometry that is the set union of g1 and g2.

SymDifference(g1 Geometry, g2 Geometry): Geometry

Return a Geometry that is the closure of the set symmetric difference of g1
and g2 (logical XOR of space).

Buffer (g1 Geometry, d Double Precision) : Geometry

Return as Geometry defined by buffering a distance d around g1

ConvexHull(g1 Geometry) : Geometry

Return a Geometry that is the convex hull of g1.
Implementing the spatial index that follows the standard specification is

not available with the OGC document. This is because the spatial index deals
with the method of searching, which often involves mathematical algorithms,
e.g. the implementation of R-Tree indexing. A R-Tree is a depth-balanced
tree extending the B-tree for n-dimensions. The index stores the minimum
bounding boxes as representations, not the objects themselves. It is equally
referred to as a minimum bounding rectangle (MBR). A detailed documen-
tation about the R-Tree could be found in Rigaux et al. (2002). There is
no standard syntax/command/structure stated by OGC that enables any
DBMS to be implemented. Only the DBMSs themselves provide their own
syntax/command/structure that establishes the spatial index. The following
examples are provided:

(For Oracle Spatial)

CREATE INDEX [index_name] on
<table_name>(geometry_column)

INDEXTYPE IS mdsys.spatial_index

PARAMETERS(’sdo_indx_dims=3’); -- Dimension = 3

16 3D Solids and Their Management In DBMS 287

(For PostGIS)

CREATE INDEX [index_name] ON <table_name>

USING GIST <geometry_column>
GIST_GEOMETRY_OPS);

The concept of sample R-tree structure is given in Fig. 6, Fig. 7, & Fig.
8 in two and three-dimensions. The impact of the z-coordinate on 3D spatial
indexing will influence the execution time because the indexing mechanism
will search each of the (x, y) elements that relate to its z-coordinate. For
example, 7 (x, y, z) points will search 7 times greater than 7 (x, y) elements.

Fig. 16.6 Directory of R -Tree indexing

Fig. 16.7 A planar representation of an R-tree

Note that the Oracle Spatial provides the spatial index up to 4D and the
dimensionality should be defined in the syntax. However, the GiST index is
widely used for 2D data. The implementation of GiST is rather limited for
3D data. The research and application of 3D GiST is expected in the near
future. The next section discusses some implementations of spatial indexes
for the third dimension in DBMS.

288 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Fig. 16.8 A 3D representation of an R-tree

16.3 Some Implementations of 3D Solid In DBMS

Since the Implementation specifications do not recommend a 3D data type,
most of the DBMS (except Oracle Spatial) have not implemented volumet-
ric data types. However, 3D data can be stored in the database since the
data types are embedded in 3D space, i.e. point, line and polygon can be
represented with their 3D coordinates. The next section describes how 3D
real-world objects can be stored in the DBMS using 3D multipolygon.

16.3.1 Modeling 3D Solid Using MultiPolygon

In the Oracle Spatial object-relational model, a 3D solid object from 3D
primitive is not possible. However, it could be done by implementing the
MultiPolygon that bounds a solid. The geometric description of a spatial
object is stored in a single row and in a single column of object type
SDO GEOMETRY in a user-defined table. Any tables that have a column of
type SDO GEOMETRY must have another column, or set of columns, that
define a unique primary key for that table. Tables of this sort are referred to
as geometry tables.

Oracle Spatial defines the object type SDO GEOMETRY as:

CREATE TYPE sdo_geometry AS OBJECT (
SDO_GTYPE NUMBER,
SDO_SRID NUMBER,
SDO_POINT SDO_POINT_TYPE,
SDO_ELEM_INFO MDSYS.SDO_ELEM_INFO_ARRAY,
SDO_ORDINATES MDSYS.SDO_ORDINATE_ARRAY);

An example of implementing a 3D multipolygon (where the geometry can
have multiple, disjoint polygons in 3D) is provided below:

CREATE TABLE Solid3D (

16 3D Solids and Their Management In DBMS 289

ID number(11) not null,
shape mdsys.sdo_geometry not null);

INSERT INTO Solid3D (ID, shape) VALUES (
1 SDO_GEOMETRY(3007, -- 3007 indicates a 3D multipolygon
NULL, -- SRID is null
NULL, -- SDO_POINT is null
SDO_ELEM_INFO_ARRAY(-- the offset of the polygon

1, 1003, 1,
16, 1003, 1,
31, 1003, 1,
46, 1003, 1,
61, 1003, 1,
76, 1003, 1),

SDO_ORDINATE_ARRAY(
4,4,0, 4,0,0, 0,0,0, 0,4,0, 4,4,0, -- 1st polygon
4,0,0, 4,4,0, 4,4,4, 4,0,4, 4,0,0, -- 2nd polygon
4,4,0, 0,4,0, 0,4,4, 4,4,4, 4,4,0, -- 3rd polygon
0,4,0, 0,0,0, 0,0,4, 0,4,4, 0,4,0, -- 4th polygon
0,0,0, 4,0,0, 4,0,4, 0,0,4, 0,0,0, -- 5th polygon
0,0,4, 4,0,4, 4,4,4, 0,4,4, 0,0,4 -- 6th polygon

)));

For PostGIS, the 3D solid as a primitive object is also not available. To
create a 3D object that implements existing primitives, then a MultiPoly-
gonM could be used. The three dimensions simply allow a z-coordinate to be
stored for each point. The geometry column in PostGIS differs from Oracle
Spatial. The description of geometry column is given below:

AddGeometryColumn(<table_name>, <column_name_of_geometry>,
<srid>, <geomery_type>, <dimension>)

An example of implementing the MultiPolygonM is given below:

CREATE TABLE Solid3D (ID integer primary key,
NAME varchar (20) not null);}

SELECT AddGeometryColumn(‘Solid3D’, ‘shape’,
423, ‘MULTIPOLYGONM’, 3);

Note that the table name, Solid3D, is given a geometry column named
‘shape’, with MULTIPOLYGONM type in third dimension. The following
example denotes a real multipolygon stored in PostGIS.

INSERT INTO Solid3D (ID, shape) VALUES (
2, -- ID
GeometryFromText(’MULTIPOLYGONM(

290 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

(4,4,0, 4,0,0, 0,0,0, 0,4,0, 4,4,0) -- 1st lower polygon
(4,0,0, 4,4,0, 4,4,4, 4,0,4, 4,0,0) -- 2nd side polygon
(4,4,0, 0,4,0, 0,4,4, 4,4,4, 4,4,0) -- 3rd side polygon
(0,4,0, 0,0,0, 0,0,4, 0,4,4, 0,4,0) -- 4th side polygon
(0,0,0, 4,0,0, 4,0,4, 0,0,4, 0,0,0) -- 5th side polygon
(0,0,4, 4,0,4, 4,4,4, 0,4,4, 0,0,4) -- 6th upper polygon

)));

The advantage of implementing the multipolygon in DBMS is that the
integration between CAD and GIS is possible for 3D visualization, i.e. Oracle
(or called Spatial) spatial schema is supported by MicroStation and Autodesk
Map 3D. This is due to the geometry column provided by Spatial directly
accesses the 3D coordinates of the object, which allow the display tools to
retrieve spatial information from the geometry column. However, problems
occur if the data volume is huge, i.e. more polygons are stored for a single 3D
solid body. Data size will directly affect data retrieval and yield a slow dataset
loading within visualization environment. This weakness could be overcome
with the approach of implementing polyhedron as 3D data type in DBMS as
proposed by Arens (2003), see Section 4.

Although the implementation of MultiPolygons and Multipatch could be
done for 3D visualization, these objects do not represent real 3D objects. They
define only a set of bounding surfaces that construct a 3D object. Thus, it is
not suitable for 3D analysis. This is one of the main reasons why 3D analytical
functions are limited.

16.3.2 Spatial Indexing

Another important aspect of 3D data management is spatial indexing. Spatial
indexes are used in DBMS for fast search especially when spatial functions
are applied. Without indexing, any searches for a feature would require a
sequential scan of every record in the database. Indexing speeds up searching
by organizing the data into a search tree that could be quickly traversed to
find a particular record. There are several types of indexes within DBMS, e.g.
PostGIS and Oracle Spatial: they are B-Tree indexes, R-Tree indexes, and
GiST indexes.

• B-Trees are used for data, which can be sorted along one axis; for example,
numbers, letters, dates. GIS data cannot be rationally sorted along one
axis (which is greater, (0,0) or (0,1) or (1,0)?) so B-Tree indexing is of no
use for GIS user.

• R-Trees break up data into rectangles, and sub-rectangles, and sub-sub
rectangles, etc. R-Trees are used by some spatial databases to index GIS
data, but the PostGIS R-Tree implementation is not as robust as the

16 3D Solids and Their Management In DBMS 291

GiST implementation. Oracle Spatial will implement the 3D R-Trees in
the coming version 11g.

• GiST (Generalized Search Trees) indexes break up data into ‘things to
one side’, ‘things which overlap’, ‘things which are inside’ and can be used
on a wide range of data-types, including GIS data. PostGIS (2006) uses
an R-Tree index implemented on top of GiST to index GIS data.

GiST indexes have two advantages over R-Tree indexes in PostGIS. First,
GiST indexes enable the null value in the index columns. Secondly, GiST
indexes could easily deal with GIS objects larger than the PostGIS 8K page
size. The important part of an object in an index will only be considered
within DBMS, e.g. in the case of GIS objects, just the bounding box. GIS
objects larger than 8K will cause R-Tree indexes to fail in the process of
being built. It could take a long time to create a GiST index if there is a
significantly large amount of data in a table. Moreover, 3D indexing is not
available within PostGIS.

Other DBMS, e.g. Oracle Spatial, are able to provide 3D indexing for 3D
object (MULTIPOLYGON). For Spatial, the metadata that maintains the
lower and upper bounds and tolerance of 3D object needs to be created.
Later, a spatial index (R-tree in 3D) could be created on tables to speed up
spatial queries. The following example denotes the sample in creating a 3D
spatial index within Spatial.

-- Inserting metadata for 3D object: MULTIPOLYGON

INSERT INTO user_sdo_geom_metadata VALUES
(‘Solid3D’, ‘shape’,
mdsys.sdo_dim_array(

mdsys.sdo_dim_element(‘X’, 0, 100, 0.1),
mdsys.sdo_dim_element(‘Y’, 0, 100, 0.1),
mdsys.sdo_dim_element(‘Z’, 0, 100, 0.1))

, NULL);

-- Creating 3D Spatial Index

CREATE INDEX Solid3D_I on Solid3D(shape)
INDEXTYPE IS mdsys.spatial_index
PARAMETERS(sdo_index_dims=3); -- Dimension = 3

ANALYZE TABLE Solid3D COMPUTE STATISTICS;

292 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

16.3.3 Functions and Operations In DBMS

The 3D functions/operations in DBMS are mainly based on 2D objects that
appear in 3D space, i.e. point, line, and polygon (in 3D). Most of the functions
consider only the x,y coordinates of the data types although, and they may
be given with 3D coordinates. However, there are some exceptions. Some of
the 3D functions provided in PostGIS are:

• length3d(geometry): Returns the 3-dimensional length of the geometry if
it is a linestring or multi-linestring.

• length3d spheroid(geometry,spheroid): Calculates the length of of geom-
etry on an ellipsoid, taking the elevation into account. This is just like
length spheroid except vertical coordinates (expressed in the same units
as the spheroid axes) are used to calculate the extra distance vertical
displacement adds.

• perimeter3d(geometry): Returns the 3-dimensional perimeter of the ge-
ometry, if it is a polygon or multi-polygon.

• MakeBox3D(<LLB>, <URT>): Creates a BOX3D defined by the given
point geometries. LLB denotes lower left bottom, whereas URT denotes
upper right top.

• xmin(box3d) ymin(box3d) zmin(box3d): Returns the requested minimum
of a bounding box.

• xmax(box3d) ymax(box3d) zmax(box3d): Returns the requested maxi-
mum of a bounding box.

3D operations in existing DBMSs are hardly available. For example, due
to the third dimension, Oracle Spatial is not considered in any function and
operation, thus the 3D function and operation are not available. Maintaining
objects with 3D coordinates are possible but the functions available within
DBMS still do not consider the third-dimension. Some exceptions are only
limited to geometry calculations, e.g. 3D length and 3D perimeter. The exist-
ing spatial functions are only based on the native geometry model, i.e. buffer
for 2D polygon. The 3D operation for DBMS must focus on two directions:

• The existing operations have to be extended to the third-dimension, in
which the z-coordinate must be involved, i.e. 3D intersection, 3D buffer,
and etc.

• New 3D operations have to be developed based on topological models,
i.e. 3D overlap, 3D meet that extended from 9-intersection model.

In the coming Oracle Spatial 11g, the 3D coordinate system will be im-
plemented in DBMS environment. The 3D coordinate systems are all based
on European Petroleum Survey Group (EPSG) specifications. The supported
coordinate systems are: Vertical coordinate systems, Geocentric (3D Carte-
sian), Geographic (3D ellipsoidal), and Compound coordinate System.

16 3D Solids and Their Management In DBMS 293

16.4 Problems and Issues on 3D Data Modeling in
DBMS

A number of works attempt to address the problem of spatial data modeling
for 3D GIS where most of these efforts focused on polyhedron, tetrahedron,
triangulated tetrahedron and even free-form curves and surfaces as a mecha-
nism to formalize 3D spatial data modelling. The following section discusses
some recent works on data modeling in DBMS.

16.4.1 Modeling 3D Solid in DBMS

16.4.1.1 Polyhedron

The modelling 3D spatial object and corresponding operations in a spatial
DBMS has been investigated quite successfully by Arens (2003), and Arens
et al. (2005). The basic idea was that a 3D polyhedron could be defined as a
bounded subset of 3D space enclosed by a finite set of flat polygons, such that
every edge of a polygon is shared by exactly one other polygon. The poly-
gons are in 3D space because they are represented by vertices that appear
in 3D space. The 3D primitive implemented by Arens was in a geometrical
model with internal topology. The polyhedron was realized by storing the ver-
tices explicitly (x,y,z) and describing the arrangement of these vertices in the
faces of the polyhedron. This yields a hierarchical boundary representation
(Aguilera 1998; Verbree and Zlatanova 2004). The sample of a polyhedron is
illustrated in Fig. 9a, and the polyhedron storage is depicted in Fig. 9b.

The functions/operations given by Arens includes validation for polyhe-
dron, spatial conversion, topological operation, and metric functions. To vi-
sualize 3D objects, it is necessary to use programs that actually show the
third dimension. There are two options as proposed by Arens:

• GIS/CAD programs make a DBMS connection, for instance Microstation
(Bentley 2007). These programs can only handle 3D objects that consist
of multiple 2D objects. The 3D data stored as a 3D type needs a conver-
sion before it can be visualised, e.g. splitting up the 3D object in multiple
2D polygons.

• VRML (Virtual Reality Modelling Language). When using VRML, there
needs to be translation between the 3D type in the database and the
VRML syntax.

These two representations have advantages and disadvantages. Display-
ing 3D objects using VRML require an extra step for 3D visualization. The
polyhedron needs to be converted into a VRML file. First, the VRML file is
stored as an SQL-loader file. Then, SQL-loader (from Oracle tool) load this
file into DBMS environment to construct a table. The object’s geometry will

294 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Fig. 16.9 Sample of polyhedron, and UML diagram of polyhedron storage (after
Arens 2003)

be added into the table and the VRML file can be browsed on the Internet.
Taking advantage of web display, the data exchange/transfer could be done
easily by extracting the VRML file. However, the VRML file is not part of
the DBMS environment. The 3D visualization becomes inefficient if the data
volume is huge – this happens when the conversion of geometry (from DBMS)
to VRML file is carried out. However, the weakness could be overcome by
integrating DBMS and display tool directly, i.e. GIS/CAD integration. In
this case, a CAD system, such as Microstation, could be connected directly
to the DBMS and retrieve the 3D data for 3D visualizaton.

16.4.1.2 TEN

Another attempt to define 3D object has been reported by Penninga, 2005.
The 3D object, i.e. tetrahedron, is used to represent 3D volumetric shapes.
The tetrahedron is the simplest possible geometry in the 3D domain. The
conceptual design was intended for implementation of both geometrical and
topological models in topographic modeling.

16 3D Solids and Their Management In DBMS 295

Initially, Penninga (2005) attempted to implement the TIN/TEN(2.5D
/3D) model approach for topographic modeling. The idea is that the earth’s
terrain can be modelled in 2.5D TIN. The complex object will be mapped
on top or below this terrain. This leads to the combination of TIN/TEN
model (TIN: Triangulated Irregular Network / TEN: Tetrahedronized Irreg-
ular Network). However, since problems appear at both the conceptual and
implementation level, an alternative model was suggested, i.e. the full TEN
model. The shift to the full 3D model avoids the complication of designing
multiple data structures in both TIN and TEN models for different spatial
objects (Penninga et al. 2006; Penninga and van Oosterom 2007).

In the TEN model, four types of topographic features can be determined
in this integration: 0D (point features), 1D (line features), 2D (area features)
and 3D (volume features). For each type, feature simplexes of corresponding
dimension are available to represent the features with nodes, edges, triangles
and tetrahedrons (see Fig. 10).

Fig. 16.10 Logical design of 3D TEN (after Penninga & van Oosterom 2007)

With this TIN/TEN integration, a minor drawback would occur if an ob-
ject became more complex, such as a complex building block. The entire
building could be modeled using triangles as a whole to complete the geome-
try. An undesirable side effect is that the data size may become rather large,
because more faces have to be stored in the data structure. The triangulation
approach produces more storage, as compared to the polyhedron approach
depending on the complexity of 3D objects. Since the space is completely sub-
divided into tetrahedrons, the interiors of objects (e.g. buildings), as well as
the open space, are also decomposed into tetrahedrons. These tetrahedrons,
however, require additional algorithms to be developed as a whole building
block. This leads to database size expansion (see Fig. 11) and longer response
time for visualization. More information on this comparison (polyhedron and
TEN) can be found in Zlatanova 2000.

296 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Fig. 16.11 Comparison of the total faces/triangles between polyhedron and TEN
(after Zlatanova 2000)

16.4.1.3 Triangulated Polyhedron

The triangulated polyhedron was proposed by Ledoux and Gold (2004) and
it was based on 3D Voronoi Diagram (VD) and Delaunay Tetrahedralization
(DT). The Voronoi diagram for a set of points (in a given space, R is the
partitioning of that space into regions such that all locations within any one
region are closer to the generating point than to any other.

In 2D, this structure is defined by partitioning the plane into triangles
(where the vertices of the triangles are points that generate each Voronoi
cell) that satisfy the empty circumcircle test (a circle is empty when no points
are in its interior, but more than three points can be directly on the circle).
In any dimensions, the VD has a geometric dual structure called the De-
launay Triangulation. The two-dimensional DT is illustrated in Fig. 12 by
the dashed lines. The Delaunay Triangulation is appropriate for modelling
surfaces because among all the possible triangulations of a set of points, it
creates one where the minimum angle in each triangle is maximized (triangles
are as equilateral as possible), thus being useful for interpolation.

In three-dimension, a Voronoi cell generalizes to a convex polyhedron
formed by convex faces, as shown in Fig. 13. The generalization to three di-
mensions of the Delaunay Triangulation is the Delaunay tetrahedralization:
each triangle becomes a tetrahedron that satisfies the empty circumsphere
rule. The DT is unique for a set of points, except when there are degenerate
cases in the set (if five or more points are cospherical in 3D). In these cases, an
arbitrary choice must be made among all the possible solutions. The number
of tetrahedra in a DT constructed with n points depends on the configuration
of these points.

It can be realized that triangulated polyhedron could be utilized for gen-
erating 3D spatial objects and eventually into DBMS.

16 3D Solids and Their Management In DBMS 297

Fig. 16.12 Two-dimensional VD (bold lines) and DT (dashed lines) (after Ledoux
& Gold 2004)

Fig. 16.13 The Voronoi cell in 3D (after Ledoux & Gold 2004)

16.4.1.4 Modeling 3D Freeform Curves and Surfaces

Complex geometry types such as freeform curves and surfaces can be imple-
mented in DBMS. Many shapes in the real world are freeforms, i.e. not only
contain points, linestrings and polygons, but also curves and curved surfaces,
e.g. roads, building surfaces, and etc. Pu (2005) has created complex geome-
try data types that describe freeform curves and surfaces. Although freeform
shapes can be simulated by tiny line segments/triangles/polygons, it is quite
unrealistic and inefficient to store all these line segments/triangles/polygons
into a DBMS especially when shapes are rather huge or complex. The freeform
shapes discussed by Pu 2005, Pu and Zlatanova, 2006 are Bezier (Fig. 14),
B-spline and NURBS.

A B-Spline surface is an expansion of B-spline curves (Fig. 15a) and B-
spline curves are a generalization of Bezier curves, and the same applies for

298 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Fig. 16.14 (a) Bezier curve, and (b) bi-cubic Bezier surface (Pu, 2005)

Fig. 16.15 (a) B-spline, and (b) NURBS curve (Les, 1991)

surfaces. NURBS (Non-Uniform Rational B-Splines) curve is generalized from
B-Spline curve (Fig. 12b). The implementation was done in Oracle Spatial,
where new data types for each Bezier curve, B-spline curve and NURBS curve
were created separately. An alternative approach was to create a data type
for NURBS curves, which also represented Bezier curves and B-spline curves
by leaving some parameters of NURBS curve empty - because NURBS curve
is actually the generalization of Bezier curve and B-spline curve. The final
freeform datatypes could include:

• Three curve types: GM BezierCurve, GM BSplineCurve and GM NURB-
SCurve (see Fig. 16a),

• One surface type: GM NURBSSurface (see Fig. 16b), and
• Four supplementary types: GM PointArray, GM WeightArray, GM Knot

Vector and GM Trim.

The freeform curve and surface developed by Pu 2005 could not represent
a 3D solid object. Although these data types consider the z-coordinate, the
objects do not bound a volumetric body. The research could be extended
from freeform surface that able to envelope a solid body, but it yields greater
complexity due to more complex mathematical algorithms are required. As a
result, it will slow down the process of 3D visualization and spatial operation.

16 3D Solids and Their Management In DBMS 299

Fig. 16.16 (a) Freeform curve, and (b) Freeform surface datatypes

16.4.2 3D Spatial Indexing

Spatial searching is a fundamental primitive in non-traditional databases such
as GIS, CAD/CAM and multi-media applications. With the rapid prolifera-
tion of these databases in the past decade, extensive research has been con-
ducted on the design of efficient data structures to enable fast spatial search-
ing. Several data structures have been developed in this context,including
Quadtrees (Wang, 1991), R-trees (Guttman, 1984), hB-trees (Lomet and
Salzberg 1990), and TV-trees (Lin et al. 1984). Subsequent research has im-
proved these basic structures further by proposing new techniques for query
processing (Berchtold et al. 2000; Ferhatosmanoglu et al. 2001), faster and
better index creation (Garcia et al. 1998), and better split-strategies in dy-
namic updates (Beckmann et al. 1990; Berchtold et al. 1996). These tech-
niques are especially effective for low-dimensional spatial data such as those
in GIS and CAD/CAM applications.

For indexing low-dimensional spatial data, certain DBMSs allow users to
choose between one of two spatial indexes: a (Linear) Quadtree or an R-tree.
The Oracle implements these two kinds of spatial indexes and incorporates
and enhances some of the best proposals from existing spatial indexing re-
search. The PostGIS implements the GISt indexing for spatial query.

Most of the spatial indexes are extended from these two kinds of indexing
methods. The Linear Quadtree (or Quadtree for short) computes tile approx-
imations for geometries and uses existing B-tree indexes to perform spatial
searches. This approach results in simpler index creation, faster updates and
inheriting a built-in B-tree concurrency control protocol. The R-tree is im-
plemented logically as a tree and physically using tables inside the database
and the search involves recursive SQL for traversing the tree from root to
relevant leaves. This approach may be more efficient for queries due to the
enhanced preservation of spatial proximity but may be slow in updates or in-
dex creation and implements its own concurrency protocols on top of spatial
DBMS table level concurrency mechanisms.

The conventional approach to support similarity searches in high-dimensional
vector spaces can be broadly classified into two categories:

300 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

The first approach uses data-partitioning index trees. Neighbouring vec-
tors are coveredby MBRs (minimum bounding rectangles) or MBSs (mini-
mum bounding spheres), which are organized in a hierarchical tree structure.
Many index tree schemes have been proposed. They include the R-tree, the
R*-tree (Beckmann et al. 1990, the Hilbert R-tree (Kamel and Faloutsos
1994), and the SS-tree (White and Jain 1996). In addition, nearest neighbour
search methods using such indices have been proposed (Henrich 1994; Hjalta-
son and Samet 1995). Two recently proposed indices, the X-tree (Berchtold
et al. 1996) and the SR-tree (Katayama and Satoh 1997), are reported to
offer good performance. The X-tree introduces the notion of a supernode and
outperforms the R*-tree. The SR-tree has a unique feature in that it uses
both MBRs and MBSs and is reported to outperform both the R*-tree and
the SS-tree.

The second approach is the use of approximation files. Among the others,
the VA-file (vector approximation file) (Weber et al. 1998) is a simple yet
powerful scheme. The VA-file divides the data space into cells and allocates a
bit-string to each cell. The vectors inside a cell are approximated by the cell
and the VA-file itself is simply an array of these geometric approximations.
When searching vectors, the entire VA-file is scanned to select candidate
vectors. Those candidates are then verified by visiting the vector files. Weber
et al. (1998) report that the VA-file outperforms both the R*-tree and the
X-tree when dimensionality is high. In the field of spatial search of high-
dimensional data, this problem looms larger and larger. Search methods that
present an approximate answer (Arya et al.1994; Gionis et al. 1999), have
been proposed to avoid the problem. Although these methods are useful, to
overcome this problem, an A-tree index was proposed by Sakurai et al. 2002.
Introduction of the A-tree is motivated by a comparison and analysis of the
SR-tree and VA-file. The basic idea of A-tree is the introduction of virtual
bounding rectangles (VBRs), which contain and approximate MBRs or data
objects. The A-tree indexing is based on the following design structures:

• Tree structure: It adopts a tree index to limit the searching result from
one phase to the next phase.

• Relative approximation: to overcome the problem of tree indices identified
in evaluation results, a new notion (i.e. relative approximation) was in-
troduced, which is a simple yet powerful approximation method utilizing
the hierarchy of tree indices. In relative approximation, bounding regions
or data points are approximated by their relative positions in terms of
the parent’s bounding region.

• Partial usage of MBSs: since the SR-tree is one of the best indices among
the tree indices proposed so far, the SR-tree is used as the starting point
in designing the A-tree. However, the effect of MBSs is limited when
searching high dimensional data. Hence, MBSs are not stored in the A-
tree. As a result, the centroid of data objects in a subtree is used only for
insertion and deletion. The A-tree is a new index that applies the notion
of relative approximation to the hierarchical structure of the SR-tree.

16 3D Solids and Their Management In DBMS 301

However, this application is not naive; A-tree’s configuration is unique in
that: i) each node contains an MBR and a representation of the relative
approximation of its children; and ii) the centroid of data objects is used
only for updating purposes.

16.4.3 3D Operations

Since the subject of implementing 3D topological operations for geometrical
structure in a relational DBMS is a fairly unexplored area, some approaches
will be considered in developing 3D spatial operation for DBMS:

• The 3D spatial operation will cover all necessary topological structures
that define a complete solid object. In certain cases, not all primitives
are needed, e.g. a polyhedron is defined by an ordered set of coordinate
triplets for each polygon that bound a volumetric body, line will not be
used in the data structure.

• Implementation of the 3D spatial operations will be tested within the
DBMS environment.

• The results from 3D topological operations return to a Boolean form
(TRUE/FALSE). It involves two spatial objects, polyhedron and polyhe-
dron.

The topological operations presented here are based on the body-body
relation (Zlatanova, 2000). Typically, the results given by this operation are
in Boolean type, i.e. either TRUE or FALSE. The related operations include
Overlap, Meet, Disjoint, Inside, Covers, CoveredBy, Contain, and Equal (see
Fig. 17).

For topological operations in a geometrical model, a coordinate triplet of
the vertex is used. Similar to computational-geometry operation from pre-
vious sections, the binary operation is divided into base and target object.
However, the vertices from base object and polygons from target object will
be discussed (see Fig. 18a). This topological operation involves vertices (from
base object) and polygon (from target object). Therefore, the relation be-
tween these two objects will be examined. The location of base vertices rel-
ative to target polygon will be either outside, touch, or inside as has been
implemented and discussed in Chen and Abdul-Rahman (2006). These re-
lations will be used to determine how these two polyhedrons intersect each
other.

The following table (Fig. 18b) denotes the complete relationship between
base and target object. The ‘X’ sign represents the impossible intersection
between two objects, whereas the ‘check’ sign represents the possible inter-
section for geometrical models.

302 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Fig. 16.17 Body and body relation (after Zlatanova, 2000)

Fig. 16.18 Vertices (base) touch the target polygon (3D Meet), and Conditions for
topological operations (geometrical model)

The implementations of 3D topological operations involve two intersecting
polyhedrons. This implementation was performed within the PostGIS envi-
ronment. Below is the structure of polyhedron:

SELECT * FROM Solid3D WHERE PID = 1;

1,POLYHEDRON(PolygonInfo(6,24),SumVertexList(8),
SumPolygonList(4,4,4,4,4,4),
VertexList(100.0,100.0,100.0,400.0,100.0,100.0,400.0,
400.0,100.0,100.0,400.0,100.0,100.0,100.0,400.0,400.0,
100.0,400.0,400.0,400.0,400.0,100.0,400.0,400.0),
PolygonList(1,2,6,5,2,3,7,6,3,4,8,7,4,1,5,8,5,6,
7,8,1,4,3,2)) o,400.0,100.0,100.0,100.0,400.0,400.0,100.0,
400.0,400.0,400.0,400.0,100.0,400.0,400.0),
PolygonList(1,2,6,5,2,3,7,6,3,4,8,7,4,1,5,8,5,6,7,8,1,4,3,2))}

1. PolygonInfo(6,24) denotes 6 polygons and 24 IDs of polygon arrange in
PolygonList,

2. SumVertexList(8) denotes the total vertices,

16 3D Solids and Their Management In DBMS 303

3. SumPolygonList(4,4,4,4,4,4) denotes total vertices for each of polygon
(total polygon is 6, referred to (1)),

4. VertexList() denotes the list of coordinate-values for all vertices (with no
redundant), and

5. PolygonList() denotes the information about each polygon from sets of
ID.

The following SQL statement runs the 3D Overlap (see Fig. 19):

SELECT GMOVERLAP3D(a.POLYHEDRON,b.POLYHEDRON) AS GM_OVERLAP3D
FROM test a, test b where a.PID=1 and b.PID=2;

The result:

GM_OVERLAP3D

(TRUE)

Fig. 16.19 3D Overlap

16.5 3D Visualization

Without visualization, any queries from database would be just numbers and
characters – thus hard for users to decipher the meaning of the generated
information. DBMS only provides a medium for data set management, and
it certainly requires a front-end tool for visualizing the information as it is
perceived in the real world. The data from DBMS needs to be integrated into
a visualization tool so that it could be viewed as graphic. The 3D spatial data
stores in the spatial column (within DBMS), and a connection needs to be
built so that a display tool manages to access the spatial column and retrieve
the data for 3D visualization.

304 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

It is also important to note that 3D objects need to be visualized in real-
ism. With the benefit of the computer graphic technology, GIS could provide
a good display with textures and colours. Some web application, e.g. Google
Earth (GE) maintains the texture of spatial object over the Internet. GE is a
dynamic 3D virtual globe application that contains high-resolution satellite
and airborne images streamed through the Internet. GE uses a specific stan-
dard for external data sources called the Keyhole Markup Language (KML
and KMZ is the zip version). KML is a file format used to display geographic
data in an earth browser. A KML file is processed in much the same way
that HTML (and XML) files are processed by web browsers. Like HTML,
KML has a tag-based structure with names and attributes used for specific
display purposes. Thus, Google Earth and Maps act as browsers for KML
files. In Fig. 20, elements to the right on a particular branch in the tree are
extensions of elements on the left. For example, Placemark is a special kind
of Feature. It contains all of the elements that belong to Feature and adds
some elements that are specific to the Placemark element.

Other than visualization in 3D, it is important to have spatial query and
data updating based on the 3D data from the display tool. Some of the
software, e.g. ArcGIS, and Microstation could provide data editing/update,
and perform spatial query. Another advantage of integration between DBMS
and the visualization tool is that posting data could be done from the display
tool. Furthermore, the data will be stored and converted into the DBMS
enviroment.

Another important element of 3D visualization is Level-Of-Detail (LOD).
The concept of Levels of Detail (LOD) has been introduced to facilitate vi-
sualization of large scenes (see Clark 1976). The idea is to represent spatial
objects that are compatible with the pixel size of the screen, relative of the
observer’s distance. This permits the original geometric representation to be
replaced with a new low-resolution represebtation. Low-resolution represen-
tations require less memory and processing time for rendering and hence
speeding-up the visualization process. The different representation is used by
the visualisation system only if the object is far enough from the user. Closer
objects are still represented in their full resolution. Moreover, if the distant
object gets closer (as a result of the user’s navigation through the model), the
high-resolution representation is restored. The intentions are an unnoticeable
switch between low and high levels of detail.

Currently, the CityGML (Kolbe et al. 2006) supports different LOD. It
requires independent data collection processes with differing application re-
quirements. In a CityGML dataset, the same object may be represented in
different LOD simultaneously, enabling the analysis and visualization of the
same object with regard to different degrees of resolution. Furthermore, two
CityGML data sets containing the same object in different LOD may be com-
bined and integrated. The CityGML provide multiple kinds of LOD as given
in below (see Fig. 21):

16 3D Solids and Their Management In DBMS 305

Fig. 16.20 Sample KML file format

• LOD0 is essentially a two and a half dimensional Digital Terrain Model.
An aerial image or a map may be draped on the DTM.

• LOD1 is the blocks model representing the buildings with flat roofs.
• LOD2 is used to differentiate the roof structures among different building.

It also used in differentiating surfaces thematically.
• LOD3 provide a building model with detailed wall and roof structures,

balconies, bays and projections. Vegetation objects may also be repre-
sented in this level. High-resolution textures can be mapped onto these
structures too.

• LOD4 completes a LOD3 model by adding interior structures for 3D
objects. For example, buildings are composed of rooms, interior doors,
stairs, and furniture.

LOD are used not only to speed up visualisation but also for different appli-
cations. For example LOD1 (CityGML) is perfect for air pollution analysis;
LOD3 is good for realistic visualisation; LOD4 can be used for evacuation
from buildings.

To maintain the LOD and colour/texture attributes could be performed in
both the DBMS and display tool. Certain display tools, e.g. VRML browser,
ArcGIS, and Microstation are able to maintain the colour and texture well.
This is not necessary to maintain the texture and colour attribute within
DBMS since these display tool manage to maintain these features with better
interactive functions. However, the LOD is required to store within DBMS.
This is because different LOD represent different kinds of geometry. For exam-
ple, from CityGML, LOD1 mainly stores simple block models that represent
buildings with flat roofs; LOD2 differentiate the roof structures among dif-

306 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Fig. 16.21 The five levels of detail (LOD) defined by CityGML, 2006

ferent building. With the same building, different LOD represents different
kind of roofs. The different LOD could only be stored in visualization tool, if
and only if, it converts into different layer of graphical data.

16.6 Conclusions

A number of issues and challenges must be addressed to develop and manage
3D solid objects in database. The problems, challenges and issues could be
summarized as:

1. An appropriate 3D datatype that defines 3D primitive for geometry and
topology needs to be developed. Different kinds of 3D spatial objects
deal with different applications, e.g. TEN deals with terrain modeling
and polyhedron addresses with building structures. The 3D datatype
should follow the standard specification provided by OGC, and store
three-dimensional objects in an DBMS environment. The DBMS struc-
ture that stores 3D primitive in spatial column should be able to man-
age and maintain different kinds of LOD (texture/colour attributes are
optional since certain display tools could manage these well). The per-
formance in terms of the size of data storage and management efficiency
need to be given attention because DBMS provides the medium for data
management and should also be integrated with other aspects like 3D
display. Therefore, an efficient DBMS that supports various kinds of 3D
primitives is important for 3D spatial modeling.

2. Spatial indexing: It is a mechanism that is usually applied to acceler-
ate the process of queries in the database by keeping some extra in-

16 3D Solids and Their Management In DBMS 307

formation. Many types of indexing methods have been cited such as
the R-tree (Guttman 1984), the K-D-B-tree (Robinson 1981) or the Z-
ordering (Orenstein 1986). Although other spatial indices that combine a
tree structure and a capacity technique have been proposed (Seeger and
Kriegel 1990; Berchtold et al. 2000), novel algorithms and structures that
give very high performance for high dimensionalities (e.g. 3-dimension)
need to be developed. Again, the performance of 3D indexing will also
need to be evaluated. The 3D R-tree indexing available in Oracle Spa-
tial, A-tree (for 3D spatial index by Sakurai 2002) and other 3D indexing
should be compared.

3. Functions and operations: There are several geometrical algorithms that
deal with spatial and attribute data manipulations for GIS analysis. The
importance of this algorithm is directly referred to its application, e.g.
calculation of volume for land subsidence, etc. Some DBMSs implement
a wide range of functions for database management and spatial analysis.
The spatial operations could be divided into several types and need to
addressed as well:

• Computational-geometry operations: functions that return a new ge-
ometry from two objects intersection, e.g. 3D Intersection, and 3D
Union.

• Topological operations: functions that return a Boolean result from
2 object intersection, e.g. extending 3D overlap.

• Metric operations: functions that involve mathematical calculation,
e.g. volume calculation of tetrahedron and polyhedron.

4. 3D visualization and interaction: Visualisation is mostly used in the con-
text of display 3D graphics. Realism display of the objects is also an issue
and could be categorized into two different approaches: texture/colour
and Level Of Detail (LOD). One of the questions like ‘how close to the
actual real world’ one could display and interact with the object. Another
issue of 3D visualization is interaction. Ideas about how user-friendly the
interactive tool needs to be for individuals to perform tasks in 3D GIS
must be adressed. Different principles and applications lead to different
approaches of visualization and interaction methods.

We reviewed and described a number of research works pertaining to
the 3D solids associated with spatial data modelling and management in
DBMS. The discussions cover the 3D datatype, spatial indexing, and func-
tions/operations (from standard specification to implementation; from com-
mercial to research/development). However, many issues must be addressed
to improve the current situation of 3D spatial modeling. The most important
issue for 3D spatial data modeling is the standardization and specification
of GIS. Although some of the specifications (abstract specification) are dis-
cussed in this paper, many other standards need to be investigated as well,
i.e. 3D operations (geometry and topology) for solid objects. The implemen-
tation of 3D operations could be done in DBMS. The spatial operators should

308 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

involve some procedures that can use, query, create, modify, or delete spatial
objects.

Other challenges in the 3D GIS domain include interoperability between
different applications, data model, integration between DBMS and visualiza-
tion, and the link between data modelling and data acquisition.

References

Abdul-Rahman A, Zlatanova S, Coors V (2006) Lecture Note on geoinforma-
tion and cartography – Innovations in 3D Geo Information Systems, Springer-
Verlag

Aguilera A (1998) Orthogonal polyhedra: study and application. Ph.D. The-
sis, LSI-Universitat Politècnica de Catalunya

Arens CA (2003) Modelling 3D spatial objects in a geo-DBMS using a 3D
primitives. Msc thesis, TU Delft, The Netherlands

Arens C, Stoter JE, van Oosterom PJM (2005) Modelling 3D spatial objects
in a geo-DBMS using a 3D primitive. In: Computers & Geosciences, 31:165-
177

Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1994) An optimal
algorithm for approximate nearest neighbor searching. In: Proc. ACM-SIAM
Symposium on Discrete Algorithms, pp. 573-582

Beckmann N, Kriegel H, Schneider R, Seeger B (1990) The R* tree: An ef-
ficient and robust access method for points and rectangles. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data, pp. 322-331

Bentley (2007) available at http://www.bentley.com/

Berchtold S, Keim DA, Kreigel HP (1996) The X-tree: An index structure
for high dimensional data. In: Proc. of the Int. Conf. on Very Large Databases

Berchtold S, Keim DA, Kriegel HP, Seidl T (2000) A new technique for near-
est neighbor search in high-dimensional space. IEEE Trans. In: Knowledge
and Data Engineering, 12(1):45-57

Chen TK, Abdul-Rahman A (2006) 0-D feature in 3D planar polygon test-
ing for 3D spatial analysis. In: Abdul-Rahman A, Zlatanova S, and Coors V
(eds), Lecture Note on geoinformation and cartography – innovations in 3D

16 3D Solids and Their Management In DBMS 309

Geo information systems, Springer-Verlag. pp. 169-183

CityGML available at http://www.citygml.org/

Clark JH (1976) Hierarchical geometric models for visible surface algorithm.
In: Communications of the ACM, 19(10), pp. 547-554

ESRI (2007) available at http://www.esri.com/

Ferhatosmanoglu H, Tuncel E, Agrawal D, Abbadi AE (2001) Approximate
nearest neighbor searching in multimedia databases. In: Proc. Int. Conf. on
Data Engineering, pp. 503-511

Garcia YJ, Leutenegger ST, Lopez MA (1998) A greedy algorithm for bulk
loading R-trees. In: Proc. of ACM GIS

Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via
hashing. In: Proc. 25th International Conference on Very Large Data Bases
(VLDB), pp. 518-529

Guttman A (1984) R-trees: A dynamic index structure for spatial searching.
In: Proceedings of ACM SIGMOD, International Conference on Management
of Data, Boston, MA, pp. 47-57

Henrich A (1994) A distance scan algorithm for spatial access structures. In:
Proc. ACM International Workshop on Advances in Geographic Information
Systems, pp. 136-143

Hjaltason GR, Samet H (1995) Ranking in spatial databases. In: Proc. 4th
Symposium on Spatial Databases, pp. 83-95

Ledoux H, Gold CM (2004) Modelling oceanographic data with the three-
dimensional Voronoi diagram. In: ISPRS 2004-XXth Congress, Istanbul,
Turkey,. Vol. 2, pp. 703-708

Kada M, Haala N, Becker S (2006) Improving the realism of existing 3D city
model. In: Abdul-Rahman A, Zlatanova S, and Coors V (eds), Lecture Note
on geoinformation and cartography – innovations in 3D Geo information sys-
tems, Springer-Verlag. pp. 405-415

Kamel I, Faloutsos C (1994) Hilbert R-tree:An improved R-tree using frac-
tals. In: Proc. 20th International Conference on Very Large Databases, pp.
500-509

310 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Katayama N, Satoh S (1997) The SR-tree: an index structure for high-
dimensional nearest neighbor queries. In: Proc. ACM SIGMOD International
Conference on Management of Data, pp. 369-380

Kolbe T, Groeger G, Czerwinski A (2006) City Geography Markup Lan-
guage (CityGML). In: OGC, OpenGIS Consortium, Discussion Papers, Ver-
sion 0.3.0

Les P (1991) On NURBS: a survey. IEEE Computer Graphics and Applica-
tions 11(1): 55-71

Lin KI, Jagdish HV, Faloutsos C (1994) The TV-tree: An index structure for
high-dimensional data. VLDB Journal, 3:517-542

Lomet DB, Salzberg B (1990) The hB-tree: A multi-attribute indexing
method with good guaranteed performance. Proc. A CM Syrup. on Transac-
tions of Database Systems, 15(4):625-658

OGC (1999) Abstract specifications overview. Available at http://www.
opengis.org/

OGC (1999a) OpenGIS simple features specification for SQL. Available at
http://www.opengis.org/

OGC (2001) The OpenGIS™ Abstract specification, topic 1: feature geometry
(ISO 19107 Spatial Schema) Version 5

Oracle Spatial 10g available at http://www.oracle.com/

Orenstein J (1986) Spatial query processing in an object-oriented database
system. In: Proceedings of 1986 ACM SIGMOD International Conference on
Management of Data, pp. 326-336

Penninga F (2005) 3D topographic data modelling: why rigidity is preferable
to pragmatism. In: Spatial Information Theory, Cosit’05, Vol. 3693 of Lecture
Notes on Computer Science, Springer. pp 409-425

Penninga F, van Oosterom PJM, Kazar BM (2006) A TEN-based DBMS
approach for 3D topographic data modelling. In: Spatial Data Handling 2006

Penninga F, van Oosterom PJM (2007) A compact topological DBMS data
structure for 3D topography. In: Fabrikant S, Wachowicz M (eds.), Lecture
Notes in Geoinformation and Cartography. ISBN: 978-3-540-72384-4

16 3D Solids and Their Management In DBMS 311

Pilouk M (1996) Integrated modelling for 3D GIS. PhD Thesis, ITC, The
Netherlands

PostGIS (2006) available at http://postgis.refractions.net/

Pu S (2005) Managing freeform curves and surfaces in a spatial DBMS. Msc
Thesis, TU Delft

Pu S, Zlatanova S (2006) Integration of GIS and CAD at DBMS level. In: E.
Fendel E, Rumor M (eds), Proceedings of UDMS'06 Aalborg, Denmark, TU
Delft, pp 9.61-9.71

Rigaux P., Scholl M, Voisard A (2002) Spatial databases - with application
to GIS. Morgan Kaufmann Publishers, San Francisco

Robinson J (1981) The K-D-B-Tree: A search structure for large multidi-
mensional dynamic indexes. In: Proceedings of ACM SIGMOD International
Conference on Management of Data, pp. 10-18

Sakurai Y, Yoshikawa M, Uemura M, Kojima H (2002) Spatial indexing of
high-dimensional data based on relative approximation. The International
Journal on Very Large Data Bases, 11(2), pp. 93-108

Seeger B, Kriegel HP (1990) The Buddy tree: an ef[FB01?]cient and robust
access method for spatial data base systems. In: Proc. 16th International
Conference on Very Large Data Bases (VLDB), pp. 590-601

Vebree E, Zlatanova S (2004) 3D-modeling with respect to boundary repre-
sentations within geo-DBMS. GISt report No.29, TU Delft

Wang F (1991) Relational-linear quadtree approach for two-dimensional spa-
tial representation and manipulation. IEEE Trans. on Knowledge and Data
Engineering, 3(1):118-122

Weber R, Schek HJ, Blott S (1998) A quantitative analysis and performance
study for similarity-search methods in high dimensional spaces. In: Proc. 24th
International Conference on Very Large Data Bases (VLDB), pp. 194-205

White DA, Jain R (1996) Similarity Indexing with the SS-tree. In: Proc.
IEEE 12th International Conference on Data Engineering, pp. 516-523

Zlatanova S (2000) 3D GIS for urban development. PhD thesis, ITC, The
Netherlands

Chapter 17

Implementation alternatives for an
integrated 3D Information Model

Ludvig Emg̊ard1,2 and Sisi Zlatanova1

Abstract

The 3DIM (3D Integrated Model) is an information model under develop-
ment which intends to integrate geographic features on the earth surface as
well as above and below the earth surface into a common semantic-geometric
model. We present and discuss two alternative implementations of the infor-
mation model for DBMS. In the first alternative semantics are separated from
geometry and organized into two table groups while in the second alternative
semantic tables incorporates the geometry of the objects.

17.1 Introduction

Semantic models describing geographic features are common in many fields.
Geo-scientists, geologists, constructors, architects and urban planners have
been developing various semantic models to be able to better define objects,
their representations and important relationships, which might be of impor-
tance for a particular application. However, generic semantic models that
include a broad range of geographic features without emphasis on a specific
application exist mostly in international or national GIS standards or on-
tology research. For example, the INSPIRE initiative (INSPIRE 2007) deals
with harmonization of topographic features, the North American Data Model
(NADM 2004) is focused on geological features while the CONGOO (Pan-
tazis,1997), Towntology project (Caglioni 2006) and CityGML (Gröger et.
al. 2006) concentrate on city environments. Although not related to a spe-

1Delft University of Technology, OTB, section GIS Technology,
Jaffalaan 9, 2628 BX the Netherlands
2SWECO Position AB, Sweden
ludvig.emgard@sweco.se, s.zlatanova@tudelft.nl

313

314 Ludvig Emg̊ard and Sisi Zlatanova

cific application, these frameworks focus on a set of real-world features (e.g.
above, on the surface or under surface). Furthermore, semantic models hardly
discuss spatial representations of semantic features. Those dealing with the
spatial aspect consider only 2D geometries in 2D space. The most extensive
contribution in semantic spatial models focusing on three-dimensional repre-
sentations of real world is found in the information model of CityGML. The
information model takes care of the semantic respectively thematic prop-
erties, taxonomies and aggregations of Digital Terrain Model (DTM), sites
(including buildings, bridges, tunnels, etc.), vegetation, water bodies, trans-
portation facilities, and city furniture. The semantic part of the model is
complemented with geometry corresponding to the Simple Feature Specifica-
tions (Herring 2001). Special focus is put on the building features, which are
represented in five levels of detail (LOD). The current version of CityGML
does not include underground features, however.

Fig. 17.1 3DIM subdivision of real-world features

The section for GIS technology at the Delft University of Technology is
currently developing a 3D Information Model (3DIM), which intends to in-
tegrate features on surface, above and below the surface (Figure 1). We have
presented an initial conceptual model in a previous publication (Emg̊ard &
Zlatanova, 2007). This article concentrates on the implementation of 3DIM in
a DBMS. In the next section we briefly outline the major concepts of the in-
formation model. The third section gives a short overview on possibilities for
implementing 3D geometry in a DBMS. We present and compare two alter-

17 Implementation alternatives for an integrated 3D Information Model 315

natives for DBMS implementation of the conceptual model. The last section
concludes the paper with a discussion on advantages and disadvantages of
the two alternatives and outlines future research.

17.2 3D Integrated Model concept

The 3D integrated information model is intended to provide a generic model
for 3D environments, which can be used by different domains, but being less
specific and avoiding semantics and attributes that are very specific for a
certain domain (and thus not of interest for many applications).

3DIM is intended to be used as a data model and contains thematic se-
mantics and mapping to geometry data types for all man-made and natural
real-world features on the surface, above and bellow (Figure 1). The model
adopts several concepts presented in CityGML but also introduces stricter
general rules as follows:

• The features are classified into above surface, integrated in surface and
below surface

• The earth surface is fully partitioned. One part of the surface can only be
occupied by one feature. Fictional features (Zlatanova 2000, Billen & Zla-
tanova, 2003) such as thematic land use can also be additionally attached
i.e. residential or industrial area or another administrative attribute (not
elaborated in the current version of the model).

• The surface accommodates all the intersections (touch) between the fea-
tures above and below the surface and the surface itself. The idea of
TerrainIntersectionCurves (CityGML) is therefore extended to include
terrain intersection surfaces, curves and points.

The top-level classes are subdivided as follows (Figure 2):

• The Earth surface is represented by a fully partitioned surface consist-
ing of Transportation, Landcover or TerrainIntersectionSurface. The first
two classes represent objects on the earth surface. The TerrainIntersec-
tionSurface is a special type of class since it represents the intersections
of objects above and below the surface with the terrain.

• The above ground features are classified into Building, Vegetation, City
Furniture, AboveSurfaceUtilitiy and ConstructionWork.

• The underground features are classified into BelowSurfaceSpace, Geology,
Water and BelowSurfaceUtilitiy

The class Building is entirely adopted from the CityGML information
model while ConstructionWork, Geology, BelowSurfaceSpace, AboveSurfaceU-
tility and BelowSurfaceUtility are new developments within this model.

The spatial extent of features may be defined either by a geometry or a
topology model. In this paper we concentrate strictly on the geometry model.

316 Ludvig Emg̊ard and Sisi Zlatanova

Fig. 17.2 UML class diagram of top level feature hierarchy in the 3DIM

The possible geometry data types in the model are those available in a DBMS,
i.e. point, curve, surface and solid. These are to be represented by simple
geometries as described in the Spatial Schema (Herring 2001) and Simple
Feature Specifications for SQL (OGC 1999). This means that volumetric
objects can be represented only by tetrahedrons and polyhedrons. Freeform
curves and surfaces, Constructive Solid Geometry solids, and other complex
geometry representations are currently not discussed in the model.

We believe that the subdivision of real-world objects into three groups is
defendable. The features bellow and above the surface have rather distinct
nature, i.e. geological features are generally continues phenomena, while fea-
tures above the surface have crisp boundaries. Therefore the modelling ap-
proaches differ. Features below the earth surface are preferable modelled in a
full partition of space while above ground the features are embedded in the
3D space (i.e. air is not commonly modelled). The features on the earth sur-
face are most important since they allow establishing relationships between
all features and considering them in their integrity. Traditionally, the earth
surface has also been central in 2D maps, since map features are in most of the
cases projections of above- and below- surface features on the earth surface.
Very often these projections have been represented on separate 2D maps, i.e.
topographic maps (for above and on the surface features) and geologic maps
(for below surface features).

The strong subdivision of the objects into above, below and earth surface
objects also brings disadvantages. Using the earth surface as a separator may
increase the amount of geometric features describing the surface model. In
addition, the fact that 3DIM integrates features from many different domains
makes it much richer of geometry than a traditional map created for one
purpose and thus more complex.

17 Implementation alternatives for an integrated 3D Information Model 317

17.3 LOD (Level of Detail)

A very important concept in 3DIM is the LOD. In traditional 2D maps scale
has been the factor defining the features on the map and for 3D environments
the concept of level of detail somehow replaces the concept of scale. The 3DIM
includes five levels of detail (LOD0-4), which allow geometry of features to be
represented with different accuracy and detail. Features represented in LOD0
use representations that correspond to earth surface features. This mean that
above and underground objects are given with their corresponding terrain
intersection point, curves and surfaces. Practically, LOD0 is a 2.5 D map and
can be integrated with available 2D maps if the z-value is not considered.

Features represented in LOD1 are created by simple geometric shapes (e.g.
box models for buildings) consisting of surfaces, some of which are earth sur-
faces (see Figure 3). The polygons that constitute the boundary of the fea-
tures are not semantically classified. For example, the polygons constituting
a building are not classified into wall-polygons and roof-polygons. LOD2 is
more detailed as it includes textures for geometric features and allows se-
mantic classification. LOD3 contains more detailed surface geometries and
texture is compulsory for each feature polygon. LOD3 contains the highest
resolution that is available for the outside representation of features. LOD4
adds a different type of resolution, i.e. it handles indoor environments of two
classes Building and BelowSurfaceSpace.

The concept of LOD in 3DIM has been adopted from CityGML and the
newly introduced features are incorporated in the concept. The Construction-
Work and BelowSurfaceSpace features are similar to Building and therefore
use the same definition of LOD. LOD1 describes a simple extruded repre-
sentation, LOD2 a textured representation where individual polygons are
classified, LOD3 a detailed geometric representation and LOD4 indoor envi-
ronments.

The AboveSurfaceUtility and BelowSurfaceUtility features are represented
by curves and points in LOD0-4. In higher LODs (2-4) the points are replaced
for visualization by symbolic surface representations and lines are replaced
by the necessary shape. In addition, larger utility objects are that can not be
replaced by symbols are stored using surfaces in LOD1-4 The Geology feature
is represented by borehole TIP points describing observations on the surface
in LOD0 as well as a defined borehole datatype to express the observations
of the borehole below the surface. In higher LODs the Geology features are
represented by surfaces and solids.

The point and curve representation in LOD0 is in 3DIM also applied for
Vegetation and CityFurniture features using the terrain intersection concept.
The earth surface features Transportation and LandCover are presented by
surface geometries only in all LODs.

318 Ludvig Emg̊ard and Sisi Zlatanova

17.4 Rules

3DIM also contains a set of rules as defined below:

1. A semantic feature must have a geometric representation. The geometry
of a feature must be defined before (or simultaneously) with the semantic
feature it describes.

2. A semantic feature can have only one geometry representation with re-
spect to a LOD.

3. Texture images, color coding and symbols that are used for visualization
of features must be created before (or simultaneously) they are referenced
by a feature.

4. The earth surface parts TIS, LandCover and Transportation must to-
gether form a fully partitioned surface.

5. If a terrain intersection point, curve or surface is represented, a corre-
sponding geometry must exist for the same feature.

6. A surface geometry or a combination of earth surface geometry and sur-
face geometry must exist for a feature that is defined as a solid

7. Surfaces describing the exterior boundary of a building in LOD1, LOD2
or LOD3 and corresponding earth surface must be specified for each se-
mantic building feature. If an earth surface is defined in one LOD the
corresponding surface object for the LOD must also be specified.

8. The relation TerrainIntersectionSurface between the Geology feature and
the earth surface may only exist when the Geology feature is to be seen
in the open, for instance a mountain outcrop or a beach

More details about the conceptual model can be found in Emg̊ard and Zla-
tanova (2007).

17.5 3D management of geometry in DBMS

Since the mid-nineties, several solutions for DBMS storage of 3D city models
have been described in the literature i.e. (Kofler, 1998, Köninger & Bartel
1998, Stoter & Zlatanova 2003, Coors 2003). Köninger and Bartel (1998) pre-
sented a DBMS schema for 3D city models based on boundary representation
in three levels of details using vertex index arrays to represent faces also in-
cluding image mappings to texture images stored as BLOBs. Other examples
can be found in Coors (2003) and Stoter & Zlatanova 2003 where buildings
are stored as sets of faces. Within geology, 3D features are represented as
2.5D surfaces and 3D volumetric primitives for storage of stratum boundary
surfaces, folded strata, ore bodies etc. in an object oriented DBMS (Breuning
& Zlatanova 2006).

However, natively supported 3D data types within DBMS were not devel-
oped until recently. Prototype representations of polyhedron are reported by

17 Implementation alternatives for an integrated 3D Information Model 319

Arens et. al. (2005) and of tetrahedron by Penninga et. al. (2006). Commer-
cial support of 3D data types and operations are also expected to be available
shortly (Oracle 2007).

At the moment, data types are restricted to point, curves and polygons
with 3D coordinates. With some exceptions (e.g. PostGIS) the operations on
these data types are 2D dimensional (Zlatanova & Stoter 2006).

Generally, within 3D database research, emphasis has been mostly given
to topology and geometry and less work is completed on mapping between
thematic semantics and 3D geometry. Some examples of DBMS implementa-
tion of a semantic model with 3D geometry are the 3D-geodatenbank Berlin
(Plümer et. al. 2007), based on CityGML and the GeoBase21 (Haist & Coors
2005).

17.6 Implementations

Since most DBMSs follow the Simple feature specification for SQL (OGC
1999), the initial implementation alternatives we present are restricted to
usage of simple features: point, curves and polygons. Given the simple fea-
ture types, surfaces and solids are created from a collection of polygons or a
multi-polygon data type. Solids are in addition expressed by solid data type,
assuming commercial DBMS will be able to maintain solids soon. TINs are
expressed by multi-polygons containing only triangular polygons. Texture is
either mapped to each polygon in a collection of polygons or draped over a
surface consisting of a multi-polygon geometry.

The following thematic semantic features are selected for implementation
in the database model: In general, each semantic class as given in Figure 2 is

Above surface features Earth surface features Below surface features
Building Transportation Geology
Construction Work LandCover BelowSurfaceSpace
Vegetation Utility
CityFurniture Water

implemented as a table and the attributes correspond to a column in a ta-
ble. The superclass TerrainIntersectionObject is not implemented as a table,
since it is not a feature class. AboveSurfaceUtility and BelowSurfaceUtility
are merged in one table Utility due to the similar properties. An attribute
shows whether the Utility is located above or below ground. If a utility fea-
ture is intersecting the earth surface, the feature is split into two geometries
and a TerrainIntersectionPoint appears on the earth surface.

Given the chosen semantic entities, two alternatives of implementation are
described. In the first alternative the common geometric representations of

320 Ludvig Emg̊ard and Sisi Zlatanova

all entities are identified and created as separate tables. The tables containing
the thematic semantic objects are linked to the geometric tables. In the second
alternative the thematic semantic tables integrate the geometries. Geometric
tables are not shared except data types describing symbols and textures,
which features have in common.

Both suggested implementations of the 3D Information Model include an
extended amount of semantic features. It should be noticed that some solu-
tions are adopted from the Berlin model because (as mentioned above) some
features are adopted from the CityGML.

The two implementation approaches presented here are intended for Oracle
Spatial and its object-relational data model. Therefore data types as given by
SDO GEOMETRY and ORDSYS.ORDIMAGE are used in the descriptions.

17.6.1 Implementation alternative I

The first implementation alternative strictly separates semantics from ge-
ometry into two table groups. The common geometries are organised in four
relational tables (point, curve, surface, earth surface) corresponding to simple
geometry data types (point, curve, surface), one compound table giving main-
tenance of solids and supplementary tables for maintaining textures (Figure
3). The semantic entities are modelled as separate tables each referring to a
semantic class and linked to tables containing the geometry.

The geometry tables are divided into point, curve, polygon, multi-polygon,
solid and texture tables where the SURFACE GEOMETRY table represents
polygons, the EARTH SURFACE table multi-polygons and the COMPUND
GEOMETRY table solids. The SURFACE GEOMETRY tables contain poly-
gons with texture or colour that is defined on one or both sides of the polygon
while the EARTH SURFACE GEOMETRY table contains multi-polygons
that are textured with a draped image or a repeated draped image. In this
way a simple colour mapping, a low resolution ortho photo or a high reso-
lution façade texture can be used depending on the semantic feature class.
Since two textures can be referenced by a SURFACE GEOMETRY poly-
gon, two relations exist between the SURFACE GEOMETRY table and the
TEXTURE IMAGE table. A solid representation of the feature is defined
in the COMPUND GEOMETRY table that is referring to a collection of
SURFACE GEOMETRY polygons and EARTH SURFACE GEOMETRY
multi-polygons. A surface from the SURFACE GEOMETRY table can ap-
pear only in one solid. For example, in the case of a building with a common
surface the surface is stored twice in the SURFACE GEOMETRY table. In
contrast, a surface from EARTH SURFACE GEOMETRY appears only once
in the table. A surface from the EARTH SURFACE GEOMERY table can be
a part of a feature above or below the surface. When composing the COM-
POUND GEOMETRY table (see below), the orientation of the surface has to

17 Implementation alternatives for an integrated 3D Information Model 321

Fig. 17.3 Geometric table group containing all used geometric feature tables in
implementation alternative I

be adapted to create a valid solid. This is to describe that for above features
it has to be flipped.

The symbols (e.g. trees, bus stops, streetlights and utility elements) con-
sist of a collection of intersecting or non-intersecting polygons coloured or
textured to be placed at different locations in the scene. These locations
are maintained in the point and the curve geometry tables. The SURFACE
GEOMETRY table is used to store the surfaces of the symbols as well. The
relation between a feature and a symbol is many-to-many and it is established
by the IDs of the feature and the symbol. For example one point refers to
a SURFACE GEOMETRY ID, which may consist of many polygons having
different IDs. In this manner, symbols can be referenced by several points and
the points can use symbols using several polygons. Symbols can be placed
along a curve described in the CURVE GEOMETRY table if the distance be-
tween the symbols is specified in the semantic tables. Such cases are possible
for Vegetation and CityFurniture semantic classes.

The COMPUND GEOMETRY table is included to be able to define and
validate solids. This actually creates a relation between the SURFACE GE-

322 Ludvig Emg̊ard and Sisi Zlatanova

OMETRY and the EARTH SURFACE GEOMETRY. It should be noticed
that the primary storage tables for the geometries of the features are still
the SURFACE GEOMETRY and EARTH SURFACE GEOMETRY tables.
The geometry stored in the COMPUND GEOMETRY table is a copy of the
geometry but in a solid data type, which allows to perform validation and/or
other 3D spatial operations (e.g. volume).

Image textures are stored using the ORDSYS.ORDIMAGE data type re-
ferred from the TEXTURE IMAGE table. Parameters for texture placement
are included in each polygon of the surface geometry table and for each multi-
polygon in the earth surface object.

Fig. 17.4 Semantic table group containing above surface, earth surface and below
surface feature tables in implementation alternative I

Each semantic table include relations to one or more of the geometry
tables (Figure 4). BUILDING, CONSTRUCTION WORK, BELOW SUR-
FACE SPACE and WATER tables are all related to both SURFACE GEOM-
ETRY and EARTH SURFACE GEOMETRY tables. As mentioned above,
features that belong to these classes can be represented by surfaces and solids.
TRANSPORTATION and LAND COVER tables are typically surface types
of features and can be related only to the EARTH SURFACE GEOMETRY
table. The VEGETATION table is related to all geometric tables, since the

17 Implementation alternatives for an integrated 3D Information Model 323

Vegetation can be represented by point, curve, surface and solid. The CITY
FURNTIURE and UTILITY tables are related to point and curve geometry
tables, as they can be points and curves. The UTILITY table is also related
to the SURFACE GEOMETRY table since a utility feature can be a large
object under ground connected to several other utility features and the geom-
etry of the feature is too complex and individual to be replaced by a symbolic
geometric feature.

A Geology feature that is not intersecting with the earth surface is stored
as a solid referring only to the SURFACE GEOMETRY table. Faults and
stratums are maintained as surfaces. Borehole geometries are stored using
the POINT GEOMETRY table to store the TIP of the Borehole. In addition
a data type borehole is created for storage of the observations in the borehole.

BUILDING, CONSTRUCTION WORK and BELOW SURFACE SPACE
tables can have different surface models depending on the level of detail.
Therefore each LOD is related to a set of polygons in the SURFACE GEOM-
ETRY table. To fulfil the more extended concept of LOD2-3 for buildings our
implementation must be complemented with the tables: THEMATIC SUR-
FACE GEOMETRY, THEMATIC SURFACE and BUILDING OPENING
as described in the database schemas of 3D-Geodatenbank Berlin (Plümer
et. al. 2007).

Implementation of rules

The rules for the conceptual model are implemented as foreign keys and
user specifications, which may be further implemented as methods and trig-
gers. Rules 1 and 3 are implemented as foreign keys between some of the
defined features i.e. between semantic tables and the POINT GEOMETRY
and CURVE GEOMETRY tables. With the foreign keys defined, the given
TIP POINT GEOMETRY ID of a semantic point feature i.e. a streetlight
must also be defined as an ID in the POINT GEOMETRY table. This fulfils
rule 1 defining that the geometry of the feature has to be created before the
semantic information can be added. Similar constraints are also applied for
the tables containing TerrainIntersectionObject. A foreign key is also added
to control that a texture that is referenced exists in the TEXTURE IMAGE
table (rule 3).

Since the TerrainIntersectionSurface identifier ID for the semantic tables
are referring to one or several rows in the EARTH SURFACE GEOMETRY
table, a foreign key can not be created for EARTH SURFACE GEOMETRY
or for SURFACE GEOMETRY (rule1). This constraint is therefore imple-
mented as a user rule instead of a database constraint. Rules 2 and 4-8 are
not implemented as constraints in the database.

324 Ludvig Emg̊ard and Sisi Zlatanova

17.6.2 Implementation alternative II

The second implementation alternative is based on complete semantic subdi-
vision where the geometry columns are integrated in the semantic tables.

Fig. 17.5 Table schema representing all tables in implementation alternative II

In this implementation, the geometry column may contain different geome-
tries. Specific tables are defined for geometry only when explicitly required.
For example, CONSTRUCTION WORK, BELOW SURFACE SPACE and
BUILDING tables require individual textures for each surface in higher LOD.
Therefore, the features can not be implemented using the multi-polygon data
type. Instead, three corresponding surface tables where created to handle
the texturing where the CONSTRUCTION WORK SURFACE table, the

17 Implementation alternatives for an integrated 3D Information Model 325

BUILDING SURFACE table and BELOW SURFACE SPACE table follow
the same concept as the surface geometry table in implementation Alterna-
tive I storing one polygon in each row. The tables also have three relations
to the geometry table, one for each LOD. In the other cases geometries are
stored as point, curve or multi-polygon features as an attribute in the table.
The earth surface features do not require individual texturing for each poly-
gon and are therefore modelled as attributes within the feature they are part
of. Symbols and textures are defined in new data types storing images and
geometry as BLOBs.

Implementation of rules

No geometric constraints are implemented in alternative II since the geometry
is mostly organised as an attribute to a particular semantic feature. The only
exceptions are the BUILDING, CONSTRUCTION WORKS and BELOW
SURFACE SPACE tables, which refer to separate tables for the geometry
surfaces. This approach is used to allow texture mapping per each individual
polygon. An alternative option will be to create a special data type, which
would encompass geometry and texture. This alternative, however, compli-
cates the spatial index.

The rules 1- 3 can be fulfilled by developing functions and/or triggers.
While the triggers can check the validity during data import (Louwsma et al
2006), functions control the rules after data are loaded. Similarly to the first
alternative, rules 4-8 are not implemented.

17.6.3 Comparison of implementations

The two proposed implementations can be strictly compared only after testing
with different data sets. Here only some initial expectations are discussed. In
general, from a user’s point of view, Alternative II has advantages due to the
clear and simpler structure (where all features are integrated in the semantic
tables). However, Alternative I provides more robust database management,
since some of the consistency check can be performed by the DBMS.

Loading data into the database is more straightforward for alternative II,
since at least two tables have to be filled for each feature in alternative I. In
Alternative I the geometric feature have to be created before the semantic
feature while in Alternative II they can be loaded simultaneously with the
insertion of the semantics. Therefore we expect better performance (faster
import) in the second alternative.

Alternative II may cause more redundancy in geometric storage. A sur-
face cannot be shared by two features in some cases as in Alternative I. For

326 Ludvig Emg̊ard and Sisi Zlatanova

example, a geologic body that is touching another body shares several poly-
gons. Alternative I allow the user to make reference to the same polygons
(surfaces) from the two different geological features. This concept is however
not allowed for buildings. In Alternative II, surfaces will be stored per feature
and therefore twice. However, Alternative II allows for more elaborated use
of data types (solid, multi-polygon) at lower LOD when, no texture mapping
is applied.

Operations like edit and update would be faster in one or the other Alter-
natives with respect to the attributes to be changed. If the changes are related
to features, the second alternative will be faster. Changes in geometry will
benefit from alternative I. It should be noticed that also the implementation
of Rule 4 (full partitioning of earth surface) will be rather complicated for
the Alternative II.

A query based on semantics of a single feature is less complicated in Al-
ternative II, while always a join of tables is required in Alternative II. In
addition less geometry is traversed since all geometries of one class are in
the same table. For example a query of all utilities defined as points is less
complex in Alternative II. On the other hand a pure geometric selection is
less complex in Alternative I since the geometry can be found in a single
table depending on geometry type (point, curve and surface). For example,
a query of all features represented by surfaces within a specified area will be
much faster in Alternative I. Similarly, spatial queries investigating relation-
ships between objects in many cases would be simpler in Alternative I. For
example, the query ‘find all the neighbouring features of Building 77’ can be
performed on only the geometry tables. Alternative II would always require
a traverse of all the semantic tables.

In Alternative I symbolic representations are stored using individual tex-
tured polygons while in Alternative II the symbols are expressed by BLOBs.
To assemble the symbols from individual polygons in general has a negative
effect with respect to performance compared to symbols stored in BLOBs.
This yet has to be tested to be proved true.

17.7 Conclusion and future work

We have presented two alternative implementations of the 3D Integrated
Model and have discussed advantages and disadvantages. The first approach
is more beneficial for geometric queries while the other one is more promising
concerning semantic queries. What implementation to choose is much depen-
dent on the application or the purpose. Generally, most of the cases would
require both semantic and geometric attributes. This means the query schema
(order of querying) should be well-thought to achieve needed performance.

As mentioned above, the model is under development. Some of the classes
in the model have to be further elaborated with respect to LOD, for example

17 Implementation alternatives for an integrated 3D Information Model 327

Geology, BelowSurfaceSpace and ConstructionWork. The Utility attributes
have to be extended with domain specific attributes.

The two alternatives will be tested in a case study of the Campus area of
Delft University of Technology.

References

Arens C, Stoter J, van Oosterom P (2005) Modelling 3D spatial objects in a
geo-DBMS using a 3D primitive. Computers & Geosciences 31 (2005) 165–
177.

Billen R, Zlatanova S (2003) Conceptual issues in 3D Urban GIS, In: GIM
International, Vol. 17, No. 1, January 2003, pp.33-35

Breuning M, Zlatanova S (2006) 3D Geo-DBMS, In: 3D large scale data in-
tegration: challenges and opportunities, CRC Press, Taylor&Francis Group,
pp. 87-135

Caglioni M (2006) Ontologies of Urban Models, Technical report n°4, Short
Term Scientific Mission Report, Urban Ontologies for an improved commu-
nication in urban civil engineering projects, Towntology Project 5p, http://
www.towntology.net/Documents/STSM-Caglioni.pdf [last accessed 2007-
08-27]

Coors V (2003) 3D-GIS in networking environments, Computers, Environ-
ment and Urban Systems, Volume 27, Number 4, July 2003, pp. 345-357(13)

Emg̊ard L, Zlatanova S (2007) Design of an integrated 3D information model,
in: Coors, Rumor, Fendel&Zlatanova UDMS Annual 2007, Taylor & Francis,
26th proceedings of UDMS, 10-12 October 2007, Stuttgart, (in press)

Gröger G, Kolbe T, Czerwinski A (2006) OpenGIS CityGML Implementation
Specification. http://www.citygml.org/docs/CityGML_Specification_0.
3.0_OGC_06-057.pdf [last accessed 2007-08-27]

Haist J, Coors V (2005) The W3DS-Interface of CityServer3D In: Proceed-
ings of International Workshop on Next Generation 3D City Models 2005,
Bonn pp.63-67

Herring J (2001): The OpenGIS Abstract Specification, Topic 1: Feature Ge-
ometry (ISO 19107 Spatial Schema), Version 5. OGC Document Number 01-
101. http://www.opengeospatial.org/standards/as [last accessed 2007-

328 Ludvig Emg̊ard and Sisi Zlatanova

08-27]

INSPIRE, The European Parliament (2007) Directive of the European Par-
liament and of the Council establishing an Infrastructure for Spatial In-
formation in the European Community (INSPIRE) (PE-CONS 3685/2006,
2004/0175 (COD) C6-0445/2006) http://www.europarl.europa.eu/oeil/
FindByProcnum.do?lang=2&procnum=COD/2000/0175 [last accessed 2007-08-
27]

Kofler M (1998) R-trees for the visualisation of large 3D GIS databases, PhD
thesis, TU, Graz, Austria.

Köninger A, Bartel S (1998) 3D-GIS for Urban Purposes. GeoInformatica
2:1,pp 79-103 (1998)

Louwsma J, Zlatanova S, van Lammeren R, van Oosterom P (2006) Specify-
ing and implementing constraints in GIS – with examples from a geo-virtual
reality system, GeoInformatica 10 (2006): pp 531-550

NADM (2004) North American Geologic Map Data Model Steering Commit-
tee Conceptual Model 1.0—A conceptual model for geologic map information:
U.S. Geological Survey Open-File Report 2004-1334, 58 p., accessed online at
URL http://pubs.usgs.gov/of/2004/1334. Also published as Geo-logical Sur-
vey of Canada Open File 4737, 1 CD-ROM.

OGC 1999 OpenGIS Simple Features Specification For SQL, Revision 1.1
http://www.opengeospatial.org/standards/sfs [last accessed 2007-08-
31]

Oracle (2007) Oracle Spatial 11g Planned features presentation material

Pantazis D (1997) CON.G.O.O. : A conceptual formalism for geographic
database design. In Geographic Information Research, Bridging the Atlantic
(London: Taylor & Francis), pp. 348-367.

Penninga, F., van Osteroom, P. & Kazar, B. 2006. A Tetrahedronized Irreg-
ular Network Based DBMS approach for 3D Topographic Data Modeling.
Progress in Spatial Data Handling

Plümer L, Kolbe T, Gröger G, Schmittwilken, J & Stroh V (2007) 3D-
Geodatenbank Berlin, Dokumentation V1.0. http://www.3dcitydb.org/
index.php?id=259 [last accessed 2007-08-27]

Stoter J, Zlatanova S (2003)Visualisation and editing of 3D objects organised
in a DBMS, J., In: Proceedings of the EuroSDR Com V. Workshop on Visu-

17 Implementation alternatives for an integrated 3D Information Model 329

alisation and Rendering, 22-24 January 2003, Enschede, The Netherlands, 16p

Zlatanova S, (2000) 3D GIS for urban development, PhD thesis, ISBN 90-
6164-178-0, ICG, TUGraz, Austria, ITC publication 69, ISBN 90-6164-178-0

Zlatanova S, Stoter J (2006) The role of DBMS in the new generation GIS
architecture, in: Rana&Sharma (eds.) Frontiers of Geographic Information
Technology, Springer-Verlag, Berlin Heidelberg ISBN-1- 3-540-25685-7, pp.
155-180

Chapter 18

Serving CityGML via Web Feature
Services in the OGC Web Services -
Phase 4 Testbed

Eddie Curtis

18.1 Background

The OGC Web Services – Phase 4 (OWS-4) test-bed is an initiative un-
der the OpenGeospatial Consortium's (OGC) interoperability programme in
which 72 organisations collaborated to extend and demonstrate interoperabil-
ity of internet based geospatial services. The main activities of the test-bed
took place between June and December of 2006. These activities included
the deployment and integration of a number of software and data compo-
nents culminating in two demonstrations of the capabilities developed during
the test-bed, as well as numerous reports detailing issues encountered and
recommendations.

The test-bed used an emergency response scenario to exercise the capa-
bilities of a variety of OGC conformant components. The scenario required
numerous components and services to interoperate in order to provide emer-
gency planners with information to coordinate the response to the hypotheti-
cal incident. The activity was divided into a number of threads each of which
addressed particular set of technical issues affecting the scenario such as se-
curity, workflow and sensor web enablement. This paper will consider some
of the findings from the thread which covering the integration of Computer
Aided Design (CAD) systems, GIS (Geographical Information Systems) and
Building Information Models (BIM), known as the CAD/GIS/BIM thread.
This thread was concerned with issues related to exchanging information
about buildings and 3D geometry between GIS analysts and building design-
ers.

Snowflake Software, United Kingdom
eddie.curtis@snowflakesoftware.co.uk

331

332 Eddie Curtis

18.2 CAD/GIS/BIM Integration

Whilst both GIS and CAD deal with spatial information the approaches used
by each are shaped by different requirements and working practices. The GIS
world emphasises the analysis of measured information i.e. data collected
through survey, satellite imagery etc. whereas the CAD world emphasises
the design and construction processes. However, there is clearly an overlap
of concerns between geographical information users and the Architecture En-
gineering and Construction (AEC) industry, which makes extensive use of
CAD.

There are a number of scenarios in which the interoperation of BIM and
geographical information are of benefit.

In the site planning process for AEC it is useful to consider contextual
information about the site in order to understand how a proposed building
will interact with its environment. This could include aerial photography,
terrain models, and nearby buildings and infrastructure. The ability of CAD
systems to discover and import this information is therefore beneficial to the
design process. Enabling CAD systems to act as clients to OGC web services
is a means to achieve this.

Integration of BIM models for different sites requires the introduction of
geographical concepts into the BIM models. Unless the separate BIM models
are referenced to geographical coordinate systems it is not possible to relate
the positions of objects in the separate models to each other. This type of
integration is necessary to handle common infrastructure shared by buildings
and can identify potential conflicts between construction projects.

It is also beneficial to bring BIM information into the GI world. Location
based services could be extended from the street to building interiors. For ex-
ample, fire-fighters could be provided with information about infrastructure
such as electricity and water supplies both inside and outside a burning build-
ing. Geographical analysis and broad scale visualisation could also make use
of BIM information allowing, for example, emergency planners to identify
buildings prone to particular risks or suitable for conversion to emergency
use. Since BIM models often contain highly detailed information it is not
practical to create and maintain a single database containing building in-
formation for a whole city. On-the-fly integration of information held in a
distributed, heterogeneous set of databases through OGC web services rep-
resents a more practical approach to making building information available
to GIS applications.

18.3 CityGML

City Geography Markup Language (CityGML)[2] is an information model
and GML application schema for the exchange of 3D city and landscape

18 Serving CityGML via WFS in the OGC Web Services 333

models. Originally developed by the members of the Special Interest Group
3D (SIG 3D) of the Geodata Infrastructure North-Rhine Westphalia (GDI
NRW) initiative in Germany, CityGML has now been adopted as an OGC
discussion paper with a view to it becoming an OGC best practices paper.

A key characteristic of CityGML is that it combines the ability to contain
complex, geo-referenced 3D vector data along with the semantics associated
with the data. In contrast to other 3D vector formats, CityGML is contains a
rich, general purpose information model in addition to geometry and graphics
content. The CityCML information model includes:

• Digital Terrain Models as a combinaton of triangulated irregular networks
(TINs), regular rasters, break and skeleton lines, mass points

• Sites (currently buildings and bridges)
• Vegetation (areas, volumes, and solitary objects with vegetation classifi-

cation)
• Water bodies (volumes and surfaces)
• Transportation facilities (both graph structures and 3D surface data)
• City furniture
• Generic City objects and attributes

For specific domain areas CityGML also provides an extension mechanism
to allow the model to be enriched with additional properties and feature types.
Targeted application areas explicitly include urban and landscape planning;
architectural design; tourist and leisure activities; 3D cadastres; environmen-
tal simulations; mobile telecommunications; disaster management; homeland
security; vehicle and pedestrian navigation; training simulators; and mobile
robotics.

CityGML provides a model at multiple levels of generalisation. These can
be used individually within a model or multiple levels of representation can
be modelled together. The levels are:

• LOD 0 – Regional, landscape
• LOD 1 – City, region
• LOD 2 – City districts, projects
• LOD 3 – Architectural models (exterior), landmarks
• LOD 4 – Architectural models (building interiors)

Since CityGML deals with buildings and constructions there is clearly
some overlap with BIM. However, the two information models are different
in scope. CityGML stops far short of the level of detail supported by BIM. A
BIM can contain detail down to the level of component parts within individual
fixtures such as doors and windows. CityGML LOD4 provides a level of detail
suitable for a “walkable” model of a building for simulation or space analysis
purposes. However, CityGML provides for modelling of the building context
including roads, street furniture, terrain, vegetation etc. BIM models are
concerned only with the building. The two models are complementary with

334 Eddie Curtis

CityGML providing a geographical view of buildings in their context, and
BIM providing a detailed view of buildings and their construction.

18.4 The OWS-4 Scenario

The OWS-4 test-bed required a variety of systems and data to interoperate
to solve a test scenario. In this scenario a ‘dirty bomb’ has detonated in a
port. After identifying and analysing the problem the emergency planners
decide that an emergency field hospital will be required and begin looking
for a suitable building to convert to use as a hospital. There are a number
of criteria which the building must meet including access to an airstrip, and
space requirements for an operating theatre.

Identification of a suitable building requires a number of OGC services
to provide information about the site such as aerial photography of the site,
terrain models etc. In order to assess the space requirements of the building
a 3D model of the building is needed. This is supplied from a Web Feature
Server (WFS)[4] providing a CityGML model of the site. A hangar building
at a nearby airport is identified as being suitable for the field hospital.

The hangar must be modified for use as a hospital. Here the focus shifts
from GIS analysis to CAD design. An operator uses a CAD client to access
the BIM model for the hangar via the internet. The operator modifies the
hangar model to convert it for use as a hospital. The modified hangar model
is made available as both a BIM and CityGML model, thus enabling the GIS
analysts to see the modified hangar as CityGML as they did with the original
hangar model.

18.5 CityGML WFS Challenges

Serving CityGML via a WFS presents a number of technical challenges arising
from the characteristics of the CityGML model.

The CityGML model is untypical of GML application schemas in the level
of complexity of the data model. CityGML makes extensive use of complex
data types for properties and nesting of features within feature collections.
Consequently CityGML data can contain very deeply nested data structures.

The geometry types supported in relational databases are often more lim-
ited than the range of geometry types used in CityGML. For example, TINs
and 3D solid geometries are not supported in Oracle 10g. This presents an
obstacle to WFS implemented on top of a relational database.

At high levels of detail data volumes can become large, even for a small
geographical area.

18 Serving CityGML via WFS in the OGC Web Services 335

18.6 Snowflake CityGML WFS

CityGML datasets for the test-bed scenario were created by the Forschungszen-
trum Karlsruhe institute. The Forschungszentrum Karlsruhe team developed
a software tool for the conversion of building information models encoded us-
ing Industry Foundation Classes (IFC)[1] building models to CityGML. This
tool carries out a number of mapping operations between IFC and CityGML
models. The tool maps IFC classes to CityGML classes e.g. an IfcSpace be-
comes a CityGML interiorRoom. The tool also converts geometry from the
local coordinate systems used within the IFC model to geographic coordinate
systems.

The Snowflake CityGML WFS was created by deploying Snowflake’s GO
Publisher. GO Publisher is a data translation engine which translates from
relational databases to XML. In order to stand up the GO Publisher WFS
the CityGML data produced by Forschungszentrum Karlsruhe was loaded
into an Oracle data model using a GML bulk loading tool called GO Loader.
This tool has a similar translation capability to GO Publisher but translates
from GML to relational models.

Oracle’s SDO geometry types were used to store the geometry and con-
ventional relational structures were used to hold the non-spatial properties.
Relationships such as the containment relationships between buildings and
rooms were represented as table joins in the database. GO Publisher’s graphi-
cal user interface was then used to configure a translation from the relational
model to the CityGML schema. GO Publisher tools were used to bundle
this translation with the GO Publisher software into a Web ARchive (WAR)
file for deployment within an application server. The CityGML WFS was
deployed by uploading this WAR file into the Tomcat application server.

Once deployed within the application server the Snowflake CityGML WFS
was able to process requests to the WFS operations getCapabilities, de-
scribeFeatureType and getFeature. On receiving a getFeature request GO
Publisher translates the WFS filter in the request into an SQL query using
the translation configured prior to deployment. The resulting SQL query con-
tains all conditions from the WFS filter including both spatial and non-spatial
operations. The SQL query is run against the Oracle database containing the
city model. GO Publisher then translates the resulting SQL records into
GML, again using the translation configured prior to deployment. The re-
sultant GML is then streamed back to the client. The data is returned in a
compressed stream if appropriate.

By carrying out the two directional translation (WFS filter to SQL fol-
lowed by relational data to GML) GO Publisher is able to make use of the
scalability, performance and robustness of the underlying Oracle database.
The application server can create multiple instances of the WFS in order to
deal with concurrent requests for data. These technologies therefore provide
a highly scalable platform for the WFS.

336 Eddie Curtis

Fig. 18.1 Data requests and response from the client application

18.7 Findings

The testbed proved the feasibility of serving CityGML through the WFS
interface. A client application developed by the Hasso-Plattner Institute suc-
cessfully connected to the WFS, retrieved data and displayed it. The demon-
stration also showed the utility of connecting to OGC web services as the
client was able to connect to several different services provided independently
by different organisations around the world and to integrate the data into a
single view. For example, the client took a terrain model from the CityGML
WFS and draped aerial photography from a Web Coverage Server across the
terrain. This allowed the analyst to build up a picture of the situation at the
airport by drawing on a variety of independent sources of information.

The CityGML schema is much more complex than those usually deployed
in WFS. The unusual level of complexity did not cause problems in the inter-
action between the client and the Snowflake CityGML WFS. The underlying
information model of CityGML was known to the client, so the client was
able to form meaningful request and correctly interpret the response.

A specific example of the data complexity is that CityGML buildings are
made up of component parts which also contain component parts. A building
may be made up of wall surfaces, each of which can contain windows and
doors. All of these are objects in their own right with their own identity,
properties and geometries. When the client requested the hangar building,
the server returned the hangar and also returned some of the component
parts of the hangar (walls, doors etc.) even though these were not explicitly
requested.

For different parts of the scenario different combinations of objects were
required. In particular the spaces (rooms) within the hangar were required
for analysis of the building but later on, after editing of the spaces for use as

18 Serving CityGML via WFS in the OGC Web Services 337

a hospital, the spaces were supplied from a different server whilst the walls
and windows continued to be supplied from the Snowflake CityGML WFS.
This was handled by setting up a number of alternative WFSs which served
different variations of the content. These included different combinations of
optional properties of the CityGML model suitable for the different circum-
stances. Because of the translation capabilities of the Snowflake GO Publisher
product this could be done without duplication of the data in the underlying
database. Several different translations from the underlying database were set
up with some translations omitting some of the optional CityGML proper-
ties. The client was thus able to get different views into the single underlying
city model by connecting to different WFSs.

The CityGML model contains 5 levels of detail (LOD). In the testbed
scenario the WFS client made a series of request for data including some
buildings at LOD2 (building shapes with roof shapes) and the hangar at
LOD4 (an architectural model including interior rooms, walls and doors).
This mixing of LOD allowed the client to build up a view with increased
level of detail for the buildings of interest and lower levels of details for the
buildings which were requested for context. This created a composite view
with LOD in different areas of the model customised, on-the-fly, to the task
at hand. The CityGML LOD concept proved useful because it allows the level
of detail available in a model to be specified easily in both the data and the
description of a data set. This scenario showed that by providing CityGML
data through a WFS the LOD concept adds further value by allowing the
client to select data at a mixture of levels of detail appropriate to the scenario.

A number of 3D geometry types were served by the WFS in addition to the
solid geometries of the buildings. A detailed solid geometry for a helicopter
object was served. This geometry is a particularly large geometry in GML
consisting of many hundreds of surface patches. A terrain model in the form
of a TIN (Triangulated Irregular Network) was also served from the WFS.
Both of these geometry objects required the WFS to return large GML files
in response to the WFS request. Initially this cause performance problems
since the files took approximately 9 minutes to return via the network avail-
able for the demonstration, thus preventing the WFS from being used in an
interactive manner. This was overcome by using compressed streams to re-
turn the data. Both gzip and zip streams were implemented on the Snowflake
CityGML WFS and the Hasso-Plattner client was enhanced to read these
streams. The zip algorithm compressed the GML output to approximately
5% of its uncompressed size (a total data volume of 24.5 MB was compressed
to 1.3 MB). This reduced the time for requesting, receiving and displaying
the CityGML data from approximately 9 minutes to around 20 seconds, al-
lowing the service to be demonstrated live from a remote server during the
final demonstration of the OWS4 test-bed.

Filters were used within the WFS requests to select features spatially.
Filters containing 2D bounding-box geometries were used to select features
with 3D solid geometries. The spatial test was carried out by testing the

338 Eddie Curtis

Fig. 18.2 The LoD4 hangar building in the foreground has architectural detail such
as windows and doors whilst LoD2 building in the background does not

Fig. 18.3 This screenshot shows illustrates the large number of surface patches and
vertices in the helicopter geometry

18 Serving CityGML via WFS in the OGC Web Services 339

interaction of the bounding-box with the 2D horizontal projection of the 3D
geometries. This proved to be an effective interpretation of the filter even
though the third dimension was ignored for purposes of the query. This is
because the objects of the city model, although 3D, are distributed around the
ground surface. The horizontal distribution of the objects is therefore great
in relation to the vertical distribution. Consequently the degree of selection
offered by 2D queries is high and corresponds to the use-cases of the test bed.

The limitations of the Oracle 10g geometry types was overcome by storing
geometry in existing data structures but changing the interpretation of those
structures on generating GML geometries. GML solid geometries where gen-
erated by interpreting the polygons within an Oracle multi-polygon as faces
in the boundary of a GML solid. This approach to geometry translation is
discussed in more detail in the paper ‘Extending 2D Interoperability Frame-
works to 3D’ [3].

18.8 Conclusions

Despite the complexity of the CityGML model the WFS interface proved to
be suitable for providing web based access to the city model.

Initial performance problems relating to the verbose nature of XML and
GML were solved using compression and the WFS interface was shown to be
a practical solution for large and complex models including large geometries.

The ability to select and filter data via the web allowed the client to build
up a model specific to the problem in hand combining high levels of detail
for buildings of particular interest and less detail for contextual objects. The
scalable nature of the Snowflake CityGML WFS makes it feasible for a client
to draw on very large city models by delegating the task of selecting and
filtering the data to the remote server.

References

1. International Alliance for Interoperability (2006) Industry Foundation
Classes,
http://www.iai-international.org/Model/R2x3_final/index.htm

2. Gröger G, Kolbe TH, Czerwinski A (2006) City Geography Markup Lan-
guage, OGC document 06-057r1

3. Mueller H, Curtis E (2005) Extending 2D Interoperability Frameworks to
3D, Paper presented to the International Workshop on Next Generation
3D City Models, Bonn, Germany, 2005

4. OGC (2005) Web Feature Service Implementation Specification, OGC
document 04-094

340 Eddie Curtis

Bibliography

OGC (2004) Filter Encoding Implementation Specification, OGC document
04-095

OGC (2007) OGC Web Services Architecture for CAD GIS and BIM, OGC
Interoperability Program Report

OGC (2007) OpenGIS Geography Markup Language (GML) Implementation
Specification, OGC document 03-105r1

Chapter 19

Towards 3D environmental impact
studies: example of noise

Jantien Stoter1, Henk de Kluijver2, and Vinaykumar Kurakula3

Abstract

Current environmental impact studies supporting environmental policies are
mostly based on a 2D approach. The - mostly 3D - output of software that
calculates the specific phenomenon (e.g. air or noise pollution) is processed
and visualised in 2D and combined with 2D topographical and other data,
such as population distribution, to quantify the effects.

The research described in the paper aimed at improving visualisation and
quantification of impact of continuous spatial phenomena on the environment
by applying a 3D approach. Noise is taken as example. Based on the specific
demand, an approach is presented to generate a 3D noise map as basis for
noise impact studies. The proposed concept is proofed by applying it to a
sample noise impact study. From experiences with the sample it can be con-
cluded that the 3D noise map offers insight into the 3D noise situation where
2D noise maps have limitations. In addition more accurate assessment of noise
impact is possible in particular when different floors of a building close to the
noise source and/or behind noise barriers are considered, which is specifically
relevant in urban areas. The proposed methodology can be applied to other
continuous spatial phenomena so that it meets the more general problem of
how to represent 3D aspects of environmental impact studies.

1ITC Enschede, Department of Geo Information Processing,
Hengelosestraat 99, 7500 AA Enschede, the Netherlands,
2 dBvision,
Vondellaan 104, 3521 GH, Utrecht, the Netherlands,
3 L.I.G ‘B’ 543, A.S.Rao nagar,
E.C.I.L (post), Hyderabad, India, pin: 500062
1stoter@itc.nl, 2henk.dekluijver@dBvision.nl, 3kurakulavinay@rediffmail.com

341

342 Jantien Stoter, Henk de Kluijver, Vinaykumar Kurakula

19.1 Introduction

Many continuous spatial phenomena with a negative impact on the environ-
ment, such as soil pollution, air pollution and noise, have a 3D component.
Although 2D GIS has been widely used to study the impact of these phe-
nomena on the environment, it can be expected that a 3D approach can
offer fundamental improvements. The research presented in this paper stud-
ied how environmental impact studies can be extended towards 3D by the
combination of a continuous surface representing field-based data from which
3D contours can be generated with 3D object-based data (mostly manmade
objects such as buildings).

Noise is the spatial phenomenon used as case study in this multi-disciplinary
research executed by the company dBvision (providing knowledge on noise
and its impact studies) and ITC (providing expertise on geo-information pro-
cessing). The aim of the presented research is to show how environmental im-
pact studies can be improved using basic 3D GIS functionalities rather than
how 3D GIS functionalities can be improved in general. In that respect this
research is a typical ‘design’ research as it is recognized in the discipline of in-
formation systems. According to Association for Information Systems (2007)
design research should a) show that there is a demand for a design; b) review
existing and propose a new design; c) show proof of concept by applying it
to sample data; d) show that it can represent concepts that are impossible
with existing designs; and, e) show that the improved design can meet more
general problems. All these aspects will be addressed in this paper.

In section 2 the case of noise is presented defining the motivation for this
research: why is noise a problem; how are noise impact studies currently
carried out; what are the problems of current 2D approach in noise assessment
and management. Section 3 presents a methodology for a 3D approach in
noise impact studies by the integration of a surface representation of noise
levels at a surface following the height of the terrain (including buildings)
with a 3D city model. The results of the 3D noise map, including applying
it to a noise impact study, are presented in section 4. The paper ends with
conclusions in section 5.

The solution proposed in this paper provides improvements in noise im-
pact visualisation and in accuracy of noise assessment specifically in urban
areas. In rural areas, where considerable noise fall with height up a building
is less relevant a 2D representation can still do. The cities Paris and Hong
Kong already produced 3D noise maps (see Butler, 2004; respectively Wing
and Kwong, 2006). Also the MITHRA-tool (CSTB, 2007) provides a 3D pre-
sentation of noise levels. These 3D noise maps look promising. The additions
of the research presented in this paper is the generation of 3D contours that
show a more detailed presentation of the noise situation, as well as a flexible
method for visualisation: the visualisation is just another representation of
the information. Conversions to virtual reality environments are not neces-
sary to visualise the 3D information. As a consequence the noise surface as

19 Towards 3D environmental impact studies: example of noise 343

produced in this research can be used directly to quantify noise impact in 3D
as will be seen in this paper.

Main aim of noise impact studies, as object of this research, is to visualise
and quantify the overall noise impact. Therefore increasing accuracy of cal-
culated noise levels on specific locations is not the objective of this research.
However improving accuracy of calculated noise levels is an important sci-
entific issue. It is also relevant in other noise applications, for example to
comply with noise limits by insulating houses. Since much money is involved
in the insulation of houses it is important to precisely indicate which houses
are exposed to high noise levels. When the accuracy of calculated noise levels
is addressed, future research can focus on improved calculation methods, on
improved interpolation methods and on how to make use of developments
in the area of 2.5D and 3D interpolation (see for example Boissonat and
Flötotto, 2002; Ledoux and Christopher, 2004; FIELDS, 2006, and GRASS,
2007).

19.2 Describing the case of noise

This section presents the case of noise. The noise problem including policies
to reduce noise problems are introduced in section 2.1. Section 2.2 describes
current practice of noise impact studies. The demand for a 3D approach for
noise assessment and management is described in section 2.3.

19.2.1 Noise problem

Noise pollution in large urban areas, mainly caused by industry and road and
railway traffic, is considered as a serious environmental problem (Silvia et al.,
2003). For the management of these noise problems many governments require
that the environmental impact of noise produced by planned constructions
such as infrastructure and industries is assessed before construction starts.
If negative effects are expected, measures need to be taken. These measures
may comprise a change of the plan, construction of noise barriers, use of quiet
road surfaces and insulation of houses.

Besides the prevention of future noise problems, steps are being taken to
reduce present noise effects. In order to have a common European mitigation
program to control noise levels the European Union has formulated a direc-
tive on noise pollution (European Union, 2002). The directive prescribes a
common approach for all member countries to prevent and reduce the harmful
effect of noise. A major component of this approach is a common method to
produce strategic noise maps for all major cities, roads, railways, airports and
industrial sites. The strategic noise map presents noise levels caused by ex-

344 Jantien Stoter, Henk de Kluijver, Vinaykumar Kurakula

isting noise producers. The EU-directive requires the noise map to represent
noise levels at a height of four meters from the surface. The EU-directive
further requires publishing the noise maps to the public and updating the
maps every five years. Based on these maps, plans need to be made to reduce
the impact of noise, also every five years. The EU-directive does not contain
common noise limits. These can be determined by each member state.

19.2.2 Noise impact studies

Noise impact studies consist of two stages: 1) the calculation of noise lev-
els and 2) the combination of other spatial and non spatial data with the
calculated noise levels to produce insight into the impact of noise.

Calculation of noise

In noise impact studies, noises levels are determined with computer simula-
tions models rather than with noise measurements. There are several reasons
for this. First of all field measurements are time consuming since the noise
levels concern the yearly averaged values and can only be done under the
appropriate weather conditions. In practice it is difficult to execute an ade-
quate number of measurements in order to produce reasonable noise maps.
Furthermore it is impossible to determine future noise levels by measurements
whereas noise simulation models can deal with future situations. In addition
it is shown that models can predict noise levels within an acceptable level of
uncertainty for most situations. Therefore noise calculation methods, which
have been validated and calibrated extensively with field measurements, are
widely accepted to provide reliable information on noise levels. In computer
models that implement the calculation methods, noise levels are calculated
on ‘virtual microphones’ (observation points). A virtual microphone, speci-
fied with a x,y,z coordinate, is a point that reports what the noise level would
be at a certain location under given circumstances. In the computer models
noise levels are computed on 3D data points based on:

1. Information on the noise source (roads in this case): traffic intensity,
maximum speed, road surface type, average emission of different vehicle
types.

2. Information on aspects that influence noise propagation such as noise
obstruction by objects (like buildings, noise barriers) and noise absorption
(like open areas with grass or bare soil). This information also covers
heights of buildings and of other topography.

3. 3D distance and direction of the data points with respect to the location
of the noise source.

19 Towards 3D environmental impact studies: example of noise 345

Determining the impact of noise

GIS functionalities are commonly used to assess the impact of noise by pro-
ducing strategic noise maps. Noise maps can be made with the combination
of interpolated surface of noise levels and spatial data covering the area of
the study. An example of a noise map is shown in figure 1 (Kluijver and
Stoter, 2003). This figure shows several noise contours that represent same
noise levels along either side of road and railway.

Fig. 19.1 2D noise map (Kluijver and Stoter, 2003)

The noise maps are used as input for the assessment of noise impact on the
environment, for example determining the area which is affected by severe
noise; determining the number of noise sensitive buildings or the area of
natural parks where a certain noise level is exceeded; determining the number
of citizens who are annoyed by noise etc. Quantifying the impacts of noise
facilitates the comparison of several designs in order to choose the design
with the smallest noise impact on the environment.

19.2.3 Problems of current 2D approach

Most of the noise calculation software calculates noise with the three dimen-
sional data, i.e. heights of buildings, of noise barriers and of other topography
are taken into account. Although output of noise calculation software (obser-
vation points with calculated noise levels) is described in 3D, most current
noise maps are in 2D representing noise levels at one selected height (for ex-
ample at four meter as required by the European directive). Disadvantage
of this 2D mapping method is the lack of insight into the three dimensional
character of noise. In many situations noise levels at one particular selected

346 Jantien Stoter, Henk de Kluijver, Vinaykumar Kurakula

height (for example at four meters) do not provide complete information for
assessing noise impact at higher floors of a building.

2D noise maps are used to quantify impact of noise, e.g. overlaid with a
2D building map. This can cause considerable differences between calculated
impacts and impacts that (will) occur in reality. The difference is especially
large when a building of interest is located close to the noise source or when a
noise barrier is present. People living on lower floors of an apartment building
benefit more from a noise barrier than people living on higher floors. There-
fore number of annoyed people might be overestimated when based on 2D
analyses. Summarising, 2D noise maps and 2D analyses are insufficient to
discriminate between noise impacts at different heights which is specifically
relevant in urban areas. Although current noise simulation models predict
noise levels in 3D, noise maps generated in 2D cannot be used directly to
study the 3D impact of noise. To use the 3D information in 3D noise impact
studies, firstly the output of noise software needs to be processed in 3D.

19.3 Methodology

This section presents a 3D approach for noise impact studies. It starts with
a description of the study area (section 3.1). Section 3.2 presents the calcu-
lation method used in this research. The process of selecting the locations
of observation points, which is extremely important, is described in section
3.3. Section 3.4 describes how the 3D noise map is generated and section 3.5
describes how the 3D noise map is applied in a noise impact study.

19.3.1 Study area

The study area is a small part of the city centre of Delft, the Netherlands.
Delft is a city of around 95,000 people in the densely populated South Holland
province of the Netherlands. The study area is approximately 30,000 m2 and
contains about 185 residential buildings with an average height of 15 meters.
A 3D city model covering the study area, containing all details of buildings,
was provided by Vosselman et al. (2005). The city model, shown in figure 2,
is constructed based on an interactive segmentation of the parcel boundaries
using several tools for splitting the polygons along height jumps edges. The
roads, canals and trees were also reconstructed from the combination of parcel
boundaries and laser altimetry data.

19 Towards 3D environmental impact studies: example of noise 347

Fig. 19.2 3D city model of study area

19.3.2 Noise calculation method

As in other countries, also in the Netherlands calculation methods have been
standardised and are commonly accepted as appropriate for noise impact
studies after having been validated and calibrated with extensive measure-
ments in 1970s and 1980s (VROM, 1999). From the available Dutch methods
the Standard Calculation Method 1 (SCM1) was selected for this research.
SCM1 (VROM, 2004) was established by the Ministry of Housing, Spatial
Planning and the Environment, according to advise of noise experts and af-
ter extensive testing, for assessing relatively simple noise situations, such as
determining noise hot spots, quantifying overall effects and visualising noise
levels. SCM1 was chosen since it takes the obstruction of noise by objects
such as buildings into account but it is still relatively simple to use, also for
non-noise experts. At the same time it meets the requirements for this re-
search (to see how noise studies can be improved by a 3D approach). Other
more sophisticated noise calculation methods could also have been used. In
this study these methods are not relevant, since the focus is on a method to
improve the visualisation and quantification of noise impacts using 3D ap-
proach and not to improve the accuracy of the calculated noise level on one
specific location.

Inputs for the noise computer model implementing SCM1 are noise sources
(location and characteristics), noise propagation factors and observation
points. This input information was generated using the 3D city model. Ficti-
tious data were used for traffic intensities. It must be noted that noise levels
on 3D observation points are calculated in SCM1 by considering 3D distance

348 Jantien Stoter, Henk de Kluijver, Vinaykumar Kurakula

and direction of the observation points to the source. Consequently SCM1,
as other noise methods, implements a 3D approach for noise calculation.

19.3.3 Locating 3D observation points

Key issue was to optimally locate the observation points that were used in
a second step to produce a continuous noise surface with 2D interpolation
(see section 3.4). There are several conditions that prescribe the best loca-
tion. One condition was that the observation points should be located on
the height surface of the terrain since the interpolated noise surface will be
draped over the 3D city model in a later stage. Another condition was related
to the spatial distribution. In this case in 2D since a 2D spatial interpolation
method was used. The decision about the spatial distribution of points for
noise simulation is not straightforward. Point density should be sufficiently
high to reach adequate accuracy of interpolation results. On the other hand
too many points should be avoided in order to considerably reduce compu-
tation time of the noise software.

Characteristics of noise propagation can be taken into account in order to
optimally distribute points. Noise reduces continuously and logarithmically
with distance in absence of obstacles. Furthermore noise reduces discontin-
uously at obstacles, such as buildings. A previous study showed that point
density should be adjusted to these characteristics in order to minimise the
error introduced with interpolation (Kluijver and Stoter, 2003). This implies
higher density (1 m spacing in the test area) of observation points near the
noise sources and buildings and lower density further away from noise sources
and buildings (2 m spacing).

Most optimally points should be located at facades of buildings, i.e. with
same x,y coordinates but with varying z coordinate. However since 2D inter-
polation, as applied in this research, can only be used if points are located on
different x,y coordinates, points with similar x,y coordinates were simulated
by giving them an offset of 0.1 m leaning towards the buildings (see figure 3
(a)). The maximum offset cumulates to about 1m (compare top and bottom
of building in figure 3 (a)).

Summarising, there are three types of point densities in the generated
observation points data set when only considering x,y coordinates: 1 meter
between points near roads and buildings; 2 meter between points further away
from roads and buildings (where noise variance is low) and 0.1 meter between
points at facades of building (to facilitate 2D interpolation of the observation
points). In vertical direction (considering z coordinate) all points are located
at 2 meter distance from each other.

The total number of points generated (in ArcScene) was around 16,800,
see figure 3 (b). The resulting point density is rather high for noise computer
models, although appropriate for the densely built study area. Calculation

19 Towards 3D environmental impact studies: example of noise 349

Fig. 19.3 (a) spacing of points in horizontal and vertical direction on facades of
building, (b) observation points to be used as basis for interpolated noise surface

time was acceptable because of the relatively small size of the study area.
Further optimisation of the density of observation points was therefore not
necessary but would be necessary in case of a larger area.

19.3.4 Generating a noise surface by interpolating
noise levels

The noise surface was built by interpolating noise levels at known 3D obser-
vation points, only taking x,y coordinates of points into account, i.e. using
2D interpolation. It was considered to use 2.5D and even 3D spatial inter-
polation, however currently available techniques have limitations, e.g. only a
limited number of input data was allowed (Ledoux and Christopher, 2004);
it was not able to produce a noise surface from the interpolated 3D solid
model (FIELDS, 2006); the solid model algorithm is implemented to inter-
polate attribute values from depth intervals of strata such as soil, rock, or
ground water and not from individual points (GOCAD, EVS, Rockworks);
or a closed surface was formed which was not appropriate for the city model
in our study (Boissonat and Flötotto, 2002, implemented in CGAL).

The 3D analyst tool of ArcScene was used to generate the noise surface
with 2D interpolation. There is no standard spatial interpolation method that
can deal with the logarithmically reduction of noise levels with distance. How-
ever there were some prerequisites that motivated the selection of Triangular
Irregular Network (TIN) for the interpolation. If noise levels on facades are
calculated with noise levels above the road or above buildings errors are intro-
duced due to the high variance in noise level on facades of building. This high
variance in 2D (i.e. noise changes quickly with x,y distance) is a result of the
effect that noise levels are calculated in the noise computer model based on
3D distance. When projecting these observation points in 2D, sudden change
in noise levels occur on a relatively short distance. TIN only takes the closest

350 Jantien Stoter, Henk de Kluijver, Vinaykumar Kurakula

three observation points into account (distance measured in 2D) when cal-
culating noise level at any unknown point, avoiding that noise values above
roads and buildings contribute to interpolated values on facades. Therefore
TIN was selected as interpolation method. To proof the assumption that
other spatial interpolation methods are less suitable also experiments were
done with Inverse Distance Weighting (IDW), Natural Neighbourhood and
Kriging. For an explanation of the principles and advantages and disadvan-
tages of each interpolation method, see Watson (1992).

19.3.5 3D noise impact study

After the interpolation the noise surface is draped over the 3D city model
to generate the 3D noise map. This is done in ArcScene. The noise surface
is made transparent so that the buildings can be seen through the surface.
Also contours are generated which are extended towards 3D by draping them
over the city height model. Using this methodology the 3D noise map is
easy to construct and suited for quantitative analyses such as for finding
noise hot spots, calculating area that are effected by high noise levels, and
estimating population annoyed by noise. To improve the reality look virtual
reality functionalities could have been applied such as textures (see also Wing
and Kwong, 2006). One should however realise that the more realistic the
visualisation looks the more accurate decision makers expect it to be. This
expected accuracy does not always coincide with the intended accuracy of
the noise representation. The 3D noise map is used as input to quantify noise
impact in 3D using basic spatial analysis tools in ArcScene.

19.4 Results

In this section the results of the 3D noise map are presented. Section 4.1
presents the results of the noise calculation. The 3D noise map is assessed
in section 4.2 and the improvements of the 3D noise map compared to the
2D approach are presented in section 4.3 by applying it to some aspects of a
noise impact study.

19.4.1 Accuracy of noise calculation

The offset of 0.1 m for points on facades introduces an error, which was
analysed to see if the error is acceptable. At a distance of 5 m from the
centre of the road the error is ±0.7 dB(A) which is only minor compared to

19 Towards 3D environmental impact studies: example of noise 351

the calculated difference of ±10 dB(A) between noise levels at the top and
bottom of the building (see figure 4).

Fig. 19.4 Observation points near buildings with computed noise levels

Furthermore this difference is not audible for human beings. For general
noise impact studies, where the selected SCM1 method is designed for, this
inaccuracy is acceptable. However when complying with noise limits a minor
difference could be relevant and other more accurate calculation methods
should be applied. As stated before an accurate calculation method is not
the aim of this research.

19.4.2 Results of the 3D noise map

To assess the accuracy of the interpolated noise surface, cross validation was
applied (Davis, 1987). Observation points were removed before interpolation
and interpolated values on these points were compared to values calculated by
the noise software. This yielded a mean error of 0.3 dB(A) and was therefore
also acceptable. This implies that 2D interpolation can be used for building
3D noise map.

The result of the 3D noise map integrating the noise surface using the
TIN interpolation method and the 3D city model is shown in figure 5. From
figure 5 it can be seen that the 3D noise map is able to properly process and
visualise the 3D output of noise calculation software. The 3D representation
offers insight into the impact of noise at any particular height on the terrain
surface and on facades of buildings: high noise levels occur on road surfaces
and low noise levels occur on top and backside of buildings.

2D noise contours (interval of 1 dB(A)) were generated and projected
on the city model to extend them towards 3D. The IDW noise surface was
generated with power 2, search radius 2 m, and cell size 0.1 m. The cell size of

352 Jantien Stoter, Henk de Kluijver, Vinaykumar Kurakula

Fig. 19.5 3D noise map obtained with TIN interpolation

0.1 m was chosen to cover the high point density on facades of buildings when
only considering x,y coordinates. Contours from TIN interpolation method
and IDW interpolation method at facades of buildings (location with highest
variance in noise levels) are shown in figure 6 (a) respectively 6 (b). Noise
observation points are shown as well.

As expected IDW interpolation produces irregular contours. This does
not reflect the real noise behavior since noise levels reduce similarly with
decreasing distance if no other variables, such as noise barriers and absorp-
tion properties, are met or changed. On the contrary TIN contours do show
straight contours, as can be seen in figure 6 (a). Other interpolation methods
(Natural Neighbourhood and Kriging) yielded similar results as IDW.

These irregular IDW-contours were found on locations were noise reduces
very fast with distance (when only considering x,y) represented by high point
density, as is the case on facades. IDW (as the other alternative methods) is
based on one search radius for the whole area, by which values on roads and
above buildings are used for calculating values at facades. This causes the
faulty effects on locations where noise reduces very quickly with distance, as
shown in figure 6 (b) and 7 (b).

TIN takes only three observation points into account when calculating a
value at an unknown location. It is appropriate for situations with high noise
variance represented by high point density because it generates more triangles
with relative small areas at these locations (see figure 7 (a)). As a consequence
noise levels on facades are calculated based on observation points on facades
only and it is avoided that observation points on roads and above buildings
contribute to interpolated values on facades. This explains why TIN is the
most optimal method for generating the 3D contours for the 3D noise map,
using 2D interpolation applied to 3D observation points.

19 Towards 3D environmental impact studies: example of noise 353

Fig. 19.6 Noise contours of two interpolation methods projected on 3D city model
(top: contours generated from TIN interpolation method, bottom: contours generated
from IDW interpolation method)

19.4.3 Results of applying 3D noise map to noise
impact study

The results of the 3D noise map with respect to improved 3D functionalities
were tested by applying it to different aspects of noise impact studies. The
aspects that are addressed here are:

• Assessing reduction of noise levels by noise barriers
• Estimation of population annoyed by high noise levels

Assessing reduction of noise levels by noise barriers

A 3D noise map was produced with the methodology described in section 3,
using information on seven fictious noise barriers in order to assess the 3D
impact of several characteristics of noise barriers. Figure 8 shows the impact
of the different noise barriers varying in height, width and distance from the

354 Jantien Stoter, Henk de Kluijver, Vinaykumar Kurakula

Fig. 19.7 (a): TIN can deal very well the spatial irregularly distribution of obser-
vation points on facades of buildings, (b) results of noise contours based on IDW
(viewpoint is from above in both examples)

road. Details of the different barriers are shown in the bottom left of figure
8.

The first three barriers (a), (b), (c) are of height 3 m and located at a
distance of 3 m, 6 m, respectively 9 m from the road. As can be seen in figure
8, the effect of the barrier reduces when the distance of the barrier to the
road increases. Furthermore it shows that there is no effect of the barriers on
higher floors.

The next three barriers (d), (e), (f) are of different heights (2 m, 3 m,
and respectively 4 m) and located at equal distance of 5 m from the road.
Figure 8 shows that noise reduction due to the noise barriers increases when
the height of the barrier increases. Still no effect of the noise barrier is found
at higher floors. Barrier (g) is located where there is no building. Barrier (g)
shows therefore the effect on the ground surface.

19 Towards 3D environmental impact studies: example of noise 355

Fig. 19.8 Effect of noise barriers represented in 3D noise map

Table 1 shows the noise impact on the facade of the building just behind
barrier (a) with height 3 m and located 3 m from the road. From this table it
can be seen how the noise barrier reduces noise levels at different heights. This
case study shows that a noise barrier should be high enough and sufficiently
close to the road to have a reducing effect for all floors. A 2D map representing
noise levels at only one height (e.g. 4 m) cannot provide this information. In
case of 2D map, noise levels on lower floors could be overestimated and on
higher floors underestimated.

Height above the Without noise With noise barrier Effect
ground surface (m) barrier (dB(A)) dB(A) dB(A)
2 59 38 -21
4 58 41 -17
6 56 44 -12
8 55 46 -9
10 53 48 -5
12 51 51 -0

Table 19.1 Noise levels at different heights on facade of building with and without
noise barrier (a) as indicated in figure 8

356 Jantien Stoter, Henk de Kluijver, Vinaykumar Kurakula

Estimation of population annoyed by high noise levels

For estimating population annoyed by noise, the considered threshold of an-
noyance is 55 dB(A). This noise level is considered as hazardous by . Table 2
shows the comparison of annoyed population estimation using 3D noise map
(taking floors of buildings into account) and using a 2D approach at a height
of 4m. For the 3D noise map calculation, population numbers were assigned
to 3D points and for the 2D approach, population numbers were assigned to
2D points. These points are selected in such a way that they coincide with
centres of living units. Based on the number of population points covered by
surfaces with high noise levels in 3D case and by areas with high noise levels
in 2D case, population annoyed by noise was estimated.

The results in table 2 show that annoyed population calculated using the
3D noise map is considerably less than using the 2D noise map. This is because
in case of 2D assessment all floors are considered to be effected by the same
noise level, even though the noise levels are calculated for one specific height
(i.e. 4 m). In reality there are several floors above 4 m and only one floor
below 4 m. Floors above 4 m are effected by lower noise levels than at 4 m
(when there is no noise barrier) since noise levels decrease with distance from
the road and therefore with height. Consequently the 2D assessment results
in an overestimation of the number of annoyed people. From this case study
it can be concluded that the 3D noise map analysis provides a much more
accurate estimation of annoyed population than the 2D noise map analysis.

2D noise map 11000
3D noise map 7200

Table 19.2 Population annoyed by noise levels > 55 dB(A)

19.5 Conclusions

In this paper a research was presented that shows how impact studies of
continuous spatial phenomena, such as air pollution, soil pollution and noise,
can be improved by applying a 3D approach to the output of software that
predicts the spatial phenomenon on 3D observation points. In the study noise
is used as example.

In section 2 the demand for a 3D approach of noise impact studies was de-
scribed based on a review of existing approaches. In section 3 a new approach
was proposed in order to appropriately address the 3D aspect of noise when
visualising and assessing impact of noise. The proposed concept was proven
by applying it to a sample noise impact study in section 4. From these exper-

19 Towards 3D environmental impact studies: example of noise 357

iments it can be concluded that the 3D noise map offers insight into the 3D
noise situation where 2D noise maps have limitations. Current noise simula-
tion software already has a 3D approach in predicting noise levels. The 3D
noise map provides the possibility to actually process and visualise this 3D
information. As a result more accurate assessment of noise impact is possible
in particular when different floors of a building close to noise sources or noise
barriers are considered, which is specifically relevant in urban environment.
Since a 3D noise map is easy to ‘understand’ they are also beneficial for
communication purposes with the public in city planning processes.

The research presented in this paper showed that a 3D noise map can
be generated by integration of a 3D city model with a noise surface. For
producing the noise surface, TIN interpolation was applied to 3D observation
points. The noise surface and generated noise contours were draped over the
3D city height model to obtain a 3D noise map. From the results it can
be concluded that this approach serves its purposes also with respect to
the accuracy required by the specific application, which is visualising and
quantifying overall noise impact in 3D where 3D effects are relevant.

Since this research is specifically aiming at improvement of the overall pic-
ture, improving the accuracy of calculated noise levels for specific locations is
not the main concern. When this accuracy is concerned, e.g. when complying
to noise limits, future research can focus on how to make use of developments
in the area of 2.5D and 3D interpolation. In that case however the whole pro-
cess of a noise application - from data collection and prediction to applying it
for a specific purpose - should be taken into account. Accuracy is influenced
at each operation such as during generation of observation points, spacing
of points, noise calculation, spatial interpolation and analysis. Ambitions for
further improving accuracy are obviously supported by the authors but not
without emphasising the need for error assessment and presentation of the
uncertainties in all phases of the process, also with respect to the purposes
the study has to serve. It is inappropriate to put effort in obtaining accurate
noise levels if noise levels are only used for visual presentation and/or if noise
levels are combined with less accurate spatial information in order to quantify
overall noise impacts.

The methodology presented in this paper can be applied to other contin-
uous spatial phenomena as well so that it meets the more general problem of
how to represent 3D aspects of environmental impact studies.

Acknowledgements

We are grateful to Professor George Vosselman since he provided us with
the 3D city model and to MSc. Monika Kuffer since she gave very useful
comments for this paper.

358 Jantien Stoter, Henk de Kluijver, Vinaykumar Kurakula

References

Association for Information Systems, 2007,
http://www.isworld.org/researchdesign/drisISworld.htm

Boissonnat, J. and J. Flötotto, A local coordinate system on a surface. Pro-
ceedings 7th ACM Symposium on Solid Modeling and Applications, 2002, p.
116-126.

Bruel, P.V. and V. Kjaer, 2002, Environmental Noise, Denmark. http://www.
bksv.com/pdf/Environmental\%20Noise\%20Booklet.pdf, Access date 25-
09-06.

Butler, D., 2004, Noise management: Sound and vision. Nature, 427(6974):
480-482.

CSTB, 2007, http://www.cadcorp.com/press_releases/2006_pr9.htm

Davis, B.M., 1987, Uses and abuses of cross-validation in geostatistics. Math.
Geol.(19, pages 241-248).

FIELDS, 2006, U.S.EPA, FIELDS Rapid Assessment Tools. http://www.
epa.gov/region5fields/htm/software.htm, Access Date: 30-12-06

GRASS, 2007, http://grass.itc.it/applications/index.php,
Access Date: 15-9-07

Kluijver de Henk and Stoter, J., 2003, Noise mapping and GIS: optimising
quality and efficiency of noise effect studies. Computers, Environment and
Urban Systems, 27(1): 85-102. http://www.sciencedirect.com/science/
article/B6V9K-44GHTN5-3/2/f75bca60cefff030ea2e379d5be56c4b

Kurakula, V., 2007, A GIS-Based Approach for 3D Noise Modelling Using
3D City Models, MSc thesis, ITC, Enschede, The Netherlands, GEM thesis
number: 2005-04

Ledoux, H., and M. Christopher, 2004, An efficient natural neighbour inter-
polation algorithm for geoscientific modelling, in: Developments in Spatial
Data Handling - 11th International Symposium on Spatial Data Handling,
Springer, editor: Fisher, Peter F., pages 97-108

Silvia R, Ricardo H, Luis C J, 2003, Evaluation and prediction of noise pol-
lution levels in urban areas of Cdiz (Spain). Acoustical Society of America
Journal: Volume 114, pp-2439-2439.

19 Towards 3D environmental impact studies: example of noise 359

Vosselman, G., Kessels, P. and Gorte, B., 2005, The utilisation of airborne
laser scanning for mapping. International Journal of Applied Earth Observa-
tion and Geoinformation, 6(3-4): 177-186. http://www.sciencedirect.com/
science/article/B6X2F-4F2VS7P-1/2/bf5c1ceeb35b2919a497a7fea2529864

VROM, 1999, Handleiding Meten en Rekenen Industrielawaai (calculation
and measurement methods industry noise). Ministry of Housing, Spatial De-
velopment and the Environment. (In Dutch)

VROM, 2004, Regeling omgevingslawaai, bijlage 3 Karteringsvoorschriften
weg- en railverkeerslawaai (calculation method for producing strategic noise
maps). Ministry of Housing, Spatial Development and the Environment. (In
Dutch)

Watson, D. F. Contouring: A guide to the analysis and display of spatial
data. Pergamon Press (1992).

Wing, K., Kwong, 2006, Visualisation of Complex Noise Environment by
Virtual Reality Technologies, Environment Protection Department (EPD),
Hong Kong. http://www.science.gov.hk/paper/EPD_CWLaw.pdf, Access
Date: 30-01-07.

Chapter 20

The Kinetic 3D Voronoi Diagram:
A Tool for Simulating Environmental
Processes

Hugo Ledoux

Abstract

Simulations of environmental processes are usually modelled by partial dif-
ferential equations that are approximated with numerical methods, based on
regular grids. An attractive alternative for simulating a fluid flow is the Free-
Lagrange Method (FLM). In this paper, I discuss the use of the FLM—based
on the Voronoi diagram (VD)—for the modelling of fluid flow in three dimen-
sions (e.g. the movement of underground water or of pollution plumes in the
ocean). Such a technique requires the kinetic three-dimensional VD, which
is a VD for which the points are allowed to move freely in space. I present
a new algorithm for the movement of points in a three-dimensional VD, and
show that it can be relatively easy to implement as it is the extension of a
simple two-dimensional algorithm.

20.1 Introduction

The integration of simulation models and geographical information systems
(GISs) is a major source of problems because GISs have not been designed for
handling time, and even less for handling processes which involves continual
movements [50]. Full integration is almost unheard of, and the two are usually
simply ‘linked’, i.e. a GIS is used as a pre-processing tool (e.g. to prepare a
dataset or convert formats) and as a post-processing tool (e.g. visualisation
and further spatial analysis), althoug the simulation itself is done using a spe-
cialised tool. Many argue for ‘full integration’, as both tools would ultimately
gain [19, 43]. The simulation of some environmental processes, e.g. the track-

Delft University of Technology (OTB—section GIS Technology)
Jaffalaan 9, 2628 BX Delft, the Netherlands
h.ledoux@tudelft.nl

361

362 Hugo Ledoux

ing of pollution plumes in the ocean or dispersion models in meteorology,
is even more problematic because these phenomena are three-dimensional by
nature, and three-dimensional GISs are still their infancy (see Zlatanova et al.
[52] and Raper [44] for discussions). Simply to be integrated into a GIS, the
results of environmental simulations must often be ‘sliced’ into several 2D
datasets [8, 41].

Many disciplines require simulations of real-world processes, and the meth-
ods they use obviously differ. Simulations in geoscience or in engineering
have usually been based on partial differential equations (PDEs) that de-
scribe the behaviour of some fluid (e.g. the fluid flow around an aircraft, or
the movement of underground water) [10]. PDEs are solved, or rather ap-
proximated, by mainly two numerical methods: the finite difference method
(FDM), which was developed for regular tessellations; and the finite element
method (FEM) [48], which is possible on any tessellations, regular or irregu-
lar. The solution of a PDE is obtained by first approximating the behaviour
of the process studied for each element of the tessellation, and the final so-
lution is obtained by accumulating all the results. The FDM performed on
grids, as used for instance by systems for weather forecasting, is well-known,
efficient and mostly accurate. However, the use of grids can sometimes lead
to unreliable results [5], and some other technical problems also arise (for
instance the curvature of the Earth is problematic for large datasets).

For the modelling of fluid flow, an alternative approach to using a fixed/rigid
tessellation is the Free-Lagrange method (FLM) [20]. With this method, the
flow is approximated by a set of discrete points (called particles) that are
allowed to move freely and interact, with each particle having a mass and
a velocity. A tessellation of the space is still required, although this will be
modified as the particles are moving. As briefly explained in Sect. 20.2, the
Voronoi diagram ‘naturally’ tessellates the space based on a set of points, and
has therefore been used (see Erlebacher [16] for instance). Although the FLM
can theoretically better represent a physical process [20], it is handicapped
by the many difficulties encountered when implementing it. As Mostafavi
and Gold [40] note, the adjacency relationships of the cells of the tessellation
must be kept consistent at all times, and there must be a way to model time,
because fixed time steps can comprise the adjacency of the tessellation. In-
deed, earlier implementations of the FLM were very slow as the adjacency
relationships between cells had to be rebuilt at each step of the process. With
Mostafavi and Gold’s solution, the kinetic VD, all the topological events are
managed locally, and the time steps that were previously used (which could
lead to overshoots and unwanted collisions) can be avoided as topological
events are used. They further show the advantages of the kinetic VD with
the simulation of global tides on the Earth (thus using the VD on a sphere).

In this paper, I extend the work presented in Mostafavi and Gold [40] to
three dimensions, and present a novel algorithm for keeping a 3D VD up-
to-date as the points defining it are moving over time. In other words, an
algorithm for the kinetic VD in three-dimensional space is presented. Such

20 Kinetic 3D Voronoi Diagram for Simulation 363

p

(a) (b)

Fig. 20.1 (a) VD of a set of points in the plane. The point p (whose Voronoi cell is
dark grey) has seven neighbouring cells (light grey). (b) Two Voronoi cells adjacent
to each other in R

3 (they share the grey face).

an algorithm is interesting for two reasons: (i) it permits us to perform simu-
lation with the VD (which potentially yields more accurate results); and (ii)
it is a step in the direction of integrating simulation models and GIS (that
is, if the VD is used as an alternative spatial model to the usual point-line-
polygon model, as in the work of Gold [25], Gahegan and Lee [21] and Chen
et al. [11]). Because the paper is fairly technical, important concepts related
to the VD are first introduced in Sect. 20.2, and then the algorithm itself is
presented in Sect. 20.3, along with a literature review of other potential meth-
ods. Sections 20.4 and 20.5 discuss the potential applications of the algorithm
presented, and also briefly discuss its implementation. Notice that most of
the concepts and methods discussed are firstly introduced by describing their
two-dimensional counterparts (because readers are often more familiar with
these), and that most figures are for the 2D case, as they are much simpler
to understand.

20.2 Voronoi Diagram & Related Issues

Let S be a set of n points in an n-dimensional Euclidean space R
n. The Voronoi

cell of a point p∈ S, defined Vp, is the set of points x ∈R
n that are closer to p

than to any other point in S. The union of the Voronoi cells of all generating
points p ∈ S form the Voronoi diagram of S, defined VD(S). Fig. 20.1 shows
two- and three-dimensional examples. The VD is arguably one of the most
important geometric/spatial structures in sciences because it is very simple,
and yet is so powerful that it helps in solving many theoretical problems,
and also helps in many real-world applications; Aurenhammer [6] and Okabe
et al. [42] offer exhaustive surveys.

364 Hugo Ledoux

Fig. 20.2 DT in 2D of the same set of points as in Fig. 20.1(a).

The Delaunay triangulation.

The VD is closely related to another structure: the Delaunay triangulation
(DT). The DT is popular in 2D in many application domains because it
has many useful properties, among others are the fact that the triangles
created are as equilateral as possible, and that it can be modified locally.
In 3D, the Delaunay tetrahedralization is defined by the partitioning of the
space into tetrahedra—where the vertices of the triangles are the points in S
(generating each Voronoi cell)—that satisfy the empty circumsphere test (a
sphere is empty is no points are in its interior, but points can lie directly on
the sphere). Fig. 20.2 illustrates the idea in 2D.

Duality.

The VD and the DT are dual structures, which means that the knowledge of
one implies the knowledge of the other one. In other words, if one has only
one structure, he can always extract the other one. The concept of duality is
important for the construction, the manipulation and the storage of the VD,
because all the operations can be performed on its dual, and when needed,
the VD extracted. The algorithm in Sect. 20.3 uses this idea.

General position.

An important concept when discussing the VD and the DT is that of the
position of the points in a set of points. A set S of points is said to be
in general position when the distribution of its points does not create any
ambiguity in the structures derived from the points (e.g. the VD or the DT).
For the VD and/or the DT in R

d , the degeneracies, or special cases, occur
when d + 1 points lie on the same hyperplane and/or when d + 2 points lie
on the same ball. For example, in three dimensions, when five or more points
in S are cospherical there is an ambiguity in the definition of DT(S): since
all the points lie on a sphere, all the tetrahedralizations of the points respect
the Delaunay criterion. When four or more points are coplanar in 3D, DT(S)

20 Kinetic 3D Voronoi Diagram for Simulation 365

(a)

flip23

flip32

a

b
c

d

e

(b)

Fig. 20.3 Flips in (a) two dimensions, and (b) three dimensions.

and VD(S) are unique, but problems with the computation of the structures
can arise (see for instance Sugihara and Inagaki [49] and Field [18]).

20.2.1 Construction of the VD/DT

The construction of a VD, or a DT, is a well-known problem in computational
geometry and different efficient algorithms, based on different computational
geometry paradigms, are available (see for instance Edelsbrunner and Shah
[15], Watson [51] or Cignoni et al. [12]).

Predicates.

An important consideration is that for all the construction algorithms, es-
sentially only the following two basic geometric tests (called predicates) are
required: Orient determines if a given point is over, under or lies on a plane
defined by three points; and InSphere determines if a given point is inside,
outside or lies on a sphere defined by four points. Both tests can be reduced
to the computation of the determinant of a matrix, see Guibas and Stolfi [30]
for more details.

20.2.2 Flips

A flip is a local topological operation that modifies the configuration of some
adjacent tetrahedra [34, 15]. The concept of flip is valid in any dimensions for
triangulations. In 2D, many algorithms to construct and modify a triangu-
lation use the flip22, as illustrated in Fig. 3(a). It permits us to transform a
triangulation of four points into the only other one possible. In 3D, the same
idea can be applied to a set S = {a,b,c,d,e} of five points in general position.
According to Lawson [34], there are exactly two ways to tetrahedralize such

366 Hugo Ledoux

v v

star(v) link(v)

(a) In 2D.

star(v) link(v)

v

(b) In 3D.

Fig. 20.4 The star and the link of a vertex v.

a polyhedron: either with two or three tetrahedra. As illustrated in Fig. 3(b),
in the first case, the two tetrahedra share a triangular face bcd, and in the
latter case the three tetrahedra all have a common edge ae. A flip23 is the
operation that transforms one tetrahedralization of two tetrahedra into an-
other one with three tetrahedra; and a flip32 is simply the inverse operation.
Notice that the numbers refer to the number of triangles/tetrahedra before
and after the flip.

It is worth noticing that three-dimensional flips do not always apply to
adjacent tetrahedra [32]. For example, in Fig. 3(b), a flip23 is possible on
the two adjacent tetrahedra abcd and bcde if and only if the line ae passes
through the triangular face bcd (which also means that the union of abcd
and bcde is a convex polyhedron). If not, then a flip32 is possible if and only
if there exists in the tetrahedralization a third tetrahedron adjacent to both
abcd and bcde.

20.2.3 Star, Link and Ears

Three concepts related to triangulations are introduced here, and they will
be used in Sect. 20.3 where the proposed algorithm is described.

Star.

Let v be a vertex in a d-dimensional triangulation. Referring to Fig. 20.4, the
star of v, denoted star(v), consists of all the simplices that contain v; it forms
a star-shaped polytope. For example, in two dimensions, all the triangles
and edges incident to v form star(v), but notice that the edges and vertices
disjoint from v—but still part of the triangles incident to v—are not contained
in star(v). Also, observe that the vertex v itself is part of star(v), and that a
simplex can be part of a star(v), but not some of its facets.

20 Kinetic 3D Voronoi Diagram for Simulation 367

2-ear

a

b

c

d

a b

c

d

3-ear

Fig. 20.5 Perspective view of the outside of a polyhedron. Two adjacent triangular
faces (e.g. in light grey) form a 2-ear, and three triangular faces incident to the same
vertex (e.g. in dark grey) form a 3-ear.

Link.

The set of simplices incident to the simplices forming star(v), but ‘left out’ by
star(v), form the link of v, denoted link(v), which is a (d−1) triangulation.
For example, if v is a vertex in a tetrahedralization, then link(v) is a two-
dimensional triangulation formed by the vertices, edges and triangular faces
that are contained by the tetrahedra of star(v), but are disjoint from v.

Ear.

Let P be a simplicial polyhedron, i.e. made up of triangular faces. An ear of
P is conceptually a potential, or imaginary, tetrahedron that could be used
to tetrahedralize P. As shown in Fig. 20.5, such a tetrahedron—that does
not exist yet—can be constructed by the four vertices spanning either two
adjacent faces, or three faces all sharing a vertex (the vertex has a degree
of 3). The former ear is denoted a 2-ear, and the latter a 3-ear. A 3-ear is
actually formed by three 2-ears overlapping each other. In practice, a 2-ear
can be identified by an edge on P because only two faces are incident to it.

A polyhedron P will have many ears, but note that not every ear is a poten-
tial tetrahedron to tetrahedralize P, as some adjacent faces form a tetrahedron
lying outside P. Referring again to Fig. 20.5, a 2-ear abcd is said to be valid
if and only if the line segment ad is inside P; and a 3-ear abcd is valid if and
only if the triangular face abc is inside P.

20.3 Moving Points in a VD/DT

It should first be said that when a point in a VD/DT is continually moving
over time and if one is interested in every intermediate state of the VD/DT,
it makes no sense to continually insert, delete and reinsert it again some-
where else, as this is a computationally expensive operation. A more efficient

368 Hugo Ledoux

option is to literally move the point and update the topological relationships
of the VD/DT when needed. In other words, instead of using ‘discrete up-
dates’, ‘continuous updates’ to the VD/DT are made. Discrete updates are
nevertheless an adequate solution for many applications where points move
a lot and where the intermediate states are not important (just the start and
end states are of interest). For example, De Fabritiis and Coveney [13] use a
combination of discrete and continuous updates (depending on the situation)
for the simulation of fluids. Similarly, for the simulation of physical processes
(where molecules are moving only by very small distances), Guibas and Rus-
sel [29] found that continuous updates permit them to update the VD/DT
in approximately half to three quarters the time it takes to recompute the
entire structure.

The algorithms to maintain a VD/DT of a set S of points up-to-date as
one or more points in S are moving are based on the following observation.

Observation 1 Let T be the DT(S) of a set S of points in R
d in general

position. If one point p is moved by a sufficiently small amount so that S stays
in general position at all times, then the combinatorial structures of DT(S)
(and of VD(S)) will not change (see Fig. 20.6).

(a) (b) (c)

p

p

Fig. 20.6 (a) The combinatorial structure of the DT will not change as long as the
vertex p is moved within the white polygon. (b) p has moved but S is still in general
position. The combinatorial structure of DT(S) has not changed. Only the location of
p has changed, and so have the edges incident to it. (c) Example of the consequences
of moving p on the VD.

Notice that S will remain in general position until p is cospherical (lies on
the same ball in R

d) with d + 1 other points in S. At the critical moments
when the loss of general position arises, the topological structures of VD(S)
and DT(S) will be modified; the critical moments are called topological events.
Observe in Fig. 20.6(c) that the VD where one point is moving looks different
as the point is moving, but that the adjacency relationship of the Voronoi
cell of the moving point remain the same.

20 Kinetic 3D Voronoi Diagram for Simulation 369

The result of Observation 1 is that in order to move one or more points in
S, one has to detect when the topological events will arise, and modify VD(S)
and/or DT(S) consequently.

20.3.1 Related Work in Two Dimensions

Observation 1 was used by Roos [45] to analyse the complexity of the move-
ment of points in a two-dimensional VD, and proposed an algorithm to update
the VD. Although he discusses the movement of points in a VD, the algo-
rithm he developed is based on the dual (because it is simpler and because
the VD can be trivially extracted). When a topological event arises, the up-
date to the DT is made with a flip. He considers that all (or most) of the
points in S are moving according to a linear trajectory and that they have
a constant velocity. His algorithm starts by computing DT(S), then all the
potential topological events for all the quadrilaterals (every pair of adjacent
triangles in DT(S) is tested) are computed and put in a priority queue (e.g. a
balanced search tree), sorted according to the time they will arise. The time
is computed by finding the zeros of the InCircle (two-dimensional coun-
terpart of InSphere, as briefly discussed in Sect. 20.2.1) developed into a
polynomial; in other words, the aim is to find when the four points forming
a quadrilateral will become cocircular (if ever). After that, the first topolog-
ical event is popped from the queue, DT(S) modified with a flip22, and the
queue is updated because the flip has changed locally some triangles. The
algorithm continues until there are no topological events left in the queue.
The algorithm is efficient as only O(logn) is needed for each topological event
(n being the number of points in the set).

Similar algorithms have also been proposed, see for instance Bajaj and
Bouma [7] and Imai et al. [31]. Moreover, Gold [23] and Gold et al. [26]
(with more details in Mostafavi [38] and Mostafavi and Gold [40]) propose
a different algorithm and give more implementation details. They focus on
the operations necessary to move a single point p, and then explain how to
have many points move. To detect topological events, only the triangles inside
star(p) and the ones incident to the edges of link(p) need to be tested, and
the changes in the DT are also made with flip22 operations.

20.3.2 Related Work in Three Dimensions

The work of Roos [45] has been generalised to three- and higher-dimensional
space by Albers et al. [1, 3, 2]. Their work is mostly theoretical as they aim
to find upper bounds on the number of topological events when the points
are moving according to some trajectories. They state that only the two-

370 Hugo Ledoux

dimensional case has been implemented, and they demonstrate that in three
dimensions the flip23 and flip32 can be used to update the DT. Gavrilova and
Rokne [22] discuss the movement of d-dimensional balls (not only points, but
balls with defined radii) while the additively weighted Voronoi diagram (or
Apollonius diagram) is maintained up-to-date with flips; the operations are
performed on the dual of the Apollonius diagram. Their algorithm is exactly
the same as the one used by Albers et al., but they show how the InSphere
test must be modified to consider the radius of each ball.

The major impediment to the implementation of the algorithm used by
Albers et al. in three dimensions is that, as Gavrilova and Rokne [22] observe,
calculating the zeros of the function InSphere cannot be done analytically,
as is the case for the InCircle function. Indeed, the polynomial for the
three-dimensional case has a high degree (8th degree) and iterative numerical
solutions must be sought. That results in a much slower implementation,
and it could also complicate the update of the DT when the set of points
contains degeneracies. On the other hand, Guibas et al. [28] recently proposed
a generic framework for handling moving objects. The methods they use for
the kinetic 3D VD/DT is theoretically the same as in Roos [45], although
they use different methods for finding the zeros of polynomials (InSphere)
using fixed precision and exact arithmetic, and they claim that 3D VDs/DTs
can be updated relatively fast in most cases.

It appears that the computational geometry community is more inter-
ested in studying the complexity of the problem than implementing it. To
my knowledge, the only reports of implementations are that of Guibas and
Russel [29] and Guibas et al. [28], whose algorithm has recently been added
to CGAL1, and some reports in related disciplines where there is a real need.
For instance, Ferrez [17] and Schaller and Meyer-Hermann [46] did practical
implementations of the algorithm for respectively the simulation of granular
materials and cell tissues. Ferrez’s algorithm is for spheres in Laguerre space
(power distance is used), and thus the regular tetrahedralization is built; this
is almost the same as the DT, for only the InSphere test has to be modified
slightly. Both seem to have missed out several theoretical issues, e.g. they do
not consider Observation 1, and use ‘time steps’ to move a point. In other
words, a point is simply moved to a certain location without first verifying if
topological events will arise. Flips are performed after each move to restore
the Delaunay criterion, and their only constraints is that the combinatorial
structures must stay valid between two steps, i.e. a point is not allowed to
penetrate another tetrahedron. While this may work for some cases, defining
a time step that works for all cases is impossible, and they do not consider the
fact that unlike in two dimensions, it is sometimes impossible to flip adjacent
tetrahedra. Their solution could therefore not work for every cases, and more
importantly, their tetrahedralization does not respect the Delaunay criterion
at all times, which could be problematic for some applications.

1 The Computational Geometry Algorithms Library (www.cgal.org).

20 Kinetic 3D Voronoi Diagram for Simulation 371

20.3.3 A Flip-based Algorithm

Here I discuss a new algorithm used to move points in R
3 and update the

VD/DT when topological events arise. Since the implementation of Albers
et al.’s algorithm is intricate, I describe a generalisation to three dimensions
of Gold and Mostafavi’s method [23, 26, 38, 40]. Unlike Albers et al.’s method
where all the pairs of simplices must be tested, the algorithm I present per-
mits the movement of one or only a few points in the set S by using only
local information, i.e. if p is moved, only the geometry of the neighbouring
tetrahedra of p will be used, and tetrahedra not in the neighbourhood of p or
the trajectory do not need to be tested. Moreover, it is not necessary to find
the zeros of the function InSphere because the topological events are de-
tected by testing the intersections between the circumsphere of neighbouring
tetrahedra and the trajectory of p.

The different types of tetrahedra that must be considered are first dis-
cussed, then the algorithm to move a single point is presented, and finally
the movement of several points in S is discussed. The concepts described are
direct generalisations of the algorithm of Gold and Mostafavi, and I describe
the intricacies that one more dimension brings. The algorithm is based on
the same operations that are necessary for constructing a VD, the flips, and
is thus conceptually very simple and easy to implement.

20.3.3.1 Types of tetrahedra

Three types of tetrahedra, with respect to the moving point p, must be defined
(see Fig. 20.7(a) for an example in the plane):

Real tetrahedra: are the tetrahedra τi that are incident to the faces of
link(p), but outside star(p).

Imaginary tetrahedra: are the ears σi of star(p), as defined in Section 20.2.3.
They are imaginary because they do not exist yet, but some would exist
if p was removed or moved somewhere else. Remember that 2-ears and
3-ears can exist.

Behind tetrahedra: are real tetrahedra that are ‘behind’ p and its trajec-
tory. In theory, they are not mandatory, but in practice they permit us to
test fewer tetrahedra (for the intersection with the trajectory), and not to
retest tetrahedra that have been previously tested. The criterion for a real
tetrahedron τ to be a behind tetrahedron is if the orthogonal projection
of the centre of its circumsphere, denoted sphere(τ), onto the trajectory
falls behind p, see Fig. 20.7(a).

372 Hugo Ledoux

(a) (b)

p

closest intersectionbehind triangles

trajectory of p

real triangles

imaginary triangle

p

Fig. 20.7 (a) The different types of triangles needed to move the vertex p along the
trajectory. Real triangles are the dark shaded ones, and one example of an imaginary
triangle is light shaded. Notice that a behind triangle is always also a real triangle.
(b) p must be moved to the closest intersection of a circumcircle along the trajectory.
The triangle having the closest intersection is the shaded triangle (a real triangle).

20.3.3.2 The algorithm

The general idea of the algorithm is that, given the moving point p and its
final destination x, we must move p step-by-step to the closest topological
event, perform a flip, and then do these two operations again until p reaches
the location x. As shown in Fig. 20.7(b), the closest topological event is the
location along the trajectory (the line segment px) where the intersection be-
tween px and the circumspheres of the real tetrahedra of p and the imaginary
tetrahedra of p (only the valid ears are tested) is the closest. Observe that
there are two possible cases (this is illustrated in Fig. 20.8):

(1) p is ‘moving in’ the circumsphere of a real tetrahedron;
(2) p is ‘moving out’ of the circumsphere of an imaginary tetrahedron.

The new algorithm I present, MoveOnePoint (Fig. 20.3.3.2), is for moving
a single point in a set S (while all the other ones are fixed). It is assumed that
S is in general position. MoveOnePoint start by initialising a list, denoted
B, containing all the behind tetrahedra of p. B is built by checking if the
orthogonal projection of every centre of sphere(τi) falls ‘before’ the trajectory
px; if it is then τi is added to B. Although it is not a necessity to store lists
for the real and imaginary tetrahedra, it may be a good idea to built them
at the beginning and simply update them as flips are performed. The lists
are not necessary because at each step of the process the real and imaginary
tetrahedra can be efficiently retrieved on the fly by simply identifying all the
tetrahedra forming star(p); the data structure used to store the DT should
permit that, but these are not discussed here due to space constraints.

In order to get the tetrahedron (real or imaginary) whose circumsphere has
the closest intersection, a simple test that computes the intersection between

20 Kinetic 3D Voronoi Diagram for Simulation 373

p

p p p

(a) (b) (c) (d)

Fig. 20.8 Two cases are possible when p is moved along a trajectory. At all times,
the real triangles are the light shaded ones. (a) The closest intersection is with a
real triangle. (b) p is moved to the circumcircle, a flip22 is performed and the real
triangles are updated. (c) The next closest intersection is with an imaginary triangle
(dark shaded triangle). (d) p is moved to the circumcircle, a flip22 is performed and
the real triangles are updated. Notice also that the behind triangles are updated,
while they were not when p moved in a real triangle.

Input: DT(S) T ; the point p to move; final destination x
Output: T is modified: p is at location x
1: initialise B {let B be a simple dynamic list}
2: while p is not at location x do
3: τ1 ← get tetra (real or imaginary) having closest intersection with trajectory
4: move p to intersection
5: if τ1 is a real tetrahedron then
6: τ ← get tetrahedron inside star(p) adjacent to τ1
7: if τ ∪ τ1 is convex then
8: flip23(τ ,τ1)
9: else

10: flip32(τ ,τ1,τ2)
11: end if
12: else {τ1 is an imaginary tetrahedron}
13: if τ1 is a 2-ear then
14: remove from B the 2 tetrahedra outside star(p) incident to τ1
15: flip23(τ1)
16: add τ1 to B {the ear becomes a behind tetrahedron}
17: else {τ1 is a 3-ear}
18: remove from B the 3 tetrahedra outside star(p) incident to τ1
19: flip32(τ1)
20: add τ1 to B {the ear becomes a behind tetrahedron}
21: end if
22: end if
23: end while

Fig. 20.9 Algorithm MoveOnePoint(T , p, x)

a line segment and a sphere is used. As explained in Bourke [9], the idea is to
start with the parametric equation of the line segment px, such that at t = 0
we are at location p, and at t = 1 we are at location x. By substituting the
equation of px with the equation of a sphere, we can get a quadratic equation
that has no solution (no intersection), one solution (sphere is tangent to px),
or two solutions (the line intersects the sphere). We also know where along

374 Hugo Ledoux

the line segment the intersection(s) occur(s): if t < 0 then it is before p,
and if t > 0 it is after x. Observe that when we are dealing with imaginary
tetrahedra, the intersection with the highest value of t is to be considered as
we are moving out of a sphere, while the smallest value of t is considered for
real tetrahedra.

When S is in general position, the rest of the algorithm is straightforward.
Indeed, Albers et al. [2] show that when p is moved to the closest topological
event, then a flip (either flip23 or flip32) is always possible, i.e. there will not
be unflippable cases.

An important point is that when p moves out of an imaginary tetrahedron,
the list B must be updated. As shown in Fig. 20.8, the behind tetrahedra are
modified when an ear is flipped, but not when p moves in the circumsphere of
a real tetrahedron. In three dimensions, the ear σ flipped becomes a tetrahe-
dron τ (spanned by the four vertices of σ) that must be added to B. The two
or three neighbours of τ (depending if σ was a 2- or 3-ear) outside star(p)
must also be deleted from B.

20.3.3.3 Moving several points

Let S be a set of points in R
3, where several points are moving over time.

Each point is moving according to a linear trajectory and has a velocity v;
the time taken to reach its next topological event, called tt , is therefore tt =
d/v, where d is the distance to the closest intersection between its trajectory
and the circumspheres of the real and imaginary tetrahedra. As explained
in Mostafavi and Gold [40], to ensure that at a given time t all the moving
points are where they should be, a global time needs to be kept (e.g. since the
start of the simulation at t = 0). If only tt was considered, then a case where
a point having many topological events close to each others would delay the
movement of other points.

Three following types of time must therefore be considered: t is the current
time (time elapsed since t = 0); tt is the time to the next topological event; and
tp is the predicted time (global time) for a point to reach the next topological
event. The three types are linked:

tp = t + tt . (20.1)

To ensure that the points are moved in the correct order, i.e. in such a way
that the combinatorial structure of the VD/DT stays valid, a priority queue
containing the ti

p of every moving point i ∈ S is kept. At each step, the point
i whose ti

p is the earliest is popped from the queue and processed. After the
movement of the point i, ti

p must be recalculated: the updated ti becomes
ti
p, and a new ti

p must be computed with the new ti
t . The types of time are

depicted in Fig. 20.10 for the movement of two points a and b. Observe that
a went through two topological events before reaching its current position,

20 Kinetic 3D Voronoi Diagram for Simulation 375

a

b

current position of a

current position of b

ta

tb
tbt

tat

tbp

tap

time

time

t = 0

Fig. 20.10 The three types of time needed for moving several points at the same
time. The next movement to be made is for point b, since tb

p is before ta
p. (Figure after

Mostafavi and Gold [40])

and that b went through three. The total predicted time for point b is before
that of point a, so b will be moved before a (although ta

t < tb
t).

After a point i has been moved, the t j
p of all the points j that were ‘in-

fluenced’ by the movement must update their t j
t (and thus their t j

p). The
movement of i modifies the shapes of all the tetrahedra incident to i, and
since these can be the real tetrahedra of other points, the points j that form
link(i), plus the points forming the link of these, must be updated.

20.4 Applications

The FLM based on the VD could obviously be used for simulation purposes in
three dimensions, provided that we can formalise the physical forces applying
to every location in space. Because the movement of points in a VD is rather
computationally expensive (when all the points are moving simultaneously),
the simulation of atmospheric or oceanographic phenomena on a large scale
might not be the most suitable examples right now—we want to obtain the
weather forecast for tomorrow, today! A representative example is the simu-
lation of underground water, for instance for a city. Questions such as ‘where
does the ground water come from?’, ‘how does it travel?’, and ‘where do water
contaminants come from, and where are they going?’, can all be answered if
we can adequately model the phenomenon. The work presented in this paper
has already been used, by Dr Mostafavi at the Université Laval, Québec City,
Canada [39], for the development of a prototype GIS modelling underground
water. His team is currently working on defining the governing equations to
obtain the vector and the velocity of every point in three dimensions, and it

376 Hugo Ledoux

is hoped that the kinetic VD will yield results that are more accurate than
the ones with methods currently used.

20.5 Discussion

It should be noticed that the simulation of environmental processes is one of
many of the potential applications of the kinetic three-dimensional Voronoi
diagram. As briefly mentioned, it can be very useful in other disciplines, such
as in engineering of physics. It is also potentially a tool for the interactive
modelling of datasets [4], and one can think of an application where the user
can ‘play’ at will with a dataset by adding, removing or moving objects.

The description of the algorithm MoveOnePoint, as presented in this
paper, is not totally complete because the degenerate cases were not covered
(it assumed that the set of points is in general position). Fixing an algorithm
so that it is robust for all inputs/situations is usually a cumbersome and
difficult task, especially for 3D geometric algorithms that are plagued with
special cases [47]. The handling of degenerate cases (coplanar/cospherical
points, collisions between points, etc.) was excluded due to of space con-
straints, but details and insights have been published previously by Ledoux
[35].

It should also be stated that the algorithm presented offers one solution to
the general problem of managing temporal data in a GIS. Indeed, if, as Gold
has been advocating for years [24, 27], the VD is used to manage topological
relationships between objects in a map, then we obtain a spatial model where
insertion, deletion and movement of objects is possible locally, without the
need to reconstruct from scratch the topological relationships when there is
a modification to the map. This means that every operation is reversible.
As shown in Gold [25] and Mioc [37], by simply keeping a ‘log file’ of every
operation done it is possible to rebuild each ‘topological state’ of a VD, at
any time. There is no need to keep various ‘snapshots’ of the data at different
times for further analysis: when a representation at a specific time is required,
it is reconstructed from the original data and from the log file. The work
of Gold [25] and Mioc [37] was made for the VD in 2D, but, as shown in
Sect. 20.2, the construction is also possible in 3D, and so is the deletion of
vertices [14, 36]. At this moment, only algorithms for the VD of points in 3D
have been implemented, but, as is the case for 2D [33], we can envision that
in the forseeable future efficient algorithms for 3D VD for a set in which lines
and surfaces are present will be available.

20 Kinetic 3D Voronoi Diagram for Simulation 377

Acknowledgements

I would like to thank Christopher Gold and Maciej Dakowicz for several useful
discussions concerning the kinetic Voronoi diagram in two dimensions.

References

[1] Albers G (1991) Three-dimensional dynamic Voronoi diagrams (in Ger-
man). Ph.D. thesis, Universität Würzburg, Würzburg, Germany.

[2] Albers G, Guibas LJ, Mitchell JSB, and Roos T (1998) Voronoi diagrams
of moving points. International Journal of Computational Geometry and
Applications, 8:365–380.

[3] Albers G and Roos T (1992) Voronoi diagrams of moving points in higher
dimensional spaces. In Proceedings 3rd Scandinavian Workshop On Al-
gorithm Theory (SWAT’92), volume 621 of Lecture Notes in Computer
Science, pages 399–409. Springler-Verlag, Helsinki, Finland.

[4] Anselin L (1999) Interactive techniques and exploratory spatial data
analysis. In PA Longley, MF Goodchild, DJ Maguire, and DW Rhind,
editors, Geographical Information Systems, pages 253–266. John Wiley
& Sons, second edition.

[5] Augenbaum JM (1985) A Lagrangian method for the shallow water equa-
tions based on the Voronoi mesh-flows on a rotating sphere. In MJ Fritts,
WP Crowley, and HE Trease, editors, Free-Lagrange method, volume 238,
pages 54–87. Springer-Verlag, Berlin.

[6] Aurenhammer F (1991) Voronoi diagrams: A survey of a fundamental
geometric data structure. ACM Computing Surveys, 23(3):345–405.

[7] Bajaj C and Bouma W (1990) Dynamic Voronoi diagrams and Delau-
nay triangulations. In Proceedings 2nd Annual Canadian Conference on
Computational Geometry, pages 273–277. Ottawa, Canada.

[8] Bivand R and Lucas A (2000) Integrating models and geographical in-
formation systems. In S Openshaw and RJ Abrahardt, editors, Geocom-
putation, pages 331–363. Taylor & Francis, London.

[9] Bourke P (1992) Intersection of a line and a sphere (or circle). http:
//astronomy.swin.edu.au/~pbourke/geometry/sphereline/.

[10] Burrough PA, van Deursen W, and Heuvelink G (1988) Linking spatial
process models and GIS: A marriage of convenience or a blossoming
partnership? In Proceedings GIS/LIS ’88, volume 2, pages 598–607. San
Antonio, Texas, USA.

[11] Chen J, Zhao R, and Li Z (2004) Voronoi-based k-order neighbour rela-
tions for spatial analysis. ISPRS Journal of Photogrammetry & Remote
Sensing, 59:60–72.

378 Hugo Ledoux

[12] Cignoni P, Montani C, and Scopigno R (1998) DeWall: A fast divide
& conquer Delaunay triangulation algorithm in Ed . Computer-Aided
Design, 30(5):333–341.

[13] De Fabritiis G and Coveney PV (2003) Dynamical geometry for multi-
scale dissipative particle dynamics. Computer Physics Communications,
153:209–226.

[14] Devillers O (2002) On deletion in Delaunay triangulations. International
Journal of Computational Geometry and Applications, 12(3):193–205.

[15] Edelsbrunner H and Shah NR (1996) Incremental topological flipping
works for regular triangulations. Algorithmica, 15:223–241.

[16] Erlebacher G (1985) Finite difference operators on unstructured trian-
gular meshes. In MJ Fritts, WP Crowley, and HE Trease, editors, Free-
Lagrange Method, volume 238, pages 21–53. Springer-Verlag, Berlin.

[17] Ferrez JA (2001) Dynamic triangulations for efficient 3D simulation of
granular materials. Ph.D. thesis, Département de Mathématiques, École
Polytechnique Fédérale de Lausanne, Switzerland.

[18] Field DA (1986) Implementing Watson’s algorithm in three dimensions.
In Proceedings 2nd Annual Symposium on Computational Geometry, vol-
ume 246–259. ACM Press, Yorktown Heights, New York, USA.

[19] Freda K (1993) GIS and environment modeling. In MF Goodchild,
BO Parks, and LT Steyaert, editors, Environmental modeling with GIS,
pages 35–50. Oxford University Press, New York.

[20] Fritts MJ, Crowley WP, and Trease HE (1985) The Free-Langrange
method, volume 238. Springler-Verlag, Berlin.

[21] Gahegan M and Lee I (2000) Data structures and algorithms to support
interactive spatial analysis using dynamic Voronoi diagrams. Computers,
Environment and Urban Systems, 24(6):509–537.

[22] Gavrilova ML and Rokne J (2003) Updating the topology of the dy-
namic Voronoi diagram for spheres in Euclidean d-dimensional space.
Computer Aided Geometric Design, 20:231–242.

[23] Gold CM (1990) Spatial data structures—the extension from one to
two dimensions. In Mapping and Spatial Modelling for Navigation, vol-
ume 65, pages 11–39. Springer-Verlag, Berlin, Germany.

[24] Gold CM (1991) Problems with handling spatial data—the Voronoi ap-
proach. CISM Journal, 45(1):65–80.

[25] Gold CM (1996) An event-driven approach to spatio-temporal mapping.
Geomatica, Journal of the Canadian Institute of Geomatics, 50(4):415–
424.

[26] Gold CM, Remmele PR, and Roos T (1995) Voronoi diagrams of line
segments made easy. In Proceedings 7th Canadian Conference on Com-
putational Geometry, pages 223–228. Quebec City, Canada.

[27] Gold CM, Remmele PR, and Roos T (1997) Voronoi methods in GIS.
In M van Kreveld, J Nievergelt, T Roos, and P Widmayer, editors, Al-
gorithmic Foundations of Geographic Information Systems, volume 1340
of Lecture Notes in Computer Science, pages 21–35. Springer-Verlag.

20 Kinetic 3D Voronoi Diagram for Simulation 379

[28] Guibas L, Karaveles M, and Russel D (2004) A Computational Frame-
work for Handling Motion. In Proceedings 6th Workshop on Algorithm
Engineering and Experiments, pages 129–141. New Orleans, USA.

[29] Guibas L and Russel D (2004) An empirical comparison of techniques
for updating Delaunay triangulations. In Proceedings 20th Annual Sym-
posium on Computational Geometry, pages 170–179. ACM Press, Brook-
lyn, New York, USA.

[30] Guibas LJ and Stolfi J (1985) Primitives for the manipulation of general
subdivisions and the computation of Voronoi diagrams. ACM Transac-
tions on Graphics, 4:74–123.

[31] Imai K, Sumino S, and Imai H (1989) Geometric fitting of two corre-
sponding sets of points. In Proceedings 5th Annual Symposium on Com-
putational Geometry, pages 266–275. ACM Press, Saarbrücken, West
Germany.

[32] Joe B (1989) Three-dimensional triangulations from local transforma-
tions. SIAM Journal on Scientific and Statistical Computing, 10(4):718–
741.

[33] Karavelas MI (2004) A robust and efficient implementation for the seg-
ment Voronoi diagram. In International Symposium on Voronoi Dia-
grams in Science and Engineering, pages 51–62. Tokyo, Japan.

[34] Lawson CL (1986) Properties of n-dimensional triangulations. Computer
Aided Geometric Design, 3:231–246.

[35] Ledoux H (2006) Modelling three-dimensional fields in geoscience with
the Voronoi diagram and its dual. Ph.D. thesis, School of Computing,
University of Glamorgan, Pontypridd, Wales, UK.

[36] Ledoux H, Gold CM, and Baciu G (2005) Flipping to robustly delete a
vertex in a Delaunay tetrahedralization. In Proceedings International
Conference on Computational Science and its Applications—ICCSA
2005, volume 3480 of Lecture Notes in Computer Science, pages 737–
747. Springer-Verlag, Singapore.

[37] Mioc D (2002) The Voronoi spatio-temporal data structure. Ph.D. the-
sis, Département des Sciences Géomatiques, Université Laval, Québec,
Canada.

[38] Mostafavi MA (2001) Development of a global dynamic data structure.
Ph.D. thesis, Département des Sciences Géomatiques, Université Laval,
Québec City, Canada.

[39] Mostafavi MA (2006) Personal communication.
[40] Mostafavi MA and Gold CM (2004) A global kinetic spatial data struc-

ture for a marine simulation. International Journal of Geographical In-
formation Science, 18(3):211–228.

[41] Nativi S, Blumenthal MB, Caron J, Domenico B, Habermann T, Hertz-
mann D, Ho Y, Raskin R, and Weber J (2004) Differences among the
data models used by the geographic information systems and atmo-
spheric science communities. In Proceedings 84th Annual Meeting of
the American Meteorological Society. Seattle, USA.

380 Hugo Ledoux

[42] Okabe A, Boots B, Sugihara K, and Chiu SN (2000) Spatial tessellations:
Concepts and applications of Voronoi diagrams. John Wiley and Sons,
second edition.

[43] Parks BO (1993) The need for integration. In MF Goodchild, BO Parks,
and LT Steyaert, editors, Environmental Modeling with GIS, pages 31–
34. Oxford University Press, New York.

[44] Raper J (2000) Multidimensional geographic information science. Taylor
& Francis, London.

[45] Roos T (1991) Dynamic Voronoi diagrams. Ph.D. thesis, Universität
Würzburg, Germany.

[46] Schaller G and Meyer-Hermann M (2004) Kinetic and dynamic Delaunay
tetrahedralizations in three dimensions. Computer Physics Communica-
tions, 162(1):9–23.

[47] Schirra S (1997) Precision and robustness in geometric computations.
In M van Kreveld, J Nievergelt, T Roos, and P Widmayer, editors, Al-
gorithmic Foundations of Geographic Information Systems, volume 1340
of Lecture Notes in Computer Science, pages 255–287. Springer-Verlag,
Berlin.

[48] Strang WG and Fix GJ (1973) An analysis of the finite element method.
Prentice-Hall, Englewood Cliffs, USA.

[49] Sugihara K and Inagaki H (1995) Why is the 3D Delaunay triangulation
difficult to construct? Information Processing Letters, 54:275–280.

[50] Sui DZ and Maggio RC (1999) Integrating GIS with hydrological mod-
eling: Practices, problems, and prospects. Computers, Environment and
Urban Systems, 23:33–51.

[51] Watson DF (1981) Computing the n-dimensional Delaunay tessellation
with application to Voronoi polytopes. Computer Journal, 24(2):167–
172.

[52] Zlatanova S, Abdul Rahman A, and Pilouk M (2002) 3D GIS: Current
status and perspectives. In Proceedings Joint Conference on Geo-spatial
Theory, Processing and Applications. Ottawa, Canada.

Chapter 21

Techniques for Generalizing Building
Geometry of Complex Virtual 3D City
Models

Tassilo Glander and Jürgen Döllner

Abstract

Comprehensible and effective visualization of complex virtual 3D city models
requires an abstraction of city model components to provide different degrees
of generalization. This paper discusses generalization techniques that achieve
clustering, simplification, aggregation and accentuation of 3D building ensem-
bles. In a preprocessing step, individual building models are clustered into
cells defined by and derived from its surrounding infrastructure network such
as streets and rivers. If the infrastructure network is organized hierarchically,
the granularity of the cells can be varied correspondingly. Three fundamen-
tal approaches have been identified, implemented, and analyzed: The first
technique uses cell generalization; from a given cell it extrudes a 3D block,
whose height is calculated as the weighted average of the contained buildings;
as optimization, outliers can be managed separately. The second technique
is based on convex-hull generalization, which approximates the contained
buildings by creating the convex hull for the building ensemble. The third
technique relies on voxelization, which converts the buildings’ geometry into
a regular 3D raster data representation. Through morphological operations
and Gaussian blurring, aggregation and simplification is yielded; polygonal
geometry is created through a marching cubes algorithm. The paper closes
with conclusions drawn with respect to the characteristics and applicability
of the presented generalization techniques for interactive 3D systems based
on complex virtual 3D city models.

Hasso-Plattner-Institute at the University of Potsdam
tassilo.glander, doellner@hpi.uni-potsdam.de

381

382 Tassilo Glander and Jürgen Döllner

21.1 Introduction

A virtual 3D city model represents both a technical and conceptual framework
to assemble, integrate, present, and use 3D geoinformation as well as for 3D
geovisualization [8]. Besides their application in GIS, they provide an effective
user interface to complex spatial 3D information in a growing number of IT
applications and system such as enterprise systems, navigation, telecommu-
nication, disaster management, simulators, and e-government. In particular,
virtual 3D city models facilitate the integration of heterogeneous 2D and
3D geo data, and their interactive visualization offers comprehensible and
efficient communication, exploration, and analysis of complex geoinforma-
tion. In addition, 3D city models form part of administrative geoinformation
databases, services, and infrastructures [7].

A common problem for implementation and usability of virtual 3D city
model systems arises from their complexity with respect to the number of
individual components, their computer graphics representations, and the ren-
dering resources [2,35]. A typical 3D city model consists of several hundreds
of thousand objects, including models of buildings, vegetation, and infras-
tructure elements. To achieve efficient rendering and interactive frame rates,
level-of-detail geometry representations are required that control the polygon
count and texture resources [3]. Furthermore, the 3D city model needs to be
represented at different generalization levels, for example, to enable context-
&-detail views, to enhance comprehensibility of depictions, and to support
hierarchical navigation and browsing.

Our investigation addresses a fundamental problem of today’s visualization
of fine granular, complex 3D city models: Their visualization frequently shows
‘noise’ and ‘flickering’ that appears in areas that are far away from the view
point because 3D objects are mapped to few pixels or even only to a fraction
of a pixel. Similarly, pedestrian or car driver perspectives tend to produce a
‘sea of houses’ beyond a certain distance, making it impossible for the user
to identify these areas. Furthermore, abstract information, such as hierarchy
information such as whole districts and quarters of a city, is not explicitly
visible if the full model resolution is used for depiction. All these phenomena
result because information density of the 3D city model is not adjusted.

As a key technique to control information density, generalization both
helps to reduce the graphics complexity as well as the cognitive complexity
of 3D city models. Similar to maps, features of city models should be visual-
ized at different scales to accomplish different spatial tasks. In addition, ‘[. . .]
this abstraction and concentration also helps to discern between relevant and
irrelevant information: only those objects have to be presented, that are im-
portant for the current task – irrelevant information can be suppressed.’[29]
Traditionally, generalization of map objects requires experienced cartogra-
phers, who are using the human ability to abstract. For 2D vector data as
well as for 3D objects, downscaling does not suffice because readability and
comprehensibility have to be preserved [13]. These requirements are more im-

21 Generalizing Building Geometry of Complex Virtual 3D City Models 383

portant than exactly scaled geometry or its exactly preserved appearance. For
this reason, generalization does not only simplify objects but also deforms,
drops, aggregate, classifies, or unifies objects and their features. That is, gen-
eralization techniques apply operations such as simplification, aggregation,
classification, and displacement.

Fig. 21.1 Example of artistic 3D city map of St. Petersburg (from
http://www.escapetravel.spb.ru) (left) and an automatically generalized 3D city
model of Berlin, generated by the presented cell-based method (right)

This paper concentrates on generalizing 3D building ensembles as one main
category of city model objects. The presented techniques first cluster 3D
building models into ensembles according to a given hierarchical street and
infrastructure network (e.g., car navigation data) and then automatically
generalize the ensembles in the underlying cells defined by the network (Fig.
1). Three different approaches, cell-based, convex-hull-based, and voxel-based
generalization algorithms, are outlined and evaluated.

Our work emphasizes the generalization of clustered 3D building models
in contrast to various 2D footprint generalization algorithms as well as var-
ious 3D building generalization techniques that simplify and abstract single
3D building models. Furthermore, our core goal is to automatically derive
generalized building ensembles at various levels of granularity, optimized for
using these generalized models in interactive 3D city model visualization in
contrast to generalized 2D map production.

21.2 Related Work

Meng and Forberg [24] give an overview of state-of-the-art and challenges of
3D building generalization, describing the current scale space of 3D buildings

384 Tassilo Glander and Jürgen Döllner

as ‘a linear continuum, along which an arbitrary number of milestones can be
said to exist referred to as Levels of Detail (LoD)’. The LoD provide differ-
ent representations of the buildings with different degrees of generalizations.
However, there exist different classifications of the LoD, so no standards com-
pared to the scales in cartography have been established yet. Elementary 2D
map generalization approaches are described, e.g., by [13][14][30].

Among the first techniques for 3D building generalization, the application
of morphological operations on 3D geometry was suggested by Mayer [22][23]:
a curvature space simplification has been developed, which detects local cur-
vature and shifts the adjacent polygons accordingly. Both methods apply to
specific geometry structures but are costly in terms of processing time. In
[11] generalization is based on moving near parallel faces of building geom-
etry to a common plane and merging them if possible. Unfortunately, the
algorithm requires orthogonal buildings to work. An automated algorithm
for generalizing 3D building geometry is described in [26].

The feature removal algorithm of Ribelles et al. [27] was applied on build-
ings by Thiemann [33] to create a constructive solid geometry (CSG) repre-
sentation of the given building geometry. It uses the planes of the building’s
faces to subdivide the geometry into a body and features, which can be inte-
grated or left out of the generalized representation, depending on the degree
of generalization. Similarly, Kada [17] uses a few approximating planes to
remodel the building with simpler geometry. Another technique for LoD cre-
ation [26] flattens roofs and merges adjacent polyhedra, followed by collapsing
facades while respecting visually important walls.

While these 3D generalization approaches focus on single buildings, aggre-
gation of multiple buildings currently is usually referred to as the next im-
portant step. Stüber [31] presents a framework for generalization of building
models while preserving visual correctness. This approach simplifies build-
ings based on feature removal and aggregates buildings depending on their
visibility. However, automatic aggregation appears to be limited to simple
configurations.

Motivated by classical cartography, Anders [1] applies generalization tech-
niques on 2D projections of linear building groups. For each of the main axes’
projections, the shapes are aggregated and simplified using a specific general-
ization technique [28]. The simplified shapes are extruded and intersected to
form the generalized building group. The approach achieves aggregation and
simplification, however it is limited to linear building groups. Sester [29] sug-
gests a 3D visualization providing simplification, aggregation, displacement
and enlargement by extruding the processed ground plans to a certain height.
In addition, the height can be used to further emphasize special buildings in
for pedestrian navigation.

CityGML [5], a proposed interchange format for virtual 3D city models
currently discussed by the Open Geospatial Consortium (OGC), differenti-
ates five consecutive levels of detail (LOD-0 to LOD-4) [18], where objects
become more detailed with increasing LOD regarding both geometry and the-

21 Generalizing Building Geometry of Complex Virtual 3D City Models 385

matic differentiation. CityGML models can contain multiple representations
for each object in different LOD simultaneously but does not address the way
these LODs are created or transferred. In [6] a continuous level-of-detail con-
cept for individual building models has been introduced, but no automated
derivation of generalized building ensembles is considered.

Real-time 3D rendering relies on efficient treatment of polygonal 3D data
sets, and it provides a variety of LoD techniques, which can be classified into
static and dynamic techniques in general. Static techniques provide discrete
LoD representations (e.g., [9][19][12]), whereas dynamic techniques trans-
form polygonal surfaces partially according to the current viewing situation
(e.g.,[16]). Common to all techniques, the original high-resolution 3D object
is simplified such that its appearance is preserved, but it is not generalized
nor do the techniques consider specific semantics or characteristics of the type
of the 3D object to be simplified.

21.3 Generalization Techniques for 3D Buildings

In this section, three generalization techniques are presented that are pri-
marily based on simplifying and aggregating 3D building geometry. Inspired
by classical city plans and bird’s eye views (Fig. 1), these techniques achieve
generalized 3D building ensembles that facilitate context views of geovirtual
3D environments.

As a control parameter, we introduce the term degree of generalization
(DoG) in contrast to level of detail (LOD). While LOD usually refers to
simplified representations of a single object, DoG describes the level of ab-
straction, which allow us, for example, to represent a group of neighboring
buildings by a single block. In addition, to achieve a simplified and compre-
hensible visualization, we do not use façade textures that would amplify the
visual complexity.

The input data include 3D building models and 2D vector-based, hierarchi-
cal street and infrastructure networks (e.g., streets, rivers). In the following
examples, part of the Berlin 3D city model (Fig. 2) is used for illustration
together with a navigation street data set. The streets are attributed by
weights, which differentiate four street types. The weights are used by the
techniques to define the streets’ width.

21.3.1 Simple Cell Generalization

This technique aggregates all buildings within one cell defined through the
enclosing network system by extruding the cell’s boundary to a certain height
creating a prismatic block. To leave enough space for the streets, they are

386 Tassilo Glander and Jürgen Döllner

Fig. 21.2 Snapshot from the visualization of part of the 3D city model of Berlin
containing approx. 60,000 3D building models and approx. 6,500 streets without gen-
eralized building models)

buffered with a characteristic width and cut out of the block ground plan
before the extrusion stage using Boolean operations. The degree of general-
ization (DoG) can be controlled by the hierarchy level of the streets considered
for parceling.

21.3.1.1 Parceling

Each street is defined by a consecutive points and a weight. The Compu-
tational Geometry Algorithms Library (CGAL [4]) is used to intersect the
curves defined by the streets and to calculate the cell geometry [10][34]. After
the parceling, CGAL supports aggregated point location queries and returns
the hit cell for each point. This is done to cluster the buildings represented by
their individual centroids according to shared cells. The results of this stage
are cells (Fig. 3) and a mapping from each cell to a set of contained buildings,
the building ensemble.

21.3.1.2 Calculating the Cell Height

The cell height is calculated by the weighted average height of the buildings
of a cell. The weight of a building can be defined by its footprint area.

21 Generalizing Building Geometry of Complex Virtual 3D City Models 387

Fig. 21.3 Street network (left) and calculated cells (right)

Let height(bi) be the height of building bi and area(bi) its area, then the
weighted average height h of a set of n buildings is

h = ∑n
i=1 height(bi) ·area(bi)

∑n
i=1 area(bi)

For low-density cells the calculated value obviously does not reflect the real
situation. Instead of dividing by the sum of the buildings’ area, the cell area
should be used. However, in medium to high-density cells this leads to very
small blocks. Therefore, if the ratio of the building area sum to the cell area
gets too small, either no block should be created, or the original buildings
have to be preserved.

21.3.1.3 Subtracting the Network Elements

The cells have to be shrunken to leave enough space for the network el-
ements such as the streets. To accomplish this while supporting different
street weights, the streets are buffered before to yield polygons (Fig. 4). Then
the adjacent street polygons are subtracted from the cell polygon using 2D
Boolean operations.

Fig. 21.4 Vector-based network elements (left) and buffered variant (right)

388 Tassilo Glander and Jürgen Döllner

21.3.1.4 Handling of Outlier Buildings

To improve the appearance of generalized building ensembles, outliers can
be excluded from the aggregation and placed separately into the generalized
version. By outliers we refer to

• landmark buildings, i.e. buildings that explicitly have been assigned a
higher weight (e.g., landmark buildings, public buildings);

• outlier buildings, i.e. buildings that stand out locally as they are con-
siderably higher than their neighborhood.

Outlier building can be determined by comparing the building height with
the calculated weighted average height of the cell. To respect the character-
istics of the local height distribution, the variance, respectively the standard
deviation, is calculated:

var(h1, . . . ,hn) = σ2 =
1
n

n

∑
i=1

(hi−h)2 with hi = height(bi)

The standard deviation σ2 can be used more intuitively as it has the same
scale and units as the height. Thus, a building is considered as an outlier,
if its height is larger than the average height h plus k-times the standard
deviation:

is outlier(b) =
{

true height(b)h+ k ·σ
f alse else

With k = 2, a reasonable identification of outliers can be done for large
scales. A smaller selection in smaller scales can be achieved with bigger values
for k.

21.3.1.5 Results

The final generalized geometry of a cell is given by extruding the cell polygon
to its calculated average height. Fig. 5 shows the generalized geometry for
different network hierarchy levels.

Fig. 21.5 Generalized cells for three degrees of generalization (no outlier handling)

21 Generalizing Building Geometry of Complex Virtual 3D City Models 389

The results of the simple cell generalization come close to depictions found
in many 2D topographic maps. The cutout of the streets contributes most
to the familiar map-look. The height of the cells observed from appropri-
ate viewing angles gives a hint toward the real-world situation and enables
relative assessment. As main advantages, this technique requires little pro-
cessing time and the geometric complexity of the generalized models is low
as well. The abstraction of the complex models might pose a way for content
providers to offer an overview version of a 3D city model. As a disadvantage,
the bare cell blocks do not preserve the appearance. In the case of top views,
different heights are barely noticeable even with appropriate shading. With
the additional integration of outliers and landmark buildings (Fig. 6), the
effectiveness can be improved, as orientation is by far easier especially from
low perspectives.

Fig. 21.6 Generalized cells with outlier handling (left), which are particularly im-
portant for the recognition of a city’s panorama (right)

21.3.2 Convex-Hull-Based Generalization

This generalization technique achieves closer representations of the original
buildings of an ensemble using the 3D convex hull as an approximation of
contained buildings. Since for maps an exact representation is not the primary
concern, the convex-hull operation is applied as a mean to simplify and to
aggregate.

Compared to the simple cell generalization, buildings are merged to a
geometry that reflects the original height distribution in a more sensitive
way, as the highest building inside a block creates a peak in the hull.

21.3.2.1 Implementation

For each cell the geometry of the contained buildings is extracted and the
points are fed into the convex hull calculation. For convex hull computation,

390 Tassilo Glander and Jürgen Döllner

a number of libraries exist, including CGAL and qHull [25]. The result is
returned by a set of polygons representing the hull, which is finally used as
the generalized cell geometry.

21.3.2.2 Results

The results –for typical large city– show an ‘organic look’ (Fig. 7) as the con-
vexity generally induces smoother structures. This is against the principle of
visual correctness and especially does not show the typical characteristics of
buildings orthogonal, parallel and sharp-edged structures. But, comprehensi-
bility is the main task of maps and clearly the hull hides many details while
preserving in a way the height characteristics. A more severe problem is the
convexity when a cell is concave. In this case, the generalized block overlaps
its cell possibly leading to intersections with other geometry and damages the
appearance of the network elements. Additionally, the landmark visualization
presented before cannot be integrated in a straightforward way.

Fig. 21.7 Examples of the convex hull technique, shown at 4 different levels of
generalization

As a solution to these problems and to provide for a finer selection of the
degree of generalization, clusters based on neighborhood could be created and
used as input for the convex hull calculation instead of the mere cells. This
would allow us to use the parameter of the minimal cluster distance to define
the DoG, which is currently limited to the levels of the network’s hierarchy.

21 Generalizing Building Geometry of Complex Virtual 3D City Models 391

21.3.3 Voxel-Based Generalization

This generalization technique applies raster data filter operations to 3D raster
data gained from the buildings’ geometry [15]. To do so, the geometry is sam-
pled within a 3D grid. Then, morphological opening and Gaussian blurring
is performed. To convert the 3D grid to geometry, we apply the marching
cubes algorithm to the grid. In addition, the raster data is processed with
morphological opening operations to perform an aggregation.

As stated above, morphological operations have been applied to vector
data representations before [22][23]. However, we also wanted to experiment
with other raster data filter operations like Gaussian blurring.

21.3.3.1 Voxelization

The first step transforms the geometry from vector space to 3D grid space.
This is done through a regular grid that is laid over the geometry and samples
it at equidistant points. The grid is set up as follows: The resolution can be
given as the ratio res = realworldunits

gridunits . Thus, the dimensions of the grid dim
can be calculated by taking the geometry’s extent represented through the
bounding box’s diagonal dbbox, and dividing it by the resolution:

dim =

⎛
⎝ dimx

dimy
dimz

⎞
⎠ =

[
1

res
·dbbox

]
+2 ·

⎛
⎝ pad

pad
pad

⎞
⎠ with pad ∈ N

To support raster data operations that expand the extent of the original
geometry, a padding pad specified in grid units is inserted on each axis’ ends.
For example a dilation applied to the raster data may enlarge connected
structures. The grid’s origin is set as the lower left front point of the geom-
etry’s bounding box minus the padding. For each grid cell, the object space
is sampled to be either inside (1) or outside (0) a solid (building). This leads
to a three dimensional binary image.

For a better sampling quality, a box filter can be used. This was done
experimentally in this work: For each voxel, not one point is sampled in the
original geometry, but 8 points of a box centered at the point. The average
of these points is then assigned to the grid cell, which leads to a gray scale
image. Currently, the filtering is implemented in a simple way and, therefore,
takes 8 times the processing time. The benefits can be seen in Fig 8, where
the appearance is smoothed and less artifacts occur if a filtered sampling is
performed.

As a simplification of the current implementation, only prismatic building
shapes are assumed and thus a point considered inside the building, if it lies
within the ground plan polygon and within the building’s height. After all
grid cells have been set, the grid is a voxel representation of the original

392 Tassilo Glander and Jürgen Döllner

Fig. 21.8 Voxelization: original 3D building ensemble (left), result of voxelization
wit a resolution of 2m (middle), and result of filtered voxelization (right))

geometry. However, the rasterization naturally implies a degradation of the
original data, which leads to alignment artifacts when transformed back to
a polygonal model. For the images, the original building geometry in the
example (Fig. 8) has been sampled with a resolution of 2 meters of the real
world geometry reflected one grid unit. Even this coarse resolution leads to
a grid size of 156×56×170 = 1,485,120 grid points.

21.3.3.2 Raster Data Operations

Many filter operations have been developed for use on raster data images.
Typically, filters to remove noise and to smooth images rely on morphological
operations. In [11][23], morphological operations have been used as vector
space operations to aggregate and simplify building geometry. Since after
voxelization, the building geometry has been transformed to 3D raster data
representation, these operations can now be applied directly.

The elementary operations can be defined as follows: The raster data is the
3D input image, where for each element (voxel) a structuring element B is
applied. The structuring element in this case is a cube of 3×3×3 units. It is
moved over the input image. For each voxel, the structuring element is com-
pared with the input image (source grid) and the output voxel is determined
as follows:

• Erosion: A grid cell in the target grid is set to 1, if all voxels of the
structuring element B can also be found in the source grid. Otherwise it
is set to 0. This is done for the whole grid.

• Dilation: A grid cell in the target grid is set to 1, if one voxel of the
structuring element B can be found in the source grid. Otherwise it is set
to 0. This is done for the whole grid.

Erosion and dilation are elementary operations, which can be used to re-
alize morphological opening and closing. Opening is achieved by applying
dilation followed by erosion to the image; it leads to an aggregation of near
structures. Closing is achieved by applying erosion followed by dilation of the
image; it is useful to eliminate small elements.

However, the effect on the raster data is determined by the grid’s res-
olution, which sets the size of one grid unit. Thus, opening and closing are

21 Generalizing Building Geometry of Complex Virtual 3D City Models 393

always parameterized with multiples of one grid unit. In addition, the current
implementation only supports binary images, i.e., no filtered voxelization can
be applied before. Fig. 9 shows a series of morphological operations applied
to our test models.

Apart from morphological operations, there are also other filters such as
tent, cubic, or quartic filters as well as the Gaussian blur filter. Its usage on the
rasterized building geometry has two benefits: First, a Gaussian blur as a low-
pass filter further eliminates small features of the geometry that are still in
the raster data. Second, the alignment structures introduced by the sampling
are dampened. Generally, sharp edges and the surface are smoothed. Fig.
10 shows how the smoothed geometry looks after performing morphological
opening.

To rely on a robust implementation of the raster data operations, the
nrrd library from the teem project [32] was chosen. The nrrd library is ac-
cessed through the command-line tool unu, which works on a simple file
format.NRRD (for ‘nearly raw raster data’). It supports a wide range of op-
erations of which resampling is used for this work. With the aim to create
smoother surfaces with less alignment artifacts, the Gaussian blur is applied
for the reasons mentioned.

21.3.3.3 Marching Cubes

In the final step, the processed raster data is transferred to polygonal rep-
resentation. For this, we extract isosurfaces, i.e. surfaces with a common
isovalue everywhere on the surface, producing a surface from the samples of
a scalar field defined as a mapping and a given isovalue, setting the thresh-
old to separate between inside and outside [21]. To accomplish this, a freely
available marching cubes implementation from [20] is used to create the ge-
ometric model. Note that all images presented in this section including the
intermediate steps (Fig. 8, 9, 10) are created after applying the Marching
Cubes to get a renderable polygonal representation.

21.3.3.4 Results

The workflow of this technique currently prohibits a completely automatic
handling since the parameters (e.g., grid resolution, morphological operations
step-width, Gaussian blur factor) have been set manually in our test model.

The result is characterized by its ‘bubble look’, lacking a typical city model
look. Through the blurring, soft shapes are introduced, while without filtering
or blurring the alignment steps are clearly visible. To control the visualization,
the resolution of the grid can be adapted, and the offset used in the opening
operation can be varied. Finally, also the Gaussian blurring could be used

394 Tassilo Glander and Jürgen Döllner

Fig. 21.9 Application of morphological operations. Starting from the model in row 1,
rows 2 and 3 show subsequent dilation operations, and rows 4 and 5 show subsequent
erosion operations

21 Generalizing Building Geometry of Complex Virtual 3D City Models 395

Fig. 21.10 Application of voxelization, opening and Gaussian blurring (left to right)

to tune the DoG, however it might be only used to smooth the alignment
structures introduced by the sampling.

21.4 Comparison

It is difficult to define appropriate and objective quality measures, as ab-
straction and generalization are ambiguous in their result, being understood
differently by different individuals. In addition, yet few conventions exist for
digital 3D city maps. While it is possible to define quantitative measures for
different generalization techniques, the current results are rather preliminary
and serve as the basis for further research. Usability tests should help to
provide these more quantitative measures in the future.

21.4.1 Qualitative Measures

In the following, we concentrate on qualitative measures of the presented
generalization techniques to evaluate their potential:

• Similarity to Maps: How do the results show similarities to 2D map
presentations?

• Similarity to Reality: How do the results show similarities to (photo-
realistic) depictions of non-generalized 3D city model depictions?

• Aggregation Capabilities: How do the techniques support building
aggregation?

• Landmark Handling: How do the techniques handle landmark and
outlier buildings?

• Controllability: How can the application control the degree of general-
ization?

• Dynamic Adaptation: How can the application change the technique’s
parameters in response to dynamically changing viewing parameters?

396 Tassilo Glander and Jürgen Döllner

21.4.2 Simple-Cell Generalization

This technique creates 3D city model depictions similar to traditional gener-
alized bird’s eye view maps if looked from above. The block structure made
from cells of intersected streets is typical and can be understood easily. In
terms of realism, the model still permits –while being an abstraction– to rec-
ognize the extents of a block. The added height gives a further hint about the
original building ensemble. The aggregation is done rather naively, depends
very loosely on the concrete building geometry and thus is insensitive against
potential complexity. Landmarks can be effectively emphasized because their
contours can be simply cut out of the cell and the landmark placed into the
gap.

The DoG can be controlled by the hierarchy level selected for the network
and the width used for network elements. A continuous transfer between
different DoG representations has not been investigated so far; a continuous
blending with a hysteresis during interactive zooming might be one solution.

21.4.3 Convex-Hull-Based Generalization

The convex-hull approach has not been used so far in maps or map-like visu-
alizations. The ‘organic’ shapes are in contrast to photorealistic depictions.
Constrained by the network, the convex hull still reveals and emphasizes the
original block boundaries. The height of the largest building contributes much
to the occurrence. However, concave cells are handled wrong by the convex
hull; in a future version, we plan to replace the convex hull by alpha shapes
[9], which can adapt the resulting hull more closely to the building geom-
etry. In addition, network segments running into blocks are covered by the
hulls. Handling landmarks and outliers is difficult because they would have
to be cut out of the block using 3D Boolean operations. Very tall landmark
buildings could just be placed within the hull, but the result would create in-
tersecting geometry. Nevertheless, 3D convex hull creation relies on a mature
algorithm working on simple points. For this reason, the technique is robust
and insensitive against geometric problems.

The parameter to control the convex hulls is the size of the cells defined
by the network. To provide more flexibility as well as to solve the aggregation
problems, one could run a clustering algorithm initiated with a given minimal
distance. The current solution does not suggest an easy mechanism for the
continuous change between different DoG representations.

21 Generalizing Building Geometry of Complex Virtual 3D City Models 397

21.4.4 Voxel-Based Generalization

The voxel-based technique is limited to small areas due to the huge amount of
required grid data. The result is unlike every map or map-like visualization.
The bubble shapes remind the original buildings but do not feature the typical
sharp edges and orthogonal structures. Still, aggregation and simplification
can be achieved and the unusual look underlines the abstraction. The viewers
know from the first view that they look at an abstraction of reality, not a
photorealistic visualization.

Landmarks can be excluded from the common voxelization at all and in-
serted later. As an alternative, they could be voxelized separately using a
higher resolution and then inserted without further simplification. This would
have the advantage that no visual break occurs in the image, but still the
building would be emphasized.

To control this technique, there is first the grid resolution. While a higher
resolution yields better quality with less alignment artifacts, it also leads
to an explosion of the data to be processed. The second parameter is the
buffer size, which controls the morphological opening. Finally the Gaussian
blur (or also other filters) can be executed with a given variance and cutoff.
Though, the blurring can be seen as a post-processing step independent from
the generalization but just to smooth the alignment stair-structures.

Voxel-based generalization cannot be used in conjunction with a dynamic
DoG in the current implementation, as the processing is not done all natively
by the prototype system. The filter operations are done using an external
utility and are re-read later from a file. Additionally, the computation time
and the memory needed prohibit a change on-the-fly.

The marching cubes algorithm used introduces a number of redundant
polygons, which is no problem for small scenes but might be a problem for
bigger city plans. Here, another post-processing step and / or a dynamic level
of detail adaptation might be necessary.

21.5 Conclusions

This paper presented and discussed three different techniques to automat-
ically derive generalized 3D building ensembles for a cell structure defined
by hierarchical networks that divide the reference plane of a virtual 3D city
model. The generalized models can be applied to improve the comprehensi-
bility and effectiveness for complex, large-area 3D city models.

The comparison revealed that while the cell-based generalization technique
leads to convincing results, the voxel- and convex hull-based techniques cur-
rently are less feasible.

Therefore, in the future we will investigate how to sharpen the presented
methods towards characteristic architectural elements of 3D building ensem-

398 Tassilo Glander and Jürgen Döllner

bles. In addition, we want to expand the methods towards further city model
elements such as vegetation and site objects. An important remaining chal-
lenge concerns the handling of multiple scales: A continuous mapping of the
DoG to a geometric representation would allow us to combine continous scales
in one view of the scene. Also, an optical zoom could be accompanied with a
smooth semantic zoom. We will work on this problem when moving forward
with our research.

Acknowledgement

This work has been funded by the German Federal Ministry of Education
and Research (BMBF) as part of the InnoProfile research group ‘3D Geoin-
formation’ (www.3dgi.de).

References

1 K.-H. Anders. Level of Detail Generation of 3D Building Groups by Ag-
gregation and Typification. Proc. 22nd International Cartographic Con-
ference, La Coruña, Spain, 2005.

2 M. Beck. Real-Time Visualization of Big 3D City Models. International
Archives of the Photogrammetry Sensing and Spatial Information Sci-
ences, Vol. XXXIV-5/W10, 2003.

3 H. Buchholz, J. Döllner. View-Dependent Rendering of Multiresolution
Texture-Atlases. Proc. IEEE Visualization 2005, Minneapolis, 2005.

4 CGAL – Computer Geometry Algorithm Library, www.cgal.org
5 CityGML, www.citygml.org
6 J. Döllner, H. Buchholz. Continuous Level-of-Detail Modeling of Build-

ings in Virtual 3D City Models. Proc. 13th ACM International Sym-
posium of Geographical Information Systems (ACMGIS 2005), 173-181,
2005.

7 J. Döllner, T. H.Kolbe, F. Liecke, T. Sgouros, K. Teichmann. The Vir-
tual 3D City Model of Berlin - Managing, Integrating and Communicat-
ing Complex Urban Information. Proc. 25th International Symposium on
Urban Data Management UDMS 2006, Aalborg, Denmark, 2006.

8 J. Dykes, A. MacEachren, M.-J. Kraak. Exploring Geovisualization. El-
sevier Amsterdam, Chapter 14, 295-312, 2005.

9 H. Edelsbrunner, E. Mücke. Three-Dimensional Alpha Shapes. ACM
Transactions on Graphics, 13, 43-72, 1994.

10 E. Fogel, R. Wein, B. Zukerman, D. Halperin. 2D Regularized Boolean
Set-Operations. In C. E. Board (Ed.) CGAL-3.2 User and Reference
Manual. 2006.

21 Generalizing Building Geometry of Complex Virtual 3D City Models 399

11 A. Forberg, H. Mayer. Generalization of 3D Building Data Based on
Scale-Spaces. The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, (34)4, 225-230, 2002.

12 E. Gobbetti, F. Marton. Far Voxels - A Multiresolution Framework for In-
teractive Rendering of Huge Complex 3D Models on Commodity Graph-
ics Platforms. ACM Transactions on Graphics, 24(3):878-885, 2005.

13 G. Hake, D. Grünreich, L. Meng. Kartographie. Walter de Gruyter, Berlin,
New York, 8. Ed., 2002.

14 L. Harrie. An Optimization Approach to Cartographic Generalization.
PhD thesis, Department of Technology and Society, Lund Institute of
Technology, Lund University, Sweden, 2001.

15 T. He, L. Hong, A. Kaufman, A. Varshney, S. Wang. Voxel Based Object
Simplification. Proc. 6 th Conference on Visualization, 296, 1995.

16 H. Hoppe. Progressive Meshes. Computer Graphics Proceedings, Annual
Conference Series, 1996 (ACM SIGGRAPH '96 Proceedings), 99-108,
1996.

17 M. Kada. 3D Building Generalisation. Proceedings of 22nd International
Cartographic Conference, La Coruña, Spain, 2005.

18 T.H. Kolbe, G. Gröger, L. Plümer. CityGML – Interoperable Access to
3D City Models. Proc. 1 stInternational Symposium on Geo-Information
for Disaster Management, Springer Verlag, 2005.

19 A. Lakhia. Efficient Interactive Rendering of Detailed Models with Hier-
archical Levels of Detail. Proc. 3D Data Processing, Visualization, and
Transmission, 2nd International Symposium on (3DPVT'04), 275-282,
2004.

20 T. Lewiner, H. Lopes, A. W. Vieira, G. Tavares. Efficient implementation
of marching cubes´ cases with topological guarantees. Journal of Graphics
Tools, 8(2):1-15, 2003.

21 W. E. Lorensen, H. E. Cline. Marching Cubes: A High Resolution 3D Sur-
face Construction Algorithm. SIGGRAPH ’87: Proc. 14th Aannual Con-
ference on Computer Graphics and Interactive Techniques, ACM Press,
163-169, 1987.

22 H. Mayer. Three Dimensional Generalization of Buildings Based on Scale-
Spaces. Report, Chair for Photogrammetry and Remote Sensing, Technis-
che Universität München, 1998.

23 H. Mayer. Scale-Space Events for the Generalization of 3D-Building Data.
International Archives of Photogrammetry and Remote Sensing, 33:639-
646, 1999.

24 L. Meng and A. Forberg. 3D Building Generalization. In W. Mackaness,
A. Ruas, and T. Sarjakoski (Eds.) Challenges in the Portrayal of Geo-
graphic Information: Issues of Generalisation and Multi Scale Represen-
tation, 211-32. 2006.

25 qHull, www.quhull.org

400 Tassilo Glander and Jürgen Döllner

26 J.-Y. Rau, L.-C. Chen, F. Tsai, K.-H. Hsiao, W.-C. Hsu. Lod genera-
tion for 3d polyhedral building model. In Advances in Image and Video
Technology, 44-53, Springer Verlag, 2006.

27 J. Ribelles, P. Heckbert, M. Garland, T. Stahovich, V. Srivastava. Finding
and Removing Features from Polyhedra. American Association of Me-
chanical Engineers (ASME) Design Automation Conference, Pittsburgh
PA, September 2001.

28 M. Sester. Generalization Based on Least Squares Adjustment. Inter-
national Archives of Photogrammetry and Remote Sensing, 33:931-938,
2000.

29 M. Sester. Application Dependent Generalization - the Case of Pedestrian
Navigation. Proc. Joint International Symposium on GeoSpatial The-
ory, Processing and Applications (ISPRS/Commission IV, SDH2002),
Ottawa, Canada, July, 8-12, 2002.

30 K. Shea, R. McMaster. Cartographic generalization in a digital envi-
ronment: when and how to generalize. 9th International Symposium on
Computer-Assisted Cartography. 56-67, 1989.

31 R. Stüber. Generalisierung von Gebäudemodellen unter Wahrung der vi-
suellen Richtigkeit. PhD thesis, Rheinische Friedrich-Wilhelms-Universität
zu Bonn, 2005.

32 teem, teem.sourceforge.net/unrrdu
33 F. Thiemann. Generalization of 3D Building Data. Proc. Joint Inter-

national Symposium on GeoSpatial Theory, Processing and Applications
(ISPRS/Commission IV, SDH2002), Ottawa, Canada, July, 34(3), 2002.

34 R. Wein, E. Fogel, B. Zukerman, D. Halperin. 2D Arrangements. In: C. E.
Board (Ed.), CGAL-3.2 User and Reference Manual. 2006.

35 J. Willmott, L.I. Wright, D.B. Arnold, A.M. Day. Rendering of Large and
Complex Urban Environments for Real-Time Heritage Reconstructions.
Proc. Conference on Virtual Reality, Archaeology, and Cultural Heritage,
111-120, ACM Press, 2001.

Chapter 22

Automatic Generation of Residential
Areas using Geo-Demographics

Paul Richmond and Daniela Romano

Abstract

The neighbourhood aspect of city models is often overlooked in methods of
generating detailed city models. This paper identifies two distinct styles of
virtual city generation and highlights the weaknesses and strengths of both,
before proposing a geo-demographically based solution to automatically gen-
erate 3D residential neighbourhood models suitable for use within simulative
training. The algorithms main body of work focuses on a classification based
system which applies a texture library of captured building instances to ex-
truded and optimised virtual buildings created from 2D GIS data.

22.1 Introduction

Virtual environments, games and serious games often require the use of large
scale urban models which capture essential attributes of real world locations.
For example to build a drug dealers serious game, that is virtual training
environment for drugs enforcement officers and community support workers,
the key requirements are that the training environment must demonstrate
realistically linked residential neighbourhood areas as well as being automat-
ically generated to alleviate the need for complex CAD style of modelling.
In addition to this the models created need to be optimised for use within a
game engine to make use of its animating facilities and platform, and hence
should have a limited number of polygons and be easily ported to existing
game engines.

The key focus of this paper is on examining how residential neighbourhood
profiling systems (geo-demographics) can be used to model realistic neigh-

University of Sheffield
paul@dcs.shef.ac.uk, d.romano@dcs.shef.ac.uk

401

402 Paul Richmond and Daniela Romano

bourhoods and automatically produce 3D models for simulative training. Its
novel contribution focuses on how geo-demographics can be used within a
classification system to realistically create virtual neighbourhood areas. First
the existing methods of model production are reviewed, and then the imple-
mentation of an extrusion and building based classification algorithm which
links the geo-demographical and physical properties of building footprint data
to an extendable texture library of captured building examples is described.

22.2 Previous Work

Existing work in generating city models can be partitioned into two distinct
styles which correlate well with the two concluding approaches highlighted
by Shiode [1]. The first centres around creating Geographic Information Sys-
tem (GIS) based descriptive models and the second focuses on more detailed
constructive models generated either manually or automatically. The next
section examines how these two differing methods have been used and high-
lights some of the problems and limitations with regards to the proposed
system.

22.2.1 Descriptive Models using GIS data

Urban Planning models use Geographic Information System (GIS) data to
create realistic models of real world locations using high resolution data sets.
Typically with highly descriptive methods of city modelling aerial photogra-
phy is used as a texture draped over an extruded model. In order to extrude
the models accurately previous techniques have focused on the use of pho-
togrammetry methods of building outline detection [2] and extrusion focusing
on GIS building boundary maps [3,4]. Whilst these techniques have been suc-
cessful the improved availability and structure of GIS data in new Extensible
Markup Language (XML) formats has lead to improved model generation
methods allowing extremely large datasets to be visualised even in real-time
[5].

With the advantage of new GIS datasets there are also new problems intro-
duced regarding copyright, none more apparent than with the Virtual London
project [6, 7], which uses Ordnance Survey (OS) Mastermap data in combi-
nation with Infoterra’s LIDAR (Light-Imaging Detection and Ranging) data
to extrude buildings. Unfortunately the government funded project which
aimed to ‘help Londoners visualise what is happening to their city’ [8] is cur-
rently unavailable to the public through its intended interface (the Google
earth application) due to OS licensing actively protecting their intellectual
property. Despite a national incentive launched from the UK newspaper the

22 Automatic Generation of Residential Areas using Geo-Demographics 403

guardian who has proposed the ‘free our data’ campaign it has recently been
suggested that talks between OS and Google have collapsed and it is unlikely
that the virtual London model will be available to the public any time soon.

As an alternative to using GIS building boundaries Google offers a com-
munity based alternative through the use of Google Sketch-up for Google
Earth. This open modelling approach allows the community of Google Earth
users to quickly create 3D content, which is easily integrated over the core
imagery and terrain data. Despite overcoming the requirement of using OS
data neither the Google earth platform or the before mentioned building ex-
trusion methods are particularly well suited to a first person perspective.
The reason for this is a matter of resolution as typical aerial photography
data is only available at several pixels per meter [9] making distantly viewed
urban planning models visually acceptable but lacking in resolution suitable
for detailed texture application. In order to create more high resolution and
detailed models of cities (and buildings in particular) the attention of using
GIS data has shifted to constructive modelling techniques which use either
manual or automatic methods to specify building details.

22.2.2 Constructive Models using Manual and
Automatic City Modelling

With regards to manual modelling the games industry has recently demon-
strated its interest in creating realistic virtual cities through the recent games
releases of Grand Theft Auto IV and The Getaway, which feature detailed
models of the cities of New York and London respectively. The techniques
used in this instance are likened by Peter Edward (senior producer) as ‘like a
western movie. They don't have wooden slates at the back but they are just
the fronts’ [10]. Whilst the London model makes the use of photorealistic tex-
tures captured during an 18 month period the budget and time required to
first manually create a wireframe model from the photographic data and then
map the photography is far beyond the reach of most modelling projects.

The use of automatic methods to generate virtual cities elevates the bud-
getary requirement of manually modelling a city but does however introduce
a degree of guesswork in representing cities or buildings structure. Despite
rule based systems being able to produce entirely procedural (pseudo) infinite
cities [11] the models rely heavily on the rules specifying the grid like road
structure and hence lack the realism of capturing an actual cities structure,
making its application to training somewhat limited. Parish and Muller [12]
describe a more intuitive alternative for procedural generation of cities which
uses L-systems (inspired by Prusinkiewicz and Lindenmayer [13]) with a ba-
sic set of data defining land and water boundaries to subdivide into realistic
roadmaps, land, lots and buildings. Although the results of this approach are
relatively successful at defining a cities structure in terms of road layout they

404 Paul Richmond and Daniela Romano

are limited in application towards building generation, as highlighted in a
later paper by Wonka et al [14] which states that a buildings structure;

‘does not follow a growth like process in the same way that plants and
streets do, but instead follow a sequence of partitioning steps.’ (p670)

For this reason the automatic generation of buildings tends to focus on the
use of shape and split grammars.

22.2.3 Building Generation

Split grammars originally introduced by Stiny [15] are used by Wonka et al.
[14] as a grammar operating on shapes. By using the split grammar approach,
basic shapes (referred to as building blocks) are then recursively replaced by
further shapes which have attributes that describe the material and help to
determine further subdivision steps. In addition to the extensive set of split
grammar rules the notion of a control grammar is also introduced. The aim of
this control grammar is described as a way to specify design decisions spatially
in a way that corresponds to architectural principles. More simply this control
grammar is used to set attributes in a spatially related way ensuring that split
grammar rules are propagated in a way which represents realistic architecture.
Despite the visual success of this method its complexity requires collaboration
between a designer (with a clear understanding of the workings of a split
grammar) and an architect, which has lead to the development of similar
but slightly less complex split grammar implementations such as the one
from Larive [16] who concentrates on 2.5D building frontages for extruded
buildings.

More recent work by Muller et al [17] extends the CityEngine application
to apply the idea of a shape grammar to create building scripts capable of
capturing intricate detail. This is achieved by combining the previous split
grammar approach with a complex mass modelling system allowing more
complex primitives to be split without the previous limitations of axis aligned
shapes. In addition to this the CGA shape system allows the division and
placement of other aspects of the environment allowing the generation of
pathways and placement of greenery including trees and shrubs.

Although there is a considerable amount of work focusing on the generation
of buildings it is important to consider the full spectrum of city generation.
Larive et al. [18] uses the notion of ‘Urban Zones’ to present a hierarchi-
cal division of seven stages of city generation; namely, Urban Zones, Road
Networks, Blocks, Lots, Exteriors, Building Plans and Furnished Buildings.
Whilst the majority of research is concerned with stages 1 through to 5 the
focus is primarily on the building stage and concentrates on creating realis-
tic buildings. Whilst this is important in generating a residential area little
consideration is given to the creation of realistic neighbourhoods which in

22 Automatic Generation of Residential Areas using Geo-Demographics 405

the case of the previously described project is more essential than the exact
representation of building models.

22.3 Implementation

22.3.1 Overview

Whilst previously successful implementations are able to build realistic virtual
cities and neighbourhoods either procedurally or through using attributes to
control architectural variance there is little attention paid to the importance
of architectural discrepancies between certain types of housing estates. In
addition to this, methods of texture application are either limited to being
highly descriptive, in which a large amount of time must be invested to cap-
ture buildings or procedural, which although may not require the same invest-
ment of time regarding texture capture certainly requires in depth knowledge
of architecture and grammars.

The following section of this paper focuses of the implementation of a
system which offers the following contributions;

1. Shows how geo-demographics can be used within a classification system
to build realistic virtual neighbourhood areas.

2. Demonstrates how an extendable captured building library and classifi-
cation system can be used to crudely determine a buildings appearance
and hence define visual zoning of houses

By achieving the above it is our intention to offer a proof of concept of
how geo-demographics can be used to make assumptions of vast city models.
In addition to this our work will demonstrate a method somewhere between
the descriptive and constructive methods previously described which allows
buildings to be represented realistically in a way which creates observable
neighbourhood areas. The subsequent section proceeds as follows; Section 3.2
discusses the general extrusion process of the buildings from the floor plan
data including how the extrusion process, roofing, polygon face tessellation
and any assumptions made of the building structure. The role of captured
building textures or Building Instances (BI’s) is then discussed in section 3.3
which describes how these are used to influence a buildings visual appearance.
Finally section 3.4 describes the classification system used to determine the
suitability of each member of the BI library with regards to each building in
the dataset.

406 Paul Richmond and Daniela Romano

22.3.2 Building Structure & Extrusion

As there is no guarantee that LIDAR data is available for the areas being ex-
truded a method combining a LIDAR data and floor height estimation is used.
This is implemented by pre-processing any ASCII LIDAR data (which could
be replaced by alternative ASCII data such as cadastral or observed building
heights) to calculate an average building height for each building structure
in the data set which is then stored in a lookup table. Where LIDAR data
is unavailable some assumptions are made towards the heights of buildings.
As a rough guide the square of the buildings ground floor surface area is
used to calculate a preliminary height, either the averaged LIDAR height or
estimated height is rounded to an integer number of floors by division by the
standard building floor height of 2.75m. As the majority of buildings within
a residential area constitute two and three floor family homes and flats, most
buildings have a primary floor calculation of between two and three floors
before any adjustments are made to the extreme exceptions. If the calculated
number of floors is however less than one then it is assumed that the struc-
ture is not a building and is ignored (it is not uncommon that OS classify out
buildings such as barns, greenhouses, temporary buildings and some garages
as buildings). Likewise buildings with an estimated floor height greater than
fifteen are assumed to be larger than average residential dwellings and are re-
duced to a warehouse/ council flat style of building with at most three floors
and a flat roof.

Where as exiting techniques have used split grammars to split a wall face
into smaller face areas, allowing procedural textures, the technique employed
in this approach is more commonly used within game level design. In par-
ticular this method is used in the half life 2 game using the source engine
(http://www.valvesoftware.com) for specifying wall brushes (roofs are how-
ever described by model entities). In order to reduce the number of faces
for each building, a building is first split into floors and then each wall is
split (where possible) into a grid of uniform squares. The remainder of the
wall which does not constitute a full squares horizontal length is then split
evenly between the walls first and last wall section symmetrically. After the
walls have been split into wall sections the texture coordinates are then cal-
culated presuming that a square texture is to be applied. For the smaller split
wall edge sections the texture coordinates are calculated allowing tessellation
where the section meets a full square. This method, although not requiring
the manual specification of a split grammar or likewise does require that a
reasonable texture library is available providing a rich background of textures
to create suitably complex building facades.

Like previous methods of building extrusion and roof generation [19]
we have followed Felkel and Obdrzalek’s Straight Skeleton Implementation
method to apply a simple hipped roof which has been extended to allow a
gable/cross gable roof style which is applied to the majority of buildings.

22 Automatic Generation of Residential Areas using Geo-Demographics 407

Fig. 22.1 The wireframe example in demonstrates how a building is extruded, split
and applied a gable roof

22.3.3 Building Instances

Although there has been significant research into the use of grammatical ap-
proaches of texture application to buildings this is not the focus of this paper
and as such a simple method has been used to apply textures to buildings.
This is achieved by considering a number of captured building textures from
the real world which make up what is described in this paper as a Build-
ing Instance. Although the choice of which buildings should be captured for
the library is somewhat subjective, this method allows the user to capture
buildings which stereotype the surrounding area well (see figure 3 for an ex-
ample of houses from differing ACORN types) and chose buildings where
foreground distraction are not present. The subjectivity of BI choices is also
considered in section 4.3 which considers the accuracy of the classification for
each building in the data set. In addition to capturing a number of textures
for any captured building, a number of physical building properties are also
recorded for use within the classification system described in section 3.4. For
each captured building (or BI) in the texture library, a square texture must
be provided for description of a plain brick wall, a windowed area, a doorway
and a gable roof section (if the building is flat roofed this is not required). A
simple list based description of the building for the ground and above ground
floors is then required to provide a base to map each texture to the buildings
within the dataset. An example of a captured buildings data is given below
where the buildings structure consists of a two floor and four wall structure,
where each of the four walls contained room for two descriptive wall elements.

In order to apply the texture to buildings of varying size the description
is simply repeated around the building.

408 Paul Richmond and Daniela Romano

Fig. 22.2 The example building above has a texture description for brick, a doorway,
a window and a gable roof section

Fig. 22.3 Example of two Sheffield houses in close proximity and of a similar struc-
ture but with varying ACORN types

22.3.4 Neighbourhood Profiling and Geo-Demographics

The socio-demographic system which has been used in this work is the
ACORN (A Classification of Residential Neighborhood) classification system
from CACI Limited that contains a hierarchy of classifications spanning down
from category, group and type. The categories range from wealthy achievers
to hard pressed with the group level giving further definition such as for the
wealthy achievers category; wealthy executives, affluent greys and flourishing
families. The ACORN type ranges from type 1) ‘Affluent mature profession-
als’ in large houses to type 56) ‘Multi-ethnic crowded flats’. For each classifi-
cation there are a number of lifestyle topics and demographic topics which are
used to classify UK postcodes. Whilst the lifestyle topics are concerned with
interests such as internet cars and shopping the demographic topics consider
in addition to other interests dwelling height, size, house hold structure and
tenure all of which are particularly useful with regards to classifying the style

22 Automatic Generation of Residential Areas using Geo-Demographics 409

of a building or neighbourhood. In addition to loading a GML (Geography
Markup Language) data file in the World Generator application a table of
postcode acorn values must be provided where the postcode is specified as a
spot location. In order to calculate the ACORN classification for any building
loaded into the system the buildings proximity to each postcode spot location
is considered and the appropriate ACORN type code is returned.

In order to determine the most appropriate look of a neighbourhood and
hence each building within it, each building read from the GML data is com-
pared to each of the building instances which contain the following additional
information which is pre loaded with the textures;

• Name – for reference
• Floors – the number of floor levels above ground level of the building
• Surface area – the surface area of building in square meters at ground

level
• External walls - number of external walls (i.e. complexity of the building)
• Roof type – at the moment this is limited to either flat or gable
• ACORN category – the acorn category within the range of 1 to 5
• ACORN group – the acorn group within the range of 1 to 17
• ACORN type – the acorn type within the range of 1 to 56

Buildings and instances are then compared directly by using a distance
measure of similarity for each of the above attributes (excluding name). The
distance measure is a weighted combination of the summed distance measures
between each of the different attributes. This is formalised below by the
following expression.

By considering each attribute in this way (excluding the roof type, ACORN
category and ACORN Type attribute) a value between 0 (infinitely dissim-
ilar) and 1 (exactly similar) is attributed to each attribute. Unlike numeric
attributes the roof type attribute which can have two values is either the
same (value of 1) or different (value of 0). By considering more than just

410 Paul Richmond and Daniela Romano

the ACORN classification building instances with architectural variances but
sharing the same ACORN type can therefore co-exist and be attributed to
buildings within the model providing realistic variances within the neighbour-
hoods themselves.

22.4 Results & Conclusion

In order to test the building classification method above and its ability to
create realistic neighbourhoods a limited number of three building instances
were created and applied to a small GML data set of Basingstoke which
consisted of four varying ACORN classifications.

22.4.1 Dataset & Performance

The GML data set which was used consists of 23037 unique topographic
elements of these 6005 are topographic areas (others mainly constitute to-
pographic lines and point data which are usually a repetition of fully de-
fined polygon areas of unclosed polygons which are not used). Within the
6005 topographic areas there are eighteen unique featured codes each with a
different combination of the hierarchical elements; theme, descriptive group
and descriptive term (a specification of the OS GML specification is avail-
able on their website http://www.ordnancesurvey.co.uk), of these eighteen
the key feature code (10021) which is used for building generation has the
theme ‘Building’ and descriptive group ‘Buildings’ (there are 2354 in total).
All other features within the GML set are treated according to an XML file
which can set the following properties of the hierarchical theme, descriptive
group and descriptive term elements.

• materialColour - The surfaces rgb material colour in format 'r,g,b' where
r,g,b are java ints

• extrusion - The height in km of a vertical extrusion of the layer above
ground level (java double format)

• texture - The texture name to be used to texture objects in the layer
• cleanUpPointTolerance - The tolerance used to clean up points which do

not specify any additional detail (i.e. cause an angular difference between
the previous and next point of the tolerance value).

This allows the buildings to be set within an environment which displays
real world boundaries such as road, pavement and housing boundaries as
well as defining areas of the natural environment such as treed areas and
scrubland.

22 Automatic Generation of Residential Areas using Geo-Demographics 411

In order to generate the 3D model the system operates in two stages first
all data is read from the GML file using a SAX parser and stored as a simple
object containing the objects properties and polygon points. After all objects
are read the surfaces are then extruded, textured, cleaned up and in the
case of buildings, constructed using the described method. Running on a
Pentium Xeon 2.33 Mhz with 2 Gb of RAM the reading stage takes roughly
3.4 seconds and the extrusion stage takes 2.1 seconds with the production
of 195375 faces. Currently all objects are in the visual system are stored
in memory for the purposes of displaying them, however it is possible to
generate the buildings serially and output them directly to .obj format using
a command line interface.

22.4.2 Discussion

As demonstrated by figure 4 and figure 5 (which display only the building
objects) the effect of using a geo-demographic classification system creates
neighbourhoods which reflect the geo-demographic area and assigns buildings
a building instance which closely reflects the buildings structure. Despite
using only three building instances in this example the complexity of the
final model regarding distribution of the building instances is indicative of
a realistic neighbourhood. The extendibility of the system also makes the
integration of variances in a particular area a matter of simply creating a
number of new building instances which reflect new building styles.

In addition to the creation of realistic neighbourhoods, the building/object
extrusion and texture application methods create a realistic model of a resi-
dential area which despite the lack of integration of decorative objects such
as trees, lampposts, etc. provides an ideal platform for a realistic training
environment. The use of real GIS data to create the model not only means
that the road layouts and housing placements are rational but also offers the
possibility of using further GIS data to power the game logic and intelligence
models within a simulation.

In order to make a direct comparison of both the classification algorithm
and the texturing system a direct comparison is made in figure 7. Although
there are some discrepancies, the orientation of the automatically generated
terrace roofing being one, the virtual representation demonstrates the cor-
rect application of building textures. Despite the texture restriction of only
tessellating square textures the low cost texturing method allows the virtual
buildings to provide an accurate representation or their real world counter-
parts.

412 Paul Richmond and Daniela Romano

Fig. 22.4 ACORN Types

Fig. 22.5 Building Classification

22.4.3 Conclusion and Further Work

The generation of virtual cities seems to have a clear division between descrip-
tive models generated using aerial photography combined with geographic
data such as LIDAR and models built using constructive methods such as
modelling and shape grammars. Whilst constructive methods offer the only
realistically detailed solution of model generation suitable for first person
games, the models produced begin to differ from the real world as a func-
tion of the time spent either physically modelling, constructing descriptive
grammars [14] or manually applying ground captured textures.

22 Automatic Generation of Residential Areas using Geo-Demographics 413

Fig. 22.6 Textured Buildings

The solution offered by this work proposes a method which meets the two
objectives set out in section 3.1 by allowing the generation of virtual res-
idential areas and by proving an extendable texturing system. Whilst the
building creation methods do not differ greatly from existing techniques the
integration of geo-demographics and a classification system allows assump-
tions to be made of building appearances whilst still maintaining realistic
virtual neighbourhood areas. The main weakness of the method described in
this paper is the subjective choice of the buildings captured (BI’s) within the
texture library as a simple extension the system has been implemented to
display a buildings colour as a function of its classification accuracy (figure
8). This therefore provides an excellent indication of where extensions to the
BI library should be made to improve the model.

With respect to spatial extendibility, it is fair to assume that without the
addition of geo-spatial attributes to the classification system it is unlikely
that buildings from one area in the UK could be realistically represented by
those from another (although the boundaries of neighbourhood areas may
still be realistically defined). On a larger scale it is therefore suggested that
geo-spatial attributes are included a part of future work. In addition to this it
would also be interesting to consider using a more advanced method of texture
application for each BI. As a grammar system would be required to achieve
this there would be a significantly longer cost of time in preparation of the
BI library however it is likely that the building would achieve a more realistic
and less granular appearance (a trade off that was made for generation speed
and reduced polygon counts in the current implementation).

414 Paul Richmond and Daniela Romano

Fig. 22.7 Image of Sheffield road compared to Virtual Representation (above with
sky post processed)

References

1. N. Shoide, 3D urban models: Recent developments in the digital mod-
elling of urban environments in three-dimensions, Centre for Advanced
Spatial Analysis, University College London, GeoJournal Volume 52, Num-
ber 3, pp 263-269, 2000

22 Automatic Generation of Residential Areas using Geo-Demographics 415

Fig. 22.8 Classification strength of buildings in Sheffield example

2 I. Suveg, G. Vosselman, 3D reconstruction of Building Models, Int.
Archives of Photogrammetry and Remote Sensing, vol XXXIII, part B2,
pp. 538-545, 2000

2. R. Tse, M. Dakowicz, C.Gold, D. Kidner, Automatic Building Extrusion
from a TIN model Using LiDAR and Ordnance Survey Landline Data,
University of Glamorgan, Treforest, Mid Glamorgan

3. R. Laycock, A. Day, Automatically generating large urban environments
based on the footprint data of buildings. In IProceedings of the Eighth
ACM Symposium on Solid Modeling and Applications, ACM Press, New
York, NY, pp. 346-351, 2003

4. A. Steed, S. Spinello, B. Croxford, Richard Milton, Data Visualiza-
tion within Urban Models, Theory and Practice of Computer Graphics
2004 , pp. 9-16, 2004

5. A.Steed and E.Frecon, ”Building and Supporting a Large-Scale Collabo-
rative Virtual Environment”, Proceedings of 6th UKVRSIG, University
of Salford, pp 59-69, 1999

6. A.Steed, E.Frecon, D. Pemberton and G. Smith, ”The London Travel
Demonstrator”, Proceedings of the ACM Symposium on Virtual Reality
Software and Technology, pp 50-57, ACM Press, ISBN 1-58113-141-0,
1999

7. Online Article, http://technology.guardian.co.uk/weekly/story/0,
,1981821,00.html

8. Wikipedia Link, http://en.wikipedia.org/wiki/Google_Earth#Resolution_
and_accuracy

9. Blog article on “The Getaway” PS2 Game,
http://digitalurban.blogspot.com/

10. S. Greuter, J. Parker, N. Stewart, G. Leach, Real-time procedural gen-
eration of `pseudo infinite' cities, In Proceedings of the 1st international

416 Paul Richmond and Daniela Romano

Conference on Computer Graphics and interactive Techniques in Aus-
tralasia and South East Asia, 2003

11. Y. Parish, P. Müller, Procedural modeling of cities, In Proceedings of the
28th Annual Conference on Computer Graphics and interactive Tech-
niques SIGGRAPH '01, pp 301-308, 2001

12. P. Prusinkiewicz and A. Lindenmayer, The algorithmic Beauty of Plants,
1991

13. P. Wonka, M. Wimmer, F. Sillion, W. Ribarsky, Instant Architecture,
ACM Transactions on Graphics, Volume 22, no. 4, pp. 669-677, 2003

14. G. Stiny, Pictorial and formal aspects of shape and shape grammars: on
computer generation of aesthetic objects, Birkhauser, 1975

15. M.Larive and V. Gaildrat, Wall grammar for building generation, Pro-
ceedings of the 4th international conference on Computer graphics and
interactive techniques in Australasia and Southeast Asia, pp429-437, 2006

16. P. Muller, P. Wonka, S. Haegler, A. Ulmer, L. Gool, Procedural Modeling
of Buildings, in Proceedings of ACM SIGGRAPH 2006 / ACM Transac-
tions on Graphics (TOG), ACM Press, Vol. 25, No. 3, pp 614-623, 2006

17. M. Larive, Y. Dupuy, V. Gaildrat, Automatic Generation of Urban Zones,
WSCG’2005, Plzen, Czech Republic, 2005

18. R. Laycock and A. Day, Automatically generating roof models from build-
ing footprints, The 11-th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision, 2003

Part III

Position papers

Chapter 23

Working Group I – Requirements and
Applications – Position Paper:
Requirements for 3D in Geographic
Information Systems Applications

Andrew U. Frank

Geoinformation systems (GIS) contain information about objects in geo-
graphic space; the focus on geographic space [1] determines the scale of spatial
objects and processes of interest at a spatial resolution of approximatively
0.1 m to 40.000 km and to changes occurring once a minute to once a million
years. Geographic information is a diverse field which includes many special
applications, each of which has special requirements, with special kinds of
geometry and particular geometric operations.

The wide variety of requirements of individual geo-applications motivates
my first (not new) requirement [2]:

Requirement 1: Construct a fully general 3D (volume) geometry management
system based on a clean mathematical foundation (e.g., algebraic
topology [3], specifically cw complexes).

Any 3D geometry must be represented with no special cases excluded. Many
current packages are optimized for one application (e.g., 3D city models) and
restrict the geometry; for example, only volumes with horizontal or vertical
boundaries may be accepted. Specialized geometry software, optimized for
particular applications, creates difficulties later when data from multiple ap-
plications must be integrated to construct a comprehensive view. Restrictions
to particular geometries must be possible and the formulation of the corre-
sponding consistency constraints simple (e.g., partitions of 2D, graphs in 3D,
2D surfaces embedded in 3D).

The wide range of spatial objects in a GIS is conceptually structured by
level of detail; anybody can experience how one can zoom in on the world
untill one sees only one’s own front yard (e.g., in Google Earth)! We often
conceive this as a hierarchy; however it is better to use a (mathematical)

Department of Geoinformation and Cartography,
Technical University Vienna
Gusshausstrasse 27-29/E127,1 , A-1040 Vienna, Austria
frank@geoinfo.tuwien.ac.at

419

420 Andrew U. Frank

lattice structure [4, 5]. Political subdivisions are typically hierarchies (conti-
nent - country - province - county - town), as are watersheds (for example,
the watershed of the Fugnitz is part of the watershed of the Pulkau, which
flows into the Thaya, which goes to the Danube); if political subdivisions and
watersheds are combined, the watershed of the Fugnitz is in the county of
Horn, but the watershed of the Pulkau covers parts of several counties and
is contained in the province of Lower Austria, whereas the watersheds of the
Thaya and the Danube overlap several countries. Hence, a combined repre-
sentation of the ‘part-of’ relation of the hierarchical structures of political
and watershed subdivisions requires a lattice structure to handle the partial
overlaps.

Requirement 2: Support for level of detail: a full or partial containment re-
lation between geometric objects must be maintainable. Appli-
cations should be able to view and manage one or a few levels
of detail without considration of other levels. Consistency con-
straints that connect between the levels are important.

GIS Applications show an approximated current state of what exists. The
trend is toward including the temporal aspect and focusing on processes that
occur in time and change the world[6, 7]. Processes, not states, are the focus
of geography as a science [8, 9, 10]! This requires, first, that updates do not
overwrite past states, but that time series of previous states are maintained.
Tools to visualize and exploit such timeseries statistically and with data min-
ing operations are needed. This requires, second, separately representable
processes and the simulation of future states. Management of time series
must be completed with representations of processes that can be calibrated

23 WG I Position paper: Requirements for 3D in GIS Applications 421

with time series of observed past states and used to simulate future states,
e.g., to predict unusual events in order to avoid them, preventing catastrophic
results.

Requirement 3: Extend the fully general 3D geometry management with level
of details to deal with time and processes[11]. The conceptualiza-
tion of time should be very general and include continuous and
discontinuous changes; it must support a lattice of partial con-
tainment relations and different temporal granularities.

These three seemingly simple requirements are, judging from past experi-
ences, very difficult to fulfill. I therefore list here points on which I am willing
to compromise:

• It is not required for the designed structures to be efficient or highly
efficient (first, computer speed increases steadily; second, optimization of
a working solution is often automatable).

• The representation does not need be compact, given the low prices of
storage media; however, I fear that high redundancy introduces inconsis-
tencies and increases program complexity [12].

I expect some of the current application areas to extend to 3D+T but also
new applications enabled by support for 3D or time. The following examples
can be used as tests for proposed approaches to see if these approaches are
general enough to support all of them:

• Geology: models of the processes of deposit, folding, and erosion[13];
• Traffic management: cars moving along a street graph. Note the frequency

of cars entering and leaving street segments and compare with the fre-
quency of changes in the street graph [14]!

• Cadastral systems [15, 16]: Current systems manage a partition of 2D
space that is changing in time. Requirements for 3D are emerging, and it
is probably a 3D (volume) topology [17, 18];

• Flood protection: a system is needed to model water flow over a 2D surface
embedded in 3D; note that water flow disappears from the surface and
reappears somewhere else;

• Organization of pictures taken with a digital camera equipped with GPS
having references to location in space and time;

• City planning: Visualize how the city grew and changed in the past and
simulate the future;

• Disaster mitigation: models to predict the extension of a substance (e.g.,
oil or a hazardous gas) over a surface or in a volume under the influence
of external forces (gravity, wind, water, flow).

422 Andrew U. Frank

References

[1] Montello, D.: Scale and multiple psychologies of space. In Frank, A.,
Campari, I., eds.: Spatial Information Theory: A Theoretical Basis for
GIS. Volume 716. Springer Verlag, Heidelberg-Berlin (1993) 312–321

[2] Frank, A.U., Kuhn, W.: Cell graph: A provable correct method for the
storage of geometry. In Marble, D., ed.: Second International Symposium
on Spatial Data Handling, Seattle, WA (1986) 411–436

[3] Alexandroff, P.: Elementary Concepts of Topology. Dover Publications,
New York, USA (1961)

[4] Gill, A.: Applied Algebra for the Computer Sciences. Prentice-Hall,
Englewood Cliffs, NJ (1976)

[5] Mac Lane, S., Birkhoff, G.: Algebra Third Edition. 3 edn. AMS Chelsea
Publishing, Providence, Rhode Island (1991)

[6] Langran, G., ed.: Time in Geographic Information Systems. Technical
Issues in GIS. Taylor and Francis (1992)

[7] Newell, R.G., Theriault, D., Easterfield, M.: Temporal gis - modeling
the evolution of spatial data in time. Computers and Geosciences 18(4)
(1992)

[8] Varenius, B.: Geographia Generalis. Elsevier, Amsterdam (1650)
[9] Goodchild, M.F., Egenhofer, M.J., Kemp, K.K., Mark, D.M., Sheppard,

E.: Introduction to the varenius project. International Journal of Geo-
graphical Information Science 13(8) (1999) 731–745

[10] Mark, D., Freksa, C., Hirtle, S., Lloyd, R., Tversky, B.: Cognitive models
of geographical space. IJGIS 13(8) (1999) 747–774

[11] Pigot, S., Hazelton, B.: The fundamentals of a topological model for a
four-dimensional gis. In Bresnahan, P., Corwin, E., Cowen, D., eds.: Pro-
ceedings of the 5th International Symposium on Spatial Data Handling.
Volume 2., Charleston, IGU Commission of GIS (1992) 580–591

[12] Gröger, G., Plümer, L.: Exploiting 2d concepts to achieve consistency
in 3d gis applications. In: GIS, ACM (2003) 78–85

[13] Turner, K.A.: Three-dimensional modeling with geoscientific information
systems. In: NATO Advanced Research Workshop. (1990)

[14] Tryfona, N., Price, R., Jensen, C.S.: Conceptual models for
spatio-temporal applications. In: Spatio-Temporal Databases: The
CHOROCHRONOS Approach. (2003) 79–116

[15] Al-Taha, K.: Why time matters in cadastral systems. In Frank, A.U.,
Raper, J., Cheylan, J.P., eds.: Life and Motion of Socio-Economic Units.
Taylor & Francis, London (2001)

[16] Al-Taha, K.: Temporal Reasoning in Cadastral Systems. PhD thesis,
University of Maine (1992)

[17] van Oosterom, P., Lemmen, C., Ingvarsson, T., van der Molen, P.,
Ploeger, H., Quak, W., Stoter, J., al., e.: The core cadastral domain
model. Computers, Environment and Urban Systems 30(5) (2006) 627–
660

23 WG I Position paper: Requirements for 3D in GIS Applications 423

[18] Stoter, J.E., van Oosterom, P.: Technological aspects of a full 3d cadas-
tral registration. International Journal of Geographical Information Sci-
ence 19(6) (2005) 669–696

Chapter 24

Working Group II – Acquisition – Position
Paper:
Data collection and 3D reconstruction

Sisi Zlatanova

3D Geographical Information Systems need 3D representations of objects
and, hence, 3D data acquisition and reconstructions methods. Developments
in these two areas, however, are not compatible. While numerous operational
sensors for 3D data acquisition are readily available on the market (optical,
laser scanning, radar, thermal, acoustic, etc.), 3D reconstruction software
offers predominantly manual and semi-automatic tools (e.g. Cyclone, Leica
Photogrammetry Suite, PhotoModeler or Sketch-up). The ultimate 3D re-
construction algorithm is still a challenge and a subject of intensive research.
Many 3D reconstruction approaches have been investigated, and they can be
classified into two large groups, optical image-based and point cloud-based,
with respect to the sensor used, which can be mount on different platforms.

Optical Image-based sensors produce sets of single or multiple images,
which combined appropriately, can be used to create 3D polyhedronal models.
This approach can deliver accurate, detailed, realistic 3D models, but many
components of the process remain manual or semi-manual. It is a technique
which has been well-studied and documented (see Manuals of Photogramme-
try, 2004; Henricsson and Baltsavias, 1997; Tao and Hu, 2001).

Active scanning techniques, such as laser and acoustic methods, have been
an enormous success in recent years because they can produce very dense
and accurate 3D point clouds. Applications that need terrain or seabed sur-
faces regularly make use of the 2.5D grids obtained from airborne or acoustic
points clouds. The integration of direct geo-referencing (using GPS and iner-
tial systems) into laser scanning technologies has given a further boost to 3D
modelling. Although extraction of height (depth) information is largely au-
tomated, complete 3D object reconstruction and textures (for visualisation)
are often weak, and the amount of data to be processed is huge (Maas and
Vosselman, 1999; Wang and Schenk 2000; Rottensteiner et al 2005).

Delft University of Technology, OTB, section GIS Technology,
Jaffalaan 9, 2628 BX the Netherlands
s.zlaranova@tudelft.nl

425

426 Sisi Zlatanova

Hybrid approaches overcome the disadvantages mentioned above by us-
ing combinations of optical images, point cloud data and other data sources
(e.g. existing maps or GIS/CAD databases) (Tao, 2006). The combination
of images, laser scanning point clouds and existing GIS maps is considered
to be the most successful approach to automatically create low resolution,
photo-textured models. There are various promising studies and publications
focused on hybrid methods (Schwalbe et al, 2005; Pu and Vosselman, 2006)
and even on operational solutions (see van Essen, 2007). These approaches
are generally more flexible, robust and successful but require additional data
sources, which may influence the quality of the model.

In summary, 3D data acquisition has become ubiquitous, fast and relatively
cheap over the last decade. However, the automation of 3D reconstruction
remains a big challenge. There are various approaches for 3D reconstruction
from a diverse array of data sources, and each of them has some limitations in
producing fully automated detailed models. However, as the cost of sensors,
platforms and processing hardware decreases, simultaneous and integrated
3D data collection using multiple sensing technologies should allow for more
effective and efficient 3D object reconstruction.

Designing integrated sensor platforms, processing and integrating sensors
measurements and developing algorithms for 3D reconstruction are among
the topics which should be addressed in the near future. Besides these, I
expect several more general issues to emerge:

1. Levels of Detail (LoD). Presently, a 3D reconstruction algorithm is often
created for a given application (e.g. cadastre, navigation, visualisation,
analysis, etc.), responding to specific requirements for detail and realism.
Indeed, 3D reconstruction is closely related to the application that uses
the model, but such a chaotic creation of 3D models may become a major
bottleneck for mainstream use of 3D data in the very near future. Early
attempts to specify LoD are already being done by the CityGML team,
but this work must be further tested and refined (Döllner et al, 2006).

2. Standard outputs. Formalising and standardizing the outputs of the re-
construction processes with respect to formal models and schemas as
defined by OGC is becoming increasingly important. Currently, most of
the algorithms for 3D reconstruction result in proprietary formats and
models, both with specific feature definitions, which frequently disturb
import/export and often lead to loss of data (e.g. geometry detail or
texture).

3. Integrated 3D data acquisition and 3D modelling, including subsurface
objects such as geologic bodies, seabed, utilities and underground con-
struction. Traditionally, the objects of interest for modelling in GIS have
been visible, natural and man-made, usually above the ground. As the
convergence of applications increases, various domains (e.g. civil engi-
neering, emergency response, urban planning, cadastre, etc.) will look
towards integrated 3D models. With advances in underground detection

24 WG II Position paper: Data collection and 3D reconstruction 427

technologies (e.g. sonic/acoustic, ground penetration radar), already de-
veloped algorithms can be re-applied to obtain models of underground
objects.

4. Change detection. Detection of changes is going to play a crucial role in
the maintenance and update of 3D models. Assuming that automated 3D
acquisition mechanisms will be available, the initial high costs of acquiring
multiple data sources can be balanced and justified. Changes can then
be detected against existing data from previous periods or initial design
models (e.g. CAD). In both cases, robust and efficient 3D computational
geometry algorithms must be studied.

5. Monitoring dynamic processes. The focus of 3D reconstruction is still
on static objects. Although most sensors produce 3D data, hardly any
dynamic 3D reconstruction is presently being done. Most dynamic soft-
ware relies on geovisualisation tools (e.g. flood monitoring; Jern, 2005)
for analysis and decision making.

References

Döllner, J., T. Kolbe, F. Liecke, T. Sgouros, Takis, K. Teichmann, 2006, The
Virtual 3D City Model of Berlin - Managing, Integrating, and Communicating
Complex Urban Information, In: Proceedings of the 25th Urban Data Man-
agement Symposium UDMS 2006 in Aalborg, Denmark, May 15-17. 2006.

van Essen, 2007, Maps Get Real: Digital Maps evolving from mathematical
line graphs to virtual reality models. In this book ‘2nd International Work-
shop on 3D Geo-Information: Requirements, Acquisition, Modelling, Analy-
sis, Visualisation, 12-14 December 2007, Delft, the Netherlands’.

Maas, H., Vosselman, G., 1999. Two algorithms for extracting building models
from raw altimetry data, ISPRS JPRS, 54: 153-63. Manual of Photogramme-
try, 2004, 5th Edition, Editor-in-Chief, Chris McGlone, Ed Mikhail, and Jim
Bethel, ASPRS publisher, ISBN: 1-57083-071-1, 2004

Henricsson O., and E. Baltsavias, 1997. 3D building reconstruction with
ARUBA: a qualitative and quantitative evaluation, Automatic Man-made
Object Extraction from Aerial and Space Images (A. Grün, O. Kuebler, and
P. Agouris, editors), Birkhaeuser Verlag, Basel, pp. 65-76.

Jern, M. 2005. Web based 3D visual user interface to flood forecasting system,
in: Oosterom, Zlatanova&Fendel(eds.) Geo-information for Disaster Manage-
ment Springer-Verlag, ISBN 3-540-24988-5, pp. 1021-1039

428 Sisi Zlatanova

Pu, S., Vosselman, G., 2006, Automatic extraction of building features from
terrestrial laser scanning International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. 36, part 5, Dresden, Germany,
September 25-27, 5 p.

Rottensteiner, F., J. Trinder, S. Clode, K. Kubik, 2005, Automated delin-
eation of roof plans from LIDAR data, ISPRS WG III/3, III/4, V/3 Work-
shop ‘Laser scanning 2005’, Enschede, the Netherlands, September 12-14,
2005, pp. 221-226.

Schwalbe, E., H.G. Maas, F. Seidel, 2005, 3D building model generation, from
airborne laser scanner data using 2D GIS data and orthogonal point could
projections, ISPRS WG III/3, III/4, V/3 Workshop ‘Laser scanning 2005’,
Enschede, the Netherlands, September 12-14, 2005, pp209-214.

Tao, V. 2006, 3D data acquisition and object reconstruction for GIS and
AEC, in: Zlatanova&Prosperi (Eds.) 3D Geo-DBMS, in ’3D large scale data
integration: challenges and opportunities, CRC Press, Taylor&Francis Group,
pp. 39-56

Tao, C. V. and Y. Hu, 2001. A Comprehensive Study on The Rational Func-
tion Model For Photogrammetric Processing, Photogrammetric Engineering
and Remote Sensing, Vol. 67, No. 12, pp. 1347-1358, 2001.

Wang, Z., Schenk, T., 2000. Building extraction and reconstruction from lidar
data, IAPRS, 17-22 July, Amsterdam, vol. 33, part B3, pp. 958-964

Chapter 25

Working Group III – Modelling – Position
Paper:
Modelling 3D Geo-Information

Christopher Gold

3D geo-information can be thought of in several ways. At the simplest level it
involves a 2D data structure with elevation attributes, as with remote sensing
data such as LIDAR. The resulting structure forms a simple 2-manifold. At
a slightly more advanced level we may recognise that the earth may not
always be modelled by a planar graph, but requires bridges and tunnels.
This 2-manifold of higher genus may still use the same data structure (e.g.
a triangulation) but certain assumptions (e.g. a Delaunay triangulation) no
longer hold. Finally, we may wish to model true volumes, in which case a
triangulation might be replaced by a tetrahedralisation.

Each of these structures may be thought of as a graph - a set of nodes
with connecting (topological) edges or links. Most workers in computational
geometry, for example, would think in this way. However, because of the usual
very large volume of geo-information the emphasis here has often been on
(relational) data bases and their associated modelling techniques. More work
is clearly needed on the integration of these two approaches. The discussion
here uses the graph approach.

An example of a potential major application area is disaster management.
This has become particularly relevant in the last few years, and the GIS
response to this is very recent, as the 3D structures are not in place in com-
mercial products. Latuada’s (1998) paper on 3D structures for GIS and for
architecture, engineering and construction (AEC) provides a solid summary
of available structures and their different requirements. Briefly, there are sur-
face or volumetric models and he suggests methods for combining 2D tri-
angulations and 3D tetrahedralizations. Lee’s (2001) PhD thesis correctly
distinguished between the geometric and the (dual) topological structures
necessary for building evacuation planning, but did not produce a unified

Department of Computing and Mathematics
University of Glamorgan
Pontypridd, Wales, United Kingdom
cmgold@glam.ac.uk

429

430 Christopher Gold

data structure. Meijers et al. (2005), Slingsby (2006) and Pu and Zlatanova
(2005) discussed the structuring of the navigation graph (using the skeleton or
dual of the geometric graph) and the classification of the building ‘polygons’
(temporary walls, doors etc.)

While this research is very new, a few things emerge. Firstly, both primal
and dual graphs are required. Secondly these graphs need to be modifiable
in real-time (and in a synchronized fashion) to take account of changing sce-
narios. This implies a joint data structure (not a hybrid) where the two are
fully combined. Thirdly, the structure should not be restricted to buildings
(which have relatively well-ordered floors) but should apply to overpasses,
tunnels and other awkward objects. The same model would apply to queries
about fire propagation and flammability, air duct locations and air flow, util-
ity pipes and cables, flooding and other related issues, where data is available.
The model would also apply to other 3D applications such as geology, since
the algebraic system expresses all adjacency relationships for complex 3D
objects. While it is always technically possible to calculate a dual from its
primal graph, it must be emphasized that this is often not ideal. Coordinates
and other attributes may be lost, and the navigation in the one space will be
easy, while in the dual it will become complex. The integration of the primal
and the dual within the one data structure simplifies the number of element
types necessary, permits the development of an appropriate ‘edge algebra’ (as
is the case of the Quad-Edge in 2D - see Guibas and Stolfi, 1985) allows ver-
ifiable navigation, and assignment of appropriate attributes. (For example,
the question: ‘How do I get from this room to the next?’ directly becomes:
‘Give me the properties of the dual of this relationship - of the intervening
wall or door.’)

GIS is the integrating discipline/system for geo-spatial data from many
sources for many applications. It is the natural context for various types of
disaster management, route diversion, and flood simulation problems. It is
basically a 2D system. Traditionally static, it may permit route modelling,
and often include terrain models (TINs). It is a natural ‘hub’ for the import of
various geographically-distributed data types - roads, polygon data, property
boundaries, rivers etc. A major emphasis is on querying the attribute and
geographic information.

While a good foundation, it does not include proper 3D structures - only
2D terrain models with associated elevations. Full 3D structures are needed
for bridges, tunnels, building interiors etc. (N.B. recent work on extending
TINs - the Polyhedral Earth (Tse and Gold, 2004) - has allowed bridges and
tunnels, but only to give an exterior surface representation - not building
interiors. This has been extended in Gold et al. 2006.) Thus in the long run,
in an operational setting, 3D structures would need to be integrated within a
commercial GIS. Zlatanova and Prosperi (2006) discuss the ongoing conver-
gence between GIS and AEC, including the need for topological structures,
as do Zlatanova et al. (2004)

25 WG III Position paper: Modelling 3D Geo-Information 431

The core requirement for volumetric models is the development and im-
plementation of an appropriate 3D data structure so that the application
may be run in the GIS context. The objective, as given above, is to have a
real-time modifiable 3D data structure that integrates the primal and dual
graphs, along with their attributes. This should be mathematically verifiable
(an algebra) and implementable.

We may classify 3D data models into: Constructive Solid Geometry (CSG);
boundary-representations (b-rep); regular decomposition; irregular decompo-
sition; and non-manifold structures (Ledoux and Gold, 2006). Of these, b-reps
and irregular decomposition models are the most relevant. B-reps model the
boundaries of individual 2-manifolds (surfaces) as connected triangles, rect-
angles etc. but do not model the interiors. Well known b-rep data structures
are the half-edge (Mantyla, 1988); the DCEL (Muller and Preparata, 1978);
the winged-edge (Baumgart, 1975) and the quad-edge (Guibas and Stolfi,
1985). The quad-edge is distinctive in that it directly models both the primal
and the dual graph on the 2-manifold, and may be expressed as an algebra. (It
is often used to model Voronoi and Delaunay cells in the plane.) Irregular de-
composition models (e.g. for constructing 3D Delaunay tetrahedralizations)
may be constructed with the half-face data structure (Lopes and Tavarez,
1997); G-Maps (Lienhardt, 1994) and the facet-edge data structure (Dobkin
and Laszlo, 1989). Half-edges and G-maps do not directly reference the dual
structure (a property we need), and the full facet-edge structure appears
never to have been implemented. Ledoux and Gold (2006) have proposed the
Augmented Quad Edge (AQE) as a navigational structure, but construction
operators are not yet fully defined.

These are all graph storage structures from Computational Geometry.
Within the GIS community most emphasis has been put on identifying feature
elements and specifying their storage in a database. The actual topological
connectivity would usually be established after their retrieval into memory
(Zlatanova et al., 2004). A possible approach to direct storage of graph struc-
tures is suggested in (Gold and Angel, 2006), where they use a form of Voronoi
hierarchy to store edge structures in 2D, with the proposed extension to 3D.

References

Baumgart, B. G. (1975). A polyhedron representation for computer vision.
In National Computer Conference. AFIPS.

Dobkin, D. P. & Laszlo, M. J. (1989). Primitives for the manipulation of
three-dimensional subdivisions. Algorithmica, v. 4, pp. 3-32.

432 Christopher Gold

Gold C. M. and Angel, P., 2006. Voronoi hierarchies. In Proceedings, GI-
Science, Munster, Germany, 2006, LNCS 4197, Springer, pp. 99-111.

Gold, C. M., Tse, R. O. C. and Ledoux, H. (2006). Building reconstruction-
outside and in. In Alias Abdul-Rahman, Sisi Zlatanova, and Volker Coors,
(eds.), Innovations in 3D Geo Information Systems, Lecture Notes in Geoin-
formation and Cartography, Springer, pp. 355-369.

Guibas, L. J. & Stolfi, J. (1985). Primitives for the manipulation of general
subdivisions and the computation of Voronoi diagrams. ACM Transactions
on Graphics,v. 4, pp. 74-123.

Lattuada, R. (1998). A triangulation based approach to three dimensional
geoscientific modelling. Ph.D. thesis, Department of Geography, Birkbeck
College, University of London, London, UK.

Ledoux, H. and Gold, C. M., 2006. Simultaneous storage of primal and dual
three-dimensional subdivisions. Computers, Environment and Urban Systems
v. 4, pp. 393-408.

Lee, J. (2001) A 3-D Data Model for Representing Topological Relationships
Between Spatial Entities in Built Environments. Ph.D. Thesis, University of
North Carolina, Charlotte.

Lienhardt, P. (1994). N-dimensional generalized combinatorial maps and cel-
lular quasi-manifolds. International Journal of Computational Geometry and
Applications, v. 4, pp. 275-324.

Lopes, H. & Tavares, G. (1997). Structural operators for modeling 3-manifolds.
In Proceedings 4th ACM Symposium on Solid Modeling and Applications,
pp. 10-18. Atlanta, Georgia, USA.

Mantyla, M. (1988). An introduction to solid modeling. Computer Science
Press, New York.

Meijers, M., Zlatanova, S. and Pfeifer, N. (2005). 3D Geo-information indoors:
structuring for evacuation. In: Proceedings of Next generation 3D City Mod-
els, Bonn, 6p.

Muller, D. E. & Preparata, F. P. (1978). Finding the intersection of two con-
vex polyhedra. Theoretical Computer Science, v. 7, pp. 217-236.

Pu, S. and Zlatanova, S. (2005). Evacuation route calculation of inner
buildings, in: PJM van Oosterom, S Zlatanova & EM Fendel (Eds.), Geo-
information for disaster management, Springer Verlag, Heidelberg, pp. 1143-

25 WG III Position paper: Modelling 3D Geo-Information 433

1161.

Slingsby, A. (2006). Digital Mapping in Three Dimensional Space: Geometry,
Features and Access. PhD thesis (unpublished), University College London.

Tse, R. O. C. and Gold, C. M. (2004). TIN Meets CAD - Extending the TIN
Concept in GIS. Future Generation Computer systems (Geocomputation), v.
20, pp. 1171-1184, 2004.

Zlatanova, S. and Prosperi, D. (2006), 3D Large Scale data integration: chal-
lenges and opportunities, CRC Press, Taylor & Francis Group, ISBN 0-8493-
9898-3.

Zlatanova, S., Rahman A. A. and Shi, W. (2004), Topological models and
frameworks for 3D spatial objects. Journal of Computers & Geosciences, May,
v. 30, pp. 419-428.

Chapter 26

Working Group IV – Analysis – Position Paper:
Spatial Data Analysis in 3D GIS

Jiyeong Lee

One of major challenging tasks of 3D GIS is to support spatial analysis among
different types of real 3D objects. The analysis functions in 3D require more
complex algorithms than 2D functions, and have a considerable influence on
the computational complexity. In order to maintain a good performance, not
only are the algorithms implemented efficiently, but also the 3D spatial ob-
jects are represented by a suitable 3D data model. However, it is a difficult
task to select an appropriate data structure designed for the characteristics of
the applications, for example, objects of interest, resolution, required spatial
analysis, etc. (Zlatanova et al. 2004). A model designed for 3D spatial anal-
ysis may not exhibit good performance on 3D visualization and navigation.
In other words, different data models might be suitable for the execution of
specific tasks but not others. In order to maximize efficiency and effective-
ness in the provision of operations, Oosterom et al. (2002) proposed multiple
topological models maintained in one database by describing the objects,
rules and constraints of each model in a metadata table. Metric and position
operations such as area or volume computations are realised on the geomet-
ric model, while spatial relationship operations such as ‘meet’ and ‘overlap’
are performed on the topological model. However, it is necessary to find out
whether the developed 3D data models are designed for 3D spatial analysis.

3D Grid-based data models are used to support 3D volume computations
for the applications of environmental models, such as 3D slope stability anal-
ysis and landslide hazard assessment. A shortest path algorithm is also imple-
mented for an un-indexed three-dimensional voxel space using a cumulative
distance cost approach. This approach produces a set of voxels, such that
each voxel contains an attribute about the cost of traveling to that voxel
from a specified start point, if there is uniform friction of movement through-
out the representation. The three-dimensional shortest path algorithm moves

Department of Geoinformatics, University of Seoul,
90 Jeonnong-dong, Dongdaemun-gu. Seoul, 130-743,
South Korea jlee@uos.ac.kr

435

436 Jiyeong Lee

through the ‘cost volume’ along the steepest cost slope from target to ori-
gin using a 3 by 3 by 3 search kernel (Raper 2000). 3D topographic models
combining 2.5D terrain models with 3D visualization systems are used for
modeling noise (Stoter, et al. 2007) and odour contours, visibility analysis,
line-of-sight analysis, and right-of-sunlight analysis in order to maintain a
sustainable urban environment. The 3D city models in lower level-of-detail
largely treat geographic features such as buildings as indivisible entities with-
out internal partitions or subunits. Although the 3D topographic models have
been developed and implemented for geo-science analyses and 3D visualiza-
tion systems, they have some limitations with implementing 3D spatial anal-
yses based on 3D topological relationships including adjacency, connectivity
and containment.

The outputs of 3D topological analyses are in three forms: only retrieval
of data for 3D visualization, the analytical querying of data once it has been
structured in topological format, and the performances of spatial operations
such as 3D route calculations, 3D proximity, etc. These topological analy-
ses are relevant in applications where 3D models are extensively used such
as earth sciences, geology, archaeology, chemistry, biology, medical sciences,
cadastral and urban modeling, computer aided design and gaming.

In the applications, the analytical queries requiring identification of the
topological relationships of adjacency and containment answer questions such
as ‘which regions are cut by a particular fault?’, ‘which Cambrian unconfor-
mities intersect Permian lime-stones?’, which 3D buildings are in this 2D
county boundary?’, ‘how many holes, or tunnels does the object have?’, ‘I
am planning to build a tunnel of diameter X - what rock will the tunnel
boring machine need to cut through?’ and ‘which 3D buildings will widening
this road impact?’ (Ellul and Kaklay 2006). In indoor location-based services
to acquire indoor location information and to locate the position information
into the 3D digital space using a map matching, the 3D topological queries are
implemented to retrieve the context of a user’s location to offer appropriate
services.

The 3D spatial analysis based on 3D connectivity relationships among spa-
tial entities within the urban modelling arena is performed to support emer-
gency response systems. The applications require a network model through
three-dimensional models of buildings for rapid determination of emergency
exit paths. The network models present the topological relationships among
3D objects by drawing a dual graph interpreting the ‘meet’ relation between
3D and 3D objects. Such a structure might be quite powerful for calculations
and visualization of 3D routing analysis and 3D topological queries (Lee,
2007). The 3D graph models are used for implementing 3D buffer operations
in order to identify what is near features or within a given distance (Lee
and Zlatanova, forthcoming). The 3D network models are used to define the
network-based neighborhoods for 3D topological analyses in indoor space for
analyzing human behaviors, such as an evaluation of neighborhood pedestrian
accessibility.

26 WG IV Position paper: Spatial Data Analysis 437

Although many geospatial scientists have been interested in researching
and implementing 3D spatial analysis in 3D GIS, a large amount of issues
are still remained as challenging tasks in 3D geo-information analysis:

• Analytical 3D visualization to present knowledge on 3D geographic data;
• Analytical queries by identifying the topological relationships (adjacency,

connectivity and containment) among combinations of 0, 1, 2, and 3D
objects and between complex objects;

• Topological analytical functions including overlay and intersection anal-
yses between two 3D, 2D, 1D and 0D combinations;

• 3D navigations through 3D indoor environments to support emergency
response operations and urban modeling;

• 3D buffering and selections based on topological relationships among
combinations of 0, 1, 2, and 3D objects and between complex objects.

References

Ellul, C. and Haklay, M. 2006. Requirements for Topology in 3D GIS. Trans-
actions in GIS, 10(2): 157-175

Lee, J. 2007. A 3D Navigable Data Model to Support Emergency Responses
in Micro-Spatial Built-Environments. Annals of the Association of American
Geographers, 97(3): 512-529

Lee, J and S. Zlatanova. forthcoming. A 3D Data Model and Topological
Analyses for Emergency Response in Urban Areas. In Geo-Information tech-
nology for emergency response, eds. S. Zlatanova and J.Li, Bristol, PA: Taylor
& Francis (in press).

Oosterom, P. v., Stoter, J., Quak, W., &Zlatanova, S. 2002. The balance
between geometry and topology. In D. Richardson & P. Oosterom (eds), Ad-
vances in Spatial Data Handling, 10th International Symposium on Spatial
Data Handling: 209-224. Berlin: Springer-Verlag.

Penninga, F, 2004, Oracle 10g Topology; Testing Oracle 10g Topology us-
ing cadastral data GISt Report No. 26, Delft, 2004, 48 p., available at :
www.gdmc.nl/publications

Raper, J. 2000. Multidimensional Geographic Information Science. New York:
Taylor & Francis.

Stoter, J., Kluijver, H. and Kurakula, 2007. Towards space-based modelling
of continuous spatial phenomena: example of noise, 3D geoinfo 2007.

438 Jiyeong Lee

Zlatanova, S., A. Rahman, A. & Shi, W. 2004. Topological models and frame-
works for 3D spatial objects, Journal of Computers & Geosciences, 30(4):
419-428.

Chapter 27

Working Group V – Visualization – Position
Paper:
3D Geo-Visualization

Marc van Kreveld

Due to new data collection techniques, more data storage and more com-
puting power, we can make and visualize 3D models of the world. However,
the quality and interaction capabilities of these reconstructions are limited.
It may be only a matter of time until high-quality visualizations with walk-
through and other interactive possibilities are developed. Some of the appli-
cations that can benefit from 3D geo-visualization include city architecture,
landscape planning, soil analysis, geology, groundwater analysis, and meteo-
rology.

3D visualization can be used for schematic representation of a geographic
region in the style of a traditional map, but with an added 3rd dimension of
space, for example, a topographic map draped over a digital elevation model.
To get a visually pleasing 3D topographic visualization, 3D map objects are
needed, such as 3D symbols and 3D labels.

Above-the-ground 3D data can be obtained by laser altimetry. Below-the-
ground 3D data is obtained using bore holes and by several other techniques.
Sometimes, data is sparse and errors may exist. For the advancement of 3D
visualization, we must consider:

• how to visualize the original data,
• possible reconstructions into 3D models, and
• the uncertainty in these models.

A related question is how best to visualize data so that obvious errors can
be detected and removed.

Other questions of interest to future research in 3D geo-visualization are
the following:

• What is the role for animation and geo-exploration in 3D geo-visualization?

Department of Information and Computing Sciences
Utrecht University
the Netherlands
marc@cs.uu.nl

439

440 Marc van Kreveld

• What 3D visualizations are effective for various purposes, like geograph-
ical 3D data analysis, and illustrative summaries of 3D geographic data?

• How should we visualize patterns that are found by spatial data mining
in 3D geo data sets?

• What computation is needed for 3D visualization, and how can we do it
efficiently?

• Can ideas from the graph drawing research community be used in 3D
geo-visualization?

• Can ideas from the visualization research community be used in 3D geo-
visualization?

• How exactly should 3D dynamic/temporal visualization be done(processes,
developments,. . .)?

• What is the best approach to the handling multiple levels of detail (e.g.
smooth transition between levels)?

• Is the application of schematic abstract 3D representations possible (in
a way similar to the 2D maps)? Note that this is quite different from a
visualization that maximizes the realistic impression.

• How should 3D thematic maps be created (e.g. air quality, salinity of
ocean, etc.)?

Selected references

J. Döllner, K. Hinrichs, An object-oriented approach for integrating 3D visu-
alization systems and GIS. Computers & Geosciences, 2000.

O. Kersting, J. D”ollner, Interactive 3D visualization of vector data in GIS.
Proceedings of the 10th ACM international symposium on the advances in
GIS, 2002.

N. Haala, C. Brenner, K.H. Anders, 3D urban GIS from laser altimeter and
2D map data. International Archives of Photogrammetry and Remote Sens-
ing, 1998.

A. de la Losa, B. Cervelle, 3D Topological modeling and visualisation for 3D
GIS. Computers and Graphics, 1999.

B. Huang, An integration of GIS, virtual reality and the Internet for vi-
sualization, analysis and exploration. International Journal of Geographical
Information Science, 2001.

M.P. Kwan, J. Lee, Geovisualization of Human Activity Patterns Using 3D
GIS: A Time-Geographic Approach. Spatially Integrated Social Science, 2004.

27 WG V Position paper: 3D Geo-Visualization 441

J. Stoter, S. Zlatanova, 3D GIS, where are we standing. ISPRS Joint Work-
shop on Spatial, Temporal and Multi-Dimensional Data Modeling, 2003.

A. Altmaier, T.H. Kolbe, Applications and Solutions for Interoperable 3d
Geo-Visualization. Proceedings of the Photogrammetric Week, 2003.

S. Zlatanova, A.A. Rahman, M. Pilouk, Trends in 3D GIS Development.
Journal of Geospatial Engineering, 2002.

S. Shumilov, A. Thomsen, A.B. Cremers, B. Koos, Management and visual-
ization of large, complex and time-dependent 3D objects in distributed GIS.
Proceedings of the 10th ACM international symposium on the advances in
GIS, 2002.

S.S. Kim, S.H. Lee, K.H. Kim, J.H. Lee, A unified visualization framework
for spatial and temporal analysis in 4D GIS. Geoscience and Remote Sensing
Symposium, 2003.

	3540721347
	Contents
	Part I: Keynotes
	1. Maps Get Real: Digital Maps evolving from mathematical line graphs to virtual reality models
	2. On Valid and Invalid Three-Dimensional Geometries

	Part II: Papers
	Theme I: Requirements & Applications
	3. Navigable Space in 3D City Models for Pedestrians
	4.Towards 3D Spatial Data Infrastructures (3D-SDI) based on open standards –: experiences, results and future issues
	5. Re-using laser scanner data in applications for 3D topography
	6. Using Raster DTM for Dike Modelling
	7. Development of a Web Geological Feature Server (WGFS) for sharing and querying of 3D objects

	Theme II: Acquisition
	8. Using 3D-Laser-Scanners and Image-Recognition for Volume-Based Single-Tree-Delineation and -Parameterization for 3D-GIS-Applications
	9. Automatic building modeling from terrestrial laser scanning
	10. 3D City Modelling from LIDAR Data

	Theme III: Modelling
	11. First implementation results and open issues on the Poincaré-TEN data structure
	12. Drainage reality in terrains with higher-order Delaunay triangulations
	13. Surface Reconstruction from Contour Lines or LIDAR elevations by Least Squared-error Approximation using Tensor-Product Cubic B-splines
	14. Modelling and Managing Topology in 3D Geoinformation Systems[sup(1)]
	15. Mathematically provable correct implementation of integrated 2D and 3D representations
	16. 3D Solids and Their Management In DBMS
	17. Implementation alternatives for an integrated 3D Information Model

	Theme IV: Analysis
	18. Serving CityGML via Web Feature Services in the OGC Web Services - Phase 4 Testbed
	19. Towards 3D environmental impact studies: example of noise
	20. The Kinetic 3D Voronoi Diagram: A Tool for Simulating Environmental Processes

	Theme V: Visualisation
	21. Techniques for Generalizing Building Geometry of Complex Virtual 3D City Models
	22. Automatic Generation of Residential Areas using Geo-Demographics

	Part III: Position papers
	23. Working Group I – Requirements and Applications – Position Paper: Requirements for 3D in Geographic Information Systems Applications
	24. Working Group II – Acquisition – Position Paper: Data collection and 3D reconstruction
	25. Working Group III – Modelling – Position Paper: Modelling 3D Geo-Information
	26. Working Group IV – Analysis – Position Paper: Spatial Data Analysis in 3D GIS
	27. Working Group V – Visualization – Position Paper: 3D Geo-Visualization

